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Abstract

łTout ce qui va arriver, peut et doit être prévu.ž

Les Shadox, french animated TV series 1968ś1974.

Nanoŕuidics, the study of ŕuid transport at nanometer scales, appears as a promising
őeld to tackle some great challenges faced by our society, such as the development of
alternative sustainable energies. Nanoŕuidic devices could contribute in energy conversion
by e.g. the use of membranes with nanoscale porosity, which allow to obtain electricity
from the different salt concentrations between fresh and sea water at the estuaries, or to
harvest waste heat by e.g. generating osmotic ŕows or electric currents from temperature
gradients via thermo-osmosis or thermoelectricity. As the size decreases, surfaces have an
increasingly important role, and it is critical at the nanoscale to understand the molecular
mechanisms occurring at liquid-solid interfaces. One important property is the failure
of the hydrodynamic no-slip boundary condition. Instead, a velocity jump occurs at the
interface, deőning the slip velocity, which is related to the liquid-solid friction coefficient. In
this manuscript we start from the slip boundary condition, and characterize the position
where the boundary applies from a molecular point of view, using classical molecular
dynamics simulations. Afterwards, we study the temperature dependence of the liquid-
solid friction coefficient, and compare it to its bulk transport analogous, the shear viscosity
of the ŕuid. With special focus on supercooled water, we reveal the molecular mechanisms
controlling friction by decomposing the interfacial transport coefficient into a static and
a dynamic contribution, and we assess the effect of supercooling on the large slippage
we observe at the lower temperatures. Aside of hydrodynamic transport, we also study
interfacial thermal transport by determining the most suitable surface structure, for a
system constituted in water on nanopatterned gold coated with a graphene sheet, in order
to increase the interface resistance. We also perform őrst principle simulations, which
explicitly solve the electronic structure, to explore the bulk water shear viscosity and
diffusion coefficient temperature evolution. Motivated by a connection between dynamics
and structure, we assess the validity of the excess entropy scaling relations, which relate the
bulk transport coefficients with integrals of the pair radial distribution functions. Finally,
we also study thermo-osmosis ŕows, by proposing an analytical model that accounts for
speciőc interactions between solvent and ions with the wall. Within this model, we study
the parameters that control the thermo-osmotic response of the system, predicting large
responses for systems with large slippage, and a change of the osmotic ŕow direction with
the salt concentration, which could explain experiments where the ŕow direction cannot
be predicted by the classical theory.
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Résumé

łPourquoi faire simple quand on peut faire compliqué...ž

Les Shadox, french animated TV series 1968ś1974.

La nanoŕuidique, l’étude du transport des ŕuides à l’échelle nanométrique, apparaît
comme un domaine prometteur pour relever certains grands déős auxquels notre société
est confrontée, comme le développement d’énergies alternatives durables. Les dispositifs
nanoŕuidiques pourraient contribuer à la conversion d’énergie, par exemple en utilisant
des membranes à porosité nanométrique, qui permettent d’obtenir de l’électricité à partir
des différentes concentrations en sel entre l’eau douce et l’eau de mer dans les estuaires,
ou de récolter la chaleur perdue, par exemple en générant des écoulements osmotiques
ou des courants électriques à partir de gradients de température par thermo-osmose ou
thermoélectricité. À mesure que la taille diminue, les surfaces jouent un rôle de plus en
plus important, et il est essentiel, à l’échelle nanométrique, de comprendre les mécanismes
moléculaires qui se produisent aux interfaces liquide-solide. Une propriété importante est
l’échec de la condition hydrodynamique de non glissement. Au lieu de cela, un saut de
vitesse se produit à l’interface, déőnissant la vitesse de glissement, qui est liée au coeffi-
cient de frottement liquide-solide. Dans ce manuscrit, nous partons de la condition limite
de glissement, et nous caractérisons la position où la limite s’applique d’un point de vue
moléculaire, en utilisant des simulations classiques de dynamique moléculaire. Ensuite,
nous étudions la dépendance en température du coefficient de frottement liquide-solide,
et nous le comparons à son analogue en volume, la viscosité de cisaillement du ŕuide.
En nous concentrant sur l’eau surfondue, nous révélons les mécanismes moléculaires qui
contrôlent le frottement en décomposant le coefficient de transport interfacial en une con-
tribution statique et une contribution dynamique, et nous expliquons l’effet important de
la surfusion sur le glissement que nous observons aux basses températures. En dehors du
transport hydrodynamique, nous étudions également le transport thermique interfacial en
déterminant la structure de surface la plus appropriée, pour un système constitué d’eau
sur de l’or nanotexturé recouvert d’une feuille de graphène, aőn d’augmenter la résistance
de l’interface. Nous effectuons également des simulations ab initio, qui résolvent explicite-
ment la structure électronique, pour explorer l’évolution en température de la viscosité de
cisaillement et du coefficient de diffusion de l’eau. Motivés par un lien entre la dynamique
et la structure, nous évaluons la validité des lois d’échelle de l’excès d’entropie, qui relient
les coefficients de transport en volume à des intégrales de fonctions de distribution radi-
ale. Enőn, nous étudions également les écoulements thermo-osmotiques, en proposant un
modèle analytique qui rend compte des interactions spéciőques du solvant et des ions avec
la paroi. Dans ce modèle, nous étudions les paramètres qui contrôlent la réponse thermo-
osmotique du système, et nous prédisons des réponses importantes pour les systèmes avec
un grand glissement, ainsi qu’un changement de la direction de l’écoulement osmotique
avec la concentration en sel, ce qui pourrait expliquer les expériences où la direction de
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l’écoulement ne peut pas être prédite par la théorie classique.



List of Symbols

In order to help the eventual reader, we present here the notation of some important
quantities used along this thesis manuscript.

General quantities

• inverse thermal energy β = 1/(kBT ), with kB the Boltzmann constant and T the
temperature

• absolute ionic charge q = Ze, with e the elementary charge and Z the ion valence

• number of degrees of freedom Nf

• temperature T

• total pressure P

• mass density ρ = m/V , with m the particle’s mass and V the volume

• number density n = N/V , with N the number of particles and V the volume

• electronic density ne

• contact angle θ

Characteristic lengths

• effective molecular diameter σ1

• Bjerrum length ℓB

• Debye length λD

• Gouy-Chapman length ℓGC

• slip length b (see hydrodynamic transport)

• Kapitza length ℓK (see thermal transport)
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Hydrodynamic transport

• slip velocity vslip

• shear viscosity in bulk η

• interface (liquid-solid) friction coefficient λ

• slip length b = η/λ

• hydrodynamic wall position zs

• shift between the hydrodynamic and the physical wall position ∆

• shear stress at the wall τ1, τw

• diffusion coefficient D

• hydrodynamic radius Rh

Thermal transport

• bulk thermal conductivity λth

• interface thermal conductance G

• interface thermal resistance R = 1/G

• Kapitza length ℓK = λth/G

Dynamic times

• Maxwellian relaxation time tMaxwell

• Green-Kubo relaxation time τGK, related to the decay of the traceless components
of the pressure tensor autocorrelation

• total structural relaxation time τρ, related to the decay of the density autocorrelation,
and decomposed as a weighted sum of a short time decay τβ and a long time decay
τα such as τρ = (1−A)τβ +Aτα

Poisson-Boltzmann Framework

• electric őeld E

• electrostatic potential V

• reduced potential ϕ = βqV

• their value at the wall Vs and ϕs

• ion densities n±

• charge density ρe



xiii

• solvent dielectric permittivity ε1

• salt concentration n0 = n+ = n− in the bulk/reservoirs

• surface charge density Σ

1In Chapter 2 {ε, σ, τ} correspond to reduced Lennard-Jones units referring, respectively, to liquid-liquid

interaction energy, distance, and system’s characteristic time τ = σ
√

m/ε
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Chapter 1

Introduction

łThe validity of the no-slip boundary condition at a ŕuid-solid interface was
debated for some years during the last century, there being some doubt about
whether molecular interactions at such an interface lead to momentum
transfer of the same nature as that at a surface in the interior of a ŕuid; but

the absence of slip at a rigid wall is now amply conőrmed by direct

observations and by the correctness of its many consequences under normal
conditions.ž

George K. Batchelor, An Introduction to Fluid Dynamics 1967
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1.1 Nanoŕuidics, a land of opportunities

Nanoŕuidics, consisting in the study of ŕuids that are conőned at the nanometer scale,
has emerged as a new and interesting őeld in the past few decades due to novel behavior
associated to this length scale. Indeed, nanoŕuidics lies in the validity limit of continuum
approaches, and a discrete description of the molecular mechanisms become critical to
understand some of the physical and chemical processes taking place. With that regard,
thanks to the great increase of computational power over time, molecular dynamics simula-
tions have appeared as a fundamental tool to explore ŕuid transport at small length scales,
generating a great scientiőc interest and contributing to the development of nanoŕuidics.
From an experimental perspective, the great technological progress in the recent years can
also be associated to the evolution of nanoŕuidics: advances in observation and measure-
ment techniques have made possible to control what happens at the nanoscale, and to
accurately determine the small physical quantities associated.

The recent and generalized interest in nanoŕuidics cannot be exclusively associated to
the technological development, moving towards smaller devices, but also to the expectation

1



2 CHAPTER 1. INTRODUCTION

that new properties related to interfacial processes will emerge. The expected new ŕuid
behavior can be associated to the broad spectrum of characteristic lengths existing at
the nanoscale arising, for example, from electrostatics, ŕuid dynamics, or related to the
size of the ŕuid molecule. The competition and coupling between different mechanisms
associated to these lengths give rise to novel phenomena and may imply complex ŕuid
behavior that cannot be observed in larger systems. Therefore, a better understanding of
the molecular mechanisms taking place at the nanoscale can allow us to proőt from them.
Also, nanoŕuidic systems are ubiquitous in nature, and govern a large variety of biological
processes, as those related to the transport of biomolecules across cell walls [1, 2, 3, 4].

Our body is constituted by a őne and efficient machinery and a better understanding
of it can allow us to reproduce and exploit it in our beneőt. A paradigmatic example
is the salt őltration by the kidney, which takes place thanks to a subtle combination of
geometry and osmotic processes [5]. The osmotic exchange at the functional units of the
kidney, the nephrons, is due to the combination of aquaporins, the proteins that regulate
water ŕow in the human body, and salt pumps, that allow the absorption of the salts by
our body. With a water loss on the order of 1% [5, 6], kidney őltration is an extremely
efficient mechanism both in terms of separation and energy, and the reproduction of its
machinery via nanoŕuidic artiőcial devices could have potential applications in portable
dialysis devices or in water pretreatment for desalination.

Indeed, the development of alternative solutions to the classical methods for seawater
desalination based on evaporation (very energetically costly) is key to face the water crisis
related to the lack of fresh water, typically in isolated or underdeveloped regions. With
that regard, nanoŕuidic devices could present cheap and portable alternatives, by őltrating
sea water employing membranes with nanoscale porosity. The main idea of these state-
of-the-art devices is to separate two regions with different salt concentration (such as sea
and fresh water) by a semipermeable membrane, and then use pressure driven processes
to overcome the natural osmotic pressure, creating a water ŕux from the high to the low
salt concentration region: this operation is known as reverse osmosis. Although the power
consumption of technologies based on reverse osmosis has experienced a striking decrease
over time (from ∼ 15 kWh/m3 in 1970 to ∼ 2 kWh/m3 in 2008), it is still higher than the
so-called thermodynamic limit on the order of ∼ 1.06 kWh/m3, deőned as the theoretical
minimum energy required to desalinate 35 g/L at 50% of recovery [7]. Alternatively, differ-
ent technologies are still being proposed taking advantage of interfacial phenomena, as for
instance thermo-osmosis, based on thermally pumping water across nanotube membranes
and with predicted ŕow rates on the order of 7.77 L/h from temperature differences of only
15 K [8].

Aside of water desalination, the need and development of renewable sources of energy is
indubitably one of the greatest challenges faced by our society. World energy consumption
is signiőcantly increasing every year, and yet a large percentage is based on burning fossil
fuels, increasing the world emissions of carbon dioxide and contributing to global warm-
ing [9]. In contrast, sustainable, abundant and inexpensive sources of energy appear as a
critical alternative to tackle the problem, and nanoŕuidic systems could contribute signiő-
cantly in that őeld. We will see how nanoŕuidic systems can help us to harvest energy and
how can we take advantage of the novel interfacial phenomena occurring at the nanoscale.
But, őrst, let’s have an overview of the different components at play in hydrodynamics,
interfaces, and energy conversion.
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(a) (b)

Figure 1.1: (a) Stone age rock drawing of Alta, Norway, dated between 4300 and 500 BC.
The image represents a man on skis with a bow pursuing an elk. [Photo: Ralph Frenken
2012]. (b) Depiction from the tomb of Djehutilohept at el-Bersheh, Egypt, dated around
1800 BC. The wall painting represents several workers moving a colossal statue, and one
of them (in the middle) pouring some liquid in front of the sledge. [Taken from [11]].

1.2 Tribology and hydrodynamics: a historical review

In nanoŕuidics, as conőnement increases, the surfaces play an increasingly important
role, and it becomes critical to study the different phenomena taking place at the interface.
One of the interfacial quantities we will be interested in studying and controlling is the
friction between the liquid and the solid surface.

Tribology, from the Greek words tribos meaning łrubbingž and logos meaning łrea-
sonž, encompasses the sciences and technologies of interacting surfaces in relative motion.
Among the multiple interests of tribology, we can highlight the study of friction. Histor-
ically, one of the objectives of technology development in humankind has been to reduce
the friction force, via e.g. lubrication, with the motivation of facilitating the daily activ-
ities such as construction or agriculture. The őrst hints of use of human imagination in
order to reduce friction can be found already in the middle stone age (Mesolithic period,
11000-5500 years ago), where we can őnd represented in rock drawings the transportation
of materials by sledges, wheeled vehicles, bearings, or the use of skis for hunting (Fig. 1.1a)
[10]. We can also őnd early examples of lubrication, for example, in an Egyptian painting
from the tomb of Djehutilohept at el-Bersheh (1800 BC, Fig. 1.1b), where we can observe
the image of a man pouring lubricant (probably water) in front of a sledge to transport a
big statue [11].

However, we have to wait until the Renaissance to account for the őrst scientiőc de-
velopments in the study of friction. Leonardo da Vinci (1452-1519) was the őrst author to
leave written proof of his systematic studies of friction on horizontal and inclined planes
[12]. Nevertheless, he left his studies unpublished, and we have to wait 200 years to őnd the
őrst publications on the classical laws of dry friction by Guillaume Amontons, in 1699, who
stated that the friction force is directly proportional to the applied load, and independent
of the apparent area of contact [13]. The next important advance on solid-solid friction was
made in 1750 by Leonard Euler, who was the őrst one to distinguish between two different
types of dry friction: static friction, when an object is placed on a surface, and kinetic (or
dynamic) friction, related to the movement of an object on a surface [14]. Finally, it is
also important to highlight the work of Charles A. Coulomb as well on dry friction, who
deőned friction mathematical formulas based on his own experiments, extending Amontons
work, and who also studied friction on ŕuids, introducing the concepts of external friction,
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between laminae of different bodies, and internal friction, between laminae of one body
[15].

In parallel to the works on dry friction, who were mostly focused on engineering ap-
plications, another őeld was being developed at the same time, related to the movement
of ŕuids. On this topic, which was considered a different subject at that time, there are
the well known works of Isaac Newton on viscous ŕows [16], where he deőned the defectu
lubricitatis or what nowadays we know as viscosity, which can be understood as the in-
ternal friction of ŕuids. Along with the industrial revolution, several advances were made
by Leonard Euler, Daniel Bernouilli and Jean-Léonard M. Poiseuille, stating the basics
of ŕuid dynamics [17]. An important advance in hydrodynamics was made by the end of
the 18th century by Claude Navier, who included the viscous terms in Newton’s laws for
ŕowing ŕuids, and by George G. Stokes, who deőned the basics of viscous ŕow [18]. It was
the combination of the work of these two scientists, who developed their studies separately,
which gave rise to the Navier-Stokes equations, that allow us to describe from air ŕows in
the atmosphere of our planet to ocean currents, and basically any phenomena involving
ŕuids.

Although the systematic study of conőned ŕows and liquid-solid friction did not reach
popularity until the second half of the 20th century, it was Claude Navier, in his łMé-
moire sur les lois du mouvement des ŕuidesž from 1823, who őrst thought in linking the
concepts of internal and external friction for conőned ŕuids [19]. Working in the need
of a well deőned boundary for what we know nowadays as the Navier-Stokes equations,
Navier considered, together with the viscosity of the liquid ε, what he called la résistance
provenant du glissement (the resistance coming from slip, E) at the liquid-solid interface.
He concluded that both liquid-liquid and liquid-solid friction were related at the interface,
stating the relation, in his original notation:

Ev + ε
dv

dx
= 0,

where v is the ŕuid velocity and x the normal to the wall. It is common nowadays, and so
we will do in the present manuscript, to generalize Navier’s boundary condition for moving
walls (deőning vslip as the velocity jump at the interface), and to re-express the boundary
equation in terms of the slip length as:

vslip = b
dv

dz

∣

∣

∣

∣

wall

, (1.1)

with z the normal to the wall, and b = ε/E. In the following we will use the standard
notation η and λ to refer to the shear viscosity and the liquid-solid friction coefficient, so
b = η/λ.

1.3 Slip length measures, state of the art

Although Navier’s boundary condition (BC) was stated at the beginning of the 19th
century, a common assertion in textbooks on hydrodynamics was to consider the no-slip
BC, i.e. a vanishing ŕuid proőle when in contact to the wall due to the absence of slip
[20]. It was in the 1970’s that the slip BC gained relevance due to the huge slip predicted
by P. G. de Gennes for complex ŕuids, particularly for entangled polymer melts [21]. De
Gennes stated that, supposing the monomer friction λ1 of a similar order of magnitude
than the friction of a simple ŕuid, an entangled polymer melt would present a large slip
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(a) Dissipation: SFA (b) Fluctuations: diffusion (c) Wetting

Figure 1.2: (a) Schematics of the surface force apparatus (SFA) used to experimentally
determine slippage from the force acting on a plane in response to small oscillations of a
sphere of radius R. Note that the sketch is not to scale, with the sphere radius on the
order R ∼ mm and the height on the order h ∼ nm so R≫ h. (b) Scheme of the conőned
diffusion experiment, used to determine slippage from the thermal ŕuctuations of a colloid
of diameter σ. (c) Sketch of wetting properties, deőned from the contact angle θ of a
sessile liquid droplet at the surface. When θ < 90◦ the surface is considered hydrophilic or
wetting. When θ > 90◦ the surface is considered hydrophobic or non-wetting.

bN at the surface, as compared to the monomer slip b1, due to the large polymer viscosity
ηN ; following the simple decomposition:

bN =
ηN
λ1

=
ηN
η1

η1
λ1

=
ηN
η1
b1 ≫ b1.

De Gennes predictions have been broadly conőrmed experimentally, measuring slip lengths
on the order of ∼ 10 µm for polymer melts [22, 23].

Although the large slippage exhibited by complex ŕuids was conőrmed, the question
about the presence of slip remained in the case of simple liquids and, speciőcally, water,
where the slip would be expected to be comparable to a molecule size [24] and therefore
signiőcantly more difficult to determine experimentally. It was at the beginning of the 21st
century that great advances were made in experimentally determining slippage for simple
ŕuids. Due to the broad literature on different experimental techniques to characterize
liquid slippage on a great variety of interfaces [25], we will brieŕy mention two of them as
an illustration, not only on the great creativity needed to characterize phenomena at small
length scales, but also as an exempliőcation of the power of the ŕuctuation-dissipation
relation in statistical physics.

The őrst example of experiment to measure slippage for water is by using a surface
force apparatus (SFA), consisting in a sphere of radius R on the order of mm attached
to a spring, allowing the sphere to oscillate, generating a time dependent force F (t) as
a response. The sphere is located at a distance h(t) from the solid surface for which we
want to characterize the liquid-solid friction coefficient, and a ŕow v(t) is generated in the
liquid (e.g. water in [26]) enclosed between the sphere and the surface (see Fig. 1.2a). The
idea, following Ref. 26, is to measure the dissipation which has to be modiőed by slippage.
The presence of friction at the interface increases the force F , and by measuring the force
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versus the velocity proőle the authors deduce b following the relation:

F ≈ η
R2

h+ b
v.

Note that this is an approximate expression and that a more complex, but exact one, is
used in practice.

The second example, followed in Ref. 27, is based on conőned diffusion of particles
suspended in the liquid (water) enclosed in between the surfaces for which we want to
characterize slippage. In this paper, the authors looked at ŕuctuations of small colloids in
conőnement (see Fig. 1.2b). While they move, the colloids will interact with the surface
and the idea is to extract information on b from the colloid motion: the ŕuctuations will be
modiőed by slippage. In this case, b should modify the diffusion coefficient D as compared
to the bulk diffusion coefficient Dbulk in the form:

D −Dbulk ≈ − σ

h+ b
,

where h is the slit height and σ the colloid diameter. This expression is again an approxi-
mation intended to give the correct order of magnitude, and in practice the authors used
a full numerical solution.

The results of both experiments, SFA [26] and conőned diffusion [27], are in agreement,
determining a slippage b < 1 nm for a hydrophilic surface (pyrex) and b ∼ 20 nm for a
hydrophobic surface (pyrex coated with a hydrophobic self-assembled monolayer, OTS). A
typical way to characterize the wetting properties of a surface is from the contact angle θ
formed between the surface and the tangent of a liquid droplet suspended on it. As sketched
in Fig. 1.2c, when θ < 90◦ we will refer to a hydrophilic (wetting) surface, and when θ > 90◦

to a hydrophobic (non-wetting) one. Several efforts have been done experimentally to state
the relation between slippage and the wetting properties of the solid surface. A selection
of experiments, including SFA (Cottin et al. [26]) and conőned diffusion (Joly et al. [27]),
can be found in Fig. 1.3a. In this őgure we see that the low wettability reduces water-solid
friction, implying a larger slippage. Such tendency has also been conőrmed via molecular
dynamics (MD) simulations (Fig. 1.3b), where a scaling of b ∝ (1 + cos θ)−2 has been
determined [28]. Although Figures 1.3a and 1.3b show a global tendency followed by
both experiments and simulations, we can note a quantitative disagreement between the
experimental results and the MD simulations, on the order of one order of magnitude (e.g.
for θ ∼ 80◦, b ∼ 10 nm in experiments and b ∼ 1 nm in simulations), whose origin remains
unclear nowadays.

Once the existence of slippage for simple ŕuids as water had been assessed experimen-
tally, intriguing results were provided related to novel 2D materials, speciőcally those based
on carbon. For instance, recent experiments observed fast water transport on graphene,
and particularly in carbon nanotubes (CNTs) [30, 31], whose origin is not yet fully un-
derstood. One example of the implications of this fast water transport is in terms of
hydrodynamic permeability, which has been found to be between one and four orders of
magnitude larger for CNTs than for other well performing biological water transporters
such as aquaporins [30, 32, 33, 31, 34], with important applications in water treatment
technologies.

In terms of slippage, one of the őrst reports for water in CNTs [30] experimentally
determined slip lengths on the order of ∼ 1 µm, which is four orders of magnitude larger
than the originally expected values, on the order of the molecular diameter. Although
the origin, or even the existence, of such a massive slippage is still strongly debated [35],
other experiments have also recently determined large values of slippage for water-CNTs
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(a) Experiments (b) Simulations

Figure 1.3: Slip length versus contact angle for water on different smooth surfaces obtained
from (a) experiments and (b) molecular dynamics simulations. A qualitative agreement,
with b ∝ (1 + cos θ)−2, is observed, although a quantitative disagreement is appreciated
with smaller values of slippage reported from simulations as compared to experiments for
a given contact angle [Taken from [29]].

[32, 33, 36], with e.g. a measured slip b ∼ 300 nm for CNTs of radius ∼ 15 nm as reported in
Ref. 31, with their results reproduced in Fig. 1.4a. Although there are some disagreements
in terms of orders of magnitude between different experiments, all the results consistently
observe an effect of the radius of the CNT on the slip length, with larger slippage for
the most conőned systems [37]. On the theory side, the evidence of curvature dependent
friction has been already assessed via MD simulations with, in analogy to experiments,
larger b related to smaller CNT radius [38, 39, 40], as seen in Fig. 1.4b. Nevertheless,
we can observe in Fig. 1.4 that experiments and simulations show again a qualitative but
not quantitative agreement, with a slip length on the order of ∼ 200 nm for CNT radius
of ∼ 1 nm obtained from MD simulations, in contrast with the experimental results,
which obtained a slippage of such order of magnitude for much larger CNT radius, on the
order of ∼ 17 nm. This quantitative disagreement between simulations and experiments
is reminiscent of the slippage results on bare surfaces with different wetting properties
(Fig. 1.3).

Therefore, there is still further work needed in order to understand the special properties
of the water-graphene interface. One speciőcity discussed in the literature [41, 42] is the
2D smooth crystallographic structure of graphene. With that regard, it can be interesting
to compare the results obtained for graphene with the ones of another 2D structure, boron
nitride (BN). Motivated by this perspective, MD simulations have been performed for
CNTs and BNNTs, assessing slippage differences between both systems for tube radius
on the order of 1 nm [43]. However, such results are not in agreement with experimental
results, which extrapolate to comparable slip lengths for BNNT and CNT at large radius,
R ∼ 100 nm, and signiőcant slippage differences were observed for radius of ∼ 35 nm
(Fig. 1.4a). This disagreement again between simulation and experiments hinted in this
case to the intrinsic inability of classical MD, based on Newton’s equations of motion
and using empirical interaction potentials, to capture the electronic characteristics of the
system. Indeed, although both carbon and BN present the same crystallography and
wetting properties (with contact angles of 86◦ and 87◦ respectively [44]), both surfaces
differ in their electronic structure, with carbon being a semi-metal and BN a strongly
isolating ionic crystal. This motivated the study of friction via őrst-principle or ab initio
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(a) Experiments (b) Simulations

Figure 1.4: Slip versus radius for water in carbon (CNT) and boron-nitride (BNNT) nan-
otubes, determined from (a) experiments [Taken from [31]] and (b) molecular dynamics
simulations [Data taken from [40]]. A qualitative agreement is observed, with an exponen-
tial decrease of slippage with the nanotube size; although a quantitative disagreement is
appreciated with great slippage values reported from simulations for signiőcantly smaller
nanotube radius as compared to experiments.

simulations, based on the Schrödinger equation, in order to solve the electronic structure
problem. In Ref. 45, the authors determined the liquid-solid friction coefficient of water
on planar graphene and BN sheets via ab initio MD simulations, reporting three times
larger friction for water-graphene than for water-BN, highlighting the importance not only
of the wetting properties on slippage but also of the electronic properties of the material.
Notwithstanding, a difference of a factor of three in slippage is not enough to explain the
exponential increase of slip with the radius observed in CNT experiments. Further and
exciting venues are still on their way of being explored, pointing towards the development
of a quantum theory of friction which accounts for the quantum ŕuctuations that cannot
be captured by standard ab initio simulations [46].

1.4 Other interfacial phenomena: characteristic lengths

Aside of the slip length, which can be understood as the depth inside the solid where
the linear extrapolation of the ŕuid velocity proőle vanishes (see Fig. 1.5), a broad variety
of characteristic lengths exist in the nanoscale, which can be related to different interfacial
phenomena. We will highlight here the characteristic lengths that we further study in the
present manuscript, although additional descriptions and details can be found in . 29, 47.

The Bjerrum length Most of the interesting applications related to energy conver-
sion and desalination employing nanodevices are related to solutions of salts dissolved in
water, with a bulk number density ns. An important length scale related to electrostatics
is the Bjerrum length ℓB, which is deőned as the distance at which the thermal energy kBT
(with kB the Boltzmann constant and T the temperature) is comparable to the electrostatic
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energy. Therefore,

ℓB =
q2

4πεkBT
, (1.2)

where ε is the solvent dielectric permittivity and q = Ze the absolute ionic charge, with e
the elementary charge and Z the ion valence. The order of magnitude of the Bjerrum length
plays a critical role for electrolyte solutions. When ℓB is comparable to or smaller than
the interatomic distance, it implies that the thermal energy can overcome the electrostatic
bonds, so that a molecule on the surface can be dissociated to release ions. This is the
reason of why non-polar liquids (such as hydrocarbon oils or toluene), due to their strong
electrostatic interactions, cannot present ion transport (ℓB for these ŕuids is much larger
than the interatomic distance), in contrast to polar liquids. For example, in the case of a
monovalent salt dissolved in water, ℓB ∼ 0.7 nm at room temperature, making this polar
ŕuid extremely suitable for nanoŕuidic applications.

The Debye length Another relevant characteristic length related to electrostatics is
the Debye length λD, deőned as

λD =
1√

8πℓBns
. (1.3)

The Debye length is related to the extension of the electric double layer or electrostatic
diffusive layer (EDL): when ions are dissolved in a ŕuid, e.g. water, and enclosed in between
charged walls with a surface charge density Σ, the ions reorganize to create a compensating
charge within a distance λD from the wall (see Fig. 1.5). It is interesting to note that
although a channel with charged walls is needed to form an EDL, its extension over λD

is independent of Σ. Indeed from Eq. (1.3) we see that, at a given temperature, λD only
depends on the bulk concentration of the ionic species. For a monovalent salt in water at
room temperature λD ∼ 0.3 nm/

√

ns(mol/L). In experiments, typically ns ∈ [10−4, 1] M,
related to Debye lengths λD ∼ [30, 0.3] nm.

The Gouy-Chapman length In contrast to the Debye length, we can also őnd the
so-called Gouy-Chapman length ℓGC, related to the surface charge density as:

ℓGC =
q

2πℓB|Σ|
. (1.4)

The Gouy-Chapman length deőnes the distance from the wall at which the electrostatic
interaction of a single ion with the charged surface is on the order of the thermal energy.
Typical Σ limits in experiments are between 1 and 300 mC/m2, with associated ℓGC ∈
[40, 0.2] nm.

The Kapitza length Aside of the characteristic lengths related to hydrodynamics
and electrostatics, other interfacial phenomena arise from different transport processes as,
for example, thermal transport. In analogy with hydrodynamic transport (discussed in
detail in the coming chapters), a temperature jump ∆T occurs at the interface in the
transport of heat across a channel, deőning a characteristic length, the Kapitza length ℓK,
from the boundary condition:

∆T = ℓK
dT

dz

∣

∣

∣

∣

wall

, (1.5)

with z the direction normal to the wall and ℓK = λth/G, where G is the interface thermal
conductance and λth the bulk thermal conductivity of the ŕuid. Despite of the similarity
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in the BC expressions for hydrodynamic and thermal transport, the coupling between both
processes is still subject of debate [48]. In analogy to slip, ℓK can typically reach on the
order of ∼ 10σ, with σ the molecular size [49].

Coupled phenomena: an illustrative example We mentioned that a rich range
of novel behaviors can occur due to the competition at the nanoscale between different
characteristic lengths related to different interface phenomena. Here we brieŕy describe
an example of coupled effect for the canonical case of electro-osmosis, although the same
reasoning can be extended to any other type of linear response, as thermo-osmosis, ther-
moelectricity, diffusio-osmosis, etc.

Figure 1.5: Schematics of the
electro-osmotic velocity ŕow for
a dissolved electrolyte on a slip-
ping surface. Both characteris-
tic lengths, Debye λD and hy-
drodynamic slip b, affect the in-
duced ŕow proőle.

Let’s start by considering a semi-inőnite channel con-
sisting in an aqueous electrolyte and a charged wall, see
Fig. 1.5. We already discussed for this system type that
the presence of the charged surface produces a compen-
sating charge in the EDL, which extends over a charac-
teristic distance from the wall given by the Debye length
λD. By applying an electric őeld E along the interface,
the charge density in the channel creates a driving force
generating what we call an electro-osmotic ŕow. The
electro-osmotic ŕow is characteristically a constant ŕow
far from the wall at a velocity vEO, and a shear ŕow
within the EDL. The viscous shear stress τ is simply
given by ηvEO/λD. In contrast, the stress related to the
driving force per unit area is given by the number of
ions in the EDL times the electrostatic force qE. Then,
because of charge neutrality, the number of ions in the
EDL times the charge q has to be opposite to the sur-
face charge density Σ, and by force balance between both
stresses at the interface we obtain ηvEO/λD ∼ −ΣE. Fi-
nally, taking into account that the normal electric őeld
at the surface is given by Σ/ε, with this electric őeld
∼ Vs/λD where Vs is the potential at the surface, we can
then substitute Σ in the previous expression, obtaining the so-called Smoluchowski formula
[29]:

vEO = −εVs
η
E. (1.6)

This formula can be easily found in textbooks and indicates that, surprisingly, the electro-
osmotic ŕow velocity is independent of the Debye length. But, what happens if we also
account for slippage? By doing so, the previous reasoning still holds, and we just have to
modify the viscous stress that is now given by ηvEO/(λD + b), as it is straightforward from
the velocity proőle represented in Fig. 1.5. By following then the exact same procedure
than for the no-slip case, we őnally obtain that the electro-osmotic velocity scales as

vEO = −εVs
η
E

(

1 +
b

λD

)

, (1.7)

meaning that slippage can signiőcantly amplify the system response. To exemplify this,
let’s make some numbers. A reasonable down limit for the Debye length can be set at
0.3 nm, and typical slip length values vary between a few and hundreds of nanometers.
This means that slippage can generate between 10 and 1000 times larger ŕow rates as
compared to the no-slip situation.
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Figure 1.6: Thermodynamic properties of water, namely density ρ, thermal expansion
coefficient α, isothermal compressibility κT, and isobaric capacity cP, as a function of
temperature and compared to the ones of simple liquids. [Taken from [57]].

1.5 Water is important: not such a simple ŕuid

In the study of hydrodynamics in nanoŕuidic systems with the objective of energy
conversion, water appears as the most extended choice due to its ubiquitous nature and
special properties. For instance, we already discussed its polar nature, which becomes a
critical characteristic for salt dissociation at room temperature.

Newtonian ŕuids, also called simple ŕuids, are deőned as those with purely viscous
nature, i.e. the shear rate is directly proportional to the shear stress, where the propor-
tionality constant is the shear viscosity of the ŕuid. It is common, and reasonable, to őnd
in most textbooks [20, 50] the presentation of most or all metallic liquids and van der Waals
liquids, including water, as the archetypal example of Newtonian ŕuids. Nevertheless, bulk
water viscoelastic properties have been already assessed both via MD simulations and ex-
perimentally [51, 52, 53], and recent work on liquid-solid friction frequency dependence has
also been able to determine the viscoelastic properties of the interface transport coefficient
[54, 55]. Still, it is fair to indicate that such viscoelastic behavior is related to time scales
on the order of few femtoseconds at room temperature, and water viscoelastic nature may
only be an important concern when working at very low temperatures [56].

Aside of its viscoelastic behavior (one could argue that any ŕuid presents viscoelastic
properties at short enough time scales), water presents itself as a special and interesting
ŕuid due to a set of intriguing properties. Indeed, when lowering the temperature, water
thermodynamic properties deviate from the expected behavior for simple liquids (Fig. 1.6).
To mention a few, water presents a density maximum at 4◦C, and it expands instead of
contracting when cooling down, allowing ice (less dense) to ŕoat on liquid water, which is
an important condition for the existence of life on earth [58]. Moreover, cold water is also
easier to compress than warmer water. And to top it all, when frozen, its molecules can
organize themselves in a number of different crystalline states (thirteen known polymorphs)
among which nine of them are stable ices and four metastable [59, 60].

An important characteristic of water, that seems to be key to understand its charac-
teristic behavior, is its ability to remain liquid to temperatures below its freezing point, at
0◦C, also known as supercooled state. Indeed we observe a signiőcant deviation of water
thermodynamic properties shown in Fig. 1.6 from the typical simple liquids when cooling
down water, and some of these properties even seem to diverge when T approaches to
−45◦C (228 K) [57]. It is difficult to őnd an explanation to water’s anomalous behavior
and the proposed understandings are still subject of scientiőc debate. One of these ex-
planations, proposed almost 30 years ago, is the idea that for supercooled water, water
can present itself in two different phases, one of them more dense and structured than the
other one. In other words, that there could exist two different types of water and each of
them would be a different liquid, creating a second critical point (aside of the well know
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liquid-vapor transition) in the phase diagram of water, which should be located between
232 and 160 K [61]. Assessing whether the second critical point exists or not is not an easy
task, and several technical difficulties are encountered to experimentally avoid water from
freezing at such low temperatures, giving this temperature range the name of łno-man’s
landž. Therefore, MD simulations remain a fundamental tool to explore supercooled water
behavior, and indeed some computer simulations have shown promising results indicating
the existence of such phase transition [62].

The two phases of supercooled water occur because the hydrogen bond structure of
the water molecules can induce two different ways of joining, or packing. Thus, in the
lower-density liquid, four water molecules cluster around a őfth central molecule deőning
a hydrogen-bonded tetrahedron shape. In the higher density liquid, however, a sixth
molecule comes into play, which has the effect of increasing the density [63, 64]. Aside of
this theoretical (up to now) second phase transition, hydrogen bond network also plays a
role in determining different condensed phases in the water phase diagram, as for example
allowing to distinguish between different solid phases or solid-liquid transitions due to
the disruption of the hydrogen bond network due to thermal ŕuctuations [65]. Therefore,
water molecular interactions are due to a őne balance between van der Waals and hydrogen
bond interactions [66], and ab initio MD can be an interesting tool to study the electronic
structure of water, with applications e.g. in ice nucleation on surfaces, and to better
understand its anomalous bulk behavior [67].

Also, we have seen that aqueous electrolytes are a fundamental component in the devel-
opment of energy conversion technologies, and that water polar nature plays an important
role on ion transport. Although empirical force őelds have been developed to describe
ionic solutions in water [68], non-polarizable models seem to dramatically fail in repro-
ducing some important experimental results such as the dependence of water’s diffusion
coefficient on the salt concentration [69], pointing at the need to account for polarizability
to describe aqueous solutions. Nonetheless, developing a good polarizable force őeld is a
difficult task, and it is still strongly dependent on the őne tuning of the different modelled
parameters, thus not the best tool to explore novel behavior. Ab initio MD appears as
a good alternative to classical MD in simulating ionic transport and providing a reliable
atomistic description.

Although present in every day life, water still unravels a broad spectrum of anomalous
behavior and unanswered questions that remain to be understood. Computer simulations
are a fundamental tool to overcome the technical difficulties to experimentally study water
under extreme temperature and pressure conditions, to understand its rich phase diagram
and to disclose and explore novel bulk and interface phenomena, with important applica-
tions to surmount some great challenges faced by our society such as the development of
sustainable alternative energies.

1.6 Nanoŕuidics and energy conversion

Previously, we presented reverse osmosis as an important yet inefficient mechanism
to tackle the water crisis. Indeed, most of the energy consumption in reverse osmosis
processes come from the large pressure values needed to overcome the natural osmotic
pressure (on the order of 30 bars for sea water [70]), imposing a great constrain in the
efficiency of reverse osmosis mechanisms for water desalination. This energetic cost for
desalination can be calculated from the entropy change associated to mixing salty and
fresh water, related to a Gibbs free energy change ∆G ≈ 1 kWh/m3, benchmarking the
thermodynamic limit at which reverse osmosis becomes a proőtable process [7].
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Nonetheless, one could think in the inverse point of view, and the energy cost to
desalinate water is the same amount of energy one could extract from mixing fresh and
sea water. Although this energy density is not as great as the one related to other sources
of energy (e.g. 4 or 5 orders of magnitude smaller than fossil fuels), the abundance of
fresh and salty water and the large water ŕuxes change the picture. To illustrate this,
let’s consider the longest and mightiest river in the world: the Amazon River, with a ŕux
Q ≃ 209000 m3/s. We can compute the power associated to this ŕux when ŕowing into
the Atlantic, simply given by the product Q · ∆G, obtaining a power loss on the order
of 1 TW, equivalent to the power of 1000 nuclear reactors [71]. Even if we were able to
harvest just 1% of this energy, we would still manage very proőtable numbers.

The extraction of the energy of mixing water with different salinity concentrations, as
from the estuaries, transforming salinity gradients into electricity, receives the name of
łblue energyž. The enormous potential of blue energy presents a very appealing renewable
and non-intermittent energy reservoir, but the main scientiőc question is: how can we
harvest it? Currently there are two main technologies to harvest blue energy: pressure
retarded osmosis (PRO) and reverse electro-dyalisis (RED). PRO technologies start from
the idea of using the net water ŕux generated by placing a semipermeable membrane
between two reservoirs with different salt concentration. Then, the driven osmotic ŕow
due to the salinity gradient results into a mechanical force, which can be used to run a
turbine. The simplicity of the idea under PRO motivated to test it for large scale energy
production. However, it was concluded that the energy production is not sufficient to be
commercially interesting [72, 71]. While PRO stands on water ŕuxes, in opposition, RED
technologies are based on the ionic ŕuxes generated by placing a semipermeable membrane
that only allows one of the ionic species to pass, whether anions or cations, generating
a current (or voltage) under a concentration gradient between two reservoirs. After, the
ionic current is transformed into an electronic current by redox conversion at electrodes
[73].

The conversion efficiency of RED technologies, on the order of a few watt per square
meter of membrane, points at RED to have more large-scale availability than its PRO
counterpart. Still, both RED and PRO technologies are quite inefficient and present a
number of disadvantages that need to be tackled. For instance, in the case of PRO, in
order to avoid the ions to pass, one needs semipermeable membranes with very small
pores, which hinders the water ŕux and also may cause membrane fouling issues. In the
case of RED, an important challenge for its commercialization is the high cost of existing
cation/anion selective membranes to separate ions, together with small voltage/electric
currents obtained due to large energy losses in the ionic to electronic current conversion,
or polarization effects [74].

One can then infer that the big bottleneck encountered in the development of PRO
and RED technologies is mostly due to different problems related to the use of mem-
branes. The question now is, can we go beyond? can we őnd new materials, different than
the commercial membranes? Again, nanoŕuidic phenomena presents itself as a viable so-
lution. By taking advantage of the subtle interface mechanisms that gain relevance at the
nanoscale, different innovative solutions to the problem, which avoid the use of semiperme-
able membranes, have been already proposed. One of the most promising venues is based
on diffusio-osmosis, consisting in osmotic ŕow generation under salt gradient in fully per-
meable nanochannels. This behavior, directly conőrmed by experiments in nanochannels
[75], has been obtained together with promising results related to the great electric current
measured for BNNT [76]. In this experiment, the authors describe the fabrication and
use of ultra-thin membranes pierced by BNNT that connect two reservoirs with different
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salt concentration. The results for BNNT are in quantitative and qualitative agreement
with the prediction, and large electric currents are related to large surface charges. Fur-
thermore, power densities between 100 − 1000 W/m2 were reported, which are in great
contrast with the ∼ 8W/m2 reported for the most proőtable PRO and RED based devices
[77, 78], making the use of nanomaterials industrially relevant and a real alternative. Aside
of the mentioned results for BNNT, further recent őndings report powers on the order of
1 MW/m2 for MoS2 nanopores [79], and promising results and efforts are currently focused
in the development of these technologies using carbon nanomaterials, with huge potential
for blue energy purposes [80]. Still, their efficiency for large systems, critical for their
comercial viability, is a subject of debate, due to e.g. power density hindering related to
concentration polarization [81, 82].

As an alternative to diffusio-osmosis, similar and less explored options can be based on
osmotic current generation by other interfacial mechanisms taking place at the nanoscale,
such as thermo-osmosis (thermally driven ŕows) or electro-osmosis (electrically driven
ŕows). For instance for thermo-osmosis, it has been recently demonstrated that by driving
a thermo-osmotic vapour ŕux across a nanoporous membrane from a hot to a cold reservoir,
heat energy can be converted into mechanical work used to move a turbine, with power den-
sities of ∼ 3 W/m2 [83]. Also, recent simulation work on CNT membranes predicts large
values of ŕow velocities [84]. Although the numbers on thermo-osmosis may seem small as
compared to diffusio-osmosis, they are still signiőcant and as good as those reported for
other blue energy technologies. Moreover, they open the way to another critical challenge:
waste heat harvesting. In this line, nanoŕuidic systems have also shown promising results
in electricity production from waste heat through thermoelectricity [85]. The great power
of interfacially driven transport allows us to use nanoŕuidic systems in new and creative
ways. Also further perspectives can be put in the use of coupled interfacial phenomena,
which may boost the responses by orders of magnitude, as we showed for electro-osmosis
in Eq. (1.7).

Overall, nanomaterials and hydrodynamics present as a powerful and promising com-
bination, thanks to the great potential applications to harvest energy, not only from the
different salinity concentration between sea and fresh water, but also from waste heat.
However, further challenges still remain, and a better understanding of the different mech-
anisms is yet needed to make them economically proőtable and for their applicability in
large scale systems. The complex processes occurring at the nanoscale and the subtle bal-
ance between different phenomena make nanoŕuidics a puzzling őeld, but also a fascinating
venue with many opportunities to go beyond.

1.7 Objectives and organization of the thesis

The main objective of this thesis is the search of innovative nanoŕuidic systems, guided
by an accurate understanding of the different molecular mechanisms at play. With special
focus on interfacial phenomena, and in particular on interfacial hydrodynamic transport, we
will employ both classical and ab initio MD simulations to explore the physical processes
occurring when a ŕuid is conőned at the nanoscale. We will also develop and extend
classical analytical models to account for novel phenomena, such as liquid-solid slip or
nanoscale osmotic ŕows, that have been assessed in the recent years. The őnal goal will
be to apply all the different understandings to optimize energy conversion and waste heat
harvesting, showing that the competition between different characteristic length scales and
interface mechanisms can imply novel and promising behaviors such as large ŕow velocities
generated by temperature gradients.
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The present manuscript is organized as follows. We will start in Chapter 2 by exploring
hydrodynamic interfacial transport, speciőcally Navier’s BC. With that regard, although
the position where the BC applies is well deőned from a continuum perspective, we will
wonder where such BC should be applied from a molecular point of view, where we know
that the liquid őrst absorption layer is located at around one molecular diameter from the
solid surface, and we will look for a simple analytical description to determine the position
of the boundary. Once the BC location is characterized, we will proceed to measure
via classical MD simulations the temperature dependence of bulk (viscosity) and interface
(liquid-solid friction) transport coefficients, and study how they compare by computing the
temperature evolution of their ratio, the slip length. In order to determine the different
system properties that play a role on friction and slip temperature evolution, we will
consider two different surfaces, a generic hydrophobic wall and graphene, and two different
liquids, methanol and water, studying for the latter ŕuid the effect of supercooling on
transport properties.

In Chapter 3, we will look further into understanding the intriguing liquid-solid friction
and slip length temperature evolution for supercooled water, trying to reveal the molecular
mechanisms at play. With that regard, we will decompose the friction coefficient differenti-
ating between static and dynamic contributions, and we will assess which one dominates in
determining the temperature evolution. Following friction decomposition, we will proceed
in the same way for the shear viscosity, in order to determine whether the dynamic or the
static viscosity-friction ratios are the ones that determine the large slip lengths values we
report at low temperatures, on the order of a few hundreds of nanometers for water on
graphene. In this chapter, we will also study with classical MD interfacial thermal trans-
port and, with the őnal objective of minimizing the interface liquid-solid resistance, we
will propose the use of innovative structures consisting in supported graphene on nanopat-
terned gold, with important applications on delaying the temperature at which the boiling
crisis occurs.

Following the interesting temperature evolution results of the previous chapter, in
Chapter 4 we will proceed to study the effect of temperature on bulk transport coeffi-
cients of water, namely shear viscosity and diffusion coefficient, via ab initio MD. We will
use density functional theory (DFT), which relies on a functional to describe electronic
exchange and correlations. We will try to assess which functional better captures the
experimental behavior, which is benchmarked by classical MD simulations. We will also
explore the validity of the Stokes-Einstein relation for the different functionals considered.
Finally, motivated by determining the connection between structure and dynamics, we
will explore the validity of the excess entropy scaling relations, that relate the two body
entropy excess (consisting of an integral of a function of the pair radial distribution) and
the diffusion coefficient.

Finally, in Chapter 5, we will study thermo-osmotic ŕows in aqueous electrolytes, and
propose an analytical model as an extension of the classical theory, which only accounts for
the electrostatic ionic interactions. In contrast, we will suggest a theory that also considers
the solvent-solid interactions and the depletion of the ions from the wall. After the model
is introduced, we will combine classical MD simulations and analytical formulas to com-
pare the different contributions to the thermo-osmotic response coefficient. We will also
study how the competition between surface charge, salt concentration and slip, controls the
thermo-osmotic response of the system and how a choice of the most suitable parameters
can translate into large thermo-osmotic responses. We will also see that our analytical
framework predicts a reversal in the ŕow direction, observed experimentally, which can-
not be understood within the classical theory, and that our proposed description can be
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employed to study other physical phenomena such as thermoelectricity or thermophoresis.
Allowing myself to cite the beginning of the well known textbook łStates of Matterž by

D. L. Goodstein [86]: łLudwig Boltzmann, who spent much of his life studying statistical
mechanics, died in 1906, by his own hand. Paul Ehrenfest, carrying on the work, died
similarly in 1933. Now it is our turn to study statistical mechanics. Perhaps it will be wise
to approach the subject cautiously.ž



Chapter 2

Determining Hydrodynamical

Interfacial Transport via Molecular

Dynamics Simulations

łIf any theoretical signiőcance could be attached to it [discrepancy between
the measured and calculated values of the radius] other than errors of
measurement, it would be that there is slip of the liquid at the walls of

the capillary. There is no occasion for admitting this hypothesis,
however, since the discrepancy is no greater than might reasonably be expected
from tests in and measurements of such small capillaries as here employed.ž

R. Bulkley, Viscous ŕow and surface őlms 1931

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Molecular dynamics simulations . . . . . . . . . . . . . . . . . . . 20

2.2.2 Wetting and contact angle . . . . . . . . . . . . . . . . . . . . . . 29

2.2.3 Hydrodynamic ŕows . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.4 How to simulate water? . . . . . . . . . . . . . . . . . . . . . . . 32

2.3 Hydrodynamic wall position . . . . . . . . . . . . . . . . . . . . . 34

2.3.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.4 Interfacial transport coefficient: determining slippage . . . . . 41

2.4.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4.2 Bulk transport: viscosity temperature dependence . . . . . . . . 44

2.4.3 Interfacial transport: friction temperature dependence . . . . . . 46

2.4.4 Slippage: bulk and interface competition . . . . . . . . . . . . . . 46

2.4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.5 Summary and conclusions . . . . . . . . . . . . . . . . . . . . . . 49

17



18 CHAPTER 2. DETERMINING INTERFACIAL TRANSPORT

2.1 Introduction

Fluid transport properties at micro and nanometer scales have awaken a general re-
search interest in the past few decades [29, 87] and they have been extensively studied
in literature via experiments and numerical work. For instance, the validity of bulk hy-
drodynamic equations have been corroborated up to conőnements of a few nanometers
[88, 89, 90]. It has also been shown that the shear viscosity in bulk remains constant and
can be efficiently determined for these systems, promoting the efforts in understanding
the molecular mechanisms which control this transport coefficient [91, 92]. In addition,
working at this length scales may have some critical consequences so its exploration and
understanding are crucial in the development of nanoŕuidic devices. Such is the case of the
ŕuid atom’s self-diffusion coefficient, which strongly deviates from its Stokes-Einstein pre-
diction for very conőned systems [93, 94], or for which őnite size effects have been observed
in determining it from molecular dynamics simulations [95]. As conőnement increases, in-
terfacial properties will have an increasingly important role in the ŕuid ŕow behavior in
the channel. For example, it is well known that for conőned ŕuids the ŕuid particles tend
to order close to the wall, forming layers resulting in inhomogeneities in the ŕuid’s density
proőle. Understanding the local structure and dynamics of such density variations have
been of special interest [96, 97] due to its possible impact in some transport properties
such as the local viscosity [98].

For a conőned system, the walls impose boundary conditions (BCs) to the ŕow of
liquids. The commonly used no-slip boundary condition, which supposes that the ŕuid
velocity vanishes when in contact to the wall, fails to describe ŕows in nanoŕuidic systems
[29], and needs to be replaced by a more general partial slip BC [99]. This BC can be
expressed in terms of stress, as initially done by Navier [19]. Let’s consider a Newtonian
ŕuid conőned between two parallel smooth walls normal to z. Far from the walls, the
viscous shear stress in the liquid is η γ̇, with η being the shear viscosity and γ̇ = ∂zv being
the shear rate. At the interface, the ŕuid slips, implying a non-vanishing velocity proőle.
This jump of parallel velocity at the interface is deőned as the slip velocity vslip, and it
is proportional to the shear stress at the wall τw, which corresponds to the force exerted
from the liquid to the solid per unit area. Such proportion can be expressed as τw = λvslip,
deőning the (ŕuid) friction coefficient λ. Supposing homogeneous viscosity in the whole
slab, the shear stress at the interface is, as well, τw = η ∂z v

∣

∣

z=zs
, where zs is the shear

plane position, where the boundary condition applies. Both bulk and interface constitutive
equations can be combined as a kinematic relation on the velocity őeld at the interface,
also known as the Navier BC or the partial slip BC:

vslip = b
∂v

∂z

∣

∣

∣

∣

z=zs

, (2.1)

where the slip length b is uniquely related to the friction coefficient λ for a ŕuid with a
given viscosity: b = η/λ. This phenomenon has been observed for simple and complex
ŕuids at the nanoscale [100, 101].

Among all ŕuids, the study of water has always been of special concern for scientist
from a broad variety of research őelds [102, 103, 104]. Its interest not only lies on its
ubiquitousness and its deep link with the existence of life, but also on its rich phase diagram
with, for example, different types of ices [105, 106], or on the wide range of properties
derived from the hydrogen bond formation, such as the lower density of the solid phase
when compared to the liquid one. Several anomalous thermodynamic properties have been
reported for water related, for example, to its isothermal compressibility or the density
maximum present at 4◦C [57, 61]. These anomalies are enhanced when water is driven to
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its supercooled regime (i.e. the range of temperatures below the freezing point where water
keeps its liquid state), becoming critical to study the temperature and pressure dependence
of different transport properties [107, 108] and to develop models which aim to explain its
anomalous behavior such as łSpeedy’s stability limit conjecturež [109] or the two states
model [63, 64, 110].

For conőned water, several work has been done studying the suitability of different
water models to reproduce experimental measurements [111] as well as the impact of wall
properties such as wettability [112], roughness [113] and surface topology [114]. Several
efforts have been done in order to understand the molecular mechanisms that control
friction (and slip) experimentally [115, 116, 117], via classical [118, 119] and ab initio [45]
molecular dynamics (MD), and analytically [120], with special interest on the discussion of
the interfacial transport property relation with the autocorrelation of the force exerted by
the liquid on the wall [121]. Further discussion has been carried in the literature on how
to measure λ from equilibrium simulations (EMD) [122, 123, 124, 125, 126].

Apart from this interesting debate, several questions remains open with regard to fric-
tion coefficient. Although water viscosity’s viscoelastic behavior is well known, the con-
nection between both bulk and interfacial transport coefficients in Eq. (2.1) opens the
possibility of friction’s viscoelastic nature [54]. On the other hand, hydrodynamic trans-
port equations remain mathematically equivalent to the ones corresponding to the thermal
transport coefficients, establishing an analogy between the hydrodynamic and the thermal
boundary condition [48] and introducing the possibility of a link between both transports
via, for instance, wall’s wetting properties [127, 128]. On the other hand, the temperature
evolution of liquid-solid friction also remains unclear nowadays. Several questions can be
explored on this regard, such as if friction temperature evolution will be mostly affected by
the surface or the liquid type, if friction will follow the same temperature evolution laws
than viscosity or if the differences in temperature evolution will have a dramatic impact
on the ratio between η and λ: the slip length.

In this framework and state-of-the-art, MD simulations remain a fundamental tool to
explore and bring insights on the hydrodynamic transport characterization at the nanomet-
ric scales. The aim of this chapter is to introduce different computational and theoretical
tools employed to study and describe the hydrodynamic bulk and interfacial transport.
After a brief introduction on MD simulations highlighting the main concepts widely em-
ployed throughout this manuscript, together with critical concepts as wetting, hydrody-
namic ŕows and water modelization, the main question this chapter tries to answer arises:
how to characterize hydrodynamic transport at the interface? Two different sections adress
the question from two critical perspectives: where and how. The őrst one relates to the
exact location of the interface from a molecular perspective, i.e. where to apply the hydro-
dynamic boundary condition deőned by Eq. (2.1). Once the boundary is well determined it
remains the second point, referred to how do different parameters, such as the ŕuid and/or
the wall type affect the interfacial transport when compared to the bulk one by varying the
temperature, with special interest in the temperature regime corresponding to supercooled
water.

2.2 Methods

Regardless of its form, the partial slip BC (Eq. (2.1)) deőnes two independent param-
eters: the slip length b (or equivalently the friction coefficient λ) and the hydrodynamic
wall position (HWP) [122, 129, 130, 131, 132, 118, 43, 133, 134], and it has been used to
explore the molecular mechanisms of liquid-solid slip [135, 136, 137, 138, 40, 139, 140, 141,
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(a) (b)

Figure 2.1: Two characteristic MD simulations examples. Both systems consist in a liquid
(water) enclosed between two generic solid walls.(a) System corresponding to a generic
transport coefficients measurements conőguration, with a bulk region in the middle of the
channel and an interfacial region close to the walls. (b) Water droplet simulation, employed
to measure the contact angle controlled by the liquid-solid interaction.

45, 142, 143]. A liquid conőned between parallel ŕat walls, with periodic BCs in the lateral
directions, is commonly used (two typical system snapshots of MD simulations with this
conőguration can be found in Fig. 2.1). The liquid-solid interactions at the interface will
control the wetting properties of the system, which can be related to the contact angle
of a liquid droplet on the solid surface. Once such properties have been determined, we
can study how they affect the interfacial transport properties, which can be determined by
measuring the system’s response to a given perturbation: the generation of a hydrodynamic
ŕow.

2.2.1 Molecular dynamics simulations

Molecular dynamics (MD) simulation is a computational technique that allows us to
describe the microscopic scale of a classical many-body problem, by generating a statistical
ensemble of conőgurations for a system of N particles. Classical MD simulations consider
the nuclear motion of particles a classical object, i.e. it obeys the classical mechanics
laws. Quantum effects should be critically accounted only when considering light atoms or
molecules (He, H2), for processes that can be difficult to describe with empirical force-őelds
(such as electronic polarization effects or chemical reactivity), or when the frequency of
the vibrational motion of the atom is greater than the thermal ŕuctuations, hν > kBT . In
these cases one can perform the so-called ab initio MD; further discussion and details can
be found in Chapter 4.

During my thesis, in order to measure physical quantities and to test theoretical pre-
dictions, we performed MD simulations of a liquid conőned between two parallel walls
(Fig. 2.1a) using the LAMMPS package [144]. The aim of this section is to brieŕy intro-
duce the basic concepts of classical MD, highlighting the ones employed to measure the
different transport coefficients. On the whole, the coming discussion on this broad subject
is necessarily incomplete, and further detail can be found in [145, 146].

When thinking of MD simulations in an applied context, we can understand them as
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Figure 2.2: Lennard-Jones interaction potential as a function of the interparticle distance
r. In discontinuous lines, the repulsive and attractive contributions to VLJ. σ corresponds
to the characteristic molecular diameter and ε to its interaction energy. The minimum
of the potential is located at rmin and the potential will be truncated at rcutoff ; typically
rcutoff ∼ 2.5σ.

a computational experiment, i.e. as a two step process where őrst we prepare the sample
(set the initial conditions, select a model system for N particles, and solve Newton’s
equations until reaching the steady state), and second we measure the quantity of interest
(a physical observable which has to be expressed as a function of the N particles positions
and momenta). Starting from this idea, we can describe the different steps to go through
when performing a MD simulation.

a. Initial Conditions

The őrst step in classical MD is to initialize the problem. In the case of a solid, the par-
ticles positions should be chosen in agreement with the structure we are willing to simulate.
For a slit channel, periodic boundary conditions are typically imposed in the directions par-
allel to the walls. When working with ŕuids, a common choice of the initial conditions
is to place the atoms evenly spread along the simulation box (in order to avoid overlap-
ping problems) and to assign the atom’s velocities according to the Maxwell-Boltzmann
distribution. The equipartition theorem allows us to relate, in thermal equilibrium, the
kinetic energy per degree of freedom with the temperature T . Because the kinetic energy
ŕuctuates, it is common to use the concept of instantaneous temperature at a time t:

T (t) =
1

kBNf

N
∑

i=1

miv
2
i (t), (2.2)

where vi is the velocity of a given particle, mi is its mass, kB is the Boltzmann constant and
Nf the degrees of freedom in the kinetic energy. The initial setting of the temperature is
not particularly critical as it will change during equilibration, and it can also be controlled
by imposing our desired temperature T0, by for example scaling the particles velocities a
factor (T0/T (t))

1/2. Therefore, we can obtain the system kinetic energy from the atomic
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velocities, whereas the system potential energy can be obtained from the atomic positions.
It is at this point when we have to choose what type of interaction potential will better
characterize the particle’s interactions. The most popular model to describe the generic
Van der Waals non-bonded interactions between atoms is the Lennard-Jones (LJ) model.
The interaction LJ potential is a pair potential, which neglects the N -body interactions
with N > 0. The interactions between a pair of particles {i, j} are modelled following the
expression:

Vij(r) = 4 εij

[

(σij
r

)12
−
(σij
r

)6
]

, (2.3)

with r = ∥ri − rj∥ being the interparticle distance, εij and σij being the interaction energy
and size. In this expression, the term 1/r6 is related to the Van der Waals attraction while
the term 1/r12 is related to the repulsion between electron clouds (Fig. 2.2). The LJ
potential also introduces a system of reduced units related to the characteristic scale of
the system: ε for energy, σ for length, and m for mass. All the other physical quantities
can be expressed in terms of these reduced units, such as the reduced time t∗ = t/τ with
τ = σ

√

m/ε, or the reduced temperature T ∗ = kBT/ε.
Typically the LJ potentials are parametrized to only provide the interaction energy

and size corresponding to a self-interaction (εii and σii); and the interaction parameters
between two different non-bonded atoms are given by a set of equations known as mixing
rules. The most common ones are the Lorentz-Berthelot rules, proposed by H. A. Lorentz
for the interparticle equilibrium distance and by D. Berthelot for the interaction energy
[147]:

σij =
σii + σjj

2
; εij =

√
εiiεjj . (2.4)

The Lorentz-Berthelot rules, also called arithmetic mixing rules, are a frequent choice for
the cross-interactions between atoms of type i and j. Nevertheless, different mixing rules
can be applied to our system, such as the geometric mixing rules:

σij =
√
σiiσjj ; εij =

√
εiiεjj . (2.5)

In addition to the atomic interactions, the ionic interactions are typically modeled via
a Coulomb potential:

Vij(r) =
qiqj
4πε0r

, (2.6)

where q{i,j} is the charge of the ions, and ε0 the vacuum dielectric permittivity. The values
given to εij , σij (or analogously the mixing rules choice) and q{i,j} will vary depending on
the particle kind we want to simulate, and our choice should consider the characteristics
of the system we want to study and its force-őeld modelization.

A typical force őeld simulates the intermolecular interactions through the described
electrostatic (Coulomb, Eq. (2.6)) and van der Waals (LJ, Eq. (2.3)) terms, but intramolec-
ular interactions can also be introduced by adding different terms in the total potential
related to the bond stretching (typically modelled with a harmonic potential for e.g. water,
or by a Morse potential [148]), the bond angle interactions (related to the angle deviation
between two bonds, it is often modelled with a simple angle harmonic potential) or the
bond rotational or torsional interactions (often neglected for inorganic materials). The
introduction of these intramolecular interactions are not needed for the simplest types
of ŕuids (as LJ ŕuids), although they can be critical to reproduce the behavior of some
fundamental molecules as water.
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b. Force Calculation

Once the particles interactions have been stated through the interaction potential, the
total force on a particle i at a time t, fi, is calculated as the vector sum of the pair-forces
fij(t) on i due to every particle j on within its range of interaction, fi(t) =

∑

j fij(t). Such
pair-forces can be derived from the pair potential energy (interactions between particles
and external potential), so:

fij(t) = −∇Vij(r). (2.7)

Because we are working under classical mechanics framework, the force acting on a given
particle i of mass mi will also obey Newton’s second law of motion:

fi(t) = mi
d2ri(t)

dt2
. (2.8)

Force calculation is typically the most time consuming part of the computation. This
is because, by only considering pair interactions, for a system of N particles we must
evaluateN(N−1)/2 pair distances, and therefore the computation time needed for the force
evaluation will scale as N2. Furthermore, it is common to introduce periodic boundary
conditions, which make the system effectively inőnite and the explicit computation of all
pair forces impossible. Nowadays it exists a set of efficient techniques that speed up the
computation of the long and short range forces such as the computing time scales as N .
One example is the introduction of a cutoff radius in the Lennard-Jones interactions. In
Fig. 2.2 we can see that the Lennard-Jones potential VLJ tends to zero for high values of
the interatomic distance. Thus, we can suppose neglectful all the VLJ interactions for pair
distances greater than a certain cutoff radius rcutoff , imposing VLJ(r > rcutoff) = 0. The
choice of rcutoff value can be a delicate issue: if we choose a very small value the force
calculation will be faster but we may be neglecting some critical interparticle interactions,
while very high rcutoff may imply the computation of force interactions almost negligible and
very long computation times. Generally, a common choice of rcutoff is ∼ 2.5σ, although
when testing the system parameters it is advisable to check that equivalent results are
obtained for different rcutoff choices.

Nevertheless, truncating the potential by introducing rcutoff can be a delicate issue.
Depending on the system conőguration and the nature of the interparticle interactions,
the contributions from distant interactions cannot be neglected in some cases. Such con-
tributions are denominated long-range forces; deőned as the ones that do not vanish faster
than r−d, with d the number of dimensions. Typical examples of long-range interactions
are the charge-charge ions interactions, which decay as r−1, or the dipole-dipole molecu-
lar interactions, which decay as r−3. Indeed, because of the very slow decay of the őrst
example, i.e. the very long-range nature of the Coulombic interactions, the Coulombic in-
teractions require explicit summing over the periodic images of the box. However it would
be too costly to perform direct sum, and more efficient methods should be employed. A
possible solution are the so-called lattice methods [146], consisting in including more than
the nearest or minimum image of a charge in calculating its energy. Some of the most
extended methods to compute the Coulombic long-range interactions are the Ewald sum
method [149], which computes the interaction of the ion with all its periodic images (see
Appendix A for further detail), and its optimizations, such as the particle-particle/particle
mesh (PPPM) method [150, 151].

c. Equations of Motion

After we have computed the forces acting on all the particles, the next step is to inte-
grate Newton’s equations of motion. Several algorithms have been implemented and can be
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found in the literature, but here we would like to introduce one of the most common ones,
the Verlet algorithm [152], which combines simplicity and good performance. The general
idea is to use őnite difference methods, which consist in breaking down the integration into
many small steps, each separated in time by a őxed timestep δt during which the force is
assumed to be constant, so δt has to be small enough. We start from the Taylor expansion
of the coordinate of a particle, obtained taking into account Eq. (2.8):

ri(t+ δt) = ri(t) + vi(t)δt+
fi(t)

m

δt2

2
+

d3ri
dt3

δt3

3!
+O(δt4). (2.9)

Analogously,

ri(t− δt) = ri(t)− vi(t)δt+
fi(t)

m

δt2

2
− d3ri

dt3
δt3

3!
+O(δt4). (2.10)

Combining the Taylor expansions of Eq. (2.9) and Eq. (2.10), we őnally obtain:

ri(t+ δt) ≈ 2ri(t)− ri(t− δt) +
fi(t)

m
δt2. (2.11)

After all the particles positions have been updated, the force on every particle is again
evaluated to determine the subsequent particle positions and velocities at t + 2δt, and so
on. Because the velocities are not necessary for generating the particles trajectories, they
do not explicitly appear in the Verlet algorithm. To obtain the new velocities, we can
calculate the position difference at two different times:

vi(t) =
ri(t+ δt)− ri(t− δt)

2δt
+O(δt2). (2.12)

Explicit velocities are implemented in the velocity Verlet algorithm (used in LAMMPS
[144]), by also computing velocity at the same timestep than position with a Taylor ex-
pansion:

vi(t+ δt) = vi(t) +
fi(t) + fi(t+ δt)

2m
δt+O(δt2). (2.13)

d. Statistical Ensemble

Once we have solved the equations of motion, and depending on our simulation char-
acteristics, we will be interested in controlling different physical quantities, such as pres-
sure P , temperature T , number of particles N , volume V , energy E, etc. Depending on
the parameters we want to control we will work under a given statistical ensemble. The
most common ensembles in MD simulations are the (N,V,E) microcanonical ensemble,
(N,V, T ) canonical ensemble and (N,P, T ) isothermal-isobaric ensemble. Because we are
solving Newton’s second law Eq. (2.8) for an isolated system, the exchange of energy or
particles with the outside is not allowed. As a consequence, without external controls,
MD should generate a microcanonical ensemble. However, numerical errors can produce
ŕuctuations on the forces and the energy, and possible drifts.

As it is common in experiments, we can be interested in controlling temperature and
pressure in MD simulations. To do so, one of the standard approaches is to reformulate
the Lagrangian equations of motion of the system [153]. Let’s focus őrst on how to control
the temperature.
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Controlling the temperature In MD simulations, the őnal objective in controlling
the temperature is to develop an algorithm that mimics a real thermostat in terms of
statistical physics, i.e. an algorithm that adds or takes away energy to keep the target
temperature T0 constant. The simplest possible way to control the temperature is through
the velocity rescaling algorithm [154, 155], which adjusts the velocities of the atoms with
a suitable factor λ(t) in order to set the instantaneous temperature of the system exactly
equal to T0 at every timestep:

T0 =
1

kBNf

N
∑

i=1

mi (λ(t) vi(t))
2 = λ(t)2 T (t), (2.14)

so
T0 − T (t) =

(

λ(t)2 − 1
)

T (t); (2.15)

which allows us to determine λ(t) =
√

T0/T (t). Although simple, velocity rescaling al-
gorithm is not the best method for controlling the temperature, since it is unknown how
rescaling affects the properties of the system. For instance, it suppresses any possible nat-
ural temperature ŕuctuations in the system, an it may cause signiőcant perturbations of
the atom trajectories and of the overall system dynamics. Nevertheless, although it is not
the best method, it can be useful to employ it in starting runs when, due to our system
conőguration, we would be interested in transferring big amounts of heat at each timestep.
After this starting run, other thermostat should be employed to ensure the good dynamics
of the system.

A variation of the velocity rescaling algorithm is the Berendsen thermostat [156], which
couples the system to an external heat bath that is őxed at the desired temperature T0.
As a consequence, the system temperature will be maintained as its energy continuously
ŕuctuates due to the interaction of the system with the heat bath. The main idea of the
algorithm is therefore to rescale the velocities in order to achieve a mean kinetic energy
consistent with the target temperature T0, such that:

dT

dt
=

1

τ
(T0 − T (t)) ; (2.16)

thus, from the temperature change between two successive timesteps, we obtain:

λ(t) =

√

1 +
δt

τ

(

T0
T (t)

− 1

)

, (2.17)

with τ being the relaxation time, which determines how tightly the bath and the system
are coupled. The algorithm will be equivalent to velocity rescaling when τ = δt. When
τ → ∞ the Berendsen algorithm will be inactive and the system run will be in the micro-
canonical ensemble. The advantage of Berendsen thermostat when compared to velocity
rescaling is that, in Berendsen algorithm, the temperature of the systyem will exponentially
relax towards T0, and thermal ŕuctuations are allowed. Although broadly used and gen-
erally accepted due to its good description of some dynamical quantities in large systems,
the Berendsen thermostat should be employed with care because it does not reproduce
the velocity distribution of the canonical ensemble. Analogously to the velocity rescaling
algorithm, it can be used in a starting run to relax the system.

If we want to mimic a canonical ensemble, one of the best thermostats nowadays for
(N,V, T ) simulations is the Nosé-Hoover thermostat [157]. As for the Berendsen ther-
mostat, the scheme is based in embedding our system in a thermal bath at the desired
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temperature T0. The main idea of the algorithm, introduced by Nosé [158], is to consider
the reservoir as an integral part of the system. We can do so by introducing an artiőcial
coordinate. Denoting {ri,pi} the particles positions and momenta of our original system
inside the thermal bath, we will introduce the extra pair of conjugate variables {s, ps}
related to the reservoir with an associated mass Q > 0. This new variable s introduces
a rescaled time (also called virtual time) dt, which relates to the real time dt′ by the
expression:

dt = s dt′. (2.18)

Denoting □̇ as time derivative, the new Lagrangian will be obtained by introducing the
additional coordinate in the Lagrangian of a classical N-body system:

LNosé =
N
∑

i=1

mi

2
s2ṙ2i − U

(

rN
)

+
Q

2
ṡ2 − gkBT0 ln(s), (2.19)

where the őrst two terms correspond to the kinetic and potential energy of the real system,
and the last two terms correspond to the kinetic and potential energy of the reservoir. It
can be shown [145, 159] that, for a system with Nf degrees of freedom, Eq. (2.19) will
produce canonical ensemble for g = Nf + 1 in virtual time sampling (corresponding to the
Nosé formalism) and for g = Nf in real time sampling (corresponding to the Nosé-Hoover
formalism, discussed in the following). From the total Hamiltonian derived from Eq. (2.19)
we can derive the so-called Nosé equations of motion:

ṙi =
pi

mis2
,

ṡi =
ps
Q
,

ṗi = fi ;

ṗs =
N
∑

i=1

p2
i

mis3
− gkBT0

s
.

(2.20)

From a practical point of view, the main problem of the Nosé Eqs. (2.20) is that they
are expressed in terms of the virtual time, which is related to the real time by uneven
time intervals depending on the value of s, Eq. (2.18). With that regard, Nosé and Hoover
reformulated the equations of motion in terms of real system variables [160, 159]. Deőning
ζ = ṡ′/s′, the Lagrangian equations of motion Eqs. (2.20) can be rewritten as:

ṙ′i =
p′
i

mi
, ṗ′

i = f ′i − ζp′
i ;

ζ̇ =
N
∑

i=1

p′2
i

Qmi
− gkBT0

Q
.

(2.21)

We can understand the introduced variable ζ ∝ p′s as a thermodynamic friction coefficient,
whose time derivative can be re-expressed as:

ζ̇ = − 1

τ2

(

g

Nf

T0
T (t)

− 1

)

; (2.22)

where

τ2 =
Q

NfkBT0
, (2.23)

is the effective relaxation or damping time. We can observe from Eq. (2.22) that the friction
coefficient ζ will control the kinetic energy associated to T to make its time average equal
to T0. The coupling strength τ will control the energy ŕow between the reservoir and the
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real system, thence inŕuencing the temperature ŕuctuations. When τ → ∞, i.e. Q→ ∞,
the real system and the reservoir will be perfectly coupled and the system will be in the
microcanonical ensemble. We will always work in the canonical ensemble as far as we
choose a őnite value of the mass Q. Nevertheless, when τ ≫ 1 the energy ŕow will be slow,
and too large simulation times will be needed in order to reach the canonical distribution.
On the contrary, if τ is small, the energy will oscillate unphysically, causing equilibration
problems. A good test to ensure the proper choice of the damping time τ can be to run the
same simulation for different coupling strengths; if we obtain equivalent results it means
that our τ choice is good and that the system has reached the desired canonical ensemble.

Controlling the pressure When we are working in the canonical (N,V, T ) ensemble,
we can obtain our system pressure P from Clausius virial theorem. The virial W is deőned
as the expected value of the sum of the products of the particles coordinates and the forces
acting on them:

W = −1

d

N
∑

i=1

ri · fi, (2.24)

where d is the dimensionality of the system. For an ideal gas, only the interaction forces
that appear are due to the interactions between the gas and the container, and the virial
theorem states for this case that the average virial ⟨W ⟩ equals to NkBT . Nevertheless, for
a real ŕuid, the pairwise interaction forces between particles will also affect the virial, and
thus the pressure. The total virial of the system will thence present a contribution from
the ideal gas and another one from the interaction forces:

⟨W ⟩ = PV − 1

d

〈

∑

i<j

rij · fij
〉

= NkBT. (2.25)

Therefore, the pressure of a classical N -body system is determined as:

P = nkBT +
1

d V

〈

∑

i<j

rij · fij
〉

, (2.26)

where n = N/V is the number density of the system. This result is derived at constant
(N,V, T ); still, it is rather common in a laboratory experience to perform the experiment
at constant pressure. To do so, we have to employ an algorithm that mimics a real barostat
in the sense of statistical physics. Several algorithms have been developed with that re-
gard, such as the Andersen barostat [161] (which controls the pressure by using a őctional
piston) or the Parrinello-Rahman barostat [162] (which allows a variable simulation cell
shape, typically employed for solid simulations to observe, for example, the solid to solid
transition). All these algorithms consider the volume V a dynamical quantity, i.e. they
work in the (N,P, T ) ensemble. However, we may wonder how should we proceed if we
want to control the pressure for a constant energy simulation or if we want to apply the
barostat to a conőned liquid. There are different approaches to solve this issue, but one of
the simplest is what we will call the piston equilibration method.

Let’s consider a ŕuid enclosed between two parallel walls constituted by a given crys-
talline structure. The main idea of the method consists in applying a normal force Fpiston

on one of the walls proportional to the target pressure P0, Fpiston = P0 S with S being the
wall area. Therefore, the pressure will be set by using one of the walls as a piston during
a preliminary run. If this preliminary run is long enough, the piston wall will oscillate
around the equilibrium position. We can then measure the average position and őx the
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piston wall at it. The system will thus be equilibrated at the target pressure, and thence
we can measure the observables of interest for our problem during a posterior production
run in the desired constant volume ensemble.

e. Calculate the physical quantities

After going through the different steps to set our sample and discussing some of the
subtleties related to the different choices, once we are conődent about our system conditions
(i.e. about our MD program), our goal is to measure interesting properties of the system.
Such properties will be physical observables, which have to be expressed as an average of
some function of the coordinates and momenta of the particles in the system. The measure
process in physics, specially for dynamical quantities, is based on the ergodic hypothesis:
when all the accessible microstates are equiprobable over long enough periods of time, and
hence the ensemble average is equivalent to the temporal average. Therefore, any physical
quantity of interest should be measured taking into account whether or not the system
reached the equilibrium or the steady state. Some examples of observable properties of
interest can be thermodynamical quantities, such as temperature T (Eq. (2.2)) or pressure
P (Eq. (2.26)); structural quantities, such as the radial pair distribution function g(r); or
dynamical quantities, such as the particles mean squared displacement.

We will deőne equilibrium MD (EMD) simulations when the modelled system satisőes
the equilibrium conditions. The coupling of our system to an external one (such a pis-
ton or a reservoir), do not necessarily induce thermodynamic ŕuxes, and the equilibrium
conditions can be maintained. Nevertheless, sometimes we might be interested in apply-
ing a large perturbation to the system to study its response. Then, the system modelled
will not satisfy the equilibrium conditions and we will sample a non-equilibrium ensemble,
deőning non-equilibrium MD (NEMD) simulations. The dynamical tools that have been
introduced to solve EMD (like velocity rescaling or Nosé-Hoover thermostating) lead to the
same form of the non-equilibrium equations of motion with an extra term related to the
perturbation induced in the system. But, what can be the advantages of NEMD methods?
EMD methods are based on linear response theory and time correlations, typically rather
noisy. NEMD simulations allow us a higher degree of control of the system, which can
improve the efficiency in the transport coefficients calculation. Also, in our picture of MD
simulations as computational experiments, NEMD simulations are closer to laboratory ex-
periences, where transport properties such as viscosity η or thermal conductivity λth are
measured inducing a ŕow (of momentum, energy, etc) in the system. With that regard,
NEMD may feel a more natural way to measure transport coefficients, which relate to the
way the system responds to a large perturbation.

NEMD also present some important disadvantages when compared to EMD, and their
suitability to measure physical observables is still an ongoing debate [163, 164, 165]. For
instance, NEMD simulations typically need longer simulation times than their EMD coun-
terpart. This is because the strength of the applied perturbation in NEMD has to be large
enough to be able to distinguish it from the statistical noise of the system, implying longer
simulation times than those of EMD to reach the steady state. Nevertheless, if we apply
a very large perturbation, the system will be out of the linear response regime, and the
transport coefficients will no longer be physical constants. Furthermore, whilst for EMD
we can work within the microcanonical ensemble, for NEMD it is unavoidable the use of a
thermostat. Due to the applied perturbation to the system, such thermostat will be pump-
ing great quantities of heat in order to ensure the imposed temperature T0, increasing the
risk of a nonphysical system behavior. Still, used with care, NEMD simulations can be a
powerful tool to calculate some physical quantities, and good agreement can be found when
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Figure 2.3: Schematics of contact angle θ simulation for a wall located at zwall, where the
sessile water drop (in blue) shape is approximated by a sphere centered at z0 and having
a radius R.

computing some transport coefficients, such as viscosity, from EMD and NEMD methods.

2.2.2 Wetting and contact angle

The ability of a liquid to maintain contact with a solid surface is deőned as wetting.
The wetting properties are directly related to the interaction energy εLS between liquid
(L) and solid (S) atoms, and they can be expressed in terms of the contact angle θ of
a liquid droplet on a solid surface. For a given liquid, wetting allows us to characterize
the solid surface (see Fig. 2.3). For example, in the case of water, we can distinguish
between hydrophobic (small wetting or large contact angle) and hydrophilic (large wetting
or small contact angle) surfaces. Wetting properties directly affect the disposition of the
liquid particles in the absorption layers: for a very wetting surface, a larger number of
liquid particles will be present at the interface, implying a more picked interfacial density
proőle, while the opposite effect occurs for a non-wetting surface. Therefore, the effect
of wetting can have a critical impact on the interfacial transport properties, and its good
characterization can allow us to enlighten the molecular mechanisms that control them.

To characterize the wetting in MD simulations, we can measure the contact angle
corresponding to a given value of the liquid-solid interaction energy εLS. With this regard,
we should simulate a liquid droplet on a solid surface big enough to avoid interactions of
the liquid particles with the periodic images, as we can see in Fig. 2.1b. Supposing that the
immobile droplet shape can be őtted by a sphere centered at z0 and radius R (Fig. 2.3),
the radius of the droplet section can be expressed as a function of the section’s distance
to the wall z as r(z) =

√

R2 − (z − z0)2, and the contact angle θ is determined from the
expression:

θ = arccos

(

zs − z0
R

)

, (2.27)

where zs denotes the effective wall position. We can obtain the value of r(z) from the
simulations by őtting the apparent density proőle ρapp along the direction z normal to the
wall with a spherical shape:

ρapp(z) =
(ρliq − ρvap) π r(z)

2

LxLy
+ ρvap, (2.28)
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(a) Couette ŕow (b) Poiseuille ŕow

Figure 2.4: (a) Velocity proőle schematics of a Couette ŕow generated by applying a shear
velocity ±Uwall to the walls. (b) Velocity proőle schematics of a Poiseuille ŕow generated by
applying a constant force density f to the ŕuid. In both őgures, the dashed line represents
the ideal velocity proőle, obtained from őtting v(z) in the bulk region, while the continuous
line represents the real velocity proőle, which may deviate from the ideal one at interface
due to the density inhomogeneties close to the wall. vslip corresponds to the velocity jump
at the interface, and b is the slip length. The position where the boundary condition is
applied is at zs.

where ρliq, vap corresponds to the real liquid and vapor densities and Lx, Ly denote the
wall lateral dimensions. Because the densities are obtained for a given temperature and
pressure, both parameters can affect the contact angle values obtained.

2.2.3 Hydrodynamic ŕows

In the study of the dynamical properties of a conőned ŕuid, we can measure the hy-
drodynamic transport coefficients from equilibrium (EMD) or non-equilibrium (NEMD)
molecular dynamics simulations. The employment of equilibrium formulas with this re-
gard, based on time autocorrelations, is a delicate issue, which will be discussed in detail
in Chapter 3. Another path is the employment of NEMD simulations by generating a
hydrodynamic ŕow. Considering a Newtonian, incompressible ŕuid of density ρ and shear
viscosity η, its ŕow is described by the Navier-Stokes equations [18]:

{

ρ∂v∂t + ρ (v ·∇)v = −∇P + η∇2v + fext,
∇ · v = 0;

(2.29)

where v(t, r) is the ŕuid velocity, P the system’s pressure and fext corresponds to an
applied external force per unit volume. We can deőne the Reynolds number Re, in order
to compare the spacial derivatives of the velocity in Eq. (2.29). By deőning L the typical
length scale over which the ŕow varies, and U the typical velocity, the Reynolds number
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is deőned as:
(v ·∇)v

η∇2v
∼ ρUL

η
=
UL

ν
≡ Re, (2.30)

with ν = η/ρ being the kinematic viscosity. Micro and nanoŕuidic systems will have
Re ≪ 1. By also considering steady-state ŕows where ∂v

∂t = 0, Eq. (2.29) is simpliőed to
the Stokes equation:

η∇2v −∇P + fext = 0, (2.31)

with the condition of incompressibility:

∇ · v = 0. (2.32)

By considering an ideal Newtonian ŕuid enclosed between two inőnitely long parallel
plates separated a distance H, the main steady ŕows induced are a Couette and a Poiseuille
ŕow.

a. Couette ŕow

We can produce a Couette ŕow by applying a constant shear velocity Uwall to the walls
in opposite x directions for each wall (Fig. 2.4a). By doing so, we will generate a linear
velocity proőle far from the wall:

vx(z) = γ̇(z − zs) + (Uwall − vslip), (2.33)

where zs is the shear wall position (i.e. the effective position where the Navier B.C. applies,
Eq. (2.1)), and vslip is the slip velocity, related to the velocity jump at the interface, and
deőned as vslip = Uwall−vx(z = zs). We can see that the related interfacial jump, quantiőed
by the slip length b, can be then determined from the relation b = vslip/γ̇.

When working with a NEMD simulation of a Couette ŕow, we can check if our viscosity
and friction measures are in the linear response regime (LRR) by measuring them for
different values of the wall velocity Uwall, expecting to have equivalent results for different
shear velocities. Although it is recommended to always verify that our measures are in
the LRR, a good way to estimate an order of magnitude for a shear velocity which will lie
in the LRR is to impose Uwall to be ∼ 10% smaller than the thermal velocity. From the
equipartition theorem we can approximate the thermal velocity as

⟨vx⟩ ∼
√

kBT

m
. (2.34)

For example, for water at 360K, ⟨vx⟩ ∼ 4×10−3 Å/fs, and therefore Uwall ∼ 1×10−4 Å/fs.
Another estimation we should do before running our Couette simulation is to estimate

the time it will take to the system to reach the steady state, tst−st. The dynamics of our
system will be determined by the dynamic Stoke’s equation:

ρ
∂vx
∂t

− η∇2vx = 0, (2.35)

obtained from Eq. (2.29). We can see that this expression corresponds to a diffusive
equation with diffusion coefficient D ∝ η/ρ = ν. Therefore, the kinematic viscosity ν will
be related to the characteristic system length L and time t, as ν = L2/t. From the system
relaxation, then tst−st can be expected to be tst−st = (H/2)2/ν, with H the system physical
height. For example, considering a system of H ∼ 50Å constituted by water molecules at
360K, tst−st ∼ 2× 105 fs.
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b. Poiseuille ŕow

In contrast to a Couette ŕow, in a Poiseuille ŕow both walls are at rest and the ŕow
is generated by applying a constant force density f (typically a pressure gradient, f =
(−∇P )) in the direction x parallel to the wall. In this case, the Stokes Eq. (2.31) simpliőes
to

− η
d2vx
dz2

= f, (2.36)

where z is the direction normal to the walls. Considering our system centered at z = 0
(Fig. 2.4b), without loss of generality, we can deőne the hydrodynamic wall distance h
as the separation between the two positions where the BC applies, {±zs}. Then, in the
middle of the channel, the symmetry of the system implies that dvx

dz

∣

∣

z=0
= 0 and, at the

bottom wall the partial slip BC, Eq. (2.1) writes as v(−h/2) = b dvx
dz

∣

∣

z=−h/2. We can solve
Eq. (2.31) by taking both BC conditions into account, obtaining that the shape for the
velocity proőle is given by the expression:

vx(z) =
f

2η

(

h2

4
+ bh− z2

)

. (2.37)

Analogous to the Couette ŕow NEMD situation, it important to verify that all the
measures performed for a Poiseuille ŕow simulation belong to the LRR by checking that
different values of the applied force density f do not affect the transport coefficient mea-
sures. The system relaxation time can be obtained by considering that the motion of the
ŕuid center of mass will be described by the Langevin equation:

M
dvx
dt

= −λSvx(t) + f, (2.38)

with λ being the friction coefficient and S the wall surface. This expression implies that
the system will relax within a time proportional to 1/λ, so surfaces with small λ will infer
large simulation times. Because the relaxation time is controlled by the friction coefficient,
which we typically cannot know a priori in our simulations, it can be difficult to estimate
beforehand an order of magnitude for f and tst−st in a Poiseuille ŕow simulation.

2.2.4 How to simulate water?

The LJ potential introduced in Section 2.2.1, Eq. (2.3), works well when describing the
attractive and repulsive interactions between spherically symmetric and neutrally charged
molecules as, for example, liquid Argon. However, some modiőcations have to be imple-
mented for other types of molecules with more complex geometries or inter- and intramolec-
ular interactions. Such is the case of water, the ubiquitous liquid.

The water molecule has a tetrahedron structure centered on the oxygen, with the two
hydrogen atoms close to the two corners. The other two corners of such tetrahedron will
be the lone pair oxygen electrons. Because the repulsion between the lone pair electrons
is greater than the one between the hydrogen atoms, the HOH angle θHOH is not 109.5◦

but 104.5◦. This charge anisotropy does not only produce the bending of the tetrahedral
equilibrium structure but also induces an electrical dipole moment in the molecule. Thus,
the water molecule does not follow the two general suppositions of the standard LJ po-
tential formulation: it is not spherically symmetric and it presents effective partial charge
and, as a consequence, different modiőcations have to be introduced to simulate water
molecules. With that regard, two different approaches can be followed: őrst, to introduce
a new interaction potential that accounts for the different water special properties such
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qO qH εOO σOO dOH θHOH dOM

SPC/E -0.8476 +0.4238 0.1553 3.166 1.0 109.47◦ -
TIP4P/2005 -1.1128 +0.5564 0.1852 3.1589 0.9572 104.52◦ 0.1546

Table 2.1: Potential parameters for the SPC/E and TIP4P/2005 water models. The
charges of oxygen qO and hydrogen qH are in elementary charge units, the interaction
energy εOO and distance σOO between oxygen atoms are in kcal/mol and Å respectively,
the bond length between oxygen and hydrogen dOH and between oxygen and center of
mass dOM are in Å and the HOH angle θHOH is in degrees.

O

H H

(a) 3-site model

O

H HM

(b) 4-site model

O

H H

L L

(c) 5-site model

O

H H

L L

M

(d) 6-site model

Figure 2.5: Multipoint models for water where O corresponds to the oxygen atom location,
H to the hydrogen atoms location, M to the dummy atom location and L to the lone pair
electrons location.

as polarizability; or second, to maintain the LJ intermolecular interactions introducing
different virtual sites in the water molecule: the multipoint models for water. This second
approach is the most extended one, and it can be based from two-point [166] up to a
six-point model parametrization, based on the oxygen atom location (O), a dummy atom
(negatively charged) location (M), the hydrogen atoms locations (H) treated as positive
charges, and the oxygen’s lone pair electrons (L) treated as the negative point charges in
the 5-site and 6-site water models (Fig. 2.5).

Although a large bibliography can be found on the different water models [167, 146],
3-site models examples are the SPC (simple point charge) and SPC/E (extended SPC)
models, introduced by Berendsen et al. [168, 169], or the TIP3P (transferable intermolec-
ular potential three point model) [170]. As 4-site model example we can őnd TIP4P [170],
which can be reparametrized depending on the simulation objective: TIP4P-Ew to use
with Ewald sumation methods [171], TIP4P/Ice [60] for solid water ice simulations, and
its general reparametrization TIP4P/2005 [172], which reproduces the entire phase dia-
gram of condensed water. Another 5-site and 6-site model extensions can be done with
the TIP5P and TIP6P water models [173, 174].

In the present manuscript, MD simulations were performed for SPC/E and TIP4P/2005
models. In both cases the total intermolecular interaction potential between two water
molecules is computed as a sum of the Lennard-Jones interactions between oxygen atoms
and the Coulomb potentials, Eqs. (2.3),(2.6) with parameters found in Table 2.1 and masses
mO = 15.9994 g and mH = 1.008 g for oxygen and hydrogen respectively. All the models
described here are rigid water models, i.e. the bond lengths and angles as well as the
electron clouds are not affected by any external perturbation. In practice, in a MD simu-
lation, constrain algorithms as SHAKE [175, 176], can be used to maintain the two O-H
bonds and the H-O-H angle rigid. SPC and TIP4P/2005 can be reparametrized to take
into account the intramolecular degrees of freedom in their ŕexible versions, SPC/Fw and
TIP4P/2005f [177, 178].
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2.3 Hydrodynamic wall position

Flows in nanoŕuidic systems are strongly affected by liquid-solid slip, which is quantiőed
by the slip length b and by the hydrodynamic wall position (HWP) zs where the slip BC
applies, Eq. (2.1). Considering a ŕuid enclosed between two parallel planar walls separated
a distance H, we can deőne ∆ as the reported shift between the wall surface and the HWP,
deőning the hydrodynamic height h = H−2∆ (Fig. 2.6a). From a continuous perspective,
the Navier BC Eq. (2.1) should be applied at the ŕuid-solid interface, and physical and
hydrodynamic heights match (H ≡ h). Nevertheless, the position of such interface becomes
a subtle issue at the molecular scale: should we consider the interface at the solid surface
atoms? At the őrst ŕuid layer close to the wall? Somewhere in between? In practice,
most studies assume a given position for the HWP, ranging typically from the physical
wall position (∆ = 0σ, with σ being the molecular diameter) up to the position of the
liquid őrst absorption layer (∆ = 1σ) [99, 125, 119, 121, 140, 89, 179, 180], or at the Gibbs
dividing plane [132, 181, 182, 183], which leaves the simpler task to determine only one
parameter: slip length or friction coefficient.

However, can we measure zs? Only few studies can be found with that regard, which
propose to measure the hydrodynamic position of the wall from mode analysis of hydrody-
namic ŕuctuations [184] or from expressions based on Green-Kubo formulas, such as the
one derived by Bocquet and Barrat [122]:

zs =

∫∞
0 ds

〈

Fx(s)σ
(f)
xz (0)

〉

eq
∫∞
0 ds ⟨Fx(s)Fx(0)⟩eq

, (2.39)

with Fx the friction force exerted by the wall on the ŕuid, σ(f)xz the off diagonal term of
the stress tensor inside the ŕuid, and ⟨·⟩eq denoting canonical average. Nevertheless, the
applicability of these methods in őnite-size MD simulations is delicate [123, 124, 126, 184].

Alternatively, we can employ MD simulations to measure both b and zs. For instance, to
avoid the impossibility of solving two unkowns, h and b, from one equation, we can obtain a
set of independent equations by simulating two types of ŕow in the same system, typically
a Couette and a Poiseuille ŕow (combining Eq. (2.33) with vslip = b γ̇ and Eq. (2.37)); or
by simulating a Poiseuille ŕow for two different system heights, see Ref. 146 and references
therein. However, these measurements are usually delicate, and the measured b and zs are
very sensitive to the őts in the ŕow proőle, which are affected by thermal ŕuctuations.
Overall, few studies have attempted to measure the hydrodynamic position of the wall.
For generic Lennard-Jones (LJ) ŕuids and walls of different wettabilities and corrugation,
the reported shift ∆ between the wall surface and the HWP varied between ∼ 1.1 and
2.5σ [122, 129, 130, 184].

In this section, we will detail the results presented in Ref. 185, and we will see that
viscosity η, slip length b and hydrodynamic wall position zs can be accurately determined
from a single MD simulation of a Poiseuille ŕow, after identifying a relation between
the HWP and the wall shear stress conőguration. We will also show that the common
practice of applying a gravity-like force per particle to generate a Poiseuille ŕow in MD
simulations imposes by construction that the HWP identiőes with the Gibbs dividing plane
of the liquid-vaccuum density proőle. Simulations of a generic LJ liquid conőned between
parallel frozen walls show that the HWP for a pressure-driven ŕow is also close to the
Gibbs dividing plane (measured at equilibrium), which therefore provides an inexpensive
estimate of the HWP, going beyond the common practice of assuming a given position for
the hydrodynamic wall. For instance, we will see that the HWP depends on the wettability
of the surface, an effect usually neglected in MD studies of liquid-solid slip.
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2.3.1 Theory

Let’s start by showing the relation between interfacial shear stress and HWP in a
Poiseuille ŕow. To that aim, it is important to emphasize that the partial slip BC Eq. (2.1)
effectively takes into account all the phenomena occurring at the molecular vicinity of the
interface and provides a BC for the ŕow far from the interface where the liquid is described
by its bulk properties. As a consequence, in the partial slip BC, the velocity and the
shear rate at the interface need to be obtained from the extrapolated bulk velocity őeld
(i.e. using the bulk liquid viscosity η), regardless of the true velocity őeld at the interface,
where the viscosity may locally change [98, 186]. This is the rule we will follow in the
derivation below.

Let’s consider a Poiseuille ŕow induced by a constant force density f in a liquid conőned
between two parallel walls located at a vertical position z = ±H/2; (see Figs. 2.4b and
2.6a). The force density can be due to a pressure gradient, f = (−∇P ), or to a gravity-like
őeld g, f = ρ g, with ρ being the bulk liquid density. The walls impose a partial slip
BC (with a slip length b) applying at a distance ∆ from the physical walls, deőning the
hydrodynamic height h = H − 2∆ (Fig. 2.6a). The velocity proőle will be then given by
Eq. (2.37). The key point of our derivation is to take into account that, for this ŕow, the
shear stress applied by the liquid to the wall, τw ≡ σ

(f)
xz is:

τw = η
∂v

∂z

∣

∣

∣

∣

z=−h/2
=
fh

2
. (2.40)

As a consequence, for a given force density f , the hydrodynamic height can be then mea-
sured via the interfacial shear stress,

h =
2τw
f
. (2.41)

Using this relation, we can now discuss a common approach used in MD simulations
to impose a Poiseuille ŕow, hereafter referred to as łgravity-like ŕowž, where one applies a
force per particle, fi = f/nbulk (with nbulk being the number density) to liquid particles.
In this case, the total force applied to the liquid will be F = Nfi = Nf/nbulk, with N
being the number of liquid particles. Thus, by deőnition, the total shear stress between
the liquid and each of the two conőning walls will be:

τw =
F

2S
=

Nf

2Snbulk
, (2.42)

where S is the wall area. By matching the expressions Eq. (2.40) and Eq. (2.42), it results
that

nbulk =
N

hS
, or h =

N

nbulkS
. (2.43)

Introducing the number density proőle n(z), Eq. (2.43) can be rewritten as
∫ h/2

0
[nbulk − n(z)]dz =

∫ ∞

h/2
n(z)dz, (2.44)

namely the HWP identiőes with the Gibbs dividing plane (GDP) corresponding to a parti-
tioning of space between a region őlled with a homogeneous liquid and another one without
any liquid (see Fig. 2.7b). Therefore, the choice made in previous work [132, 181, 182, 183]
to őx the HWP at the GDP can be justiőed based on hydrodynamic arguments. Addi-
tionally, because parallel ŕows do not affect signiőcantly density proőles perpendicular to
the walls [187], Eq. (2.43) indicates that the HWP for a gravity-like ŕow can in fact be
measured from the GDP in equilibrium simulations as we will do in the following.
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2.3.2 Methods

To test the theoretical predictions presented above, we performed MD simulations of
a liquid conőned between two parallel walls (Figs. 2.6b and 2.6c) using the LAMMPS
package [144]. Liquid-liquid and liquid-solid interactions were modeled with a Lennard-
Jones (LJ) potential, Eq. (2.3), Vij(r; εij , σij), with r being the interparticle distance, εij
and σij being the interaction energy and size, where i and j can be L for liquid particles
and S for solid ones. In the following we will use reduced units based on the particle mass
m, and liquid-liquid interaction energy ε = εLL and size σ = σLL. In particular, the unit
of time is τ = σ

√

m/ε. The liquid-solid interaction energy εLS was varied between 0.3 and
0.6 ε, while keeping σLS = σ. The potential was truncated at 2.5σ. For the walls, we used
three atomic layers of a frozen face centered cubic crystal exhibiting a (001) face to the
liquid, with an interparticle distance corresponding to mechanical equilibrium, d = 21/6 σ.
We used periodic BCs along the lateral x and y directions, and all the measurements were
taken in a region with a lateral size L ≡ Lx = Ly ≈ 19σ with 5206 liquid particles and
1728 solid ones. The temperature was set to T = 0.83 ε/kB by applying a Nosé-Hoover
thermostat to liquid particles, only along the y and z degrees of freedom perpendicular
to the ŕow, with a damping time of 0.5 τ . Equivalent results were obtained for different
damping times and using a Berendsen thermostat. The pressure was set to 0.094 ε/σ3 by
using the top wall as a piston during an equilibration stage and őxing it at its equilibrium
position during production. The resulting physical height H of the system, deőned as
the distance between the őrst inmost layers of the walls, varied between 21 and 22σ for
different εLS values. The equations of motion were integrated using the velocity Verlet
algorithm, with a timestep of 0.005 τ .

From a MD point of view, the pressure-driven and the gravity-driven ŕows are not
generated in the same way. Whether a real pressure driven ŕow implies that the force
density f = −∇P is homogeneously applied in the channel, a gravity-driven ŕow consists
in applying a force per atom fi to all the atoms in the ŕuid slab, with fi being inhomogenous
due to the inhomogeneties of the ŕuid density close to the wall. Therefore, although both
pressure-driven and gravity-driven ŕows are Poiseuille-like in the bulk, they will differ in
the molecular vicinity of the wall, and it can be interesting to study if the forcing at the
interface can signiőcantly affect the HWP value.

Three different sets of simulations were employed in order to measure the HWP or,
equivalently, the ∆ parameter: ŕuid-piston simulations (∆FP), equilibrium MD (∆GDP)
and gravity-like ŕow measurements (∆g). To generate a pressure-driven ŕow, we used a
ŕuid piston [187, 188, 189] (see Fig 2.6c): we increased the box size along the x direction,
from Lx ≈ 19σ to Lx ≈ 43σ (using 11713 liquid particles and 3888 solid ones), we applied
along the x direction a force per particle fpistoni to liquid particles in a thin slab of length
lpistonx ≈ 8σ (the ŕuid piston region), and we measured the wall shear stress τw and the
bulk pressure gradient f = (−∇P ) in a measurement region of length lmeasure

x ≈ 19σ far
from the ŕuid piston. We did not observe any signiőcant difference in the results for a
bigger region between the ŕuid piston and the measurements region. We computed the
hydrodynamic height h using Eq. (2.41). Therefore, the corresponding hydrodynamic shift
∆ = (H − h)/2 is obtained, for the ŕuid piston simulations, from the expression:

∆FP =
H

2
− τw

f
. (2.45)

From the őt of the Poiseuille ŕow proőle in the bulk region with Eq. (2.37), we could also
extract the viscosity η and the slip length b, see Section 2.2.3b.
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(a)

(b)

(c)

Figure 2.6: (a) Fluid velocity proőle of a Poiseuille ŕow (black line) for the pressure-driven
simulations and its parabolic bulk őt (dark blue line). H represents the physical system
height and h the hydrodynamic height where the BC, Eq. (2.1), applies. ∆ indicates the
distance between the hydrodynamic and physical walls. The slip length b is determined
from the slope of the extrapolates bulk velocity őeld at the hydrodynamic wall position
(dashed dark blue line). (b) Simulated system made of a LJ ŕuid conőned between two LJ
rigid crystal walls. Periodic BCs were imposed in the x and y directions. A gravity-driven
ŕow was generated by applying a force per particle fi to all the atoms in the slab. (c)
Considered system for the ŕuid piston simulations: a force per particle fpistoni is applied to
liquid particles along the x direction in a thin slab of length lpistonx ≈ 8σ. The measurements
of the induced Poiseuille ŕow were taken in a region far from the ŕuid piston with the same
lateral size as the original system shown in (a).
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The HWP can also be directly measured from a gravity-like ŕow measurement, obtained
by applying a force per particle fi in the whole ŕuid slab (Fig 2.6b). In this case the HWP
was determined from Eq. (2.41) by taking into account that f = fi nbulk. Therefore,

∆g =
H

2
− τw
fi nbulk

. (2.46)

Finally, we also computed ∆ from the density proőles of equilibrium simulations following
the Gibbs dividing plane (GDP) description in Eq. (2.43):

∆GDP =
H

2
− N

2nbulkS
. (2.47)

Note that, őrst, we also measured the position of the GDP from the ŕuid piston and
gravity-like MD density proőles, obtaining identical results to the equilibrium ones (with
slightly higher standard deviation due to larger thermal noise present in NEMD). Second,
it is important to highlight that, by construction, we should obtain ∆g = ∆GDP, although
∆g does not necessarily have to equal to ∆FP because, although both ŕows identify at bulk,
some discrepancies can occur at the interface arising from the constant fi assumption in
the measures slab for the ŕuid piston simulations.

Finally, to compare the ŕuid-piston results with another more common approach, we
performed independent Couette ŕow simulations on the system illustrated in Fig. 2.6b
(shearing the walls instead of applying a force per particle fi), with lateral size L ≡ Lx =
Ly ≈ 19σ and 5206 liquid particles. We used the hydrodynamic height h measured in
the ŕuid piston simulations; we measured the viscosity as the ratio between the wall shear
stress and the bulk shear rate, and the slip length from a őt of the bulk velocity proőle.
In all the simulations, the equilibration stage lasted 2× 105 timesteps, and the production
lasted 107 timesteps.

Although f was directly measured from simulations as the pressure difference between
two points in the measurements region (where we expect to have a nice linear pressure
proőle) per length, f = ∆P/lmeasure

x , we applied a fpistoni such as f is of the same order
of magnitude than f from previous work which lied in the linear response regime. The
relation between f and the applied fpistoni can be established from ∆P = F/Sp, with F

the total force applied in the volume of the piston region proportional to fpistoni , and Sp
the surface perpendicular to F . We őnally obtain that f = fpistoni nbulkl

piston
x /lmeasure

x .
For ŕuid-piston MD, gravity-like MD and Couette ŕows, we simulated a number of

different forcing (pressure gradient, f ∈ [2.7, 4.7]×10−3 ε/σ4, force per atom fi ∈ [1.0, 7.0]×
10−3 ε/σ, or shear velocity, U ∈ [0.1, 0.5]σ/τ). Five independent simulations were run for
each value of the force density. All the results shown in the present section (∆FP, ∆g,
∆GDP, b and η) were obtained for a given εLS by averaging the results which belonged to
the linear response regime, i.e. the forcing range in which the measured quantity remained
constant. Correspondingly, the maximum shear rates produced were 0.033, 0.035 and
0.048 τ−1 for the ŕuid piston, the gravity-like and the Couette simulations respectively.
These shear rates are below the shear thinning regime of the LJ ŕuid, around 0.07 τ−1,
see e.g. Ref. 190. The given error bars correspond to the statistical error within 95% of
conődence level.

2.3.3 Results and discussion

Figure 2.7a presents the measured shifts between the wall surface and the HWP, ∆FP

from ŕuid piston simulations using Eq. (2.45), ∆g from gravity-like simulations using
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(a)

(b)

Figure 2.7: (a) Measured shifts between the wall surface and the HWP, for different in-
teraction strengths εLS between liquid and solid particles. Blue circles: ∆FP from ŕuid
piston simulations using Eq. (2.45); Red squares: ∆GDP from equilibrium simulations us-
ing Eq. (2.47), i.e. using the position of the GDP; Purple triangles: ∆g from gravity-like
simulations using Eq. (2.46). As expected from the theoretical derivation, ∆GDP and ∆g

are equivalent. ∆FP and ∆GDP are similar (although they differ slightly at high εLS); in
particular, all of them decrease for a higher wall wettability. (b) Gibbs dividing plane
(GDP) representation (dashed blue line) of the liquid interfacial density proőle (full red
line) for two different εLS. The GDP is closer to the physical wall for a larger εLS because
of the stronger adsorption.

Eq. (2.46), and ∆GDP from equilibrium simulations using Eq. (2.47), i.e. using the position
of the GDP. Note that, even though ∆GDP was measured from equilibrium simulations,
we will still refer to it as the gravity-like ŕow hydrodynamic shift, because Eq. (2.43) was
derived analytically for a gravity-driven ŕow. Indeed, as we can see in Fig. 2.7a, both equi-
librium and gravity-like measures of the HWP are equivalent, although obtained through
different methods and simulations. In this case, the smaller error bars of ∆GDP are due
to the smaller thermal ŕuctuations present in EMD, showing the equilibrium measure of
the density proőle more suitable than the one from a real gravity-like ŕow simulation. In
Fig. 2.7a, we can also see that ∆GDP is comparable to ∆FP, although they slightly differ
for large εLS.

In general, the hydrodynamic shifts for a pressure-driven and for a gravity-like ŕow
do not have to be identical: indeed, while the pressure gradient and the gravity-like force
identify in the bulk, they will generally differ in the molecular vicinity of the interface
where the ŕuid becomes heterogeneous. In particular, the gravity-like force distribution
will follow that of the density, and can result in a different effective BC for the bulk ŕow.
In Fig. 2.7a we can also see that, for both ŕows, the distance between the wall surface and
the HWP decreases with the wall wettability controlled by the εLS parameter (a higher
εLS corresponds to a more wettable system). We can understand this result in terms of
the GDP (Fig. 2.7b): for a more wettable system the peaks of the density proőle close
to the wall are more pronounced so the area of an effective liquid with constant density
region is bigger, hence a larger value of h and a smaller value of ∆GDP. We also varied εLL,
and found that its impact was much smaller than that of εLS. This can be rationalized
based on the GDP. Indeed, changing εLL should (at the őrst order) rescale the whole liquid
density proőle, so that the GDP should not change.
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Fluid piston Couette
εLS η b η b

0.3 1.422± 0.015 6.80± 0.10 1.409± 0.024 6.64± 0.25
0.4 1.421± 0.006 3.26± 0.02 1.414± 0.007 3.27± 0.09
0.5 1.428± 0.007 1.66± 0.08 1.412± 0.011 1.61± 0.08
0.6 1.417± 0.013 0.71± 0.08 1.410± 0.011 0.64± 0.07

Table 2.2: Shear viscosity η (in ετ/σ3) and slip length b (in σ) at T = 0.83ε/kB and
p = 0.094ε/σ3, for different system wettabilities controlled by εLS (in ε): comparison
between ŕuid piston and Couette ŕow measurements.

The results we obtained here for the HWP are signiőcantly different from the ones
obtained by other studies [122, 129, 130, 184] (with ∆ between ∼ 1.1 and 2.5σ) and from
the sometimes used assumption [125, 119] that ∆ = 0σ. For the less wettable walls the
common assumption [89, 140, 179, 99, 180] that ∆ ∼ 1σ agrees with our results. However,
for higher εLS values this assumption is generally not valid, specially in systems with
signiőcantly small slip lengths like the one discussed in this section.

From the pressure-driven ŕow, in addition to the determination of the HWP, we can
also measure the system transport coefficients. Table 2.2 reports the η and b results for a
set of εLS parameters. Because the shear viscosity is a property of the bulk liquid and in
all simulations the temperature and pressure are set constant, there is no effect of the wall
wettability on η, and its value is comparable to the one obtained from Couette simulations.
As rationalized in previous work [28], the slip length decreases with εLS: for a less wettable
system the ŕuid friction coefficient is smaller which implies a higher value of b = η/λ. If we
compare these results with those obtained from Couette simulations, we can see that by
means of the pressure-driven ŕow method we obtained equivalent b and η measurements
with the same order of magnitude in the error precision.

2.3.4 Conclusions

We have shown that the position where the hydrodynamic BC imposed by walls
Eq. (2.1), should be applied can be efficiently determined by measuring the wall shear
stress in MD simulations of a Poiseuille ŕow. As a consequence, we have shown that for
gravity-driven ŕows, the HWP is only controlled by the static density proőle of the ŕuid
close to the wall, and identiőes with the GDP, which can be measured from equilibrium
simulations. Accordingly, the HWP could be estimated from previous work where the
equilibrium structure of liquid-solid interfaces was modeled [96]. This was veriőed from
the equivalent HWP results obtained from gravity-driven MD (applying a constant force
per particle to the liquid slab) and equilibrium MD. We then simulated a LJ ŕuid conőned
between two parallel frozen walls, and measured the HWP by using a ŕuid piston to gen-
erate a pressure-driven ŕow. The pressure-driven ŕow hydrodynamic wall was comparable
(although not identical) to the GDP. We investigated the effect of wetting by varying the
liquid-solid interaction energy. We found that the hydrodynamic BC applies in the liquid,
at a distance ∆ from the wall surface varying from ∼ 1σ (with σ the atomic diameter) on
non-wetting walls to a fraction of σ on wetting walls. The decrease of ∆ for increasing
wetting can be rationalized in terms of GDP, which is shifted toward the solid when the
adsorption of the ŕuid increases on more wetting surfaces. The measured values of ∆
are generally lower than previous measures, which ranged between 1.1 and 2.5σ, but they
correspond approximately to the standard assumption made in MD studies of liquid-solid
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slip that ∆ ∼ 1σ. Finally we have shown that, in addition to the HWP, the Poiseuille
ŕow simulation also provides an accurate estimate of the slip length and ŕuid viscosity,
by comparing the measured values with those obtained from independent Couette ŕow
simulations.

Overall, we have presented a simple, fast and accurate method to fully characterize
the transport properties of a conőned ŕuid, by measuring the viscosity, slip length, and
HWP in a single Poiseuille ŕow simulation. Note that this method is not limited to the
simple slab geometry considered here. For instance, it can easily be extended to cylindrical
channels, where the wall shear stress is: τw = fr/2, with f the pressure gradient and r
the hydrodynamic radius of the pore. The method could also apply to mixtures (for
a gravity-like ŕow, one can show that Eqs. (2.43) and (2.44) apply when replacing the
number of liquid particles and the number density by the total mass of the liquid and
the mass density, respectively) and to thermalized walls. An analogous approach could
also be applied to characterize the effective wall position for interfacial heat transfer. Our
simulation results also suggest that the GDP provides a reasonable approximation of the
hydrodynamic wall, and can be used as an inexpensive estimate going beyond the common
‘one molecular diameter’ approximation. In particular the GDP captures the decrease of
the distance between the hydrodynamic and physical wall for increasing wettability. We
hope these results will help improve the characterization of the hydrodynamic BC by MD
simulations in systems of interest for nanoŕuidic applications.

2.4 Interfacial transport coefficient: determining slippage

We have presented nanoŕuidics as an emerging őeld offering innovative solutions for
energy harvesting and desalination. The efficiency of these applications depends strongly
on the liquid-solid slip b, arising from a favorable ratio between viscosity η and interfacial
friction λ in Eq. (2.1). Because reducing friction is key to improve the performance of
nanoŕuidic systems, an intensive experimental effort has been undertaken during the re-
cent years to characterize the ultra-low liquid-solid friction of new 2D materials and their
derivative [31, 191, 34, 192]. Further work has been performed to study the impact on
friction of different wall features such as wettability [137, 112], roughness [113], crystallo-
graphic orientation [114], electronic structure [45, 193, 194], or electrostatic interactions
[195].

Among all ŕuids, the study of water has always been of special concern for scientists
from a broad variety of research őelds [196, 197, 198]. Its interest not only lies on its
ubiquitous nature but also on its many thermodynamic and dynamic anomalies like, among
others, the non-monotonous temperature dependence of its isothermal compressibility and
density [57, 61]. These anomalies are enhanced when water is driven to its supercooled
regime (i.e. the range of temperatures below the freezing point where water keeps its liquid
state), making this regime ideal to test and reőne our current understanding of water. In
particular, the temperature dependence of the bulk transport properties of supercooled
water has been explored both numerically and experimentally over the last decade [107,
108]. Conőned water has also been explored from an experimental and theoretical point
of view, with an special interest in the novel 2D materials such as graphene, where the
properties of the conőned liquid have been already studied at a given thermodynamic
conditions for planar walls as well as for carbon nanotubes [40, 199, 200, 201, 111, 202, 203].

In particular, the temperature evolution of supercooled water under conőnement has
also been the subject of intensive experimental research [204, 205, 206, 207, 208, 209].
Broadband dielectric spectroscopy, nuclear magnetic resonance, as well as neutron scat-
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tering experiments have successfully probed water conőned in pores with sub-nm radii
at temperatures as low as about 130K, in order to connect the dynamical behavior of
supercooled conőned water to that of bulk water in the so-called no-man’s land (150K
to 230K) [208]. At temperatures above the no-man’s land, marked differences have been
found in the time relaxation of supercooled water under conőnement compared to bulk
water, suggesting that the interfacial water dynamics, and thus water friction, may play
an important role. However, the temperature evolution of water friction in the liquid and
supercooled regime remains unclear nowadays. Besides achieving a better understanding
of interfacial and nanoconőned water dynamics and phase behavior under supercooling,
such a knowledge would be instrumental e.g. for the development of innovative nanoŕuidic
systems working in the supercooled regime, and would provide fundamental insight on
recent experimental work on anti-icing surfaces [210, 211, 212].

In that context, we reported a study [56] in which the temperature dependence of
water viscosity and wall slip are examined in detail. In the following, we will detail the
extensive molecular dynamics (MD) simulations we performed to this aim of a slab of water
conőned between graphene and generic Lennard-Jones (LJ) surfaces. In order to assess
the role of supercooling, we compare water, which is in its supercooled state for the lower
temperatures, and methanol, which remains liquid for the whole range of temperatures
considered in our study. We őnd that whilst the liquid-solid friction coefficient and the
viscosity follow the same fundamental laws and are almost proportional to each other
in the liquid state, their behavior strikingly differ for water in the supercooled regime.
As a result, the slip length (deőned as the ratio between the viscosity and the friction
coefficient) increases fast for water as soon as it goes below its melting point; on graphene,
we report a twofold enhancement at ∼ 240K, and up to a ővefold enhancement at 225K,
reaching ∼ 230 nm. Although the presence of impurities may enhance ice nucleation in
supercooled water, a number of experimental works have consistently shown that it is
possible to cool down water to the range of temperatures explored in our study and even
below [107, 204, 206, 205, 207, 208, 209, 211].

2.4.1 Methods

Before presenting the results for the transport coefficients temperature evolution, it is
important to detail the choice we made for the different MD simulations parameters as
well as to brieŕy introduce the laws employed for the őt of such temperature evolution.

a. Simulation details

All the simulations were carried out with the LAMMPS package [144]. The conőned
system consisted in a ŕuid (water or methanol) between two parallel walls (Fig. 2.8), with
periodic boundary conditions applied in the directions parallel to the walls. For water
simulations, 4096 water molecules were modeled with the TIP4P/2005 force őeld [172]. We
considered two different types of walls. First, we modeled wall atoms which interact via a
Lennard-Jones potential, Eq. (2.3). The interaction parameters between LJ walls and water
molecules were set from Ref. 213 for hydrophobic walls, corresponding, for TIP4P/2005 at
300K, to a contact angle θ ∼ 134◦ (computed through the sessile droplet method described
in Subsection 2.2.2). Analogous to the MD simulations in the HWP section, the structure of
the walls consisted in a frozen face centered cubic crystal constituted by three atomic layers
exhibiting a (001) face to the ŕuid, with a lattice parameter a = 5.356Å (Fig. 2.8). Second,
we also simulated graphene walls with cross-interaction parameters taken from Ref. 40,
characterized by a contact angle θ ∼ 80◦ for TIP4P/2005 water at 300K. For methanol
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Figure 2.8: Modelled system constituted by a conőned ŕuid between two planar solid walls.
The snapshot corresponds to TIP4P/2005 water enclosed by LJ walls. The arrows indicate
the shear velocity U directions by which the system is driven out of the equilibrium for
the shear ŕow measurements.

(MeOH) simulations, 4056 molecules were modeled with the interaction parameters given
by Refs. 214, 215. For LJ walls and graphene we considered the same interactions between
atoms than the ones for water, and the cross-interactions MeOH-wall were determined
via the Lorentz-Berthelot mixing rules Eq. (2.4). The surfaces were then characterized
for MeOH at 300K by contact angles θ ∼ 100◦ and θ ∼ 0◦ for LJ and graphene walls
respectively. The walls dimensions were Lx = Ly = 58.92Å for the LJ wall, and {Lx, Ly} =
{56.57, 58.92}Å for graphene. The pressure was set to 1 atm by using the top wall as a
piston during a preliminary run. The vertical height was then obtained by őxing the
top wall at its equilibrium position for the given pressure and it corresponded to H ∼
40Å for water and H ∼ 90Å for MeOH. The temperature T was varied between 225K
and 360K by applying a Nosé-Hoover thermostat to the liquid particles (only along the
directions perpendicular to the ŕow for non-equilibrium simulations). Equivalent results
were obtained for different damping times, and with a Berendsen thermostat.

To measure the hydrodynamic transport coefficients we performed non-equilibrium
molecular dynamics (NEMD) simulations applying a constant shear velocity Uwall to the
walls in opposite x directions for each wall, producing a Couette (linear) velocity proőle
far from the wall (see Fig. 2.4a). The viscosity was measured from the ratio between the
shear stress and the bulk shear rate, η = τw/∂zvx, where vx corresponds to the velocity
proőle in the bulk region in the direction of the ŕow. The friction coefficient λ was mea-
sured from the ratio between the shear stress τw and the velocity jump at the interface,
vslip = Uwall − vx(h/2), where vx is the őtted bulk velocity proőle in the direction of the
ŕow evaluated at the effective wall position zs. As explained in Section 2.3, this effective
wall position can be rationalized in terms of a Gibbs dividing plane which deőnes an effec-
tive BC at h/2 at a distance ∆ from the physical wall position. ∆ was determined from
equilibrium simulations using Eq. (2.47) by extending this formula for a molecular liquid
with

h =
M

ρbulkS
, (2.48)

where now M is the total liquid mass and ρbulk its bulk mass density.
Viscosity and friction have been measured during a production time of 4 ns for 3 dif-

ferent shear velocities for each temperature, U ∈ [1, 70]m/s, in order to verify that our
measurements were performed in the linear response regime. For a given shear velocity,
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3 independent simulations were run and we measured the shear stress at the top and the
bottom walls for each of them. Overall, 18 independent measurements were taken for a
given T and the error bars correspond to the statistical error within 95% of conődence
level.

b. VTF, SA, Bässler laws: Theory details

Before introducing and discussing the results obtained for the transport coefficients
temperature evolution, let’s őrst brieŕy introduce the common theoretical modelling de-
veloped in the literature for bulk properties [107, 216, 108]. Viscosity temperature depen-
dence is well described for liquids with strong intra-molecular bonds by an Arrhenius law
that writes, denoting the transport coefficient as X:

X = X0 · exp
(

A

T

)

, (2.49)

with activation energy A > 0. Nevertheless, fragile liquids, such as water, are characterized
by a faster increase. Several models are proposed in the literature [217]. The most accepted
ones are the Vogel-Tammann-Fulcher (VTF) law [218, 219, 220], the Speedy-Angell (SA)
law [221], and the Bässler law [222], respectively:

X = X0 · exp
(

A

T − Tf

)

, (2.50a)

X = X0 ·
(

T

Tf
− 1

)−γ
, (2.50b)

X = X0 · exp
[

(

T

Tf

)2
]

. (2.50c)

All these laws introduce a singularity at a őnite temperature Tf > 0 so their applicability
is restricted to temperatures away from this singularity. Speciőcally for water, while the
above laws provide a good effective description of the temperature evolution of dynamical
quantities down to deep supercooling, they fail to describe the extreme supercooled region,
where a dynamical cross-over between a fragile and a strong behavior appears, which can
be captured by the two-state models of water [63]. Accordingly, Tf does not provide a good
indication of the true glass temperature transition of water.

2.4.2 Bulk transport: viscosity temperature dependence

For water in particular, the temperature dependence of the viscosity deviates from
Arrhenius behavior of Eq. (2.49) [57]. We tested the three common alternative laws in-
troduced above, VTF (Eq. (2.50a)), SA (Eq. (2.50b)) and Bässler (Eq. (2.50c)). We
őrst computed the shear viscosity η from NEMD with LJ walls to test the applicability
of different temperature dependence laws to our simulation results, as done by previous
experimental [107, 223] and numerical works [216, 108]. For TIP4P/2005 we őnd good
agreement between our data and the experimental ones [107, 223], as well as previous MD
simulations with the TIP4P/2005 and TIP4P/2005f water models [215, 224, 216], as shown
in Fig. 2.9a. The őt results are reported in Table 2.3.

Due to the good agreement of VTF and SA őts with our numerical data (Figs. 2.9a and
2.10), we performed χ2 and R2 tests to determine which one describes better the results.
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(a) TIP4P/2005 water (b) MeOH

Figure 2.9: Shear viscosity η NEMD measurements temperature evolution for: (a)
TIP4P/2005 water; our data set is in good agreement with previous work performed for
the TIP4P/2005f force őeld [216], which is itself in agreement with experiments [107].
Three different őts, VTF, SA and Bässler were performed. (b) MeOH; an Arrhenius őt
was performed to our data set in order to describe viscosity temperature dependence.

Figure 2.10: Different őts comparison for water shear viscosity. One can observe that our
results are globally well described by VTF and SA laws but not by Bässler law. In orange
the measure corresponding to T = 220K, not taken into account for the őt due to its
bigger error. Nevertheless when extending the őt results to lower temperatures this point
is well described by VTF law but not by SA law, indicating the better suitability of VTF
law for our data, in agreement with the results of the χ2 and R2 tests performed.
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TIP4P/2005 - VTF
Tf (K) A (K) X0

η 176.26± 1.35 329.10± 11.43 5.60 · 10−5 ± 3.72 · 10−6

λLJ 165.94± 2.68 357.20± 20.99 1.59 · 104 ± 1.70 · 103
λgraphene 153.80± 4.16 349.32± 27.33 1.60 · 103 ± 1.93 · 102

MeOH - Arrhenius
A (K) X0

η 1357.35± 22.25 5.22 · 10−6 ± 4.20 · 10−7

λLJ 1056.72± 35.63 8.11 · 103 ± 1.05 · 103
λgraphene 899.31± 36.71 3.43 · 102 ± 4.56 · 102

Table 2.3: Fit parameters of VTF Eq. (2.50a) and Arrhenius Eq. (2.49) laws for
TIP4P/2005 water and MeOH respectively. We appreciate the similarity of the tempera-
ture Tf and the activation energy A between the different transport coefficients, η and λ,
and between the two different wall types, LJ walls and graphene. X0 units are [Pa s] for
viscosity and [Pa s/m] for friction.

We obtained {χ2,R2} = {8.47 ·10−5, 0.9994} for VTF and {χ2,R2} = {3.87 ·10−4, 0.9956}
for SA therefore concluding a better agreement with VTF.

For MeOH simulations viscosity’s temperature dependence is weaker than for water.
The results are in good agreement with previous work [215] and they are well described by
an Arrhenius law (Table 2.3).

2.4.3 Interfacial transport: friction temperature dependence

For a given ŕuid, when varying the wall type we already see a difference in the absolute
value of λ being more than one order of magnitude bigger for LJ walls than for graphene
(Figs. 2.11,2.12). This effect has already been appreciated and discussed in previous work
[40, 45] and it is due to graphene extreme smoothness, which makes the liquid-solid friction
extremely small (λ ∼ 1.7 · 104 Pa·s/m for water at 300K).

Additionally, in Fig. 2.13a we can see that the temperature dependence changes with
the ŕuid, but for a given ŕuid, it depends weakly on the wall type. Interestingly, in
Table 2.3 we can see that the temperature dependence of of η and λ can be őtted by the
same laws (VTF for TIP4P/2005 and Arrhenius for MeOH, corresponding to continuous
lines in Fig, 2.13a. However, although very similar, the őt parameters for viscosity and
friction are different beyond the error bars.

2.4.4 Slippage: bulk and interface competition

We can go further in exploring the relation between η and λ by plotting the slip length
b given by the ratio between both transport coefficients, see Eq. (2.1). In Fig. 2.13b one can
see that for a wide range of high temperatures, where the systems are in the stable liquid
state, η and λ vary together with T , so their ratio (or equivalently the slip length) is roughly
constant. Speciőcally, for MeOH (which remains a simple liquid for the whole range of
simulated temperatures, including those slightly higher than its boiling point at around
338 K), b increases slowly and regularly when T decreases; this indicates a slightly weaker
temperature dependence of friction as compared to viscosity. In contrast, for water, b starts
to increase very fast when the temperature decreases below the melting point, indicating
a much weaker temperature dependence of friction as compared to viscosity, only in the
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Figure 2.11: Liquid-solid friction coefficient results for TIP4P/2005 water from NEMD
simulations for graphene and LJ walls respectively. Although the temperature evolution
is similar for both walls, we can appreciate a one order of magnitude difference at a given
temperature between the different walls. Three different őts, VTF, SA and Bässler were
performed.

Figure 2.12: Liquid-solid friction coefficient results for MeOH for graphene and LJ walls
respectively. Although the temperature evolution is similar for both walls, we can appre-
ciate a much lower friction coefficient for graphene. An Arrhenius őt was performed.
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(a) (b)

Figure 2.13: (a) Friction’s temperature dependence results normalized by the value at 360K
for each ŕuid and wall, in order to highlight the similar temperature evolution for a given
liquid regardless of the wall type. Continuous lines are the respective VTF (for water) and
Arrhenius (for MeOH) őts. (b) Temperature dependence of the slip length, b = η/λ. Dash-
dotted lines are guide-to-the-eye for a constant b value. One can see a small temperature
variation for the highest temperatures (indicating that η and λ evolve in similar ways),
while the slip length increases signiőcantly when decreasing the temperature for the lowest
T s, in the supercooled regime. In both subőgures, blue dots correspond to water with LJ
walls, orange triangles to water with graphene walls, green squares to MeOH with LJ walls
and red crosses to MeOH with graphene walls.

supercooled regime. When comparing these results with those for liquid MeOH one can
conclude that this large slip increase is mostly related to the supercooling of water.

The biggest temperature effect on b is observed for water and graphene walls, where it
grows by a factor of 5 from the highest to the lowest simulated temperature (225 K), reach-
ing a maximum value of ∼ 230 nm. Although experiments of interfacial slip in supercooled
water have not yet appeared, we envision that experimental veriőcation of our results may
be within reach of capillary ŕow measurements of water conőned between graphene/silica
nanochannels [192], considering that nuclear magnetic resonance and neutron scattering
experiments of water conőned in graphite oxide and silica nanopores have explored water
dynamics down to 130 K and 220 K, respectively [205, 207, 204]. Additionally, recent mi-
croscopy studies have investigated the dynamical behavior of supercooled water down to
230 K using polyesterene spheres suspended in water [107] and have studied the anti-icing
behavior of water droplets sliding on of nanopatterned surfaces around 258K [211]. As we
have seen in our simulations, at temperatures between 225 and 270K, water slippage is
largely affected by the wall type, a result consistent with the experimental observation that
the water time relaxation in nanopores is strongly dependent on the nature of the solid
surface. Instead, experiments in no-man’s land report a universal dynamical behaviour in
conőned water [208]. Thus, future measurements of water slippage in different nanopores
at lower temperatures than those explored here might elucidate whether or not slippage
depends on the wall type below 225 K. Enhanced water slippage under supercooling may
also have a direct implication for the development of icephobic surfaces, as it may favour
droplet condensation and ice removal from surfaces.
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2.4.5 Conclusions

In this section we investigated the temperature evolution of bulk and interfacial hy-
drodynamic transport coefficients for water and MeOH conőned between LJ walls and
graphene. For a given liquid, the temperature evolution of viscosity and friction were
described by the same laws, although with different parameters. The temperature evolu-
tion of interfacial friction was weakly affected by the wall type, but changed signiőcantly
with the liquid type. We then compared the temperature evolution of viscosity η and
friction coefficient λ by considering their ratio, deőned as the slip length b = η/λ. We
observed, from higher to lower T , that both transport coefficients evolved similarly in the
high temperature region where the liquid is stable, but that for water, viscosity increased
faster than friction in the supercooled regime, implying a fast growing slip length. The
largest temperature effect on b was observed for water and graphene walls, where it grew
by a factor of 5 from the highest to the lowest simulated temperature (225 K), reaching a
maximum value of ∼ 230 nm.

2.5 Summary and conclusions

In this chapter we have introduced classical molecular dynamics simulations as a fun-
damental and powerful tool to describe the microscopic scale of a classical many-body
system, by modelling the atoms and molecules physical interactions with empirical force
őelds. With a broad range of applications in multiple areas of knowledge such as bio-
chemistry, biophysics or material science, we presented them as a tool to characterize
ŕuid transport properties under conőnement. They allow us to characterize the wetting
properties of the ŕuid-wall interactions, as well as the ŕow generation for a broad range
of ŕuids, from the model Lennard-Jones ŕuid, where the particles interact by a generic
Lennard-Jones potential, to everyday life ŕuids such as methanol or water.

With the objective of better understand and characterize the partial slip BC, which
predicts a ŕuid velocity jump at the interface with respect to the wall, we őrst studied how
to determine that interface position from a molecular point of view: the hydrodynamic
wall position. With that regard we compared the results from two different types of ŕows:
on the one hand, we generated a pressure-driven ŕow by applying a force per atom in a
thin slab far from the measures region (what we called the ŕuid piston method) where we
determined the force density (analogous to a negative pressure gradient which generates
the parabolic velocity proőle); on the other hand, we generated a gravity-like ŕow by
applying a constant force per atom to all the atoms in the whole ŕuid slab. We saw
that, although both ŕows identify in the bulk, the subtle differences between the ŕows
at the interface (due to the ŕuid heterogeneties close to the wall) can generate different
effective interface positions. We also saw that, in the case of gravity-driven ŕows, the
hydrodynamic wall position identiőes with the Gibbs dividing plane, partitioning a region
full of homogeneous ŕuid and a vacuum region. Because such Gibbs dividing plane is only
related to the ŕuid density proőle which, as a static ŕuid property, can be determined from
equilibrium simulations, computationally less expensive than the non-equilibrium ones. We
also studied how the wetting properties affect the effective shear plane position by varying
the interaction energy between ŕuid and wall particles. We saw that the effective interface
is shifted towards the wall for the more wetting surfaces (higher ŕuid-solid interaction
energy). This result can be understood in terms of the Gibs dividing plane, which will
also be shifted towards the solid when the ŕuid absorption increases on the more wetting
surfaces.
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Once the position where the partial slip boundary condition has been determined, we
wondered how do different ŕuids and walls affect the liquid-solid friction coefficient, and
how does its temperature dependence differ with respect to the viscosity, its bulk transport
analogous. We also wondered about the effects of supercooling the ŕuid on the transport
properties by comparing two different ŕuids in the same range of temperatures: methanol,
which remains liquid for the whole range of temperatures considered in the study, and
water, in its supercooled state for the lower temperatures. After őrst assessing the validity
of our simulations and measures by comparing the viscosity temperature dependence with
previous simulations and experimental results performed in the same range of tempera-
tures and őnding good agreement between the different data, we proceed to study friction
temperature evolution.

For a given ŕuid, we saw that viscosity and friction temperature dependence were de-
scribed by the same laws. We also saw that the friction coefficient was weakly affected
by the wall type in terms of temperature evolution, although its absolute value at a given
temperature could differ up to a factor of 10 between Lennard-Jones walls and graphene,
due to the atomic smoothness of the last surface. We also saw that the ŕuid type could
signiőcantly change the friction temperature evolution, which was described by a modi-
őed Arrhenius law for water (which introduces a temperature singularity) or a standard
Arrhenius law in the case of methanol. Finally we also saw that, for a given ŕuid, bulk
and interface differences can be quantiőed in terms of the slip length, deőned as the ratio
between viscosity and friction. Both for methanol and water, we observed an increase of
the slip when lowering the temperature, with a faster growth in the case of water when en-
tering in its supercooled regime, implying a faster increase of the viscosity that the friction
when lowering the temperature. Of particular interest is the case of water on graphene,
where the slip length is multiplied by up to a factor of őve and reaches ∼ 230 nm at the
lowest simulated temperature of 225K. Experiments on nanopores can reach much lower
temperatures [225] and could reveal even more drastic changes. The predicted fast increase
in water slip can also be detected at supercoolings reached experimentally in bulk water
[107], as well as in droplets ŕowing on anti-icing surfaces [226], paving the way to explore
new behaviors in supercooled nanoŕuidic systems.



Chapter 3

Understanding Interfacial Transport

łLa lettre E représente une constante dont la valeur sera donnée

par l’expérience, d’après la nature de la paroi et du ŕuide, et qui
peut être regardée comme la mesure de leur action réciproque. [...] Il est
essentiel de remarquer d’ailleurs, qu’en admettant l’exactitude des expériences
connues sur le mouvement uniforme de l’eau dans les canaux découverts et les
tuyaux servant à la conduite des eaux, il résulte de la nouvelle théorie exposée
dans ce Mémoire, que la supposition d’un mouvement linéaire n’est point
propre à représenter complètement les phénomènes de ce mouvement, à
l’exception des cas où le diamètre des tuyaux est très petit.ž

Claude Navier, Mémoire sur les lois du mouvement des ŕuides 1823
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3.1 Introduction

We have seen in the previous chapter that, as the channel size decreases, interfacial
properties have an increasingly important role. We discussed that an interfacial character-
istic of special concern at the nanoscale is the existence of a velocity jump vslip (łslippagež)
at the liquid-solid interface [25, 227, 99]. We also discussed that the simplest approach
to describe slip, initially proposed by Navier [19], is through the Navier or partial slip
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boundary condition:

vslip = b
∂v

∂z

∣

∣

∣

∣

z=zs

, (3.1)

deőning, at the effective wall position zs [185], the slip length b = η/λ with η the shear
viscosity and λ the liquid-solid friction coefficient.

On the modeling side, several efforts have been pursued in order to understand the
molecular mechanisms that control friction, with special interest on the relation between
the friction coefficient and the time autocorrelation of the force exerted by the liquid on
the wall, i.e. its Green-Kubo relation [122, 123, 125, 126, 228, 120, 229, 230]. Yet a
large number of questions with regard to the interface properties, such as its viscoelastic
or purely viscous nature [101, 54, 231] or the possible link with its interfacial thermal
transport counterpart via wall’s wetting properties [48, 127, 128], remain open nowadays,
limiting the perspectives for a rational search of optimal interfaces. And, thus, these are
the questions we would like to tackle in the present chapter: őrst, how can we understand
the molecular mechanisms that control viscosity and friction, and how can we explain
the unexpected increase of slip on the supercooled water regime presented in the previous
chapter. Second, how can we control the thermal transport properties at the interface.
The general goal is to obtain a better understanding of both hydrodynamic transport (of
momentum) and thermal transport (of heat) processes which, although driven by different
physical processes, present similar characteristics as a velocity or temperature jump at the
interface, which can be boosted to design novel surfaces and materials with interesting
applications in anti-icing coatings or controlling vapor explosions in nuclear power plants.

But let’s őrst introduce the main physical concepts, starting with hydrodynamic trans-
port, that will allow us to improve our understanding of the molecular mechanisms taking
place at the interface.

3.2 Interfacial hydrodynamic transport

We őnished the previous chapter by reporting a strong increase of slip for water when
entering in its supercooled regime, up to a factor of ∼ 2 for Lennard-Jones (LJ) walls
and of ∼ 5 for graphene walls. Can we rationalize such fast increase in terms of phys-
ical quantities? And the different enhancement values observed for the two wall types?
In the present section, starting from the Green-Kubo expressions for viscosity and fric-
tion, we explain the anomalous slip behavior in the supercooled regime by a decoupling
between viscosity and bulk density relaxation dynamics, and we rationalize the wall-type
dependence of the enhancement in terms of interfacial density relaxation dynamics. While
providing fundamental insights on the molecular mechanisms of hydrodynamic transport
in both interfacial and bulk water in the supercooled regime, we will see that our study
[56] is relevant to the design of anti-icing surfaces and could help explain the subtle phase
and dynamical behaviors of supercooled conőned water, paving the way to explore new
behaviors in supercooled nanoŕuidic systems.

3.2.1 Green-Kubo expressions

Transport coefficients can be determined from equilibrium molecular dynamics simula-
tions via ŕuctuation-dissipation relations, by considering that the disturbance in a system
created by a weak external perturbation decays in the same way as a spontaneous ŕuc-
tuation in equilibrium. Such relations are the Green-Kubo (GK) formulas, and they are
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based on linear response theory, which establishes the link between time correlation func-
tions at equilibrium and the response to weak perturbations. Different GK relations have
been derived for several transport coefficients, such as electrical and thermal conductivity,
polarization, diffusion, etc [145, 232, 146]. In the case of shear viscosity, its GK relation
writes:

η =
V

kBT

∫ ∞

0
⟨pij(t)pij(0)⟩ dt, (3.2)

with V the volume, kB the Boltzmann constant, T the temperature and pij the independent
traceless components of the pressure tensor: pxy, pxz, pyz, (pxx− pyy)/2 and (pyy − pzz)/2
[233]. The general methodology to measure the transport coefficient from GK expressions
is to plot the running integral as a function of time and to measure the plateau value
for long times. In Fig. 3.1a we observe the typical shape of the GK running integral,
and how the time it takes to reach the plateau (i.e. the GK relaxation time τGK) can
increase signiőcantly when lowering the temperature. The validity of the results can be
assessed by comparing the GK measures with shear-ŕow measurements. In Fig. 3.1b we
can see that equivalent results were obtained in the case of water from non-equilibrium
(shear ŕow) and equilibrium (GK) methods, with small discrepancies for the lowest tem-
peratures. In terms of relaxation times, we can deőne τGK by decomposing Eq. (3.2) as

η = (V/kBT )
〈

p2ij(0)
〉

τGK, with

τGK =

∫∞
0 ⟨pij(t)pij(0)⟩ dt

〈

p2ij(0)
〉 . (3.3)

Maxwell model for viscosity states that η = G∞tMaxwell, where we can identify

G∞ =
V

kBT

〈

p2ij(0)
〉

, (3.4)

with G∞ the inőnity frequency shear modulus and tMaxwell ≡ τGK the Maxwellian re-
laxation time. Under this description, G∞ identiőes with bulk’s static part and it is
typically considered to be constant with temperature, so the temperature evolution is sim-
ply described by the assumption η ∝ τGK [234]. It is common to őnd in the literature
[235, 204, 206, 236] an identiőcation of τGK with the structural relaxation time τα, ob-
tained from the őtting of the self-intermediate scattering function by an exponential or
stretched-exponential decay. In particular, this assumption is often used to study, for su-
percooled liquids (typically water), the validity of the Stokes-Einstein relation between
viscosity η and diffusion D:

D =
kBT

6πηRh
, (3.5)

with Rh the hydrodynamic radius; i.e. the validity of the approximation η ∝ τα or,
analogously, D ∝ T/τα [204, 206]. As in contrast to the Maxwell model, other authors
considered the so-called Gaussian approach [234, 236], consisting in considering the Gaus-
sian solution to the diffusion equation so D = 1/(q2τα), i.e. D ∝ 1/τα and, by applying
the Stokes-Einstein relation, η ∝ Tτα [237, 235, 238]. Nevertheless, the identiőcation of τα
with τGK is a delicate issue, őrst because both relaxation times present different tempera-
ture evolution and second because the assumption of G∞ to be temperature independent
fails for low T [234]. Therefore, an alternative description of η in terms of relaxation times
and T dependence should be proposed.
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(a) (b)

Figure 3.1: (a) GK running integrals of viscosity, averaged over the independent compo-
nents of the traceless stress tensor, for different temperatures (warmer colors correspond
to higher temepratures). (b) Shear viscosity measures comparison obtained from non-
equilibrium methods (NEMD, shear ŕow) and equilibrium (EMD, Green-Kubo) for differ-
ent temperatures (from 225 K to 360 K).

As in the case of viscosity, the liquid-solid friction coefficient λ can also be related to the
autocorrelation of the equilibrium force at the interface through a GK formula [122, 124]:

λ =
1

SwallkBT

∫ ∞

0
⟨F (t)F (0)⟩ dt, (3.6)

where Swall is the surface area, kB the Boltzmann constant, T the temperature and F
the force applied by the ŕuid on the wall. In Ref. 137, Bocquet and Barrat proposed a
decomposition of the friction coefficient in different static and dynamical quantities:

λ ≃
S
(

q∥
)

2D
(

q∥
)

kBT

∫ ∞

0
ρ(z)V 2

FS(z) dz, (3.7)

where S
(

q∥
)

is the 2D structure factor in the contact layer, evaluated at the shortest wave
vector of the solid surface q∥, ρ(z) is the ŕuid number density, VFS the amplitude of the
őrst mode of the Fourier decomposition of the ŕuid-solid potential energy, and D

(

q∥
)

is

the collective diffusion coefficient. D
(

q∥
)

can be expressed as D
(

q∥
)

= 1/
(

q2∥τρ
)

where τρ
is the relaxation time of the intermediate scattering function F

(

q∥, t
)

:

τρ =

∫ ∞

0
F (q, t) dt =

∫ ∞

0

〈

ρq∥(t)ρ−q∥(0)
〉

〈

ρq∥(0)ρ−q∥(0)
〉 dt. (3.8)

We can then rewrite Eq. (3.7) in terms of τρ and the force corrugation fq∥(z) = q∥VFS(z)
as a product of static (łSTATž) and dynamical (łDYNž) terms of the form:

λ ≡ λSTAT · λDYN, (3.9)
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(a) Graphene walls (b) LJ walls

Figure 3.2: Ratio between the friction coefficient λ measured from non-equilibrium simu-
lations and the theoretical decomposition in static λSTAT and dynamic λDYN contributions
from Eq. (3.9). We can observe that the ratio remains constant with temperature, implying
a correct qualitative description of λ temperature dependence by Eq. (3.9).

with

λSTAT ≈ S
(

q∥
)

∫ ∞

0
ρ(z)f2q∥(z) dz,

λDYN ≈ τρ
2kBT

.
(3.10)

Note that we included the 1/(kBT ) term of the GK integral in the dynamical part; we will
come back to that choice later. It is interesting to note that in Bocquet and Barrat’s paper,
for a Lennard-Jones (LJ) ŕuid, only one single decay time for the density autocorrelation is
considered, i.e. τρ ≡ τα, while in the case of water we will see that it is of great importance
for a full description to consider the total decay time, obtained as the weighted sum of the
two different decay times of F (q, t) [195].

We can test the validity of Eq. (3.9) by plotting the ratio λ/(λSTAT ·λDYN) for the water-
friction results presented in Chapter 2. In Fig. 3.2 we can observe that for graphene and
LJ walls this ratio remains constant with temperature, verifying the suitability of Eq. (3.9)
as a qualitative decomposition of friction static and dynamic contributions temperature
evolution. Note that in Fig. 3.2 we can see that Eq. (3.9) failed to reproduce λ quantita-
tively. This is reminiscent of similar quantitative discrepancies reported in previous work
using analogous approximations of the full GK expression of λ [40, 193].

3.2.2 Friction static and dynamic contributions

In the previous Chapter 2, we presented a quantitative study about the friction and
slip temperature dependence for water and methanol conőned between graphene and LJ
walls. From this study, two main questions remain to be understood. First, what is the
main physical parameter that controls the temperature evolution of the friction coefficient?
Second, why bulk and interface have similar temperature dependence at high temperatures
and why they do not at the lower ones? In this section we will focus on water to address
these questions and to explore, in particular, the effect of supercooling.
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Figure 3.3: Temperature evolution of the static structure factor of bulk water. One can
observe a small temperature dependence of the maximum of S(q) located at q ∼ 3Å−1

as well as the separation of a secondary peak at a lower wave vector q when lowering the
temperature.

In order to better understand the molecular mechanisms that control friction temper-
ature dependence, let’s start from λ decomposition Eq. (3.9), and study the temperature
evolution of the different static and dynamic quantities at the contact layer and how do
they compare to the bulk ones. The contact layer was deőned as the interfacial liquid
region between the wall and the őrst non-zero minimum of the liquid’s density proőle, zc.l..

a. Static terms

Let’s start studying the static terms in Eq. (3.9). With regard to the temperature
dependence of the static structure factor S(q), in Fig. 3.3 we can observe for bulk the
separation of a secondary peak from the absolute maximum for low wave vectors q when
the temperature is lowered, in agreement with previous work [239]. We also see a small
dependence on temperature of the maximum of S(q), located around 3Å−1. Analogously,
with regard to the interface, we can also see in Fig. 3.4 a small temperature dependence of
the maximum of S(q), located in a similar wave vector for both interfaces and close to the
bulk value. Nevertheless, for the interface, it is not the S(q) value corresponding to the
maximum which should be taken into account to study friction temperature dependence,
but the one corresponding to the wall lattice vector q∥, with q∥ = 2π/dLJ = 1.66Å−1 (dLJ
is the equilibrium distance between LJ particles, corresponding to the lattice parameter
of the elementary cell of the 2D fcc surface), and q∥ = 2π/dx,GR = 2.55Å−1 (dx,GR is
the lattice vector in the x direction for the graphene surface). Both surface wave vectors
are represented with dotted black lines in Fig. 3.4, where we can see that S

(

q∥
)

can be
considered constant with temperature.

With regard to the corrugation force, for graphene walls, we took fq∥ values from
Ref. 40, which are well described by a őt, in arbitrary units, of the form fq∥ = B exp(−Az),
with A = 5.33Å−1. For LJ walls, an analytical expression for the force corrugation was
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(a) Graphene walls (b) LJ walls

Figure 3.4: Temperature evolution of the static structure factor for water on (a) graphene
and (b) LJ walls; computed in the interfacial region, deőned as the liquid region between
the wall and the őrst non-zero minimum of the liquid density proőle. Black dashed lines
correspond to the shortest wave vector of the solid surface, q∥. We can observe that
S
(

q∥
)

remains constant with temperature. Temperature coloring scheme is the same as in
Fig. 3.3.

derived in Ref. 240. In this case,

fq∥(z) =
4π

dLJ
εLJE1(z), (3.11)

where

E1(z) = 2πA6

[

A6

30

(

πdLJ
z

)5

K5

(

2πz

dLJ

)

− 2

(

πdLJ
z

)2

K2

(

2πz

dLJ

)

]

; (3.12)

where Kn is the modiőed Bessel function of the nth kind, εLJ and σLJ the LJ interaction
energy and size between liquid and solid atoms, dLJ the equilibrium distance between solid
atoms, and A = σLJ/dLJ. The force corrugation is represented as a function of distance in
Fig. 3.5 for both walls, where we can observe a strong decay when increasing the distance
from the wall z.

The other structural parameter needed to compute the integral in Eq. (3.9) is the
number density proőle for the oxygen atoms in the water molecule. Its evolution with
temperature can be found in Fig. 3.6 where we observe, for LJ walls, a noisy region of the
density proőle close to the wall. Such noise, which strongly increases when getting closer to
the wall, becomes signiőcant for the highest temperatures when it is multiplied by the force
corrugation squared, as we can observe in Fig. 3.7b in dashed lines. In order to decrease
this noise, we considered a density behavior close to the wall as ndens = A exp(−B/zn),
and őtted this function for the LJ walls, obtaining n ∼ 2.5. We can appreciate in Fig. 3.7b
in continuum line the results considering the őtted density proőle for LJ wall. No density
proőle correction was needed for graphene walls, Fig. 3.7a.

In Fig. 3.8b we can compare, for LJ walls, the original data with the őtted results
integrals. We see that the main difference between both data sets are for the two highest
temperatures (the noisiest ones, T = {347, 360}K) while the őtting procedure describes
well the rest of the results. In Fig. 3.8 we can observe, for both walls, two different
temperature behaviors of the static integral. For the highest temperatures it behaves as a
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Figure 3.5: Squared force corrugation f2q∥(z), in arbitrary units, as a function of the distance
from the wall for LJ walls and graphene.

(a) Graphene walls (b) LJ walls

Figure 3.6: Oxygen number density proőles for (a) water-graphene and (b) water-LJ walls
(b) respectively, with the surface wall atoms located at z = 0Å, with log scale for the
density. Temperature coloring scheme is the same as in Fig. 3.3.
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(a) Graphene walls
(b) LJ walls

Figure 3.7: Product of oxygen number density ndens and the squared force corrugation f2q∥ ,

in arbitrary units, as a function of the distance from the wall surface located at z = 0Å,
for (a) graphene and (b) LJ walls respectively, for different temperatures. For LJ walls,
the original data are represented in dashed lines, and in continuum line are represented the
results of őtting the density at short distances as ndens = A exp(−B/zn), in order to remove
the noise. No őt was needed for graphene walls, and the original data are represented in
continuum line.

power law of the form bxa, with a ∼ 0.5 for graphene and a ∼ 3 for LJ walls. Accordingly,
the main static contribution to friction T dependence comes from the integral in Eq. (3.9).
For both surfaces, the integral remains constant at low temperatures, and it increases by at
most a factor of 2 at higher temperatures. This tendency can be explained by the spreading
of the atoms in the contact layer towards the wall due to larger thermal ŕuctuations; indeed
fq∥(z) decreases very fast with z, so that the integral of the static part is dominated by a
small fraction of the atoms in the contact layer that are the closest to the wall.

b. Dynamical terms

Overall, the temperature behavior of λSTAT is too weak to explain the exponential
decrease of friction for increasing temperature. It is only left to check the dynamical
contribution from Eq. (3.9), enclosed in τρ. To measure this parameter we őtted the
intermediate scattering function (Fig. 3.9), evaluated at the absolute maximum location
qmax of the static structure factor for bulk [241] and at q∥ for the interface, following
Ref. 242:

F (q, t) = [1−A(q)] e−(t/τs)2 +A(q) e−(t/τl)
γ

, (3.13)

considering two characteristic timescales: at short times with τβ = τsΓ(1/2)/2 and at long
times with τα = τlΓ(1/γ)/γ, where Γ(x) is the Euler function. The total relaxation time
τρ is then deőned from Eq. (3.8) as τρ = (1−A(q))τβ +A(q)τα.

An intuition on the physical meaning of the α and β relaxation times can be obtained,
following Ref. 243, from the times corresponding to the different regimes of the mean
squared displacement (MSD). In a ŕuid, the MSD can be separated into two regimes, one
ballistic (without collision, where the MSD scales as t2) at short times and another one
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(a) Graphene walls (b) LJ walls

Figure 3.8: Static part integral from Eq. (3.9) as a function of temperature for (a) water-
graphene and (b) water-LJ walls respectively. For LJ walls the original and the őtted
density data are plotted. One can observe that the őt is in agreement with the data except
for the two highest temperatures, T = {347, 360}K. In dashed lines are represented the
őts for the two different temperature behaviors observed for both walls: a power law for
high temperatures and a constant value at low temperatures.

diffusive (dominated by collisions, where the MSD scales as t) at long times. When the
liquid is supercooled, a łplateauž-like regime appears at intermediate times, which becomes
longer when lowering the temperature. Picturing the particle enclosed in a cage by its
neighbors at intermediate times, such plateau region would correspond to a non-ballistic
movement of the particle, that despite its collisions with its neighbors cannot escape the
cage. This well-known behavior of the MSD remind us of the shape we observe for F (q, t)
in Fig. 3.9, which also presents an intermediate region between both decay times whose
length increases when decreasing T . In this interpretation, this plateau would correspond
to the particle vibrations within the cage, from which it eventually escape (the lower the
temperature the longer the time it will take) at a time related to the α relaxation time,
which should be T -dependent. In this picture, the β relaxation time would correspond to
the time at which the particles start to feel their neighbors, i.e. to feel the cage. Thus,
this short time should not be affected by the temperature.

Figure 3.10 shows the results for the different characteristic times for bulk and interface
obtained from the őt in Eq. (3.13). We can see that τα and τβ are similar at high temper-
ature, but while τβ remains constant with T , τα exponentially increases when lowering T ,
becoming the main contribution to τρ in the supercooled regime. In Fig. 3.10a we can also
observe a small but systematic difference between bulk and interfaces for τβ . Nevertheless,
because the main contribution at low temperatures for the total relaxation time is τα, in
Fig. 3.10b we observe that τρ is similar for bulk and the different interfaces. Overall, τρ
data are well described by a VTF law, analogously to friction (see Chapter 2), showing that
the density relaxation is the main interfacial molecular mechanism that controls friction’s
temperature evolution. The VTF őt results for the total relaxation time τρ are shown in
Table 3.1.

With that regard, it is not obvious in previous work on bulk supercooled liquids [235,
204, 206, 234, 236, 244, 245] what time should the viscosity be related to, and different
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Figure 3.9: Intermediate scattering function F (q, t) computed at the absolute maximum
location qmax of the static structure factor for bulk water. The temperature coloring
scheme is the same as in Fig. 3.3, with warmer colors corresponding to higher temperatures
(temperature range from 225 K to 360 K).

(a) (b)

Figure 3.10: Characteristic times (a) τα, τβ and (b) τρ as a function of temperature for
bulk water, water-LJ wall and water-graphene(GR) interfaces.



62 CHAPTER 3. UNDERSTANDING INTERFACIAL TRANSPORT

TIP4P/2005 - VTF parameters
Tf (K) A (K) X0 (ps)

τρ bulk 165.69± 6.18 322.34± 41.23 3.70 · 10−2 ± 3.70 · 10−3

τρ LJ walls 144.76± 22.49 578.63± 213.33 2.06 · 10−2 ± 1.72 · 10−2

τρ graphene 157.78± 13.86 321.23± 83.51 4.58 · 10−2 ± 1.70 · 10−2

Table 3.1: Fit parameters of VTF law for the total relaxation time τρ for TIP4P/2005 bulk
water and at the interface with two different wall types, LJ walls and graphene.

approaches can be found in the litterature. On the one hand, the question of which
characteristic time is the main contribution to viscosity temperature dependence remains
open, i.e. whether the total decay time τρ or only the long time behavior τα is needed. On
the other hand, we can also wonder about the suitability of different approaches to measure
the τα decay time. As discussed in Section 3.2.1; usually, only τα is considered, and typically
an effective τα is deőned as the time for which the self or coherent intermediate scattering
function equals 1/e (i.e. assuming γ = 1 in Eq. (3.13); see 1/e approach in Fig. 3.11a).
Nevertheless, a better agreement should be found with Eq. (3.13) by considering the weight
A(q) (τα from A/e approach in Fig. 3.11a). For friction, however, it is clear in the derivation
of Eq. (3.9) that the total relaxation time τρ should be used [195], and indeed we showed in
Fig. 3.2 that Eq. (3.9) predicted correctly the temperature evolution of λ only when using
τρ. Different bulk relaxation times are compared in Fig. 3.11a, where we can see that,
globally, viscosity exponential decay with temperature is captured by all the characteristic
times measured from the different approaches. Nevertheless, large differences between the
different proposed times are reported. Indeed, the approach 1/e fails as an approximation
of the F (q, t) őt, while more similar results were obtained when computing τα from the
A/e approach. In order to distinguish subtle differences, in Fig. 3.11b we compare the
different τα measurements with the characteristic time chosen to describe bulk dynamics
in our work: τρ. We can see that the temperature behavior of τα is different than the one
of τρ, specially in the supercooled regime, for any of the different approaches chosen, even
for τα from the full F (q, t) őt.

3.2.3 Slip length contributions

Once we understand the molecular mechanisms that control friction, it is interesting
to address how do they compare with the ones that control bulk viscosity. In order to
understand the temperature dependence of the slip length b = λ/η, we will decompose the
viscosity into a static and a dynamic part in the same manner as for the friction coefficient:
η = ηSTAT · ηDYN, with ηDYN = τBρ /(2kBT ) (in analogy with the deőnition of λDYN), and
ηSTAT = η/ηDYN. The slip length can then be decomposed as follows:

b =
η

λ
= ηSTAT

ηDYN

λDYN

1

λSTAT
. (3.14)

Fig. 3.12 illustrates the temperature evolution of the three contributions to λ for water
on LJ walls and graphene. In this őgure, the lines are obtained from the ratios between VTF
őts of the simulation results for η, λ, τρ and τBρ ; speciőcally, ηSTAT ∝ Tη/τBρ , ηDYN/λDYN =

τBρ /τρ, and λSTAT ∝ Tλ/τρ. We can observe in Fig. 3.12 that 1/λSTAT increases when T
decreases for both interfaces. The temperature variation of 1/λSTAT is slightly larger for
LJ walls (a factor of ∼ 2) than for graphene (a factor of ∼ 1.5). As mentioned above,
1/λSTAT is controlled by S

(

q∥
)

, which remains almost constant with temperature, and
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(a) (b)

Figure 3.11: (a) Characteristic times measured from different approaches for bulk water as
a function of temperature. In continuum lines are represented their respective VTF őts.
(b) Characteristic times VTF őt ratio with respect to the characteristic time τρ considered
in this work.

by the integral
∫∞
0 ρ(z)f2q∥(z) dz, which increases when the atoms of the contact layer get

closer to the wall under larger thermal ŕuctuations. Therefore, the stronger temperature
variation of λSTAT for the LJ walls can be related to the larger extension of the density
proőles toward the wall at high temperatures. In bulk, ηSTAT remains constant at high T ,
but it increases signiőcantly when water enters in its supercooled regime, for T < 273K,
providing a large contribution (independent of the wall type) to the signiőcant increase of b
in the same T region. As a side note, following our choice to include 1/(kBT ) in ηDYN, the
fact that ηSTAT is constant in the liquid state corresponds to η ∝ τBρ /T ; we suggest this
correlation could replace more traditional ones used when studying supercooled liquids,
η ∝ τα or η ∝ T τα (as discussed in Section 3.2.1).

Finally, to understand the relative increase of b by a factor ∼ 2 for the LJ wall and by a
factor ∼ 5 for graphene, we looked at the dynamic ratio ηDYN/λDYN. In Fig. 3.12b, we can
see that for LJ walls the interface relaxation time increases more (i.e. slower dynamics)
when decreasing T than the bulk one, compensating the static contribution and resulting
in a smaller variation of b. In contrast, for graphene, due to the surface smoothness, we see
in Fig. 3.12a that there is no contribution from the wall to the slowing down of the interface
dynamics with T when compared to the bulk dynamics. Therefore, as for the temperature
dependence of λ, we conclude that also with regard to b it is not the interfacial structure
which contribute to its different T evolution but the differences in dynamics, which we relate
to the different interfacial corrugation at the contact layer. Such interfacial corrugation
can be computed in terms of the free energy proőle in the contact layer, as discussed in
Ref. 45. In Fig. 3.13b we show the elementary cell free energy landscape F in the (x, y)
plane for both graphene and LJ walls. In this case the free energy was computed from the
relation

∆F = −kBT ln[PO(x, y)], (3.15)

with PO the probability for an oxygen atom to be in the contact layer. Our results for
graphene walls show good agreement with previous values obtained from őrst principles
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(a) Graphene walls (b) LJ walls

Figure 3.12: Temperature evolution of the static and dynamical contributions to the slip
length b = η/λ of water on (a) graphene and (b) LJ walls, normalized by the values at
360K. The lines were obtained from VTF őts of the simulation results, see text for details.

calculations [45], and no temperature dependence was appreciated in F (x, y) for any of
the two walls considered. In Fig. 3.13 we can observe the surface smoothness of graphene
when compared to the LJ wall, which presents larger free energy differences.

Before concluding, it is interesting to comment on a prediction for the temperature
dependence of b introduced by Bocquet and Barrat in Ref. 99, who wrote that b should
be proportional to (kBT )

2/λSTAT, which is in strong disagreement with our results. This
formula can be derived from Eqs. (3.9) and (3.10) by relating the density relaxation time
τρ to the collective diffusion coefficient Dq∥ ,

τρ =
1

q2∥Dq∥

; (3.16)

so, in terms of temperature dependence, we obtain λ ∝ λSTAT/(Dq∥kBT ). With respect
to bulk properties temperature dependence, the self-diffusion coefficient D0 can be related
to the viscosity through the Stokes-Einstein relation Eq. (3.5): D0 ∝ kBT/η. Combining
these two relations we obtain: b = η/λ ∝ Dq∥(kBT )

2/(D0λSTAT). Then, the authors iden-
tify the collective diffusion coefficient with the self-diffusion coefficient, Dq∥ = D0, őnally
obtaining b ∝ (kBT )

2/λSTAT. In Fig. 3.14 we show the different temperature evolution
for both diffusion coefficients, with Dq∥ computed from Eq. (3.16) and D0 values taken
from Ref. 216. However, while we found that indeed Dq∥ ≃ D0 at room temperature, the
diffusion coefficients temperature evolution is quite different, specially in the supercooled
regime. Indeed, both diffusion coefficients arise from processes that happen at different
scales and their relation is non-trivial: while Dq∥ is related to collective diffusion in the
sense that it is a function of all the atomic positions, D0 is referred to the diffusion of one
molecule of 2Rh size.

3.2.4 Conclusions

In order to understand the molecular mechanisms that control friction, we decomposed
the friction coefficient λ into the product of a static contribution λSTAT and a dynamical one
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(a) Graphene wall (b) LJ walls

Figure 3.13: Free energy landscape in meV of the elementary cell in the (x, y) plane for (a)
graphene walls and (b) LJ walls at 300 K.

Figure 3.14: Self-diffusion coefficient D0 from Ref. 216 and collective diffusion coefficient
Dq∥ as a function of the temperature. The respective őts by a VTF law are represented in
continuum lines.
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λDYN, in the form of an interface density relaxation time τρ. We observed a small variation
of the static part with T , but the main contribution to the temperature dependence of
friction came from the dynamical term. In order to explain the temperature dependence
of the slip length b = η/λ, we also decomposed the viscosity η into a static term ηSTAT

and a dynamical term ηDYN, controlled by the bulk density relaxation time τB
ρ . The

slip length could then be decomposed into three contributions: őrst, the interfacial static
contribution 1/λSTAT; second, the bulk static contribution, ηSTAT; and third, the ratio
between the bulk and interfacial dynamical terms ηDYN/λDYN = τB

ρ /τρ. We observed
that the viscosity static part, while it remained constant at high temperatures, increased
signiőcantly in the supercooled regime, representing a major contribution (independent
of the wall type) to the slip length temperature evolution. We could őnally relate the
different slip length temperature dependence on LJ walls and graphene to the differences
in interfacial dynamics on these two surfaces.

We suggest that the promising predictions presented here should be within reach of
experimental veriőcation, with the recent accurate characterization of liquid-solid slip on
new 2D materials and their derivative [31, 191, 34, 192], and investigation of supercooled
water dynamics down to very small temperatures [205, 207, 204, 225, 211, 107, 208], e.g.
∼ 230K in bulk [107] and ∼ 130K in conőnement [225].

Moreover, beyond liquid-solid slip, many other new behaviors could arise in the promis-
ing őeld of supercooled nanoŕuidics. In particular, due to the high slip values obtained
at ambient temperature for carbon nanotubes (CNT) [31], comparable to the ones of the
present study for graphene at the lower temperatures, we őnd as an interesting perspective
the study of the curvature effect in combination to the supercooling of the liquid. Ad-
ditionally, nanopatterned superhydrophobic surfaces have shown increased slip compared
to ŕat surfaces [246]. Exploring the effect of supercooling on slip at superhydrophobic
surfaces therefore is another relevant venue.

Not only superhydrophobic surfaces are associated with large slippage but also with
iceophobicity [212]. Thus, examining the coupling between ice nucleation and slippage
at such interfaces may be a further direction to embark on, which could be relevant for
the development of anti-freezing coatings. Indeed, one of the proposed mechanisms for
hindering ice formation of water droplets on superhydrophobic surfaces is to ensure a
minimal contact time between the bouncing droplet and the surface. It will be interesting to
see whether the increase in water viscosity at low temperature would promote ice nucleation
due to increased contact time of a bouncing droplet [247], or instead whether the increase in
water slip (as observed here) would actually decrease the contact time [248], thus hindering
ice nucleation. An additional mechanism at play on anti-icing coatings is that of retardation
of ice nucleation due to the presence of air pockets between nanoscale patterns, which act
as insulating layers [212], while the main reason for the increase in slip length observed
in nanopatterned surfaces at room temperature is due to the absence of friction at the
vaporśliquid interface [246]. Therefore, it would be interesting to understand whether the
friction reduction at nanopatterned surfaces also slows ice nucleation at such interfaces.
Further, in this work we found that the interfacial water dynamics is key to the increase in
water slip under supercooled conditions. Because the microscopic dynamics of bulk water
has been reported to inŕuence homogeneous ice nucleation [226], it is possible that the
interfacial dynamics may instead have an impact on heterogeneous ice nucleation.

Overall, we hope the őndings obtained and presented in this section by investigating
water friction as a function of temperature down to the supercooled regime, will help
understanding generally the molecular mechanisms underlying both interfacial and bulk
hydrodynamic transport in this fascinating liquid, and motivate experimentalists to őnd
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protocols to measure water slippage under supercooling.

3.3 Interfacial thermal transport

When water is in contact with a solid heat source, if the solid surface is heated above
the boiling point of water Ts, the ŕuid starts to dissipate a large amount of heat ŕux at
the liquid-solid interface. This process is őrst characterized by nucleate boiling, when air
bubbles start to form in the liquid at the interface. In this stage, the removal of heat ŕux
is proportional to the number of bubble nucleation sites formed, and to the temperature
difference with respect to Ts [249]. As the temperature and the heat ŕux increase, the
number of vapor bubbles increase as well, covering a larger amount of the interface and
acting as a thermal insulator due to the smaller vapor thermal conductivity when compared
to the liquid one. This effect will lead to reaching a maximum critical heat ŕux at a given
temperature after which, when increasing the temperature, the heat ŕux quickly decreases
and the heat transfer is too fast for normal boiling to occur, producing a violent liquid-
vapor transition, called explosive boiling. Controlling the appearance of such transition
can be critical in preventing material damage due to vapor explosions, as may happen in
nuclear power plants accidents [250].

A parallel treatment of macro- and nano-scale boiling have been already established
experimentally [249], motivated by the high relevance of nanoŕuidics in the recent years.
Seeking to prevent explosive boiling, the effect of texturing a superhydrophobic surface on
the temperature at which explosive boiling occurs has also been studied experimentally
[251], and it has been shown that the use of such surface can prevent violent őlm boiling
by stabilizing a vapor layer separating the heated surface from the liquid (also known as
Leidenfrost effect [252]). Molecular dynamics (MD) approaches to study explosive boiling
have also been carried [253, 254] focusing in increasing the temperature at which explosive
boiling occurs. For instance, it has been demonstrated for a planar gold surface and
ethanol solution containing gold nanoparticles, that increasing the interfacial resistance
signiőcantly shifts to higher temperatures the temperature at which explosive boiling occurs
when compared to the pure ethanol solution [255]. Also, the effect of roughness on water
boiling has been assessed, showing a heat transfer enhancement during the explosive boiling
process [254]. The main idea of these studies is to reduce the thermal conductance of the
interface (or analogously increasing its thermal resistance), proportional to the heat ŕux
dissipation of the system.

In the recent years, several works have sought to develop new materials and structures
with high liquid-solid thermal interfacial resistance (so-called Kapitza resistance R). With
that regard, there has been a general interest in understanding the different parameters
that control R. Several experiments can be found studying thermal liquid-solid interfa-
cial properties at the nanoscale, assessing the effect on heat transport of different gold
nano-scale objects immersed on different solutions [256, 257], of water-solid interactions
for walls with different wetting properties [258], or determining interfacial thermal trans-
port properties for gold walls with different liquids such as water or ethanol [259, 260] as
well as its enhancement through the insertion of self-assembled monolayers [261]. In addi-
tion, from a fundamental point of view, the physical processes controlling interfacial heat
transfer between solid and ŕuid have also been addressed by developing different analytical
models, allowing to correctly reproduce the differences in thermal resistance obtained for
surfaces with different wettings [127], rationalizing the effect of the bonding strength and
viscoelastic properties for water [262], or proposing coarse grained models, with applica-
tions for large scale systems modelling, which produce similar results for the conductance



68 CHAPTER 3. UNDERSTANDING INTERFACIAL TRANSPORT

than those obtained via atomistic simulations [263].
MD simulations have also been used to explore how R is related to different physical

properties such as solid-liquid interaction energy [128, 264, 265] and roughness [264, 266,
267], the interfacial vibrational coupling [268, 269] or the liquid structure [255]. MD
simulations have been the tool of choice to simulate a large variety of water-solid interfaces,
such as carbon nanotubes [270] or planar gold-water or silicon-water interfaces [271], with
good agreement within experimental results [258]. Of special interest has been the case
of water-graphene systems [272, 273], where the proportionality of the thermal resistance
to the number of graphene layers has been assessed (up to a threshold increase where R
is constant with the number of layers, equivalent to a graphite wall) as well as how it is
strongly dependent on the layering of water at the interface [274, 275]. Another way to
employ graphene explored in MD simulations is to reduce the interfacial conductance of a
material such as copper or silicon by intercalating graphene layers at the interface taking
advantage of its high interfacial resistance [276, 277].

The originality of our work is to propose the use of a graphene sheet to cover the nanos-
tructured surface of a solid (gold in our case) to trap air or vacuum at the graphene-solid
interface and exploit their low thermal conductivity to achieve low interfacial conductance
between water and gold. One alternative path to achieve high Kapitza resistance is the
use of superhydrophobic surfaces which, in the case of Cassie (or fakir) state materials,
present a high thermal resistance due to the air trapping between the liquid and the solid
[278, 279, 251]. Nevertheless, such fakir states are characteristic of very non-wetting sur-
faces which can be obtained by special chemical treatments, limiting the choice of materials.
Also, stability is another major problem of Cassie states, which are not very robust under
variations of pressure or the presence of ŕows in the channel. Contrarily, as we will see,
graphene coated nanopillars present an alternative which can be extended to a wide range
of common materials, such as gold and copper, and graphene stability can be improved by
adding a great number of graphene layers.

In this section, after assessing the stability of the suspended graphene state, which
does not bend őlling the gold nanopatterns, we verify that the conductance is propor-
tional to the contact surface fraction of graphene and gold, with a smaller conductance
for thinner nanopillars (bigger air bubbles trapped). After proposing a linear scaling law
of conductance, arising from the idea of understanding the water-graphene and graphene-
gold interfaces as a set of resistances connected in series, we verify a universal scaling of
the resistance with the effective surface fraction related to the effective gold-carbon inter-
actions. A huge Kapitza length (ℓK ∼ 200 nm, proportional to the Kapitza resistance)
is measured for the smallest surface fraction, being two orders of magnitude larger than
the one reported for water-planar gold interface in simulations [271] and experiments [258]
(ℓK ∼ 6 nm) and one order of magnitude larger than the largest reported values (to our
knowledge) in previous simulations on carbon nanotubes and graphite (ℓK ∼ 30 nm and
ℓK ∼ 50 nm respectively) [270, 276]. The huge thermal resistance we obtain presents
promising applications in delaying the temperature at which the boiling crisis occurs, and
shows an alternative route to efficiently control thermal dissipation in nanoŕuidic systems.

3.3.1 Thermal transport equations

Although the physical processes that control thermal transport (i.e. of heat) are differ-
ent than the ones controlling the hydrodynamic transport (i.e. of momentum), the őelds
characterizing both transports (temperature T for heat and velocity v for momentum) are
described by equivalent Laplacian equations (heat equation and Stokes equation respec-
tively). In Fig. 3.15 we can see that, as we generated a simple linear velocity proőle in



3.3. INTERFACIAL THERMAL TRANSPORT 69

(a) Hydrodynamic transport (b) Thermal transport

Figure 3.15: Hydrodynamic and thermal transport schematics. We can measure the hy-
drodynamic transport coefficients by applying a constant shear velocity Uwall generating
a linear velocity proőle in bulk. Analogously we can measure thermal transport coeffi-
cients by applying a difference of temperature dT between both walls generating a linear
temperature proőle in bulk.

the bulk by applying a constant shear velocity Uwall in opposite directions (Fig. 3.15a),
an equivalent linear temperature proőle (typically characterized by its derivative, the tem-
perature gradient ∂zT ) is generated by applying a temperature difference dT between
both walls (Fig. 3.15b). In the case of thermal transport, the coefficient that character-
izes the bulk transport is the thermal conductivity λth, deőned from the Fourier’s law
jh = −λth∂zT , with jh the heat ŕux density. With regard to the interface, which we
will suppose located at zint, a temperature jump ∆T occurs analogously to the velocity
jump vslip observed for hydrodynamic transport. As determined by Kapitza in 1941 [280],
the interfacial thermal resistance (also known as Kapitza resistance) is then deőned from
the relation jh = (1/R)∆T , which can be also described in terms of thermal conductance
G = 1/R. Finally, both interfacial and bulk transport coefficients can be put together in
one single equation by imposing continuity of the heat ŕux at the interface, obtaining:

∆T = ℓK
∂T

∂z

∣

∣

∣

∣

z=zint

, (3.17)

deőning at the interface position zint (which by trivial extension of hydrodynamic transport
equations can be proven to be determined in terms of a Gibbs dividing plane, see Chapter 2)
the characteristic length ℓK = λth/G, typically referred to as Kapitza length. The analogue
equations between thermal and hydrodynamic transport are represented in Table 3.2.

3.3.2 Simulation details

a. Planar gold wall simulations

We performed MD simulations with the LAMMPS package [144] of TIP4P/2005 water
[172] conőned between different solid structures in order to determine the system conőg-
uration which better enhances interface thermal resistance. First, we enclosed 4096 water
molecules between two parallel planar gold walls of dimensions Lx = Ly = 58.422 Å, struc-
tured as a FCC crystal with lattice parameter a = 4.173 Å. Periodic boundary conditions
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Hydrodynamic transport Thermal transport

Fields:

velocity v temperature T
shear stress τ heat ŕux density jh

In bulk:

shear rate ∂zv temperature gradient ∂zT
shear viscosity η = τ/∂zv thermal conductivity λth = jh/∂zT

At the interface:

slip velocity vslip temperature jump ∆T
friction coefficient λ = τ/vslip thermal conductance G = 1/R

thermal resistance 1/R = jh/∆T

Boundary condition at the interface:

τ = η∂zv = λvslip jh = λth∂zT = (1/R)∆T
vslip = b∂zv ∆T = ℓK∂zT

Characteristic lengths:

slip length b = η/λ Kapitza length ℓK = λthR

Table 3.2: Hydrodynamic and thermal transport equations, disposed to highlight the math-
ematical analogy between both transports. z corresponds to the direction normal to the
surface.

were set in the directions parallel to the wall. The gold-gold interactions were taken from
Ref. 281, and the gold-water interactions from Ref. 282. For adding the supported graphene
in our simulations with periodic boundary conditions, we had to change the gold wall lattice
parameter for it to have the same dimensions than the supported graphene wall. With that
regard, we run a planar gold-water simulations analogous to the previous one just changing
the gold structure with new lattice parameters: {ax, ay, az} = {4.216, 4.260, 4.173} Å, and
wall dimensions Lx = 59.028 Å and Ly = 59.640 Å, in order to determine how this new
wall structure affects interfacial thermal transport. After, we added graphene to the planar
wall structure with the modiőed lattice parameters. The graphene wall dimensions were
the same than for gold (Lx = 59.028 Å and Ly = 59.640 Å). Carbon-carbon interactions
were modelled with the LCBOP force-őeld [283], carbon-water interactions from Ref. 40
and carbon-gold interactions from Ref. 284. The simulation details were the same for all
the systems described above. A cutoff was applied to the Lennard-Jones interactions at
12 Å, and all the equations of motion were integrated using the velocity-Verlet algorithm
with a simulation timestep of 1 fs. In all the simulations, we őrst performed an equilibra-
tion run of 0.9 ns where we settled the pressure to 1 atm, using the piston equilibration
described in Chapter 2, so that the distance between the two innermost solid layers was
H ∼ 38 Å, with a well deőned bulk region in the middle of the channel. During the őrst
0.3 ns of such equilibration we applied a Nosé-Hoover thermostat to the ŕuid and carbon
atoms at T = 300 K and we turned it off afterwards. After, a production run of 0.5 ns was
performed. In both simulation steps we applied a Nosé-Hover thermostat to all the wall
atoms except the ones in the outermost layers which were frozen. The top and bottom
walls were thermalized at T ±dT/2 respectively, with T = 300 K and dT = {40, 60, 80} K,
which corresponded to the linear response regime as we veriőed.

Before performing the structured gold and supported graphene simulations, we checked
the validity of our parameters choice by comparing the measured thermal transport coef-
őcients with the ones obtained for equivalent systems in the literature. All the transport
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system λth
(

W
Km

)

G
(

MW
Km2

)

ℓK (nm) ∆ (Å)

planar gold 8.63× 10−1 ± 5.14× 10−2 106.66± 1.84 8.10± 0.14 1.26± 0.02
gold modiőed 8.05× 10−1 ± 2.81× 10−2 117.23± 2.84 6.88± 0.16 0.75± 0.01
supported GR ś 51.76± 1.73 15.6± 0.05 1.58± 0.03

Table 3.3: Thermal transport coefficients measured for planar gold walls for three different
system parameters: original FCC lattice (planar gold), modiőed lattice without supported
graphene (gold modiőed) and modiőed lattice with supported graphene (supported GR).
For this latter system λth couldn’t be accurately determined and we considered the one
measured for the gold modiőed system to determine ℓK.

coefficients were determined from three different values of temperature jumps dT between
walls that belonged to the linear response regime, and three independent simulations (with
three different initial conőgurations) were run for each temperature jump. Taking into
account the symmetry of the system (so both top and bottom wall provide independent
measures) a total of 18 independent measures were performed and the error bars were com-
puted within 95% of conődence level. The interface position was considered at a distance
∆ from the innermost solid layer, and it was determined from the density proőles using
the Gibbs dividing plane approach (see Chapter 2). The simulation results can be found in
Table 3.3, where we can observe that the bulk value of water thermal conductivity λth was
the same (as it should be) for both planar gold and planar gold modiőed systems within the
error bars, and it is in agreement with previous non-equilibrium measurements [285] and
slightly higher than the experimental value obtained for bulk water, λth ∼ 0.6 W/(K·m)
[286]. Also, we observe that changing the lattice parameter of the planar gold wall has
a minor impact on the conductance G and on the Kapitza length ℓK, where the value of
6.88 nm is in agreement with previous experiments [258] and simulation work for a gold-
water interface modelled with different interaction parameters (ℓK ∼ 6.5 nm) [271]. Such
Kapitza length was increased a factor of ∼ 2.5 when adding a graphene layer supported on
the planar (modiőed) gold walls (Table 3.3); which is an increase similar to the one observed
for a graphene-coated copper structure (when compared with the no-graphene case) [276].
Because of the difficulty of accurately computing the thermal conductivity for systems
with high Kapitza resistances (the temperature proőle tends to be ŕat so it is difficult to
determine its gradient precisely), we considered λth = 8.05×10−1±2.81×10−2 W/(K·m),
as we will do in the following.

b. Nanopatterned gold wall simulations

After testing our system parameters, we proceeded to nanopattern the gold wall (with
the modiőed lattice parameters {ax, ay, az} = {4.216, 4.260, 4.173} Å) by adding pillars
to a planar gold base. Before determining the interfacial thermal transport and how it is
affected by the pillar geometry, we performed preliminary tests by running MD simulations
of a őnite graphene sheet, supported on different gold structures. The objective was to test
the stability of the suspended state and to make the pillar separation as big as possible while
limiting graphene bending (see Fig. 3.16a). To avoid the graphene from sliding we adjusted
the center of mass velocities in the x and y directions to cancel the linear momentum,
preventing graphene to diffuse globally in those directions. Using this procedure, we veriőed
that the graphene sheet was still able to bend for speciőc geometries. We observed that
with holes of depth ≥ 3az = 12.519 Å, the graphene layer did not bend for any x − y
separation between pillars. To check this statement we went to pillar separations of up to
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(a) (b)

Figure 3.16: (a) MD system snapshots of the graphene bending test for different gold
nanopillars structures. The top őgure corresponds to a pillar height of 2az and the bottom
one to 3az. (b) MD system representation of the graphene coated nanopillars system. The
original simulation box is represented in white dashed lines.

30ax (126.48 Å), we also made some extra tests accounting for long-range interactions for
the Lennard-Jones potential [287], and we őnally conőrmed that including water on top of
graphene did not affect our results.

Because the graphene structure did not bend for holes deeper than 3az, we decided to
impose periodic boundary conditions for the graphene sheet. The system conőguration,
shown in Fig. 3.16b, consisted in water enclosed between a nano-structured gold surface
coated with a graphene layer at the bottom, and planar gold at the top, used for piston
equilibration. In this őgure one periodic image is represented in order to illustrate the gold
structure, and the original simulation box is represented delimited by dashed lines. The
system equilibration and production run were the same as those described for planar gold
simulations, with the exception that, to avoid graphene bending due to strong perturba-
tions at the beginning of the simulation due to the piston equilibration, we froze it during
the őrst 0.2 ns of the equilibration run. Afterwards we unfroze it and proceeded as detailed
for planar gold for the rest of the simulation steps.

With regard to the gold wall structures, we imposed a pillar height of 3az (Fig. 3.17a)
although, as we will see in the next section, equivalent results were obtained for taller pillars
of height 6az. Two different structure types were studied. First we explored the effect of
1D structures (Fig. 3.17b) for two different box sizes: (Lx, Ly) = (14ax, 14ay) enclosing
5120 water molecules, and (Lx, Ly) = (28ax, 14ay) enclosing 10240 water molecules. The
width of the pillar lx was varied between 3ax and 20ax in these simulations. Secondly, we
explored the effect of 2D structures (Fig. 3.17c), where the system consisted in 10240 water
molecules in a box size of lateral dimensions (Lx, Ly) = (28ax, 28ay). The pillar area was
imposed such as {lx, ly} = {max,may}, with m varied between 6 and 9.

3.3.3 Results

The objective of our work is to establish the effect on interfacial heat transfer of textur-
ing a gold surface with supported graphene on top. Let’s recall that the main motivation
of nanopatterning the gold surface is to reduce the conductance (i.e. to increase the resis-
tance) between water and gold by maintaining a Fakir state between the graphene and the
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(a) Front view

(b) Top view 1D structures

(c) Top view 2D structures

Figure 3.17: Illustration of the nanopillar structure. (a) Front view for 1D and 2D struc-
tures in the x − z direction. The pillar height is 3az (a test was also performed for 6az).
(b) Top view of the 1D nanostructure were the surface fraction was varied changing the
lx parameter. (c) Top view of the 2D nanostructure where the surface fraction was varied
changing lx, ly parameters.

gold walls exploiting the low thermal conductivity of air (or vacuum in our simulations).
With that regard, we represent in Fig. 3.18a the measured water-gold (w-Au) conductance
as a function of the graphene-gold contact surface fraction ϕs = lxly/(LxLy). In this őgure
we can see that we measured the conductance for a large variety of 1D and 2D geometries,
and that globally the decrease of the contact surface between gold and graphene decreases
the efficiency of heat transfer due to the presence of vacuum as indicated above. We also
observe equivalent results for different wall sizes, 14ax and 28ax, for the 1D structures,
as well as no effect of the pillar height (we varied it from 3az to 6az). To analyze the
different contributions to heat transfer between the three different systems (water at the
carbon-gold interface), in Fig. 3.18b we show the Kapitza resistance R = 1/G (for all the
system geometries) obtained from the temperature jumps between the different groups.
We observe that the water-carbon resistance is very low and not affected by the surface
fraction, while the carbon-gold resistance mostly determined the total R between water
and gold.

Once we assessed the interesting effect of the carbon-gold contact surface fraction on
the transfer of heat, we propose a simple model in order to describe our results. We start
from the continuity condition of the temperature jumps at the water-carbon-gold interfaces
and that, by deőnition, ∆Tw−Au = ∆Tw−C +∆TC−Au (with ∆TA−B = TB − TA). Taking
into account that the thermal resistance is given by R = ∆T/jh and that jh is the same
in the whole channel, it is then a necessary condition that the water-carbon and carbon-
gold interfaces act as a pair of resistances connected in series, so for the planar gold wall
Rw−Au = Rw−C + RC−Au. We can introduce the effect of the contact surface fraction
by supposing that it will affect the carbon-gold thermal resistance as Rw−Au/ϕs,eff , where
ϕs,eff refers to an effective surface fraction. Such ϕs,eff intends to account for the extension
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(a) (b)

Figure 3.18: (a) Total water-gold thermal conductance of the nanostructured system as
a function of the graphene-gold contact surface fraction. The results are represented for
different geometries including 1D pillars with different box sizes, 2D nanostructures and 1D
structures with taller pillars. (b) Kapitza resistance R = 1/G as a function of the surface
fraction measured from the water-gold (circles), water-carbon (squares) and carbon-gold
(triangles) temperature jumps.

of the graphene-gold surface of contact over a small distance rc, related to the effective
extension of the carbon-gold atomic interactions. In this way,

Rw−Au = Rw−C +
RC−Au

ϕs,eff
, (3.18)

with ϕs,eff for a 1D structure:

ϕs,eff =
lx + 2rc
Lx

;

and ϕs,eff for a 2D structure:

ϕs,eff ≃ (lx + 2rc)(ly + 2rc)− 4r2c
LxLy

;

where we subtract a 4r2c area to not overestimate the real rc effect by just considering the
rectangle area given by (lx + 2rc)(ly + 2rc).

We őtted with Eq. (3.18) the 1/Gw−Au values represented in Fig. 3.18a. The őt results
were Rw−C = 3.84×10−10±7.67×10−10 Km2/W, RC−Au = 1.42×10−8±9.47×10−10 (in
agreement with the measured value for ϕs = 1) and rc = 5.12± 0.54 Å. Although the error
bars in the őtted water-carbon resistance are big, we can test the goodness of the őt by
ploting the measured Gw−Au represented in Fig. 3.18a as a function of the effective surface
fraction ϕs,eff . The results for all the 1D and 2D structures are plotted in Fig. 3.19a. We
can see that all the results collapse to the same curve with rc = 5.12 Å, verifying the Gw−Au

scaling with the effective surface fraction for the all the different geometries considered. In
Fig. 3.18a we also observe a deviation from the őt for the point corresponding to ϕs = 1
(ϕs,eff ∼ 1.2), corresponding to the planar gold wall case. Although we don’t expect the őt
in terms of effective surface fraction to work well for effective contact surfaces larger than
1, one could expect a plateau in G obtained for ϕs,eff > 1. Nevertheless, this result is out
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(a) (b)

Figure 3.19: Total water-gold (a) conductance G and (b) Kapitza length ℓK scaling with
the effective graphene-gold contact surface area.

of the error bars for our measures, and further work should be carried out to understand
the conductance decrease for this geometry with respect to the nanopatterned surface.

It is interesting to quantify the contribution of the graphene coated nanopillars in
increasing the thermal resistance via the characteristic length of the system, the Kapitza
length ℓK = λth/G with λth the thermal conductivity of water at 300 K (see Section 3.3.2).
The objective of a large body of work in heat transfer is to őnd affordable structures with
a large ℓK value. We see in Fig. 3.19b that the Kaptiza lengths measured in our system
range from 10 to 200 nm, and even a higher ℓK can be predicted by lowering the effective
surface fraction. We would like to highlight the great ℓK values obtained for our supported
graphene simulations for the smallest ϕs,eff . As far as we know, they are signiőcantly
higher than the exceptional values obtained for more complex structures, such as CNT
with ℓK ∼ 30 nm for the most conőned system [270] or ℓK ∼ 50 nm for graphite supported
on planar copper [276]. Therefore, nanostructured coated systems are promising to realize
interfaces with high Kapitza resistance.

3.3.4 Conclusions

We explored, via non-equilibrium molecular dynamics simulations, the effect on solid-
liquid (gold and water) interfacial heat transfer of nanopatterning the solid wall and cov-
ering it with a graphene sheet. In the case of planar gold walls, we observed that the
Kapitza length increased a factor of ∼ 2.5 by adding a graphene layer at the gold-water
interface, in agreement with previous results for copper-graphene-water interface [276].
The novelty of the presented work was to introduce nanopatterning to such wall, with the
idea of exploring the effect of the wall roughness on thermal transport. First, we observed
that graphene did not bend around the wall nanopillars for holes of depth greater than
∼ 12.5 Å, independently of the pillar separation, trapping air bubbles between the gold and
the graphene layer. Therefore, we performed non-equilibrium simulations of a graphene
layer supported on nanopatterned gold with periodic boundary conditions in the directions
parallel to the walls. We saw that nanopatterning the gold surface produced an increase
of the interfacial Kapitza resistance R by vacuum trapping between both solid interfaces,
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due to air’s low thermal conductivity. Once we assessed this effect we studied the effect of
the gold-graphene contact surface fraction on the resistance by deőning an effective surface
fraction which accounts for an extension rc of the effective interactions between gold and
graphene atoms. We modelled the total interfacial water-gold R as a set of resistances at
the intermediate interfaces connected in series, with the carbon-gold R weighted by the
inverse of the effective surface fraction. Measuring the partial resistances, we saw that the
water-gold total R was mostly determined by the carbon-gold R, due to the very low water-
carbon R (one order of magnitude smaller than for carbon-gold). We observed very good
agreement of our results with the model for rc = 5.12Å, with a perfect linear dependency
of the thermal conductance G = 1/R with the effective surface fraction. Also, importantly,
very high Kapitza lengths were observed for the smaller surface fraction systems, with a
maxima of ℓK ∼ 200 nm, much higher as compared to previous values obtained for CNT
(ℓK ∼ 30 nm [270]) or graphite-planar copper (ℓK ∼ 50 nm [276]) interfaces.

These promising results (with a predicted higher Kapitza length for even smaller surface
fractions) pave the way to efficient design of nanomaterials to control heat dissipation. Par-
ticularly, the proposed structure presents promising applications in systems where a high
Kapitza resistance is needed. Such is the case of delaying the temperatures at which the
boiling crisis occurs (increasing the thermal resistance decreases the heat ŕux dissipation)
which is critical in avoiding vapor explosions in the case of nuclear power plants accidents
[250]. The proposed system presents a cheap and robust alternative to superhydrophobic
surfaces were the Kapitza resistance is increased for so-called łCassie materialsž for which
air is trapped below the liquid drop due to the liquid-solid wetting properties [278, 279].
Moreover, because the main idea of the system is to trap air bubbles at the interface, the
presented results can be extended to any type of material with equivalent structure than
the gold wall. Also, it could be an interesting perspective to assess the effect of considering
other 2D materials, cheaper and stiffer than graphene, or adding more graphene layers to
improve the system stability and increase further the Kapitza resistance.

3.4 Summary and conclusions

We have addressed in this chapter the study of two common interface transport mecha-
nisms, hydrodynamic and thermal transport, which present jumps at the interface in their
respective őelds, velocity and temperature, deőning the slip and the Kapitza characteristic
lengths from their bulk and interfacial transport coefficients.

In the őrst part, we have continued the work presented in the previous chapter about
the temperature dependence of the hydrodynamic transport coefficients, speciőcally vis-
cosity and liquid-solid friction, as well as its ratio given by the slip length, focusing on
water cooled down into its supercooled regime. After decomposing the friction coefficient,
and subsequently the viscosity, into a static and a dynamic contribution, three main mes-
sages can be highlighted in this study. First, the main contribution to friction temperature
dependence came from the dynamical term, particularly from the density relaxation time
of the water molecules at the interface. Second, that the static contribution to viscos-
ity signiőcantly increased for water when lowering the temperature and entering in the
supercooled regime, representing a major contribution to the slip length temperature de-
pendence. Third, that the different slip temperature dependencies observed for LJ walls
and graphene arose from the different interfacial dynamics on these two surfaces. In par-
ticular, for LJ walls we observed slower interfacial dynamics, as compared to bulk, when
decreasing the temperature, while for graphene no signiőcant slowing down was observed
(again as compared to the bulk one), which we related to the smoothnes of the graphene
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surface.
With regard to thermal transport, we proposed a graphene-coated nanopatterned gold

structure as an alternative to enhance thermal resistance, which takes advantage of the low
air thermal conductivity when compared to the one of water. The idea consists in using the
gold roughness to trap air bubbles in between the graphene layer and the nanostructured
solid wall. We indeed observed a global decrease in the thermal conductance, proportional
to the effective contact surface fraction in between both walls. With interesting applications
in delaying the so-called boiling crisis, related to vapor explosions in nuclear power plants,
we proposed a simple scaling of our results by considering the different interfacial resistances
as a set of resistances connected in series.

Although both thermal and hydrodynamic transport are controlled by different phys-
ical processes (mostly phonon transfer and momentum transfer respectively), the effect
of wetting or nanopatterning in their respective transport coefficients have been widely
studied, speciőcally via MD simulations. Aside of the fundamental interest, a better un-
derstanding of such interfacial processes facilitates the development of new nano-materials
and predicts the most favorable and cost-effective system structures to use depending on
the physical properties and signals we are interested in detect, strengthen, or mitigate.
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Chapter 4

Determining the temperature

dependence of bulk transport

coefficients from ab initio molecular

dynamics

łIf we were to name the most powerful assumption of all, which leads one on
and on in an attempt to understand life, it is that all things are made of
atoms, and that everything that living things do can be understood in terms of
the jigglings and wigglings of atoms.ž

Richard P. Feynman, The Feynman Lectures on Physics 1964
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4.1 Introduction

Water is an ubiquitous liquid, essential for life development, and therefore one of the
most important chemical substances. Due to its critical relevance with regard to energy har-
vesting and water puriőcation, several efforts have been carried in order to obtain molecular
insights about water behavior under multiple different physical conditions. Water molecu-
lar interactions arise from a balance between var der Waals and hydrogen bonding forces
[288, 66], thus a complete description exclusively from classical force őeld simulations may

79
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hinder some critical mechanisms. Ab initio molecular dynamics (AIMD), which explicitly
accounts for electronic interactions, may play a key role in understanding some important
physical processes for bulk and conőned water. The quantum calculation of the electronic
structure, originally formulated by Schrödinger in terms of electronic wave functions, can
be performed with different őrst principle methods. One important approach is the one
proposed by density functional theory (DFT), based on a formulation of the quantum me-
chanical problem in terms of energy functionals of the electronic density. DFT methods
are a blooming őeld, and a broad bibliography can be found in order to assess the density
functional which better reproduces the structural and dynamical properties of bulk water
[289] with particular interest on reproducing its radial distribution functions g(r), diffusion
coefficient and hydrogen bond dynamics [290, 65, 291]. Less bibliography can be found with
regard to liquid’s shear viscosity [233], speciőcally water [66]. In terms of bulk transport,
further understanding of water viscosity molecular mechanisms are needed to characterize
water properties distinctive of its temperature evolution in the supercooled regime, such
as shear viscosity viscoelastic properties [53, 292, 52] or, by comparison of viscosity and
diffusion temperature evolution, to obtain molecular insights about the breaking of the
Stokes-Einstein relation at low temperatures [29]. Also in terms of conőned water, were
efforts in discerning the atomic processes that control liquid-solid friction [230, 193, 293]
have been carried via classical and AIMD, viscosity understanding plays a critical role in
enlightening the characteristic of slippage, characterized by the slip length which is deőned
as the ratio between both transport coefficients. With such motivating perspectives, it
becomes crucial to őnd the density functional which better describes not only water vis-
cosity at a given temperature but also its temperature evolution, with special interest in
the temperature range in which the ŕuid is in its supercooled state.

In the way through őnding the best density functional for water, the importance of con-
sidering van der Walls interactions [67, 66] or nuclear quantum effects [294, 295, 296, 297]
(critical at low temperatures) is often discussed. But also, due to the broad literature
focusing on the reproduction of water structural properties such as the g(r), the estab-
lishment of a thermodynamic link between structure and dynamics would be not only of
great scientiőc interest but additionally very useful for functional developing and compar-
ison. Such connection has already been explored in the literature via e.g. free-volume
models [298, 299], relationships between g(r) and glass transition temperature [300], and
the proposition of different structural descriptors [301], among which the entropy excess
scaling stands out [302, 303, 241]. The excess of entropy, which can be decomposed on
different interparticle interactions in terms on the N−body radial distribution functions
[304], has been proven to exhibit an exponential relation with the diffusion coefficient for
multiple systems [305, 306], among which glass forming liquids such as supercooled binary
mixtures and water, for which the approximation of the entropy excess to its two body
contribution (related to an integral of a function of g(r)) has been proven to work well for
a broad range of temperatures [307, 308, 309, 241, 310]. One of the main limitations for
AIMD is its great need of resources as compared to their classical counterparts. Neverthe-
less, if the link between dynamics and structure is established, we would be able to predict
the transport coefficients value from structural properties which require shorter simulation
times to converge [311]. Aside of this, entropy excess scaling has also been used as a tool
to bring insights into some ŕuid molecular mechanisms in the study of the Stokes-Einstein
relation [310].

The present chapter is organized as follows. After a brief introduction about őrst prin-
ciples MD, the main DFT concepts are introduced, such as Hohenberg-Kohn theorems,
Kohn-Sham equations, basis sets and pseudopotentials. A detailed description of both
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AIMD and classical MD simulation settings can be found in the methods section, together
with the procedure carried to characterize the transport coefficients. Also, a general pic-
ture on the entropy excess is presented along with a physical argumentation in terms of
scaling to understand the connection between the entropy excess and the transport coef-
őcients. Afterwards, the main results are described and discussed, őrst by presenting the
bulk transport coefficients measures for water at different temperatures and for different
functionals, and second by stating the veriőcation of the excess-entropy scaling for all the
functionals.

4.2 First principles molecular dynamics

In previous chapters, we have introduced classical molecular dynamics (MD) simula-
tions as a powerful tool to describe processes in the nanometric scale. We particularly
focused on the case of force őeld (FF) simulations, where the interactions between two
atoms are described by an explicit function of their positions r, as in the case of the
Lennard-Jones potential,

VLJ(r) = 4ε

[

(σ

ε

)12
−
(σ

ε

)6
]

, (4.1)

with σ the effective particle diameter and ε the interaction energy. In this example, (σ, ε)
can be adjusted to reproduce experimental interatomic distances, vibration frequencies,
etc. This is why we may refer to FFMD as empirical calculations. Such empirical ap-
proach may pose some practical difficulties, as the impossibility to predict the interaction
parameters in the case of inaccessible systems such as the earth center or new materials.
We may also wonder about the fundamental reliability of these methods, due to the fail-
ure in describing atomically equivalent systems within the same parameters, like diamond,
graphite, graphene and fullerenes. Furthermore, the theoretical background underlying
FFMD, based on parametrizations of atomic forces, becomes problematic in the case of
chemically complex systems where many different particles are considered (i.e. where
many different interactions should be parametrized, as for complex molecules or proteins),
or where the electronic structure changes qualitatively in the course of the simulation.

A solution for these problems can be the use of őrst-principles calculations, also called
ab initio MD (AIMD), where no adjustable parameter needs to be introduced. The main
idea underlying AIMD is to consider the electronic variables as active degrees of freedom,
thus the atomic interactions (i.e. the forces used to propagate the classical nuclei) are
obtained from explicit electronic structure calculations. Most of the ab initio methods are
based on the adiabatic and Born-Oppenheimer approximations [312] by assuming that, be-
cause the nucleus is far more massive than the electron, the electrons adiabatically follow
the nuclei (i.e. they adapt quasi-instantaneously to a variation of the nuclear conőgura-
tion) and, due to such mass difference, the electronic and nuclear motion can be treated
separately. Together with both approximations, most of the ab initio methods work un-
der the so-called Ehrenfest MD [313], which assumes that the average nuclear motion is
determined by Newton’s equations. The validity of this approximation can be stated in
terms of de Broglie thermal length λth = h/

√
2πmkBT , which posses problems at room

temperature for the hydrogen atom, for which λth ∼ 1 Å is of order of the atomic radius
and nuclear quantum effects may not be negligible [296]. The two main formulations in
ab initio methods to solve the electronic structure are the Hartree-Fock formalism, which
approximates the atomic wave function by a single determinant of the orbitals, and the
Kohn-Sham formalism, which approximates the interacting electrons by non-interacting
auxiliary electrons embedded in an auxiliary potential. Nuclear quantum effects, which
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may become important at low temperatures, can be considered within a path integral
formulation (PIMD) [314]. Although ab initio methods are proven to be a powerful tool
which allows us to explore some conőgurations which cannot be modelled from a classical
perspective, the correlation lengths and relaxation times that are accessible via AIMD are
much smaller than those affordable with FFMD. Nevertheless, due to the increasing power
of computational resources with time, it is expected that AIMD simulations will continue
increasing their importance as a tool to tackle different problems in theoretical chemistry,
physics and biology [315].

4.2.1 Density functional theory

Density functional theory (DFT) is a type of ab initio method based on the Kohn-Sham
formulation of the electronic structure problem. In order to introduce and discuss the main
concepts underlying this theory, let’s start with the well known time-dependent Shrödinger
equation:

HΦ = iℏ
∂Φ

∂t
, (4.2)

with Φ = Φ({ri}, {RI}; t) the wave function as a function of the electronic coordinates
{ri}, the ions coordinates {RI} and the time t (for a simpler description we will neglect
the electronic spin), and the Hamiltonian:

H =

(

− ℏ
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2
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,

(4.3)

where MI and me refer to the ionic and the electronic mass respectively, ZI is the atomic
number of the I-th nucleus, e the electron charge and ε0 the vacuum permittivity. The
őrst two terms in Eq. (4.3) refer to the nuclear kinetic energy TR and potential energy VR,
the third and the fourth terms refer to the electronic kinetic Tr and potential Vr energies,
and the last term refers to the interaction energy between the electrons and the collection
of atom nuclei. For simplicity, we will denote Eq. (4.3) as:

H = (TR + VR) + (Tr + Vr) + Vr,R. (4.4)

Because of the Hamiltonian shape, we can see that the solution Eq. (4.2) is a 3N di-
mensional problem. The main objective of DFT is to reduce the problem dimension, up
to a 3 dimensional problem. The őrst step is to work within the Born-Oppenheimer ap-
proximation, which consists in considering the nuclei and the electrons as two different
mathematical problems. Within this approximation, we can then expand the many body
wave function Φ in a separate product (neglecting cross terms) of a complete basis set for
nuclei χk and electrons Ψk as:

Φ(r,R; t) =
∑

k

χk(R; t) ·Ψk(r;R), (4.5)

where we denoted, for simplicity, ({ri}, {Ri}) ≡ (r,R), and we considered the electronic
wave function Ψ(r;R) adiabatic, so it only depends parametrically on the nuclear positions
R. Eq. (4.5) allows us to consider the atomic motion as two separate problems: on the one
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hand an electron structure problem, by considering the nucleus őxed in space and solving
the stationary electronic Schrödinger equation:

HeΨk(r;R) = εk(R)Ψk(r;R), (4.6)

with He = Tr + Vr + Vr,R. On the other hand, a nuclear problem, consisting in solving the
time-dependent Schrödinger equation for the nuclear degrees of freedom:

HI χk(R; t) = iℏ
∂χk(R; t)

∂t
, (4.7)

with HI = TR+VR+εk(R), where εk(R) has been determined from Eq. (4.6). The solution
to Eq. (4.7) remains trivial when considering the nuclei as a classical object, where it can
be proven [313] that it rewrites as

MIR̈I(t) = −∇IV
BO
k (R), (4.8)

which is simply Newton’s second equation from classical mechanics expressed in terms of
an effective potential, V BO

k , determined by the energy surface εk(R).

a. Hohenberg-Kohn theorems

Several theoretical efforts have then focused on the solution to Eq. (4.6) and in reducing
its associated 3N dimensional problem. We will discuss here the one from the Kohn-Sham
DFT theory, based on the Hohenberg-Kohn (HK) theorems [316, 317]. The őrst HK
theorem states that the ground state energy from Schrödinger’s equation can be calcu-
lated from a universal functional of the electron density ne(r). This theorem ensures the
existence of ne and, for known ne (which only depends on the 3 spacial variables), the com-
plete determination of the Hamiltonian ensures the determination of the many-body wave
functions for all the states, and thus all properties of the system will be fully determined.
So now we know that the total energy is a universal functional of ne E = E[ne(r)]; but,
how can we determine ne if the many-body wave functions remain unknown? The second
HK theorem states that the correct electron density is the one that minimizes the energy
of the overall functional. This theorem hints that, if the functional shape is known, we can
employ the variational principle in order to őnd the ground-state electron density by means
of minimizing the energy from the functional. Such energy functional can be decomposed
in a universal contribution, F [ne(r)], and a system dependent contribution as

E[ne(r)] = F [ne(r)] +

∫

Vext(r)ne(r)d
3r, (4.9)

where the term with Vext represents the Coulombic interactions between the electrons and
the nuclei. The universal contribution to the energy functional will be given by

F [ne(r)] = − ℏ
2

me

∑

i

∫

Ψ∗
i∇2Ψid

3r +
e2

2

∫ ∫

ne(r)ne(r
′)

|r− r′| d3r d3r′ + EXC[ne(r)], (4.10)

where the őrst term corresponds to the electronic kinetic energies and the second one to
the Coulomb electron-electron interactions. Because in this second term we are accounting
for the interaction of an electron with itself, the exchange-correlation contribution EXC

is introduced as a non-classical self-interaction correction. Therefore, all the terms in
Eq. (4.9) are known but EXC. It is important to note that all the terms in Eqs. (4.9) and
(4.10) are functionals of the electronic density except the kinetic term, which has to be
expressed in terms of the electronic wave functions due to the absence of direct link from the
density to the kinetic energy. Therefore, this approach remains exact but impractical and
we need further simpliőcation in order to tackle the problem: the Kohn-Sham formulation.
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b. Kohn-Sham equations

The main idea in the Kohn-Sham (KS) formulation is to replace the original many-body
problem of interacting electrons by a system of non-interacting particles in an effective
potential with the same density as the original system. Such non-interacting particles
deőne a set of auxiliary functions {ϕi(r)}, denominated the Kohn-Sham orbitals, which
are őctitious states. We can then consider the electrons as independent particles via the
Hartree product of single electronic wave functions:

ϕ(r) = ϕ1(r) · ϕ2(r) · ... · ϕn(r). (4.11)

The electronic density will be then given by the expression:

ne(r) = 2
∑

i

ϕ∗i (r)ϕi(r), (4.12)

where the prefactor 2 comes from Pauli’s principle which states that two electrons with
opposite spin can occupy the same spacial location. Then, the total ground state energy
of the non-interacting system will be given by the minimum of the Kohn-Sham energy
[318, 319]:

EKS[{ϕi}] = T0[{ϕi}] +
∫

Vext(r)ne(r)d
3r + EH[ne(r)] + EXC[ne(r)]; (4.13)

with T0 the kinetic energy of the non-interacting particles, Vext the external potential
from the nuclei, EH the classical Coulombic electron-electron interactions, also called the
Hartree energy:

EH[n(r)] =
e2

2

∫ ∫

ne(r)ne(r
′)

|r− r′| d3r d3r′, (4.14)

and EXC the self-interaction correction term.
Finally the Kohn-Sham one-electron orbitals provide a set of equations, the Kohn-Sham

equations, where one equation involves only one particle, reducing the problem dimension
from 3N in Eq. (4.2) to only 3 dimensions (associated to the three spacial coordinates):

[

− ℏ
2

2me
∇

2 + Vext(r) + VH(r) + VXC(r)

]

ϕi(r) = εiϕi(r), (4.15)

where the Hartree potential is given by

VH(r) = e2
∫ ∫

ne(r
′)

|r− r′|d
3r′ (4.16)

and VXC is the local exchange-correlation potential, given by the functional derivative:

δEXC[ne]

δne(r)
= VXC(r). (4.17)

But, what is the shape of EXC? The exchange-correlation functional is deőned as

EXC[ne(r)] =

∫

ne(r) εXC[ne(r)]d
3r, (4.18)

where the energy εXC will be determined by the level of accuracy chosen for our system.
In Fig. 4.1 the different approaches taken for εXC are schematized, typically represented as
a łJacob’s ladderž [320] where each step corresponds to different accuracy levels which go
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Figure 4.1: Jacob’s ladder schematics of the different accuracy levels taken in DFT for the
implementation of the exchange-correlation functional. In this representation, the ladder
would take us from the łHartree worldž, where no exchange-correlation interactions are
taken into account, up to the perfect chemically accurate simulation. Each step in the
ladder accounts for all the approximations of the previous steps.

from the ground level εXC = 0 (Hartree’s world, where the only internal interactions con-
sidered are the ones from VH and the kinetic interactions) to the maximum level of chemical
accuracy, where all the inter-atomic interactions are accounted. Therefore, the exchange-
correlation functional choice is a key element to the success of DFT and we should őnd,
depending on the system we want to simulate, an equilibrium between the approximation
level and the computational resources. The simplest choice for EXC corresponds to the local
density approximation (LDA, őrst step in Fig. 4.1), where the exchange-correlation energy
is the one of a homogeneous electron gas of density ne, so the functional only depends
on the local density at a given point. The next step would be the generalized gradient
approximations (GGA), where the functional only depends on the local density ne and
its gradient ∇ne. Meta GGA functionals are those where the functional also includes the
second derivative of the electron density ∇

2ne although they are typically developed [321]
to include a dependence on the kinetic energy density τ :

τ(r) =
1

2

∑

i

|∇ϕi(r)|2, (4.19)

where the sum on i is performed over the occupied orbitals. The next step in the ladder
corresponds to the Hybrid functionals, which explicitly account for the occupied molecular
orbitals (typically in form of Hartree-Fock exchange). In the last step of the ladder, before
őnally reaching the chemical accuracy, we can őnd the double hybrid functionals, which
also include the unoccupied virtual molecular orbitals in their implementation. The Jacob’s
ladder image is a simple way to schematize the different approximations for EXC in DFT,
although it is an incomplete scheme. Different intermediate steps could be added by
functionals that, for example, include the van der Waals interactions, which allows an
improvement of GGA and hybrid functionals [297].

Bringing to a conclusion, the Kohn-Sham formalism establishes a way to obtain the
ground-state energy by őnding the electronic density ne, or the Kohn-Sham orbital set
{ϕi}, which minimizes EKS. In practice, the way to proceed to solve the minimization
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problem is via a self-consistent loop where, in a given loop iteration k:

1. We give an initial guess for the electronic density n
(k)
e (r), typically a superposition

of the atomic densities for k = 1, or the electronic density obtained in the previous
loop iteration (k − 1) otherwise.

2. For the trial electron density chosen, we evaluate the effective Kohn-Sham potential

V KS(r) = Vext(r) + VH[n
(k)
e (r)] + VXC[n

(k)
e (r)].

3. For the given potential, we solve the Kohn-Sham equations:
[

− ℏ
2

2me
∇

2 + V KS[n(k)e (r)]

]

ϕi(r) = εiϕi(r).

4. We evaluate the actual density for the {ϕi} obtained,

ne(r) = 2
∑

i

ϕ∗i (r)ϕi(r).

5. Finally, we check the consistency between the obtained electron density and the trial
one for a given precision δ:

∣

∣

∣

∣

∣

∣
n(k)e (r)− ne(r)

∣

∣

∣

∣

∣

∣
< δ.

If the precision condition is veriőed, we őnish the self-consistency loop and we can
proceed to compute the energy, forces, stresses... Otherwise, we repeat the loop for
k → k + 1.

c. Basis sets and pseudopotentials

The self-consistency loop described involves solving the Kohn-Sham single electron
equations for the molecular orbitals {ϕi}. To do so, we need to expand the wave functions
{ϕi} in a basis set, which can consist in a linear combination of atomic orbitals:

ϕi(r) =
∑

α

cα,i φα(r). (4.20)

A typical set of functions used in quantum chemistry are the Gaussian type orbitals
(GTO), where the primitive function is given by:

φ(r) = rlYlm(θ, ϕ) exp
[

−α(r −RI)
2
]

, (4.21)

constituted by the scalar product of the Ylm(θ, ϕ) spherical harmonic functions in the
angular spherical coordinates times a Gaussian exponential centered at the atomic position.
GTOs represent a compact basis set which allows an efficient parallel implementation (much
reduced optimization problem) as compared to other basis sets. Also, GTOs choice allows
analytical integration and efficient derivation for many operators. Nevertheless, because
they are a localized non-orthogonal basis set, they can lead to basis set superposition
error, which can become critical for binding energy computations (although typically not
for MD) [313]. Also, typically molecules and solids have different requirements in terms of
basis sets, and GTOs which are good for both cases are difficult to őnd.
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Another common basis set choice are plane waves (PW) basis sets deőned as:

φ(r) =
1√
Ω
exp[iG · r], (4.22)

where Ω is the volume of the simulation cell and G the wave vector in the reciprocal space.
PWs form an orthonormal and complete basis set, independent of the atoms positions, and
thus any periodic function can be extended in this basis:

ψ(r) = ψ(r+ L) =
1√
Ω

∑

G

ψ(G) exp[iG · r]. (4.23)

Such is the case of the Kohn-Sham orbitals solution of the Kohn-Sham potential of a
periodic system (V KS(r) = V KS(r + L)). Nevertheless, in actual calculations, we will
never go to a basis set constituted by an inőnite number of PWs, and a cutoff has to be
introduced in order to truncate the inőnite sum over G vectors. The idea is to include in
the calculation all the plane waves with less kinetic energy than a certain cutoff energy:

1

2
G2 ≤ Ecut. (4.24)

Then, the number of plain waves will be approximately given by [313]:

NPW ≈ 1

2π2
ΩE

3/2
cut , (4.25)

with Ω and Ecut given in atomic units.
Because the accuracy and efficiency of the density expansion will be given by the

choice of Ecut, with PW calculations we can have problems with functions that are very
local because they need a very high cutoff to converge. The way out is the use of pseu-
dopotentials. The idea under the pseudopotential introduction is to replace the inactive
electronic degrees of freedom in the Hamiltonian by an effective potential. Most of the
pseudopotentials are based on atomic calculations and on the frozen core approximation,
which consists in considering the core electrons chemically inert, thus the pseudopotential
replaces the Hartree and exchange-correlation potentials due to the core electrons. The
new potential should be additive and transferable. In order to ensure transferability, pseu-
dopotentials are typically implemented for atoms, not for molecules. Then, the addition
condition allows us to deőne the total molecular pseudopotential from the sum of the
atomic pseudopotentials. Pseudopotentials let us to reduce the size of the PW basis set
(implying an effective speed up of the calculation), to reduce the number of electrons (and
therefore reduce the number of orbitals to calculate), and to partially include relativistic
effects into effective potentials. The main idea underlying the use of pseudopotentials is to
explicitly account for the valence electrons, and approximate the nuclei and core electrons
by the pseudopotential. Therefore they are particularly useful for PW calculations and
basis sets related to a grid, although their extension to other type of basis sets, such as
GTOs, may also help in the efficiency of the computation.

4.3 Methods

4.3.1 Simulation details

We performed ab initio molecular dynamics (AIMD) simulations of 32 water molecules
in bulk using DFT with the CP2K code [322], which employs Gaussian and Plane waves
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(GPW) method in order to solve the Kohn-Sham equation Eq. (4.15). Three different
density functionals were considered: PBE [323] functional with Grimme’s D3 corrections
[324, 325] (namely PBE-D3, GGA functional with vdW interactions), optB88-vdW [326,
327] (GGA functional with vdW interactions) and SCAN [328] (metaGGA functional). The
electronic structure problem was solved within the Born-Oppenheimer approximation for 5
different temperatures (T = {260, 270, 300, 330, 360}K (the two lowest ones corresponding
to the expected supercooled regime) controlled via the Nosé-Hoover thermostat. We worked
at constant volume with a box size such as ρ = 1 g/cm3 (Lbox = 9.85Å for 32 water
molecules). The running time was ≃ 120 ps for all functionals and temperatures but
optB88-vdW and T = {260, 270}K, with running time ≃ 240 ps. The timestep considered
was 0.5 ps. The initial conőguration for all the functionals corresponded to the steady state
at the given temperature obtained from force őeld (FF) MD after a running time of 200 ps.
The energy cutoff for plane waves was 600Ry for PBE-D3 and optB88-vdW, and 800Ry for
SCAN, and the localized Gaussian basis set was short range molecularly optimized double-
ζ valence polarized (DZVP-MOLOPT-SR) [329] for all PBE-D3 and optB88-vdW, and its
SCAN optimization DZVP-MOLOPT-SCAN, available from the developers of CP2K.

We also performed force őeld (classical MD) simulations via the LAMMPS package
[144]. Analogously to AIMD, we worked in the (N,V, T ) ensemble with the temperature
controlled via a Nosé-Hoover thermostat and with a volume such as ρ = 1 g/cm3. Three
different box sizes were considered: 32 water molecules (Lbox = 9.85Å), 64 water molecules
(Lbox = 12.42Å) and 128 water molecules (Lbox = 15.64Å). The water model considered
in all the cases was TIP4P/2005 [172].

4.3.2 Transport coefficients determination

a. Viscosity and Diffusion

For all the simulations, we determined the shear viscosity from its Green-Kubo relation:

ηGK =
V

kBT

∫ ∞

0
⟨pij(t)pij(0)⟩ dt, (4.26)

with V the volume, kB the Boltzmann constant, T the temperature and pij = {pxy, pxz, pyz}
the non-diagonal components of the stress tensor. The other two independent traceless
components of the stress tensor, (pxx − pyy)/2 and (pyy − pzz)/2, were non-equivalent to
the diagonal ones for 32 water molecules, implying a breaking of the rotational invariance
for small simulation boxes [233]. This invariance was recovered for 128 water molecules
boxes.

We also computed the mean squared displacement,
〈

r2
〉

=
〈

|r(t)− r(0)|2
〉

, deőned as
the ensemble average of the squared deviation of the position of a particle with respect to
r(0) over time. At short times, ballistic motion dominates the dynamics of the particles
(due to the lack of collisions) and

〈

r2
〉

∝ t2. Nevertheless, for long enough times, the liquid
particles dynamics will be dominated by Brownian motion. In this diffusive regime, Ein-
stein’s relation for diffusion [145] states that

〈

r2
〉

= 6Dt, with D the diffusion coefficient.
In practice, because of hydrodynamic interactions between the periodic image boxes, a
őnite size correction to the diffusion coefficient has to be introduced [330, 331, 108]. For a
cubic simulation box of size Lbox with periodic boundary conditions:

D = DPBC + 2.837
kBT

6πηLbox
, (4.27)
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where η is the bulk shear viscosity and

DPBC =
1

6

d
〈

r2
〉

dt
. (4.28)

From Eq. (4.27) we can see that D = DPBC when Lbox → ∞.
We could run a limited amount of simulations due to the high computation time re-

quired for ab initio MD, and for both viscosity a diffusion, the error bars were computed
within 60% of conődence level. For viscosity, the total MD stress was divided in three time
slots of equal length, each of them containing three independent measures of η. Because
of the short simulation times, ηGK was measured at the time where η(t) running integral
reached a time plateau (see Fig. 4.2a). Therefore 9 independent viscosity values were com-
puted for each functional at a given temperature. For the diffusion coefficient, the őrst
20 ps were removed from the trajectory so the system equilibration from the initial conőg-
uration does not affect the mean squared displacement results. From them, 3 independent
measures of DPBC were obtained from the three independent Cartesian components.

b. Two-body excess entropy s2

As discussed in the introduction section, let’s study the connection between the pre-
sented transport coefficients and the structure via the two-body excess entropy. In ther-
modynamic equilibrium when working in the (N,V, T ) ensemble, we can quantify our
ignorance about the system’s microscopic state with the system’s entropy S(n, T ), with
n = N/V the density of the system. Deőning the entropy per particle as s = S/N , we
can deőne s = kB ln(ΓV), where kB is the Boltzmann constant and ΓV is the phase-space
volume of the microscopic state consistent with the macroscopic given condition. For ex-
ample, for an ideal gas system, the particles will be distributed all over the space with
the same probability and therefore its entropy sid will be maximum (our ignorance about
the system’s microscopic state is maximum because the system is maximally disordered).
Thus, it is interesting to deőne the entropy excess as the difference between our system’s
entropy and the one of an ideal gas system: sex = s− sid. Because the possible maximum
entropy of any system is sid, then sex ≤ 0 always and sex → 0 as T → ∞.

We can decompose the equilibrium entropy in terms of the partial N-particle correlation
functions as sex = s2+s3+s4+... [332]. By systematically expanding sex in terms of partial
N -particle distribution functions it can be proven [304] that the two-particle contribution
writes:

s2
kB

= −2πn

∫ ∞

0
r2(g(r) ln g(r)− g(r) + 1) dr, (4.29)

with g(r) the radial distribution function. In the following, we will suppose sex ≃ s2, which
has been proven to work well for water and supercooled binary mixtures [307, 308, 309, 310],
although it fails for other systems, such as liquid metals, where higher order expansion
coefficients should be considered [302, 303, 305, 306].

When considering a liquid, its excess of entropy can be estimated as

sex = kB ln

(

√

⟨x2⟩
l0

)

, (4.30)

where l0 = n−1/3 is the average inter-particle distance and
〈

x2
〉

is the vibrational mean
squared displacement. The average kinetic energy per degree of freedom due to the par-
ticles vibrations will then be 1

2mω
2
0

〈

x2
〉

, where ω0 is the effective vibration frequency,
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(a) (b)

Figure 4.2: (a) Typical viscosity Green-Kubo running integral with its standard deviation
for nine independent measures (the őgure example corresponds to SCAN functional at
T = 300K). Dash-dotted line corresponds to the plateau value considered, measured at
t ∼ 10 ps. (b) Reduced diffusion coefficient D/D0 as a function of the dimensionless two-
body entropy for FF simulations of 128 water molecules at different densities. Continuous
lines correspond to the data őt with Eq. (4.32).

deőned as the inverse of the time between collisions. The equipartition theorem states
that mω2

0

〈

x2
〉

= kBT , which, substituting in Eq. (4.30), gives:

exp(sex/kB) =
1

l0ω0

√

kBT

m
. (4.31)

We can establish a relation of sex with the diffusion coefficient D, by considering D ∼ l20ω0.
We can then see that it is expected that the dimensionless diffusion coefficient D/D0 will
scale as:

D

D0
= A exp(−B s2/kB), (4.32)

with D0 = l0
√

kBT/m and A and B dimensionless constants at a given ρ. In Fig. 4.2b we
can see that such exponential behavior is veriőed for FF simulations of water at different
densities. Analogously, we can connect diffusion and viscosity through the Stokes-Einstein
relation:

D =
kBT

6πηRh
, (4.33)

with kB Boltzmann constant and Rh the hydrodynamic radius corresponding to the drag
force experienced by a perfect sphere moving through a liquid with viscosity η. From
Eq. (4.33) and assuming Rh ∼ l0, we can expect a scaling for the dimensionless viscosity
η/η0 as:

η

η0
= A′ exp

(

−B′ s2/kB
)

, (4.34)

with η0 =
√
mkBT/l

2
0. From the Stokes-Einstein relation one expects B′ = −B.
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(a) (b)

Figure 4.3: Temperature evolution for different functionals of (a) shear viscosity from
Eq. (4.26) and (b) diffusion coefficient from Eq. (4.27) with ηGK. To benchmark the
results, force őeld (FF) MD simulations measures are represented in red stars; they are in
good agreement with experiments [331, 216, 56].

4.4 Results

4.4.1 Temperature dependence of transport coefficients

We display in Fig. 4.3a the shear viscosity temperature evolution determined from
the long-time plateau of the Green-Kubo integral, ηGK in Eq. (4.26), for the different
functionals. No plateau was observed for PBE-D3 at T < 360K and optB88-vdW at
T = 260K. To benchmark the results, the same procedure was carried for FF simulations
of 32 water molecules simulated with TIP4P/2005, a model which provides good agreement
with previous experiments for both bulk transport coefficients (discussed in [331, 216, 56]
and in Chapter 2). In Fig. 4.3a we observe that the functional that better describes viscosity
is SCAN, specially at high temperatures, although it fails at recovering ηGK temperature
evolution, implying a failure of the functional at low temperatures. In general, we can see
that all the functionals overpredict ηGK value.

In Fig. 4.4 we can see the mean squared displacement results as a function of time
for all the temperatures, employed to obtain the size-dependent diffusion coefficient DPBC

from Eq. (4.28) by őtting
〈

r2
〉

slope at long times when the system is in the diffusive
regime. DPBC could not be determined within our simulation times for PBE-D3 at T <
360K and optB88-vdW at T = 260K because the system has not entered in the diffusive
regime. This result is in agreement with the absence of plateau for ηGK. The corrected
diffusion coefficient DGK was obtained from DPBC results applying Eq. (4.27) correction
with η ≡ ηGK. The results are displayed in Fig. 4.3a. In analogy to ηGK, we observe in
Fig. 4.3b that SCAN is the functional that better describes water diffusion coefficient at
high temperatures, although it fails at low T .

Viscosity η and diffusion D are related through the Stokes-Einstein relation Eq. (4.33).
Even though the failure of this relation is well known at low temperatures [333, 204, 244,
206, 234, 236], it still remains valid for a broad range of T . We can verify this statement by
computing Rh for FF simulations of 128 water molecules (we worked on a bigger system in
order to have smaller error bars). In Fig. 4.5 we can see that Rh remains constant, Rh ∼ 1Å,
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Figure 4.4: Mean squared displacement
〈

r2
〉

results for different functionals at different
temperatures. Force őeld (FF) results are represented in continuous line. The 1/1 triangle
is a guide-to-the-eye for a slope ∝ t expected if the diffusive regime is reached at long
times.

for a broad range of temperatures, including the ones in our study (T ∈ [260, 360]K), with
a failure for the lowest temperature considered T = 225K as well as for the highest one
T = 360K, probably due to thermal ŕuctuations because the Stokes-Einstein relation is
expected to hold at high termperatures where the ŕuid remains in its liquid state. Taking
into account D size correction Eq. (4.27) and Stokes-Einstein relation Eq. (4.33), we can
relate viscosity to DPBC and the hydrodynamic radius:

ηRh
=

kBT

6πDPBC

(

1

Rh
− 2.837

Lbox

)

. (4.35)

In the same way, we can also determine a relation for DRh
independent of η from Eq. (4.27)

and Eq. (4.33):

DRh
=

DPBC

1− 2.837Rh

Lbox

. (4.36)

Therefore, viscosity and diffusion can be determined exclusively from the slope of the mean
squared displacement at long times by imposing the hydrodynamic radius Rh. In order
to test the applicability of this prediction, in Fig. 4.6 we display the results for ηRh

from
Eq. (4.35) and DRh

from Eq. (4.36) by imposing Rh = 1Å (value in agreement with the
FF measures in Fig. 4.5). In Fig. 4.6 we can see a good agreement between the Green-
Kubo and the hydrodynamic radius measures for both transport coefficients and for all the
functionals considered, meaning that, although all the functionals fail in predicting viscosity
and diffusion temperature dependence, all of them verify the Stokes-Einstein relation and
the hydrodynamic radius remains constant independently of the water functional chosen.
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Figure 4.5: Hydrodynamic radius prediction from force őeld (FF) results for 128 water
molecules, computed from the Stokes-Einstein relation. Dash-dotted line is a guide-to-the-
eye at Rh = 1Å.

(a) (b)

Figure 4.6: Temperature evolution for different functionals of (a) shear viscosity from
Eq. (4.35) and (b) diffusion coefficient from Eq. (4.36) with Rh = 1Å. A good agreement
is found between the hydrodynamic radius measures (dotted lines) and the Green-Kubo
ones (dashed lines), implying all the functionals verify Stokes-Einstein relation with the
same hydrodynamic radius Rh. The color and marker style representing the different
functionals is the same as in Fig. 4.3.
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4.4.2 Relation between structure and dynamics

Once the dynamic transport has been determined for the different functionals, we can
explore its connection with structure. To understand the differences encountered between
the different functionals, we show in Fig. 4.7 the radial distribution function g(r) compar-
ison. We observe in this graph that PBE-D3 corresponds to the most structured liquid,
even at T = 360K, in agreement with the high viscosity observations. We can also see
that optB88-vdW and SCAN present similar g(r) at the highest temperatures, although
when lowering the temperature optB88-vdW water structures faster than SCAN and FF,
which presents small disagreements from the second solvation shell. Due to the strong
similarities and connection between the g(r) results in Fig. 4.7 and the ηGK and DGK

results in Fig. 4.3, we proceed to explore the connection between structure and dynamics
via the two-body entropy s2 deőned in Eq. (4.29). The running s2(r) integrals are repre-
sented in Fig. 4.8, where s2 = limr→∞ s2(r). In this őgure we can observe that the main
contribution to the s2 integral comes from the őrst solvation shell of the g(r) with a minor
contribution from the second and third peaks, with the exception of PBE-D3 for all tem-
peratures and optB88-vdW at low T , which are strongly structured and for which the g(r)
does not reach a plateau at 1 within the simulation box, explaining the non-convergence
of the s2(r) results for long r. In Fig. 4.8 the results detailed for the g(r) related to the
structural differences between the different functionals become clearer: we observe a close
agreement between optB88-vdW, SCAN and FF at high temperatures, although optB88-
vdW structures faster than SCAN when lowering the temperature, while SCAN remains
close to FF results with small differences from the second solvation shell. It is interesting to
note that the largest differences in the long distance plateau of s2 arise from the long-range
part contribution, where the ab initio simulations show a much more pronounced struc-
turing and long-range oscillations as temperature is reduced. This is especially clear, from
Fig. 4.8, for optB88-vdW, which describes well g(r) őrst peak when compared to FF while
it signiőcantly deviates for the other solvation shells, particularly when the temperature
decreases.

Before measuring s2 from the long distance plateau of the s2(r) running integrals, we
should account for őnite size effects (FSE) that may affect our measurements, specially
when working with small simulation boxes (as in our case, where we considered 32 water
molecules and Lbox = 9.85Å). With that regard, the g(r) results for FF simulations and
different system sizes and water molecules (at őxed density ρ = 1 g/cm3) are represented in
Fig. 4.9. We can see that a little size effect appears for the third solvation shell at around
7Å for a system size of 32 water molecules. This system size effect disappears for 64 and
128 water molecules systems. Therefore, we should add a correction sFSE2 to the s2 values
measured for 32 water molecules boxes. Such sFSE2 value can be determined as the difference
between the plateau measures of two different box sizes, for instance sFSE2 = s2(rplateau, 32
water)−s2(rplateau, 128 water). Another option, due to the small long distance g(r) contri-
bution to s2, is to consider a cutoff radius rc for the g(r) so s2 = s2(rc) with rc taken before
the FSE appears; for instance rc = 6.3Å (dash-dotted line in Fig. 4.9) in our simulations.
In order to measure such correction and assess the validity of both approximations, we
can őnd in Fig. 4.10a a comparison between the different approaches: s2(rplateau) measures
from the long distance s2(r) plateau (i.e. without accounting for FSE), s2(rc) measures at
the cutoff radius and scorrected2 = s2(rplateau)− sFSE2 for 32 water molecules, together with
the s2(rplateau) measures for 128 water molecules where no FSEs are expected. We see in
Fig. 4.10a that both approaches, scorrected2 and s2(rc), are compatible with the s2 measures
for 128 water molecules. In the following, we will consider s2 ≡ scorrected2 for the different
functionals.
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Figure 4.7: Radial distribution function g(r) for different functionals at different temper-
atures together with FF results.

Figure 4.8: Two-body entropy per particle s2(r) running integral, determined from Eq. 4.29,
for different functionals at different temperatures together with FF results.
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Figure 4.9: Radial distribution function g(r) at T = 300K for FF measures and different
system sizes (Lbox such as ρ = 1 g/cm3). We can observe őnite size effects for 32 water
molecules at around 7Å. Dash-dotted line is a guide-to-the-eye at r = 6.3Å.

In Fig. 4.10b we represent the temperature dependence of the dimensionless two-body
entropy s2/kB for the different functionals, compared with FF results for 32 water molecules
(which are in good agreement with previous results [334]). We can observe that SCAN is
the functional that better recovers the FF water structure, while optB88-vdW reproduces
water structure at the higher temperatures (T = 360K) although is highly over structured
when the ŕuid enters in its supercooled regime. PBE-D3 totally fails at recovering the liquid
two-body entropy at any temperature, and reaches a plateau for the lowest temperatures
hinting a glass transition (the g(r) oscillations amplitude is not signiőcantly affected by
temperature [300]).

Finally, in order to establish the relation between structure and transport coefficients
for the different functionals, we tested Eq. 4.32 and Eq. 4.34 for the different functionals
results from the mean squared displacement and the Green-Kubo integrals: ηGK and DGK

introduced in Fig. 4.3. In Fig. 4.11 we show the results for the dimensionless transport
coefficients as a function of the two-body entropy for the different functionals. We can
see that, although the functionals present disagreements between the transport coefficients
and the s2 results, all of them verify an exponential scaling of ηGK/η0 and DGK/D0 with
s2. With that regard, we performed the őt in Eqs. (4.32) and Eq. (4.34) for optB88-vdW,
SCAN and FF (continuous lines in Fig. 4.11). No őt was performed for PBE-D3 due to
the single value measure we could report for this functional. The őt results are indicated
in Table 4.1. We can observe that, although out of the error bars, the őt parameters for
SCAN and FF are the closest ones and that, for all functionals, B′ = −B, implying a
veriőcation of the Stokes-Einstein relation Eq. 4.33.

Analogously to the Rh prediction represented in Fig. 4.6, we could use the s2 exponen-
tial dependency of the transport coefficients in order to predict their value based on the s2
results. By doing so, once the η(s2) and D(s2) dependency parameters have been estab-
lished, we can predict the transport coefficients value from structural properties. Indeed,
generally local properties as g(r) require shorter simulations to converge, especially when
using force based methods, as the one proposed in Ref. 311, to reduce the variance when
compared to the conventional strategies based on particles positions binning. In Fig. 4.12
we can őnd the Green-Kubo results and their comparison with the s2 őt predictions. We
can see good agreement between measures and predictions for all the data. In particular,
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(a) (b)

Figure 4.10: Dimensionless two-body entropy s2/kB for (a) FF simulations of different box
sizes measured from different approaches in order to account for FSEs for small simulation
boxes (32 water molecules in this case); (b) different functionals and FF as a function of
the temperature.

(a) (b)

Figure 4.11: Reduced (a) viscosity η/η0 and (b) diffusion D/D0, deőned in Eqs. (4.32) and
(4.34), as a function of the dimensionless two-body entropy s2/kB for different functionals
and FF simulations. In continuum line are represented the respective exponential őts for
each functional. The őt results are detailed in Table 4.1.
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ηGK/η0 DGK/D0

A′(×10−1
)

B′ A
(

×10−1
)

B

optB88-vdW 4.29± 1.39 4.11± 0.34 3.52± 0.29 −3.97± 0.09
SCAN 1.79± 0.48 5.31± 0.31 8.17± 2.49 −5.24± 0.36

FF 1.92± 0.26 4.52± 0.18 7.73± 1.25 −4.58± 0.21

Table 4.1: Fit parameters of y = A exp(−Bs2/kB) with y the dimensionless viscosity
ηGK/η0 Eq. (4.34), and diffusion coefficient DGK/D0 Eq. (4.32), for different functionals
and FF simulations.

(a) (b)

Figure 4.12: Temperature evolution for different functionals of (a) shear viscosity from
Eq. (4.34) and (b) diffusion coefficient from Eq. (4.32) with őt parameters from Table 4.1.
A good agreement is found between the s2 entropy prediction (dotted line) and the Green-
Kubo ones (dashed lines), verifying the link between the structure and the transport co-
efficients. The color and marker style representing the different functionals is the same as
in Fig. 4.3.

for optB88-vdW, we can see that, although we could not determine the transport coef-
őcients for the lowest temperature (T = 260K), from the s2 őt we predict a very high
viscosity and low diffusion, verifying the failure of the functional in order to reproduce the
temperature dependence of both transport coefficients.

4.5 Summary and conclusions

In this chapter we employed density functional theory (DFT) to compute the hydro-
dynamic bulk transport coefficients, viscosity and diffusion, for water at different temper-
atures (T ∈ [260, 360]K). We compared the results obtained for three different functionals
(PBE-D3, optB88-vdW and SCAN) with FF simulations for TIP4P/2005 water, which
shows good agreement with experiments for both viscosity and diffusion [331, 216, 56].
We observed that SCAN is the functional that better compares to FF simulation results
with the more acceptable temperature evolution. We detected large discrepancies between
functionals, with a major failure of PBE-D3, which is far too viscous when compared
to the expected results, and even SCAN, which fails at low temperatures. Nevertheless,
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although we disclosed great discrepancies between different functionals for viscosity and
diffusion coefficient, both in the value and in the temperature evolution description, we
saw that regardless of this, all functionals veriőed the Stokes-Einstein relation for the tem-
perature range considered and, moreover, all of them predicted the same hydrodynamic
radius Rh ∼ 1Å. This property, together with the őnite size correction for the diffusion
coefficient, allowed us to deőne a viscosity ηRh

and diffusion coefficient DRh
measure only

dependent on the slope of the mean squared displacement in the diffusive regime DPBC,
for known box size and őxed Rh.

Motivated by a possible connection between dynamic and structure, we computed the
radial distribution functions for the different functionals. Analogously to the transport
coefficient results, we observed that SCAN radial distribution function is the one that better
compares to FF, with little differences at the lowest temperatures in the second and third
solvation shells, whereas PBE-D3 was far more structured that SCAN and optB88-vdW at
high temperatures, in agreement with the high viscosity value measured for this functional.
An explicit relationship between dynamic and structure can be established through the
two-body entropy excess, which is an integral of a function of the radial distribution.
Supposing that the main contribution to the total entropy excess comes from this two-body
interaction (i.e. sex ≃ s2, which has been proven to work well for water and supercooled-
binary mixtures [307, 308, 309, 310]), it is expected that the reduced viscosity and diffusion
coefficient will present an exponential excess-entropy scaling independent of temperature.
We veriőed this exponential dependency on s2 for both reduced bulk transport coefficients
and, although the dependency was not universal (different őt parameters were used for
the different functionals) we observed similar orders of magnitude in the exponential őt
parameters.

For őnishing, based on the established exponential dependency between the bulk trans-
port coefficients, we computed both viscosity and diffusion coefficient from the s2 results
and the exponential őt parameters. This allowed us to estimate transport coefficients for
functionals strongly structured (for instance optB88-vdW at 260K), which present such a
high viscosity value that longer simulations are needed in order to observe a well-deőned
plateau in the Green-Kubo integral. Therefore we propose here, once the exponential
dependency has been determined for a few points, a method to determine viscosity and
diffusion coefficient from only structural properties, which typically require shorter simula-
tion times to converge [311]. This can be a useful technique to apply in the determination
of transport coefficients for very viscous systems, where the associated time-scales are far
from the ones computationally reachable nowadays with AIMD simulations. The connec-
tion between transport coefficients and the radial distribution function via the two-body
entropy excess also establishes some guidelines to choose a functional for simulations of
nanoŕuidic systems, where a functional which better reproduces water’s structure will more
likely reproduce its dynamical properties. The s2 parameter can be also employed as a rule
of thumb to develop better functionals, where the comparison between different s2 values
becomes more straightforward than the comparison between two g(r) proőles, or just the
value of the g(r) minimum or maximum, which does not ensure a full structure correla-
tion. Indeed, from the s2(r) running integrals, we showed the importance of reproducing
not only the őrst solvation shell of the g(r) but also the long range structure, which is a
non-negligible contribution to s2 value. This feature, together with the bulk transport co-
efficients entropy scaling, hint that it is important for the functionals to reproduce not only
g(r) őrst peak, but also its long range behavior, critical to obtain an accurate description
of dynamical properties such as viscosity and diffusion coefficient.

It is still left to understand the origin of the discrepancies in terms of temperature



100 CHAPTER 4. BULK TRANSPORT FROM AB INITIO SIMULATIONS

evolution of viscosity and diffusion temperature evolution, specially striking for the SCAN
functionals, which shows good agreement at high temperatures with FF and experimental
results but fails at low temperatures. Such failure at low T points may have two different
origins. First, maybe the given functional overestimates the glass transition temperature of
water, i.e. the viscosity deviates from the Arrhenius behavior at a larger temperature than
the expected one. Secondly, and more interestingly, there can be a link between the low
temperature functional description at low temperatures and the nuclear quantum effects
(NQEs). Standard AIMD methods, including DFT, treat the nuclei as classical particles,
and solve the quantum mechanics equations only for the electrons. However, de Broglie
thermal length (inversely proportional to

√
T ) becomes larger at low temperatures, and the

NQEs may not be negligible any more. There are currently different methods to implement
such NQEs [297, 295], and the difficulty arises in terms of the longer computation times
needed to solve the nuclear quantum equations, which add to the longer simulation times
needed at low T for the dynamical properties to converge. A possible way out can be
the development and use of machine learning potentials, trained to mimic the desired
functional and which require less expensive simulations.



Chapter 5

Modelling fast and versatile

thermo-osmotic ŕows

łGod made the bulk; the surface was invented by the devil.ž

Wolfgang Pauli, Nobel Prize in Physics, 1945
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5.1 Introduction

In previous chapters, we have studied bulk and interfacial mechanisms, addressing
different physical processes characteristic of the molecular scale. Among those processes,
slip has appeared as a fundamental mechanism resulting from the competition between
bulk and interfacial transport at the nanoscale. But what is the role of slip in energy
conversion and how can it help us to understand and conceive nanoŕuidic systems with
applications in optimizing the energy conversion in those systems?

Due to the increasing world energy consumption and the need of new clean energies,
waste heat harvesting is a major challenge for the decades to come. Some of the most
common difficulties to harvest waste heat come from the small temperature differences
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between the source and the environment (< 50 ◦ C) [83], as well as from the need to
use rare, expensive and often toxic thermoelectric materials [335]. Alternatively, thermo-
osmotic ŕows (generated at liquid-solid interfaces by temperature gradients) can be used to
transform waste heat into electricity via a turbine [336], or to pump water for desalination
[8, 337]. Historically, Derjaguin and Sidorenkov measured the őrst reported water ŕow by
applying a temperature gradient through porous glass [338]. Since then, a broad literature
has been devoted to the measure of the thermo-osmotic response, whether from experiments
[339, 340, 341, 342] or molecular dynamics simulations [343, 344, 345, 346]. Nevertheless,
some disagreements have been reported in the results for aqueous electrolytes, with a őnite
thermo-osmotic response reported for pure water and uncharged membranes [340], and
disagreements in the ŕow direction (towards the hot or the cold side) for similar systems
[347, 348, 349, 350]. Such differences cannot be understood by the classical theory [351]
developed by Derjaguin and Sidorenkov [338, 352], and by Ruckenstein for thermophoresis
[353]. This theory, based on the electrostatic enthalpy of the electric double layer appearing
close to charged walls, predicts that the ŕow is controlled by the surface charge, and always
goes to the hot side.

Thermo-osmosis has seen a renewed interest due to the massive thermo-osmotic re-
sponses predicted by the use of novel materials, such as soft nanochannels [354], carbon-
nanotubes [337, 345, 84] or graphene [344], together with novel experiments by Bregulla et
al. [350], which őrst reported a microscale observation of thermo-osmotic ŕows. Thermo-
osmotic ŕows could in particular be boosted by the failure of the no-slip boundary condi-
tion (BC), which considers that the ŕuid velocity vanishes in contact with the wall, when
working with nano and micro-systems [99]. In this case, as we have already discussed in
previous chapters, a velocity jump vslip is reported, and the BC is described by a more
general expression őrst proposed by Navier [19, 101]:

vs = b
∂v

∂z

∣

∣

∣

∣

∣

z=zs

, (5.1)

where zs corresponds to the shear plane position and b is the slip length. The role of
interfacial hydrodynamics for thermo-osmosis modelling has already been explored in the
literature [343, 344, 355]. Furthermore, in recent work on thermo-electricity, the critical
role of the solvent enthalpy in describing the response has been highlighted for a modelled,
highly hydrophobic surface [85].

Following this work, we propose in this chapter an analytical framework with the ob-
jective to predict thermo-osmosis of aqueous electrolytes conőned by charged surfaces,
extendable to thermoelectricity and thermophoresis processes. The solvent contribution
and the electrostatic ionic interactions are shown to play the leading role along with hy-
drodynamic slip. We apply the new model to a wide range of systems, varying the wetting
interaction, salt type and concentration, and the surface charge. We report large thermo-
osmotic responses, comparable to the highest responses predicted for special systems from
previous simulations [343, 344, 337, 84], as well as a change of sign in the ŕow direction,
which cannot be predicted by only considering electrostatic interactions, and which can be
crucial in order to interpret the different experimental results reported in the literature.

5.2 Analytical framework derivation

In order to account for the different contributions to the thermo-osmotic response
coefficient, we will brieŕy introduce some general concepts in response theory we will
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(a)

(b)

(c)

Figure 5.1: a-b) Local picture of the electrical double layer at a charged wall: (a) Proőle
of reduced electric potential ϕ, with ϕs the value at the wall; (b) Proőles of cation n+ and
anion n− densities, with ns the bulk value. (c) Schematics of the effective slip length beff
as a function of the slip length b and the shear plane position zs. We distinguish between
the slip situation beff > 0, when the velocity proőle is non-zero in the channel, and the
stagnant layer situation beff < 0, when the velocity proőle vanishes in the channel.

work with. We can describe the thermodynamics of irreversible processes which occur in
systems out of global equilibrium but stationary (with local equilibrium). Non-equilibrium
thermodynamics is based on the local entropy production S given by, following the second
law of thermodynamics:

S =
∑

i

JiXi ≥ 0, (5.2)

where Ji and Xi are the ŕux-force pairs in the system, the ŕux being the rate of a ŕow per
unit area. If the system is driven not too far from equilibrium, we can assume that each
ŕux is a linear combination of all the forces [356]:

Ji =
n
∑

j=1

MijXj , (5.3)

with n the number of independent ŕux-force pairs. The different Mij coefficients in
Eq. (5.3) form the so-called response matrix of a stationary non-equilibrium thermody-
namic system, and it describes the system response to a perturbation. Let’s consider for
example a ŕuid system, described in terms of temperature, matter density and pressure. If
we apply a pressure difference to this system, it will generate a matter ŕow from the high
pressure regions towards the low pressure regions. Analogously, by imposing a tempera-
ture difference in the ŕuid, it will generate a heat ŕow. But, what will happen if pressure
and temperature vary at the same time? If a temperature gradient is applied at constant
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pressure it will cause a matter ŕow (as in convection) and if a pressure gradient is applied
at constant temperature it will produce a heat ŕow in the system. What is remarkable is
that such matter ŕow per unit of temperature difference is equal to the heat ŕow per unit
of pressure difference. This equality, which can written in terms of response coefficients as

Mij =Mji, (5.4)

was proven necessary via statistical mechanics by Lars Onsager as a consequence of the
microscropic reversibility of the system [357, 358]. Thanks to these relations, Onsager is
typically considered the founder of the őeld of non-equilibrium thermodynamics, which
remains very active nowadays due to its promising applications on heat harvesting and
energy production. For instance, let’s consider the response matrix for the ŕow rate density
jq, the heat ŕux density jh and the electric current density je:





jq
jh
je



 =





· Mto Meo

Mto · Mte

Meo Mte ·









−∇p
−∇T

T
E



, (5.5)

with p the pressure, T the temperature and E = −∇V the electrostatic őeld and V
the potential. This response matrix describes the response coefficients of three different
thermodynamic processes: thermo-osmosis Mto, electro-osmosis Meo and thermoelectricity
Mte, the three of them related to the ŕow generation by applying a temperature gradient
or an electric őeld, or to the electricity generation by an applied temperature gradient.

As mentioned in the introduction, thermo-osmotic ŕows (ŕows generated in micro and
nanoŕuidic systems by thermal gradients) could provide an alternative approach to harvest
waste heat. However, such use would require massive thermo-osmotic ŕows, which are up
to now only predicted for special and expensive materials [335]. There is thus an urgent
need to design affordable nanoŕuidic systems displaying large thermo-osmotic coefficients.
But őrst, what controls thermo-osmosis? When a dielectric is plugged in water, a molecule
in the surface can be dissociated to release ions when the thermal forces on the order of kBT
are greater than the electrostatic interactions. Such is the case of polar liquids like water,
for which the Bjerrum length ℓB (representing the distance at which the thermal energy is
comparable to the electrostatic interaction energy, ℓB ∼ 7 Å for water) is comparable to
(or smaller than) the interatomic distance [359]. How water molecules and dissolved ions
in a solution electrostatically interact with the surface has been extensively investigated,
theoretically from the 19th century and more extensively by Gouy and Chapman at the
beginning of the 20th century [360, 361], and experimentally in the 1980s [347, 352]. We
simply recall here the main ingredients of the well-established and so-called Gouy-Chapman
theory, and discuss its limitations. Educational presentations of the Gouy-Chapman the-
ory can be found in books [362, 363, 359], book chapters [364, 365], and articles [366],
discussing in particular applications to nanoŕuidics [87, 29, 367, 368]; useful equations for
the description of slit and cylindrical channels are gathered in Appendix B. With the őnal
objective of obtaining a decomposition of the thermo-osmotic response coefficient Mto in
terms of different contributions, an analytical expression in terms of enthalpy density δh is
proposed. All these quantities were computed within the Poisson-Boltzmann framework.
The range of validity of such framework is also discussed here.

5.2.1 Poisson-Boltzmann framework

Let us consider a charged surface in contact with a Z:Z aqueous electrolyte. Far
from the interface, the positive and negative ions are dispersed in the solution, due to
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entropy, and will have the same concentration. Nevertheless, close to the wall, the ions of
the opposite sign of the ones of the charged surface will tend to accumulate, forming the
so-called electrical double layer (EDL).

Gouy and Chapman described the ion repartition near the wall, and the subsequent
electrostatic potential induced by the surface charge, under four main hypotheses:

1. The ions are considered as punctual and highly mobile.

2. The solvent dielectric permittivity ε is considered constant throughout the system.

3. The charge density ρe and the electric potential V are continuous őelds.

4. All the descriptions are mean őeld: hence, we neglect ion-ion correlations and ion-
solvent interactions.

For simplicity, let’s consider a smooth charged surface, located at z = 0, with uniform
surface charge density Σ (Figs. 5.1a and 5.1b). In this case, the electric potential along
the channel V (z) will be given by the Poisson equation:

ε
d2V

dz2
= −ρe(z), (5.6)

where ε = ε0εr is the solvent permittivity, and ρe is the charge density along the channel.
Such charge density can be expressed in terms of the positive n+ and negative n− ion
densities as ρe(z) = q[n+(z)− n−(z)], where q = Ze is the absolute ionic charge, with e the
elementary charge and Z the ion valence. As ions are highly mobile, thermal ŕuctuations
of V and ρe are neglected. The only contribution to the ion energy is electrostatic, the
ions concentrations along the channel will be given by the Boltzmann equation:

n±(z) = ns exp[∓βqV (z)], (5.7)

where ns is the salt concentration far from the wall and β = 1/(kBT ), with T the ther-
modynamic temperature and kB the Boltzmann factor. Taking into account Eq. (5.7),
the charge density can be expressed as ρe(z) = q[n+(z)− n−(z)] = −2q ns sinh[βqV (z)].
Finally, we can substitute this expression for ρe in the Poisson Eq. (5.6), resulting in:

d2ϕ(z)

dz2
=

2βq2ns
ε

sinh[ϕ(z)] = 8πnsℓB sinh[ϕ(z)], (5.8)

where ϕ(z) = βqV (z) is the reduced potential. This expression involves a system charac-
teristic length, the Bjerrum length ℓB = βq2

4πε , previously introduced. By deőning the Debye
length as

λD =
1√

8πℓBns
, (5.9)

Equation (5.8) can be rewritten as:

d2ϕ(z)

dz2
=

1

λ2D
sinh[ϕ(z)]; (5.10)

typically referred to as the Poisson-Boltzmann equation.
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a. Exact solution for a planar wall

We can solve Eq. (5.10) analytically for some speciőc geometries and conditions (see
Appendix B), as in the case of a planar smooth wall. For this system geometry, assuming
a vanishing potential far from the wall, Eq. (5.10) can be integrated as:

ϕ(z) = 4 atanh
(

γe−z/λD

)

; (5.11)

with γ = tanh(ϕs/4), where ϕs is the potential at the wall, represented in Fig. 5.1a. In
Fig. 5.1b we can őnd represented the ions distributions given by Eq. (5.7) with the potential
solution for planar walls. From the Poisson-Boltzmann solution for planar walls Eq. (5.11),
we can state a relationship between the surface potential ϕs, and the surface charge density
Σ, by taking into account that at the wall the electric őeld Es reads Es = − dV

dz

∣

∣

z=0
= Σ

ε .
The expression which relates ϕs and Σ for planar walls is called the Grahame equation:

Σ =
q

2πℓBλD

sinh

(

ϕs

2

)

; (5.12)

which can be simpliőed as:

ϕs = 2 sgn(Σ) asinh
(

λD

ℓGC

)

, (5.13)

where ℓGC = q/(2πℓB|Σ|) is the Gouy-Chapman length.
We can also őnd an approximate solution to Eq. (5.10) when considering the small Σ

limit. This case is analogous to consider small ϕ (i.e. qV ≪ kBT ), so we can linearize
sinh[ϕ(z)] ∼ ϕ(z), obtaining:

ϕDH(z) = ϕs exp

(

− z

λD

)

. (5.14)

This small surface charge density limit is known as the Debye-Hückel limit (DH), and can
be found from Eq. (5.13) when λD ≪ ℓGC, which occurs for low Σ and/or large ns. The
opposite situation, when working under high Σ and/or low ns, i.e. high potential, is known
as the Gouy-Chapman limit (GC), and it corresponds to the limit when λD ≫ ℓGC.

b. Validity of the hypotheses and limitations of the Poisson-Boltzmann frame-
work

We can now discuss the validity of this modeling and in particular the limits of the
different hypotheses underlying in the Gouy-Chapman theory. Let’s őrst consider the case
of the ionic correlations. Such ionic correlations can be discarded if the typical Coulombic
interaction energy between two ions is small compared to kBT , which reads if we introduce
the so-called plasma parameter Γ [369, 370, 371]:

Γ =
βq2

4πεdions
=

ℓB
dions

< 1, (5.15)

where dions is the typical inter-ionic distance. At the surface, 1/d2ions = |Σ|/q, and then we
can rewrite Γ as

Γ =

√

ℓB
2πℓGC

. (5.16)
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This ratio between two characteristic system lengths allows us to deőne a critical sur-
face charge density Σc, related to ℓcGC, above which ionic correlations must be taken
into account. We can consider non-negligible ion-correlations when Γ ≫ 1, i.e. when
ℓGC ≪ ℓcGC = ℓB/(2π) or, in terms of Σc:

|Σc| = q

ℓ2B
, (5.17)

on the order of 330mC/m2 for monovalent ions in water at 300K.
We can follow the same procedure to obtain a limit in terms of critical salt concentration

in the bulk ncs , by considering the associated bulk inter-ionic distance: dions = (2ncs)
−1/3

(taking into account that the ion concentration is twice the salt concentration). As previ-
ously described, we will consider the limit of the model validity for Γ ∼ 1. Therefore, from
Eq. (5.15), we őnally obtain:

ncs =
1

2 ℓ3B
. (5.18)

of the order of ncs ≃ 2M for a monovalent salt in water at 300K.
Finally, it is important to note that, for monovalent ions in water at room temperature,

ℓB ∼ 7Å is greater than the ionic size, so that there will be no steric repulsion effects,
when Γ = ℓB/dions < 1.

Other assumptions for the Gouy-Chapman theory, aside of the discussed ionic correla-
tions effects, can pose a problem when working under the Poisson-Boltzmann framework.
Different adjustments to the model can be performed for a more accurate description of
reality, by taking into account the spatial heterogeneities due to the molecular solvent
structure, which affect several parameters such as the dielectric permittivity along the
channel or the non-electrostatic interaction potential [372], and which one can describe by
introducing a position-dependent polarization of the medium in Eq. (5.6) [213]. Although
always present, these short-range interactions can signiőcantly affect the ion distribution
when the Debye length λD is of order of the őrst absorption layer of water (around one
molecular diameter). Aside of local effects, other contributions to the ion energy can also
be taken into account within the Boltzmann factor, such as the interactions of the ions
with the solvent and the wall [373]. Indeed, the ion-size can play a critical role in the ion
distribution behavior due to its interaction with the solid, and for instance the density of
large ions can be interfacially enhanced due to the inhomogeneties of the solvation energy
or solvation enthalpy excess.

Still, the validity of the presented model has been assessed by numerous experiments
and simulations under standard conditions and typically for symmetric monovalent salts
dissolved in water, which are systems that can be easily found in everyday media (for
example sea water), and with a deep theoretical interest due to its multiple and promising
applications, as the ones discussed in the following.

5.2.2 The hydrodynamic boundary condition and the osmotic velocity
proőle

We have already seen in previous chapters, that the standard no-slip boundary con-
dition (BC), which supposes that the ŕuid velocity vanishes when in contact to the wall,
needs to be reőned at the nanoscale. Two different situations can occur. First, we can
consider the presence of a liquid stagnant layer close to the wall (Fig. 5.1c with beff < 0),
implying a vanishing velocity proőle inside the channel. The typical size of the stagnant
layer, due to the layering of the ŕuid close to the wall, is of order of one molecular diameter
([185], Chapter 2), σ ∼ 2.75Å for water.
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Second, we can consider an interfacial velocity jump (Fig. 5.1c with beff > 0), also
known as slip velocity vslip, which implies a non vanishing ŕuid proőle at the interface. As
detailed in Chapter 2, bulk and interface transport coefficients (namely the shear viscosity
η and the liquid-solid friction coefficient λ), can be related via the partial slip BC Eq. (5.1),
which introduces the slip length b and the shear plane position zs. We have previously
discussed that, although this feature is always present for a conőned ŕuid, it is at the nano-
and micro-metric scales that it becomes critical to take it into account, due to the typical
order of magnitude of the slip length, b ∼ 100 − 102 nm [30, 29, 31].

We can account for both situations by introducing an effective slip length beff = b −
zs. We can see in Fig. 5.1c that beff ≥ 0 corresponds to the slip situation and beff < 0
corresponds to the stagnant layer situation. In the last case, −beff identiőes with the
size of the stagnant layer present at the liquid-solid interface, where the liquid velocity
vanishes. In terms of wettability, we can expect the presence of a stagnant layer in the
most hydrophilic systems, where the liquid molecules have more tendency to accumulate
close to the wall, while a slipping system will correspond to hydrophobic interfaces, with
small liquid-solid friction coefficient due to the depletion of the liquid atoms from the wall.

The appropriate boundary conditions together with the Stokes equation

− η∆v = −∇p+ fext, (5.19)

where p is the pressure and fext is an applied external force per unit volume, allow us
to derive a general expression for the osmotic velocity proőle close to a planar wall as a
function of the force density proőle in the interaction layer. Let us őrst simplify Eq. (5.19)
by considering f = −∇p+fext the force density generated by the thermodynamic gradients
in the interfacial layer. Integrating Stokes Eq. (5.19), in the lubrication limit and supposing
force and therefore velocity derivative vanish far from the wall, we obtain:

− η
∂vx(z)

∂z
=

∫ z

+∞
f(z′) dz′. (5.20)

Integrating again between the position z0 (corresponding to the wall position in the slip
situation and to the position where the velocity proőle vanishes in the stagnant layer case)
and z, we obtain:

vx(z)− vx(z0) =

∫ z

z0

dz′
∫ ∞

z′

1

η
f(z′′) dz′′. (5.21)

We can replace vx(z0) by the relevant boundary condition from Eq. (5.1) (with b = 0 in
the stagnant layer situation) obtaining:

vx(z) =
1

η

[∫ z

z0

dz′
∫ ∞

z′
f(z′′) dz′′ + (beff + z0)

∫ ∞

z0

f(z) dz

]

; (5.22)

which reduces, integrating by parts and taking its limit far from the wall, to:

v∞osm =
1

η

∫ ∞

z0

(z + beff) f(z) dz, (5.23)

with z0 = 0 in the slip case (beff ≥ 0) and z0 = −beff in the stagnant layer case (see
Fig. 5.1c). Osmotic velocity proőles, given by the general expression Eq. (5.23) far from
the wall, are of special interest when computing the different coefficients of the response
matrix.
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(a) Slip situation (b) Stagnant layer situation

Figure 5.2: Schematics of the Poiseuille velocity proőle generated by applying a pressure
gradient −∇p to the ŕuid particles in the direction parallel to the wall.

(a) Mechanocaloric effect (b) Thermo-osmotic ŕow

Figure 5.3: (a) Generation of a heat ŕux Jh by applying a pressure gradient −∇p in an
aqueous electrolyte. Due to Onsager’s reciprocal relations, the response of this system is
equivalent to the thermo-osmotic response.(b) Thermo-osmotic ŕow in an aqueous elec-
trolyte, consisting in the generation of a thermo-osmotic velocity proőle vto by applying a
temperature gradient −∇T/T in the direction parallel to the wall, due to the variations in
the enthalpy excess density proőle δh.



110 CHAPTER 5. THERMO-OSMOSIS

5.2.3 Thermo-osmotic response

Thermal gradients along liquid-solid interfaces generate a ŕow, called thermo-osmotic
ŕow. From the response matrix in Eq. (5.5), the elements that contribute to the thermo-
osmotic response are:

(

jq
jh

)

=

(

· Mto

Mto ·

)(

−∇p
−∇T

T

)

, (5.24)

where jq is the ŕow rate density (i.e. the average ŕow velocity vosm) and jh is the heat ŕux
density. Due to Onsager’s reciprocal relations, there are two different paths to compute
the thermo-osmotic response coefficient Mto: the mechanocaloric route (jh = −Mto∇p,
Fig. 5.3a) and the thermo-osmotic route (jq = −Mto∇T/T , Fig. 5.3b).

Mechanocaloric route First we will follow the mechanocaloric route, considering
f = −∇p as the force applied on the system. Supposing a ŕow in the x direction, H̃ the
channel height and Lx, Ly the wall dimensions, the total heat ŕux Jh will be given by
the integral over the cross section of the ŕux of enthalpy excess density δh (which will
be discussed in next Section 5.2.4), within the region where the velocity proőle in the z
direction is non-zero:

Jh =

∫ Ly

0
dy

∫ H̃−z0

z0

δh(z) v(z) dz. (5.25)

Using the symmetry of the ŕow around z = H̃/2 and extending the result to a semi-inőnite
channel (or, analogously, supposing that the walls are far enough and that there is a well
deőned bulk liquid region in the channel where δh = 0), Eq. (5.25) writes:

Jh = 2Ly

∫ ∞

z0

δh(z)v(z) dz. (5.26)

Assuming that δh(z) does not vanish in a thin region of liquid close to the wall, where
z − zs ≪ h̃, we can linearize the velocity proőle. To determine the shape of such velocity
proőle we consider a slab channel, with two parallel walls perpendicular to the z axis,
located at z = 0 and z = H̃ (see Fig. 5.2). We now apply a pressure gradient f = −∇p
along the x direction, which generates a Poiseuille velocity proőle v(z), as we discussed in
Chapter 2. This Poiseuille ŕow will be described by Eq. (5.19) together with the boundary
condition dv

dz

∣

∣

z=H̃/2
= 0, consequence of the symmetry of the system. The general solution

for the velocity proőle is:

v(z) =

{

f
2η

[

h̃(z + beff)− (z − zs)
2
]

for z0 < z < H̃ − z0

0 otherwise
; (5.27)

with z0 = 0 in the slip situation (Fig. 5.2a), and z0 = −beff = zs − b in the stagnant layer
situation (Fig. 5.2b). Eq. (5.27) can be thus linearized close to the interface as:

v(z) ≈
{

fh̃
2η (z + beff) for z > z0

0 for z < z0
. (5.28)

Substituting in Eq. (5.26), we subsequently obtain:

Jh =
Lyh̃f

η

∫ ∞

z0

δh(z)(z + beff)dz. (5.29)
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Finally, the heat ŕux per unit area will be jh = Jh
S⊥

= Jh
Lyh̃

and, taking into account from

Eq. (5.24) that jh =Mto f , we obtain:

Mto =
1

η

∫ ∞

z0

δh(z)(z + beff)dz. (5.30)

Thermo-osmotic route Equation (5.30) can be also determined, following Onsager
reciprocal relations, through the thermo-osmotic route: vosm =Mto(−∇T/T ). In this case,
the force density driving the ŕow will be the thermodynamic force, f = −T∇( µ̃T ), with µ̃

the chemical potential. Taking into account the Gibbs-Helmholtz equation, dµ̃/T
dT = − δh

T 2

[350], we obtain that

f(z) = −δh(z)∇T
T
. (5.31)

Substituting f in Eq. (5.23) we obtain:

v∞osm = −∇T/T
η

∫ ∞

z0

δh(z)(z + beff)dz. (5.32)

Finally, taking into account that vosm = Mto(−∇T/T ), the same expression than in
Eq. (5.30) is obtained, consistently with Onsager’s reciprocal relations [357, 358].

5.2.4 Enthalpy excess density

A fundamental quantity in Eq. (5.30) is the enthalpy excess density δh. Here we in-
troduce some general concepts related to δh such as its classical description [338, 352],
given only by the ionic electrostatic interactions, together with some additional contribu-
tions that we will account for in the general model we propose to describe the different
interactions that play a role in the enthalpy of an aqueous electrolyte.

a. General remarks

In the case of aqueous electrolytes, originally, Derjaguin et al. developed a model
for the thermo-osmotic coefficient [338, 352] as in Eq. (5.30) without the slip term, and
only considering the electrostatic enthalpy of the ions δhel(z) = ρe(z)V (z) + p(z). By
taking into account Eq. (5.6) and considering mechanical equilibrium along the z direction
(

dp
dz = −ρe

dV
dz

)

, we obtain an expression of δhel as a function of the electric potential:

δhel(z) = −εV (z)
d2V

dz2
+
ε

2

(

dV

dz

)2

. (5.33)

Just focusing on this classical theory [352], which only considers the electrostatic inter-
actions between ions (δh ≃ δhel), substituting Eq. (5.33) in Eq. (5.30), we can solve the
integral analytically in the slip situation, obtaining the electrostatic constribution to the
thermo-osmotic response as a function of the ratio x = λD/ℓGC:

M el
to =

1

2πℓBηβ

{

−3 ln
(

1− γ2
)

− asinh2(x) +
beff
λD

[

3x|γ| − 2x asinh(x)
]}

, (5.34)

with

γ =
sgn(Σ)
x

(

−1 +
√

1 + x2
)

. (5.35)



112 CHAPTER 5. THERMO-OSMOSIS

This expression can be simpliőed in the Debye-Hückel regime, which was the one considered
by Derjaguin [338, 352], then x≪ 1:

M el,DH
to = − x2

8πℓBηβ

(

1 + 2
beff
λD

)

, (5.36)

and thus scaling as Σ2 in this regime. A different scaling with x is found for high surface
charges, i.e. when x≫ 1, when the contribution is given by the expression:

M el,x≫1
to =

1

2πℓBηβ

{

3 ln
(x

2

)

− ln2(2x) +
beff
λD

x

[

3− 2 ln(2x)

]}

. (5.37)

It is interesting to note that none of these expressions depend on the sign of the surface
charge: Mto < 0 independently of the range of parameters studied.

Although the model proposed by Derjaguin et al. is useful to quantitatively predict
some Mto experimental orders of magnitude [350], it fails to describe the amplitude of
the responses predicted in the literature [343, 344, 337, 84], the thermo-osmotic response
reported for pure water in uncharged membranes [340], as well as the experimental discrep-
ancies observed in Mto sign [347, 348, 349, 350]. Although electrostatic ionic interactions
are for sure an important ingredient controlling the thermodynamical processes of a dis-
solved salt in a charged channel, other interactions discarded by the classical model may
also be critical to describe thermo-osmosis, such as the liquid-solid interactions (i.e. the
wetting properties), as well as the ion speciőcity (with a very important impact in the case
of very asymmetric salts [213]).

Generally, the atomic enthalpy excess density for an element i can be deőned as:

δhi(z) = [δui(z) + δpi(z)]ni(z), (5.38)

where δA(z) = A(z)−Abulk; with Abulk the bulk value of the physical property A, ui the
energy per atom, pi the stress per atom 1, and ni the atomic number density proőle. When
working at constant temperature, the kinetic energy per atom uk,i is proportional to kBT
for all z, so δuk,i = 0 and δui = δup,i with up,i the potential energy per atom.

Equation (5.38) can be easily extended to the case of molecular ŕuids as the sum of
the different atomic contributions. Therefore, in the case of water:

δhwat(z) = δhO(z) + δhH(z). (5.39)

In this case δhwat does not have a simple analytical form and, due to its strong dependence
on the wetting properties [343, 344], it has to be computed numerically from simulations
for a given wall type.

Note that other contributions to the total thermo-osmotic response could be considered,
as the one associated to the depletion of the ions from the wall or to the dipole moment
of the water molecules in the EDL. In this latter case, for instance, the associated density
of enthalpy excess will be

δhdp(z) = −⟨µ⟩ (z)nO(z)E(z), (5.40)

with nO the number density of the oxygen atoms, E = −dV
dz the electrostatic őeld, and

⟨µ⟩ the average dipole moment in the direction of the őeld. ⟨µ⟩ can be computed from
Boltzmann statistics, by taking into account that ⟨µ⟩ (z) = µ ⟨cos θ⟩ (z), with ⟨cos θ⟩ the
average dipole moment orientation and µ the dipole moment of the solvent, µ = 1.85 D

1A practical difficulty with measuring this term will be discussed in Section 5.3.2.
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for water. With that regard, denoting PB the probability that the molecule will have the
angle θ, then

PB =
eα cos θ

∫

dΩ eα cos θ
, (5.41)

where Ω is the solid angle and α = βµE. Therefore,

⟨µ⟩ =
∫

dΩµPB cos θ =
µ
∫ π
0 e

α cos θ cos θ sin θ dθ
∫ π
0 e

α cos θ sin θ dθ
= µ

(

cothα− 1

α

)

. (5.42)

By linearizing this expression when µE ≪ kBT and substituting in Eq. (5.40) we őnally
obtain:

δhdp(z) = − 1

3β

(

µ

q

)2

nO(z)

(

dϕ

dz

)2

, (5.43)

where ϕ is the reduced potential. We can obtain nO from molecular dynamics simulations
and ϕ(z) solving Eq. (5.10) for the corresponding geometry.

One of the objectives of this chapter is to present a general model that accounts for
the different interactions taking place in a liquid electrolyte, namely the solute and sol-
vent electrostatic interactions (in the presence of a charged surface) and purely neutral
interactions (due to the solid wetting properties).

b. Proposed model

The main idea in the model we propose here is, following the ideas of Ref. 85, to include
the additional contributions to δh related to the solvent (water in the present work) and
the ions, along with the electrostatic enthalpy of ions δhel considered by the standard
approach.

The water contribution in the case of a neutral surface (Σ = 0), will be given
exclusively by the sum of the oxygen and hydrogen atomic enthalpies, which can be directly
determined from equilibrium MD simulations following Eqs. (5.38) and (5.39), so δh0wat =
δh0O + δh0H. In the case of a charged surface Σ, we should also account for the dipole
moment contribution, δhΣdp from Eq. (5.43), writing the total water enthalpy contribution
as δh0wat + δhΣdp.

Analogously, the ions contribution for a neutral surface will write δh0ions = δh0++δh
0
−,

where
δh0± =

(

δu0± + δp0±
)

n0±, (5.44)

with the ions distribution given by an exponential of the potential energy variation; for
symmetric salts depleted from the wall:

n0± = n0s exp
(

−βδu0±
)

; (5.45)

n0± can also be determined from equilibrium MD simulations at a reference bulk concen-
tration n0s .

We can extend this description to a charged surface, by including the potential (de-
scribed within the Poisson-Boltzmann framework) in Eq. (5.44):

δhΣions =
(

δu0+ + δp0+ + qV
)

nΣ+ +
(

δu0− + δp0− − qV
)

nΣ−; (5.46)

where the ionic concentrations will be given by the Boltzmann distribution:

nΣ± = ns exp
[

−β
(

δu0± ± qV
)]

= n± exp
(

−βδu0±
)

, (5.47)
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with n± the ion distributions within the Poisson-Boltzmann framework, given by Eq. (5.7).
Rearranging terms in Eq. (5.46) we obtain:

δhΣions =
δh0+
n0s

n+ +
δh0−
n0s

n− + q
(

nΣ+ − nΣ−
)

V

= δhΣsol + δhΣmix + δhΣES,

(5.48)

from where we deőned the solvation enthalpy as the enthalpy contribution from the őrst
two terms:

δhΣsol =
δh0+
n0s

n+ +
δh0−
n0s

n−. (5.49)

The potential term in Eq. (5.48) is in turn decomposed into a purely electrostatic contri-
bution:

δhΣES = q (n+ − n−)V, (5.50)

and a mixed term

δhΣmix(z) = q

[

n+

(

n0+
n0s

− 1

)

− n−

(

n0−
n0s

− 1

)]

V, (5.51)

which acts as a compensation term for δhΣES in the region where the ions are depleted from
the wall. Indeed, when the salts are depleted from the wall (typically symmetric salts),
their density proőle for neutral walls can be approximated by a step function with n0± = n0s
in bulk and n0± = 0 close to the wall, so δhΣmix = 0 in bulk and δhΣmix = −δhΣES at the
interface.

A full picture will be completed by considering the electrostatic pressure contribution
δpΣES = ε

2

(

dV
dz

)2
which, together with δhΣES, form the classical electrostatic term from

Eq. (5.33), δhel = δhΣES + δpΣES. In conclusion, dropping the enthalpies super indexes
related to the surface charge in order to light notation, the total enthalpy excess density
writes:

δh(z) = δhwat(z) + δhdp(z) + δhsol(z) + δhmix(z) + δhel(z). (5.52)

As discussed, the classical picture within δhel is a continuum description which does not
account for the depletion of the ions in the vicinity of the wall. Deőning the characteristic
depletion length as dℓ, we could also think in accounting for this effect, instead with the
compensation term δhmix, by imposing a vanishing potential in the interfacial region where
there are no ions. This deőnes, for a semi-inőnite channel:

δh∗el =

{

δhel for z > dℓ

0 for z ≤ dℓ
. (5.53)

In this way, we can approximate for symmetric salts δh∗el ≈ δhmix+δhel, and thus the total
enthalpy can be expressed as:

δh(z) = δhwat(z) + δhsol(z) + δhdp(z) + δh∗el(z). (5.54)

In this equation we can distinguish a contribution related to the solvent (water in this work)
δhwat, another one related to the ion solvation δhsol, and two electrostatic contributions,
δhdp and δh∗el, related to the solvent and the ions electrostatic interactions respectively.
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5.2.5 Thermoelectric response

The process of generating an electric current by applying a temperature gradient is
known as thermoelectricity. In order to compute the thermoelectric response, the elements
that contribute from the response matrix in Eq. (5.5) are:

(

jh
je

)

=

(

· Mte

Mte ·

)(

−∇T
T
E

)

, (5.55)

where jh is the heat ŕux density, je is the electric ŕux density and E is the external
electric őeld parallel to the interface. In order to compute the thermoelectric response
coefficient Mte, we will follow the relation jh =MteE although, due to Onsager’s reciprocal
relations, the same result is obtained from the relation je = −Mte∇T/T . Analogously to
the thermo-osmotic response computation through the mechanocaloric route in the limit
of thin interaction layers, the heat ŕux will be given by Eq. (5.25), although in this case
the velocity őeld we should consider is the one induced by an electric őeld, also known
as electro-osmotic velocity proőle, which is given by Eq. (5.22) with f = ρeE the electric
force. Substituting ρe by its relation with the potential given by Eq. (5.6), the solution of
Eq. (5.22), supposing a vanishing potential far from the wall, yields:

vEO(z) =

{

εE
η

[

V (z)− V (z0) + beff
dV
dz

∣

∣

z=z0

]

for z0 < z < H̃ − z0

0 otherwise
. (5.56)

Taking into account that the heat ŕux density jh = JH
S⊥

, and that Mte = jh
E , we őnally

obtain that

Mte =
q

2πℓBh̃η

∫ ∞

z0

dz δh(z)

[

ϕ(z)− ϕ(z0) + beff
dϕ

dz

∣

∣

∣

∣

z=z0

]

, (5.57)

with ϕ = βqV . As for the thermo-osmotic response, the main contributions to δh(z)
will be given by Eq. (5.54). We can compute the classical electrostatic contribution to

the thermoelectric response in the slip situation. In this case, dϕ
dz

∣

∣

∣

z=0
= −2sgn(Σ)

ℓGC
(see

Appendix B), and the integral in Eq. (5.57) can be performed analytically, giving:

M el
te = − q

2π2ℓ2Bh̃ηβ

sgn(Σ)x
λD

{

5

[

1− asinh(x)
x

]

− 2|γ|asinh(x)

+
beff
λD

[

3|γ|x− 2xasinh(x)
]

}

;

(5.58)

with x = λD/ℓGC and γ deőned in Eq. (5.35). As for thermo-osmosis, it is interesting
to obtain the simpliőed expression corresponding to low and high surface charge limits.
Therefore, in the Debye-Hückel regime (when x = λD/ℓGC ≪ 1):

M el,DH
te =

q

12π2ℓ2Bh̃ηβ

sgn(Σ)x3

λD

(

1 + 3
beff
λD

)

; (5.59)

which, instead of scaling as Σ2 like the thermo-osmotic response Eq. (5.36), scales as Σ3.
In the Gouy-Chapman regime corresponding to high surface charges, i.e. when x≫ 1, the
scaling changes:

M el,x≫1
te = − q

2π2ℓ2Bh̃ηβ

sgn(Σ)x
λD

{

5− 2 ln(2x) +
beff
λD

x [3− 2 ln(2x)]

}

. (5.60)
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5.3 Methods

After exposing the theoretical framework under which we will obtain the different
contributions to the thermo-osmotic response, we will perform MD simulations with the
objective of determining the solvent and solute atomic enthalpies as a function of the
wetting properties of the system. MD simulations are a useful and necessary tool to
obtain such atomic enthalpy proőles, although they present some limitations that are also
discussed here.

5.3.1 Simulation details

We used the LAMMPS package [144] to determine the enthalpy excess density pro-
őles from equilibrium molecular dynamics (EMD) simulations of an aqueous electrolyte
constituted by 2080 water molecules, simulated with the SPC/E water model [169], and
80 ions (40 anions and 40 cations) of three different salt types, NaCl, KCl and NaI, such
as the bulk salt concentration was ns ∼ 1M, following Ref. 373. In this paper, the au-
thors performed MD simulations to study electro-osmotic ŕow in hydrophobic channels
and proposed a theoretical model, extended in Ref. 213, in good agreement with their
simulation results. Therefore, we intended to reproduce their system in order to study
thermo-osmotic ŕows. All atomic interactions were modeled with a Lennard-Jones po-
tential characterized by an interaction energy εij and size σij . The system parameters
were the ones indicated in Ref. 373, namely the water-ions interactions were taken from
[374] except for the biggest ion, I−, for which we considered σII = 6.00Å [373, 213]. We
imposed periodic boundary conditions in the x and y directions parallel to the walls with
lateral sizes Lx = 48.21Å and Ly = 32.14Å. The structure of the walls consisted in
three atomic layers structured as a face centered cubic crystal exhibiting a (001) face to
the ŕuid, with a lattice parameter a = 5.356Å, equivalent to the LJ wall structure in
previous chapters. The solid wall atoms were frozen and the oxygen-solid (LS) interac-
tions were varied between the hydrophobic and hydrophilic values given in Ref. 373, with
εLS = {0.160, 0.231, 0.323, 0.416, 0.568} kcal/mol. These wettings are characterized by the
respective contact angles θ ∼ {140◦, 130◦, 110◦, 90◦, 50◦}, determined from additional ses-
sile drop simulations (see Chapter 2). The exact values for the contact angles, measured at
298 K from three independent simulations for a given wetting, can be found in Table 5.1.
Lorentz-Berthelot mixing rules were applied for all the cross-interactions.

For all the simulations we imposed a timestep of 2 fs and we ran an equilibration stage
of 500 ps where we őxed the temperature at 298K via a Nosé-Hoover thermostat with a
damping time of 200 fs. Following Ref. 373, we also set the pressure to 10 atm by using
the top wall as a piston, exerting an external force proportional to the desired pressure
multiplied by the wall surface. We then continued applying the thermostat, and őxed the
top wall at its equilibrium position in the production run. The average distance between
the walls for all the runs was H̃ ∼ 45 Å.

The slip length was determined for an aqueous electrolyte from non-equilibrium molec-
ular dynamics (NEMD) simulations of 1 M of NaCl dissolved in SPC/E water at 10 atm.
With that regard, we applied a constant shear velocity Uwall to both walls in opposite x
directions, generating far from the wall a linear velocity proőle with constant shear rate.
The friction coefficient was determined from the relation τ = λvslip between the shear
stress τ and the velocity jump at the interface, vslip = Uwall − vx(zs), with zs measured
from the Gibbs dividing plane method, see Chapter 2. The slip length was then b = η/λ,
with η corresponding to the bulk viscosity obtained from the relation τ = η dvx

dz . Further
details about the slip boundary condition can be found in Chapters 2 and 3.
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θ (deg) εLS (kcal/mol) b (Å) zs (Å) beff (Å)
142.16± 16.49 0.160 54.89± 6.99 1.44± 0.02 53.45
127.90± 6.20 0.231 23.50± 1.82 1.07± 0.06 22.43
108.41± 0.81 0.323 6.94± 2.05 0.83± 0.05 6.11
87.25± 8.29 0.416 3.98± 0.53 0.59± 0.13 3.39
51.46± 2.65 0.568 0.0 (−0.47± 0.34) 0.33± 0.03 -0.33

Table 5.1: Slip length b and shear plane position zs along with the effective slip beff = b−zs,
for the different wetting angles θ considered in our study, which are controlled by the
interaction energy εLS between liquid and solid atoms.

For a given wetting angle, determined by εLS, 3 independent shears in the linear re-
sponse regime were applied, Uwall = {10, 15, 20} m/s, and for a given shear three indepen-
dent simulations were performed, giving (taking into account the possibility of indepen-
dently measuring τ for the top and the bottom wall) 18 independent measures of viscosity
and friction, with a production time of 4 ns. The error of both transport coefficients cor-
responded to the statistical error within 95% of conődence level and the error on b was
determined from error propagation computation:

∆b = b

√

(

∆η

η

)2

+

(

∆λ

λ

)2

. (5.61)

Good agreement was found between the simulated viscosity and the experimental value
for all the wettings [375, 376]. The slip length and shear plane position values are shown
in Table 5.1, where we note that the most hydrophilic situation (θ ∼ 50◦) is considered as
a no-slip situation with b = 0.0 Å corresponding to a stagnant layer (beff < 0).

Aside of EMD and NEMD simulations of different aqueous electrolytes enclosed be-
tween LJ walls, we also performed an extra set of simulations of 1 M of NaCl dissolved
in SPC/E water conőned between graphene walls with size Lx = 46.73 Å and Ly =
34.08 Å. The solution parameters were the same than the ones for LJ walls and the
oxygen-carbon interactions were modelled as described in Ref. 377, with a contact an-
gle of θ = 84.98◦ ± 5.57◦. The slip length of this conőguration, measured analogously as
for LJ walls, was b = 539.53± 41.23 Å and zs = 0.76± 0.20 Å.

5.3.2 About enthalpy excess density determination

Generality of our model The only contributions to δh in Eq. (5.54) that cannot be
computed analytically are the solvent and solute contributions, δhwat and δhsol respectively.
In Fig. 5.4 we can őnd represented the total enthalpy excess densities computed directly
from the aqueous electrolyte solutions following Eq. (5.38) for NaCl, KCl (Fig. 5.4a) and
NaI (Fig. 5.4b) for a concentration ns = 1M, together with the proőles for pure water
simulations (with no dissolved ions). In Fig. 5.4 we can see that in the case of symmetric
salts (Fig. 5.4a) the solute enthalpy, even at large concentrations, does not affect the total
enthalpy proőle, which is controlled by the solvent. However, in the case of very asymmetric
salts (Fig. 5.4b), the solute enthalpy density proőle presents a non negligible contribution.
To overcome this problem, one can introduce a modiőed Poisson-Boltzmann equation,
which accounts for the position-dependent polarization of the medium together with an
external potential contribution to the ionic densities distributions in the Boltzmann factor,
as done in Ref. 213 for electro-osmosis. With that regard the ion speciőty is quantiőed by



118 CHAPTER 5. THERMO-OSMOSIS

(a) (b)

Figure 5.4: Enthalpy excess density proőles of pure water (continuous line) simulations
together with the proőles corresponding to an aqueous solution of (a) two symmetric salts:
NaCl and KCl; and (b) one assymetric salt NaI, with a bulk salt concentration ns ∼ 1 M.

the function

f(z) =
1

2λ2Dq

[

U+
ext(z)− U−

ext(z)
]

,

where U±
ext is the external potential action on the ions due to the interactions other than the

electrostatic potential V . From the comparison of this model with their simulation results,
the authors conclude that the ion-speciőc function f(z) is critical to describe the results
for very asymmetric salts such as NaI. Nevertheless, for symmetric salts such as NaCl, the
Debye-Hückel model, analogous to consider f(z) = 0, works well for low surface potentials
(as discussed in Section 5.2.1b.) and for solution concentration of approximately 1 M,
which is the upper consideration in this work. Therefore, in the following, we will present
the different enthalpies results for NaCl dissolved in water within a 1 M concentration,
although they are equivalent to pure water simulation results and thus extendable to any
other symmetric salt type and lower concentrations. The fact that the solution proőle is
mostly dominated by water is due to the depletion of the ions from the wall, characteristic of
symmetric salts, which implies that only the water molecules are affected by the interactions
with the solid atoms (Fig. 5.5). Therefore, we decided to approximate the ion density
proőles (in Fig. 5.5b) by a smooth step function (because the classical Heaviside function
is not differentiable at the step, causing minimization issues) given by, for half the channel,
1/{1+ exp

[

(dℓ − x)/(1 Å)
]

}, which allowed us to determine the size of the depletion layer
dℓ. Tipically, dℓ ∼ 5 Å (see Fig. 5.5b).

Local pressure proőle in MD Before studying the simulation results, it is impor-
tant to comment on one important aspect about the enthalpy excess density determination
in MD simulations. In the model proposed in Section 5.2.4 for the enthalpy excess den-
sity contributions, we discussed that the enthalpy contributions related to the liquid-solid
interactions, namely δhwat and δhsol in Eq. (5.54), cannot be a priori described by an
analytical formula due to the lack of a mathematical model for the wetting properties of
the system, and therefore both contributions have to be determined from MD simulations
using the atomic enthalpy proőles given by Eq. (5.38). Nevertheless, in this equation, the
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(a) (b)

Figure 5.5: Number density proőles for an aqueous electrolyte enclosed between LJ walls
(θ ∼ 140◦) of (a) oxygen and hydrogen atoms; (b) Na+ and Cl− ions normalized by their
bulk concentration ns. The őt by a smooth step function is also represented in solid line.

enthalpy excess density proőle is given as a function of the local pressure differences δp(z),
which are not well deőned in molecular dynamics simulations [343]. Indeed, although the
total system pressure is well deőned in MD simulations from the total virial of the system
(see Chapter 2),

P = nkBT − 1

3V

〈

∑

i<j

rij · fij
〉

, (5.62)

where n = N/V is the density of the system, V its volume, and
〈

∑

i<j rij · fij
〉

the
expected value of the sum of the products of the interparticle distance among atoms and
the forces acting on them, the local deőnition of the stress in a liquid is not unique [378].
The pressure P (R, t) in a ŕuid, omitting additional contributions such as those due to
external forces, is given by the change of the momentum density J(R, t) in the relation

∂J(R, t)

∂t
= −∇P (R, t). (5.63)

The ambiguities in the deőnition arise because any term δP (R, t) such as ∇δP = 0 may be
added to P (R, t) verifying the momentum conservation in Eq. (5.63). Although it can be
proven that the vagueness of the local pressure tensor deőnition have no effect on physical
properties such as the solid-liquid surface tension [379], it has been already discussed and
showed in previous work that the choice of the local pressure deőnition affects the computed
thermo-osmotic response coefficient Mto [343]. In a recent work in Ref. 380, the authors
propose an alternative route to compute Mto by directly computing the thermo-osmotic
force proőle, well deőned, from non equilibrium simulations, by tuning the mass of the ŕuid
particles in the Hamiltonian and setting it to inőnite in the temperature gradient direction
in order to avoid the cancellation of the thermo-osmotic force with the gradient shear force
due to the necessary condition of a vanishing net force on all ŕuid particles in the steady
state. However, in this paper, the authors show that many different initial conőgurations
are needed in order to eliminate the noise in the thermo-osmotic force proőle. Because it has
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been shown that the different proposed methods to determine δh, including those based on
different local stress gradient deőnitions, provided relatively similar Mto results [343, 380],
we decided to measure the local enthalpy proőle from the stress per atom deőnition based
on the virial formulation, easier to implement in MD simulations and which works well
to give a general and qualitative picture in terms of orders of magnitude for the different
contributions of the thermo-osmotic response, which is the main objective of the present
work.

In the presented results we choose a deőnition of the stress per atom given by the
virial-like expression:

pαβi = mivαivβi +
1

2

∑

j ̸=i
rαijfβij , (5.64)

where pαβi denotes the stress tensor component for the atom i in the αβ direction with
{α, β} = {x, y, z}. In the following, we will drop the spatial coordinates to light notation.
In a MD simulation, the local pressure proőle is obtained dividing the space in bins (which
for simplicity we will suppose of the same size) and averaging over the N(zbin) particles in
the bin:

p(zbin) =

∑

i∈bin pi
N(zbin)

.

The total pressure acting on the system will be then given by the sum to all the bins of
the average pressure tensor multiplied by the number of particles in the bin:

∑

bin

p(zbin)N(zbin) =
∑

bin

∑

i∈bin
pi.

Taking into account from the equipartition theorem that m
〈

v2
〉

= kBT , and Eq. (5.62), it
is straightforward that

∑

bin

∑

i∈bin
pi = NkBT +

1

2

〈

∑

i<j

rijfij

〉

= PV.

Note that, explicitly accounting for the spatial coordinates,
∑

α pαα = 3PV in a bulk
system. We have then proven that the quantity

∫

δp ndz in Eq. (5.38), and therefore the
enthalpy excess deőned as

H0 =

∫ ∞

0
δh dz, (5.65)

is unambiguous and independent of the local pressure deőnition. Nevertheless, the thermo-
osmotic response coefficient, given by Eq. (5.30), can be decomposed as

Mto =
1

η

(∫ ∞

z0

δh(z) z dz + beffH

)

, (5.66)

where

H =

∫ ∞

z0

δh dz. (5.67)

In the slip situation H = H0 and then it will be well deőned. However, the integral of
δh z will depend on the local pressure deőnition and is only expected to predict the real
thermo-osmotic response of the system quantitatively for very slipping systems (when the
beffH term dominates). It will be thus useful to explore the different Mto contributions
studying how do they compare to H.
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(a) (b)

Figure 5.6: (a) Enthalpy density proőles for different wettings. (b) Enthalpy excess running
integral for different wettings with the same legend as in Fig. 5.6a.

5.3.3 About enthalpy excess and its comparison with the thermo-osmotic
response

Let’s explore the effect of wetting on the enthalpy excess (per unit area) and how
it compares to the predicted thermo-osmotic response coefficient. Because the ions are
depleted from the wall, the wall-ions interactions are almost negligible and the wetting
effects mostly affect the water enthalpy excess density proőles, δhwat. As detailed in
Section 5.3.1, we controlled the wetting by varying the liquid-solid interaction energy εLS =
{0.160, 0.231, 0.323, 0.416, 0.568} kcal/mol, corresponding respectively to contact angles
θ ∼ {140◦, 130◦, 110◦, 90◦, 50◦}. In Fig. 5.6a we can observe the enthalpy excess density
proőle for different contact angles. We see that δhwat vanishes in the bulk and in the
wall region, and that it presents strong oscillations close to the interface, which are more
pronounced for the hydrophilic situations. In Fig. 5.6b we can see the running integral of
the δhwat proőles presented in Fig. 5.6a. We observe that Hwat converges in the bulk region
for all the wettings, and that it recovers the strong oscillations at the interface present in
δhwat.

The water enthalpy values represented in Fig. 5.7a are obtained by considering a semi-
inőnite system constituted by a wall and a homogeneous bulk region far from the interface.
We can do so by splitting δhwat proőles in two (one for each wall) and extending the bulk
value to inőnite. The enthalpy excess is then measured from Eq. (5.67) with z0 related to
the effective slip determined from NEMD simulations (Table 5.1): z0 = 0 (slip situation)
for θ ∼ {140◦, 130◦, 110◦, 90◦}; and z0 = −beff for θ ∼ 50◦ (stagnant layer situation).
In Fig. 5.7a we observe that the enthalpy excess increases (from −0.02 kcal/molÅ to
0.04 kcal/molÅ) with the wetting and that it changes sign for θ ∼ 90◦. Nevertheless,
it is interesting to note that a stagnant layer can be present for any wetting due to e.g.
nano-asperities of the surface. This situation is the typical one in experiments, where some
defects and bumps are present in the wall due to the difficulty of obtaining perfectly smooth
surfaces with experimental techniques. Therefore, it is interesting to study the effect of
different stagnant layers sizes (i.e. different integral lower boundaries z0 in Eq. (5.67)) for
all the wettings considered in this study. The values obtained for Hwat as a function of
beff for different contact angles are represented in Fig. 5.7b. In this őgure we observe a
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(a) (b)

Figure 5.7: Enthalpy excess water contribution for different wettings (a) measured for a
given effective slip determined from NEMD, stars correspond to Hwat < 0 and circles to
Hwat > 0; (b) as a function of the effective slip beff . The oscillations for beff < 0 are due to
the oscillations of the enthalpy density proőle close to the wall.

strong decrease of the water enthalpy of the system when increasing the stagnant layer
size (namely −beff). This is due to the strong oscillations close to the wall of the running
integral discussed in Fig. 5.6b, which signiőcantly contribute to the Hwat integral value. For
θ ∼ 90◦ we observe a signiőcant increase of Hwat in the stagnant layer situation (beff < 0)
when compared to the slip situation (beff > 0). This is due to the very small value obtained
for this wetting in the slip situation, related to the Hwat change of sign with the contact
angle. Aside of this effect, we also observe for this wetting a Hwat decrease when increasing
the stagnant layer size.

With regard to the thermo-osmotic response coefficient, in Fig. 5.8a we observe a similar
wetting effect in its water contribution, which produces a change of sign in Mwat

to in this
case also for a contact angle of θ ∼ 90◦. In Fig. 5.8b the value of Mwat

to is represented
as a function of the effective slip. We observe that, analogously to Hwat in Fig. 5.7b, the
presence of a stagnant layer (beff < 0) signiőcantly reduces the thermo-osmotic response,
up to three orders of magnitude for the most hydrophobic systems. We also observe a small
effect of slip (beff > 0) in the value of Mwat

to , due to the contribution beffHwat in Eq. (5.66)
(with Hwat constant for beff > 0, see Fig. 5.7b). This slip contribution is negligible in the
case of θ ∼ 90◦, because Hwat ∼ 0 for this case. To simplify the coming discussion, in
the following, when referring to Hwat and Mwat

to , we will restrict to the values shown in
Figs. 5.7a and 5.8a respectively, obtained for the beff values from NEMD simulations.

The other non-analytical term in Eq. (5.54) is the one related to the solvation enthalpy
of the ions δhsol, deőned in Eq. (5.49). From δhsol we can deőne Hsol and M sol

to , and
study how do they compare to the other non-electrostatic and non-analytical term: the
water contribution. Because of the depletion of the ionic density proőles from the wall
for a neutral surface charge (Fig. 5.5b), the wetting effect on both Hsol and M sol

to is very
small, and the solvation contribution is mostly affected by the Debye length λD and the
surface charge density Σ. We can see in Fig. 5.9a that, at a given λD, Hsol increases when
increasing Σ and that it is not affected by λD at high Σ, while for low Σ it can vary up to
3 orders of magnitude. In general, we observe that Hwat ≫ Hsol for all the λD and Σ range
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(a) (b)

Figure 5.8: Thermo-osmotic response coefficient water contribution for different wettings
(a) measured for a given effective slip determined from NEMD, stars correspond to Mwat

to <
0 and circles to Mwat

to > 0; (b) as a function of the effective slip beff .

considered, except for the wetting θ ∼ 90◦, where the water enthalpy excess is close to 0,
and a competition between water and solvation contributions may happen depending on
λD and Σ values. Nevertheless, such competition never happens for the predicted solvation
contribution to the thermo-osmotic response coefficient (M sol

to in Fig. 5.9b), where for the
range of parameters studied Mwat

to ≫ M sol
to . Therefore we can consider, in terms of the

thermo-osmotic response coefficient, a negligible solvation contribution.
It is then left to study how the water contribution compares to the electrostatic en-

thalpy contributions in Eq. (5.54), namely δhdp and δh∗el (given by Eqs. (5.43) and (5.53)
respectively). But őrst, it is interesting to assess the effect that the consideration of a deple-
tion layer of thickness dℓ has in the classical electrostatic term δhel (deőned in Eq. (5.33)).
With that regard, we can see in Fig. 5.10 the comparison between the classical and the
modiőed electrostatic terms for the enthalpy excess and the thermo-osmotic response. We
observe a similar behavior for H and Mto, where the electrostatic (Hel, M el

to) and modiőed
electrostatic term (H∗

el, M
el∗
to ) identify at low Σ and high λD. This is because the classical

electrostatic potential decays for distances of order of the minimum of λD or ℓGC. Then,
for the potential to decay for distances larger than dℓ (so the depletion layer has a smaller
impact in the total integral, see Fig. 5.1a) it is needed a large λD (or low ns) and a large
ℓGC (small Σ). In general terms we see that considering the modiőed electrostatic term
implies a decrease of the electrostatic contribution of up to one order of magnitude for the
largest Σ considered.

At last, we őnd represented in Fig. 5.11 how the modiőed electrostatic contribution
compares to the solvent dipole contribution. Again, a similar global behavior is observed
for both H and Mto. In Fig. 5.11a, we see that for all Σ and for a broad range of λD,
H∗

el ≫ Hdp, and that both terms are comparable only for the smallest λD values considered.
In general we see that both contributions increase when increasing λD and Σ. We also
note that the region where both terms are comparable is when they reach an absolute
value smaller than the measured Hwat in Fig. 5.7a, with the exception of θ ∼ 90◦, when
Hwat ∼ 0 and, as we observed also in terms of solvation contribution, a more detailed
description is needed for this speciőc wetting. This detailed description is not required
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(a) (b)

Figure 5.9: Comparison between water (dash-dotted lines) and solvation (solid lines) con-
tributions for different wettings θ and different surface charges Σ as a function of the Debye
length, respectively for (a) enthalpy excess H; (b) thermo-osmotic response coefficient Mto.

(a) (b)

Figure 5.10: Comparison between modiőed electrostatic (dashed lines) and classical elec-
trostatic (solid lines) contributions for different surface charges Σ at a given wetting, as a
function of the Debye length, respectively for (a) enthalpy excess H; (b) thermo-osmotic
response coefficient Mto. The color code is the same as in Fig. 5.12 (increasing absolute
value with increasing surface charge).
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(a) (b)

Figure 5.11: Comparison between modiőed electrostatic (dashed lines) and dipole moment
(solid lines) contributions for different surface charges Σ at a given wetting, as a function
of the Debye length, respectively for (a) enthalpy excess H; (b) thermo-osmotic response
coefficient Mto. The color code is the same as in Fig. 5.12 (increasing absolute value with
increasing surface charge).

in terms of Mto contributions, where we can see, by comparing the water contribution
values in Fig. 5.8a with the ones corresponding to M el∗

to and Mdp
to contributions reported

in Fig. 5.11b, that the values for the lower λD values where M el∗
to and Mdp

to are comparable
are much smaller than the reported values of Mwat

to , on the order of 10−8 − 10−9 m2/s and
thus, we can consider M el∗

to ≫Mdp
to .

We can hence conclude that the main contributions to the thermo-osmotic response
coefficient Mto come from the water and the electrostatic term, considering negligible
the solvation and the dipole moment contributions. We can then focus our discussion
considering:

Mto ≃Mwat
to +M el∗

to , (5.68)

and studying how do these contributions affect the total thermo-osmotic response of the
system.

5.4 Results: Fast and versatile thermo-osmotic ŕows

The objective of this study is to present a general simple model, and with that regard we
have applied some approximations in order to explore a broad range of parameters and to
obtain a simple general picture of the physical processes that control the thermo-osmotic
response. We have discussed in previous sections the validity of such approximations,
let’s now explore how do wetting, salt concentration and surface charge affect the thermo-
osmotic response coefficient for an aqueous electrolyte composed by a symmetric salt (NaCl,
KCl) dissolved in water.

We can őrst focus on the wetting interactions corresponding to a slip situation (beff > 0).
In this case, as previously discussed, the lower limit in the integral (5.30) is z0 = 0. When
exploring in the previous section the different contributions to Mto, we have concluded
that the response should be mostly dominated by a modiőed electrostatic contribution
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M el∗
to , equivalent to the classical Derjaguin’s contribution integrated from the depletion

layer position dℓ instead of from the wall; together with the water contribution Mwat
to ,

i.e. Mto is given by Eq. (5.68). Therefore Mto is controlled by the competition between
water and electrostatics contributions, depending on wetting, Σ and ns (or analogously
λD). In Fig. 5.12 the total thermo-osmotic response is represented in solid lines for all the
wettings considered, together with Mwat

to in dash-dotted lines (independent of λD and Σ)
and M el∗

to in dashed lines (which presents a very small wetting effect). We observe in this
őgure the rich behavior resulting from of that competition, where the water term mostly
dominates for the most hydrophobic surface (θ ∼ 140◦), while for the most hydrophilic
surfaces (θ ∼ {90◦, 50◦}) electrostatic dominates for the larger λD. We can also see a
large variation of Mto for the different wettings, ranging from 10−9 to 10−7 m2/s for most
hydrophobic case.

A striking result from Fig. 5.12 is the transition for intermediate wettings (for θ ∼ 110◦

in our parameters range) between a thermophobic behavior (Mto > 0) at high salt con-
centration (small λD) to a thermophilic behavior (Mto < 0) at low salt concentration. In
agreement with previous predictions [350], the electrostatic contribution M el∗

to is indepen-
dent of the sign of the surface charge. In contrast, the water term exhibits a change of
sign when varying the wetting (see Sec. 5.3.3). Such change of sign for Mwat

to happens at
θ ∼ 110◦ and thus, for θ ≳ 110◦, sgn

(

Mwat
to

)

= −sgn
(

M el∗
to

)

resulting in a change of sign
of Mto for λD such as

∣

∣Mwat
to

∣

∣ =
∣

∣M el∗
to

∣

∣. Although this change of behavior happens for
all θ ≳ 110◦, for the most hydrophobic cases it takes place for λD values higher than the
ones considered in this study and far from the limits of validity of the Poisson-Boltzmann
framework considered in the computation of M el∗

to . Even so, within our parameters range,
we can still observe for θ ∼ {130◦, 140◦} a decrease of the total response for high λD, which
goes against the standard expectation and can only happen if water and electrostatic con-
tributions have opposite signs. Besides, for the most hydrophilic cases θ ∼ {90◦, 50◦},
sgn
(

Mwat
to

)

= sgn
(

M el∗
to

)

and Mto does not change sign for any λD value.

It is interesting to note that a similar change of sign has been found in the context of
thermophoresis experiments [381, 382, 383]. This change of sign is commonly attributed
to the so-called thermopotential ψ0 [384]. Such thermopotential appears for ions having
an asymmetric mobility, from imposing no ionic ŕux in the channel, and it generates
an electro-osmotic ŕow, which can go against the thermo-osmotic ŕow and reverse the
total ŕow direction. Nevertheless, ψ0 should disappear by allowing ionic ŕuxes through
the channel, and as a consequence the change of sign would disappear. By introducing
the water contribution to the thermo-osmotic response, we propose a more fundamental
understanding of such change of sign, which should persist regardless of any constrain on
the ŕuxes through the channel.

The proposed M el∗
to and Mwat

to decomposition allows us to obtain agreement with the
experimental results of Mto [350], on the order of 10−10 − 10−9 m2/s. Such agreement is
specially signiőcant in the stagnant layer situation, typical of experiments due to the pres-
ence of imperfections in the solid surface, when Mwat

to decreases and M el∗
to may dominate for

a broader range of λD. Therefore, we have assessed good experimental agreement within
the suggested model but, is there some parameter range or system properties which may
allow to obtain a great thermo-osmotic response? Because we should not further explore
the range of the parameters that control the electrostatic contribution (Σ and λD) without
modifying the underlying Poisson-Boltzmann description, one interesting perspective is to
improve the system properties to boost the water contribution response. Because Mwat

to in-
creases when increasing the slip, one interesting surface is the one constituted by graphene,
with an effective slip length of beff = 538.77Å, which we obtained in NEMD simulations
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Figure 5.12: Total thermo-osmotic response coefficient (solid lines) for different wettings
and surface charges as a function of the Debye length. In all the graphs the two main
contributions, water (dash-dotted lines) and modiőed electrostatic (dashed lines), are also
represented.

for NaCl aqueous solution at room temperature. In Fig. 5.13a we can observe a signiőcant
increase in both electrostatic and water thermo-osmotic response contributions, resulting
in a large value of the total response Mto ∼ 10−6 m2/s for this interface. Because M el

to

does not vary signiőcantly with wetting and the total response is dominated by the water
contribution, we can expect Mto ∼ Mwat

to for graphene. In Fig. 5.13b we see how Mwat
to is

affected by the effective slip. In this őgure we show that high Mto value may be obtained
for very slipping systems, although it is important to note that the presence of a stagnant
layer or defects in the surface (resulting in smaller beff) may decrease the large predicted
Mto response, up to 10−9 m2/s.

In conclusion, we predict much larger values for hydrophobic LJ and graphene walls
than the ones reported in experiments (for surfaces less atomically smooth and with smaller
slip, such as glass in [350]), with orders of magnitude comparable to the ones predicted
by MD simulations for water thermo-osmosis in CNTs [337, 84] or on uncharged planar
walls [343, 344]. Therefore, our analysis predicts that very strong thermo-osmotic ŕows
can be obtained not only for special systems such as carbon nanotubes, but also with
more common hydrophobic charged surfaces, ensuring the absence of a liquid stagnant
layer at the interface so that slip can boost the response. We have also seen that, for
some intermediate wettings, just by tuning the salt concentration we can change the ŕow
direction due to Mto change of sign. This opens the way to manipulate thermally induced
nanoscale ŕows with a pinch of salt.

5.5 Summary and conclusions

We proposed here an analytical framework aimed at predicting the thermo-osmotic
response of aqueous electrolytes for a wide range of systems and experimental conditions.
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(a) (b)

Figure 5.13: (a) Total thermo-osmotic response coefficient (solid line) for graphene walls,
as a function of the Debye length for different surface charges as in Fig. 5.12. The water
(dash-dotted) and modiőed electrostatic (dashed) contributions are also represented. (b)
Water contribution to the total thermo-osmotic response for graphene walls as a function
of the effective slip.

While the standard picture relates the response to the ion electrostatic enthalpy in the
electrical double layer close to charged walls, we show őrst that this contribution to the
interfacial enthalpy may be negligible when compared to the water contribution for a broad
range of parameters, and second that it should be slightly lowered due to the depletion of
the ions from the solid surface.

The competition between the modiőed electrostatic and water contributions and the
impact of the hydrodynamic boundary condition leads to a rich phenomenology that we
illustrated here. First, our theory predicts a higher thermo-osmotic response at low λD

than the one expected from only considering the electrostatic contribution. Second, the
proposed model also predicts a transition between a thermophobic behavior at low salt con-
centrations to a thermophilic behavior at high salt concentrations for intermediate wettings.
Such transition has also been observed in thermophoresis experiments [381, 382, 383], and
is commonly attributed to the existence of a thermopotential which is, however, limited
to particular boundary conditions imposing no ionic ŕuxes in the bulk liquid. In contrast,
our interpretation of the change of sign is more general and independent on the nanoŕuidic
channel boundary conditions. Third, we predict intense thermally induced ŕows, compa-
rable to those predicted using very speciőc channel walls such as carbon nanotubes. These
ŕows were obtained in this work by employing slipping surfaces such as hydrophobic generic
Lennard-Jones walls or planar graphene, paving the way to explore other common and af-
fordable charged surfaces. These predictions call for future experimental veriőcation, and
could be exploited for the design of innovative solutions for heat harvesting applications.

The importance of the solute contribution in thermo-osmosis of aqueous electrolytes,
together with a modiőcation of the classical electrostatic term, opens the way to several
perspectives. First, an accurate description of thermo-osmosis should take into account
spatial heterogenities of the dielectric and viscosity proőles at the interface [372], as well as
the impact of the surface charge and its distribution on water contribution to the response.
For very asymmetric salts, such as NaI, the ion-size-dependent hydrophobic solvation term
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should be considered, e.g. though the modiőed Poisson-Boltzmann framework described in
Refs. 373, 213. Also one should take into account the limits of considering pure water sim-
ulations as an approximation of the water enthalpy contribution. For high concentrations,
steric effects should be accounted for, and ions can affect water viscosity [69]. Nevertheless
such effects correspond to extreme ns values (whose validity has been discused in Sec. 5.2.1)
and they should not understate one of the main results of the present chapter: the great
Mto value found for slipping surfaces. To consider explicitly systems containing both water
and ions, it could be useful to employ other kind of approaches such as Monte Carlo simula-
tions [385], integral equations [386] or classical density functional theory [387]. Secondly, it
is straightforward to extend the current model to predict the thermoelectric [388, 389, 390]
and thermodiffusive [391] response, with promising applications for electricity production
from waste heat or to reőne large-scale continuum descriptions [392]. Third, an insightful
direction concerns the study of thermo-osmosis in ultra-conőned systems [393], where the
system height is much smaller than the Debye length. This ultra-conőned situation, for
which the Poisson-Boltzmann framework still holds, offers another opportunity to mod-
ulate thermal nanoscale ŕows using common surfaces. It would be also interesting to
exploit the large thermo-osmotic responses predicted for very slipping systems by using
CNTs, where slip values of b ∼ 300 nm have been reported at room temperature for tube
radius of R ∼ 15 nm [31]. For such conőnement, although the theoretical description is
beyond the thin Debye layer limit, the Poisson-Boltzmann framework is still valid, and the
electrostatic equations can be approximately solved in the cylindrical geometry.
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Chapter 6

Conclusions and Outlook

ł[The cabin; by the stern windows; Ahab sitting alone, and gazing out.] I leave
a white and turbid wake; pale waters, paler cheeks, where’er I sail. The
envious billows sidelong swell to whelm my track; let them; but őrst I pass.ž

Herman Melville, Moby Dick 1851

My thesis work has been devoted to the study of interfacial transport, focusing on
liquid-solid friction and slip, intending to provide some fundamental insights on the molec-
ular mechanisms that take place at the interface.

Summary and Applications We started from the critical failure of the no-slip
boundary condition due to the presence of a velocity jump at the interface, quantiőed
by the slip velocity vslip. Then, we presented the partial slip boundary condition, őrst
proposed by Navier in 1823 [19]:

vslip = b
∂v

∂z

∣

∣

∣

∣

z=zs

. (6.1)

This equation introduces a system characteristic length at the interface (located at zs):
the slip length b, deőned from the ratio between the bulk and the interfacial transport
coefficients, namely viscosity η and liquid-solid friction coefficient λ, so b = η/λ. For a
full characterization of the boundary condition, two parameters have to be determined:
the slip length b and also the location where the boundary condition applies, zs, what we
referred to as the shear plane position.

In the őrst part of this work (Chapters 2 and 3), we employed classical molecular
dynamics (MD) simulations, based on modelling the atomic and molecular physical inter-
actions with empirical force őelds, to fully characterize the ŕuid transport properties under
conőnement. First, we focused on studying the position zs where the boundary condition
applies, and showed that it can be well deőned by the Gibbs dividing plane corresponding
to the partitioning between a region full of homogeneous ŕuid and vacuum. Furthermore,
because the ŕuid density proőle should not be affected (in the linear response regime) by
the forcing applied, we proved that the Gibbs dividing plane position determined from the
density proőle of equilibrium simulations, identiőed with the boundary position obtained
from gravity-like ŕow measurements, consisting in applying a constant per atom forcing to
all the ŕuid atoms in the slab. As a consequence, the Gibbs dividing plane characterization
of the boundary position appears as a simple, fast and accurate method, in contrast to
previous analytical approaches proposed, based on complicated expressions and difficult to
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apply to őnite size systems [122, 184]. It is also straightforward to extend this method to
cylindrical geometries, mixtures, multicomponent ŕuids and thermalized walls.

We then proceeded to study the temperature dependence of the transport coefficients,
viscosity, liquid-solid friction coefficient, and their ratio, the slip length. First we deter-
mined the viscosity and the friction coefficient from non-equilibrium MD for a broad range
of temperatures, from 225 K to 360 K, two different ŕuids, methanol and water, and two
different wall types, Lennard-Jones (LJ) walls and graphene. We saw that the friction co-
efficient temperature dependence was weakly affected by the wall type (although at a given
temperature LJ walls presented one order of magnitude larger friction than graphene) and
mostly determined by the ŕuid type, where the temperature behavior could be őtted by
the same laws for both viscosity and friction, with an Arrhenius law for methanol and a
Vogel-Tammann-Fulcher law (modiőed Arrhenius law, with a divergency at a őnite tem-
perature Tf ̸= 0 K) for water. We highlighted the differences between η(T ) and λ(T ) by
considering their ratio, which deőnes the slip length b(T ). We observed an increase of slip
when decreasing the temperature. Such increase of slip became specially striking when
water entered in its supercooled regime, below 273 K. For water, we also observed some
quantitative differences in the slip increase (from T = 360 K to T = 225 K) between
different wall types, with it being on the order of 2 for LJ walls and on the order of 5 for
graphene walls.

After determining the hydrodynamic transport coefficients in Chapter 2, in Chapter 3
we proceeded to understand the molecular mechanisms controlling friction and slip, focus-
ing on supercooled water. To do so, we decomposed friction, following Ref. 137, into a
static and a dynamic contribution, with the dynamics being controlled by the relaxation
time of the density autocorrelation, determined from the time decay of the intermediate
scattering function. We observed that the temperature evolution of the friction coefficient
was mostly controlled by the dynamics of the ŕuid atoms in the contact layer, deőned as
the region between the solid surface and the őrst non-zero minimum of the density pro-
őle, i.e. the őrst absorption layer. Following friction decomposition, we also distinguished
static and dynamic contributions to viscosity, with the dynamics being controlled in this
case by the total relaxation time of the density corresponding to the liquid particles in
bulk. With the objective of understanding the temperature evolution of the slip length,
controlled by the ratio η(T )/λ(T ), we decomposed slip as the product of η and λ dynamic
and static ratios. We observed that viscosity static contribution signiőcantly increased by
decreasing temperature when water entered in its supercooled regime, becoming the major
contribution to b(T ). We also rationalized the differences between graphene and LJ walls
from the different friction dynamics (as compared to the bulk ones) between both walls.
These interesting results, particularly the great slip values predicted at low temperatures
(b ∼ 230 nm for water on graphene walls), are seeking for experimental validation, where
such low temperatures have already been achieved in experiments for water on nanopores,
for bulk water, or for droplets on anti-icing surfaces [212, 226, 56].

In Chapter 3, we also characterized thermal transport, by studying the interfacial heat
transfer between water and gold, nanostructuring the gold surface and coating it with a
graphene sheet. By trapping air (or vacuum in our simulations) between graphene and the
nanopatterned gold, we observed an increase in the interfacial resistance as compared to
the planar gold situation, which was shown to scale with the effective graphene-gold contact
surface (the less contact surface the higher the resistance). The large thermal resistance
values we predicted present promising applications in delaying the temperature at which
the boiling crisis occurs, using a robust alternative to superhydrophobic Cassie materials.
Also, because the low thermal conductance is achieved mostly due to geometrical properties
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(air trapping), it is trivial to extend our results to any material with equivalent structure
to that of the nanopatterned gold wall we presented.

In Chapter 4 we used ab initio MD to characterize the temperature dependence of
bulk transport properties (viscosity and diffusion coefficient) for water, in a temperature
range T ∈ [260, 360] K. By comparing different exchange-correlation functionals (PBE-D3,
optB88-vdW and SCAN) and benchmarking our results with force-őeld (FF) simulations
(for a water model in good agreement with experiments), we saw that SCAN was the func-
tional that better described viscosity and diffusion coefficient temperature dependence, al-
though it deviated from FF results for the lower temperatures considered. Independently
of the failure or success in recovering water’s transport properties in bulk, we observed
that all the functional predictions veriőed the Stokes-Einstein relation with the same hy-
drodynamic radius, Rh ∼ 1 Å. Motivated by exploring the connection between dynamic
transport and structural properties, we also characterized the structure for the different
functionals by computing the radial distribution function. In this case SCAN was again the
functional whose results better compared to FF. Finally, we recalled excess entropy scaling
laws, which predict an exponential dependency of the reduced (dimensionless) diffusion
coefficient and viscosity on the excess of entropy. We approximated the excess of entropy
to the 2-pair contribution, related to the radial distribution function, and concluded that
all the functionals were in agreement with the expected scaling although with different őt
parameters. From these results we established the importance of reproducing the radial
distribution function for all the solvation shells, i.e. including its long-range behavior, in
contrast to the common procedure carried in functional development that only focuses on
a good description of its őrst peak. Therefore, we hope that our results could be used
to develop better functionals. Also, we suggested the employment of entropy-scaling laws
for a fast and practical characterization of the temperature dependence of bulk transport
properties. Once the entropy scaling őt parameters have been determined for a given
functional, diffusion coefficient and viscosity could be predicted at őxed density from only
structural properties, which typically need shorter times to converge as compared to their
dynamic counterparts [311].

Lastly, in Chapter 5 we proposed an analytical framework to describe the thermo-
osmotic response coeeőcient, controlled by enthalpy excess density, of an aqueous elec-
trolyte in a nanochannel. We obtained that the thermo-osmotic response was mostly
determined from the competition between the solvent contribution (water, which had to
be determined from classical MD simulations) and a modiőcation of the classical ion elec-
trostatic term, corrected to take into account the depletion of the ions from the wall. Three
main results were obtained in contrast with the classical theory, which only accounts for
the electrostatic enthalpy of the ions and where no depletion layer is considered. First, we
determined that at small Debye lengths (high salt concentrations), the response was mostly
dominated by the water contribution, being orders of magnitude greater than the values
expected from the classical electrostatic theory. We also observed a change of sign in the
response coefficient for intermediate and hydrophobic wettings: at őxed surface charge,
when varying the salt concentration, the response evolved from a thermophobic behavior
at low concentrations to a thermophilic behavior at high concentrations. Such behavior
arises from the different signs for the water and the electrostatic contributions, and thus it
cannot be predicted by only considering electrostatic interactions. We also remarked that
the change of sign has already been observed in thermophoresis experiments, and could
explain the sign disagreements reported in thermo-osmosis experiments. Finally, we also
reported high thermo-osmotic responses, specially for graphene walls, with interesting ap-
plications in heat harvesting by e.g. using the osmotic ŕow generated by the temperature
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gradient to drive a turbine, transforming waste heat into mechanical power.

Perspectives Although all thesis work has to lead to a conclusion, I would like to őnish
this manuscript highlighting some of the interesting perspectives I could not explore by
lack of time, together with some questions that arouse at some moment of the development
of my thesis and that remain to be answered.

For instance, when characterizing the hydrodynamic boundary position, one could ex-
plore the interesting case of nanopattering the wall surface. As previously mentioned in
Chapter 2, we proposed a hydrodynamic justiőcation to employ the Gibbs dividing plane
approach to determine the interface position by identifying this method with the gravity-
like ŕow measures. Nevertheless, one could wonder if both measures still identify in the
case of a rough wall, modelled with nanopillars, which would impose an absence of ŕow at
the interface in the holes of the nanostructure.

Also, because it has been already assessed that nanopattering an interface can imply
an increase in the slip length with respect to the planar wall situation [246], an interesting
venue is to explore the temperature effect on slippage for a nanostructured wall, extending
the procedure proposed to characterize λ(T ) and b(T ) when driving the liquid (water) to
its supercooled regime. In this case, from a possible coupled effect between wall structure
and temperature, one could expect an even higher slip increase than the one we presented
for planar walls. Another interesting and promising way of broadening the slippage results
in supercooled water would be to extend the presented analysis to the case of carbon nan-
otubes (CNTs), for which a similar order of magnitude than the one we measure at 225 K
has been assessed experimentally at room temperature [31]. The effect of the characteristic
cylindrical geometry together with the effect we assessed related to the supercooled state
at low temperatures, could imply a massive slip, of special interest for the community and
with a large set of applications as those discussed in the introduction, Chapter 1. In this
project on supercooled water and liquid-solid friction, it also remains to fundamentally
explore the quantitative failure of the friction static/dynamic decomposition proposed by
Bocquet and Barrat [137], which only provided a good qualitative description in terms of
temperature dependence.

For thermal transport, it is left for a full completeness of the study to extend the
results by adding graphene layers between the water and the gold nanopillars, until recov-
ering graphite structures. It has been already assessed for planar walls that the thermal
interfacial resistance is affected by the number of graphene layers [274, 275]. By then
showing the suitability of graphite to locate at the interface to trap air bubbles, we should
expect even higher thermal resistance values than the ones presented in this manuscript,
which would be achieved with a cheaper and stiffer material than graphene.

When exploring ab initio simulations of bulk water and how the transport coefficients
are affected by temperature, we showed a failure of the SCAN functional at low tempera-
tures, which remains to be understood. One possible explanation is the importance of the
nuclear quantum effects (not modelled in our DFT simulations) at such low temperatures.
These quantum nuclear effects could be implemented via path-integral molecular dynamics
(PIMD) or a quantum thermostat. Since these methods are very demanding, one could
reduce the overall cost of the simulations by replacing DFT by machine learning potentials,
and implement the nuclear effects on them. For a fully completion of this work one could
also explore the validity of our approximation sex ≃ s2, whose range of validity can become
delicate under extreme pressure and temperature conditions [394, 309, 306]. Although a
more precise measure of sex based on the three, four, etc,-body contributions is difficult
to implement, different ways of determining sex have been proposed in the literature. Of
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special interest, due to its simplicity, would be to construct s2 from the oxygen-oxygen,
oxygen-hydrogen, and hydrogen-hydrogen pair distributions, which is expected to estimate
better sex, following Ref. 395. Finally, a difficult and non-trivial perspective is to under-
stand the physical meaning of the őt parameters in the excess entropy scaling relations,
which have been proven to be affected by the density, and which may be an interesting
way to explore the breaking of the Stokes-Einstein relation at low temperatures [310].

Last, but not least, several improvements could be performed in the analytical frame-
work we proposed to describe the enthalpy excess density proőles. It would be interesting
to assess the importance of taking into account in the model the inhomogeneties of the
permittivity and viscosity at the interface. Equivalent venues have already been taken in
Refs. 372, 213, and the extension of their results to our system should not be too difficult
to implement. Also one could explore the extension to multicomponent ŕuids (as water)
of the thermo-osmotic force determination technique proposed in Ref. 380, which would
provide an accurate determination of the local velocity proőles without going through the
ambiguities related to the local deőnition of the pressure tensor in MD simulations. One
could also wonder about how the water enthalpy is affected by the sign, magnitude and
distribution of the surface charge, and to extend the current model to encounter for the
ion speciőcity, critical in the case of very asymmetric salts, as done in Refs. 373, 213
for electro-osmosis. The extension of our analysis of the thermo-osmotic response to the
thermoelectric response is also a trivial issue, all with important applications on heat har-
vesting. With that regard, the formulas controlling the thermoelectric response coefficient
have been already presented in this manuscript. Also, Appendix B details important for-
mulas describing the no-coions regime (corresponding to an electric double layer overlap
of the top and bottom wall), and cylindrical geometries within the Poisson-Boltzmann
framework. These expressions can be useful in the study and modelling of ultraconőned
systems and nanotubes.

Overall, in this manuscript we tried to highlight the richness of behaviors related to
ŕows at the nanoscale. We mostly focused on the slip boundary condition, stated by Navier
and rediscovered in the 70’s for polymers and in the late 90’s for simple ŕuids. We tried
to better characterize and to understand the molecular mechanisms related to interfacial
hydrodynamic and heat transport. We also studied hydrodynamic bulk transport proper-
ties and their deep and non trivial connection with structure. Finally, we showed, via a
proposed analytical model, the power of slip and liquid-solid interactions, which can trans-
late into large system responses as we predicted in the case of thermo-osmosis. Together
with the answers we suggest, new and intriguing questions appeared, which we hope will
be addressed in the future. On the whole, we hope to have presented the transport at the
nanoscale as the land of opportunities it is. Being at the crossroad of many characteristic
lengths, nanoŕuidics encloses innovative and unique ŕuid transport behavior, with promis-
ing perspectives to tackle some of the great challenges faced by our society. It is, for sure,
an exciting time.
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Appendix A

Ewald sums

Typically, the most costly stage in a molecular dynamics simulation is the computation
of the set of forces between all the particles in the system. For short-range interactions like
Lennard-Jones interactions, we simply deőne a cutoff radius around each particle, beyond
which the interactions are neglected. In contrast, to compute long-range interactions (in
particular Coulomb interactions) it is not possible to simply truncate the potential. The
Ewald sums method allows us to efficiently calculate the electrical interactions between
charged particles in the system. We present in this section a general introduction to this
method, of which further detail can be found on general textbooks on molecular simulations
as in Ref. [146].

A.1 General idea: charge smearing

Let’s őrst consider as basic cell a system with periodic boundary conditions, of volume
V = L3, and with partial charges qi such as

∑

i qi = 0 with i = 1, ..., N . The Ewald
sums or Ewald summation method consists in considering the basic cell surrounded by an
inőnite number of identical copies of itself. Therefore, the total Coulombic interactions
will we be obtained from summing the interaction energy of each charge in the central
volume (i.e. our basic cell) with all the images of the other charges. We want to compute
the electrostatic energy

UC =
1

2

N
∑

i=1

qiϕ(ri), (A.1)

where ϕ(ri) corresponds to the electrostatic potential at the position of the ion i, which
will be itself equal to the sum over all the periodic images n,

ϕ(ri) =
∑

n

N
∑

j=1

qj
|rij + nL| , (A.2)

with j ̸= i if n = 0 (the ion i interacts with all the periodic images but not with itself). The
punctual charges and its periodic images deőne the charge density creating the potential,
given by:

ρ(r) =
∑

n

N
∑

j=1

qjδ(r) =
∑

n

N
∑

j=1

qjδ(|r− (rj + nL)|). (A.3)

This ρ(r) expression corresponds to a periodic function of period L but, because it is very
sharp (due to its dependence on the delta function), its Fourier representation will never
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converge. To solve this problem, we can smear all the charges by considering each point
charge surrounded by a diffusive charge distribution of equal magnitude and opposite sign.
This new charge distribution is conveniently taken as a Gaussian of width

√

2/α:

ρGauss(r) = −qi
(α

π

)3/2
e−αr

2

. (A.4)

Let’s őrst compute the electrostatic energy of the smeared charges given by −ρGauss. This
charge distribution will be determined by the periodic sum of Gaussians:

ρ(r) =
∑

n

N
∑

j=1

qj

(α

π

)3/2
exp
[

−α|r− (rj + nL)|2
]

, (A.5)

which converges to Eq. (A.3) for large α. In order to compute the electrostatic potential
of a given charge distribution ρ(r), we should use the Poisson equation:

∇2ϕ(r) = −4πρ(r); (A.6)

which, in the reciprocal space writes:

k2ϕ(k) = −4πρ(k), (A.7)

with ρ(k) the Fourier transform of the charge density:

ρ(k) =
1

V

∫

V
dr e−ik·rρ(r) =

1

V

N
∑

j=1

qje
−ik·rje−k

2/4α. (A.8)

Substituting this expression in Eq. (A.7) and inverting the transform to recover the real-
space potential, we őnally obtain:

ϕ(r) =
∑

k ̸=0

ϕ(k)eik·r =
1

V

∑

k ̸=0

N
∑

j=1

4πqj
k2

eik·(r−rj)e−k
2/4α. (A.9)

From the point charges in this expression for the potential of smeared charges, we can now
obtain the electrostatic energy, given by the expression:

Uq =
1

2

∑

i

qiϕ(r) =
1

2

∑

k ̸=0

N
∑

i,j=1

4πqiqj
V k2

e−k
2/4αeik·(ri−rj). (A.10)

Multiplying and dividing by V and taking into account that ρ(k) =
∑

j qje
−ik·rj/V , then

Uq can be written as:

Uq =
1

2

∑

k ̸=0

4πV

k2
e−k

2/4α|ρ(k)|2. (A.11)

A.2 Potential corrections

It is important to note that, for Uq to identify with the Coulombic potential UC in
Eq. (A.1), two corrections are needed: one correction related to the self interactions and
another one due to the charge smearing introduced.
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a. Self-interaction correction

Let’s focus őrst on the correction for self-interaction. Eq. (A.11) was estimated by
replacing each point charge by a smeared Gaussian centered on that charge. This implies
that a given point charge also interacts with its smeared representation (i.e. we overcounted
the contribution n = 0 in Eq. (A.5)) and, in order to recover the real electrostatic energy,
we need to subtract this contribution from Uq. To do so, we will work in real space in order
to deal with the self term. The solution to the Poisson Eq. (A.6) is

ϕ(r) =
qj
r
erf
(√
αr
)

; (A.12)

where

erf(x) =
2√
π

∫ x

0
e−u

2

du,

is the error function. In particular, the potential due to the self-interaction, ϕself , is

ϕself = ϕ(0) = 2qj

√

α

π
. (A.13)

Therefore, the self correction to be subtracted from Uq for each charge will be:

Uself =
1

2

N
∑

j=1

qjϕ(0) =

√

α

π

N
∑

j=1

q2j ; (A.14)

which does not depend on the particles positions, i.e. it is independent of the conőguration.

b. Smear correction

The second correction we have to introduce to Eq. (A.11) is related to the introduced
smear. This is an additive contribution, because it is related to the electrostatic energy
due to the point charges screened by oppositely charged Gaussians. To do so, we add the
correct őeld related to the point charges, ϕpcj (r) ,and subtract the approximate one related
to the Gaussians, ϕGj (r), introduced:

∆ϕj(r) = ϕpcj (r)− ϕGj (r) =
qj

|r− rj |
erfc
(√
α|r− rj |

)

, (A.15)

with erfc(x) = 1− erf(x) the complementary error function. Because ∆ϕj is short ranged
for large α (narrow Gaussians), it is often referred as ϕshort−range [145]. The correction to
the electrostatic energy will be then given by ∆U = 1

2

∑

n

∑

i ̸=j qi∆ϕj(rij), and therefore:

∆U =
1

2

∑

n

N
∑

i ̸=j

qiqj
rij

erfc
(√
αrij

)

. (A.16)

Finally, the total Coulomb energy is given by the expression:

UC = Uq(α)− Uself(α) + ∆U(α), (A.17)

where each term depends on α but, if enough lattice vectors are used in the reciprocal and
real space sums, the sum will be independent of it.
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Appendix B

Poisson-Boltzmann formulary

The Poisson-Boltzmann equation provides a mean-őeld theory of electrolyte solutions
at interfaces and in conőnement, with numerous applications ranging from colloid science
to nanoŕuidics. This formulary gathers important formulas for the Poisson-Boltzmann
description of a Z:Z electrolyte solution inside slit and cylindrical channels. Different ap-
proximated solutions and their range of validity are discussed, together with the full solu-
tion for the slit channel. This formulary is meant to continuously evolve following feedback
from the readers and it has been published as an arXiv preprint (arXiv:2105.00720 ).

B.1 Introduction

When an electrolyte solution meets a solid surface, several mechanisms can generate a
surface charge, together with an opposite charge carried by ions in the liquid (typical mech-
anisms include dissociation of surface groups and speciőc adsorption of charged species)
[362, 363, 359]. In the vicinity of a charged wall, ions reorganize to form a diffuse charged
layer, the electrical double layer (EDL), which screens the surface electric őeld over the
so-called Debye length denoted λD, see Fig. B.1(a-b). The EDL plays a key role in many
aspects of soft condensed matter, as it controls the stability and dynamics of charged ob-
jects in solution [362, 363, 359]. In particular, the EDL is at the origin of the so-called
electrokinetic effects, where gradients and ŕuxes of different types (hydrodynamic, elec-
trical, chemical, thermal) are coupled in the presence of charged interfaces [366]. Such
electrokinetic effects are central to the very active őeld of nanoŕuidics [87, 29, 367, 368].

The ion distribution and electric potential proőle in the EDL can be computed by
combining the Poisson equation for electrostatics and the Boltzmann distribution of the
ions into the so-called Poisson-Boltzmann (PB) equation, under certain assumptions [364,
365]:

• the Poisson equation is written assuming that the solvent has a local, homogeneous
and isotropic dielectric permittivity;

• the Boltzmann distribution of the ions is written assuming that the energy of the
ions results only from their Coulomb interactions with the other ions and the wall,
described at a mean-őeld level.

Educational presentations of the PB theory can be found in books [362, 363, 359], book
chapters [364, 365], and articles [366], discussing in particular applications to nanoŕuidics
[87, 29, 367, 368].

In contrast, this formulary simply gathers important formulas for the description of the
EDL with the PB equation, focusing on a Z:Z electrolyte solution inside slit and cylindrical
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Figure B.1: a-b) Local picture of the electrical double layer at a charged wall (z is the
distance from the wall, Σ the surface charge density, ε the solvent dielectric permittivity,
and λD the Debye length): a) Proőle of reduced electric potential ϕ, with ϕs the value
at the wall; b) Proőles of cation n+ and anion n− densities, with n0 the bulk value. c)
Schematics of the slit channel. d) Schematics of the cylindrical channel.

channels, see Fig. B.1(c) and Fig. B.1(d), respectively. After introducing the notations
(Sec. B.2) and important characteristic lengths (Sec. B.3), the formulary describes the cases
of a slit channel (Sec. B.4) and of a cylindrical channel (Sec. B.5). For both geometries,
different approximated solutions are discussed: the thin EDL limit, where λD is small
as compared to the channel size; the no co-ion limit, where the EDLs overlap and the
surface charge is large enough that co-ions are excluded; the Debye-Hückel limit at low
surface charge, where the PB equation can be linearized. The range of validity of these
approximations is then discussed; for the slit channel only, the general solution is presented.
Finally the limits of the PB framework are brieŕy discussed in Sec. B.6.

B.2 Notations

• inverse thermal energy β = 1/(kBT ), with kB the Boltzmann constant and T the
temperature

• absolute ionic charge q = Ze, with e the elementary charge and Z the ion valence

• electrostatic potential V

• reduced potential ϕ = βqV

• their value at the wall Vs and ϕs

• ion densities n±

• charge density ρe

• solvent dielectric permittivity ε

• salt concentration n0 = n+ = n− in the bulk/reservoirs
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• surface charge density Σ

B.3 Characteristic lengths

Solvent permittivity ε: Bjerrum length ℓB ś The Bjerrum length is the distance at
which the electrostatic interaction energy between two ions is equal to the thermal energy
kBT .

ℓB =
βq2

4πε
⇔ ε =

βq2

4πℓB
(B.1)

For a monovalent salt in water at room temperature, ℓB ∼ 0.7 nm.

Bulk salt concentration n0: Debye length λD ś The Debye length is the range of
the exponential screening of the electric őeld in an electrolyte.

λD =
1√

8πℓBn0
⇔ n0 =

1

8πℓBλ
2
D

(B.2)

For a monovalent salt in water at room temperature, λD ∼ 0.3 nm/
√

n0(mol/L).

Surface charge density Σ: Gouy-Chapman length ℓGC ś The Gouy-Chapman
length is the distance at which the electrostatic interaction energy between an ion and a
charged surface is comparable to the thermal energy kBT .

ℓGC =
q

2πℓB|Σ|
⇔ Σ = sgn(Σ)

q

2πℓBℓGC

(B.3)

For monovalent ions in water at room temperature, ℓGC ∼ 36 nm/|Σ|(mC/m2).

In the following, it will appear that many quantities can be expressed as a function of
the ratio λD/ℓGC, which is proportional to the absolute value of the surface charge, and
inversely proportional to the square root of the bulk salt concentration:

λD

ℓGC

= 2πℓBλD
|Σ|
q

=
|Σ|/q√
n0

√

πℓB
2

B.4 Slit channel

This section gathers the equations describing a Z:Z electrolyte solution conőned be-
tween two planar parallel walls at a distance d, see Fig. B.1(c).

B.4.1 Thin EDLs: one wall with salt

When the distance d between the surfaces is much larger than the thickness of the EDLs,
one can solve the PB equation for a single charged wall, and superimpose the potentials
of the two walls to obtain the full potential in the channel. The limits of validity of this
approximation will be quantiőed in section B.4.4.

Accordingly, this section gathers formulas for the description of a Z:Z electrolyte so-
lution in contact with a single planar wall, where z ≥ 0 is the distance from the wall, see
Fig. B.1(a) and (b).
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a. Poisson-Boltzmann equation: derivation

Poisson equation:

−εd
2V

dz2
= ρe(z) = q{n+(z)− n−(z)}

Boltzmann distribution:

n±(z) = n0 exp{∓βqV (z)}

Poisson-Boltzmann equation

d2ϕ

dz2
=

1

λ2D
sinh{ϕ(z)} (B.4)

b. Poisson-Boltzmann equation: solution

Multiplying both sides of Eq. (B.4) by dϕ/dz and integrating between z = ∞ and z,
imposing that dϕ/dz|z=∞ = ϕ(∞) = 0:

1

2

(

dϕ

dz

)2

=
1

λ2D
{cosh(ϕ)− 1} (B.5)

Noting that cosh(ϕ)− 1 = 2 sinh2(ϕ/2), and that ϕ and dϕ/dz are of opposite sign:

dϕ

dz
= − 2

λD

sinh

(

ϕ

2

)

(B.6)

Noting that sinh(ϕ/2) = 2 sinh(ϕ/4) cosh(ϕ/4) = 2 tanh(ϕ/4) cosh2(ϕ/4), and integrating
like a physicist:

∫ ϕ

ϕs

d(ϕ/4)

tanh(ϕ/4) cosh2(ϕ/4)
= −

∫ z

0

dz

λD

⇒ ln

∣

∣

∣

∣

tanh

(

ϕ

4

)∣

∣

∣

∣

− ln

∣

∣

∣

∣

tanh

(

ϕs

4

)∣

∣

∣

∣

= − z

λD

Noting that ϕ and ϕs have the same sign:

tanh

(

ϕ

4

)

= tanh

(

ϕs

4

)

e
− z

λD

Noting that atanh(x) = 1
2 ln

(

1+x
1−x

)

, and denoting

γ = tanh

(

ϕs

4

)

(B.7)

one őnally gets:

ϕ(z) = 4 atanh
{

γe
− z

λD

}

= 2 ln

(

1 + γe
− z

λD

1− γe
− z

λD

)

(B.8)
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c. Surface charge and surface potential

Electrostatics at the interface:

− dV

dz

∣

∣

∣

∣

z=0

=
Σ

ε
⇒ dϕ

dz

∣

∣

∣

∣

z=0

= −4πℓB
Σ

q
= −2 sgn(Σ)

ℓGC

Using Eq. (B.6), one obtains Grahame equation relating ϕs and Σ:

sinh

(

ϕs

2

)

= 2πℓBλD
Σ

q
= sgn(Σ)

λD

ℓGC

(B.9)

so that ϕs can be expressed as:

ϕs = 2 sgn(Σ) asinh
(

λD

ℓGC

)

= 2 sgn(Σ) ln







λD

ℓGC

+

√

1 +

(

λD

ℓGC

)2






One can also express γ = tanh(ϕs/4) as a function of Σ:

γ =
sgn(Σ)
λD/ℓGC







−1 +

√

1 +

(

λD

ℓGC

)2






(B.10)

d. A few integrals

Electrostatic energy E

E =
ε

2

∫ ∞

0

(

dV

dz

)2

dz =
1

8πℓBβ

∫ ∞

0

(

dϕ

dz

)2

dz

=
1

2πℓBλDβ







−1 +

√

1 +

(

λD

ℓGC

)2






=
|γ|

2πℓBℓGCβ

(B.11)

Ionic densities

Total density excess Using Eq. (B.5),

n+ + n− − 2n0 = 2n0 {cosh(ϕ)− 1} =
1

8πℓB

(

dϕ

dz

)2

Therefore,
∫ ∞

0
(n+ + n− − 2n0) dz = βE (B.12)

Density difference Electroneutrality imposes that:
∫ ∞

0
ρe(z) dz = −Σ

Remembering that ρe = q(n+ − n−), one gets:
∫ ∞

0
(n+ − n−) dz = −Σ

q
= − sgn(Σ)

2πℓBℓGC

(B.13)
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Thickness of the EDL The thickness of the EDL is often identiőed with the Debye
length λD. However, at high |Σ|, the charge of the EDL is concentrated in a region much
thinner than λD. The characteristic thickness of the charged region can be deőned as:

λ =

∫∞
0 z ρe(z) dz
∫∞
0 ρe(z) dz

=
εVs

Σ
=

Vs

− dV
dz

∣

∣

z=0

=
ϕs

− dϕ
dz

∣

∣

∣

z=0

Using Eq. (c.) and Eq. (c.), one gets:

λ = ℓGC
|ϕs|
2

= ℓGC ln







λD

ℓGC

+

√

1 +

(

λD

ℓGC

)2






(B.14)

Note that the characteristic scale for the variation of the electric őeld can also be
written, following Ref. 396:

λ′ =
−dϕ

dz

∣

∣

∣

z=0

d2ϕ
dz2

∣

∣

∣

z=0

=
λD

√

1 +
(

λD

ℓGC

)2
(B.15)

The limits at low and high surface charge of these characteristic scales are reported in
next section e.

More integrals Denoting x = λD/ℓGC,

F =

∫ ∞

0
(ϕs − ϕ)

(

dϕ

dz

)2

dz =
8 sgn(Σ)
ℓGC

{

1− asinh(x)
x

}

(B.16)

G =

∫ ∞

0
z

(

dϕ

dz

)2

dz = −4 ln
(

1− γ2
)

(B.17)

e. Low and high surface charge limits

Critical surface charge When the surface charge |Σ| is low enough that the reduced
potential |ϕ| is much lower than 1 everywhere, and therefore when |ϕs| = max(|ϕ|) ≪ 1,
the PB equation can be linearized; this is the Debye-Hückel (DH) regime.

Using Grahame equation, Eq. (B.9), it appears that this regime is found when λD ≪
ℓGC. The related critical surface charge for which λD = ℓGC writes:

|Σ|c =
q

2πℓBλD

=

√

8εn0
β

(B.18)

For instance, for a monovalent salt in water at room temperature:

|Σ|c ∼
36mC/m2

λD(nm)
∼ 120mC/m2

√

n0(mol/L) (B.19)

In practice the linearized equation only provides a fair description for |Σ| ≲ 0.2|Σ|c =
24mC/m2

√

n0(mol/L). Thus, except at very high salt concentration, the DH regime is
only found for very low surface charge.
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Quantity λD ≪ ℓGC λD ≫ ℓGC

ϕs sgn(Σ)
2λD

ℓGC

= βq
ΣλD

ε
2 sgn(Σ) ln

(

2λD

ℓGC

)

γ sgn(Σ)
λD

2ℓGC

= βq
ΣλD

4ε
sgn(Σ)

E λD

4πβℓBℓ
2
GC

=
Σ2λD

4ε

1

2πβℓBℓGC

=
|Σ|
βq

λ λD ℓGC ln

(

2λD

ℓGC

)

λ′ λD ℓGC

F 4 sgn(Σ)λ2D
3ℓ3GC

8 sgn(Σ)
ℓGC

G
(

λD

ℓGC

)2

4 ln

(

λD

2ℓGC

)

Table B.1: One wall with salt: limits of ϕs, γ, E , λ, λ′, F and G for λD ≪ ℓGC (low surface
charge, DH regime) and for λD ≫ ℓGC (high surface charge regime).

Debye-Hückel regime When λD ≪ ℓGC, the PB equation can be linearized and its
solutions simpliőed:

• the PB equation becomes:
d2ϕ

dz2
=

1

λ2D
ϕ

• the potential becomes: ϕ(z) = ϕs e−z/λD

• γ becomes ϕs/4

• the Grahame relation becomes: Vs/λD = Σ/ε

Some limits at low and high surface charge The limits of ϕs, γ, E , λ, λ′, F and
G at low and high surface charge are reported in Table B.1.

B.4.2 Strong EDL overlap: two walls, no co-ion

When the EDLs overlap and for large enough surface charges (these conditions will be
quantiőed in section B.4.4), co-ions are excluded from the channel and the PB equation
can be solved with counter-ions only.

a. Poisson-Boltzmann equation: derivation

Let’s consider counter-ions with density n(z) conőned between two parallel walls located
at z = −d/2 and z = d/2, baring the same surface charge density Σ.

In order to make the equations describing a negative surface charge (with positive
counter-ions) or a positive surface charge (with negative counter-ions) identical, one can
deőne an auxiliary reduced potential ψ, which will always be negative:

ψ = −sgn(Σ)× ϕ = −sgn(Σ)× βqV. (B.20)
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The potential in the middle of the channel is arbitrarily őxed to zero: ψm = ψ(z = 0) =
0. Denoting nm the counter-ion density at z = 0, and introducing a new characteristic
length K−1,

K−1 =
1√

2πℓBnm

⇔ nm =
K2

2πℓB
, (B.21)

one can derive the PB equation.

Poisson equation:

qn(z) = − ε

βq

d2ψ

dz2

Boltzmann distribution:

n(z) = nm e−ψ(z)

Poisson-Boltzmann equation:

d2ψ

dz2
= −2K2 e−ψ(z) (B.22)

b. Poisson-Boltzmann equation: solution

ψ(z) = ln
{

cos2(Kz)
}

(B.23)

dψ

dz
= −2K tan(Kz) (B.24)

n(z) =
nm

cos2(Kz)
=

K2

2πℓB cos2(Kz)
(B.25)

c. Surface charge and surface potential

To fully determine the potential and ion density proőles, one needs to express K as a
function of the surface charge.

Electrostatics at the interface:

dV

dz

∣

∣

∣

∣

z=d/2

=
Σ

ε
⇒ dψ

dz

∣

∣

∣

∣

z=d/2

= − 2

ℓGC

(B.26)

Using Eq. (B.24), one obtains:

Kd tan

(

Kd

2

)

=
d

ℓGC

. (B.27)

Equation (B.27) only provides an implicit expression for K, but a very accurate explicit
approximation (error below 0.05%) can be written:

Kd

2
≈ π

√

x(x+ α)

4x2 + 4x(4 + α) + 2π2α
, (B.28)

with x = d/ℓGC and α ≈ 4.8955. Simpler approximate expressions can also be derived in
the low and high surface charge limits, see Sec. e..
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d. A few integrals

Electrostatic energy E

E =
ε

2

∫ d/2

−d/2

(

dV

dz

)2

dz =
K

πℓBβ

[

tan

(

Kd

2

)

− Kd

2

]

(B.29)

Ionic density
∫ d/2

−d/2
n(z) dz =

2|Σ|
q

=
1

πℓBℓGC

(B.30)

e. Low and high surface charge limits

Low surface charge When Σ is small enough that d/ℓGC ≪ 1, Eq. (B.27) simpliőes:

Kd ≈
√

2d/ℓGC, (B.31)

which is accurate within 1 % up to d/ℓGC ≈ 0.12.
Note that when d/ℓGC ≪ 1, Kd≪ 1, so that ψ ≈ 0 and the ion density is approximately

homogeneous in the channel:

n ≈ K2

2πℓB
=

1

πdℓBℓGC

. (B.32)

This is commonly called the ideal gas regime. In practice, the ion density varies by less
than 10 % over the channel thickness as long as d/ℓGC < 0.2; the boundaries of the ideal
gas regime are illustrated in Fig. B.2.

High surface charge When Σ is large enough that d/ℓGC ≫ 1, Eq. (B.27) simpliőes:

Kd ≈ π

1 + 2ℓGC

d

, (B.33)

which is accurate within 1 % down to d/ℓGC ≈ 7.
Eventually, when d/ℓGC → ∞, Kd → π, and the potential and ion density proőles

reach a limit, sometimes referred to as the łGouy-Chapman limitž:

ψ(z) = ln
{

cos2(πz/d)
}

(B.34)

n(z) =
π

2d2ℓB cos2(πz/d)
(B.35)

B.4.3 General case: two walls with salt

a. Exact solution

In the general case of an aqueous electrolyte conőned between two symmetrical parallel
walls located at z = −d/2 and z = d/2, the potential proőle can be written in terms of
the Jacobi elliptic functions cd, sn, cn and dn.

As for the no co-ion regime (see Sec. B.4.2), one can deőne an auxiliary reduced po-
tential ψ, which is always negative:

ψ = −sgn(Σ)× ϕ = −sgn(Σ)× βqV. (B.36)
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The auxiliary potential writes:

ψ(y) = 2 ln

{√
m cd

(

yr1
2
√
m
,m2

)}

, (B.37)

where y = z/d ∈ [−0.5; 0.5] is the reduced position, r1 = d/λD, and m = exp(ψm) with
ψm the potential in the middle of the slab. m is the solution of:

r2 =
1−m2

2
√
m

×
sn
(

r1
4
√
m
,m2

)

cn
(

r1
4
√
m
,m2

)

dn
(

r1
4
√
m
,m2

) , (B.38)

where r2 = λD/ℓGC; for a given r1, m lies in the interval ]m0, 1[, where m0 the solution of
4
√
mK(m2) = r1 (with K(x) the complete elliptic integral of the őrst kind).

b. Debye-Hückel limit

When the reduced potential |ϕ| is small everywhere, the PB equation can be linearized
(DH regime, already encountered when considering only one wall in Sec. B.4.1).

With the conditions:

dϕ

dz

∣

∣

∣

∣

z=0

= 0 and
dϕ

dz

∣

∣

∣

∣

z=d/2

=
2 sgn(Σ)
ℓGC

,

the solution to the linearized PB equation, d2ϕ
dz2

= ϕ/λ2D, writes:

ϕ = sgn(Σ)
2λD

ℓGC

cosh
(

z
λD

)

sinh
(

d
2λD

) = sgn(Σ) 2r2
cosh (yr1)

sinh
(

r1
2

) . (B.39)

B.4.4 Validity of the approximate solutions

In section B.4.3, it appeared that the potential proőle is uniquely determined by the
two ratios r1 = d/λD and r2 = λD/ℓGC. Here we will discuss the range of r1 and r2 where
the different approximate solutions presented in the previous sections can safely be used.
Following Ref. 365, we will illustrate the domains of validity of the approximate solutions
in a r2 − r1 diagram, see Fig. B.2.

a. Debye-Hückel limit

In practice, the DH potential introduced in Sec. b. is an excellent approximation
to the exact potential as long as the surface potential, |ϕs| = max(|ϕ|) = |ϕ(y = 1/2)|
remains under a (somehow arbitrary) critical value ϕc = 0.4. This corresponds to r2 ≤
tanh(r1/2)× ϕc/2. This boundary is represented with a blue dashed line in Fig. B.2.

One can then simplify the relation between r1 and r2 by considering two limits: for
thin EDLs, r1 ≫ 1, the DH solution can be used up to r2 ≤ ϕc/2; for overlapping EDLs,
r1 ≪ 1, the DH solution can be used up to r2 ≤ r1 × ϕc/4.

b. Thin EDLs limit

When the distance d between the surfaces is much larger than the Debye length (cor-
responding to well-separated EDLs), one can solve the PB equation for a single charged
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Figure B.2: Domains of validity of the different approximate solutions to the PB equation
for an electrolyte solution conőned between two planar walls, as a function of the ratios
r1 = d/λD and r2 = λD/ℓGC, where d is the distance between the walls, λD the Debye
length, and ℓGC the Gouy-Chapman length.
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wall (see Sec. B.4.1), and superimpose the potentials of the two walls to obtain the full
potential in the channel.

In practice, this approach provides an an accurate representation of the exact solution
as long as r1 = d/λD > 5. This boundary is represented with a green dashed line in
Fig. B.2.

c. No co-ion limit

When the EDLs overlap and for large enough surface charges, co-ions are excluded
from the channel and the PB equation can be solved with counter-ions only, see Sec. B.4.2.
To that aim an auxiliary reduced potential ψ = −sgn(Σ) × ϕ was computed, given by
Eq. (B.23). The counter-ion density proőle n(z) was given by Eq. (B.25). Both ψ and n
depended on an inverse length K related to the surface charge via Eq. (B.27).

To determine the limits of applicability of this regime, one needs to acknowledge that
the channel is connected to an external salt reservoir with salt concentration n0 and cor-
responding Debye length λD. To simply the expressions, let’s consider negatively charged
walls, Σ < 0, so that ψ = ϕ, counter-ions are cations, and co-ions are anions.

Denoting Kd = r3, and moving the reference of potential to the reservoir, ϕ0 = 0,
Eq. (B.23) and Eq. (B.27) become:

ϕ = ϕm + ln
(

cos2(r3y)
)

, (B.40)

r3 tan
(r3
2

)

= r1r2. (B.41)

One can then compute the counter-ion density n+m and corresponding potential ϕm in
the middle of the channel, noting that n0 = 1/(8πℓBλ

2
D) and n+m = K2/(2πℓB):

n+m
n0

= exp{−ϕm} =
4r23
r21
. (B.42)

Accordingly, the ratio η between counter-ions and co-ion densities in the middle of the
channel writes:

η =
n+m
n−m

= exp{−2ϕm} =

(

4r23
r21

)2

. (B.43)

One can consider that co-ions are efficiently excluded from the channel when η is above
a critical value ηc, that we will arbitrarily őx to 100. Combining Eq. (B.41) and Eq. (B.43),
one can see that η = ηc corresponds to:

r2 =
η
1/4
c

2
tan

(

r1η
1/4
c

4

)

. (B.44)

This boundary is represented with a red dashed line in Fig. B.2.
One can simplify the relation between r1 and r2 by considering two limits: for small

surface charges, r2 ≪ 1, the no co-ion approximation can be used for r2 ≥ r1η
1/2
c /8 ≈

1.25r1; for large surface charges, r2 ≫ 1, the no co-ion approximation can be used for
r1 ≤ 2π/η

1/4
c ≈ 1.99.

B.5 Cylindrical channel

This section gathers the equations describing a Z:Z electrolyte solution conőned inside
a cylindrical channel of radius R, see Fig. B.1(d). More detailed discussions can be found
in e.g. Refs. 397, 398, 399.
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B.5.1 Thin EDL

When the channel radius R is much larger than the thickness of the EDL, one can
neglect the wall curvature at the scale of the EDL, and solve the PB equation for a single
planar charged wall, see section B.4.1, where the distance to the wall is z = R− r.

Accordingly, the integrals computed per unit surface for a single planar wall in Sec. d.
can simply be multiplied by 2πR to obtain the corresponding integral per unit length of
the cylindrical channel.

The limits of validity of this approximation will be quantiőed in section B.5.5.

B.5.2 Debye-Hückel limit

When the reduced potential |ϕ| is small everywhere, the PB equation can be linearized
(DH regime).

With the conditions:

dϕ

dr

∣

∣

∣

∣

r=0

= 0 and
dϕ

dr

∣

∣

∣

∣

r=R

=
2 sgn(Σ)
ℓGC

,

the solution to the linearized PB equation in cylindrical coordinates, 1
r

d
dr

(

r dϕdr

)

= ϕ/λ2D,
writes:

ϕ(r) = sgn(Σ)
2λD

ℓGC

I0

(

r
λD

)

I1

(

R
λD

) , (B.45)

where I0(x) and I1(x) are the modiőed Bessel functions of the őrst kind of order zero and
one. Therefore,

dϕ

dr
= sgn(Σ)

2

ℓGC

I1

(

r
λD

)

I1

(

R
λD

) (B.46)

The corresponding potential V writes:

V (r) =
ΣλD

ε

I0

(

r
λD

)

I1

(

R
λD

) . (B.47)

The limits of validity of this approximation will be quantiőed in section B.5.5.

a. A few integrals

Electrostatic energy E (per unit length of the cylindrical channel) Denoting
u = R/λD,

E =
ε

2

∫ R

0
2πr

(

dV

dr

)2

dr =
R2

2βℓBℓ
2
GC

[

1− I0(u)I2(u)

I1(u)2

]

. (B.48)

B.5.3 Strong EDL overlap: no co-ion

When the EDLs overlap and for large enough surface charges (these conditions will be
quantiőed in section B.5.5), co-ions are excluded from the channel and the PB equation
can be solved with counter-ions only.
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a. Poisson-Boltzmann equation: derivation

As for the slit channel, the counter-ion density is denoted n(r), and one can deőne an
auxiliary reduced potential ψ, which is always negative:

ψ = −sgn(Σ)× ϕ = −sgn(Σ)× βqV.

The potential in the middle of the channel is arbitrarily őxed to zero: ψm = ψ(r = 0) = 0.
Denoting nm the counter-ion density at r = 0, one can deőne the same characteristic length
K−1 as for the slit geometry,

K−1 =
1√

2πℓBnm

⇔ nm =
K2

2πℓB
,

and derive the PB equation for a negative surface charge (with positive counter-ions) or
for a positive surface charge (with negative counter-ions).

Poisson equation:

qn(r) = − ε

βq

1

r

d

dr

(

r
dψ

dr

)

Boltzmann distribution:
n(r) = nm e−ψ(r)

Poisson-Boltzmann equation:

1

r

d

dr

(

r
dψ

dr

)

= −2K2 e−ψ(r) (B.49)

b. Poisson-Boltzmann equation: solution

ψ(r) = 2 ln

[

1−
(

Kr

2

)2
]

(B.50)

dψ

dr
=

−K2r

1−
(

Kr
2

)2 (B.51)

n(r) =
nm

[

1−
(

Kr
2

)2
]2 =

K2

2πℓB

[

1−
(

Kr
2

)2
]2 (B.52)

c. Surface charge and surface potential

To fully determine the potential and ion density proőles, one needs to express K as a
function of the surface charge.

Electrostatics at the interface:

dV

dr

∣

∣

∣

∣

r=R

=
Σ

ε
⇒ dψ

dr

∣

∣

∣

∣

r=R

= − 2

ℓGC

(B.53)

Using Eq. (B.51), one obtains:

(KR)2

1−
(

KR
2

)2 =
2R

ℓGC

, (B.54)
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which can be solved:
KR

2
=

√

R/ℓGC

R/ℓGC + 2
. (B.55)

Hence, in contrast with the slit geometry, an explicit expression of K can be derived in
general for a cylindrical channel.

d. A few integrals

Electrostatic energy E (per unit length of the channel) Denoting y = KR/2,

E =
ε

2

∫ R

0
2πr dr

(

dV

dr

)2

=
2

ℓBβ

[

ln
(

1− y2
)

+
y2

1− y2

]

(B.56)

Using Eq. (B.55), E can be directly written in terms of R/ℓGC:

E =
2

ℓBβ

[

ln

(

2

R/ℓGC + 2

)

+
R

2ℓGC

]

(B.57)

Ionic density
∫ R

0
2πr dr n(z) = 2πR

|Σ|
q

=
R

ℓBℓGC

(B.58)

e. Low and high surface charge limits

Low surface charge When Σ is small enough that R/ℓGC ≪ 1, Eq. (B.55) simpliőes:

KR ≈
√

2R/ℓGC, (B.59)

which is accurate to within 1 % up to R/ℓGC ≈ 0.04.
Note that when R/ℓGC ≪ 1, KR ≪ 1, so that ψ ≈ 0 and the ion density is approxi-

mately homogeneous in the channel:

n ≈ K2

2πℓB
=

1

πRℓBℓGC

. (B.60)

This is commonly called the ideal gas regime. In practice, the ion density varies by less
than 10% over the channel thickness as long as R/ℓGC < 0.1; the boundaries of the ideal
gas regime are illustrated in Fig. B.3.

High surface charge When Σ is large enough that R/ℓGC ≫ 1, Eq. (B.55) simpliőes:

KR ≈ 2

1 + ℓGC

R

, (B.61)

which is accurate to within 1 % down to R/ℓGC ≈ 7.
Eventually, when R/ℓGC → ∞, KR → 2, and the potential and ion density proőles

reach a limit, sometimes referred to as the łGouy-Chapman limitž:

ψ(r) = 2 ln

[

1−
( r

R

)2
]

, (B.62)

n(r) =
2

πℓBR2
[

1−
(

r
R

)2
]2 . (B.63)



156 APPENDIX B. POISSON-BOLTZMANN FORMULARY

Figure B.3: Domains of validity of the different approximate solutions to the PB equation
for an electrolyte solution conőned inside a cylindrical channel, as a function of the ratios
r1 = R/λD and r2 = λD/ℓGC, where R is the channel radius, λD the Debye length, and
ℓGC the Gouy-Chapman length.

B.5.4 General case

In a cylindrical channel, we are not aware of a usable analytical solution for the general
case, and the PB equation has to be solved numerically.

B.5.5 Validity of the approximate solutions

Like in the slit case, the potential proőle is uniquely determined by two ratios r1 =
R/λD and r2 = λD/ℓGC. We will in the following bound the regions in the r1− r2 diagram
where the different approximate solutions can safely be used, see Fig. B.3.

a. Debye-Hückel limit

Like in the slit case, the DH potential introduced in Sec. B.5.2 is an excellent approxi-
mation to the exact potential as long as the surface potential, |ϕs| = max(|ϕ|) = |ϕ(r = R)|
remains under a (somehow arbitrary) critical value ϕc = 0.4. This corresponds to:

r2 ≤
I1(r1)

I0(r1)
× ϕc

2
. (B.64)
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This boundary is represented with a blue dashed line in Fig. B.3.
One can then simplify the relation between r1 and r2 by considering two limits: for

thin EDLs, r1 ≫ 1, the DH solution can be used up to r2 ≤ ϕc/2; for overlapping EDLs,
r1 ≪ 1, the DH solution can be used up to r2 ≤ r1 × ϕc/4.

b. Thin EDL limit

When the channel radius R is much larger than λD, one can neglect the wall curvature
at the scale of the EDL, and solve the PB equation for a single planar charged wall.

However this approximation should be taken with caution. Even when the EDL is
signiőcantly thinner than the channel radius (R/λD > 10), the planar wall solution only
provides a fair description of the exact potential proőle. Still, this boundary is represented
with a green dashed line in Fig. B.2.

c. No co-ion limit

When the EDL extends over the whole channel and for large enough surface charges,
co-ions are excluded from the channel and the PB equation can be solved with counter-
ions only, see Sec. B.5.3. To that aim an auxiliary reduced potential ψ = −sgn(Σ) × ϕ
was computed, given by Eq. (B.50). The counter-ion density proőle n(r) was given by
Eq. (B.52). Both ψ and n depended on an inverse length K related to the surface charge
via Eq. (B.55).

To determine the limits of applicability of this regime, one needs to acknowledge that
the channel is connected to an external salt reservoir with salt concentration n0 and cor-
responding Debye length λD. To simply the expressions, let’s consider negatively charged
walls, Σ < 0, so that ψ = ϕ, counter-ions are cations, and co-ions are anions.

Denoting KR = r3 and y = r/R, and moving the reference of potential to the reservoir,
ϕ0 = 0, Eq. (B.50) and Eq. (B.55) become:

ϕ = ϕm + 2 ln

[

1−
(r3y

2

)2
]

, (B.65)

r3 = 2

√

r1r2
r1r2 + 2

. (B.66)

One can then compute the counter-ion density n+m and corresponding potential ϕm in
the middle of the channel, noting that n0 = 1/(8πℓBλ

2
D) and n+m = K2/(2πℓB):

n+m
n0

= exp{−ϕm} =
4r23
r21
. (B.67)

Accordingly, the ratio η between counter-ions and co-ion densities in the middle of the
channel writes:

η =
n+m
n−m

= exp{−2ϕm} =

(

4r23
r21

)2

. (B.68)

One can consider that co-ions are efficiently excluded from the channel when η is above
a critical value ηc, that we will arbitrarily őx to 100. Combining Eq. (B.66) and Eq. (B.68),
one can see that η = ηc corresponds to:

r2 =
2r1η

1/2
c

16− r 21 η
1/2
c

. (B.69)
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This boundary is represented with a red dashed line in Fig. B.3.
One can simplify the relation between r1 and r2 by considering two limits: for small

surface charges, r2 ≪ 1, the no co-ion approximation can be used for r2 ≥ r1η
1/2
c /8 ≈

1.25r1; for large surface charges, r2 ≫ 1, the no co-ion approximation can be used for
r1 ≤ 4/η

1/4
c ≈ 1.26.

B.6 Limits of the PB framework

In the őrst molecular layers of liquid close to the wall, the hypotheses underlying the
PB equation generally fail. The reader can őnd detailed discussions on the limits of the
PB theory in e.g. Refs. 362, 363, 359, 364, 365, 366, 87, 372, 367, 400, 368.

Here we will simply present a criterion for the validity of the mean őeld approximation.
The importance of ionic correlations can be quantiőed by the plasma parameter Γ [369,
370, 371], which compares the typical interaction energy between two ions and the thermal
energy kBT :

Γ =
βq2

4πεdion
=

ℓB
dion

, (B.70)

where dion is the typical inter-ionic distance.
This typical inter-ionic distance can be related to surface or bulk properties, imposing

respectively a critical surface charge density |Σ|c or a critical salt concentration nc0 above
which the applicability of the PB framework should be taken with care.

At the surface, assuming that counter-ions organize into a monolayer screening the

surface charge, 1/d 2
ion = |Σ|/q, and Γsurface =

√

|Σ|ℓ2B/q. Ionic correlations cannot be

neglected when Γsurface > 1 [369, 370], corresponding to:

|Σ| > |Σ|c = q

ℓ2B
. (B.71)

In bulk, because the total ionic concentration is twice the salt concentration, the inter-
ionic distance is dion = (2n0)

−1/3, and Γbulk = (2n0ℓ
3
B)

1/3. Ionic correlations cannot be
neglected when Γbulk > 1 [369, 370], corresponding to:

n0 > nc0 =
1

2ℓ3B
. (B.72)

For a monovalent salt in water at room temperature, |Σ|c ≃ 330mC/m2, and nc0 ≃ 2M.
Also in these conditions, ℓB ∼ 7Å is greater than the ionic size, so that there will be no
steric repulsion effects while Γ < 1.
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