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General introduction 

The constant growth of world population along with the enhancement of living standards leads 

to a continuous increase of the energy demand, forecasted to increase by 30% from current 

1.5∙1014 kWh/year in the two following decades [1-2]. Around 80% of the currently produced 

energy is coming from the combustion of fossil fuels, e.g. coal, petroleum and natural gas. 

However, due to its limited feedstock, its extraction is likely to decline after 2025 [3]. Apart 

from its limited availability, fossil fuels burning is the main source of carbon dioxide emission 

into the atmosphere. Counting for 72 % of all the greenhouse gases emitted [4], CO2 is the main 

contributor to the climate change with all the threatening consequences of global warming such 

as sea level elevation, ice melting, more frequent and stronger hurricanes, extreme heat and 

wildfires, flooding, etc. 

Based on numerous scientific reports, the United Nations (UN) framework convention on 

climate change has been signed in Paris in 2015 by 174 states and the European Union as a 

political answer to the uprising issues [5]. The agreement stated the aim to keep the maximum 

of the global temperature rise well below 2°C by tackling the problem of the greenhouse gas 

emissions. Following shortly after, at the 21st Conference of the Parties to the UN Framework 

Convention on Climate Change (COP21) the emission-cutting pledges were made by all the 

170 countries attending [6]. The adopted strategy of decarbonization is primarily based on the 

replacement of the fossil fuels by the alternative sustainable and renewable energy sources. 

Nowadays, among all the alternative energy sources employed, renewables and nuclear have a 

34% share of the total electricity generation [1]. As for the nuclear, even though the CO2 release 

in the production cycle is very low (90-140 g of CO2 per kWh) compared to conventional 

energy sources (1000-1100 g of CO2 per kWh for coal), it can hardly be called sustainable 

because of the finite and toxic nature of the Uranium-235 and the harmful radioactive wastes 

after nuclear chain reactions. Except for geothermal (1.3∙1010 kWh), most of the renewable 

energy sources originate directly or indirectly from solar activity. Wind power (4.9∙1014 kWh), 

bio-energy (1.1∙1011 kWh), hydropower (1.1∙1012 kWh), and marine power (3.6∙1013 kWh) are 

secondary products of the solar irradiation of the Earth due to the transformation of the solar 

radiation into thermal heat, photosynthesis, evaporation of the water, and waves respectively 

(potential energy generation capacities numbers of installed facilities from [7-8]). 

The amount of energy produced at the Sun surface is tremendous, ca. 9.5∙1022 kWh, as it 

originates from the hydrogen to the helium gas transformation through the nuclear fusion 
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reaction. Even taking into account losses due to the back reflections, scattering and absorption 

in the atmosphere, the energy available for the harvesting at the Earth surface 

(1.1∙1018 kWh/year assuming 1500 h/year of sunshine) can still easily satisfy the actual yearly 

energy demand of 1.5∙1014 kWh. More than that, the amount of solar energy reaching the earth 

in one hour (7.3∙1014 kWh) corresponds to the annual energy consumption of the world 

population. 

There are two main reasons explaining why solar is still not the primary energy source despite 

its credibility. The first is that the light-to-electricity conversion used to be not cost competitive 

compared to the nuclear or fossil fuels [9], though it has seriously changed over the last years 

owing to the continuous drop in the cost of silicon-based photovoltaic cells ( -86% from 2009 

to 2017) in parallel to fossil fuels’ price  rising (Fig. 1.1) [10]. Nowadays, 50 USD for a 

megawatt-hour (MWh) of solar energy becomes competitive with the cost of electricity 

produced from the natural gas (60 USD/MWh) and twice cheaper than that produced from coal 

(102 USD/MWh). Therefore, even though the introduction of the solar energy still requires 

substantial financing of new infrastructures and electronic management systems for smart grid 

implementation, the technology becomes worth the investment in the long-term. 

 

Figure 1.1. Evolution of levelized cost of energy (LCOE) from various sources over time adapted 

from [10]. Solar mean LCOE values primarily relate to North American alternative energy landscape 

but reflect broader/global cost declines. 
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The second issue is more difficult to solve as it concerns the intermittent nature of the solar 

energy on long time-scale range from second up to day extent (Fig. 1.2). The time-dependent 

solar energy output and its unpredictability constrains the direct implementation of the 

photovoltaics as it cannot be produced in a steady and reliable manner to supply society’s 

fluctuating electricity demands at any time. The current application of PV technologies in 

connection with a grid is possible due to the backup of energy supply from another source (often 

a stable non-renewable one). It allows to level on time the energy production to the energy 

demand from customers [11]. 

 

Figure 1.2. Evolution of real power output from a 4.6 MW solar photovoltaic array in Springerville 

AZ on (a) tenths of seconds over two hours and (b) minutes over a week timescale [12]. 

 

For off-grid application, the costly backup energy generation systems, often based on fossil 

fuels, are required to manage the PV power output disruption [13]. However, constant energy 

output can be also assured by storage of the excess of energy produced during peak generation 

or lower demand time for later on-demand supply. The generated energy can be stored 

chemically (i.e. batteries, capacitors or hydrogen), mechanically (pumped hydroelectric power, 

compressed air or flywheels), or in thermal systems [14]. Each of these technologies has its 

application place depending on the employment conditions. However, the most appealing 

among them is electrochemical storage systems such as batteries due to easy integration, 

flexibility of storage time, and high versatility from µWh to MWh energy density scale. 

However, the incorporation of the electrochemical storage part into the PV generation system 

at least doubles the initial costs, rising up to 28 000 – 33 000 USD for a 5.6 kW PV plant 

associated with a 3 kW / 6 kWh lithium-ion battery system including installation costs, DC/DC 

converter/inverter and battery management system [15]. Thus, despite the mature technology, 
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the cost return time of the installation remains too long (20-30 years) compared to the service 

lifetime of silicon PV and Li-ion batteries. 

With the aim to lower domestic cost of PV installation as well as to prompt new innovation and 

science streams, the development of a single device combining both energy conversion and 

storage is highly desirable but also very challenging from a scientific point of view when 

dealing with the functions gathered at the molecular level.  One shorter-term alternative is based 

on a hybridization of the two technologies. It consists in developing a single device comprising 

two compartments, one corresponding to PV, such as dye-sensitized solar cell as often 

proposed, and a lithium-ion battery part sharing a same electrode in common [16]. This 

approach is potentially less expensive and easier for integration compared to the conventional 

external coupling. The second approach, inscribed to longer term perspectives, consists in 

tailoring molecular assembly to combine both sunlight conversion of energy and its chemical 

storage. This approach was first demonstrated on inorganic materials by Cahen et al. [17] and 

then Tributsch et al. [18], who highlighted an interfacial light-driven ion transfer in the mixed 

electronic/ionic semiconductor by making use of the efficient charge separation process within 

the depletion layer. A direct consequence is that such a mechanism is resticted to the surface, 

thus representing one important bottleneck of such an approach. To overcome this issue, ca. 

5 nm crystalline anatase TiO2 nanocrystals were synthesized in our group affording to 

drastically enhance the surface-to-volume ratio [19-20]. As a result, a quantitative 

photorecharge reaction of the electrode was obtained in ca. 2 hours when exposed to incident 

standard A.M. 1.5G illumination [21]. This proof-of-concept showed for the first time that the 

band gap excitation can induce a complete electrode recharge, and paved the way to new 

scientific and technological direction towards bifunctional materials combining conversion and 

storage of sunlight power. Nevertheless, further developments call for deepening our current 

understanding on these photoinduced charge transfer processes in order to maximize the 

performance in terms of stability and recharge time and developing an appropriate counter-

electrode affording a regenerative full photorechargeable Li-ion battery device by collecting 

free-electron carriers from the photoanode. 

One objective of this thesis is to explore what are the optoelectronic properties of most common 

class of insertion materials which are in discharged or charged states (i.e. lithiated or not) and 

investigating how these properties are modified during the battery operation (i.e. upon lithium 

insertion / deinsertion).  It has been already discussed in the literature that the potential of 

intercalated ions can contribute to the electrode free energy causing a shift of the energy band 
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edges, band gap, and thus affecting the Debye length and interfacial electric field of the space-

charge layer [22-23]. With this aim, the second chapter of this thesis is dedicated to describing 

the results on the in-depth study of the evolution of the optoelectronic properties and dynamics 

of the ultra-fast charge transfer processes at electrode/electrolyte interface of the anatase TiO2 

upon lithium insertion on the basis of in situ / in operando experiments using UV-Visible 

absorption spectroscopy, steady-state and time-resolved fluorescence spectroscopy and Mott-

Schottky electrochemical capacitance measurements. 

One important obstacle in the development of fully photorechargeable battery system is finding 

a suitable counter electrode for which optical absorption is complementary to the photoanode, 

while it has the opposite-type of major carriers and suitable position of conduction and valence 

bands with respect to the other electrode in order to collect the major carriers. For this reason, 

the third chapter will describe our work related to the creation of a material database gathering 

the optoelectronic properties of the most widely used battery electrode materials in order to 

reveal which materials present potentialities for this application but can also present 

potentialities for other type of applications such as in the fields of electrochromism or 

photocatalysis. Three groups of materials are investigated: transition metal oxides (Li4Ti5O12, 

LiCoO2, MoO3, WO3, CuO, Bi2O3, LiMn1/3Ni1/3Co1/3O2), transition metal sulfides (TiS2, MoS2, 

WS2), and lithiated polyanion strtuctures (LiFePO4, LiMnPO4, LiVPO4F). 
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1.1. Solar energy harvesting, conversion, and storage 

1.1.1. History of photovoltaics 

The story of photovoltaics starts back in 1839 when French scientist Edmond Becquerel 

presented the photoelectric effect to the Academie des Sciences in Paris. In his experiment, 

generation of a current induced by light action was noticed when illuminating a halogenated 

metallic electrode connected to a platinum electrode placed in acidic solution [1]. It is only a 

century later that the first practical photovoltaic cell with worth power conversion efficiency 

(PCE) of 6 % was developed by Chapin, Fuller, and Pearson based on silicon p-n junction [2]. 

The discovery of p-n junction has fostered the development of the off-grid energy production 

devices in the contest of Cold War’s spacial programs. Since then, the vast majority of 

fabricated solar cells are based on either single-crystalline or large grain poly-crystalline silicon. 

Still nowadays, the PV technology is dominated by p-n silicon hetero-junction technologies 

with a market share of ca. 90 % owing to the performances, cost and elemental availability as 

Si is the second most abundant element in Earth. The highest reported PCE value is 26.1% for 

Si single crystal technology [3] and 26.6% for Si heterostructure [4]. The values are 

approaching the 32% Shockley-Queisser limit determined for single junction solar cells having 

a band gap of 1.10 eV (Si) under ASTM G173-03 conditions [5-6]. 

After the two petrol crisis in the 70’s, development of a second generation of solar cells was 

explored to democratize solar energy to large public using a strategy to reduce modules 

manufacturing cost with new technologies. This second generation explores thin-film inorganic 

technologies based on lower cost amorphous or nanocrystalline silicon PV (14.0%) or on 

polycrystalline chalcogenide III-V and II-VI heterojunction cells, amongst CdTe (22.1%), 

CuInGaSe (22.9%), and GaAs with a record of 28.9% achieved by Alta Devices (Fig. 1.3) [7-

8]. Multi-junctions to panchromatically capture the light through complemental junctions 

allowed to reach the world record efficiencies of 38.8% using a 5-junction 

GaInAs/GaInP/GaAs/AlGaInAs/AlGaInP cell under standard A.M.1.5G illumination 

conditions (100 mW/cm2, 1 sun) [9] and as high as 46.0% with a 4-junction solar cell based on 

GaInP/GaAs//GaInAsP/GaInAs under concentrated sunlight conditions (50.8 W/cm2, 500 

sun) [10]. Nevertheless, the toxicity of some of these elements, their scarcity and the extremely 

high production cost of multiple junction modules restrain such technology to laboratories and 

to spatial applications niche [11]. 
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Figure 1.3. Evolution of certified record power conversion efficiencies for existing technologies since 

1976 (Data from National Renewable Energy Laboratory from 17.07.2018 [8]). 

 

At the end of the 80’s, the development of conducting polymers for organic electronics paved 

the way towards a third solar cell technology generation which promises low-cost and new 

market opportunities thanks to roll-to-roll printing processing yielding flexible solar cells. 

Organic materials also offer an added value with respect to inorganic counterparts owing to 

their versatility, in particular band gap engineering. This has led to organic photovoltaics 

(OPV) [12], quantum dots solar cells, which remains inorganic but with the same aim of band 

gap tunability [13], hybrid organic / inorganic devices such as dye-sensitized solar cells 

(DSSCs) [14], and more recently halide perovskite solar cells [15]. Among all the above-

mentioned technologies, even though not the best performing (PCE = 14.3% [39]), DSSCs stand 

out as the most mature technology in terms of stability. They also gather advantages in 

converting very efficiently low diffuse light reaching as high as PCE = 29.3% [40]. In addition, 

the DSSC technology offers power conversion efficiency independent of external temperature, 

tunable coloration, bifacial conversion, and semi- to full transparency possibilities.  

 

1.1.2. Working principles of conventional solar cells and dye-sensitized solar cells 

Conventional solar cells are based on a p-n junction between either differently doped 

semiconductor of the same nature (homojunction) or two different types of semiconductor 
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(heterojunction). When the quantum of light with an energy equal to or greater than the 

semiconductor’s band gap is absorbed, an electron is promoted from the valence band into the 

conduction band leaving a positively charged hole in the valence band. The formed excitons 

are diffusing towards the junction. The interfacial electric field is sufficient to dissociate 

electron-hole pairs, and trigger the transportation of electrons towards the n-type semiconductor 

and the holes in opposite direction towards the p-type semiconductor [18] (Fig. 1.4). Thus, the 

p-n junction allows to spatially and energetically separate the excitons while avoiding their 

recombination, leading to the establishment of a photovoltage which under short-circuit 

condition drives the carriers towards the external load. 

 

Figure 1.4. Schematic representation of the photoinduced charge separation in the p-n junction. 

 

The working principle of dye-sensitized solar cells has opened a new paradigm in PV field 

because of (i) the utilization of nanocrystalline particles instead of defect-free single crystals, 

(ii) a principle relying on electrochemical processes, (iii) no electric field separating the 

excitons, (iv) separation of charge carrier generation and charge transport processes. The 

technology is composed of two electrodes, a photoanode and a counter-electrode (CE), 

separated by a liquid electrolyte containing a redox couple to regenerate the dye (e.g. I3
−/I−) 

(Fig. 1.5) [14]. In the photoanode, light absorption and charge separation take place in the dye 

molecules, typically based on polypyridyl ruthenium complexes, which are anchored on the 

wide band gap anatase TiO2 nanoparticles (Eg=3.2 eV). The photogenerated electrons located 

in the lowest unoccupied molecular orbitals of the dye’s (LUMO) are injected from the triplet 

states of Ru(+II) into the conduction band of TiO2. The oxidized dye molecule (S+) is 

regenerated by a two-hole transfer process leading to the oxidation of I− to I3
−. The free 
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electrons from TiO2 are collected and transferred through the back contact towards the counter-

electrode to ensure closing the electrochemical loop by reducing I3
− back to I− [14, 19]. 

 

Figure 1.5. Schematic representation of a dye-sensitized solar cell. 

 

1.1.3. Principles of energy storage in electrochemical batteries and capacitors 

Electrochemical batteries and capacitors are widely used for nomade applications as a power 

storage feedstock [20]. The Li-ion battery technology is leading the field owing to higher cell 

voltage (3.2 - 4.2 V), high energy density (60-200 Wh/kg), low self-discharge (0.03% to 5%), 

and high stability (>1000 cycles lifespan) [20–22]. The working principle of a battery is based 

on the conversion of electrical energy stored in a form of a chemical energy by means of redox 

reactions on transition metal-based electrode materials where the charges are compensated by 

ion insertion into or deinsertion from the structure. A typical configuration consists of two 

electrodes, one at high potential (cathode) and one at low potential (anode), separated by a 

lithium-ion conducting medium (solid or liquid) (Fig. 1.6 (a)). The discharge of the battery is 

ensured by a release of lithium ions from the negative electrode into the electrolyte with a 

concomitant lithium insertion into the positive electrode. This leads to a simultaneous transfer 

of electrons in the same direction via the external circuit. This process can be inversed by 

imposing an external current such as from the grid to provide the battery recharge. 

In supercapacitors, the electrical energy is stored in the form of the surface accumulation of 

ions [23]. A typical device consists of two conductive high surface-area electrodes separated 

by an electrolyte solution (Fig. 1.6 (b)). The energy is stored via the Helmholtz double-layer 

formation at both electrode/electrolyte interfaces by the charge carriers (electrons or holes) from 

the electrode side and the ions (cations or anions respectively) from electrolyte. This technology 
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stands out for the high capacitance, fast and reversible charge storage/release function and very 

high lifespan (>105 cycles). However, in contrast to electrochemical batteries, supercapacitors 

offer a high power but a low energy density as showed in the Ragone plot (Fig. 1.7) [24-25]. 

 

Figure 1.6. Schematic representation of (a) Li-ion battery and (b) an electrochemical supercapacitor. 

 

 

Figure 1.7. Ragone plot for various energy storage devices [25]. 
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1.2. Photorechargeable energy storage devices 

As an alternative to the coupling of photovoltaic and energy storage technologies, a range of 

studies have been carried out aiming at developing a two-in-one solar energy conversion and 

storage device by means of hybridization of technologies.  

Most of such devices reported can be classified into one of the two following sub-groups 

depending on the engineering of the cell: (i) devices with a multifunctional electrode and (ii) 

separate planar sub-devices. In the first case, the charge generation material and charge storage 

material are put in junction forming a multifunctional electrode. The assembly is quite similar 

to that of a dye-sensitized solar cell (Fig. 1.8 (a)) [26]. Here, charging of the device takes place 

at the multifunctional electrode at open-circuit condition, and the system is discharged at 

closed-circuit. In the second case, charge storage and charge separation functions happen at two 

spatially separated electrodes. Most of these devices are assembled in a three-electrode 

configuration (Fig. 1.8 (b)) [27]. The photorecharge takes place when the illuminated 

photoanode is connected to the charge storage electrode. The photogenerated electrons are 

transferred from the photoanode to the charge storage electrode via the external circuit. The 

discharge takes place between the charge storage electrode and the internal electrode while 

leaving the photoanode disconnected. 

 

Figure 1.8. Schematic representation of the two configurations proposed for photorechargeable 

devices based on the use of (a) a multifunctional electrode or (b) spatially separated photoanode and 

storage electrode. 
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1.2.1. Devices based on multifunctional charge generation and storage electrode 

The first photorechargeable device based on multifunctional electrode was proposed by 

Miyazaki et al. back in 2000 using TiO2 and carbon fiber (CF) as energy generation and energy 

storage materials, respectively [26]. The photorecharge was ensured at the multifunctional 

electrode at open-circuit condition by means of a charge generation in the anatase TiO2 particles 

and its subsequent storage in the carbon fibers leading to the insertion of lithium ions into CFs. 

The discharge was performed through an external load of 1kΩ at short-circuit condition. The 

authors reported a rather small discharge capacity of ca. 250 µC/cm2 which has been attributed 

to the low rate of lithiation of the carbon fibers under illumination [28]. 

The majority of the following devices were assembled accordingly to a dye-sensitized solar cell 

configuration or at least using a dye-sensitized TiO2 photoanode to improve light harvesting of 

the electrode. In 2002, Orel et al. proposed a device including a photoanode composed of two 

layers: an external layer of nanocrystalline TiO2 particles sensitized with N3-dye that has a role 

of carrier generation under illumination and an internal layer of WO3 nanoparticles that are able 

to store the electrons throughout lithium insertion in WO3 (Fig. 1.9) [29]. The intimate contact 

between these two redox active layers is responsible for self-discharge as mentioned by the 

authors. This leads to the chemical oxidation of LixWO3 by TiO2. The device reached an open-

circuit voltage of 0.6 V and a discharge capacity of 500 µAh/cm2 after 1 hour of photocharging 

under standard A.M. 1.5G illumination conditions (100 mW/cm2). Later on, Nomiyama et al. 

proposed a mixture of TiO2 particles to generate carriers and doped polyaniline (PANI) polymer 

for a storage function, which is ensured by anions (ClO4
– or SO4

2–) transfer from PANI to the 

electrolyte [30-31]. The authors consider TiO2/PANI as a promising bifunctional composite 

because of its good specific capacity between 60 and 120 mAh/g and an energy conversion 

efficiency over 12% [32]. However, experimentally the overall electricity-to-storage 

conversion efficiency of the device was reported to be less than 1% owing to the low charge 

transfer rate between TiO2 and PANI upon photorecharge. Indeed, the halftime of charge 

transfer is 10-1 second which is ten times longer than the lifetime of the excited electrons in 

TiO2.  
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Figure 1.9. Schematic representation of the “photovoltaically self-charging battery” proposed by Orel 

et al. [29]. 

 

In 2013, Nishide et al. proposed an electrode of BODIPY dye (4,4-difluoro-4-bora-3a,4a-diaza-

s-indacene) grafted upon anthraquinone (AQ) for charge storage in an aqueous air-battery 

configuration (Fig. 1.10) [33]. Upon illumination, the photogenerated electrons reduce AQ units 

to AQ2- with the charge counterbalanced by sodium insertion. The photogenerated holes are 

oxidizing OH- ions in the electrolyte leading to the production of O2. With a MnO2/carbon 

cathode ensuring the 4-electron reduction of O2 to OH- on the other side of the cell, the charge 

storage capacity reached 166 mAh/g in photorecharge under standard A.M.1.5G illumination 

and 143 mAh/g for the subsequent discharge with good capacity retention over 50 cycles. 

Another alternative geometry proposed by Sakurai at al. is based on an air battery configuration 

composed of SrTiO3/LaNi3.76Al1.24 multifunctional electrode [34]. Photons are absorbed by the 

perovskite SrTiO3. The photogenerated electrons are transferred to LaNi3.76Al1.24 where the 

energy is stored in a metal hydride form by proton insertion (LaNi3.76Al1.24Hn). The holes 

participate in the oxidation of OH- species in electrolyte. Platinum catalyst on the other side of 

the cell is used as a positive electrode to ensure the oxygen reduction. Upon discharge, metal 

hydride reacts with oxygen generating electric energy and water. After 190 minutes of 

photorecharge under 100 mW/cm2 illumination, the device exhibited a discharge capacity of 

about 950 mAh/g. Discharge and photorecharge can be repeated at least 40 cycles.  
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Figure 1.10. Schematic representation of the “organic photorechargeable air battery” proposed by 

Nishide et al. based on BODIPY-sensitized (3) anthraquinone polymer layers (2) [33]. 

 

Finally,  Zaghib et al. recently presented results on N719 dye grafted onto LiFePO4 electrode 

[35]. The photorecharge of the electrode was ensured under standard A.M. 1.5G conditions 

leading to a photorecharge time of ca. 10 hours under O2 atmosphere and above 100 hours 

under Ar. The device exhibited 340 mAh/g discharge capacity stable over 15 cycles by 

combining discharge load and light illumination. The authors suggested that the twice higher 

capacity than theoretically expected is the result of the two concommitant mechanisms of 

galvanostatic discharge and photorecharge. Nevertheless, the band alignment and the 

photorecharge mechanism proposed remain unclear and can be largely debated. This feature 

will be discussed in more details in Chapter 3. 

 

1.2.2. Separate planar sub-devices 

The approach of separate planar sub-devices lies in the presence of two compartments, one 

photovoltaic (DSSC or OPV) and one for electrochemical storage (battery or capacitor). In most 

cases, the photoelectrochemical cell is composed of three electrodes. The charge storage 

electrode alternately plays the role of counter electrode for the photovoltaic compartment and 

working electrode for the battery part. Below we present these devices dividing them into two 

sub-groups based on the charge storage type, i.e. capacitor storage or battery storage. 
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1.2.2.1. Capacitor storage 

Most of the photorechargeable devices based on dye-sensitized TiO2 in combination with 

capacitive storage electrode are using different forms of carbon. Miyasaka et al. developed an 

activated carbon (AC) electrode storing energy with a double-layer charge capacitance of 

0.69 F/cm2 using a simple sandwich-type cell architecture (Fig. 1.11) [36]. The device achieved 

an open circuit voltage of 0.45 V owing to an efficient charge separation ensured by holes 

scavenging by LiI placed in contact with the photoanode. The photorecharge capacity achieved 

under standard illumination conditions was 20 µAh/cm2, thus representing 8.0 C/g of activated 

carbon. This number is 15 times greater than the one obtained with LiI-free 

photocapacitor.  However, the performance was limited by the formation of a Schottky barrier 

at TiO2/carbon interface which penalizes fast electron transfer from TiO2 to carbon upon 

discharge. To overcome this issue, the authors proposed a three-electrode configuration by 

introducing an internal Pt electrode. By minimizing the inner resistance, they reached 0.8 V 

open circuit photovoltage and a discharge capacity as high as 130 µAh/cm2 [37-38]. No 

cyclability data are reported.  

 

Figure 1.11. Schematic representation of the “carbon-incorporated photocapacitor” proposed by 

Miyasaka et al. in a two- and three-electrode configuration [38]. 

 

The carbon nanotubes (CNT) are known to have a good specific capacitance (54 F/g) and an 

excellent electrochemical stability [39]. When incorporated into a photorechargeable 

electrochemical device, it led to the highest solar-to-storage conversion efficiency, 

corresponding to the overall device efficiency achieved up to date. They reported a value of 

5.12 %, where a capacitance of 48 F/g was obtained under 100 mW/cm2 irradiation [40]. The 
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discharge capacity of 1.36 µAh/cm2 was maintained over 100 cycles. The incorporation of 

PANI into CNT electrode increased the electrode’s capacitance to 208 F/g. However, it caused 

a decrease in the storage capacity from 84% to 70% resulting in a drop of overall device 

efficiency down to 4.29%. After photorecharge, a discharge capacity of 56 µAh/cm2 was 

reached, for which a capacity retention of 80% was obtained after 100 cycles. The combination 

of poly(3,4-ethylenedioxythiophene) (PEDOT) with the multi-walled carbon nanotubes has 

also increased the initial capacitance of CNT electrode to 95 F/g, which corresponds to an 

energy density of 3.15 mWh/g [41]. The authors assign this improvement to originate from a 

lowering in internal resistance of high surface area and high conductivity PEDOT. When 

employed alone, PEDOT reached 0.52 F/cm2 storage capacity under standard irradiation [42]. 

However, note that authors have used different units (F/cm2 vs F/g) which in absence of some 

information related to the size and loading of the electrode impede a direct comparison between 

the numbers. Both CNTs and PANI have also been incorporated in combination with dye-

sensitized TiO2 into so-called “energy-fibers” for smart textiles. The device exhibits rather 

limited performances of up to 3.32 mF/cm2 under 100 mW/cm2 irradiation [43-44] and 

20 mF/cm2 under 65 mW/cm2 irradiation [45]. Bae et al. presented a single fiber-based device 

including ZnO nanowires and graphene as principal energy conversion and storage materials. 

The electrode reaches a storage capacitance of 0.4 mF/cm2 after photorecharge under standard 

A.M. 1.5G conditions [46]. The nanocomposite of PVDF and ZnO nanowires as a capacitive 

energy storage material in combination with N719-sensitized TiO2 exhibited 59.4 mAh/g 

storage capacity achieving 3.70% overall device efficiency under standard conditions [47]. 

Finally, single-walled carbon nanotubes were also incorporated into an OPV device based on 

P3HT:PCBM ( poly(3‐hexylthiophene):1‐(3‐methoxycarbonyl)propyl‐1‐phenyl[6,6]C61 ). 

This assembly yielded a specific capacitance of 28 F/g after 70 seconds of illumination under 

100 mW/cm2 and 3.39% overall device conversion efficiency [48]. However, only 47% of 

initial discharge capacity of 4.9 mAh/g was maintained after 10 cycles. Using two OPV in series 

allowed reaching 79.8 F/g storage capacity while exhibiting a higher power density of 10 W/g 

and energy density of 5 mWh/g. 

 

1.2.2.2. Battery storage 

A range of other inorganic and organic materials has been used for developing 

photoelectrochemical devices including a battery. A surface-oxidized tungsten oxide in 
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combination with a classical DSSC part reached 141 µAh/cm2 discharge capacity with 0.4 V 

discharge output voltage after 10 hours of photorecharge under standard illumination conditions 

(A.M. 1.5G) [49]. Zhao et al. presented a similar device based on nanoparticles of WO3 and 

Z907-sensitized TiO2 which reached 40.6 mAh/g (24.4 µAh/cm2) discharge capacity after a 

photorecharge under 7.5 mW/cm2 irradiation during 10 minutes [50]. In the following cycle, 

the discharge capacity dropped to 34 mAh/g and was further maintained during 4 cycles only. 

The authors ascribed this capacity loss to the possible reduction of WO3 to W and side reactions 

with the electrolyte leading to a SEI formation. Gao et al. presented a photorechargeable battery 

based on WO3-coated carbon nanotubes with a TiN nanotube arrays on Ti mesh as an 

electrocatalytic electrode for I3
− to I− reduction (Fig. 1.12 (a)) [51]. After 30 minutes of 

photorecharge under 100 mW/cm2, the open circuit voltage of the complete device reached 

0.7 V and yielded a discharge capacity of 139 µAh/cm2. In the following cycle, the discharge 

capacity dropped to 124 µAh/cm2 (11% loss) and remained stable over 10 cycles. In contrast to 

the above described three-electrode systems, Jiang et al. presented a photorechargeable device 

based on tungsten oxide hydrate in a two-electrode assembly [52]. The nano-

WO3∙H2O/CNTs/PVDF composite electrode was combined with N719-sensitized TiO2 

photoanode providing a discharge capacity of 383 µAh/cm2 after 10 minutes of photorecharge 

under 100 mW/cm2 irradiation. The overall device efficiency was 2.12 %.  

 

Figure 1.12. Schematic representation of the “solar storable rechargeable air battery” proposed by 

Gao et al. [51]. 

 

An advanced architecture has been proposed by Wang et al. to improve charge collection and 

lower internal charge transfer resistances. This consists of an intermediate double-sided TiO2 

nanotube array electrode, one side of which is a photoanode of a dye-sensitized solar cell for 
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charge generation and the other is a charge storage electrode combined with the LiCoO2 positive 

electrode in the battery compartment (Fig. 1.13 (a)) [53]. In order to provide high enough 

photovoltage for the battery recharge, the authors integrated three series-connected tandem 

N719-N749 DSSCs to afford above 2 V generation under illumination (Fig. 1.13 (b)). 

Photorecharging power pack under standard illumination for 440 seconds resulted in the voltage 

rise up to 3 V and a consequent discharge capacity of 33.9 μAh. The entire conversion 

efficiency of the device was limited to ∼0.82%, which authors assign to the growing inner 

resistance of the cell over the operational time. 

 

Figure 1.13. Schematic representation of (a) two-compartment photorechargeable device based on 

double-sided TiO2 nanotube arrays proposed by Wang et al. and its modification with the three 

tandem DSSCs integrated in the photovoltaic compartment [53]. 

 

A set of organic materials have also been proposed in photorechargeable systems for ensuring 

the energy storage function. Segawa et al. were first to present the polypyrrole (PPy) as a charge 

storage electrode in a three-electrode cell [27, 54]. Here, the storage of photogenerated energy 

is performed by deinsertion of ClO4
- from the PPy structure. A maximum discharge capacity of 

0.5 μAh/cm2 was achieved after 30 minutes of photorecharge under standard A.M. 1.5G 

conditions. This capacity, although low compared to the inorganic counterparts, remained 

stable over 10 cycles. An overall device energy conversion efficiency of 0.5 to 1% was reported. 

Gao et al. improved this concept by introducing PEDOT polymer into the DSSC compartment 

to ensure the dye regeneration by hole trapping and forming PEDOT+ClO4
- with the anions 

from the electrolyte (Fig. 1.14) [55]. This photoelectrochemical cell reached 0.76 V open-

circuit voltage under standard light conditions. The subsequent discharge capacity was 

8.3 mAh/g and a negligible capacity fade of less than 4 % was experienced over 10 cycles. The 

authors ascribed the limited performances of the device, i.e. solar-to-storage conversion 

(a)  (b)  
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efficiency of ∼0.1%, to the low power conversion efficiency (PCE = 0.5%) of the TiO2/PEDOT 

anode. 

 

Figure 1.14. Schematic representation of the “photorechargeable battery based on polymeric charge 

storage electrodes” proposed by Gao et al. [55]. 

 

Nishide et al. presented a similar three-electrode device with the integrated polyviologen 

poly(tripyridiniomesitylene tribromide) (PTPM) storing the photogenerated electrons by means 

of electrolytic and reductive polymerization [56]. The authors replaced the traditional I3
-/I- 

redox mediator of the DSSC with an aqueous electrolyte containing TEMPOL+/TEMPOL (1-

oxyl-2,2,6,6-tetramethyl-4-hydroxypiperidine) redox couple. The cell exhibited a discharge 

capacity of 0.02 µAh with a constant output voltage of around 0.4 V. 

The approach of combining dye-sensitized solar cells with battery has also been extended to 

redox-flow batteries. The first solar redox flow battery was reported by Gao et al., where an 

analyte containing Li2WO4 particles in aqueous electrolyte performed the faradaic storage 

function  (Fig. 1.15) [57]. Upon illumination, the photogenerated electrons produced in the dye-

sensitized TiO2 particles are used for Li+ insertion into Li2WO4 leading to their reduced form 

Li2+xWO4. The subsequent discharge takes place between the Li2+xWO4 particles in the anolyte 

and LiI species in the catholyte. Lithium transfer between the two compartments is ensured by 

an intermediate solid conducting LISICON membrane. The authors reported a discharge 

capacity of 15.1 µAh/mL after a photorecharge under 100 mW/cm2 irradiation. The device 
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showed stability over 10 cycles for an optimized current density of 75 µA/cm2. Another 

photoelectrochemical redox flow battery based on [Fe(C10H15)2]
+/Fe(C10H15)2 ferrocene 

derivatives was introduced by Yang et al. [58]. The authors achieved 53.3 µAh/mL discharge 

capacity after a photorecharge of 40 minutes under 40 mW/cm2 illumination. A range of other 

redox couples for solar redox battery have been explored by Madden et al. such as methyl 

viologen MV2+/ MV+, S4
2-/S2

2-, Cr3+/Cr2+, Fe2+/Fe, and V3+/V2+ [59]. The integration of 

polysulfide redox species with N719-sensitized TiO2 led to a discharge capacity of 

240 µAh/cm2 with a remarkably flat discharge voltage of 0.7 V. However, the authors underline 

important capacity losses upon cycling, i.e. 20 % loss after three cycles, which according to the 

authors call for the need to improve electrolyte, dye, and electrode/electrolyte interface stability. 

 

Figure 1.15. Schematic representation of a “solar rechargeable redox flow battery” proposed by Gao 

et al. [57]. 

 

A few studies presented photoelectrochemical devices based on different light harvesting 

materials and redox couples. Combination of WO3-decorated BiVO4 photoanode and aqueous 

I3
-/I- and Br3

-/Br- redox couples as catholyte and anolyte respectively resulted in 250 µAh 

discharge capacity after first photorecharge and 0.4 V output voltage stable over 20 cycles [60]. 

The overall device efficiency reached 1.25%, however without any precision on the type of 

light and the power used, thus making the direct comparison with the other device architectures 

impossible. Utilization of other combinations between absorbers and redox couples have also 

been presented, i.e. CdS associated to V3+/V2+ [61] and α-Fe2O3 associated to Fe(CN)6
3-/Fe(CN)6

4-
 

[62], however without any further details about overall device performance, discharge 

capacities, and experimental conditions. 
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Finally, more advanced designs integrating multiple light absorbers have been presented using 

two photoelectrodes [63–65]. Probably the most interesting is the device based on Ta3N5 

photoanode and GaN/Si photocathode (Fig. 1.16), providing the highest up-to-date device 

photovoltage of 1.5 V [63]. This high voltage allows to operate a 1.2 V alkaline 

anthraquinone/ferrocyanide redox battery with a 3.0% solar-to-storage conversion efficiency 

under standard light conditions (A.M. 1.5G). The discharge capacity reached 200 µAh/mL, 

even though this latter is limited by the catholyte degradation.  

 

Figure 1.16. Schematic representation of a “solar rechargeable redox battery” proposed by Wang et 

al. [63]. 

 

Jin et al. presented a photorechargeable redox flow battery composed of regenerative silicon 

solar cell in association with 9,10-anthraquinone-2,7-disulfonic acid (AQDS)  and 1,2-

benzoquinone-3,5- disulfonic acid (BQDS) based redox couples as catholyte and anolyte, 

respectively [64]. After a photorecharge under 100 mW/cm2 during 7.3 hours, the device 

reached an excellent discharge capacity of 3.5 mAh/mL leading to a solar-to-storage efficiency 

of 1.7%. Silicon absorber and AQDS-based catholyte have also been studied in combination 

with Br3
-/Br- redox couple based anolyte [65]. After a photorecharge under A.M. 1.5G 

illumination conditions, the battery reached a discharge capacity values of up to 730 µAh/mL 

and 0.78 V stable output voltage with a 3.2% solar-to-storage conversion efficiency. 

The main characteristics and performances of all above-discussed photoelectrochemical storage 

devices are gathered in Table 1.1.  
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Table 1.1. Overview of photorechargeable electric energy storage systems including the overall device 

discharge performance characteristics and solar-to-storage efficiencies when available. 

 

Conversion 

 

Storage Discharge performance Light power 

Solar-to-

storage 

efficiency 

Ref. 
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Dye-sensitized 

TiO2 
F

a
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d
a
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 s

to
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g
e 

Carbon fibers Ohmic load discharge n/a n/a [28-28] 

WO3 500 µAh/cm2 100 mW/cm2 n/a [29] 

PANI n/a n/a <1% [31] 

BODIPY-dye AQ2-/AQ 143 mAh/g; 0.63 V 100 mW/cm2 n/a [33] 

SrTiO3 LaNi3.75Al1.24Hn 950 mAh/g  100 mW/cm2 n/a [34] 

N719-dye LiFePO4 340 mAh/g  100 mW/cm2 0.06-0.08% [35] 

S
e
p

a
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 p
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n

a
r
 s

u
b

-d
ev

ic
e
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Dye-sensitized 

TiO2 

C
a
p
a

ci
to

r 
st

o
ra

g
e 

Activated carbon 130 µAh/cm2; 47 mWh/cm2 100 mW/cm2 n/a [36, 38] 

CNTs 48 F/g; 1.36 µAh/cm2 100 mW/cm2 5.12% [40] 

 0.024 mF/cm2 100 mWh/cm2 1.50% [43] 

 3.32mFcm2 0.27 mW/cm2 1.83% [44] 

CNTs + PANI 208 F/g; 1.36 µAh/cm2 100 mW/cm2 4.29% [40] 

CNTs + PEDOT 95 F/g; 3.147 mWh/g 100 mW/cm2 n/a [41] 

PANI 20 mF/cm2 65 mW/cm2 2.1% [45] 

PEDOT 0.52 F/cm2 100 mW/cm2 4.37% [42] 

PVDF/ZnO 59.4 mAh/g 100 mW/cm2 3.70% [47] 

ZnO NWs ZnO/graphene 0.4 mF/cm2  100 mW/cm2 n/a [46] 

P3HT:PCBM CNTs 28 F/g; 0.5 mAh/g 100 mW/cm2 3.39% [48] 

Dye-sensitized 

TiO2 

B
a

tt
er

y 
st

o
ra

g
e 

WO3 141 µAh/cm2; 0.4 V 100 mW/cm2 n/a [49] 

 24.4 µAh/cm2 7.5 mW/cm2 n/a [50] 

WO3 + CNTs 0.139 mAh/cm2 100 mW/cm2 n/a [51] 

WO3 + CNTs + PVDF 385 µAh/cm2  100 mW/cm2 2.12% [52] 

TiO2 NTs 33.89 μAh 100 mW/cm2 0.82% [53] 

Polypyrrole 0.5 μAh/cm2
  100 mW/cm2 0.5-1% [27] 

 8.3 mAh/g 100 mW/cm2 0.10% [55] 

Polyviologen 0.02 µAh; 0.4 V >10 mW/cm2 n/a [56] 

Li2+xWO4/Li2WO4 + I3
−/I− 0.0195 mAh/mL 100 mW/cm2 n/a [57] 

[Fe(C10H15)2]
+/Fe(C10H15)2 + 

I3
−/I− 

53.3 mAh/L  40 mW/cm2 n/a [58] 

S4
2-/S2

2- + I3
−/I− 240 µWh/cm2; 0.7 V 77 mW/cm2 n/a [59] 

BiVO4 I3
−/I− + Br3

−/Br− 0.25 mAh; 0.4 V n/a 1.25% [60] 
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CdS V3+/V2+ + V3+/VO2+ n/a 100 mW/cm2 n/a [61] 

α-Fe2O3 AQDS/AQDSNa2 +       

Fe(CN)6
3-/ Fe(CN)6

4- 

n/a n/a 0.05–0.08% [62] 

Ta3N5 + GaN/Si Anthraquinone + ferrocyanide 200 mAh/L; 1.0 V 100 mW/cm2 3.00% [63] 

p+nn+-Si + n+np+-Si  AQDS/AQDSH2 + 

BQDS/BQDSH2 

3.5 Ah/L; 0.41 V 100 mW/cm2 1.7% [64] 

n+p-Si + p+n-Si  AQDS/AQDSH2 + Br3
−/Br− 730 mAh/L 100 mW/cm2 3.2% [65] 

 

 

1.2.3. Charge generation and storage at the molecular level 

One longer-term approach to overcome the solar intermittency issue is the development of 

materials capable of both energy storage and energy conversion at a molecular level. Both 

organic and inorganic materials have been considered for this application. 

The only functional energy harvesting and storage device based on the organic molecule was 

presented by Samuel et al. inspired by a homojunction OPV cell (Fig. 1.17) [66]. The bi-

functional cyanine dendrimer is sandwiched between a hole transporting polymer based on 

PEDOT/PSS and an aluminum plate to collect the free carriers. Upon light excitation, the 

electron is trapped in the central indoline unit triggering the movement of I- or PF6
- across the 

cyanine to the second indoline. This process is reversible. Even though the performances are 

modest (0.003 µAh/cm2), likely because of the low light capture and short lifetime of the charge 

separation, this work stands for the first proof-of-concept of a photorechargeable device based 

on molecular energy conversion and storage in an organic molecule. 

 

Figure 1.17. Cell configuration and bifunctional organic cyanine dendrimer performing light 

conversion and charge storage at molecular level proposed by Samuel et al. [66]. 

 

The second approach addressed bi-functional inorganic materials and started back in the 80’s 

by Gerischer et al., who extended the fundamental knowledge of the semiconductor/electrolyte 
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interface and the theory on photoinduced ion transfer reactions through the interface [67–69]. 

In the same period of time, Cahen et al. were also working in similar direction and reported the 

first photoelectrochemical system capable of conversion and storage of solar energy based on 

CdSe electrode, where the partial reversible substitution of Se with S from electrolyte takes 

place under illumination [70]. A few years later Tributsch et al. experimentally proved the 

possibility of the light-driven intercalation reactions in p-type layered compounds (ZrS2 and 

ZrSe2) and discussed the theoretical prediction of the photoinduced ion deinsertion from the n-

type Hf dichalcogenides for simultaneous energy conversion and storage [71], which was 

experimentally demonstrated a couple of years later [72-73]. However, the main drawback of 

transition metal dichalcogenides was the too low quantum efficiencies and a quasi-metallic 

behavior leading to a loss of the photo-effect. Tributsch et al. considered the possibility of using 

a typical for batteries Li+ ion for photo-insertion but abandoned the idea because of lithium’s 

low ionization energy and too high electropositivity for the practical use [74]. Therefore, they 

focused on the Cu+ insertion systems that are compatible with a copper metal counter-electrode. 

The most promising performances were achieved on Cu6-xPS5I [75] and Cu3PS4 [74] p-type 

semiconductors, where Cu2+ ion insertion into structure was triggered by homogeneous electron 

transfer to the transition metal. With similar approach, Tributsch et al. reported a successful 

proton deinsertion from the n-type HxTiO2(B) by the action photogenerated holes oxidizing Ti3+ 

to Ti4+ [76]. However, focusing almost exclusively on the photoinduced phenomenon, the 

storage capability of these systems has been relatively undertreated. 

The principle of the photoinduced insertion/deinsertion reaction lies in the effective charge 

separation in the depletion layer of the semiconductor [68-69]. When a semiconductor electrode 

is immersed in the electrolyte, the equalization of the Fermi levels between the semiconductor 

and the electrolyte (chemical potential) takes place (Fig. 1.18). It results in the space charge 

depletion of the minority charge carriers and bending of semiconductor band edges at the 

surface. When the light is absorbed in the depletion layer, the photogenerated charges are 

effectively separated due to the migration of the main charge carriers into the bulk of 

semiconductor and the minor charge carriers towards the surface. In absence of a suitable redox 

mediator in the electrolyte, the minor charge carriers accumulate at the semiconductor surface, 

trigger redox reaction with the transition metal and interfacial ion transfer for charge 

compensation.  
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Figure 1.18. Schematic representation of the band bending at the semiconductor/electrolyte interface 

for an electrolyte containing a redox mediator. 

 

Unfortunately, so far, the interfacial light-driven ion transfer in mixed electronic/ionic 

semiconductor is only an extreme surface reaction limited to the Debye length (space charge 

layer width). This was confirmed by Hirakawa et al. on the CuFeTe2-based electrode, in which 

the storage capability was only 0.562 mWh/g, thus representing less than 1% of the theoretical 

energy density (60 mWh/g) [77].  

 

Conclusions 

In this chapter, we presented the evolution of the solar cells development since the discovery 

of the photo-effect until today. We introduced the principles of the electrochemical energy 

storage devices, i.e. batteries and capacitors, commonly used to store energy. The concept of 

combining the two functions to solve solar intermittency or to prolong battery capacity for 

nomad applications has been reviewed. We presented them into two groups depending on the 

approach, namely hybridization of two technologies in one device or development of bi-

functional materials capable of combining energy conversion and its storage at molecular level.  

The main advantage of the solar-to-chemical conversion and storage systems based on 

hybridization lies in the use of the third generation PV benefiting from the ease of its integration 

with the storage counterpart and the potential overall cost reduction. Nevertheless, the devices 

developed so far are highly limited in terms of performances (maximum 1.0 V output voltage 

and the overall device efficiency of 5.12%) and stability. One of the reasons is that up to now 

focus has been on the development of the prototypes and hardly any on the optimization of the 



33 
 

system, which often resulted in poorly matched conversion and storage parts leading to 

inefficient electron transfer. In addition, the issue of battery self-discharge when the PV part is 

exposed to lower light illumination has never been tackled. One complication in analyzing the 

publications on photorechargeable devices arises from the different sources of illumination and 

the different units used to report the performances.  

The longer-term and more fundamental second approach to overcome the solar intermittency is 

based on combining charge generation and charge storage functions as a result of light-induced 

charge separation within the depletion layer and ion-transfer reaction in a mixed ionic/electronic 

conductor. Such materials open up new scientific and technological directions that can 

potentially close the gap between PV and batteries in terms of functions as well as cut the cost 

of energy conversion and storage device. Currently, the main limitation of such device is the 

low performances nested either in poor charge separation or in photoelectrochemical reactions 

confined to the extreme surface of the material.  
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Introduction 

The proof-of-concept of an interfacial light-driven ion transfer at the interface between a mixed 

electronic/ionic semiconductor and electrolyte has been presented by Tributsch et al. in 1984, 

i.e. photo-insertion of Cu+ into p-type Cu6-xPS5I [1]. This opened a new research direction of 

inorganic materials capable of both solar energy conversion and its storage at the molecular 

level. As the charge carrier photogeneration is long-lived within the depletion layer of the 

semiconductor but the main limitation of such a mechanism is nested in its extreme surface 

reaction limited by the Debye length, which resulted in a maximum storage capacity of only 

0.5 Wh/kg as pointed out on CuFeTe2 by Hirakawa et al. [2]. To overcome such a limitation, 

the important criteria to consider are: having both efficient electronic and ionic conductivity, 

good reversibility of ion insertion into / deinsertion from the structure, as well as a high 

dielectric constant and low donor states to promote effective dissociation of the electron-hole 

pairs in the depletion layer and to maximize the Debye length (𝑊) into the particle’s volume 

as determined from the solution of Poisson’s equation in a radial (𝑟) coordinates (eq. 2.1-2.2) .  

1

𝑟2
∙
𝑑

𝑑𝑟
(𝑟2 ∙

𝑑𝛹

𝑑𝑟
) =

𝑞𝑁

𝜀𝑟𝜀0
 (2.1) 

𝑊 = ( 
2∆𝛹𝜀𝜀0

𝑞𝑁
 )
1
2⁄

  (2.2) 

where ∆𝛹 is the electrical interfacial energy drop in the space charge layer (directly related to 

the flat band potential Vfb), 𝜀0 the permittivity of the vacuum (8.85∙10-12 F/m), 𝜀𝑟 the relative 

permittivity (dielectric constant) of the material to that of the vacuum, 𝑞 the elementary charge 

(1.6∙10-19 C), and 𝑁 the main charge carrier concentration (donor density). One additional 

approach led at LRCS under the post-doctoral work of Dr. Christian Andriamiadamanana prior 

to my Ph.D. thesis, was to downsize the particles towards nano-scale to promote the surface-

to-volume ratio of the active material and thus to increase the yield of the photoelectrochemical 

reaction per mass unit.  

The anatase polymorph of titanium dioxide appears as an excellent candidate owing to its good 

semiconducting properties, a high dielectric constant of 31-48 [3-4] and low charge carrier 

density of 1017-1019 cm-3
 [5-7]. It displays a reversible lithium insertion / deinsertion process at 

a redox potential of ca. 1.75 V vs. Li+/Li making this material attractive as a negative electrode 

for lithium-ion batteries [8-9]. Prior to this Ph.D. work, we elaborated a synthetic procedure 
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under room-temperature control yielding to nanocrystalline anatase TiO2 crystals of ca. 4-5 nm 

in size [10].  

This second chapter starts with a summary of this preliminary work that laid the background 

for the current thesis, including the details of the nanoparticle TiO2 synthesis, powder and 

electrode characterization, and the photoelectrochemical performances. In the following parts, 

the results gathered during my thesis will be presented and discussed aiming at better 

understanding of the mechanisms behind the photorecharge as well as the evolution of 

optoelectronic properties of TiO2 upon lithium insertion, such as the band edge positions, 

charge carrier concentration and photoluminescence properties. Finally, this chapter will end 

with a study led by time-correlated single photon counting experiments to determine precisely 

the dynamics of the charge transfer processes in TiO2 and Li0.6TiO2 nanocrystals and 

incorporated in a photo-battery.  

 

2.1.  Preliminary work on the photorechargeable anatase TiO2 nanoparticles 

The data and concepts presented below make a part of the research activities led by Dr. 

Snehangshu Patra and Dr. Christian Andriamiadamanana (Post-doctoral fellows between 2012 

and 2015 at LRCS) and Gaspard Bouteau (Ph.D. thesis defended in February 2019).  

 

2.1.1. Synthesis and characterization of the anatase TiO2 nanoparticles 

In order to bypass the surface limitation of the long-lived light-induced charge separation in 

semiconductor [1], two-step room-temperature synthesis procedure was proposed in our group 

to shape anatase-type TiO2 nanoparticles of ca. 4-5 nm in size [10]. In my work, we slightly 

adapted this procedure as following: 40 mL of Ti(iOPr)4 (titanium (IV) isopropoxide) was 

added into 400 mL of distilled water to achieve complete hydrolysis of the alkoxyde precursor. 

The solution was vigorously stirred for 4 hours. The white precipitate was retrieved by multiple 

centrifugations with water, ethanol, and then dried in an oven at 60°C overnight. The resulted 

white powder is x-ray amorphous corresponding to hydrated titanium dioxide TiO2·1.6H2O as 

deduced by TGA analysis. The dehydration of powder was performed by adding concentrated 

sulfuric acid (H2SO4) until pH = 2. Thermolysis of the solution was carried out for one week at 

60 °C under these conditions. The resulting white powder was retrieved by three subsequent 

centrifugations using distilled water. The high resolution transmission electron micrograph 

(Fig. 2.1 (a)) showed mostly spherical nanoparticles with an average diameter of around 5 nm. 
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The x-ray diffraction (XRD) pattern shows successful crystallization of the resulted power after 

controlled thermolysis leading to an anatase-type of TiO2 structure in good agreement with the 

selected area electron diffraction (SAED) (Fig. 2.1(b)). Note that there is a minor content of the 

brookite polymorph, visible with the small peak at 2θ = 30.8°. The presence of this polymorph 

as a structural impurity is explained by a possible increase of pH during the thermolysis [11]. 

Using Debye-Scherrer equation, we determined a crystallite size of 4.3 nm based on (004) 

orientation at 2θ = 37.8° [12]. 

 

Figure 2.1. (a) High Resolution Transmission Electron Micrograph including SAED pattern and (b) x-

ray diffraction pattern of the synthesized anatase TiO2 powder. 

 

N2 adsorption-desorption isotherm of these nanoparticles features a type IV isotherm 

corresponding to a mesoporous network (Fig. 2.2) [13]. Brunauer-Emmett-Teller (B.E.T.) 

surface area is 248.6 m2/g (± 3.2 m2/g, CBET = 327) [14]. The distribution of pores is monomodal 

centered at 3.5 nm as deduced by Barrett-Joyner-Halenda (BJH) method [15]. 

Figure 2.2. (a) N2 adsorption/desorption isotherm and (b) BJH pore size distribution determined in 

desorption of the synthesized anatase TiO2 powder. 
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2.1.2. Formulation of the screen-printable paste and electrode printing procedure  

In order to obtain mesoporous electrodes with reproducible thicknesses in the range of 2-15 µm, 

size and porosity, we privileged in this work the screen-printing methodology. For this, a 

printable paste containing the synthesized TiO2 nanoparticles was prepared. We adapted a 

protocol reported in the literature for the preparation of dye-sensitized solar cell photoanode 

[16-17]. For this, 6 g of dry TiO2 powder was dispersed within 175 mL of distilled water prior 

acidification by adding 1 mL of HNO3 (68%, Aldrich)). The solution was stirred at 78°C for 

90 minutes with a 45-minute ramp to reach the temperature to allow particle peptization. This 

can be visualized by the solution color change from white to bluish. The colloidal solution was 

further dispersed using first Ultra-Turrax homogenizer (for 5 minutes at 25000 rpm) and then 

an ultrasonic horn with a titanium probe for one minute, alternating every 0.5 seconds 

ultrasound (at 50% power of 200 W at 20 kHz) and rest. After repeating this procedure three 

times between homogenizer and high power ultra-sound, the solution was concentrated in rotary 

evaporator under pressure of 10 mbar at 45°C until an aqueous suspension containing 20 weight 

percent (wt%) of TiO2 was obtained. The water and remaining HNO3 were removed by 

centrifugation three times using ethanol. Then, 20 wt% of ethylene cellulose 30-50 mPa.s 

(1.32 g), 34 wt% of ethylene cellulose 5-15 mPa.s (2.28 g) with respect to the initial amount of 

dry TiO2, and 24.3 g of terpineol were added to adjust the viscosity of the paste and final 

porosity. The mixture was diluted by ethanol to a volume of ca. 130 mL and homogenized by 

stirring for few hours at 800 rpm. The solution was redispersed following the same procedure 

as described above (Ultra-Turrax homogenizer and ultrasonic horn) and then concentrated again 

in the rotary evaporator to reach optimal viscosity for screen-printing. The obtained paste was 

then homogenized in a three-roll mill system, and heat-treated at 80°C for 4 hours in order to 

enhance its storage longevity. 

The TiO2 electrodes were screen-printed upon iron-free NSG10 Nippon Sheet Glass FTO. The 

glass surface was pretreated in 40 mmol/L solution of TiCl4 at 70°C for 30 minutes. This leads 

to a few nanometers thick deposit of TiO2 to enhance the film adhesion of the screen-printed 

TiO2 layer onto the FTO substrate. The screen utilized was composed of a network of 90 threads 

per cm (90T mesh) leading to 16 squares of 16 mm2. Three layers of TiO2 were deposited on 

the substrate leading to a final thickness of around 10 μm. The printing procedure is the 

following: printing, mechanical relaxation for 3 minutes and 7 minutes of heat treatment at 

110°C on a hot plate to dry the electrodes. The removal of the remaining terpineol and ethyl 

cellulose, which plays the role of porogen, was carried out in four steps at 325, 375, 450 and 
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500°C under air according to ramps and step durations schematized in Figure 2.3. These steps 

follow precisely the thermal degradation stages of the ethyl cellulose. Prior to any use in the 

photoelectrochemical cell, the electrodes were always dried at 70°C under vacuum overnight. 

We found reproducibly that working with dry electrodes is important for the 

photoelectrochemical performances. 

 

Figure 2.3. Schematic representation of the 4-step heat-treatment procedure to remove ethyl cellulose 

and terpineol from the screen-printed TiO2 electrodes. 

 

After the heat-treatment procedure, N2 adsorption-desorption measurements on the films still 

show a type IV isotherm (Fig. 2.4 (a)) with a H3 type hysteresis which typically met for porous 

materials formed from aggregates despite the different dispersion steps led during the paste 

preparation [13]. This is also visible based on the white color of the printed-electrodes, as 

discussed below, which shows Mie scattering from small aggregates in the film. The B.E.T. 

surface area decreases to 135.6 m²/g implying that the heating procedure induces also grain 

coarsening. The B.J.H. pore distribution in the film indicates a pore size centered at 4 nm in the 

film with a kind of bimodal distribution leading to an average pore diameter of 7.5 nm 

(Fig. 2.4. (b)) [15]. The film’s porosity was estimated at 57% based on the cumulative pore 

volume.  
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Figure 2.4. (a) N2 adsorption-desorption isotherm of the screen-printed TiO2 electrodes and (b) pore 

size distribution determined by the B.J.H. method. 

 

For all photoelectrochemical experiments, a screen-printed TiO2 electrode was incorporated 

into an air-tight double-wall thermostated (at 20°C) photoelectrochemical cell made out of 

borosilicate (Fig. 2.5). This glass reaches ca. 90% transmittance in the UV and visible range 

with a cut-off transmittance below 300 nm. The airtight cap was mounted with three platinum 

wires to one of which the TiO2 photoanode (WE) was attached by soldering with indium-

gallium alloy, and the other two were equipped with crocodile clips. Prior to the cell assembly, 

the cup with the working electrode and crocodile clips was dried at 70°C under vacuum for at 

least 6 hours. Meanwhile, the cell body was dried at 100°C in an oven. All the cell components 

were assembled in an Ar-filled glove box. Two lithium strips were serving as counter (CE) and 

reference (RE) electrodes. The cell was filled with an electrolyte containing 1 mol/L lithium 

hexafluorophosphate (LiPF6) in 1/1 ratio ethylene carbonate (EC) and dimethyl carbonate 

(DMC) solution from Solvionic. The cup was sealed to the cell by high-vacuum Glisseal grease. 

The light excitation was ensured by using an Oriel LCS-100 sun simulator equipped with class 

ABB xenon lamp filtered at AM 1.5G (100 mW/cm2). This light power condition was regularly 

checked with a silicon reference diode certified at NREL. The photoelectrochemical 

characterization was carried out using a galvanostat/potentiostat/impedancemeter Modulab® 

XM connected to an optical shutter enabling automatized on/off light exposure.  
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Figure 2.5. (a) Photograph of a mesoporous screen-printed TiO2 electrode deposited upon the 

conductive FTO glass substrate and (b) air-tight thermostated borosilicate of the 

photoelectrochemical cell used in this work. 

 

2.1.3. Proof-of-concept of quantitative photorechargeable battery electrode based on 

nanocrystalline anatase TiO2 particles 

The downsizing of TiO2 nanoparticles is known to modify the thermodynamic stability of the 

polymorphism chemistry in TiO2 [18-19]. At ambient conditions, rutile is thermodynamically 

the most stable polymorph followed by brookite and anatase. However, an interesting cross 

over point in this phase stability is observed when the particle is downsized to nanoscale. 

Banfield et al. concluded in his work that after crossing the threshold of 14 nm anatase becomes 

the most stable polymorph [20]. A similar observation was reported by Navrotsky et al. based 

on calorimetry experiments for particles having a B.E.T. surface area greater than 50 m2/g, 

corresponding to a size limit of around 30 nm assuming spheres [21]. This greater phase 

stability of the anatase is the result of its lower surface energy which becomes preponderant at 

the nanoscale, thus ruling the total free Gibbs energy of the system [21-22]. In accordance with 

literature, our particles of 5 nm demonstrated an increased thermal stability of the anatase 

polymorph which irreversibly transforms into rutile structure at 1050°C instead of 750°C as 

deduced from in situ x-ray diffraction and Raman spectroscopy [23]. In addition, we 

demonstrated that the greater structural stability of the anatase TiO2 is also experienced 

electrochemically with the occurrence of a complete solid solution domain between TiO2 and 

LiTiO2, thus bypassing the well-known tetragonal to orthorhombic to quadratic rock-salt phase 

transitions upon lithium insertion [24]. This led to enhanced electrochemical performances of 

these nanoparticles in terms of capacity and reversibility [23]. 

The preliminary work demonstrating the complete photorecharge proof-of-concept of the 

anatase TiO2 nanoparticles was carried out in our group by C. Andriamiadamanana (Post-

(b)  (a)  



46 
 

doctoral fellow  2013-2015) and is herein presented for the sake of clarity to the context of my 

work [25-26].  

The cyclic voltammetry reported in Figure 2.6 compares the electrochemical behavior of TiO2 

nanoparticles under dark and illumination conditions in 1 mol/L LiPF6 EC/DMC electrolyte at 

2 mV/s scan rate. As one can see, under illumination the energy separation between the anodic 

and cathodic peaks is almost twice lower (469 mV in dark vs. 246 mV under illumination) and 

is accompanied by the increase of the peak intensity as well as its narrowing. For the first time, 

it was evidenced that the electrochemical properties of TiO2 electrode can be modified by light. 

In this case, light absorption affords to improve the kinetics of the redox processes as a result 

of the photo-generation of free charge carriers leading to an increase in conductivity [27].  In 

addition, a slight thermodynamic changes in the system were observed, represented by an 

increase of equilibrium redox potential from 1.834 V (±0.009) (vs. Li+/Li) in dark to 1.881 V 

(±0.004) (vs. Li+/Li) under illumination. 

 

Figure 2.6. Comparison of cyclic voltammetry of the TiO2 electrode in 1 mol/L LiPF6 EC/DMC in 

dark (blue curve) and under illumination (red curve) at 2 mV/s scan rate 

 

In order to evaluate the photorecharge capacity of the electrode, it was first galvanostatically 

discharged to 1.5 V (vs. Li+/Li) at j = -100 µA/cm2 (corresponding to ~ C/15, i.e. one lithium 

inserted in 15 hours) (Fig. 2.7 (a)). The plateau at 1.8 V vs. Li+/Li corresponds to the lithium 

ion insertion by two-phase reaction between the quadratic anatase LiαTiO2 (0 < α < 0.25) and 

the orthorhombic Li0.5+δTiO2 (0 < δ < 0.15) [9, 23, 28]. Upon discharge, the electrode’s color 

changes from white to dark blue. It is induced by the lithium insertion into the structure forming 

Ti3+ centers. The quantity of lithium inserted in the structure was estimated to be 0.6 using 
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inductively coupled plasma - atomic emission spectroscopy (ICP-AES), thus corresponding to 

a composition of Li0.6TiO2. At this discharged state, the potential relaxation behavior of the 

electrode at open circuit conditions has been compared for one hour between dark and under 

light illumination. In dark, the electrode’s potential reached a steady-state value of 1.92 V vs. 

Li+/Li. This corresponds to the potential of the electrode close to equilibrium. The electrode 

remained dark blue in this condition. The subsequent discharge down to 1.5 V vs. Li+/Li under 

darkness revealed a very limited capacity of 46 µAh/cm2
 recuperated. In contrast, when the 

discharged electrode was left relaxing under illumination under the same other conditions, a 

faster rise of the electrode potential was observed reaching ca. 3.0 V vs. Li+/Li. The electrode 

color changed from dark blue to white and almost full electrode capacity of 608 µAh/cm2 was 

retrieved after subsequent discharge (Fig. 2.7 (b)). The complete lithium extraction was also 

confirmed by ICP-AES. These results demonstrate a quantitative nature of the photo-induced 

Li+ deinsertion from the nanoparticle anatase TiO2. It gives credit to the downsizing of the 

particles that provides an answer to the surface limitation issue of the photoinduced ion transfer 

reaction [2]. This has been further demonstrated in the Ph.D. thesis work of Gaspard Bouteau 

comparing different particles size of anatase TiO2 from 4 to 400 nm [29].  

  

Figure 2.7. Electrochemical properties of anatase TiO2 nanoparticles in a half-cell configuration: (a) 

galvanostatic discharge in dark until 1.5 V (vs. Li+/Li) at C/15 (j = -100 µA/cm2) followed by either 1 

hour open-circuit condition in dark (black curve) or under illumination (red curve), and (b) 

galvanostatic discharge profile of the electrode after one hour open-circuit condition in dark (black 

curve) or under illumination (red curve). 

 

Based on the above presented results, the first proposed mechanism to account for the photo-

induced recharge of the anatase TiO2 nanoparticles is as following. The illumination of the 

LixTiO2-composition leads to the creation of photogenerated electron-hole pairs in the particle 
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(eq. 2.3). Considering a model including a depletion layer, which can be questionable given the 

size of the particles, the holes will drift towards particles’ surface where they will onset the 

oxidation reaction with the transition metal Ti3+ to Ti4+ and subsequent release of lithium ions 

out from the crystal structure for charge compensation (eq. 2.4).  

𝐿𝑖𝑥𝑇𝑖𝑂2
ℎ𝑣
→ 𝐿𝑖𝑥𝑇𝑖𝑂2

∗ + 𝛿𝑒𝐶𝐵
− + 𝛿ℎ𝑉𝐵

+   (2.3) 

𝐿𝑖𝑥𝑇𝑖𝑂2
∗ + 𝑥ℎ𝑉𝐵

+ → 𝑇𝑖𝑂2
∗ 0⁄ + 𝑥𝐿𝑖+  (2.4) 

On the other side, the electrons in the center of the particle are ideally collected towards the 

external circuit. However, in our case, the charge collection is not taking place because of the 

open-circuit condition and the lithium metal foil used at the counter-electrode which is too 

reductive with respect to the energy of the photogenerated electrons located in the conduction 

band of TiO2 (ca. -3.25 eV derived from Mott-Schottky measurements, section 2.3.2). In that 

configuration, they are scavenged by fluoride-based radicals formed in the electrolyte [29]. 

When discharged at j = -100 µA/cm2 under illumination, the device provides a stable output 

potential of around 3 V (vs. Li+/Li), with a remaining white electrode coloration, by virtue of 

the two antagonist processes: the lithium insertion into TiO2 triggered by the galvanostatic 

discharge current and the photo-induced lithium deinsertion from LixTiO2 (Fig. 2.8 (a)). The 

extracted capacity of the system is in theory infinite if the cell is completely regenerative 

without any side reactions with the electrolyte. Experimentally, we reached as high as 

20 mAh/cm2 until the electrode detached from the FTO. The electrolyte acquired an orange 

coloration indicating some side reactions and modification of solvation of Li+ and PF6
- driven 

by continuous light exposure as recently demonstrated in our group [29]. One additional aspect 

of the two functions of the electrode, namely sun energy conversion and storage, has been 

demonstrated through the employment of the device as a photovoltaic cell during the day 

(simultaneous galvanostatic load under illumination) and as a simple battery in discharge during 

the night (Fig. 2.8 (b)) [26]. Thus, a constant current can be provided regardless of external 

light power fluctuation and day/night intermittency over 3 days. 
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Figure 2.8. (a) A comparison of galvanostatic discharge at j = -100 μA/cm2 of nanocrystalline anatase 

TiO2 electrode in dark (black curve), under illumination (red curve) and under illumination in lithium-

free TBAPF6 EC/DMC electrolyte (blue curve). (b) Galvanostatic discharge at j = -100 μA/cm2 under 

reproduced intermittent light intensity conditions with a sequence of 16 hours under illumination and 

8 hours in dark conditions. 

 

2.2. Optical properties of TiO2 and Li0.6TiO2 by in situ UV-visible absorption 

spectroscopy 

In order to evaluate the evolution of the nanoparticle anatase TiO2 light absorption in general 

and the band gap value in particular as a function of Li+ content in the structure, in situ spectro-

electrochemical experiments were carried out by UV-visible absorption spectroscopy on TiO2 

at different states of discharge. 

 

2.2.1. Absorption spectroscopy and methodology of band gap determination 

Light absorption is an intrinsic property of semiconductors. It relates to the energy of interband 

electronic transitions when the semiconductor is illuminated with an incident photon exceeding 

the band gap value. As a result, the electrons from the valence band (VB) are promoted to the 

conduction band (CB) while leaving positive charges in valence band. The correlation between 

the band gap value and the absorbance onset is typically described by the linear relationship 

proposed by Tauc, Davis, and Mott [30-31] (eq. 2.5). 

(ℎ𝑣𝛼)
1
𝑛⁄ = 𝐴(ℎ𝑣 − 𝐸𝑔)                    (2.5) 

where ℎ is the Planck’s constant (J·s), 𝑣 the frequency of vibration (s-1), 𝛼 the absorption 

coefficient, 𝐸𝑔 the band gap (eV), 𝐴 is proportionality constant and 𝑛 a tabulated constant. 
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Depending on 𝑛 value, different types of transitions can be derived: 𝑛 equals to 1/2 for direct 

allowed transition, 3/2 for direct forbidden transition, 2 for indirect allowed transition and to 3 

for indirect forbidden transition. 

In order to determine the band gap value of a non-transmitting material, i.e. powder pressed 

into a pellet, we used an integration sphere and measured the diffuse reflectance spectrum of 

the pellet. In this case, the diffuse reflectance is inversely related to the absorption property. 

The band gap value is then derived from its spectrum using the Kubelka-Munk function (F(R)) 

(eq. 2.6) [32–34].  

𝐹(𝑅) =
(1 − 𝑅)2

2𝑅
                    (2.6) 

Substitution of 𝛼 by 𝐹(𝑅) gives the Tauc equation [35-36], from which Eg value can be 

determined from the intercept with the x axis in the (ℎ𝑣 ; (ℎ𝑣𝐹(𝑅))
1
𝑛⁄ ) coordinates (eq. 2.7). 

(ℎ𝑣𝐹(𝑅))
1
𝑛⁄ = 𝐵(ℎ𝑣 − 𝐸𝑔)                    (2.7) 

 

2.2.2. Evolution of TiO2 absorption upon lithium insertion 

Prior to studying the evolution of TiO2 absorption as a function of the lithium content (depth of 

discharge), the band gap of the pristine 5 nm anatase TiO2 powder has been determined by UV-

Visible absorption spectroscopy in diffuse reflectance mode. For this, 1 wt% of TiO2 was mixed 

into KBr before to be pressed to form a pellet. Figure 2.9 shows the reflectance spectrum 

recorded between 250 and 800 nm using a matt Teflon sample as a nominal 100% reflectance 

reference. The high reflectance above 400 nm is in a good agreement with the visual white color 

of the powder. 

 

Figure 2.9. Evolution of diffuse reflectance as a function of wavelength for the 5 nm anatase TiO2 

nanoparticles. 
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The anatase TiO2 is reported to have an indirect band gap involving the lowest 𝛸1,2 → 𝛤1 

transition [37]. Assuming an indirect allowed transition, the Tauc plot leads to a band gap value 

of 3.24 eV corresponding to 𝛤3 → 𝛸1𝑏 transition (Fig. 2.10). This value is in a good agreement 

with both experimental [38–42] and theoretical [37] values reported in literature. The result 

suggest the absence of any quantum confinement effect at a size of 5 nm particles. This is in 

good agreement with the literature reporting a threshold value of ca. 2 nm  [39]. 

  

Figure 2.10. Tauc plot for 5 nm anatase TiO2 particles for an indirect allowed transition (n=2). 

 

To provide more insight on the origin and absorption consequences of the electrode’s color 

change from white to deep blue upon lithium insertion into TiO2, we developed in my work an 

air-tight three electrodes quartz cuvette allowing spectroelectrochemical experiments on films 

in transmittance configuration. However, for this study, we replaced the aggregated 5 nm 

particles by perfectly dispersed 20 nm particles for which screen-printed electrodes of 10 µm 

thickness are transparent to visible light in agreement with Mie scattering theory. The TiO2 

working electrode was assembled with two lithium strips as  counter and reference electrodes. 

The electrolyte is composed of 1 mol/L LiPF6 in 1/1 EC/DMC solvent mixture (LP30, 

Solvionic). The lithium insertion was performed by applying j = -100 µA/cm2 discharge current 

using two-channel biologic VSP potentiostat/galvanostat. The transmittance spectra were 

recorded in situ at different states of discharge (Fig. 2.11). The sequence of galvanostatic curves 

providing these different states of discharge is presented in Figure 2.11 (a). The cumulative 

discharge curve is composed of a solid-solution domain until ca. 1.75 V (vs. Li+/Li) before a 

well-defined plateau at 1.75 V vs. Li+/Li corresponding to a two-phase reaction between lithium 

poor and lithium richer TiO2 [9, 28]. The evolution of transmittance spectrum at different TiO2 

states of discharge is presented in Figure 2.11 (b). Before lithium insertion (OCV condition), 
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there is very little absorption between 400 to 1500 nm in agreement with the white color of 

TiO2. The LP30 electrolyte has an absorption threshold below ca. 250 nm, a value well inferior 

to the absorption wavelength of TiO2 / LixTiO2 compositions. The electrolyte exhibits also two 

absorption bands at 890 and 1022 nm, and two much stronger at 1162 nm with a shoulder at 

1116 nm and a larger one containing at least 4 components at around 1400 nm. FTO in 

electrolyte absorbs all wavelengths below 360 nm, a few nanometers before the absorption of 

TiO2 nanoparticles. Upon lithium insertion, the main outcome comes from a significant increase 

of absorption in the visible and infra-red part of light.  

 

Figure 2.11. In situ UV-visible absorption experiment of 20 nm nanocrystalline anatase TiO2 upon 

lithium insertion: (a) succession of galvanostatic discharge curves and (b) corresponding evolution of 

transmittance after each discharge step (spectrum of electrolyte and FTO in electrolyte is provided as 

reference). 

 

This suggests that the color change from white to dark blue upon lithium insertion into TiO2 

stems from the increased absorption by free electrons in the conduction band. In addition, as 

the powder remains blue in darkness, this coloration also in part originates from the localization 

of electrons in the Ti3+ centers occupying the 3d metal orbitals. It may be accompanied by an 

additional contribution from the antibonding O 2p – Ti 4s hybridized orbitals owing to the 

nanosize of the particles in agreement with Vayssieres et al. [43]. Our result is in agreement 

with literature, reporting similar evolution of absorption spectra and color change as a function 

of lithium insertion for Li4/3Ti5/3O4 [44] and WO3 [45]. 

The band gap of TiO2 and Li0.6TiO2 electrode inside the electrolyte was derived from the 

transmittance spectrum when the battery assembled at open circuit coltage (OCV) condition 

and discharged down to 1.5 V vs. Li+/Li (Fig. 2.13). The absorption coefficient 𝛼 was calculated 
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using a derivation of Beer-Lambert law (eq. 2.8), where %𝑇 corresponds to the transmittance 

value and 𝑑 is the film thickness. 

𝛼 = (ln (
100

%𝑇
))/𝑑                  (2.8) 

The band gap value was derived from the absorbance onset in the Tauc plot in (ℎ𝑣 ; (ℎ𝑣𝛼)
1
𝑛⁄ ) 

coordinates considering an indirect transition in agreement with literature [38–42] (Fig. 2.13). 

For TiO2, two distinct onsets are observed corresponding to lowest indirect 𝛸1 → 𝛤1 transition 

at 2.85 eV and 𝛤3 → 𝛸1𝑏 transition at 3.21 eV in agreement with literature [37, 42]. Compared 

to the band gap measured on powder samples, i.e. 3.24 eV, this suggests a noticeable band gap 

narrowing when TiO2 is in contact with electrolyte. This can be attributed on the one hand to a 

Stark effect induced by the specific adsorption of lithium cation on the surface of the particles 

as demonstrated in the Ph.D. work of Gaspard Bouteau [29], and on the other hand by the 

coulombic interactions created at the interface between TiO2 and the high dielectric constant 

and polarity of the EC/DMC solvent mixture.  

This bandgap is maintained until 1.77 V vs. Li+/Li. At this potential range, the amount of 

lithium inserted into the anatase structure remains relatively low (< 0.2 Li+ per formula unit). 

The electrochemical phase transition taking place in the plateau at around 1.76 V vs. Li+/Li 

contributes to a drastic change in the Tauc plot with a band gap increases. Indeed, for 1.76 V, 

1.73 V and 1.5 V vs. Li+/Li, LixTiO2 exhibits exclusively a transition of 3.21 eV (Fig. 2.12). 

This higher band gap value upon lithium insertion is attributed to a Burstein-Moss effect. This 

arises because the electron density increases nearby the conduction band edge of TiO2 as a 

result from the continuous formation of Ti3+ (4s0 3d1) upon lithium insertion [46-47]. 

  

Figure 2.12. Tauc plot of 20 nm anatase TiO2 electrode at different states of discharge in 1mol/L 

LiPF6 EC/DMC electrolyte. The fitting of the linear part of TiO2 and LixTiO2 curves and the resulting 

band gap values are provided for information. 
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To verify this hypothesis of donor density enhancement upon lithium insertion, the 

transmittance spectra were fitted by the Drude model. For this, we used an effective mass of 

electron of 0.4 as reported in literature by Deák et al. [48-49] (eq. 2.9-2.10) (Fig. 2.13). 

𝑒1 = 1 −
𝜔𝑝
2

𝜔2 + 𝑖𝜔
                        (2.9) 

𝑒2 =
𝜔𝑝
2𝛾

𝜔(𝜔2 + 𝑖𝛾)
                        (2.10) 

where 𝑒1 and 𝑒2 correspond to real and imaginary part of the complex dielectric function (𝜀 =

𝑒1 + 𝑖𝑒2), 𝜔 is the resonant frequency (in order of 1014 Hz), 𝜔𝑝 is the plasmon frequency and 

𝛾 is the damping constant. Comparison of the TiO2 data with LP30 and FTO + LP30 reference 

spectra suggests that the hills and valleys in the transmittance spectra of complete cell stem 

from the electrolyte absorption (Fig. 2.11 (b)). Therefore, corresponding parts of the spectra 

were excluded from the Drude model fitting for the sake of simplification. The simulation of 

the OCV, 2.6 V, and 2.4 V spectra to determine the optical carrier concentration was not 

successful. Nevertheless, excellent simulation was obtained for the 2.2 V spectrum. This should 

correspond closely to the pristine TiO2 structure, as no (or almost no) lithium is normally 

inserted above this potential. 

The evolution of the charge carrier concentration as a function of the depth of discharge is 

reported in Figure 2.14. The results highlight that lithium insertion into TiO2 increases by 20 

times the charge carrier concentration, from 1.3·1019 cm-3 to 2.9·1020 cm-3. 
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Figure 2.13. Drude model fitting of the transmittance spectra of 20 nm nanocrystalline TiO2 in 1M 

LiPF6 EC/DMC at different depth of discharge: 2.20 V, 2.00 V, 1.77 V and 1.50 V vs. Li+/Li. 

 

 

Figure 2.14. Evolution of charge carrier concentration upon lithium insertion in 20 nm anatase TiO2 

nanoparticles determined from the Drude model fitting of the transmittance spectra. 
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2.3. Band edge and charge carrier concentration evolution upon Li+ insertion 

The determination of the energy location of the valence and conduction band in TiO2 and 

LixTiO2 can be carried out by Mott-Schottky experiments in combination with the steady-state 

UV-Visible absorption spectroscopy. This approach has been undertaken all along my Ph.D. 

thesis.  

 

2.3.1. Mott-Schottky electrochemical impedance spectroscopy theory 

Mott-Schottky experiments afford through an experimental approach to determine not only the 

type of main carriers and their concentration but also the flat-band position on the basis of the 

Schottky barrier establishment at the semiconductor/blocking electrolyte interface [50-51]. The 

measurement demands a blocking interface. It thus requires the absence of any possible 

interfacial redox reactions under applied bias voltage which may affect the electrode’s built-in 

capacitance. Under such conditions, the equilibration of the Fermi level in the semiconductor 

and the chemical potential of the electrolyte leads to the occurrence of band bending (Fig. 

2.15 (a)). It consists in the depletion of the main charge carriers (electrons) underneath the 

electrode surface, thus establishing a Schottky barrier at the semiconductor/electrolyte 

interface. From the electrolyte side, the Helmholtz layer is formed due to the repulsion of the 

positively charged ions and attraction of the negatively charged ions in the electrolyte to the 

electron-depleted surface. This is the case for the n-type semiconductor, and the opposite takes 

place in the p-type semiconductor. 

Mott-Schottky theory assumes the semiconductor to be ideal such as a single-crystal without 

any intermediate surface states and a negligibly small Helmholtz layer potential drop at the 

interface. In this case, the interfacial capacitance can be simplified to a pure double-layer 

capacitance.  
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Figure 2.15. Schematic representation of the band bending at n-type semiconductor/electrolyte 

interface. 

 

2.3.2. TiO2 flat band potential and charge carrier concentration in different media: 

aqueous and non-aqueous aprotic electrolytes 

Anatase TiO2 was first studied. For this, 3 µm thick films of 5 nm size particles of anatase TiO2 

were prepared by doctor-blading. The electrolyte was composed of 1 mol/L NaOH in deionized 

water. The Mott-Schottky capacitance measurements were performed in a three-electrode cell 

using a saturated calomel electrode and a platinum grid as a reference and counter-electrode, 

respectively. The most reproducible conditions were obtained in the range of 100 Hz to 1 kHz. 

No clear frequency dependence was noticed on the electrode’s thickness when varying this 

latter between 3 to 15 µm. The results are reported in Figure 2.16 for a given electrode thickness 

and for different size of particles, namely 5 nm, 20 nm and 200 nm. To reach reproducible 

results and lower frequency dependence on the results especially at higher perturbation 

frequencies (i.e. > 200 Hz), we found crucial to encapsulate FTO to avoid direct contact with 

the electrolyte. In all experiments, FTO was systematically covered with a layer of silicone 

resin. Direct contact of FTO to the electrolyte leads also to an increase by almost two orders of 

magnitude of the carrier density as a result of the predomination of charge carriers from the 

highly doped SnO2 layer, which typically has ca. 1021 cm-3 carrier concentration [52].  

Our results show that there is no evident trend for the flat band potential (Vfb) and the carrier 

density (Nd) dependence on the particle size (Fig. 2.16).  

https://en.wikipedia.org/wiki/Saturated_calomel_electrode
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Figure 2.16. Evolution of (a) flat-band potential and (b) donor density as a function of perturbation 

frequency for different size of anatase TiO2 particles in 1 mol/L NaOH-based aqueous electrolyte.  

 

The evolution of the flat-band potential and charge carrier concentration as a function of 

frequency for five identical films composed of 5 nm TiO2 particles in 1 mol/L NaOH aqueous 

electrolyte is presented in Figure 2.17 to show the reproducibility of the results. A flat band 

potential of ca. 0.3 V (vs. NHE) systematically decreases by up to 0.04 V when frequency is 

increased from 100 Hz to 1 kHz. At the same time, the donor density change is less than 

1018 cm-3 for the values in order of 1019 cm-3. The frequency dependence stems from an 

evolution of the electrical double-layer capacitance at semiconductor/electrolyte interface 

depending on the excitation frequency. This feature is well-known in literature, albeit too often 

overshadowed [51, 53]. It can originate from different factors amongst the most important being 

an evolution of the semiconductor’s dielectric constant depending on the frequency, surface 

punctual defects including surface states or porous / non planar electrode morphology. While 
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the insignificant changes in the donor density derived from our preliminary experiments suggest 

a negligible frequency dependence of the dielectric constant of TiO2, surface states, high film 

roughness factor and deep donors states can considerably amplify the frequency dependence in 

our case by causing a slow response to the applied alternating potential of the charge carriers in 

the depletion layer. Consequently, one can consider the utilization in our work of mesoporous 

electrodes including nanocrystalline particles represents a shortfall of our approach in using 

Mott-Schottky formalism to determine the energy position of the conduction and valence band 

position and main charge carrier type and concentration.  

 

Figure 2.17. Frequency dependence and reproducibility over five fresh samples of (a) the flat band 

potential and (b) the main charge carrier concentration of the 5 nm anatase TiO2 nanoparticles 

measured between 100 Hz and 1 kHz in 1 mol/L NaOH aqueous electrolyte. 

 

Taking into account such a dependency for each set of measurements, all throughout this study, 

one representative Mott-Schottky plot was selected based on the most reproducible Vfb value. 

The measurement frequency of the chosen data is systematically reported. 

Analogous electrochemical experiments were carried out in aprotic non-aqueous electrolyte in 

order to approach the real properties in photo-batteries. These experiments were performed in 

argon-filled glove box. The electrolyte is composed of 1 mol/L TBAPF6 in EC/DMC. The 

measurements were performed in a two-electrode cell in which a lithium foil was used as both 

counter and quasi-reference electrode. This lithium quasi-reference electrode’s potential was 

determined from two cyclic voltamperometry measurements on fresh lithium electrodes in 

Fc+/Fc electrolyte (Fig. 2.18 (a)). Results show that Li QRE has a stable potential of -3.402 V 

(±0.010 V) vs. ferricinium / ferrocene (Fc+/Fc) redox couple. Laoire et al. reported the redox 

potential of Fc+/Fc couple at 3.253 V vs. Li+/Li in 1 mol/L LiPF6 in EC/EMC electrolyte on 
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glassy carbon [54]. Taking this as a reference, the values measured vs. Li QRE can be translated 

into potentials versus other reference electrodes following the chart presented below 

(Fig. 2.18 (b)). 

 

Figure 2.18. (a) Cyclic voltammetry of the Li quasi-reference electrode (QRE) used for Mott-Schottky 

measurements in non-aqueous aprotic electrolyte containing Fc+/Fc redox couple in EC/DMC-based 

electrolyte and (b) a chart representing its energetic position versus conventional reference 

electrodes. 

 

Similarly to the measurements in aqueous electrolytes, frequency dependence phenomenon was 

also experienced in 1 mol/L TBAPF6 EC/DMC electrolyte, i.e. flat-band potential decreases 

and negligible donor density fluctuation while increasing the frequency (Fig. 2.19). It is 

important to mention that while carrying out Mott-Schottky measurements of electrodes in a 

non-aqueous aprotic electrolyte in glovebox, a weakly defined semi-circle was observed in 

impedance coordinates which may result from the greater length of cab les between the cell in 

glovebox and the impedancemeter. However, due to its low resistive contribution with respect 

to the total cell impedance and its small capacitance contribution, we assumed its effect into the 

measurements to be negligible. 
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Figure 2. 19. Frequency dependence and reproducibility over two fresh samples (S1 and S2) of (a) the 

flat band potential and (b) the charge carrier concentration of 5 nm nanocrystalline anatase TiO2 

recorded between 100 Hz and 1 kHz in 1M TBAPF6 EC/DMC electrolyte. 

 

The representative Mott-Schottky plots for 5 nm nanocrystalline TiO2 film in aqueous and non-

aqueous aprotic electrolytes are presented in Figure 2.20. The linear region of the plot is due to 

the variation of the space charge layer width in the TiO2 film, which is expressed in a double-

layer capacitance change. In both media, the positive slope of Mott-Schottky plots with a well-

defined linear part indicates the n-type behavior of the semiconductor in agreement with 

common literature [55–57]. 

 

Figure 2.20. Mott-Schottky plot of 5 nm nanocrystalline anatase TiO2 measured in (a) 1 mol/L NaOH 

aqueous electrolyte at 750 Hz and (b) 1 mol/L TBAPF6 EC/DMC electrolyte at 100 Hz. 

 

The values of flat band potential and donor density were derived using the Mott-Schottky 

equation (eq. 2.11) (Table 2.1): 
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1

C2
= (

2

qεε0NA
)(V − V0 −

kT

q
)                    (2.11) 

where C is the differential capacitance of the space-charge layer (C), ε0 is the permittivity 

(dielectric constant) of vacuum, εr is the relative dielectric constant of material, N is the charge 

carrier density (cm-3) (Nd, i.e. donor density for n-type semi-conductor and Na acceptor density 

for p-type semi-conductor), A is the sample’s area (cm2), V is the electrode potential (V), Vfb 

is the flat band potential (V), k is the Boltzmann’s constant (1.38∙10-23 J/K), q is the elementary 

charge (1.6∙10-19 C), and T is the absolute temperature (K). 

 

Table 2.1. Flat band potential and charge carrier concentration of 5 nm nanocrystalline anatase TiO2 

in 1 mol/L NaOH aqueous electrolyte and 1 mol/L TBAPF6 EC/DMC electrolyte. 

 Flat band potential Donor 

density, cm-3 Electrolyte as measured recalculated, V vs. NHE 

1 mol/L NaOH  aqueous  -0.87 V vs. SCE -0.63 (pH = 14) 9.8·1017 

1 mol/L TBAPF6 EC/DMC 2.99 V vs. Li QRE -0.20 2.3·1019 

 

In a 1 mol/L NaOH aqueous solution (pH = 14), the flat band potential value was determined 

at - 0.87 V (vs. SCE). It translates into -0.63 V vs. NHE at pH = 14. This result is in agreement 

with literature even though a quite large range of values is reported based on various techniques, 

such as Mott-Schottky measurements (-1.01 to 0.56 V vs. NHE at pH = 14) [7, 58–61], 

photocurrent measurements (-0.07 V vs. NHE at pH = 14) [62], electron affinity measurements 

(0.6 V vs. NHE) [63], and calculations (-0.70 V vs. NHE at pH = 14) [64]. The calculation of 

the donor density considering a dielectric constant of 31 [3-4] leads to a value of 9.8·1017 cm-3. 

It also falls in the wide range of values reported in literature from 1017 to 1019 cm-3 [5, 59–61, 

65–69]. Such a variation of values can stem from the fact that TiO2 is often not a single crystal, 

thus containing intraband gap surface states and can be easily doped by impurities with 

important consequences on carrier density as a result from its 3d0 electronic configuration.  

In the non-aqueous aprotic electrolyte, i.e. 1 mol/L TBAPF6 EC/DMC, a flat band potential of 

-0.20 V (vs. NHE) was determined. The comparison of the results in different media is difficult 

because of the establishment of proton specific adsorption-desorption equilibrium in protic 

solvents and the absence of such in aprotic counterpart. Such an important dependence on the 

nature of the electrolyte is in agreement with the work reported by Fitzmaurice et al. who 
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presented a comparable flat-band potential values for measurements in water (-1.03 V vs. NHE 

at pH = 14) and in non-aqueous protic solvents (-1.2 V vs. NHE for MeOH and -0.9 V vs. NHE 

for EtOH), but significantly lower values in non-aqueous aprotic solvents (-1.8 V vs. NHE for 

DMF, -2.0 V vs. NHE for ACN, and -2.1 V vs. NHE for THF) [58]. Interestingly, Fox et al. 

reported much higher flat band potentials of TiO2 in DMF (-0.9 V vs. NHE)  and THF (-1.0 V 

vs. NHE) comparable to those measured in water at pH = 14 [70]. To the best of our knowledge, 

there is no previous literature on the determination of the flat-band potential of TiO2 in TBAPF6 

EC/DMC electrolyte whereas it represents from a fundamental point of view an interesting 

approach and data collection to better understand equilibrium of carriers between battery 

materials with its carbonate-based electrolyte. 

Making direct comparison of our results with literature values in other non-aqueous aprotic 

electrolytes is complicated due to the strong dependence of flat band potential on the nature and 

concentration of the salt in the electrolyte [58]. Following the conclusion of Fitzmaurice et al. 

who discussed that anions in the electrolyte have negligible influence on the Vfb value, we 

examined the results obtained in the electrolytes containing the same cation (TBA+) and tried 

to rationalize a trend based on the electrolyte solvent nature. The -0.20 V vs. NHE determined 

in 1 mol/L TBAPF6 EC/DMC is much more positive than those reported for 0.2 mol/L TBAP 

(tetrabutylammonium perchlorate) in different types of solvents, i.e. DMF (-0.9 and -1.8 V vs. 

NHE), THF (-1.0 and -2.1 V vs. NHE) and ACN (-2.0 V vs. NHE) [58]. Table 2.2 gathers all 

flat-band potential values reported in the literature for TiO2 in different aprotic electrolytes 

including their dielectric constants. This comparison highlights that there is no clear 

relationship between the flat-band potential and the dielectric constant of the solvent. This is in 

agreement with the conclusions made by Fox et al. who suggested that Vfb in aprotic solvent is 

constant for a given electrolyte but may depend on the solvent nature in absence of any added 

protic solute. 

Besides the flat-band potential value, the charge carrier concentration can also vary to a large 

extent. Our results show more than one order of magnitude higher values in EC/DMC-based 

electrolyte, i.e. 2.3·1019 cm-3 compared to 9.8·1017 cm-3 in aqueous solution. This means that 

depending on the electrolyte nature, this latter can dope the nanocrystals during the Fermi level 

equalization process.  
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 Table 2.2. Flat-band potential derived from Mott-Schottky measurements in aprotic electrolytes   

Solvent ε solvent Vfb, V vs. NHE Salt Ref. 

THF 7-8 -2.1 0.2 M TBAP [58] 

  -1.0 unknown [70] 

DMF 37 -1.8 0.2 M TBAP [58] 

  -0.9 unknown [70] 

ACN 37 -1.3 unknown [70] 

  -1.9 0.2 M TBAP [58] 

  -2.1 TBAP [71] 

  -2.0 TBAP [72] 

  -1.8 0.2 M TBAP [73] 

ACN/IPA (4/1) 18-37 -1.7 0.2 M TBAP [73] 

Me2SO 49 -0.7 unknown [70] 

EC/DMC (1/1) 34-41 -0.2 1 M TBAPF6 This work 

 

 

2.3.3. Evolution of the flat band potential and charge carrier concentration upon Li+ 

insertion into TiO2 

The evolution of TiO2 band edge positions and donor density upon lithium insertion was studied 

using a similar approach and methodology as aforementioned. For this experiment, a 

mesoporous film of 10 µm thickness composed of 20 nm nanoparticles of TiO2 was used to 

preserve the consistency with the above presented in situ UV-visible absorption spectroscopy 

measurements. We remind that our previous results show no size dependence of the particles 

on the flat band potential and carrier concentration. The Mott-Schottky capacitance was 

measured in a two-electrode transparent electrochemical cell using a lithium strip as both 

counter and quasi-reference electrode (stable at -3.402 V vs. Fc+/Fc) in 1 mol/L TBAPF6 

EC/DMC. Lithium insertion was carried out in 1 mol/L LiPF6 EC/DMC by galvanostatic 

discharge at j = -100 µA/cm2 until 1.5 V (vs. Li+/Li) to reach final Li0.6TiO2 composition. The 

lithiated electrode was then thoroughly rinsed inside the glovebox with DMC to remove all 
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possible traces of lithium. The electrode was then assembled back into the cell including 

1 mol/L TBAPF6 EC/DMC electrolyte for Mott-Schottky measurements. 

As a result of lithium insertion into the structure, there is a noticeable shift of the flat band 

potential towards positive potentials (Fig. 2.21). This latter moves from 2.84 to 3.36 V vs. 

Li+/Li. To the best of our knowledge, there is no other experimental studies reported in the 

literature aiming at determining band movements in lithiated phase Li0.6TiO2 and in aprotic 

carbonate-based electrolyte. However, in good trend with our results, Fitzmaurice et al. reported 

a flat band potential increase by 1.14-1.23 V assigned to the lithium insertion into TiO2 based 

on absorbance measurements. This was performed in 0.2 mol/L TBAP ACN-based electrolyte 

containing 10-3 mol/L of LiClO4 supporting electrolyte [58]. It has to be noted that lithium 

cation in electrolyte is a potential determining ion due to its specific adsorption mechanism, as 

it is extensively reported in literature for protons [74-75], DMPIm+ [76], and Li+ ions [58, 76–

78]. One consequence of this surface adsorption mechanism is the shift of potential towards 

positive values when increasing the concentration of lithium in agreement with a Nernst law. 

 

 

 

Lithium insertion also leads to an increase of carriers’ density from 2.1·10
19

 to 3.9·10
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without any change in the nature of the main carriers. This trend is in good agreement with Van 

der Krol et al. who reported by Mott-Schottky experiments higher donor densities for lithiated 

phase, i.e. 8.7·1017 cm
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Figure 2.21. Mott-Schottky plot comparing TiO2 and Li0.6TiO2 in 1mol/L TBAPF6 EC/DMC electrolyte 

at 316 Hz perturbation frequency. 
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propylene carbonate [6]. Even though the reliability of the Mott-Schottky measurements in an 

ion-conducting electrolyte can be questioned, the authors claimed that the capacitance measured 

can be entirely attributed to the space charge capacitance based on electrochemical impedance 

spectroscopy. Even though the charge carrier concentration reported by Van der Krol et al. was 

calculated using a dielectric constant of 50 for both pristine and lithiated TiO2, the authors also 

report an increase in the dielectric constant of lithiated anatase TiO2 (Li0.5TiO2) to as high as 

500 and 900 at a surface region in the film extending to at least 7 nm in depth  [6]. A comparable 

increase in the dielectric constant up to 880 has also been reported upon the proton insertion 

into the anatase TiO2 [79]. At the same time, Boschloo et al. attributed the changes in the (C-

V) characteristics, from which the dielectric constant is derived, rather to the increase in donor 

density upon H+ doping [80]. We support this hypothesis since reaching such a very high 

dielectric constant is questionable in light of the rather low differences of crystallography 

between the two phases. In addition, if we consider a dielectric constant of 500 for Li0.6TiO2, 

this would result to a donor density of 2.4·1018 cm
-3

; a value lower than TiO2 which comes in 

contradiction to results discussed in paragraph 2.2.2 based on Drude model. Consequently, on 

the basis of these results and knowing that crystal structure is not drastically modified by lithium 

insertion, we consider that dielectric constant should not vary at all or only to a very low extent. 

Thus, in the following calculations a dielectric constant of 31 as for TiO2 was kept constant [3].  

One can notice that the charge carrier concentration values derived from the Mott-Schottky 

experiment are at least one order of magnitude lower than those determined by the Drude model. 

This discrepancy can be explained by the presence of surface traps and grain boundaries in the 

nanocrystalline TiO2 which can be optically excited and not electrochemically because of their 

shallow position in the band gap that prevents any excitation in a low frequency range of 100 Hz 

to 1 kHz.  

The positive shift of Vfb and increase of Nd as above discussed is representative for all the Mott-

Schottky experiments in a frequency range from 100 Hz to 1 kHz (Fig. 2.22). Li0.6TiO2 follows 

a similar frequency dependence as discussed above for TiO2, i.e. decrease of both flat band 

potential and carrier concentration values while increasing the small perturbation frequency. 

However, it seems more pronounced in the determination of the donor density for Li0.6TiO2.  
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Figure 2.22. Frequency dependence of (a) the flat band potential and (b) charge carrier density of 

TiO2 and Li0.6TiO2 between 100 Hz and 1 kHz in 1 mol/L TBAPF6 EC/DMC electrolyte. 

 

The combination of the Mott-Schottky experiment and solid-state UV-Visible absorption 

spectroscopy enabled evaluation of the energy position of the top of the valence band. Figure 

2.23 schematizes the band structure and energy of the band edges for TiO2 and for its reduced 

form Li0.6TiO2. It shows a lowering in energy of both the valence band by 800 mV from 5.7 V 

to 6.5 V and conduction band by 500 mV from 2.8 V to 3.3 V (vs. Li+/Li) upon lithium insertion. 

This experimental observation gives credit to the DFT calculations reported by Wagemaker et 

al. who predicted such a movement upon lithium insertion [81]. As a consequence, this means 

that the photogenerated holes in Li0.6TiO2 have a stronger oxidizing character than in TiO2 

counterpart. In this scheme, we also present HOMO and LUMO positions of the electrolyte 

deduced from both electrochemical cyclic voltamperometry experiments and the optical band 

gap measurements. The HOMO value is in agreement with literature data even though a broad 

range of values have been reported for the oxidation potential of PF6
- between 4.94 V (vs. 

Li+/Li) [82] and 6.8 V (vs. Li+/Li) [83]. Upon illumination of Li0.6TiO2, the photogenerated 

holes oxidize the Ti3+ transition metal centers leading to a release of Li+ out from the structure 

(i.e. electrode photorecharge). However, in parallel, the oxidizing strength of these holes is 

sufficient to also oxidize PF6
-.  
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Figure 2.23. Schematic energy diagram of the valence band and conduction band positions of TiO2 

and its discharged form Li0.6TiO2 determined in 1 mol/L TBAPF6 EC/DMC electrolyte. It is compared 

to HOMO and LUMO positions of the electrolyte (1 mol/L LiPF6 EC/DMC).  

 

2.4.  Fluorescence spectroscopy 

The anatase TiO2 is known to be an excellent UV-absorber (320 nm < λ < 410 nm) emitting in 

the visible range (430 nm < λ < 730 nm) [84]. From a practical point of view, better 

understanding of the material’s photoluminescence in the different media can provide further 

information regarding the excited-state dynamics of the photo-anode depending on its oxidation 

state and the media.  

 

2.4.1. Photoluminescence spectroscopy basics 

Photoluminescence is a physical phenomenon probing photon emission in response to light 

excitation. It is typically explained by the Jablonski diagram presented in Figure 2.24 [85]. 

Upon photon absorption, the electron is excited from the ground singlet state (S0) into the 

excited singlet states (S1, S2, ...). A non-radiative relaxation from higher energy level to lower 

lying energy levels such as for instance from S2 to S1 or inside S1 or S2 excited singlet states is 

called internal conversion. This is most often an ultra-fast relaxation process taking place in the 

femtosecond time-scale that can be monitored by transient absorption spectroscopy. The 
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radiative decay of electrons back to the valence band is called direct band-to-band 

recombination. However, when dealing with nanocrystalline particles instead of large single 

crystals, longer photoluminescence processes can also take place through either surface shallow 

traps or deeper traps in the band gap (ns time-scale). For molecules typically containing heavy 

metals, non-radiative singlet-to-triplet transitions involving so-called intersystem crossing 

(ISC) mechanism can also take place. This leads at end to generate very long lifetimes that can 

reach up to phosphorescence (10-6–102 s). This latter can also take place when very deep 

trapping of carriers occurs at the defect or impurity sites in the crystal (T1) [86].  

 

Figure 2.24. Jablonski diagram adapted from reference [85]. 

 

2.4.2. Steady-state fluorescence of anatase TiO2 nanocrystals 

The steady-state excitation/emission map of the 5 nm nanocrystalline anatase TiO2 powder was 

recorded on FLS980 spectrometer (Edinburgh Instruments) equipped with double 

excitation/emission monochromators to reduce stray light rejection to less than 1:10-10. Figure 

2.25 (a) shows excitation/emission map of the nanocrystals in the range of exc. 300-700 nm / 

em. 312-712 nm. The maximum emission is reached at 380 nm excitation wavelength leading 

to two distinct emission bands at 416 nm and 438 nm (Fig. 2.25 (b)). This corresponds to a 

Stokes shifts of 36 nm (2277 cm-1) and 58 nm (3485 cm-1) corresponding to the lattice relaxation 

energy based on the Franck-Condon theory [87]. Our values are close to the 60 nm reported by 

Niederberger et al. [88], but significantly smaller than the range from 141 to 174 nm as reported 

in other studies [89–92]. The emission spectrum of TiO2 can be deconvoluted using a Gaussian 

function into four bands located at about 413, 435, 450, and 472 nm (Fig. 2.25 (с)). This implies 

that the radiative recombination takes place through different relaxation pathways. The first 
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band at 413 nm corresponds to the fluorescence of the self-trapped excitons localized on TiO6 

octahedra in nanocrystalline anatase TiO2 [93-94]. The broad luminescence over the range of 

420-600 nm, comprising the bands 2-4, is attributed to recombination pathways through 

different distributed surface states [95] and shallow traps in the band gap often associated with 

oxygen vacancies located 0.51-0.82 eV below the conduction band [42, 94, 96]. 

 

Figure 2.25.  Steady-state photoluminescence of 5 nm nano-crystals of anatase TiO2 particles: (a) 

excitation / emission map, (b) normalized excitation / emission spectrum at maximum intensity, and (c) 

deconvolution of the emission spectrum measured at 380 nm excitation wavelength. 
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The absolute fluorescence quantum yield (QY) of the nanocrystals was determined using both 

direct and indirect measurement methodologies using an integration sphere (Fig. 2.26 (a)) [97]. 

As a result, the integration of the fluorescence spectra leads to a value of quantum yield from 

scratch equal to -0.4 %. The negative sign of the value stems from the very low emission signal 

close to the noise and the high character of light scattering from the samples. This result 

highlights the low quantum yield that falls below the detection limit, i.e. <1%. In order to bypass 

this intrinsic issue, we have attempted to compare the absolute intensities of emission from 

TiO2 to that of the scattering barium sulfate reference recorded in a steady-state fluorescence 

mode at 380 nm excitation wavelength (Fig. 2.26 (b)). Being 100% reflective, the reference 

emission intensity, i.e. 4·105 counts, equals to the full incident light intensity received by TiO2 

upon excitation. The absolute value of TiO2 emission intensity varying from 1.5·102 to a 

maximum of 1·103 counts which in turn represents a fluorescence QY value of 0.25%, thus 

confirming the very low photoluminescence yield of TiO2 when the integrating sphere was 

used. This value is in good agreement with literature, where the quantum yield of anatase TiO2 

at room temperature is reported from 0.25% [98] to 1% [88] by comparison of the wavelength-

integrated emission intensity to that of a standard reference molecule. 

 

Figure 2.26. Fluorescence of 5 nm nanocrystalline anatase TiO2 particles: (a) quantum yield spectra 

measured in direct and indirect mode using an integrating sphere and (b) steady-state emission 

spectra excited at 380 nm compared to the reference BaSO4 sample. 
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The evolution of TiO2 fluorescence upon lithium insertion was investigated in situ by joining 

the fluorimeter with a two-channel VSP potentiostat/galvanostat (Bio-logic) to maintain a bias 
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350 400 450 500 550

10
2

10
3

10
4

10
5

10
6

direct

indirect
reference

In
te

n
si

ty
 (

co
u
n
ts

)

Wavelength (nm)

400 450 500 550 600

10
1

10
2

10
3

10
4

10
5

10
6

TiO
2
 powder

In
te

n
si

ty
 (

co
u
n
ts

)

Wavelength (nm)

Reference BaSO
4

(a)  (b)  



72 
 

principle the same set-up which was used for the UV-Visible absorption spectroscopy reported 

in section 2.2.3 at the exception of its size which is here 3 x 3 cm. The different fluorescence 

excitation/emission maps were recorded on screen-printed 12 µm thick anatase TiO2 film at 

different depth of discharge (Fig. 2.27). The maps show systematically one principal band for 

which the maximum is located at 277 nm excitation and 335 nm emission. This energy position 

differs significantly from TiO2 powder in air as showed in Figure 2.26.  

 

Figure 2.27. Steady-state photoluminescence map of 5 nm nanocrystalline TiO2 electrode in 1 mol/L 

LiPF6 EC/DMC at different depth of discharge. Note that intensity scale is same for all maps. 
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Looking more closely at the emission spectrum at 277 nm excitation wavelength, one can see 

two emission bands: a main band at around 335 nm and a second broader and much weaker in 

intensities at around 500 nm (Fig. 2.28). This latter is hardly visible on the maps due to its low 

intensity. The maximum of this broad contribution tends to shift towards red from 498 to 

515 nm when discharging the electrode in contrast to the first band for which only the intensity 

is dependent on the electrode’s potential (i.e. no effects on the band energy). The first band is 

attributed to the fluorescence of the solvated Li+ and PF6
- in EC/DMC electrolyte (Fig. 2.29 (a)) 

[99]. The origin of the second band is attributed to deeper trap-mediated fluorescence of TiO2 

nanocrystals in equilibrium with the electrolyte that contains potential-determining cations 

(i.e. Li+). In addition, another contribution seems to appear at around 700 nm upon the 

discharge. It is however ascribed to the measurement noise, the amplitude of which above 

630 nm becomes comparable or even higher than the intensity of TiO2 fluorescence.  

Interestingly, both TiO2 and electrolyte fluorescence yields decrease upon lithium insertion in 

TiO2 nanocrystals. The quenching of electrolyte luminescence, up to five times in intensity, 

depending on the bias voltage applied to TiO2 is surprising at first sight. This result suggests 

that a part of the radiative energy from the electrolyte is transferred to the electrode, and, that 

this energy transfer process in benefit to TiO2 is more efficient when the electrode is lithiated. 

At same time, the fluorescence QY of the electrode is decreasing when lithiated despite the 

energy transfer from the electrolyte. This means that the radiative recombination process in 

LixTiO2 is quenched compared to TiO2 as one could expect as a result from the hole transfer 

from Ti3+ to Ti4+ which is responsible for the electrode’s photorecharge.   

 

Figure 2.28. Emission spectra of 5 nm nanocrystalline TiO2 in 1 mol/L LiPF6 EC/DMC at different 

depth of discharge (Li+ insertion) using 277 nm excitation wavelength. 
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The FRET mechanism is clearly feasible for three reasons. The QY of luminescence of the 

electrolyte is much greater than TiO2 (QYLP30 = 7.7%), the high molecular proximity between 

solvated Li+ and PF6
- responsible for the electrolyte fluorescence and TiO2 nanocrystals, and 

thirdly, there is an energy overlap between the emission band of the electrolyte and the 

excitation band of TiO2 and Li0.6TiO2 nanocrystals.   

 

Figure 2.29.  Steady-state photoluminescence map of (a) LiPF6 EC/DMC electrolyte, (b) colloidal 

solution of TiO2 in LiPF6 EC/DMC electrolyte and (c) colloidal solution of Li0.6TiO2 in LiPF6 

EC/DMC electrolyte. Note that the intensity scale has been reduced 35 times between (a) and (b-c). 

 

The observed quenching of fluorescence of both TiO2 and electrolyte is consistent with the 

fluorescence measurements obtained through a colloidal solution, i.e. without any electrical 
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bias on electrode, containing either 5 nm TiO2 or Li0.6TiO2 in LP30 electrolyte (Fig. 2.29 [29]). 

In this case, 40 mg of powder was introduced in 3 mL of electrolyte. TiO2 nanocrystals quench 

the luminescence of the electrolyte by energy transfer of likely Förster type (FRET) from 

3.5∙106 counts to 1.0∙105 counts (Fig. 2.29 (a-b)). This process is clearly more efficient in the 

case of lithiated nanocrystals as observed on biased electrodes. In the case of colloidal solution, 

we found a nearly total bleaching of the electrolyte (2.5∙104 counts) which is prone for an 

enhanced FRET mechanism in contact with the lithiated particles (Fig. 2.29 (c)). This is 

consistent with the greater light absorption of the particles when lithiated in agreement with the 

UV-visible absorption spectra as a function of the depth of discharge reported in Fig. 2.11. This 

quenching process is thus not originating from any ions drift in the electrolyte or different 

solvation mechanism induced by the bias voltage. The yield of luminescence of Li0.6TiO2 is 

lower as a result from the photorecharge process in agreement with the films and may also in 

part be due to traps passivation by lithium insertion [100].   

 

2.5.  Determination of the kinetics of the charge transfer processes in TiO2 by TCSPC 

The study of the excited-state lifetime(s) can provide key information on evaluating the kinetics 

of charge recombination and on homogeneous/heterogeneous charge transfer processes when 

associated to photoluminescence quenching. A very limited number of publications report the 

dynamics of TiO2 excited states, either on single crystals [101-102] or on powder suspension 

in aqueous solutions [103]. During this thesis, time-correlated single-photon counting (TCSPC) 

technique was used to investigate the radiative relaxation dynamics of TiO2 and Li0.6TiO2 

excited states in contact with different type of media.  

TCSPC working principle is presented in Figure 2.30. It consists of measuring the arrival time 

of a photon emitted from a sample subsequently to a short-pulse light excitation. This 

luminescence time is compared to a reference light pulse arrival time itself. Each photon 

counting event adds up to the intensity number of the corresponding recombination time 

forming a memory histogram. The originally recorded photon counts versus channels represent 

the fluorescence intensity versus time, which is typically referred as time-resolved 

photoluminescence (PL) decay.  
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2.5.1. In situ study of the time-resolved fluorescence of TiO2 and Li0.6TiO2 

Time-correlated single-photon counting measurements of TiO2 and Li0.6TiO2 were performed 

under argon atmosphere using an EPL-375 picosecond pulsed diode laser as an excitation light 

source with a pulse width of ca. 75 ps at a frequency rate of 2 MHz. The fluorescence dynamics 

was recorded at 455 nm emission wavelength using a Peltier-cooled microchannel plate 

photomultiplier tube (MCP-PMT) Hamamatsu detector (time response < 25 ps). This latter is 

positioned after the first emission monochromator to minimize light traveling length, therefore 

to optimize the spectrometer time resolution. The corresponding decays for TiO2 and Li0.6TiO2 

are presented in Figure 2.31.  

 

Figure 2.31. Evolution of the photoluminescence decay of TiO2 and Li0.6TiO2 electrodes in an argon 

filled cuvette cell. The corresponding instrument response function decays IRF1 and IRF2 are 

presented for information. 

Figure 2.30. Schematic representation of the two-input stopwatch working principle of TCSPC (from 

Edinburg Instrumets ® TCSPC technical note) 
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The numerical reconvolution of each decay was performed by considering systematically the 

instrument response function (IRF) determined on 100% refractive BaSO4 powder. The IRF 

full width at half maximum (FWHM) was ca. 80 ps. The lifetime values were determined using 

a multi-exponential mathematical function (eq. 2.12):  

𝑅(𝑡) =∑𝐵𝑖

4

𝑖=1

𝑒
−
𝑡
𝜏𝑖                     (2.12) 

This algorithm used in FAST software allows to perform an exponential fit of the decay using 

up to four fixed lifetime components (𝜏𝑖) and corresponding pre-exponential factors (𝐵𝑖), while 

automatically excluding the constant background level of the curve. The mathematical 

reconvolution was carried out resulting in the reduced chi-square (χ2) of the fits of less than 1.1. 

In our case, the most robust reconvolution of the decays was obtained by introducing two single-

exponential components. The results show that for both TiO2 and Li0.6TiO2 a very similar 

dynamics of excited-states in obtained very close to the IRF value (Table 2.3). The faster 

contribution is clearly the major, reaching 29 ps after reconvolution. It corresponds to the direct 

recombination from conduction band down to valence band. This value is at the real limit of 

the spectrometer capability, but is in good agreement with Bowman et al. who reported an 

average lifetime of 23 ps for 2 nm TiO2 nanoclusters based on femtosecond transient absorption 

spectroscopy [104]. The longer component of ca. 2 ns is physically assigned to the trap-

mediated fluorescence process [105]. It shows higher amplitude in the case of lithiated phase, 

i.e. 18.1% for Li0.6TiO2 vs. 8.5% for TiO2. This difference originates from the redistribution of 

the traps in the band gap subsequently to lithium insertion. However, this result tends to 

contradict the traps passivation induced by lithium insertion discussed by Tsui et al. [100], but 

is in agreement with the work of Islam et al. who reported the formation of additional energy 

levels and trapping sites below the bottom of the conduction band induced by the defect clusters 

of Li+ interstitials and Ti3+ electronic species based on atomistic simulation study [106]. In 

addition to this slight but existing and well-reproducible difference in the photoluminescence 

decays, we also experienced a tenfold decrease in fluorescence yield for Li0.6TiO2 in agreement 

with the steady-state experiments (section 2.4.3).  
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Table 2.3. Lifetime and amplitude of the fluorescence decay after reconvolution from the IRF of TiO2 

and Li0.6TiO2 in contact with argon. 

 TiO2  Li0.6TiO2  

 Amplitude, % Lifetime, ns Amplitude, % Lifetime, ns 

τ1 91.5 0.029 81.9 0.029 

τ2 8.5 2.19 18.1 1.96 

 

In a lithium-free electrolyte based on 1 mol/L TBAPF6 in EC/DMC electrolyte, corresponding 

to an ionic blocking interface that will prevent any photorecharge mechanism, the 

photoluminescence decay of TiO2 was again best fitted with two components leading to a 

lifetime values of 25 ps (82.1%) and 2.39 ns (17.9%) (Fig. 2.32, table 2.4). The first component 

is still ascribed to the direct band-to-band recombination while the second to the trap-mediated 

fluorescence. The lifetime values are very comparable to those under argon except that more 

traps are involved in the fluorescence process as a result from the built-in depletion layer at the 

semiconductor/ electrolyte interface. Note that a difference between 29 ps and 25 ps cannot be 

discussed because of the IRF value of 80 ps. These results suggest the absence of any interfacial 

charge transfer process between the semiconductor and the electrolyte, or at least down to 

ca. 20-30 ps.  

 

Figure 2.32. Photoluminescence decay of the anatase TiO2 nanocrystals deposited upon FTO glass in 

contact with an electrolyte composed of 1 mol/L TBAPF6 in EC/DMC. The photoluminescence decay 

of TiO2 under argon and IRF is provided for comparison. 
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Table 2.4. Comparison of the lifetime values determined after reconvolution of the photoluminescence 

decay with the IRF for anatase TiO2 nanocrystals either in contact with argon or with the electrolyte 

composed of 1 mol/L TBAPF6 EC/DMC at open-circuit condition. 

 TiO2 in contact with argon TiO2 in 1 mol/L TBAPF6 EC/DMC 

 Amplitude, % Lifetime, ns Amplitude, % Lifetime, ns 

τ1 91.5 0.029 82.1 0.025 

τ2 8.5 2.19 17.9 2.39 

 

 

2.5.2. Kinetics of charge transfer processes in Li0.6TiO2 in contact with an electrolyte 

Similar experiments were performed on the discharged composition Li0.6TiO2. We herein 

investigated two types of electrolyte, one based on the benchmark organic EC/DMC solvent 

mixture typically used in batteries (Fig. 2.33 (a)), and a second, more inert, based on EMITFSI 

ionic liquid (Fig. 2.33 (b)). The electrolytes were tailored by the nature of the added salt to be 

either ionic-blocking to hamper the electrode photorecharge (TBAPF6) or ionic-conducting to 

enable the electrodes’ photorecharge (LiPF6). For the measurements in lithium-free 

electrolytes, Li0.6TiO2 was obtained by galvanostatic discharge inside an Ar-filled glove-box at 

j = -100 µA/cm2 in LP30 electrolyte until 1.5 V vs. Li+/Li. After lithiation, the electrode was 

thoroughly rinsed with DMC as for the Mott-Shottky experiments. The electrode was then 

transferred into a TCSPC cuvette filled with the electrolyte and sealed inside the glove-box to 

ensure its air-tightness. For the lithium-ion conducting electrolytes, the time-resolved electro-

luminescence experiments were performed in a three-electrode air-tight cuvette with TiO2 as a 

working electrode, and two lithium strips as counter and reference electrode. By combining the 

galvanostat with the TCSPC spectrometer, the galvanostatic discharge at j = -100 µA/cm2 down 

to 1.5 V vs. Li+/Li was directly performed inside the spectrometer chamber. Then, the electrode 

was potentiostatically stabilized at 1.5 V vs. Li+/Li until steady-state current close to 0 was 

obtained before any fluorescence decay was measured. The evolution of the photoluminescence 

decays of Li0.6TiO2 electrode in lithium ion-blocking and lithium ion-conducting electrolytes 

based on either EC/DMC solvent mixture or EMITFSI ionic liquid is presented in Figure 2.33. 
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Figure 2.33. Evolution of the photoluminescence decay of Li0.6TiO2 electrode in (a) EC/DMC mixture  

or (b) EMITFSI ionic liquid based electrolytes containing or not lithium ions. The decay of Li0.6TiO2 in 

argon and IRF are provided for comparison. 

 

When the photoluminescence of Li0.6TiO2 nanocrystals is measured in contact with EC/DMC 
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This stems from the contact of the nanocrystals with a liquid interface of higher dielectric 

constant which tends to trap the electrons on the predominant surface of the particles. Indeed, 

the interfacial contact with the electrolyte hinders the band-to-band recombination to the benefit 

of slower processes through traps. This may also be the result of the Li+ and/or TBA+ cations 

forming “quasi-particles” with trapped electrons in the surface of the particles, thus prolonging 

the excited-state lifetime [107–109]. In both media, Li+-containing electrolyte’s decays are 
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suggesting the occurrence of an additional fast charge transfer process which we attribute to the 

hole transfer to Ti3+ that is responsible for the electrode’s photorecharge (Table 2.5). This hole 

transfer is fast, requiring 145 ps in EC/DMC-based electrolyte, accounting for 7.8% of the total 

decay, and within 97 ps in EMITFSI ionic liquid representing 12.5% of the total decay. The 

difference in the amplitude tends to suggest that the photogenerated hole transfer process is 

more favorable in more inert EMITFSI ionic liquid media than in the EC/DMC-based 

electrolyte.  

 

Table 2.5. Reconvolution results of the time-correlated single photon counting decays recorded on 

Li0.6TiO2 in EC/DMC and EMI.TFSI based electrolytes with or without Li+-containing salt. 

 1 mol/L TBAPF6 

EC/DMC 

1 mol/L LiPF6 

EC/DMC 

1 mol/L TBAPF6 

EMITFSI 

1 mol/L LiPF6 

EMITFSI 

 Amplitude, 

% 

Lifetime,   

ns 

Amplitude, 

% 

Lifetime, 

ns 

Amplitude, 

% 

Lifetime, 

ns 

Amplitude, 

% 

Lifetime, 

ns 

τ1 - - 7.8 0.145 - - 12.5 0.097 

τ2 77.9 1.34 38.5 1.33 30.6 1.49 58.4 1.21 

τ3 22.1 5.88 53.7 5.44 69.4 14.6 29.1 4.85 

 

The type of solvent influences the trap-mediated fluorescence mostly in terms of amplitude in 

the decay and less in terms of the lifetimes. This is likely due to a redistribution of energy and 

density of states of the intra-band gap traps. The longer lifetime is obtained in EMITFSI ionic 

liquid which reaches up to 14.6 ns with an amplitude of 69.4%. Along this line, we have 

evidenced experimentally a Stark-Lo Surdo effect on our nanocrystalline anatase TiO2 particles 

induced by the specific adsorption of lithium cation upon the surface of the particles which is 

visible on the excitation/emission spectrum (Fig. 2.34), band gap value from 2.90 eV to 3.60 eV 

for TiO2 in pure DMC and in highly concentrated 1.5 M of LiPF6. Stark-Lo Surdo effect has also 

important consequences in the photoluminescence dynamics which we think is a beneficial 

mechanism for the electrode’s photorecharge.  
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Figure 2.34. (a) Steady-state excitation/emission spectrum, (b) Tauc plot, and (c) time-resolved 

emission spectroscopy of 5 nm nanocrystalline anatase TiO2 film in contact with different types of 

electrolytes. 

 

Conclusions 

This chapter firstly described the preliminary work leading to the first proof-of-concept of a 

complete photorechargeable electrode based on TiO2/Li0.6TiO2. To achieve this, we developed 

a low-temperature synthesis yielding to nanocrystals of anatase TiO2 of 5 nm size. Such a 

downsizing of the particles affords to maximize the surface reactivity with respect to the volume 

which is one key to ensure a quantitative photorecharge process. This part of the thesis memoire 

focused on the study of the processes behind the effective charge separation in Li0.6TiO2 

nanoparticles triggering photo-induced lithium deinsertion out from the structure. For this, we 

specifically developed a photoelectrochemical cell which allowed us to study in situ the 

evolution of the optoelectronic properties of TiO2 upon lithium insertion. 
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By means of UV-visible absorption spectroscopy, we established that the color change from 

white to dark blue upon lithium insertion into TiO2 is associated on the one hand with an 

increase of the bandgap value, which can be ascribed to Burstein-Moss effect, and on the other 

hand with the rise of absorbance in both visible and near-infrared part of the light spectrum. 

This increased absorbance is assigned to the optical absorption of free electron carriers in the 

conduction band of TiO2 and the electrons localization into the Ti3+ centers occupying the 3d 

metal orbitals. 

In order to determine the band edge positions, which is an important parameter to consider in 

photochemistry, and their evolution upon lithium insertion, Mott-Schottky measurements on 

both TiO2 and Li0.6TiO2 were performed in TBAPF6-based ionic blocking electrolyte. The 

results highlight a positive 0.5 V shift in potential of the conduction band. This is accompanied 

by one order of magnitude increase in charge carrier concentration. In addition, our results stress 

a strong influence of the flat band potential and carrier concentration depending on the protic 

or aprotic nature of the electrolyte.  

To grasp insights into the dynamics of the excited states of TiO2 and Li0.6TiO2 in different types 

of electrolyte, we used steady-state fluorescence spectroscopy and time-correlated single 

photon counting spectroscopy. In this chapter, we identified that in addition to the direct band-

to-band recombination which takes place in the range of 29 ps for both TiO2 and Li0.6TiO2, a 

significant part of the luminescence stems from the recombination through shallow traps 

associated with oxygen vacancies and surface states when included inside the electrolyte 

(τ > 1 ns). Upon lithium insertion into the structure, we highlighted a quenching of electrolyte 

luminescence attributed to FRET mechanism from the electrolyte excited states to TiO2 and 

even more efficient to Li0.6TiO2 nanoparticles owing to its greater absorption properties. 

Lithium insertion into TiO2 also substantially quenches the luminescence of the particles. 

Finally, on the basis of time-correlated single photon counting experiment comparing the 

dynamics of excited state of Li0.6TiO2 in contact with either a lithium ion-blocking electrolyte 

or lithium-based electrolyte, we were able to evaluate that the hole transfer to Ti3+ is in a range 

of 100 ps, namely 145 ps in EC/DMC-based electrolyte and 97 ps in EMI.TFSI based ionic 

liquid and the existence of Stark-Lo Surdo effect as a result from lithium specific adsorption on 

the surface of the anatase TiO2 which modifies the band gap value, the vertical excitation E0-0, 

excitation/emission spectra and the dynamics of the excited states relaxation.  
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Introduction 

Most of the information related to the optoelectronic properties of inorganic materials reported 

in literature is connected to either water-splitting, solar fuel generation or photocatalysis 

applications [1–5]. Only few materials known for their lithium insertion properties are 

presented, namely TiO2, WO3, CuO, V2O5, Bi2O3, and BiVO4. For photoelectrochemical 

applications, the position of both valence band and conduction band is critical as it controls the 

reductive and oxidizing strength of the photogenerated carriers and defines the possibility for 

electrons or holes to be transferred to the transition metal and to the counter-electrode [6–9]. In 

contrast, when employed for batteries application [10], the redox potential and crystal structure 

to evaluate ionic conduction pathways and number of available sites for lithium to be 

accommodated are the most important criteria. Consequently, for the majority of insertion 

materials developed for batteries, no or little information is reported on the band gap value, 

band edge positions, or even charge carrier nature and its concentration. Moreover, with the 

exception of TiO2, which is a reference material for a broad range of applications, no studies 

are reported aiming at measuring these characteristics in non-aqueous aprotic solvents such as 

those typically used as electrolytes in batteries. This latter is important as the position of band 

edges is known to vary significantly depending on doping [11–13], surface states [14], and the 

nature of electrolyte in contact [15].  

This chapter focuses on the creation of a database gathering the optoelectronic properties of the 

most widely used battery electrode materials. This database enables to evaluate the potentiality 

of a material for photobattery application and it represents an interesting contribution to the 

field of photocatalysis. Some first results related to photobatteries are discussed at the end of 

the chapter. 

Three groups of materials were chosen for this study (Table 3.1):  

− transition metal oxides (Li4Ti5O12, LiCoO2, MoO3, WO3, CuO, Bi2O3, LiMn2O4, 

LiMn1/3Ni1/3Co1/3O2), 

− transition metal sulfides (TiS2, MoS2, WS2), 

− lithiated polyanions (LiFePO4, LiMnPO4, LiVPO4F). 
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Table 3.1. Visual aspects of the different classes of materials studied in this work. 

Transition metal oxides  Transition 

metal sulfides 

 Lithiated 

polyanions 

Li4Ti5O12 LiCoO2 MoO3 

 

TiS2 

 

LiFePO4 

     

WO3 CuO Bi2O3 MoS2 LiMnPO4 

     

LiMn2O4 LiMn1/3Co1/3Ni1/3O2 WS2 LiVPO4F 

    

 

 

3.1. Study of transition metal oxides 

3.1.1. Li4Ti5O12  

The spinel lithium titanate Li4Ti5O12 attracted much attention as an anode material for Li-ion 

batteries owing to its theoretical gravimetric capacity of 175 mAh/g, bi-phasic plateau at 1.5 V 

(vs. Li+/Li), high power, and excellent cycling stability owing to almost zero volume change 

between Li4Ti5O12 and Li7Ti5O12 [16-17]. One major disadvantage of Li4Ti5O12 is its poor 

electronic conductivity (σ < 10-13 S/cm) [18], which stems from the empty Ti4+ 3d orbital, and 

low lithium-ion diffusion coefficient (~10-12 cm2/s) [19]. Its crystal structure, crystallizing in 

cubic phase with Fd3̅m space group, is often presented in a form of Li8a[Ti5/3Li1/3]16dO4, 

denoting that 75 % of lithium ions are located at tetrahedral (8a) sites, while the rest of the 

lithium ions and titanium occupy octahedral (16d) sites (Fig. 3.1). The oxygen ions are located 

at 32e sites. 

The XRD pattern of Li4Ti5O12 powder was successfully refined and indexed into the spinel 

structure with the Fd3̅m space group (Fig. 3.2 (a)). The lattice cell parameter determined is 
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a = 8.3588(3) Å (Vcell = 584 Å3), in good agreement with the value reported by Dolotko et al. 

[20]. The sample is free of any impurities based on x-ray diffraction. 

 

Figure 3.1. Crystal structure of the spinel Li4Ti5O12.  

 

The SEM study of the powder revealed a spherical morphology composed of aggregated 

particles ranging between 5 to 20 µm (Fig. 3.2 (b)). The primary particles have a size ranging 

between 300 and 600 nm (Fig. 3.2 (c)). The high-resolution TEM (HR-TEM) micrograph 

confirms an entire crystallinity of the particles for which the selected area electron diffraction 

(SAED) pattern is in agreement with XRD (Fig. 3.2 (d-e)). 

 

Figure 3.2. (a) Full pattern matching refinement of x-ray diffractogram of Li4Ti5O12, (b) scanning 

electron microscopy image, (c) transmission electron micrograph, (d) high-resolution transmission 

electron micrograph, and (e) selected area electron diffraction pattern of the particles. 
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Figure 3.3 (a) presents the diffuse reflectance spectrum of Li4Ti5O12 recorded over the range of 

1800 nm down to 200 nm. For this, 1 wt% of Li4Ti5O12 was mixed within KBr before to be 

pressed into a pellet. Note that this ratio was kept for all materials herein studied unless 

mentioned otherwise. An absorption tail is observed at around 400 nm suggesting a wide band 

gap in agreement with the white color of the particles. The band gap value was determined from 

the Tauc plot using Kubelka-Monk function. Assuming an indirect allowed transition, the band 

gap energy of Li4Ti5O12 is 3.79 eV, which is in agreement with the white color of the particles 

(Fig. 3.3 (b)). It is 4.05 eV if we assume a direct transition (Fig. 3.3 (c)). Our results are 

significantly higher than 1.7 - 2.3 eV reported by early calculations [21–24], but close to 

3.87 eV reported recently by Verde et al. based on DOS calculations [25]. The obtained values 

are also in agreement with the 3.8 eV indirect band gap reported by Ge et al. based on diffuse 

reflectance measurements [26] and with the range of 3.5 - 3.8 eV band gap with a direct allowed 

transition reported by a number of other authors [27–29]. 

 

Figure 3.3. (a) Evolution of diffuse reflectance of Li4Ti5O12 as a function of wavelength and 

corresponding Tauc plot assuming (b) an indirect allowed band gap transition (n=2) and (c) direct 

allowed band gap transition (n=0.5). 
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The conclusion of a direct vs. indirect nature of the bandgap is often experimentally not so 

straightforward. However, some correlations were found between the band gap transition nature 

and the shape of the plot of the absorption coefficient vs. wavelength [30–33]. For a direct 

transition, the absorbance increases slowly by contrast to an indirect transition for which the 

absorbance change becomes steep. Taking into account the inverse relation between absorbance 

and reflectance in opaque materials, thus, the steep reflectance onset of Li4Ti5O12 suggests an 

indirect band gap. 

The flat band potential as well as the charge carrier type and concentration in Li4Ti5O12 was 

determined as previously from the Mott-Schottky plot in two different kinds of blocking 

electrolytes, i.e. aqueous (protic) and non-aqueous aprotic. For this, a film with 12 µm thickness 

was prepared by doctor-blading. In aqueous electrolyte, we carried out a set of measurements 

in different electrolytes, namely in NaOH and in TBANO3 at different pH values adjusted by 

adding a small quantity of HNO3. We then chose one representative measurement based on 

quality of the Mott-Schottky curve and the highest reproducibility of the flat band potential 

(Vfb) and the charge carrier concentration (N) values. The frequency dependence of the Mott-

Schottky curves for Li4Ti5O12 and for the other materials described in this chapter follows the 

same trend as observed for TiO2, i.e. a decrease of Vfb and negligible changes in N as a function 

of frequency in the range from 100 Hz to 1 kHz. This is experienced for measurements in both 

aqueous and non-aqueous aprotic electrolytes. Figure 3.4 presents the Mott-Schottky plots of 

Li4Ti5O12 in aqueous and in non-aqueous aprotic EC/DMC-based electrolytes. In both media, 

the positive slope of the Mott-Schottky curve confirms the n-type nature of conductivity in 

agreement with literature [26, 34]. 

Figure 3.4. Mott-Schottky plot of Li4Ti5O12 measured in (a) 1 mol/L NaOH aqueous electrolyte at 

250 Hz and (b) 1 mol/L TBAPF6 EC/DMC electrolyte at 200 Hz. 

-0.8 -0.7 -0.6 -0.5
6.0x10

9

8.0x10
9

1.0x10
10

1.2x10
10

1.4x10
10

1.6x10
10

1
/C

2
 (

F
-2

cm
4
)

Potential (V vs SCE)

1.8 2.0 2.2 2.4 2.6

5.0x10
10

1.0x10
11

1.5x10
11

1
/C

2
 (

F
-2

cm
4
)

Potential (V vs Li  QRE)

(a)  (b)  

1M TBAPF
6
 EC/DMC 1M NaOH aq. 



95 
 

The flat band potential and donor density value of Li4Ti5O12 is summarized in table 3.2. In 

1 mol/L NaOH aqueous solution (pH = 14), the flat band potential is situated at - 0.99 V vs. 

SCE, which translates into -0.76 V vs. NHE. This value is 0.37 V lower than the one reported 

by Ge et al. (- 1.13 V vs. NHE at pH = 14) in 0.2 mol/L Na2SO4 aqueous solution. In a non-

aqueous aprotic electrolyte, based on 1 mol/L TBAPF6 in EC/DMC, we obtained a flat band 

potential of 1.86 V vs. Li QRE, which represents - 1.34 V vs. NHE. To the best of our 

knowledge, this is the first report on the flat band potential determination of Li4Ti5O12 in a non-

aqueous aprotic solvent.  

 

Table 3.2. Flat band potential and charge carrier concentration of Li4Ti5O12 in 1 mol/L NaOH 

aqueous and 1 mol/L TBAPF6 EC/DMC electrolytes. 

Electrolyte 

Flat band potential 

Charge carrier 

concentration, cm-3 
as measured 

recalculated, 

V vs. NHE 

1 mol/L NaOH in H2O  - 0.99 V vs. SCE - 0.76 (pH = 14) 2.7·1018 

1 mol/L TBAPF6 in EC/DMC 1.86 V vs. Li QRE -1.34 6.9·1019 

 

Considering the n-type conductivity and assuming the close proximity of the fermi level to the 

conduction band, the flat band potential corresponds to the lower edge of the conduction band. 

Taking into account the bandgap of 3.79 eV, the valence band edge was calculated as 3.03 V in 

aqueous electrolyte and 2.45 V in non-aqueous aprotic electrolyte denoting a considerable 

influence of the nature of the electrolyte on the band edge positions in Li4Ti5O12 (Fig. 3.5). 

The charge carrier concentration was determined by considering a dielectric constant of 20 as 

the average of the values reported by Zhang et al. [35] and Liu et al. [36] based on the 

microwave dielectric properties measurements (Table 3.2).  In 1 mol/L NaOH aqueous 

electrolyte, donor density was determined as 2.7·1018 cm-3
. In contrast, a significantly higher 

value of 6.9·1019 cm-3 is obtained when measured in 1 mol/L TBAPF6 EC/DMC. This indicates 

that the donor density of Li4Ti5O12 measured in non-aqueous aprotic electrolyte is more than 

one order of magnitude higher than in the aqueous electrolyte. Such a trend was also observed 

in chapter II for TiO2 (see section 2.3.2).  
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Figure 3.5. Representation of the band edge positions of Li4Ti5O12 film in aqueous electrolyte at 

pH = 14 (in black) and in non-aqueous aprotic EC/DMC-based electrolyte (in red). 

 

The steady-state photoluminescence map of Li4Ti5O12 powder was recorded between 270-

800 nm in excitation and 278-808 nm in emission using a front-face configuration (0.5 nm 

excitation / 0.5 nm emission slits) (Fig. 3.6 (a)). The maximum of emission is reached for an 

excitation at 333 nm leading to a broad asymmetric band at 728 nm (Fig. 3.6 (b)). Our results 

are in relatively good agreement with the fluorescence data reported by Wen et al. who obtained 

a strong emission at 716 nm when excited at 325 nm [37]. The very large Stokes shift of 395 nm 

(16294 cm-1) is assigned to the presence of deep traps in the bandgap through which most of 

the energy relaxation is taking place in a non-radiative way (i.e. phonon dispersion and heat 

dissipation, etc.). 

Figure 3.6. Steady-state (a) excitation/emission map and (b) normalized excitation/emission spectra of 

nanocrystalline Li4Ti5O12 powder. 
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The absolute fluorescence quantum yield of Li4Ti5O12 powder was measured using an 

integrating sphere combining both direct and indirect measurements (Fig. 3.7). The quantum 

yield of - 0.57% derived from the measurement suggests that the value lies in the error bar range 

due to the highly reflective sample nature. Thus, we conclude that the quantum yield must be 

below the detection limit of the set-up, i.e. < 1%.  

 

Figure 3.7. Quantum yield fluorescence spectra of Li4Ti5O12 particles measured in direct and indirect 

method using an integrating with BaSO4 as a reference sample. 

 

The dynamics of the excited states in Li4Ti5O12 was investigated by time-correlated single-

photon counting technique using a pulsed laser diode of 375 nm. The luminescence decay was 

probed at 728 nm emission (Fig. 3.8). For this experiment, a longpass filter of 695 nm was used 

to exclude any artefacts from excessive light scattering from the sample. The recorded 

photoluminescence decay is much longer than the IRF decay (20-30 ps). The long tail of the 

decay suggests the presence of a long-lived component. Note that with this sample an 

abnormally high background was systematically observed for which the origin is not yet 

completely understood.  
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Figure 3.8. Evolution of the PL decay of Li4Ti5O12 powder and its fit after reconvolution with the IRF 

measured on BaSO4. The residuals' distribution of the exponential fit is reported for information. 

 

The decay was the best fitted using a stretch exponential function (eq. 2.10) including three 

components leading to a reduced chi-square (χ2) value of 1.025. The results after reconvolution 

of the IRF decay are presented in Table 3.3. The fast component at 0.10 ns cannot be related to 

a direct band-to-band recombination due to the large Stokes shift. Therefore, all the three 

components, i.e. 0.10, 3.00 and 27.87 ns, are assigned to a very deep trap-mediated 

fluorescence. A low amplitude of the first component reaching only 6.9% indicates that a very 

small portion of recombination takes place through the shallow trap states. The 61.0% and 

32.1% of the total fluorescence amplitude belonging to the second and third components 

supports the radiative recombination through the deep traps. This can also explain the origin of 

the very low quantum yield of Li4Ti5O12.  

 

Table 3.3. Results after reconvolution of the time-correlated single photon counting decay recorded on 

Li4Ti5O12 powder using stretched exponential function (375 nm excitation, 728 nm emission). 

Component Pre-exponential factor 𝐵𝑖 Amplitude, % Lifetime, ns 

τ1 0.114 6.9 0.10 

τ2 0.035 61.0 3.00 

τ3 0.004 32.9 27.87 
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3.1.2. LiCoO2  

LiCoO2 is the most common positive electrode used in lithium-ion batteries owing to its 

excellent cycling stability and high intercalation / de-intercalation potential of around 4 V (vs. 

Li+/Li) [38-39]. Its structure consists of edge sharing CoO6 octahedra forming layers separated 

by lithium cations ensuring a good bi-dimensional ionic conduction (Fig. 3.9). One of the main 

drawbacks of this material is the irreversible structural change taking place upon de-

intercalation above 0.5 Li+ extracted inducing a phase transition to a hexagonal close-packed 

structure of CoO2 above 4.5 V, which limits the practical capacity to around 140 mAh/g [54].  

 

Figure 3.9. Crystal structure representation of LiCoO2 in (011) plane. 

 

Figure 3.10 (a) shows the x-ray diffraction pattern of LiCoO2 powder used in this study. All 

diffraction peaks are indexed into the rhombohedral R-3m space group with lattice cell 

parameters of a = b = 2.8149(3) Å, c = 14.050(51) Å (Vcell = 96 Å3). These values are in good 

agreement with those reported for instance by Shinova et al. [40]. The diffraction peaks are 

intense and narrow indicating excellent crystallinity with large crystallite size. The SEM 

micrographs show well-separated particles having no specific morphology and the size ranging 

from 2 to 20 µm. There are also spherical nanosized particles of ca. 50 nm (Fig. 3.10 (b-c)).  
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Figure 3.10. (a) Full-pattern matching of x-ray diffraction profile, (b) scanning electron microscopy 

images, and (c) transmission electron micrograph of LiCoO2. 

The band gap of LiCoO2 was evaluated as previously described assuming an indirect allowed 

transition (Fig. 3.11 (a)). A very low optical band gap of 0.79 eV was determined in agreement 

with black colour of the particles (Fig. 3.11 (b)). In this case, there is no uncertainties on the 

origin of the transition since a direct allowed transition would lead to a value of 5.17 eV which 

should provide a white powder (Fig. 3.11 (c)). In literature, a direct band gap value of LiCoO2 

has been reported between 2.3 to 2.5 eV based on optical absorption spectra measurements [41] 

and photocurrent spectra onset determination [42]. However, the sluggish increase of 

reflectance suggests the indirect nature of the optical transition.  
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Figure 3.11. (a) Evolution of diffuse reflectance of LiCoO2 powder as a function of wavelength and 

(b) corresponding Tauc plot assuming an indirect allowed transition (n=2) and (c) a direct allowed 

transition (n=0.5). 

 

The Mott-Schottky measurements were carried out on 18 µm thick LiCoO2 films prepared by 

doctor blading in aqueous and non-aqueous aprotic electrolytes. Representative Mott-Schottky 

plots are provided in Figure 3.12. First observation is that the slope of the Mott-Schottky 

transition is dependent on the electrolyte nature. LiCoO2 shows a n-type conductivity when 

measured in aqueous 0.5 mol/L TBANO3 electrolyte. However, it turns to be a p-type semi-

conductor in non-aqueous aprotic 1 mol/L TBAPF6 EC/DMC electrolyte. To the best of our 

knowledge, this is the first report of a conductivity-type dependence on the nature of the 

electrolyte. This result suggests that LiCoO2 is a weak degenerated semiconductor for which 

the Fermi level is close to the middle of the band gap. Tukamoto et al. reported that LiCoO2 is 

a p-type semiconductor based on ac and dc measurements in controlled atmosphere (air, 1% O2, 

and argon). This type of conduction is ascribed to the presence of a small proportion of Co4+ 

ions which acts as a dopant increasing hole concentration and its mobility  [43]. Rosolen et al. 

reported a p-type conductivity based on photocurrent measurements in LiClO4 PC/DMC 
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electrolyte, which agrees well with our results in non-aqueous aprotic electrolyte [42]. LiCoO2 

has also been reported by Menetrier et al. to be p-type based on thermopower measurements 

[44]. It is worth to mention that we can exclude the possibility of lithium / proton exchange in 

aqueous electrolyte, as we repeated the Mott-Schottky measurements in aqueous electrolytes at 

different pH from 1 to 14 without any visible change in the slope. Note that such a verification 

has been made for all other sensitive materials which showed a conductivity-type changeover 

depending on the electrolyte nature (i.e. MoS2 and WS2 presented in the following). This means 

that the donor or acceptor character depends on the electrolyte nature during the Fermi level 

equalization for such weak degenerated semiconductor, i.e. when the concentration of electrons 

is relatively comparable to the concentration of holes. 

 

Figure 3.12. Mott-Schottky plot of LiCoO2 measured at 100 Hz in (a) 0.5 mol/L TBANO3 aqueous 

electrolyte and (b) 1 mol/L TBAPF6 EC/DMC electrolyte. 

 

The flat band potential and donor density values derived from the Mott-Schottky plots are 

presented in Table 3.4. In 0.5 mol/L TBANO3 aqueous solution (pH = 1.65), we measured a 

flat band potential at - 0.21 V vs. SCE which corresponds to - 0.72 V vs. NHE at pH = 14 

considering Nernst equation. This value corresponds to the lower edge of the conduction band. 

When measured in a non-aqueous aprotic 1 mol/L TBAPF6 EC/DMC solution, the flat band 

potential is at 4.44 V vs. Li QRE, corresponding to 1.24 V vs. NHE. In contrast to non-aqueous 

aprotic electrolyte, this value is attributed to the position of the higher edge energy of the 

valence band because of the conductivity-type changeover. Considering the band gap of 

0.79 eV, the lower conduction band edge is positioned at 0.37 V vs. NHE, which is 1.09 V 

lower compared to 1 mol/L TBAPF6 EC/DMC (Fig. 3.13).  
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Figure 3.13. Representation of the band edge positions of LiCoO2 film in aqueous electrolyte at 

pH = 14 (black) and in non-aqueous aprotic EC/DMC-based electrolyte (red). 

 

The charge carrier concentration of LiCoO2 for each experiment was determined by considering 

a dielectric constant of 2. This value was proposed by Khatun et al. [45] and Nageswara Rao et 

al. [46] (Table 3.4). In 0.5 mol/L TBANO3 aqueous solution we determined a concentration of 

n-type charge carriers of 4.9·1019 cm-3 compared to 2.6·1020 cm-3 of holes in 1 mol/L TBAPF6 

EC/DMC electrolyte. This latter value is almost one order of magnitude lower than the value 

of  1021 cm-3 reported by Mizutani et al. based on termopower measurements [47]. As one can 

see, the concentration of electrons and holes is not considerably different which supports our 

explanation driving the n-type vs. p-type changeover.  

 

Table 3.4. Flat band potential and charge carrier concentration of LiCoO2 in 0.5 mol/L TBANO3 

aqueous electrolyte and 1 mol/L TBAPF6 EC/DMC electrolyte. 

Electrolyte 

Flat band potential 

Charge carrier 

concentration, 

cm-3 as measured 

Recalculated 

V vs. NHE V vs. NHE   

at pH=14 

0.5 mol/L TBANO3 in H2O - 0.23 V vs. SCE 0.01 (at pH=1.65) -0.72 4.9·1019 

1 mol/L TBAPF6 in 

EC/DMC 

4.44 V vs. Li 

QRE 
1.24 - 2.6·1020 
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Unfortunately, the photophysical properties of LiCoO2 could not be measured because of the 

too low bandgap value. This would correspond at best to an excitation band at around 1570 nm, 

which is not appropriate with a Xe lamp source for excitation and far from the detection limit 

of a PMT-type detector (ca. 850 nm). Note that this will be the case for all the materials having 

a band gap value lower than 1.5 eV presented in this study. 

 

3.1.3. MoO3 

MoO3 was one of the first materials studied for lithium-ion battery owing to its layered 

structure. Each layer is formed by two sheets of MoO6 octahedra sharing corners along [001] 

and [100] directions, and connected together by edge sharing along [001] direction (Fig. 3.14). 

The layers are alternatively stacked along the c-axis and maintained by electrostatic van der 

Waals’ forces. This two-dimensional structure allows a reversible intercalation of ca. 1.5 

lithium per molybdenum transition metal [48-49], resulting in a lithiated phase (LixMoO3) with 

a good electronic conductivity (10–2 S/cm) and Li+ diffusion coefficient (10-10 cm2/s) [50-51]. 

 

Figure 3.14. Crystal structure representation of MoO3 according to (101) plane. 

 

The XRD pattern of MoO3 powder is presented in Figure 3.15 (a). The diffractogram shows 

single phase, which was successfully indexed with the Pnma space group (orthorhombic 

lattice). The refined lattice cell parameters are a = 13.825(8) Å, b = 3.694(6) Å, c = 3.954(6) Å 

(V = 202 Å3). These values are in good agreement with literature [52]. The particles have no 

specific morphology (Fig. 3.15 (b)). Their size is ranging from 50 to 500 nm without being 

agglomerated. The surface of the particles is well-crystallized without any sign of amorphous 

regions (Fig. 3.15 (c-d)).  
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Figure 3.15. (a) Full pattern matching refinement of x-ray diffraction pattern of MoO3 with its 

corresponding (b,c) transmission and high-resolution transmission electron micrographs and 

(d) selected area electron diffraction pattern. 

 

Figure 3.16 (a) shows the evolution of the reflectance as a function of wavelength for MoO3 

between 200 and 1800 nm. Assuming an indirect allowed transition, which we argue to be the 

case based on the steepness of the transition, we found a band gap of 2.93 eV (Fig. 3.16 (b)). 

This value is in good agreement with the value of 2.9 eV reported by Anwar et al. based on 

absorbance measurements [53] and 3.05 eV reported by Zhao et al. based on transmittance 

measurements [54]. If we assume MoO3 to have a direct transition, we then obtain a band gap 

of 3.49 eV, which is not consistent with the yellow colour of the particles. The values reported 

in the literature in this case are also very dispersed, between 3.15 eV [55] and 4.1 eV [56] based 

on optical measurements, and 1.95 eV [57] and 3.87 eV when calculated [56]. 
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Figure 3.16. (a) Evolution of diffuse reflectance of MoO3 powder as a function of wavelength using an 

integrating sphere and corresponding Tauc plot assuming (b) an indirect allowed transition (n=2) and 

(c) a direct allowed transition (n=0.5). 

 

The representative Mott-Schottky plots of 13 µm doctor-bladed MoO3 films are presented in 

Figure 3.17. In both aqueous and non-aqueous aprotic EC/DMC-based electrolytes, the positive 

slope of the Mott-Schottky curve shows a n-type conductivity of material. This is in good 

agreement with Kroger et al. who reported strong n-type conduction based on the determination 

of the Fermi level position by combining ultraviolet photoemission spectroscopy (UPS) and 

inverse photoemission spectroscopy (IPES) techniques [58]. 
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Figure 3.17. Mott-Schottky plot of MoO3 measured in (a) 0.5 mol/L TBANO3 aqueous electrolyte at 

250 Hz and (b) 1 mol/L TBAPF6 EC/DMC electrolyte at 200 Hz. 

 

The flat band potential and donor density values are gathered in Table 3.5. The flat band 

potential is situated at - 0.01 V vs. SCE in 0.5 mol/L TBANO3 aqueous solution at pH = 8.84. 

It corresponds to - 0.08 V vs. NHE at pH = 14 considering Nernst dependence [59-60]. There 

is a lack of convergence in literature regarding the position of the band edge energy of MoO3. 

Tong et al. reported a conduction band edge at - 2.2 V (vs. NHE) based on the UPS 

measurements [61]. Using same technic, other studies reported a value between 0.4 and 1.3 V 

(vs. NHE) [62-63], and even up to 2.3 V (vs. NHE) by Kroger et al. based on UPS and IPES 

measurements [58] and Greiner et al. based on UPS [64]. Such an inconsistency in values may 

stem from different levels of surface defects as UPS measurements in only sensitive to the 

extreme surface by contrast to Mott-Schottky experiments which is less surface sensitive even 

though it is an interfacial measurement. Our result lies in the middle of this wide range of flat-

band potential values.  

In 1 mol/L TBAPF6 EC/DMC electrolyte, the flat band potential was measured at 2.94 V vs. Li 

QRE, which corresponds to - 0.26 V vs. NHE. There are no reports on the flat-band potential 

of MoO3 in non-aqueous aprotic solvent in literature. Taking into account the bandgap of 

2.93 eV, the valence band edge of MoO3 is determined at 2.85 V (vs. NHE) in aqueous 

electrolyte and at 2.67 V (vs. NHE) in non-aqueous aprotic electrolyte (Fig. 3.18). 

 

2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6

4.0x10
10

6.0x10
10

8.0x10
10

1.0x10
11

1.2x10
11

1
/C

2
 (

F
-2

cm
4
)

Potential (V vs Li  QRE)

0.0 0.1 0.2 0.3 0.4

5.0x10
9

1.0x10
10

1.5x10
10

2.0x10
10

2.5x10
10

1
/C

2
 (

F
-2

cm
4
)

Potential (V vs SCE)

(a)  (b)  

1M TBAPF
6
 EC/DMC 0.5M TBANO

3
 aq. 



108 
 

 

Figure 3.18. Representation of the band edge positions of MoO3 in aqueous electrolyte recalculated at 

pH = 14 (black) and in non-aqueous aprotic EC/DMC-based electrolyte (red). 

 

The charge carrier concentration of MoO3 was determined using a dielectric constant of 6 as 

proposed by Lajaunie et al. based on calculations [65]. In 0.5 mol/L TBANO3 aqueous solution, 

a charge carrier concentration of 4.1·1018 cm-3 was determined. This is in a good agreement 

with the value of 1.5·1018 cm-3 reported by Nadkarni et al. based on the alternating current 

measurements [66-67]. In 1 mol/L TBAPF6 EC/DMC electrolyte, we found a significantly 

higher donor concentration of 1.2·1020 cm-3, which is almost two orders of magnitude higher 

compared to aqueous electrolyte.  

 

Table 3.5. Flat band potential and charge carrier concentration of MoO3 in 0.5 mol/L TBANO3 

aqueous electrolyte and in 1 mol/L TBAPF6 EC/DMC electrolyte. 

 Flat band potential 

Charge carrier 

concentration, 

cm-3 Electrolyte as measured 

recalculated 

V vs. NHE V vs. NHE at 

pH=14 

0.5 mol/L TBANO3 in H2O -0.01 V vs. SCE 0.23 (pH=8.84) -0.08 4.1·1018 

1 mol/L TBAPF6 in 

EC/DMC 

2.94 V vs. Li 

QRE 
-0.26 - 1.2·1020 
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Interestingly, we found that MoO3 gives no fluoresence in the range of 250 to 800 nm. This 

means that all energy relaxation from the excitated states proceeds according to non-radiative 

mechanisms or that the low luminescence is quenched by the particles agglomeration. Such a 

behavior is not intrinsic to MoO3 but has also been encountered in other materials presented in 

the following, i.e. WO3, Bi2O3, LiFePO4, LiMnPO4, and LiVPO4F.  

 

3.1.4. WO3 

Tungsten trioxide is a well-known wide band gap semiconductor, which has attracted attention 

for its electrochemical and electrochromic properties. This material found extensive 

applications in smart windows [68], gas sensors [69], electronic displays [70], and 

photocatalysis [71-72]. The WO6 octahedra are forming a corner-sharing structure allowing 

open diffusion channels for alkali cation insertion (Fig. 3.19). Its main advantage is the high 

reversible electrode capacity reported to maintain ca. 650 mAh/g over 100 cycles for lithium-

ion batteries [73]. 

 

Figure 3.19. Crystal structure representation of WO3 according to (011) plane. 

 

The refined x-ray diffractogram of WO3 powder is presented in Figure 3.20 (a). All diffraction 

peaks are indexed into pure monoclinic phase with a P21/n space group. The lattice cell 

parameters are a = 7.300(6) Å, b = 7.538(8) Å, c = 7.689(6) Å, and β = 90.89° (V = 423 Å3) in 

a good agreement with the literature [74]. The transmission electron micrograph depicts 

spheroidal particles with an average size of 40-80 nm (Fig. 3.20 (b)). The high-resolution TEM 

(HR-TEM) micrograph shows good crystallinity without the presence of any amorphous region 

in the samples (Fig. 3.20 (c-d)). 
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Figure 3.20. (a) Full pattern matching of x-ray diffraction pattern of WO3 with the corresponding (b,c) 

transmission electron micrograph and high-resolution transmission electron micrograph, and 

(d) selected area electron diffraction pattern. 

 

WO3 band gap was determined to be 2.49 eV assuming an indirect allowed transition 

(Fig. 3.21 (a-b)). This result lies close to the lower edge of the 2.51 - 2.87 eV indirect band gap 

values reported in literature based on optical measurements [75–79]. In the case when we 

assume a direct transition, a band gap of 3.52 eV is obtained, which is not consistent with the 

yellow/green coloration of the particles (Fig. 3.21 (c)).  
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Figure 3.21. (a) Evolution of diffuse reflectance of WO3 nanoparticles as a function of wavelength and 

corresponding Tauc plot assuming (b) an indirect allowed transition (n=2) and (c) a direct allowed 

transition (n=0.5). 

 

The Mott-Schottky plots of 5 µm doctor-bladed WO3 films recorded in two different 

electrolytes are presented in Figure 3.22. It shows a n-type conductivity in both aqueous 

0.5 mol/L TBANO3 electrolyte and non-aqueous aprotic 1 mol/L TBAPF6 EC/DMC-based 

electrolyte. This is in agreement with literature based on Mott-Schottky measurements carried 

out in Na2SO4 and H2SO4 aqueous electrolytes [80–82] and thermopower measurements [83]. 
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Figure 3.22. Mott-Schottky plot of WO3 measured in (a) 0.5 mol/L TBANO3 aqueous electrolyte at 

250 Hz and (b) 1 mol/L TBAPF6 EC/DMC electrolyte at 100 Hz. 

  

The flat band potential and charge carrier concentration values are gathered in Table 3.6. In 

0.5 mol/L TBANO3 aqueous solution (pH = 1.65), we obtained a flat band potential of 0.03 V 

vs. SCE which corresponds to -0.46 V vs. NHE at pH = 14 assuming Nernst equation [59-60]. 

Our result lies in the broad range of values reported between - 0.22 and - 0.59 V (vs. NHE at 

pH = 14) in literature [80, 82] based on Mott-Schottky measurements in Na2SO4 and H2SO4-

based electrolytes. In a non-aqueous aprotic electrolyte, the flat band potential value was equal 

to 3.22 V vs. Li QRE, thus corresponding to 0.03 V vs. NHE. These results indicate that the 

conduction band of WO3 is 0.49 eV lower in non-aqueous aprotic electrolyte (Fig. 3.23).  

 

Figure 3.23. Representation of the band edge positions of WO3 film measured in aqueous electrolyte 

and recalculated to pH = 14 (black) and in non-aqueous aprotic EC/DMC-based electrolyte (red). 
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The charge carrier concentration of WO3 was determined with the dielectric constant of 20 as 

proposed by Wang et al. (Table 3.6) [80]. A value of 1.4·1018 cm-3 was extracted in 0.5 mol/L 

TBANO3 aqueous electrolyte and 2.8·1019 cm-3 in 1 mol/L TBAPF6 EC/DMC. This indicates 

that more than one order of magnitude higher WO3 donor density is obtained in non-aqueous 

aprotic electrolyte. Our value determined in aqueous electrolyte in one to two orders of 

magnitude lower than those reported in literature in Na2SO4 and H2SO4 aqueous electrolytes, 

i.e. from 1019 to 1020 cm-3 [80–82]. 

 

Table 3.6. Flat band potential and charge carrier concentration of WO3 in 0.5 mol/L TBANO3 aqueous 

electrolyte and 1 mol/L TBAPF6 EC/DMC electrolyte. 

Electrolyte 

Flat band potential Charge carrier 

concentration, 

cm-3 

as measured 

recalculated 

V vs. NHE V vs. NHE 

at pH=14 
 

0.5 mol/L TBANO3 in 

H2O 
0.03 V vs. SCE 0.27 (pH=1.65) -0.46 1.4·1018 

1 mol/L TBAPF6 in 

EC/DMC 

3.22 V vs. Li 

QRE 
0.03 - 2.8·1019 

 

 

3.1.5. CuO 

Cupric oxide is an interesting negative electrode material for Lithium-ion batteries because of 

its high gravimetric capacity of ca. 600 mAh/g obtained through a conversion reaction involving 

Cu+II / Cu0 redox couple according to a plateau at 1.3 V vs. Li+/Li [84], [85]. CuO has a tenorite-

type structure with a square planar coordination of copper by oxygen in a monoclinic crystal 

structure, forming a zigzag Cu–O chains oriented along the [101̅] and [101] directions 

(Fig. 3.24). 

The refinement of x-ray diffraction pattern of CuO shows single phase that crystallizes into a 

monoclinic-type structure with C2/c space group (Fig. 3.25 (a)). The refined lattice cell 

parameters are a = 4.690(8) Å, b = 3.420(16) Å, c = 5.131(3) Å, and β = 99.54° (V = 81 Å3). 

These values are in good agreement with the values reported by Chaudhary et al. [86]. 



114 
 

 

Figure 3.24. Crystal structure representation of CuO. 

 

The TEM study revealed that the powder consists of well-separated particles with close to 

spherical morphology without presence of any amorphous regions. The particle size is ranging 

between 20 and 100 nm. (Fig. 3.25 (b-c)). 

 

Figure 3.25.  (a) Full pattern matching refinement of x-ray diffraction profile of CuO powder with 

corresponding (b) transmission electron micrograph and (c) high-resolution transmission electron 

micrograph with (d) selected area electron diffraction pattern. 
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The band gap value of CuO was determined from the diffuse reflectance spectrum considering 

both indirect allowed and direct allowed transitions (Fig. 3.26). Assuming that CuO has an 

indirect allowed transition, we determined a band gap value of 1.19 eV (Fig. 3.26 (b)). This 

result is in good agreement with the 1.2 eV calculated from the high temperature intrinsic 

conductivity measurements reported by Jeong et al. [87]. The value also lies in the bottom of 

the wide range of values reported in literature between 1.20 eV and 1.79 eV based on the 

absorption spectroscopy measurements assuming an indirect allowed transition [88–92]. 

Assuming a direct allowed transition, the band gap is equal to 1.66 eV (Fig. 3.26 (c)). This 

value is considerably lower than the values reported in literature for a direct allowed transition 

ranging from 2.4 to 3.2 eV [88, 92, 93]. However, the slow change in the reflectance spectrum 

suggests the indirect nature of the transition and the 1.19 eV band gap comes in a good 

agreement with the black color of the powder. 

 

Figure 3.26. (a) Evolution of diffuse reflectance of CuO powder as a function of wavelength. The 

corresponding Tauc plot is reported assuming (b) an indirect allowed transition (n=2) and (c) a direct 

(n=0.5) allowed transition. 
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To determine the position of conduction and valence band, as well as the type of conductivity, 

Mott-Schottky impedance was measured on 3 µm thick films deposited on FTO by doctor 

blading. When measured in a range of aqueous protic electrolytes including NaOH, KOH, 

Na2HPO4, and TBANO3 at different pH values, the obtained Mott-Schottky plots were not 

reproducible. Apart from the significant shift in the Mott-Schottky onset, which can vary to an 

extent of 0.4, in certain cases, the slope of the curve was changing from positive at lower 

potentials to negative at higher potentials. This traduces either some kind of side reactions 

taking place in the electrode depending on the applied potentials, or it can be associated with a 

crossover change of n to p-type conductivity depending on the applied voltage owing to relative 

comparable density of holes and electrons in CuO. In addition, for half of the electrodes, we 

faced issues of bad adhesion onto the FTO substrate leading to the film pilling off at the end of 

the experiment. In contrast, in 1 mol/L TBAPF6 EC/DMC electrolyte, a reproducible Mott-

Schottky plot was successfully obtained (Fig. 3.27). The negative slope of the linear part of the 

plot indicates a p-type conductivity in agreement with literature [87–89]. This p-type 

conductivity stems from the existence of copper vacancies that facilitate hole conduction 

through Cu-O planar rectangles. 

  

Figure 3.27. Mott-Schottky plot of CuO measured in 1 mol/L TBAPF6 EC/DMC electrolyte at 300 Hz. 

 

The flat band potential and donor density values are gathered in Table 3.7. We found a flat band 

potential at 3.80 V vs. Li QRE, which corresponds to the top of valence band position at 0.60 V 

vs. NHE. The values reported in literature are only based on Mott-Schottky experiments in 

aqueous electrolytes. The values lie between -1.33 and 0.23 V vs. NHE at pH = 14 [87–90, 94]. 
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Taking into account the 1.19 eV band gap of the material, the position of the conduction band 

edge is - 0.59 V vs. NHE (Fig. 3.28). 

 

Table 3.7. Flat band potential and charge carrier concentration of CuO in 1 mol/L TBAPF6 EC/DMC 

electrolyte. 

Electrolyte 

Flat band potential Charge carrier 

concentration, 

cm-3 as measured Recalculated 

1 mol/L TBAPF6 in EC/DMC 3.80 V vs. Li QRE 0.60 V vs. NHE 2.7·1019 

 

A hole concentration of 2.7·1019 cm-3 has been determined based on the dielectric constant of 

10 as reported by Nakaoka et al. [89]. This number is in good agreement with the values 

reported in literature between 4.0·1018 to 4.0·1020 cm-3 [87–89]. 

 

Figure 3.28. Band edge positions of CuO film in non-aqueous aprotic EC/DMC-based electrolyte. 

 

 

3.1.6. Bi2O3 

Bismuth oxide is a wide band gap semiconductor that can be used as anode material for lithium-

ion batteries. It delivers a gravimetric capacity of ca. 357 mAh/g obtained through a conversion 

reaction involving Bi+III / Bi0 redox processes [95]. Among all the existing polymorphic forms 

of Bi2O3, monoclinic α- and tetragonal β-Bi2O3 are the most important. In both cases, the crystal 

structure is constituted by the equivalently distant layers, parallel to the (011) plane. The 

tetragonal β-Bi2O3 comes of particular interest for lithium-insertion because of the large tunnels 
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along the a- and c-direction as a result of the different coordination polyhedra sharing only 

corners in the three-dimensional array (Fig. 3.29) [96].  

 

Figure 3.29. Crystal structure representation of β-Bi2O3. 

 

The full-pattern matching refinement of the XRD diffractogram is presented in Figure 3.30 (a). 

It has intense and sharp diffraction peaks, which indicates a high degree of crystallinity. All the 

diffraction peaks are corresponding to the tetragonal form (β-phase) within 𝑃4̅21𝑐 space group. 

The refined lattice cell parameters are a = b = 7.741(5) Å and c = 5.634(6) Å (Vcell = 338 Å3). 

They are in perfect agreement with those reported by Blower et al., i.e. a = b = 7.739(1) Å and 

c = 5.636(1) Å [97]. The TEM micrograph reveals spherical morphology of the particles with 

a diameter ranging between 50 and 200 nm (Fig. 3.30 (b)). A good crystallinity of the particles 

is proved by the high-resolution TEM micrograph, which show the absence of any amorphous 

region and confirm the β-phase (Fig. 3.30 (c-d)).  
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Figure 3.30. (a) Full pattern matching refinement of x-ray diffraction pattern of Bi2O3 and 

corresponding (b) transmission electron micrograph and (c,d) high-resolution transmission electron 

micrograph and selected area electron diffraction pattern. 

 

The band gap of Bi2O3 was also determined from diffuse reflectance experiments 

(Fig. 3.31 (a)). An absorption edge is observed at around 650 nm.  The reflectance maximum 

is in the NIR region attaining 35% under this experimental condition. We determined a band 

gap value of 0.98 eV assuming an indirect allowed transition (Fig. 3.31 (b)). This is 

significantly lower than the values of 2.08 eV reported by Chitrada et al. [98] and 2.15 eV 

reported by Schlesinger et al. [99] both based on the optical absorption measurements. 

Assuming a direct allowed transition, a band gap of 2.12 eV is obtained (Fig. 3.31 (c)). This 

value is closer to the broad range of values reported in literature from 2.26 to 2.88 eV based on 

the optical absorption spectroscopy measurements [98-104]. 
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Figure 3.31. (a) Evolution of diffuse reflectance of Bi2O3 powder as a function of wavelength and 

corresponding Tauc plot assuming (b) an indirect allowed transition (n=2) and (c) a direct allowed 

transition (n=0.5). 

 

Figure 3.32 presents the Mott-Schottky plots of 5 µm thick doctor-bladed Bi2O3 films in either 

aqueous electrolyte (a) or non-aqueous aprotic EC/DMC-based electrolyte (b). The positive 

slope of the curves indicates a n-type conductivity in agreement with previous literature 

(Fig. 3.32) [94, 98, 105]. 

0 1 2 3 4 5 6 7
0

2

4

6

8

10

12

(h
v
F

(R
))

0
.5

h (eV)

200 400 600 800 1000 1200 1400 1600 1800
0

10

20

30

40

50

R
ef

le
ct

an
ce

 (
%

)

Wavelength (nm)

(a)  

0 1 2 3 4 5 6 7
0

1x10
4

2x10
4

3x10
4

4x10
4

5x10
4

(h

F

(R
))

2

h (eV)

(b)  (с)  



121 
 

 

Figure 3.32. Mott-Schottky plot of Bi2O3 measured at 500 Hz in (a) 1 mol/L NaOH aqueous electrolyte 

and (b) 1 mol/L TBAPF6 EC/DMC electrolyte 

 

The flat band potential and donor density values of Bi2O3 are tabulated in Table 3.8. In 1 mol/L 

NaOH aqueous electrolyte (pH = 14), the flat band potential is equal to - 0.90 V vs. SCE, which 

corresponds to - 0.66 V vs. NHE. This value is in agreement with - 0.67 V (vs. NHE at pH = 14) 

reported by Haira et al. [105] and lies in the range of values reported by Chitrada et al. from 

- 0.57 to - 0.54 V (vs. NHE at pH = 14) based on Mott-Schottky measurements in 1 mol/L KOH 

aqueous electrolyte [106]. In non-aqueous aprotic electrolyte, the flat band potential is 2.42 V 

vs. Li QRE. This corresponds to - 0.77 V vs. NHE. The results indicate that Bi2O3 has lower 

flat band potential and consequently higher band edge energies when measured in non-aqueous 

aprotic electrolyte compared to an aqueous electrolyte (Fig. 3.33).  

 

Figure 3.33. Representation of the band edge positions of Bi2O3 film measured in aqueous electrolyte 

at pH = 14 (black) and in non-aqueous aprotic EC/DMC-based electrolyte (red). 
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The charge carrier concentration in Bi2O3 was calculated assuming a dielectric constant of 32 

as reported in literature [107] (Table 3.8). A donor density of 9.9·1017 cm-3 has been determined 

in aqueous electrolyte, in agreement with literature [98, 108], and 3.3·1019 cm-3 in non-aqueous 

aprotic electrolyte. Once again, we found a more than one order of magnitude increase of the 

carrier concentration in non-aqueous electrolyte. This is the first report determining the flat 

band potential, carrier type and concentration of Bi2O3 in such media. 

 

Table 3.8. Flat band potential and charge carrier concentration of Bi2O3 in 1 mol/L NaOH aqueous 

electrolyte and 1 mol/L TBAPF6 EC/DMC electrolyte. 

Electrolyte 

Flat band potential 

Charge carrier 

concentration, cm-3 
as measured 

recalculated 

V vs. NHE 

1 mol/L NaOH in H2O -0.90 V vs. SCE -0.66 (pH=14) 9.9·1017 

1 mol/L TBAPF6 in 

EC/DMC 
2.42 V vs. Li QRE -0.77 3.3·1019 

 

 

3.1.7. LiMn2O4 

Lithium manganese oxide LiMn2O4 is one of the most studied cathode material for lithium-ion 

batteries because of its high redox potential of ca. 4 V vs. Li+/Li, natural abundance of Mn, and 

easy synthetic procedure, despite its quite low gravimetric capacity of 120 mAh/g [109-110]. 

LiMn2O4 crystallizes into a cubic spinel structure, which consists of cubic close-packed 

arrangements of oxygen atoms at the 32e sites, lithium occupying half of the 8a sites, and Mn3+ 

and Mn4+ ions occupying 1/8 of the octahedral 16d sites (Fig. 3.34). The empty sites in the 

[Mn2O4]
- framework represent a diamond type network of tetrahedral 8a and octahedral 16c 

sites, which share common faces and edges and form 3D open channels for Li+ ion diffusion. 

The full pattern matching refinement of LiMn2O4 diffractogram is presented in Figure 3.35 (a). 

All diffraction peaks can be indexed into Fd-3m space group. The refined lattice cell parameter 

is a = 8.238(3) Å (Vcell = 559 Å3) in agreement with the value of a = 8.2404(2) reported by 

Mukai et al. [111]. The SEM micrograph shows particles with octahedral morphology and very 

inhomogeneous particle size ranging from ca. 500 nm to 5 µm (Fig. 3.35 (b)). Significant level 

of particles agglomeration is observed. 
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Figure 3.34. Crystal structure representation of the spinel LiMn2O4. 

 

The high-resolution TEM micrograph confirms a good crystallinity of the particles and the 

absence of any amorphous regions in the bulk or surrounding the particles (Fig. 3.35(c)). The 

SAED pattern can be successfully indexed into the spinel structure (Fig. 3.35(d)). 

 

Figure 3.35. (a) Full pattern matching of x-ray diffraction pattern of LiMn2O4 powder and 

corresponding (b) scanning electron micrograph and (c,d) high-resolution transmission electron 

micrograph and selected area electron diffraction pattern. 
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The diffuse reflectance spectrum of LiMn2O4 is presented in Figure 3.36. The band structure 

seems to be either of a not semiconducting nature or to have a smaller bang gap value than 

0.7 eV ( > 1800 nm). This contrasts with literature, which reports a direct band gap value 

between 1.16 to 1.20 eV from experimental optical absorption [112-113]. DFT calculations 

predicts from the calculation of the DOS a band gap lower than 1.0 eV [114-115]. 

 

Figure 3.36. Evolution of diffuse reflectance of LiMn2O4 powder as a function of wavelength. 

 

 

3.1.8. LiMn1/3Co1/3Ni1/3O2 

LiMn1/3Co1/3Ni1/3O2 is currently one of the most important battery cathode materials because 

of its high discharge capacity of ~250 mAh/g and high redox potential of ca. 4 V vs. Li+/Li 

[116-117]. Its layered O3-type structure consists of a cubic close-packed arrangement where 

oxygen ions and transition-metal ions occupy alternating layers in octahedral sites, creating 2D 

pathways for lithium insertion (Fig. 3.37). 

 

Figure 3.37. Schematic representation of LiMn1/3 Co1/3 Ni1/3O2 crystal structure. 
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The full pattern matching refinement of the x-ray diffraction pattern of LiMn1/3Co1/3Ni1/3O2 is 

presented in Figure 3.38 (a). All the diffraction peaks are assigned to R-3m space group 

corresponding to a rhombohedral lattice. The refined lattice cell parameters are a = 2.859(2) Å 

and c = 14.155(9) Å (Vcell = 100 Å3) in agreement with literature [118]. The SEM and TEM 

micrographs show agglomerates ranging from 5 to 10 µm, which are composed of primary 0.5-

1.5 µm crystalline particles (Fig. 3.38 (b-c)). The HR-TEM micrograph shows a good 

crystallinity of the material from center to the edges of the particles with the absence of any 

amorphous regions (Fig. 3.38 (d)). The SAED pattern is successfully indexed into R-3m space 

group (Fig. 3.38 (e)). 

 

Figure 3.38. (a) Full pattern matching refinement of the x-ray diffraction pattern of 

LiMn1/3Co1/3Ni1/3O2 with the corresponding (b) scanning electron micrograph, (c) transmission 

electron micrograph and (d,e) high-resolution transmission electron micrograph including the 

selected area electron diffraction pattern. 

 

Similarly to LiMn2O4, we did not achieve to determine the optical band gap of 

LiMn1/3Co1/3Ni1/3O2 from the diffuse reflectance spectrum owing to the absence of a clear 
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there are no reports related to the determination of the LiMn1/3Co1/3Ni1/3O2 band gap value in 

literature. 

 

Figure 3.39. Evolution of diffuse reflectance of LiMn1/3Ni1/3Co1/3O2 powder as a function of wavelength. 

 

 

3.2. Transition metal sulfides 

The layered transition metal sulfides (MS2) are among the first materials studied for their ability 

to reversibly insert / deinsert lithium cations [119-120]. Their structure is typically constituted 

of layers, each of which is composed of transition-metal ions in edge-shared interstices between 

the pairs of close-packed anion planes (Fig. 3.40). These hexagonally close packed MS2 layers 

are held together by Van der Waals forces enabling lithium intercalation between the layers. 

Among the family of transition metal sulfides, TiS2 is particularly attractive owing to its low 

molecular weight and good electrical conductivity stemming from high charge carrier 

concentration of ~1020 cm-3 [49, 121-122].  

 

Figure 3.40. Crystal structure representation of layered MS2 
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3.2.1. TiS2 

The refined x-ray diffractogram of TiS2 is presented in Figure 3.41 (a). All diffraction peaks are 

indexed with P-3m1 space group corresponding to a tetragonal unit cell. The lattice cell 

parameters refined are a = b = 3.407(3) Å and c = 5.695(6) Å (Vcell = 57 Å3), in a good 

agreement with the values of a = b = 3.407(2) Å and c = 5.695(3) Å reported by McKelvy et al. 

[123]. The scanning electron micrograph reveals a nano-platelet morphology ranging from 5 to 

15 µm in size (Fig. 3.41 (b)). The HR-TEM micrograph confirms a good crystallinity of the 

particles until the edges (Fig. 3.41 (c)). It also reveals the presence of pores in the particles as 

showed in the micrograph by semi-transparent “bubbles” in the core of the particle. The selected 

area electron diffraction pattern was indexed into TiS2 (Fig. 3.41 (e)). The electron diffraction 

pattern recorded over a particle consists of differently oriented sheets of TiS2 according to the 

same zone axis as showed by the absence of some reflections in the SAED pattern. 

 

Figure 3.41. (a) Full pattern matching refinement of x-ray diffraction pattern of TiS2 and 

corresponding (b) scanning electron micrograph, (c) transmission electron micrograph and (d,e) 

high-resolution transmission electron micrograph with selected area electron diffraction pattern.  
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Figure 3.42 presents the diffuse reflectance spectrum of TiS2 powder. The absence of any 

absorption edge below 1800 nm suggests that the band structure is not of a semiconducting 

nature. Indeed, even though TiS2 is theoretically a semiconductor, it has always been 

experimentally found to have a semi-metallic nature. This is supported by most of DFT 

calculations on the electronic structure of TiS2 which suggest TiS2 to be an indirect band overlap 

semimetal [124–130]. It was also supported by the experimental studies reporting that TiS2 is a 

metal or semimetal with an indirect overlap of the bottom of the conduction band and the top 

of the valence band ranging from 0.2 to 1.5 eV [131–135]. This semi-metallic behavior is 

assigned to the access of the titanium metal electrons filling the d-type conduction band of the 

material [136-137]. 

 

Figure 3.42. Evolution of diffuse reflectance of TiS2 powder as a function of wavelength. 
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Mott-Schottky plots in aqueous electrolyte and in non-aqueous aprotic EC/DMC-based 

electrolyte are reported in Fig. 3.43. In both cases, the positive slope of the Mott-Schottky curve 

indicates a n-type conductivity in agreement with Hall measurements reported in literature [122, 

138, 139]. The success of the Mott-Schottky measurements is quite surprising taking into 
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Figure 3.43. Mott-Schottky plot of TiS2 measured at 500 Hz in (a) 0.5 mol/L TBANO3 aqueous 

electrolyte and (b) 1 mol/L TBAPF6 EC/DMC electrolyte. 

 

Table 3.9 gathers the flat band potential and donor density values derived from the Mott-

Schottky equation (eq. 2.7). A flat band potential of - 0.24 V vs. SCE was determined in 

0.5 mol/L TBANO3 aqueous solution (pH = 3.45). The value translates into - 0.62 V vs. NHE 

at pH = 14 [59-60]. In the non-aqueous aprotic electrolyte, we obtained a flat band potential of 

2.01 V vs. Li QRE, which corresponds to - 1.18 V vs. NHE. No data is reported in literature 

regarding the flat band potential of TiS2. 

 

Table 3.9. Flat band potential and charge carrier concentration of TiS2 in 0.5 mol/L TBANO3 aqueous 

electrolyte and 1 mol/L TBAPF6 EC/DMC electrolyte. 

Electrolyte 

Flat band potential 

Charge 

carrier 

concentration, 

cm-3 
as measured 

Recalculated 

V vs. NHE V vs. NHE 

at pH=14 

0.5 mol/L TBANO3 in H2O -0.24 V vs. SCE 0.00 (pH=3.45) -0.62 4.2·1018 

1 mol/L TBAPF6 in 

EC/DMC 

2.01 V vs. Li 

QRE 
-1.18 - 6.9·1019 

 

To calculate the charge carrier concentration, a dielectric constant of 15 was assumed by us, 

taking as a first hypothesis of a similar ratio between the dielectric constant of TiS2 and TiO2 

with respect to WS2 (ε=8) and WO3 (ε=20), i.e. roughly 2:1. A donor density of 4.2·1018 cm-3 

was obtained in 0.5 mol/L TBANO3 aqueous electrolyte and 6.9·1019 cm-3 in 1 mol/L TBAPF6 
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EC/DMC (Table 3.9). As previously observed, the charge carrier concentration in non-aqueous 

aprotic electrolyte is one order of magnitude higher compared to the aqueous counterpart. At 

the same time, these values are one to two orders of magnitude lower compared to the values 

from 1.1·1020 to 2.8·1020 cm-3 reported in literature based on calculations from Hall coefficient 

measurements [122, 123, 134, 138, 139]. This tends to suggest that the dielectric constant of 

TiS2 might be far from assumed value of 15. 

 

3.2.2. MoS2 

Figure 3.44 (a) exhibits the full pattern matching refinement of the XRD pattern of MoS2. All 

diffraction peaks were successfully indexed into hexagonal crystal structure of P63/mmc space 

group. The obtained cell parameters are a = b = 3.160(7) Å and c = 12.294(9) Å 

(Vcell = 106 Å3). They are in good agreement with the results reported by Bronsema et al. [140]. 

The electron micrographs show that the particles display a nanoflake-like morphology with 

flakes diameter ranging from 1 to 10 µm without amorphous domain at the particles surface 

(Fig. 3.44 (b-d)). The SAED pattern is consistent with MoS2 crystal structure (Fig. 3.44 (e)). 

Figure 3.44. (a) Full pattern matching refinement of x-ray diffraction pattern of MoS2 and (b) scanning 

electron micrograph, (c) transmission electron micrograph and (d,e) high-resolution transmission 

electron micrograph including selected area electron diffraction pattern. 
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The band gap of MoS2 was determined from the diffuse reflectance spectrum, which shows an 

absorption tail in the visible range (Fig. 3.45 (a)). A band gap value of 1.52 eV was determined 

from the Tauc plot assuming an indirect allowed transition (Fig. 3.45 (b)). The literature reports 

values of 1.68 eV determined from absorption measurements [141] and 1.75 eV based on 

photocurrent study [142]. DFT calculations predict an indirect bandgap nature between 1.04 eV 

to 1.29 eV based on the DOS calculation under vacuum [143–147]. The indirect bandgap is 

consistent with the slow increase of reflectance near the absorption threshold. 

 

Figure 3.45. (a) Evolution of diffuse reflectance of MoS2 powder as a function of wavelength and 

corresponding Tauc plot assuming (b) an indirect allowed transition (n=2).  
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the electrolyte nature, i.e. n-type conductivity in aqueous 0.5 mol/L TBANO3 electrolyte and 

p-type conductivity in non-aqueous aprotic 1mol/L TBAPF6 EC/DMC-based electrolyte. It is 

well-known in literature that MoS2 can exist in both n- and p-type conduction depending on 

doping [148–152] and the experimental conditions [153-154]. However, this is the first time 
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Figure 3.46. Mott-Schottky plot of MoS2 measured at 100 Hz in (a) 1 mol/L NaOH aqueous electrolyte 

and (b) 1 mol/L TBAPF6 EC/DMC electrolyte. 

The flat band potential and donor density of MoS2 is gathered in Table 3.10. In 1 mol/L NaOH 

aqueous solution (pH = 14), the flat band potential is equal to - 0.75 V vs. SCE, thus at - 0.51 V 
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(Fig. 3.47). Nevertheless, our result is lower than the flat band potential of - 0.24 V vs. NHE 

reported by Anand for n-type MoS2 in a mixture of K2SO4, KI, I2 , H2SO4 in water (electrolyte 
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potential reported by Schneemeyer et al. based on photocurrent measurements of n-type MoS2 
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Figure 3.47. Representation of the band edge positions of MoS2 film measured in aqueous electrolyte 

at pH = 14 (black) and in non-aqueous aprotic EC/DMC-based electrolyte (red). 

 

The charge carrier concentration of MoS2 in both media was calculated with a dielectric 

constant of 11 based on the calculations reported in literature (Table 3.10) [143, 155, 156]. In 

0.5 mol/L TBANO3 aqueous electrolyte, we determined an electron concentration of 

3.0·1018 cm-3. This value is one order of magnitude lower than that reported by Anand et al., 

i.e. 3.5·1019 cm-3 [141]. In 1 mol/L TBAPF6 EC/DMC, the hole carrier concentration is 

4.0·1019 cm-3. This number lies in the middle of the 1017 - 1019 cm-3 range reported for p-type 

MoS2 based on thermopower measurements [147]. 

 

Table 3.10. Flat band potential and charge carrier concentration of MoS2 in 1 mol/L NaOH aqueous 

electrolyte and 1 mol/L TBAPF6 EC/DMC electrolyte. 

Electrolyte 

Flat band potential 

Charge carrier 

concentration, 

cm-3 as measured 

recalculated 

V vs. NHE 

1 mol/L NaOH in H2O -0.75 V vs. SCE -0.51 (pH=14) 3.0·1018 

1 mol/L TBAPF6 in 

EC/DMC 
4.20 V vs. Li QRE 1.01 4.0·1019 
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3.2.3. WS2 

The full-pattern matching refinement of WS2 x-ray diffractogram shows an important 

preferential orientation along (00l) planes. All observed diffraction peaks can be indexed into 

the hexagonal lattice of P63/mmc space group (Fig. 3.48 (a)). The refined lattice cell parameters 

are a = b = 3.154(5) Å and c = 12.362(12) Å (Vcell = 106 Å3). These values are very close to the 

isostructural MoS2 previously investigated, and are in good agreement with the values reported 

in literature [157], [158]. The SEM micrograph shows nanoplates morphology with a particle 

size ranging from 200 nm to 6 micrometers (Fig. 3.48 (b-c)). This morphology is responsible 

for the preferential orientation observed. The HR-TEM study confirms that there are no 

amorphous regions on the sample, especially at the surface of the particles (Fig. 3.48 (d)). The 

SAED pattern shows single crystal electron diffraction with an indexation in agreement with 

XRD (Fig. 3.48 (e)). 

 

Figure 3.48. (a) Full pattern matching refinement of x-ray diffraction pattern of WS2 and 

corresponding (b-d) scanning, transmission and high resolution transmission electron micrograph of 

the sample with its (e) selected area electron diffraction pattern. 
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corresponding Tauc plot (Fig. 3.49 (b)). This value is lower than those predicted by DFT 

calculations [146, 159, 160] and experimentally determined values between 1.12 eV and 

1.30 eV based on different techniques such as absorption spectroscopy [161], 

photoelectrochemical study [162],  and measurements of the gate-voltage dependence of the 

source-drain current in an ambipolar ionic liquid-gated transistor [163]. At the same time it is 

0.97 eV higher than 1.79 eV indirect band gap reported by Kam et al. based on the photocurrent 

spectroscopy measurements [164]. Assuming a direct transition would lead to a value of 

1.31 eV (Fig. 3.29 (c)). Nevertheless, the very broad reflectance onset clearly suggests an 

indirect transition.  

 

Figure 3.49. (a) Evolution of diffuse reflectance of WS2 powder as a function of wavelength and 

corresponding Tauc plot assuming (b) an indirect allowed transition (n=2) and (b) a direct allowed 

transition (n=0.5). 
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aqueous 1 mol/L NaOH electrolyte and a p-type conduction appears in non-aqueous aprotic 

1mol/L TBAPF6 in EC/DMC. This changeover suggests a weak extrinsic semi-conduction in 

WS2 in which the process of Fermi level equalization control either a n-type conduction (hole 

transfer) or a p-type conduction (electron transfer) depending on the electrolyte nature. Single 

crystals WS2 is reported in the literature to be n-type [165]. However, both n- and p-type 

conductivity are reported for polycrystalline WS2 samples [161, 162, 166–169]. This 

changeover is mainly controlled by the synthetic method leading to different levels of punctual 

defects driven mainly by the sulfur stoichiometry. The literature also reports that the nature of 

semi-conduction in WS2 can be easily changed by a careful control in aliovalent doping [170–

172] or by changing the biais voltage during thermopower measurements as demonstrated by 

Kawai et al. on nanotubes [173].  

 

Figure 3.50. Mott-Schottky plot of WS2 measured at 100 Hz in (a) 1 mol/L NaOH aqueous electrolyte 

and (b) 1 mol/L TBAPF6 EC/DMC electrolyte. 

 

The flat band potential and donor density values are reported in Table 3.11. In 1 mol/L NaOH 

aqueous electrolyte (pH = 14), the flat band potential of WS2 is equal to - 0.72 V vs. SCE, which 

corresponds to -0.48 V vs. NHE. This value is comparable to - 0.45 V vs. NHE at pH = 14 

reported in literature for the n-type WS2 by Morrish et al. [166] and is ca. 0.35 V more positive 

than that reported by Bassaid et al. [167] based on Mott-Schottky measurements in Na2SO4 

aqueous electrolytes. This value of flat band potential corresponds to the lower edge of the 

conduction band. When measured in a non-aqueous aprotic electrolyte, the flat band potential 

is at 3.34 vs. Li QRE, corresponding to a higher edge of the valence band at 0.15 V vs. NHE. 

In literature, all measurements on p-type WS2 were carried out in aqueous electrolyte, giving 

p-type semi-conduction and a large range of values for the valence band position from 0.00 to 
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0.87 V vs. NHE at pH = 14 based either on Mott-Schottky experiments [161, 167, 168] or 

photoelectrochemical measurements [170, 174]. Taking into account the bandgap of 0.82 eV, 

the lower conduction band edge is calculated as - 0.67 V vs. NHE. This denotes that there is 

solvation effect on the flat band potential in WS2 of 0.19 eV higher in 1 mol/L TBAPF6 

EC/DMC electrolyte (Fig. 3.51). 

 

Figure 3.51. Representation of the band edge positions of WS2 film measured in aqueous electrolyte at 

pH = 14 (black) and in non-aqueous aprotic EC/DMC-based electrolyte (red). 

 

Charge carrier concentration of WS2 for each experiment was determined assuming a dielectric 

constant of 8 [167] (Table 3.11). An electron density of 6.7·1018 cm-3 is obtained in 1 mol/L 

NaOH aqueous electrolyte in agreement with the broad range of values reported in literature 

[166-167]. A strong p-type doping is experienced in 1 mol/L TBAPF6 EC/DMC with a hole 

density of 1.8·1020 cm-3. This value is very comparable to the 1.2·1020 cm-3 hole concentration 

determined by Wang et al. based on termopower measurements [175].  

 

Table 3.11. Flat band potential and charge carrier concentration of WS2 in 1 mol/L NaOH aqueous 

and 1 mol/L TBAPF6 EC/DMC-based electrolytes. 

Electrolyte 

Flat band potential 
Charge carrier 

concentration, cm-

3 as measured 
recalculated          

V vs. NHE 

1 mol/L NaOH in H2O -0.72 V vs. SCE -0.48 (pH=14) 4.2·1018 

1 mol/L TBAPF6 in EC/DMC 3.34 V vs. Li QRE 0.15 1.8·1020 
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3.3. Lithiated polyanions 

LiFePO4 and LiMnPO4 are isostructural and belong to the family of olivine (LiMPO4, 

M = Fe2+, Mn2+, Co2+, Ni2+). These two materials are very attractive as high rate cathodes for 

lithium-ion batteries operating at 3.42 V and 4.13 V (vs. Li+/Li). They have lower 

environmental impact and lower cost by substituting cobalt by iron or manganese [176-177]. 

The olivine structure consists of a corner-sharing MO6 octahedra and edge shared LiO6 

octahedra localized along the b-axis linked together by PO4 tetrahedra forming a three-

dimentional architecture (Fig. 3.52). 

 

Figure 3.52. Crystal structure representation of LiMPO4 materials down to [001] and [010] 

directions. 

 

LiVPO4F is another polyanion based on fluorophosphate, which was found also promising as 

cathode materials in lithium-ion batteries owing to its operating redox potential of 4.2 V (vs. 

Li+/Li) [178-179]. It crystallizes into a tavorite-like structure composed of distorted chains of 

VO4F2 octahedra sharing two fluorine atoms, which are connected by corner-sharing PO4 

tetrahedra through the O atom (Fig. 3.53). 

 

Figure 3.53. Crystal structure representation of LiVPO4F down to [100] direction. 
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3.3.1. LiFePO4 

The full-pattern matching refinement of LiFePO4 is presented in Figure 3.54 (a). All diffraction 

peaks are corresponding to the orthorhombic lattice of LiFePO4 adopting Pnma space group. 

The lattice cell parameters refined are a = 10.332(9) Å, b = 6.019(3) Å and c = 4.704(5) Å 

(Vcell = 293 Å) in agreement with the literature [180]. The SEM study revealed particles without 

well-defined morphology and broad size distribution ranging from few micrometers to 

ca. 80 µm (Fig. 3.54 (b)). The HR-TEM micrograph and SAED pattern confirm the XRD 

indexation and the absence of amorphous regions in the particles (Fig. 3.54 (d-e)). 

 

Figure 3.54. (a) Full pattern matching refinement of x-ray diffraction profile of LiFePO4, (b) scanning 

electron micrograph, (c) transmission electron micrograph and (d,e) high-resolution transmission 

electron micrograph including selected area electron diffraction pattern. 

 

The optical band gap of LiFePO4 powder was determined to be 1.96 eV if we assume an indirect 

transition or 3.11 eV for a direct transition (Fig. 3.55 (a-c)). The band structure of LiFePO4 is 

still controversial in literature. The electronic band calculations based on the traditional density 

functional theory (DFT) within the localized density approximation (LDA) and generalized 
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gradient approximation (GGA) report a band gap between 0.1 and 1 eV [181–183] which is not 

really consistent with the colour of the material (sand to green depending on the particles size). 

In contrast, more recently, Zhou et al. reported a large band gap value of 3.7 eV calculated using 

GGA method adding Hubbard U term (GGA+U) [184]. These authors support their calculations 

by experimental data based on the diffuse reflectance measurements leading to a band gap value 

of 3.8 eV determined as the absorption onset and 4.0 eV using the Kubelka-Monk function. Shi 

et al. reported a band gap of 3.2 eV based on same DFT method (GGA+U)  [185]. Our 3.11 eV 

direct band gap value comes in agreement with these calculations. The light sand-like colour of 

the particles is consistent with such a bandgap value. 

 

Figure 3.55. (a) Evolution of diffuse reflectance of LiFePO4 powder as a function of wavelength and 

corresponding Tauc plot assuming (b) an indirect allowed transition (n=2) and (c) a direct allowed 

transition (n=0.5). 

 

The flat band potential and the charge carrier concentration of LiFePO4 were determined by 

Mott-Schottky analysis using 80 µm thick doctor-bladed films (Figure 3.56). In both aqueous 

and non-aqueous aprotic EC/DMC-based solutions, the positive slope of the Mott-Schottky 
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curve indicates n-type conductivity in agreement with Xu et al. [186]. However, these authors 

underline that a p-type conductivity may arise in the case of extrinsic doping owing to the higher 

mobility of the holes. N-type conductivity has also been observed by other studies reporting a 

negative sign in Seebeck coefficient [187-188]. All these results tends to disapprove the 

assumptions made on p-type conductivity mechanism in LiFePO4 [189-190]. 

 

Figure 3.56. Mott-Schottky plot of LiFePO4 measured in (a) 0.5 mol/L TBANO3 aqueous electrolyte at 

250 Hz and (b) 1 mol/L TBAPF6 EC/DMC electrolyte at 100 Hz. 

 

Table 3.12 gathers the flat band potential and donor density values. In 0.5 mol/L TBANO3 

aqueous electrolyte (pH = 1.65), we obtained a flat band potential of - 0.04 V vs. SCE, which 

translates into - 0.53 V vs. NHE at pH = 14.  When measured in a non-aqueous aprotic 1 mol/L 

TBAPF6 EC/DMC electrolyte, the flat band potential is equal to 2.62 V vs. Li QRE, 

corresponding to - 0.58 V vs. NHE. Both values, corresponding to the bottom of the conduction 

band, are very close to each other, suggesting a low solvation effect on the band position. Our 

results are much more negative than the unrealistic 3.0 V vs. NHE conduction band edge 

reported based on calculations by Paolella et al. [191]. Combining the Mott-Schottky and UV-

visible spectroscopy results, the band positions of LiFePO4 are reported in the two media in 

Figure 3.57. 
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Table 3.12. Flat band potential and charge carrier concentration of LiFePO4 in 0.5 mol/L TBANO3 

aqueous solution and 1 mol/L TBAPF6 EC/DMC electrolyte. 

Electrolyte 

Flat band potential 

Charge carrier 

concentration, 

cm-3 as measured 

Recalculated 

V vs. NHE V vs. NHE at 

pH=14 

0.5 mol/L TBANO3 in H2O -0.04 V vs. SCE 0.20 (pH=1.65) -0.53 1.9·1019 

1 mol/L TBAPF6 in 

EC/DMC 

2.62 V vs. Li 

QRE 
-0.58 - 3.9·1020 

 

 

Figure 3.57. Representation of the band edge positions of LiFePO4 measured in aqueous electrolyte 

and recalculated to pH = 14 (black) and in non-aqueous aprotic EC/DMC-based electrolyte (red). 

 

The charge carrier concentration of LiFePO4 for each experiment was calculated with a 

dielectric constant of 3 based on the complex permittivity calculations from the impedance data 

by Bharathi et al. [188] (Table 3.12). In 0.5 mol/L TBANO3 aqueous electrolyte, we obtained 

1.9·1018 cm-3 donor charge carrier concentration. This is two orders of magnitude lower than 

the donor density derived from the measurements in 1 mol/L TBAPF6 EC/DMC, i.e. 

3.9·1020 cm-3. To the best of our knowledge, this is the first report of the charge carrier 

concentration of LiFePO4. 
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3.3.2. LiMnPO4 

Similar to LiFePO4, the XRD pattern of LiMnPO4 was refined using same space group leading 

to the lattice cell parameters of a = 10.460(9) Å, b = 6.100(6) Å and c = 4.744(5) Å 

(Vcell = 303 Å) in agreement with Koleva et al. [192]. The cell volume is ca. 3% greater than 

LiFePO4 owing to the larger ionic radii of Mn2+ (r = 97 pm) than Fe2+ (r = 92 pm) in high spin 

configuration. The SEM study revealed the nanoflake morphology of LiMnPO4 particles, which 

are forming aggregates of up to 10 µm in diameter (Fig. 3.58 (b)). The size of the primary 

particles is ranging from 20 to 200 nm (Fig. 3.58 (c)). The high-resolution TEM micrograph 

and SAED pattern confirms that particles are single crystals of LiMnPO4 without the presence 

of amorphous regions (Fig. 3.58 (d-e)).  

 

Figure 3.58. (a) Full pattern matching refinement of x-ray diffraction pattern of LiMnPO4 with its 

corresponding (b) scanning electron micrograph, (c) transmission electron micrograph and (d,e) 

high-resolution transmission electron micrograph including selected area electron diffraction pattern. 

 

Figure 3.59(a) shows that LiMnPO4 has good reflecting properties in all visible and NIR part 

of light. Using Kubelka-Monk function, the optical band gap for an indirect allowed transition 

20 30 40 50 60 70

(1
0
4
)(3

1
2
)

(4
0
3
)

(3
3
0
)

(3
3
1
)

(0
0
2
)

(0
2
1
)

(3
1
1
)

(3
1
0
)

(0
2
0
)

In
te

n
si

ty
 (

a.
u
.)

2 Cu

(°)

10 µm 

(a)  (b)  

(c)  (d)  (e)  



144 
 

is rather difficult to determine precisely as we can extrapolate an onset at ca. 2.22 eV followed 

by a more marked transition above 5 eV (Fig. 3.59 (b)). For a direct electronic transition, the 

extrapolation of the linear part of (hνF(R))2 curve results in a 5.19 eV intercept. However, 

zooming in shows that there is also a small transition onset at around 3.93 eV, which has a low 

absorption coefficient compared to that of the 5.19 eV transition. We argue that LiMnPO4 has 

a direct band gap nature based on the Tauc plots. Our value is in agreement with 3.8 - 4.0 eV 

reported by Xu et al. based on GGA+U calculations [184]. It is however significantly higher 

than 1.7 to 1.9 eV calculated by other groups [181, 182, 193]. It is recognized in literature that 

LiMnPO4 has a stronger insulating character than LiFePO4, thus consistent with the greater 

band gap value [187]. 

 

Figure 3.59. (a) Evolution of diffuse reflectance of LiMnPO4 powder as a function of wavelength and 

corresponding Tauc plot assuming (b) an indirect allowed transition (n=2) and (c) a direct allowed 

transition (n=0.5). 

 

The Mott-Schottky experiments were performed on 5 µm thick doctor-bladed film. The 

measurements carried out in a range of aqueous electrolytes based on NaOH or TBANO3 at 
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different pH values were not successful due to a lack of reproducibility in the results as similarly 

observed for CuO, LiMn2O4 and LiMn1/3Co1/3Ni1/3O2.  In contrast, there were no problems of 

reproducibility in 1 mol/L TBAPF6 EC/DMC electrolyte. A representative Mott-Schottky plot 

is reported in Figure 3.60. The negative slope of the plot confirms that LiMnPO4 is a n-type 

semi-conductor.  

  

Figure 3.60. Mott-Schottky plot of LiMnPO4 measured in 1 mol/L TBAPF6 EC/DMC electrolyte 

at 300 Hz. 

 

Using the Mott-Schottky equation, the flat band potential and donor density of LiFePO4 were 

determined (Table 3.13). The flat band potential, corresponding to the position of the bottom 

of the conduction band, was measured at 2.07 V vs. Li QRE, which translates into -1.12 V vs. 

NHE. Taking into consideration a 3.93 eV band gap, the top of the valence band should be at 

2.81 V vs. NHE. This shows that compared to LiFePO4 both conduction band and valence band 

of LiMnPO4 are destabilized in energy by 0.54 eV and 0.24 eV, respectively. (Fig. 3.61). A 

charge carrier concentration of 2.2·1020 cm-3 was determined using a dielectric constant similar 

to LiFePO4 as an approximation [188]. This value is two times lower than in LiFePO4 

(3.9·1020 cm-3). To the best of our knowledge, this is the first report on the flat-band potential 

and donor density in LiMnPO4.  
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Table 3.13. Flat band potential and charge carrier concentration of LiMnPO4 in 1 mol/L TBAPF6 

EC/DMC electrolyte. 

Electrolyte 

Flat band potential Charge carrier 

concentration, 

cm-3 as measured recalculated 

1 mol/L TBAPF6 in EC/DMC 2.07 V vs. Li QRE -1.12 V vs. NHE 2.2·1020 

 

 

 

Figure 3.61. Comparison of the band edge positions of LiFePO4 and LiMnPO4 films in non-aqueous 

aprotic 1 mol/L TBAPF6 EC/DMC-based electrolyte. 

 

 

3.3.3. LiVPO4F 

The XRD diffractogram of LiVPO4F is presented in Figure 3.62 (a) including its full-pattern 

matching refinement into a triclinic unit cell of P-1 space group. The sample is free of any 

impurities. The lattice cell parameters refined are a = 5.168(4) Å, b = 5.309(8) Å, 

c = 7.263(6) Å, α = 107.599°, β = 108.02°, γ = 98.336° (Vcell = 174 Å3). These values are in a 

good agreement with the crystallographic data reported by Ateba Mba et al. [179]. The SEM 

and TEM micrographs show the nanometer size of the particles forming rock-like agglomerates 

of few tenth of micrometers (Fig. 3.62 (b-c)). HR-TEM investigations confirmed the absence 

of amorphous regions while showing good crystallinity of the material to the edges of the 

particles (Fig. 3.62 (d-e)).  
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Figure 3.62. (a) Full pattern matching refinement of x-ray diffraction pattern of LiVPO4F powder with 

its corresponding (b) scanning electron micrograph, (c) transmission electron micrograph and (d,e) 

high-resolution transmission electron micrograph including selected area electron diffraction pattern. 

 

The band gap of LiVPO4F was determined using 2 wt% of LiVPO4F in KBr pressed pellet 

because of its low reflectivity in the portion of 200 - 1800 nm (Fig. 3.63 (a)). A band gap energy 

of 1.36 eV was determined assuming an indirect allowed transition (Fig. 3.63 (b)) and 1.71 eV 

for a direct allowed transition (Fig. 3.63 (c)). The latter assumption is supported in this work by 

the clear linear portion of the Tauc plot assuming direct transition by comparison to indirect. 

The experimental value of 1.71 eV is consistent with the value of 1.63 eV reported by Tang et 

al. based on the DFT band structure calculations [194]. 
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Figure 3.63. (a) Evolution of diffuse reflectance of LiVPO4F powder as a function of wavelength and 

corresponding Tauc plot assuming (b) an indirect allowed transition (n=2) and (c) a direct allowed 

transition (n=0.5). 

 

Unfortunately, we found that Mott-Schottky experiments on LiVPO4F systematically failed 

regardless of the electrolyte nature. This latter, as for many fluorophosphates, is chemically not 

stable in water. It is however unclear why we faced irreproducible results in EC/DMC based 

electrolyte beside the possibility of excessive surface defects or a too porous film morphology, 

which makes us deviating too much from the initial assumptions of Mott-Schottky theory.  

All the optoelectronic properties of the insertion materials studied in this part of the thesis and 

discussed above are gathered in the annex tables I-IV. The summarizing scheme of the band 

edge positions in aqueous and non-aqueous aprotic EC/DMC-based electrolytes for the 

materials, for which both Mott-Schottky and UV-visible measurements were successful, are 

gathered in Figure 3.64. For some of them, namely TiO2, LiCoO2, and WO3, a negative band 

edge energy shift is observed when this later is placed in contact with a non-aqueous aprotic 

EC/DMC-based electrolyte. For other materials investigated, i.e. Li4Ti5O12, MoO3, Bi2O3 and 
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WS2, this shift driven by the solvent interaction is positive. MoS2 and LiFePO4 are the only 

materials investigated which are showing no dependence of the band position with the 

electrolyte nature. Note that for MoS2 a changeover from n to p-type semi-conduction was 

experienced when moving from aqueous to non-aqueous aprotic electrolyte. 

 

Figure 3.64. Representation of the database of optoelectronic properties of common insertion 

materials measured in aqueous protic electrolyte at pH = 14 (dashed line) and in non-aqueous aprotic 

EC/DMC-based electrolyte (solid line).   

 

 

3.4.Fundamental evaluation of the possibility of Li+ photo-insertion / photo-deinsertion 

reaction. 

In the late 1970s, Gerisher et al. have established that during the photo-induced charge 

separation in the depletion layer of a mixed semiconductor, the main charge carriers migrate 

into the bulk of the material while the minor carriers migrate towards the surface [195-196]. 

The latter can subsequently trigger an interfacial ion-transfer at the electrode / electrolyte 

interface induced by a redox reaction between the surface carriers and the transition metal center 

in the electrode [197–201]. Based on this pioneering work, we evaluated the possibility of the 

materials to be employed as a photorechargeable electrode relying on the information gathered 

in the database. To be used as a photorechargeable electrode, material needs to have an energy 

of the minor carriers adequate to the redox potential of the transition metal to allow its transfer. 

The figure 3.65 gathers the positions of the valence and conduction bands for different materials 

investigated in this thesis with respect to the type of semi-conduction and the redox energy of 

the transition metal.   
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Figure 3.65. Schematic representation of the database including the redox energy of the transition 

metal for the different materials (in star lines) and the possibility or not for carrier transfer from the 

excited state.  

 

Among the transition metal oxides herein studied, the photogenerated hole carriers (h+) of the 

n-type Li4Ti5O12, MoO3, WO3, and Bi2O3 have sufficient oxidizing strength to be transferred to 

the transition metal to onset the lithium deinsertion reaction from their lithiated composition 

(Table 3.14). This is the same case for the two polyanions LiFePO4 and LiMnPO4. For the p-

type LiCoO2, the electrons are also sufficiently reductive to conduct the lithium insertion 

reaction from its delithiated composition Li1-xCoO2, then making this material promising for a 

photorecharge application. In contrast, some materials can be discarded for thermodynamic 

reasons, such as the p-type CuO, MoS2, and WS2, for which the electrons are not reductive 

enough to reduce Cu2+, Mo4+ and W4+. 
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Table 3.14. Potential of the photogenerated minor charge carriers (h+ for n-type and e- for p-type SC) 

compared to the redox potential corresponding to lithium insertion/deinsertion (V vs. Li+/Li) for the 

transition metal oxides, transition metal sulfideas, and lithiated polyanions in study. 

Material 

Potential of minority 

charge carrier, V vs. 

Li+/Li 

Li+ insertion / 

deinsertion potential, 

V vs. Li+/Li 

Overportential for 

charge transfer (V) 
[Reference] 

n-Li
4
Ti

5
O

12 5.55 1.55 0.2-0.25 [202] 

p-LiCoO
2 4.25 3.8 0.1 [39, 203] 

n-MoO
3 5.75 2.2-2.8 0.5 [204] 

n-WO
3 5.55 1.4-2.3 0.8 [205] 

p-CuO 2.45 1.3 1.2 [206] 

n-Bi
2
O

3 4.45 0.64-0.75  0.6 [207] 

p-MoS2 3.55 1.1 1.0 [208] 

p-WS2 2.35 1.4 0.9 [209] 

n-LiFePO4 5.75 3.4 0.2 [176] 

n-LiMnPO4 5.55 4.0 0.2 [210] 

 

 

3.5. First results on the photoelectrochemistry of chosen insertion materials 

All photoelectrochemical studies developed in this part were carried out using the airtight three-

electrode photoelectrochemical cell presented in chapter 2.  

 

3.5.1. LiCoO2 

Figure 3.66 shows a comparison in dark and under illumination of the cyclic voltammogram of 

16 µm thick film of LiCoO2 at a scan rate of 0.1 mV/s. In dark, the first cycle shows an 

irreversible anodic peak between 4 and 4.2 V corresponding to the lithium extraction from 

LiCoO2 leading to a current density of up to 106 µA/cm2. In reduction, only a very low cathodic 

current of around -6 µA/cm2 is observed, denoting the irreversible character of the lithium 

insertion into carbon-free electrode. This leads to a half wave redox potential of 3.84 V (vs. 

Li+/Li) in a good agreement with literature [39]. No further capacity is observed in the 

subsequent cycle. Interestingly, there is an important modification under illumination. An 
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anodic current is starting to rise from 3.3 V (vs. Li+/Li) leading to a current density almost six 

times higher than in dark. We estimate that this faradaic current is resulting from a combination 

of the lithium extraction from LiCoO2 and a photo-activation of the electrolyte decomposition 

in contact with LiCoO2 excited states. This role played by LiCoO2 as a photoanode towards 

electrolyte degradation is somewhat surprising given its p-type semi-conduction. However, as 

discussed in the first part of this chapter, LiCoO2 has a weak degenerated p-type semi-

conduction which may either cross to n-type depending on the applied potential or lithium 

presence in the electrolyte, or, have a leak of electrons across the space charge layer.  On top 

of this, it is also known that electrolyte degradation through LiPF6 can be prominent under 

illumination [211]. As it will be discussed in the following, this reaction is here significantly 

catalyzed by the excited state of LiCoO2. Upon reverse scan, one can decipher a peak at around 

3.8 V (vs. Li+/Li) which still maintains a positive current. This is a result of two antagonist 

processes, namely lithium reinsertion into the structure (reduction) and the continuation of the 

electrolyte degradation (oxidation) at this potential; this latter being the predominant reaction. 

Nevertheless, a better reversibility observed under illumination can be a result of (i) the higher 

conductivity of the electrode, by photo-action (i.e. photoconductivity) and/or (ii) the possibility 

of photon-induced lithium insertion, which will lead to a higher reductive current.  

 

Figure 3.66. Comparison of the first two cycles of cyclic voltammetry recorded on 16 µm thick LiCoO2 

electrode at 0.1 mV/s scan rate in 1 mol/L LiPF6 EC/DMC, in dark (black curve) and under A.M. 1.5G 

illumination (red curve).  
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3.5.2. LiFePO4 

In order to evaluate the electrochemical behavior of LiFePO4 in dark and under illumination, 

we carried out a cyclic voltammetry study on a 50 µm thick doctor-bladed film at different scan 

rates (ν) from 0.5 to 20 mV/s (Fig. 3.67). The electrochemical behavior shows the typical redox 

activity of LiFePO4 with a redox potential determined at half-wave at ca. 3.42 V vs. Li+/Li. In 

contrast to the case of LiCoO2, we do not see here any predominant electrode degradation up 

to 4 V under illumination. This means that the excited states of LiFePO4 have no photo-catalytic 

properties with respect to the electrolyte oxidation.  

 

Figure 3.67. Evolution of the cyclic voltammograms of 50 µm thick LiFePO4 film measured in 1 mol/L 

LiPF6 EC/DMC as a function of the scan rate (0.5 mV/s < ν < 20 mV/s) (a) in dark and (b) under 

standard A.M. 1.5G illumination conditions. 

 

Comparison of the current density of anodic (Jpa) and cathodic (Jpc) peaks as a function of scan 

rate in dark and under illumination is presented in Figure 3.68 (a). Both in dark and under 

illumination, the non-linear dependence of the peak current density as a function of scan rate 

(ν) and scan rate square root (ν0.5) indicates a kinetic behavior that is intermediate between 

capacitive and faradaic. This is ascribed to the low electro-activity of the carbon-free films, 

which undergo only surface reactions in agreement with the film capacity that is lower than 

1 µAh/cm2 (Fig. 3.68 (b)). We can notice a close to pure faradaic behavior only in reduction 

regardless in dark or under illumination conditions. There is no drastic differences under 

illumination in terms of film capacities (Fig. 3.68 (b)). We only found slightly higher peak 

current under illumination in a very reproducible manner.  
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Figure 3.68. Evolution of the (a) peak current density as a function of scan rate and scan rate square 

root and (b) capacity as a function of scan rate derived from the cyclic voltammograms of 50 µm thick 

LiFePO4 film in dark and under illumination. 

 

This small improvement can be originating from a minor enhancement of electrode’s 

conductivity under illumination. This can also explain why there is a ca. 40 mV smaller 

anodic/cathodic peak separation energy (ΔEP) for scan rates greater than 1 mV/s, indicating 

lower kinetic issues for lithium insertion/deinsertion process (Fig. 3.69 (a)). This is also 

consistent with the global cell resistance that we determined from the linear portion of the 

current rise at low overpotentials, which shows lower but not drastic ohmic drop under 

illumination (Fig. 3.69 (b)). 
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Figure 3.69. Evolution of the (a) potential of the faradaic peaks separation and (b) resistance of 

anodic and cathodic processes as a function of scan rate in dark and under illumination for 50 µm 

LiFePO4 film in 1 mol/L LiPF6 EC/DMC. 

 

To evaluate if LiFePO4 can undergo a photorecharge process, the electrode was left at the open 

circuit condition under illumination for 120 hours (Fig. 3.70). The result shows that the 

electrode potential rises from the initial 3.36 V (vs. Li+/Li) to 3.42 V (vs. Li+/Li) in the first 20 

hours and then increases steadily to 3.44 V (vs. Li+/Li) in the next 100 hours. This slow increase 

of the electrode potential under open circuit condition indicates that the electrode has reached 

the equilibrium plateau without any photo-induced lithium deinsertion from the structure. This 

result in addition to the above presented observations indicates that LiFePO4 has no 

photocatalytic activity, neither for electrolyte degradation nor for photo-rechargeability.  

 

Figure 3.70. Evolution of the open circuit potential of LiFePO4 film under standard A.M. 1.5G 

conditions.  
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Our result disagrees with the recent study of Paolella et al. reporting the light-assisted 

delithiation of LiFePO4 (Fig. 3.71) [191]. The authors achieved a light-induced photorecharge 

to 3.62 V (vs. Li+/Li) in ca. 70 hours at open circuit potential, which resulted in a consequent 

discharge capacity of 104 mAh/g. There are few major differences between our and their 

experiments. First, the authors used a film composed of colloidal LiFePO4 nano-platelets. 

Second, LiFePO4 was sensitized with a ruthenium-based complex N719 in analogy with a dye-

sensitized solar cell photo-“anode” structure. Third, the electrode was composed of active 

carbon nanotubes and PVDF in a final composition of LFP:CNTs:PVDF with 90:5:5 ratio. 

Fourth, photo-recharge needs dry air and not argon in order to take place. The mechanism of 

the photo-recharge between N719 and LiFePO4 is on the one hand very speculative (LiFePO4 

is assumed to be a p-type and N719 is an electron donor at excited state and not acceptor) and 

on the other hand very questionable based on energetic diagram proposed.  

 

Figure 3.71. Open circuit voltage and discharge curves of LiFePO4 on FTO glass reported by 

Paolella et al. [191]. OCV charge (red lines) were performed under illumination at100 mW/cm2 and 

galvanostatic discharge (blue lines) at C/24. 

 

To clarify in some points if the photorecharge arises from the dye excitation or from the nano-

size of LiFePO4, we collaborated with the group of Dr. Kulka (AGH University of Science and 

Technology, Cracow, Poland) who provided us nanoparticles of carbon-free LiFePO4. The 

synthetic procedure of this powder is reported in the following reference [212]. The full-pattern 

matching refinement of the x-ray diffractogram revealed minor impurities of Li3PO4 

corresponding to ~4 wt% of the sample as reported in their publication (Fig. 3.72 (a)) [212]. 

All diffraction peaks of nano-LiFePO4 are corresponding to the orthorhombic lattice adopting 
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Pnma space group. The refined lattice cell parameters are a = 10.301(6) (9) Å, b = 5.993(4) Å 

and c = 4.694(5) Å (Vcell = 290 Å). The result is close to the values obtained for the bulk 

LiFePO4 (a = 10.332(9) Å, b = 6.019(3) Å and c = 4.704(5) Å (Vcell = 293 Å)), even though a 

small decrease of the unit cell volume by 3 Å is observed. These minor differences in the cell 

structure can be assigned to the higher number of the punctual defects present in the 

nanopowder. The TEM micrographs indicate that the particles are single crystals of LiFePO4 

with a platelet morphology of about 100-150 nm in diameter (Fig. 3.72 (b-d)).  

 

Figure 3.72. (a) Full pattern matching refinement of x-ray diffraction pattern of LiFePO4 

nanoparticles with the corresponding (b-d) transmission electron micrographs and selected area 

electron diffraction pattern. 
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conditions is not significant except the faster rise to equilibrium and potential perturbation after 
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insertion into FePO4 phase by charging the electrode galvanostatically at 10 µA/cm2 until 4.0 V 

vs. Li+/Li followed by dark vs. illumination open circuit condition (Fig. 3.73 (b)). First, the 

electrode reached 4.0 V in only few minutes indicating a very low level of the electrode activity. 

This is explained by the insulating nature of the lithium iron phosphate, which has an electronic 

conductivity of only 10-9 S/cm and is a poor ionic conductor [187]. As almost no lithium was 

extracted, the subsequent evolution of open circuit potential resulted in a fast electrode potential 

drop to the equilibrium value regardless of dark vs. illumination conditions. 

 

Figure 3.73. Evolution of open circuit potential in dark or under illumination under A.M. 1.5G 

conditions (a) from LiFePO4 (b) from “FePO4” obtained after galvanostatic charge to 4.0 V vs Li+/Li 

at 10 µA/cm2. 

 

The very low film activity is also reflected in the in situ UV-visible absorption spectroscopy 

experiments showing the evolution of the transmittance of the film as a function of the applied 

potential (Fig. 3.74). For this, the electrode was prepared by spin coating LiFePO4 nanoparticles 

onto the FTO glass resulting in a ca. 300 nm thin film. The lithium insertion was performed by 

applying j = 0.5 µA/cm2 current density and the transmission was recorded at different states 

of charge. No noticeable change in the transmission spectrum is observed depending on the 

applied potential. The main absorption bands are related to the electrolyte as discussed in 

chapter 2. This also suggest the very poor film electro-activity even using nanocrystalline 

particles and thinner films made by spin coating.  
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Figure 3.74. Evolution of the 300 nm thick nanoparticle LiFePO4 film transmittance at different states 

of charge from 3.0 to 4.0 V vs. Li+/Li. The transmittance spectra of the electrolyte (LP30) and 

transparent conducting glass (TCO) substrate of electrode in LP30 are provided for comparison. 

 

We sensitized these nanoparticles with N719 dye. Figure 3.75 shows a comparison of the open 

circuit potential evolution of LiFePO4 electrode in dark, under illumination, and under 

illumination when sensitized. Regardless of the electrode, there is no photorecharge process. 

There is an additional 20 mV when the film is sensitized, which is attributed to a photovoltage 

built-in from N719 excited states. This low compared to a dye-sensitized solar cells value 

indicates a very limited charge separation process induced by the low electronic coupling 

between the dye and LiFePO4. The triplet states of the N719 dye (LUMO ≈ -1.5 V vs. NHE) 

can inject electrons into the conduction band of LiFePO4 measured at -0.58 V vs. NHE, as 

determined in this thesis, but the dye cation formed after injection cannot be regenerated to its 

fundamental initial state (no redox mediator in electrolyte). It thus gives a clear clarification to 

the wrong charge transfer mechanism between LiFePO4 and N719 presented by Paolella et al. 

[191].    
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Figure 3.75. Evolution of the open circuit voltage of nanoparticles of LiFePO4 measured in dark 

(black) and under standard A.M. 1.5G illumination conditions with (blue) or without (red) N719 dye. 

 

One limitation of LiFePO4 / FePO4 system can also stem from the optoelectronic properties of 

the delithiated phase. For this, the iron phosphate was obtained by chemical oxidation of the 

lithium iron phosphate powder by means of a strong oxidizing agent [213]. First, 2 g of LiFePO4 

was added into a solution containing 3.36 g of NO2BF4 in 20 mL of acetonitrile. The mixture 

was stirred for four days at room temperature in an argon-filled glovebox to allow complete 

chemical oxidation of LiFePO4 (800 to 1500 ppm of O2, 3.5 ppm of H2O). The resulting powder 

was retrieved after three times centrifugation with acetonitrile. The XRD pattern of the resulting 

powder is presented in Figure 3.76. All diffraction peaks were indexed into Pnma space group 

in agreement with the heterosite FePO4 phase without the presence of unoxidized LiFePO4. The 

lattice cell parameters are a = 10.306(14) Å, b = 6.006(4) Å and c = 4.704(7) Å (V = 291 Å), 

in agreement with literature [214-215].  

 

Figure 3.76. Full pattern matching refinement of the chemically obtained FePO4 powder. 
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The band gap of FePO4 was determined by UV-visible spectroscopy in diffuse reflectance mode 

(Fig. 3.77). The powder is highly reflective in the NIR part of the light, twice more than 

LiFePO4. Assuming an indirect allowed transition, we found a band gap value of 2.26 eV which 

is close to the range of values between 1.9 and 2.1 eV reported in literature based on DFT 

calculations [184, 216]. However, this value is not consistent with the light pink colour of the 

powder. Assuming a direct allowed transition as for LiFePO4, the onset of absorption is 

determined at 3.43 eV with a smaller transition at an energy of 2.73 eV that corresponds to the 

band gap value of FePO4. Lithium extraction leads then to a band gap narrowing of 0.58 eV. 

  

Figure 3.77. (a) Evolution of diffuse reflectance of the chemically obtained FePO4 powder as a 

function of wavelength and corresponding Tauc plot assuming (b) an indirect allowed transition (n=2) 

and (c) a direct allowed transition (n=0.5). 

 

With same procedure as previously described, we determined the band edge positions of FePO4 

by Mott-Schottky measurements in aqueous and non-aqueous aprotic electrolytes (Fig. 3.78). 

In both cases, the positive slope of the Mott-Schottky plot indicates that the material has a n-

type conductivity as for LiFePO4 in agreement with Zhu et al. [217]. Table 3.15 presents the 
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flat band potential and charge carrier concentration values. In an aqueous 0.5 mol/L TBANO3 

electrolyte, a flat band potential of - 0.33 V vs. SCE was determined at pH = 6.1, which 

corresponds to - 0.56 V vs. NHE at pH = 14. In a non-aqueous aprotic 1 mol/L TBAPF6 

EC/DMC electrolyte, the flat band potential value is equal to 2.36 V vs. Li QRE, corresponding 

to - 0.83 V vs. NHE.  

 

Figure 3.78. Mott-Schottky plot of FePO4 measured in (a) 0.5 mol/L TBANO3 aqueous electrolyte at 

250 Hz and (b) 1 mol/L TBAPF6 EC/DMC electrolyte at 200 Hz. 

 

The charge carrier concentration was calculated with a dielectric constant of 30 as reported by 

Zhu et al. based on capacitance measurements [217]. In 0.5 mol/L TBANO3 aqueous 

electrolyte, this latter was determined at 1.2·1018 cm-3, and one order of magnitude higher in 

1 mol/L TBAPF6 in EC/DMC (1.3·1019 cm-3). These values are one order of magnitude lower 

than in LiFePO4 in agreement with the literature stating that FePO4 is more insulating than 

LiFePO4 [217]. To the best of our knowledge, this is the first report of the flat band potential 

and charge carrier concentration in FePO4. 

Combining the flat band potential and the band gap values, the band edge positions were 

determined and compared to those of LiFePO4 (Fig. 3.79). The results show that both 

conduction and valence band edges shift upwards in the energy scale upon lithium deinsertion. 

The delithiation of LiFePO4 leads mainly to a destabilisation of the valence band position and 

lower effect on the conduction band position. This study shows clearly that N719 dye excited 

state (LUMO ≈ -1.5 V vs. NHE) can inject into LiFePO4 and FePO4. It clarifies also the relative 

VB and CB position of FePO4 which was wrongly speculated in the work of Paolella et al. and 

also underlines that holes cannot be transferred from the dye (HOMO≈ 0.5 V vs. NHE) to the 

LiFePO4 or FePO4 [191]. 
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Table 3.15. Flat band potential and charge carrier concentration of FePO4 in 0.5 mol/L TBANO3 

aqueous electrolyte and 1 mol/L TBAPF6 EC/DMC electrolyte. 

Electrolyte 

Flat band potential 

Charge carrier 

concentration, 

cm-3 as measured 

Recalculated 

V vs. NHE V vs. NHE 

at pH=14 

0.5 mol/L TBANO3 in H2O -0.33 V vs. SCE -0.09 (pH=6.1) -0.56 1.2·1018 

1 mol/L TBAPF6 in 

EC/DMC 

2.36 V vs. Li 

QRE 
-0.83 - 1.3·1019 

 

 

 

Figure 3.79. Energy diagram of the band edge positions of LiFePO4 and FePO4 measured in 0.5 

mol/L TBANO3 aqueous electrolyte and recalculated for pH = 14 (on the left), and in non-aqueous 

aprotic 1 mol/L TBAPF6 EC/DMC-based electrolyte (on the right). The information on the HOMO and 

LUMO levels of N719-dye is provided for comparison [218]. 
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3.5.3. Li4Ti5O12 

The kinetics of lithium insertion/deinsertion in the spinel Li4Ti5O12 was investigated on 14 µm 

thick electrode by cycling voltammetry at different scan rates from 0.05 to 0.5 mV/s (Fig. 3.80). 

These experiments were performed under darkness and illumination. Higher scan rates lead to 

stronger kinetic limitations. Regardless of the scan rate, the degenerative influence of the light 

on the electrochemical cycling is observed. The small cathodic peak at around 2.3 V vs. Li+/Li 

during the first cycle upon illumination is attributed to the filling of the surface trap states. 

Figure 3.80. Comparison of the cyclic voltammograms of 14 µm thick Li4Ti5O12 electrode measured in 

1 mol/L LiPF6 EC/DMC as a function of the scan rate from 0.05 to 0.5 mV/s (left to right) and cycle 

number (top down). 

 

The comparison of the peak current density and capacity of the cyclic voltammograms in dark 

and under illumination is presented in Figure 3.81. For both conditions, a non-linear relationship 

between the current density and the scan rate or square root of scan rate suggests an intermediate 

behavior between capacitive and faradaic processes (Fig. 3.81 (a)). The comparable capacity of 

the film in dark and under illumination suggests that light has no or a negligible influence on 

film’s capacity, even though systematically it leads to a lower peak current under illumination 
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(Fig. 3.81 (a-b)). Note that no significant influence of the light was observed neither on the 

energy of the peak separation nor on the global cell resistance extracted from the cyclic 

voltamperograms.  

Figure 3.81. Evolution of (a) peak current density and (b) electrode capacity as a function of scan rate 

for a 14 µm thick Li4Ti5O12 film in dark or under illumination. 

 

Figure 3.82 (a) depicts the galvanostatic cycling of Li4Ti5O12 electrode in dark and under 

illumination. Interestingly, we can observe that light illumination leads to a lower overpotential 

for the redox process at an applied current of  +/- 100 µA/cm2. This latter is more visible for 

the oxidation in agreement with the n-type character of Li4Ti5O12. There is no drastic influence 

of light on the electrode’s capacity in agreement with the presented above cyclic 

voltamperometry experiment. Nevertheless, as we also experienced in cyclic voltamperometry 

and for TiO2 study, the electrode cyclability tends to fade faster when cycling under 

illumination. This is clearly showed by reporting the coulombic efficiency as a function of 

number of cycles (Figure 3.82 (b)). For the first cycle, the coulombic efficiency of the electrode 
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in dark and under illumination shows ca. 68-70%. The latter decreases nearly linearly in both 

conditions, however it declines more importantly under illumination reaching only 40% vs. ca. 

50% under darkness after 10 cycles. 

 

Figure 3.82. (a) Galvanostatic cycling of 13.5 µm thick Li4Ti5O12 electrode versus lithium at 

100 µA/cm2 in dark or under illumination and (b) corresponding evolution of the coulombic efficiency 

as a function of cycle number. 

 

To better understand this phenomenon, the TEM investigations were carried out and showed 

the formation of a SEI layer in both cases. Its thickness reaches up to 40 nm in dark and more 

than 50 nm under illumination with few isolated SEI parts, which can attain up to 100 nm 

(Fig. 3.83 (a-b)). This implies that the illumination of the electrode upon cycling promotes the 

formation of SEI. This was also observed for the samples cycled by cyclic voltamperometry. 

EELS analysis combined with electron diffraction study showed that the SEI layer formed 

under illumination is exclusively composed of LiF without any byproducts from carbonates 

decomposition as also deduced from Raman analysis of cycled electrodes. 
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Figure 3.83. Transmission electron micrographs of Li4Ti5O12 electrode after 10 cycles of galvanostatic 

cycling at 100 µA/cm2 (a) in dark and (b) under illumination. 

 

Unfortunately, although the band structure allows a photorechargeable process, Figure 3.84 

depicts the open circuit potential evolution of the discharged electrode down to 1.2 V vs. Li+/Li 

in dark and under illumination, showing that the electrode cannot be photorecharged within 20 

hours of light exposure. We can only see a faster rise of the electrode potential to equilibrium 

under illumination. After this time of relaxation, the subsequent discharge resulted in 

comparable capacity values of ca. 50 µAh/cm2. 

Time-correlated single-photon counting measurements of Li4Ti5O12 electrode in 1 mol/L LiPF6 

EC/DMC electrolyte was performed under argon atmosphere using an EPL-375 picosecond 

pulsed diode laser at 2 MHz (Fig. 3.85). When compared to the lifetime decay of the Li4Ti5O12 

powder, a fluorescence quenching is experienced when in contact with the electrolyte. Indeed, 

it requires ca. 4 hours in electrolyte vs. ~1 hour for powder measurements. This means either 

that the contact with the electrolyte promotes non-radiative relaxation processes or that some 

carriers are transferred towards the electrolyte.  

 

(a)  

(b)  
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Figure 3.84. Galvanostatic discharge of 13.5 µm thick Li4Ti5O12 electrodes in dark until 1.2 V (vs. 

Li+/Li) at -100 µA/cm2 followed by 21 hours of open-circuit relaxation either in dark (black curve) or 

under illumination (red curve), and subsequent discharge of the electrodes at -100 µA/cm2 in dark. 

 

 

Figure 3.85. Comparison of the photoluminescence decay of Li4Ti5O12 in contact with argon (red) and 

in contact with 1 mol/L LiPF6 EC/DMC electrolyte (blue) recorded at 728 nm emission wavelength.  

 

The results of the reconvolution of the lifetime decays with the IRF are gathered in Table 3.16. 

The lifetime values determined for Li4Ti5O12 in contact with the electrolyte, i.e. 0.09 ns and 
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2.63 ns, are comparable with the first two components measured in contact with argon, i.e. 0.10 

ns and 3.00 ns. The third very long component of 27.8 ns disappeared in contact with the 

electrolyte. The main difference comes from a redistribution of the lifetime values towards the 

fast component when in contact with the electrolyte (73.3 % in electrolyte vs. 6.9 % in argon). 

This confirms the quenching of Li4Ti5O12 luminescence in the presence of LiPF6 EC/DMC 

electrolyte. 

 

Table 3.16. Reconvolution results of the time-correlated single photon counting decays recorded on 

Li4Ti5O12 powder and Li4Ti5O12 electrode in 1 mol/L LiPF6 EC/DMC electrolyte. 

 
Li4Ti5O12 powder 

Li4Ti5O12 electrode in 1 mol/L LiPF6 

EC/DMC 

 Pre-exponential 

factor 𝐵𝑖 
Amplitude, 

% 

Lifetime, 

ns 

Pre-exponential 

factor 𝐵𝑖 
Amplitude, 

% 

Lifetime, 

ns 

   τ1 0.572 6.9 0.10 0.395 73.3 0.09 

   τ2 0.578 61.0 3.00 0.621 26.7 2.63 

   τ3 2.752 32.1 27.87 - - - 

 

 

The steady-state excitation/emission map of Li4Ti5O12 electrode in 1 mol/L LiPF6 EC/DMC 

electrolyte recorded over 250-700 nm excitation and 265-800 nm emission wavelengths is 

reported in figure 3.86 (a). It shows the presence of two bands. The high intensity band at 

333 nm excitation and 735 nm emission wavelengths corresponds to the fluorescence of 

Li4Ti5O12 (Fig. 3.86 (b)). However, when in contact with the electrolyte, the intensity of 

Li4Ti5O12 emission drops tenfold due to the fluorescence quenching. The low intensity band at 

around 470 nm excitation and 520 nm emission wavelengths can be assigned to the tail of the 

electrolyte photoluminescence stemming from the solvated Li+ and PF6
- in EC/DMC 

(Fig. 3.86 (c)) [219]. Interestingly, the highest intensity band of 1 mol/L LiPF6 EC/DMC 

electrolyte (LP30) located at 280 nm excitation and 310 nm emission wavelengths disappears 

completely when in contact with Li4Ti5O12. This can be explained by a Förster resonance energy 

transfer (FRET) from the electrolyte to the electrode due to a partial overlapping of the 

electrolyte emission (centered at ca. 310 nm) with Li4Ti5O12 excitation (excitation band at 

333 nm). 



170 
 

 

Figure 3.86.  (a) Steady-state photoluminescence mapping of Li4Ti5O12 powder in 1 mol/L LiPF6 in 

EC/DMC electrolyte. The photoluminescence maps of (b) 1 mol/L LiPF6 in EC/DMC electrolyte 

(LP30) and (c) Li4Ti5O12 powder are provided for comparison.  

 

Figure 3.87 presents the evolution of the emission spectra of Li4Ti5O12 electrode in 1 mol/L LiPF6 

EC/DMC upon lithium insertion into the structure recorded in situ at 333 nm excitation 

wavelength. The emission spectrum of the fresh Li4Ti5O12 electrode in 1 mol/L LiPF6 EC/DMC at 

OCV has two emission bands: one at around 390 nm assigned to the electrolyte, and a second at 

728 nm stemming from Li4Ti5O12. Upon discharge down to 1.2 V vs. Li+/Li, leading to Li7Ti5O12, 

we observed a complete bleaching of the 728 nm emission band coming with a fluorescence 

decrease of the electrolyte at 390 nm. Because of this complete quenching, we have not been able 

to study the dynamics of the excited state of Li7Ti5O12, which could have provided hints to explain 

if the absence of the photorecharge could be attributed to a too fast recombination dynamics. The 

quenching of the lithiated phase can stems either from the lithium insertion into Li4Ti5O12 

structure, too fast dynamics for the spectrometer, or from the formation of the LiF layer on the 

surface of the electrode, which completely quenches the luminescence. We argue that the two last 
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hypothesis are the most likely because: (i) the electrode recharge to 2.6 V vs. Li+/Li does not allow 

retrieving the original luminescence signal of Li4Ti5O12, even though there is a small irreversible 

capacity for the first recharge, which will still results in an electrode containing mostly Li4Ti5O12 

and a small part of Li7Ti5O12; (ii) fluorescence of the chemically reduced Li7Ti5O12 powder, which 

should not have a LiF layer, also shows a quenching of the luminescence (as well as that of the 

electrolyte).  Note that the emission band of the electrolyte is partially but not totally retrieved 

during the electrode oxidation. This tends to suggest that the FRET mechanism might be more 

efficient in contact with Li7Ti5O12.   

 

Figure 3.87.  Evolution of the emission spectrum of Li4Ti5O12 electrode in LiPF6 EC/DMC recorded at 

333 nm excitation wavelength in the initial state (OCV 3.4 V vs. Li+/Li), discharged (1.2 V vs. Li+/Li) 

and after first recharge (2.6 V vs. Li+/Li). 

 

The UV-visible absorption spectroscopy study of Li4Ti5O12 in 1 mol/L LiPF6 EC/DMC was 

carried out aiming at understanding the optical changes in Li4Ti5O12 upon lithium insertion. For 

this, a semi-transparent 250 nm thick film of Li4Ti5O12 was prepared by spin-coating on FTO 

glass and then discharged at - 10 µA/cm2. The transmittance spectra were recorded in situ at 

different states of discharge (Fig. 3.100 (a)). The changes in the transmission spectrum take 

place at 1.7 V vs. Li+/Li and stay almost unaffected for all the potentials below. There is a 

significant decrease in the transmittance observed in a range from 300 nm to 1500 nm. The 

FTO glass absorbs all the light below 300 nm and all absorption bands are corresponding to the 

electrolyte fingerprint as detailed in chapter 2. The optical modifications are accompanied by a 

color change of the electrode turning from white to a dark blue. This is in agreement with the 

increase of absorbance in the visible and infra-red region as reported by Kanamura et al. [220]. 
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This phenomenon is assigned to the absorption by the free carriers populating the conduction 

band. The derived Tauc plot assuming an indirect allowed transition shows that Li4Ti5O12 has 

a band gap moving down to 3.48 eV when in contact with the electrolyte (Fig. 3.88 (b)). This 

is ca. 0.3 eV lower than the 3.79 eV determined for the powder in air. For the discharged to 

Li7Ti5O12 composition electrode, the band gap decreases to 3.25 eV. It is assigned to the 

electron filling of the lower energy levels close to the conduction band (Ti3+: (4s0 3d1) electronic 

configuration) [25]. 

  

Figure 3.88. (a) Evolution of the transmittance spectrum of 250 nm thick film of Li4Ti5O12 in 1 mol/L 

LiPF6 in EC/DMC electrolyte as a function of lithium insertion at -10 µA/cm2 and (b) Tauc plot of 

Li4Ti5O12 (3.0 V spectrum) and its lithiated form Li7Ti5O12 (1.2 V spectrum) assuming an indirect 

allowed transition. 

 

The movement of the band edges and carrier concentration in Li4Ti5O12 upon lithium insertion 

was investigated by Mott-Schottky measurements. For this, two types of electrodes were 

studied: a first directly measured in 1 mol/L TBAPF6 EC/DMC corresponding to Li4Ti5O12 and 

a second electrochemically discharged at -100 µA/cm2 to 1.2 V vs. Li+/Li in 1 mol/L LiPF6 

EC/DMC and then thoroughly washed with DMC before to be transferred in 1 mol/L TBAPF6 

EC/DMC electrolyte for the capacitance measurements. The corresponding Mott-Schottky 

plots are presented in Figure 3.89. 
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Figure 3.89.  Evolution of Mott-Schottky analysis of Li4Ti5O12 (3.3 V) and Li7Ti5O12 (1.2 V) electrodes 

recorded at 200 kHz in 1 mol/L TBAPF6 EC/DMC electrolyte. A recharged Li4Ti5O12 (2.6 V) electrode 

is presented for additional information. 

 

Table 3.17 gathers the information on the conductivity type, flat band potential and charge 

carrier concentration values. Regardless of the discharge state, the electrode remains n-type. 

For Li4Ti5O12, the flat band potential is 1.91 V vs. Li QRE corresponding to - 1.28 V vs. NHE. 

Upon lithium insertion, the latter increases significantly to 3.60 V vs. Li QRE (+ 0.41 V vs. 

NHE). This means that upon lithium insertion, forming Li7Ti5O12, the conduction band moves 

down by + 1.69 V in energy, which is hardly comprehensible based on the low structural 

modifications made by the lithium insertion. After electrode recharge, the flat band potential 

remains very close to Li7Ti5O12, at 3.42 V vs. Li QRE (+ 0.23 V vs. NHE). This value cannot 

be solely explained by the first cycle irreversibility (coulombic efficiency ca. 65%). Most part 

of this irreversibility stems from the formation of LiF SEI layer.  Based on these experiments, 

we argue that the band movement is not related to the lithium insertion. The important 

interfacial built-in capacitance is mainly controlled by the formation of LiF below 1.5 V vs. 

Li+/Li.  Note that a similar experiment has been carried out on pure FTO and the SEI formed 

on FTO. Even though the nature of the SEI is probably different on FTO, we found consistency 

with the results above, that the flat band potential of the FTO shifts up in potential by more than 

1 V (Fig. 3.90 (a)).   
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Table 3.17. Conductivity type, flat band potential, and charge carrier concentration of Li4Ti5O12-based 

electrode measured at 200 kHz in 1 mol/L TBAPF6 EC/DMC electrolyte under argon at initial state 

(OCV 3.4 V vs. Li+/Li), discharged state down to 1.2 V vs. Li+/Li and charge state after one cycle 

(2.6 V vs. Li+/Li). 

  Li4Ti5O12 Li7Ti5O12 Li4Ti5O12 1 cycle 

Conductivity type n n n 

Flat band potential, V vs. 

Li QRE 1.91 3.60 3.42 

NHE -1.28 0.41 0.23 

Charge carrier concentration, cm-3 2.9·1019 3.4·1019 2.4·1019 

 

The evolution of the charge carrier concentration was calculated using a dielectric constant of 6 

[65] (Table 3.17). The initial 2.9·1019 cm-3 charge carrier concentration increases upon lithium 

insertion to only 3.4·1019 cm-3 whereas the literature reports a 6 orders of magnitude increase 

in conductivity between Li4Ti5O12 and Li7Ti5O12 [221]. This is an additional evidence that the 

interfacial capacitance become governed by LiF and not the insertion material anymore (ε ≈ 10 

[222]). After the recharge, the charge carrier concentration decreases down to 2.4·1019 cm-3.  

The resulting donor density value is probably a combination of the charge carrier concentration 

of Li7Ti5O12, which increases upon lithium insertion, and LiF. This would be also consistent 

with the carrier concentration measured on the SEI formed upon FTO, which is in same order 

of magnitude (Fig. 3.90 (b)).  

 

Figure 3.90. Frequency dependence of the (a) flat band potential and (b) the charge carrier 

concentration on pristine FTO glass (black line) and FTO glass discharged to 1.2 V vs. Li+/Li for 

which SEI is formed on the surface (red line). The measurements were performed on three different 

samples between 100 Hz and 1 kHz in 1 mol/L TBAPF6 EC/DMC electrolyte. 
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Conclusions 

In this chapter, we focused on the development of a database gathering the optoelectronic 

properties of most common insertion materials used in lithium-ion batteries. The aim of this 

study was to decipher the materials, which can have perspective application in 

photorechargeable electrochemical device. Three groups of material were studied: transition 

metal oxides (Li4Ti5O12, LiCoO2, MoO3, WO3, CuO, Bi2O3, LiMn2O4, LiMn1/3Ni1/3Co1/3O2), 

transition metal sulfides (TiS2, MoS2, WS2), and lithiated polyanions (LiFePO4, LiMnPO4, 

LiVPO4F).  

All materials were characterized before studying the optoelectronic properties by using x-ray 

diffraction, scanning electron microscopy, and transmission electron microscopy techniques to 

ensure that materials are phase pure, lattice cell parameters to detect punctual defects, and 

evaluate size and morphology of the particles. 

Using UV-visible absorption spectroscopy measurements in diffuse reflectance mode, the band 

gap values were determined. For a set of materials herein studied, we did not find optical 

bandgap likely owing to a too narrow band gap value below 0.7 eV (LiMn2O4 and 

LiMn1/3Co1/3Ni1/3O2) or to the semi-metallic nature of the material (TiS2). We have identified 

that for all the materials, except Li4Ti5O12, that the fluorescence cannot be measured in the 

range from 250 to 800 nm. This can be explained either by a band gap which is not in the visible 

range (Eg < 1.6 eV), an emission in the NIR region, or simply by materials’ nature, which leads 

to exclusively non-radiative excited state relaxation.  

By means of Mott-Schottky electrochemical impedance spectroscopy, we measured the type of 

conductivity, flat-band potential, and charge carrier concentration. In this chapter, three 

interesting phenomena are highlighted. First, for certain materials, i.e. LiCoO2, WS2, and MoS2, 

a change of semi-conduction type found depending on the nature of the electrolyte. More 

specifically, these materials are behaving as n-type semiconductor in aqueous electrolyte and 

turn p-type in non-aqueous aprotic EC/DMC-based electrolyte. This change is assigned to the 

weak degenerated nature of these semiconductors. Second, except the case of LiFePO4, all the 

materials have band edge positions that also depend on the nature of the solvent. Third, the 

charge carrier concentration is systematically higher in non-aqueous aprotic solution by one to 

two orders of magnitude, which means that materials can be “doped” depending on the 

electrolyte nature in contact through equilibrium process of Fermi level equalization. 
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Based on the band edge positions in EC/DMC-based electrolyte and the redox energy of the 

transition metal of the material, we deciphered materials which can or those which cannot 

trigger the Li+ insertion / deinsertion from the structure by photo-induced minor carrier transfer. 

As a result, among all the materials herein studied, n-type Li4Ti5O12, MoO3, WO3, Bi2O3, 

LiFePO4, LiMnPO4 and p-type LiCoO2 are potential candidates for photorechargeable electrode 

application based on thermodynamic considerations. The p-type LiCoO2 though should be 

discarded for application in a full device since p-type cathode material would lead to a photo-

discharge process (i.e. lithium insertion under excited states). 

In the second part of this chapter, we aimed to investigate the photo-electrochemical properties 

of some materials for the time being of this thesis. The first results clearly highlight the 

difficulties of this research field. Many materials, which were expected to have a photorecharge 

property did not express it, i.e. LiCoO2, Li4Ti5O12, LiFePO4, Bi2O3 and MoO3 (results for two 

latter are not reported in this manuscript). Besides the thermodynamic considerations, we think 

these difficulties are related to (i) the poor electronic conductivity of the electrode which leads 

to an excessive interfacial impedance value, (ii) the size of the particles which are often far 

from a threshold of few nanometers to lead to the Debye length comparable to particles radius, 

and (iii) faster excited state lifetimes compared to carrier transfer. Further research is therefore 

needed to point out which of these challenges is the most crucial to tackle. In addition, as 

showed in the case of LiCoO2 and Li4Ti5O12, the electrolyte’s stability under electrodes excited 

states strongly limits the applicability of photorechargeable electrodes. We demonstrated for 

instance in the case of LiCoO2 at excited states that this latter can be strongly photocatalytic 

towards the electrolyte’s oxidation above 3.3 V vs. Li+/Li or that LiF-SEI type formed at lower 

potential than 1.5 V vs. Li+/Li totally quenches the excited state of the electrode (Li4Ti5O12).    

Even though the photorecharge was not observed in LiFePO4 likely due to a too insulating 

nature of the electrode, we investigated further the possible reasons of its absence and potential 

solutions. Two strategies were attempted to overcome the possible obstacles: (i) decreasing the 

particle size to increase the electronic conductivity and (ii) grafting N719 dye on the particle’s 

surface to increase light harvesting. None of these approaches led to noticeable improvements. 

However, this study enabled to discuss and clarify an important publication recently published 

in Nature Communication that we found very controversial in many aspects, more particularly 

in terms of type of semi-conduction in LiFePO4 and FePO4, and, position of valence band and 

conduction band of these two semi-conductors with respect to N719 dye HOMO – LUMO 

levels. Our study enables to clarify the energy alignments and charge transfer processes under 
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illumination. Following this work, ps-transient absorption spectroscopy and time-resolved 

photoluminescence study are underway in the group to determine the rate constant of charge 

injection from the N719* into LiFePO4 and FePO4 conduction bands. 

Even though we showed some kinetic improvements of the electrochemical processes of lithium 

insertion/deinsertion process in Li4Ti5O12/Li7Ti5O12 electrode, and faster reaching of 

equilibrium state under illumination, this spinel material did not express any sign of 

photorecharge neither. The in-depth study showed that on the one hand the Li7Ti5O12 excited 

state may be ultrafast and faster compared to the carrier transfer, and on the other hand that SEI 

formation leading exclusively to insulating LiF on the electrode surface has an important 

influence in agreement with previous study on TiO2 [219]. We showed by time-resolved 

fluorescence study that there is a strong quenching of electrolyte luminescence when including 

Li4Ti5O12. This is explained by energy transfer via Förster resonance effect (FRET). This FRET 

mechanism is even more efficient for Li7Ti5O12 owing to its band gap narrowing by 0.23 eV 

compared to Li4Ti5O12 and its enhanced light absorption capability. The luminescence of 

Li4Ti5O12 is also quenched when in contact with the electrolyte. The radiative part of the excited 

states relaxation is much accelerated. Unfortunately, we have not been able to study the 

radiative relaxation dynamics in Li7Ti5O12 owing to the complete fluorescence quenching in 

this composition.  Preliminary results that are not herein reported show that including a 

particular spin trap additive in the electrolyte can on the one hand significantly improve the 

electrode performance in capacity and reversibility without means of carbon and on the other 

hand enables to unlock the photorecharge barrier. An electrode of Li7Ti5O12 can be completely 

photo-recharged in about 15 hours under standard A.M. 1.5G conditions (capacity of ca. 

500 µAh/cm2). A patent for the molecule included into the electrolyte is currently under filling 

process. We hypothesize that a function of this molecule is to avoid the formation of LiF upon 

discharge and under illumination, and it may also play a role in promoting the carriers transfer 

towards the transition metal.  
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General conclusions 

This work is dedicated to the study of mixed electronic/ionic semi-conducting materials that 

can be capable of combining sunlight energy conversion reaction and its energy storage at the 

electrode and molecular levels. The objective of this thesis work is the exploration of other 

materials than the anatase TiO2. Our strategy, against simply blindly screening materials, was 

focused on deepening the current knowledge on the light-induced charge transfer through the 

semiconductor/electrolyte junction following up the example of the nanoparticles of anatase 

TiO2 and to develop a database that can be used to decipher which materials can have 

potentialities for the application in photo-rechargeable electrode and in full devices that require 

a perfect band alignments between the two electrodes.  

In the first part of this thesis, we developed an airtight photoelectrochemical cell allowing to 

monitor the change of the optoelectronic properties of TiO2 upon lithium insertion. We have 

established that few factors stand behind the color changeover from white in TiO2 to dark blue 

in Li0.6TiO2. On the one hand, there is a 0.3 eV increase in the bandgap value upon lithium 

insertion following Burnstein-Moss effect. On the other hand, the blue coloration is connected 

to the enhancement in absorption within the visible and near-infrared region of the solar 

spectrum as a result of the enrichment of free carriers in the conduction band of LixTiO2 and 

electrons localized in Ti3+ centers occupying the 3d metal orbitals. The in situ Mott-Schottky 

measurements showed a positive shift in potential of 0.5 V of the conduction band. Our study 

also revealed that the charge carrier concentration increases by circa one order of magnitude 

upon lithium insertion into the structure.  

We have established the ultrafast nature of the direct recombination, i.e. 29 ps, for both TiO2 

and Li0.6TiO2. We demonstrated that even though the majority of the photoluminescence stems 

from the direct recombination, a significant part of it belongs to the recombination through 

carrier traps associated with oxygen vacancies and surface states. This trap-mediated 

fluorescence was found to increase when electrode was put in contact with electrolytes. 

Depending on the electrolyte composition, the band gap, excitation/emission spectrum and 

photoluminescence dynamics can vary to a large extent. This phenomenon was assigned to an 

experimental demonstration of a Stark effect taking place in the nanocrystals as a result from 

the specific adsorption of lithium cation from the electrolyte. Today, Stark effect in nanocrystals 

is considered as being a beneficial effect for the electrode’s photorecharge. We also 

demonstrated elsewhere that Stark effect is in part or in whole responsible for two phase vs. 

single phase transition during lithium insertion by downsizing the particles towards nanoscale. 
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Comparing the fluorescence decays in lithium ion-blocking vs. ion-conducting interface, we 

support that the half-time of the hole transfer to Ti3+ is in the scale of 100 ps, thus entering in 

direct completion with the deactivation of the excited states in crystals.  

The second important part of this work was dedicated to the creation of a database describing 

the optoelectronic properties of common insertion materials. Three groups were studied: 

transition metal oxides (Li4Ti5O12, LiCoO2, MoO3, WO3, CuO, Bi2O3, LiMn2O4, 

LiMn1/3Ni1/3Co1/3O2), transition metal sulfides (TiS2, MoS2, WS2), and lithiated polyanions 

(LiFePO4, LiMnPO4, LiVPO4F). This work reports for the first time that for some materials, i.e. 

LiCoO2, MoS2, and WS2, the type of conductivity can change of sign depending on the nature 

of the electrolyte in contact, i.e. from n-type in an aqueous (protic) electrolyte to a p-type in a 

non-aqueous aprotic EC/DMC-based electrolyte. We also show that the flat band potential can 

be drastically modified by the electrolyte up to 1.4 eV except for LiFePO4, and that the main 

carrier density is always increased by at least one order of magnitude in EC/DMC electrolyte. 

Comparing the minor charge carrier energy to the redox energy of the transition metal for the 

lithium insertion or deinsertion reaction, we established from this database that p-CuO, p-MoS2 

and p-WS2 are materials which should not work for thermodynamic reasons. The case of 

LiCoO2 is somewhat different. Although this material can be of interest from a fundamental 

point of view, this latter is not interesting for the application since its high redox potential 

associated to its p-type semi-conduction will lead to a photo-dischargeable electrode. By 

contrast, the photoelectrochemical recharge of the electrode is thermodynamically realizable in 

n-Li4Ti5O12, n-MoO3, n-WO3, n-Bi2O3, n-LiFePO4, and n-LiFePO4. 

Unfortunately, the photoelectrochemical study of some specifically chosen materials underlines 

that reaching the photo-rechargeable mechanism is not as straightforward as anticipated. None 

of the studied materials, i.e. n-type Li4Ti5O12, MoO3, LiFePO4, Bi2O3 and p-LiCoO2, showed a 

process of light-induced ion transfer sometimes because of external reasons such as bad 

electrode adhesion or very poor electrochemical reactivity (MoO3, Bi2O3 and LiFePO4) or for 

internal reasons mainly because of harmful electrolyte side-reactions under illumination 

(LiCoO2 and Li4Ti5O12).  

We focused to extend this study in the case of two materials: LiFePO4 and Li4Ti5O12. A deeper 

study of LiFePO4 revealed that neither downsizing of the particles nor grafting of a ruthenium 

polypyridyl dye on the surface improved the photoelectrochemical performance. However, this 

study clarified the charge transfer mechanism between LiFePO4 and N719 dye and the band 

structure of LiFePO4 and FePO4 wrongly proposed/discussed in the literature. The extended 
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study of Li4Ti5O12 showed that an important limitation of the system is related to the formation 

of a SEI layer exclusively made of LiF under dark but also under illumination with a thicker 

layer which can attain up to 100 nm. To present level of understanding, we estimate that LiF 

formation annihilates the photorecharge process of the electrode. On the other hand, we also 

speculate that excited state lifetime of Li7Ti5O12 is too fast with respect to a possible charge 

transfer towards the transition metal. The formation of LiF on the surface prevented us from 

determination of how the band structure is modified in Li7Ti5O12. However, in this part of the 

study, we revealed a FRET mechanism taking place in the UV from the electrolyte to the 

electrode. This FRET process, which induces the quenching of the electrolyte fluorescence, 

seems even more efficient in contact with Li7Ti5O12 owing to its narrower bandgap by 0.23 eV 

and improved absorption capability in the whole visible range.  

This study reveals mainly three important challenges that need to be addressed in the field: (i) 

electrode nanostructuralization to favor surface reactions and to bring the Debye length 

comparable to the particle size and carbon-free electrodes with high conductivity, (ii) 

developing electrolytes specific to photorechargeable systems with enhanced stability in both 

reduction and oxidation with respect to electrode’s photo-excited states, and (iii) choosing the 

right photo-anode with the right photo-cathode that allows an adequate band energy alignments 

to collect carriers and thus yielding to a complete photorechargeable lithium-ion batteries. 

Preliminary results on the second point shows that the addition of a specific scavenger in the 

electrolyte can likely prevent the formation of LiF over the electrode, thus offering not only 

improved electrochemical performances of carbon-free electrodes but also a photo-

rechargeable process in Li7Ti5O12 under white light illumination in ca. 15 hours. The third point 

also remains very challenging, as the database herein developed shows that none of the 

materials can be associated to form a fully regenerative bifacial p-n photobattery.    

This pioneering work in a complex subject of energy storage and energy conversion at the 

molecular level requires still a lot of profound investigations from fundamental standpoints, 

particularly in the field of the time-resolved spectroscopy. In our laboratory, further time-

resolved spectrometers are under setting up, which will allow to provide more details on the 

different charge carrier transfer taking place in the photo-electrode (i.e. carrier transfer to the 

transition metal vs. to the electrolyte). This study will be able to be carried out by a picosecond-

pump / three probes transient absorption spectrometer including a high dynamic range streak 

camera detection that is delivering today its first results and two other time-resolved 

spectrometers in fluorescence associating a fs tunable Ti:Sa laser with a streak camera in 
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synchroscan mode for TR-PL (ca. 4 ps time resolution) and a up-conversion setup (IRF ca. 

200 fs) which will be able to monitor faster processes than ca. 30 ps. Establishing the time-scale 

of the different carrier transfer in the photo-electrode will allow understanding all limiting 

processes taking place in the electrode under illumination. It will be also a basis to improve the 

materials and the electrode mesostructuralization towards optimizing the electrode’s 

performance.  

As mentioned in the manuscript, this work has often faced a lack of data/knowledge from the 

literature to guide us more efficiently into this thesis development. However, the results of this 

work not only open up important lines of research that will be pursued in the laboratory to 

continue development of these systems, but can also establish a background for the pursuit of 

this field in the community. In addition, the created database of the optoelectronic properties of 

common insertion materials can be beneficial for a broad range of other applications like 

photocatalysis, electrochromic devices, and even to battery itself. 
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Résumé développé de la thèse en Français (Summary in French) 

La croissance constante de la population mondiale et l'amélioration du niveau de vie entraîne une 

augmentation continue de la demande d'énergie, qui devrait atteindre environ +30% pour les 

prochaines deux décennies suivantes. Environ 80% de l’énergie actuellement produite provient de 

la combustion des énergies fossiles, par exemple: le charbon, le pétrole et le gaz naturel. Toutefois, 

en raison de la quantité limitée des ressources fossiles, son extraction est prévue de diminuer après 

2025. En plus de sa disponibilité limitée, la combustion des carburants fossiles est la principale 

source d'émission de dioxyde de carbone dans l'atmosphère. Comptant pour 72% de tous les gaz à 

effet de serre émis, le CO2 est le principal facteur du changement climatique. La première 

conséquence menaçante est le réchauffement planétaire qui génère l’augmentation du niveau de la 

mer, la fonte des glaces, des ouragans plus fréquents et plus violents, des chaleurs extrêmes et des 

incendies de forêt, inondations, etc. 

Parmi les sources d’énergie renouvelables, toutes sauf la géothermie (1,3∙1010 kWh) proviennent 

directement ou indirectement de l’activité solaire. L’énergie éolienne (4,9∙1014 kWh), la biomasse 

(1,1∙1011 kWh), l’énergie hydraulique (1,1∙1012 kWh) et l’énergie marine (3,6∙1013 kWh) sont des 

conséquences de l’irradiation solaire de la Terre. Cela est dû à la transformation du rayonnement 

solaire en chaleur thermique, photosynthèse ou évaporation de l’eau. Le soleil, avec une capacité 

de 1018 kWh / an atteignant la surface de la Terre, est la seule source d’énergie renouvelable capable 

de répondre pleinement aux besoins énergétiques actuels de 1,5∙1014 kWh. Son caractère 

intermittent constitue toutefois un obstacle majeur à une large utilisation de l’énergie solaire.  

L'une des approches permettant de garantir une production d'énergie constante consiste à stocker 

l'excès d'énergies produites pendant les pics de production ou les périodes de basses 

consommations pour une utilisation ultérieure. L’énergie générée peut être stockée de manière 

chimique (batteries, condensateurs ou hydrogène), mécanique (énergie hydroélectrique pompée, 

air comprimé ou volants), ou dans des systèmes thermiques. Les plus attirants sont les systèmes de 

stockage électrochimique tels que les batteries en raison de leur intégration aisée et de la flexibilité 

pour l’application permettant une large gamme de densité d'énergie stockée allant du µWh au 

MWh. Cependant, malgré la maturité de la technologie, l’incorporation d’une partie de stockage 

électrochimique sur une implantation photovoltaïque double au minimum les coûts d’installation. 
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Cela pénalise le retour sur investissement financier (20-30 ans) par rapport à la durée de vie des 

panneaux photovoltaïque et des batteries Li-ion. 

Dans le but de réduire les coûts d’installation et de ferme germer de nouvelles innovations et de 

nouvelles filières scientifiques, la mise au point d’un seul système combinant à la fois la conversion 

et le stockage de l’énergie est hautement souhaitable. Toutefois, la réalisation d’un tel dispositif 

combinant conversion et stockage de l’énergie solaire à l’échelle du matériau et de la molécule est 

particulièrement complexe scientifiquement et requière donc de nombreuses recherches 

scientifiques. Une alternative à plus court terme est basée sur une hybridation des deux 

technologies qui consiste à développer un dispositif unique comprenant deux compartiments : un 

système de conversion PV, tel qu'une cellule solaire à colorant comme souvent proposé, et l’autre 

une batterie lithium-ion partageant ou non une même électrode. Cette approche est potentiellement 

moins coûteuse et plus facile à intégrer par rapport au couplage externe classique. La deuxième 

approche, avec des perspectives à plus long termes, consiste à adapter un assemblage moléculaire 

permettant de combiner la conversion de l’énergie solaire et son stockage chimique. C’est 

justement le cadre de ce travail de doctorat où l’approche consiste à créer des transferts d'ions à 

l’interface semi-conducteur mixte et électrolyte induit par l’excitation du niveau de la bande 

interdite du semi-conducteur. Ce transfert ionique résulte d’un transfert du porteur de charge 

minoritaire en phase homogène vers l’élément de transition. Un point bloquant de ce mécanisme 

provient de la nature purement surfacique de cette réaction qui est limitée par la longueur de Debye 

correspondant à la zone de déplétion du semi-conducteur.  

Afin de contourner cette limitation importante du mécanisme de photo-recharge, notre équipe a 

mis au point des nanocristaux d’anatase TiO2 de l’ordre de 4 à 5 nm de diamètre via une synthèse 

et thermolyse à température ambiante ou à basse température. Ces nano-cristaux ont permis de 

promouvoir considérablement le rapport surface / volume des particules. Une conséquence directe, 

ces particules permettent de maximiser la réactivité de surface vis-à-vis du volume, conduisant à 

un processus de photorecharge quantitatif. Une électrode mesoporeuse constituée par des 

nanoparticules de TiO2 peut être photorechargée intégralement (≈ 600 µAh/cm2) en seulement 2 

heures sous des conditions d’éclairage réaliste et standardisée (A.M. 1.5G, 100 mW/cm2). Cette 

preuve de concept a démontré pour la première fois que l'excitation de la bande interdite peut 

induire une recharge complète d’une électrode de batterie. Cette recherche a permis d’ouvrir de 
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nouvelles perspectives scientifiques et technologiques sur le développement de matériaux 

bifonctionnels combinant la conversion et le stockage de l'énergie solaire à l’échelle moléculaire.  

Des développements ultérieurs ont appelé à approfondir notre compréhension actuelle de ces 

processus de transfert de charge photoinduits afin de maximiser les performances en termes de 

stabilité et de temps de recharge. En plus, afin de passer d’une demi-cellule photorechargeable à 

une cellule complète, il est nécessaire de développer une contre-électrode appropriée permettant la 

collection des porteurs de charge majoritaires de l’électrode photo-active.  

Il a déjà été discuté dans la littérature que le potentiel des ions intercalés peut contribuer à l’énergie 

libre des électrodes provoquant un décalage des bords de la bande d’énergie, de la bande interdite, 

et affectant la longueur de Debye et le champ électrique de la zone de déplétion. Dans ce but, nous 

nous sommes concentrés dans cette thèse sur l’étude approfondie de l’évolution des propriétés 

optoélectroniques et de la dynamique des processus de transfert de charges ultra-rapides à 

l’interface électrode/électrolyte de l’anatase TiO2 lors de l’insertion du lithium. Pour cela, nous 

avons développé une cuvette en quartz à trois électrodes étanche permettant de coupler des 

expériences d’électrochimie et de spectroscopies optiques in situ / in operando du type absorption 

UV-Visible mais aussi de fluorescence à l’état stationnaire et résolue en temps. 

Nos travaux décrivent l’évolution des spectres de transmittance des films de TiO2 in operando à 

différents états de décharge. Nous avons établi que le changement de couleur passant du blanc au 

bleu foncé lors de l'insertion du lithium est associé d'une part à une augmentation de la valeur de 

la bande interdite par effet Burnstein-Moss, passant de 2,85 eV à 3,21 eV, et d’autre part liée à 

l'augmentation de l'absorbance dans la partie visible et dans le proche-infrarouge. Cette absorbance 

accrue est attribuée à l'absorption optique par des électrons libres dans la bande de conduction de 

TiO2 et ainsi qu’à la localisation des électrons dans les centres Ti3+ occupant les orbitales 

métalliques 3d en raison de la taille nanométrique des particules. A ce titre, l’ajustement des 

spectres de transmittance à différentes profondeurs de décharge en utilisant le modèle de Drude 

montre que l’insertion de lithium dans TiO2 augmente par un facteur 20 la concentration en porteurs 

de charges, passant de 1,3·1019 cm-3 à 2,9·1020 cm-3. 

Afin de déterminer les positions des bords de bandes et leurs évolutions lors de l'insertion du 

lithium, des mesures en trois électrodes par la méthode Mott-Schottky ont été entreprises en 

combinaison avec la spectroscopie d'absorption UV-visible. Il est établi dans ce travail que 



 

195 
 

l’insertion de lithium dans la structure provoque un décalage important du potentiel de la bande 

plate vers des valeurs positives passant de 2,84 V à 3,36 V vs. Li+/Li. Cela se traduit par un décalage 

négatif de 0,5 eV de la bande de conduction. Ce processus est accompagné par une augmentation 

d'un ordre de grandeur de la concentration d’électrons passant de 2,1·1019 cm-3 à 3,9·1019 cm-3 sans 

aucun changement dans la nature des porteurs principaux. De plus, nos résultats soulignent 

systématiquement une forte influence de la nature protique ou aprotique de l'électrolyte sur la 

valeur de potentiel de bande plate et la concentration des porteurs. Enfin, en confrontant les mesures 

Mott-Schottky avec celles de spectroscopie d'absorption UV-Visible à l'état solide, nos résultats 

montrent une diminution de l'énergie de la bande de valence de 800 mV, passant de 5,7 V à 6,5 V 

et de la bande de conduction de 500 mV, passant de 2,8 V à 3,3 V (vs. Li +/Li) entre TiO2 et sa 

forme réduite Li0,6TiO2. 

Pour comprendre la dynamique des états excités de TiO2 et de Li0,6TiO2 dans différents types 

d'électrolytes, la spectroscopie de fluorescence à l'état stationnaire et en temps de vie à comptage 

simple photon a été un outil important et incontournable durant ce travail de doctorat. Les cartes 

d'excitation/émission de fluorescence sur un film de TiO2 à différentes profondeurs de décharge 

ont systématiquement montré la présence d’une bande principale pour laquelle le maximum se 

situe à 277 nm et 335 nm, ainsi qu’une seconde contribution moins intense et plus large vers 500 

nm. Cette dernière se déplace de 498 à 515 nm lors de l’insertion de lithium. La première bande 

est attribuée aux phénomènes de fluorescence des ions solvatés Li+ et PF6
- dans l'EC/DMC. 

L'origine de la deuxième bande moins intense est attribuée à la fluorescence des nanocristaux de 

TiO2 en équilibre avec l'électrolyte. Nos travaux mettent en évidence que les rendements de 

fluorescence de TiO2 et de l’électrolyte diminuent drastiquement lors de l'insertion du lithium dans 

des nanocristaux de TiO2. Ce phénomène suggère très fortement qu'une partie de l'énergie radiative 

de l'électrolyte est transférée à l'électrode par résonance de Förster (FRET) et que ce processus de 

transfert d'énergie au bénéfice de l’électrode est plus efficace lorsque le TiO2 est lithié en raison de 

ses meilleures propriétés d’absorption. En même temps, le rendement de fluorescence de l'électrode 

diminue à son état réduit. Ceci signifie que le processus radiatif de recombinaison dans le Li0.6TiO2 

est désactivé comparé à TiO2. Ce phénomène est attendu en raison du transfert des trous d’électrons 

vers le Ti3+, mécanisme responsable de la photorecharge de l’électrode. Un mécanisme de type 

FRET est clairement réalisable pour trois raisons : (i) le rendement quantique (QY) de 

luminescence de l'électrolyte est largement supérieur à celui du TiO2 (QYLP30 = 7,7%, 
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QYTiO2 < 1%), (ii) la proximité moléculaire entre le Li+ et le PF6
- solvaté responsable de la 

fluorescence de l'électrolyte et les nanocristaux de Li0,6TiO2, (iii) le recouvrement énergétique entre 

la bande d’émission de l’électrolyte et la bande d’excitation des nanocristaux de TiO2 et de 

Li0,6TiO2.  

Dans ce travail de doctorat, des mesures de spectroscopie de fluorescence résolue en temps en 

utilisant la technique du comptage à simple photon (TCSPC) a été utilisée pour étudier la 

dynamique de relaxation radiative des états excités dans le TiO2 et le Li0.6TiO2 en contact avec 

différents types d’électrolyte. La dynamique de fluorescence a été enregistrée à une longueur 

d'onde d'émission de 455 nm en utilisant un détecteur refroidi par Peltier du type MCP-PMT 

(Hamamatsu) pour lequel le temps de réponse est < 25 ps. Tant dans le TiO2 que pour le Li0,6TiO2 

en contact avec l'argon, la reconvolution de la courbe de déclin avec la réponse instrumentale du 

spectromètre a abouti systématiquement à deux composantes. La contribution plus rapide, 

atteignant 29 ps, correspond à la recombinaison directe entre la bande de conduction et la bande de 

valence. La deuxième composante d'environ 2 ns est physiquement attribuée au processus de 

fluorescence passant par les pièges de surface. Une amplitude plus élevée de la recombinaison 

directe a été trouvée dans le cas de la phase lithiée, i.e. 18,1% pour Li0,6TiO2 contre 8,5% pour 

TiO2. Ceci provient d’une redistribution des pièges dans la bande interdite après l'insertion du 

lithium. 

Afin d'estimer la cinétique des processus de transfert de charge dans la composition déchargée 

Li0,6TiO2, des mesures de fluorescence résolue en temps ont été effectuées sur une électrode au 

contact d'un électrolyte bloquant et passant en comprenant ou non des ions lithium. Dans cette 

expérience, nous avons utilisé deux types d'électrolyte: l'un basé sur le mélange de solvants 

organiques EC/DMC généralement utilisé dans les batteries et un second, plus inerte, à base de 

liquide ionique EMITFSI. Lorsque la photoluminescence des nanocristaux de Li0,6TiO2 est mesurée 

au contact des électrolytes, nous avons observé des déclins de fluorescence significativement plus 

longs que ceux sous argon. Cela provient du contact des nanocristaux avec une interface liquide 

dont la constante diélectrique supérieure tend à piéger les électrons à la surface des particules. Le 

contact interfacial avec l'électrolyte empêche la recombinaison direct inter-bandes au profit de 

processus plus lents via les pièges. Ce phénomène provient aussi du fait que les cations Li+ et/ou 

TBA+ forment des «quasi-particules» avec des électrons piégés à la surface des particules, 

prolongeant ainsi la durée de vie de l'état excité. Dans les deux milieux, les déclins enregistrés dans 
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des électrolytes contenant du Li+ sont plus rapides que ceux déterminés avec des électrolytes sans 

lithium. La reconvolution des déclins dans les électrolytes à base de lithium nécessite 

systématiquement au recours d’une troisième contribution rapide. Cela suggère l’apparition d’un 

processus supplémentaire de transfert de charge rapide, que nous attribuons au transfert de trous 

vers le Ti3+ (mécanisme de photorécharge). Ce transfert de trous est rapide, nécessitant 145 ps dans 

un électrolyte à base d’EC/DMC (représentant 7,8 % du déclin), et il est de 97 ps avec un liquide 

ionique EMITFSI (représentant 12,5% du déclin). La différence d'amplitude indique que le 

processus de transfert de trous photogénéré est plus favorable dans l’électrolyte plus inerte. Le type 

de solvant influe également sur la fluorescence induite par les pièges, probablement dû à une 

redistribution de l’énergie et à la densité d’états des pièges situés dans la bande interdite. La plus 

longue durée de vie est obtenue dans le liquide ionique EMITFSI. Elle atteint jusqu'à 14,6 ns avec 

une amplitude de 69,4%.  

Enfin, nous avons mis en évidence expérimentalement un effet Stark-Lo Surdo qui intervient sur 

nos particules de TiO2 nanocristallines. Cette effet est induit par l'adsorption spécifique du cation 

lithium sur la surface des particules. Il a des conséquences visibles sur la dynamique de la 

photoluminescence qui, selon nous, est un mécanisme bénéfique pour la photorécharge de 

l’électrode. 

Un obstacle important au développement d’un système de batterie photorechargeable consiste à 

trouver une contre-électrode appropriée. Cette électrode doit avoir une absorption optique 

complémentaire à celle de la photoanode, et en même temps présenter le type opposé de porteurs 

de charges principaux.  Cette contre-électrode doit également posséder une position appropriée de 

la bande de conduction et de valence par rapport à l’autre électrode afin de collecter les charges 

photo-induites de l’autre électrode. Pour cette raison, la deuxième partie de cette thèse a été centrée 

sur la création d’une base de données des propriétés optoélectroniques des matériaux d’électrodes 

de batterie les plus utilisés afin de déterminer ceux qui présentent des potentialités pour cette 

application. Cette base de donné constitue également un intérêt  pour d’autres applications comme 

l'électrochromisme ou la photocatalyse. Trois familles de matériaux ont été étudiés: les oxydes de 

métaux de transition (Li4Ti5O12, LiCoO2, MoO3, WO3, CuO, Bi2O3, LiMn1/3Ni1/3Co1/3O2), les 

sulfures de métaux de transition (TiS2, MoS2, WS2) et les charpentes polyanioniques (LiFePO4, 

LiMnPO4, LiVPO4F). La caractérisation préliminaire de la structure, de la taille et de la 

https://www.linguee.fr/francais-anglais/traduction/int%C3%A9r%C3%AAt.html
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morphologie des matériaux a été réalisée avant l’étude principale en combinant diffraction des 

rayons X, microscopie électronique à balayage (SEM) et à transmission (TEM). 

En utilisant les mesures de spectroscopie d'absorption UV-visible en mode de réflectance diffuse, 

les valeurs de bande interdite ont été déterminées à l'aide de la fonction Kubelka-Monk entre 200 

et 1800 nm. Cependant, pour une partie des matériaux, aucun phénomène d’absorption n’est visible 

en raison probablement d’une valeur de bande interdite inférieure à 0,7 eV (LiMn2O4 et 

LiMn1/3Co1/3Ni1/3O2) ou par la nature semi-métallique du matériau (TiS2). 

Au moyen de la spectroscopie d'impédance électrochimique par la méthode Mott-Schottky, nous 

avons mesuré le type de conductivité, le potentiel de bande plate et la densité des porteurs de charge 

des matériaux dans deux types d'électrolyte: aqueux et aprotiques non aqueux à base d’EC/DMC. 

Trois phénomènes intéressants ont été mis en évidence. Premièrement, pour LiCoO2, WS2 et MoS2, 

un changement du type de semi-conduction a été observé en fonction de la nature de l'électrolyte. 

En effet, ces matériaux se comportent comme des semi-conducteurs de type n dans un électrolyte 

aqueux et comme des semi-conducteurs de type p dans un électrolyte aprotique non-aqueux. Pour 

la majorité des matériaux, i.e. Li4Ti5O12, MoO3, WO3, Bi2O3, TiS2, MoS2, WS2, et LiFePO4, la 

conductivité est de type n et est indépendante de la nature de l'électrolyte. Le CuO est de type p et 

le LiMnPO4 de type n. Deuxièmement, pour tous les matériaux étudiés à l'exception du MoS2, les 

positions des bords de bandes dépendent fortement de la nature de l’électrolyte. Cependant, aucune 

tendance systématique n’a pu être dégagée car pour certains matériaux (Li4Ti5O12, MoO3, Bi2O3, 

WS2, LiFePO4, and LiMnPO4) l’énergie des bords de la bande augmente en passant d’un électrolyte 

aprotique aqueux à un électrolyte non aqueux, au contraire d’autres comme WO3 et LiCoO2 où 

c’est l’inverse qui se passe. Troisièmement, la concentration en porteurs de charge est 

systématiquement supérieure d’un à deux ordres de grandeur dans une solution aprotique non 

aqueuse. Nous attribuons ces changements à la nature faiblement dégénérée des semi-conducteurs, 

dans laquelle la concentration en électrons est comparable à celle des trous. Dans ces matériaux, le 

caractère donneur ou accepteur, ainsi que le potentiel de la bande plate et la densité des porteurs de 

charges dépendent de la nature de l'électrolyte lors du processus d'égalisation des niveaux de Fermi 

du semi-conducteur avec l’électrolyte.  

Cette étude a permis d’évaluer les matériaux d’intérêt pour une application comme électrode photo-

rechargeable en fonction de la valeur de la bande interdite, du type de conductivité et du 
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positionnement des bandes. Les résultats ont montré que parmi tous les matériaux, Li4Ti5O12, 

MoO3, WO3, Bi2O3, LiFePO4, LiMnPO4 de types n et LiCoO2 de type p sont des candidats 

potentiellement prometteurs. Toutefois, les résultats préliminaires de photo-rechargeabilité de ces 

matériaux ont toutefois montré que la recherche d'un matériau photorechargeable n'était pas aussi 

simple qu’attendu. En effet, de nombreux matériaux censés avoir une propriété de photorecharge 

n’ont pas montré les résultats escomptés pour des raisons encore peu claires. D'une part, la faible 

performance électrochimique peut être attribuée en partie à la faible conductivité électronique des 

matériaux purs. D'autre part, les particules utilisées ne sont pas systématiquement aussi divisées 

que celles du TiO2 et enfin il est aussi possible pour certains matériaux que les temps de vie des 

états excités sont trop courts pour permettre un quelconque transfert de charge sous illumination. 

Nous nous sommes attardés sur le cas de LiFePO4 qui ne montre pas d’effet de photo-recharge. 

Tout d'abord, la première approche a été de réduire la taille des particules et deuxièmement de 

greffer un colorant (N719) à la surface des particules afin d’accroître l’absorption de lumière. Nos 

résultats montrent qu’aucune amélioration significative des propriétés photoélectrochimiques n'a 

été observée dans les nanoparticules de LiFePO4. La présence du colorant a augmenté le potentiel 

de tension ouverte de l'électrode d'un apport mineur de 20 mV ce qui est loin d'être suffisant pour 

déclencher une réaction de photorécharge. Nous avons également rencontré des difficultés pour 

désinsérer le lithium de la structure en absence de carbone en raison de la nature isolante du 

matériau.  

Afin de mieux comprendre les mécanismes entravant la photorécharge de LiFePO4, nous avons 

déterminé les positions des bords de la bande de LiFePO4 et de sa forme chargée FePO4 obtenue 

par oxydation chimique. Notre étude montre que la valeur de la bande interdite diminue en fonction 

de la désinsertion du lithium, passant de 3,31 eV pour LiFePO4 à 2,73 eV pour la phase délithiée. 

La conductivité de type n exprimée par FePO4 est identique à celle de la phase lithiée. Le potentiel 

de bande plate et les valeurs de densité de donneur ont été déterminés et comparés à ceux de 

LiFePO4. Nous avons établis que les bords des bandes de valence et de conduction se déplacent 

vers le haut dans l'échelle d'énergie lors de la désinsertion du lithium. Le bord de la bande de 

conduction de FePO4 est supérieur de 0,06 eV à celui de LiFePO4 dans un électrolyte aqueux et de 

0,25 eV dans un électrolyte aprotique non aqueux. Les décalages de la bande de valence et 

conduction sont respectivement de + 0,64 eV et +0,83 eV. Les positions des bords des bandes de 
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conduction de LiFePO4 et FePO4 montrent que seulement l'injection d'électrons à partir du colorant 

est possible contrairement à ce qui a été publié récemment par Paolella et al.  

Une étude plus approfondie des propriétés photoélectrochimiques de Li4Ti5O12 a également été 

entreprise afin d'étudier l'évolution des propriétés optoélectroniques du matériau lors de l'insertion 

du lithium et l'influence de l’illumination. Dans cette partie de la thèse, nous avons montré la 

formation d’une couche de dégradation du type SEI qui se forme sur la surface des particules à la 

suite du cyclage. Son épaisseur est plus importante sous illumination et a priori de nature différente 

puisque cette dernière sous illumination est exclusivement constituée de LiF qui est composé 

isolant et qui provient de la dégradation photo-induite du sel de l’électrolyte (LiPF6). Le cyclage 

galvanostatique de l'électrode Li4Ti5O12 dans l'obscurité et sous illumination a montré que la 

surtension était plus faible sous illumination en raison de la photoconductivité apportée par 

l’absorption de lumière. D'autre part, l'électrode illuminée présente une polarisation qui augmente 

plus rapidement en raison de la formation de LiF et qui pénalise le rendement coulombique de 

l’électrode en cyclage.  

Pour étudier l'influence de l'électrolyte sur la cinétique de la recombinaison des charges dans 

Li4Ti5O12, une étude de fluorescence résolue en temps a été réalisée. La mesure du comptage à 

simple photon de l'électrode Li4Ti5O12 dans un électrolyte 1 mol/L LiPF6 EC/DMC à a été réalisée 

sous atmosphère d'argon. Dans ce cas, un déclin de fluorescence plus long a été obtenu par rapport 

à celui d'une poudre de Li4Ti5O12. Ceci implique une extinction de la fluorescence de Li4Ti5O12 au 

contact de l'électrolyte. 

Les valeurs de durée de vie déterminées pour Li4Ti5O12 en contact avec l'électrolyte, i.e. 0,091 ns 

et 2,63 ns, sont comparables aux deux premières composantes de durée de vie du déclin de 

fluorescence de la poudre de Li4Ti5O12, soit 0,102 ns et 3,00 ns. La troisième composante de durée 

de vie observée sur la poudre a disparu lorsque le matériau a été mesuré dans l'électrolyte. La 

redistribution des valeurs de temps de vie vers la composante rapide (73,3% pour l'électrode dans 

l'électrolyte contre 6,9% pour la poudre) a confirmé l'extinction de la luminescence de Li4Ti5O12 

en présence d'électrolyte. Ceci résulte soit du transfert de charges photo-induites vers l'électrolyte 

conduisant à sa dégradation et/ou par une fraction plus importante d’un mode de désactivation de 

l’état excité de manière non radiative.  
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La carte de fluorescence à l'état d'équilibre de l'électrode de Li4Ti5O12 dans un électrolyte LiPF6 

EC/DMC à 1 mol/L montre la présence de deux bandes. Une bande d'intensité élevée à une 

longueur d'onde d'excitation de 333 nm et d'émission de 735 nm, correspond à la fluorescence de 

Li4Ti5O12. L'autre, avec une intensité plus faible correspondant à la queue de la photoluminescence 

de l'électrolyte. Il est également intéressant de noter que la bande d'intensité la plus élevée d'un 

électrolyte 1 mol/L LiPF6 EC/DMC disparaît complètement en contact avec Li4Ti5O12. Ceci 

s'explique par le transfert d'énergie d’émission de l’électrolyte vers la bande d’excitation de 

Li4Ti5O12 (bande d'excitation à 333 nm). Lors de la décharge de l'électrode Li4Ti5O12 à 1,2 V vs. 

Li+/Li, la bande à 728 nm disparaît complètement et elle est également accompagnée par une 

diminution importante de l'intensité de la bande de fluorescence de l'électrolyte. 

L'étude de Li4Ti5O12 dans l’électrolyte 1 mol/L LiPF6 EC/DMC par spectroscopie d'absorption 

UV-visible a été réalisée dans le but de comprendre les modifications optiques du matériau lors de 

l'insertion du lithium. Pour cela, les spectres de transmittance d’un film de 250 nm d’épaisseur de 

Li4Ti5O12 ont été enregistrés in situ à différents états de décharge. Les changements important du 

spectre de transmission commencent à partir de 1,7 V vs. Li+/Li qui correspond au potentiel redox 

du matériau. Ceci se traduit par une diminution significative de la transmittance entre 300 nm et 

1500 nm expliquant le changement visuel de la couleur du matériau passant du blanc au bleu foncé. 

Ce phénomène est attribué à l'absorption des électrons libres photogénérés dans la bande de 

conduction de Li4Ti5O12 lors de l'éclairage en analogie directe avec ce qui se passe dans le TiO2. 

Les valeurs de la bande interdite ont été déterminées pour le Li4Ti5O12 initial (3,48 eV) et sa forme 

déchargée Li7Ti5O12 (3,25 eV). La valeur de bande interdite est inférieure de 0,30 eV à celle 

déterminée sur la poudre en contact avec l’air. Cela implique une diminution de 0,23 eV de la 

bande interdite de Li4Ti5O12 lors de l'insertion du lithium dans la structure. Le rétrécissement de la 

bande interdite est attribué au remplissage des niveaux d'énergie inférieurs proches de la bande de 

conduction, provoqué par l'apparition de Ti3+ (4s03d1) dans la structure. 

Les mesures Mott-Schottky realisées in situ ont montré que le potentiel de bande plate de Li4Ti5O12 

est de 1,76 V vs. Li+/Li et augmente de 1,69 V lors de l'insertion de lithium. L’insertion de lithium 

conduit également à une augmentation faible de la concentration en porteurs de charge passant de 

2,9·1019 cm-3 à 3,4·1019 cm-3.  
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Les résultats préliminaires qui ne sont pas rapportés dans ce manuscrit montrent que l'inclusion 

d'un piégeur non sélectif de radicaux dans l'électrolyte montrent une considerable amélioration des 

performances de l'électrode en capacité et en réversibilité sans moyen de carbone. D'autre part, 

l'ajout de cette molecule permet de déverrouiller la barrière de photorécharge. En conséquence, une 

électrode en Li7Ti5O12 peut être complètement photo-rechargée en 15 heures environ sous 

conditions d’éclairage standardisée (A.M. 1.5G, 100 mW/cm2) avec une capacité d'environ 

500 µAh/cm2. Un brevet pour la molécule incluse dans l'électrolyte est en cours de remplissage. 

Nous émettons l'hypothèse qu'une fonction de cette molécule est de piéger les radicaux fluorés 

avant que ceux-ci réagissent pour former du LiF à la surface des particules, même s’il est nécessaire 

d’approfondir des mécanismes liant cette molecule à la photo-recharge et la dégradation de 

l’électrolyte.  

Ce travail est pionnier dans un sujet complexe où l’on tente de combiner la fonction de conversion 

de l’énergie lumineuse avec celle du stockage électrochimique de cette énergie, ceci à l’échelle de 

l’électrode et de la molécule. Ce travaille apporte une brique complémentaire aux choix possibles 

des matériaux. Toutefois elle laisse aussi place à un certain nombre de zones d’ombres qui 

nécessitent de nouvelles recherches plus approfondies, en particulier dans le domaine de la chimie 

douce pour concevoir des matériaux nanostructurés d’une part et d’autre part sur la spectroscopie 

résolue en temps en absorption et en émission. Dans notre laboratoire, l'installation de la 

spectroscopie d'absorption transitoire en régime picoseconde avec caméra Streak est finalisée, ce 

qui doit permettre d'étudier plus en profondeur la cinétique du transfert de charge photogénéré dans 

les électrodes seules et au contact de l'électrolyte. D’autres outils sont également en cours 

d’installation comme la photo-luminescence en associant une caméra streak avec un laser Ti:Sa 

qui permettra de descendre à une résolution temporelle de l’ordre de 5 ps et à la spectroscopie de 

fluorescence par up conversion permettant d’obtenir une résolution temporelle de l’ordre de 200 

fs. L'établissement de la chronologie des processus dans le système permettra de reconnaître les 

processus limitants et offrira la possibilité d'améliorer les performances et la stabilité des cellules 

en guidant les expérimentalistes vers des orientations précises.  

Comme il est mentionné dans le manuscrit, ce travail a souvent été confronté à un manque de 

données et d’observables de la littérature. Cependant, les résultats de ces travaux ouvrent à de 

nombreuses perspectives qui seront poursuivis au laboratoire pour continuer au développement de 

ces systèmes. Ce travail de thèse constitue une première démarche raisonnée dans la recherche 
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d’autres matériaux et d’une contre-électrode appropriée pour une photoanode de TiO2 qui permettra 

de collecter les électrons photo-induits. Ceci ouvrira la voie vers une photo-batterie complète et 

régénérative. Enfin, il est également important de souligner que ce travail de thèse est aussi 

profitable pour d’autres applications telles que la photocatalyse, le stockage d’informations 

optiques, les dispositifs électrochromiques, etc… 
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Appendix 

Table I. X-ray diffraction analysis results. 

Material Structure 
Space 

group 

Cell parameters  

a b c alpha betha gamma Z 

Li4Ti5O12 face-centeredcubic Fd-3m 8.3588(3) 8.3588(3) 8.3588(3) 90 90 90 - 

LiCoO2 rhomboherdal R-3m 2.8149(3) 2.8149(3) 14.050(51) 90 90 120 - 

MoO3 face-centeredcubic Fd-3m 13.825(8) 3.694(6) 3.954(6) 90 90 90 3 

WO3 orthorhombic Pnma 7.300(6) 7.538(6) 7.689(6) 90 90.89 90 8 

CuO moniclinic P21/n 4.690(8) 3.420(16) 5.131(3) 90 99.54 90 4 

Bi2O3 base-centeredmonoclinic C2/c 7.739(1) 7.739(1) 5.636(1) 90 90 90 8 

LiMn2O4 tetragonal P-421c 8.238(3) 8.2404(2) 8.2404(2) 90 90 90 4 

LiMn1/3Ni1/3Co1/3O2 rhomboherdal R-3m 2.859(2) 2.859(2) 14.155(9) 90 90 120 4 

TiS2 hexagonal P-3m1 3.407(3) 3.407(3) 5.695(6) 90 90 120 3 

MoS2 hexagonal (β-MoS2) P63/mmc 3.160(7) 3.160(7) 12.294(9) 90 90 120 1 

WS2 hexagonal P63/mmc 3.154(5) 3.154(5) 12.362(12) 90 90 120 2 

LiFePO4 orthorhombic Pnma 10.332(9) 6.0189(3) 4.704(5) 90 90 90 2 

LiMnPO4 orthorhombic Pmnb 10.460(9) 6.100(6) 4.744(5) 90 90 90 4 

LiVPO4F triclinic (tavorite structure) P-1 5.168(4) 5.309(8) 7.263(6) 107.599 108.02 98.336 4 

 

 

 

  



205 
 

Table II. UV-visible absorption spectroscopy results. Band gap values determined from the Tauc plot of 

diffuse reflectance spectra using Kubelka-Munk function. 

Material Band gap, eV Transition 

TiO2 3.24 indirect allowed 

Li4Ti5O12 3.79 indirect allowed 

LiCoO2 0.79 indirect allowed 

MoO3 2.93 indirect allowed 

WO3 2.49 indirect allowed 

CuO 1.19 indirect allowed 

Bi2O3 2.12 direct allowed 

LiMn2O4 - - 

LiMn1/3Ni1/3Co1/3O2 - - 

TiS2 - - 

MoS2 1.52 indirect allowed 

WS2 0.82 indirect allowed 

LiFePO4 3.11 direct allowed 

LiMnPO4 3.93 direct allowed 

LiVPO4F 1.71 direct allowed 
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Table III. Comparison of conductivity type, flat band potential, and charge carrier concentration derived 

from Mott-Schottky measurements with values reported in literature for transition metal oxides, transition 

metal sulfides, and lithiated polyanions. 

Material 

Aqueous media Non-aqueousaprotic media 

Mott-Schottky measurements Literature Mott-Schottky measurements Literature 

Ty

pe 

Vfb, V vs 

NHE* 

Nd/Na, 

cm-3 

Ty

pe 

Vfb, V vs NHE Nd/Na Ref. Ty

pe 

Vfb, V vs 

NHE 

Nd/Na, 

cm-3 

Data - Ref. 

TiO2 n -0.63 9.8·1017 n -0.8 to 0.26 * 

-1.6 to -0.57 * 

1017 to 1020 [1-12] n -0.20 2.3·1019 n-type; Vfb from 

-2.1 to  -0.88 V* 

[49-51] 

Li4Ti5O12 n -0.76 2.7·1018 n -1.13 * - [13] n -1.34 6.9·1019 Not reported 

LiCoO2 n -0.72 4.9·1019 - - - - p +1.24 2.6·1020 p-type; 1020 [52-

54] 

MoO3 n -0.08 4.1·1018 n -2.2V to +2.3 1020 [14-20] n -0.26 1.2·1020 Not reported 

WO3 n -0.46 1.4·1018 n -0.59 to -0.22 * 1019 to 1020 [21-24] n 0.03 2.8·1019 Not reported 

CuO - - - p -1.33 to -0.60 * 1018 to 1021 [2], [3], [25-

28] 

p +0.60 2.7·1019 Not reported 

Bi2O3 n -0.66 9.9·1017 n -0.67 to +0.03 * 1016 to 1018 [2], [29-32] n -0.77 3.3·1019 Not reported 

TiS2 n -0.62 4.2·1018 n - 1020 [33-37] n -1.18 6.9·1019 Not reported 

MoS2 n -0.51 3.0·1018 n 

p 

-0.23 to -0.54 

- 

1019 

1017 to 1020 

[4], [38-39] 

[40-42] 

p +1.01 4.0·1019 Not reported 

WS2 n -0.48 4.2·1018 n 

p 

-1.60 to -1.23 

-0.43 to +0.37 

1017 to 1020 

1017 

[43-48] p +0.15 1.8·1020 Not reported 

LiFePO4 n -0.53 1.9·1019 - - - - n -0.58 3.9·1020 Not reported 

LiMnPO4 - - - - - - - n -1.12 6.6·1020 Not reported 

* Corrected to pH = 14 

Notes: [1] = Schultze and Lohrengel 2000; [2] = Hardee and Bard 1977; [3] = Nozik 1978; [4] = Xu and Schoonen 2000;  [5] = Butler and Ginley 1978; 

[6] = Kavan et al. 1996; [7] = Cao et al. 1995; [8] = Hengerer et al. 2000; [9] = Cameroon and Peter 2003; [10] = O'Hayre et al. 2007; [11] = Tomkiewicz 

1979; [12] = Redmond and Fitzmaurice 1993; [13] = Ge et al. 2015; [14] = Tong et al; [15] = Meyer et al. 2011; [16] = Bernède et al. 2012; 

[17] = Kroger et al. 2009; [18] = Greiner et al. 2010; [19] = Nadkarni et al. 1970; [20] = Nadkarni et al. 1972; [21] = Wang et al. 2012 (Energy Environ. 

Sci.); [22] = Patil and Patil 1994; [23] = Gissler and Memming 1977; [24] = Wang et al. 1912 (J. Alloys. Compd.); [25] = Jeong et al. 1996; 

[26] = Koffyberg and Benko 1982; [27] = Nakaoka et al. 2004; [28] = Chiang et al. 2011; [29] = Chitrada and Raja 2014 (ECS Trans., 61, 1); 

[30] = Chitrada and Raja 2014 (ECS Trans., 61, 55); [31] = Chitrada et al. 2015; [32] = Hajra et al. 2014; [33] = McKelvy et al. 1987; [34] = Imai et al. 

2001; [35] = Bronsema et al. 1986; [36] = Umnigar et al. 1982; [37] = Myron et al. 1974; [38] = Anand 2009; [39] Schneemeyer and Wringhton 1979; 

[40] = Guo et al. 2014; [41] = Bissessur et al. 1993; [42] = Heising et al. 1999;  [43] = Bassaid et al. 2015; [44] = Tonti et al. 1997; [45] = Baglio et al. 

1983; [46] = Devadasan et al. 2001; [47] = Morrish et al. 2014; [48] = Jäger-Waldau et al. 1994; [49] =Kabir-ud-Din et al 1981; [50] = Heinzel et al. 

1981; [51] = Schumacher et al. 1982; [52] = Rosolen& Decker 2001; [53] = Menetrier et al. 1999; [54] = Mizutani et al. 2008; 
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Table IV. Mott-Schottky measurements details and conditions. 

Material Aqueous protic media (measured vs SCE) 

Non-aqueous aprotic media  

( measured vs Li QRE, stable vs Fc
+
/Fc) 

Dielectric constant 

in calculations 

Name Film thickness, µm Solution, atmosphere pH f, kHz Solution, atmosphere f, kHz ε Ref 

TiO
2
 3 1M NaOHaq., air 14.00 0.75 

1M TBAPF6 EC/DMC, 

Ar 

 

0.1 31 [1] 

Li
4
Ti

5
O

12
 12 1M NaOHaq., air 14.00 0.25 0.2 20 [2-3] 

LiCoO
2
 18  0.5M TBANO

3
aq., air 1.65 0.10 0.1 2 [4-5] 

MoO
3
 13  0.5M TBANO

3
aq., air 8.84 0.25 0.2 6 [6] 

WO
3
 5  0.5M TBANO

3
aq., air 1.65 0.25 0.1 20 [7] 

CuO 3 - - - 0.3 10 [8] 

Bi
2
O

3
 5 1M NaOHaq., air 14.00 0.50 0.5 32 [9] 

TiS
2
 12  0.5M TBANO

3
aq., air 3.45 0.50 0.5 15 assumed 

MoS
2
 4 1M NaOHaq., air 14.00 0.10 0.1 11 [10-12] 

WS
2
 4 1M NaOHaq., air 14.00 0.10 0.1 8 [13] 

LiFePO
4
 80  0.5M TBANO

3
aq., air 1.65 0.25 0.1 3 [14] 

LiMnPO
4
 5 - - - 0.1 3 assumed 

Notes: [1] = Roberts 1949; [2] = Zhang et al. 2016; [3] = Liu et al. 2016; [4] = Nageswara Rao et al. 2014; [5] = Khatun et al. 2014; [6] = Lajaunie et al. 

2013; [7] = Wang et al. 2012; [8] = Nakaoka et al. 2004; [9] = Kang et al. 2004; [10] = Reshak et al. 2003; [11] = Cheiwchanchamnangij et al. 1983; 

[12] = Molina-Sánchez et al. 2011; [13] = Bassaid et al. 2015; [14] = Bharathi et al. 2013. 
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Résumé 

Le problème de la nature intermittente de l’énergie solaire est souvent résolu par le couplage 

traditionnel des unités PV et batterie. Notre approche plus fondamentale vise le développement de 

matériaux capables de combiner la conversion et le stockage de l'énergie solaire au niveau 

moléculaire. Les nanocristaux de TiO2 d’anatase à 5 nm ont été synthétisés dans notre groupe, ce 

qui a permis une réaction quantitative de photorecharge par la seule contribution de l’illumination. 

Nous présentons ici une étude de l'évolution des propriétés optoélectroniques et de la dynamique 

du transfert de charge dans une électrode de TiO2 à l'aide d'expériences in situ / in operando 

effectuées pendant le fonctionnement de la batterie (spectroscopies de UV-visible, Mott-Schottky, 

fluorescence). L'augmentation de la valeur de la bande interdite et de l'absorbance a été observée 

lors de l'insertion du lithium dans TiO2. Un décalage négatif en énergie de la bande de conduction 

indique un potentiel plus oxydant des trous photogénérés dans le Li0.6TiO2 par rapport au TiO2 

initial. En analysant les processus de recombinaison dans Li0.6TiO2, nous avons établi une 

compétition entre les processus ultra-rapides (gamme ps) de recombinaison directe et de transfert 

de charge vers Ti3+ dans Li0.6TiO2, ce qui limite potentiellement le rendement de la réaction de 

photorécharge. Cette étude a été étendue à d'autres matériaux d'insertion généralement utilisés dans 

les batteries lithium-ion (Li4Ti5O12, LiCoO2, LiFePO4, MoO3, etc.). Les positions de bord de bande, 

la bande interdite, le type de porteurs de charge et leur concentration ont été mesurées et 

rassemblées dans une base de données. Basé sur ces résultats, la possibilité de photorécharge 

induite par la lumière a été évaluée et les premiers résultats discutés. 

Mots-clés: photo-électrode, battery photo-rechargeable, photoelectrochimie, matériaux d'insertion, 

propriétés optoélectroniques, Mott-Schottky, photoluminescence, bande interdite 

 

Abstract 

The problem of intermittent nature of solar energy is often addressed by the traditional coupling of 

the PV and battery units. Our more fundamental approach targets the development of materials 

able to combine solar energy conversion and storage at the molecular level. The 5 nm anatase TiO2 

nanocrystals were synthesized in our group affording a quantitative photorecharge reaction by a 

sole contribution of illumination. Here, we present a study of the evolution of the optoelectronic 

properties and dynamics of charge transfer in TiO2 electrode using in situ / in operando experiments 

performed during the battery functioning (UV-visible, Mott-Schottky, fluorescence spectroscopy). 

The increase of the bandgap value and the rise of absorbance are observed upon lithium insertion 

into TiO2. A negative shift of the conduction band indicates a more oxidizing potential of the 

photogenerated holes in Li0.6TiO2 compared to TiO2. By analysis of the recombination processes 

in TiO2 upon lithium insertion, we established a competition of the ultra-fast (ps range) processes 

of direct recombination and charge transfer towards Ti3+ in Li0.6TiO2, potentially limiting the yield 

of the photorecharge reaction. This study was extended to other insertion materials typically used 

in lithium-ion batteries (Li4Ti5O12, LiCoO2, LiFePO4, MoO3, etc.). The measured band edge 

positions, band gap, charge carrier type and concentration were gathered into a database, based on 

which the fundamental evaluation of the possibility of the light-induced photorecharge was 

conducted. The first results of the photoelectrochemical study of chosen materials are also 

discussed. 

Key-words: photoelectrode, photorechargeable battery, photoelectrochemistry, insertion 

materials, optoelectronic properties, Mott-Schottky, photoluminescence, band gap 


