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Abstract

The exciting science of conformal optics is the next generation of modern optics, bringing the

advantages of a high optical performance and a flexible system integration. Precision in optics

has always been a challenge, which has persistently been demanding new methods of design.

Achieving a high performance imaging system with a compact form factor such as AR/V R dis-

plays, cameras and microscopes requires extra degrees of freedom. Recently, emerging science

like freeform conformal meta-optics, which is an integrated technology of metamaterials com-

bined with freeform optical surface profiles, offers lighter, simple and more compact assem-

blies. Till date, there are not many studies on the modelling and synthesis of conformal meta-

surfaces. We propose a new inverse synthesis method based on the Dirac distribution of the E-

M fields at an arbitrary interface and come up with an extension of the Generalized Sheet Tran-

sition Conditions (GSTCs) valid for any arbitrary surface which we called Conformal-GSTCs

(or C-GSTCs in short). We model the CGSTCs using a three dimensional FDTD method and

demonstrate the validity of our modelling technique by numerically implementing the scheme

for optical devices such as lenses and deflectors using home made parallel FDTD codes. We

have used our numerical simulations to study the effect of the shape of the metasurface in-

terface on the performances of metalenses. These performances were numerically character-

ized using standard methods of optics such as the Full Wave At Half Maximum (FWHM), Point

Spread Function (PSF) or optical aberrations calculation through Zernike polynomial analy-

sis. Our numerical implementation can serve as a tool to design freeform meta-optics, and can

help in evaluating and optimizing the optical response of complex freeform optical assemblies.

On the other direction, we have come up with certain characterization techniques to mea-

sure the phase data experimentally by using an in-house experimental set up. The measured

phase data is processed for the evaluation of the susceptibilities. The transmitted field data

arising from the metaoptical devices are computed numerically using Fourier beam propaga-

tion methods with the help of measured susceptibilities. Finally, the performance of the optical

devices such as metalenses and deflectors are studied and reported. This technique could help

in characterizing optical devices without the need of much complicated tools & devices in ex-

perimental labs, which could save a huge amount of resources.

We have developed a full vectorial mesoscopic electrodynamical model to investigate the

light-metasurface interaction. In this method, we obtain the distributed form of the suscep-

tibilities from the geometric design of the metasurface by the lattice representation of nano-

antennas, an approach which is similar to the concept used in solid state physics. The analyti-
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cal distribution function of the susceptibilities is calculated from the design of the metasurface,

contrarily to the conformal theory, in which the metasurface is designed from the susceptibil-

ities. The susceptibility function of the metasurface contains all the necessary information

regarding the functionality of the metasurface, and is directly proportional to the response of

the metasurface (polarization vector). We obtain an analytical expression for the propagation

of the field through the metasurface by solving Maxwell’s equations for a given susceptibility

function. Using the proposed method, we investigate a polarization-dependent metasurface,

which is fabricated in our lab. We prove that the transmitted co-polarized beam alone acquires

a global phase (propagation delay) associated with the antenna response. Contrarily to the co-

polarization beam, the transmitted cross-polarized beam is influenced by both PB and propa-

gation phases. We extend this phase phenomenon to a general situation by decomposing the

arbitrary polarization of a normally incident light in circular basis, showing that each eigenstate

acquires an opposite extra phase delay due to the topological phase retardation associated with

the PB phase. The diffractive properties of topological phase gradient metasurfaces are ana-

lyzed in depth via the analytical derivations, and the results are verified with optical measure-

ments. The other physical mechanisms such as the universal principles of co-polarization and

cross-polarization transmission, and the coexistence of the zero and nonzero phase gradient

leading to the ordinary and generalized Snell’s law, are illustrated using the present framework.

Our model demonstrates the origin of both controllable phase retardation effects (propagation

phase and PB phase), as an initiative to develop an intuitive understanding of topological and

functional beam splitters for future applications in quantum optics and quantum information

protocols.

Keywords

Conformal metasurface, freeform metasurface, conformal FDTD modelling, mesoscopic elec-

trodynamical theory, Abbe sine lens, CGSTCs, GCTSCs, topological phase gradient metasur-

faces, Pancharatnam Berry metasurface, meta-optics, surfacic susceptibilities.
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Résumé

L’optique conforme permet de concevoir des dispositifs optiques de nouvelle génération, of-

frant des avantages tels qu’une haute efficacité de contrôle du front d’onde ainsi que des inté-

grations dans des systèmes aux géométries complexes. Obtenir un système d’imagerie haute

performance avec un facteur de forme compact tel que les écrans de réalité augmentée et

virtuelle, les caméras et les microscopes nécessite d’intégrer des dipositifs optiques présen-

tant des degrés de liberté supplémentaires. Les récents développements en optique tels que

les méta-optiques conformes, i.e. l’optique des métasurfaces de forme libre combinée aux sur-

faces optiques, permettent d’envisager de nouveaux assemblages optiques plus légers, plus

simples et plus compacts. Jusqu’à présent, il y a eu très peu d’études sur la modélisation et la

synthèse des métasurfaces conformes. Nous proposons ici une méthode de synthèse inverse

de métasurfaces ayant des formes arbitraires. Nos travaux nous conduisent aux expressions

des conditions aux limites pour les champs électromagnétiques dites généralisées, appelées

"Conformal Generalized Sheet Transition Conditions". Nous modélisons les CGSTC à l’aide de

la méthode FDTD tridimensionnelle et démontrons la validité de notre technique de modélisa-

tion en implémentant un schéma numérique pour les dispositifs optiques tels que les lentilles

et les déflecteurs. Pour réaliser nos simulations numériques, nous avons développé un code

FDTD tridimensionnel parallèle. De plus, nous étudions l’effet de la forme de l’interface de la

métasurface sur les performances de la lentille. Les expériences numériques nous ont permis

de caractériser la lentille à l’aide d’outils tels que le FWHM, le PSF (Réponse Impulsionnelle) et

l’analyse Zernike. Les résultats numériques montrent que les métalentilles Abbe-Sine (répon-

dant aux Conditions de Sinus de Abbe) présentent des performances de focalisation élevées

par rapport à celles des métalentilles planaires. Nos travaux numériques peuvent servir d’outils

pour concevoir des méta-optiques de forme libre, et peuvent aider à évaluer et à optimiser la

réponse optique des assemblages optiques de forme libre complexes.

Nous avons également mis au point certaines techniques de caractérisation pour mesurer

expérimentalement les décalages de phase introduits par les métasurfaces. Les valeurs de

phase, mesurées expérimentalement à l’aide d’une caméra de phase, sont traitées afin d’en

extraire les susceptibilités d’interface. Partant des susceptibilités d’interface mesurées expéri-

mentalement, on calcule les champs transmis au travers des dispositifs méta-optiques à l’aide

de méthodes de propagation de faisceaux (type Fourier). Ceci nous permet d’étudier numérique-

ment et en détails les performances des dispositifs optiques. Cette technique pourrait aider à

caractériser en laboratoire tous les dispositifs optiques sans avoir besoin d’outils complexes ou
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de dispositifs adaptés à chaque composant, ce qui pourrait permettre d’importantes économies

de ressources.

Nous avons également développé un modèle électrodynamique mésoscopique vectoriel

complet qui nous permet d’étudier l’interaction lumière-métasurface. Dans cette méthode,

nous nous appuyons sur une approche similaire à celle utilisée en physique de l’état solide

pour obtenir les susceptibilités à partir de la géométrie et de l’organisation du réseau de nano-

antennes. La fonction de distribution analytique des susceptibilités est calculée à partir de

la conception de la métasurface. Cette approche s’appuie sur un raisonement diamétrale-

ment opposé à celui utilisé pour nos travaux sur la théorie conforme, dans laquelle la mé-

tasurface était conçue à partir des susceptibilités. La fonction de susceptibilité de la méta-

surface contient toutes les informations relatives à la fonctionnalité de la métasurface. Elle

nous permet notamment d’étudier les propriétés de réponse en polarisation de la métasur-

face. Nous montrons ainsi qu’un faisceau co-polarisé émis acquiert seul une phase globale

(délai de propagation) associée à la réponse de l’antenne. Contrairement au faisceau de copo-

larisation, le faisceau de polarisation croisée transmis est influencé à la fois par les phases dite

de Pancharatnam-Berry (PB) et de propagation. La phase de PB est dite phase géométrique, et

ñ’apparaît que lors des processus de conversion de polarisation. Nous étendons ce phénomène

de phase à une situation générale en décomposant la polarisation arbitraire d’une lumière nor-

malement incidente en base circulaire, montrant que chaque état propre acquiert un retard de

phase supplémentaire opposé en raison du retard de phase topologique associé à la phase de

PB. Les propriétés diffractives des métasurfaces à gradient de phase topologique sont analysées

en profondeur via les dérivations analytiques, et les résultats sont vérifiés par des mesures op-

tiques. Les autres mécanismes physiques tels que la transmission en co-polarisation et en po-

larisation croisée, ainsi que la coexistence du gradient de phase nul et non nul conduisant à la

loi de Snell ordinaire et généralisée, sont illustrés à l’aide de ce formalisme.

De façon générale, nos travaux théoriques mettent en évidence les principes théoriques de

base permettant de manipuler les faisceaux lumineux aux interfaces planaires et conformes.

Nous démontrons que la géométrie de l’interface peut être utilisée comme une variable d’ajustement

supplémentaire pour améliorer la conception des métasurfaces.

Mot-clés

Métasurface conforme, Métasurface de forme libre, Modélisation FDTD conforme, Théorie

électrodynamique mésoscopique, Lentille d’Abbe Sinus, CGSTCs, GCTSCs, Métasurfaces à gra-

dient de phase topologique, Pancharatnam Berry métasurface, Méta-optiques , Susceptibilités

surfaciques.
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Preface

This thesis deals with the concepts of freeform conformal metasurface and its synthesis, as well

as modelling and its applications to optical devices. The work reported in this manuscript has

mostly been carried out in research group Flatlight at CNRS-CRHEA, under the supervision of

Dr. Patrice GENEVET. The Flatlight group, which I have had the opportunity to join for my three

years of PhD, is very active in the areas of theoretical and experimental research, spanning from

nanophotonics, plasmonics, metasurfaces, thin-film optics and nonlinear optics to quantum

plasmonics. This wide variety of research topics has given me an opportunity to learn new

physics. I have been able to learn many computational an characterization techniques, and,

above all, I have had the opportunity to interact with an international community of renowned

scientists.

The computational tools discussed in the thesis have been developed by myself. The con-

formal theory formalism has been proposed by Dr. Nicolas Lebbe from the Nachos project-

team of INRIA, Sophia-Antipolis, lead by Dr. Stéphane Lanteri, and implemented in FDTD by

myself. The mesoscopic electrodynamical theory has been developed in collaboration with

Zhangjie Gao from the theoretical quantum photonics and spectroscopy group coordinated

by my co-supervisor, Prof. Konstantin E. Dorfman, from the State Key Laboratory of Precision

Spectroscopy of East China Normal University. All the experimental characterization and fab-

rications have been done by either Dr.Samira Khadir or Dr.Qinghua Song.

The manuscript is organized as follows :

Chapter.1 provides a general introduction to the research field of metamaterials,

metasurfaces, and their applications. It constitutes a brief review of recent advancements in the

research of both planar metasurfaces and freeform optics in order to provide a general context

to this PhD work.

Chapter.2 introduces the theoretical framework of the conformal metasurface syn-

thesis. A general method applicable to any freeform conformal metasurface synthesis is de-

rived, starting from the Maxwell equations. The discontinuities caused by the presence of

freeform conformal metasurfaces called "Conformal Generalized Sheet Transition Conditions"

are presented. Using the CGSTCs conditions, a few conformal metasurfaces are synthesized,

such as a sinusoidal lens and a deflector.

Chapter.3 discusses the freeform conformal modelling of zero thickness metasur-

faces using the FDTD methods in 2D and 3D. It gives an in-depth analysis on virtual nodes

schemes in 2D and 3D simulations and provides details for the parallel implications of the con-
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formal FDTD scheme. The CGSTC-FDTD scheme is validated with a few 2D examples such as

a sinusoidal lens, a deflector, a circular absorber, etc. Towards the end of the chapter, we study

the evolution of aberrations as a function of the curvature of the interface. We conclude with a

lens called Abbe sine conformal lens, which shows a minimum aberration when the Abbe sine

condition is satisfied, and whose optical performance is qualitatively analyzed by calculating

the Zernike polynomials.

Chapter.4 deals with the use of the proposed CGSTCs-FDTD technique in estimat-

ing the performance of any optical device by obtaining the phase profile of a device from the

experiments. The chapter details the synthesis methods followed to fabricate the metasurface

lens and deflector. It also later introduces a measuring technique to extract the phase pro-

file of an optical device using a phasic’s camera. Finally, the phase data is plugged into our

home-made FDTD code, and the obtained results are compared with those of the measured

experiments.

Chapter.5 provides a mesoscopic theory for a general investigation of any meta-

surface which relies on the susceptibility distribution function constructions. The derivations

are provided starting from the Maxwell equations. Using the proposed theory the generalized

Snell’s law is proved. Contains the studies explaining the origin of propagation phase and the

PB phase in the case of topological PB metasurface. To the end, chapter discusses the per-

formed experiments to compare the theoretical results obtained from the mesoscopic theory.

Defence slides can be found here PhD Defense slides

https://drive.google.com/file/d/1jkbzmSpDxiISjbVnVA5yCMQOHaMv8uY6/view?usp=sharing
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Chapter 1

Introduction to Metasurface

1.1 Overview of metasurface

Modern scientific research on metamaterial has been brought into light by the theoretical works

of Veselago [6], while Pendry’s work [7] on artificial materials later brought attention on striking

phenomena such as negative refractive index [8] and near zero index [9]. These types of materi-

als had even been anticipated more than a century ago by theory. Many authors have attributed

the first research on such materials to Veselago [6], but Sivukhin (D. V. Sivukhin, “The Energy of

Electromagnetic Fields in Dispersive Media) had briefly examined their properties as early as

1957. Many works referring to negative refraction appeared even earlier. L.I Mandelshatam de-

scribed the phenomenon of negative refraction and backward propagation of waves in his book

"Lectures on some problems of the theory of oscillations " published in 1944. In recent years,

a large amount of research has been proposed and conducted in the field of metamaterials.

However, due to their 3D and highly resonant nature, they suffer from manufacturing com-

plexity and losses, and are highly dispersive. The surfacic version of a metamaterial had orig-

inally been given the name of metafilm [10] - [11], which consists of a surface distribution of

electrically small nano-scatterers. These individual nano-scatterers may be of arbitrary shape,

and can have very thin dimensions compared to the wavelength in the surrounding medium.

The properties of a metafilm can be characterized by the electric and magnetic polarizabilities

of its scatterers. Metafilms can also be called metasurfaces, 2D metamaterials or single-layer

metamaterials. Unlike the 3D metamaterial these, planar metamaterials, also known as meta-

surfaces, are easy to fabricate and integrate into compound devices. The phase discontinuity

across the metasurface shows anomalous refraction, thus conserving both the useful metama-

terial properties and the low-loss characteristics.

Metasurfaces [12, 13, 14, 15, 16, 17, 18, 19, 20, 21] offer innovative technological expansion

in the field of optics and material science. Metasurfaces display fascinating optical and electro-

magnetic properties that are not obtainable with natural materials. They hold a wide range of

potential applications in electromagnetics, ranging from low microwave to optical frequencies
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[22]- [23], including tunable smart surfaces, novel wave-guide structures, angular-independent

surfaces, miniaturized cavity resonators, absorbers [24, 25, 26], biomedical devices [27], ter-

ahertz switches [28, 29, 30], holography [31, 32, 33], cloaking [34, 35, 36], energy harvesting

[37, 38, 39], super lenses [40]- [41] and in many other fields of science and engineering.

1.2 Mathematical description of the metasurface

1.2.1 The principle of operation of the metasurface

The operating principle of a metasurface relies on the phenomenon of diffraction. Any device

with a periodic arrangement of elements can be viewed as a diffraction lattice, which splits the

incident light into a bundle of diverging rays. The direction and the number of the rays de-

pend on geometrical parameters, the angle of incidence, the wavelength and the period of the

lattice. Similar to the diffraction grating effect, the presence of a metasurface induces a spa-

tial distribution of phase discontinuity in momentum space. The metasurface can modify the

amplitude and impart an abrupt phase change to the incident light within the sub-wavelength

scale via the light-matter interaction, and thus one can realize the wavefront modulation in a

more efficient ways compared to the traditional bulky optical components.

Lets us consider the metasurface shown in Fig.1.1 and ask ourselves this question: how can

we consider the effect of the thin metasurface present between the two media on the propaga-

tion of light? This question can be answered by applying Fermat’s principle, according to which

the light follows the path of least time. The phase difference between the two infinitesimally

close paths of light ABC and ADC is given by:

(
k0n1 sinθ1d y +φ+dφ

)
ADC + (

k0n2 sinθ2d y +φ)
ABC = 0, (1.1)

where φ is the phase of the electromagnetic field. Upon rearranging the Eq. (1.1), it comes out

to be the well known Generalized Snell’s law [42], [43]- [44], given by

sinθ2n2 − sinθ1n1 = λ0

2π

∂Φ

∂y
, (1.2)

where θi is the angle of incidence, θt is the angle of refraction, λ0 is the wavelength in vacuum,

ni and nt are the refractive indices of the incidence and refractive media, ∂Φ
∂y is the constant

gradient of phase change along the interface of the media.

Generalized Snell’s law explains the abrupt phase shift introduced by the presence of a

metasurface between the two media. However Snell being the optical point of view of meta-

surface, which is useful to describe the metasurface discontinuity using ray optics, using this

approach one cannot obtain the material properties of the metasurface such as susceptibilities.

Thus we will have to look at the electromagnetic fields discontinuities which arose due to the

presence of the metasurface. In general the electric and magnetic response of a linear medium
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Figure 1.1: Schematics used to derive the generalized Snell’s law of refraction. The interface
between the two media is a metasurface (green square filled boxes), which is engi-
neered with an abrupt phase φ in the path of light.

can be expressed with the help of the relation D = ε0E+P, B =µ0(H+M) where E,H are the elec-

tric and magnetic fields and D, B are the electric displacement vector and magnetic flux density

vector, respectively. D and B depend on the E and H on the material polarization through P and

M. ε0 and µ0 are the permittivity and permeability of the free space. The polarization densities

can be expressed in terms of the macroscopic quantities called susceptibilities, which we use

to model the metasurface as it is more convenient to describe a metasurface as a homogeneous

medium. The polarization densities of a metasurface are given by

P = ε0χee E+ 1

C0
χem ·H, M =χmmH+ 1

η0
χme ·E. (1.3)

where C0 is the speed of light in vacuum, η0 =
√
µ0/ε0 is the impedance of the vacuum and χee ,

χem , χmm and χme are the electric, electric-to-magnetic, magnetic and magnetic-to-electric

susceptibility tensors, respectively. In most of the scenarios electric-to-magnetic and magnetic-

to-electric terms are ignored as in the majority of the materials magneto-electric coupling is

absent. In the following section we discuss a model where the metasurface is replaced by an

equivalent zero-thickness sheet possessing the effective electric and magnetic surfacic suscep-

tibilities of the metasurface.

1.2.2 Metasurface Generalized Sheet transition Conditions

Using the effective susceptibilities of a metasurface, it has been shown that the type of bound-

ary conditions known as Generalized Sheet Transition Conditions (GSTCs) is the appropriate

way to model metasurfaces [10, 45, 46]. The interaction of the electric and magnetic fields on
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either side of the metasurface to are care of through transition conditions applied at the meta-

surface interface. All the information about the metasurface (its geometry such as its size or

the shape of the elements, the material properties, etc.) is accommodated into the parameters

that appear explicitly in the GSTCs. A general approach, based on susceptibility tensors, is pro-

posed for the synthesis of metasurfaces transforming arbitrary incident waves into arbitrary

reflected and transmitted waves as shown in Fig.1.2. The discontinuity in the electromagnetic

fields due to the presence of the metasurface interface in Maxwell’s equation is given by [47]:

x ×�E�=−iωµ0

(
χmm,0{H}

)
∥+iω

p
µ0ε0

(
χee,0{E}

)
⊥, (1.4)

x ×�H�=iωε0

(
χee,0 {E}

)
∥+iω

p
µ0ε0

(
χmm,0{H}

)
⊥, (1.5)

where χmm,0, χee,0 are surfacic magnetic and electric susceptibilities, the jump �·� and

mean {·} operators are defined for any field Ψ on metasurface as �Ψ� = Ψ+ −Ψ− and {Ψ} =
(Ψ++Ψ−)/2 withΨ+ (resp. Ψ−) the value ofΨ above (resp. below) the metasurface as show in

Fig.1.2. Eq. (1.4)- (1.5) are only applicable to a planar metasurface and cannot be applicable to

the conformal or freeform or interfaces with arbitrary shaped interface. Therefore a complete

theory based on the distribution form of susceptibilities is proposed and derived from the stan-

dard Maxwell’s equations which is applicable to any arbitrary surface is presented in chapter 2.

Eq. (1.4) - (1.5) thus became as a special case of the proposed theory by substituting n = x̂ in

Eq. (2.91)- (2.94).

All the material properties of the metasurface are coded in the susceptibilities (χmm,0,χee,0)

appearing in Eq. 1.4 - 1.5, which are useful in designing a metasurface of a desired function-

ality with properties such as being lossless, gainless or reciprocal, completely transmitting and

reflecting. By reducing the number of independent susceptibility components, the number of

transformations can be decreased [48]. GSTCs offer a very powerful tool to analyze a vast array

of metasurface applications, including birefringent transformations [49], [50], bianisotropic re-

fraction [51], light emission enhancement [52], nonreciprocal nongyrotropic isolators [53] and

non linear second-harmonic generation [54], remote spatial processing [55], radiation pressure

control [56] and dielectric metasurfaces for dispersion engineering [57].

Therefore, a complete theory based on the distribution form of susceptibilities, which can

be be applied to any arbitrary surface, is derived from the standard Maxwell’s equation and is

presented in the chapter 2.
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Figure 1.2: The metasurface inverse synthesis problem. A metasurface, defined as a man-
made, nanostructured interface with subwavelength thickness (δt ¿ λ), is placed
at x = 0. The surface susceptibility tensor χ of the planar metasurface transform-
ing an arbitrary incident wave Ψi into designed reflected Ψr and transmitted wave
Ψr is obtained using the inverse synthesis method proposed in the section 2.4.1 of
chapter 2.

1.3 Planar metasurface and computational tools

As discussed in section 1.2.2, electromagnetic fields vary in a discontinuous manner across

metasurfaces due to the latter’s very thin nature in comparison with the usual refractive phase

retardant material. Such a discontinuity of electromagnetic fields across the planar metasur-

face can be implemented numerically via GSTCs. In this section, we sum up all the computa-

tional methods that have been developed till date to numerically simulate the metasurfaces in

general. Given their importance as well as their wide applicability in optics and other fields of

science, developing efficient numerical technologies to analyze metasurfaces for various ap-

plications represents a significant interest. Finite Difference Time-Domain (FDTD) [58] and

Finite Difference Frequency Domain (FDFD) [59] are well-known numerical methods used for

solving Maxwell’s equations in the time and frequency domains. The first paper to present a

simulation method which is applicable to a general metasurface that exhibit both electric and

magnetic discontinuities dates back to 2016 [60] and introduces the GSTC treatment of the

metasurface in an FDFD scheme. The method is straight forward to implement and does not

demand any modification of the finite difference equations, except near the metasurface. It

relies on the description of the spatial discontinuity induced by the metasurface as a virtual

structure, located between standard nodes of the existing Yee grid cells, using finite difference

version of GSTCs. Here "virtual structure" is used since the metasurface is not not physically

present in the Yee grid scheme, the structure is replaced by virtual nodes which are imagined

to be present in between the standard Yee grid nodes (see Fig. 1.3) this is explained in detail in
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Figure 1.3: Metasurface modelling using virtual node. The metasurface (green line) is charac-
terized by surface susceptibilities, is placed between the 1D staggered Yee cells of
FDTD grid. This metasurface effect is taken into account in the FDTD scheme by
replacing the metasurface with the virtual nodes represented with green outlined
triangle and circle for the Hx and Ez field components.

chapter 3. The scheme was extended to the Finite Difference Time-Domain (FDTD) [61] to

study problems like nonlinear, polychromatic and space-time varying metasurfaces. However

although being a rather simple method to implement, it is not applicable to dispersive metasur-

faces. A robust method for simulating bi-anisotropic dispersive metasurfaces is presented in

[62] which replaces the standard FDTD update equations with the auxiliary polarization func-

tion based on GSTCs using the virtual node. The Authors report that this auxiliary equation-

based method is computationally more efficient in terms of memory consumption and time

of computation compared to the previously reported dispersive methods [61]. Additionally,

a zero thickness space-time modulated Huygen’s metasurface is numerically demonstrated in

[63]. A unit cell is computed by considering the space and time varying permittivity, in order to

represent a traveling spatio-temporal perturbation on the metasurface. An FDTD simulation

of broadband electromagnetic metasurface has been modelled using Lorentzian axial mono-

anisotropic Huygens’ metasurface surface susceptibilities [64]. However, the above literature

focuses on two-dimensional problems, while a 3D FDTD method for a bianisotropic metasur-

face with arbitrary susceptibility dispersion taking into account the longitudinal polarization

appearing in GSTCs is modelled using a piecewise-linear recursive convolution (PLRC) tech-

nique [65].

In the above literature the proposed computational studies focus on the planar metasur-

face, which can not be directly applied to study the conformal metasurface. Therefore, in chap-

ter 3 we propose a 3-dimensional computational model to numerically study the physics of the

conformal metasurfaces using the FDTD method, which is more realistic in comparison to the

2D conformal metasurface modelling presented in [66]. Using the proposed 3D FDTD scheme,

we study a few 2D and 3D problem involving the applications of the conformal metasurface. To

the end of the chapter, we further study the effect of the curvature of the metasurface interface

in achieving the aberration free imaging.
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1.4 Introduction to the freeform surfaces

An optical system is an assembly of different optical devices designed to as achieve a desired

functionality [67]. Optical design implies to optimize all the information to describe an optical

system, such as the positions and sizes of the optical components, the shapes of the optical

surfaces and the materials of the optical media [68], such that the rays emerging from the set

of components reach the desired targets perfectly. The desired functionality must be set up

during the design process, which aims at finding a way to reduce some of the primary or higher

order aberrations. In order to design a process, one needs to evaluate the system performance

and make the appropriate changes, and then re-evaluate the design before invoking further

improvements.

Recently, the introduction of computer-based software and optical designing tools has opened

new doors in optical design. Computers have made it easy to perform ray tracing rapidly, to cal-

culate the aberrations and to evaluate the designed system’s performance. It has also become

simpler to eliminate nonlinear aberrations using computer-aided nonlinear equation solvers.

Nowadays, numerical optimization [68], [69] is extensively used to obtain the design of opti-

cal devices by minimizing the merit function of each individual components while relying on

numerical simulations to evaluate their performances.

An optical freeform surface is an optical surface without symmetry (no axis of rotational

invariance) [70], which reduces the aberrations by carefully compensating the expected phase

shift with a phase induced by the freeform design see Fig.1.4. This lack of symmetry element

adds more degrees of freedom to the design process. Freeform surfaces offer new functional-

ities to the system in addition to improving its performance [71], [72], [73]. Optical systems

incorporating freeform metsurfaces have proved to achieve diffraction-limited optical perfor-

mance in compact geometries [74], [73], [75], [76]. Optical devices designed with freeform sur-

face profiles can drastically reduce the aberrations (see Fig.1.4), the conceptual application of

freeform surfaces for optical imaging is demonstrated to obtain aberration free imaging. With

automation, new design tools and advancements in optical testing [77], fabrication and pro-

cessing, freeform surfaces have become feasible in practical applications [1]. We demonstrate

one such free form conformal metalens whose performance is better in comparison to that of

planar metalens in the section 3.5.2 in chapter 3.
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Figure 1.4: Conceptual diagram of freeform metasurface: (A). φmeta is the phase contribution
due to planar metasurface and freeform surface (B). Image formed is aberrated
when the φmeta (not conformed)is transferred to a freeform surface, (C). There is
no aberration when (φmeta) conformed is transferred to a freeform surface [1].

1.5 Applications of Conformal Metasurfaces

Conformal metasurfaces are metasurfaces which consist of artificially designed and ultra-thin

subwavelength meta-atoms that are conformal to the shape of a freeform surface. The func-

tionality and geometry of several conventional devices (mirrors, lenses, wave plates, etc) are

correlated in a way that the desired phase profile is accumulated along the path. By using the

conformal metasurface, the optical performance can be decoupled from the geometry and fur-

ther engineered at the surface, leading to novel functionalities and increased freedom in design,

such as mechanical and aerodynamic features [78].

We can find many uses to conformal metasurfaces in designing optical illusion and cloak-

ing devices [79], conformal holography [80], freeform spectrometers enabling increased com-

pactness [73]. We can make use of the flexibility of the conformal metasurface in the study of

revealing topology and hidden symmetries in the gratings [81], and in the design of freeform

metrology [77] for high precision measurements. Conformable metasurfaces can also be use-

ful in many areas such as microscopy, spectroscopy, virtual reality, augmented reality, remote

sensing, high-performance telescopy, in order to bring precision in imaging and compactness

to the systems. Fig.1.5 gives an overview of the applicability of conformal metasurface optics

in different fields of science and engineering.

In order to make the understanding of chapter 5 pedagogical, we present here some intro-

ductory concepts such as Pancharatnam Berry and geometric phases in the following section.
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Figure 1.5: Applications of conformal optics: A spider diagram showing the applicability of con-
formal metasurfaces in different fields of science & engineering.

1.6 Pancharatnam Berry phase metasurface

In classical or quantum mechanics, geometric phase is defined as the phase difference result-

ing from the geometric properties of the parameter space of the Hamiltonian when the system

is subjected to adiabatic cyclic process [82]. This phase is observed when the characterization

of a system involves at least two parameters which simultaneously vary over the course of a cy-

cle. In optics this effect can be seen when the polarization of a light is varied in a cyclic manner

that correspondes to half of the solid angle subtended by the polarization cycle on the Poincaré

sphere, light acquires geometric phase along with dynamic phase because of its path length

[83]. Poincaré sphere representation of polarization states is crucial in recognizing the geo-

metric nature of this phase. This effect was observed by an Indian scientist S. Pancharatnam,

in 1956 [84] and his theory later on generalized and extended to quantum systems by M. Berry

in 1987 [85]. The effect is best realized by the use of Half Wave Plate (HWP) in experiments.

HWP is a birefringent crystal which induces a relative phase difference of half the wavelength

along its slow axis with respect to fast axis. When a Linearly Polarized Beam (LPB) is incident on

the HWP, the resulting beam is LPB with its polarization axis subtending 2θ with respect to the

direction of incident polarization, where θ is the angle between the direction of polarization

and fast axis of HWP. The incident Circularly Polarized Light (CPL) after passing through HWP

converts into oppositely handed CPL. For example Right Circular Polarized Light (RCP) is con-

verted into Left Circular Polarized Light (LCP) after passing through the HWP irrespective of the

rotation angle of HWP. But the trajectory taken on Poincaré sphere by the RCP to become LCP
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is dependent on θ as shown in Fig. 1.6.a. Therefore a beam following the trajectory acquires a

global phase of 2θ which is precisely the PB phase. This PB phase can be controlled by steering

the rotation angle of HWP.

We can use the waveguiding phenomenon of the metasurface nanopillar to induce a phase

shift ranging from 0 to 2π [86], and by taking an asymmetric (rectangular shape) nanopillar it is

possible to generate two simultaneous modes along the length and width of the nanopillar (see

Fig. 1.6.a). By tuning the length and width of a nanopillar we can generate a phase difference of

π between the two modes, mimicking Half Wave Plate (HWP) [86] as shown in Fig. 1.6.b. Now

it is possible to obtain various PB phase terms by rotating the nanopillars along the vertical

axis (nanopillar height axis). A α rotation of nanopillar results in 2α additional PB phase to the

output light as shown in Fig. 1.6.b.

PB phase is a reliable synthesis method to design a precise controllable phase at nanoscale

using metasurface, the advantage of this technique being that the ‘signal’ with PB phase infor-

mation has opposite circular polarization to that of input polarization. Thus, experimentally, it

is favourable to filter out the incident light and extract the signal using a set of HWP and Quarter

wave plate. Additionally, the phase can be precisely controlled by the rotation of pillars.

1.6.1 PB phase studies through Jones matrix calculations

Assume a birefringent nanopillar with a cross section in x − y plane having an equal transmis-

sion (tx = ty = t ) along x and y direction as shown in Fig. 1.6.b. The Jones matrix (J (φx ,φy )) of

such a pillar is given

J (φx ,φy ) =
(

e iφx 1

1 e iφy

)
, (1.6)

where φx and φy are retarded phase along x and y axis. The optical rotation of the individual

nanopillar can be mathematical given is by the rotation matrix

R(α) =
(

cosα sinα

−sinα cosα

)
, (1.7)

where α is the rotation angle of the nanopillar with respect to the vertical axis of the pillar. The

resultant transfer phase matrix due to the combined rotation effect of all the nanopillar and the

retarded phase (Jones matrix) is given by

M(α) = R(−α)

(
cosα sinα

−sinα cosα

)
R(α). (1.8)

Now, let us assume that an LCP light is incident on a metasurface represented by resultant
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Figure 1.6: PB phase metasurface. a). schematic representation of geometric phase on Poincaré
sphere, phase retardation is path dependent variable. b). A rectangular nanopillar
with width (Lx ) and length (Ly ) is tuned to convert an incoming light with LCP to
RCP light. c). schematic explaining the generation of different PB phase by rotating
the nanopillars [2, 3].

matrix M , the final transmission expression following simplifications, is given by

ET = M ·ELC P , ET = e iφx +e iφy

2
ELC P + e iφx −e iφy

2
e i 2mαERC P . (1.9)

For the case whenδφx y =φx−φy =π, the input LCP is entirely converted into RCP. Thus, we can

tune the transmission ratio between the 0 and 1st by varying the resultant retarded phase δφx y .

The coefficient term e i 2mα accompanying the converted polarization is known as PB phase.

From this term we can infer that for 2α PB phase is resulted from an α rotation of nanopillar.

Hence, in general we can say that for rotation of nanopillar from 0 to π offers a phase ranging

from 0 to 2π. In general the transmitted field is give by [87]

|ET 〉 =p
ηE |EI 〉+p

ηR e i 2α(x,y)|RC P〉+p
ηLe−i 2α(x,y)|LC P〉, (1.10)

whereηE = mod
(
tx+ty e iδφx y

)
2 , ηR = mod

(
tx−ty e iδφx y

)
2 〈EI |LC P〉, ηL = mod

(
tx−ty e iδφx y

)
2 〈EI |RC P〉,

are the magnitude of the coupling efficiencies of different polarization orders. and tx , ty are

the transmission coefficients along x and y . This concept of PB phase offers a lot of room for

tuning the transmitted phase polarization.

1.6.2 Perspective of this work

In this work, we mainly concentrate on theoretical works on conformal metasurfaces and their

applications to optical devices. We propose (in chapter 2) a new synthesis method based on

the Dirac distribution of E-M fields at the arbitrary interface and come up with a more gener-

alized sheet discontinuities called Conformal-GSTCs (CGSTCs). The CGSTCs can help the en-

gineers and scientists in studying and understanding freeform conformal meta-optics which
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might bring new advancements in imaging technology. We model the CGSTCs (in chapter 3)

using 3D FDTD method and further study the effect of the shape of the metasurface interface

on the performance of the lens. This method can act as a tool to design freeform meta-optics

and can help in evaluating the optical response of complex freeform optical assemblies. In

addition, we have come up (in chapter 4) with certain ways to measure the phase data ex-

perimentally and evaluated the performance of optical devices such as lens and deflector by

extracting susceptibilities from the phase profile based on the CGSTCs theory. This technique

can help in characterizing the optical devices without the need of much complicated tools and

devices in the experimental labs. On the other hand, we have provided an analytical frame

work (in chapter 5), which is a self sufficient mesoscopic electrodynamical theory of topologi-

cal metasurface, which provides more insight into the physical mechanism of the polarization

dependent breaking of translation symmetry in contrast with propagation phase effects.

1.7 Tools and Software

All the software used in the preparation of this thesis is home-made using fortran90, openmpi

and openmp and Matlab. All the plots are plotted using either Gnuplot or Matlab according

to the needs. All the software will be available on Dr.Patrice Genevet’s group website soon and

are the property of Centre National de la Recherche Scientifique (C.N.R.S).



Chapter 2

Conformal Generalized Sheet

Transition Conditions

2.1 Introduction

To study the optical components with freeform metasurface interfaces, we need an analytical

expression for sheet transition conditions accounting for the discontinuity conditions at the in-

terface between two media. As we know, such conditions for planar metasurfaces are proposed

in [47]. The GSTCs from (1.4)- (1.5) are only applicable to planar metasurface interfaces. These

equations cannot be applied straightaway to arbitrary shaped metasurface interfaces. Besides,

they are not adaptable to other non orthogonal coordinates as they are derived in Cartesian

coordinates. The discontinuity equations for a conformal metasurface interface are derived in

[4]. However in Cartesian coordinates and thus can not be applied to the optical systems with

closed surfaces. Therefore in this chapter, we are going to extend these already existing deriva-

tions to a spherical, cylindrical and parabolic coordinate system in order to be used for design,

synthesis and study of the optical response of the conformal interface characterized by a closed

surface and a symmetric in shape. These derivations are based on the first-principle starting

from the integral form of Maxwell’s equations [88]. Even though these derivations are powerful,

they require knowledge of differential geometry and involve cubersome mathematics, and they

must be rederived every time you change the coordinate system. Therefore, towards the end of

the chapter we propose a new method based on Dirac distribution of EM fields, we come up

with more generalized sheet transition conditions which are applicable to all types of freeform

metasurfaces (both closed and open surfaces), which are adaptable to any coordinate system

without requiring derivation from scratch. To demonstrate the applicability to a closed meta-

surfaces an example of a metasurface coating on an arbitrary structure is presented at the end

of this chapter.
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2.2 Electromagnetic boundary conditions in differential-

form for any freeform surface with arbitrary geome-

tries

2.2.1 Definitions and notation

Let us consider a two-dimensional manifold metasurface S with a subwavelength thickness

δt ¿ λ as shown in the schematic 2.1 . However, we model S to be a three-dimensional mani-

fold even though all the physical objects are represented with three manifolds and their bound-

aries are represented with two manifolds. The boundaries of S are represented by disjointed

surfaces ∂S+ and ∂S−, whose normal vectors are pointing away from S as shown in Fig. 2.1.(a).

We define ∂S = ∂S+∪∂S−. Next, we consider two disjointed three-manifolds M+and M−, with

the boundaries ∂M+ and ∂M−, respectively, such that M+ and M− are regular and there exists a

line joining the points r+ ∈ M+, r ∈ M and r− ∈ M− being always perpendicular to the bound-

ary of S. M+ and M− identifies the normals to the surfaces ∂M+ and ∂M−, respectively. The

notation M± means M+ and M− throughout the thesis. A single manifold M = M+∪S∪M−, is

formed by sticking the three-manifolds M± and ∂S± together. Two consequences arise from

this: firstly, for every point r on the boundaries, r can be thought of as a point on M± or ∂S±

and secondly, the normal of ∂S± is opposite to that of ∂M±. M forms the entire space for our

problem of metasurface with M± being the two media on either side of the metasurface which

is considered to be free space.

We give the notation V± = V|±M, where V is any vector field, which is defined in M. Similarly

VS = V|S is a vector defined on S, restricted to S. For any r ∈ S, let

�V� = lim
r+→∂M+ V+(r+)− lim

r−→∂M− V−(r−), (2.1)

{V} = limr+→∂M+ V+(r+)+ limr−→∂M− V−(r−)

2
. (2.2)

2.2.2 Assumptions

In order to use the method of homogenization and model the metasurface with the effective

surface susceptibilities [89, 90], we make the following assumptions :

• We assume that all the fields are smooth in each of the manifolds, but the fields are not

well defined at the boundaries of the manifolds.

• We assume that the field distribution across the region of the interface is constant, this

assumption allows us to approximate the derivatives of the fields in the direction normal

to the surface as zero, which facilitates us to recover the normal expression of the GSTCs

(see 1.4-1.5) for the case of planar metasurface suspended in free space.
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Figure 2.1: Schematic describing the mathematical definitions and assumption used to derive
the differential form of boundary conditions due to the presence of the arbitrary
interface S. (a). We define three disjointed manifolds M+,M−,S. We denote the
boundaries of M± with the boundaries of S, which forms a single manifold M = M+∪
S∪M−. The boundaries of S (∂S±)are defined by black dotted lines, whereas the M±

(∂M±) are given by red dotted lines. S has a subwavelength thickness δt ¿ λ. n is
the unit vector field normal to the surface everywhere on S. In order to derive the
integral form of the Maxwell’s boundary conditions, we consider (b) an Amperian
loop and (d) a Gaussian pill box.(c) γ± and γ|S are defined such that γS± = γ± ∪
γ|S, and γ± is defined such that γS± ∪γ|S = γS forms a closed loop crossing S. (e).
∂K± = ∂K ∩ M± , each having outward-pointing unit normal n±

K. We define ∂KS±

such that together with ∂K∩S they form a Gaussian pill box inside S with nS
K being

the outward-pointing unit normal of this Gaussian pillbox [4].
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• We assume that the optical metasurface is of subwavelength thickness δt ¿ λ. This al-

lows us to use the method of homogenization and model the metasurface with surfacic

susceptibilities [89, 90].

The homogenized fields [89, 90] in the metasurface are given by the relation

ES =χe {E} ,

DS =χd {D} ,

HS =χm {H} ,

BS =χb {B} ,

(2.3)

where χe,d ,m,b are the surfacic susceptibilities accounting for the discontinuity in the elec-

tromagnetic fields due to the presence of the metasurface interface. We define the interface

susceptibilities in terms of the jump of the fields across the surface by considering the propor-

tionality between the homogenized electric field within the surface E S and the averaged values

of the fields on either side of the interface E av i.e E S ∝ {E}.

We are dealing here with a metasurface with a linear response, which forces the χe,d ,m,b

to be a tensor of type (1,1)[91]. The metasurface is also immersed in the media that have the

same permittivity and permeability on both sides, which gives rise to the condition χe =χd and

χm =χb .

Before we derive the integral form of boundary conditions from Maxwell’s equations, let us

define a vector V at r such that r ∈ S. The vector V(r ) ∈ Tr M is tangent to S if V points in the

direction parallel to ∂S± at r and V is normal to S if it points in the same direction as the normal

of ∂S+, which is in the direction opposite to the normal of ∂S−. Let n be the unit smooth normal

vector field defined everywhere on S see Fig a).2.1. Before we derive the boundary conditions

from Maxwell’s equations let us write down the standard integral form of Maxwell’s equations

[92] given by

∮
s

nAD ·α=
∫

v
ρdV Gauss’s law, (2.4)∮

s
nAB ·α= 0 Gauss’s law of magnetics, (2.5)∮
s

E ·dl =−
∫

s
α

dB

d t
·α Faraday’s law of induction, (2.6)∮

s
H ·dl =

∫
s

nA

(
J + ∂D

∂t

)
α Ampere’s circulate law, (2.7)

where ρ is the volume charge density,α is the volume element,
∮

s closed integral on any surface

s, dl is the length element. Now we are all set to derive the boundary conditions from the

Maxwell’s equations.
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2.2.3 Faraday’s, Ampere and Maxwell’s boundary conditions

The nonempty intersection of all the manifolds M+,S and M−, (see Fig. 2.1.(b)) is assumed

to be given by a compact smooth (two-submanifold) surface A ∈ M. A is approximated by a

rectangle. We position A such that nA is a tangent to S, where nA is the unit smooth vector

field perpendicular everywhere to the surface A. Let γ be a parameterized closed curve tracing

out ∂A, the boundary of A, in the positive direction induced by nA (the right-hand rule). Let

γ± = γ|M± and define γS±
on A∩∂S± such that γS±

and γ|S S form a close loop γS crossing S (see

Fig. 2.1.(c) ). Note that γS+
and γS−

are opposite in direction to each other. Let lA be the unit

vector defined on ∂A such that it points in the direction of γ. Analogously l±A , l S±
A and l S

A can be

defined. Finally, let α be the metric area (usually known as Hausdorff measure ) element on A.

V ·W denotes the point by point inner product of any vector field V and W on S.

From Faraday’s induction law (2.9), we obtain

−
∫

A
nA · ∂B

∂t
α=

∫
∂A

lA ·Eγ (2.8)

=
∫
∂A∩M+

l+A ·E+γ++
∫
∂A∩M−

l−A ·E−γ−+
∫
∂A∩S

l S
A ·ESγS, (2.9)

By (2.3) and the fact that γS+
and γS−

are in opposite directions according to our definition,∫
A∩∂S+

l S+
A ·ES+

γS+ =−
∫

A∩∂S−
l S−

A ·ES−
γS−

(2.10)

therefore , we have

∫
∂A∩S

l S
A ·ESγS =

∫
∂A∩S

l S
A ·ESγS +

∫
A∩∂S+

l S+
A ·ES+

γS+ +
∫

A∩∂S−
l S−

A ·ES−
γS−

(2.11)

=
∫
∂(A∩S)

l S
A ·ESγS (2.12)

=
∫

(A∩S)
nA · (∇×ES)α, (2.13)

where we have used Stokes’s theorem [92] in simplifying the last term in the above equation,

noting that ES is smooth and compactly supported in A∩S.

Now, let’s shrink A such that ∂A∩M± ⇒ ∂M±. Then in the limit, Eq. (2.9) gives rise to:

−
∫

A∩S
nA · ∂B

∂t
α=−

∫
A

nA · ∂B

∂t
α=

∫
A∩∂M+

l+A ·E+γ++
∫

A∩∂M−
l−A ·E−γ−+

∫
A∩S

nA ·∇×ESα.

=
∫

A∩∂S−
lA ·E|+−γ+

∫
A∩S

nA ·∇×ESα.

(2.14)

The last equality holds when we identify ∂M± with ∂S± and because of the fact that ES is

constant across the depth of S and γ+ is just the opposite direction of γ−.
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Using the assumption that the fields remain constant across the interface , we obtain

∫
A∩S

nA · ∂BS

∂t
α= δ

∫
A∩∂S+

nA · ∂BS

∂t
γ, (2.15)∫

A∩S
nA ·∇×ESα= δ

∫
A∩∂S+

nA ·∇×ESγ. (2.16)

Finally, absorbing the length δ into the vector field ES, we end up with

lA ·E|+−+nA ·∇×ES =−nA · ∂BS

∂t
. (2.17)

Here we need to note that the vector fields ES have the dimensions of the field multiplied

by distance. It can also be noticed that for any vector field X tangent to S, one can prove that

Y = X×n is also tangent to S and satisfies the right-hand rule with X [93]. Then (2.17) can be

written as

−Y ·E|+− = X · ∂BS

∂t
+X ·∇×ES. (2.18)

Similarly, starting with the Ampere-Maxwell law with the assumption of no surface free

currents, one can obtain the expression

−Y ·H|+− = X ·∇×HS −X · ∂DS

∂t
. (2.19)

Here, we remind that X and Y are the vector fields that are tangent to S everywhere and are

not constant in general due to the curvature of S.

2.2.4 Gauss’s electric and magnetic boundary conditions

Let us consider a non empty three-submanifold intersection K ⊂ M of three-manifolds (see

Fig. 2.1.(d) We assume that K is small enough to be approximated by a pillbox. Let ∂K± = ∂K∩
M± and define ∂KS±

such that ∂KS± ∩ S from the boundary of K∩ S. Let nK be an outward-

pointing unit normal vector field defined on ∂K, the boundary of K. Furthermore, let n±
K = nK|±

and nS
K be a unit normal outward-pointing vector field defined on ∂(K∩S). From the definitions

it is clear that nS
K| S

∂S
= nK| S

∂S
. Letαbe the metric area element on ∂K induced by nK andαS be the

metric area element defined on ∂(K∩S) induced by nS
K. Analogously |α± and αS±

are defined.

Finally, let dV be the metric volume element.

From Gauss’s law (2.4),
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∫
K
ρdV =

∫
∂K

nK ·Dα =
∫
∂K+

n+
K ·D+α++

∫
∂K−

n−
K ·D+α−+

∫
∂K∩S

nS
K ·DSαS. (2.20)

Since we are approximating K as a pillbox, we can take nS+
K =−nS−

K . we can further simplify∫
∂K∩S

nS
K ·DSαS =

∫
∂K∩S

nS
K ·DSαS +

∫
∂KS+

nS+
K ·DSαS+ +

∫
∂KS−

nS−
K ·DSαS−

=
∫
∂(K∩S)

nS
K ·DSαS =

∫
K∩S

∇·DSαS
(2.21)

where in the last equality, we used the fact that DS is smooth and compactly satisfies in

K∩S.

Now , if we shrink K such that ∂K± ⇒ ∂M±, in the limit, Eq. (2.20) simplifies to∫
K∩S

ρdV =
∫
∂K+

n+
K ·D+α++

∫
∂K−

n−
K ·D+α−+

∫
K∩S

∇·DSαS

=
∫

K∩M+
n+

K ·D+α++
∫

K∩M+
n−

K ·D+α−+
∫

K∩S
∇·DSαS

=
∫

K∩∂S+
n+

K ·D|+−α++
∫

K∩S
∇·DSαS,

(2.22)

where the last equality of Eq. (2.22) follows from the argument used in Eq. (2.14).

Once again using the field equations in Eq. (2.3), we acquire

n+
K ·D|+−+∇·DS = ρS (2.23)

with the remark n+
K = n|K. Since K can be positioned anywhere along S, we get

nK ·D|+−+∇·DS = ρS. (2.24)

Using similar arguments and procedure for Gauss’s law for magnetism, we have

nK ·B|+−+∇·BS = 0. (2.25)

As we have already stated, N is not constant in general, because of the curvature of S.

Until to this point we have derived the Eq. (2.18), (2.19), (2.24) and (2.25), which are a rep-

resentation of the boundary conditions in integral form. The usability of these equations is only

well appreciated if the latter are represented in the surfacic coordinates (the set of coordinates

which are defined on the metasurface interface of any shape). The choice of the surfacic coor-

dinate depends on the type of the surface we are going to deal with, for example, the surface

can be closed or open .
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2.2.5 Electromagnetic boundary conditions in local coordinates

To be useful, Eq. (2.24) and (2.25) have to be written in some local coordinates. Thus we now

think of M as a subset of a three-dimensional Euclidean space, M ⊂ R3, equiped with global

spherical coordinates (r,θ,φ) (except for points along the r -axis). Let r ′ : M → R be a smooth

function such that S is a level set of r ′. Let R ∈ R be such that S is the R-level set of r’, that

is S = (r ′)−1(R). Then by the implicit function theorem [94] there exists a smooth function

f : R2 ∩M → R be smooth function, f (θ,φ) = r such that S is the graph of f . Now the spherical

coordinate system is not orthonormal, so we need to pay attention to the difference in the

vector and covector representation.

In this subsection we would like to write Eq. (2.24) and (2.25) in the local coordinates. Let

(θ′,φ′) be the local coordinate system on S, then the coordinates chart of S is r (θ′,φ′) = f (θ′,φ′),

θ(θ′,φ′) = θ′, and φ(θ′,φ′) =φ′. er ′ , eθ′ , and eφ′ form a frame for the space of vector fields on S.

Therefore we would like to find the relation between the er ′ , eθ′ , and eφ′ to that of global vectors

er , eθ, and eφ. To this purpose, for i , j = r,θ,φ, the length element in the global coordinates is

given by

d l = dr r̂ + r dθθ̂+ r sinθφ̂

d l ·d l = dr 2 + r 2dθ2 + r 2 sin2θd z2
(2.26)

therefore the Riemannian metric and inverse metric tensors of the spherical coordinate is

given by

gi j =


1 0 0

0 r 2 0

0 0 r 2 sin2θ

 and g i j = g−1
i j =


1 0 0

0 1
r 2 0

0 0 1
r 2 sin2 θ

 (2.27)

Since S is a level set of r ′ , the gradient of r ′,

er ′ = 1

|∇r ′|g i j∂i r ′e j = 1

|∇r ′|
(
∂r ′

∂r
er + 1

r 2

∂r ′

∂θ
eθ+

1

r 2 sin2θ

∂r ′

∂φ
eφ

)
(2.28)

is a vector field normal to the surface S [94], where

|∇r ′| =
√(

∂r ′

∂r

)2

+
(

1

r

∂r ′

∂θ

)2

+
(

1

r sinθ

∂r ′

∂φ

)2

. (2.29)
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Therefore the vector fields on S can be expressed as

er ′ = 1

|∇r ′|
(
∂r ′

∂r
er + 1

r 2

∂r ′

∂θ
eθ+

1

r 2 sin2θ

∂r ′

∂φ
eφ

)
,

eθ′ =
∂ f

∂θ′
er + ∂θ

∂θ′
eθ+

∂φ

∂θ′
ez = ∂ f

∂θ′
er +eθ, since

∂θ

∂θ′
= 1,

∂φ

∂θ′
= 0

eφ′ = ∂ f

∂φ′ er + ∂θ

∂z ′ eθ+
∂θ

∂θ′
eθ =

∂ f

∂θ′
er +eθ.since

∂θ

∂θ′
= 0,

∂θ

∂θ′
= 1

(2.30)

The Riemannian metric and inverse Riemannian metric tensors on S with respect to the surface

coordinates are given by

g S
i ′ j ′ =


er ′ ·er ′ er ′ ·eθ′ er ′ ·eφ′

eθ′ ·er ′ eθ′ ·eθ′ eθ′ ·eφ′

eφ′ ·er ′ eφ′ ·eθ′ eφ′ ·eφ′

 (2.31)

d l’ = (
∂ f

∂θ′
dθ′+ ∂ f

∂φ′φ
′)r̂ + f dθ′θ̂+ r sinθ′dφ′φ̂

d l’ ·d l’ = (
∂ f

∂θ′
dθ′+ ∂ f

∂φ′ dφ′)2 + f 2dθ′2 + r 2 sinθ′dφ′2

=
(

f 2 +
(
∂ f

∂θ′

)2)
dθ′2 +2

∂ f

∂θ′
∂ f

∂φ′ dθ′dφ′+ ( f 2 sinθ′+
(
∂ f

∂θ′

)2

)dφ′2

= g S
i ′ j ′di ′d j ′

(2.32)

g S
i ′ j ′ =


1 0 0

0 f 2 +
(
∂ f
∂θ′

)2 ∂ f
∂θ′

∂ f
∂φ′

0 ∂ f
∂θ′

∂ f
∂φ′ f 2 sin2θ′+

(
∂ f
∂φ′

)2

 (2.33)

g i ′ j ′

S = (g S
i ′ j ′)

−1 =
Ad j (g S

i ′ j ′)

det (g S
i ′ j ′)

& = 1

g S


1 0 0

0 f 2 sin2θ′+
(
∂ f
∂φ′

)2 − ∂ f
∂θ′

∂ f
∂φ′

0 − ∂ f
∂θ′

∂ f
∂φ′

(
f 2 +

(
∂ f
∂θ′

)2
)
 (2.34)

where i ′, j ′ = r ′,θ′,φ′, and g S = det (g S
i ′ j ′) = f 4 sin2θ′+

(
f ∂ f
∂φ′

)2 +
(

f ∂ f
∂θ′ sin2θ

)2
.

As before, if we define X θ′ = g θ
′k ′

S ek ′ , for k ′ = θ′,φ′,r ′, then

Y θ′ = X θ′ ×er ′

=
(
g θ

′θ′
S eθ′ + g θ

′φ′

S eφ′
)
×er ′

(2.35)

substituting for er ′ , eθ′ and eφ′ from equation (3)

Y θ′=X θ′ ×er ′=− 1p
g S

eφ′ . and if X φ′ = gφ
′φ′

S ek ′ , for k ′ = θ′,φ′, then Y φ′ = 1p
g S

eθ′ .

Using the definition of curl [94], [93], ∇×V = [i j k]p
gs
∂ j Vk ei in the surface coordinates, with ∂ j



22 CHAPTER 2: CONFORMAL GENERALIZED SHEET TRANSITION CONDITIONS

denting the differentiating with respect to the j = r ′,θ′,φ′ and

[i j k] =


1 if (i,j,k) is an even permutation of e ′

r , e ′
θ

, e ′
φ

−1 if (i,j,k) is an odd permutation of e ′
r , e ′

θ
, e ′
φ

0 otherwise

(2.36)

Now, as we assume that the fields are constant across the thickness of S, the resulting dif-

ferentiation of the fields in the direction normal to S is zero. Thus, we obtain

Xθ
′ ·∇×VS = 1√

g S

∂VS
φ′

∂φ′ (2.37)

Xφ
′ ·∇×VS =− 1√

g S

∂VS
θ′

∂θ′
(2.38)

Applying all the concepts discussed so far to (2.18), (2.19) (2.24), (2.25) and for a metasur-

face interface with linear response we have

ESi =χi j
e {E} j (2.39)

DSi =χi j
d {D} j (2.40)

HSi =χi j
m {H} j (2.41)

BSi =χi j
b {B} j (2.42)

for all i , j = e ′
r , e ′

θ
, eφ. We obtain
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1√
g S

Eφ′ |+− = 1√
g S

∂

∂φ′
(
χr ′k ′

e E av
k ′

)
+ ∂

∂t

(
χθ

′k ′
m B av

k ′

)
, (2.43)

− 1√
g S

Eθ′ |+− =− 1√
g S

∂

∂θ′
(
χr ′k ′

e E av
k ′

)
+ ∂

∂t

(
χ
φ′k ′
m B av

k ′

)
, (2.44)

1√
g S

Hφ′ |+− = 1√
g S

∂

∂φ′
(
χr ′k ′

m H av
k ′

)
− ∂

∂t

(
χθ

′k ′
e Dav

k ′

)
, (2.45)

− 1√
g S

Hθ′ |+− =− 1√
g S

∂

∂θ′
(
χr ′k ′

m H av
k ′

)
− ∂

∂t

(
χ
φ′k ′
e Dav

k ′

)
, (2.46)

Dr ′ |+−+ 1√
g S
∂i ′

(√
g Sχi ′k ′

e Dav
k ′

)
= 0, (2.47)

Br ′ |+−+ 1√
g S
∂i ′

(√
g Sχi ′k ′

m B av
k ′

)
= 0, (2.48)

for k ′ = r ′,θ′,φ′ and i ′ = θ′,φ′, using the Einstein’s summation notation, which can be suc-

cinctly written using the notation ∂t = ∂
∂t as

[i ′ j ′]√
g S

E j ′ |+−e i ′ = [i ′ j ′]√
g S
∂ j ′

(
χr ′k ′

e E av
k ′

)
e i ′ +∂t

(
χi ′k ′

m B av
k ′

)
e i ′ , (2.49)

[i ′ j ′]√
g S

H j ′ |+−e i ′ = [i ′ j ′]√
g S
∂ j ′

(
χr ′k ′

m H av
k ′

)
e i ′ −∂t

(
χi ′k ′

e Dav
k ′

)
e i ′ , (2.50)

Dr ′ |+−+ 1√
g S
∂i ′

(√
g Sχi ′k ′

e Dav
k ′

)
= 0, (2.51)

Br ′ |+−+ 1√
g S
∂i ′

(√
g Sχi ′k ′

m B av
k ′

)
= 0, (2.52)

for i ′, j ′ = θ′,φ′ and k ′ = r ′,θ′,φ′ and

[i j ] =


1 if i == e

θ
′ and j == e

φ
′

−1 if i == e
φ

′ and j == e
θ
′

0 otherwise

(2.53)

(2.49)- (2.52) are the summary of the boundary conditions written in the surface coordinates

of the metasurface interface. This formalism gives us the relations between the susceptibili-

ties and the specified fields on both sides of the interface in the surfacic coordinates. However,

in general, the fields are usually expressed in the global coordinates system, for example the
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spherical system. Thus, in order to synthesize the metasurface susceptibilities, we need to find

the relation between the susceptibilities expressed in the surfacic coordinates to the fields ex-

pressed in the global coordinates on S.

2.2.6 Electromagnetic boundary conditions in spherical coordinates

as the global coordinates

In this section, we derive the relations which connect the two coordinate systems that will allow

us to transform the susceptibilities from surfacic coordinates to global coordinates, and vice-

versa. Let us consider a vector V on S; the change in the components of the covector field from

spherical coordinate to the surface coordinate is given by

Vr ′ =V ·er ′ = 1

|∇r ′|
(
Vr
∂r ′

∂r
+ Vθ

f 2

∂r ′

∂θ
+ Vφ

f 2 sin2θ

∂r ′

∂φ

)
,

Vθ′ =V ·eθ =Vθ+Vr
∂ f

∂θ′
,

Vφ′ =V ·eφ′ =Vφ+Vr
∂ f

∂φ′ .

(2.54)

The above equations can be compactly written as Vi ′ =Λi
i ′Vi , where i ′ = r ′,θ′,φ′, i = r,θ,φ, and

(Λi
i ′) =


1

|∇r ′|
∂r ′
∂r

∂ f
∂θ′

∂ f
∂φ′

1
|∇r ′|

1
f 2

∂r ′
∂θ 1 0

1
f 2 sin2 θ|∇r ′|

∂r ′
∂φ′ 0 1

 (2.55)

Substituting the transformation into (2.49), (2.50), (2.51), and (2.52), we obtain

[i ′ j ′]√
g S
Λk

j ′Ek |+−e i ′ = [i ′ j ′]√
g S
∂ j ′

(
χr ′k ′

e Λk
k ′E av

k

)
e i ′ +∂t

(
χi ′k ′

m Λk
k ′B av

k

)
e i ′ , (2.56)

[i ′ j ′]√
g S
Λk

j ′ Hk |+−e i ′ = [i ′ j ′]√
g S
∂ j ′

(
χr ′k ′

m Λk
k ′ H av

k

)
e i ′ −∂t

(
χi ′k ′

e Λk
k ′Dav

k

)
e i ′ , (2.57)

Λk
r ′Dk |+−+ 1√

g S
∂i ′

(√
g Sχi ′k ′

e Λk
k ′Dav

k

)
= 0, (2.58)

Λk
r ′Bk |+−+ 1√

g S
∂i ′

(√
g Sχi ′k ′

m Λk
k ′B av

k

)
= 0, (2.59)

for i ′, j ′ = θ′,φ′, k ′ = r ′,θ′,φ′, and k = r,θ,φ. We now define the virtual susceptibilities for

spherical coordinate to be

χi ′k
a =


√

g Sχi ′k ′
a Λk

k ′ for i ′ = θ′,φ′, k = r,θ,φ,

χi ′k ′
a Λk

k ′ for i ′ = r, k = r,θ,φ,
(2.60)
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for a = e,m, k ′ = r ′,θ′,φ′. Multiplying (2.56) and (2.57) throughout by
√

g S, using (2.60), we

get

[i ′ j ′]Λk
j ′Ek |+−e i ′ = [i ′ j ′]∂ j ′

(
χr ′k

e E av
k

)
e i ′ +∂t

(
χi ′k

m B av
k

)
e i ′ , (2.61)

[i ′ j ′]Λk
j ′ Hk |+−e i ′ = [i ′ j ′]∂ j ′

(
χr ′k

m H av
k

)
e i ′ −∂t

(
χi ′k

e Dav
k

)
e i ′ , (2.62)

Λk
r ′Dk |+−+ 1√

g S
∂i ′

(
χi ′k

e Dav
k

)
= 0, (2.63)

Λk
r ′Bk |+−+ 1√

g S
∂i ′

(
χi ′k

m B av
k

)
= 0, (2.64)

Writing the transformation (2.60) explicitly in matrix form, we have for a = e,m,

(χi ′k
a ) =

√
g S


χr ′r ′

ap
g S

χr ′θ′
ap
g S

χ
r ′φ′
ap
g S

χθ
′r ′

a χθ
′θ′

a χ
θ′φ′
a

χ
φ′r ′
a χ

φ′θ′
a χ

φ′φ′
a




1
|∇r ′|

∂r ′
∂r

1
|∇r ′|

1
f 2

∂r ′
∂θ

1
f 2 sin2 θ|∇r ′|

∂r ′
∂phi ′

∂ f
∂θ′ 1 0
∂ f
∂φ′ 0 1

 . (2.65)

One can obtain χi ′ j ′
a , a = e,m, i ′ j ′ = r ′,θ′,φ′ via


χθ

′θ′
a χ

θ′φ′
a χθ

′r ′
a

χ
φ′θ′
a χ

φ′φ′
a χ

φ′r ′
a

χr ′θ′
ap
g S

χ
r ′φ′
ap
g S

χr ′r ′
ap
g S

= γ


χθ

′θ
a χ

θ′φ
a χθ

′r
a

χ
φ′θ
a χ

φ′φ
a χ

φ′r
a

χr ′θ
a χ

r ′φ
a χr ′r

a



∂r ′
∂r − 1

f 2 sin2 θ
∂r ′
∂φ

∂ f
∂φ′

∂r ′
∂φ

∂ f
∂θ′ −|∇r ′| ∂ f

∂θ′

1
f 2 sin2 θ

∂r ′
∂θ

∂ f
∂φ′

∂r ′
∂r − 1

f 2
∂r ′
∂θ

∂ f
∂θ′ −|∇r ′| ∂ f

∂φ′

− 1
f 2

∂r ′
∂θ − 1

f 2 sin2 θ
∂r ′
∂φ |∇r ′|


(2.66)

where γ=
(
∂r ′
∂r − 1

f 2
∂r ′
∂θ

∂ f
∂θ′ − 1

f 2 sin2 θ
∂r ′
∂φ

∂ f
∂φ′

)−1
.

Assuming an ambient medium of free space and a time dependence given by exp iωt , sus-

ceptibilities along the normal of the metasurface interface, χr ′θ
a = χr ′φ

a = χr ′r
a = 0 (this assump-

tion is made to reduce the number of unknowns), therefore (2.61) and (2.62) in the matrix form

(
0 1 ∂ f

∂θ′

−1 0 − ∂ f
∂φ′

)
Eθ|+−
Eφ|+−
Er |+−

= ιωµ0

(
χθ

′θ
m χ

θ′φ
m χθ

′r
m

χ
φ′θ
m χ

φ′φ
m χ

φ′r
m

)
H av
θ

H av
φ

H av
r

 (2.67)

(
0 1 ∂ f

∂θ′

−1 0 − ∂ f
∂φ′

)
Hθ|+−
Hφ|+−
Hr |+−

=−ιωε0

(
χθ

′θ
e χ

θ′φ
e χθ

′r
e

χ
φ′θ
e χ

φ′φ
e χ

φ′r
e

)
E av
θ

E av
φ

E av
r

 (2.68)

Eq. (2.67)- (2.68) give the freedom to evaluate the susceptibilities of the metasurface in

the surfacic coordinates (e ′
r , e ′

θ
, e ′
φ) with the electromagnetic fields on either side of the inter-
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face given in global coordinates (er , eθ, eφ). Using Eq. (2.66), one can obtain the susceptibili-

ties in the global coordinates. In this section we expressed the susceptibilities transformation

equations for the case where one is provided with electromagnetic fields on either side of the

metasurface in spherical coordinates. Similarly, such transformation equations for Cartesian

as global coordinates are well presented in [4], for Cylindrical and Parabolic coordinates are

given by ( (2.69)- (2.71)), ( (2.73)- (2.75)) respectively. The complete derivations for Cylindrical

and Parabolic coordinates are developed in Appendix A and B.


χr ′r ′

ap
g S

χr ′θ′
ap
g S

χr ′z′
ap
g S

χθ
′r ′

a χθ
′θ′

a χθ
′z ′

a

χz ′r ′
a χz ′θ′

a χz ′z ′
a

= γ


χr ′r

a χr ′θ
a χr ′z

a

χθ
′r

a χθ
′θ

a χθ
′z

a

χz ′r
a χz ′θ

a χz ′z
a




|∇r ′| −∂r ′
∂θ

1
f 2 −∂r ′

∂z

−|∇r ′| ∂ f
∂θ′

∂r ′
∂r − ∂r ′

∂z
∂ f
∂z ′

∂r ′
∂z

∂ f
∂θ′

−|∇r ′|∂ f
∂z

1
f 2

∂r ′
∂θ

∂ f
∂z ′

∂r ′
∂r − 1

f 2
∂r ′
∂θ

∂ f
∂θ′ ,

 (2.69)

where γ=
(
g S

(
∂r ′
∂r − ∂r ′

∂z
∂ f
∂z ′ − 1

f 2
∂r ′
∂θ

∂ f
∂θ′

))−1
.

(
0 1 ∂ f

∂θ′

−1 0 − ∂ f
∂z ′

)
Eθ|+−
Ez |+−
Er |+−

= ιωµ0

(
χθ

′θ
m χθ

′z
m χθ

′r
m

χz ′θ
m χz ′z

m χz ′r
m

)
H av
θ

H av
z

H av
r

 (2.70)

(
0 1 ∂ f

∂θ′

−1 0 − ∂ f
∂z ′

)
Hθ|+−
Hz |+−
Hr |+−

=−ιωε0

(
χ
θ′φ
e χθ

′z
e χθ

′r
e

χz ′θ
e χz ′z

e χz ′r
e

)
E av
θ

E av
z

E av
r

 (2.71)

where eθ′ , ez ′ , er ′ and eθ, ez , er are the surfacic and global coordinates in Cylindrical coordi-

nates.
χσ

′σ′
a χ

σ′φ′
a χσ

′τ′
a

χ
φ′σ′
a χ

φ′φ′
a χ

φ′τ′
a

χτ
′σ′

ap
g S

χ
τ′φ′
ap
g S

χτ
′τ′

ap
g S

= (2.72)

= γ


χσ

′σ
a χ

σ′φ
a χσ

′r
a

χ
φ′σ
a χ

φ′φ
a χ

φ′r
a

χτ
′σ

a χ
τ′φ
a χτ

′r
a

×


1

σ2+ f 2
∂τ′
∂τ − 1

σ2+ f 2
∂τ′
∂φ

∂ f
∂φ′

1
σ2 f 2

∂τ′
∂φ

∂ f
∂σ′ −|∇τ′| ∂ f

∂σ′
1

σ2+ f 2
∂τ′
∂σ

∂ f
∂φ′

1
σ2+ f 2

(
∂τ′
∂r − ∂τ′

∂σ
∂ f
∂σ′

)
−|∇τ′| ∂ f

∂φ′

− 1
σ2+ f 2

∂τ′
∂σ − 1

σ2 f 2
∂τ′
∂φ |∇τ′|


(2.73)

where γ=
(

1
σ2+ f 2

∂τ′
∂r − 1

σ2+ f 2
∂τ′
∂σ

∂ f
∂σ′ − 1

σ2 f 2
∂τ′
∂φ

∂ f
∂φ′

)−1
.

(
0 1 ∂ f

∂σ′

−1 0 − ∂ f
∂φ′

)
Eσ|+−
Eφ|+−
Eτ|+−

= ιωµ0

(
χσ

′σ
m χ

σ′φ
m χσ

′r
m

χ
φ′σ
m χ

φ′φ
m χ

φ′r
m

)
H av
σ

H av
φ

H av
τ

 (2.74)



2.3 DERIVATION OF THE CONFORMAL GENERALIZED SHEET TRANSITION CONDITIONS
USING THE DIRAC DISTRIBUTION 27

(
0 1 ∂ f

∂σ′

−1 0 − ∂ f
∂φ′

)
Hσ|+−
Hφ|+−
Hτ|+−

=−ιωε0

(
χσ

′σ
e χ

σ′φ
e χσ

′r
e

χ
φ′σ
e χ

φ′φ
e χ

φ′r
e

)
E av
σ

E av
φ

E av
τ

 , (2.75)

where eσ′ , eφ′ , eτ′ and eσ, eφ, eτ are the surfacic and global coordinates in Parabolic coor-

dinates respectively.

Eqs.(2.67)- (2.68), (2.70)- (2.71) and (2.70)- (2.71) , are powerful tools to synthesize the con-

formal metasurface by knowing the fields before and after the metasurface. Also it is neces-

sary to obtain these equations in different coordinate systems as the choice of the coordinate

system can sometimes simplify the problem. For example solving for the susceptibilities of a

paraboloid (z = x2/a2 + y2/b2) reflecting mirror can be difficult if one tries to solve it in Carte-

sian coordinate system, whereas if you choose a coordinate system which is close to its sym-

metry, like Parabolic coordinates, the parboiled looks much simpler as the paraboloid is give

by τ= const ant lines i the Parabolic coordinate system.

2.3 Derivation of the Conformal Generalized Sheet Tran-

sition Conditions using the Dirac distribution

The above section provides a derivation of GSTCs which is applicable for any arbitrary shaped

meta-interface based on the first principle derivations. Evaluating the tensorial components

of the susceptibilities requires some of the elements to be zero to simplify the calculation. The

disadvantage of this approach is that we need to perform the derivations each time we choose

a different coordinate system and a different conformal surface. One needs to have the knowl-

edge of covariant, contravariant fields and some basics of Riemann and differential geometry to

understand the calculations. Therefore, we provide a derivation based on the Dirac distribution

considerations at the interface. The new derivation is inspired from Idemen’s [95] commencing

idea to evaluate the reflected and transmitted properties of discontinuity at planar interfaces.

Before we start the derivation, let us set the problem by stating the basic and necessary

definitions for a smooth and easy understanding.

2.3.1 Surface coordinate system

Let us assume that the interface surface (a boundary separating the two media) S (see Fig.2.2)

is given as the zero level set of a function F (x, y, z) = z − f (x, y) and that it cuts the whole R3

space into two parts D+∪D− = D with D+ = {x ,F (x) > 0}. For more general surfaces , other

definitions of F must be considered. The normal vector n on S pointing into D+ is then given

by:

n = ∇F

|∇F | =
(−∂x f ,−∂y f ,1)√
∂x f 2 +∂y f 2 +1

.
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In the same way, two tangential vectors τ1 and τ̃2 may be found as:

τ1 = (1,0,∂x f )√
∂x f 2 +1

and τ̃2 = (0,1,∂y f )√
∂y f 2 +1

, (2.76)

For more general surfaces one needs to consider vectors τ such that ∇F ·τ = 0. For instance

if ∂z F 6= 0, fixing τx = 1,τy = 0 or the contrary, one may find that they need to have τz =
−∂x F /∂z F , which leads to eq. (2.76). In practice we will consider vectors (τ1,τ2,n) such that it

corresponds to an orthonormal basis with:

n = ∇F

|∇F | , τ1 = (1,0,∂x f )√
∂x f 2 +1

and τ2 = n ×τ1.

With this definition we also have τ1 = τ2 ×n. Note also that such a bundle of tangent vectors

forming an orthonormal basis is not unique. We define the tangential and normal components

of any vector field A as:

A∥ = n ×A×n and A⊥ = (A ·n)n (2.77)

such that A = A∥+A⊥. The same definitions may be used to define the tangential and normal

derivatives by assuming that the nabla (gradient) differential operator ∇ is equal to the vector

(∂x ,∂y ,∂z ). This may eventually be written as:

∇∥ = (Id−n ⊗n)∇ and ∇⊥ = (n ⊗n)∇.

2.3.2 Standard Maxwell’s equations

Let us consider the time dependent (e iωt ) Maxwell’s equations [92] given by:

∇×E = −iωB, ∇×H = iωD,

∇·D = 0, ∇·B = 0,
(2.78)

in conjunction with the anisotropic fundamental relations proportional to the electromagnetic

fields via the electric and magnetic susceptibility tensors:

D = ε0(χee +1)E and B =µ0(χmm +1)H. (2.79)

Following the above definitions, the standard electromagnetic boundary conditions at the

interface between two media are administered by

n ×�E� = 0, n ×�H� = 0, n · �D� = 0, n · �B� = 0.
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2.3.3 Decomposition of fields and susceptibilities

If the interface S is covered with subwavelength nano-resonators of variant geometries as shown

in Fig.2.2.a), the latter’s physics, which is not as straightforward as a standard interface, cannot

be elucidated with the usual transition conditions stated above. The nano-resonators interact

with the incoming light, inducing localized surfacic electric and magnetic dipole moments at

the interface giving raise to the electromagnetic field discontinuities. This phenomenon mod-

ifies the standard boundary conditions or transition conditions. These discontinuities may be

treated conventionally by decomposing the fields A = E,H,D,B defined on S as a summation in

series of nth derivatives of Dirac delta functions δn
S (a proper mathematical definition of this

distribution is provided in Appendix D).

We consider an arbitrary conformal metasurface defined as the two dimensional surface

S = {x = (x, y, z), z = f (x, y)} encompassed by air as shown in Fig.2.2. Let us first assume that

each field A can be decomposed as a series of Dirac’s surface distribution δS with multiple

singular parts and one regular part as follows:

A(x) =
∞∑

n=0
An(x, y)δ(n)

S (x)+A(x), (2.80)

where the An(x, y) are the singular parts of A defined on the conformal interface while the

regular part A is given by:

A(x) =
{

A+(x) if z > f (x, y)

A−(x) if z < f (x, y)
.

We further assume that the susceptibilities can be decomposed in a similar fashion as the

one stated above:

χee (x) =
∞∑

n=0
χee,n(x, y)δ(n)

S (x),

χmm(x) =
∞∑

n=0
χmm,n(x, y)δ(n)

S (x)
(2.81)

where χmm/ee,n(x, y) is referred to as the nth surfacic susceptibility tensor. In the above defi-

nition of susceptibilities Eq. (2.81), we notice that the regular part of the susceptibilities are

equal to zero, since we are considering that the media on either side of surface S is air. Such

situations can occur, for example, in the case of nanohole array metasurface inserted in air [96].

This singular decomposition may be seen as a limiting case of the classical Taylor expansion

for envelope functions which turn discontinuous as the thickness of the interface approaches

to zero. Indeed, the n-th derivative of a discontinuous function is given by δ(n−1), and the sur-

facic susceptibilities are then none other than the coefficients present in the Taylor expansion.

This remark shows that χι,n is proportional to `n+1 (where ` is the thickness of interface), and
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thus, that it is expressed in meters to the power n+1. It also suggests that by considering suf-

ficiently thin interfaces, we should have An = χee,n = χmm,n = 0 for n > 0 since the first order

effects in the expansion are dominant.

A) B)

Figure 2.2: Schematic representation of conformal metasurfaces. A) light reflection and refrac-
tion across a conformal metasurface defined by an ensemble of nanostructured ma-
terials along the curved surface; B) The conformal metasurface is modelled using
equivalent GSTCs and the associated physical properties defined along the surface
to satisfy the input-output field discontinuities.

2.3.4 Maxwell’s equations with distributions

Substituting the distribution form of the fields from (2.80) into the Maxwell equations leads to

∇× (
E0(x, y)δS(x)+E(x)

)=−iω
(
B0(x, y)δS(x)+B(x)

)
, (2.82)

∇× (
H0(x, y)δS(x)+H(x)

)= iω
(
D0(x, y)δS(x)+D(x)

)
, (2.83)

∇· (D0(x, y)δS(x)+D(x)
)= 0, (2.84)

∇· (B0(x, y)δS(x)+B(x)
)= 0. (2.85)

From appendix D.3.3, we have the identities,

∇× (A0δS) = (∇∥×A0)δS +n ×A0∂nδS , ∇×A =∇×A+n ×�A�δS ,

∇· (A0δS) = (∇∥ ·A0)δS +n ·A0∂nδS , ∇·A =∇·A+n · �A�δS

Injecting these formulas into (2.82)-(2.85), we then find that:

(∇∥×E0)δS +n ×E0∂nδS +∇×E+n ×�E�δS =−iω
(
B0δS +B

)
,

(∇∥×H0)δS +n ×H0∂nδS +∇×H+n ×�H�δS = iω
(
D0δS +D

)
,

(∇∥ ·D0)δS +n ·D0∂nδS +∇·D+n · �D�δS = 0,

(∇∥ ·B0)δS +n ·B0∂nδS +∇·B+n · �B�δS = 0.

By gathering the terms with similar singularities together, starting with their regular parts:
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∇×E =−iωB, ∇×H = iωD, ∇·D = 0, ∇·B = 0, (2.86)

from which we infer that the regular part of the fields are solutions to the classical Maxwell

equations. Similarly, gathering the terms with singular ones (terms in front of δS):

∇∥×E0 +n ×�E� =−iωB0, ∇∥ ·D0 +n · �D� = 0,

∇∥×H0 +n ×�H� = iωD0, ∇∥ ·B0 +n · �B� = 0.
(2.87)

As for the “second order” singular parts (terms in front of ∂nδS):

n ×E0 = 0, n ×H0 = 0, n ·D0 = 0, n ·B0 = 0, (2.88)

which are close to the classical jump conditions for the first order singular terms. The same

manipulation may be done in the constitutive relations of (2.79) using the decomposition (2.81)

for any x with z 6= f (x, y) leading to (for the simply singular terms):

D0 = ε0(χee,0E+E0) and B0 =µ0(χmm,0H+H0). (2.89)

Note that by passing to the limit on the interface, we can write this last expression for any x

such that z = f (x, y) as given below (since the regular part may be chosen as either the top or

bottom values):

D0 = ε0(χee,0 {E}+E0) and B0 =µ0(χmm,0 {H}+H0). (2.90)

Subsequently, by taking the scalar and cross product of the constitutive relations (2.89) with

the normal vector n, we find using (2.90) that:

n ·E0 =−n ·χee,0 {E} , n ×D0 = ε0n × (χee,0 {E}),

n ·H0 =−n ·χmm,0 {H} , n ×B0 =µ0n × (χmm,0 {H}),

which allows to define with (2.88) the following relations with the first order singularities:

E0 =−(χee,0 {E})⊥, H0 =−(χmm,0 {H})⊥, D0 = ε0(χee,0 {E})∥, B0 =µ0(χmm,0 {H})∥.

The previous expressions may finally be injected in equation (2.87) to obtain the Conformal
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Generalized Sheet Transition conditions (CGSTCs):

n ×�E� =−iωµ0

(
χmm,0 {H}

)
∥+∇∥×

(
χee,0 {E}

)
⊥ , (2.91)

n ×�H� = iωε0

(
χee,0 {E}

)
∥+∇∥×

(
χmm,0 {H}

)
⊥ , (2.92)

n · �D� =−ε0∇∥ ·
(
χee,0 {E}

)
∥ , (2.93)

n · �B� =−µ0∇∥ ·
(
χmm,0 {H}

)
∥ . (2.94)

2.4 Restriction to tangential susceptibilities

Until now, no physical assumption has been made to restrict the susceptibility tensors com-

ponents, leaving us with 18 complex unknown coefficients. Knowing one incident and out

going fields, the set of solutions is undetermined. Eqs. (2.91)-(2.92) provide 4 equations in the

surfacic coordinates, suggesting that multiple combinations of coefficients could satisfy the

equations.

To obtain a well-posed inversion problem, the most traditional method consists in rely-

ing on physical conditions, including, for example symmetries and reciprocity such that the

CGSTCs share the same number of equations and unknown susceptibility coefficients. In the

following, we consider tensors such that the tangential curl terms in (2.91) and (2.92) vanish.

This is a common assumption made with planar GSTCs, where this term is set to zero by tak-

ing χαz
ι = χzα

ι = 0 for α= x, y, z when n = ẑ . For nonplanar interfaces, similar assumptions are

described using the local orthonormal curvilinear basis (τ1,τ2,n) with tangential vectors τ1

and τ2. Given the decomposition of any field A on S by A = (A ·τ1)τ1 + (A ·τ2)τ2 + (A ·n)n, the

assumption of vanishing tangential curl terms in (2.91) imposes that the matrices χι satisfy:(
χιA

)
⊥ =

[(
χιA

)
·n

]
n = 0, (2.95)

which leads to χτ
1τ2

ι =χτ2τ1

ι = 0.

Now, it is worth remarking that for any complex scalar value χτ
ατβ

ι with α,β ∈ {1,2} and any

field A, we have: (
χτ

ατβ

ι (A ·τα)τβ
)
·n = 0.

This operation on A may also be written in matrix form since:

(A ·τα)τβ =


τ
β
xτ

α
x τ

β
xτ

α
y τ

β
xτ

α
z

τ
β
yτ

α
x τ

β
yτ

α
y τ

β
yτ

α
z

τ
β
zτ

α
x τ

β
zτ

α
y τ

β
zτ

α
z

A = T
β

αA. (2.96)
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In other words, to remove the tangential curl terms in the CGSTCs, that is to verify equa-

tion (2.95), one can use susceptibilities in the following form:

χι =χτ
1τ1

ι T
1

1 +χτ
1τ2

ι T
2

1 +χτ
2τ1

ι T
1

2 +χτ
2τ2

ι T
2

2.

Additional simplifications of χι to only three degrees of freedom per susceptibility are achieved

by considering a symmetric matrix given by the condition χτ
2τ1

ι = χτ
1τ2

ι . Taking only these

tangential components we have for any field A, χιA =χτ1τ1

ι (A ·τ1)τ1+χτ2τ2

ι (A ·τ2)τ2. The x, y, z

terms of the susceptibilities may also be written for α,β= x, y, z as

χ
αβ
ι =χτ1τ1

ι τ1
ατ

1
β+χτ

2τ2

ι τ2
ατ

2
β. (2.97)

With this choice of susceptibility tensors we drastically simplify the CGSTCs into:

n ×�E� =−iωµ0χmm

{
H∥

}
, (2.98)

n ×�H� = iωε0χee

{
E∥

}
. (2.99)

2.4.1 Synthesis of the conformal metasurface

One of the main objective of GSTCs is to provide a way to synthesize the optical response of a

metasurface to transform a given incoming field (E0
−,i ) into the user-designed transmitted and

reflected fields (E0
+,i and E0

−,i respectively) [97],[48],[47]. Therefore, the resulting quantities of

our synthesis are the values of coefficients of the electric and magnetic surfacic susceptibility

tensors (χι, where ι = ee,mm) of the CGSTCs as a function of the position along the variant

interface surface. Solutions are obtained by solving the inverse problem in Eqs. (2.98)-(2.99).

Given injected and transmitted electromagnetic fields E0
±,H0

±, the inversion of CGSTCs Eqs. (2.98)-

(2.99) around the interface S leads to:

n ×�E� ·τ1 =−iωµ0χ
τ1τ1

mm {H} ·τ1,

n ×�E� ·τ2 =−iωµ0χ
τ2τ2

mm {H} ·τ2,

n ×�H� ·τ1 = iωε0χ
τ1τ1

ee {E} ·τ1,

n ×�H� ·τ2 = iωε0χ
τ2τ2

ee {E} ·τ2.
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Or equivalently:

{
H ·τ1}= 1

iωµ0
(χτ

1τ1

mm )−1 �
E ·τ2� ,

{
H ·τ2}= −1

iωµ0
(χτ

2τ2

mm )−1 �
E ·τ1� ,�

H ·τ2�=−iωε0χ
τ1τ1

ee

{
E ·τ1} ,�

H ·τ1�= iωε0χ
τ2τ2

ee

{
E ·τ2} .

In obtaining the last equation we have used the orthogonal properties of τ1,τ2 and n

χτ
1τ1

ee = −1

iωε0

�
H0·τ2

�{
E0·τ1

} , χτ
2τ2

ee = 1

iωε0

�
H0·τ1

�{
E0·τ2

} ,

χτ
1τ1

mm = 1

iωµ0

�
E0·τ2

�{
H0·τ1

} , χτ
2τ2

mm = −1

iωµ0

�
E0·τ1

�{
H0·τ2

} .
(2.100)

To verify the validity of our CGSTCs derivation, we will implement these equations using the

FDTD and test the influence of the interface on the performance of the conformal lens and

many other examples like meta-deflector, complete absorbers , etc which will be discussed in

the next chapter.

To demonstrate the numerical implementations of CGSTCs, an inversion synthesis method

for conformal metasurface optical illusion, manipulating the optical signature of an actual ob-

ject, for example a cat-shaped particle, to mimic light scattering of another object, a mouse-

shaped particle was implemented in FEM [98] by our collaborators (see Fig. 2.4). Applying

a metasurface conformally to the shape on the former object, one can realize an advanced

version of cloaking accounting for both the complex shapes and projection of arbitrary field

distributions. Our approach suggests wrapping a metasurface conformally to an object, while

adjusting the surface susceptibilities, to reflect and/or transmit light as if it were coming from

another user-defined object.

The synthesization of the susceptibilities is realized by computing first the electromagnetic

fields scattered by both objects, i.e. cat and mouse-shaped nanoparticles in the absence of a

metasurface (see Fig. 2.3 c) and d)), considering an incident plane wave impinging from the

bottom left of the simulation domain. We then apply the inversion procedure to adjust the in-

terior fields from the cat geometry to the exterior fields scattered by the mouse shaped particle

through the conformal susceptibilities disposed along the cat surface (see Fig. 2.3 e) ).

The calculations are performed considering a background domain with permittivity equal

to εr = 1 and assuming that the objects are made of homogeneous medium with a permittivity

εr = 2. The results summarized in Fig. 2.3 thus indicate that the mouse-scattered fields are

reproduced, almost perfectly, even from an arbitrary shaped particle, producing the illusion of

light scattering from a different object.

For practical applications, it is necessary to verify that the scattering illusion is preserved
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over a relatively large incident angle range. Fig. 2.3 g) presents the angular cross sections as a

function of the incident angles (the outward Poynting vector norm) computed on the edge of

the simulation domain (circle boundary). Fig. 2.3 g) shows that the performance of the illusion

system behaves poorly for incident angles slightly different from the designed case. Note that

here the susceptibilities have been calculated considering that the field inside the cat-shaped

nanoparticle remains equal to the field distribution in absence of beam shaping metasurface.

Choosing other inner field distribution is also possible. As an example, to study designs with

reduced angular sensitivity, we show in Fig. 2.3 f) that imposing a zero field inside the shaped

nanoparticle could maintain broader angular scattering.
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Figure 2.3: Conformal metasurface making the cat reflections look like the ones coming from
a virtual mouse. A) and B) Schematic representation of the system: a shape Ω with
an optical index equal to 2 is coated with a conformal metasurface on its borders
∂Ω with susceptibilities synthesized in such a way that the reflections produced by
this shape are equal to the one from a non-modified shape ω with the same opti-
cal index; C) and D) Simulation of the reflected field for Ω (resp. ω) representing a
cat (resp. a mouse); E) Simulation of the CGSTCs coatedΩ shape (ω given for com-
parison with dashed lines); G) Absolute difference of the outgoing Poynting vectors
normal component on the exterior circle between the field reflected by the ω shape
and the CGSTCs coatedΩ one; F) Same as G) but imposing a zero electric field inside
theΩ shape during the susceptibility synthesization step .
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Figure 2.4: Zoom on the mesh used for all the simulations of the cloaking system. The local
basis vectors are represented in red along the cat and mouse interfaces.

2.5 Applications and Examples

In this section, we propose detailed applications of the concept of conformal GSTCs for a few

2D examples such as conformal lenses and deflectors. For the sake of simplicity, let us consider

the example of 2D conformal meta-interface F (x, y) = y − f (x, y), placed at y = 0. In the 2D

case, there are two types of modes, the Transverse Electric (TE) and the Transverse Magnetic

(TM) with fields components (Ez ,Hx ,Hy ) and (Hz ,Ex ,Ey ). The polarization is invariant along x

direction. For any interface, we have n = (nx ,ny ,0), τ1 = (τx ,τy ,0) with τx =−ny , τy = nx and

τ2 = n ×τ1 = (0,0,1). The CGSTCs reduce to the following system for TM:

�Ez� = iωµ0χ
τ1τ1

mm (τx {Hx }+τy
{
Hy

}
),

−n y �Hx�+nx
�

Hy
�= iωε0χ

τ2τ2

ee {Ez } ,

where we used the fact that nxτy −n yτx = 1. Similarly, for the TE polarization:

−n y �Ex�+nx
�

Ey
�=−iωµ0χ

τ2τ2

mm {Hz } ,

−�Hz� = iωε0χ
τ1τ1

ee (τx {Ex }+τy
{
Ey

}
),
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meaning that only χτ
1τ1

ee and χτ
2τ2

mm are used for the TE polarization while χτ
2τ2

ee , χτ
1τ1

mm are used

in the TM case. The susceptibilities are obtained through the inversion procedure as:

χτ
1τ1

ee = −1

iωε0

�
H0

z

�
τx

{
E0

x

}+τy

{
E0

y

} , (2.101)

χτ
2τ2

ee = 1

iωε0

τx
�

H0
x

�+τy

�
H0

y

�
{
E0

z

} , (2.102)

χτ
1τ1

mm = 1

iωµ0

�
E0

z

�
τx

{
H0

x

}+τy

{
H0

y

} , (2.103)

χτ
2τ2

mm = −1

iωµ0

τx
�

E0
x

�+τy

�
E0

y

�
{
H0

z

} . (2.104)

2.5.1 Sinusoidal deflector

For the sinusoidal deflector, the interface function is given by f (x) = λcos(πx
λ ). We now con-

sider that this interface, which is made of meta nano pillars, is placed in the air. If we want a

light deflector of θt , we consider an input and output field given by:

H0−
z =e−ik0 y , H0+

z =e−ik0(sinθtx+cosθty),

iωε0E0−
x =−i k0e−ik0 y , iωε0E0+

x =−i k0cosθt e−ik0(sinθtx+cosθty),

iωε0E0−
y =0, iωε0E0+

y =i k0sinθt e−ik0(sinθtx+cosθty).

(2.105)

Since in our example, we consider a metasurface with an interface f (x) = λcos xπ/λ, we have

∂x f = −πsin( xπ
λ ) and |∇F | =

√
1+ (

πsin( xπ
λ )

)2. Therefore, injecting the above quantities into

Eq (2.101)- (2.104), we obtain the simplified expressions for the susceptibilities as

χτ
1τ1

ee =
(
−e i k0 y +e i k0(y cos(θt )+x sinθt )

)√
1+ (

πsin xπ
λ

)
i k0

(
e i k0(y cos(θt )+x sinθt ) +e i k0 y cosθt +e i k0 y sinθt sin xπ

λ

) , (2.106)

χτ
2τ2

ee =
(
e i k0(y cos(θt )+x sinθt ) −e i k0 y cosθt −e i k0 y sinθt sin xπ

λ

)
i k0

√
1+ (

πsin xπ
λ

)(
e i k0 y +e i k0(y cos(θt )+x sinθt )

) , (2.107)

χτ
1τ1

mm =
(
−e i k0 y +e i k0(y cos(θt )+x sinθt )

)√
1+ (

πsin xπ
λ

)
i k0

(
e i k0(y cos(θt )+x sinθt ) +e i k0 y cosθt +e i k0 y sinθt sin xπ

λ

) , (2.108)

χτ
2τ2

mm =
(
e i k0(y cos(θt )+x sinθt ) −e i k0 y cosθt −e i k0 y sinθt sin xπ

λ

)
i k0

√
1+ (

πsin xπ
λ

)(
e i k0 y +e i k0(y cos(θt )+x sinθt )

) . (2.109)

The plots of the above analytical susceptibilities are shown in Fig. (2.5).b). The sinusoidal meta-

surface is designed to deflect the incoming plane wave at an angle of π/4.
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Figure 2.5: Analytical susceptibilities of a planar, sinusoidal, curved deflector and lens. a), b),
c). The plot of susceptibilities of the sinusoidal, planar and curved deflector for a
deflection angle ofπ/4. The metasurface deflector is designed to deflect the incident
incoming plane wave at an angle of Π/4. d), e), f). are the susceptibility plots for
the planar , sinusoidal and curved lens. The metasurface is designed to focus at
a focal length f0 = 10λ. These susceptibilities are dependent on the curvature of
the interface functions. Therefore, they conform to the surface of the metasurface
interface.
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2.5.2 Sinusoidal lens

Let us consider again the same metasurface interface as that of the above sinusoidal deflector,

but with a different functionality. This time, instead of deflection, we enforce the metasurface

to focus at a focal distance of f0. The focusing wave is give Hankel function of second kind with

order 0 (denoted by H2
0) [99]. The input and out fields from the metasurface are give by

H0−
z =e−ik0 y , H0+

z =H2
0(k0ρ),

iωε0E0−
x =−i k0e−ik0 y , iωε0E0+

x =k0

(
H2

0(k0ρ)−H2
2(k0ρ)

)
2ρ

,

iωε0E0−
y =0, iωε0E0+

y =−k0(−5+x)
(
H2

0(k0ρ)−H2
2(k0ρ)

)
2ρ

,

(2.110)

where ρ =
√

(y − f0)2 +x2 and the H2
n(k0ρ) is Hankel function of second kind with order n.

In such a case, performing the similar calculations as above, we obtain the susceptibility for

the lens as follows:

χτ
1τ1

ee =− 2ρ{−1+e i k0 y H2
1(k0ρ)α}

k0{i 2ρ−e i k0 y H2
0(k0ρ)β+e i k0 y H2

2(k0ρ)β}
, (2.111)

χτ
2τ2

ee = {iρ−e i k0 y H2
1(k0ρ)β}

i 2k0α{1+e i k0 y H2
0(k0ρ)}

, (2.112)

χτ
1τ1

mm = {2iρ+e i k0 y H2
0(k0ρ)β−e i k0 y H2

2(k0ρ)β}

2i 2k0ρα{1+e i k0 y H2
1(k0ρ)}

, (2.113)

χτ
2τ2

mm = ρ{1−e i k0 y H2
0(k0ρ)α}

k0{iρ+e i k0 y H2
1(k0ρ)β}

, (2.114)

where α =
√

1+ (πsinπx/λ)2 and β = y −π( f0 − x)sinπx/λ. The plots of the above analytical

susceptibilities are shown in Fig. e) (2.5). The sinusoidal metasurface is designed to deflect the

incoming plane wave at an angle of π/4.

2.5.3 Curved deflector

This time let us consider the example of a metasurface interface with the interface shape of

a curve given by F (x, y) = R −
√

f0 −x2, where R and f 0 are the radius of curvature and focal

length respectively. For such a curve ∂x f = −xp
f0−x2

. Therefore, applying the conformal theory

(2.101)- (2.104), we obtain the susceptibilities as follows:

χτ
1τ1

mm =χτ1τ1

ee = −e i k0 y +e i k0(y cosθt+x sinθt )αβ

i k0
(
e i k0(y cosθt+x sinθt )β+e i k0 y

(
βcosθt −x sinθt

)) , (2.115)

χτ
2τ2

mm =χτ2τ2

ee =
(
e i k0(y cosθt+x sinθt )β−e i k0 y

(
βcosθt −x sinθt

))
iαβk0

(
e i k0 y +e i k0(y cosθt+x sinθt )

) , (2.116)
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whereα=
√

f0

f0−x2 andβ=
√

f0 −x2. The plots of the above analytical susceptibilities are shown

in Fig. (2.5).c). The curved metasurface is designed to deflect the incoming plane wave at an

angle of π/4.

2.5.4 Curved lens

The next example is a curved lens. The interface remains the same as that of a curved deflector,

but this time, instead of deflecting the incoming plane wave, we focus at the focal distance of f0.

In order to calculate the susceptibilities for such a system, we consider the outgoing focusing

wave as:

E0
+ = E 0 sin(θ0)

r0

(
1+ i

k0r0

)
e i k0r0φ0, (2.117)

where E 0 = f0/(1+ 1/(k0 f0)2) is a normalization of the field power, (r0,θ0,φ0) a spherical co-

ordinate system given by r0 =
√

x2 + (y − f0)2 + z2, θ0 = arccos(−z/r0), φ̂ = (−sinφ0,cosφ0,0)

and φ0 = atan2(y − f0, x). The analytical expression for the susceptibilities can be obtained

from the Eq. (2.101)- (2.104) by substituting E0+ and the corresponding H0+ from Eq. (2.117). The

susceptibilities obtained for the curved deflector are shown in Fig. (2.5).f).

2.6 Conclusion

In conclusion, we have proposed a detailed derivation of CGSTCs based on the distribution

theory. CGSTCs certainly help in manipulating the behaviour of light on freeform surfaces.

We have proposed several examples showing the versatility of the inversion procedure with

CGSTCs. Our analytical formulation may be of interest to the scientific community searching

for innovative solutions to optimize the optical response of freeform optical components.



Chapter 3

Numerical Implementations of CGSTCs

and its applications

3.1 Introduction

The electromagnetic modelling of metasurfaces with advanced wave manipulations creates a

need for efficient time domain simulation of complex nanostructures. Nowadays, it is widely

accepted that macroscopic Maxwell equations adequately describe the phenomenon of nano-

optics at the wavelength-scale. Among the many available numerical methods used in nanoop-

tics, the finite-difference time-domain (FDTD) technique is the most common method used

by scientists in the field. Due to its straightforward code implementation and its potential to

precisely model complex nanostructures, the method became one of the most used tool in

the field of nanooptics. The advantage of FDTD is in the special arrangement of electric and

magnetic field components on a grid called "Yee scheme" [100], taking into account the curl

nature of electromagnetic fields. The beauty of this method lies in its ability to automatically

satisfy EM-boundary conditions at each grid point, thus facilitating its to adaptation to almost

any imaginable geometry. Modelling of the planar metasurface using FDTD is well explained

in [61]- [101], further FDTD scheme to model the two dimensional conformal metasurface is

proposed in [72] and few 2D examples are studied. In this chapter, we are extending FDTD

scheme to conformal GSTCs and use these numerical simulations to access the complete char-

acterization of the optical response of a given device which is more realistic in comparison with

the two dimensional structures. We have proposed a parallel implementation of the FDTD-

CGSTCs using Message Passing Interface (MPI), which significantly reduces the total execution

time for large grids. We also study in detail the applications of freeform conformal devices such

as lenses. Towards the end of the chapter, we propose an aberration free conformal meta-lens

design based on the conformal generalized sheet transition conditions that are derived in the

last chapter. Using the 3D modelling of the conformal metasurface, the field data is acquired

and processed for the Zernike coefficients, which are used to quantify the optical aberrations
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generated by an optical device.

3.2 Derivation of Conformal FDTD equations

3.2.1 2D conformal FDTD implementations

In the following section, we describe the Finite Difference Time Domain algorithm [102], [103]

to implement the Conformal Generalized Sheet Transition Conditions (CGSTCs) discussed in

the previous chapter. The modelling of the 2D conformal metasurface using FDTD simulations

is presented in [66]. In the conventional FDTD methods, the metasurface is treated as a zero

thickness layer placed in between the two nodes of conventional Yee grid cells.

Let us consider that a one dimensional metasurface of nearly zero thickness is suspended

in the free space and placed in the xy plane at (x = mm∆x ,y = nm∆y ) (see Fig. 3.1). Electro-

magnetic fields all over the domain of the simulation can be computed with the standard time

domain discretization of Maxwell’s equations.

From Maxwell-Faraday we have:

dH

d t
=− 1

µ0
∇×E. (3.1)

We now approximate the temporal derivative of H using a centered scheme, that is:

dH

d t
' (

Hq+1/2 −Hq−1/2)/∆t . (3.2)

In two dimensions the curl is given by:

∇×E = (
dy Ez −0,0−dx Ez ,dx Hy −dy Hx

)
. (3.3)

We thus discretize these spatial derivatives in the same way, that is for example:

dy Ez (m,n +1/2) = (Ez (m,n +1)−Ez (m,n))/∆s . (3.4)

Assuming that the spatial step sizes in the x and y directions are ∆x and ∆y , respectively (these

do not need to be equal as we assume here that∆x =∆y =∆s), these time and spatial discretiza-

tions give us Eq. (3.7). Similarly for the other components of the E and H components, we get

Eq. (3.5) and (3.6) for the case Transverse Electric (TE) mode:

Ĥx
q+ 1

2[m,n] = H
q− 1

2
x [m,n]+ ∆t

µ0∆s

(
E q

z [m,n]−E q
z [m,n +1]

)
. (3.5)

Ĥy
q+ 1

2[m,n] = H q
y [m,n]+ ∆t

µ0∆s

(
E q

z [m +1,n]−E q
z [m,n]

)
. (3.6)
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Figure 3.1: Schematics used to derive the modified FDTD equations. a),b). show the virtual
nodes for Transverse Electric (TE) mode (i.e for the Hx , Hy ,Ez components) that are
introduced due to the presence of planar and conformal metasurfaces respectively.
The red circle, black triangle and blue triangle are normal field components that can
be calculated using the standard FDTD equations. The metasurface virtual nodes
are given by the red circle, blue triangle and black triangle encircled with the green
outline. For the case of conformal metasurfaces, we need to consider the virtual
node both along x and y directions, whereas for the planar metasurface, only along
x direction is sufficient. For simulating the conformal metasurface, virtual nodes Ez ,
Hx and Hy are necessary, while for the planar case Ez and Hy are sufficient.

Êz
q+1

[m,n] = E q
z [m,n]+ ∆t

ε0∆s

({
H

q+ 1
2

y [m,n]−H
q+ 1

2
y [m −1,n]

}
+

{
H

q+ 1
2

x [m,n −1]−H
q+ 1

2
x [m,n]

})
. (3.7)

Hx (x, y, t ) = Hx (m∆x ,n∆y , q∆t ) = H q
x [m,n] , (3.8)

Hy (x, y, t ) = Hy (m∆x ,n∆y , q∆t ) = H q
y [m,n] , (3.9)

Ez (x, y, t ) = Ez (m∆x ,n∆y , q∆t ) = E q
z [m,n] . (3.10)

where the index m corresponds to the spatial step in the x direction, while the index q cor-

responds to the temporal step. Additionally, the index n represents the spatial step in the y

direction. We emphasize that the wide hat over H and E precises that this is not the definitive

value for Ĥ and Ê at q + 1
2 , q respectively, as we have not yet taken into account the presence of

the metasurface in computing the fields Ĥ and Ê.

The metasurface at the nodes (mm ,nm) introduces a discontinuity in the propagation of

fields. We have stated in the previous chapter that such discontinuities can be modelled with

CGSTCs Eq. (2.98)- (2.99). Accordingly, the fields on either side of the metasurface can be
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rewritten in the Cartesian coordinates as:

χααmm =− (n ×�E�×n) ·eα
iωµ0 (n × {H}) ·eα

,

χααee = (n ×�H�) ·eα
iωε0 (n × {E}×n) ·eα

.

For the above mentioned TE case, the jump conditions reduces to:

�Ez�x =−µ0χ
xx
mm∂t {Hx } (3.11)

�Ez�y =µ0χ
y y
mm∂t

{
Hy

}
(3.12)

�Hx�x =−ε0χ
zz
ee∂t {Ez } , (3.13)

where the [.]x , y gives the discontinuity in the fields in the direction x, y respectively and in the

above equation the off diagonal elements of the susceptibility tensors are assumed to be zero.

This is explained in section 2.4. The susceptibilities are further assumed to be constant in time;

this can be understood as the metasurface is not time varying in nature. Therefore the average

�.� and the ∂t {.} are defined as

�
E q

z
�

y = E q
z [m,n +1]−E q

z [m,−] , (3.14)�
E q

z
�

x = E q
z [m +1,n]−E q

z [−,n] , (3.15)�
H

q+ 1
2

y

�
= H

q+ 1
2

y [+,n]−H
q+ 1

2
y [m,n] , (3.16)�

H
q+ 1

2
x

�
= H

q+ 1
2

x [m,+]−H
q+ 1

2
x [m,n] , (3.17)

∂t

{
E

q+ 1
2

z [m,n]

}
= 1

4∆t

(
E q

z [m,n]+E q+1
z [m,n]+E q

z [m,n +1]+E q+1
z [m,n +1]

)
, (3.18)

∂t
{

H q
y [m,n]

}= 1

4∆t

(
H

q− 1
2

y [m,n]+H
q+ 1

2
y [m,n]+H

q− 1
2

y [m +1,n]+H
q+ 1

2
y [m +1,n]

)
, (3.19)

∂t
{

H q
x [m,n]

}= 1

4∆t

(
H

q− 1
2

x [m,n]+H
q+ 1

2
x [m,n]+H

q− 1
2

x [m,n +1]+H
q+ 1

2
x [m,n +1]

)
, (3.20)

where the terms E q
z [m,−],E

q
z [−,n], H

+,q+ 1
2

y [m +1,n] and H
q+ 1

2
x [m,+] are defined as the virtual

nodes which are introduced to consider the effect of the metasurface in deriving the disconti-

nuity update equations and are illustrated in Fig. 3.1.

Now for all (m,n) terms, if either (mm ±1,nm ±1) is on the other side of the metasurface,

we propose to modify the previous update equation by substituting the corresponding virtual

nodes E q
z [m,−],E

q
z [−,n], H

+,q+ 1
2

y [m +1,n] and H
q+ 1

2
x [m,+] in order to consider the effect of the

metasurface.

H
q+ 1

2
x [m,nm] = H

q− 1
2

x [m,nm]− ∆t

µ0∆s

(
E q

z [m,nm]−E q
z [m,−]

)
, (3.21)



3.2 DERIVATION OF CONFORMAL FDTD EQUATIONS 45

H
q+ 1

2
y [mm ,n] = H q

y [mm ,n]+ ∆t

µ0∆s

(
E q

z [−,n]−E q
z [mm ,n]

)
, (3.22)

E q+1
z [m,nm +1] = E q

z [m,nm +1]+ ∆t

ε0∆s

({
H

q+ 1
2

y [m,nm +1]−H
q+ 1

2
y [m −1,nm +1]

}
+

{
H

q+ 1
2

x [m,+]−H
q+ 1

2
x [m,nm +1]

})
. (3.23)

By substituting Eq. (3.14)- (3.19) in the jump Eq. (3.11), we obtain the terms for the virtual

nodes, which we plug back again into Eq. (3.21)- (3.23) to get the final update equations:

H
q+ 1

2
x [m,nm] =

(
1− χxx

mm
4∆s

)
(
1+ χxx

mm
4∆s

) Ĥx
q− 1

2[m,nm]+ ∆t

µ0∆s

(
1+ χxx

mm
4∆s

) (
E q

z [m,nm]−E q
z [m,nm +1]

)

−
χxx

mm
4∆s(

1+ χxx
mm

4∆s

) {
Ĥx

q+ 1
2[m,nm +1]+H

q− 1
2

x [m,nm +1]

}
, (3.24)

H
q+ 1

2
y [mm ,n] =

(
1− χ

y y
mm

4∆s

)
(
1+ χ

y y
mm

4∆s

) Ĥy
q− 1

2[mm ,n]+ ∆t

µ0∆s

(
1+ χ

y y
mm

4∆s

) (
E q

z [mm +1,n]−E q
z [mm ,n]

)

−
χ

y y
mm

4∆s(
1+ χ

y y
mm

4∆s

) {
Ĥy

q+ 1
2[mm +1,n]+H

q− 1
2

y [mm +1,n]

}
, (3.25)

E q+1
z [m,nm +1] =

(
1− χzz

ee
4∆s

)
(
1+ χzz

ee
4∆s

) Êz
q

[m,nm +1]+ ∆t

ε0∆s

(
1+ χzz

ee
4∆s

) ({
H

q+ 1
2

y [m,nm +1]−H
q+ 1

2
y [m −1,nm +1]

}

+
{

H
q+ 1

2
x [m,nm]−H

q+ 1
2

x [m,nm +1]

})

−
χzz

ee
4∆s(

1+ χzz
ee

4∆s

) {
Êz

q+1
[m,nm]+E q

z [m,nm]
}

. (3.26)

Here, we note that inside the time loop, the fields terms Êz
q+1

[mm ,n], Ĥy
q+ 1

2[mm +1,n] and

Ĥx
q+ 1

2[mm ,n +1] are first updated using the standard update equations Eq. (3.5)- (3.7) and

stored outside the time loop, before being used to update the fields using the modified FDTD

update Eq. (3.24)- (3.26). For a better understanding, a block diagram explaining the imple-

mentation of modified FDTD equations for the case of TE mode is summarized in the flow

chart presented in Fig. 3.2.
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Figure 3.2: A block diagram explaining the step by step implementation of the conformal mod-
ified FDTD equations. Unlike standard FDTD implementation, we first update the
fields with standard FDTD update Eq. ( (3.5)− (3.7)) before updating the fields with
modified conformal update Eq. (3.24)− (3.26).
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3.2.2 Numerical evaluation of susceptibilities in FDTD implementa-

tions

We are replacing the physical presence of the metasurface with that of the virtual nodes (see

Fig. 3.2). Even though in reality these virtual nodes are not present in the Yee grid, we assume

them to present at half space between the cell nm and nm +1. Susceptibilities only exist exactly

on the surface (which is half way between nm and nm + 1 ) which means the susceptibilities

exist on the virtual nodes which do not have any nodes correspondence in the FDTD Yee grid.

In order to solve this problem, we first calculate the susceptibilities at the neighbouring cells

χnm , χnm+1 and using these values the susceptibilities at the virtual nodes are evaluated by

extrapolating and are give by χ± = χnm {1+e i k0∆s /2}+chi nm+1{1+e−i k0∆s /2}
2 .

3.2.3 2D planar and conformal absorber

To illustrate the applicability of the above discussed conformal FDTD algorithm, we present

some simple two dimensional problems. A schematic describing the simulation set up of dif-

ferent two dimensional examples is shown in Fig. 3.4. Let us start with the case of a planar

absorbing metasurface placed at y = 0 in air. Here, we are considering the TE mode propaga-

tion (Ez ,Hx ,Hy ). The simulation space (xy plane) is discretized using the Cartesian grid, with a

spatial and temporal resolution of ∆s = ∆x = ∆y = 5×10−9m, ∆t = 8×10−18s. The input fields

E0 and H0 are normalized to unity. The susceptibilities for completely absorbing metasurfaces

are given by χy y
mm =χzz

ee = 2.0C∆t and χxx
mm = 0 , where C is the speed of the light in free space. A

Gaussian plane wave is injected from the bottom of the y-axis. Standard CPMLS (Convolution

Perfectly Matching Layers) [104] are added to terminate the mesh grid along all the sides of the

simulation area. Fig. 3.3.a) shows the results of a FDTD simulation of the planar perfect ab-

sorber. Fig. 3.3.d) shows the plots of the fields taken across the cross section of the simulation

area (along the dotted black line), from which it is clear that the amplitude of the fields after

the metasurface is zero.

Similarly, Fig. 3.3.b) shows the FDTD simulation result of a square shaped absorber. To

simulate such a square shaped metasurface, four planar metasurface absorbers are used. Two

planar metasurfaces with absorbing susceptibilities are placed at nodes mi 1∆x = 3µm and

mi 2∆x = −3µm. In addition to these nodes, two more planar absorbing metasurfaces are

placed along the y direction at n j 1∆y = 3µm and n j 2∆y = −3µm. Note that for a metasur-

face placed along the y direction, the modified FDTD equation can be calculated in a similar

fashion as we derived Eq. (3.24)- (3.26). In Fig. 3.3.e), the plot of the amplitudes taken along

the cross section of the square in x and y directions shows that the field amplitudes are zero

just outside the square. Therefore, metasurface absorbers of type square shaped may find a

better substitution for Perfectly Matched Layers (PMLs) in the conventional FDTD simulations

to terminate the fields.

To demonstrate the use of the derivation of CGSTCs in cylindrical coordinates (Eq. (2.70)-
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Figure 3.3: 2D FDTD simulations of a conformal absorber. a), b), c) showing the field distribu-
tion of a planar, square and circular perfect meta-absorber respectively. d), e), f).
showing amplitude of the field taken along y cross section of the simulation area of
a planar, square and circular perfect meta-absorber respectively. A point source is
placed at the center of the grid for the circular and square rings, whereas sinusoidal
Gaussian plane wave source is injected form the bottom of the y axis in a).

(2.71)), we consider a perfectly circular absorbing metasurface F (r,θ, z) = R −6λ, where R = 6λ

is the radius of the circular ring. The susceptibilities χr r
ee = χθθee = χzz

mm = 2.0C∆t for such a

metasurface can be calculated from (Eq. (2.67)- (2.68)). From Eq (2.69), the corresponding

susceptibilities χxx
ee =χy y

ee =χzz
mm = 2.0C∆t are obtained. Fig. 3.3.c) shows the field distribution

for the circular metasurface absorber simulated using the modified FDTD Eq. (3.24)- (3.26).

Fig. 3.3.f) shows the plot of the amplitude of the field taken along the cross section of the circu-

lar ring. The reflected and transmitted amplitude is zero. Such circular metasurface absorbers

can prove themselves useful in replacing the circular PML layers in the conventional FDTD.

This can find many application in perfectly absorbing devices in space applications such as

satellites to reflect the light completely in order to avoid light heating the devices.

3.2.4 2D planar and conformal deflector

We consider examples of gradient metasurface [44] interfaces which refract and reflect the light

in a desired angle. Many past studies [105], [106], [107], [108], [109], [110] used phase gradi-

ent metasurfaces to validate the synthesis of the metasurface design. We consider an ideal

planar metasurface whose elements can be engineered to locally provide unitary transmis-

sion, zero reflection, and full control on the transmission phase, so that φt (x, y) can take any
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value between 0 and 2π over the surface. This implies that the metasurface can, in princi-

ple, impart any phase profile to the transmitted wave, with 100% local efficiency. In order to

transform a normally incident plane wave, Ei = ẑE0e− j k0 y , into an obliquely transmitted wave,

Et = ẑE0e− j k0[sinθt x+cosθt y] propagating toward the angle θt in the xy plane (anomalous refrac-

tion, a common target for gradient metasurfaces), the available literature has so far considered

designs based on phase compensation, which requires that the metasurface provides a con-

stant phase gradient φt = k0 sinθy [44], [111] [112]. This is the basis of the so-called “gener-

alized Snell’s law of refraction,” which allows to challenge the usual refraction response at a

transversely homogeneous interface. Coming to the example of deflector, we have considered

a planar metasurface which is designed to refract light at an angle of θt =π/4. The susceptibili-

ties for such a metasurface in surfacic coordinates is given by Eq. (2.115)- (2.107) and the corre-

sponding susceptibilities in Cartesian are obtained using Eq. (2.97). The susceptibility plots for

planar meta-deflectors are shown in Fig. 3.5. a), d). Now, substituting these susceptibilities into

Eq. (3.24) and (3.26) and performing the simulations, we get the field distributions as shown in

Fig. 3.4.a). We observe that the incident light is deflected as expected with a refraction angle of

θt = π/4. Further to compare , we evaluated and implemented the conformable susceptibility

for cos and curved beam deflectors by imposing the anomalous refraction at the metasurface

interface for the same refraction angle θt = π/4. By considering the incident and transmitted

wave same as the case of planar deflectors, one can obtain the susceptibilities conformable

to the given cos surface F (x, y) = λcos xπ
λ and curved surface F (x, y) = R −

p
x2 by applying

the CGSTCs (refer to Eq. (2.98)- (2.99)). The analytical expression for sinusoidal and curved

deflectors is given by Eq. (2.106)- (2.109) and the corresponding Cartesian susceptibilities are

calculated using Eq. (2.97). To avoid wave trapping and subsequent multiple reflections on the

metasurface, the oscillation period of the conformal surface function is considered to be larger

than the wavelength of incident light. The corresponding susceptibilities are plotted in Fig. 3.5.

The field distribution and the corresponding susceptibilities of the cos and curved deflectors

are shown in Fig. 3.4, 3.5 respectively.

3.2.5 2D planar and conformal lens

In the previous section, we have demonstrated the curved deflector which can be designed to

deflect the incident light with a desired transmitted angle. A similar approach can be applied

to the lens. Here again, we consider the same conformal metasurface interface functions as the

ones we took in the case of the deflector with a functionality of lensing. The field distribution

of the planar lens, sinusoidal lens and curved lens are shown in 3.6. As expected, the planar

and conformal lenses focus the light at the same focal distance of f = 6λ. The susceptibilities

are obtained from Eq. 2.101- 2.104 in surfacic coordinates (τ1,τ2 and n), and the corresponding

susceptibilities in Cartesian coordinates can be found using Eq. 2.97. The plots of susceptibility

for such a lens are plotted in Fig. 3.7 by assuming the E+
0 given by (2.117).
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Figure 3.4: 2D FDTD simulations of conformal deflector. a), b), c) showing the field distribution
of a planar , sinusoidal and curved meta-deflectors respectively. A Gaussian plane
wave is injected from the bottom of the x-axis. The source is implemented using
Total Field/Scattered Field (TF/SF) interface (dotted yellow line). CMPLs are added
to to terminate the grid on all sides.
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Figure 3.5: Susceptibilities of a deflector. a), d) The plot of susceptibilities for the planar meta
deflector for a deflection angle of π/4. b),e) The plot of susceptibilities for the sinu-
soidal meta deflector for a deflection angle of π/4. c),f) The plot of susceptibilities
for the curved meta deflector for a deflection angle of π/4. These Cartesian suscep-
tibilities are evaluated from surfacic coordinates via Eq. (2.97).
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Figure 3.6: 2D FDTD simulations of a conformal lens. a), b), c) showing the field distribution
of a planar, sinusoidal and curved meta-lens of focal length f = 6λrespectively. A
Gaussian plane wave is injected from the bottom of the x-axis. CMPLs are added to
terminate the grid on all sides.
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Figure 3.7: Susceptibilities of a lens with focal length 6λ. a), d). The plot of susceptibilities for
the planar meta-lens. b),e) The plot of susceptibilities for the sinusoidal meta-lens.
c),f) The plot of susceptibilities for the curved meta deflector for a meta-lens. These
Cartesian susceptibilities are evaluated form surfacic coordinates via the Eq. (2.97).
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3.3 3D conformal FDTD equations

If we want to estimate the performance of an optical device such as a lens, we need to per-

form the calculation of point spread function (PSF) and Zernike analysis to see the presence

of aberration in the optical system. All the above calculations require the three dimensional

data; therefore, we provide here the three dimensional formulations for the FDTD simulation

of the metasurface. In section 3.2.1, we have presented the two dimensional conformal FDTD

modified equations and discussed the algorithm to be implemented in FDTD. In this section,

we extend the same formalism to three dimensions. The modified FDTD equations in three

dimensions is derived by considering the presence of virtual nodes for all six components of

the E and H fields, as shown in schematic 3.8. The modified FDTD equations are given by
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Figure 3.8: 3D FDTD conformal virtual nodes. a) shows the schematic of the saddle surface.
b) Illustration of virtual nodes for Hx ,Ey and Ez . b) Illustration of virtual nodes for
Hy ,Ex and Ez . The virtual nodes are given by E−

x ,E−
y , E−

z and H+
x ,H+

y and H+
z .
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Êx

q+1[
m,n, pm

]+Eq
x
[
m,n, pm

])
, (3.30)

Eq+1
y

[
m,n, pm +1

]=
(
1− χ

y y
ee

4∆s

)
(
1+ χ

y y
ee

4∆s

) Êy
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Before updating the field Eq. (3.27)- (3.32), we have to update the normal update fields for

Ĥ and Ê using the equations from Appendix C (C.2)- (C.11). A block diagram illustrating the



56 CHAPTER 3: NUMERICAL IMPLEMENTATIONS OF CGSTCS AND ITS APPLICATIONS

Figure 3.9: 3D FDTD implementation. a) Shows the illustration for the 3D FDTD implementa-
tion of conformal metasurface modified equations. Note that before updating the
field Eq. (3.27)- (3.32), we have to update the normal update fields for Ĥ and Ê using
the equations from Appendix C (C.2)- (C.11).

detailed implementation of a 3D FDTD scheme is presented in Fig. 3.9

3.4 Parallel implementations of 3D

Even though FDTD is one of the easiest scheme to implement, there is always a price to pay.

FDTD is a memory-expensive method. Moreover, when it comes to longtime dynamics - such

as a steady-state solution - we must propagate Maxwell’s equations for a relatively long time,

which considerably increases the total time of computation. For example, three-dimensional

simulations on a grid 600×600×600 nm with a spatial resolution of 5 nm running on single core

take several days to explore the physics of a conformal metasurface. In addition to that with

such a resolution the memory consumption to keep all the 6 components of the fields is roughly

660038 = 10.37 GB. Certainly, we are not interested in such long computation times. There-

fore, the solution lies at the finite difference nature of FDTD. As illustrated in the schematic

Fig. 3.10.a), FDTD scheme is partitioned into a parallel grid by dividing the simulation area

into Npr oc interacting chunks of xy-slices, where Npr oc is the number of accessible processors.

Each processor computes the fields in a given number of xy-planes, Nloc , communicating with

the neighbouring chunks through send/receive operations. The standard way to perform such
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Figure 3.10: Parallel implementation of FDTD. a) shows the 3D simulation area is partitioned
into Nl oc slices of xy planes; such Nloc chunks are computed by each core given by
the number of available physical Npr ocs cores. The communication between the
cores is done via MPI. b) The metasurface interface is divided into zy -slice by the
Nl oc slices, in each slice the shape of the metasurface remains same shape, the
MPI slice is done perpendicular to the metasurface. The communication between
each rectangular box is achieved through MPI cores.

operations is to use point-point MPI communications.

Coming back to the 3D example, a 600× 600× 600 grid can be partitioned onto a 60 core

computer handling 600×600×10 xy-slices that are computed by a single processor. One im-

portant achievement is that all processors are now able to propagate the fields at the same time,

speeding up the simulations. We are not going into the deeper details of parallel computations

here as it is not in the scope of this thesis. Many parallel FDTD schemes are present in the liter-

ature [113, 114, 115, 116, 117]. The one we implemented is the hybrid scheme, which involves

the use of MPI [118]. For more convenience, the MPI partition is done perpendicularly to the

metasurface, as illustrated in Schematic 3.10.b).

3.5 Aberration free conformal lens

Optical aberrations are the unavoidable phenomenon of light which are not completely nulli-

fied, even to date, to all of their higher orders (see 3.5.3.2) using conventional refractive optics.

Recent developments in the field of metasurfaces have enabled new ultra-thin lenses capable

of focusing light with diffraction limited performances [119]. The latter however present se-

rious aberrations which could significantly hamper their utilisation in imaging systems. This

problem has already been carefully studied and several solutions exist, in particular in consid-

ering a metalens disposed on curved interfaces. It is mathematically shown that by satisfying

the Abbe Sine Condition (ASC) [120] and using the properties of the circle of Apollonius [121],

spherical and coma aberrations can be corrected [122]. Refraction across a curved metalens
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Figure 3.11: Schematic of lensing. a) Shows a ray of light entering from medium 1 with an in-
cident angle θ1 on a lens at a height r1 refracted to a point object with a refraction
angle θ2. The point object is placed at a distance d1 from the center of the lens.
Ideal image is formed at a distance d2 from the center of the lens.

has been already considered by treating the problem using the ray optics approach [123].

3.5.1 Abbe Sine Condition

In this section, we would like to discuss briefly the relation between the Abbe Sine Condition

(ASC) [124] and the aberrations that arise in optical devices. In-depth theoretical treatments of

optical aberrations are given in [125] and [126], and a specialized treatment for design engi-

neers is given in [127], [68], [128] and [129]. While performing the optical design calculations,

many engineers use parameters based on paraxial systems. Paraxial approximations corre-

spond to lenses in which the chief rays are very close to the optical axis. However, this is not

always the case, and as we move far from paraxial conditions, the presence of aberrations has

a wide impact on design performance and optimization.

In the nineteenth century, Ernst Abbe defined the relation between the object height and

the image height, which allowed for new complex systems with better image quality to be de-

veloped. This relation is called Abbe Sine Condition (ASC), or Optical Sine Theorem (OST)

[130], and is is given by:

h2

h1
= n1 sinθ1

n2 sinθ2
. (3.33)

With n1, n2 being the refractive indices of the medium 1 and 2 respectively. Complying with

the ASC requires for the imaging of off-axis points, the magnification ratio should be the same

for all rays irrespective of the angle at which they were traveling in medium 1. The ASC thus

demands that the magnification of an image should be the same regardless of where the rays

hit the lens surface. Thus, reaching the Abbe Sine condition beyond paraxial approximation is
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Figure 3.12: 3D equivalent 2D-Numerical experiment. A schematic describing the performed
numerical experiments, where in order to study the effect of radius of curvature on
the aberration, the FDTD simulations are performed for the different metasurfaces
with varying radius of curvature (R = ∞, f ,2 f ,4 f ) by coming with the different
incident plane waves with oblique incident angles ranging from 0 to 30 degrees in
steps of 3. The oblique plane wave source is injected symmetric to the metasurface
structure.

influenced by the shape of the interface [120, 131]. The ASC can be derived via several distinct

lines of reasoning, including Fermat’s Principle in geometrical optics [132], wave optics [133],

[129] and the thermodynamics paradox involving focused light [134, 135]. For any optical de-

vice, as we deviate from ASC, the aberrations come into picture. We want to study the effect

of the shape of the interface on the aberrations, as it provides an idea on how to optimize the

performance of an optical device in minimizing the various aberrations.

Hence, we consider a curved 3D conformal metasurface (See Fig. ((3.13))). We impose a fo-

cusing condition on a normally incident plane wave passing across interfaces having different

curvatures. With the help of CGSTCs, we extract the susceptibilities matching normal incident

light with a spherical wavefront. We explore the dependence of the aberration on the curva-

ture of the interfaces by varying the radius of curvature R. However, for imaging purposes,

light is generally coming at various oblique angles, rather than a normal incidence. Hence, we

also study the evolution of aberrations as a function of the incident angle for a given interface

geometry satisfying the Abbe Sine condition.

The purpose of our calculation is to study the effect of interface geometries on the aber-

rations and the behaviour of aberrations with that of a varying oblique incidence. For this

purpose, we have performed numerical experiments. In the numerical experiment shown in

Fig. 3.12, we study the effect of the curvature of the metalens for different radii of the curvature

R = f ,2 f ,4 f with f = 11λ. For this, we come with a normal incident plane wave and extract the

susceptibilities by assuming the incoming plane wave focus at a focal point f0 from the center

of the lens O for each curve. Now, keeping the same susceptibilities that are calculated for nor-

mal incidence, we sweep the angle of incidence from θi = 0o to θi = 30o in the steps of 3o for

each metasurface with a different radius of curvature. It should be noted that the oblique inci-

dent wave is injected in the FDTD code in such a way that the incoming plane wave is always

symmetrical with the center of the metasurface O.
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Figure 3.13: Conformal inverse synthesis problem. a). A plane wave incident (ΨI ) on the con-
formal curved meta-surface is reflected (ΨR ) and transmitted (ΨT ). In this case of
Abbe sine lens, the incident plane wave is assumed to be completely transmitted
into the focusing wave given by Eq. (2.117) which focuses the incoming plane wave
at focal length f0. The electric and magnetic susceptibilities are evaluated from the
CGSTCs theory (Eq. (2.91)-(2.94)). The susceptibilities obtained are now function
of the curvature of the metasurface interface f (x, y). b). shows the similar problem
of synthesis of planar metasurface (where the curvature remains constant).

3.5.2 Abbe Sine lens

The metasurface inverse synthesis problem is schematically described in Fig. 3.13. The sus-

ceptibilities are calculated for a conformal metasurface of a hemispherical lens defined by the

interface function f (x, y) = R −
√

x2 + y2. We impose that a plane wave normally incident on

this metalens focuses the incoming light at a focal distance of (0,0, f0). Such a spherical focus-

ing wave is defined [92] as

E0
+ = E 0 sin(θ0)

r0

(
1+ i

k0r0

)
e i k0r0φ0, (3.34)

where E 0 = f0/(1+1/(k0 f0)2) is a normalization of the field power and (r0,θ0,φ0), a spherical co-

ordinate system given by r0 =
√

x2 + y2 + (z − f0)2, θ0 = arccos(−y/r0) ,φ0 = atan2(z− f0, x) and

φ0 = (cosφ0,0,−sinφ0). The corresponding H field can be found using H+
0 =−µ0∇×E+

0 . From

Eq (2.98)-(2.99), one can now obtain the susceptibilities in surfacic coordinates and the corre-

sponding quantities in the Cartesian coordinates using Eq (2.97). The tensorial components of

the electric and magnetic susceptibilities in surfacic coordinates are plotted in Fig. 3.14. The

corresponding electric and magnetic susceptibilities in Cartesian coordinates for planar and

curved metalenses are plotted in Fig. 3.17- 3.18 and 3.15- 3.16 respectively.

3.5.3 Results and Discussion

3D FDTD simulations are performed for the Abbe Sine lens using the scheme presented in flow

chart 3.9 by varying the radius of curvature as well as the angle of incidence. The schematic
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Figure 3.14: Susceptibilities of planar and curved lenses in surfacic coordinates. a)-d) and e)-
h) are electric and magnetic susceptibilities for a curved lens with R = f0 = 11λ
respectively. i)-l) and m)-p) are electric and magnetic susceptibilities for a planar
lens with f0 = 11λ and R = ∞ respectively.These susceptibilities are synthesized
using Eq (2.98)- (2.99) for a planar and curved conformable metasurface respec-
tively, which converts the normally incident plane wave into a focusing wave given
by Eq (2.117).
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Figure 3.15: Tensorial components of electrical susceptibilities for a curved metalens in Carte-
sian coordinates. Electric susceptibility tensor with its components in Cartesian
coordinates for a curved lens with R = f0 = 11λ. These susceptibilities are synthe-
sized using Eq. (2.97) for a curved conformable metasurface, which converts the
normally incident plane wave into a focusing wave given by Eq (2.117).

Figure 3.16: Tensorial components of magnetic susceptibilities for a curved metalens in Carte-
sian coordinates. Electric susceptibility tensor with its components in Cartesian
coordinates for a curved lens with R = f0 = 11λ. These susceptibilities are synthe-
sized using Eq. (2.97) for a curved conformable metasurface, which converts the
normally incident plane wave into a focusing wave given by Eq (2.117).
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Figure 3.17: Tensorial components of electrical susceptibilities for a planar metalens in Carte-
sian coordinates. Electric susceptibility tensor with its components in Cartesian
coordinates for a curved lens with R = f0 = 11λ. These susceptibilities are synthe-
sized using Eq. (2.97) for a curved conformable metasurface, which converts the
normally incident plane wave into a focusing wave given by Eq (2.117).

Figure 3.18: Tensorial components of magnetic susceptibilities for a planar metalens in Carte-
sian coordinates. magnetic susceptibility tensor with its components in Cartesian
coordinates for a curved lens with R = f0 = 11λ. These susceptibilities are synthe-
sized using Eq. (2.97) for a curved conformable metasurface, which converts the
normally incident plane wave into a focusing wave given by Eq (2.117).
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of the problem studied is presented in Fig. 3.12. For the numerical experiment, the curvature

is varied from R = ∞ (planar metasurface) to R = 4 f while the incident angle is varied from

θ = 0 (normal incidence) to θ = 30◦. In the present modelling of the conformal FDTD scheme

and the simulations, we consider only the diagonal elements of the Cartesian susceptibilities

tensors plotted in Fig. 3.17- 3.18 and 3.15- 3.16 though the non diagonal elements are not zero.

3.5.3.1 The Point Spread Function

The ideal Point Spread Function (PSF) [136] is the three-dimensional diffraction pattern of light

emitted from an infinitely small point source in the specimen and transmitted to the image

plane through a high numerical aperture (NA) objective. The performance of an imaging sys-

tem can be quantified by measuring its PSF. The amplitude of the PSF of a lens is given by the

transversal spatial variation of the amplitude of the image received at the detector plane when

the lens is illuminated by a perfect point source. Diffraction combined with aberrations in the

optical system will cause the image of a perfect point to be spread out into a blur spot leading

to a finite area like a disk instead of a point on the image plane [137]. In simple words, the PSF

is given by the spread of this disk on the image plane. The amplitude PSF is proportional to the

electric field at the focal plane whereas the intensity PSF is proportional to the power per unit

area or the square of the electric field. Thus, intensity and amplitude PSF are directly propor-

tional to the efficiency of the lens to focus. Therefore, the PSF represents a valid measure for

the quality of an optical system as it reveals how images are blurred.

Full Width Half Maxima (FWHM) [138] is the width of a PSF curve measured between the

two values of the field or intensity at which the value is equal to half the maximum value of

field or intensity. The evolution of the FWHM for different curvatures with varying incidence

angles is studied. From the FWHM plots shown in Fig. 3.19.a, it is clear that the curvature

of the interface has an influence on the evolution of the FWHM, which is minimum and does

not oscillate much with the angle of incidence for R = f . We also obtain the information that,

on average, the FWHM remains same for different incident angle when R = f , which indicates

that we can achieve a better and sharp focus by engineering the metalens with R = f . Further,

from the results plotted in Fig. 3.19.b), one can say that the performance of a conformal lens is

better than that of a planar lens as the FWHM remains the almost constant for different oblique

incidences.

The PSF plots for the meta-interfaces R = f and R =∞ (planar) for different angle of inci-

dence is computed and the plots are shown in Fig 3.20. The plots clearly convey that the focus

is sharp in the case of an Abbe Sine metasurface, which is much better compared to that of pla-

nar metasurface. In the case of planar metasurface, one can notice that the shape of the spot

is not small and deviates from the spherical shape comparing with the Abbe Sine lens (R = f ).

With the information on the amplitude of the fields (see Fig. 3.21), PSF and FWHM only, we can

not account for the absence of aberrations as these are not quantitative measurements. In a

situation like this, it is always better to compute the Zernike coefficients [139], which quanti-
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Figure 3.19: Full Width Half Maximum of the PSF. a). shows the comparison of FWHM eval-
uated on the PSF for different radii of curvatures of the metasurface R = f ,2 f ,4 f
for f=11λ for different oblique incident plane wave. b). shows the comparison of
FWHM between the planar (R =∞) lens and Abbe sine lens (R = f ).



66 CHAPTER 3: NUMERICAL IMPLEMENTATIONS OF CGSTCS AND ITS APPLICATIONS

Figure 3.20: Point spread function. Top and bottom row show the point spread function plots
for the planar (R = f ) and Abbe Sine meta lens (R = f ) for different angle of inci-
dence. For obtaining these plots the FDTD data of Ex component of the E field is
taken at the focal plane of the lens (z = f0).

tatively provide the strength of each aberration present in the lens.

3.5.3.2 Zernike analysis

To quantitatively compare the aberrations obtained using a planar and curved interface, we

rely on the Zernike coefficient analysis [140, 5]. We collect Ex data on a plane perpendicular to

the incident direction, and this plane is drawn right after one cell after the metasurface inter-

face defined by the function f (x, y) = R −
√

x2 + y2 for the case R = f as well as for the planar

metasurface given by R =∞, in order to have the same expression of the coefficients in both

cases. For a better understanding, the process of Zernike analysis is schematically explained in

Fig. 3.22.

The wrapped phase is calculated from the Ex data defined by the formula:

Wθ(x) = Arg
(
Eθx

)
, (3.35)

where the suffix θ denotes the Ex data obtained for a different incident angle θ. Wθ(x) is suffi-

ciently far from the focal point and is equal to k0r0. We have computed the coefficients of the

Zernike polynomial expansion of the unwrapped phase of Ex on the interface f (x, y) for differ-

ent angles of incidence. We note by ∆Wθ(x) the difference between the obtained phase x ∈ S

(also often refered to as mask in the literature) and the theoretical one in (3.35):

∆Wθ(x) =UNWRAP[
Arg(Ex )

]−k0rθ, (3.36)

where UNWRAP [141, 142, 143] corrects the radian phase angles in a vector Arg(Ex ) by adding

multiples of ±2π when absolute jumps between consecutive elements of Arg(Ex ) are greater
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Figure 3.21: Amplitudes of the field data in yz plane. The top and bottom row show the ampli-
tudes of Ex field obtained from the FDTD simulations for the planar (R =∞) and
Abbe sine lens (R = f ) metasurface for different angle of incidence respectively.
The plane wave source is injected from the bottom of the z axis using TF/SF inter-
face.

than or equal to the default jump tolerance of π radians. Here, ∆Wθ(x) is defined for x ∈ S, but

the Zernike decomposition is usually done using polar coordinates on a plane surface. We then

define a local polar coordinate system

ρR =
√

x2 + y2, φR = atan2(y, x).

The Zernike decomposition of ∆Wθ is given by:

∆Wθ(ρR ,φR ) =
∞∑

n=0

n∑
m=−n

αm
n Z m

n (ρR ,φR ), (3.37)

where

Z m
n (ρ,φ) =

n−m
2∑

k=0

(−1)k (n −k)!ρn−2k cos(mφ)

k !
(n+m

2 −k
)
!
(n−m

2 −k
)
!

. (3.38)

By orthogonality of Zernike polynomials we have:

αm
n = 2(n +1)

π

∫ 2π

0

∫ 1

0
∆W (ρR ,φR )Z m

n (ρR ,φR )ρR dρR dφR (3.39)

= 2(n +1)

π

∫ 1

−1

∫ p
1−x2

−
p

1−x2
∆W (x, y)Z m

n (x, y) dy dx. (3.40)

The magnitude of the Zernike coefficient versus first fifteen coefficients for different angles of

incidence is plotted in Fig. 3.23. From the plots, one can notice that the Abbe Sine meta-lens

(blue bar) has less aberrations compared to the planar metalens (orange bars). The results

show that the Zernike coefficients from 1− 15 type of aberrations (see 3.1) shown in the bar

plot (see Fig. 3.23) are short compared with that of the planar metalens. The Zernike analysis



68 CHAPTER 3: NUMERICAL IMPLEMENTATIONS OF CGSTCS AND ITS APPLICATIONS

Figure 3.22: Zernike analysis. The process of obtaining the Zernike coefficients is shown. a).
Schematic of 3D simulation area, showing the metasurface and blue plane on
which the Ex data is obtained for zernike analysis. b). Color map of the Ex

field component, taken on the plane right after the metasurface (shown with blue
plane). This data is plotted for Re(Ex ) and Im(Ex ). c). Subplots from top left to bot-
tom left (clockwise) are the color map of the computed wrapped phase, theoretical
wrapped phase, theoretical unwrapped and computed unwrapped phase, respec-
tively. d). Color map of difference of the unwrapped computed and unwrapped
theoretical phase, S is the mask within this circular area where the quantity Wθ(x)
is obtained and on which the decomposition is performed to obtain the Zernike
coefficients. e). Bar graph showing the obtained first 25 Zernike coefficients for
the case R = f for normal incidence, among which first 15 are important and the
names of it are mentioned in Table. 3.1.
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is done using Matlab. Finally, from all the calculations of PSF, FWHM and Zernike coefficients,

we notice that the Abbe Sine lens performance is much better by far compared to that of the

planar lens. Such Abbe Sine metalens designs can find many applications in wearable optics

for imaging purposes.

Zernike Analysis
Zernike coefficient Aberration type
1 Piston
2 Tilt-y
3 Tilt-x
4 Astigmatism-1st-45
5 Defocus
6 Astigmatism-1st-0
7 Trefoil-30
8 Coma-y
9 coma-x
10 Trefoil-0
11 Tetrafoil-22.5
12 Astigmatism-2nd-45
13 Spherical
14 Astigmatism-2nd-0
15 Tetrafoil-0

Table 3.1: Zernike coefficients. A table summarizing the Zernike coefficient number and its
corresponding aberration type. Here only first fifteen Zernike coefficients are shown.
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Figure 3.23: Zernike analysis. The bar plot shows the different types of aberrations versus the
strength (magnitude) of the Zernike coefficients for different angles of incidence
(θ = 0,6,12,24). Blue (orange) bars represent the values for Abbe Sine meta lens
(planar metalens). The Zernike coefficients corresponding to the numbers from 1
to 15 are shown in Table. 3.1.
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3.6 Conclusion and future work

We have presented the modified 3D and 2D FDTD scheme for the modelling of conformal

metasurfaces. We have demonstrated the applicability of modelling technique by our imple-

mentations to various 2D and 3D examples such as deflectors and lenses. Going beyond the

ray optics approach, we applied the concept of CGSTCs to analytically and numerically calcu-

late the susceptibilities of arbitrary shaped metasurfaces and further utilizing these quantities

to address the refraction across interfaces of arbitrary geometries. We show that the aberra-

tions are considerably affected by the curvature of the interface hosting the metalens. From the

FWHM, PSF and Zernike analysis plots we demonstrated that the Abbe Sine condition holds for

the proper interface curvature, and the aberrations are minimum for R = f in comparison with

R =∞. This approach could help in designing spherical or non conventional metasurfaces that

could achieve perfect focusing. Our parallel implementations of conformal FDTD could be a

matter of interest for the meta-optics community to do fast computing.
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Chapter 4

Experimental and Theoretical

comparison of GSTCs

4.1 Introduction

In chapter 3, we have proposed a scheme for modelling, in general any freeform metasurface

and its implementations using the FDTD technique. In this chapter we are going to study the

practical application of the GSTC-FDTD modelling in the characterization of any optical de-

vice with the minimum information of the phase profile of the optical device. We propose an

experimental technique to measure the phase profile a lens based on Quadriwave lateral shear-

ing interferometry (QLSI), whose working principle is discussed. We also discuss two types of

fabrication process namely Effective-Refractive index based fabrication process and PB phase

fabrications process. To the end we study some practical examples of characterization of opti-

cal devices such as lenses and deflectors.

4.2 Fabrication and synthesis of metasurface

In practice, an optical metasurface is made of a dense distribution of scattering nanostruc-

tures with sub-wavelength geometries and inter-distances, which shows the characteristics of

a compact, continuous and very thin optical component [144, 105, 145]. By optimizing the ar-

rangement of the distribution, morphology and composition of the meta units, the effective

optical properties of the metasurface can be spatially tailored to control the phase, polariza-

tion and amplitude of a transmitted and reflected light to achieve a desired functionality. For

a particular functionality like lenses and deflectors, one has to design effective optical phase

elements using meta-units that can span the full 0 → 2π phase-shift. Practically, it is impossi-

ble to achieve a large phase transition of 2π using a single meta-unit as these behave as har-

monic oscillators[146], the phase of which can only vary from 0 →π. Therefore, many complex

nanostructures are needed. They can consist of thick structures or thin structures (Huygens’s
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metasurface[147]), depending on whether one wants to favour the occurrence of retardation

effect and deviation from the dipolar response, or achieve a 2π phase shift by matching the

electric and magnetic dipole resonance frequencies.

4.2.1 Fabrication of Effective-Refractive index Metasurfaces

Effective-refractive-index (ERI) metasurfaces often consist of a dense distribution of cylindri-

cal nanopillars behaving as individual Fabry-Perot resonators with a low quality factor Fig.a.4.1

The pillars are sufficiently tall to accommodate internal multi-longitudinal-mode propagation,

but remain sufficiently narrow to achieve large pillar density and prevent the propagation of

nonzero diffraction orders in a free space or in the substrate [148]. The resulting effective re-

fractive index of the pillar layer, and thus, the phase shift, can be adjusted by altering the pil-

lar diameter. In this study, we have used a periodic square array of nanopillars made of GaN

Fig.b.4.1, 1µm in height and with a 300 nm pitch, with diameters varying from 114 to 206 nm

Fig.c.4.1. The fabrication of the metasurface that we follow in our lab is presented [5] in the

following paragraph.

The steps followed during the nanofabrication process are schematically depicted in Fig.4.2.

The metasurface has been fabricated by patterning a 1µm thick GaN layer grown on a double-

sided polished c-plan sapphire substrate using a Molecular Beam Epitaxy (MBE) RIBER system.

Conventional electron beam (EBL) was used to expose a double layer of 200 nm PMMA resist

(4695A4) spin-coated on the GaN thin-film and then baked on a hot plate at 125 ◦C. E-beam

resit exposure was then performed at 20 keV (using a Raith ElpyPlus, Zeiss Supra 40), followed

by PMMA development using a 3 : 1 IPA:MIBK solution. After development, a 50 nm layer of

Ni was deposited using e-beam evaporation to perform a metallic film liftoff by immersing the

sample into an acetone solution for 2h. The resulting Ni pattern was utilized as a hard mask

during the reactive ion etching (RIE, Oxford system with a plasma composed of C l2, C H4, Ar

gases, with flows of 13,2 and 2 sccm, respectively) to transfer the pattern in the GaN layer. Fi-

nally, the Ni hard mask on the top of GaN nanopillars was removed using chemical etching with

a 1 : 2 HC l/H NO3 solution. ERI metasurfaces have been designed to be used at a wavelength

of 600 nm.

4.2.2 PB Metasurface Fabrication

We fabricated the PB metasurfaces using a novel approach based on the use of a patternable

polymer (ma-N 2410, Micro Resist Technology GmbH, Germany) as the metasurface building

material itself. The fabrication process is described in detail in ref [149]. This fabrication

technique allows for a facile route to make large-scale, high efficiency gradient metasurfaces.

The constituent meta-units are freestanding nano-fins with the dimension 400×140×1700 nm

Fig.4.1.d), which when placed in a square lattice with a 500 nm period, present a polarization

conversion efficiency of sin β
2 ≈ 50% at the operating wavelength of 530nm. Using this type of
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Figure 4.1: Metasurface fabrication using different methods. a,b) and d), e). Structure of GaN
nanopillar used in ERI and PB metasurface method respectively. c,f) Transmittance
plots obtained from the FDTD simulations from a commercial software for ERI and
PB phase metasurface [5].
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Figure 4.2: Nanofabrication steps of metasurface is shown. Here blue cylinder stands for
Sapphire substrate, red for Gallium Nitride, green for Poly(methyl methacry-
late)(PMMA), an electron beam resist, silver for Nickel. And MBE stands for Molec-
ular Beam Epitaxy, EBL-Electron Beam Lithography, MIBK:IPA - Methyl Isobutyl Ke-
tone: Isopropyl Alcohol, RIE - Reactive Ion Etching.

metasurface building block, a hyperbolic lens with a focal length of 500µm as well as a linear

phase gradient metasurface were built. In the case of uniform metasurfaces and deflectors (but

not in the case of metalenses), the metasurfaces were surrounded by a uniform sea of fins as a

means to have light transmission also around the metasurfaces. All PB metasurfaces have been

designed to be used at a wavelength of 532 nm.

4.3 Phase Method and Field method

The synthesis of the metasurface using the inverse synthesis equations (2.100) relies on the

fields before and after the metasurface. A field contains both amplitude part and the phase

part. Suppose, if we consider both the amplitude and phase for the fields before and after the

metasurface that synthesis method is called field method (see Fig.4.3.b) or else if we approxi-

mate the field after and before the metasurface by assuming the amplitudes equal to unit and

only taking into consideration phase variation that synthesis method is called phase method

(see Fig.4.3.a). Let’s discuss the comparison between the field and phase method, [150] by the

simple examples of deflector and lens in the following subsections.
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Figure 4.3: Different inverse synthesis method. a). A schematic of the phase synthesis method
in which the transmitted and reflected field is approximated by assuming the am-
plitude is equal to unity. b). Field synthesis method in which both the amplitude
and phase are considered in transmitted and reflected fields before and after the
metasurface.

4.3.1 Meta-deflector

For the first example, let us consider a reflection-less metasurface that refracts the incident light

at θt . The inverse synthesis problem of such metasurface placed at x = 0 is given by choosing

the incident and transmitted electromagnetic fields as follows:

H0−
z =e−ik0x , H0+

z =e−ik0(sinθty+cosθtx),

iωε0E0−
y =i k0e−ik0x , iωε0E0+

y =i k0cosθt e−ik0(sinθty+cosθtx),

iωε0E0−
x =0, iωε0E0+

x =i k0sinθt e−ik0(sinθty+cosθtx),

(4.1)

where the fields with ψ±0 correspond to the the fields ψI ,T (see Fig.4.3) with ψ = E or H. The

metasurface susceptibilities calculated from Eq.(2.100) by substituting the input and output

fields from Eq (2.101) and (2.104) for n = x̂ are given by

χ
y y
ee = 2secθt

i k0
{

1−e−i k0 sinθt y

secθt +e−i k0 sinθy
} (4.2)

χzz
mm = 2cosθt

i k0
{

secθt −e−i k0 sinθt y

1+e−i k0 sinθy
}. (4.3)

Since in evaluating the above susceptibilities we did not use any approximation in the trans-

mitted fields, the method is called field method synthesis.

In the phase method, the transmitted and the reflected fields at the level of the metasurface

are approximated by assuming the amplitude of the fields equal to one, therefore the trans-
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mitted and reflected fields are written in terms of transmission and reflection coefficients as,

ψR = RψI with ψ= E,H, where T and R are the ratio of output phase profile to the input phase

profile. The analytical fields for the reflection-less deflecting metasurface are given by

H0−
z =e−ik0x , H0+

z =Tz H0−
z ,

E0−
y =k0e−ik0x , E0+

y =Ty E0−
y ,

(4.4)

where the complex amplitude transmittance is given by

Tde f lector =
ψT

ψI
= Tz = Ty = e i k0 sinθt y . (4.5)

The susceptibility from the phase method can be obtained by substituting the fields from

Eq. (4.4) into Eq. (2.101) and (2.104) as

χ
y y
ee = 2

k0
tan

(
k0 sinθt y

2

)
(4.6)

χzz
mm = 2

k0
tan

(
k0 sinθt y

2

)
. (4.7)

Fig.4.4 shows the comparison between the susceptibilities obtained via the field and phase

methods. The susceptibilities obtained with the field method are exact and precise in compar-

ison with that of the phase method. In practice, the metasurface is synthesized with the phase

method, as the amplitudes of the transmitted fields are not varying as a function of the coordi-

nates on the metasurface plane, since it is not possible to consider small changes in the ampli-

tude variations using the field method due to the limitations of the fabrication techniques. The

phase profile corresponding to the tiny changes in the amplitude variations cannot be mapped

to the pillar sizes in the e-beam writing during the fabrication process. Fig.4.4.(c),(e) show the

FDTD simulations results performed for the deflector of deflection angle θt =π/6 by consider-

ing the susceptibilities obtained by the phase and field methods. It is evident from the FDTD

simulations that the field method approach is the one that gives the most precise results, as

we notice that there is a partial reflection of wave in the case of the phase method. This is

expected, as the input and output fields from the metasurface match perfectly in the case of

the field method, contrarily to the case of the phase method, where the matching of the phase

profile is approximated.

4.3.2 Meta-lens

In the second example, let us consider a metasurface which focuses the incoming plane wave

at a focal distance of f0. The fields right before and after the metasurface for the case of the field

method synthesis are given by Eq.(2.110), whereas the ones for the case of the phase method
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Figure 4.4: Comparison between the PM and the FM synthesis methods for a 2D deflector. a), b)
d) and e) show the susceptibilities obtained using the PM and FM synthesis methods
respectively. One can notice that, in the case of the PM, the imaginary part of the
susceptibilities is zero, while in the case of the FM, they are not really zero. This fact
causes the reflections in the FDTD simulations shown in c), which are not visible in
e), as there is a perfect matching of the boundary conditions in the case of the field
method. c) and d) show the amplitude plots of the field Hz obtained through the
PM and FM FDTD simulations for a meta-deflector with an angle of π/6.

are given by

H0−
z =e−ik0x , H0+

z =Tz H0−
z ,

E0−
y =k0e−ik0x , E0+

y =Ty E0−
y ,

(4.8)

where the complex amplitude transmittance is given by

Tlens =
ψT

ψI
= Tz = Ty = e

−i k0

(p
f 2

0 +y2+ f0

)
. (4.9)

The susceptibilities for the phase method can be obtained by substituting the fields from

Eq. (4.8) into Eq. (2.101) and (2.104) as

χ
y y
ee = 2

k0
tan

k0

(√
f 2

0 + y2 + f0

)
2

 (4.10)

χzz
mm = 2

k0
tan

k0

(√
f 2

0 + y2 + f0

)
2

, (4.11)
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Figure 4.5: Comparison of the PM and FM synthesis methods for a 2D lens. a), b), and d), e)
show the susceptibilities obtained using the PM and FM synthesis methods respec-
tively. One can notice that, in the case of the PM, the imaginary part of the suscep-
tibilities is zero, while in the case of the FM, it is not really zero. c) and f) show the
amplitude plots of the field Hz obtained through the PM and FM using FDTD simu-
lations for a meta-lens with a focal length of f0 = 7.5λ. In the case of the PM method,
we notice that the focusing wave moves sharply towards the focus, whereas in the
case of the FM method, the focusing wave moves towards the focus in a smoother
manner. The focal point in the case of the PM method is slightly shifted, whereas in
the FM method, it is exactly at f0 = 7.5λ.

write the equations for susceptibilities for the lens in filed method and the susceptibilities for

the field method can be calculated from Eq.(2.97) by substituting Eq.2.111-2.114. The com-

parison of the susceptibilities between the two methods is plotted in Fig.4.5. In the case of the

FM method, the imaginary part of the susceptibilities does not become zero (see Fig.4.5.d, e.),

whereas in the case of the PM method, the imaginary part of the susceptibilities is zero. This

causes a loss of information which results in the defocus of the image. In the FDTD simula-

tion results shown in Fig.4.5.c, the focal point is slightly shifted (7λ) from the actual focal point

( f0 = 7.5λ), whereas if we use the susceptibilities calculated from the FM synthesis, focus is

obtained exactly at the expected location f0 = 7.5λ and can be seen in the FDTD simulations

plotted in Fig.4.5.f.

From the two examples demonstrated above (meta-deflector and metalens), we infer that

the PM synthesis shows disadvantages due to its own nature, as using this method in the case

of a deflector causes reflections, while in the case of a lens, it causes a shifting of the focal point.

Until now, we have relied on the computational results to analyze the deflector and lens.

In the following section, we would like to conduct some phase measurement experiments

in order to measure the susceptibilities of any optical device and analyze the performance of

the optical device using the proposed FDTD and Fourier Beam Propagation Methods (BPM)

[151].
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4.4 Theoretical and experimental characterization of meta-

lens and deflector

4.4.1 Experimental measurements, material and methods

The experimental measurements have been carried out using a technique named Quadriwave

Lateral Shearing Interferometry (QLSI). It is a quantitative phase imaging technique based on

the use of a wavefront analyzer composed of two simple elements: a regular camera and a

two dimensional diffraction grating, separated by a millimetric distance from each other [152].

A good introduction to the working principle of QLSI can be found in[153]. The diffraction

grating (usually called a modified Hartmann mask, MHM) consists of a chessboard pattern

of square transmitting units with alternating 0 and π phase shifts Fig.b. 4.6. This geometry

cancels the 0 order and mainly produces first diffraction orders in four directions. The four

diffraction orders create four slightly shifted images on the camera that interfere to create a so-

called interferogram. The interferogram can be processed to retrieve both the intensity and the

wavefront profiles W (x, y) or, equivalently, the phase φ(x, y) of an incoming light beam [154].

When mounted on a microscope, the measured wavefront profile is nothing but the optical

path difference (OPD) image δl (x, y) created by a sample in the object plane Fig.c. 4.6. δl =W ,

and one usually defines

δl = λ0

2π
φ(x, y) (4.12)

where λ0 is the illumination wavelength and φ(x, y) is the phase delay experienced by a

light beam crossing the sample in the object plane.

The experimental setup used in this study is depicted schematically in Fig. 4.6. The illu-

mination section consists of Light emitting diode (LED) positioned in a Kohler optical scheme

to illuminate the sample with a sufficient degree of spatial coherence. This caution is a re-

quirement in QLSI to achieve interferometric measurements despite the incoherent nature of

the light source. In all the measurements, we used Nikon objectives, with a tube lens of fo-

cal distance 200 mm. The light passing through the sample is imaged by the microscope on

the QLSI wavefront analyzer. Each measurement requires the acquisition of a reference im-

age over a clear area (without any object) prior to taking an image with the object of interest

within the field of view (in our case, a metasurface). The reference is then subtracted from

the object image to discard any imperfections of the incoming light beam. In the specific case

of Pancharatnam-Berry metasurface characterization, a set of two optical polarizers and two

quarter-wave plates are added to the setup to study the device response in the standard cir-

cular cross-polarization configuration. We used a wave front analyzer provided by the Phasics

company.
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Figure 4.6: Scheme of the optical setup used to characterize the metalenses. LEDs with differ-
ent wavelengths combined to a Kohler configuration illuminate the sample with a
light beam controlled in wavelength, size, and numerical aperture. The light passing
through the metalens sample is collected by a microscope objective lens and sent to
the QLSI wavefront analyzer. [5].
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Until now we have discussed about two types of fabrication techniques (ERI and PB) and

two types inverse synthesis methods (PM and FM). In the following section we are are going

to discuss and compare theoretical and experimental results by lens and deflector following

different fabrication and inverse synthesis processes.

4.4.2 Characterization using FDTD and Fourier Beam Propagation

4.4.2.1 FDTD for experimental data

The phase profile and the intensity profile of the metalens or deflector are measured using the

set up discussed and shown in Fig. 4.6, lets call the measured phase and intensity as δl (r )exp

and I (r )exp . From these two quantities the transmission coefficient (T (r )exp ) of the metasur-

face is obtained from the following equation

T (r )exp =
√

I (r )exp e i k0δl (r )exp . (4.13)

Once we obtain the transmission coefficient, the susceptibilities of the metasurface are cal-

culated using the formula [47]

χ
exp
ee = 2i

k0

(
T +R −1

T +R +1

)
, (4.14)

χ
exp
mm = 2i

k0

(
T −R −1

T −R +1

)
, , (4.15)

where the reflection coefficient (Rexp ) is assumed to be zero in all the calculations. These mea-

sured susceptibility are fed to the FDTD code that we have discussed in Chapter 3. For example,

the measured susceptibilities for the case of a lens with focal length f = 500µm and diameter

d = 200µm are shown Fig. 4.7 and Fig. 4.8 and compared with the FM and PM method syn-

thesis. The measured susceptibilities are closely matching with those obtained from the FM

synthesis method.

4.4.2.2 Fourier beam propagation

Let us assume that a 2D metasurface (xy-plane) is present at z = 0. In order to use the Fourier

beam propagation we need to calculate the field right after the metasurface at z = 0+, this field

is approximated as E(r )0+
t ≈ Ei T (r )exp [151]. First the Fourier transformation of the field E(r )0+

t

right after the metasurface is obtained by using

Ê(x, y, z0+) = 1

4π2

∫ ∫ ∞

−∞
E(x, y, z = 0+)d xd y, (4.16)
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Figure 4.7: Comparison of the susceptibilities of 2D lens. a,d) Experimentally measured sus-
ceptibilities. b,e) Susceptibilities obtained using field method synthesis. c,d) Sus-
ceptibilities obtained through phase method. a-b and d-e closely match, which
means the lens is fabricated using field method in this case. These are suscepti-
bilities of a metalens of focal length f = 500µm and diameter d = 200µm

Figure 4.8: Comparison of the susceptibilities of 1D lens. a,b) Qualitative comparison of the
experimentally measured susceptibilities with that of field method synthesis. c,d)
Qualitative comparison of the experimentally measured susceptibilities with those
obtained with those obtained with phase method synthesis. These are susceptibili-
ties of a metalens of focal length f = 500µm and diameter d = 200µm
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where the Ê(x, y, z0+) is the Fourier transformed field E(r )0+
t . The Fourier electric field at any

distance along the z axis from the metasurface can be obtained by propagating the initial field

Ê(x, y, z0+), and is given by

Ê(x, y, z) = Ê(x, y, z0+)e−i kz , (4.17)

where kz =
√

k0 − (k2
x +k2

y ). The electric field in real space at a desired distance z can be

obtained by taking the inverse Fourier transformation of Ê(x, y, z), is given by

E(x, y, z) =
∫ ∫ +∞

−∞
Ê(x, y, z)e−i (kx x+ky y)dkx dky , (4.18)

4.4.3 Results: theoretical and experimental comparisons

4.4.4 Lens

Different planar meta-lenses having different combinations of focal length and diameter are

fabricated using the theoretical optical path difference given by

δl (r ) =±
√

r 2 + f 2 +C (4.19)

where r is the radius in radial coordinate given by r =
√

x2 + y2 and C is a constant. The sign

± corresponds to the converging or diverging metalens. We considered three metalens fab-

ricated using the ERI method, namely ( f ,d)1 = (30,20)µm, ( f ,d)2 = (30,10)µm and ( f ,d)3 =
(25,10)µm thus were characterized using FDTD and Fourier Beam Propagation (FBP) [151] and

the results obtained were compared with the experimentally measured data.

The experimental data for the set of lens is obtained from the phase camera set up and pro-

cessed to calculate the susceptibilities is to be implemented in order to use in the FDTD code

and FBP method. The simulations resulting from the different simulation techniques and their

comparison with those of measured data for the different set of the lens are shown in Fig. 4.9,

4.10 and 4.11. In order to validate the use of GSTCs implementation and to demonstrate the

functionality and accuracy of the method in experimental characterization we have simulated

all the lens mentioned above.

For all the above lens samples the pixel size of the phase obtained from the phase measure-

ment is used as the mesh size for the FDTD and Fourier beam propagation. This pixel size is

limited by the resolution of the instrument we use in the phase measurement setup. It can a

give maximum resolution of 0.13µm. All the above examples shown above are a tiny lens. In or-

der to validate the method for all the types of phase profiles and functionalities, we have chosen
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Figure 4.9: Comparison of lens f = 30µm and d = 20µm. a,b). Shows the FDTD simulations
from the computed and measured susceptibilities. c,d). Shows the amplitude plots
of the fields obtained from the computed and measured via Fourier beam propaga-
tion method. Pixel size of the phase data obtained from the set up is 0.13µm, which
is also the mesh size taken for all the simulations.

Figure 4.10: Comparison of lens f = 30µm and d = 10µm. a,b). shows the FDTD simulations
from the computed and measured susceptibilities. c,d). shows the amplitude plots
of the fields obtained from the measured and computed via Fourier beam propa-
gation method.
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Figure 4.11: Comparison of lens f = 25µm and d = 10µm. a,b). Shows the FDTD simulations
from the computed and measured susceptibilities. c,d). Shows the amplitude plots
of the fields obtained from the measured and computed via Fourier beam propa-
gation method.

a lens bigger in diameter (d = 200µ)m and focal length ( f = 500µ)m, which was synthesized via

two different synthesis methods namely , ERI and PB methods. The bigger lens phase profile

is again measured and is simulated using the Fourier beam propagation method for its optical

characterization.

The simulated results for both the lens fabricated using ERI and PB phase method are an-

alyzed with the help of point spread function and Zernike analysis. We suppose that the 2D

planar lens is placed at z = +500µm, and spans the xy plane with a diameter of 200µm. We

then come with a normal incident plane hitting symmetrical with respect to the center of the

lens. The measured phase data is obtained with a pixel size of 0.44µm. The data is processed for

the susceptibilities using the equation 4.14- 4.15 for the 2D planar metasurface. The measured

and analytically calculated susceptibilities are used in the simulations for comparison of both

metasurfaces. The intensity profile of the lens in the xz propagation plane are shown in 4.12.

In both the computed and measured simulations, same grid size is preserved, which is equal

to the pixel size of the phase data is used. The PSF plots taken on the focal plane are shown in

Fig. 4.13.

From the point spread function, here one cannot judge the performance of the lens qual-

itatively, so the spread of the intensity function is taken with respect to the spread of the PSF

along x and y axis on the focal plane and the results are shown in Fig. 4.15.

One can find qualitatively the aberration present in any given optical system by decompos-

ing the phase profile on the Zernike polynomials as we discussed in the chapter. 3. The Zernike

decomposition for the two lenses is shown in 4.16 and the coefficients are plotted in Fig. 4.17.
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Figure 4.12: Comparison between the measured and computed simulations of lens f = 500µm
and d = 200µm fabricated using the ERI and PB phase. a,b). shows the computed
intensity (log I) for ERI and PB phase metasurface. c,d). shows the measured in-
tensity profiles for ERI and PB metasurface . The propagated fields are performed
using mesh grid of 0.44µm.

From the plots one can infer that the PB metasurface lens exhibit less aberration compared to

that of ERI metasurface.

4.4.5 Deflector

In order to test further our setup for measuring the phase profiles we have done one last that

is with a deflector. The fabrication of a deflector is not complicated in comparison with that of

lens. Therefore, two meta-deflectors of deflection angle thet a = 150 and 300 were synthesized

and the phase is used to propagate the fields. The results are shown in Fig. 4.18.
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Figure 4.13: PSF profiles for ERI and PB phase metasurface. a,c). Show the data obtained from
the measured and computed fields for ERI metasurface. b,d). Show the PSF plots
for the PB metasurface lens.
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Figure 4.14: Inset plots of PSF profiles for ERI and PB phase metasurface shown in 4.13. a,c).
shows the data obtained from the measured and computed fields for ERI meta-
surface. b,d). shows the PSF plots for the PB metasurface lens. The intensity is
normalized to unity.
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Figure 4.15: PSF spread along different axis. Point spread functions distortion as a function
of distance along different axis is shown. a),b) shows Intensity as a function of
the spread along x for measured and computed data for PB and ERI metasurface.
similarly c, d) give the spread in y axis.

Figure 4.16: Zernike analysis process for PB and ERI metasurface. a,b). The Zernike evalua-
tion process for both the PB and ERI metasurface. This process of calculating the
Zernike polynomials is explained in section. 3.5.3.2 of Chapter. 3.
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Figure 4.17: Zernike coefficients. The bar plot shows the first fifteen Zernike coefficients for
PB and ERI metasurface. This process of calculating the Zernike polynomials is
explained in section. 3.5.3.2 of Chapter. 3. The first fifteen coefficients and the cor-
responding aberrations are shown in Table. 3.1.

Figure 4.18: Planar meta-beam deflector. a,b) shows the propagated field for the two metasur-
face fabricated using the ERI method, a). deflects the incident light at θ = 150 and
b). deflects at an angle of θ = 300.
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4.5 conclusion

In this chapter we have started with phase method and field method synthesis. We have dis-

cussed about the beam propagation and how to process the data to obtain the measured sus-

ceptibilities for the phase profile. We proposed an experimental measuring technique, which

functions based on the working principle of quadriwave lateral shearing interferometry, using

this one obtains the phase profile of an optical device. We have practically demonstrated the

use of the methods with few examples of lens and deflectors. We have shown to characterize

an optical device without the need of all complex experimental setups that are used in the ex-

perimental labs. This technique can save a lot of resources and time in order to characterize

complex optical devices.
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Chapter 5

Mesoscopic Electrodynamical Theory of

Metasurface and Its Applications

5.1 Introduction

In the previous chapters, we provided the theory and simulation for the metasurface synthesis

based on the distribution theory leading to the classical discontinuities in Maxwell’s equations

called CGSTCs. Using the CGSTCs, one can synthesize the metasurface by knowing the input

and out going fields from the metasurface. In this chapter, we develop a mesoscopic model

to construct the analytical susceptibilities from the design of the metasurface and look for the

solutions of Maxwell’s equations using the distributed form of analytical susceptibilities, so that

one can theoretically explore the functionality of a given metasurface.

Significant analytical works are now being developed with the purpose of deriving proper

theoretical frameworks in order to study the complex design of the components of metasur-

faces. These groundbreaking attempts in controlling light–matter interactions necessitate a

fully vectorial theory of Maxwell’s equations, such as effective medium theories [155, 48, 156].

The present understanding of their polarization responses is obtained with the help of cur-

rently available computational tools, such as FDTD [44, 157, 61], or FEM [158], which mainly

focus on quantitative simulation results, but lack qualitative analysis [159, 160, 161]. Other well

known techniques, like Green’s function method and diffraction theory for gratings, deal with

the partial interpretation of diffractive properties of metasurfaces. The generalized Snell’s law

[44] can be obtained as a special case of a given diffraction order [162, 163] at the maximum

grating efficiency. However, a vectorial electromagnetic theory is still required to precisely ex-

plain why the generalized Snell’s law occurs in the cross-polarized transmitted fields of the PB

metasurface system in the −1st or +1st diffraction orders alone. For a better understanding of

these problems, the concept of geometric phase (PB phase), which is responsible for the con-

version of the polarization state in the linearly birefringent medium [84, 85, 164, 165, 166], has

been introduced. The birefringent response of a metasurface is described by the transmission
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matrix, which, in the circular basis, can be split into cross and co-polarization beams by the PB

phase [167, 168, 169]. This PB phase is induced by the geometric orientation of nano-antennas.

However, this framework does not offer any explanation for the connection between the polar-

ization conversion and the generalized Snell’s law as these approaches capture a partial sce-

nario of the physical mechanism. To fill this gap, a full theoretical work is needed to provide a

precise and systematic explanation for all the diffractive properties of PB metasurfaces.

In this chapter, we develop a mesoscopic electrodynamical model [170] of the metasur-

face, through which we investigate the polarization dependent metasurface. We prove that the

transmitted co-polarized beam alone acquires a global phase associated with the antenna re-

sponse. This global phase is called the propagation delay. Contrarily to the co-polarization

beam, the transmitted cross-polarized beam is influenced by both PB and propagation phases.

We extend this phase phenomenon to a general situation by decomposing the arbitrary po-

larization of a normally incident light in circular basis, showing that each eigenstate acquires

an opposite extra phase delay due to the topological phase retardation associated with the PB

phase (see Eq. (5.41)). The diffractive properties of topological phase gradient metasurfaces

are analyzed in depth via the analytical derivations, and the results are verified with optical

measurements [171, 2]. The other physical mechanisms such as the universal principles of co-

polarization and cross-polarization transmission, and the coexistence of the zero and nonzero

phase gradient leading to the ordinary and generalized Snell’s law, are illustrated using the

present framework.

Let us start building the framework by stating the Maxwell’s equations, which are the basis

for describing any light-matter interaction phenomenon occurring in a material.

5.2 Classical lattice model for metasurface susceptibili-

ties

The standard Maxwell’s equations from section 2.3.2 Chapter 2 for the medium without the

charges and currents in CGS system are given by

∇·E = 0, (5.1)

∇×E = −1

c

∂B

∂t
, (5.2)

∇·H = 0 (5.3)

∇×H = 1

c

∂D

∂t
. (5.4)

We consider a non-magnetic metasurface, which is suspended in vacuum at z=0, so that the

magnetic and dia-magnetic fields are equal (the vacuum electric and magnetic permittivities

are normalized to unity), B = H. The complete electromagnetic response of a material is driven
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Figure 5.1: A Schematics showing the reflection and refraction from the metasurface. The blue
arrows represent the phenomenon of ordinary reflection and refraction with angle
of incidence and refraction given by θ, θ′, while the red ones represent anomalous
refraction and reflection. The metasurface made of nanopillars is suspended at z = 0
plane between the media with a refractive index of ni and nt .

by the dependence of the electric displacement vector D on E. The electric displacement vector

in a material medium is given by the relation D = E + 4πP. By substituting the D field into

Maxwell’s Eq. (5.2)- (5.4), the wave equations for the electric and magnetic field can be written

as

∆E− ∂2

c2∂t 2 E =−4π∇(∇·P)+4π
∂2

c2∂t 2 P, (5.5)

∆H− ∂2

c2∂t 2 H =− 4π

c∂t
∇×P, (5.6)

where we assume that the electric field E with frequencyωi is far detuned from any electric

resonance, and P is the polarization response induced by the combined effect of the metasur-

face and substrates on both sides. The functional dependence of P on E describes the elec-

tromagnetic response of the metasurface. We would like to obtain the particular expression

for P, for a metasurface system which is placed at z = 0 plane sharing the interface between

two isotropic media with different refractive indices as shown in the schematic Fig. 5.1. The

corresponding general dependence of polarization on E a z-dependent term is given by

P(z,ρ, t ) =H (|z|≤ lz /2)P(E)+H (z <−lz /2)χi E(z,ρ, t )+H (z > lz /2)χt E(z,ρ, t ), (5.7)
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where H is the Heaviside function defined as

H (condition) =
1 when the condition is true

−1 when the condition is false.
(5.8)

Eq. (5.5) describes the propagating wave equation for the region below (z ≤ 0) and above (z ≥ 0)

the metasurface with the speeds given by c1 = c
ni

and c2 = c
nt

respectively. The refractive indices

of the media on either side of metasurface are given by ni ,t = √
1+χ1,2. The new interface

boundary conditions are defined by the interaction with the metasurface and differ signifi-

cantly from the standard boundary conditions (2.3.2). In order to solve Eq. (5.5), we need to

explicitly write the polarization function defined by Eq.(5.7) for a given metasurface.

5.2.1 Lattice representation of General metasurface

Let us assume that the metasurface is represented with a periodic distribution of nanopillars

shown in Fig. 5.2. Let the width and length of the nanopillar be given by lx and ly . The dashed

rectangle as shown in the Fig. 5.2 consists of a group of antennas, which can be constructed by

translation and rotation of a single original antenna present at the center of the xy plane. In

the right hand coordinate system the right and up sides of the original antenna are considered

a forward direction with a unit step length of a1 and a2 along x̂ and ŷ directions respectively.

The antenna is assumed to rotate in the counterclockwise direction θ and θ′ with respect to

the positive ẑ direction for every unit step length translation along the x and y direction re-

spectively. The new position of the antenna present at (m,n) is obtained by translating and

rotating the original antenna by ma1 along x̂, na2 along ŷ and with a resultant rotational angle

of φ(m,n) = mθ+nθ′ with respect to the center of the antenna. The rotation angle for every

translation of antenna along the x and y direction is given by θ = π/h and θ′ = π/h′ respec-

tively, where h and h’ are integers which depend on the group of rotation of the design of the

metasurface. Therefore, in such case, in the language of solid state physics, one can choose

all the antennas in the area haa ×ha2 as one basis (dashed red rectangle Fig. 5.2) with primi-

tive translation vectors ax = ha1x̂ and ay = ha2 ŷ . The corresponding vectors in the reciprocal

space (k-space) are given by b1 = 2π
ha1

x̂ and b2 = 2π
ha2

ŷ . The reciprocal lattice vector is given

by Gm,n = mb1 +nb2. The position of the antenna in the primitive lattice can be written as

%m+i ,n+ j = hma1 +h′na2 + i a1 + j a2 and the rotation angle as φm+i ,n+ j = π(m +n)+π( i
h + j

h ),

where i = 1,2,3...h and j = 1,2,3...h′.
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Figure 5.2: Schematic showing the distribution of nanopillars rotated with respect to the ver-
tical axis by an angle φm+i ,n+ j for each movement along x and y . The rectangular
dotted line is the repeating unit cell of the metasurface. The width and length of the
nanopillar along x and y is given by lx and ly .

5.2.2 Susceptibilities of a metasurface

Assuming the length of the antenna is in sub-wavelength limit scale, the dielectric susceptibility

function χ(ρ) of the metasurface can be written as

χ(z,ρ) =χ0
∑
m,n

h,h′∑
i , j
Ω(ρ−%m+i ,n+ j ) (5.9)

where h, h’ are the number of elements in the unit cell and χ0 is the scalar susceptibility of the

nanopillar.

The geometric anisotropy of the nanopillars can be taken into account by replacing the

scalar susceptibility χ0 by the diagonal 2 susceptibility tensor. The tensor components along

the x and y directions are given by χx and χy respectively.

χ0 =


χx 0

0 χy

 (5.10)

The indicator functionΩ(ρ) describes the geometric primitive, which has a rectangular shape:

Ω(ρ) =H (|x|≤ lx )H (|y |≤ ly ). (5.11)
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The two dimensional Fourier transformation of Eq. (5.9) is given by

χ(κ) =χ0
∑
m,n

e−ιnκa1−ιmκa2

h,h′∑
i , j
Ω̃m,n,i , j (κ)e−ι(κa1+κa2), (5.12)

where Ω̃m,n,i , j (κ) is the Fourier transform of Ω(ρ−ρm+i ,n+ j ). Since the metasurface con-

sists of primitive antennas rotated around the z axis with the constant incremental angle φi , j ,

the corresponding rotation matrix R(φi , j ) is given by

R̂(φi , j ) =


cos(φi , j ) −sin(φi , j )

sin(φi , j ) cos(φi , j )

 . (5.13)

All the indices of Ω̃m,n,i , j (κ) remain the same throughout the text, so from now on the index

is omitted. From the Poisson summation formula
∑+∞

s=−∞ F (k−2πsa) = 1
2πa

∑+∞
s=−∞ F̂ ( s

2πa )e−i ks/a

where F̂ is the Fourier transformation of F . Therefore Eq. (5.12) reduces to

χ̃(κ) = ∑
m′,n′

δ

(
κx − 2πm′

ha1

)
δ

(
κy − 2πn′

h′a2

)
Fm′n′ (5.14)

where Fm′n′ = χ0(2π)2

hh′a1a2

h,h′∑
i=h, j=h′

Ω̃(κ)e−ι(h+i )κa1−ι(h′+ j )κa2 and Ω̂(κ) is the Fourier transform of a

geometric indicator functionΩ(ρ) Eq. (5.11). Taking the inverse Fourier transform, we obtain

χ̃(ρ) = χ0

hh′a1a2

∑
m′,n′

i=h, j=h′∑
i=1, j=1

Ω̃(Gm′n′)e−i Gm′n′ ·(ρ−i a1− j a2) (5.15)

where the reciprocal lattice vector is given by Gm′n′ = 2πm′
ha1

ex + 2πn′
h′a2

e y .

5.2.3 Propagation of linear polarized light in a metasurface

Due to the absence of induced charges, the polarization in Eq. (5.7) vanishes in vacuum and

has a non zero value inside the thin layer of the metasurface (media), whose linear response is

given by P(z,ρ, t ) = δ(z)χ(ρ)E(z,ρ, t ), where δ(z) is a Dirac delta function, which is defined as

∫ ∞

−∞
δ(z)d z =

1 z = 0

0 elsewhere.
(5.16)

In order to describe the propagation of the field through the metasurface, one need to find

the analytical solution for a give system by solving Eq. (5.5)- (5.6), which are a set of linear differ-

ential equations. It is convenient to solve such equations by taking the Fourier transformation

as the problem thus gets reduces to a set of algebraic equations.
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One can always express E(z,ρ, t ) as a inverse Fourier transform E(z,κ, t ) and vice versa.

The Fourier transform of the fields over ρ are defined as follows:

E(z,κ,ω) =
∫

d 2ρd tE(z,ρ, t )e−iκ·r+iωt , E(r, t ) = 1

(2π)3

∫
d 2κdωE(κ,ω)e iκ·r−iωt . (5.17)

Similarly, polarization can be expressed in terms of the field,

P(z,κ,ω) = 1

(2π)2

∫
d 2κ′χ̃(κ−κ′)E(z,κ′,ω), χ̃(κ−κ′) =

∫
d 2ρχ(ρ)e−iκρ . (5.18)

The linear susceptibility function χ(ρ) is a periodic function of coordinates. It can be rep-

resented as a sum of the susceptibilities of the individual primitives, shifted and rotated in the

x y plane. The reflection and transmission are therefore defined by the vectors of the reciprocal

lattice G, where the function χ(∆κ) reaches its maximum.

Now, substituting the Fourier transformed susceptibilities form Eq. (5.14) into the Eq. (5.18),

gives us

P(z,κ,ω) = χ0

(hh′a1a2

∑
m′,n′

h,h′∑
i=1, j=1

∫
d 2κ′δ(κ−κ′−Gm′,n′)e−ι(κ−κ

′)(a1+a2)Ω̂(κ−κ′)E(z,κ′,ω),

(5.19)

which upon taking the inverse Fourier transform gives us a linear response of an individual

nanopillar, located at position (i, j) in the unit cell, which is described by the polarization vector:

Pi , j (z,ρ,ω) = N0
∑
m,n

∫
Q

d 2κ fmn,i , j (φi , j )E(z,κ,ω)e ιψmn,i , j , (5.20)

where ψm,n,i , j = Gm,n · (ρ− i a1 − j a2)+κ ·ρ describe only the propagation phase, and the

form-factor of the (i,j)th element in the mn-th lattice cell is fm,n,i , j (φi , j ) = Ω̂(Gm,n )
πhh′a1a2

, where

Ω̂(Gm,n) is the Fourier transform of a geometric shape factor. The momentum integration over

κ runs over Q- the first Brillouin zone. The coefficient N0 includes the nanopillars material

susceptibility χ0.

To define the non uniform part of the system of Maxwell’s equations, we assume that a

linearly polarized incident light has the form

E(z,ρ, t ) = Ei e ικzi z+ιiρ−ιωi t , H(z,ρ, t ) = Ei ×ne ικzi z+ιiρ−ιωi t , (5.21)

where κzi =
√

(ωi ni

c2 )2 −κ2
i with the condition ωi ni ≥ cκi and Ei . Since there are no other tem-

poral characteristics exceptωi , all the time-derivatives can be replaced by multiplying with the

term −ιω. Considering the thickness lz to be much smaller than the xy dimension of the meta-

surface, we neglect the Ez and Pz components in the model. We are going to look for a solution
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satisfying Maxwell’s equations (5.5), (5.6) in the form

E(z,ρ) = ∑
m,n

e ιGmn ·ρ
∫

Q

d 2κ

(2π)2 Emn(z,ρ)eκ·ρ (5.22)

as the solution is dictated by the translation symmetry of the metasurface.

5.2.4 Thin metasurface limit

In this section, we would like to solve Maxwell’s Eq (5.5)- (5.6) for the solution of the form (5.21)

in the limit where the thickness metasurface is tending to zero. Therefore we assume that the

polarization is induced by the incident light only, so that P|| =χEi e ιkzi+ικiρ and

∂2

∂z2 E||+∇2
ρE||+

ω2
i n2

i ,t

c2 E|| =−4π∇ρ(∇ρ ·P||)−4π∇ρ ∂

∂z
Pz −4π

ω2
i

c2 P|| (5.23)

∂2

∂z2 Hz +∇2
ρHz +

ω2
i n2

i ,t

c2 Hz =−4π
ωi ni

c

(
∂

∂x
Py − ∂

∂y
Px

)
, (5.24)

where ni ,t denote the refractive index in the domain of z ≤ 0(ni ) and z ≥ 0(nt ) and the linear

polarization incident field E∥ is parallel to the metasurface. The following equations are writ-

ten for the e(Gmn+κ)ρ components of the above equations. All the Gmn +κ reciprocal spatial

components of the Ẽ, P̃ have the same subscripts m and n, which will be omitted in the further

sections. Therefore, the corresponding polarization component H (|z|≤ lz /2)P(E) is

˜H (k‡)P||(kz ,κ) = sin(ξlz )

4πξ
χ0 fmnE||,iδ(κi −κ) ' lz

4π
χ0 fmnE||,iδ(κi −κ), (5.25)

where fm,n =∑h,h′
i=1, j=1 fmn,i , j e−ι(Gmn (i a1+ j a2), 2ξ= kzi −kz , E||,i is the x, y amplitudes of incident

light. In obtaining the last equation we have used Eq. (5.20), (5.22) and

Ẽx (κz ) =
∫

Ex (z)e−ικz z d z,
∫

H (|‡|≤ l‡/∈)e−ικzi z e−ικz z d z = sinξlz

ξ
. (5.26)

When the incident angle or the thickness of the antenna lz is small, which corresponds to

ξ≈ 0 or lz ≈ 0, then sin(ξlz )
ξ ≈ lz .

∂2

∂z2 Ẽx (z,κ)+
(
ω2

i n2
i ,t

c2 −K 2
||

)
Ẽx (z,κ) = (2π)2

(
4π(K 2

x −
ω2

i n2
i ,t

c2 )P̃x +4πKx Ky P̃y − ι4πKx
∂

∂z
P̃z

)
(5.27)
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∂2

∂z2 Ẽy (z,κ)+
(
ω2

i n2
i ,t

c2 −K 2
||

)
Ẽy (z,κ) = (2π)2

(
4π(K 2

y −
ω2

i n2
i ,t

c2 )P̃y +4πKx Ky P̃x − ι4πKx
∂

∂z
P̃z

)
(5.28)

Considering the thickness of the metasurface to be very small i.e lz ≈ 0, we neglect the Ez and

Pz components in the model and obtain

1

2(2π)3 (
ω2

i n2
i ,t

c2 −K 2
|| −k2

z )Ẽx (z,κ) = (K 2
x − ω2

i n2
i

c2 )P̃x +Kx Ky P̃y , (5.29)

1

2(2π)3 (
ω2

i n2
i ,t

c2 −K 2
|| −k2

z )Ẽy (z,κ) = (K 2
y −

ω2
i n2

i

c2 )P̃y +Ky Kx P̃x , (5.30)

where Kx =Gmn,x+κx , Ky =Gmn,y+κy , K 2
|| = (Gmn,x+κx )2+(Gmn,y+κy )2, Ẽx (z,κ), Ẽy (z,κ),

P̃|| = lzχ0 fm,nE||,iδ(κi −κ) are function of kz ,κ and are needed to be calculated.

5.2.5 Model and solutions

We can now investigate how the light is transmitted through the metasurface. In the present

model we assume that , for a typical design, individual primitives are spaced sparsely, which

eliminates the possibility of the inter-element interactions. In this case, one can calculate the

transmission through the individual primitives and then sum over all the elements of the unit

cell covering the entire metasurface. Let us consider the rectangular primitive with its long

side (ly ) aligned along the y direction and the short one (lx ) along x direction. The transmitted

electric field vector of the nanopillar in the momentum space in terms of transmission matrix is

given by Ẽt = ̂̃T Ẽi , where the transmitted electric field in the momentum space is Ẽt = {Ẽx , Ẽy },

and the incident field is given by Ẽi = {Ẽxi , Ẽyi }.

We thus express Eqs. (5.29) - (5.30) in the concise matrix form as below
Ẽx,m,n

Ẽy,m,n

H̃z,m,n

=∑
i , j

C
′
r

C ′ R̂+(φi , j )Âm,n,i , j (K )χ0R̂(φi , j )


Ẽx,i

Ẽy,i

0

 (5.31)

where

Âm,n,i , j (K ) =


(K 2

x − ω2
i n2

i

c2 )χx (Kx Ky )χy 0

(Kx Ky )χx (K 2
y −

ω2
i n2

i

c2 )χy 0

−ωi ni
c Ky

ωi ni
c Kx 0

 , R̂i , j (φi , j ) =


cos(φi , j ) sin(φi , j ) 0

sin(φi , j ) cos(φi , j ) 0

0 0 1

 ,

(5.32)

where C
′′ =−k2

z +
ω2

i n2
i

c2 −K 2
|| , C

′
r = (2π)2 sinξlz

ξ fm,n,i , jδ(κi −κ), κi ≤ G1,1. The rotation operator

R̂(φi , j ) is used to transform every antenna to a position such that long side ly is along y axis and
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short side lx is along x axis. Hence, the solution of the model in the (x, y, z) space can be written

as


Ex (z,ρ)

Ey (z,ρ)

Hz (z,ρ)

= ∑
m,n,i , j

T̂m,n,i , j


Ex,i (z,ρ)

Ey,i (z,ρ)

0

Fm,n,i , j (x, y, z), (5.33)

where T̂m,n,i , j = R̂+(φi , j )Â
′
m,n,i , j (K )R̂(φi , j )|κ=κi , Â

′
m,n,i , j (K ) = ι fm,n,i , j (K )

2

√
ω2

i
n2

i ,t
c2 −K 2

||

. Hence for a given

metasurface with a specified symmetry one can calculate the transmitted field from equation

(5.33).

Applying Pauli algebra for circular polarization basis without explicit factorization of the

additional propagation phase, the rotation-dependent transmission matrix reads as

2 ˆ̃T ′(φ j ) = (t̃xx + t̃y y )Î + ι(t̃x y − t̃y x )σ̂z

+ (t̃xx − t̃y y )(e2ιφ j σ̂−+e−2ιφ j σ̂+)

+ i (t̃x y + t̃y x )(e2ιφ j σ̂−−e−2ιφ j σ̂+), (5.34)

where σ̂± = (σ̂x ± ισ̂y )/2 is the spin-flip operator and the extra phase term e±2ιφ j can be

understood as the term which gives rise to PB phase [167, 168, 169].

The transmitted field in the coordinate space (the form of T̂ ) can be consecutively written

as

E(z,ρ) = ∑
mn,i , j

Fmn,i , j (z,φ(φi , j ))T̂ ′(φi , j )Ei (z,ρ), (5.35)

where the propagation factor is

Fmn,i j = e ιψmn,i j

[
e ιkz zH (z ≥ 0)+e−ιkz zH (z ≤ 0)]

∣∣∣
κ=κi

. (5.36)

5.2.6 Generalized law of Refraction

Let us consider an example structure of Pancharatnam-Berry metasurface as shown in the

schematic of Fig. 5.3, which is capable of generating both the classical and anomalous re-

fractions. The array consists of a repetition of a unit cell (dashed rectangle) containing five

rotated nanopillar with dimensions lx × ly × lz separated by subwavelength distances a1 and

a2 along x and y, respectively. For this unit cell we have N = h = 5 and h′ = 1 and the rotation

angle φ is a function of the j index only. In all the quantities that are related to the unit cell, the

summation over the i index will consequently be absent. Therefore, the rotation angle is given
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Figure 5.3: Schematics of an example of PB metasurface. a).The length and width of the
nanoantenna are given by lx and ly . The individual antennas are separated from
each other with a distance of a1 and q2 along the x and y directions. The unit cell
of this particular metasurface is shown in the dashed red rectangle, which contains
h = 5 elements along the x direction and h′ = 1 along the y direction. The rotation
angle of the system is given by φm,n = −π

(2h+1) . b). Scanning Electron Microscopy
image of a fabricated metasurface.

by φm,n = π
(2N+1) , where we choose N = h as a new variable as it is better suited for the integer

number.

Similar to the phenomenon of Bragg scattering in solid crystals, the constructive interfer-

ence of the propagating wave on the nanoscale periodic structure changes the complex am-

plitude of the reflected and refracted waves due to a collective scattering from different crystal

planes (see Eq. (5.36)). When n 6= 0, the evanescent waves emerge such that their momentum

vectors are satisfied by
ω2

i n2
i

c2 −K 2
x −K 2

y ≤ 0. Overall, the information regarding the effects of

propagation and topological phases is contained in the transmitted field in the 0th diffraction

order. The terms in the first line of Eq. (5.34) corresponding to the co-polarization compo-

nent of the transmitted field containing only the propagation phase e ιψmn,i , j is embedded in

the propagation factor Fmn,i , j .The terms of the second and third lines in Eq. (5.34) yield the

cross polarization components which depend on both propagation and PB phases through the

terms e ιψmn,i , j±ι2φi , j . Due to the translation invariance of the metasurface, the PB phase of the

individual antenna is distributed uniformly between 0 and 2π such that
∑

i , j e±Ξ ≈ 0 except

for m = 0,±1, where Ξ = −G j · j a1 ± 2φ j is the total phase. For m = 0, only the PB phase-

independent co-polarized component can be observed. By calculating the x-dependent part

of propagation phase ψmn, j , we can compute this component according to the conventional

diffraction which satisfies the ordinary Snell’s law, nt sinθ′−ni sinθ = 0, where θ and θ′ are the

angle of incident and transmitted light, respectively. For m =±1, only the PB phase and cross-

polarized components are detectable since Gx,±10 j ≡ 2φ j . As for the remaining x-dependent

propagation phase given by ( ±2π
(2N+1)a1

+κxi )x, it yields the generalized Snell’s law which governs

the anomalous refraction.

For the light beam propagating in the xz plane, the refraction angle is defined by

sinθ′ = c

ωi nt
(

±2π

(2N +1)a1
+κxi )x, (5.37)

thus for x = [0, (2N +1)a1], one can obtain
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sin(θ′)nt − sin(θ)ni = ±λ
(2N +1)a1

. (5.38)

The complete proof of the above equation is derived in Appendix E.

5.2.7 Fresnel coefficient

So far, we have studied the transmission properties of metasurface assuming that the incident

and transmitted light are linearly polarized. We now want to consider a circularly polarized

(CP) light. In order to analyze the transmission properties of such a light, we calculate the

Fresnel coefficient by expressing the transmitted light in the circular polarization (CP) basis:

σ± = (ex cos(θ′)± ιe y )/
p

2 where θ′ is the refraction angle. Assuming the incident light is given

by a circularly polarized light (CPL) by Es = cosθex + sιe y (s = ±1), the transmitted light can

be expressed as E = ∑
mn j (E1 +E2e−sι2φ j +E3e sι2φ j )Fmn, j (The complete proof is provided in

Appendix F), where the amplitudes E1, E2, and E3 are given by

E1 = t1+Es + t1−E−s ,

E2 = t2−+Es + t2++E−s ,

E3 = t2+−Es + t2−−E−s ,

(5.39)

where, the coefficients t1± and t2±± are given by

t ′1± = 1

4
t ′xx (cosθ±cosθ′)

t ′2±± = 1

8
t ′xx (cosθ±1)(cosθ′±1).

(5.40)

The additional phase term e±sι2φ j (PB phase) originates not only from the geometric rotation

of the nanopillar in the unit cell but also from the polarization light. Strictly speaking, the ad-

ditional phase term ±sφ j relies on the symmetry relation between the polarization of light and

the geometry of the nanostructures making the metasurface, rather than on the specific coor-

dinate system, which is a characteristic of the topological phase. To make things clear and easy

to compare with existing results, we explain and summarize the selective transmission of the

cross-polarized beam for all possible chiral combinations of input polarization and metasur-

face in Table 5.1 For the metasurface with clockwise rotating nanopillars depicted in Fig. 5.3,

right CP (RCP) incident light is converted into RCP light and left CP (LCP) light, while LCP inci-

dent light splits into LCP light and RCP light. Furthermore, as demonstrated here, the PB phase

term e−ι2sφ j of the output amplitude contributes to the effect of the nonzero cross-polarized

beam. If the entire metasurface is rotated counterclockwise by π along the z axis such that

φ j = π
2N+1 , the constant phase term is written as e ι2mφ j . Then the phase gradient of the cross-

polarized beam changes its sign. It is clear that the sign of the phase gradient is determined by
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Figure 5.4: Schematic explaining the transmission properties of the Pancharatnam-Berry (PB)
phase metasurface, where E±

⊥ and E∥ denote cross and co-polarized beams, and θ

and θ′ are the incident and refracted angles.

the handedness of the incident light and metasurface.

Antenna rotation Input Output (order) Phase gradient

Clockwise

σ+ σ−(+1) λ
(2N+1)a1

σ− σ+(−1) −λ
(2N+1)a1

LP σ−(+1) λ
(2N+1)a1

σ+(−1) −λ
(2N+1)a1

Anti-Clockwise

σ+ σ−(−1) −λ
(2N+1)a1

σ− σ+(+1) −λ
(2N+1)a1

LP σ−(−1) −λ
(2N+1)a1

σ+(+1) λ
(2N+1)a1

Table 5.1: Cross-polarized transmission for different combinations of input polarization and
metasurface. LP is a linear polarization.

For an arbitrary input polarization, we can decompose the normally incident light (θ′ = 0)

on the metasurface into the CP basis as Ei n = E|| =ασ++βσ− withβ=
p

1−α2. The transmitted

light can be re-expressed as

E = ∑
j ,m=±1

(t||F00, j E||+ t⊥Fm0, j M(φ j )E⊥) (5.41)

where t|| = txx+ty y

2 , t⊥ = txx−ty y

2 , E||·E⊥ = 0, and M(φ j ) =
(

e ι2φ j 0

0 −e−ι2φ j

)
. The correspond-

ing transmission of the co - and cross-polarized beams for an arbitrary polarization incident

light are illustrated schematically in Fig. 5.4. Depending on the combination of the incident

polarization and the geometric rotation of the nanopillar, a cross-polarized retardation with a

positive or negative phase can arise, leading to self-constructive or self-destructive interference

effects. Fig. 5.3 indicates the relative phase retardation δφ±, wich is a function of the interface

lateral displacement δ(x) between the co-polarized and cross-polarized beams.
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Until now, we have presented the theoretical framework for studying the PB phase meta-

surface. Let us now compare the theoretical results with the experimentally measured results.

5.3 Interferometric measurement of the topological phase

In this section, we aim at the characterization of the topological phase using the polarization

dependent translational symmetry breaking measurement based on the Mach-Zehnder inter-

ferometer (MZI). A GaN-based PB metasurface is used as a 50/50 CP beam splitter in the per-

formance of self-phase referencing. To effectively understand the design of the birefringent

subwavelength structure, we computed the co-polarized and cross-polarized scattering ampli-

tudes of an array of identical nanopillars as a function of the phase delay between the x and y

polarizations using the proposed model. This is achieved by tuning the phase difference of the

diagonal elements of the susceptibility tensor, as the information of geometric anisotropy of the

metasurface is contained in the diagonal elements of the susceptibility tensor. The computed

values of the transmission efficiency with respect to the phase delay are shown in Fig.5.5.A. The

ratio of the co-polarized and cross polarized transmission amplitude reaches 50/50 when the

phase difference of the diagonal elements of the susceptibility tensor is π/2 or 3π/2.

We know that the PB phase is a result of the asymmetric shape of nanostructures. Here,

GaN nanopillars of length (lx ) and width (ly ) with a fixed height are considered. When lx and

ly are spanned, one can obtain different phase in the Ex and Ey fields. Depending on the phase

difference between Ex and Ey , different circular polarization conversion efficiencies can be

achieved. These results are depicted in Fig.A.5.5, where the cross-polarization component is

the highest for the phase difference of π. In order to verify the conversion efficiency results ex-

perimentally, we performed full wave numerical simulations on the equivalent GaN nanopillar

structure with a π/2 or 3π/2 phase delay between the x and y polarizations and extracted the

phase retardation between the Ex and Ey field components. The simulated results of the phase

delay map is shown in Fig.5.5.B, while the transmission efficiency map computed from the sim-

ulated structure as a function of length and width of the nanopillar is shown in Fig.5.5.C. The

white connected lines indicate the regions for which the phase delay between the x and y po-

larizations is equal to π/2 and 3π/2, where the amplitudes are needed to be adjusted for the

interferometric characterization of the PB phase.

In our experiments, we chose the phase difference of π/2 between Ex and Ey in order to

obtain equal proportions for cross and co-polarized components. To study both components

and perform interferometric studies, PB phase-based beam deflectors were designed and fab-

ricated. The deflection measurement of these metasurfaces with a circular polarization inci-

dence is shown in Fig.5.5.D. It can be seen that the ratio of co and cross polarized components

is close to 1 : 1. The wavelength dependent shift in angle of the cross polarized component

agrees well with the generalized law of refraction given by the relation 5.38.
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Figure 5.5: Results. A) Computed polarization conversion efficiency (blue) and co-polarization
transmission (red) of the subwavelength array of Pancharatnam–Berry (PB)
nanopillars as a function of the phase delay between polarization eigenstates. B)
and C) Full wave numerical simulations performed to extract the phase retardation
between the Ex and Ey components B) and transmission maps C) as functions of
the length and width of the nanopillars. D) Experimental measurements of the nor-
malized transmission across a PB metasurface designed according to the guideline
in (B) and (C) as a function of the incidence angle changes for left CP (LCP) (σ−)
incidence light. E) Comparison between experiments and theory of the anomalous
refraction efficiency as a function of the incident angle, where I is the transmit-
ted power. The parameters used for the simulations are a1 = 500nm, a2 = 400nm,
lx = 260nm, ly = 85nm, lz = 632.8nm, λ= 632.8nm, ni = 1.61+0.3i , nt = 1.2−0.001i ,
which account for the Fresnel coefficient at the first interface (see Appendix F for
more details).
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Figure 5.6: A) (Left) A schematic of the interferometric measurement for the characterization
of the topological phase shift introduced by the Pancharatnam–Berry (PB) meta-
surface as a 50/50 CP beam splitter. (Right) The interference fringes displacement
according to the phase gradient direction δx , resulting from the topological phase
delay shift introduced on the anomalous beam. B) The measured phase delays as a
function of the displacements are reported for three different gratings, with periods
Γ= 4,2.9 and 2µm from top to bottom, respectively.
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The deflection efficiency of the cross polarized component has been measured for varying

incident angles. This has been compared with the theoretically predicted efficiency from the

Fresnel co-efficient discussion in equation 5.38. Fig.E.5.5 shows a good agreement between

theory and experiment.

An interferometric setup is built to study the PB phase from the metasurface as shown in

Fig.5.6.A. By interfering the co and cross polarized components, which are in equal proportions

(1 : 1), the phase difference between them (PB phase) is measured. By translating the metasur-

face along its phase gradient direction, we can access pillars of different rotation angles. These

results in a variation of the PB phase as a function of the translation as measured in Fig.5.6.B.

This also agrees with the calculated phase difference between co and cross polarized compo-

nents from the theory.

5.4 Conclusions

In this chapter, we have provided a general mesoscopic theory for a general investigation of any

metasurface which relies on the susceptibility distribution function constructions. This the-

ory can be used to explain phenomena such as generalized Snell’s law, arbitrary polarization

holography [172, 167], optical edge detection [173] and the photonic spin Hall effect [174, 175].

In particular, we have restricted ourselves to study the topological PB metasurface, where we

explain the origin of the propagation phase and the PB phase. We have also performed ex-

periments to compare our theoretical results. This work can be considered the first step in

developing an intuitive understanding of the topological and functional beam splitter for fu-

ture applications in the emerging field of quantum optics involving the use of metasurfaces

[176, 177, 178, 179, 180, 181].
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Conclusions and future work

Conclusion and future work

In this PhD thesis, we have investigated freeform optics and their applications, producing two

new theories and a modelling technique, which might contribute to the following progress:

Conformal theory of metasurface synthesis

Starting from the textbook expressions of Maxwell’s equations, we have developed a new set of

boundary conditions which are very much suitable to describe the electromagnetic disconti-

nuities caused by the presence of freeform heterogeneous nanostructured interfaces, often re-

ferred to as conformal metasurfaces. Our innovative theoretical expressions, called Conformal

Generalized Sheet Transition Conditions, are useful in designing, characterizing and optimiz-

ing freeform and compact optical components, which are very much needed in the industry of

integrated technology manufacturing. The proposed theory certainly opens new ways for op-

tical illusions such as virtual reality. Freeform optical components can replace bulky systems

in cameras, and can also find many applications in the technologies of LIDAR and self-driving

vehicles due to their capacity to increase the field of view.

Conformal GSTC-FDTD modelling

Still today, there is no commercial software available in the market to directly implement elec-

tromagnetic discontinuities at the arbitrary interface; therefore, right from the start of this PhD

work, it was necessary to build the tools needed to simulate any arbitrary interface. We came

up with the modelling of the conformal GSTCs using finite difference time domain simulations.

Our implementation scheme is easily adaptable to any interface. In order to completely under-

stand the functionally of an optical device and to characterize it, it is essential to have access to

the three-dimensional data. Generally, simulating a three-dimensional structure uses a lot of

memory, so in order to remove the constraint of time, we have developed a three-dimensional

user-interactive CGSTCs-FDTD parallel software using openmp and fortran90. This might help

the community to simulate their structures and to perform in-depth analyses of the function-

alities of optical devices. We have successfully demonstrated a numerical aberration free lens,
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and studied the effects of interfaces on the evolution of aberrations. We have proposed an aber-

ration free lens called Abbe Sine lens, which shows minimum aberrations for a given curvature.

In the present, the three-dimensional FDTD scheme that we have proposed only considers the

diagonal elements of the susceptibility tensor, while the off diagonal elements are assumed to

be zero. In the near future, we propose and we would like to consider the full tensorial com-

ponents of the susceptibility tensor. It should also be noted that the present FDTD scheme is

built in a Cartesian grid, which shows some limitations for the design of completely asymmet-

ric conformal interfaces such as the cat and mouse example demonstrated in Chapter 2. This

is why we look forward to implement the CGSTC-FDTD in conformal coordinates, so that we

can remove the limitations on the meshing in the case of asymmetric structures.

Optical characterization using FDTD-Phasics camera interface.

We have proposed a new experimental characterization tool using the interface between the

Phasics camera and the GSTCs-FDTD code to optically characterize a given device. The optical

phase difference induced by this given device is captured using the set discussed. The obtained

phase difference is fed into the FDTD code. With this technique, one can avoid the use of

complex and devices often used in experimental labs. This might be useful to ease the process

of characterization within the optics community (both Research and Industry), as they could

study the functionality without investing a lot of money on characterization devices. At the

same time, valuable team TIME can be saved using the computer simulation tools we have

designed and successfully tested.

Mesoscopic electrodynamical theory

Till date, many theories present how to go from analytical susceptibilities to the realization of

an optical device, as well as how to conduct studies by characterizing optical devices, but there

are only few notable examples in the literature which try to study the functionality of optical

devices using a complete analytical framework. We have developed a mesoscopic vectorial

model to analytically explore the phenomenon of light-matter interaction. We have studied

one of the applications of this theory in depth in order to explain phenomena such as the gen-

eralized Snell’s law, anomalous refraction and geometric phase in birefringent metasurfaces,

and provided a precise, accurate, systematic and far reaching explanation for all the diffrac-

tive properties of PB metasurfaces. With this theory, we have provided deeper insights into

to the physical mechanisms leading to the polarization-dependent breaking of translational

symmetry in contrast to the propagation phase effects. Through our theory, one can explain

physical phenomena such as optical edge detection, the photonic spin Hall effect and arbitrary

polarization holography. This work can be considered the first step in developing an intuitive

understanding of the topological and functional beam splitter for future applications in the

emerging field of quantum optics involving the use of metasurfaces. The present theory is pro-
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posed for planar metasurfaces, but this could be extended to conformal metasurfaces in the

near future, in order to have a completely analytical framework for a better understanding of

freeform optics instead of relying on modelling techniques CGSTCs, as discussed above.
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Appendix A

CGSTCs derivation in cylindrical

coordinates

In this appendix, we provide the complete derivation of the conform generalized sheet transi-

tion condition using the differential form of the Maxwell’s equations in cylindrical coordinate

system. In this derivation , we consider the cylindrical coordinates system as the surface coor-

dinates system. These derivations are useful if one want to synthesis the conformal metasur-

faces which have cylindrical symmetry such as curved deflector and lens.

A.1 Electromagnetic boundary conditions in local coor-

dinates

Once again we let M ⊂ R3, and think of S ⊂ M as a 2-submanifold. This time, equip R3 with

a global cylindrical coordinate (r,θ, z) (except for points along the z-axis). Let r ′ : M → R be a

smooth function such that S is a level set of r ′. Let R ∈R be such that S = r ′−1(R). Let f (θ, z) = r

be given by the implicit function theorem such that S is the graph of f . Now the cylindrical

coordinate system is not orthonormal, so we need to pay attention to the difference in the

vector and covector representation. For i , j = r,θ, z, let the lenth element is given by

d l = dr r̂ + r dθθ̂+d zẑ

d l ·d l = dr 2 + r 2dθ2 +d z2
(A.1)

therefore the Riemannian metric and inverse metric tensors of the cylindrical coordinate

(gi j ) =


1 0 0

0 r 2 0

0 0 1

 and (g i j ) = (gi j )( −1) =


1 0 0

0 1
r 2 0

0 0 1

 (A.2)
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.

Using the same argument as before(that er ′ = N is the unit vector ), we have er ′ = 1
|∇r ′|g

i j∂i r ′e j =
1

|∇r ′|
(
∂r ′
∂r er + 1

r 2
∂r ′
∂θ eθ+ ∂r ′

∂z ez

)
as the unit vector field normal to S, where |∇r ′| =

√(
∂r ′
∂r

)2 +
(

1
r
∂r ′
∂θ

)2 +
(
∂r ′
∂z

)2
.

Letting (θ′, z ′) be the coordinate system on S, then the coordinates chart of S is r (θ′, z ′) =
f (θ′, z ′), θ(θ′, z ′) = θ′, and z(θ′, z ′) = z ′. Therefore er ′ , eθ′ , and ez ′ forms a frame for the space of

vector fields on S, where

er ′ = 1

|∇r ′|
(
∂r ′

∂r
er + 1

r 2

∂r ′

∂θ
eθ+

∂r ′

∂z
ez

)
,

eθ′ =
∂ f

∂θ′
er + ∂θ

∂θ′
eθ+

∂z

∂θ′
ez = ∂ f

∂θ′
er +eθ, since

∂θ

∂θ′
= 1,

∂z

∂θ′
= 0

ez ′ = ∂ f

∂z ′ er + ∂θ

∂z ′ eθ+
∂z

∂z ′ ez = ∂ f

∂z ′ er +ez .since
∂z

∂z ′ = 0,
∂θ

∂z ′ = 1

(A.3)

The Riemannian metric and inverse Riemannian metric tensors on S with respect to the surface

coordinates are given by

(g S
i ′ j ′) =


er ′ ·er ′ er ′ ·eθ′ er ′ ·ez ′

eθ′ ·er ′ eθ′ ·eθ′ eθ′ ·ez ′

ez ′ ·er ′ ez ′ ·eθ′ ez ′ ·ez ′

 (A.4)

d l’ = (
∂ f

∂θ′
dθ′+ ∂ f

∂z ′ d z ′)r̂ + f dθ′θ̂+d z ′ ẑ

d l’ ·d l’ = (
∂ f

∂θ′
dθ′+ ∂ f

∂z ′ d z ′)2 + f 2dθ′2 +d z ′2

=
(

f 2 +
(
∂ f

∂θ′

)2)
dθ′2 +2

∂ f

∂θ′
∂ f

∂z ′ dθ′d z ′+ (1+
(
∂ f

∂z ′

)2

)d z ′2

= g S
i ′ j ′di ′d j ′

(A.5)

(g S
i ′ j ′) =


1 0 0

0 f 2 +
(
∂ f
∂θ′

)2 ∂ f
∂θ′

∂ f
∂z ′

0 ∂ f
∂θ′

∂ f
∂z ′ 1+

(
∂ f
∂z ′

)2

 , (g i ′ j ′

S ) = (g S
i ′ j ′)

−1 =
Ad j (g S

i ′ j ′)

det (g S
i ′ j ′)

= 1

g S


1 0 0

0 1+
(
∂ f
∂z ′

)2 − ∂ f
∂θ′

∂ f
∂z ′

0 − ∂ f
∂θ′

∂ f
∂z ′

(
f 2 +

(
∂ f
∂θ′

)2
)


(A.6)

where i ′, j ′ = r ′,θ′, z ′, and g S = det (g S
i ′ j ′) = f 2 +

(
f ∂ f
∂z ′

)2 +
(
∂ f
∂θ′

)2
.

As before, if we define X θ′ = g θ
′k ′

S ek ′ , for k ′ = θ′, z ′,r ′, then

Y θ′ = X θ′ ×er ′

=
(
g θ

′θ′
S eθ′ + g θ

′z ′
S ez ′

)
×er ′

(A.7)
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substituting for er ′ , eθ′ and ez ′ from A.3

Y θ′ = X θ′ ×er ′ =− 1p
g S

ez ′ . And if X z ′ = g z ′k ′
S ek ′ , for k ′ = θ′, z ′, then Y z ′ = 1p

g S
eθ′ .

Using the definition of cur l [94], [93] and with the assumption that the field distribution

across the thickness of S is constant, we obtain

1√
g S

Ez ′ |+− = 1√
g S

∂

∂z ′
(
χr ′k ′

e E av
k ′

)
+ ∂

∂t

(
χθ

′k ′
m B av

k ′

)
, (A.8)

− 1√
g S

Eθ′ |+− =− 1√
g S

∂

∂θ′
(
χr ′k ′

e E av
k ′

)
+ ∂

∂t

(
χz ′k ′

m B av
k ′

)
, (A.9)

1√
g S

Hz ′ |+− = 1√
g S

∂

∂z ′
(
χr ′k ′

m H av
k ′

)
− ∂

∂t

(
χθ

′k ′
e Dav

k ′

)
, (A.10)

− 1√
g S

Hθ′ |+− =− 1√
g S

∂

∂θ′
(
χr ′k ′

m H av
k ′

)
− ∂

∂t

(
χz ′k ′

e Dav
k ′

)
, (A.11)

Dr ′ |+−+ 1√
g S
∂i ′

(√
g Sχi ′k ′

e Dav
k ′

)
= 0, (A.12)

Br ′ |+−+ 1√
g S
∂i ′

(√
g Sχi ′k ′

m B av
k ′

)
= 0, (A.13)

for k ′ = r ′,θ′, z ′ and i ′ = θ′, z ′, which can be succinctly written as

[i ′ j ′]√
g S

E j ′ |+−e i ′ = [i ′ j ′]√
g S
∂ j ′

(
χr ′k ′

e E av
k ′

)
e i ′ +∂t

(
χi ′k ′

m B av
k ′

)
e i ′ , (A.14)

[i ′ j ′]√
g S

H j ′ |+−e i ′ = [i ′ j ′]√
g S
∂ j ′

(
χr ′k ′

m H av
k ′

)
e i ′ −∂t

(
χi ′k ′

e Dav
k ′

)
e i ′ , (A.15)

Dr ′ |+−+ 1√
g S
∂i ′

(√
g Sχi ′k ′

e Dav
k ′

)
= 0, (A.16)

Br ′ |+−+ 1√
g S
∂i ′

(√
g Sχi ′k ′

m B av
k ′

)
= 0, (A.17)

for i ′, j ′ = θ′, z ′ and k ′ = r ′,θ′, z ′.
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A.2 Electromagnetic boundary conditions in cylindrical

coordinates

Given a vector V on S, the change in the components of the covector field from cylindrical

coordinate to the surface coordinates is given by

Vr ′ =V ·er ′ = 1

|∇r ′|
(
Vr
∂r ′

∂r
+ 1

f 2 Vθ
∂r ′

∂θ
+Vz

∂r ′

∂z

)
,

Vθ′ =V ·eθ =Vθ+Vr
∂ f

∂θ′
,

Vz ′ =V ·ez ′ =Vz +Vr
∂ f

∂z ′ .

(A.18)

The above can be compactly written as Vi ′ =Λi
i ′Vi , where i ′ = r ′,θ′, z ′, i = r,θ, z, and

(Λi
i ′) =


1

|∇r ′|
∂r ′
∂r

∂ f
∂θ′

∂ f
∂z ′

1
|∇r ′|

1
f 2

∂r ′
∂θ 1 0

1
|∇r ′|

∂r ′
∂z ′ 0 1

 (A.19)

Substituting the transformation into (A.14), (A.15), (A.16), and (A.17), we obtain

[i ′ j ′]√
g S
Λk

j ′Ek |+−e i ′ = [i ′ j ′]√
g S
∂ j ′

(
χr ′k ′

e Λk
k ′E av

k

)
e i ′ +∂t

(
χi ′k ′

m Λk
k ′B av

k

)
e i ′ , (A.20)

[i ′ j ′]√
g S
Λk

j ′ Hk |+−e i ′ = [i ′ j ′]√
g S
∂ j ′

(
χr ′k ′

m Λk
k ′ H av

k

)
e i ′ −∂t

(
χi ′k ′

e Λk
k ′Dav

k

)
e i ′ , (A.21)

Λk
r ′Dk |+−+ 1√

g S
∂i ′

(√
g Sχi ′k ′

e Λk
k ′Dav

k

)
= 0, (A.22)

Λk
r ′Bk |+−+ 1√

g S
∂i ′

(√
g Sχi ′k ′

m Λk
k ′B av

k

)
= 0, (A.23)

for i ′, j ′ = θ′, z ′, k ′ = r ′,θ′, z ′, and k = r,θ, z. Now define the virtual susceptibilities for cylindrical

coordinates to be

χi ′k
a =


√

g Sχi ′k ′
a Λk

k ′ for i ′ = θ′, z ′, k = r,θ, z,

χi ′k ′
a Λk

k ′ for i ′ = r, k = r,θ, z,
(A.24)
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for a = e,m, k ′ = r ′θ′z ′. Multiplying (A.20) and (A.21) throughout by
√

g S, using (A.24), we get

[i ′ j ′]Λk
j ′Ek |+−e i ′ = [i ′ j ′]∂ j ′

(
χr ′k

e E av
k

)
e i ′ +∂t

(
χi ′k

m B av
k

)
e i ′ , (A.25)

[i ′ j ′]Λk
j ′ Hk |+−e i ′ = [i ′ j ′]∂ j ′

(
χr ′k

m H av
k

)
e i ′ −∂t

(
χi ′k

e Dav
k

)
e i ′ , (A.26)

Λk
r ′Dk |+−+ 1√

g S
∂i ′

(
χi ′k

e Dav
k

)
= 0, (A.27)

Λk
r ′Bk |+−+ 1√

g S
∂i ′

(
χi ′k

m B av
k

)
= 0, (A.28)

Writing the transformation (A.24) explicitly in matrix form, we have for a = e,m,

(χi ′k
a ) =

√
g S


χr ′r ′

ap
g S

χr ′θ′
ap
g S

χr ′z′
ap
g S

χθ
′r ′

a χθ
′θ′

a χθ
′z ′

a

χz ′r ′
a χz ′θ′

a χz ′z ′
a




1
|∇r ′|

∂r ′
∂r

1
|∇r ′|

1
f 2

∂r ′
∂θ

1
|∇r ′|

∂r ′
∂z ′

∂ f
∂θ′ 1 0
∂ f
∂z ′ 0 1

 . (A.29)

One can obtain χi ′ j ′
a , a = e,m, i ′ j ′ = r ′,θ′, z ′ via

χr ′r ′
ap
g S

χr ′θ′
ap
g S

χr ′z′
ap
g S

χθ
′r ′

a χθ
′θ′

a χθ
′z ′

a

χz ′r ′
a χz ′θ′

a χz ′z ′
a

= γ


χr ′r

a χr ′θ
a χr ′z

a

χθ
′r

a χθ
′θ

a χθ
′z

a

χz ′r
a χz ′θ

a χz ′z
a




|∇r ′| −∂r ′
∂θ

1
f 2 −∂r ′

∂z

−|∇r ′| ∂ f
∂θ′

∂r ′
∂r − ∂r ′

∂z
∂ f
∂z ′

∂r ′
∂z

∂ f
∂θ′

−|∇r ′|∂ f
∂z

1
f 2

∂r ′
∂θ

∂ f
∂z ′

∂r ′
∂r − 1

f 2
∂r ′
∂θ

∂ f
∂θ′ ,

 (A.30)

where γ=
(
g S

(
∂r ′
∂r − ∂r ′

∂z
∂ f
∂z ′ − 1

f 2
∂r ′
∂θ

∂ f
∂θ′

))−1
.

(
0 1 ∂ f

∂θ′

−1 0 − ∂ f
∂z ′

)
Eθ|+−
Ez |+−
Er |+−

= ιωµ0

(
χθ

′θ
m χθ

′z
m χθ

′r
m

χz ′θ
m χz ′z

m χz ′r
m

)
H av
θ

H av
z

H av
r

 (A.31)

(
0 1 ∂ f

∂θ′

−1 0 − ∂ f
∂z ′

)
Hθ|+−
Hz |+−
Hr |+−

=−ιωε0

(
χ
θ′φ
e χθ

′z
e χθ

′r
e

χz ′θ
e χz ′z

e χz ′r
e

)
E av
θ

E av
z

E av
r

 (A.32)
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Appendix B

CGSTCs derivation in parabolic

coordinates

In this appendix, we provide the complete derivation of the conform generalized sheet transi-

tion condition using the differential form of Maxwell’s equations in parabolic coordinates. In

this derivations, we consider the parabolic coordinates system as the surface coordinates sys-

tem. These derivation are useful if one want to synthesize the conformal metasurfaces which

have parabolic symmetry such as parabolic mirrors and antennas.

B.1 Electromagnetic boundary conditions in Parabolic lo-

cal coordinates

Once again we let M ⊂ R3, and think of S ⊂ M as a 2-submanifold. This time, equip R3 with

a global parabolic coordinate (σ,τ,φ) (except for points along the σ-axis). Let τ′ : M → R be a

smooth function such that S is a level set of τ′. Let R ∈R be such that S = τ′−1(R). Let f (σ,φ) = τ
be given by the implicit function theorem such that S is the graph of f . Now the parabolic

coordinate system is not orthonormal, so we need to pay attention to the difference in the

vector and covector representation. For i , j =′ τ,σ,φ, let the length element is given by

d s2 = (σ2 +τ2)dσ2 + (σ2 +τ2)dτ2 +σ2τ2dφ2 (B.1)

therefore the Riemannian metric and inverse metric tensors of the parabolic coordinates

(gi j ) =


σ2 +τ2 0 0

0 σ2 +τ2 0

0 0 σ2τ2

 and g i j =


1

σ2+τ2 0 0

0 1
σ2+τ2 0

0 0 1
σ2τ2

 (B.2)

Using the same argument as before(that e t au′ = N is the unit vector ), we have
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eτ′ = 1

|∇τ′|g i j∂iτ
′e j = 1

|∇τ′|
(

1

σ2 +τ2

∂τ′

∂τ
eτ+ 1

σ2 +τ2

∂τ′

∂σ
eσ+ 1

σ2τ2

∂τ′

∂φ
eφ

)
(B.3)

as the unit vector field normal to S, where

|∇τ′| =
√

1

σ2 +τ2

(
∂τ′

∂τ

)2

+ 1

σ2 +τ2

(
∂τ′

∂σ

)2

+ 1

σ2τ2

(
∂τ′

∂φ

)
. (B.4)

Let (σ′,φ′) be the coordinate system on S, then the coordinates chart of S is τ(σ′,φ′) =
f (σ′,φ′), σ(σ′,φ′) = σ′, and φ(σ′,φ′) = φ′. Therefore eτ′ , eσ′ , and eφ′ forms a frame for the

space of vector fields on S, where

eτ′ = 1

|∇τ′|
(

1

σ2 +τ2

∂τ′

∂τ
eτ+ 1

σ2 +τ2

∂τ′

∂σ
eσ+ 1

σ2τ2

∂τ′

∂φ
eφ

)
,

eσ′ = ∂ f

∂σ′ eτ+ ∂σ′

∂σ′ eσ+ ∂φ

∂σ′ eφ = ∂ f

∂σ′ eτ+eσ, since
∂σ

∂σ′ = 1,
∂φ

∂σ′ = 0

eφ′ = ∂ f

∂φ′ eτ+ ∂σ

∂φ′ eσ+ ∂σ

∂σ′ eσ = ∂ f

∂σ′ eτ+eσ.since
∂σ

∂φ′ = 0,
∂φ

∂φ′ = 1

(B.5)

The Riemannian metric and inverse Riemannian metric tensors on S with respect to the surface

coordinates are given by

(g S
i ′ j ′) =


eτ′ ·eτ′ eτ′ ·eσ′ eτ′ ·eφ′

eσ′ ·eτ′ eσ′ ·eσ′ eσ′ ·eφ′

eφ′ ·eτ′ eφ′ ·eσ′ eφ′ ·eφ′

 (B.6)

d s2 = (σ2 +τ2)(
∂ f

∂σ′ dσ′+ ∂ f

∂φ′ dφ′)2 + (σ2 +τ2)dσ′2 +σ2τ2dφ′2

= g S
i ′ j ′di ′d j ′

(B.7)

(g S
i ′ j ′) =


1 0 0

0 (σ2 +τ2)(1+ ( ∂ f
∂σ′ )2) (σ2 +τ2) ∂ f

∂φ′
∂ f
∂σ′

0 (σ2 +τ2) ∂ f
∂φ′

∂ f
∂σ′ (σ2τ2 + (σ2 +τ2)( ∂ f

∂φ′ )2)

 (B.8)

(g i ′ j ′

S ) = (g S
i ′ j ′)

−1 =
Ad j (g S

i ′ j ′)

det (g S
i ′ j ′)

& = 1

g S


1 0 0

0 (σ2τ2 + (σ2 +τ2)( ∂ f
∂φ′ )2) −(σ2 +τ2) ∂ f

∂φ′
∂ f
∂σ′

0 −(σ2 +τ2) ∂ f
∂φ′

∂ f
∂σ′ (σ2 +τ2)(1+ ( ∂ f

∂σ′ )2)

 (B.9)

where i ′, j ′ = τ′,σ′,φ′, and g S = det (g S
i ′ j ′) = (σ2 +τ2)

{
σ2τ2 + (σ2 +τ2)( ∂ f

∂φ′ )2 +σ2τ2( ∂ f
∂σ′ )2

}
.

As before, if we define X σ′ = gσ
′k ′

S ek ′ , for k ′ =σ′,φ′,τ′, then
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Y σ′ = X σ′ ×eτ′

=
(
gσ

′σ′
S eσ′ + gσ

′φ′

S eφ′
)
×eτ′

(B.10)

substituting for eτ′ , eσ′ and eφ′ from equation B.5

Y σ′
=X σ′ ×eτ′=− 1p

g S
eφ′ . and if X φ′ = gφ

′φ′

S ek ′ , for k ′ =σ′,φ′, then Y φ′ = 1p
g S

eσ′ .

Using the definition of cur l [94], [93] and with the assumption that the field distribution

across the thickness of S is constant, we obtain

1√
g S

Eφ′ |+− = 1√
g S

∂

∂φ′
(
χτ

′k ′
e E av

k ′

)
+ ∂

∂t

(
χσ

′k ′
m B av

k ′

)
, (B.11)

− 1√
g S

Eσ′ |+− =− 1√
g S

∂

∂σ′
(
χτ

′k ′
e E av

k ′

)
+ ∂

∂t

(
χ
φ′k ′
m B av

k ′

)
, (B.12)

1√
g S

Hφ′ |+− = 1√
g S

∂

∂φ′
(
χτ

′k ′
m H av

k ′

)
− ∂

∂t

(
χσ

′k ′
e Dav

k ′

)
, (B.13)

− 1√
g S

Hσ′ |+− =− 1√
g S

∂

∂σ′
(
χτ

′k ′
m H av

k ′

)
− ∂

∂t

(
χ
φ′k ′
e Dav

k ′

)
, (B.14)

Dτ′ |+−+ 1√
g S
∂i ′

(√
g Sχi ′k ′

e Dav
k ′

)
= 0, (B.15)

Bτ′ |+−+ 1√
g S
∂i ′

(√
g Sχi ′k ′

m B av
k ′

)
= 0, (B.16)

for k ′ = τ′,σ′,φ′ and i ′ =σ′,φ′, which can be succinctly written as

[i ′ j ′]√
g S

E j ′ |+−e i ′ = [i ′ j ′]√
g S
∂ j ′

(
χτ

′k ′
e E av

k ′

)
e i ′ +∂t

(
χi ′k ′

m B av
k ′

)
e i ′ , (B.17)

[i ′ j ′]√
g S

H j ′ |+−e i ′ = [i ′ j ′]√
g S
∂ j ′

(
χτ

′k ′
m H av

k ′

)
e i ′ −∂t

(
χi ′k ′

e Dav
k ′

)
e i ′ , (B.18)

Dτ′ |+−+ 1√
g S
∂i ′

(√
g Sχi ′k ′

e Dav
k ′

)
= 0, (B.19)

Bτ′ |+−+ 1√
g S
∂i ′

(√
g Sχi ′k ′

m B av
k ′

)
= 0, (B.20)

for i ′, j ′ =σ′,φ′ and k ′ = τ′,σ′,φ′.
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B.2 Electromagnetic boundary conditions in Parabolic co-

ordinates

Given a vector V on S, the change in the components of the covector field from cylindrical

coordinates to the surface coordinates is given by

Vτ′ =V ·eτ′ = 1

|∇τ′|
(

Vτ
σ2 +τ2

∂τ′

∂τ
+ Vσ
σ2 +τ2

∂τ′

∂σ
+ Vφ
σ2τ2

∂τ′

∂φ

)
,

Vσ′ =V ·eσ =Vσ+Vr
∂ f

∂σ′ ,

Vφ′ =V ·eφ′ =Vφ+Vr
∂ f

∂φ′ .

(B.21)

The above can be compactly written as Vi ′ =Λi
i ′Vi , where i ′ = τ′,σ′, z ′, i = r,σ,φ, and

(Λi
i ′) =


1

|∇τ′|
1

(σ2+ f 2)
∂τ′
∂τ

∂ f
∂σ′

∂ f
∂φ′

1
|∇τ′|

1
(σ2+ f 2)

∂τ′
∂σ 1 0

1
|∇τ′|σ2 f 2

∂τ′
∂φ 0 1

 (B.22)

Substituting the transformation into (B.17), (B.18), (B.19), and (B.20), we obtain

[i ′ j ′]√
g S
Λk

j ′Ek |+−e i ′ = [i ′ j ′]√
g S
∂ j ′

(
χτ

′k ′
e Λk

k ′E av
k

)
e i ′ +∂t

(
χi ′k ′

m Λk
k ′B av

k

)
e i ′ , (B.23)

[i ′ j ′]√
g S
Λk

j ′ Hk |+−e i ′ = [i ′ j ′]√
g S
∂ j ′

(
χτ

′k ′
m Λk

k ′ H av
k

)
e i ′ −∂t

(
χi ′k ′

e Λk
k ′Dav

k

)
e i ′ , (B.24)

Λk
τ′Dk |+−+ 1√

g S
∂i ′

(√
g Sχi ′k ′

e Λk
k ′Dav

k

)
= 0, (B.25)

Λk
τ′Bk |+−+ 1√

g S
∂i ′

(√
g Sχi ′k ′

m Λk
k ′B av

k

)
= 0, (B.26)

for i ′, j ′ = σ′,φ′, k ′ = τ′,σ′,φ′, and k = r,σ,φ. Now define the virtual susceptibilities for

cylindrical coordinates to be

χi ′k
a =


√

g Sχi ′k ′
a Λk

k ′ for i ′ =σ′,φ′, k = r,σ,φ,

χi ′k ′
a Λk

k ′ for i ′ = r, k = r,σ,φ,
(B.27)

for a = e,m, k ′ = τ′,σ′,φ′. Multiplying (B.23) and (B.24) throughout by
√

g S, using (B.27),

we get
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[i ′ j ′]Λk
j ′Ek |+−e i ′ = [i ′ j ′]∂ j ′

(
χτ

′k
e E av

k

)
e i ′ +∂t

(
χi ′k

m B av
k

)
e i ′ , (B.28)

[i ′ j ′]Λk
j ′ Hk |+−e i ′ = [i ′ j ′]∂ j ′

(
χτ

′k
m H av

k

)
e i ′ −∂t

(
χi ′k

e Dav
k

)
e i ′ , (B.29)

Λk
τ′Dk |+−+ 1√

g S
∂i ′

(
χi ′k

e Dav
k

)
= 0, (B.30)

Λk
τ′Bk |+−+ 1√

g S
∂i ′

(
χi ′k

m B av
k

)
= 0, (B.31)

Writing the transformation (B.27) explicitly in matrix form, we have for a = e,m,

(χi ′k
a ) =

√
g S


χτ

′τ′
ap
g S

χτ
′σ′

ap
g S

χ
τ′φ′
ap
g S

χσ
′τ′

a χσ
′σ′

a χ
σ′φ′
a

χ
φ′τ′
a χ

φ′σ′
a χ

φ′φ′
a




1
|∇τ′|

1
(σ2+ f 2)

∂τ′
∂τ

1
|∇τ′|

1
(σ2+ f 2)

∂τ′
∂σ

1
|∇τ′|σ2 f 2

∂τ′
∂φ

∂ f
∂σ′ 1 0
∂ f
∂φ′ 0 1

 . (B.32)

One can obtain χi ′ j ′
a , a = e,m, i ′ j ′ = τ′,σ′,φ′ via

⇒


χσ

′σ′
a χ

σ′φ′
a χσ

′τ′
a

χ
φ′σ′
a χ

φ′φ′
a χ

φ′τ′
a

χτ
′σ′

ap
g S

χ
τ′φ′
ap
g S

χτ
′τ′

ap
g S

= (B.33)

= γ


χσ

′σ
a χ

σ′φ
a χσ

′r
a

χ
φ′σ
a χ

φ′φ
a χ

φ′r
a

χτ
′σ

a χ
τ′φ
a χτ

′r
a

×


1

σ2+ f 2
∂τ′
∂τ − 1

σ2+ f 2
∂τ′
∂φ

∂ f
∂φ′

1
σ2 f 2

∂τ′
∂φ

∂ f
∂σ′ −|∇τ′| ∂ f

∂σ′
1

σ2+ f 2
∂τ′
∂σ

∂ f
∂φ′

1
σ2+ f 2

(
∂τ′
∂r − ∂τ′

∂σ
∂ f
∂σ′

)
−|∇τ′| ∂ f

∂φ′

− 1
σ2+ f 2

∂τ′
∂σ − 1

σ2 f 2
∂τ′
∂φ |∇τ′|

 (B.34)

where γ=
(

1
σ2+ f 2

∂τ′
∂r − 1

σ2+ f 2
∂τ′
∂σ

∂ f
∂σ′ − 1

σ2 f 2
∂τ′
∂φ

∂ f
∂φ′

)−1
.

Assuming an ambient medium of free space and a time dependence given by e iωt , assum-

ing χτ
′σ

a =χτ′φa =χτ′ra = 0, therefore (B.28) and (B.29) in the matrix form

(
0 1 ∂ f

∂σ′

−1 0 − ∂ f
∂φ′

)
Eσ|+−
Eφ|+−
Eτ|+−

= ιωµ0

(
χσ

′σ
m χ

σ′φ
m χσ

′r
m

χ
φ′σ
m χ

φ′φ
m χ

φ′r
m

)
H av
σ

H av
φ

H av
τ

 (B.35)

(
0 1 ∂ f

∂σ′

−1 0 − ∂ f
∂φ′

)
Hσ|+−
Hφ|+−
Hτ|+−

=−ιωε0

(
χσ

′σ
e χ

σ′φ
e χσ

′r
e

χ
φ′σ
e χ

φ′φ
e χ

φ′r
e

)
E av
σ

E av
φ

E av
τ

 , (B.36)
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Appendix C

Standard three dimensional FDTD

equations

In this appendix, we provide the standard discretized Maxwell’s equations using FDTD scheme

for simulating an electromagnetic radiation.

C.1 Normal FDTD equations for 3D FDTD

Ĥx
q+ 1

2
[
m,n, p

]= H
q− 1

2
x

[
m,n, p

]+ ∆t

µ0∆s
(C.1){(

E q
z
[
m,n, p

]−E q
z
[
m,n +1, p

])+ (
Eq

y
[
m,n, p +1

]−Eq
y
[
m,n, p

])}
, (C.2)

Ĥy
q+ 1

2
[
m,n, p

]= H
q− 1

2
y
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E q
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Ĥz
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2
[
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2
z

[
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]+ ∆t

µ0∆s
(C.5){(

E q
y
[
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]−E q
y
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])+ (
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x
[
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]−Eq
x
[
m,n, p

])}
, (C.6)
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Êx
q+1[

m,n, p +1
]= Eq

x
[
m,n, p +1

]+ ∆t

ε0∆s
(C.7){(

H
q− 1

2
z

[
m,n, p +1

]−H
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2
z

[
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H
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2

y
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2
y

[
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])}
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Êy
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]= Eq
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m,n, p +1
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ε0∆s
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[
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ε0∆s
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H
q− 1

2
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[
m,n, pm

]−H
q− 1

2
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[
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])+(
H
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[
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]−H
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[
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Appendix D

Identities involving the dirac delta

functions

In this appendix, we derive some useful identities involving the use of dirac delta function

D.1 Integration by parts

Most of the results from this subsection regarding tangential operators formulas may be found

in [182, section 3.4].

D.1.1 Integrals involving the curl operator

First, let us recall the integration by parts formula for the curl on anyΩ⊂R3 with contour ∂Ω:∫
Ω

A ·∇×B dx =
∫
Ω
∇×A ·B dx +

∫
∂Ω

A×n ·B ds. (D.1)

A similar formula may be obtained for the tangential curl:∫
∂Ω

∇∥×A∥ ·B⊥ ds =
∫
∂Ω

A∥ ·∇∥×B⊥ ds +b.t. (D.2)

where b.t. corresponds to boundary terms which will be ignored afterward since they are equal

to zero for vanishing fields on the edges of ∂Ω. We will also use the following equality for the

curl on a surface: ∫
∂Ω

A ·∇×B ds =
∫
∂Ω

(∇∥×A
) ·B+A∥ ·∇⊥×B∥︸ ︷︷ ︸

(A∥×n)·∂n B∥

ds (D.3)

where ∂n B∥ = ∂n(B ·τ1)τ1 +∂n(B ·τ2)τ2. This equation is obtained using the following decom-

position and (D.2):

A · ∇ × B = A∥ · ∇⊥ × B∥ + A∥ · ∇∥ × B⊥ + A⊥ · ∇∥ × B∥.
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D.1.2 Integrals involving the divergence operator

Again we remind the reader of the classical integration by parts formula for the divergence on

any open subsetΩ of R3:∫
Ω

(∇·A)B dx =−
∫
Ω

A ·∇B dx +
∫
∂Ω

(n ·A)B ds.

Regarding the tangential divergence we will use the relation:∫
∂Ω

A ·∇∥B ds =−
∫
∂Ω

(∇∥ ·A)B ds,

which allows to write: ∫
∂Ω

A ·∇B ds =−
∫
∂Ω

(∇∥ ·A)B ds +
∫
∂Ω

A ·∇⊥B︸ ︷︷ ︸
(n·A)∂n B

ds

using the decomposition:

A ·∇B = A ·∇∥B+A ·∇⊥B.

D.2 Operators on a surface-step functions

We now define a continuous by part step vector-function A as:

A(x, y, z) =
{

A+(x, y, z) if z > f (x, y)

A−(x, y, z) if z < f (x, y)

with A+,A− smooth functions. We also remind the reader that a vectorial function A is said to

have a distributional curl (resp. distributional divergence) if there exists a g (resp. g) such that

for all vectorial test functions φ (resp. scalar test functions φ):∫
R3

A ·∇×φdx =
∫
R3

g ·φdx , (D.4)∫
R3

A ·∇φdx =−
∫
R3

gφdx . (D.5)
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D.2.1 Curl

The distributional curl of the step function A is found using the integration by parts formula

of (D.1):

(D.4) =
∫
D+

A+ ·∇×φdx +
∫
D−

A− ·∇×φdx

=
∫
∂D+

A+×nD+ ·φdx +
∫
∂D−

A−×nD− ·φdx

+
∫
D+

∇×A+ ·φdx +
∫
D−

∇×A− ·φdx

=
∫

S
�A�×n ·φdx +

∫
R3
∇×A ·φdx

where we have used the fact that φ→ 0 at infinity. From the definition of the surface Dirac

function we thus have:

(D.4) =
∫
R3
δS �A�×n ·φ+∇×A ·φdx

We thus find that the distributional curl of A is ∇×A+δS �A�×n.

D.2.2 Divergence

Here we have to consider the following integral:

(D.5) =
∫
D+

A+ ·∇φdx +
∫
D−

A− ·∇φdx

=
∫
∂D+

A+ ·nD+φdx +
∫
∂D−

A− ·nD−φdx

−
∫
D+

∇·A+φdx −
∫
D−

∇·A−φdx

=
∫
R3
δS �A� ·nφ−∇·Aφdx ,

which gives the distributional divergence of A as ∇·A+δS �A� ·n.

D.3 Operators for the product between a function and a

surface Dirac
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D.3.1 Curl

With the same method as in appendix D.2 using the integration by parts formula of equa-

tion (D.3) we find that (for A defined on S):∫
R3

(AδS) · ∇ × φ dx =
∫

S
A · ∇ × φ ds =

∫
S

(∇∥ × A) · φ ds +
∫

S
(A∥ × n) · ∂nφ∥ ds

Using the definition of the Dirac derivative in (D.4) we then find that the curl of AδS is given as

(∇∥×A)δS +n ×A∥∂nδS .

D.3.2 Divergence

In the same way we have:∫
R3

(AδS) · ∇φ dx =
∫

S
A · ∇φ ds = −

∫
S

(∇∥ · A)φ ds +
∫

S
n · A(∂nφ) ds

The divergence of AδS is thus given as (∇∥ ·A)δS +n ·A∂nδS .

D.3.3 Identities

We summarize in this subsection the identities discussed above.

For any “singular” field A0 defined on the surface S:

∇× (A0δS) = (∇∥×A0)δS +n ×A0∂nδS ,

∇· (A0δS) = (∇∥ ·A0)δS +n ·A0∂nδS .

For any “regular” field A defined in the whole space:

∇×A =∇×A+n ×�A�δS ,

∇·A =∇·A+n · �A�δS .



Appendix E

Derivation of Snell’s law from

mesoscopic electrodynamical theory

E.1 Derivation of Snell’s law of refraction

In this section we provide the proof for the Snell’s law of refraction from the mesoscopic model.

For the PB metasurface shown in Fig.5.3.A. the coefficients in Eq. (5.33)

Â′
m,n, j (K ) = ι fm,n, Âm,n, j (K )

2

√
ω2

i n2
i ,t

c2 −K 2
||

, (E.1)

Fm,n, j (x, y, z) = [e ι(κi+Gm,n )ρ− ι j Gm,0a1

(
e ι

√
ω2

i
n2

i ,t
c2 −K 2

|| H (z ≥ 0)+e−ι
√

ω2
i

n2
i ,t

c2 −K 2
|| H (z ≤ 0)

)
]|κ=κi .

(E.2)

(E.3)

Notice that

F0,0, j (x, y, z) = [e ι(κiρ

(
e ι

√
ω2

i
n2

i ,t
c2 −K 2

|| H (z ≥ 0)+e−ι
√

ω2
i

n2
i ,t

c2 −K 2
|| H (z ≤ 0)

)
]|κ=κi , (E.4)

andF±1,0, j (x, y, z) = e ι(κi+G1,0)ρ± ιι(φ j − π

10
)

(
e ι

√
ω2

i
n2

i ,t
c2 −K 2

|| H (z ≥ 0)+e−ι
√

ω2
i

n2
i ,t

c2 −K 2
|| H (z ≤ 0)

)
]|κ=κi .

(E.5)

with
∑ j=N

j=−N f ′
m,n, j e ι j Gm,0a1 = fm,n , such as f ′

1,0,0 = sin πlx
5a1

lyχ0

π2a2
, f ′

1,1,0 = χ0 sin
πly
a2

sin πlx
5a1

π3 . In short, we

approximate the amplitude ratio of the refraction light as Ex,0,0,r : Ex,1,0,r : Ex,0,1,r : Ex,1,1,r ≈
ω2

i n2
i

c2 −κ2
i ,x

ω2
i

n2
i

c2 −κ2
i

αβ :
5(

ω2
i n2

i
c2 −κ2

i ,x− 4π2

25a2
1

)sin πα
5

π

√
(
ω2

i
n2

i
c2 −κ2

i ,x− 4π2

25a2
1

)

β :
(
ω2

i n2
i

c2 −κ2
i ,x )sinπβ

π(
ω2

i
n2

i
c2 −κ2

i − 4π2

a2
2

)
:

5(
ω2

i n2
i

c2 −κ2
i ,x )sinπβ

π(
ω2

i
n2

i
c2 −κ2

i −G2
1,1)

≈
ω2

i n2
i

c2 −κ2
i ,x

ω2
i

n2
i

c2 −κ2
i

αβ :
(
ω2

i n2
i

c2 −κ2
i ,x− 4π2

25a2
1

)√
(
ω2

i
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i
c2 −κ2

i − 4π2

25a2
1

)
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(
ω2

i n2
i

c2 −κ2
i ,x

π

√
(
ω2

i
n2

i
c2 −κ2

i ,x− 4π2

25a2
2

)

α2 :
(
ω2

i n2
i

c2 −κ2
i ,x

π

√
(
ω2

i
n2

i
c2 −κ2

i ,x−G2
1,1)

α2, where we have approximated lx
a1

= α ≈ 0,
ly

a2
= β ≈ 1

which lead to limα → 0sin πα
5 ≈ πα

5 , limβ→1 sinπβ ≈ π−βπ ≈ α. By replacing the ni in the

denominator of the amplitude ratio with nr , the amplitude ratio of the reflection light can be

obtained. It reveals that the Ex,0,1,Ex,1,1 and higher order components of the refraction and

reflection light are much weaker than the Ex,0,0, Ex,1,0 refraction and reflection light. In the

following , the effect of these weak signal are ignored.

For (m,n) = (0,0) and in plane transmission and reflection , the phase of the incident light

and refraction light are :

Incident light :e
ιz

(√
ω2

i
n2

i
c2 −κ2

i +ικiρ

)
;κ2

x,i +κ2
y,i +κ2

z,i =
ω2

i n2
t

c2 , (E.6)

→ κy,i = 0,sinθ = κx,i

ω0ni /c
, (E.7)

(E.8)

Refraction light :e
ι

(√
ω2

i
n2

t
c2 −κ2

i z+ικ0ρ

)
;κ2

x,t +κ2
y,t +κ2

z,t =
ω2

i n2
t

c2 , (E.9)

→ κy,i = 0,sinθ = κx,i

ω0nt /c
, (E.10)

(E.11)

where the index t denotes the refraction light. Then we can get:

nt sinθt −ni sinθi = 0, (E.12)

for (m,n) = (±1,0), the phase of the refraction light is:

e

√
ω2

0n2
t

c2 −κ2
i − 4π2

25a2
1

z+ι( 2π
5a1

+κx,i )x+ιyκy
;κ2

x,t +κ2
y,t +κ2

z,t =
ω2

i n2
t

c2 , (E.13)

→κy,i = 0,sinθ =
(
±2π
5a1

+κx,i

)
ωi n+/c

(E.14)

Thus, for x = [0,5a1] we arrive at

sinθt nt − sinθi ni = ±2π

5a1

c

ωi
= ±λ

5a1
, (E.15)

which is same as Eq (5.38) for N = 2.



Appendix F

Derivation of the Fresnel coefficient

from mesoscopic electrodynamical

theory

So far we have investigated the transmission properties of the metasurfaces assuming that the

incident and transmitted light are linearly polarized. We now consider a circularly polarized

(CP) light. We therefore have to transform the solution to the CP basisσ± = (ex cos(θ′)±ιe y )/
p

2,

where θ′ is the refraction angle (see Fig.5.4). For an ordinary operator Â in the linear polariza-

tion basis, we define an operator ˆ̄A in the CP basis Â (x,y)→(σ±) ˆ̄A. For instance, the rotation

operator R̂(φ j ) defined in Eq. (6) can be recast in the circular polarization basis as an operator
ˆ̄R(φ j ) defined as follows

ˆ̄R(φ j ) =


e ιφ j (2−secθ′−cosθ′)+e−ιφ j (2+secθ′+cosθ′)

4
e ιφ j (secθ′−cosθ′)+e−ιφ j (−secθ′+cosθ′)

4

e−ιφ j (secθ′−cosθ′)+e ιφ j (−secθ′+cosθ′)
4

e−ιφ j (2−secθ′−cosθ′)+e ιφ j (2+secθ′+cosθ′)
4

 (F.1)

Similarly the transmission matrix T̂ in Eq. (5) takes the form

ˆ̄T ≡


ty y+txx−ιtx y cosθ′+ιty x secθ′

2
ty y−txx−ιtx y cosθ′−ιty x secθ′

2

ty y−txx+ιtx y cosθ′+ιty x secθ′

2
ty y+txx+ιtx y cosθ′−ιty x secθ′

2

 (F.2)

We then consider the in plane transmission condition tx y = 0, ty x = 0. In the CP basis the

corresponding operator reads

ˆ̄T (φ j ) =


t ′1 j t ′2 j

t ′2 j t ′1 j

 (F.3)
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where

t ′1 j =
4(txx + ty y )+e ι2φ j [(−txx + ty y )secθ′+ (txx − ty y )cosθ′]+e−ι2φ j [(txx − ty y )secθ′+ (−txx + ty y )cosθ′]

8
,

t ′2 j =
e−ι2φ j [2(txx − ty y )− (txx − ty y )secθ′− (txx − ty y )cosθ′]+e ι2φ j [2(txx − ty y )+ (txx − ty y )secθ′+ (txx − ty y )cosθ′]

8
.

The CP light with the incident angle θ can be recast as { 1
2

(±1+ secθ′ cosθ
)

, 1
2

(∓1+ secθ′ cosθ
)

,0}.

The Emn, j component of the refracted light then reads

Emn, j =


E+1 +E+2e−ι2φ j +E+3e ι2φ j

E−1 +E−2e−ι2φ j +E−3e ι2φ j

Fmn, j (z,ρ) (F.4)

where

E+1 =
(txx + ty y )(cosθ secθ′±1)

4
,E+2 =

(txx − ty y )(cosθ±1)(secθ′−1)

8
,

E+3 =
(txx − ty y )(cosθ∓1)(secθ′+1)

8
,

E−1 =
(txx + ty y )(cosθ secθ′∓1)

4
,E−2 =

(txx − ty y )(cosθ±1)(secθ′+1)

8
,

E−3 =
(txx − ty y )(cosθ∓1)(secθ′−1)

8
.

(F.5)

Consider the general refraction law, the transmission angle satisfies sinθ′ = mλ
5a1ni ,t

+ni sinθ
ni ,t

where

m = 0,±1. Using the field amplitudes in the circular polarization basis E±s = (ex cos(θ′) ±
si e y )/

p
2, which yields the general result:

E =∑
j

(E1 +E2e−sι2φ j +E3e sι2φ j )Fmn, j (F.6)

with E1,E2,E3 can be written as Eq. (9) where

t1± = (txx + ty y )(cosθ secθ′±1)

4

t2±± = (txx − ty y )(cosθ±1)(secθ′±1)

8

E±s = (ex cos(θ′)± sιe y )/
p

2. (F.7)

Since ly << λ and lx < λ, then ty y ∝ χy can be neglected. Consider txx = ι fmn, j lzχx (K 2
x−

ω2
i n2

i
c2 )

2

√
ω2

i
n2

i ,t
c2 −K 2

x

=

t ′xx cosθ′ where t ′xx = −ι fmn, j lzχx

2 and the refractive indices of both sides of the metasurface are
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the same ni = nt , then E1,E2,E3 can be written as

E1 = t ′1+E s + t ′1−E−s ,

E2 = t ′2−+E s + t ′2++E−s ,

E3 =−t ′2+−E s − t ′2−−E−s ,

(F.8)

where

t ′1± = 1

4
t ′xx (cosθ±cosθ′)

t ′2±± = 1

8
t ′xx (cosθ±1)(cosθ′±1).

(F.9)

Eq. (9) shows the general evolution of the polarization state of the field undergoing anoma-

lous refraction from the metasurface. For the condition when the incident and refracted angles

are considered small, the terms are approximated as |E s
1| >> |E s

2|, |E s
3| and |E−s

2 | >> |E−s
1 |, |E−s

3 |.
Combining with the constant phase term e−2ιmφ j in Fmn, j (z,ρ), for RCP incident light (s = 1),

only the m = 0,−1 order components can be refracted; for LCP incident light (s =−1), only the

m = 0,1 order components can be transferred due to the averaging out of the phase compo-

nents
∑

j e±ι2φ j '∑
j e±ι4φ j ' 0.

It is worth noting that the metasurface described above is based on the antenna array ro-

tated clockwise as shown in Fig. 5.1.Furthermore, as we demonstrated here, e−σι2φ j term of the

output amplitude contributes to the effect of non-zero anomalous output light, while the eσι2φ j

term vanishes. If the entire metasurface is rotated clockwise by π along z axis which means φ j

in Eq.F.6 ( becomes a negative one, then the corresponding phase gradient changes its sign.

In the table 5.1 we show all the possible combinations. It is clear that the sign of the phase

gradient (m) is determined by the handedness of the incident light and metasurface .
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