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Résumé

La prolifération des technologies sans fil ces deux dernières décennies, telles que le cellulaire,
le Wi-Fi et le Bluetooth, a engendré une utilisation intensive des ondes radiofréquences.
Cela a causé beaucoup d’inquiétudes concernant l’exposition des gens à ces ondes. En 2011,
le Centre International de Recherche sur le Cancer (CIRC), un organisme de l’Organisation
Mondiale de la Santé (OMS), a classé les ondes radiofréquences comme "possiblement"
cancérogènes pour l’homme (Groupe 2B). Cette classification signifie qu’« il existe des
études montrant que ces radiations peuvent provoquer un cancer chez l’homme mais qu’à
l’heure actuelle, c’est loin d’être concluant". Une façon de répondre à cette question est de
mener des études épidémiologiques scientifiquement solides. Cependant, toutes les études
sont confrontées à la difficulté d’évaluer avec précision l’exposition de la population à ces
ondes radiofréquences. L’étude de l’exposition de la population aux ondes radiofréquence
est extrêmement difficile, nécessitant beaucoup de données sur une large population, et
sur une longue période de temps.

Parallèlement aux progrès des technologies sans fil, les smartphones ont évolué pour
devenir des appareils riches en fonctionnalités à des prix très abordables, capables de
mesurer les ondes radiofréquences. Ils embarquent divers capteurs et antennes. Cela les
rend d’une très grande utilité pour les chercheurs et un candidat parfait pour les mesures
crowdsource.

La première contribution de cette thèse est d’évaluer la précision des smartphones pour
effectuer des mesures de puissance des ondes radiofréquences. Nous évaluons d’une
manière approfondie la précision des mesures de puissance du signal (RSSI) faites par
un smartphone. Nous étudions l’impact de l’orientation du smartphone dans l’espace
par rapport à la source sur la puissance reçue dans un réseau LTE. On fait des mesures
à la fois dans un environnement contrôlé (chambre anéchoïque) ainsi qu’à l’extérieur.
Nous montrons que l’orientation peut affecter la précision des mesures du smartphone, et
nous proposons une technique de calibration pour améliorer la précision. Nous montrons
également qu’à l’extérieur, la réflexion des ondes dans l’environnement et l’utilisation de la
diversification de polarisations dans les antennes de transmission peuvent aider à réduire
l’impact de l’orientation. Nous étendons l’étude à la technologie Bluetooth. Nous montrons
que les mesures de puissance RSSI du Bluetooth sont aussi sensibles à l’orientation du
smartphone même dans des environnements réalistes.

Dans la deuxième contribution de cette thèse, nous présentons la plus grande étude
basée sur le crowdsourcing de l’exposition de la population aux ondes radiofréquences
descendantes produites par les antennes cellulaires, les points d’accès Wi-Fi et les appareils
Bluetooth. Notre étude comprend 254410 utilisateurs uniques dans 13 pays, de janvier
2017 jusqu’à décembre 2020. Nous montrons que le niveau d’exposition descendante
totale a doublé au cours de la période des quatre années que nous considérons, le Wi-Fi
étant de loin le plus gros contributeur. Cependant, les niveaux d’exposition descendante



actuels sont largement inférieurs aux limites définies par les autorités de régulation. La
population a tendance à être plus exposée à la maison. Les équipements personnels tels
que les points d’accès Wi-Fi et les appareils Bluetooth contribuent autant à l’exposition
personnelle que toute autre source. Nous rendons publique l’ensemble des données que
nous avons utilisées dans cette étude. Nous prévoyons que nos travaux seront un point de
départ pour des études épidémiologiques solides sur l’impact des radiofréquences sur la
santé. Nous pensons également que notre ensemble de données unique sera inestimable
pour plusieurs autres domaines intéressés par l’usage des technologies de communication
sans fil par la population.

Mots clés: ondes, radiation, exposition, technologies sans-fil, grande-échelle, big data,
crowdsource, smartphone, RSSI, calibration, mesures.



Abstract

The last two decades have witnessed an extensive usage of radiofrequencies due to the
proliferation of wireless technologies, such as cellular, Wi-Fi, and Bluetooth. This caused a
lot of concerns regarding the exposure to these radiations. In 2011, the International Agency
for Research on Cancer (IARC) categorized the radiofrequency radiations as “possibly”
carcinogenic to humans (Group 2B). This classification means that "There is some evidence
that it can cause cancer in humans but at present, it is far from conclusive". One way
to answer this question is by performing scientifically sound epidemiological studies.
However, all studies face the difficulty to accurately assess the population exposure to these
radiations. Studying the population exposure to radiofrequency radiations is extremely
challenging, requiring extensive measurements data from a large population, over a long
period of time.

In tandem with the advancement in wireless technologies, smartphones have evolved to
become feature-rich, affordable devices, capable of measuring radio-frequency radiations.
They embed various sensors and antennas. This makes them very attractive for researchers
and a perfect candidate for crowd-based measurements.

The first contribution of this thesis is to assess the accuracy of smartphones to perform
radio-frequency measurements. We make an extensive evaluation of the accuracy of
smartphone measurements of the wireless signal strength (RSSI). We evaluate the impact
of smartphone orientation in space with respect to the source on the received power in an
LTE network. We perform measurements both in controlled and outdoor environments.
We show that the orientation can affect the accuracy of the smartphone measurements, and
we propose a calibration technique to improve the accuracy. We also show that outdoor,
multi-path and polarization diversity can help reduce the effect of orientation. We extend
the study to Bluetooth technology. We show that Bluetooth RSSI measurements are sensitive
to smartphone orientation even in realistic environments.

In the second contribution of this thesis, we report the largest crowd-based measurement
of the population exposure to downlink radio frequencies produced by cellular antennas,
Wi-Fi access points, and Bluetooth devices for 254,410 unique users in 13 countries from
January 2017 to December 2020. We show that the overall downlink exposure level has
doubled in the four years period we consider, Wi-Fi being by far the largest contributor.
However, the downlink exposure levels are orders of magnitude lower than the regulation
limits. The population tends to be more exposed at home, and their personal Wi-Fi access
point and Bluetooth devices contribute as much to their exposure as any other source. We
publicly open the dataset we used in this study. We anticipate our work to be a starting
point for sound epidemiological studies on the impact of radio frequencies on health. We
also believe that our unique dataset will be invaluable for several other fields interested in
the usage of wireless communication technologies, and how the population is exposed to
either radio frequencies or technologies.



Keywords: radiation, downlink exposure, wireless technologies, large-scale, big data,
crowd-source, smartphone, RSSI, calibration, measurement.
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1.1 Context

We are constantly exposed to different types of electromagnetic
radiations. These radiations can be naturally occurring, such as
the visible light, the heat produced by our bodies, and ultraviolet
radiations from the sun. Others can be human-made radiations
such as the ones used in wireless telecommunication, radio, and
television broadcast.

Figure 1.1: The electromagnetic spectrum. Source: NCI [1]

An electromagnetic radiation is a combination of an electric and mag-
netic fields oscillating through a medium and carrying energy [2].
The number of oscillations per second is called the frequency mea-
sured in hertz(Hz), and the energy it carries is defined in Watt (W) [2,
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3]. Depending on the amount on energy it carries, the electro-
magnetic radiation can be considered as ionizing or non-ionizing
radiations.

An ionizing radiation is an electromagnetic radiation that carries
enough energy to ionize atoms and break chemical bounds. These
radiation are proven to cause serious health hazard to humans as
they can damage the DNA [4] which can result in cancer. Ionizing
radiations can be fatal if a person is exposed to a certain amount.
Typical ionizing radiation include nuclear radiations (alpha and
gamma particles), and X-rays.

As opposed to ionizing radiations, non-ionizing radiations do not
carry enough energy to break chemical bonds [5]. Non-ionizing
radiations include radio-frequencies, microwaves, infrared radiation,
and ultraviolet radiation.

The last two decades have witnessed a huge technological advance-
ment, and a proliferation of various wireless telecommunication
technologies, such as cellular networks, Wi-Fi, and Bluetooth: i) The
number of mobile subscribers has increased exponentially, reaching
an average of 75% of the world population in 2020, and 125% in
developed countries. ii) People have more access to the internet, with
72% households in urban areas have internet, resulting in more than
85% of the population in developed countries use the internet [6]. iii)
Different types of electronic devices started to emerge. Smartphones
and Internet of Things (IoT) are becoming omnipresent. In 2019,
there were more than 5 billion mobile phones worldwide [7]. The
global IoT devices is expected to reach 25 billion by 2025, compared
to 12 billion in 2019 [8]. All these wireless technologies, and wireless
devices use the non-ionizing part of the frequency spectrum.

The amazing proliferation of wireless technologies, the deployment
of newer ones (such as the 5G), and the extensive usage of wireless
devices is raising public and scientific concerns regarding the effect
of the non-ionizing radiations on health. As opposed to the ionizing
radiations, there is no conclusive scientific evidence regarding the
effect of non-ionizing radiations on health. However, in 2011, the
World Health Organization considered these radiations as possibly
carcinogenic to humans, and called for more scientific research in
monitoring the population exposure levels, and assessing the impact
of these radiations on human health at short, medium, and long
terms [9]. The International Commission of Non-Ionizing Radiation
Protection (ICNIRP) set guidelines to limit the population exposure
to radiations in the 100 kHz to 300 GHz frequency range [3].
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Radiofrequency Electromagnetic Fields (RF-EMF) is the part of the
electromagnetic spectrum comprising the frequency range from 100
kHz to 300 GHz [3]. RF-EMF have shown to cause adverse biological
and health effects that we describe in the following. The electric
field of the RF-EMF is the main component that affects the body.
The energy from the electric field can excite the biological molecules
and transforms into kinetic energy, which in-turn results in heating
effect. The current exposure guidelines of the ICNIRP are set with
respect to the threshold that can cause heating effect. This threshold
is then divided by a given factor as a precautionary measure to
ensure "safe" exposure limit [3].

Other than heating effect, there are adverse health effect of the
RF-EMF exposure. Typical health effects investigated in the liter-
ature include: Nerve stimulation, which is described as tingling
feeling [10]. Biological cells permeability can be affected, which in
turn, can cause other cellular changes [10, 11]. Possible impact on the
cognitive performances and central nervous system [12–14], audi-
tory [15] functions, neuroendoctrine system and hormone levels [16–
18], neurodegenerative disease [19–25], cardiovascular system [18,
25–28], fertility [29–33] and childhood development [34–36], and
cancer [37–39]. However, these studies remain inconclusive, and
fail to give substantial scientific evidence [3], Moreover, there is no
evidence that continuous and pulsed RF-EMF can affect human
health differently [40, 41].

1.2 Motivation and goal of the thesis

The current understanding of the impact of RF-EMF radiations on
health is limited. The current regulation guidelines by ICNIRP are
"based on the best science currently available and there may be limitations

to this knowledge that could have implications for the exposure restrictions

[...] Accordingly, the guidelines will be periodically revised and updated as

advances are made in the relevant scientific knowledge." [3].

Because the impact of the RF-EMF radiations on health is not yet
completely understood, continuous monitoring of the population
exposure to the RF-EMF radiations remains important to advance the
scientific knowledge. Especially with the exponential and invasive
usage of wireless devices and telecommunication technologies in
the recent years, in addition to the deployment of newer wireless
technologies such as the 5G [42].
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Epidemiology is a branch of medical sciences that investigates the
root causes of diseases and health issues in the population, where the
whole population is considered the patient, rather than individuals.
It uses data-driven approach to investigate the factors and causes of
health risks in the population [43, 44]. Conducting epidemiological
studies on the population exposure to RF-EMF radiations will help
build better understanding of the health risks of such radiations.
However, these studies require more data with better quality about
population exposure [45]. To provide such data, multiple scientific
projects aimed at evaluating and assessing the population expo-
sure to the RF-EMF radiations, and their impact on health. Major
European projects such as EMF-NET [46], Interphone [47], and
GERoNiMO [48] studied the population exposure to RF-EMF. To
facilitate the exposure assessment, and data collection, the European
project COMOS [49] proposed the usage of a mobile application
called XMobisense [50], rather than relying on self-reported data,
and questionnaires. The usage of such mobile application reduces
the subjective bias of the assessment that can be present in the
self-reported data, and allows collecting epidemiological data faster,
easier, and with better quality.

Studies performed so far to assess the population exposure to RF-
EMF radiations are limited in space, population size, and time
span [51]. The goal of this thesis is to fill this gap by providing
exposure assessment at population scale in 13 countries to RF-EMF
radiations used in wireless telecommunication technologies (Cellu-
lar, Wi-Fi, and Bluetooth), using crowd-sourced data collected from
more than 250000 people for a period of 4 years, from January 2017
to December 2020.

1.3 Outline and Contribution

This manuscript is organized as follows. In Chapter 2 we make an
overview of the literature of the RF-EMF exposure, the methods and
the tools used to evaluate the radiation levels from wireless sources.
In Chapter 3, we present the hardware and software architecture of
modern smartphones. We give a short description of the wireless
technologies, and provide a low-level explanation on how smart-
phones can measure the signal power from the wireless sources. In
Chapter 4, we evaluate the performance of smartphone to measure
wireless signal strength. We make a measurement setup based on
open-source software (OpenAirInterface). We evaluate the accuracy
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of LTE signal strength measurement both in controlled environ-
ment, and outdoor. We show that the smartphone orientation has
an impact on the measurement accuracy, especially in reflectionless
environment with mono-polarized signal. We propose a calibration
technique to compensate for the inaccuracy due to orientation by
making use of the smartphone sensors. We obtained similar results
for Bluetooth, suggesting the replicability of our approach to other
wireless technologies. In Chapter 5, to the best of our knowledge,
we propose the largest study to evaluate the population exposure
to the RF-EMF radiations used in cellular networks, Wi-Fi access
points, and Bluetooth devices. Our study covers 13 countries in the
world, spanning through the last 4 years (January 2017 to December
2020). We rely on crowd-sourced measurements collected using
Electrosmart mobile application [52] collected from 254,410 unique
persons. We show that total exposure has been multiplied by 2.3 in
the four-year period considered, with Wi-Fi as the largest contributor.
The cellular exposure levels are orders of magnitude lower than
the regulation limits and not significantly impacted by national
regulation policies. We show that people are more exposed to Wi-Fi
at home; personal Wi-Fi routers and Bluetooth devices contributed
to more than 50% of their total exposure of the majority of the study
subjects. We make our dataset publicly available to provide a starting
point for sound epidemiological studies on the health impacts of
radio frequencies. We also believe that our unique dataset will be
invaluable for several other fields interested in population expo-
sure to radio frequencies or the usage of wireless communication
technologies. We conclude this thesis in Chapter 6.

In this thesis, we will only consider the downlink exposure, i.e.
radiation power sent towards the smartphone, and not the power
transmitted by the smartphone. This includes Wi-Fi access points
radiations, mobile cellular towers, and any discoverable Bluetooth
device. When presenting our results, we will use the term exposure
as a general term to denote the downlink exposure.
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In this chapter, we present the current state of the art in terms of
assessing the exposure levels and the tools used for measurements,
with a focus on smartphones.

2.1 Population exposure to radio-frequency

electromagnetic radiations

The study of the exposure to the RF-EMF radiations can be split
into two main categories. Near-field exposure and far-field exposure.
Wireless sources that operate very close to the human body, such as
mobile phones, are considered near-field exposure sources. Exposure
to radiations from sources that operate far from the human body
such as Wi-Fi routers and cellular towers is considered far-field
exposure.

The far-field starts at a distance of 2 5 �2/2 from the source, where
D is the largest dimension of the emitting antenna, 2 is the speed
of light, and 5 is the signal frequency. Typical frequencies used by
different wireless technologies are shown in Table 2.1. In contrast
to the far-field exposure, for near-field exposure, the electric and
magnetic fields are not uniform [53]. Hence, measuring the electric
field is not enough to assess the exposure level.

Different metrics for exposure assessments are used for near-field
and far-field exposure. For the near-field exposure, the Specific
Absorption Rate (SAR) is used. SAR represents the rate of the energy
absorbed per unit mass of biological tissue, expressed in W/kg. For
the far-field exposure, the electric field intensity (V/m) is usually
used, in addition to power density expressed in W/m². The power
of the radiation (received power), expressed in dBm or Watt, can also
be used as an exposure metric. SAR and electric field intensity can

Frequency band (MHz)
GSM (2G) 800 / 900 / 1800 / 1900

UMTS (3G) 800 / 900 / 1800 / 1900 / 2100
LTE (4G) 800 / 900 / 1800 / 1900 / 2100 / 2600

Wi-Fi 2400 / 5000
Bluetooth 2400

Table 2.1: Main frequency bands
used by the different wireless
technologies.
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Figure 2.1: RF-EMF exposure assessment. Exposure can be either: 1) near-field exposure which can be assessed
through dosimetry techniques and simulations, or 2) far-field exposure which deals with distant sources far from
the human body. Assessing far-field exposure can be done using different approaches, such as spot measurements,
comparing different microenvironments, personal measurements, or through mathematical models and simulations.

be estimated from the power of the radiations [54, 55]. In Section 5.2,
we will show how to estimate the electric field intensity from the
radiation power.

In this thesis, we only focus on the far-field exposure, which is
usually an involuntary exposure, mostly from sources that are out
of the control of the person, such as cellular antennas. As opposed
to near-field exposure, which is mainly caused by the person’s own
devices such as smartphones and wireless earbuds. We keep the
power of the radiation (received power) as the main metric for the
assessment of exposure levels.

2.1.1 Exposure assessments approaches

To evaluate the exposure levels to the RF-EMF radiations, researchers
can rely on different approaches. Here we discuss the main ones.

◮ Spot measurements: In this type of studies [56–58], a given
spot (that is a specific location) is monitored for a given dura-
tion. It is usually done by placing measurement probes such
as spectrum analyzers and collect measurements about the
surrounding sources of that spot. This type of measurement
is performed usually in specific and sensitive places such as
schools, kindergartens, residential areas, or places where the



2.1 Population exposure to radio-frequency electromagnetic radiations 9

exposure level is suspected to be close to the regulation limits,
typically near cellular base stations. This type of studies is
conducted by a qualified technician. The disadvantage of this
type of measurement is that it is very limited in space, and it
does not offer a good representation of the exposure of indi-
viduals as it fails to capture its spatio-temporal characteristics,
and setting many probes is expensive and hard to maintain.

◮ Microenvironment measurements: In microenvironmental
studies [59–64], researchers compare exposure levels at dif-
ferent types of environments. For instance, compare expo-
sure levels in urban areas compared to rural, offices/homes,
indoor/outdoor. The measurements are carried out by the
researchers using specialized equipment. The measurement
can be taken while standing still, or while walking around
in a given environment. The measurement campaign is usu-
ally short in time and maybe be performed multiple times to
capture more temporal trends (day and night for example).
Again, this measurement approach does not capture the expo-
sure level experienced by individuals, as these measurements
are limited in space and time, and cannot cover all possible
environments of the population.

◮ Personal measurements: This is the approach that gives the
closest representation of the exposure to RF-EMF as experi-
enced by the individuals. It is intended to track and monitor
the exposure of a person for a continuous period of time in
their own environments. In contrast to the two previous ap-
proaches, the personal measurement studies [56, 63, 65–69] are
directly performed by the individuals. Participants in this type
of studies are usually recruited volunteers, and provided with
specialized equipment such as personal exposimeters. Once
recruited, the participants are given instructions on how to
use the equipment along with additional instructions related
to the measurement protocol. The participants need to keep
wearing the exposimeters on their bodies while they perform
their daily tasks. As shown in Table 2.2, the duration of the
measurements is usually very short in time, usually 24 hours
up to a few days. Even though this approach gives a better
representation of the personal exposure, it mostly suffers from
a small population size, high costs to equip many peoples with
exposimeters, and the relatively short period of measurements
makes it hard to assess the effect of exposure on individuals at
the long term.

◮ Modelling and simulations: Another approach to study the
exposure of the population to RF-EMF radiations is through
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Table 2.2: Non-exhaustive comparison of personal measurements studies. Most personal measurement studies are
limited in time, population size, and geographical coverage.

Study Publication year Time Population Place
Zeleke et al. [65] 2018 24 hours 63 Melbourne, Australia

Birks et al. [68] 2018 3 days 529 5 European countries
Gallastegi et al. [56] 2018 3 days 104 Spain

Bhatt et al. [67] 2018 2 months 10 Melbourne, Australia
Ramirez-Vazquez et al. [66] 2019 24 hours 75 Albacete, Spain

Lahham and Ayyad [69] 2019 24 hours 24 West Bank, Palestine
Ramirez-Vazquez et al. [63] 2021 24 hours 63 San Luis Potosi, Mexico

propagation models and simulations [57, 70–72]. This ap-
proach estimates the exposure in a geographical area from the
position of the fixed radiating sources such as cellular base sta-
tions. It uses mathematical models of signal propagation, and
the characteristics of the environments, and builds an exposure
map using ray-tracing techniques. This approach is suitable
for fast estimation of the exposure of large geographical area,
at low cost compared to performing real measurements on
the field. Simulation-based exposure does not account for
the mobile and private sources of exposure such as mobile
Wi-Fi access points, Bluetooth devices, and Smart Watches.
Other surrogate models have been developed to describe the
exposure levels of the population. LEXNET project proposed
an exposure metric called Exposure Index (EI) [71]. This metric
intends to provide a unique, aggregated value that represents
the exposure of a person from both near-field and far-field
sources. It represents the average dose per day a person is
experiencing in a given geographical area, from a given set
of networks, over a period of time. Again, such models are
based on assumptions, and cannot capture the heterogeneity
and variability of the exposure, and the movement of sources
and individuals in space.

Researchers may rely on more than one method, depending on the
study context and goals.

2.1.2 Studies on population exposure to RF-EMF

radiations

Studies on population exposure to the RF-EMF radiations have
covered different aspects. Microenvironment studies showed that
the exposure levels differ across different types of environments [59–
64]. The exposure is higher in urban areas [59, 68], and exposure
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level is directly correlated to population density [60]. Researchers
also found that the exposure tends to be higher in downtown areas
compared to residential areas [61]. The exposure levels outdoor is
mainly caused by cellular radiation from the base stations [59–61, 73].
The exposure to cellular base stations has increased over time [61].

Other studies [60, 61] assessed the effect of legislation on the levels
of exposure. Velghe et al. [60] found that stronger legislation in
Brussels resulted in lower exposure to base stations. Urbinello et al.
[61] studied whether a decrease in the regulation limit could result
in a higher cell density, thus a higher exposure. They found that
lowering the regulatory limits didn’t result in higher exposure levels
from base stations. Hence, no counter-intuitive effect of lowering
the regulatory limit.

Temporal aspects were also studied. A comparison between day and
night [60, 63, 66] or weekdays and weekends [63–65]. The exposure
is higher at night [60] and during weekdays [64]. Other studies
such as [62] followed the temporal trends of exposure. Urbinello
et al. [62] took measurements once each month for one year in 3
European cities. The measurements took place in the daytime during
weekdays. Then, linear regression is used to evaluate the trends.
They showed that the exposure to base stations has increased with
time in the period of 3 years.

Personal exposure studies [56, 63, 65–69] focused on exposure levels
of persons. Zeleke et al. [65] studied the exposure levels of 63
Australian adults during 24 hours without constraining them to
microenvironments. Some of the participants took measurements
during a weekday, others during weekend, but no participant is
tracked for the whole week. They found that downlink and Wi-Fi is
dominant and exposure levels are lower during weekends. Ramirez-
Vazquez et al. [66] studied the exposure levels of 75 volunteers in
Albacete, Spain, for 24 hours for each person. The whole study took
4 years from 2010 to 2014. The authors found that people were more
exposed during weekdays than weekends, and more during the day
than night. However, all participant exposure were below regulatory
limits. In this study, no person is tracked for more than 24 hours,
which is not enough to capture the spatio-temporal characteristics of
the exposure of individuals in the long term. Bhatt et al. [64] studied
the environmental and personal exposure of 10 children to RF-EMF
in 20 kindergartens in Australia. They found that cellular exposure
is dominant and that their personal exposure is lower than the
environmental exposure levels. Birks et al. [68] studied the exposure
levels of 529 children from Denmark, the Netherlands, Slovenia,
Switzerland, and Spain. They found that children are more exposed
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to cellular from the base stations than to Wi-Fi. They found that
urbanity is the most determinant of the exposure. Similar results
were found by Gallastegi et al. [56] when they studied the exposure
to RF-EMF of 104 individuals from Spain, during 3 days. Ramirez-
Vazquez et al. [63] monitored the exposure levels to Wi-Fi for 63
volunteers in Mexico, during 24 hours. The whole study took place
from 2017 to 2018. They showed that people are more exposed to
2GHz Wi-Fi than 5GHz Wi-Fi, and people experience more exposure
in workplaces than at home. In 2019, Lahham and Ayyad [69] studied
the personal exposure of 24 adult students in Palestine, for 24 hours.
They found that the main contributor to the exposure is from the
2GHz Wi-Fi by 45%, and Wi-Fi exposure at home is higher than
exposure levels while traveling or at university.

All of the studies, regardless of their approach in assessing the expo-
sure levels of the population to the RF-EMF radiations, all showed
that the exposure levels are below the recommended regulatory
limits. However, the contribution of the various technologies to
the exposure levels differ across studies. Some studies found that
cellular downlink is the main source of exposure [56, 64–66, 68].
However, other studies considered Wi-Fi as the main contributor [69,
74], and that 2GHz Wi-Fi is more exposing than 5GHz Wi-Fi[63].
Gajšek et al. [75] suggested that indoor RF exposure is increasing
faster than outdoor exposure because of the wide spreading of home
wireless devices and short-range communication systems.

All the studies were limited in terms of population coverage, ranging
from few individuals [63–67, 69] to a few hundred volunteers [56,
68]. But also limited in time which doesn’t allow capturing any
temporal trends [51].

2.1.3 Influence of the human body on measurements

The assessment of the RF-EMF exposure can be affected by different
sources of biases and uncertainties. This can lead to either an
overestimation or an underestimation of the real exposure. This can
be caused by measurement artifacts due to hardware or software
filters on the measurement tool, or the anisotropy nature of its
antennas. In addition to the human body effect [76].

The human body can affect the RF exposure measurement in different
ways. It can cause an underestimation if the the human body is
between the source and the measurement tool (shadowing effect),
or cause an overestimation by reflecting more radiation towards the
measurement tool when the latter is in direct line of sight with the
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source. This effect can vary depending on the frequency and the
polarization of the radiation [76].

Different works have assessed the effect of human body and proposed
correcting factors to account for the shadowing effect. This factor
can range between 1 to 1.6 [77, 78].

In real life scenarios, it is difficult to compensate the effect of the
human body with a single correcting factor as this effect can vary
depending on the relative position of the measurement tool with
respect to the body. The shadowing effect is stronger in outdoor
environment compared to indoor where the measurement tool may
not be worn on the body, in addition to the indoor reflections that
can compensate for the body shielding effect [76, 79].

In this work, we will not consider the human body effect due to
the complexity of accurately compensating for its effect on the
measurements.

2.2 Measurement tools for wireless

radiations

In this section we discuss the different tools used to measure the
signal power (radiation) from wireless sources.

2.2.1 Commodity hardware for wireless power

measurements

Previous works explored the possibility to perform measurements of
the received power with commodity hardware. Tan et al. proposed
Snoopy [80], a spectrum analyzer that uses commodity Wi-Fi cards
with frequency translators in order to sense a wide range of frequen-
cies. The Wi-Fi card normally scans only at 2.4 GHz and 5 GHz.
To extend this range and to scan a wider spectrum, Snoopy uses a
radiofrequency translator that senses and translates the signals to
adapt them to the frequency supported by the Wi-Fi card. Another
work that aimed at using a commodity smartphone as a spectrum
analyzer is presented by Ana et al. [81]. They make use of a portable
Software Defined Radio (RTL-SDR) dongle that senses a continuous
spectrum range from 52 MHz to 2200 MHz, which they connect to a
smartphone through USB. The dongle is the spectrum analyzer. The
smartphone only processes the data from the dongle. In contrast
to the two aforementioned works that rely on external hardware,
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Figure 2.2: The effect of orienta-

tion on the signal strength mea-

surements. Rotating an LG 5X in
a controlled environment yields
different measurements depend-
ing on the angle with respect to
the source and on the polariza-
tion of the signal.

CrowdREM [82] relies only on smartphones for spectrum analysis.
The authors used an open-source mobile phone (OpenMoko [83])
on which they installed a modified Linux system and replaced the
whole baseband system by OsmocomBB [84], an open-source GSM
baseband implementation.

2.2.2 Impact of orientation on RSSI measurement

In CrowdREM [82], the authors showed that smartphone accuracy is
within 3 dBm while the device is still, however it is very sensitive to
the orientation with respect to the source, a difference of up to 10 dB
difference. Li et al. [85] showed that RSSI from COTS RFID tags can
vary by more than 15 dB across different orientations. Pasku et al. [86]
investigated the effect of antenna directivity and receiver orientation
on the RSSI in the 2.4 GHz band for RF ranging applications. They
showed that the RSSI from a mobile system containing 4 ZigBee
nodes has a 5 dB variability at different angles along the azimuth.
They proposed an algorithm to obtain a single calibrated RSSI of the
mobile system by averaging the individual RSSIs from the 4 nodes.
In this way, the authors reduced the RSSI variability to 2 dB.

2.2.3 Mobile application on smartphone

Smartphone-based measurements using a mobile application are
used in many research contexts.

Smartphones have been used for network measurements and anal-
ysis. Vallina-Rodriguez et al. [87] developed a mobile application
run on Android devices to monitor the network performance using
low-level radio information. They used the Radio Interface Layer
(RIL) to access radio message exchange between the Android OS and
the baseband chip. Their solution works only on Android devices
with Intel Infineon XGold chip and requires root-privileges (soft-
ware modification on the Android OS). Another tool for network
measurements and analysis is called MobileInsight [88]. This tool
runs on Commercial Off The Shelf (COTS) smartphones to collect
wireless power measurements and low-level network information.
Companies such as OpenSignal [89] or Tutela [90] use crowd-based
cellular measurements with smartphones to evaluate the coverage
of the cellular network.

Smartphones have also been used as an instrument for assessing
personal exposure to RF-EMF radiations. XMobiSens [50] is an
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Figure 2.3: Electrosmart mobile
application.

Figure 2.4: EME SPY 200 ex-
posimeter.

Android mobile application used to collect statistics on the usage
of mobile phones. It collects information about the phone usage
time, how many phone calls, the amount of data exchanged with
the network, and the side of the head where the phone is put during
calls. These information are then used to investigate the health effects
of exposure to radiation depending on phone usage.

XMobiSensPlus [91] is an updated version of the XMobiSens [50]
application. XMobiSensPlus collects information about the phone
state if there is an ongoing call, Wi-Fi and mobile data status, the
received power levels from the wireless sources, GPS coordinates,
the device orientation in space to determine the position of the
phone with respect to the human body. Electrosmart [52] is another
Android application that aims at measuring the exposure from
wireless telecommunication technologies. It measures the emitted
power from cellular base stations, Wi-Fi routers, and Bluetooth
devices, in addition to the GPS coordinates, device orientation in
space, smartphone model and brand, and optionally, the contact
information of the person and the incentive of using the applica-
tion (curiosity, electrosensitive, fear of RF-EMF). These information
are valuable for epidemiological studies. Electrosmart runs on COTS
Android smartphones. It uses standards Android APIs (no software
modification), and does not require external hardware. This makes
the application easily accessible. The Electrosmart application is
used by hundreds of thousands of users worldwide. We will cover
more in detail the Electrosmart application in Chapter 5

Quanta Monitor [92] and Tawkon [93] are two other Android mobile
applications that estimate the near-field exposure levels (SAR) from
the emitted radiation from the smartphone. These two applications
run only on specific Android devices and require software modifi-
cation (rooted device) in order to read the transmitted power of the
device.

2.2.4 Exposimeters

Exposimeter are specialized mobile, hardware equipments for mea-
suring the RF-EMF radiations. They are designed to facilitate the
study of personal exposure to the RF-EMF. They cover a wide range
of frequencies from the most popular wireless technologies. Ex-
posimeters use tri-axial prob antennas to account for all possible
polarizations of the signal. They may include GPS sensor. Typical
exposimeters found in the literature are the EME Spy [94] and
ExpoM-RF [95].
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Table 2.3: Comparing measurement tools. RF-EMF exposure can be due to downlink (DL) radiations, or uplink
radiation (UL).

Smartphone Rooted smartphone Exposimeter
Population size Large Limited Limited

Frequency coverage Limited (DL-only) Limited UL/DL Good UL/DL
Accuracy Acceptable Acceptable Good

Price Cheap Cheap Expensive

2.3 Smartphone vs Exposimeters as

measurement tools for RF-EMF exposure

studies

Smartphones and exposimeters are two different tools to assess
the exposure levels to RF-EMF radiations. Both have advantages
and limitations. Exposimeters are expensive devices, which make
them only suitable for small, limited population studies. However,
they provide decent accuracy levels on multiple frequency bands.
They cover both the uplink (UL) and downlink (DL) frequencies.
Exposimeters suffer from non-detect (values under the lowest de-
tection limit, usually under 0.005V/m) and underestimating the
exposure levels from pulsed signals such as Wi-Fi [96] and can give
unreliable results [66].

Smartphone as a measurement tool allows covering very large pop-
ulation. It allows reusing the same mobile application on already
existing devices owned by people to study their exposure levels.
It does not interfere with the daily life of the persons during the
measurements, this allows people to keep their usual habits without
worrying about carrying another device. The smartphone measure-
ments can be biased by different factors such as body shielding while
using the smartphone. These sorts of biases require large popula-
tions to provide robust assessments [97]. Smartphones only cover
the downlink frequencies. Software-modified smartphones allow
measuring the uplink frequencies from the smartphone (Transmitted
power) but come to the cost of limiting the potential population
size.
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Figure 2.5: Fixed measurements
probes in Paris. 10 fixed mea-
surements probes are installed
in Paris to monitor the exposure
levels in certain areas. When we
click on a probe, we can visu-
alize the most recent exposure
level measured by that probe (ex-
pressed in V/m) [98]

2.4 Regulatory authorities and exposure

assessment protocols

In order to make sure the population is not overexposed to the
radiofrequencies, regulation authority (agency) within each country
continuously monitors the exposure levels. This is mainly done using
fixed probes distributed geographically in the country. Figure 2.5
shows a map of the measurement probes installed in Paris city,
obtained from the Observatory of Radiations of the French National
Frequency Agency (ANFR) [98]. It shows 10 probes that regularly
measures and monitors the exposure levels.

In addition to the monitoring provided by the fixed probes, the
regulatory agency defines a measurement protocol to make mea-
surements on the field (in-situ), and to be carried out by a qualified
engineer. Here we discuss the measurement protocol defined by the
French agency ANFR.

2.4.1 The ANFR measurement protocol

The French regulatory agency (ANFR) defines a measurement pro-
tocol to evaluate the exposure level of the general public to ra-
diofrequencies. It aims at assessing the exposure levels of radiations
between 100 kHz – 300 GHz, and/or the frequency band 9 kHz –
100 kHz [99]. Individuals can make an explicit request to the agency
to perform the measurement. It is recommended to switch off any
device we can control and which doesn’t transmit continuously. For
example, WiFi routers and mobile phones should be switched off
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during the measurement and only focus on the fixed sources that
transmit continuously such as cellular base stations.

The protocol is performed in two main steps.

◮ Site inspection: In this phase, the engineer performing the
protocol should detect the location of the emitting sources,
and the direction of their radiation. This can be done visually
by checking the Cartoradio database [100], or directly by
performing measurements with a spectrum analyzer. The
measurement points can then be determined either by the
explicit request or according to the location of the emitting
sources and their radiation patterns.

◮ Measurement process: There are 2 measurement cases: i)
Large-band measurement where the radiation levels from all
the sources is evaluated. If the resulting exposure level is
less than 6V/m, then measurement process ends, and con-
cludes that the exposure levels are under the regulation limit.
Otherwise, or if there is an explicit request to evaluate the
contribution of individual sources, the process can continue
to case 2. ii) Narrow-band measurement. In this case, the
exposure from each frequency band is evaluated separately.
Either case, the measurements are averaged in time and space.
In time: 6 minutes average for frequencies between 100 KHz
and 10 GHz; 68/ 5 1.05 where 5 is the frequency of the signal
in GHz. In space: average of 3 measurements at 3 different
heights, at 1.1m, 1.5m, and 1.7m.

This measurement protocol is best used to have a precise assessement
of exposure level at a given location. However, it has limitations
as it’s limited in time and space, and mainly focuses on the fixed
radiating sources.It is useful to make sure the exposure does not
exceed the regulatory limits, but does not capture the variability of
exposure levels experienced by individuals on a daily basis.

2.5 What does this thesis bring?

In this thesis, we present how we can use commodity hardware (smart-
phones) for wireless power measurements, and conduct large-scale
RF-EMF exposure assessment based on crowdsource personal mea-
surements collected with smartphones.

To the best of our knowledge, we are the first study that evaluates
smartphone accuracy for measuring wireless signal power. We show
how a COTS smartphone without any external hardware or software



2.5 What does this thesis bring? 19

modification can give accurate signal strength measurement. We
overcome the impact of the orientation on the accuracy of the mea-
surements by exploiting the embedded sensors on the smartphone
to calibrate the measurements.

Moreover, in this thesis, we use commodity smartphones in the
context of RF-EMF exposure assessment. Previous works relied
on specialized exposimeters to perform personal measurements.
Here, we show how smartphones can replace exposimeters to allow
larger studies on RF-EMF exposure. As opposed to previous works,
which used metrics such as electric field strength (V/m) or power
density (W/m²) to express the exposure levels, we use the signal
power (dBm or Watt). This is because we are rather interested in
assessing the trend in population exposure, and not in exact field
strength. However, we show that in an outdoor environment, the
impact of orientation on measurement variability is minimized
thanks to multipath and polarization diversity used in cellular base
stations. This means that smartphone antenna can be considered an
isotropic antenna, and electric field intensity (in V/m) can then be
estimated from the signal power (in dBm). We will present later in
this thesis how to perform such conversion.

By replacing exposimeters with commodity smartphones, we were
able to conduct the largest study (to the best of our knowledge) on as-
sessing the world’s population to RF-EMF radiations used in cellular,
Wi-Fi, and Bluetooth. We analyze the trend of exposure evolution
during 4 years, from January 2017 to December 2020. Our study in-
cludes more than 250 thousand participants from 13 countries. Each
individual has been tracked for 53 days on average, and more than
62 thousand participants (25%) have exposure measurements for
more than 45 days. This makes our study the largest in terms of time,
population size, and geographical coverage compared to previous
works on personal measurement studies, shown in Table 2.2
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Modern cell phones, commonly known as smartphones, are ar-
guably the most common mean of wireless telecommunication.
Smartphones are feature-rich, multi-purpose devices capable of
making phone calls, connecting to the internet, exchanging emails,
and more.

In this work, we will only focus on Android smartphones, which
represent around 73% of the market share in 2021, compared to only
26% for Apple iOS [101, 102]. Moreover, iOS APIs are very limited
compared to Android in terms of accessing network information.

In this chapter, we will present some important concepts about
smartphone architecture in terms of hardware and software compo-
nents. We will mainly focus on the components that get involved
in the measurement of wireless radiations. This is important to
help us understand the hardware and software capabilities and
limitations of smartphones for this type of measurement. Afterward,
we will give a brief description of the different wireless technologies
(cellular, Wi-Fi, and Bluetooth), their evolution, and the frequencies
they use. We will see later in this study how the differences between
those technologies can lead to different exposure trends. Finally, we
will introduce important mechanisms involved when smartphone
performs scanning and measurement of the surrounding RF-EMF
sources. We will give low-level details on how scanning works for the
different technologies. The knowledge we present is crucial in order
to understand the scanning limitations of smartphones (which some
of them are dictated by the protocol) and help us better interpret
the scan results.

3.1 The building blocs of a smartphone

Early 1990s, cell phones were only capable of making voice calls and
exchanging SMS. People used other devices called Personal Digital
Assistant (PDA) to exchange emails, make todo-list or calendar
management. Modern-day smartphones are feature-rich and have
the capabilities of both a cell phone and a PDA. They have high
computing power, and lots of sensors embedded in them, all in
a small-sized device. This is made possible thanks to a hardware
design called System-on-Chip (SoC).
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Figure 3.1: Smartphone components. Smartphones use two distinct processors: one for user applications called
Application processor, and the other is for the RF connectivity called Baseband processor. Source [103]

Figure 3.2: SoC is a small inte-
grated circuit that contains all
central components of the smart-
phone. The picture shows typi-
cal components inside the SoC.
Source: Qualcomm [104]

In this section, we present the main component of a smartphone
and how they coordinate and communicate. We will mainly focus
on the hardware and software components that are involved in the
wireless telecommunication process.

3.1.1 SoC: System-on-a-Chip

SoC, as its name suggests, it is a complete system built on a single
electronic chip. A mobile SoC is a small integrated circuit that
integrates the core hardware components of the smartphone. It is
considered the brain of the smartphone. It is high performing and
power-efficient and very small in size, which makes it perfectly
suitable for battery-powered devices such as mobile smartphones.

A typical SoC contains a central processing unit (CPU), a graphics
processing unit (GPU), memory, a cellular modem (Baseband), image
and signal processing unit, in addition to Near Field Communica-
tion (NFC), Global Positioning System (GPS), Wi-Fi, and Bluetooth
transceivers. Figure 3.1 shows the interconnections between the SoC
and other internal components of a smartphone.

There are different mobile SoC manufacturers such as Qualcomm,
Mediatek, HiSilicon, Samsung, and Apple[105]. Qualcomm is the
largest provider with 29% of the market share in the second quarter
of 2020.

Inside a smartphone SoC, there are two types of operating systems,
each running on a separate CPU. The first one is the one we all know
and with which we interact directly while using the smartphone.
It is called Application OS and is responsible for running user
applications. It uses its own CPU called the Application processor.
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Figure 3.3: Market share of
mobile SoC. Qualcomm is the
largest provider with its Snap-
dragon series, followed by Medi-
aTek, Huawei’s HiSilicon. Apple
and Samsung both have 13% of
the market share. Source [106]

Modern smartphones run 2
distinct operating systems at
the same time. One for user
applications called Applica-
tion OS. The second is for the
RF modem called Baseband
OS.

Android and Apple iOS are both considered Application OSes.
Another type of operating system that runs on the smartphone
SoC is called Baseband OS. It runs on the Baseband Processor (BP),
independently from the Application Processor (AP)[107].

In the next sections, we present the RF modem and its own operating
system. Then, we present the Android application OS, and we
describe how these two distinct OSs communicate and exchange
information to ensure the functionalities of the smartphone.

3.1.2 The Baseband

The baseband, or the RF modem is part of the SoC that is responsible
for the RF functions such as signal generation, modulation/demodu-
lation, encoding/decoding, frequency shifting. It is the smartphone
component that exchanges data with the RF networks such as cel-
lular networks, Wi-Fi, and Bluetooth devices. The modulator unit
takes an input baseband signal (hence, the whole RF modem is
called a baseband) with low-rate or frequency and modulates it to
a high-rate/frequency signal. Analog and digital modulation are
used depending on the nature of the baseband signal[103].

The baseband runs its own operating system called baseband OS.
It is a proprietary, closed-source, and real-time OS that runs the
RF functions of the modem. The benefits of having a separate
OS for the baseband with those characteristics are i) performance:
since cellular protocols have strict and well-defined time constraints.
Hence, having a dedicated CPU for cellular operation will ensure
full performance, and avoid load created by user application. ii)
Reliability: a separate OS is an isolation from any sort of attacks or
instability in the application OS that can be caused by third-party
software. iii) Legal: The cellular stack on every smartphone must be
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Figure 3.4: Android OS is an
open-source application OS for
mobile devices.

RIL

Figure 3.5: The Android soft-
ware stack.

certified by some legal authorities, such as the FCC. This separation
of the baseband from the application OS, allows reusing the certified
baseband without having to certify the whole equipment.

3.1.3 Android OS

Android is a Linux-based, open-source operating system for mobile
devices such as smartphones and tablets, developed by the Open
Headset Alliance led by Google [108]. Android was initially co-
founded by Andy Rubin in 2003. Andy was nicknamed ’Android’
by his co-workers at Apple because of his love for robots [109].
Hence, the name Android for the OS. In 2005, Google acquired
Android [110]. By 2021, Android is considered the most popular
mobile operating system with more than 70% market share [111].

Android is an application OS that runs on smartphones. It is built
on top of the Linux kernel. The architecture of the Android frame-
work [112] is presented in Figure 3.5.

◮ Applications: is a set of core user applications such as email
client, contact, calendar, web browser. Third-party applications
can be installed from Google Play Store [113]. The Android
applications are usually written in the Java programming
language. Kotlin is an alternative programming language that
is getting popular for Android development. Developers can
use the Android SDK to build their own applications and
deploy them on any device running Android.

◮ Applications Framework: is the core, modular system compo-
nents and services of Android that are accessible for developers
through API calls. They are the building blocks of any Android
application.

◮ Libraries: are a set of native libraries written in C or C++.
Many Android system components and services require these
native libraries to interact with the other, lower layers in the
software stack.

◮ Android runtime: is the managed runtime used by Android
applications and services. It is the successor of the Dalvik
runtime. Android runtime (ART) allows applications to run
their own processes in a virtual machine. ART is optimized for
minimal memory footprint, which allows running multiple
virtual machines at the same time on memory-limited devices.

◮ Hardware Abstraction Layer (HAL): as its name suggests,
HAL is a layer that abstracts the hardware functionalities for
upper layers in the stack. It provides an interface that exposes
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[Android recv] :+CRING:

VOICE

[Android send] :AT+CLCC

[Android recv] :+CLIP:"

+1416839XXXX"

[Android send] :AT+CMUT

=0

[Android recv] :0

[Android send] :ATA

[Android recv] :0

[Android send] :ATH

[Android recv] :0

Listing 3.1: Intercepting the ex-
change of messages between the
BP and AP on Android smart-
phone.

the hardware capabilities and loads the corresponding library
module for each API call to specific hardware, such as the
camera. We will discuss this component later in section 3.1.4,
and show the role it plays between the Android OS and the
Baseband OS.

◮ Linux kernel: Android is based on Linux and uses its exist-
ing functionalities for threads and memory management, in
addition to the security layer it offers.

3.1.4 Modems only need ATtention

So far, we have seen that the core components of a smartphone are
built on a single SoC. The SoC runs two distinct operating systems
on two separate processors, the Application Processor, and the
Baseband Processor. We have seen that the Baseband is the one in
charge of the RF functionalities, while the Application Processor
runs the application OS and the user applications. The two worlds
need to communicate between them to provide seamless operations
to the users.

AT commands, Attention commands, or Hayes commands are a set of
commands for controlling a modem. They were initially developed
by Dennis Hayes in 1981 [114–116]. AT commands are short text
strings that define specific actions on the modem, such as dialing a
number, sending SMS, and accepting or hanging up a phone call.
Currently, a set of AT commands has been standardized [116–118].
Some commands are mandatory, and manufacturers can extend
AT commands to implement vendor-specific commands in order to
control their modem [116, 118].

The Baseband Processor (BP) and the Application Processor (AP)
are connected through a serial Universal Asynchronous Receiver-
Transmitter (UART) line. This line carries signaling messages (com-
mands) and packets data. The voice data is passed through other
interfaces [119]. The communication between the BP and the AP can
be intercepted. Fabien Sanglard [120, 121] performed a Man-In-the-
Middle technique on the serial line of iOS and Android phones, in
order to read the full exchange of messages. He was able to read the
AT commands while the smartphone was performing various tasks,
such as receiving a phone call or receiving a text message.

Listing 3.1 shows the exchange of messages between the BP and
the AP when receiving a phone call [121]. First, the BP tells the AP
that there is an incoming call (+CRING). Then, the AP requests
the phone number of the caller (AT+CLCC). The BP answers back
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Low-level cellular informa-
tion are processed and stored
at the baseband. Only basic
information are shared with
the Application OS.

with +CLIP command followed by the caller number, which is then
displayed on the dialer application. After accepting the call on
the AP side, a command to unmute the microphone is sent to the
BP (AT+CMUT=0). The call can be picked up, then hung up with
ATA, and ATH commands, respectively.

The AT commands are powerful and can be used beyond just
performing cellular operations.Tian et al. [115] extracted over 3500
AT commands from over 2000 Android smartphones. Each AT
command is tested against 8 different smartphones. They managed
to perform various actions such as screen unlock, perform touch
events, bypass Android security barriers, and even rewriting the
whole device firmware.

Radio Interface Layer (RIL) is the bridge that connects the Android
phone framework and the hardware (modem) [122]. It is part of An-
droid HAL, as shown in Figure 3.5. It is responsible for parsing and
translating the Android API calls and payloads into AT commands
and sends them to the baseband, and vice-versa. The RIL handles
many aspects of cellular communication such as voice calls, SMS, and
network registration. RIL has three main components [122–125].

◮ RIL Deamon: is a simple system daemon that initializes the
Vendor RIL at the device startup. It processes all communica-
tion from Android telephony services, and dispatches calls to
the Vendor RIL as solicited commands.

◮ Vendor RIL: is the core library in the RIL. It is the piece of
software that handles the actual communication with the
baseband. Vendor RIL is a closed-source, baseband and manu-
facturer-specific library provided by the manufacturers as a
binary file. Manufacturers are often legally bound by non-
disclosure agreements to not provide the source code of this
library [122].

◮ Android RIL (RILJ): is a Java module that exposes RIL inter-
face to the Android framework.

The RIL commands can be solicited or unsolicited. i) Solicited
commands such as DIAL and HUNGUP for dialing and canceling a
call, originating from the upper layers of the Android framework. ii)
Unsolicited commands are originating from the baseband, such as
NEW_SMS [124][126].

The BP does not share all information with the AP. Low-level infor-
mation about the network are only available and processed at the BP
level. The BP shares only some basic information needed by the AP,
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An antenna is a transducer
that converts an electromag-
netic wave into an electric sig-
nal in the reception and con-
verts the electric signal into
an electromagnetic wave at
the transmission.

the signal strength for example. Other information such as smart-
phone transmission power is only required at the BP level in order to
communicate with the network and is not shared with the AP. These
types of information are valuable for RF-EMF exposure assessment.
However, they are not easily accessible on smartphones. Proprietary
debugging software such as Qualcomm XDM (QXDM) [127] for
smartphones with Qualcomm SoC can be used to read the Base-
band data. There have been works on accessing and extracting this
low-level information directly on the smartphone without the need
for debugging software. Vallina-Rodriguez et al. [87] developed
RILanalyzer. A tool that aims at extracting low-level cellular infor-
mation from the baseband. They implemented hooks on the RILJ
component of Android to interact with the BP and trigger requests
to read cellular information such as control-plane messages. Li et
al.[88] developed another tool called MobileInsight that collects and
analyzes cellular information from the BP and makes them available
at the AP level through an Android mobile application. It provides
access to fine-grained cellular information on 3G and 4G protocols.
Instead of using the RIL component to access the BP information,
the authors of MobileInsight mimic the behavior of the debugging
tool (QXDM). They managed to capture the commands sent by
QXDM and use these commands afterward on the smartphone-level
using the MobileInsight mobile application. The commands are sent
through the serial port between the AP and BP. The BP then responds
with hex data containing the raw cellular information. The logs are
then parsed and presented at the AP level. Unfortunately, these
works require the smartphone to be rooted and work only on some
particular smartphones equipped with specific SoC, which makes
them not suitable for large-scale, crowdsource measurement.

3.1.5 Smartphone antennas

Wireless communication consists of sending and receiving infor-
mation over the air as an electromagnetic wave. This requires the
use of antennas. An antenna is a transducer that can convert an
electromagnetic wave into an electric signal during the reception,
and convert an electric signal to an electromagnetic wave during
transmission. The electric field of the electromagnetic wave is a
result of voltage changes at the antenna ports, whereas the magnetic
field is a result of current change. The opposite process happens at
the reception where the electric field causes a change in voltage of
the antenna, and the magnetic field causes a change in the electric
current [103]. This means that the electric field intensity of the signal
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Figure 3.6: Antenna working

principle. The electric field of
the signal induces an alternating
current at the ends of the an-
tenna by pushing electrons from
one end to the other, this also in-
duces a potential difference (volt-
age). That way, the electromag-
netic wave is translated into an
electric signal. The opposite be-
havior happens during transmis-
sion. Image Source [128]

can be obtained from the voltage change at the antenna. We will
use this property later on in this thesis in the study of exposure to
wireless radiations.

Physically, an antenna is a metallic conductor, that can be of different
shapes and sizes depending on the usage, from dipole antennas,
helical, whip, slot, and microstrip patch, each type of antenna
has its own characteristics. There are different parameters that
determine the performance of the antenna. The main parameters
are as follows [103][129][130].

◮ Resonant frequency: is the frequency in which the antenna is
the most efficient. It mainly depends on the size and shape
of the antenna. The resonant frequency of the antenna is
inversely proportional to the size of the antenna. The higher
the frequency the smaller the antenna. The size of the antenna
is usually expressed in terms of wavelength � = 2/ 5 , where 2
and 5 are the speed of light and the resonant frequency of the
antenna, respectively. Most antenna have �/2 or �/4 in size.

◮ Polarization: The polarization of the antenna is the orientation
of the electric field of the electromagnetic wave with respect
to the Earth’s surface. The polarization is determined by the
shape and the orientation of the antenna in space. We can
distinguish 4 types of polarization: horizontal, vertical, circular,
and elliptical. The wireless communication is optimal when the
polarization of the receiving antenna matches the polarization
of the transmitting antenna.

◮ Radiation pattern: is a representation of the power or the elec-
tric field intensity radiated by the antenna at different angles
in space. The radiation pattern can be isotropic, directional, or
planar. Isotropic radiates the same power level in all directions,
whereas directional directs the power in a given direction.

◮ Gain: The antenna gain represents how much power is radiated
in a given direction compared to an isotropic antenna. The
gain can be positive (more power), or negative (less power)
than an isotropic antenna. The gain is usually expressed in dB.

Modern smartphones support various wireless technologies. Each
technology can use a different frequency band. To support all these
technologies altogether, multiple antennas are needed. Moreover,
to deliver high performance, high data-rate transmission, Multiple-
Input, Multiple-output (MIMO) systems are also used, such as the
ones used for LTE and Wi-Fi [131]. A standard smartphone includes a
primary cellular antenna (Tx/Rx), Additional receive-only antennas
called diversity antenna (Rx only), a GPS antenna (Rx only), Wi-Fi
antenna (Tx/Rx), and Near Field Communication (NFC).
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Figure 3.7: Typical antennas
placement on modern smart-
phones. The figure shows differ-
ent antennas placed on the edges
of the smartphone casing. Main
cellular antennas are placed at
the bottom of the smartphone to
reduce radiation on the head dur-
ing phone calls. Mobile Receive
Diversity (MRD) antennas are
placed on the top since they are
receive-only antennas. Source:
FCC [132]

Putting multiple antennas in small-sized devices such as smart-
phones is very challenging, and some design practices and con-
straints should be respected.

◮ Small in size: Due to space constraints on the smartphone,
antennas should not take a lot of space.

◮ Multi-band: Wireless technologies such as cellular, work on
multiple frequency bands. Supporting multiple bands allows
using the same physical antenna for multiple technologies on
different frequency bands.

◮ Minimize interference with other components: It is impor-
tant to minimize all sorts of interference from surrounding
electronic components such as the loudspeaker, the battery,
and the display. These components can have an impact on the
antenna’s performance [131].

◮ Minimize the exposure: Smartphone manufacturer should
limit the exposure and the energy absorbed by the human
body and head (SAR) while the smartphone is transmitting.
Each smartphone undergoes a validation test performed by
regulation authorities, such as the FCC to make sure the
exposure limits are respected.

Typical placement of the different antennas on the smartphone is
shown in Figure 3.7

Planar Inverted-F antenna (PIFA) is the most common antenna type
in modern smartphones [131]. They are small in size, can support
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multiple bands, and are easy to manufacture at a low cost. Microstrip
patch antennas are also being used in mobile smartphones [103].

The radiation pattern of the smartphone antennas can be directive,
especially at higher frequencies [131]. This makes the antenna per-
formance sensitive to the orientation with respect to the source. This
suggests that smartphone measurement accuracy can be affected
by the orientation with respect to the source. In Chapter 4, we will
cover more in-depth the impact of orientation on smartphone mea-
surements for wireless signal strength, and propose a calibration
technique to compensate for such impact.

3.2 Wireless technologies

The goal of this section is to introduce the various wireless tech-
nologies that are omnipresent RF-EMF radiating sources. So, it’s
important to understand their evolution, deployment, and on which
frequency bands they operate.

Since the early 1990s, the wireless telecommunication industry
witnessed an impressive revolution. Things we take for granted
such as watching movies in high quality, live streams, and video
calls, all from a smartphone, is only made possible thanks to the
advancement in wireless technologies.

3.2.1 The 2nd generation of cellular: 2G

Introduced in the early 1990s, the second generation of wireless
cellular technology. The Global System for Mobile Communications
(GSM) was the first version of this technology. GSM was designed
to be a circuit-switched system. It allowed for the first time voice
and data together, with around 14Kbps datarate. The second im-
provement in this generation is called GPRS (General Packet Radio
Service). It improved the data rate up to 170Kbps. The next improve-
ment is called EDGE (Enhanced Data rate for GSM Evolution), which
allowed higher speed at 270 Kbsp [133].

The second generation of cellular uses mainly the 800, 900, 1800, and
1900 MHz frequencies.
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3.2.2 The 3rd generation of cellular: 3G

Launched in the early 2000s, the third generation revolutionized
cellular networks usage, from only phone calls and short messages
to supporting a wider range of applications such as internet connec-
tivity, video calls, and file transfer. It is based on GSM technology
and aimed at supporting higher data rates up to 14Mbps. It is known
as UMTS (Universal Mobile Telecommunications System) in Europe
and CDMA2000 in North America. UMTS uses mainly the Wide-
band Code Division Multiple Access (WCDMA) standard. More
enhancements were used, such as HSPA (High-Speed Packet Access)
and HSPA+.

In addition to the frequencies used in GSM, higher frequencies were
allocated to the 3G to include the 2100 MHz band [133].

3.2.3 The 4th generation of cellular: LTE

The evolution and enhancements of the UMTS reached some limita-
tions. The Third Generation Partnership Project (3GPP) proposed
a complete redesign of the network. The project is entitled LTE for
Long Term Evolution. The 4th introduced the usage of the Multiple
Input Multiple Output (MIMO) transmissions, which allow the
transmission of several data streams over the same carrier simulta-
neously. This results in a huge increase in the data rates compared
to a single-stream transmission. LTE is also the first generation to
use an all-internet Protocol (IP) to send all types of data over the
internet, except the SMS which is still transmitted over signaling
messages.

LTE can be deployed in multiple frequency bands [73][133], depend-
ing on the region. Typical LTE bands are Band 1 (2100 MHz), Band
3 (1800 MHz), Band 7 (2600 MHz), Band 8 (900 MHz).

3.2.4 Wi-Fi

The first IEEE 802.11 Wi-Fi standard [134], introduced in 1997, pro-
vides 2 Mbps throughput. Since then, the standard has evolved
to reach 10 Gbps throughput in its latest generation, the 802.11ax
(Wi-Fi 6) [135]. We show in Table 3.1 the evolution of the 802.11 Wi-Fi
standard [134–141].

The standard in use is the 802.11ac. According to Cisco, this standard
is present in 70% of end devices in 2018 [142]. It is the first standard
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Table 3.1: The 802.11 Wi-Fi stan-
dards evolution.

Standard Year Frequency (GHz) Throughput
802.11 1997 2.4 2 Mbps
802.11b 1999 2.4 11 Mbps
802.11a 1999 5 54 Mbps
802.11g 2003 2.4 54 Mbps
802.11n 2009 2.4/5 600 Mbps
802.11ac 2013 5 6.8 Gbps
802.11ax 2019 2.4/5 10 Gbps

The natural attenuation of
the signal with distance in
free space. The higher the fre-
quency, the stronger the at-
tenuation.
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to break the Gbps barrier, providing a remarkable throughput
increase compared to its predecessor. It operates on the 5 GHz
band. Wi-Fi routers supporting this standard often offers backward
compatibility with clients with older standard support, such as
802.11n and 802.11g.

3.2.4.1 Wi-Fi attenuation by frequency

Table 3.2: Attenuation val-
ues (dB) for different materials
of the 2.4 GHz and 5 GHz.

Material 2.4 GHz 5 GHz
Wood door 3-4 6-7
Brick/Concrete wall 6-18 10-30
Glass/Window 2-3 6-8
Steel/Fire exit door 13-19 25-32

The 802.11ac standard uses only the 5 GHz band to benefit from
more channels with significantly wider bandwidth, which allows
higher speed. Also, the 5 GHz band is less crowded and has less
interference compared to the 2.4 GHz band, which suffers from
interference from neighboring Wi-Fi access points, and other various
types of sources such as Bluetooth and Microwave ovens which
operate on the same 2.4 GHz band [143]. However, the 5 GHz band
suffers from a shorter range and stronger attenuation compared
to the 2.4 GHz band. The free space path loss (FSPL) formula we
show in Equation 3.1, that can be derived from the Friis transmission
formula [144], represents the natural attenuation of the signal with
distance. It states that the attenuation of signals in free space is
directly proportional to the square of the frequency: the higher
the frequency, the higher the attenuation. Moreover, the 5 GHz
band has a higher attenuation than the 2.4 GHz band through solid
objects. A comparison of the attenuation values between the 5 GHz
and 2.4 GHz frequencies for different materials [145] is shown in
Table 3.2. The 5 GHz frequencies are attenuated twice as much by
a wood door or the glass of a window, compared to the 2.4 GHz.
This attenuation is even larger through concrete walls, where we
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can have up to 30 dB attenuation for the 5 GHz (12 dB more than for
the 2.4 GHz).

3.2.4.2 Wi-Fi beamforming:

An important feature of the 802.11ac standard is beamforming. Beam-
forming means directing the transmission power to the direction of
the receiver. So instead of having the antennas of the Wi-Fi router to
radiate the power in all directions, it transmits the signal towards
the position of the client, aiming to increase the signal-to-noise ratio,
which will enhance the speed of transmission. This can be achieved
using traditional, omnidirectional antenna arrays to dynamically
form a desired transmission pattern. The beamforming results in a 2
to 5 dB power gain at the reception [143] compared to the traditional,
omnidirectional transmission on the same band.

3.2.5 Bluetooth

Bluetooth is short-range wireless communication technology. It is
widely used for the Internet of Things (IoT) and battery-powered
devices such as smartphones, smartwatches, in-car systems, and
audio headsets. Bluetooth Low Energy has been introduced to reduce
even more the energy consumption in applications that only require
intermittent transmission of data, instead of streams of data.

There are 3 different classes of Bluetooth devices according to
their transmission power. Class 2 is the most commonly used one,
with 4 dBm maximum transmission power, and about 10 meters
range [146].

Bluetooth shares the 2.4GHz band with other wireless technologies
such as Wi-Fi and uses Frequency-Hopping Spread Spectrum (FHSS)
in order to reduce interferences with other sources [133].

3.3 Scans in wireless networks

In this section, we discuss the mechanisms and the process at the
protocol level that allows the smartphone to search and detect the
available wireless sources. This section describes what happens
behind the scenes when a mobile application triggers a scan to
measure the RF-EMF radiations. Understanding these mechanisms
will help us understand the scanning limitations of smartphones as
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imposed by the protocols, the scanning duration, and help us better
interpret the scan results.

3.3.1 Wi-Fi scans

In Wi-Fi, there are 2 modes of scanning: active and passive scans [133,
147, 148].

◮ Active scan: the client sends a probe request (“is there someone
on the channel?”) and listens for a probe response from the
access point.

◮ Passive scan: The client listens to each channel for beacons
sent periodically by the access point.

Smartphones are able to perform both types of scans in all channels
allowed in the country of operation. The passive scan takes a longer
time because the client has to wait at each channel to receive the
beacon. The access point sends beacons every 100 ms periodically,
the client may miss the beacon if it didn’t wait enough time on the
channel. After sending a probe request, the device starts a timer
MinChannelTimer which defines the time to remain in the same
channel waiting for Probe Responses. If no response is received
when the MinChannelTimer has expired, the device considers the
channel empty. However, if a probe response is received during
MinChannelTimer, the device sets another timer MinChannelTimer
to wait for any further probe responses from other APs. The IEEE
802.11 does not specify values for these timers. The values can vary
depending on the implementation, but it ranges from a few ms up to
40ms [149][150]. So for example to scan all 13 channels in the 2.4GHz
band, it can take from 520ms to 1.04s, and from 960ms to 1.92s to
scan all 24 channels in the 5GHz band, depending on the value of
MinChannelTimer. The number of channels to scan is dependent
on the channels allowed at a country level. The active scan starts
when the client switches to a new channel, sends a probe request
and starts a Probe timer. It remains on the channel listening for
probe responses until the timer expires, upon which it switches to
the next channel [151]. Probe Timer value is usually a lot shorter
than a beacon interval. Ten milliseconds is a common value [152].
The probe request can be targeted towards an AP by specifying
SSID field (Directed probe vs. Broadcast probe in which SSID is
null) [148].

The Wi-Fi RSSI is obtained by measuring the signal strength of
packets sent by AP in response to probe requests in the case of
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Figure 3.8: Wi-Fi scanning: ac-
tive vs. passive scan. Source [154]

active scanning or from the beacon frames in the case of passive
scanning [153].

The active scan is the preferred one, and when we make an explicit
call for scanning, the active scan is performed.

3.3.2 Bluetooth scans

In Bluetooth, there is a master-slave relation between devices. A
master device refers to the one scanning (making the inquiry), and
slaves are the scanned devices.

To discover other devices, the master device enters the Inquiry
State. In this state, the device broadcasts two ID packets per slot on
two different frequencies. The listening devices can reply to these
inquiry packets. The master sends two ID packets in a 625�s wide
slot, then listens for 625�s for responses from other devices. Once
the slave received the packet, it enters the Inquiry Response state
and transmits a packet containing device information such as its
Bluetooth device address to the inquirer[155]. The master device
can then measure the RSSI of the signal strength from the response
packet.

For a device to be detectable, it has to change to Inquiry Scan State
periodically to listen for packet ID on alternating frequencies. The
devices change the frequency it listens to every 1.28 seconds. The
scan duration is about 11.25 milliseconds per 1.28 seconds interval.

The scanning device is switching faster between frequencies. In
1250�s there are two inquiry messages sent and two “waiting for
response” periods [156]. The fast frequency switching by the master
device, combined with slow switching of frequency by the slave
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device, results in a 90% probability that a device can be detected
within a scan period of 10 seconds [133].

There are 79 sub-frequencies, in frequency hopping, the data is not
transmitted on 1 single frequency, but the device keeps changing
frequency among the 79 frequencies while transmitting the data.
This helps reduce the interference with other wireless sources at the
same frequency band.

3.3.3 Cellular scans

The procedure to find cells in cellular is pretty much the same
in all cellular generations (LTE, UMTS, and GSM). The scanning
procedure is called Cell Search followed by Cell Selection. For a
smartphone to attach to the network, it has to search for available
cells around it. To do so, it has to scan all frequency bands that
correspond to the RAT technology (whether LTE, WCDMA, or GSM),
and measures the signal strength (SS) of each cell.

The smartphone keeps only cells with SS greater than a certain
threshold to ensure a strong enough signal for decoding system
information of the cell. Next, the smartphone has to synchronize
with the cell. After successful synchronization, it can decode cell
information such as cell ID, the PLMN (cellular operator) the cell
belongs to. The final step in the Cell Search procedure is to keep
only a list of cells that belong to the home PLMN with a strong SS.
This list can be used for Cell Selection or Cell Reselection to allow
the UE to attach to the network, or to switch to another cell in case
of handover.

This procedure is performed periodically to ensure continuity of
service. To speed up the Cell Search procedure, the smartphone can
use certain RAT technology priority rules and stored information
about carrier frequencies and optionally also information on cell
parameters, collected during previous scans [103, 133, 157–159].

To summarize the whole process of scanning and measuring wireless
signals using smartphones, we present an example of scanning for
Wi-Fi sources and measuring the signal strength.

◮ 1 - Android API call: To launch the scanning, and obtain
the signal strength of neighboring Wi-Fi sources, we need to
perform an API call on the Android OS.

◮ 2 - Solicited command to the badeband: The RIL translates
the Android API call into a solicited command that the base-
band can understand.
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◮ 3 - Probe request: The baseband performs the active scan for
Wi-Fi sources by sending probe requests.

◮ 4 - Probe response: The Wi-Fi access point responds to the
probe request by sending a probe response packet.

◮ 5 - Unsolicited command: The baseband receives the probe
response through the antenna and measures the power of the
signal. The value of the signal strength is passed to the RIL
along with other information such as the signal frequency.

◮ 5 - Android callback: Upon sending the API call when starting
the scan, the Android OS registers a listener to intercept the
callback from the hardware containing the results of the scan.
Android parses the results and presents them inside Java
objects.

3.4 Conclusion

In this chapter, we presented the necessary knowledge about the
smartphone’s anatomy, its internal hardware and software com-
ponents that are involved in the measurements of the RF-EMF
radiations.

The knowledge presented in this chapter is important in the context
of using smartphones as a measurement tool for RF-EMF radiations.
We showed that smartphones use two separate operating systems
running on two distinct processors. The RF data such as the received
power and the transmitted power from the smartphone are processed
at the Baseband OS, and only basic information is accessible from the
user applications (Application OS). This leads to a limitation in terms
of types of information that can be collected using a smartphone.

Moreover, the smartphone antennas design, their small size, place-
ment on the device can affect their performance, and factors such
as orientation can lead to imprecision in the measured signal
strength.

In addition to that, we gave a brief introduction to the different
wireless technologies that produce RF-EMF radiations. We presented
their chronological evolution which will help us understand which
technology is recent and which is getting deprecated, which in turn
can help us interpret the exposure patterns to these technologies. We
also presented the frequency bands used. Frequency is an important
factor in the propagation of the signal and its penetration range.
Frequency can also condition the amount of radiation power that
needs to be transmitted by the RF sources. We also presented
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technical capabilities such as beamforming that intends to direct
more radiation towards the persons connected to the Wi-Fi access
point, which can impact exposure of the person to Wi-Fi.

Finally, we presented the low-level protocol mechanisms that are
triggered when scanning for RF sources. We presented how scans are
performed for cellular networks, Wi-Fi, and Bluetooth. Understand-
ing such mechanisms is crucial for the users and the developers of
mobile applications for RF-EMF exposure measurement. This knowl-
edge can explain other limitations of smartphones measurements.
For instance, the fact that the cellular scans with smartphones can
only return results for cellular antennas that belong to the operator
of the SIM card is dictated by the protocol.

The information provided in this chapter will be useful to understand
the rest of this thesis, and technical choices we make in the analysis,
and the methodological limitations we faced.
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Smartphones are today affordable devices, capable of embedding
a large variety of sensors such as magnetometers or orientation
sensors, but also the hardware needed to connect them to most
wireless communication technologies such as Wi-Fi, Bluetooth,
or cellular networks. Therefore, they are handy devices able to
perform Received Signal Strength Indicator (RSSI) measurements
for a wide variety of applications such as cellular coverage maps,
indoor localization, or proximity tracking. However, to the best
of our knowledge, the accuracy of such measurements has never
been rigorously assessed. The goal of this chapter is to assess the
accuracy of the RSSI measurements made with a Commercial Off-
The-Shelf (COTS) smartphone in a variety of conditions, and how
possible inaccuracies can be corrected. We primarily focus on the
LTE RSSI, but we also extend our results to the Bluetooth RSSI.

In this chapter, we build a controlled experimental setup based on
commodity hardware and on open-source software. We evaluate
the granularity and limitations of the Android API that returns the
RSSI. We explore how reliable the measurements in a controlled
environment with a mono-polarized antenna are. We show that the
orientation of the smartphone, the position or orientation of the
source, and the transmission power have a significant impact on
the accuracy of the measurements. We introduce several correction
techniques based on radiation matrix manipulations and on machine
learning in order to improve measurement accuracy to less than
5 dBm RMSE, as compared to a professional equipment.

We also explore the reliability of measurements made in an outdoor
realistic environment. We show that whereas transmission diversity
available in LTE base stations significantly improves the measured
RSSI regardless of the smartphone orientation, the Bluetooth RSSI
remains largely sensitive to the smartphone orientation.

4.1 Introduction

Smartphones are sophisticated devices with a lot of embedded
sensors, but also with the support of several wireless technologies,
such as Wi-Fi, Bluetooth, 2G, 3G, 4G, and now 5G. For this reason,
they are used to make measurements of the Received Signal Strength
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Indicator (RSSI). Such measurements are important in multiple
contexts, such as network performance evaluation [89, 90], RF-EMF
exposure assessment [50, 52, 91], indoor positioning [160], and most
recently, contact tracing [161, 162] in the context COVID-19 pandemic
relying on Bluetooth RSSI to infer proximity.

Whereas, the accuracy of the RSSI measurements is a key point in
all these contexts, this is still a topic difficult to approach and, to
the best of our knowledge, there is no rigorous evaluation of this
accuracy for COTS smartphones.

In this work, we evaluate the accuracy of an Android COTS smart-
phone when performing measurements of the RSSI emitted from a
4G (LTE) source, and we extend our results to a Bluetooth source.
Our contributions are the following. i) We evaluate the granularity
and limitations of the Android API that provides the RSSI. We show
that not all methods to access the RSSI are equivalent. We can expect
a 2 dB granularity and an update every second (at the most) for the
measurements made. ii) We explore the accuracy of the RSSI mea-
surements in a fully controlled environment with a mono-polarized
antenna. We show that the accuracy of the measurements is ex-
tremely sensitive to the device orientation, source positioning and
orientation, and also to the source Tx power. iii) We propose several
correction techniques aimed to the improvement of the accuracy
of the RSSI that rely on manipulations of radiation matrices and
on machine learning. We show that we can significantly improve
the accuracy and obtain a Root Mean Square Error (RMSE) lower
than 5 dBm as compared to a calibrated professional equipment. iv)
We explore the accuracy of the RSSI measurements in an outdoor
realistic environment. We show that transmission diversity available
for the LTE base stations dramatically reduces the RSSI sensitivity
to the device orientation. However, transmission diversity is not
available for all wireless technologies. In particular, we show that
the Bluetooth RSSI is still sensitive to the device orientation in a
realistic environment v) We make available all the RSSI correction
artifacts and measurement data to the industry and to the public in
general, in addition to the precomputed calibration matrices for an
easier reusability [163].

As opposed to the previous works [80–82, 87, 88] we presented
in Chapter 2 that rely on commodity hardware for wireless signal
measurements, the solution we propose in this chapter relies solely
on an off-the-shelf smartphone without any external hardware,
hardware modification, or software modification (no rooting and no
custom operating system required) on the smartphone. Moreover, we
mitigate the inaccuracy of smartphones due to orientation [82] with
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a correction technique that uses the Inertial Measurements Units
(IMUs) of the mobile device in order to determine the correction
power offset which has to be applied.

The rest of the chapter is organized as follows. In Section 4.2, we
present our methodology to experimentally collect RSSI values using
commodity hardware and open source software. In Section 4.3, we
present the results obtained when the methodology is applied
to a commercial smartphone, and we analyze the sensitivity of
the smartphone RSSI measurements to various parameters and
correction techniques. We conclude this chapter in Section 4.4 with
some conclusions.

4.2 Methodology

In the following, we present our methodology to perform wireless
experiments for LTE, and we extend some of our experiments to
Bluetooth in order to show that our findings expand beyond LTE.

4.2.1 Controlled experimental setup

Apparatus 
controller

Signal generation

φ
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y

z

LTE Network
Band 7
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DuplexerUSRP

Laptop
LOGS-1

  ti
CLK1, θi, φi
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CLK1

Transmitting antenna
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Cellular signal generation
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Controlled env. with programmable robotic apparatus

Figure 4.1: The controlled experi-
mental setup. SDR is used for sig-
nal generation and a two-axis po-
sitioning system is used to rotate
the device-under-test in order to
study the effect of orientation on
the reception performance.

In this section, we present our controlled experimental setup for
LTE and Bluetooth experimentation based on commodity hardware
and on open-source software [164].
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• LTE signal generation. Instead of using specialized hardware
for the generation of the LTE cellular network signals, we use
OpenAirInterface (OAI) [165], a software implementation of an
LTE cellular network that can run on general-purpose processors.
The Core Network (CN) and the Radio Access Network (RAN)
components of OAI usually run on two different machines to ensure
real-time performance. As there is no need for Mobile data in our
experiments, deactivating it allows us to reduce the computing load
on the processor. Hence, both the CN and RAN components can
run on the same machine. We use an HP Zbook laptop running
Ubuntu 16.04 LTS with Intel i7-6th-gen processor and 32 GB of RAM.
We connect the laptop to an Ettus B210 [166] Universal Software
Radio Peripheral (USRP). We use a band 7 duplexer to connect both
the Rx and Tx channels of the USRP to an ETS-Lindgren’s 3115
double-ridged horn Rx/Tx antenna. This is a directional antenna
with linear polarization (mono-polarized) having a gain of 10 dB
at 2.5 GHz. In our setup, it is called the source or the transmitting
antenna, as shown in Figure 4.1.

• Bluetooth signal generation. In order to generate the Bluetooth
signals, we used two types of devices. We used an Arduino Bluetooth
dongle model “Blend Micro” from Red Bear Labs [167]. It uses
Bluetooth 4.0 Low Energy. We programmed the dongle to broadcast
Bluetooth beacons and connected it through USB for powering. In
addition to the Bluetooth dongle, we used a Fossil smartwatch [168]
with Bluetooth Low Energy 4.2 and firmware versionHW0.0.2.6r.v1
as a second source. This source is typical of what can be found from
a real Bluetooth low energy consumer device. For the Bluetooth
experiments inside the anechoic chamber, the Bluetooth dongle is
directly mounted to replace the transmitting horn antenna. The
dongle generates the Bluetooth signal and transmits it through its
own embedded antennas.

• Device Under Test. For the device under test, we use a Nexus 5X
smartphone running Android 7. To attach the smartphone to the
network, we program a SIM card with the authentication parameters
that we defined in the OAI database.

• Controlled environment with programmable robotic apparatus.

We perform our experiment in an anechoic chamber that has pro-
grammable robotic equipment both at the transmission and reception
sides. As shown in Figure 4.1, the reception platform is a two-axis po-
sitioning system that rotates along the two axes x and y: ! (Azimuth,
the angle between x and z axes) and � (Roll, the angle between y and
z axes). y can rotate 180◦ (from -90◦ to +90◦) whereas x can make a
360◦ rotation. The transmission platform can only rotate along the
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x-axis. In Figure 4.1, the transmission system is positioned at !=0◦.
By combining the two-axis rotations, we can obtain measurements
of the RSSI using the smartphone in different orientations. The
reception and transmission are separated by 4 meters and connected
to a controller system (Apparatus controller) placed outside of the
chamber, which allows us to program the rotation of the platforms
by defining the rotation range, the step, and the time duration it
remains at each orientation.

4.2.2 Outdoor experimental setup

The controlled experimental setup allows us to perform reproducible
experiments with a fine grain control of each experimental parameter.
However, in reality, we might have transmission diversity (e.g., for
LTE) and multipath transmission due to signal reflections (e.g., for
both LTE and Bluetooth).

The goal of the outdoor experimental setup is to assess how the
complexity observed outdoor impacts our findings.

• Cellular outdoor setup. In order to assess the accuracy of the RSSI
measurement from a smartphone with a real LTE base station, we
use the same LG Nexus 5x phone described in Section 4.2.1 inside
the main transmission lobe of an LTE base station, at a distance
of 170 meters. The direction of the main lobe is obtained from the
official maps provided by the French National Agency of Radio-
frequencies (ANFR) [169]. We lock the smartphone on the same band
we had used in the controlled environment, that is on band 7.

We rotate the smartphone on the two axes ! and � in order to test
for different relative orientations between the smartphone and the
source. At each orientation, we collect at least 20 RSSI samples and
compute the mean value.

• Bluetooth outdoor setup. We use a meeting room that contains
tables and chairs in order to carry out the Bluetooth experiment
in a realistic environment, i.e. in the presence of reflections (by
outdoor setup, we mean outside of the anechoic chamber). We
place the Bluetooth dongle in the direct line of sight with respect
to the smartphone, at a distance of 4 meters, that is the same
distance as between the source and the reception in the controlled
environment.

We again rotate the smartphone on the two axes ! and � to test
for different relative orientations between the smartphone and the
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Figure 4.2: Comparing Android
API to get the LTE RSSI while
varying the Tx power (right
y-axis). The getAllCellInfos

method (blue line) is more re-
liable and more sensitive to
changes in the signal strength than
the PhoneStateListener method
(red line).
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source. At each orientation, we wait for 1 minute (roughly 5 RSSI
samples) and compute the mean value.

4.2.3 Logging the measurements

We log the measurements onto the apparatus controller (LOGS-1)
and onto the smartphone (LOGS-2). The logs are timestamped with
the time from the local clock, as shown in Figure 4.1. We synchronize
the timestamps in a post-processing phase.

For the smartphone log collections, we use the Electrosmart mobile
application [52] in order to collect the Rx power (RSSI) and the
device orientation from the IMU sensors.

The apparatus controller creates timestamped logs of the values of
its rotation axes each time it reaches a programmed orientation. The
values are expressed in terms of ! and � in degrees. These logs
are used as ground true values for device orientation inside the
chamber.

4.2.3.1 Getting the LTE RSSI on Android

The Android Application Programming Interfaces (APIs) offer two
possibilities to get the LTE RSSI. The two methods are the follow-
ing.

• PhoneStateListener is a callback-based method. It works by regis-
tering a listener to monitor the changes in the network signal strength,
and get a callback whenever the signal strength changes [170].

• getAllCellInfo() is an explicit call to the operating system by
invoking the getAllCellInfo() method to fetch the most recent signal
strength measured by the hardware [171].
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The two methods are supposed to report the changes in the signal
strength of the network. However, which one is better to monitor
the changes in the signal strength? In order to compare between
the two methods, we place an LG Nexus 5X smartphone in the
anechoic chamber as shown in Figure 4.1. Subsequently, we vary
the transmission between -45 dBm and -20 dBm in 1 dB steps, one
step per minute. We record the RSSI on the smartphone using the
two aforementioned methods. We trigger a call to getAllCellInfo()

every 1 second. The results are shown in Figure 4.2. The method
getAllCellInfos() is more sensitive to the changes in the RSSI than the
PhoneStateListener method. For example, at time 10h45, PhoneStateLis-

tener keeps giving the same RSSI (-80 dBm) regardless of the fact that
the transmission (Tx) power has dropped from -20 dBm to -25 dBm,
then it suddenly updates to -85 dBm. In contrast, getAllCellInfos()

follows exactly every update in the Tx power.

For the rest of this work, we choose the getAllCellInfos() method in
order to measure the RSSI on the smartphone.

4.2.3.2 Getting the Bluetooth RSSI on Android

The Bluetooth RSSI on Android is obtained by registering a broadcast
receiver that listens to events (called intent in Android) triggered
by the Bluetooth Adapter on the smartphone. Each time a new
Bluetooth source is detected, a BluetoothDevice.ACTION_FOUND

intent is received. We extract the RSSI value from an extra field in
this intent called BluetoothDevice.EXTRA_RSSI.

4.2.3.3 Getting the smartphone orientation on Android

Android APIs give access to the smartphone orientation using the
Rotation Vector Sensor (RVS). RVS is a software sensor that combines
many hardware sensors readings (Accelerometer, Magnetometer,
and Gyroscope) to estimate the device’s orientation in space. The
RVS returns a vector that can be transformed into a quaternion of
orientation. Quaternions [172] are 4 dimensional complex vectors.
They can be averaged by slerping [172] (Spherical Linear intERPola-
tion) and, in contrast to Euler angles, they do not suffer from Gimbal
lock, which is a loss of a degree of freedom when representing the
orientations in a 3D space [173].
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4.2.4 Experimental limitations

For measurement acquisition, we faced some limitations. First, the
refresh rate of the smartphone signal strength is in the order of 1
second at the best. This is due to power optimizations restricting
the number of messages exchanged between the device’s baseband
(which has a higher refresh rate) and the Android OS. A higher
refresh rate would shorten the time spent collecting the calibration
data.

Second, the two-positioner system can only rotate along two axes,
which means we cannot test all the relative orientations of the device
with respect to the source. This can be solved by rotating the source
itself along !. We limit our study to a subset of relative orientations
of the smartphone with respect to the source by considering two
polarizations of the source (horizontal and vertical polarizations).
All the details about the calibration process we are presenting in this
work can be replicated for any different orientations or polarizations
without loss of generality.

Last, the LTE RSSI values range from −113 dBm to −51 dBm [174].
Since RSSI values are capped at −51 dBm, we made sure in all our
experiments that measurements had never been capped.

4.3 Experimental evaluation of the accuracy

of the RSSI measurements from a

smartphone

The reception performance of a smartphone can be affected by
different parameters such as the device orientation, the source
position (the source pointing with its main radiation lobe towards
the device), the source orientation (the source no longer pointing
with its main radiation lobe towards the device), and the source
transmission (Tx) power.

In this section, we start by measuring the reference RSSI that will
be a ground true target for the corrected RSSI %̄. Subsequently, we
explore the sensitivity of the measured RSSI from a smartphone
with respect to the device orientation, the source position, the source
orientation, and to the source Tx power in a controlled environment.
In each scenario, we propose a correction technique to estimate %̄.
Finally, we evaluate the characteristics of an outdoor environment
on the measured RSSI.
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Most of our experiments are performed on LTE, but we have also
performed some experiments on Bluetooth in order to show how our
findings in LTE can be extended to other wireless technologies.

4.3.1 Measuring the reference RSSI

We measure the actual LTE RSSI at the reception point using a
spectrum analyzer [175]. We use a horizontal polarization at the
source. On the spectrum analyzer we place a horn antenna identical
to the transmitting antenna with the same polarization as the source.
By removing the antenna gain (10 dB) and compensating for cable
loss (1 dB), the RSSI measured at the reception is -54 dBm. We call
this RSSI the reference RSSI.

4.3.2 Evaluating the effect of the device orientation

In this section, we evaluate the accuracy of the smartphone’s raw
LTE RSSI inside an anechoic chamber for a mono-polarized antenna
and quantify the effect of the smartphone orientation with respect
to the source on the RSSI.

In order to compare between the smartphone measurements and
the reference RSSI, we replace the horn antenna at reception with a
smartphone. In order to study the effect of the smartphone orienta-
tion on the RSSI, we place the device in 684 different orientations
along two axis, ! and �, in front of the transmitting antenna, as
illustrated in Figure 4.1. At each position, we collect the RSSI as well
as the device orientation.

We keep the device at each orientation for 10 seconds. Then, we
average the RSSI and the quaternions measured for each orientation:
RSSIs are averaged in Watt and the results are converted into dBm;
the orientation is obtained by slerping the quaternions in order to
obtain a representative quaternion for each orientation. To verify
the stability of the RSSI at each orientation during the measurement
period (10 seconds), we compute the standard deviation of the RSSI
over time for each orientation. The mean standard deviation of the
RSSIs for all the 684 orientations is only 0.06 dBm.

To verify the reproducibility of the measurements, we repeated the
same experiment 10 times. For every experiment, we started the
experimental process from scratch: we set up the LTE network, we
calibrate the orientation sensors of the smartphone [176], we position
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Figure 4.3: Heatmap of the LTE
RSSI (in dBm) obtained for the
LG Nexus 5X for 684 orientations
made for horizontal and vertical
polarization of the source. The
reception performance is very sensi-
tive to the device orientation.
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Figure 4.4: Heatmap of the LTE
RSSI (in dBm) for 5 different
smartphones evaluated using
our methodology. The reception
performance is sensitive to the de-
vice orientation for all smartphones,
but the characteristics of the sensi-
tivity is very different from a smart-
phone to another.

-1
80 0

17
0

 (degrees)

-90

0

90

 (d
eg

re
es

)

Samsung S4

88
84
80
76
72

-1
80 0

17
0

 (degrees)

Samsung S7

85
80
75
70
65

-1
80 0

17
0

 (degrees)

Google Nexus6

88
84
80
76
72
68

-1
80 0

17
0

 (degrees)

Google Pixel2

84
78
72
66
60
54

-1
80 0

17
0

 (degrees)

Samsung Note4

90
85
80
75
70

it on the two-positioner system, next we launch the controller pro-
gram to start rotating the device and to collect the measurements. For
all 10 experiments, the mean standard deviation of the RSSI for each
orientation is 0.51 dBm and 5.5◦ mean angle error. Finally, we merge
all 10 experiments together and, for each orientation, we compute
the average RSSI and the mean quaternion. For the rest of our study,
we use the resulting averaged RSSIs and orientations. The vertical
polarization was also evaluated by repeating the same measurement
procedure as described for the horizontal polarization.

By placing the smartphone in 684 different orientations with hori-
zontal polarization, and by measuring the RSSI, we obtain a heatmap
of the RSSI shown in Figure 4.3(a). We can see a large variability
of the RSSI across the different orientations. The optimal RSSI we
measured was −51 dBm at � = +90

◦ and ! = 0
◦ (same orientation

as depicted in Figure 4.1), which is 3 dB more than the reference
RSSI (−54 dBm). At some orientations, the reception performance
is very poor with a minimum of −73 dBm. The RSSIs for the same
684 orientations, repeated for the vertical polarization are shown
in Figure 4.3(b). At this polarization, the RSSI also exhibits a large
variability with an offset of 15 dB between the maximum and the
minimum RSSI.

In addition to the Nexus 5X, and using the same methodology, we
evaluated the reception performance of 5 different smartphones. We
tested the Samsung S4, Samsung S7, Samsung Note 4, Google Nexus
6, and Google Pixel 2. We observe in Figure 4.4 that all smartphones
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Figure 4.5: Mean LTE RSSI along
! and �. The RSSI is optimal when
the antenna is in co-polarization
with the source (� = 120◦ and �
= -60◦) and when the smartphone
is oriented towards the source (! =
0◦)

show their measured LTE RSSIs to be largely impacted by the device
orientation. However, the reception patterns are very different from
one device to another. This difference can be due to many factors,
such as the dimensions of the smartphone, the casing, the number
of antennas used, and their location within the smartphone.

We also expect to have specific orientations where the RSSI is optimal,
this will happen when the smartphone antennas are aligned with the
polarization of the source. In antenna theory, Polarization Matching

[177] (or co-polarization) means that the receiver and the transmitter
have the same polarization, thus the power loss being minimal. In
contrast, cross-polarization yields minimal power. So by monitoring
the RSSI and by knowing the polarization of the source, we can
determine at which orientation the co-polarization happens.

In order to determine the polarization scheme of the smartphone,
we plot the mean RSSI along the two axes of rotation as shown in
Figure 4.5. Along ! axis, the maximum power is received when the
smartphone is in the main transmission lobe (! = 0

◦). We also see that
the maximum power along � is produced at angles +120◦ and -60◦,
and lowest reception occurs when the smartphone is rotated by 90◦

along �. Hence, smartphone antennas are affected by their relative
orientation with respect to the source and the optimal performance
is observed when their polarization matches the polarization of the
source.

For the rest of this work, and for the sake of simplicity, we assume
that the source polarization does not change and that it is known
beforehand (in practice, we only consider the horizontal polarization).
This might not be true in practice, but we can deduce the polarization
of the source using the property of polarization matching, that is
by placing the device in different polarizations, by monitoring
orientations with optimal RSSI, and by knowing the characteristics
of the reception pattern of the smartphone. This procedure to find the
source polarization can be performed using our mobile application
prototype [163].
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Figure 4.6: Heatmap of the Blue-
tooth RSSI (in dBm) obtained for
the LG Nexus 5X for 40 orien-
tations in a controlled environ-
ment. The reception performance is
also sensitive to the device orienta-
tion for Bluetooth.
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Finally, in order to validate that our results expand beyond LTE,
we explored the effect of the device orientation for Bluetooth RSSI
measurements. We used the Arduino dongle as the source in our
experimental setup, and we rotated the smartphone using the two-
axis positioning system. In Figure 4.6 we show the RSSI measured
for the 40 different orientations which have been measured. We can
see that the measured Bluetooth RSSI is also very sensitive to the
device orientation with up to 23 dB difference between the minimum
(-76 dBm) and maximum (-53 dBm) measured RSSI. This proves
that orientation does also affect the RSSI accuracy for the Bluetooth
power measurements.

In summary, the measured RSSI from COTS smartphones is sen-

sitive to the device orientation. This sensitivity holds for multiple

devices and for different wireless technologies.

4.3.3 Correcting the effect of the device orientation

In this section, we show that it is possible to correct the effect of the
device orientation on the measured LTE RSSI. We use the orientation
sensors of the smartphone to build calibration matrices, which are
used to compute a correcting factor which is subsequently applied
to the measured RSSI for each orientation

Let Q be a matrix of orientation Quaternions, and let P be a matrix
of RSSI having the same dimensions as Q. We call them calibration
matrices. In order to build these matrices, we rotate the smartphone
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Figure 4.7: RSSI correction re-
sults for the 100 random orien-
tations along � and !. The col-
ored area represents the variabil-
ity of the measurements along
�. The corrected RSSI (orange) is
closer to the reference RSSI (black
dashed line), and less variable (2.4
dBm RMSE) as compared with the
raw measured signal (shown in blue,
with 6.4 dBm RMSE).

as shown in Figure 4.1, and for each orientation, we fill up the
matrix Q with the measured quaternion, and the matrix P with the
offset between the raw measured RSSI at a given orientation and
the reference RSSI we measured in Section 4.3.1. Therefore, in the
element with coordinates (i, j) in matrix Q we have an orientation,
and in the element with the same coordinate in matrix P we have the
offset to be applied to the measured RSSI for the specific orientation
stored in matrix Q. Once we have these two matrices, whenever we
place a device in the orientation defined by a given quaternion @8 ,
we compare it against all the quaternions in Q and we compute the
relative angle. The closest quaternion in Q is the one with minimal
angle to @8 . We use its coordinates in Q to obtain the corresponding
correction offset from P and apply it to the raw measured RSSI to
obtain the corrected RSSI.

To validate this correction technique, we built the calibration matrices
by placing the device at � = -180◦ and ! = -90◦. Subsequently, we
varied � from -180◦ to +170◦ in 10◦ steps. We did that for every !

ranging from -90◦ to +90◦ in 10◦ steps. At each step, we collected
the RSSI and the rotation quaternion. Next, we inserted them into
the matrices with the corresponding ! and � coordinates. The
dimensions of the matrices P and Q is 36x19∗.

As a next step, we selected 100 random orientations for the device
under test by computing 100 random couples (!, �) selecting 10
random values for ! within the range [-90◦, +90◦] and 10 random
values for � within the range [-180◦, +170◦] that were not in Q.
Our goal is to obtain random coordinates which do not have an
exact match in Q. The source polarization and Tx power are kept
unchanged.

In order to correct the measured RSSI at a random orientation, we

∗ We computed calibration matrices for 5 additional devices: a Samsung S4 and
S7, a Nexus 6, a Pixel 2, and a Note 4. We do not discuss the details of these other
devices in the rest of this chapter, since they provide us with similar conclusions,
however we make all these matrices publicly available [163] so that the interested
reader can easily reproduce our results for different devices.
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Figure 4.8: (a) Changing the
source’s position with respect to
the smartphone. (b) Pointing the
source’s main lobe at different
angles with respect to the smart-
phone.
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compare a given quaternion against all quaternions in Q to get the
closest quaternion and its corresponding coordinates in Q. We use
these coordinates to get the RSSI offset in P which allows us to
correct the measured RSSI. Figure 4.7 shows that the corrected RSSI
(orange line) is closer to the reference RSSI (dashed black line) and
has a lower variability than the raw RSSI (blue line). In particular,
the raw RSSI RMSE is 6.4 dBm, whereas the corrected received RSSI
RMSE drops to 2.4 dBm.

In summary, our proposed technique for correction of the effect

of the device orientation on the LTE measured RSSI significantly

improves the measurements accuracy. The RMSE error is reduced

by 4 dB.

4.3.4 Evaluating and correcting the effect of the

source position

In this section, we consider the case where the source’s location
with respect to the smartphone is unknown, but the distance to the
source is kept constant and the smartphone remains in the main
transmission lobe of the source, see Figure 4.8(a).

To evaluate the impact of the source position on the measured RSSI,
we rotate the source at 20◦, 40◦, 60◦, and 80◦ from the original
orientation along the azimuth (!). We make sure that the source
is shifted by the correct angle and that the smartphone is kept
within the main transmission lobe by means of a laser beam. At
each new position, we measure the reference RSSI using a spectrum
analyzer.

Next, we test whether we can reuse the calibration matrices obtained
in Section 4.3.3 to correct the RSSI. Figure 4.9 shows the RSSI patterns
for all the tested angles. We see that the patterns seem to be a shifted
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version of the reception pattern at 0◦. Hence, the reception pattern
should be preserved regardless of the source position with respect
to the smartphone. To validate this hypothesis, we test the impact of
shifting the calibration matrices we had collected when the source
was at !=0◦ in order to correct the measured RSSI at any angle. In
order to compute the matrix shifting we have three steps: i) locating
the new position of the source, ii) defining the angle shift from
the !=0 position to the new source position, iii) translating the
calibration matrix of orientations Q to adapt it to the new source.

In order to locate the source, we use the property of polarization
matching we have described in Section 4.3.2, where the reception is
maximum when both the transmitting and the receiving antennas are
aligned and co-polarized. Our method is as follows. First, we assume
that the source polarization is known, and we place the smartphone
in the same polarization. Second, as illustrated in Figure 4.5, and
since the smartphone receives more power when � is +120

◦ or −60
◦,

so we place the smartphone at � =+120
◦. Finally, we rotate the phone

along the ! axis from −90
◦ to +90

◦ and collect the RSSI for each
value of !. The source’s position is determined when we measure
the maximum RSSI at an angle ! = !< . We can see in Figure 4.10
that the RSSI increases gradually as we point the smartphone closer
to the new source location. The maximum RSSI is received when the
smartphone is directly aligned with the source along the azimuth
(!), for instance, the red curve corresponding to the scenario with
a source rotation of 20

◦ has its maximum when ! is at 20
◦. This

procedure to locate the source can be performed using our prototype
mobile application for calibration [163].

Once we have located the source, we need to transform and shift the
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Figure 4.11: RMSE for different
source positions between the ref-
erence RSSI and the raw RSSI
measurements (in blue), and be-
tween the reference RSSI and the
corrected RSSI measurements
(in green). The impact of the source
position on the measured LTE RSSI
can be corrected.

matrix of orientation quaternions Q in order to adapt it to the new
source position. We apply quaternion rotation using the relative
quaternion describing the rotation from ! = 0

◦ to ! = !< , that is
the new source position in the azimuth. Once Q is transformed, we
can apply the correction to the measured RSSI using the technique
previously presented in Section 4.3.3.

Figure 4.11 shows the RMSE as compared to the reference RSSI
for the raw measurements (in blue) and for the corrected ones (in
green). We can see that a modification of the source position can
significantly increase the RMSE (up to 11.1 dBm at 80

◦). However,
we see a significant improvement of our correction technique when
the source position is unknown with an RMSE between 3.3 dBm
and 4.8 dBm, so an average reduction in RMSE of 5.7 dB.

In summary, when the smartphone is within the main transmis-

sion lobe of the source, but the source position is unknown, the

measured LTE RSSI is a shifted version of the measured RSSI

when the source is in front of the device. However, we have pre-

sented a correction technique that allows us to correct a large

fraction of the measured LTE RSSI error, with an average reduc-

tion in RMSE of 5.7 dB.

4.3.5 Evaluating and correcting the effect of the

source orientation

Now, we consider the case where the source is no longer within the
main transmission lobe. In Figure 4.8(b) it can be seen that the main
lobe is pointed at different angles with respect to the smartphone.
At each angle, we rotate the smartphone along ! and � in order
to collect the RSSI. Figure 4.12 shows the heatmap of the RSSI in
all tested cases. Unsurprisingly, we see that the measured RSSI is
sensitive to the main lobe orientation.

We try to correct the RSSI when the source’s main lobe is not
directed towards the smartphone using the calibration matrices P

and Q computed in Section 4.3.3, when the smartphone is in the
source main lobe, without any modification.
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Figure 4.12: Heatmap of the LTE
RSSI of the Nexus 5X for differ-
ent orientations of the main lobe.
The reception patterns are impacted
by the orientation of the source main
lobe.
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Figure 4.13: RMSE for different
source orientation of the main
lobe between the reference RSSI
and the raw RSSI measurements
(in blue), and the reference RSSI
and the corrected RSSI measure-
ments (in green). The impact of the
source orientation on the measured
LTE RSSI can be accounted for and
corrected.

Figure 4.13 shows the RMSE between the raw measurements and the
reference RSSI (in blue), and between the corrected measurement
and the reference RSSI (in green). The rotation of the source’s main
lobe significantly increases the RMSE, which ranges between 6.8 dBm
and 8.6 dBm. Our correction technique, consisting in applying the
calibration matrices without any modification successfully reduces
the RMSE, now ranging between 3 dBm and 4.7 dBm, i.e. an average
reduction in RMSE of 4.1 dB.

In summary, the orientation of the source’s main lobe has a signif-

icant impact of the measured LTE RSSI. The proposed correction

technique, consisting in applying the unmodified calibration ma-

trices, can reduce the RMSE on average by 4.1 dB.

4.3.6 Evaluating and correcting the effect of the

source Tx power

In this section, we consider a change in the source transmitted
(Tx) power†. The position of the source and its polarization are
the same as in Figure 4.1. We consider three different transmission
power levels: Tx1 is the transmission power used in all the previous
experiments, Tx2 is Tx1 reduced by 10 dB, Tx3 is Tx1 reduced by
20 dB. In order to achieve this reduction in transmitted power,
we change the transmission attenuation parameter att_tx found
in the configuration file of OAI. For each Tx power, we measure
the reference RSSI at the receiver as explained in Section 4.3.1. We
measure −54 dBm, −64 dBm, and −74 dBm for Tx1, Tx2, and Tx3,
respectively. For each Tx power, we collect the RSSI measurements
using the same procedure as described in Section 4.3.3, i.e. by
rotating the smartphone along � and !. Figure 4.14 shows the
received patterns for the three different Tx power levels defined
before. Unsurprisingly again, we see that the RSSI measurements
are impacted by the Tx power.

† Note that we can extend the results of this section to a modification of the
distance to the source, as increasing the distance to the source is equivalent to
reducing the transmitted power.
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Figure 4.14: The measured RSSI
by the Nexus 5X for different Tx
power levels. The reception pat-
terns are impacted by the source Tx
power.
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Figure 4.15: Root Mean Squared
Error (RMSE) for different
source Tx power between the ref-
erence RSSI and the raw RSSI
measurements (in blue), and the
reference RSSI and the corrected
RSSI measurements (in green).
The impact of the source Tx on the
measured LTE RSSI cannot be cor-
rected with the mere application of
the calibration matrices.

Similarly to what we did in Section 4.3.5, we try to correct the
RSSI with the calibration matrices P and Q previously computed
in Section 4.3.3, when the source is emitting a Tx power level TX1,
without any modification.

Surprisingly enough, this correction technique fails to improve
the mean RMSE. Indeed, Figure 4.15 shows that for the corrected
measurements the RMSE corresponding to Tx2 is slightly decreased,
but it is increased for Tx3. The average RMSE for the corrected
measurements is increased by 0.6 dB.

The reason for this effect is that changing the Tx power affects the
reception patterns of the smartphone. Indeed, in LTE, smartphones
work with a Multiple Input Multiple Output (MIMO) technology.
Depending on the network quality, the smartphone can select a
single antenna or it can combine the different antennas to optimize
the received signal power [178]. This is called antenna diversity.
There exist different techniques for diversity combining [179]. The
smartphone may use only one of the antennas for reception (switched
diversity) or it can combine the incoming signal from all antennas
according to their respective Signal-to-Noise Ratio (SNR), a technique
called Maximum Ratio Combining (MRC). This antenna diversity
significantly complicates the correction process since there is no
previous knowledge about which calibration matrix should be used
for the measured RSSI.

In order to deal with this issue, we evaluate the performance of two

Figure 4.16: ML models for RSSI
corrections. One-couple (left)
and Two-couple models (right).
The model maps the raw RSSI
in each orientation to the refer-
ence RSSI corresponding kth Tx
power.
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Figure 4.17: Random Forest ac-
curacy for selection of the right
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Even a moderate amount of training
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machine learning models based on a Random Forest algorithm to
predict the correct RSSI. The first one uses as features one couple
(RSSI, device orientation) at a time selected from one of the reception
pattern matrices presented in Figure 4.14 and labelled with the
reference RSSI for this matrix. The second one uses as feature two
(RSSI, device orientation) couples at a time selected independently
from the same calibration matrix labelled with the known reference
RSSI for this matrix. The machine learning model building process
is illustrated in Figure 4.16. The illustration shows how in the one-
couple model, one point at a time is taken from the reception
patterns (P) and orientation (Q) matrices, then labelled with the
correct reference RSSI (Pk

ref). Whereas, in the two-couple model,
two points at a time are taken from both matrices, and labelled with
the reference RSSI corresponding to the given Tx power. The two-
couple model captures more features of the smartphone’s reception
pattern, which allows the model to distinguish with higher accuracy
which transmission power the received pattern corresponds to. After
training the models, we take one test orientation (in case of the one-
couple model) or two test orientations (in case of the two-couple
model).

In order to perform the evaluation, we train the model with X% of
the couples (or pairs of couples), X ranging from 5% to 97% in 4%
steps. The remaining data is used for cross-validation. For each X,
we repeat the training 10 times with another uniformly distributed
random subset of X% of couples (or pairs of couples).

The accuracy of the model to give the correct RSSI is shown in
Figure 4.17. It can be see that with 30% of training data, the model
can predict with 90% accuracy the reference RSSI with the one-
couple model (blue curve). The accuracy increases to 95% if we use
the two-couple model (orange curve). Even with 5% of training data,
the accuracy is 80% for the one-couple model. This means that a
simple Random Forest model can capture the reference RSSI from a
single measurement with high accuracy even with a small amount
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of training data.

In Summary, we have shown that the source transmission power

has a significant impact on the accuracy of LTE RSSI measurement

with a RMSE up to 5.7 dBm due to antenna diversity optimiza-

tions on the smartphone. However, we can dramatically improve

the accuracy by using machine learning with a simple Random

Forest model and with minimal training. We have shown that

a 90% accuracy can be achieved with 30% training and using a

one-couple model.

4.3.7 Evaluating the effect of an outdoor environment

So far, we have evaluated the RSSI accuracy of a smartphone in a
controlled environment with a mono-polarized emitting antenna.
In this section, we evaluate the accuracy of the RSSI with a multi-
polarized antenna in an outdoor environment with reflections and
multipath. Moreover, the LTE base stations nowadays make use of
transmission diversity, such as spatial diversity and polarization
diversity where the signal is transmitted at two perpendicular
polarizations from an antenna array in order to improve cellular
reception. Polarization diversity provides a gain of up to 12 dB as
compared to single polarization [180]. In Figure 4.18(a), we show a
typical sector antenna’s interior used at a base station. We can see
the arrangement of multiple antennas with vertical and horizontal
alignment in order to achieve polarization diversity and thus to
minimize the polarization mismatch at reception.

In order to assess the accuracy of the RSSI measurement from a
smartphone under these conditions, we follow the methodology
already described in Section 4.2.2, and we place the smartphone
in 88 different orientations along the two axes ! and � (which
are a subset of the 684 orientations we tested in the controlled
environment) inside the main transmission lobe of an LTE base
station, see Figure 4.18(b). We compute the variability of the mea-
surements collected outdoors, and we compare it to the variability
of the measurements collected in the controlled environment with a
mono-polarized source, for the same set of orientations.

In Figure 4.18(b), we can see that the measurements collected out-
doors are less variable than those we obtained in the controlled
environment. The median variability is about 4 dB outdoors, as
compared to the 12 dB variability in the controlled environment. We
perform two additional independent experiments with a different
subset of orientations using the same experimental arrangement,
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Figure 4.18: (a) Interior of sector antenna (MIT Computer Science & Artificial Intelligence Lab). (b) Outdoor evaluation
results.

and both confirm that the LTE RSSI outdoors is less variable and
less affected by the orientation of the smartphone than the LTE RSSI
in controlled environment.

Since the LTE base station transmits the same signal at two per-
pendicular polarizations (vertical and horizontal polarizations), the
smartphone antennas can compensate for the errors introduced by
the radiation patterns by means of a more efficient combination of
signals coming from multiple antennas. Therefore, the polarization
diversity used at transmission minimizes the chance of polarization
mismatch (cross-polarization). Hence, the effect of orientation on the
RSSI in an outdoor environment is minimized (low directivity).

In Section 4.3.2 we have seen that the Bluetooth RSSI measurements
are also sensitive to the device orientation. However, Bluetooth does
not use the technique of transmission diversity. For this reason, we
have evaluated the impact of the device orientation in an office
environment (described in Section 4.2.2) for two different types of
sources: an Arduino dongle and a smartwatch.

Figure 4.19 shows the measured Bluetooth RSSI and its variability
with the smartphone orientation. We can see that the orientation
has a large impact on the measured Bluetooth RSSI in a realistic
environment for both types of sources. Interestingly enough, we
observe that the minimum measured RSSI is not obtained for the
same orientation. This is due to a different polarization of the two
sources.

In summary, in outdoor (uncontrolled) environments, transmis-

sion diversity succeeds to compensate most of the effect of the
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Figure 4.19: Sensitivity of the Bluetooth RSSI to the device orientation in an office environment. We observe a large
variability of the RSSI with the device orientation for both sources.

device orientation on the measured LTE RSSI. However, for Blue-

tooth, since it does not make use of transmission diversity, even

in outdoor environments, the smartphone orientation has a large

impact on the measured Bluetooth RSSI.

4.4 Conclusions

In this work, we have evaluated the performance of a Commercial
Off-The-Shelf (COTS) smartphone for RSSI measurements. We have
three main take-home messages. First, a COTS smartphone cannot
be used out of the box to perform accurate RSSI measurements with
a mono-polarized source in a controlled environment since these
measurements are highly sensitive to the smartphone orientation,
source position, source orientation, and to the source transmission
power. Second, we propose efficient correction techniques based on
the IMU sensors embedded in the smartphone to correct the RSSI
measurements for all the conditions which have been evaluated and
described here. With these techniques, we can reduce the RSSI RMSE
to less than 5 dBm. Third, in an outdoor (uncontrolled) environment,
transmission diversity (a technique that can be found, for instance,in
4G base stations), succeeds to mitigate the problem of accuracy
due to the smartphone orientation. However, for protocols, such
as Bluetooth, that do not support transmission diversity, the RSSI
measurements are still highly sensitive to the device orientation.
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In this work, we have mainly focused on LTE RSSI measurements,
but we also extended our results to Bluetooth. In particular, we
showed that Bluetooth RSSI measurements are sensitive to the
device orientation even in realistic environments. The correction
techniques we developed and described here for LTE should be
evaluated for its use with Bluetooth in future investigations.

With the recent development of proximity tracking to help reducing
the propagation of the COVID-19 disease, the need to perform accu-
rate Bluetooth RSSI measurements becomes even more important.
We do believe that this work provides a ground basis to build more
accurate proximity estimations based on RSSI measurements.
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Evaluating population-scale exposure to the radio frequencies used
in wireless telecommunication technologies is important for con-
ducting sound epidemiological studies on the health impacts of
these radio frequencies [181, 182]. Numerous studies have reported
population exposure, but have used very small population samples,
ranging from a single volunteer to a few hundred subjects. In this
context, the real exposure of the population to radio frequencies
remains subject to controversy [34, 183–185]. Here, to the best of
our knowledge, we report the largest crowd-based measurement
of population exposure to radio frequencies produced by cellular
antennas, Wi-Fi access points, and Bluetooth devices for 254,410
unique users in 13 countries from January 2017 to December 2020.
All measurements were obtained from the ElectroSmart Android
app [52], which instruments a smartphone’s baseband, and we
applied a thorough methodology to clean and consolidate the mea-
surements. We show that total exposure has been multiplied by 2.3
in the four-year period considered, with Wi-Fi as the largest con-
tributor. The cellular exposure levels are orders of magnitude lower
than the regulation limits and not significantly impacted by national
regulation policies. Therefore, the mere comparison of exposure
levels to regulation limits is a poor way to describe the real evolution
of exposure. The population tends to be more exposed at home; for
half of the study subjects, personal Wi-Fi routers and Bluetooth de-
vices contributed to more than 50% of their total exposure. We make
our dataset publicly available to provide a starting point for sound
epidemiological studies on the health impacts of radio frequencies.
We also believe that our unique dataset will be invaluable for several
other fields interested in population exposure to radio frequencies
or the usage of wireless communication technologies.

The long-term impact of radio frequencies on health is a long-
standing scientific question that is well illustrated by the classification
of radio frequencies as a Group 2B carcinogen by the WHO [186]. This
classification means that there is some evidence that it can cause cancer

in humans but at present it is far from conclusive. [187] Total exposure
to various sources of radio frequencies is considered a critical
factor for mitigating health hazards, but in the wild, this exposure
varies greatly with time and among individuals. Environmental
and behavioral factors play a role, as previous assessments have
shown[51, 56, 57, 59–69, 79, 188, 189], limiting the generalizability of
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Figure 5.1: Electrosmart mobile
application interface.

results obtained from small study-groups or sparsely instrumented
measurements. We present here the first longitudinal analysis of
exposure events on a large subject population; results span four
years, from approximately a quarter-million unique subjects in 13
countries across Europe, the Americas, Asia, and Australia. The
scale of our study allows us to offer the first generalizable findings
on critical epidemiological questions regarding the growth of radio
exposure worldwide and the respective contributions of different
technologies to this growth. We also consider the effectiveness of
regulation and some of the factors within an individual’s control
that affect exposure. Beyond these advances, the release of our
data (in a form rendering users unidentifiable) can facilitate large-
scale epidemiological studies on the impact of radio frequencies.
The data were collected using the crowdsourcing Android app
Electrosmart [52] that we developed to instrument a smartphone’s
baseband and report Received Signal Strength Indicators (RSSI) for
radio frequencies received from cellular infrastructures, Wi-Fi access
points, and Bluetooth devices. Our dataset includes the exposure of
254,410 unique persons from January 2017 to December 2020.

5.1 Methods

This study relies heavily on the quality of the data we collected. In
this section, we present our data collection methodology, the dataset
we collected, and the cleaning we applied to this dataset.

5.1.1 Data collection

The ElectroSmart measurement app

ElectroSmart [52] is an Android consumer app we designed to
measure the power that a given smartphone receives from Wi-Fi
access points, Bluetooth devices, and cell towers. To reach a large
audience, we put a great deal of effort into the user experience,
designing ElectroSmart to be an easy-to-use tool that offers users
transparent information on their exposure to radio frequencies.
ElectroSmart can be installed on any Android smartphone running
Android 4.1 or later. The app was first launched in August 2016, and
as of May 18th, 2021, it had 900,000 downloads and 190,000 active
users.



5.1 Methods 65

123

957

Electrosmart 
DB

LTE
Pid dbm lat long time CID ….
...
123 -111 48.70 2.30 15424621 444 ….
….

WiFi
Pid dbm lat long time ssid mac ….
...
123 -34 48.70 2.30 15424621 bbox xyz  ….
….

Bluetooth
Pid dbm lat long time name mac ….
...
123 -75 48.71 2.30 15424721 music uvw   ….
….

LTE
Pid dbm lat long time CID ….
...
123 -95 48.71 2.30 15424721 444 ….
….

444

LTE

Figure 5.2: Electrosmart data col-
lection

ElectroSmart performs an exposure scan every 20 minutes when
used in the background. All scans are periodically collected on our
servers. Below, we explain how an exposure scan works and describe
the information it collects. We discuss user consent and privacy
protection in the following section. A scan performs the following
actions.

◮ It creates a timestamp with the local time in UTC. This is a slight
approximation as signals might not be measured at exactly
the same time in a given measurement scan. However, by
considering a window of a few seconds, it is easy to attribute all
measured signals to a given measurement scan and timestamp
(we specifically discuss the case of Bluetooth in the section
Bluetooth scan synchronization).

◮ It collects characteristics of the smartphone (brand and model)
and its Android version.

◮ It measures the smartphone location in terms of latitude and
longitude. Android provides this information by combining
GPS, Wi-Fi access points, and cell tower information using a
proprietary algorithm.

◮ It measures the downlink Received Signal Strength Indicator
(RSSI) of all measurable Wi-Fi access points, Bluetooth devices,
and cell towers (we discuss limitations below), along with
several source-specific data.

• For Wi-Fi access points, we collect the SSID, the BSSID,
the frequency, and whether the user is connected to this
access point.

• For Bluetooth devices, we collect the device name, the
device MAC address, and whether the user is bonded to
this device.

• For cell towers, we identify whether the cell is using a
2G, 3G, 4G, or CDMA/EVDO technology. We determine
whether the cell is serving (that is, the user is currently
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Table 5.1: Valid range of the

RSSI (in dBm) for each wire-

less protocol.

Wi-Fi Bluetooth Cellular (2G, 3G, 4G)
Max -1 -1 -51
Min -126 -150 -113

connected to this cell), and we collect cell identification
information, such as the Mobile Network Code (MNC),
Mobile Country Code (MCC), or Cell ID (CID), to generate
a unique identity for each cell tower.

Ethical and legal considerations

We submitted the study protocol to our institutional ethical commit-
tee (Inria COERLE [190]). They provided guidelines for respecting
user privacy, consent, and data protection.

ElectroSmart requires explicit user consent for all information collec-
tion. In particular, we are fully compliant with the European General
Data Protection Regulation (GDPR) [191].

In addition, ElectroSmart is used anonymously by default, unless a
user decides to provide an email address. The email address field is
clearly identified as optional.

All scans are associated with a unique user ID. This user ID is
randomly generated on our server at the app installation time. It is
not linked to any unique smartphone or user information.

Limitations

We perform all scans with a vanilla version of Android using the
regular Android API. That is, we do not have access to low-level
data available from rooted smartphones or customized drivers. This
approach is beneficial for targeting a large-scale audience, but it
limits what we can measure, as elaborated below.

First, we only measure the downlink received by the measuring
smartphone. Therefore, the contribution of the uplink to the ex-
posure, that is, the emission of the measuring smartphone, is not
considered in this study. Also, we do not measure the uplink of
surrounding devices.

Second, the minimum and maximum measurable power for each
wireless technology is capped by the Android API and the technol-
ogy standards. We show in Table 5.1 the valid ranges of measure-
ments for each technology. For example, if a smartphone is exposed
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to a higher power than the maximum measurable power, it will
always report the maximum value presented in Table 5.1. We explain
in Dataset Cleaning how we filter out-of-range scans.

Third, for 2G, 3G, and 4G, the RSSI is provided by the Android API
as an Arbitrary Strength Unit (ASU), an integer value between 0 and 31.
It is converted to dBm according to the formula: dBm = ASU∗2−113.
For this reason, the granularity of the cellular RSSI is 2 dB.

Fourth, each wireless technology comes with some additional lim-
itations. Bluetooth sources can only be measured when they are
discoverable. Wi-Fi sources can only be measured when they are con-
figured as access points, that is, the emitting power of the connected
devices is not measured. Measurements of cellular sources suffer
from several limitations. i) A smartphone with an active SIM card can
only measure the RSSI from the operators declared in the SIM card.
In practice, it is either the cellular operator that owns the SIM card
(MNO), the cellular operator that is operating the cellular infrastruc-
ture for the virtual operator (MVNO), or the operators that partner
with the MNO of the SIM card in foreign countries (Roaming). We
explain in the Dataset Processing section how we mitigate this issue.
ii) The measurement coverage is largely dependent on the version
of Android and the cell phone maker. Indeed, the Android API can
return the RSSI of the serving cell for all smartphones, but only the
most recent versions of Android can also return the neighboring
cells’ RSSI. In addition, this API tends to be quite buggy due to
the Android RIL (Radio Interface Layer, which is closed-source and
vendor-specific. In particular, some smartphones return invalid RSSI
measurements (outside of the range given in Table 5.1). We discuss in
Dataset Cleaning how we identify and remove invalid measurements.
iii) Smartphones periodically scan for cellular networks to ensure
continuity of service. To speed up network scanning, smartphones
follow priority rules that are defined by the network and stored in
the SIM card. This means that a given smartphone may not scan for
all the cellular Radio Access Technology (RAT), but instead, scan
only high priority RATs. For example it may scan only 4G and 3G
networks, excluding 2G. As a result, we expect the cellular scans not
to include all the cellular generations in a single scan.

Last, the received power is measured using the Received Signal
Strength Indicator (RSSI). Therefore, our measurements do not take
into account the effective load of the wireless channel.
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5.1.2 Dataset characteristics

In this study, we use all the exposure scans collected from January
2017 to December 2020 (4 years) representing 506,100 user profiles
and 6,438 million measured RSSI.

We first clean this raw dataset as follows: i) we remove all measure-
ments with invalid GPS coordinates, ii) we remove all measurements
with invalid RSSI values, iii) we keep only measurements from the 13
countries with the largest number of measurements, iv) we remove
all CDMA/EVDO measurements.

Then, we process the remaining measurements: v) we convert all
timestamps to the local time of the country of origin, vi) we identify
the Wi-Fi physical sources, vii) we attribute each Bluetooth measure-
ment to an atomic scan. The following sections detail each of these
seven steps.

Dataset cleaning

Invalid GPS coordinates removal Background measurements are
quite fast (typically a few seconds). There is usually not enough time
to get a valid GPS coordinate from scratch, that is, when the GPS was
not activated before the scan or when no prior information is cached
to help the GPS converge faster to a location. However, location is a
system-wide property, so if another app or the system has recently
accessed the device location, we will benefit from this when we
make the scan. Also, when the device is not power-constrained, we
can allow more time to get a valid GPS location.

When a GPS coordinate cannot be retrieved in the ElectroSmart app,
we set both the latitude and the longitude associated with a scan
to either 0 or -1 depending on the root cause (in this chapter, we
do not exploit this root cause). As one of our goals is to explore
the evolution of the exposure per country, we removed all scans
with a GPS coordinate set to either 0 or -1. We removed 7.9% of the
Wi-Fi measurements, 9% of the Bluetooth measurements, 18.2% of
the 2G measurements, 19.8% of the 3G measurements, and 12.8%
of the 4G measurements. Overall, we removed 11.2% of all the raw
measurements by filtering out invalid GPS coordinates.

Invalid RSSI removal The Android OS is an open-source soft-
ware program that is common to all Android devices, but each
smartphone manufacturer adapts it to their hardware by performing
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customization and developing drivers, all of which are proprietary.
Therefore, each smartphone model can come with specific bugs [91].
This step focuses on the RSSI, which is produced by the proprietary
Radio Interface Layer (RIL).

Fortunately, each wireless standard comes with a valid range for the
RSSI value, as shown in Table 5.1. We can therefore easily filter out
each measurement with an out-of-range RSSI value. We removed
0.07% of the Wi-Fi measurements, 0.04% of the Bluetooth measure-
ments, 0.8% of the 2G measurements, 2.4% of the 3G measurements,
and 14.1% of the 4G measurements. After this removal step, 85.9%
of all the raw measurements remained.

In addition to the out-of-range values, we also observed in-range
abnormal values for cellular measurements (2G, 3G, 4G). Abnormal
values are in the valid range but tend to appear with higher fre-
quency in the same exposure scan. The root cause of these abnormal
values is hard to pinpoint as it most likely comes from bugs in the
proprietary RIL. In particular, we observed that all smartphones with
an Exynos [192] System on Chip (SoC)∗ have an abnormally high
number of -51 dBm measurements: for all cellular measurements
performed from smartphones with an Exynos SoC, the -51 dBm
values represent 71% of all cellular measurements, whereas, they
represent 1.91% for all smartphones running any SoC other than
Exynos.

We found that the cells reporting abnormal values correspond
to fake cells, that is, when the RIL reports a cell, but it does not
correspond to a real measured cell. Indeed, when a smartphone
connects to a cellular operator, it measures various performance
indicators (including the RSSI), and connects to the cell with the best
performance indicator; we call this cell the serving cell. All the other
cells are called neighboring cells. We found that for 3G, the percentage
of neighboring cells measured by smartphones with an Exynos SoC
is 21.8% of all measured cells, whereas it is 2.7% for smartphones
running any SoC other than Exynos. This is a clear indication that
smartphones with an Exynos SoC report fake neighboring cells, at
least for 3G.

Due to the bogus behavior of smartphones running an Exynos
SoC, we decided to adopt a conservative strategy by removing
all measurements (Wi-Fi, Bluetooth, 2G, 3G, 4G) performed by a
smartphone with an Exynos SoC. Even if the issue does not concern
Wi-Fi and Bluetooth, removing only cellular measurements (while

∗ Most likely, the issue comes from the modem associated with the Exynos SoC,
but we only have access to the SoC name from the Android API.
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keeping Wi-Fi and Bluetooth measurements) would have affected our
discussion of personal exposure by changing the proportion of the
sources of exposure. We removed 24.4% of the Wi-Fi measurements,
33.5% of the Bluetooth measurements, 7.9% of the 2G measurements,
40.6% of the 3G measurements, and 10.8% of the 4G measurements.
After this removal step, 62.6% of all raw measurements remained.

For the sake of completeness, we note that we also observed an
abnormally large number of measurements with a -113 dBm RSSI
for 2G and, to a lesser extent, for 3G. We did not, however, find any
correlation between these -113 dBm measurements and a specific
SoC, device brand, or Android version. As dBm are in a logarithmic
scale, and since we perform all our computations in Watt, which is
in a linear scale, the impact of these measurements on the rest of
this chapter is negligible.

Included countries ElectroSmart was released in August 2016 in
two languages, English and French. We added Italian and German
in March 2019, and Spanish and Portuguese in January 2020. France
is the country with the largest number of measurements (36% of all
measurements after removing invalid GPS and RSSI), followed by
the USA (27.5%), Italy (7.9%), and Germany (4.6%).

We restricted this study to the 13 countries with the largest number
of measurements. In addition to France, the USA, Italy, and Germany,
we included (in order from the highest to the lowest number of
measurements) Canada, the United Kingdom, Switzerland, Belgium,
Spain, the Netherlands, India, Australia, and Brazil. Although Brazil
accounts for only 0.5% of all measurements, this still represents 21.6
million measurements and 2668 unique users.

Altogether, the excluded countries represent 9.3% of all measure-
ments. So, after this step, 56.8% of all raw measurements and 50.3%
of all user profiles remained.

CDMA removal The term CDMA refers to a large family of cellular
protocols (cdmaOne, CDMA2000, EVDO) deployed mainly in North
America. ElectroSmart can measure CDMA cells, but, apart from
in the USA, we did not find CDMA measurements in any of the
selected countries. In the USA, all CDMA measurements represent
0.95% of all cellular measurements (4G measurements represent 64%
of all cellular measurements). As CDMA measurements are only
used in the USA in our filtered dataset and represent a negligible
fraction of all cellular measurements, we decided to remove all
CDMA measurements from our dataset.
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Cleaned dataset characteristics In the rest of this chapter, we will
only refer to the cleaned dataset that resulted from the previous
removal steps. This dataset contains 254,410 user profiles and 3,656
million measured RSSI. This represents 56.8% of all the measure-
ments and 50.3% of all the profiles available in the raw dataset.

In this cleaned dataset, Wi-Fi represents 58.3% of all measured RSSI,
Bluetooth 6.6%, 2G 10.5%, 3G 7.6%, and 4G 17%.

Dataset processing

Adapting to local time All the raw measurements in the dataset
are associated with a timestamp in UTC that corresponds to the
instant the corresponding signal was detected. In order to identify
day and night periods, we need to convert all timestamps into local
time. To do so, we reverse-geocode the GPS coordinate of each
measurement using OpenStreetMap’s Nominatim[193] to determine
the corresponding country. Then we convert the timestamp in UTC
to a timestamp in the local timezone of the GPS coordinate using
timezonefinder python library[194].

Identifying physical and logical Wi-Fi sources Identifying the
physical sources of radio frequencies is particularly important for
assessing exposure. This notion of physical source can be tricky. In
this chapter, a physical source is the source of a carrier signal, that
is, the source of a signal at a specific frequency. For Bluetooth, 2G,
3G, and 4G, one detected signal corresponds to one physical source,
but this is not the case for Wi-Fi.

A Wi-Fi access point usually has one or two physical sources of
emission, but the signals we measure correspond to logical sources,
and it is common to have multiple logical sources for one physical
source. We can obtain the carrier signal frequency for each measured
source, and one might argue that this information is enough to
identify the physical sources. However, it is not the case, as different
physical sources can use the same frequency. This is a common issue
in Wi-Fi as the number of available frequencies (called channels) is
limited, and the density of sources is high.

Wi-Fi networks are based on the notion of a service set, that is,
the idea that logical networks can be layered on top of a physical
network. Such logical networks are identified by a Service Set ID
(SSID) (usually a human-readable string) associated with a Basic
Service Set ID (BSSID), which is a 6-byte, internationally unique
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identifier usually derived from the MAC address of the access point.
The strategy used to derive a BSSID from a MAC address depends
on the equipment and administrator. We observed three strategies:
the BSSID differs from the MAC address by the first byte, the last
byte, or both the first and last bytes.

Therefore, the rule we apply to identify a physical source in a user
scan is the following: if several Wi-Fi measurements report the same
frequency and have the same BSSID (excluding the first and last
bytes in the comparison), we associate them to the same physical
source. In addition, as logical sources for the same physical source
might report different RSSI (because the measurements might not
be performed at the exact same time), we consider that the RSSI of
the physical source is the maximum RSSI of all the associated logical
sources for a given scan.

In the rest of this chapter, all results we report for Wi-Fi are for
physical sources.

Bluetooth scan synchronization When counting the number of
sources, it is important to use the concept of an atomic scan, that
is, a scan that reflects the instantaneous exposure as measured by
the smartphone. Cellular and Wi-Fi scans are atomic because the
Android API returns all current sources in a single call or callback.
However, this is not the case for Bluetooth. When we start a Bluetooth
scan, the smartphone will perform a Bluetooth inquiry request and
wait for an answer from devices in the vicinity [195]. Therefore,
devices will reply one by one, usually within 15 seconds of the start
of the scan.

The heuristic we use to attribute replying devices to an atomic scan
is to group together all Bluetooth devices whose inter-arrival is less
than 15 seconds.

In the rest of this chapter, each time we count the number of Bluetooth
devices, we count the number of devices in an atomic scan as defined
in this section.

Mitigation of the cellular scans limited to the SIM operator We
have explained in the Limitations section that the cellular measure-
ments only take into account the RSSI from the operator declared in
the SIM card. This limitation results in a significant underestimation
of the cellular exposure. To mitigate this issue, in each scan, we
multiple the RSSI corresponding to a cellular measurement with
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the number of operators in the country in which the scan was
performed.

5.1.3 Personal exposure definition and calculation

We define personal exposure as the received power from all the
electromagnetic field sources on the radio frequency bands exposing
humans. The received power is a function of the emitting power that
is expressed in Equation (5.1) where %A is the received power, %4 is
the emitting power,  is a constant dependant on the emitting and
receiving antennas’ characteristics, 3 is the distance to the source,
and 5 is the signal frequency [144]. We see in Equation (5.1) that
distance plays an important role in personal exposure, as does signal
frequency: higher frequency signals fade faster than lower ones.

%A =  

(

1

4�35

)2

%4 (5.1)

The analysis we perform in this chapter is based on three main
calculation steps that we describe and justify in the following. i)
First, for all computations based on an exposure scan (as defined
in Methods), we consider the sum of the received power in Watt
of all signals in this scan. Computing the sum is relevant because
an exposure scan is atomic in terms of time, so it represents all
the signals simultaneously exposing an individual. ii) Second, we
average the exposure scans of each user per month. This gives a
per-user monthly average exposure. The rationale of computing
per-user monthly averages is to prevent users with a large number of
measurements from biasing the monthly average. iii) Third, for each
country, we group the per-user monthly average exposures. When a
user has been in different countries for a given month, we compute
one monthly average exposure per country. Then, we compute
the mean of these per-user monthly average exposures to obtain a
monthly average exposure per country. Finally, we obtain the yearly
average exposure by computing the mean of the monthly average
exposure per country. Computing the yearly average exposure this
way avoids bias that could be introduced by months with a larger
than average number of users.

Similar calculation can be performed to compute the average number
of sources, where we take the total number of wireless sources of
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each exposure scan, instead of taking the sum of the received power
for computing the exposure level.

5.2 Results

5.2.1 World-wide sustained growth of ratio exposure

is primarily driven by Wi-Fi

Table 5.2 shows the evolution of the total personal exposure in
the 13 countries with the largest number of measurements (as
discussed in Methods). We observe an overall trend of increased
exposure across all countries from 2017 to 2020. To confirm this trend,
we computed the Spearman correlation on the monthly average
exposure to evaluate the relationship between time (months) and
the monthly average exposure for each country. Table 5.3 shows a
significant positive correlation between time and exposure for most
countries.

It is interesting to understand how each wireless technology con-
tributes to this exposure trend. Figure 5.3 shows that the total
exposure (brown curve) has been multiplied by 2.3 (from -34.6 dBm
in 2017 to -31 dBm in 2020) over the four-year period. The trend we
observe for each wireless technology corresponds to the adoption or
decline of the corresponding technology. We observe a clear increase
in the exposure due to Wi-Fi and Bluetooth technologies, but a de-
crease in the exposure due to 2G and 3G technologies. Interestingly,
Wi-Fi is by far the largest contributor to exposure.

In summary, we observe an overall increase in total personal exposure with

time (a 2.3-fold increase from 2017 to 2020), with Wi-Fi being the largest

contributor to personal exposure.

5.2.2 Exposure growth is not explained by the

multiplication of sources

We focus now on how each source contributes to total exposure.
This is a central question because an improved understanding of the
most exposing sources could inform strategies for reducing personal
exposure.

Since the measurement of the number of sources is not reliable for
cellular technologies (see Methods), we focus on Wi-Fi and Bluetooth
technologies. We consider this limitation reasonable because, as
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Table 5.2: The yearly average exposure increased from 2017 to 2020 worldwide. This table represents the evolution
of the yearly average exposure per country. We use an ISO 3166 [196] alpha-2 country code to represent each country
using a two-letter code. We compute the mean and the 95% confidence interval for the mean using empirical bootstrap
resampling with replacement (N=1,000) [197] on the monthly average exposure for each country. The change column
shows the increased (in blue) or decreased (in red) exposure as a percentage compared to the previous year. This
percentage change is computed in Watt instead of dBm to have a linear interpretation of the change in exposure.

2017 2018 2019 2020
Country Mean 95%CI Mean 95%CI Change Mean 95%CI Change Mean 95%CI Change

BR -39.4 [-41.1, -38.1] -36.3 [-39.1, -34.1] +105% -34.4 [-37.3, -32.4] +56% -32.0 [-33.1, -31.0] +71%
AU -34.2 [-37.4, -31.5] -34.1 [-36.5, -32.1] +2% -31.0 [-34.0, -28.4] +104% -31.1 [-31.9, -30.4] -3%
NL -39.1 [-41.9, -36.9] -37.1 [-39.6, -34.9] +57% -36.3 [-38.7, -34.3] +19% -33.6 [-35.3, -32.1] +87%
IN -29.8 [-35.1, -26.3] -27.6 [-37.0, -23.6] +64% -32.2 [-33.8, -30.9] -65% -30.6 [-32.2, -29.4] +46%
ES -37.4 [-40.2, -35.1] -35.4 [-37.6, -33.6] +60% -32.9 [-34.6, -31.7] +77% -31.6 [-32.9, -30.5] +35%
BE -40.7 [-42.0, -39.7] -35.9 [-37.7, -34.3] +204% -35.4 [-36.5, -34.4] +13% -32.5 [-33.8, -31.5] +91%
CH -31.6 [-33.4, -30.2] -32.9 [-34.4, -31.7] -25% -33.1 [-34.9, -31.6] -6% -32.6 [-34.3, -31.2] +13%
GB -39.2 [-41.0, -37.7] -34.7 [-36.8, -32.9] +182% -32.7 [-35.1, -30.6] +60% -30.9 [-32.3, -29.8] +49%
CA -35.6 [-37.8, -33.8] -32.3 [-33.5, -31.0] +112% -31.9 [-33.3, -30.6] +9% -29.2 [-30.1, -28.3] +89%
DE -36.6 [-37.5, -35.9] -36.9 [-38.4, -35.8] -7% -32.8 [-34.8, -31.3] +158% -32.1 [-33.0, -31.0] +19%
IT -33.8 [-38.4, -30.7] -33.9 [-35.3, -32.7] -2% -33.3 [-34.1, -32.4] +16% -32.1 [-33.1, -31.4] +30%
US -33.5 [-34.9, -32.0] -30.5 [-31.2, -29.9] +98% -29.8 [-31.0, -28.5] +18% -27.3 [-28.3, -26.4] +76%
FR -33.5 [-34.1, -33.0] -33.0 [-33.8, -32.2] +14% -33.3 [-33.9, -32.7] -7% -31.8 [-32.2, -31.4] +42%

Table 5.3: The Spearman correlation shows a significant positive correlation between time and exposure for most

countries. The Spearman correlation is computed on the monthly averages for each country from 01/2017 to 12/2019.
We exclude 2020 from this correlation as the COVID-19 period would have significantly impacted the interpretation of
this correlation. In blue, we show the positive correlations, and in red, the negative ones. The grey two-sided p-values
are above the threshold of 0.05. When including 2020, we observe an increase in the Spearman coefficients between 0.1
and 0.2 for most countries and lower p-values for all countries (except CH), showing the impact of lockdowns on
exposure. The most significant difference is France, with a Spearman coefficient of 0.42 (p<0.01).

Country BR AU NL IN ES BE CH GB CA DE IT US FR

Score 0.44 0.45 0.37 0.14 0.42 0.63 -0.21 0.7 0.57 0.47 0.36 0.62 0.00
p-value 0.0066 0.0058 0.026 0.4 0.011 3.4E-05 0.23 2.2E-06 0.0003 0.0039 0.03 5.8E-05 0.99

shown in Figure 5.3, these two are the most significant contributors
to total exposure.

Figure 5.5 shows the relationship between individual exposure
and the number of sources in a vicinity. We observe that beyond
four to five sources, additional sources do not significantly increase
individual exposure. Although this finding might seem counter-
intuitive, it is mainly explained by the important fading with the
distance of the electromagnetic fields (see Equation 5.1). In addition,
we see in Figure 5.4 that in 50% of the exposure scans, the most
exposing Wi-Fi source (resp. Bluetooth) represents at least 83% (resp.
91%) of the total exposure due to Wi-Fi (resp. Bluetooth). Thus,
the number of sources in the vicinity is not a good predictor of
personal exposure; rather, the most exposing source is the primary
contributor to exposure.

The question now is how actionable this information is with respect
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Figure 5.3: The total exposure

of the population has been mul-

tiplied by 2.3 in 4 years. For
each year, we take the yearly
average exposure as given in
Table 5.2, convert it to Watt,
compute the mean for all 13
countries, and convert it back
to dBm. The bars represent a
95% confidence interval for the
mean using empirical bootstrap
resampling with replacement
(N=1,000) on the yearly average
exposure per country. Plots are
shifted horizontally to avoid con-
fidence interval overlap. An in-
crease of 3 dB results in the dou-
bling of the exposure.
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to exposure reduction. To answer, we focus on the Wi-Fi-connected
sources and Bluetooth-bounded devices to which a user has already
connected. Connected sources or bounded devices are usually owned
or controlled by the user and can therefore be switched off or moved
to reduce exposure. Taking all scans into account, we computed
that 41% of the time, the most exposing of all the Wi-Fi sources
is a connected one. For Bluetooth, the most exposing source is a
bounded device 10% of the time. Then, we computed what the
individual personal exposure would have been if all connected
sources and bounded devices had been switched off. While this
is an overly optimistic situation, the goal is to assess the degree
to which an individual could control exposure. Figure 5.6 shows
that, by switching off the connected sources and bounded devices,
half of the users could have reduced their total exposure by 50%
(a reduction by 3.1 dB), and 25% could have reduced their total
exposure by 90% (a reduction by 10 dB).

In summary, the growth of total exposure is not explained by a multiplication

of sources. On the contrary, a handful of sources generate most of the

personal exposure at any given time, and it is not uncommon that an

individual’s exposure is almost entirely the result of sources they either

own or associate with (for a quarter of our subjects, such sources account

for 90% of exposure).

5.2.3 Impact of regulation on personal exposure

Electromagnetic field emissions are regulated, which means that
both the spectrum used and the emitting power per frequency band
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Figure 5.4: The most exposing source is the primary driver of individual exposure. This figure represents the
distribution of the percentage contribution of the top five exposure sources in all exposure scans, with Bluetooth in
green and Wi-Fi in blue (the boxplot convention is the following: the middle line shows the median, the lower and
higher hinges show the first and third quartiles, respectively, and the lower and higher whiskers show a limit of 1.5x
the interquartile range from the lower and higher hinges, respectively). For instance, the first green box shows the
distribution of the contribution of the most exposing Bluetooth source to the sum of the exposure of all Bluetooth
sources for each exposure scan. We observe that for 75% of the exposure scans (containing at least one Bluetooth
measurement), the most exposing Bluetooth source represents at least 56% of the entire Bluetooth exposure.

are fixed by a regulatory authority. The types of cellular and Wi-Fi
sources we explore in this chapter are regulated on a country-specific
basis. Therefore, the maximum emitting power per frequency band
is not uniform in the top 13 countries we consider. By contrast,
Bluetooth uses the same emitting power in all the countries we
consider. We explore next how cellular and Wi-Fi regulation impacts
the received power.

Cellular regulation

The maximum allowed exposure of the population is fixed by the
ICNIRP international body [3]. However, each country is free to lower
the maximum exposure depending on local policies. In addition,
some countries have policies specific to some areas (e.g., Belgium
has different limits for Flanders, Wallonia, and Brussels) or specific
to some contexts (e.g., Italy enforces lower exposure near schools).
Finally, the limits are specific to the frequencies used by cellular
technologies. Here, we specifically focus on the frequencies 900 MHz,
1800 MHz, and 2100 MHz. For each country, we build a regulation
limit triplet, one limit per frequency.

To the best of our knowledge, there is no central repository of
exposure limits for all countries. To obtain a regulation limit triplet
for each of the 13 countries we consider, we consolidated several
sources [61, 198, 199], and when multiple limits were provided (due
to local policies or context), we keep the limit covering the largest
population.
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Figure 5.5: A large number

of sources in the vicinity

marginally increases individ-

ual exposure. The figure repre-
sents the distribution of all the
exposure scans in Bluetooth (top)
and Wi-Fi (bottom) when there
is a given number of (Bluetooth
or Wi-Fi) sources in the scan
(the boxplot convention is the fol-
lowing: the middle orange line
shows the median, the lower and
higher hinges show the first and
third quartiles, respectively, and
the lower and higher whiskers
show a limit of 1.5x the interquar-
tile range from the lower and
higher hinges, respectively). For
instance, the last box in the top
figure represents the sum of
the received power in Bluetooth
for exposure scans with exactly
20 detected Bluetooth sources.
We observe that beyond 4 to 5
sources in the vicinity, any addi-
tional sources marginally change
the individual exposure.
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Figure 5.7 does not show any clear correlation between regulation
limits and exposure. We must be careful interpreting this result
as there are several external factors that we do not control, such
as the deployment strategy of the cellular operators. For example,
operators might decide, in a densely populated area, to have a higher
density of base stations (to increase the supported load) emitting at
a lower power (to reduce interference). In such cases, base stations
expose the population at a level that is significantly lower than what
the regulation permits [61, 62]. Therefore, in practice, the regulation
is an upper bound to the population exposure in some extreme
cases, but in most cases, the population is exposed at levels much
lower than the regulation limits.

To confirm this hypothesis, we computed the distribution of the
cellular measurements in V/m. We obtain the electric field � in V/m
from the measured received power in dBm with the formula:

� =

9.73 5
√

50 × 10
%−30

10

2
√
�

(5.2)

where � is the antenna gain, 5 is the frequency in Hz, % is the power
in dBm, and 2 is the speed of light [200]. The antenna gain of the
smartphone is unknown, so we assume an isotropic antenna (i.e.,
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Figure 5.6: By switching off connected Wi-Fi sources and bounded Bluetooth devices, 50% of the users can reduce

their exposure by 3.1 dB, and 25% of the users can reduce it by at least 10 dB. This figure shows the distribution of
the individual exposure reduction for each user when we remove connected Wi-Fi sources and bounded Bluetooth
devices. In red, we show the median and in blue, the 75th percentile. For each user and month, we first compute
the per-user monthly average exposure. Then, for each user and month, we collect all connected Wi-Fi sources and
bounded Bluetooth devices, and we re-compute the per-user monthly average exposure by removing all collected
connected sources and bounded devices from the exposure scans. Finally, we compute the difference between the
per-user monthly average exposure in each case. The result is the distribution shown in this figure for each user.
Note that in some rare cases, the difference can be negative. This can occur when an exposure scan contains only one
connected source. By removing connected sources, we change the number of samples on which we average. As a
result, a user with only a few samples could end up with a higher average without connected sources. In this figure,
we drop users with a negative gain; they represent 0.92% of all users.
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Figure 5.7: We observe no corre-

lation between regulation lim-

its and exposure. This figure
shows the correlation between
the exposure and a regulation
limit triplet for the three cel-
lular technologies we measure,
2G, 3G, and 4G (the boxplot
convention is the following: the
middle orange line shows the
median, the lower and higher
hinges show the first and third
quartiles, respectively, and the
lower and higher whiskers show
a limit of 1.5x the interquartile
range from the lower and higher
hinges, respectively). Here is the
association between regulation
limit triplets and countries: (13,
18, 20) is for IN; (20, 20, 20) is for
IT; (21, 29, 31) is for BE; (32, 40,
43) is for CA; (41, 58, 61) is for
FR, DE, GB, CH, ES, NL, AU, BR;
(47, 61, 61) is for US.
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Figure 5.8: The population ex-

posure is orders of magnitude

lower than any existing regula-

tion limits for the considered

countries. This figure shows the
distribution of the estimated
electric field produced by cellu-
lar antennas at the receiver per
country using boxplots, where
the middle orange line shows the
median, the lower and higher
hinges show the first and third
quartiles, respectively, and the
lower and higher whiskers show
a limit of 1.5x the interquartile
range from the lower and higher
hinges, respectively. The red dot
shows the mean. Considering all
signals together, we have a me-
dian at 0.005 V/m, and a 99th

percentile at 0.18 V/m.
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� = 1). In our dataset, we have access to the cellular frequency 5 for
serving cells only. Therefore, we only keep exposure scans with a
serving cell containing a valid frequency (they represent 74.5% of
all exposure scans). We sum all the cellular RSSI† in each exposure
scan and convert the summed RSSI into V/m using the frequency
of the serving cell.

Figure 5.8 shows the distribution of the measured electric field for
each exposure scan per country. We see that the current population
exposure is orders of magnitude lower than any current regulation
limit. We found that by considering all countries together, only 1%
of the scans are above 0.18 V/m.

Admittedly, this estimation is a coarse description of reality. We now
explore how the different limitations and approximations of our
estimation will impact our conclusion. First, as described in Methods,
the maximum cellular RSSI that we can measure is −51 dBm, so
measurements above −51 dBm are capped. However, measurements
at −51 dBm represent only 1.8% of all measurements, a very small
fraction that cannot fundamentally change our conclusions. Second,
we apply the same frequency (that of the serving cell) to all cellular
measurements in the same exposure scan. Considering that 98%
of the frequencies are within [782, 2660] MHz and Equation 5.2 is
linear with 5 , we have at most a factor of 3.4. Note that this is a very
conservative estimate, as the median frequency is 1,745 MHz. Last,

† As explained in Methods, we perform the sum in Watt, and because we only
measure the RSSI for the operator declared in the SIM card, we multiply each
RSSI by the number of operators in the country in a pre-processing phase.
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in Boussad et al.[201], we show, using calibrated measurements in
an anechoic chamber, that the average deviation between the real
received power at a calibrated isotropic antenna and a smartphone
is 2.5 dB. If we translate this offset in Equation 5.2, we find that it

results in a multiplying factor of
√

10
2.5
10 ≈ 1.3.

By combining the two main sources of error, the actual exposure in
V/m could be 4.7 times higher than what we report in Extended
Data Figure 5.8, which is still orders of magnitude lower than the
most restrictive regulation limits in the countries we consider.

In summary, 99% of our exposure scans report a cellular exposure lower

than 0.18 V/m (corrected to 0.85 V/m if we take into account the multiplying

factor of 4.7, corresponding to a worst-case estimate scenario), which is

orders of magnitude lower than any regulation limits in the considered

countries.
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Figure 5.9: The mean exposure is significantly higher when the Tx power is higher in the 2.4 GHz band, but

significantly lower in the 5.3 GHz band. The figure shows the distribution of the per-user monthly average exposure
using boxplots. The middle orange line shows the median, the lower and higher hinges show the first and third
quartiles, respectively, and the lower and higher whiskers show a limit of 1.5x the interquartile range from the lower
and higher hinges, respectively. The red dot shows the mean. To compute the significance of the mean, we perform
a permutation test (N=1,000,000). The test statistic is the difference of the means for the same frequency band. The
two-sided p-value is lower than 0.001 for both bands.

Wi-Fi is a generic term that gathers together a large number of
standards covering a wide spectrum of frequencies in the 2.4 GHz
and 5 GHz bands. For Wi-Fi, the goal of regulation is to reduce
interference by limiting the maximum transmission power. This limit
might be different for each country and each frequency. Getting a
consolidated view of the various international regulations on Wi-Fi
is tricky. For this purpose, we rely on the efforts of J. W. Linville
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and S. Forshee, who maintain a consolidated file containing the
Wi-Fi emitting power per country and frequency for the Linux
kernel [202].

To understand the impact of regulation on exposure, we focus
on two frequency bands that include a large enough number of
countries using different regulations: 2.4 GHz ([2400, 2483] MHz)
and 5.3 GHz ([5250, 5350] MHz). The 2.4 GHz (resp. 5.3 GHz) band
represents 76% (resp. 2%, still 37 million measurements) of all Wi-Fi
measurements. In the 2.4 GHz band, the maximum transmission
power is 36 dBm for Australia, 30 dBm for the USA and Canada,
and 20 dBm for all the other considered countries. In the 5.3 GHz
band, the maximum transmission power is 24 dBm for Brazil, India,
and Canada, 23 dBm for the USA, and 20 dBm for all the other
considered countries.

Figure 5.9 shows that in the 2.4 GHz band, a Tx power of 20 dBm
leads to significantly lower exposure than a Tx power higher than
30 dBm. Therefore, this regulation clearly impacts population expo-
sure. Surprisingly, when we observe the exposure for the 5.3 GHz
band, we have the opposite result: a Tx power of 20 dBm leads to
significantly higher exposure than a Tx power over 23 dBm.

We can explain this seemingly contradictory result. Unlike regula-
tions for cellular, regulations for Wi-Fi limit the Tx power; therefore,
it is not surprising to see that Tx power impacts population ex-
posure. When the difference in Tx power is large (a minimum of
10 dB between the two groups in the 2.4 GHz band), the Tx power
dominates the other factors that affect population exposure. How-
ever, when the difference in the Tx power is small (a maximum of
4 dB for the 5.3 GHz band), other factors dominate the population’s
exposure. Indeed, as the attenuation increases with the frequency
(see Equation 5.1), a small 4 dB difference in the Tx power will have
a marginal impact on the total exposure compared to, for instance,
the deployment and density of Wi-Fi access points per country.

In summary, the impact of Wi-Fi regulation on population exposure depends

not only on the Tx power, but also on the frequency bands. It is worth

noting that the goal of this regulation is to limit interference rather than

population exposure.

5.2.4 The population is most exposed at home

User location is also a factor that may affect personal exposure. In
the following, we focus on two location categories: at-home and
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out-of-home. The rationale is that, according to the results reported
in the previous sections, Wi-Fi is the greatest contributor to total
exposure. We hypothesize that users are more exposed at home
because most users have Wi-Fi at home‡ and are closer to their
router than would be the case in other environments. The goal
of this section is to explore the difference between at-home and
out-of-home exposure.

To cluster measurements according to the user location, we need
users with a large enough number of measurements to identify
the home location; we call them dense users. More precisely, when
we compute the per-user monthly average exposure, we only keep
users with at least 14 days of data in that month and at least 80%
hourly sampling density. To calculate sampling density, we count
the number of hours between the first and last day we see a user in a
given month. An 80% hourly sampling density means that the user
has at least one exposure scan for 80% of the counted hours.

In our entire dataset, we have 22,907 dense users, which is 9% of all
users.

Finally, we use the DBSCAN algorithm [205] (& = 100 meters, minPts
= 24, distance = haversine) on the GPS coordinates of the dense
users for each month, independently. We label the cluster that most
frequently appears between 10PM and 8AM as the home cluster. All
the other clusters are labeled "out-of-home". Therefore, out-of-home
gathers together all other indoor and outdoor locations, including
those frequented for work, transportation, etc.

Figure 5.10 shows that users at home are significantly less exposed
to cellular radiation. The main reason is that cellular antennas
are outside, so walls attenuate the radiation. Conversely, exposure
to Wi-Fi is more important at home than out-of-home. Here, the
increased adoption of Wi-Fi technology at home is a reasonable
explanation. We computed how many hours (per month) each dense
user is connected to a Wi-Fi source at home and out-of-home. We
found that half of the users (median) are connected 91% of the
time at home, and 29% of the time out-of-home. Finally, we found
that the difference of exposure to Bluetooth between at-home and
out-of-home is not significant.

In summary, user location has a significant impact on exposure. In particu-

lar, users are more exposed to Wi-Fi at home. As they are largely connected

‡ According to the US Census Bureau, 81% of USA households had internet access
in 2016 [203]. In 2019, more than 80% of the households in the European countries
included in our study had internet access, with 83% coverage in France and 98%
in the Netherlands) [204].
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Figure 5.10: The mean exposure is significantly lower at home for cellular (-1.19 dB) and higher at home for Wi-Fi

(+1.55 dB). This figure shows the distribution of the per-user monthly average exposure for dense users when they are
at home (in green) and out-of-home (in blue) for Bluetooth, Cellular, and Wi-Fi sources. In the boxplots, the middle
orange line shows the median, the lower and higher hinges show the first and third quartiles, respectively, and the
lower and higher whiskers show a limit of 1.5x the interquartile range from the lower and higher hinges, respectively.
The red dots and labels show the mean exposure. We performed a permutation test (N=1,000,000) between at-home
and out-of-home for each of the three types of sources. We obtained a two-sided ? < 0.001 for Wi-Fi and Cellular, and
a two-sided ? = 0.09 for Bluetooth.

to Wi-Fi at home, we further conclude that personal Wi-Fi routers are the

most significant factor in at-home exposure.

5.3 Discussion and conclusion

Understanding the potential human health impacts of exposure
to radio frequencies is a long journey. An important challenge in
performing sound epidemiological studies is the complexity of
characterizing the real exposure of the population. The methods
and dataset we present here offer the first analysis of the evolution
of radio frequency exposure at population-scale for 13 countries
over four years. This change of paradigm from previous small-scale
studies has direct consequences for the current debate on population
exposure and the impact of this exposure on health.

The Council of Europe, following the principle of precaution, has
called for an As Low As Reasonably Achievable (ALARA) rule [206].
In line with this principle, one proposal is to reduce exposure
levels as low as 0.6 V/m and even 0.2 V/m in the medium term.
The debate currently includes proponents, who see ALARA as a
necessary drastic reduction to curb the current level of exposure,
and cellular operators, who oppose ALARA by arguing that it
would impede the deployment of communication infrastructure,
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and thus, eventually, access. We reveal that for the vast majority of
the population, exposure is already below the lowest ALARA level.
However, reducing the current regulation levels would still benefit
the small fraction of the population that is currently more exposed
than recommended by the ALARA rule.

Our work also fundamentally changes the debate on frequency
exposure, currently heavily centered on the regulation of cellular
operators. Not only do we show that Wi-Fi is by far the largest
contributor to population exposure, but also that a few sets of
sources, namely those used by individuals and those present at
home, are the key contributors. Offering tools for individuals to
prevent unnecessary exposure at home, or working on technology
that automatically reduces exposure are just some examples of short
and medium term ways to expand the precautionary principle. Such
approaches have not yet received the attention that they deserve.

Beyond these direct implications, we envision our work and dataset
providing a foundation for future epidemiological studies.





Conclusion and perspectives 6
Conclusion

In this thesis, we performed an interdisciplinary study of the RF-EMF
radiations used in wireless telecommunication technologies. We
covered theoretical properties of electromagnetic waves, technical
and hardware aspects of modern smartphones, and the low-level
mechanisms at protocol-level that allow the measurements of the ra-
diations. We analyzed the performances of smartphones for wireless
power measurements. Then, we performed the largest longitudinal
study (to the best of our knowledge) on the population exposure
levels to the RF-EMF radiations during 4 years, from 2017 to 2020,
in 13 different countries in the world.

In chapter 1, we started this manuscript by motivating the study by
showing the increasing concerns about the potential impact of elec-
tromagnetic radiations, especially with the proliferation of multiple
wireless technologies that became omnipresent in modern daily
life. Since 2011, when the World Health Organization considered
the non-ionizing radiations as possibly carcinogenic to humans, a
lot of research works have been done to assess the adverse health
effects of these radiations. Unfortunately, most of these studies are
inconclusive, and the current regulation about exposure is solely
based on the heating effect of the biological tissues.

We presented the current state-of-the-art in terms of assessing and
monitoring the population exposure to the RF-EMF radiations. We
presented the different approaches that can be used such as spot
measurements, microenvironmental measurements, simulations
and model-based, and personal measurements. Each approach has
its own advantages and disadvantages, researchers can pick one
approach or use a hybrid approach depending on the aim of the
study. We showed that the personal measurement approach is the
one that gives a better representation of the exposure levels as
perceived by individuals in their daily life. However, most of the
studies using this approach can face limitations in space, time,
and most importantly, population size. The personal exposimeters
are specialized equipment for measuring personal exposure to
the RF-EMF radiations. Researchers explored the possibility of
using commodity hardware such as smartphones for measuring
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wireless power. However, the performances and the accuracy of
the measurements can be impacted by the device orientation. Some
researchers rely on a mobile application running on mobile devices
to collect measurements on the population exposure to the RF-EMF
radiations and used it as a replacement for personal exposimeters.

To better understand how modern smartphones can be used to
measure the wireless power from the exposing RF-EMF sources,
especially the ones used in cellular networks, Wi-Fi, and Bluetooth,
we presented in Chapter 3 the hardware and software component
of Android smartphones. We showed how two processors running
two distinct operating systems run on a single piece of hardware,
the System-On-Chip. We showed how the Application Processor is
handling all the user applications, whereas the Baseband Processor
handles the low-level, telecommunication protocols aspects. We
showed how these two separate words communicate and exchange
messages through an abstraction layer, governed by old-school
commands called AT commands. Then, we gave a short introduction
of the different cellular generations (2G, 3G, and 4G), Wi-Fi, and
Bluetooth. We presented a low-level protocol description of the
mechanisms that occur when the smartphone performs scans of
the wireless sources. We finished Chapter 3 by summarizing the
scanning operation of the Wi-Fi network, from initiating the scan
at the software level from the Application processor to the network
exchange between the Baseband processor and the physical network,
until the reception of the scan results by the Application processor.

In Chapter 4, we performed a thorough analysis of the perfor-
mances of modern smartphones for performing wireless power
measurements. We built an experimental setup based on open-
source software (OpenAirInterface) to set up an LTE network, and
perform power measurements using an Android smartphone inside
a controlled environment. We evaluated the impact of smartphone
orientation in space with respect to the source on the accuracy of the
measurements. We showed that the accuracy of the measurements
can vary according to the orientation and polarization configura-
tion of the transmitting and the receiving antenna. We proposed
a calibration technique that uses the orientation sensors already
embedded in the smartphone to compensate for the error in the
measurements induced by the orientation. We extended the study
to outdoor measurements, and we showed how the environment
characteristics such as multi-path, in addition to the polarization
diversity used at the cellular base stations, can help reduce the im-
pact of the smartphone orientation on the measurements. However,
in situations where there is no polarization diversity, such as for
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Figure 6.1: 5G: the latest cellular
generation.

Bluetooth, the orientation can still impact the measurement accuracy,
even in a realistic environment. This is a great deal as many modern
applications rely on Bluetooth RSSI measurements, especially the
Covid-19 tracing applications.

Last but not least, we presented in Chapter 4 a longitudinal study
to characterize the population exposure to the RF-EMF radiations
during 4 years, from January 2017 to December 2020. We used
crowd-based measurements collected using the Electrosmart mobile
application, running on Android smartphones. The study included
measurements from 254,410 unique persons, from 13 different coun-
tries. We showed that the population exposure level has doubled
within 4 years. The population is exposed more to Wi-Fi, especially
in their home location, where they are exposed to their own Wi-Fi
routers. We showed how much exposure is under the control of the
person; by switching off their Wi-Fi routers and Bluetooth devices,
people can reduce their exposure levels by 50%. The dataset we
present in this work is valuable for multiple purposes, especially to
conduct epidemiological studies on the effect of the RF-EMF radia-
tions on a large population. We make this dataset publicly available
for the scientific community for further scientific exploitation.

Perspectives

We showed in this work that population exposure to the RF-EMF
radiation from wireless telecommunication technologies has in-
creased in the last 4 years. The concerns from the general public
and scientists regarding the impact of RF-EMF radiations are still of
actuality. These concerns are intensified with the arrival of the latest
cellular generation 5G, which is expected to fundamentally change
the cellular networks, and wireless telecommunication in general.
Some countries already started deploying this technology [207]. The
5G is advertised to bring a much higher throughput reaching 20
Gbps with very low latency, which is considered 500% faster than
the 4G [208, 209]. It allows more devices to be connected to the same
network simultaneously, which makes it ideal for the proliferation
of IoT devices [209, 210].

We believe that monitoring the exposure of the population to the 5G
networks at very early stages as it gets deployed is crucial to help
detect and understand any possible impact on population health.
We also believe that collecting the measurements of the exposure
to 5G must be done at a large scale. The work presented in this
thesis sets the ground for future studies to make use of 5G-capable
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smartphones to assess the population exposure to 5G network and
IoT devices through crowdsourcing.

One of the limitations of this work is that the uplink power from the
smartphone is not considered, which gives a partial image of the
exposure of the population. This is due to the software limitation on
the smartphones that do not give access to this low level information.
As we explained in Chapter 3, accessing low-level information on
the smartphone requires software modification, but this can limit
the population size that can be covered. To address this issue, we
can rely on machine learning to infer the transmitted power by the
smartphone from a set of reception indicators. Such technique is
used by Falkenberg et al.[211] to predict the transmitted power by
a smartphone in an LTE network using machine learning model.
They used passive downlink indicators as features, and trained the
model to predict the transmitted power. Building such model and
deploying it at large scale will enrich even more our data and give us
more information about the exposure level of the population from
their own smartphones.

Another important information that we believe will help us better as-
sess the exposure absorbed by individuals is to determine the human
body posture at the time of the measurement. In Electrosmart [52],
we collect the smartphone orientation in space. This orientation is
represented in form of quaternions (as discussed in Chapter 4). This
information can help us know whether the smartphone was held
near the human head during a phone call, if the smartphone is put
flat on a table, or is carried inside a pocket.



country score p_val

BR 0.53 7.80e-04
AU 0.41 1.20e-02
NL 0.32 5.70e-02
IN 0.15 3.90e-01
ES 0.30 7.70e-02
BE 0.66 1.20e-05

CH -0.19 2.60e-01
GB 0.69 3.70e-06
CA 0.56 3.50e-04
DE 0.59 1.60e-04
IT 0.43 8.50e-03

US 0.58 2.10e-04
FR 0.10 5.80e-01

Table A.2: Spearman correla-
tion between Wi-Fi exposure and
time (excluding 2020)

Chapter 5 Appendix A
In this section, we present the results of exposure evolution per
technology in the 13 countries included in our study. We present the
evolution of the exposure levels and the number of exposing sources
(for Wi-Fi and Bluetooth only) during the 4 years, from January 2017
to December 2020.

A.5 Exposure evolution by technology

A.5.1 Wi-Fi

Table A.1: Evolution of the Wi-Fi personal exposure. FCC countries highlighted in gray.

2017 2018 2019 2020
Country Mean 95%CI Mean 95%CI Change Mean 95%CI Change Mean 95%CI Change

BR -40.0 [-41.7, -38.5] -36.0 [-38.4, -34.0] +151% -34.1 [-36.8, -32.3] +53% -31.9 [-32.9, -31.0] +66%
AU -33.9 [-37.1, -31.2] -33.2 [-36.0, -31.1] +15% -30.9 [-34.3, -28.4] +71% -30.7 [-31.6, -29.8] +6%
NL -39.5 [-42.7, -37.4] -36.4 [-38.7, -34.4] +106% -36.4 [-39.0, -34.1] +0% -33.4 [-35.0, -31.9] +97%
IN -29.3 [-34.5, -26.1] -27.3 [-36.6, -23.2] +60% -31.4 [-32.8, -30.3] -61% -29.9 [-31.6, -28.7] +40%
ES -37.1 [-40.2, -34.6] -35.2 [-37.7, -33.3] +53% -33.7 [-35.5, -32.2] +43% -31.2 [-32.5, -30.1] +78%
BE -40.2 [-41.5, -39.1] -36.0 [-38.2, -34.5] +162% -34.6 [-35.9, -33.5] +39% -33.1 [-34.4, -32.0] +39%
CH -30.9 [-32.8, -29.5] -32.5 [-33.9, -31.3] -30% -32.6 [-34.4, -31.2] -2% -32.6 [-34.2, -31.2] -1%
GB -39.6 [-41.5, -38.1] -34.2 [-36.9, -32.1] +250% -32.9 [-35.2, -30.9] +34% -31.5 [-32.8, -30.4] +39%
CA -35.0 [-38.0, -32.6] -31.9 [-33.2, -30.6] +102% -31.7 [-33.0, -30.6] +4% -29.1 [-30.0, -28.3] +86%
DE -36.8 [-38.0, -35.8] -36.7 [-38.2, -35.5] +4% -32.4 [-34.0, -30.9] +169% -32.5 [-33.1, -31.9] -3%
IT -33.8 [-38.8, -30.7] -33.9 [-35.2, -32.7] -2% -32.6 [-33.5, -32.0] +33% -31.8 [-32.6, -31.1] +21%
US -33.3 [-34.8, -31.8] -30.2 [-30.9, -29.6] +102% -30.2 [-30.8, -29.6] +0% -29.9 [-30.2, -29.4] +8%
FR -33.4 [-34.0, -32.9] -33.0 [-33.8, -32.2] +11% -33.2 [-33.8, -32.6] -3% -31.5 [-32.0, -31.1] +45%

Table A.1 shows the evolution of the mean exposure to Wi-Fi on the
top 13 countries. The personal exposure to Wi-Fi has increased from
2017 to 2020 in most of the countries. The increase in exposure varies
across different countries ranging from +4% to 250%. Switzerland
had less exposure in 2018 compared to 2017, to remain stable around
32.5 dBm in 2019 and 2020. India had a decrease in exposure in
2019 by -61% compared to 2018, but gained +40% in 2020 to reach
-29.9 dBm. The FCC countries (highlighted in gray) are among the
most exposed countries to Wi-Fi.

The Spearman correlations between the monthly personal exposure
to Wi-Fi and time (excluding 2020) shows a significant increasing
trends in 8 countries (min=0.41, max=0.69, with p<0.05). The increase
is not significant for France, Spain, India, and the Netherlands.
Switzerland shows an insignificant decrease with Spearman score
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of -0.19 (p>0.05). Including 2020 data, the Spearman scores increase
by 0.13, and the p-values decrease by 8%, on average. The effect of
adding 2020 data is mainly noticeable for France and India, with
an increase in Spearman score by 0.38 and 0.16, respectively, with a
decrease in the p-values by 36% and 58%, respectively.

The increase in Wi-Fi exposure does not correspond to an important
increase in the number of Wi-Fi sources. As described in Section 5.1.3,
we compute the evolution of the number of Wi-Fi sources from 2017
to 2020. The results are shown in Table A.3. The slight change in
the number of Wi-Fi sources ranges from -12% to +11%. People see
different number of Wi-Fi sources in the different countries, ranging
from around 5 to 12 sources. Countries with higher Wi-Fi household
penetration such as the Netherlands [203, 204], have higher number
of Wi-Fi sources.

Table A.3: Evolution of the number of Wi-Fi sources. FCC countries highlighted in gray.

2017 2018 2019 2020
Country Mean 95%CI Mean 95%CI Change Mean 95%CI Change Mean 95%CI Change

BR 7.71 [6.9, 8.5] 7.27 [6.8, 7.8] -6% 8.05 [7.4, 8.7] +11% 7.58 [7.3, 7.8] -6%
AU 7.15 [6.1, 8.3] 6.38 [5.8, 7.0] -11% 6.30 [5.8, 6.8] -1% 6.42 [6.1, 6.7] +2%
NL 10.67 [9.4, 12.1] 11.72 [10.7, 12.8] +10% 11.03 [9.9, 12.1] -6% 11.36 [10.8, 11.8] +3%
IN 5.12 [4.2, 6.0] 4.64 [4.0, 5.4] -9% 5.02 [4.7, 5.3] +8% 4.42 [4.2, 4.6] -12%
ES 9.24 [8.3, 10.2] 9.28 [8.6, 9.9] +0% 9.57 [9.0, 10.3] +3% 9.87 [9.6, 10.2] +3%
BE 7.97 [7.2, 8.8] 7.95 [7.4, 8.5] +0% 7.62 [7.2, 8.1] -4% 7.56 [7.3, 7.8] -1%
CH 8.09 [7.2, 8.9] 8.24 [7.8, 8.7] +2% 8.22 [7.8, 8.6] +0% 7.67 [7.4, 8.0] -7%
GB 9.03 [7.7, 10.3] 9.22 [8.5, 9.9] +2% 8.05 [7.6, 8.5] -13% 8.23 [8.0, 8.4] +2%
CA 9.88 [9.0, 10.8] 10.39 [9.9, 10.8] +5% 10.88 [10.6, 11.2] +5% 12.00 [11.7, 12.3] +10%
DE 8.20 [7.6, 8.9] 7.45 [7.2, 7.7] -9% 7.53 [7.3, 7.7] +1% 7.55 [7.3, 7.8] +0%
IT 5.28 [5.0, 5.6] 5.62 [5.3, 5.9] +6% 5.88 [5.7, 6.1] +5% 5.72 [5.5, 5.9] -3%
US 10.53 [10.0, 11.1] 10.79 [10.5, 11.0] +2% 10.38 [10.1, 10.6] -4% 11.33 [11.0, 11.6] +9%
FR 7.28 [7.0, 7.6] 6.51 [6.3, 6.7] -10% 6.24 [6.0, 6.4] -4% 6.04 [5.9, 6.2] -3%

A.5.2 Bluetooth

The exposure to Bluetooth had an increasing rate in most of the
countries from 2017 to 2020. As shown in Table A.4, in 2018, the
increase ranged from +39% to +522% in most countries, except in
Brazil, the Netherlands, India, Germany, and USA, with a decrease
in exposure by -37% to -95% compared to 2017. The exposure levels
increased in 2019 by +18% to +1124% in 10 countries, except Belgium,
Switzerland, and France. The exposure to Bluetooth didn’t increase
by much, except in 4 countries (Belgium, Switzerland, Germany, and
USA).

The increase in the Bluetooth exposure level corresponds to an
increase in the number of Bluetooth devices. The population of the
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13 countries had more Bluetooth sources around them year after year,
except in 2020, where people had no almost no increase, and rather a
decrease in the number of Bluetooth sources in some countries such
as Brazil. The results are shown in Table A.5. Again, the increasing
trend in the Bluetooth devices has been impacted by the pandemic
in 2020, with the application of the lockdown.

Table A.4: Evolution of Bluetooth exposure.

2017 2018 2019 2020
Country Mean 95%CI Mean 95%CI Change Mean 95%CI Change Mean 95%CI Change

BR -38.5 [-44.8, -35.5] -49.9 [-52.9, -47.9] -93% -42.2 [-50.7, -38.0] +484% -43.5 [-48.3, -41.1] -26%
AU -51.8 [-55.5, -49.2] -44.1 [-47.4, -41.6] +484% -38.9 [-44.5, -35.8] +236% -40.0 [-42.1, -38.2] -23%
NL -40.5 [-53.7, -36.8] -45.4 [-50.8, -42.2] -68% -36.1 [-44.9, -32.2] +767% -40.4 [-44.3, -38.1] -63%
IN -40.9 [-50.7, -36.5] -45.9 [-50.3, -43.5] -68% -41.5 [-44.2, -39.2] +170% -41.2 [-42.4, -40.0] +8%
ES -45.2 [-48.7, -43.0] -37.2 [-41.8, -34.1] +522% -35.1 [-43.6, -31.5] +62% -40.0 [-41.7, -38.7] -68%
BE -46.0 [-50.9, -43.5] -39.5 [-41.8, -37.9] +349% -44.1 [-47.3, -42.0] -65% -35.0 [-40.9, -32.0] +710%
CH -45.4 [-49.3, -43.0] -39.1 [-42.2, -36.8] +323% -41.8 [-43.3, -40.8] -47% -36.4 [-40.4, -33.4] +252%
GB -45.2 [-53.3, -41.7] -41.1 [-44.3, -38.8] +155% -36.4 [-40.1, -33.7] +195% -35.3 [-38.6, -32.6] +31%
CA -48.5 [-52.0, -46.3] -45.2 [-48.9, -42.9] +115% -43.2 [-46.4, -40.3] +56% -41.6 [-42.8, -40.6] +45%
DE -29.0 [-43.2, -25.5] -41.8 [-45.2, -39.3] -95% -41.1 [-43.3, -39.2] +18% -36.6 [-40.0, -33.6] +180%
IT -39.3 [-43.7, -36.7] -37.9 [-42.1, -35.5] +39% -34.4 [-41.3, -30.4] +122% -38.5 [-39.5, -37.6] -61%
US -44.4 [-48.2, -42.1] -46.4 [-47.3, -45.6] -37% -35.5 [-42.4, -31.5] +1124% -29.1 [-31.0, -27.7] +337%
FR -37.9 [-39.3, -36.9] -33.2 [-36.1, -31.2] +195% -36.6 [-37.6, -35.7] -54% -36.3 [-38.2, -34.8] +7%

Table A.5: Evolution of Bluetooth number of sources.

2017 2018 2019 2020
Country Mean 95%CI Mean 95%CI Change Mean 95%CI Change Mean 95%CI Change

BR 1.61 [1.3, 1.9] 2.10 [1.6, 2.7] +31% 3.00 [2.3, 3.7] +43% 2.20 [2.0, 2.4] -27%
AU 2.23 [1.9, 2.7] 3.26 [2.6, 4.0] +46% 3.41 [2.9, 3.9] +5% 3.74 [3.5, 4.0] +9%
NL 2.39 [1.8, 3.1] 3.54 [2.7, 4.4] +48% 4.02 [3.2, 4.9] +14% 3.66 [3.4, 4.0] -9%
IN 1.87 [1.6, 2.2] 2.07 [1.5, 2.7] +11% 2.27 [1.9, 2.6] +10% 2.48 [2.0, 3.2] +10%
ES 3.01 [1.6, 5.4] 3.09 [2.6, 3.7] +3% 4.31 [3.6, 5.0] +39% 3.74 [3.4, 4.0] -13%
BE 1.71 [1.5, 1.9] 2.42 [2.1, 2.7] +41% 3.22 [2.8, 3.6] +33% 3.02 [2.7, 3.5] -6%
CH 1.91 [1.6, 2.2] 3.23 [2.8, 3.6] +69% 4.49 [4.0, 4.9] +39% 4.55 [4.1, 5.0] +1%
GB 2.94 [2.3, 3.7] 3.51 [2.9, 4.1] +20% 4.16 [3.5, 4.7] +18% 3.52 [3.2, 3.8] -15%
CA 2.67 [2.3, 3.0] 2.79 [2.5, 3.1] +4% 4.39 [4.1, 4.7] +57% 4.54 [4.3, 4.8] +3%
DE 1.66 [1.4, 1.9] 2.53 [2.2, 2.9] +53% 3.34 [3.0, 3.6] +32% 3.34 [3.1, 3.5] +0%
IT 1.61 [1.5, 1.7] 2.10 [1.9, 2.3] +31% 2.78 [2.5, 3.0] +32% 2.80 [2.6, 3.0] +1%
US 2.22 [2.0, 2.5] 2.86 [2.6, 3.1] +28% 4.28 [4.1, 4.5] +50% 4.14 [4.0, 4.3] -3%
FR 1.76 [1.6, 1.9] 2.08 [1.9, 2.3] +18% 2.95 [2.7, 3.2] +41% 3.16 [3.0, 3.3] +7%

A.5.3 Cellular networks

During the 4 years, the exposure levels to 2G and 3G has decreased
in almost all 13 countries. The exposure to 2G has decreased by about
10 dB, and by about 6 dB for 3G. As opposed to the two previous
cellular generations, the exposure to 4G has slightly increased in
most countries during the 4 years, to reach around -52 dBm by 2020.
This trends across the different cellular generations can be linked
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with the deprecation of the older generations (2G and 3G), and the
adoption and deployment of the newer generation, the 4G LTE.

Table A.6: Evolution of 2G exposure.

2017 2018 2019 2020
Country Mean 95%CI Mean 95%CI Change Mean 95%CI Change Mean 95%CI Change

BR -60.9 [-66.0, -58.4] -57.7 [-60.5, -55.4] +109% -58.2 [-60.2, -56.7] -12% -55.8 [-60.0, -52.5] +75%
AU -53.0 [-78.8, -48.4] -69.7 [-80.3, -66.4] -98% -61.7 [-66.4, -59.2] +530% -61.9 [-79.9, -58.1] -4%
NL -58.0 [-60.5, -56.4] -55.0 [-61.1, -52.0] +96% -61.8 [-63.7, -60.2] -79% -59.0 [-63.8, -55.4] +91%
IN -48.1 [-50.1, -46.6] -48.2 [-50.2, -46.6] -2% -55.4 [-56.4, -54.5] -81% -55.5 [-56.7, -54.1] -1%
ES -54.3 [-59.7, -51.5] -56.9 [-59.9, -54.8] -45% -56.6 [-60.7, -54.1] +8% -58.4 [-61.9, -55.5] -35%
BE -53.1 [-56.2, -51.3] -60.3 [-61.8, -58.7] -81% -63.0 [-63.6, -62.4] -46% -58.9 [-64.2, -55.2] +157%
CH -48.0 [-51.9, -45.6] -56.6 [-59.6, -54.5] -86% -60.7 [-65.9, -58.1] -61% -62.6 [-67.8, -59.5] -35%
GB -47.5 [-51.7, -45.2] -56.9 [-63.0, -53.9] -88% -63.2 [-64.3, -62.3] -77% -61.5 [-64.5, -58.7] +48%
CA -48.7 [-54.5, -46.2] -52.3 [-60.5, -48.6] -56% -55.3 [-66.8, -51.5] -49% -60.9 [-65.4, -57.7] -73%
DE -49.2 [-50.7, -48.2] -53.2 [-54.7, -51.8] -60% -58.0 [-59.1, -56.9] -67% -57.2 [-61.2, -53.9] +19%
IT -49.2 [-52.0, -47.4] -51.9 [-54.0, -50.3] -46% -58.9 [-60.1, -57.8] -80% -58.8 [-62.5, -55.5] +3%
US -57.8 [-62.7, -54.8] -62.6 [-66.3, -60.0] -67% -68.2 [-69.4, -67.3] -72% -65.8 [-69.2, -63.0] +75%
FR -49.1 [-50.7, -48.1] -52.0 [-54.1, -50.2] -49% -56.9 [-57.6, -56.2] -67% -57.7 [-60.6, -54.9] -16%

Table A.7: Evolution of 3G exposure.

2017 2018 2019 2020
Country Mean 95%CI Mean 95%CI Change Mean 95%CI Change Mean 95%CI Change

BR -49.8 [-53.5, -47.1] -53.1 [-54.0, -52.4] -54% -51.7 [-53.3, -50.6] +39% -51.3 [-53.7, -48.8] +10%
AU -43.9 [-47.8, -41.6] -49.5 [-52.4, -47.6] -73% -51.4 [-53.5, -49.8] -36% -53.1 [-56.6, -50.0] -32%
NL -47.7 [-53.7, -44.8] -48.8 [-51.1, -47.0] -21% -51.8 [-53.4, -50.6] -50% -54.7 [-57.6, -51.9] -48%
IN -45.5 [-48.2, -44.0] -45.5 [-47.0, -44.5] +1% -48.3 [-49.7, -47.1] -47% -49.4 [-51.2, -47.8] -22%
ES -47.3 [-49.1, -45.9] -49.9 [-51.9, -48.3] -45% -50.3 [-51.7, -49.1] -8% -50.7 [-53.3, -48.3] -10%
BE -49.0 [-52.3, -47.1] -54.9 [-56.3, -53.7] -74% -57.0 [-57.7, -56.4] -38% -53.9 [-56.6, -51.3] +103%
CH -44.6 [-46.6, -43.3] -52.0 [-53.1, -51.2] -82% -52.7 [-53.8, -51.7] -14% -53.5 [-55.5, -51.6] -18%
GB -45.2 [-48.4, -43.3] -51.7 [-54.7, -49.5] -78% -53.7 [-54.5, -53.0] -36% -53.3 [-56.0, -50.6] +9%
CA -47.2 [-51.0, -45.1] -49.9 [-50.6, -49.2] -46% -55.8 [-58.4, -53.8] -74% -57.5 [-59.4, -55.3] -33%
DE -48.8 [-51.1, -47.0] -49.2 [-49.9, -48.7] -9% -51.5 [-52.0, -51.1] -41% -52.9 [-53.5, -52.0] -27%
IT -45.8 [-47.7, -44.6] -48.7 [-49.7, -47.9] -49% -53.2 [-54.2, -52.2] -64% -53.6 [-55.6, -51.2] -9%
US -47.2 [-49.5, -45.4] -51.6 [-52.5, -50.8] -64% -53.4 [-54.0, -52.8] -33% -56.7 [-57.8, -55.8] -54%
FR -44.1 [-45.7, -43.1] -46.8 [-48.5, -45.4] -47% -50.5 [-51.1, -49.9] -56% -52.4 [-54.7, -50.0] -36%
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Table A.8: Evolution of 4G exposure.

2017 2018 2019 2020
Country Mean 95%CI Mean 95%CI Change Mean 95%CI Change Mean 95%CI Change

BR -55.8 [-57.5, -54.5] -52.2 [-53.1, -51.3] +132% -50.5 [-51.4, -49.7] +47% -49.5 [-49.8, -49.3] +25%
AU -52.1 [-53.0, -51.3] -51.1 [-51.8, -50.4] +25% -51.1 [-51.7, -50.6] -1% -51.0 [-51.4, -50.5] +4%
NL -50.4 [-51.7, -49.3] -50.4 [-50.9, -49.9] +1% -50.8 [-51.3, -50.3] -9% -51.1 [-51.3, -50.9] -7%
IN -48.3 [-48.8, -47.7] -48.3 [-48.7, -47.8] -1% -47.8 [-48.2, -47.5] +12% -47.4 [-47.8, -47.1] +9%
ES -50.9 [-51.7, -50.2] -51.3 [-51.5, -51.0] -7% -50.7 [-51.0, -50.3] +15% -50.9 [-51.1, -50.7] -6%
BE -52.5 [-53.1, -51.9] -52.6 [-52.9, -52.1] -1% -52.2 [-52.5, -51.9] +8% -53.2 [-53.4, -53.0] -19%
CH -53.3 [-53.8, -52.8] -53.2 [-53.4, -53.0] +2% -52.9 [-53.1, -52.7] +6% -53.3 [-53.6, -53.0] -7%
GB -51.5 [-52.8, -50.6] -51.5 [-51.9, -51.2] +1% -51.5 [-51.8, -51.2] +0% -52.0 [-52.2, -51.7] -10%
CA -53.8 [-55.0, -52.4] -52.1 [-52.4, -51.9] +48% -51.7 [-52.0, -51.4] +9% -51.9 [-52.0, -51.7] -4%
DE -53.3 [-53.6, -52.9] -52.7 [-53.1, -52.3] +14% -53.4 [-53.5, -53.3] -14% -53.5 [-53.7, -53.3] -3%
IT -51.7 [-52.2, -51.2] -52.2 [-52.5, -52.0] -12% -52.5 [-52.8, -52.3] -7% -52.0 [-52.1, -51.8] +14%
US -54.1 [-54.8, -53.5] -53.2 [-53.3, -53.0] +23% -52.6 [-52.7, -52.4] +14% -52.3 [-52.5, -52.1] +7%
FR -52.5 [-52.8, -52.3] -51.9 [-52.0, -51.8] +16% -51.8 [-51.9, -51.7] +3% -51.7 [-51.8, -51.6] +2%
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