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Abstract 

Performance of outdoor localization systems has become excellent since the emergence 

of GPS. Indoors, the need for positioning services in all environments is highly recommended.  

Up to date, there is no standard solution equivalent to indoor GPS. Several technologies 

and different techniques are used for indoor localization. Radio Frequency Identification 

(RFID) has received great attention, thanks to its low cost, high accuracy and Non-Line-of-

Sight (NLoS) detection. RFID positioning systems can use either active or passive tags. Our 

work proposes a simple and effective active UHF RFID-based indoor localization system 

featuring sub-metric accuracy. 

 First of all, two environments are modeled via WinProp tool, in order to reduce manpower 

and time needed for measurements. 

Most RFID indoor localization systems, found in the literature, use Received Signal 

Strength (RSS) based techniques for distances estimation. They mainly consist of two stages: 

offline and online. Within our offline stage, RSS values are collected to build a radio map and 

extract the attenuation parameters of the considered environment. Online, the RFID reader 

position is estimated by multilateration. 

Moreover, present systems suffer from low accuracy and limited stability. The proposed 

system’s parameters are improved through different approaches. First, the RSSs fluctuations 

are minimized by using the Maximum Likelihood Estimator (MLE) as combining technique. 

Second, two new generic and configurable empirical signal propagation models: the Dual One 

Slope Model (DOSM) and the Dual One Slope with Second Order Model (DOSSOM) are 

defined to better characterize signals propagation in a classroom at EFREI Paris. Associated 

with a new calibration procedure based on Weighted Average Attenuation Factors (WAAF), 

these two models extract accurately the environmental parameters offline and improve the 

localization accuracy, reaching 90 centimeters using only four active RFID tags.  

In addition, the concept of “constellation of tags” is introduced to even more enhance 

the system’s performance. The constellation is a group of tags that operate together at the same 

frequency creating signals’ diversity. The complete proposed localization system features an 

optimal location accuracy of 60 centimeters, with only 0.25 RFID tags per square meter. This 

reduced number of tags deployed confirms the system cost effectiveness. 
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Résumé général 

1. Introduction 

De plus en plus de services nécessitent des informations de localisation pour satisfaire 

aux besoins des utilisateurs. Le système de positionnement global par satellite (Global 

Positioning System GPS) qui apporte ces données dans les environnements extérieurs 

(Outdoor) est désormais généralisé. Les performances de ce système sont devenues excellentes 

et permettent d’atteindre des précisions de l’ordre de quelques mètres.  

Le besoin de se localiser dans tous types d’environnements est devenu essentiel dans 

diverses applications, par exemple pour trouver des objets perdus ou pour aider les personnes 

âgées dans le cadre de leurs activités quotidiennes. On peut aussi utiliser ces systèmes dans le 

domaine médical pour détecter la position des patients dans les hôpitaux, ou celle des véhicules 

dans les parcs de stationnement. 

Cependant, la détection des positions des personnes et des objets dans les 

environnements intérieurs (Indoor) présente une problématique toujours d’actualité vu que le 

système GPS fonctionne en mode dégradé, ou ne fonctionne pas en indoor. En effet, la 

localisation indoor est particulièrement difficile pour plusieurs raisons : la présence de multi-

trajets, l’importance de la visibilité indirecte (None Line-of-Sight NLoS), l’atténuation et les 

évanouissements des signaux à cause de la présence d’obstacles. 

Des travaux de recherche sont menés aujourd’hui pour concevoir des systèmes de 

positionnement indoor (Indoor Positioning System, IPS) avec une grande précision, un coût 

raisonnable et une adaptation à des environnements et des scénarios multiples. Souvent, un 

certain compromis entre la précision, la couverture, le temps de latence, le coût et la robustesse, 

s’impose.  

Les systèmes de localisation indoor peuvent être classés en systèmes exogènes ou 

endogènes. Cette classification est principalement basée sur l’infrastructure disponible qui peut 

être utilisée pour fournir des informations servant à la localisation. Cependant, dans des 

environnements complexes, l’infrastructure déjà existante ne peut pas être efficace pour des 

précisions élevées. D'où la nécessité de développer des systèmes de positionnement dédiés ou 

endogènes. 



viii 
 

Au prix d’une main d’œuvre et de temps de déploiement importants, les solutions 

endogènes sont plus précises. Pour cette raison, nous nous intéressons au développement d’une 

solution de type endogène, afin d’améliorer la précision de localisation dans différents 

scénarios indoor. 

Le reste de ce résumé sera élaboré comme suit : la section 2 présente les différentes 

métriques et techniques utilisées dans les systèmes de localisation indoor. Les différentes 

technologies seront détaillées dans la section 3. La section 4 définit les limitations des systèmes 

de localisation existants et les objectifs de notre thèse. Les systèmes de localisation 

conventionnels et le système que nous utilisons comme base seront décrits dans la section 5. 

La section 6 détaille la modélisation de l’environnement de test et du matériel RFID. Le 

système complet proposé, ainsi que toutes les améliorations apportées sont détaillés et évalués 

dans la section 7. Le concept de constellation de balises, appliqué dans notre système de 

localisation, est ensuite introduit dans la section 8. Les résultats obtenus sont synthétisés en 

conclusion, section 9. 

2. Métriques et techniques de localisation indoor 

Il existe plusieurs métriques et techniques appliquées pour la localisation et le suivi des 

personnes et des objets à l’intérieur des bâtiments. Elles doivent tenir compte de la complexité 

de l’environnement afin d’atteindre un niveau de précision acceptable pour l’application. 

Parmi ces métriques, le temps d’arrivée (Time of Arrival, ToA), la différence du temps 

d’arrivée (Time Difference of Arrival, TDoA), l’angle d’arrivée (Angle of Arrival, AoA) et la 

puissance du signal reçu (Received Signal Strength, RSS) sont les plus fréquentes. ToA et 

TDoA nécessitent une synchronisation. La mesure de AoA nécessite des dispositifs complexes 

et un calibrage précis afin d’estimer la position de la cible. La phase (Phase of Arrival PoA) et 

la différence de phase (Phase Difference of Arrival PDoA) sont deux métriques précises, mais 

moins utilisées.  

La puissance du signal reçu (RSS) présente une grande simplicité et une large utilisation 

en localisation indoor, grâce à son accessibilité dans la plupart des dispositifs de 

communication. En revanche, la majorité des systèmes de localisation indoor, utilisant des 

techniques basées sur le RSS, restent de faible précision et de stabilité limitée à cause de la 

présence de multi-trajets et de la visibilité directe réduite.  
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 Les systèmes de localisation indoor utilisent différentes techniques pour déterminer la 

position de la cible, telles que : la proximité, la triangulation, la multi/trilatération et le 

fingerprinting. La technique de proximité présente une grande simplicité d’implémentation et 

dépend de la densité de balises déployées dans l’environnement considéré. Elle consiste à 

signaler que la cible est dans la zone de couverture d’au moins une balise. La technique de 

triangulation utilise des propriétés géométriques pour déterminer la position de la cible, en se 

servant de plusieurs antennes de référence. Cette approche utilise généralement différentes 

métriques telles que RSS, ToA, TDoA et AoA.  

La multi/trilatération quant à elle, est basée sur l’estimation de distances balises-cible ; 

la position de la cible étant le point d’intersection des cercles/sphères de rayons correspondants 

aux distances estimées. La trilatération utilise trois balises fixes de position connue pour la 

détection de la position de la cible et permet une localisation en deux dimensions (2D). En 

revanche, la multilatération nécessite plus de trois balises fixes, pour localiser un objet et peut 

permettre une localisation en trois dimensions (3D).  

La technique de fingerprinting est une méthode très employée. Elle est composée de 

deux étapes : hors ligne (offline) et en ligne (online). Pendant la phase hors ligne ou phase de 

calibrage, les puissances reçues sont enregistrées pour créer une carte radio (radio map) de 

l’environnement. La fiabilité de cette phase exige des ressources humaines et du temps pour 

récupérer les informations de puissance. Durant la phase en ligne, la position de la cible est 

estimée en faisant correspondre la puissance reçue avec la base de données de la carte radio à 

l’aide de méthodes probabilistes ou d’apprentissage.  

Ces quatre techniques sont appliquées dans différents scénarios de localisation indoor 

et présentent l’avantage d’être simples à mettre en œuvre pour une précision de localisation 

variable. En revanche, ces techniques ont des limitations dues entre autres à l’influence des 

obstacles ou les effets des multi-trajets.   

3. Technologies de localisation 

Plusieurs technologies sont employées par les systèmes de localisation indoor. Ces 

technologies sont divisées en plusieurs catégories : la vision, la navigation inertielle, les ondes 

acoustiques et les ondes électromagnétiques. Dans le cadre de cette thèse, nous nous 

concentrerons essentiellement sur les technologies Radiofréquence (RF) omniprésentes et peu 

coûteuses. Contrairement aux systèmes de localisation basés sur la vision, les ondes 

électromagnétiques se propagent dans l'environnement permettant la localisation dans des 
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scénarios sans visibilité directe (NLoS). Grâce à cette caractéristique, les systèmes de 

positionnement RF présentent une large zone de couverture et nécessitent moins de matériel 

que les autres systèmes. 

Les technologies hertziennes telles que ZigBee, Bluetooth, WiFi, Ultra-Wide Band ou 

RFID, sont couramment implémentées dans la plupart des objets connectés. Les trois premières 

technologies fonctionnent dans la bande de 2,4 GHz et leur précision de positionnement est 

affectée par les effets des multi-trajets dominants dans les environnements indoor.  

ZigBee est une technologie de communication sans fil. Elle présente un faible coût et 

une consommation d’énergie réduite. La portée du signal peut atteindre 100 mètres en espace 

libre. Alors que dans les environnements indoor, la couverture est généralement comprise entre 

20 et 30 mètres.      

Comme Zigbee, Bluetooth est un système de communication personnel (Wireless 

Personal Area Network, WPAN). Il partage les informations avec un haut niveau de sécurité, 

un coût et une consommation d’énergie réduits. La portée de communication en indoor est 

comprise entre 10 centimètres et 15 mètres, suivant la visibilité directe ou non. Bluetooth est 

intégré dans la plupart des téléphones portables, montres intelligentes et ordinateurs portables. 

Cette technologie peut ainsi être utilisée dans les systèmes de localisation. La dernière version 

de Bluetooth (Bluetooth Low Energie, BLE) présente une amélioration de la plage de 

couverture pour atteindre 100 mètres en outdoor. Elle permet d’utiliser différentes métriques 

de positionnement telles que RSS, ToA, TDoA et AoA.  

Wireless Fidelity (WiFi) offre un faible coût et une faible consommation d’énergie. 

Récemment, la plage de couverture du WiFi (version 802.11ax) a été augmentée de 100 mètres 

à 1 kilomètre en indoor, notamment dans les applications IoT (Internet of Things). Vu que le 

réseau WiFi est couramment déployé dans les bâtiments, il peut également être utilisé dans des 

applications de localisation, en utilisant différentes métriques de positionnement.  

Ultra-Wide Band (UWB) est une technologie radio pour les communications à courte 

portée (moins de 100 mètres) et large bande passante. Cette technologie fonctionne dans la 

gamme de fréquence comprise entre 3.1 et 10.6 GHz, avec une faible consommation d’énergie. 

En localisation indoor, UWB présente une forte résistance contre les multi-trajets due à sa large 

bande passante. La position de la cible peut être estimée en utilisant ToA, TDoA et AoA. Ainsi, 

le système de localisation avec UWB a besoin de synchronisation entre les émetteurs et les 
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récepteurs. Ce système de localisation présente également un coût élevé dû au besoin 

d’équipements spécifiques pour l’utilisateur. 

Les technologies d’identification par radiofréquence (Radio Frequency IDentification, 

RFID) sont devenues très courantes, notamment en logistique grâce à leur capacité 

d’identification en visibilité indirecte (NLoS) et leur faible coût. Les technologies RFID 

peuvent opérer dans plusieurs bandes de fréquence (Basse Fréquence de 125 kHz - 134 kHz, 

Haute Fréquence à 13,56 MHz, Ultra Haute Fréquence à 433 MHz et de 850 à 960 MHz et 

Super Haute Fréquence à 2.45 GHz et à 5.8 GHz). La position de la cible peut être estimée en 

utilisant RSS, ToA, TDoA et AoA. La précision de la localisation augmente avec le nombre de 

balises/tags RFID déployées dans l’environnement. Ces balises peuvent être classées en actives 

et passives. La balise active dispose d’un émetteur et est alimentée par batterie, ce qui la rend 

plus lourde et coûteuse. Elle permet une plage de couverture de 200 mètres. La balise passive 

fonctionne sans émetteur et avec ou sans batterie, elle est beaucoup moins chère et plus petite 

que la balise active. Le lecteur RFID est responsable de l’alimentation et la communication 

avec la balise passive. L’antenne de la balise capte l’énergie et transmet son identifiant. Sa 

plage de couverture est très variable selon la bande de fréquence utilisée, typiquement de 

quelques dizaines de centimètres à plusieurs centaines de mètres dans certains cas. La distance 

est de 1 à 3 mètres en moyenne pour les systèmes fonctionnant à 860 MHz. 

Vu que la technologie RFID active apporte des avantages pertinents, plus précisément 

le coût et la grande zone de couverture, nous avons choisi de l’utiliser pour notre système de 

localisation. Les problématique et les objectifs de notre travail seront détaillés dans la section 

suivante. 

4. Problématiques et Objectifs 

Plusieurs inconvénients entravent le développement des systèmes de localisation RFID. 

Ces systèmes, implémentés souvent avec des techniques de proximité, deviennent coûteux 

lorsqu’un grand nombre de balises et de lecteurs RFID sont déployés dans l’environnement. 

De plus, le déploiement d’un grand nombre de balises augmente les interférences. Par ailleurs, 

la variabilité dans la propagation des signaux est un problème courant dans la plupart des 

systèmes de localisation RFID basés sur le RSS. Cette instabilité est due à la non-stationnarité 

du canal, ce qui affecte la précision de la localisation. 
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Les recherches pour proposer des solutions de localisation abondent, mais les 

implémentations de ces solutions, à coût réduit, se font rares. Dans ce contexte, l’objectif de 

cette thèse est d’introduire un nouveau système de localisation avec la technologie RFID, 

offrant un coût bas, ainsi qu’une fiabilité, stabilité et précision élevées. Par conséquent, trois 

objectifs principaux sont définis : améliorer le calibrage, optimiser la densité des balises et 

augmenter la précision de la localisation (Figure R.1).  

Pour ce faire, cinq axes de recherche principaux sont menés. La première contribution 

est de modéliser de manière fiable deux environnements intérieurs, ce qui permet de remplacer 

de longues compagnes de mesure. De plus, l’estimateur de maximum de vraisemblance 

(Maximum Likelihood Estimator, MLE) est appliqué en tant que technique de combinaison 

RSS, dans le but d’atténuer les fluctuations des signaux. Le troisième axe se concentre sur la 

présentation de nouveaux modèles de propagation empiriques indoor associés à une nouvelle 

approche de calibrage déterminant les facteurs d’atténuation pondérés (Weighted Average 

Attenuation Factor, WAAF). Afin d’améliorer davantage la précision, en s’inspirant de 

l’approche MISO (Multiple Inputs Single Output), nous introduisons le concept de 

constellation de balises RFID. Cette constellation est constituée d’un groupe de balises actives, 

opérant ensemble à la même fréquence et profitant de la diversité des signaux. La taille, la 

forme et le nombre de balises de la constellation sont les principales clés pour améliorer la 

précision de la localisation (Figure R.1). 

A travers ce travail de thèse, nous proposons un système endogène de localisation RFID 

indoor qui garantit un faible coût en termes de nombre de dispositifs déployés et une précision 

de localisation d’ordre sub-métrique. Cet ordre de précision est nécessaire pour des applications 

personnelles, car c’est équivalent au pas d’un individu (moins de 1 mètre). 

Dans le but de couvrir une large zone, les balises doivent avoir une longue portée. Notre 

choix s’est porté sur un système actif fonctionnant à 433 MHz. De plus, cela permet de réduire 

la densité de balises déployées. 

Les objectifs et contributions réalisés dans ce travail de thèse sont présentés ci-dessous : 
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Figure R.1 Objectifs et contributions  

5. Système de localisation de base  

Notre système de localisation RFID se compose d’un lecteur monté sur un robot à deux 

roues et de balises RFID UHF actives fixes qui fonctionnent à la fréquence de 433 MHz. 

L’équipement RFID d’Ela-Innovation est un système propriétaire. Les tags peuvent être 

détectés jusqu'à 20 mètres en intérieur. De plus, la transmission du signal est discontinue, le 

temps d’émission est environ 1 milliseconde.  La différence de temps entre deux émissions est 

200 millisecondes. Du fait de l’intermittence de la transmission et de la durée d’acquisition, le 

canal de propagation, entre tag et lecteur, peut être considéré comme non stationnaire. 

Ce système a été déployé dans une salle de classe de 63,75 mètres carrés à EFREI Paris. 

Il est basé sur l’acquisition des puissances du signal reçu (RSS) par le lecteur RFID. 

Le processus de localisation est divisé en deux étapes : hors ligne (offline) et en ligne 

(online). L’étape hors ligne représente la phase de calibrage de l’environnement et celle en 

ligne est la phase de positionnement (Figure R.2). 
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Figure R.2 Schéma fonctionnel du système de localisation RFID de base 

La phase hors ligne consiste à établir une carte radio sous la forme d’une base de 

données reflétant l’atténuation du signal dans l’environnement considéré. Cette phase est 

réalisée à l’aide d’une seule balise RFID fixée au centre du mur principal de la salle de classe, 

suivant des trajectoires radiales (Figure R.3 a). Cette forme de trajectoires est introduite afin 

de réduire le nombre de positions de mesure tout en assurant une carte radio fiable de 

l’environnement. 

Lors de cette phase, les puissances émises par la balise RFID et reçues par le lecteur 

(RSS), sont récupérées sur 64 positions de référence espacées de 50 centimètres, sur les sept 

trajets de A30 à A150 (Figure R.3 a). A chaque position, 200 acquisitions de puissance sont 

enregistrées et combinées avec la technique de moyenne classique.  

Pour extraire les facteurs d’atténuation correspondant à l’environnement, un modèle de 

propagation est appliqué sur les valeurs RSS du trajet A90 ; ce trajet possède le plus grand 

nombre de positions. Ces coefficients sont symbolisés par AF90. 



xv 
 

 

Figure R.3 Plan d'expérimentation des phases hors et en ligne (Offline and Online phase) 

Durant la phase en ligne (Figure R.3 b), 20 acquisitions de puissance sont collectées 

tous les λ ≅ 70 centimètres et combinées avec la même technique déjà utilisée durant la phase 

de calibrage, c.à.d. elles sont moyennées.  

L’estimation de distance est obtenue en appliquant le modèle de propagation avec les 

paramètres correspondant à l’environnement. Enfin, la position du lecteur RFID est estimée en 

appliquant la technique de multilatération. 

6. Modélisation de l’environnement et du système RFID 

Afin de raccourcir le temps nécessaire pour les mesures, nous avons opté pour la 

validation de nos propositions d’abord par simulation. Nous avons donc modélisé 

l’environnement de test. Parmi les nombreux logiciels existants, nous avons choisi Winprop, 

qui permet de configurer des environnements et de modéliser des antennes avec une grande 

précision. Winprop contient plusieurs outils (WallMan, AMan, ProMan) (Figure R.4). 

WallMan est utilisé pour construire la structure de l’environnement indoor. AMan permet la 

configuration des antennes. ProMan, qui comprend des modèles empiriques et semi-

empiriques, étudie la propagation des signaux dans l’environnement. 
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 Figure R.4 Outils de simulation 

La configuration de l’environnement est divisée en deux parties : la première consiste 

à le modéliser avec tous les détails et les dimensions des matériaux qui le constituent. La 

deuxième partie consiste à définir les pertes empiriques (Transmission, Réflexion et 

Réfraction) et les coefficients de Fresnel (perméabilité, permittivité et conductivité) 

correspondants aux matériaux.  

Deux environnements ont été modélisés pour valider notre configuration : la salle de 

classe au quatrième étage de 63,75 mètres carrés et un hall au rez-de-chaussée de 205 mètres 

carrés, à l’école d’ingénieurs EFREI Paris.  

Bien que non meublée, la salle de classe peut être considérée comme complexe en 

raison de la dissymétrique des murs. Plus précisément, un des murs présente des renforcements 

et l’autre est entièrement vitré (Figure R.5). Cet environnement inclut aussi des objets 

métalliques, un grand radiateur (de 8 mètres de longueur et 1 mètre de hauteur), un tableau 

métallique, un projecteur LCD, un détecteur de feu, et des haut-parleurs fixés au plafond et sur 

le mur du fond.  
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Figure R.5 Disposition 3D des environnements réels et simulés 

Après avoir examiné les différents modèles de propagation des signaux présents dans 

Winprop, nous avons choisi 3D Ray-Tracing (RT). Dans les deux environnements, la 

comparaison des puissances reçues par simulation et par mesure a amené à une différence 

maximale de 0.5 dB. Ainsi, la simulation a remplacé les mesures réelles dans plusieurs tests. 

7. Système de localisation RFID proposé 

Dans cette section, une meilleure technique de combinaison des signaux acquis, deux 

modèles de propagation et une nouvelle méthode de calibrage seront introduits.  

7.1 Combinaison des RSS 

Les acquisitions de RSS, récupérées durant la phase hors ligne (offline) et en ligne 

(online), sont combinées par le biais de l’estimateur de maximum de vraisemblance (MLE). 

Considérant K acquisitions à chaque position, le MLE détermine la valeur RSS qui 

maximise la vraisemblance avec la puissance réelle mesurée par le lecteur RFID; cette valeur 

est celle avec la probabilité d’occurrence la plus élevée. 

𝑅𝑅𝑅𝑅𝑅𝑅 =  [𝑅𝑅𝑅𝑅𝑅𝑅1,𝑅𝑅𝑅𝑅𝑅𝑅2 , … . .𝑅𝑅𝑅𝑅𝑅𝑅𝐾𝐾] (R.1) 
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Avec K est le nombre d’acquisitions par position. 

Le MLE des puissances mesurées est défini par  

𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚 𝑝𝑝(𝑅𝑅𝑅𝑅𝑅𝑅𝐾𝐾) (R.2) 

Avec, argmax est l’opérateur qui donne la valeur de RSS la plus probable.  

7.2 Modèles de propagation  

De nombreux modèles de propagation indoor empiriques, présents dans la littérature, 

ont été dédiés à améliorer la précision des systèmes de localisation. Parmi ces modèles, on peut 

citer COST 231 ou modèle à pente unique (One Slope Model, OSM), modèle de propagation 

de second ordre (Second order Propagation Propagation Model, SOPPM).  

Dans nos travaux, les modèles de propagation proposés sont empiriques. Nous les avons 

appelés : le modèle à double pente (Double One Slope Model DOSM) et le modèle à double 

pente et de second ordre (Double One Slope Second Order Model DOSSOM).  

Le modèle DOSM est alors représenté par : 

𝑃𝑃𝑟𝑟(𝑑𝑑) = �
𝑃𝑃0 − 10.𝑛𝑛1𝑇𝑇𝑖𝑖 . 𝑙𝑙𝑙𝑙𝑎𝑎10(𝑑𝑑)+𝑋𝑋1𝑇𝑇𝑖𝑖       𝑑𝑑 ≤ 3𝜆𝜆
𝑃𝑃0′ − 10.𝑛𝑛2𝑇𝑇𝑖𝑖 . 𝑙𝑙𝑙𝑙𝑎𝑎10(𝑑𝑑)+𝑋𝑋2𝑇𝑇𝑖𝑖       𝑑𝑑 > 3𝜆𝜆    (R.3) 

Et, le modèle DOSSOM est défini par : 

𝑃𝑃𝑟𝑟(𝑑𝑑) = �
𝑃𝑃0 − 10.𝑛𝑛𝑇𝑇𝑖𝑖 . 𝑙𝑙𝑙𝑙𝑎𝑎10(𝑑𝑑)+𝑋𝑋𝑇𝑇𝑖𝑖                               𝑑𝑑 ≤ 3𝜆𝜆
𝑃𝑃0′ − 𝑎𝑎𝑇𝑇𝑖𝑖 . 𝑙𝑙𝑙𝑙𝑎𝑎10(𝑑𝑑)2 − 𝑏𝑏𝑇𝑇𝑖𝑖 . 𝑙𝑙𝑙𝑙𝑎𝑎10(𝑑𝑑) − 𝑐𝑐𝑇𝑇𝑖𝑖   𝑑𝑑 > 3𝜆𝜆 (R.4) 

𝑃𝑃𝑟𝑟(𝑑𝑑) est la puissance reçue en dBm à une distance (d) en mètres, 𝑃𝑃0 est la puissance 

reçue à la distance de 1 mètre. 𝑃𝑃0′ est la puissance reçue à 3𝜆𝜆 en dBm. i représente l’indice du 

trajet correspondant parmi les sept trajets utilisés lors de la phase de calibrage. 

Pour le modèle DOSM, 𝑛𝑛1𝑇𝑇𝑇𝑇 et 𝑛𝑛2𝑇𝑇𝑇𝑇 représentent les coefficients d’atténuation du trajet 

𝑇𝑇𝑇𝑇. Les termes 𝑋𝑋1𝑇𝑇𝑖𝑖  et 𝑋𝑋2𝑇𝑇𝑖𝑖décrivent une variable log-normale pour l’erreur de la puissance reçue 

tout au long de la première partie de chaque trajet modélisé par la variation de la pente (premier 

ordre).   
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Pour le modèle DOSSOM,  𝑛𝑛𝑇𝑇𝑇𝑇 est le coefficient d’atténuation du trajet qui correspond 

à la première partie de chaque trajet. 𝑋𝑋𝑇𝑇𝑖𝑖 présente la variation log-normale de la puissance reçue 

modélisée par la variation de la pente. 𝑎𝑎𝑇𝑇𝑖𝑖, 𝑏𝑏𝑇𝑇𝑖𝑖 et 𝑐𝑐𝑇𝑇𝑖𝑖 sont les paramètres du polynôme du second 

ordre qui correspond à la seconde partie de chaque trajet. 

En effet, notre système de localisation RFID de base utilise les paramètres d’atténuation 

du trajet A90 abrégés par 𝑛𝑛𝑇𝑇90, 𝑎𝑎𝑇𝑇90, 𝑏𝑏𝑇𝑇90 et 𝑐𝑐𝑇𝑇90. 

Les deux modèles que nous avons proposés ont été comparés aux modèles de 

propagation empiriques déjà présents dans la littérature. Les résultats obtenus montrent que 

DOSSOM présente une amélioration de l’erreur d’au moins un mètre.   

7.3 Méthode de calibrage 

Après l’introduction des deux modèles de propagation indoor, l’optimisation de notre 

système de localisation consiste à améliorer la fiabilité du calibrage et la précision de la 

localisation.  

Nous proposons un facteur d’atténuation global pour l’environnement via la moyenne 

pondérée des facteurs d’atténuation (WAAF). WAAF correspond aux facteurs d’atténuation de 

la salle de classe en prenant en couvrant tout l’environnement.  

Dans ce contexte, les coefficients d’atténuation 𝑛𝑛𝑇𝑇𝑖𝑖 ,𝑎𝑎𝑇𝑇𝑖𝑖 , 𝑏𝑏𝑇𝑇𝑖𝑖  𝑒𝑒𝑒𝑒 𝑐𝑐𝑇𝑇𝑖𝑖  correspondants au 

modèle DOSSOM de l’équation (R.4) et associés aux sept trajets A30 à A150 (Figure R.3 a), 

sont pondérés afin de déterminer les coefficients WAAF définis par les équations suivantes :  

Pour d ≤ 3 

 𝑛𝑛𝑤𝑤1= �𝑛𝑛𝑇𝑇𝑖𝑖

7

𝑇𝑇=1

𝑁𝑁′𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑖𝑖�

𝑁𝑁′𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇
 (R.5) 

Pour d > 3  

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝐴𝐴𝑤𝑤2 = �𝑎𝑎𝑇𝑇𝑖𝑖

7

𝑇𝑇=1

𝑁𝑁′′𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑖𝑖�

𝑁𝑁′′𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇

 𝐵𝐵𝑤𝑤2 = �𝑏𝑏𝑇𝑇𝑖𝑖

7

𝑇𝑇=1

𝑁𝑁′′𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑖𝑖�
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7

𝑇𝑇=1
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𝑁𝑁′′𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇

 (R.6) 



xx 
 

 nw1 est le facteur d’atténuation moyen pondéré correspondant à la première partie du 

trajet. nTi est le facteur d’atténuation associé à chaque trajet. Aw2, Bw2 et Cw2 représentent les 

paramètres de la moyenne pondérée correspondants au modèle de propagation du second ordre 

(DOSSOM). aTi, bTi et cTi sont les paramètres associés à chaque trajet. N′Total et N′′Total 

représentent le nombre total de positions de chacune des deux parties. N′Pos
Ti� et N′′Pos

Ti�  sont 

les nombres de positions sur chaque partie de chaque trajet.  

Les coefficients WAAF sont directement proportionnels au nombre de points 

considérés dans le calibrage. Ils prennent en compte toutes les positions afin de couvrir tout 

l’environnement. 

Avec le modèle de propagation DOSSOM associé aux facteurs d’atténuation (WAAF), 

la puissance reçue par le lecteur RFID est exprimée par l’équation suivante : 

𝑃𝑃𝑟𝑟(d) = �
𝑃𝑃0 − 10. nw1 . log10(d)+Xw1                                d ≤ 3λ
𝑃𝑃0′ − Aw2 . log10(d)2 − Bw2 . log10(d) − Cw2   d > 3λ (R.7) 

𝑃𝑃𝑟𝑟(d) est la puissance reçue en dBm à la distance d en mètres, 𝑃𝑃0 est la puissance reçue 

à 1 mètre en dBm. 𝑃𝑃0′ est la puissance reçue à 3𝜆𝜆 en dBm. Xw1représente variation log-normale 

de la puissance reçue sur la première partie de tous les trajets. Aw2, Bw2 et Cw2 représentent 

les paramètres de la moyenne pondérée correspondant au modèle de propagation du second 

ordre.  

Dans la phase en ligne (online), 20 valeurs de RSS sont acquises à chaque position, et 

combinées via la même technique (MLE). La position du lecteur RFID est ainsi estimée en 

appliquant la technique de multilatération. 

Pour évaluer le système proposé, la localisation est réalisée avec quatre balises RFID 

fixées au centre de chaque mur de la classe. Trente-deux positions sont estimées. Parmi ces 

positions, vingt-quatre sont uniformément réparties dans l’environnement, tous les 70 

centimètres sur les trois trajets A60, A90 et A120. Huit autres positions particulières sont 

choisies dans la salle de classe afin d’évaluer la performance du notre système (Figure R.3 b).  

Les erreurs de position obtenues avec MLE, ont été déterminées et comparées à celles 

obtenues avec la technique de la moyenne. 

Les figures suivantes présentent la fonction de distribution cumulative (Cumulative 

Distribution Function, CDF) des erreurs de position obtenues en utilisant les paramètres de 

calibrage WAAF avec le modèle de propagation DOSSOM.  
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Figure R.6 CDF des erreurs de position avec la moyenne et MLE 

La précision de localisation obtenue à 90% CDF est égale à 1,3 mètres avec la moyenne 

et 90 centimètres avec MLE. Ainsi, l’efficacité du MLE est bien validée. Le système de 

localisation indoor proposé, a amélioré la précision (moins du mètre), tout en déployant, 

seulement, 0,062 balises RFID par mètre carré.  

8. Constellation de balises RFID 

Grâce à la technologie MISO (Multiple Input Single Output), les performances des 

systèmes de communication sans fil peuvent être améliorées en adoptant plusieurs antennes 

émettrices. Pour l’estimation de distance, nous avons remplacé de manière analogue, la balise 

RFID unitaire par un groupe de balises qui fonctionnent à la même fréquence et appelé 

“constellation”. 

Cette approche de constellation conduit à plusieurs études. Définir la dimension, la 

forme et le nombre de balises qui la constituent sont une étape essentielle permettant de 

déterminer la constellation optimale offrant la meilleure précision. 
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Figure R.7 Constellation avec différentes formes et nombres de balises RFID 

Cette étude a été validée par simulation et par mesure. Elle nous a amené à constater 

que la constellation constituée de 4 balises et de rayon égal à la longueur d’onde λ présente 

moins d’erreurs.  

Le modèle de propagation DOSSOM est toujours appliqué pour extraire les coefficients 

d’atténuation de l’environnement en utilisant la méthode de la moyenne pondérée (WAAF). 

La localisation est réalisée avec quatre constellations de quatre balises RFID chacune. 

Le centre de chaque constellation est situé au centre de chaque mur de la classe (Figure R.3 b). 

Dans cette phase, 20 acquisitions des puissances reçues sont acquises et combinées 

via l’estimateur de maximum de vraisemblance (MLE) à chacune des positions des trois trajets 

A60, A90 et A120. Les distances entre les balises et le lecteur RFID ont été estimées en 

appliquant le modèle de propagation DOSSOM. La position du lecteur RFID est déterminée 

par multilatération.  
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Les résultats obtenus avec les constellations ont été analysés et comparés à ceux obtenus 

avec le scénario de balise unitaire. La Figure R.8 présente la fonction de distribution cumulative 

des erreurs de position obtenues, en utilisant les paramètres de calibrage WAAF avec le modèle 

de propagation DOSSOM, dans les deux cas : constellation de balises et balise unitaire. 

 

Figure R.8 CDF des erreurs de position avec constellations ou balise unitaire 

Les erreurs de position obtenues à 90% CDF sont de 90 et 60 centimètres avec une 

seule balise et la constellation de balises, respectivement. Ainsi, l’utilisation de la constellation 

de balises améliore la précision de localisation de 33.3%, tout en déployant, seulement, 0,25 

balises RFID par mètre carré. 

9. Conclusion 

La modélisation de l’environnement et des équipements RFID qui s’y trouvent, est 

essentielle pour la fiabilité de la simulation. Les résultats de simulation présentés, ont un écart 

maximal de 0,5 dB avec les mesures réelles. Cette compatibilité a été obtenue à l’aide du 

modèle 3D Ray-Tracing. La simulation peut ainsi remplacer les mesures dans différents 

scénarios. 
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La modélisation du canal de propagation par DOSSOM - WAAF présente une meilleure 

fiabilité dans l’extraction des paramètres d’atténuation, en couvrant tout l’environnement. 

La localisation a été étudiée premièrement avec une balise unitaire, puis par quatre 

constellations de balises RFID actives fixées respectivement au centre de chaque mur de la 

salle de classe. L’expérience a montré que combiner les RSSs par MLE aussi bien dans la phase 

de calibrage que dans la phase de localisation proprement dite, présente une amélioration dans 

la précision de localisation.  

Ainsi, la précision du système proposé atteint une erreur de position de 60 centimètres 

(dans 90% des cas) avec 0,25 balise RFID déployées par mètre carré contre 2.5 mètres (dans 

90% des cas) avec 0,063 balise par mètre carré dans le système de base (modèle One Slope 

avec le coefficient d’atténuation AF90, moyenne des RSS, balise unitaire). 
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Introduction 

 The Global Positioning System (GPS) already provides a satisfactory solution for outdoor 

localization. Extending that service to indoor environments is still limited due to many 

substantial challenges. Thus, an accurate indoor localization approach is important and needed 

for different applications. Among these applications, we can mention public safety, commercial 

and security domains. For instance, indoor localization solutions can assist the elderly in their 

homes as part of their daily activities. They can play a significant role in the medical field and 

are recommended for police and firefighters. However, none of the existing localization 

services have yet accurately localized people in indoor environments with low cost and 

complexity solutions.  

  Intense research works are carried today to design Indoor Localization Systems (ILS). 

Many technologies have been considered, e.g. ultrasonic, InfraRed (IR), vision, and Radio 

Frequency (RF). RF standards such as Wireless Fidelity (WiFi), Zigbee, Bluetooth, Ultra-Wide 

Band (UWB), and Radio Frequency IDentification (RFID) predominate today to develop 

accurate ILS. Despite the RF Non-Line-of-Sight (NLoS) detection capabilities, these can have 

an adverse impact on the overall ILS accuracy. 

 Recently, RFID promoted the potential of the RF technology for indoor localization in 

many scenes. Multiple RFID readers and tags are used to form the RFID based localization 

system. The placement and density of RFID readers, tags or both, in a given layout, are key 

parameters to provide satisfactory localization accuracy. Estimated locations are usually more 

accurate with a higher density of components. However, this will increase the system’s cost 

substantially.  

This Ph.D. thesis seeks to present a new ILS based on the RFID technology. The 

proposed system’s must be reliable, accurate and characterized by an effective low cost. Hence, 

three main objectives are defined: improve the calibration, optimize the tags density, and 

enhance the location accuracy (Figure I.1) 

To this end, five main research lines are conducted. The first contribution is to 

accurately model two indoor environments; this accelerates the analysis by avoiding long 

durations needed for real measurements. In addition, the Maximum Likelihood Estimator 

(MLE) is applied as an RSS combining technique, in the aim to mitigate signals fluctuations. 
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The third axis is focused on introducing new empirical indoor propagation models associated 

with a new calibration approach determining Weighted Average Attenuation Factors (WAAF). 

Finally, referring to the Multiple Inputs Single Output (MISO) approach, the concept of using 

a group of active RFID tags instead of a single one is analyzed to enhance the location accuracy 

thanks to signals’ diversity. We have named this group of tags as a “Constellation”. The size, 

shape, and the number of tags in the constellation are main keys for improving the location 

accuracy. 

Work is summarized as follows:   

 

Figure I.1 Research lines   

The thesis is derived as follows: 

Chapter 1 consists of a literature review about indoor localization systems with their 

respective performances. The main positioning metrics, techniques, technologies and their 

limitations, are presented. The main characteristics of indoor positioning systems in terms of 

their availability, cost, range, latency, scalability, variability and location accuracy are 

assessed. In particular, active and passive RFID-based indoor localization systems are 

described to give a detailed insight about their operational capabilities and limitations in such 

environments. 
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Chapter 2 presents our conventional RFID positioning system, using the Received 

Signal Strength (RSS) with the average combining technique. The One Slope propagation 

Model (OSM), that is the most commonly one used indoor, followed by the multilateration 

technique, are shown. Finally, the experimental arrangement is set.  

Chapter 3 shows the indoor environment where all experiments are conducted. Then, 

the WinProp tool, used for simulations, is introduced. Besides, all modeling steps are detailed 

by defining all Fresnel parameters of the materials constituting the environment, as well as 

their empirical losses in order to get an accurate simulated environment. The RFID reader 

antenna and the tag emitting antenna are also described and modeled to get accurate signals 

propagation. 

Chapter 4 introduces the location improvements by signal processing. The RSSIs 

variability and reliability are examined using two different combining techniques i.e. the 

conventional average and the Maximum Likelihood Estimator (MLE). Moreover, in order to 

improve the environment calibration, the Weighted Average Attenuation Factor (WAAF) 

procedure is established. After introducing existing ones, two new empirical indoor 

propagation models are proposed to improve the location accuracy using the multilateration 

technique.  

Chapter 5 suggests a Multiple Inputs Single Output system (MISO) approach to define 

the concept of constellation of RFID tags used for indoor positioning. The best shape, radius, 

and the optimal number of tags in the constellation are studied. Then, the position errors 

obtained with the proposed localization system, performing with the optimal constellation of 

tags, are analyzed and compared with those obtained with the single tag architecture. 

After a comparative analysis regarding the density of tags deployed, the last part is 

dedicated to summarize all gathered results and give conclusions. Recommendations are 

elaborated to open perspectives for future work. 
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Chapter 1  State of the Art 

 Introduction 

Locating people or devices in a given area appeared a few years ago and has become 

an essential element of the contextual information [1]. Due to the excellent performance of the 

Global Positioning System (GPS) in outdoor environments, determining positions of people 

indoors such as buildings, houses, warehouses, airports and industries has also become highly 

needed. Moreover, this aim has been largely boosted by the widespread use of wireless 

communications. 

Recently, indoor localization has witnessed large interest due to the wide range of 

potential services provided by the Internet of Things (IoT) and ubiquitous connectivity. 

Different technologies and techniques are introduced to provide indoor localization services to 

the end-users; they will be expanded in detail in this chapter.  

In addition, each Indoor Positioning System (IPS) performs some specific 

characteristics such availability, cost, range, latency, scalability and location accuracy, 

depending on the application and the considered indoor environment [2]. Systems found in the 

literature will be highlighted and assessed upon their performance and limitations.  

In this context, Radio Frequency (RF) based localization techniques become 

increasingly popular as they offer pervasive and low-cost solutions, as discussed in [3]. In 

contrary to localization systems based on vision, electromagnetic waves propagate through the 

environment allowing localization in Non-Line-of-Sight (NLoS) scenarios. Thanks to this 

characteristic, RF-based positioning systems have a larger coverage area and need less 

hardware compared to other systems.  

This chapter begins with presenting the radio frequency positioning metrics in section 

1.2. The different techniques used in IPS are discussed in section 1.3. Section 1.4 is dedicated 

to provide an overview of existing localization technologies and their limitations. Then, major 

characteristics of an Indoor Localization System (ILS) followed by existing ILS as well as their 

efficiency and drawbacks are defined and discussed in section 1.5. Finally, the chapter ends by 

a detailed conclusion and motivations in section 1.6. 
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 Overview of Positioning Metrics 

Despite a large number of different RF positioning systems and solutions, there are very 

few forms of metrics used to detect the user’s location. such as: These metrics can be broadly 

classified into: time as Time of Arrival (ToA) or Time Difference of Arrival (TDoA), angle 

such as Angle of Arrival (AoA), Phase of Arrival (PoA) or Phase Difference of Arrival (PDoA) 

and power measurements or Received Signal Strength (RSS).  

This section presents the most popular positioning metrics used to locate a person or 

object in an indoor environment i.e. ToA, TDoA, AoA and RSS.  

 Time of Arrival 

The Time of Arrival (ToA) or Time of Flight (ToF) method is based on a theoretical 

propagation model of a radio frequency signal. The distance between the transmitting antenna 

(Tx) and the receiving antenna (Rx) can be determined by measuring the travel time of the 

signal between them. This distance is estimated by multiplying the ToA by the light celerity. 

The location of the receiving antenna (Rx) can be deduced using ToA estimations from various 

reference transmitting antennas (Tx). The intersection of three signals and nonlinear least-

squares approaches are applied to get optimal errors, as shown in Figure 1.1.  

 
Figure 1.1 ToA-based localization 

The typical signals’ propagation time from the transmitting to the receiving antennas is 

about tens of nanoseconds in an indoor environment. Therefore, the ToA approach requires 

strict synchronization between Tx and Rx [4].  
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 Time Difference of Arrival 

The Time Difference of Arrival (TDoA) principle is focused on estimating the receiving 

antenna’s location by determining the difference in time at which the signal is received from 

different transmitting antennas [5]. Thus, time difference is, in this case, sufficient to estimate 

the distance between the transmitter and receiver, instead of knowing the time of transmission. 

This method requires at least three transmitting antennas for each TDoA measurement to detect 

the receiver’s position as the intersection of three (or more) hyperboloids.  

The 2D model, illustrated in Figure 1.2 presents the intersection of the hyperboloids 

generated by all transmitting antennas to determine the receiver’s location.  

 
Figure 1.2 TDoA-based localization  

Like the ToA, TDoA requires LoS to mitigate multipath that affect the location 

accuracy. Furthermore, synchronization is also mandatory in order to estimate the receiver’s 

location accurately. But unlike the ToA technique, synchronization in TDoA is only required 

between the transmitting antennas (Tx), since the receiver’s location is determined based on 

time or distance difference between them. The TDoA technique presents higher location 

accuracy compared to the ToA [6]. 
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 Angle of Arrival 

Angle of Arrival (AoA) uses the angle at which the signal is received from a 

transmitting antenna. In the case of Angle of Departure (AoD), the transmitting antenna needs 

to send its absolute coordinates to the receiving antenna. With AoA, the transmitting antenna 

determines a directional line from its location to estimate different positions of the receiving 

antenna. The location of the receiver is then the intersection of several lines from several 

transmitting antennas (Figure 1.3).  

 
Figure 1.3 Positioning based on AoA measurement 

At least two fixed transmitting antennas (Tx1, Tx2) with the two corresponding angles 

are used to determine the receiver’s location (Rx) in the two dimensions space (2D). This 

method can also be extended into 3D, using at least three transmitting antennas.  

AoA doesn’t need time synchronization between transmitting (Tx) and receiving (Rx) 

antennas. However, although the need of complex hardware, the receiving antenna’s location 

accuracy reduces with the increase of the transmitter-receiver distance.  

Finally, the transmitter-receiver distance can also be estimated through PoA and PDoA. 

These two metrics are based on the phase or phase difference. It requires the pure emission of 

sinusoidal signals from transmitting antennas [1].  
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 Received Signal Strength  

The Received Signal Strength Indicator (RSSI) or the Received Signal Strength (RSS) 

is the simplest and the widely used approach for indoor localization due to the availability of 

the RSS data in most end-user devices [1]. RSS is used for distances estimation. The distance 

between the transmitting and receiving antennas is estimated based on RSS by converting the 

received power into distance. Then, a classical technique like the trilateration can be applied to 

detect the receiver’s location (Rx) position, as illustrated in Figure 1.4.   

 

Figure 1.4 RSSI-based localization 

The improvement of the location accuracy depends on the density of antennas deployed 

in the considered environment. Unlike ToA and TDoA, this method does not need time 

synchronization between the transmitting and receiving antennas. 

In outdoor scenarios, RSS values are conversely proportional to the square of the 

transmitter-receiver distance. The RSS metric provides high location accuracy thanks to the 

dominance of LoS signal propagation. However, the propagated signals are affected and 

obstructed indoors due to shadowing and several multipath fading, making this positioning 

metric less accurate for distances estimation, compared to other metrics presented previously 

[8]. Moreover, there is no unique solution based on theoretical and empirical propagation 

models that could be used to avoid multipath effects. Hence, the fingerprinting method is 

introduced to build a radio map reflecting the real environmental impacts and investigating 

signals’ uncertainties. 
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 Summary for Positioning Metrics 

Advantages and defaults of the different metrics used for localization purposes are 

summarized in the Table 1.1. 

Table 1.1 Comparison of positioning Metrics 

Metric Advantages Disadvantages 

ToA 
High localization accuracy 

 

Time synchronization (Rx and Tx) 

LoS measurement 

Complex end-user hardware 

High cost 

TDoA Very High localization accuracy 

Time synchronization (only Tx) 

LoS measurement 

High cost  

Complex end-user hardware 

AoA 
High localization accuracy 

No need for time synchronization 

Calibration phase for the environment 

LoS measurement 

High cost  

Complex end-user hardware 

RSS 

Affordable cost 

Availability in most end-user 

devices 

Easy to implement 

Dense deployment of transmitting 

antennas 

 Low accuracy 

Radio map of the environment  

Overall, the RSS positioning metric is mostly effective for ILS thanks to the availability 

of RSS data in most end-user devises such as smart phones. However, its high sensitivity to 

multipath affects the accuracy significantly.  
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 Overview of Positioning Techniques 

This section gives an overview of fundamental principles for positions determination, 

from various basic datasets, such as proximity, triangulation, multi/trilateration and 

fingerprinting observations. 

 Proximity 

The proximity technique can be categorized as of three types [9]. The first one is 

detecting physical contact. The second one is monitoring antennas to locate the target if it is in 

the range of one or more antennas. The third one is observing the identification of the labeled 

target such as public transport cards. Labels are usually a tag, button or barcode attached on 

the target.  

The proximity technique needs a dense number of deployed antennas in the desired 

field to provide the location information. This approach is relatively simple to be implemented. 

If only one antenna detects the target, it must be collocated with it. However, when more than 

one antenna detect the target, the antenna that receives the strongest signal, must be collocated 

with the target [10]. 

As in Figure 1.5, more than one reader are used, in this case the target receiving the 

antenna’s location is defined by the intersection of these readers’ coverage areas. Hence, a 

smaller range of the central node is recommended to improve the location accuracy.  

 

Figure 1.5 Localization by Proximity  
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 Triangulation 

The triangulation approach uses the triangular geometric properties to determine the 

target position [11]. It is estimated by determining its distance from multiple reference 

antennas. This approach usually uses different positioning metrics to measure the distance 

between the transmitting antennas and the target object such as RSS, ToA, TDoA, AoA and 

AoD. The advantage of AoA and AoD approaches, compared to other metrics, is that the 

location estimation can be made only with two transmitters in 2D. 

Figure 1.6 illustrates the localization by triangulation with the AoA method. The 

receiving antenna indicates the target object or person to be located, and the transmitting 

antennas represent the location reference devices. The target location is estimated by the 

intersection point of the directional lines. 

 

Figure 1.6 The Triangulation Technique 

 Multi/Trilateration  

The term trilateration refers to the process that estimates the target position based on 

the distance from three known antennas [12]. After converting the RSS value to a length, each 

transmitter-receiver distance is represented by a circle with a radius around the fixed antenna 

(Txi) in 2D. The intersection of the three circles provides a common point or coverage area of 

received signals, as shown in Figure 1.7.  
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Figure 1.7 The Multi/Trilateration Technique 

The multilateration technique has the same concept as trilateration, but it requires more 

than three fixed known antennas to locate an object [13]. Using the Euclidean distance formula, 

the (Rx) position is estimated.  

 Fingerprinting  

Researchers have focused on applying fingerprinting within indoor localization systems 

[14]. It is a popular method to estimate a target location. This technique involves two stages: 

offline and online (Figure 1.8). During the offline stage, the collected RSSs are stored in order 

to build a radio map. The reliability of this stage requires more effort in terms of time and labor 

for the collection of fingerprints. Within the online stage, the target’s location is estimated by 

matching the collected RSSs with the built database.  
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Figure 1.8 Fingerprinting  

Fingerprinting can be based on either probabilistic or machine learning methods such 

as the K-nearest-neighbor (KNN), neural networks, Support Vector Machine (SVM), and 

Smallest M-vertex Polygon (SMP) [15].   

The probabilistic approach stores the RSS measurements at every known position to 

build the probabilistic model, during the offline stage. Then, the online RSS observations are 

matched with the optimal RSS calculated during the offline process, to identify the target 

location [16].  

KNN is one of the learning algorithms used by several IPSs. The target position is 

estimated according to the greatest similarity between the measured RSS and its k-nearest 

neighbors. The SVM algorithm is a more advanced learning algorithm that shows better 

localization accuracy with a higher computational cost. It is extensively used in medicine, 

engineering and science.  

The SMP algorithm uses the online RSS values to detect the target’s location by taking 

the location unit in which the RSS value is the closest to the observations. Then, it founds the 

nearest point within the closest boundary using the smallest distance function [17]. 

Any changes in the considered environment geometry or structure (walls and ceilings) 

as well as in furniture, modify the diffraction, reflection, and scattering; this leads to variations 

in the RSS spatial distribution, that doesn’t correspond to the database build initially and 

increases the target location uncertainty. Hence, the need to update the radio map. 
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 Overview of Positioning Technologies 

In this section, technologies that have been used to provide indoor localization services 

will be presented and discussed. There is a wide variety of localization technologies such as 

vision, acoustic, ultrasound, light and Infrared (IR).  

The camera or vision technology is performed in different way with fixed camera 

systems and mobile camera systems. The success of ILS based on optical methods comes from 

the improvement and miniaturization of devices and the advancement of smartphones [19]. 

Therefore, the location accuracy of the camera-based localization system is affected by the 

camera pose errors [20]. 

The acoustic technology shares many characteristics with Radio Frequency (RF). Three 

mutual challenges are faced in all acoustic-based localization systems: low Signal-to-Noise 

Ratio (SNR), multipath effects and the selection of speakers and microphones already 

embedded in smart devices [21].   

The Ultrasound-based ILSs use quality control in manual assembly processes to detect 

the object’s location [22]. This technology needs synchronization between the ultrasound 

emitters and receivers because the travelled distance is determined via the ToA method [23]. 

Concerning the light-based ILSs, they are cost-effective solutions with the popularity 

of Light Emitting Diode (LED). Most of the existing systems perform in 2D and fail to reach 

the target location in 3D [24]. This technology presents a fundamental limitation due to the 

NLoS between the LED and the target. It can provide a localization error less than 8 centimeters 

in a 25 square meters’ room [25]. In the same context, Light Fidelity (LiFi) is a new wireless 

technology to provide the connectivity within network environments. It sends the data through 

LED lights with a high speed and low-cost. It also provides high security communications with 

large bandwidth [26].  

In addition, [27] mentions that IR positioning system based on AoA  present an accurate 

target’s location. IR signals do not penetrate through walls, therefore IR ILS require a LoS 

communication between transmitter and receiver to perform properly.  

These systems are beyond the scope of our research work. It is worth recalling that RF 

technology offers pervasive and low-cost solutions. We focus on radio communication 

technologies such as ZigBee, Bluetooth, Wireless Fidelity (WIFI), Ultra-Wideband (UWB) 

and Radio Frequency Identification (RFID) that will be adopted for our activity.  
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The following subsections present the characteristics such as cost, reliability, 

performance, confidentiality, coverage and the location accuracy for these radio 

communication technologies used within localization applications. 

 ZigBee 

Referring to IEEE 802.15.4 standard, Zigbee provides low cost, low data rate and low 

power consumption [1]. But, it presents high maintenance cost. ZigBee usually uses the RSS 

values to estimate the target’s position [28]. The signal coverage of a ZigBee node is up to 100 

meters in free space, whereas it is typically between 20 and 30 meters indoors [29]. As this 

technology operates at 2.4 GHz in an Industrial, Scientific and Medical (ISM) radio frequency 

band, it may suffer from unintentional interference from coexisting radio devices [30].  

Concerning ZigBee-based localization systems, [31] proposes an algorithm named 

Self-Calibrating Centroid Localization (SCCL) based on ZigBee. The optimal estimated 

position error achieved is less than 1 meter in an L-shaped 168 square meters’ corridor. In the 

same context, [32] introduces a ZigBee-based ILS; in order to improve the location accuracy 

and mitigate the RSS fluctuations and the number of samples, a ZigBee Wireless Sensor 

Network (WSN) of regular variance and gradient data particle filter is used. The proposed 

system performs with low power consumption to achieve an average accuracy of 

approximately 1.5 to 2 meters in a laboratory. Recently, [33] suggests a deep learning-based 

device-free localization system using ZigBee. The target location is estimated via RSS. The 

mean error achieved is 53 centimeters in an office room with dimensions of 51.84 square 

meters.   

 Bluetooth 

Similar to ZigBee, Bluetooth is a Wireless Personal Area Network (WPAN) standard. 

Yet, the Bluetooth Special Interest Group guides the proprietary specification of Bluetooth. 

This technology shares information between devices with high security, low cost, low power 

consumption, and small size [34]. It uses Frequency Hopping to protect signals against other 

systems that operate within the same 2.4 GHz ISM band. The communication range is about 

10 centimeters to 15 meters, depending on the propagation factors such as LoS, material 

coverage, and antennas configuration [29]. This technology is embedded in most devices such 

as smartphones, smartwatches and laptops. Hence, Bluetooth can be reused by localization 

architectures instead of installing additional hardware. In fact, the Bluetooth-based ILSs can 
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use the RSS technique to estimate the target’s location. However, they suffer from the 

instability of the RSS values due to multipath in indoor environments; this increases the 

positioning latency by around 10 to 30 seconds, the power consumption, and localization 

uncertainty between 2 and 3 meters as well [27]. 

With the emergence of the Bluetooth Low Energy (BLE) as the latest version of 

Bluetooth, data rate is improved to 24 Mega bit per second (Mbps) and the outdoor coverage 

to 70 to 100 meters with high energy efficiency [35]. Compared to the conventional Bluetooth, 

the BLE can perform with different positioning metrics such ToA, TDoA, AoA and RSS. 

Although, most of the existing BLE-based ILS rely on the RSS positioning metric [1]. The 

target location is usually determined with the proximity method when the distance between the 

BLE and the user is less than 1 meter. 

 

Figure 1.9 Typical architecture for BLE-based localization system [39] 

According to the indoor localization literature, [2] investigates the use of Bluetooth 

wireless technology for positioning in different applications. [36] proposes a technique that 

uses the Monte Carlo localization (MCL) algorithm that exploits two sensors: accelerometer 

and compass, with commonly deployed BLE beacons. The average position accuracy achieved 

in a laboratory and an office space is less than 1 meter in LoS scenario, and 3 meters in NLoS 

environment. Besides, [37] intends to evaluate the accuracy of a BLE positioning system 

especially when multiple devices are used. That accuracy is improved by using the average or 

median of a certain number of RSS measurements instead of a single RSS value collected at 

the same spot. Furthermore, [38] studies the optimal number of BLEs to enhance the 

localization accuracy, using ten beacons as transmitting devices. Two algorithms and two types 

of filtering are used to develop an accurate ILS. By placing six beacons in a 78.84 square 
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meters’ research lab, the optimal error achieved is 1.15 meters. Recently, [39] develops a BLE-

based ILS that allows to determine the target’s location accurately in a museum. The 

positioning scenario considers that visitors are equipped with BLE equipment. People location 

is estimated by applying a Non-Linear Least Square (NLLS) algorithm in the considered 

environment. Results, obtained by measurements, show a position accuracy in the order of 2 

meters.  

 Wireless Fidelity 

Wireless Fidelity (WiFi) is supported by the IEEE 802.11 standard, it operates in the 

2.4 GHz ISM band. Similar to other RF technologies, WiFi provides also an effective cost and 

low power consumption solution. It has a communication range about 100 meters in outdoor 

environments. In addition, WiFi (IEEE 802.11a,h operating at 900 MHz) range is increased to 

cover 1 kilometer for IoT applications outdoors [1]. WiFi becomes an increasingly common 

infrastructure in many buildings and can be an ideal candidate for ILSs because most of current 

smart devices such as watches, phones and laptops are WiFi enabled. In the same context, RSS, 

ToA, AoA positioning metrics can be used for WiFi-based localization system.  

 

Figure 1.10 Typical architecture for WIFI-based localization system 

Wireless Sensors Network (WSN) is a developed technique that can be used for indoor 

localization. The concept of WSN is to limit the computational power and the signal bandwidth 

of a WSN node to a low level. Therefore, the overall performance is well enough for monitoring 

environmental applications. According to some relevant researches, [40] integrates a typical 

WiFi-based ILS, with Pedestrian Dead Reckoning (PDR) systems using Maximum Likelihood 
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based fusion algorithm, to eliminate the cumulative tracking error. Corresponding results show 

an accuracy of about 3 to 5 meters in a 4212 square meters’ area of the Nangang exhibition 

hall. In order to enhance performance, [41] proposes a synchronization algorithm for a WiFi-

based localization system while collecting and locating. Experimental results show a maximal 

accuracy of 2 meters. In addition, [42] presents a real-time ILS-based on WiFi technology. The 

target’s location is estimated using AoA method. The experiment achieves an accuracy of 1.2 

meters for a Cumulative Distribution Function (CDF) of 67%. Lately, [43] proposes a High-

Adaptability Indoor Localization (HAIL) approach using WiFi technology. The proposed ILS 

performed with the RSS positioning metric and machine learning. The achieved average 

localization error is of 87 centimeters in a 37.2 square meters’ corridor and a 128 square meters 

hall. 

 Ultra-Wide Band 

Ultra-Wide Band (UWB) is a radio technology for short-range and large-bandwidth 

communications. In UWB, a sequence of ultra-short-pulses with a low duty cycle (1 

nanosecond) is transmitted through a large bandwidth (greater than 500 MHz). This technology 

operates in the frequency range between 3.1 to 10.6 GHz, with low power consumption [1]. 

UWB is widely used for short-range communications, such as PC peripherals and other indoor 

applications [29]. For indoor positioning, UWB can be used because it presents a strong 

multipath immunity. To determine the target’s location, the three different positioning metrics 

ToA, TDoA and AoA can be used [2]. Thus, UWB-based localization systems exploit the 

feature of time synchronization with both ToA and TDoA metrics. However, by applying the 

AoA method, UWB-based ILSs perform at the expense of a high cost due to the need for end-

user’s hardware. 

To date, several UWB localization systems have been listed. [44] proposes an ILS-

based on UWB channel sounding. By combining the triangulation and the trilateration methods 

for ToA, AoD and AoA positioning metrics, the optimal location accuracy is 42 centimeters 

with LoS. Furthermore, [45] presents a fast ILS at a theoretically upper bound of 2.3 kHz. The 

proposed system uses the TDoA for distance estimation between anchors. It is implemented 

and evaluated experimentally on a low-cost platform based on the Decawave (DW1000) UWB 

radio. The positioning accuracy reached at 90% CDF is of 33.4 centimeters. Recently, [46] 

shows an UWB-based ILS using a particle filter that mitigates the ranging error of human body 

shadowing. ToF metric is used to determine the location of the user. Based on simulations and 
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measurements, performances of the proposed system are assessed in a laboratory of 78 square 

meters. Results show a reduction in the median position error of up to 69 and 77 centimeters, 

through simulations and experiments, respectively.  

 Radio Frequency IDentification 

Radio Frequency IDentification (RFID) technology has received great attention in the 

last decade. Typical applications include baggage handling, supply chain, or fixed assets 

tracking [7]. It can operate at different frequency bands such as Low Frequency (LF) from 30 

to 150 kHz, High Frequency (HF) from 3 to 30 MHz, Ultra-High Frequency (UHF) at 433 

MHz and from 868 to 915 MHz, and Super High Frequency (SHF) from 2.4 to 2.5 GHz and 

5.8 GHz [29]. 

RFID systems consist of readers and tags that communicate via an electromagnetic 

wave. Systems that operate from 30 kHz to 150 kHz and at 13.56 MHz, work in the near-field 

region where the distance traveled by the propagating signal is much less than its wavelength. 

RFID systems operating in typical UHF and SHF frequency bands, perform in the far-field 

region where the distance traveled by the RF propagating signal is much greater than its 

wavelength [47]. Tag-reader coupling is inductive in near-field region (mainly at LF and HF) 

while it is radiative in the far-field region (UHF and SHF). 

 The RFID range is wide and varies in terms of the frequency, from few centimeters up 

to 200 meters, whether the deployed RFID tags are passive or  active [48].  

1.4.5.1 Passive RFID  

Passive RFID tags usually operate without battery, but an internal battery can be added 

to improve the system range. The passive tag consists of three parts: an antenna, a semi-

conductor chip attached to the antenna, and some form of encapsulation. The RFID reader is 

responsible for powering and communicating with the tag. The RFID tag antenna captures the 

energy. Then, load modulation allows to transfer the tag’s ID to the reader. Passive RFID tags 

are much cheaper and smaller than the active ones [29]. However, in UHF and SHF bands, due 

to multipath fading or absorption by objects in the range of the reader, the readability of passive 

tags is severely affected [49]. 
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Figure 1.11 Typical architecture of Passive RFID systems 

Advantages of passive RFID tags-based localization systems are their small size, strong 

ruggedness, relatively inexpensive installation, and maintenance specifications. They can 

operate at different LF, HF, UHF and microwave frequency bands. Table 1.2 lists the frequency 

categories and most common passive RFID system frequencies along with its communication 

range [48]. 

Table 1.2 Passive RFID Frequency Bands 

Frequency Bands Common Frequency Communication Range 

LF 30 - 150 kHz 20 centimeters 

HF 3-30 MHz 10 centimeters 

UHF 
433 MHz  10 meters 

868 - 915 MHz Up to 10 meters 

Microwave 
2.4 - 2.5 GHz 3 meters 

5.8 GHz 3 meters 

Dense RFID tags or readers need to be deployed to improve the location accuracy in 

indoor environments. For instance, [50] applies WallSence algorithm to detect directly the 

target’s location by applying Particle Swarm Optimization (PSO) with a novel weighted 

function. In fact, the localization algorithm is associated with two orthogonal tag arrays. The 

RFID reader operates at 920 MHz to 926 MHz band and provide the phase acquisitions for 

each successful identification, and reach an optimal location accuracy of 24 centimeters using 

50 passive RFID tags in a large empty room of 102.3 square meters.  
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1.4.5.2 Active RFID Tags 

An active RFID tag is equipped with a transceiver and an internal battery. This active 

tag provides an autonomous signals transmission to the RFID reader antenna. The embedded 

battery makes active transmitters heavier and costlier but allows for long detection range up to 

200 meters outdoors [1].  

 

Figure 1.12 Typical architecture of Active RFID systems 

The active RFID technology can be used in localization thanks to its long range 

detection. For instance, [51] demonstrates an auto-calibration method using 64 active RFID 

tags operating at 433 MHz, in a 1600 square meters indoor environment; The RFID tag 

detection range can reach 20 meters. The detected position accuracy is 4.9 meters using the 

RSS metric and 3.4 meters while applying a particle filter.  

Based on the associated high coverage, we are interested to implement a new ILS using 

active UHF RFID tags. The proposed system will be described in the following chapter. 

 Summary for Optimal ILSs Performance 

Several recently implemented ILSs were studied along with their advantages and 

limitations. Some of these ILSs meet high reliability, strict energy efficiency and robustness 

indoors. The choice of technology is a key criterion to achieve the most suitable indoor 

localization solution. Table 1.3 summarizes the optimal ILSs’ performance for each 

technology, based on the associated algorithms and accuracy.  
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Table 1.3 Summary of the optimal ILS performance for each technology 

Technology Covered Area [𝒎𝒎𝟐𝟐] Accuracy [m] 

ZigBee [33] 51.84 0.53 

Bluetooth [38] 78.87 1.15 

WiFi [43] 128 0.87 

UWB [45] 60.5 0.33 

RFID 
Passive [50] 102.3 0.24 

Active [51] 1600 3.4 

In short, the RF technology is a critical factor affecting the ILS accuracy and 

performance in complex indoor environments. Among these technologies, ZigBee, Bluetooth 

and WiFi present limited communication ranges and low locations accuracy. The UWB 

technology presents high location accuracy with expensive cost. However, RFID-based 

localization systems offer affordable cost, high-range communication, fast readability and 

accurate localization solutions [7].  

In fact, the localization accuracy is an essential criterion. However, other ILS 

characteristics should be taken into consideration. They will be presented in the following 

section.      

 Indoor Localization Systems Characteristics 

First of all, IPSs are generally classified into exogenous or endogenous [52], [53]. This 

classification is mainly based on the available infrastructure that can be used to establish 

locations information. For instance, WiFi infrastructures are available in the majority of indoor 

scenarios, and the cost of WiFi-based localization is low because no specific infrastructure is 

required. These exogenous IPSs were extensively studied in the past years. However, in the 

case of harsh indoor conditions, the already implemented infrastructure may not be efficient 

for high precisions. Hence, the need for developing tailored positioning systems.   

Whereas, endogenous IPSs are made up of infrastructure not been installed in advanced. 

This kind of solutions usually requires a comprehensive site survey, a significant manpower 

and time for deployment, as well as more hardware. However, it provides optimal positioning 
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systems. In our activity, we are interested in the endogenous solution in the aim to enhance the 

localization accuracy in different indoor scenarios.  

It is worth recalling that characteristics and performance of ILSs are application 

dependent. Hence, the main challenge is to define the ILS features that correspond to the 

application needs. Many aspects characterize each ILS and its performance [1]. Table 1.4 

defines the main IPSs characteristics. 

Table 1.4 Indoor Positioning Systems Characteristics 

Characteristics Definition 

Availability 
The technology is readily available and no need for any end-user 

hardware. 

Cost 
The system should not incur any additional infrastructure (Exogenous 

solution) and does not require any complex end-user hardware. 

Reception Range 
An accurate location recommends a reasonable communication range 

that depends on the application and the environment. 

Accuracy The positioning system should limit the impact of multipath effects. 

Latency 
The Real Time Localization System (RTLS) requires the user location 

without any noticeable delay. 

Scalability 
The system should be able to simultaneously locate or provide services 

to a large number of users in a large space. 

These aforementioned characteristics are significant in all localization systems 

evaluation. Each system depends on the corresponding application and the scale of deployment. 

An ideal localization system should gratify all indoor applications. Yet, there is no such 

proposed system that satisfies all of these requirements. However, some systems, that have 

been proposed recently, insure most of these factors.  

Finally, Table 1.5 summarizes all characteristics for each technology.  
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Table 1.5 Comparative Table for the different Radio Frequency Based-ILSs  
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 Summary  

In this chapter, we have detailed the most used positioning metrics (ToA, TDoA, AoA 

and RSS) followed by the different localization techniques (proximity, triangulation, 

trilateration and fingerprinting). In addition, different technologies, especially those based on 

the radio frequency, (ZigBee, Bluetooth, WiFi, UWB and RFID) are defined taking into 

account their features and limitations in indoor localization such as availability, cost, reception 

range, latency, location accuracy and scalability. The choice of the suitable technology depends 

on the user’s application and its requirements. Based on the literature reviews, with particular 

emphasis on some of the IPSs performances’, these competitive RF technologies are then 

evaluated and compared. 

Based on its features, a special focus was given to the RFID technology. It will be 

implemented within our system. More details will be presented in the following chapters.  
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Chapter 2  RFID Based Localization System 

 Introduction 

The RFID technology has shown an importance for indoor localization services, 

presenting a low cost, high coverage and fast readability. Several ILSs based on RFID have 

been proposed [1]-[3]. They can be categorized into two types: reader-based and tag-based 

localization. 

In the case of reader-based localization, the RFID reader is usually attached to the 

tracked person or object while tags are installed in the environment at known locations [4]. The 

location of the reader is estimated through signals transmitted from tags. Accuracy and 

resolution of the position estimation are increased with a high density of tags deployed in the 

environment [5]. Hence, the system cost relatively increases with either active or passive RFID 

tags indoors.  

Otherwise, tag-based localization systems allow to estimate positions of the RFID tags, 

that are placed on objects [6]. They are suitable for several applications, starting from locating 

goods in warehouses to tracking luggage in airports. They can provide the same location 

accuracy as that by reader-based localization structures.  

Both architectures face several challenges. They will be described in the following 

section. 

This chapter is organized as follows: Section 2.2 describes the major challenges facing 

most RFID-based localization systems along with solutions found in the literature. Section 2.3 

presents the environment where our experiments will be conducted. The conventional 

architecture is presented in section 2.4. RFID equipment used are presented in section 2.5. 

Finally, the chapter is summarized in section 2.6. 

 Drawbacks and Existing Solutions of UHF RFID based ILSs  

Several challenges hinder further development of existing RFID-based IPSs. Some of 

the drawbacks faced in the ILSs are the system’s cost, signals’ interference, signals’ variability 

and the computation complexity. 

The system’s cost relies on the large number of tags and readers to be deployed [7]. 

Examined systems, in this subsection, are based either on passive or active RFID tags, and use 
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several localization techniques. [8] proposes passive RFID-based ILS. It deploys 50 passive 

RFID tags in a large empty room of 102.3 square meters. [9] uses 64 active RFID tags operating 

at 433 MHz, in a 1600 square meters indoor environment. 

LANDMARC is the first feasible method that uses active RFID tags; they are usually 

placed in the form of a regular grid with a limited number of readers. Two different categories 

of tags are defined: reference and tracking tags. Reference tags are deployed and installed at 

known locations covering the environment. Tracking ones are attached to the moving objects. 

Readers receive RF signals from both tags categories. LANDMARC uses reference tags 

emitting the closest RSS values to those collected by the tracking tags. They are called 

candidate reference tags and are used to estimate the locations of the tracking tags. For instance, 

[10] introduces the LANDMARC concept as a solution; the RFID reader is operating at 308 

MHz and the detection range of the used RFID active tags is 45.7 meters. The maximum error 

distance achieved is less than 2 meters, while 4 readers and 16 active reference tags are 

deployed to detect 8 active target tags in an indoor environment of 36 square meters. In the 

same context, [11] proposes an approach to improve the LANDMARC algorithm; this RFID-

based ILS reaches an average estimated distance error of 75 centimeters in 50 square meters 

by deploying 4 RFID readers and 28 active RFID reference tags, operating at 433 MHz. 

Moreover, VIRE method is applied to improve the localization performance based on 

LANDMARC. [12] adapts the VIRE solution by adopting an array formed by 8 active reference 

tags. One RFID reader is used to determine the location of the target tag. This approach is 

validated in 9 square meters through a simulated environment. The achieved average location 

error is 37 centimeters.  

On the same way, [13] shows a novel hybrid system for indoor localization; both SA-

LANDMARC and COCKTAIL algorithms were introduced within a tested area of 36 square 

meters. These two algorithms run in two phases. The first phase is SA phase, which stands for 

Sensor Assisted. The second phase is the localization phase. It uses information of all reference 

tags and the Support Vector Regression (SVR) to localize the object. Accuracy reached 70 and 

45 centimeters respectively, using 49 active RFID tags, operating at 303.825 MHz. Despite the 

SA-LANDMARC’s implementation simplicity and COCKTAIL’s efficiency, the achieved 

high precision, using both algorithms, refers to the dense deployment of active RFID tags 

which is around one tag per square meter. After stating these references [10]-[13], it is verified 

that major RFID localization systems count on the number of tags. To overcome this issue, our 
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proposed ILS presents an accurate and cost-efficient positioning solution by deploying a 

reduced number of active RFID tags. 

Another drawback of existing RFID-based ILSs is the RF interference between 

reference tags. Moreover, the deployment of many reference tags indoors may interference 

between them [14]. To improve the detectability of the location target, while reducing the inter-

tags interference, [15] proposes a passive RFID-based ILS with Dielectric Resonator (DR) tags 

with an operating bandwidth of 100 MHz. The proposed system uses the potential of the large-

scale Multiple Input Multiple Output (MIMO) technology. The DR tag is composed of an array 

of DR elements with a unique resonance frequency. These passive tags are designed to work 

as reference tags. The target location is estimated by applying the Weighted Linear Least-

Squares (WLLS) estimator combined with the optimal large scale MIMO-based ranging 

technique. This RFID localization architecture produces high location accuracy of around 75 

centimeters in an office environment of 300 square meters. [16] presents an RFID localization 

method that uses the interference of 121 reference tags to detect the location of the passive 

target tag. The position information is captured by measuring the phase difference of reference 

tags. The frequency ranges from 920.625 MHz to 924.375 MHz. The location accuracy 

achieved is less than 6 centimeters in an experimental lab environment.  

As additional default, large signals variability is a common anecdotal problem in most 

ILSs based on the RSS positioning metric [17]. This instability is due to the propagation 

channel non-stationarity and multipath. Therefore, the need for assuring signals stability is very 

essential to mitigate the location uncertainty. An available solution is presented by [18]; it 

implements and assesses the D-Watch device using both the direct path and multipath to 

improve the location accuracy to the decimeter level. Another solution is proposed by [19]. It 

presents an IPS-based on AoA and PDoA using Weighted Least Squares combined with 

Residual Weighted (WLS-RW) algorithm. This system performs with passive UHF-RFID tags 

in NLoS indoors. To distinguish multipath signals, an antenna array is used to find the strongest 

path based on RSS values. According to simulation results, this localization system can 

improve the location accuracy to reach 20 centimeters with a probability of 90%, in a 100 

square meters’ modeled room. 

Looking at systems’ complexity, [20] investigates the RFID localization systems based 

on fingerprinting. RSS data, collected by 6 readers, are from 619 passive UHF RFID reference 

tags, deployed in a square warehouse of 124 square meters. To know the RSS spatial 

distribution, during the offline stage, a deep learning algorithm called Deep Belief Network 
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(DBN) is designed. During the online or positioning stage, the target location is determined. 

The RFID localization system reaches high accuracy of 1 meter, in the considered indoor 

environment and outperforms several systems based on fingerprinting. Hence, the use of 

advanced algorithms will be recommended. However, this increases the system’s cost and 

complexity. Table 2.1 recapitulates the main RFID-based ILSs’ drawbacks and given solutions.  

Table 2.1 Summary of RFID-based ILSs’ Drawbacks and Solutions 

Drawbacks Proposed Solutions 

High Cost  
Introducing feasible algorithms to reduce the number of deployed 

RFID tags. 

RF Interference 
Integrating DR tags with the optimal large–scale MIMO technology. 

Measuring the phase difference of reference RFID tags. 

Signals’ Variability 

Implementation of a D-Watch device that uses both the direct path    

and multipath. 

Use of an antenna array to find the strongest path. 

Systems’ complexity Introducing a deep learning algorithm 

Given the RFID-based ILSs’ drawbacks aforementioned, solutions found in the 

literature are still laborious and complex. They differ whether the RFID system is active or 

passive. A brief comparison of UHF RFID localization schemes surveyed is presented in Table 

2.2, showing the frequency, localization algorithm, tags density and accuracy.  
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Table 2.2 Comparison of UHF RFID Localization schemes  
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Looking at passive UHF RFID-based ILSs providing good results, they usually 

performed using either the phase or deep learning algorithms. It is clear that methods using the 

metric of phase are more accurate but need specific hardware. In addition, deep learning 

approaches have a major shortcoming appearing in the computation complexity, hence 

increasing the computation time and the system complexity. So, the use of active RFID tags is 

more advantageous. 

To overcome the aforementioned appearing drawbacks, we are focused on reducing the 

system’s cost and complexity, by deploying a reduced number of UHF active RFID tags. 

Interference is mitigated by creating diversity of signals emitted by a group of tags. Stability is 

enhanced through the Maximum Likelihood Estimator (MLE) applied as RSSs combining 

technique.  

Moreover, the system’s accuracy is improved by proposing a reliable calibration 

approach associated with empirical indoor propagation models.   

The proposed ILS is reader-based. It features locating people, with a positioning error 

equivalent to an individual step i.e. less than 1 meter. In the aim of covering a wide area, the 

tags need to have a long operation range. Hence, the proposed system operates at 433 MHz. In 

addition, this reduces the density of deployed tags. 

 Experimental Environment 

Experiments were carried out in two different environments at the Engineering School 

EFREI-Paris: an unfurnished classroom on the fourth floor and a hall on the ground. However, 

the proposed localization system is assessed only in the classroom.  

The environment has an area of approximately 63.75 square meters (8.5 x 7.5 square 

meters). Although unfurnished, this environment can still be considered complex for RF signals 

propagation due to its asymmetric geometry and specific structure. More precisely, the left wall 

presents some strengthening corners, and the right wall is full of glass. This classroom 

environment is also occupied by some unmovable metallic objects, including a very large 

heater (with 8 meters of length and 1 meter of height) with sharp blades, a metallic board on 

the back wall, an LCD projector on the ceiling, one fire detector fixed on the ceiling, and 

speakers fixed on the ceiling and also on the back wall. The four views of the classroom are 

shown in (Figure 2.1).   



37 
 

 

Figure 2.1 Indoor site of experiments in the classroom 

The use of AutoCAD is helpful to design the indoor environment with small details. To 

get an accurate configuration, each object or material is drawn carefully and classified under 

different layers. For instance, fourteen different layers in the considered environment scenarios 

were introduced: concrete walls, plywood walls and ceiling, doors, LCD projector, six lamp 

boxes, three speakers, one fire detector, duct, big heater, pillar, windows and their frames and 

boards in aluminum, as illustrated in Figure 2.2. More studies on the environment structure that 

affects signals propagation will be elaborated in the following chapter. 
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Figure 2.2 The geometric and the distributed metallic elements in the classroom environment 

 Conventional RFID based Localization System 

It is worth recalling that our conventional localization system is reader-based with 

active UHF RFID tags (Figure 2.3). It applies the RSS metric for (tags-reader) distances 

estimation. The reader’s position is then determined by applying the multilateration. 

 

Figure 2.3 UHF RFID Based Localization Architecture 
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Figure 2.4 General Overview of the Conventional UHF RFID localization system 

The system handles RSS values acquired in an indoor environment. It is based on auto-

fingerprinting, where the RFID reader is mounted over a mobile robot. 

The main principle of operation of our system is realized through two stages: offline 

and online stages, as illustrated in Figure 2.5. The offline stage represents an auto-calibration 

phase for the considered indoor environment and the online stage is the positioning phase.  

 

Figure 2.5 The Conventional RFID based localization system’s Flowchart 

Generally, the offline stage consists in establishing a radio map under the form of a 

training database reflecting how the signal propagates in the area of interest. This radio map is 

built by measuring the received power at reference positions covering this area.  
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Usually, advanced probabilistic or statistical algorithms are applied to match the online 

collected signals with the radio map, while deploying a defined number of reference tags. Thus, 

the computational complexity grows with the size of the database.   

In our case, the training stage is performed following radial paths to limit the number 

of positions, which are symmetrically distributed in both sides of the classroom. Only one 

active RFID tag is used as a reference, to reduce the offline complexity. It is placed on the 

center of the front wall of the classroom as shown (Figure 2.11).  

 

Figure 2.6 Two-dimensional floor map of the experiment site (Offline Stage) 

RSSs emitted from the RFID tag are collected at reference positions, spaced by 50 

centimeters over seven paths or tracks, from A30 until A150 (Figure 2.6). In fact, we would 

rather a half wavelength step (λ/2), in order to have a reliable calibration. However, we had to 

space positions by 50 centimeters to fit with the width of the isolated RFID reader mounted on 

the robot. At each position, 200 acquisitions of RSS are recorded and averaged. To represent 

propagation in the considered environment, a defined indoor propagation model is applied over 

the central track (A90) characterized by the highest number of positions compared to other 

tracks, as illustrated in Figure 2.6. These extracted attenuation parameters of the central line 

are symbolized by AF90.  
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During the online stage, RSS samples are collected. These RSSs are combined with the 

same technique used during the calibration stage i.e. they are averaged. The tag-reader distance 

is then estimated by applying the propagation model (with the parameters corresponding to our 

indoor environment) to the averaged values. Finally, the reader position is determined by 

Multilateration (Figure 2.5).  

In the following subsections, our conventional RFID ILS will be introduced. The auto-

radio map technique with the robot’s calibration experiments are detailed in subsection 2.4.1. 

The RSS averaging combining technique, followed by the One Slope propagtion Model (OSM) 

and the multilateration, are described in subsections 2.4.2, 2.4.3 and 2.4.4, respectively. 

 Auto-Radio Map  

In the aim of improving the calibration reliability as well as the localization accuracy, 

we investigate the robot’s displacement issue. We start by an overview on the robot’s 

systematic error and the way of calibration to typically keep it on the considered trajectory and 

collect the RSS acquisitions accurately, in both offline and online stages. 

Most mobile robots induce systematic errors caused by imperfections in the design and 

mechanical implementation [21]. Therefore, robot’s calibration is a key process to achieve 

proper results in the odometry-based navigation of any moving system.  

Odometry is a fundamental robot’s calibration technique. It is used in robotics to 

improve auto-fingerprinting and to typically keep the robot on track [22]; it handles data from 

motion to estimate changes in position over time; Moreover, well-calibrated odometry is an 

essential phase for a mobile robot to have an accurate displacement over a long path; this can 

be achieved through different test scenarios.  

As robot platform, the model Pioneer 3-DX [23], shown in Figure 2.7, is used in the 

experiment. Pioneer 3-DX is a two-wheeled robot with dimensions 45.5 x 38.1 centimeters. 

The Software Development Kit (SDK) provided by the brand is used to control it combined 

with the Advanced Robot Interface for Applications (ARIA), which is a C++ library for all 

mobile robot platforms, allowing to access all parameters such as speed and heading.  

For navigation, the two key factors are: the robot’s deviation and stop estimation [24]. 

To guarantee accurate displacement, many experiments have been carried out by a master 

student on the robot odometry errors such as: the straight line, the wheels’ velocity, the wheels’ 

rotation, and the square path calibrations tests. 
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Figure 2.7 The Pioneer 3-DX Mobile Robot  

2.4.1.1 Straight Line Test 

The projection of the wheelbase center is considered as the robot's location, as shown 

in Figure 2.8. The robot moves along a straight line of length L until it reaches the end position. 

 

Figure 2.8 The diagram of Straight Line  

This test was done in a corridor whose dimensions are: 22.5 x 2 meters. The robot was 

placed at a distance of 80 centimeters from the left wall instead of the midline as the right wall 

of the corridor isn’t straight all long. The expected robot’s trajectory is the straight line of 20 

meters. As shown in Table 2.3, three tests were carried out and the deviation was calculated at 

each 1 meter. 
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Table 2.3 Wheels’ Deviations over Straight Path 

Number of Tests Test 1 Test 2 Test 3 Mean Deviation [cm] 

Deviation/1 m [cm] 6.78 6.75 6.72 6.75 

It can be noticed that the robot deviates to the left and hits the wall at a distance of 11.6 

meters. This deviation can be neglected at the beginning. But, correction is required as the robot 

moves forward. Before evaluating the localization system performance, further investigations 

about the robot’s displacement are needed to correct its deflection. A straight trajectory may 

be obtained by changing the speed of the left wheel. 

2.4.1.2 Wheels’ Velocity Test  

 In this subsection, the wheels’ speed test was applied in order to figure out the origin 

of the robot’s drift away from the straight line. ARIA has some functions that make it possible 

to obtain the linear speed of each wheel. Test was done over a straight line of 5 meters by 

displaying the speed of each wheel every second. Experiment was repeated three times. 

Angular velocities (rad/s) are converted into linear speeds (mm/s) using the equations 

expressed below:  

𝑉𝑉𝑇𝑇 = 𝑅𝑅.𝑊𝑊𝑇𝑇 (2.1) 

 And 

𝑉𝑉𝑟𝑟 = 𝑅𝑅.𝑊𝑊𝑟𝑟 (2.2) 

With 𝑉𝑉𝑇𝑇 and 𝑉𝑉𝑟𝑟 are the linear speed of the left and right wheel respectively. 𝑊𝑊𝑇𝑇 and 𝑊𝑊𝑟𝑟 

are the angular velocity of the left and right wheels respectively. R is the wheels’ radius. 

Knowing that the wheels radius is of 92.5 mm [23], Table 2.4 represents the absolute 

difference between the speed of the right and left wheel. 

Table 2.4 Difference between Wheels velocity 

Number of Tests Test 1 Test 2 Test 3 

|𝑽𝑽𝒍𝒍 − 𝑽𝑽𝒓𝒓| [mm/s] 0.04 0.01 0.03 
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Based on these tests, the difference between speeds is quiet small with a worst case of 

0.04 mm/s. In short, the problem of the robot's deviation was not due to the difference in the 

wheels’ velocity.  

2.4.1.3 Wheels’ Rotation Test 

As the wheels speed is not behind the robot’s drift, wheels rotation test is necessary to 

analyze the wheels’ rotation stability. Thus, the robot was rotated about itself 360° at the same 

speed in two directions i.e. ClockWise (CW) and CounterClockWise (CCW). The difference 

in angular velocity between the two wheels was analyzed. Then, the angle deviations are 

measured in both directions. Figure 2.9 presents the rotation errors for the six trials. 

 

Figure 2.9 Clockwise and Counterclockwise rotation error 

Figure 2.9 shows that when the robot turns clockwise, it can almost do 360° whereas it 

rotates 359.1° on average. However, counterclockwise, the robot tends to rotate more than 360° 

whereas it rotates around 362° on average. It can be noticed that the wheels’ rotation is almost 

stable and cannot be considered as the cause of the robot’s deviation. Hence, another test is 

finally elaborated to show the robot’s performance in a complete cycle path. 

2.4.1.4 Square Path Test 

 For this test, the procedure defined as the University of Michigan Benchmark test 

(UMBmark) [25] is adopted as it is especially designed to uncover certain systematic errors. 

This method is a set of test runs in which the robot is programmed to follow a 4×4 meters 
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square path, as shown in Figure 2.10. Due to systematic errors, after linear and turning 

movement, the robot had a position offset and could not get back to the initial point.  

 

Figure 2.10 Diagram of a square path clockwise and counterclockwise 

For both CW and CCW scenarios followed by the mobile robot, offsets were studied 

upon ten trials. The average of each angle was calculated as shown in Table 2.5. 

Table 2.5 Robot Angles’ deviation 

Angle A1 A2 A3 A4 

Clockwise (α) 90.1° 93.6° 92.4° 88.4° 

Counterclockwise (β) 88.1° 88.6° 98.3° 81.1° 

Upon tests results’, it can be concluded that the robot tends to drift to the left. However, 

the deviation angle is relatively small compared to 90°. Over short distances (less than 1 meter), 

and with the large size of the robot that is equal to 45.5 centimeters, the deviation does not 

significantly affect the robot’s displacement accuracy. It corresponds to only 6.66% of the robot 

length. 
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Over a longer trajectory, and referring to the straight-line test (Figure 2.7), the robot 

presents an angle deviation of tan−1(θ) = 0.8/11.6 = 3.95° to the left. Thus, to have an accurate 

mapping coverage and stable robot’s motion, an auto-correction by a rotation of 3.95° 

clockwise needs to be applied. 

 RSSs Combining by Averaging 

According to the literature, most common calibration databases use the averaged RSS 

value computed at a particular distance from the transmitting antenna [26]-[30]. In this 

framework, [28] puts forward an RSS based localization system using wireless sensor 

networks. Experiment is performed in a laboratory of 77 square meters. The obtained optimal 

positioning error is of 2 meters. [29] proposes a new synchronization protocol between the 

offline and online stages of the auto-fingerprinting based on averaging RSSs. The location 

accuracy of the proposed indoor localization system reaches 2 meters. In the same context, [30] 

also presents a system using the average of the RSS values as combining technique; 

performance of the proposed architecture is analyzed to achieve a location accuracy of 1.22 

meters. Thus, we adopt the average technique as RSS combining method in our conventional 

indoor localization system. 

During the offline and online stages, 200 and 20 RSS values are respectively collected 

at each position. They are combined via the averaging technique. Figure 2.11 presents the 

flowchart of the localization system based on average RSSs. 

 

Figure 2.11 Flowchart of the ILS based on the Average Technique 
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 Calibration and Distance Estimation by One Slope 
Propagation Model 

To estimate the tag-reader distance from the received power, we need to apply a signal 

propagation model. Up to date, the One Slope propagation Model (OSM) is still the most 

commonly used in indoor localization applications [31] because of its simplicity.  

OSM consists in a deterministic analysis that can only be applied in few rather simple 

cases.  

In free space, according to Friis formula [33], the received power Pr_out  by an antenna 

at a distance d from a transmitter can be represented by:  

𝑃𝑃𝑟𝑟_𝑃𝑃𝑜𝑜𝑇𝑇 (𝑑𝑑) = 𝑃𝑃𝑇𝑇 .𝐺𝐺𝑇𝑇 .𝐺𝐺𝑟𝑟 . �
𝜆𝜆

4𝜋𝜋𝑑𝑑�
2

 (2.3) 

Where 𝑃𝑃𝑇𝑇 is the transmitted power in watt, Gt is the transmitting antenna gain, Gr is the 

receiving antenna gain, λ is the wavelength in meters, and d is the distance in meters.  

In the logarithmic scale, the received power 𝑃𝑃0_𝑃𝑃𝑜𝑜𝑇𝑇 at 1 meter in dBm can be expressed 

as follows: 

𝑃𝑃0_𝑃𝑃𝑜𝑜𝑇𝑇 (𝑑𝑑 = 1) = 10. log (𝑃𝑃𝑇𝑇 .𝐺𝐺𝑇𝑇 .𝐺𝐺𝑟𝑟 . �
𝜆𝜆

4𝜋𝜋�
2

) (2.4) 

And, the received power in outdoor, in dBm can be expressed as follows: 

𝑃𝑃𝑟𝑟_𝑃𝑃𝑜𝑜𝑇𝑇 (𝑑𝑑) =𝑃𝑃0_𝑃𝑃𝑜𝑜𝑇𝑇 − 20. 𝑙𝑙𝑙𝑙𝑎𝑎10(𝑑𝑑)  (2.5) 

Where 𝑃𝑃𝑟𝑟_𝑃𝑃𝑜𝑜𝑇𝑇 is the received power, 𝑃𝑃0_𝑃𝑃𝑜𝑜𝑇𝑇 is the received power in the free space at 

distance 1 meter from the transmitter. 

Indoors, the attenuation factor varies between 1.6 and 5 [32]. This variation is due to 

NLoS and multipath effects.  

In our case, the conventional ILS applies the OSM defined as follows: 

𝑃𝑃𝑟𝑟 (𝑑𝑑) =  𝑃𝑃0 − 10.𝑛𝑛. 𝑙𝑙𝑙𝑙𝑎𝑎10(𝑑𝑑) +  𝑋𝑋  (2.6) 

With 𝑃𝑃𝑟𝑟(𝑑𝑑) is the received power in dBm, 𝑃𝑃0 is the received power at 1 meter in dBm. 

n defines the attenuation coefficient. The term 𝑋𝑋 describes the standard deviation of the 

received power values throughout the corresponding area. 
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 Multilateration   

As defined in chapter 1, section 1.3.3, multilateration is the process that estimates a 

target location based on the estimation of distances from several reference points [34]. Within 

the proposed RFID based localization system, the reader position is determined based on multi 

tags-reader distances estimation and using RSS values collected by the RFID reader. However, 

indoor, RSSs are inversely proportional to the tag–reader distance and the random noise factor 

[35]. Each estimated distance is represented by a circle around the fixed associated tag. The 

intersection of the different circles provides a common point or a coverage area of the received 

signals as shown in Figure 2.12. 

 

Figure 2.12 Positioning by Multilateration 

According to the Euclidean distance formula, nonlinear equations are formulated as 

follows: 

(𝑎𝑎 − 𝑚𝑚𝑇𝑇)2 + (𝑏𝑏 − 𝑦𝑦𝑇𝑇)2 +  (𝑐𝑐 − 𝑧𝑧𝑇𝑇)2 = 𝑑𝑑𝑇𝑇
2 (2.7) 

P(a,b,c) represents the unknown reader’s location. (𝑚𝑚𝑇𝑇,𝑦𝑦𝑇𝑇 , 𝑧𝑧𝑇𝑇) represents the 𝑖𝑖𝑇𝑇ℎ known 

tag coordinates, and 𝑑𝑑𝑇𝑇 represents the distance between the reader and the 𝑖𝑖𝑇𝑇ℎ tag.  

The multilateration technique is based on distances to N reference RFID tags (N>3), 

assumed fixed in space and located at known coordinates (𝑚𝑚𝑇𝑇,𝑦𝑦𝑇𝑇 , 𝑧𝑧𝑇𝑇). A movable RFID reader 

is located at an unknown position P(a,b,c). The high number of tags may improve the 
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localization accuracy compared to the trilateration approach, where only three fixed tags are 

needed, but position is determined based on three distances instead of N. 

Expanding and regrouping terms in equation (2.7) we obtain: 

A.�
𝑎𝑎
𝑏𝑏
𝑐𝑐
� = B (2.8) 

With 

𝐴𝐴 = 2((𝑚𝑚𝑇𝑇+1 − 𝑚𝑚𝑇𝑇) (𝑦𝑦𝑇𝑇+1 − 𝑦𝑦𝑇𝑇)  (𝑧𝑧𝑇𝑇+1 − 𝑧𝑧𝑇𝑇)) (2.9) 

And 

 𝐵𝐵 = (𝑑𝑑12 − 𝑑𝑑𝑇𝑇+12 − [(𝑚𝑚12 − 𝑚𝑚𝑇𝑇+12 ) − (𝑦𝑦12 − 𝑦𝑦𝑇𝑇+12 ) − (𝑧𝑧12 − 𝑧𝑧𝑇𝑇+12 )]) (2.10) 

Where i is the index of the deployed RFID tags i.e, i ∈ {1, 2, …, (N-1)}. 

The solution of equation (2.8), that corresponds to the intersection of the circles, 

determines the reader’s coordinates as follows: 

�
𝑎𝑎
𝑏𝑏
𝑐𝑐
�  = 𝐴𝐴−1B (2.11) 

In our system, we are working in a two-dimensional plane as four deployed RFID tags 

and the reader are at the same height. Given the asymmetrical shape of the classroom walls 

(Figure 2.1), we chose to reduce the effects of the ground and the ceiling reflections which are 

rather symmetric. In this spot, the RFID tags are fixed horizontally at the center of each wall, 

and at the same reader’s height of 1.25 meters from the ground.   

Thus, the applicate parameter can be omitted. For instance, P(a,b) represents the 

unknown reader’s location. (𝑚𝑚𝑇𝑇,𝑦𝑦𝑇𝑇) represents the ith known tag coordinates, and di represents 

the distance between the reader and the ith  tag (Figure 2.13). 
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Figure 2.13 Positioning by Multilateration in Two-dimensional Layout 

Only three RFID tags, fixed on three walls, could be used to locate the reader. We rather 

used four tags, fixed horizontally at the centers of the four walls respectively, in order to 

improve more the positioning accuracy. Hence, four quadratic equations are considered to 

estimate the RFID reader position given by:  

�𝑎𝑎𝑏𝑏� = 𝐴𝐴−1B (2.12) 

With 

𝐴𝐴 = 2((𝑚𝑚𝑇𝑇+1 − 𝑚𝑚1) (𝑦𝑦𝑇𝑇+1 − 𝑦𝑦1)) (2.13) 

And 

𝐵𝐵 = (𝑑𝑑12 − 𝑑𝑑𝑇𝑇+12 − [(𝑚𝑚12 − 𝑚𝑚𝑇𝑇+12 ) − (𝑦𝑦12 − 𝑦𝑦𝑇𝑇+12 )]) (2.14) 

i is the index of the deployed RFID tags i.e, i ∈{1, 2, 3}. 
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 RFID Equipment 

The ILS used active UHF-RFID tags and a reader that operate at 433 MHz, as this 

frequency offers a larger communication range than that provided by the 2.4 GHz band used 

in most indoor localization systems and is less affected by multipath fading [36]. 

The RFID equipment is proprietary of Ela-Innovation; it does not comply with RFID 

standards. Figure 2.14 (a) shows the “Coin ID” tag. This UHF RFID tag can be detected from 

as far as 20 meters indoors. It presents a fast identification time (less than 1 second). Moreover, 

it operates according to an active identification process in periodic transmission. More 

precisely, transmission is non-continuous, the signal emission time is around 1 millisecond and 

the time difference between two consecutives transmissions is around 200 milliseconds. In the 

same context, this active RFID tag is powered by a 3 Volt battery. Its antenna has an 

omnidirectional radiation pattern [37]. 

The RFID reader is illustrated in Figure 2.14 (b). It is an “UTP Diff 2”, powered by a 6 

V battery and can be configured using onboard instructions as well as a software interface, that 

does not include any anti-collision protocol. 

It worth recalling that 200 and 20 RSS values are respectively collected at each position, 

during the offline and online stages. As the transmission is non-continuous, the 20 acquisitions 

are collected in 4 seconds, within the online stage. Whereas, around 40 seconds are needed to 

collect the 200 samples, in the offline stage. Due to the transmission intermittence and long 

acquisition duration, the propagation channel, between the tag and the reader, can be 

considered as non-stationary. 

 

Figure 2.14 (a) Coin ID RFID tag and (b) UTP Diff 2 RFID reader 
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Ela Manufacturer provides Figure 2.15 that can be used to deduce the relationship 

between the RSS values collected by the reader and the received power in dBm. The received 

power in dBm is expressed as follows: 

𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑 =  30.84 −  0.632 ∗  𝑅𝑅𝑅𝑅𝑅𝑅 (2.15) 

Where 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑 is the received power in dBm. RSSI is the received signal strength in 
decimal. 

 

Figure 2.15 RSSI vs Power [dBm] 

It can be noticed, on Figure 2.15, that RSS values vary linearly in the range between 

128 to 204. In our further processing, RSS values out of this linear range are filtered out.  

Besides, it is worth mentioning that the step between two adjacent RSS values is 

equivalent to 0.6 dB. Thus, the quantization error, based on the RFID reader dynamic range, is 

equivalent to ± 0.3 dB. 

 Summary 

In this chapter, the major drawbacks of RFID-based ILSs and associated solutions are 

presented. A conventional system is then described. It is divided into two stages: offline and 

online. The offline stage is focused on building a radio map for the indoor environment. 

Whereas, the RFID reader position is determined during the online stage. Both, offline radio 

map and online distances estimation are done using the average technique for RSSs combining. 

The simplest and most used indoor propagation model (OSM) followed by the multilateration 

technique are also shown. Finally, the RFID equipment is described.  
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The conventional system is our baseline; it will be improved in the following chapters 

in the aim to feature cost effective RFID tags deployment, along with low RSS variability, as 

well as enhanced radio map reliability and location accuracy. 
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Chapter 3  Environment and Hardware Modeling 

 Introduction 

Indoor scenarios represent one of the most complex geometries with exterior walls, 

windows, doors, etc. On shelves software like WinProp are well adapted to study the coverage 

of propagating signals in such indoor environments, hence reducing the need for costly 

measurements.  

Considering exhaustively all materials’ parameters such as Fresnel parameters and all 

empirical loss coefficients, predictions of the propagative behavior of signals can be provided 

in a precise way. It is important to keep in mind that indoor building materials are prerequisite 

to simulate the environment. Hence, an accurate 3D environment was designed and validated 

by an in-depth comparison of received power values obtained via a campaign of real 

measurements.  

This chapter focuses on presenting the accurate environment model. Tools used to 

design the 3D layouts will be introduced in section 3.2. In section 3.3, two indoor environments 

are well presented with all modeling details. In section 3.4, the different steps for simulation, 

including the simulated RFID tag’s antenna, reader antenna and configured indoor 

environments, will be expanded. In section 3.5, a comparison between the power values 

collected by the reader through simulations and real measurements is dressed. Finally, the 

summary of this chapter is presented in section 3.6. 

 WinProp tool  

There are several commercial software that predict signals propagation indoors such as 

EDX [1], Ranplan [2] and WinProp [3]. Most of these tools provide fast simulations, thanks to 

the preprocessing of the indoor materials’ properties that is required for the prediction [4].  

WinProp simulator has been selected to model the indoor environment and the RFID 

hardware based on its reasonable license cost and its features to import CAD files for 

electromagnetic simulations, as well as it provides accurate and fast propagation models in 

addition to the empirical and semi-deterministic methods for radio coverage and network 

planning. Moreover, [5] presents a satisfactory realistic results showing good agreement 

between simulations and measurements.     
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Winprop contains several tools (WallMan, AMan, ProMan) and different features that 

provide a wide interface for the user to present simulations. WallMan is used to design the 

environment and define the building database. AMan is mainly focused on antennas 

configuration. Then, signals coverage is characterized with ProMan. ProMan also includes 

empirical and semi-empirical models e.g. 3D Ray-Tracing and the Dominant Path Model 

(DPM).  

These propagation models differ depending on the prediction accuracy and the 

computational resources. Performance of this software is reported in the literature as follows: 

[5] characterizes signals behavior over the 700 MHz band with different propagation models. 

According to the presented results, Ray-Tracing provides more accurate modeling than that by 

other methods. [6] verifies WinProp capability to correctly predict the propagation 

characteristics of the 5G radio coverage at millimeter-wave bands in different urban city 

centers. In this context, [7] compares empirical or Ray-Tracing propagation models to real 

measurements. It shows that the new approach, based on 3D vector building databases, exceeds 

the accuracy of the Dominant path propagation model. 

 Environments for Tests  

We aim to characterize signals behavior in two considered indoor environments, using 

active RFID tags operating at 433MHz. The RFID equipment used is already presented in 

chapter 2, section 2.6.   

Experiments are carried out in the following environments: an empty classroom on the 

fourth floor and a hall on the ground floor of the Engineering School EFREI-Paris.  

It is worth recalling that the classroom has typical dimensions, with an area of 

approximately 63.75 square meters (8.5 x 7.5 square meters). Although unfurnished, this 

environment may still be considered as complex for RF signals propagation due to its 

asymmetrical walls. It also contains some unmovable metallic objects such as the heater (with 

8 meters of length and 1 meter of height) with sharp blades, LCD projector, fire detector, and 

speakers (Figure 3.1).  
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Figure 3.1 Indoor site of experiments in the classroom  

The hall is an indoor area of 205 square meter, with a traditional ceiling, as shown in 

Figure 3.2. It is also complex for RF signals propagation because of the geometrical shape 

(shape of L), and the presence of some metallic objects such as big heaters, billboard, fire 

detectors and doors. 
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Figure 3.2 Indoor site of experiments in the hall 

 Simulation Setup 

As previously mentioned, WinProp contains several tools that allow to get accurate 

simulations. The workflow for a typical indoor propagation simulation is represented as 

follows: Subsection 3.4.1 introduces WallMan, where the geometry of the considered 

environment is created. In subsections 3.4.2 and 3.4.3, AMan and Feko perform to produce the 

RFID tag’s antenna pattern and reader’s antenna pattern, respectively. These patterns can be 

exported in the correct format to be used for the RF coverage scenario. Finally, simulations, of 

the propagation model and illustrations of the received power done by ProMan, are explained 

in subsection 3.4.4.  

 Environment Properties  

The use of AutoCAD is helpful to design the indoor environment with small details.  

To get an accurate configuration, each object or material is drawn carefully and classified under 

different layers.  
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For instance, fourteen different layers in the considered classroom were introduced: 

concrete walls, plywood walls and ceiling, doors, LCD projector, six lamp boxes, three 

speakers, one fire detector, duct, big heater, pillar, windows and their frames and boards in 

aluminum, as illustrated in Figure 3.3.  

 

Figure 3.3 3D Layout of the classroom environment  

Furthermore, eight different layers in the considered hall environment were introduced: 

concrete walls, plywood walls and ceiling, doors, twelves lamp boxes, two fire detector, big 

heaters, windows and their frames, as illustrated in Figure 3.4.  

 

Figure 3.4 3D Layout of the hall environment 
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Through WallMan, the layers’ database is converted from the Cad file to generate a 

database for each environment; each layer, already defined through AutoCAD, corresponds to 

a specific material.  

Figure 3.5 presents the flowchart to design the 3D simulated environment via WallMan.  

 

Figure 3.5 Flowchart for the generation of vector databases 

While generating the environment database, empirical losses and Fresnel parameters 

that correspond to each material are defined depending on the material thickness and the 

frequency used. As already mentioned, up to fourteen different layers constitute the considered 

indoor environments. Table 3.1 exposes the Fresnel parameters of the main present materials. 
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Table 3.1 Fresnel coefficients of the materials in the two environments 

Materials 

 

Fresnel Coefficients 

Relative Dielectric 

Permittivity (𝜺𝜺𝒓𝒓) 

Relative Magnetic 

Permeability (𝝁𝝁𝒓𝒓) 

Conductivity [s/m]   

(σ) 

Concrete 2.3 1 0.004 

Plate 4 1 0.02 

Iron 1 105 1.04*107 

Aluminum 9.3 1 3.5*107 

Wood 3 1 0.005 

Glass 6 1 0.001 

Copper 4.2 1 5.8*107 

Then, materials constituting the environment and subdivisions such as: walls, doors, 

windows, and others are characterized by their electrical properties (transmission, reflection, 

scattering and diffraction coefficients).  

WinProp offers an extensive library where properties are defined for different 

frequency bands and materials. Table 3.2 states the empirical transmission and reflection losses 

corresponding to each material at 433 MHz.  
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Table 3.2 Empirical Losses of the included materials in both environments 

Materials/Layer 
Empirical Losses [dB] 

Transmission Reflection 

Wood 1.45 13.63 

Iron 92.57 0.05 

Plate 4.3 9.52 

Copper 59.57 0.04 

Glass 1.7 7.53 

Aluminum 56.31 0.05 

Concrete 5.2 7.51 

In addition to transmission and reflection, diffraction and scattering are also taken into 

consideration.  

Diffraction describes the propagation variation between illuminated and shadowed 

regions when there are edges or wedges that participate to the diffraction process. It is important 

when edges and wedges dimensions are closed to a factor of the wavelength. We are working 

in the UHF frequency band; diffraction is significant. Two types of diffractions are considered: 

the Geometric Theory of Diffraction (GTD) [8] and the Uniform Theory of Diffraction (UTD) 

[9]-[11]. Empirical formulas are also included when applying empirical propagation models.  

Scattering is directly related to the roughness and finite surfaces with small dimensions 

compared to the wavelength [12]. In our case, several surfaces are included in the indoor 

simulated model such as those of the heater and the LCD projector. Scattering will have a direct 

effect by reducing the reflected energy in the expected direction [13].  

After defining all Fresnel parameters and empirical losses coefficients for the materials 

that constitute the considered indoor environments, four views (x-z, y-z, x-y and 3D view) 

appear on the main panel, as illustrated in Figure 3.6 and Figure 3.7, respectively. Finally, the 

two configurations, containing the vectors database, will be created and saved under the 

extension *.dbi.   
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Figure 3.6 x-z, y-z, x-y and 3D view of the classroom in WallMan 

 

Figure 3.7 x-z, y-z, x-y and 3D view of the hall in WallMan 
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 Tag’s Antenna Model  

As it is well known, signals propagation relies on the antenna’s radiation pattern. To 

predict the signal coverage, the pattern must be described accurately within the radio network 

planning tool.  

Through AMan, which is a graphical antenna pattern editor, the tag’s antenna is 

designed. Its radiation pattern is taken into consideration in order to obtain signals propagation 

closest to the reality.  

Vertical and horizontal antenna patterns are available from manufacturers; they 

describe the antenna's radiation in ideal environments (Figure 3.8).  

 

Figure 3.8 Horizontal and vertical radiation patterns of the tag’s antenna 

Patterns, that are in the form of *. jpeg files, are used as inputs for AMan. Then, two 

binary files, with extensions *.ahb and *.avb, for the vertical and horizontal radiation patterns 

are created. 

AMan offers several algorithms for the 2D to 3D patterns conversion: 

- Arithmetic Mean (AM)  

- Bilinear Interpolation (BI)  

- Weighted Bilinear Interpolation (WBI)  

- Horizontal Projection Interpolation (HPI)  

- Exponential Interpolation (EXP)  
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HPI is the most common and accurate algorithm used for centered and non-centered 

radiation pattern beams. This algorithm considers any shape of antenna and tracks the 

maximum gain direction. Any beam tilt will be better handled by the HPI. 

For the conversion patterns settings, we selected the HPI algorithm 2x2D to 3D, through 

AMan, that will be used for the RF propagation model. Hence, the 2D vertical and horizontal 

tag antenna patterns are combined to generate the 3D pattern under the extension *.apb, as 

presented in Figure 3.9. The red color represents the 3D radiation pattern of the tag’s antenna 

and the gray color is the grid envelop of this pattern. 

 

Figure 3.9 3D radiation pattern of the tag antenna with AMan 

 Reader’s Antenna Model  

Feko is an electromagnetic solver combining several numerical methods in the 

frequency and time domains. Direct and indirect hybridization between numerical methods are 

also available to solve electrically big structures. Feko offers a panel of numerical 

methods/solvers included in one interface (Figure 3.10). Depending on the complexity and the 

electrical structure size, one can adapt a dedicated numerical method. Simulation of complex 

and electrically large scenarios can also be solved by using full hybridization between 

numerical algorithms. Feko is mainly based on the Method of Moments (MoM), which is a 
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numerical computational method of solving linear partial differential equations that have been 

formulated as integral equations i.e. in the boundary integral form [14].  

In our case, the MoM is used to model the RFID reader. It is based on the full-wave 

method without any convergence algorithm; this makes it accurate as far as the meshing is well 

defined. 

 

Figure 3.10 Feko numerical methods overview [15] 

Based on the Ela Innovation RFID reader datasheet [16], reverse engineering has been 

achieved to design the reader antenna model. Using Feko, the antenna is configured and the 

characteristics of the reader are used as inputs to the simulator. 

The RFID reader antenna consists in two monopoles mounted on the ground plane and 

excited in the spatial diversity mode: when one monopole is receiving, the other one is loaded 

and vice versa. The RFID reader box is made from plastic materials with the following 

characteristics: Relative Dielectric Permittivity 𝜀𝜀𝑟𝑟 = 4 and losses tan δ = 0.02. 

The reader meshing is based on equilateral triangles to represent the geometrical cad 

and assign a basis function to each triangle node (Figure 3.11). This meshing type is the default 

one used in Feko for MoM with mesh size of 𝜆𝜆/16, which is related to this solver algorithm to 

have accurate current sampling. 
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Currents are then calculated on the node of each triangle using the MoM [14]; the sum 

of these currents will contribute to the calculation of the radiated field [15]. This sum is based 

on three types of currents: 

- Linear currents on the antenna segments 

- Electric current on the metallic triangles, e.g. currents on the antenna’s ground plane 

- Magnetic current in the dielectric triangles, e.g. currents on the plastic box.  

A locally refined mesh has been applied around the RFID reader antennas where the 

antenna source or feeding is located as currents are highly varying in this zone (Figure 3.11).   

 

Figure 3.11 Meshed structure for the RFID reader box 

The radiation pattern of the RFID reader antenna has a dissymmetric shape due to the 

proximity of the loaded antenna. When one antenna is excited, the other antenna is 50 Ω loaded 

and vice versa. Since the loaded antenna is not radiating, it will behave as a metallic object 

beside the radiating antenna. This leads to an unsymmetrical radiation pattern shape.  

This pattern will be exported in *.ffe format (ASCII format) compatible with WinProp 

and will be used as a receiving antenna (called Mobile Station in WinProp).  

As shown in Figure 3.12 and Figure 3.13, the antennas’ pattern is not similar to the 

omnidirectional one. It is designed based on ELA Innovation reader datasheet [16].  
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Figure 3.12 3D radiation pattern of the RFID reader antenna 1 

 

Figure 3.13 3D radiation pattern of the RFID reader antenna 2 
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 Propagation Manager (ProMan) 

The main tool in WinProp is ProMan (Propagation Manager). ProMan is where the 

simulation project settings are defined and edited, and where results are illustrated. 

In ProMan, different propagation models exist in order to simulate signals propagation 

in an indoor environment; for instance, the Modified Free Space Model (MFSM) or the One 

Slope propagation Model (OSM) already presented in the chapter 2, subsection 2.3.3. This is 

the most common propagation model; a simple linear formula determines the path loss. 

However, the position and dimensions of walls, obstacles and material’s properties are 

relatively ignored as a prior database. The Multi-Wall Multi-Floor (MWMF) model includes 

only losses introduced by walls and floors; it is applicable for an entire floor or building. 

Other propagation models need to be used to predict the signal coverage indoors, while 

not only considering all losses (already defined through WallMan) but also reflections, 

diffractions, and scattering. The most accurate existing propagation models for indoor 

scenarios founded in ProMan, are the Dominant Path (DPM) and the Ray-Optical Models. 

3.4.4.1 The Dominant Path Model 

Indoors, the signal propagates through different paths to reach the receiver. Figure 3.14 

illustrates an example of many possible rays between the transmitter and receiver. Using DPM, 

the computation of the received power depends on the accuracy of the indoor scenario 

description already defined in WallMan. This model performs with light computational 

resources. 

 

Figure 3.14 Multipath propagation and the dominant path indoor  
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Consider that the transmitter Tx is fixed in a specific position, as illustrated in Figure 

3.15. The indoor environment description is used to determine whether corners are concave or 

convex.  

 

Figure 3.15 Scenario with transmitter Tx, receiver Rx and different types of corners [7] 

To reach the receiver Rx, the Dominant Path model’s (DPM) algorithm is focused on 

tracking the best path for the signal, as presented in Figure 3.16. The tree structure starts with 

corners visible from the transmitter Tx. Each time the receiver Rx is found in the tree, corners 

along the path can be determined by following the branches back to the transmitter Tx. More 

precisely, DPM considers only the most relevant path that contributes to the dominant path. 

According to [17], it is applied in an office building. One can deduce that not all rays and 

interactions, between the transmitter and receiver, are explored. Only the dominant path is 

used; this will lead to a reduced computational complexity at the expense of accuracy, 

especially in NLoS scenarios.  

 

Figure 3.16 Tree structure of the DPM [7] 
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3.4.4.2 Ray-Optical Models 

There are two different approaches to determine the Ray-Optical propagation paths 

between transmitter and receiver: Ray-Tracing and Ray-Launching [18].  

The Ray-Tracing model computes the power at each receiving point with a constant 

resolution and uses the image principle to determine the reflection point (Figure 3.17). 

Whereas, the Ray-Launching performs a constant angle increment for the ray shooting. 

Depending on the Ray-Launching angle of increment, some details can be neglected or in other 

word not illuminated by the rays. This fact can lead to a lower accuracy. Figure 3.17 illustrates 

the difference between the Ray-Tracing and the Ray-Launching models. 

 

Figure 3.17 Ray-Tracing Versus Ray-Launching model [18] 

Meanwhile, WinProp presents several advanced options to accelerate the Ray-Tracing 

model such as: 

- Phase resolution 

- Number of paths and interactions (reflection, transmission, diffraction and 

combined reflection and diffraction) 

- Length of wedges for diffraction 

- Tiles resolution for scattering.  

In addition, WinProp provides two types of Ray-Tracing models: Standard Ray-Tracing 

(SRT) and Intelligent Ray-Tracing (IRT). 

- Standard Ray Tracing (SRT) 

The Standard Ray-Tracing model performs a rigorous 3D Ray-Tracing prediction; it 

results in very high accuracy because it takes into consideration the effect of the environment 

on the propagation parameters. This model requires a large computational time. 
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- Intelligent Ray Tracing (IRT) 

The Intelligent Ray-Tracing model is used to accelerate the classical ray optical models 

such as SRT. This model is based on a preprocessing of the environment properties. All walls 

of the indoor building are divided into tiles, and all wedges are subdivided into horizontal and 

vertical segments. 

3.4.4.3 Summary for the different Propagation Models  

Table 3.3 presents the different indoor propagation models available in WinProp with 

their characteristics. 

Table 3.3 Comparison between the WinProp Indoor Propagation models 

Models 
Materials 

Properties 

Walls 

Properties 

Computation 

time 
Preprocessing Accuracy 

MFSM 

or 

OSM 

Not Considered Not Considered Short Not Required  Low 

DPM Considered Considered Short Not Required Trade-off 

SRT Considered Considered Large Not Required High 

IRT Considered Considered Short Required High 

After presenting the characteristics of the indoor propagation scenarios, the Ray-

Tracing model, that considers all materials properties, is applied in our use cases. Particularly, 

we used Standard Ray-Tracing for its high accuracy. Despite the high efficiency of the 

Intelligent Ray-Tracing, it requires preprocessing of the environment database via WallMan. 

Hence, if there is any modification in that database, it must be modified through the original 

one. And, a new preprocessing is requested. Flexibility and better control of the database were 

required in our research. This pushed us to use the SRT as the best trade-off between accuracy 

and flexibility. 

 Principle of the Ray-Tracing Model 

Within the Optical-Ray Tracing model, all rays are followed until they hit an obstacle. 

Afterwards, reflection or transmission or both will occur, depending on the obstacle materials 

[20]. The direction of the new ray is determined by Snell’s law [21]. Losses due to rays 
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reflections’ depend on the thickness and the material characteristics of the hit obstacle at the 

respective frequency [22]. The relationship between the optimum thickness of the material and 

the angles of incidence is expressed by:  

𝑑𝑑 =
𝑝𝑝. 𝑐𝑐

2�𝜀𝜀𝑟𝑟 − 𝑠𝑠𝑖𝑖𝑛𝑛2 𝜃𝜃 − 𝑠𝑠𝑖𝑖𝑛𝑛2 𝛼𝛼 − 𝑠𝑠𝑖𝑖𝑛𝑛2 𝜃𝜃 𝑠𝑠𝑖𝑖𝑛𝑛2 𝛼𝛼
𝜀𝜀𝑟𝑟

 
(3.1) 

d is the thickness of the material; 𝜃𝜃 and α are the angles of incidence in azimuth and 

elevation planes; p is an integer constant for each optimal thickness; c is the light celerity in 

free space and 𝜀𝜀𝑟𝑟 is the relative dielectric permittivity of the material. 

Diffracted rays can be considered when applying the Uniform Theory of Diffraction 

method (UTD) [9]-[11]. In addition to the reflection and transmission behavior, losses inside 

the materials must be considered for better accuracy. 

To better understand the signals propagation behavior, a review of the reflection and 

transmission coefficient, in terms of the incident angle and various obstacles within the 

environment, is useful. Hence, it is necessary to characterize electrically the various materials 

existing in the environment. For instance, a plane electromagnetic wave, crossing to the planar 

interface between two regular semi-infinite areas 1 and 2, gives rise to two waves: reflected 

and transmitted (or refracted). According to Snell’s law, applied to the EM propagation through 

the dielectric slab [23], the reflection and transmission coefficient for the Transverse Electric 

(TE) mode are calculated as follow:  

𝑅𝑅𝑇𝑇𝑀𝑀 =
𝜇𝜇22√𝜀𝜀1𝑐𝑐𝑙𝑙𝑠𝑠 𝜃𝜃𝑇𝑇 − �𝜇𝜇1𝜇𝜇2𝜀𝜀2 − 𝜇𝜇12 𝜀𝜀1𝑠𝑠𝑖𝑖𝑛𝑛 𝜃𝜃𝑇𝑇2

𝜇𝜇22√𝜀𝜀1 𝑐𝑐𝑙𝑙𝑠𝑠 𝜃𝜃𝑇𝑇 + �𝜇𝜇1𝜇𝜇2𝜀𝜀2 − 𝜇𝜇12 𝜀𝜀1𝑠𝑠𝑖𝑖𝑛𝑛 𝜃𝜃𝑇𝑇2
 (3.2) 

And, 

𝑇𝑇𝑇𝑇𝑀𝑀 =  
2𝜇𝜇2√𝜀𝜀1𝜀𝜀2 𝑐𝑐𝑙𝑙𝑠𝑠 𝜃𝜃𝑇𝑇

𝜇𝜇2√𝜀𝜀1𝜀𝜀2 𝑐𝑐𝑙𝑙𝑠𝑠 𝜃𝜃𝑇𝑇 +�𝜇𝜇1𝜇𝜇2𝜀𝜀22 − 𝜇𝜇12𝜀𝜀1𝜀𝜀2 𝑠𝑠𝑖𝑖𝑛𝑛 𝜃𝜃𝑇𝑇2
 (3.3) 

Concerning the Transverse Magnetic (TM) mode, the incident wave is perpendicular to 

the plane of incidence. The reflection and transmission can also be defined by: 
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𝑅𝑅𝑇𝑇𝑀𝑀 =  
−𝜀𝜀2√𝜇𝜇1𝜇𝜇2 𝑐𝑐𝑙𝑙𝑠𝑠 𝜃𝜃𝑇𝑇 +  �𝜇𝜇22𝜀𝜀1𝜀𝜀2 − 𝜇𝜇1𝜇𝜇2𝜀𝜀12 𝑠𝑠𝑖𝑖𝑛𝑛 𝜃𝜃𝑇𝑇2  

𝜀𝜀2√𝜇𝜇1𝜇𝜇2 𝑐𝑐𝑙𝑙𝑠𝑠 𝜃𝜃𝑇𝑇 + �𝜇𝜇22𝜀𝜀1𝜀𝜀2 − 𝜇𝜇1𝜇𝜇2𝜀𝜀12 𝑠𝑠𝑖𝑖𝑛𝑛 𝜃𝜃𝑇𝑇2
 (3.4) 

And,   

𝑇𝑇𝑇𝑇𝑀𝑀  =  
2𝜇𝜇2√𝜀𝜀2𝜀𝜀1 𝑐𝑐𝑙𝑙𝑠𝑠 𝜃𝜃𝑇𝑇

𝜀𝜀2√𝜇𝜇1𝜇𝜇2 𝑐𝑐𝑙𝑙𝑠𝑠 𝜃𝜃𝑇𝑇 + �𝜇𝜇22𝜀𝜀1𝜀𝜀2 − 𝜇𝜇1𝜇𝜇2𝜀𝜀12 𝑠𝑠𝑖𝑖𝑛𝑛 𝜃𝜃𝑇𝑇2  
 (3.5) 

With 𝜃𝜃𝑇𝑇 is the angle of incidence; 𝜀𝜀𝑇𝑇 and 𝜇𝜇𝑇𝑇 are the dielectric permittivity and the 

magnetic permeability of the material. It is worth mentioning that indices 1 and 2 correspond 

to the two regular semi-infinite areas. 

Recall that, to get accurate simulations, the environment properties, the empirical 

transmission and reflection coefficients should be well defined in WallMan. Through ProMan, 

the computation of the signal propagation takes into consideration all these parameters. 

 Indoor Radio Coverage 

In this subsection, the model of the classroom and the hall, where the proposed system 

and approaches will be tested, is analyzed. As previously stated in section 3.4.1, the behavior 

of the radio channel in indoor scenarios heavily depends on the complexity of the environment. 

The defined materials parameters’ in WallMan and the creation of the tag’s antenna via AMan 

are imported to ProMan, in order to study the signal propagation in the designed environment. 

Figure 3.18 represents the algorithm that should be followed to examine the signals propagation 

in the indoor environment.  

Furthermore, the calculation’s resolution and the attenuation coefficient corresponding 

to the environment need to be also defined as inputs. As already mentioned in section 3.4.4, 

WinProp includes several indoor propagation models. The use of 3D Ray-Tracing is preferable, 

thanks to the high accuracy and materials dependency. 
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Figure 3.18 Flowchart for the coverage prediction and network planning with ProMan 

After following steps for the indoor environment configuration, RFID simulated tags 

are fixed on the walls, as illustrated in Figure 3.19 and Figure 3.20. The reader pattern is used 

as a received gain at each pixel (receiving point), depending on the directions and the resolution 

of the received rays. Finally, obtained results by simulations, using the 3D SRT propagation 

model, will be compared to those obtained by measurements in the following section.  
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Figure 3.19 3D Layout of the Simulated classroom by ProMan  

 

Figure 3.20 3D Layout of the Simulated hall presented by ProMan  
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 Simulations versus Measurements 

In this section, modeling, using an active RFID tag, is analyzed and compared to the 

real environments at EFREI Paris. Simulations are realized using WinProp based on 3D SRT 

as a propagation model. The received power values are collected every 50 centimeters in the 

classroom and the hall environments. After estimating the tag-reader distance, distance errors 

are compared with those practically measured, in order to validate the models accuracy. 

Subsections 3.5.1 and 3.5.2 present the simulation results compared to the measured ones.  

 Tests in the Classroom  

In the classroom environment, the received power values are collected every 50 

centimeters starting from the front wall, at sixty-four reference positions covering the whole 

classroom environment, during the offline stage. These positions are distributed over seven 

tracks A30 till A150 to characterize the signal behavior in terms of the (tag-reader) distance, 

as illustrated in Figure 3.22. The space separating two successive positions is constant and 

different than that considered within the online stage.   

The OSM, already described in subsection 2.4.3, is applied to determine the estimated 

distance. Figure 3.21 presents the block diagram of the distance error calculation. 

 
Figure 3.21 Block diagram of the distance error calculation 
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Figure 3.22 2D Layout of the classroom  

As a preliminary comparison, the received power values collected over track A90 are 

analyzed and compared with those obtained by simulation over the same track (Figure 3.23). 

The estimated (tag-reader) distance errors over A90 are presented in Figure 3.23. 
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Figure 3.23 Measured and simulated Power values over the central track A90 of the 

classroom 

Following the block diagram of the distance error calculation in the experimental and 

the simulated scenarios (Figure 3.21), and after applying the OSM to estimate the tag-reader 

distance, the distance error is determined by subtracting the estimated distance from the real 

one. Table 3.4 shows the measured and simulated (tag-reader) distance errors over the track 

A90. 

Table 3.4 Measured and Simulated Estimated Distance Errors over the central track 

A90 of the classroom 

Distance [m] Measurements Distance 
Errors [m] 

Simulations Distance 
Errors [m] 

0.5 0 0 
1 0.22 0.21 

1.5 0.82 0.83 
2 1.23 1.2 

2.5 1.98 2.03 
3 2.67 2.67 

3.5 1.25 1.28 
4 2.98 3.01 

4.5 4.13 4.15 
5 2.97 3.1 

5.5 1.67 1.72 
6 3.6 3.62 

6.5 4.9 4.86 
7 5.1 5.07 

MDE [m] 2.4 2.41 
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According to the Mean Distance Error (MDE) presented in Table 3.4, it can be noticed 

that measurements and simulations present very close results. 

The following experiment is performed over the seven tracks A30 till A150 of the 

classroom environment (Figure 3.22). The estimated (tag-reader) distance errors are 

determined, by applying the OSM, over each track independently for both scenarios (real and 

simulation). Figure 3.24 presents the Cumulative Distribution Function (CDF) for the real and 

simulated estimated distance errors over the sixty-four considered positions. 

 

Figure 3.24 CDF of estimated distance errors for the real measurements and simulations 

Based on Figure 3.24, the achieved performance is 3.4 meters in the classroom 

environment. It can be noticed that the distance error at 90% CDF for the simulated data is 10 

centimeters lower than for the real one. Thus, knowing the transmitted signal level and defining 

well all materials parameters are sufficient to estimate the signal propagation. Moreover, this 

simulated model can reduce the need for costly measurements and increases the simplicity of 

the coverage process. 
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 Tests in the Hall Environment 

In order to better assess our modeling, five RFID simulated tags are mounted on the 

walls of the hall at 1.3 meters of height. Measurements are made on a regularly spaced distance 

of 50 centimeters in the hall environment over the two tracks A90 and A’90, as illustrated in 

Figure 3.25.  

 
Figure 3.25 2D Layout of the hall 

The RFID reader was moved forward to collect RSS samples at forty-one positions over 

A90 and seventy-six positions over A’90. The collected received power values are analyzed 

and compared with those obtained by simulation over the same tracks. More precisely, the 

difference between the real and simulated power values as well as the standard deviation are 

calculated. To assess the accuracy of the simulated hall configuration, it is necessary to achieve 

a difference, between the received power values and the simulated ones, less than 0.1 dB and 

not exceeding 0.5 dB. Beyond this limit, the simulation will lose its precision. Some major 

adjustments on the environment modeling are recommended in order to improve the received 

power matching. Table 3.5 illustrates the Standard Deviation (Std) of the received simulated 

power for each tag, over the two tracks as well as the number of positions where the Received 

Power Difference (RPD) exceeds 0.5 dB over A90 and A’90. 
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Table 3.5 Measured and Simulated Received Power Analysis over A90 and A’90 

Tag Number 
 Track A90 Track A’90 

 RPD > 0.5 dB Std [dB]  RPD > 0.5 dB Std [dB]  

Tag 1 5 0.1122 11 0.1824 

Tag 2 2 0.2634 3 0.3891 

Tag 3 3 0.2566 9 0.2635 

Tag 4 5 0.3805 7 0.4105 

Tag 5 15 0.4746 13 0.5146 

Based on results in Table 3.5, it can be noticed that the standard deviation exceeds 0.3 

dB with tags 4, 5 over track A90, and with tags 3, 4 and 5 over track A’90. This deviation is 

due to many factors such as some metallic objects placed in the hall (around tags 2, 3, 4 and 5) 

and NLoS between the transmitting tag and the reader (for tags 4 and 5). In this context, the 

differences between the real and the simulated received power, that exceed 0.5 dB at some 

positions over the two tracks, are mainly due to the NLoS and the neglection of some small 

details that couldn’t be took in consideration. Despite the high accuracy of 3D Standard Ray-

Tracing, this model is still limited for large environments like our hall, where the prediction 

positions are far away from the transmitting antennas.  

  Summary 

The chapter presented the models of two indoor environments as well as those of the 

RFID equipment that will be used in our solution. Numerical methods such as the HPI 

algorithm for the RFID tag configuration, and MoM for the RFID reader modeling, were 

clearly elaborated. For instance, the radiation pattern of the RFID tag antenna is configured 

through AMan. The RFID reader is designed by FEKO software and then used within WinProp 

to get accurate values of the power received by the reader. Besides, all material parameters that 

constitute the classroom and hall environments, are defined. The signal propagation 

characteristics, at 433 MHz, are analyzed with a single RFID tag fixed on the wall of the 

classroom environment, and with five tags over the hall. Simulations were achieved using the 

3D Ray-Tracing model of WinProp. Experimental and simulated results had similar behavior 

with a maximum deviation of 10 centimeters over the classroom environment. However, 

differences over the hall environment exceed 0.5 dB at particular positions due to the obstructed 

NLoS.  
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Finally, it has been noticed that our measurement campaign in the hall was not sufficient 

and representative for indoor positioning. Hence, the following research is conducted only in 

the classroom environment.  
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Chapter 4  Improved Location Accuracy by RSS Digital 
Processing and Propagation Modeling  

 Introduction 

It is well known that RSS based localization systems suffer from multipath effects that 

affect the location accuracy. In [1], a statistical data analysis, of the received signals, covers 

different aspects such as the skewed distribution of RSS values and its variability. The location 

determination performance is improved by selecting the optimal Access Point (AP) that 

provides the widest coverage and the most stable received signal.  

Moreover, as mentioned in chapter 2, subsection 2.4.2, most common ILSs use the 

averaging technique to combine the RSS acquisitions. For this reason, this technique was 

applied in our conventional ILS, within both stages. However, the use of the averaging 

technique to combine RSS samples seriously limits the location accuracy. Instead, the 

Maximum Likelihood Estimator (MLE) is applied on the sets of RSS to enhance the proposed 

ILS’s stability and narrow the location uncertainty. 

Concerning propagation modeling, Cost 231, Winner II, ITU-R 2135 and Multi Walls 

Multi Floors (MWMF) are the most known models [2]-[8]. These models tend to focus on a 

particular characteristic like temporal fading or inter-floors losses. Therefore, none of the 

empirical indoor propagation models, found in the literature, have yet successfully created an 

accurate signals coverage. A specific challenge is to provide a new empirical propagation 

model providing reliable estimations of the indoor propagation parameters. Hence, two 

approaches, the Dual One Slope Model (DOSM) and Dual One Slope with Second Order 

Model (DOSSOM) will be proposed in order to represent better signals behavior. However, 

these two propagation models do not cover the full range of the considered scenario. To 

overcome this issue, the extraction of accurate calibration parameters is optimized by the 

Weighted Average Attenuation Factor (WAAF). This approach is proposed to improve the 

system reliability by covering the whole indoor environment. 

It is worth recalling that our positioning system is divided into offline and online stages: 

the offline involves an environmental calibration phase. It is needed to determine the 

propagation channel attenuation parameters. During the online stage, the RFID reader position 
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is then estimated, by applying the new propagation channel model (DOSM or DOSSOM) 

associated with WAAF and followed by Multilateration. 

First, in section 4.2, RSS sets collected within the offline stage are examined. To 

examine and overcome the fluctuations impact, different RSS combining techniques are 

adopted; the conventional averaging as well as the Maximum Likelihood Estimator (MLE) as 

combining technique are elaborated in section 4.3. Indoor propagation models found in the 

literature, as well as the proposed approaches (DOSM and DOSSOM) are then introduced and 

analyzed in sections 4.4 and 4.5, respectively. The Weighted Average Attenuation Factor 

(WAAF) applied for an accurate environmental calibration is presented in section 4.6. Section 

4.7 is dedicated to capitalize the overall proposed ILS. It is followed by localization 

assessments, based on the multilateration technique, in section 4.8. Once the complete 

proposed ILS validated by positioning errors results’, section 4.9 ends the chapter with a 

detailed conclusion. 

 RSS Datasets  

This subsection is dedicated to study the RSS fluctuations in the classroom during the 

offline stage. The received samples, at sixty-four reference positions distributed over the seven 

tracks A30 until A150 (Figure 4.1) are examined.  
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Figure 4.1 Two-dimensional Layout of the classroom environment (Offline Stage) 

Following the same steps as for our conventional ILS presented in chapter 2, subsection 

2.4.2, 200 samples of the RSS are acquired every 50 centimeters (Figure 4.1). These samples 

will be used in order to determine the attenuation parameters of the propagation model. 

The variations of the received signals are illustrated in Figure 4.2, over each track 

respectively.  
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Figure 4.2 RSS Standard Deviation over the classroom 

Several factors may affect the received power deviation, e.g. the environment 

complexity, as well as the channel non-stationarity.  

It is worth to recall that the tags’ transmission is intermittent. As mentioned in section 

2.5, 40 seconds are needed to collect the 200 samples, in the offline stage. Hence, the 

propagation channel, between the tag and the reader, can be considered as non-stationary. This 

channel variance may induce RSS variability.  

In addition, the RFID reader quantization error is equivalent to ± 0.3 dB [9]. Hence, 

the standard deviation values are divided into three categories: the first one is where the 

standard deviation is less than the quantization noise. The second category illustrates the 

deviation values between 0.3 and 0.5 dB. Greater than this limit, another category should be 

considered, in order to identify the critical signals propagation areas.  

In this context, it can be noticed that RSS acquisitions fluctuate widely when the RF 

signals are strongly affected by the indoor environment. More precisely, the largest standard 

deviations, obtained over tracks A30 and A45, are mainly induced by the corner in front of 

these two tracks.  
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Concerning track A90, the maximal standard deviation is less than that of other tracks 

because most of the emitted signals are far from walls, heater, and pillar, then, signals 

propagation is nearly LoS over this track.  

However, we observe that signals are strongly affected over tracks A120, A135 and 

A150.  Hence, it is necessary to compare the RSS distributions over these three tracks with that 

of one of the least affected tracks. Figure 4.3 shows four histograms of the RSS acquisitions 

that were collected at the same tag-reader distance (3 meters) over four different tracks, during 

the offline stage. 

 

Figure 4.3 Histograms of 200 RSSI collected at 3 meters over 4 different tracks  

Histograms illustrated in Figure 4.3 show the distribution of the RSS measurements, at 

a same distance, over four different tracks A60, A120, A135 and A150. It can be noticed that 

the RSS acquisitions fluctuate greatly and don’t follow a normal distribution. For instance, RSS 

measurements over track A60 are clustered and span a small range between 139 and 140 that 

correspond to a received power of -56.94 and -57.58 dBm [9], respectively. In this case, it could 

still be reasonable to apply the averaging technique to combine the RSS acquisitions.  
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However, those over tracks A120, A135 and A150 spread and appear to span a wider 

range. RSS values over track A120 vary between 138 and 142 corresponding to -56.32 and        

-58.84 dBm. In the same context, the RSS acquisitions over tracks A135 and A150 are spread 

between 134 and 138 which correspond to -53.79 and -56.32 dBm, respectively. These wide 

distributions over tracks A120, A135 and A150 are mainly due to the signals reflection and 

scattering created by the big heater (Figure 4.1). Therefore, accrediting only averaging as RSS 

combining technique will lose the high-order statistical information in the raw data. Thus, the 

location system accuracy would be compromised. To improve the system’s reliability, the use 

of the MLE in order to determine the RSS value with the highest probability of occurrence is 

promising. 

 RSS Combining Techniques  

 RSS Combining by the Conventional Averaging 

As already elaborated in chapter 2, subsection 2.4.3, several ILSs found in the literature 

apply the averaging technique to combine the received 𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇 values. The mean 𝑅𝑅𝑅𝑅𝑅𝑅�  is given 

by: 

𝑅𝑅𝑅𝑅𝑅𝑅� =  
1
𝐾𝐾
� 𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇

𝐾𝐾

𝑇𝑇=1
 (4.1) 

With K is the number of RSS values collected at each position and 𝑅𝑅𝑅𝑅𝑅𝑅𝑇𝑇 is the ith 

received signal strength at each position. 

 RSS Combining by the MLE  

The maximum likelihood of a variable is the value having the highest probability of 

occurrence, while observing a given set of that variable [10]. MLE is used for different 

applications [11], [12]. For instance, [11] adopts the MLE in artificial intelligence to 

understand the language, by predicting the most consistent sequence with the highest 

probability of occurrence. Considering one sequence predictions of the target sequence y with 

parameters 𝜃𝜃, MLE aims to train the sequence prediction models by minimizing the negative 

log-likelihood of the probability  𝑝𝑝𝜃𝜃(𝑦𝑦|𝑚𝑚) as follows:  

𝐿𝐿𝑀𝑀𝑀𝑀𝑀𝑀(𝜃𝜃) =  − 𝑙𝑙𝑙𝑙𝑎𝑎 𝑝𝑝𝜃𝜃(𝑦𝑦|𝑚𝑚) (4.2) 
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With y = {𝑦𝑦1, 𝑦𝑦2, … ,𝑦𝑦𝑇𝑇} is the sequences set and x is the source type such as phrase, 

sentence or passage of human language or even an image. 

In [12], the MLE is used to estimate and remove the frequency offsets at the ground 

station, in order to get successful communications with a satellite. Given a block of N samples 

of the received noisy signal, the MLE produces the frequency value that maximizes the 

periodogram, as follows: 

𝑓𝑓𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚
𝜆𝜆

𝐼𝐼(𝜆𝜆)  (4.3) 

Where 𝐼𝐼(𝜆𝜆) is the plot of the periodogram function for a noiseless signal, 𝜆𝜆 is the 

wavelength. 

In our case, to improve the calibration phase’s reliability and the localization accuracy, 

the effect of the RSS values deviation must be mitigated through the associated combining 

technique providing the most reliable value of RSS in both offline and online stages. Hence, 

for further processing, the RSS samples are combined with the Maximum Likelihood Estimator 

(MLE) which is a statistical approach that computes the distribution probability factor of the 

received power values [13].  

Given K acquisitions at each position, the MLE determines the RSS value that 

maximizes the likelihood with the real power captured by the RFID reader; this RSS value is 

that with the highest probability of occurrence. 

𝑅𝑅𝑅𝑅𝑅𝑅 =  [𝑅𝑅𝑅𝑅𝑅𝑅1,𝑅𝑅𝑅𝑅𝑅𝑅2 , … . .𝑅𝑅𝑅𝑅𝑅𝑅𝐾𝐾] (4.4) 

With K is the size of RSS acquisitions at the corresponding position. 

The MLE of RSSs is defined as: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑚𝑚𝑎𝑎𝑚𝑚 𝑝𝑝(𝑅𝑅𝑅𝑅𝑅𝑅𝐾𝐾) (4.5) 

Where argmax is the operator that gives the RSS with the greatest probability of 

occurrence. p represents the RSS probability.  
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RSS observations are combined via MLE in both offline and online stages. Figure 4.4 

summarizes the MLE approach.  

 

Figure 4.4 RSS values combined by MLE in offline and online stages 

The values 𝑅𝑅𝑅𝑅𝑅𝑅�  within the conventional system and 𝑅𝑅𝑅𝑅𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀 within the proposed 

solution are converted to power values in dBm.  

The comparison, between the performance of averaging and the MLE combining 

techniques, will be elaborated, through indoor localization assessment, in section 4.8. 

 Empirical Indoor Propagation Models 

Several propagation models have been performed in different indoor environments, 

such as houses, corridors, and offices. Empirical models are those based on observations and 

measurements. These models are mainly used to predict the path loss in different scenarios 

such as LoS or NLoS.  

The empirical models Cost 231, WINNER II, ITU-R M2135, Multi Walls Multi Floors, 

the Attenuation Factor Classic (AFC) Model and the Second Order Polynomial Propagation 

Model, have been studied. They will be presented in the following subsections. 
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 COST 231 Model  

COST 231 is a One Slope Model (OSM) described in [6] and already presented in 

chapter 2, subsection 2.4.3. The received power expression is given by: 

𝑃𝑃𝑟𝑟 (𝑑𝑑) = 𝑃𝑃0 + 10𝑛𝑛𝑙𝑙𝑙𝑙𝑎𝑎10 �
𝑑𝑑
𝑑𝑑0
� + 𝑋𝑋 (4.6) 

Where 𝑃𝑃𝑟𝑟 (𝑑𝑑) is the received power in dBm at a distance d in meters, 𝑃𝑃0 is the received 

power at the distance 𝑑𝑑0 in dBm and n is the path loss exponent. The term 𝑋𝑋 describes the 

standard deviation of the received power values throughout the corresponding area.  

 WINNER II D112 V1.2 Model  

Referring to [7], the WINNER II channel model was proposed for indoor, indoor to 

outdoor, outdoor to indoor and outdoor scenarios. Initially, it was applied at 2 and 5 GHz. Then, 

it was extended over the frequency range 2 to 6 GHz. Two models were proposed; the first is 

for LoS (Without any obstacles). The path loss is then calculated following equation (4.7): 

𝑃𝑃𝐿𝐿(𝑑𝑑)  =  18.7𝑙𝑙𝑙𝑙𝑎𝑎10(𝑑𝑑) + 46.8 + 20𝑙𝑙𝑙𝑙𝑎𝑎10 �
𝑓𝑓𝑐𝑐
5�

 (4.7) 

The second one is for NLoS. The transmitter and receiver are in different rooms. In this 

case, path loss is given by equation (4.8). The number of crossings through walls and floors is 

taken into consideration. 

𝑃𝑃𝐿𝐿(𝑑𝑑) = 20𝑙𝑙𝑙𝑙𝑎𝑎10(𝑑𝑑) + 46.4 + 20𝑙𝑙𝑙𝑙𝑎𝑎10 �
𝑓𝑓𝑐𝑐
5�

+ 12𝑛𝑛𝑊𝑊 + 𝐹𝐹𝑀𝑀 (4.8) 

 𝐹𝐹𝑀𝑀 = 17 + 4(𝑛𝑛𝑓𝑓 − 1)  (4.9) 

Where 𝑓𝑓𝑐𝑐 is the frequency in GHz, d is the distance between the transmitter and the 

receiver in meters, 𝑛𝑛𝑊𝑊 is number of walls and 𝑛𝑛𝑓𝑓 is number of floors.  
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 ITU-R 2135 Model 

Based on real measurements carried out in China, WINNER II model was modified and 

validated by the ITU-R M.2135 [8]. ITU-R are specified in the frequency range from 2 GHz to 

6 GHz. Four different scenarios have been studied: indoor hotspot, urban, suburban, and rural. 

In the indoor hotspot scenario, it is adopted for a floor of 6 meters of height, including a big 

hall and 16 rooms. Path loss is given by equation (4.10) for LoS and by equation (4.11) for 

NLoS: 

𝑃𝑃𝐿𝐿(𝑑𝑑) =  16.9𝑙𝑙𝑙𝑙𝑎𝑎10(𝑑𝑑) + 20𝑙𝑙𝑙𝑙𝑎𝑎10 (𝑓𝑓) + 32.8      (4.10) 

 𝑃𝑃𝐿𝐿(𝑑𝑑) =  43.3𝑙𝑙𝑙𝑙𝑎𝑎10(𝑑𝑑) + 20𝑙𝑙𝑙𝑙𝑎𝑎10 (𝑓𝑓) + 11.5         (4.11) 

Where 𝑃𝑃𝐿𝐿(𝑑𝑑)in dB, f is the frequency in GHz, d is the distance between the transmitter 

and receiver in meters.  

 The Multi Wall Multi Floor Model  

The Multi Wall Multi Floor (MWMF) model was validated for two different 

frequencies 5 and 5.8 GHz [3]. The path loss is computed as in equation (4.12). Within 

buildings, this propagation model incorporates a linear component of loss, proportional to the 

number of walls penetrated, plus a more complex term which depends on the number of floors 

penetrated, producing a loss that increases more slowly as additional floors are included. 

𝑃𝑃𝐿𝐿𝑀𝑀𝑊𝑊𝐹𝐹(𝑑𝑑) = 𝑃𝑃𝐿𝐿0 + 10𝑛𝑛𝑙𝑙𝑙𝑙𝑎𝑎10(𝑑𝑑) + ��𝐿𝐿𝑤𝑤𝑇𝑇𝑤𝑤 +
𝐾𝐾𝑤𝑤𝑖𝑖

𝑤𝑤=1

𝐼𝐼

𝑇𝑇=1

��𝐿𝐿𝑓𝑓𝑓𝑓𝑤𝑤  

𝐾𝐾𝑓𝑓𝑓𝑓

𝑤𝑤=1

𝐽𝐽

𝑓𝑓=1

    (4.12) 

Where 𝑃𝑃𝐿𝐿𝑀𝑀𝑊𝑊𝐹𝐹(𝑑𝑑) is the path loss in dB at a distance d in meters. 𝐿𝐿𝑤𝑤𝑇𝑇𝑤𝑤  is the loss of 

the 𝑘𝑘𝑇𝑇ℎ crossed wall of type i in dB, 𝐾𝐾𝑤𝑤𝑇𝑇 is the number of  crossings through walls of type  i, I 

is the number of walls’ type  i, 𝐿𝐿𝑓𝑓𝑓𝑓𝑤𝑤  is the loss of the 𝑘𝑘𝑇𝑇ℎ penetrated floor of type j in dB, 𝐾𝐾𝑓𝑓𝑓𝑓 

is the number of crossings through walls of type j and J is the number of floors’ type j. 
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 Attenuation Factor Classic Model  

The Attenuation Factor Classic Model (AFC) model is an empirical indoor office path 

loss model. [14] presents the path loss measurements conducted in a modern office building 

using a 5.25 GHz carrier frequency. It is presented in different propagation conditions, e.g. in 

rooms and corridors. In rooms, it is expressed by (4.13): 

𝑃𝑃𝐿𝐿(𝑑𝑑) = 47.8 + 10𝑛𝑛𝑙𝑙𝑙𝑙𝑎𝑎10(𝑑𝑑) (4.13) 

 For corridors, the two-slopes model is shown in (4.14): 

𝑃𝑃𝐿𝐿(𝑑𝑑) = �53.2 + 25.8𝑙𝑙𝑙𝑙𝑎𝑎10(𝑑𝑑)     𝑑𝑑 ≤ 9 𝑚𝑚
56.4 + 29.1𝑙𝑙𝑙𝑙𝑎𝑎10(𝑑𝑑)      𝑑𝑑 > 9 𝑚𝑚   (4.14) 

As defined previously, 𝑃𝑃𝐿𝐿(𝑑𝑑) is the path loss in dB, d is the distance in meters and n is 

the path loss exponent. 

 Second Order Polynomial Propagation Model  

The Second Order Polynomial Propagation Model (SOPPM) seems to be the best way 

to calibrate an environment according to flat/home configurations such as walls, furniture and 

other obstacles [15]. It presents a better fit that allows to obtain the set of propagation 

parameters that mitigate the difference between real measurements and estimations. It is 

defined in equation (4.15): 

𝑃𝑃𝐿𝐿(𝑑𝑑) = 𝑎𝑎(𝑑𝑑)2 + 𝑏𝑏(𝑑𝑑) + 𝑐𝑐 (4.15) 

Where 𝑃𝑃𝐿𝐿(𝑑𝑑) is is the path loss in dB, at a distance d in meters. a, b, and c are constant 

parameters of the second order polynomial model. 

 Proposed Empirical Indoor Propagation Models  

Empirical investigation has been a common methodology to study radio waves 

propagation and path loss modeling. Our approach follows this practice. A series of 

measurements were conducted in the classroom environment in order to determine the 

propagation channel attenuation coefficients. The received power is then depicted and matched 
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with different propagation models in a way to justify the use of a two slopes model. Figure 4.5 

illustrates the received power measurements over track A90 (central line in Figure 4.1). 

 

Figure 4.5 Received Power measurements over track A90  

According to Figure 4.5, received signals, over track A90 positions, largely vary.  

Signals’ fluctuation is one of the major issues causing inaccuracy of propagation models. Thus, 

to get an accurate signals propagation representation in indoor environments, two empirical 

models will be introduced in subsections 4.5.1 and 4.5.2. The first one is the Dual One Slope 

Model (DOSM) that applies the OSM twice performing a regression on two successive 

segments. The second one is the Dual One Slope with Second Order Model (DOSSOM). This 

model uses the OSM followed by the SOPPM. Subsection 4.5.3 illustrates the received power 

through the existing and proposed indoor propagation models. Distances estimation principle, 

elaborated in subsections 4.5.4 and 4.5.5, presents the Mean Estimated Distance Errors (MDE) 

obtained with the known and the proposed indoor propagation models. 

 Dual One Slope Propagation Model  

According to recent experiments presented in [16], the received power decays sharply 

when the measurement range is up to 1.5 meters. Then, the signal starts to decay slowly. In our 

case, the propagation model has also two different slopes, one for tag-reader distances shorter 
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than 3𝜆𝜆 and another one for distances greater than 3𝜆𝜆, which is equal to 2.1 meters. The 

proposed empirical Dual One Slope Propagation Model (DOSM) that fitted the collected 

received power for each track, is defined in the following equations (4.16):   

𝑃𝑃𝑟𝑟(𝑑𝑑) = �
𝑃𝑃0 − 10.𝑛𝑛1𝑇𝑇𝑖𝑖 . 𝑙𝑙𝑙𝑙𝑎𝑎10(𝑑𝑑)+𝑋𝑋1𝑇𝑇𝑖𝑖       𝑑𝑑 ≤ 3𝜆𝜆
𝑃𝑃0′ − 10.𝑛𝑛2𝑇𝑇𝑖𝑖 . 𝑙𝑙𝑙𝑙𝑎𝑎10(𝑑𝑑)+𝑋𝑋2𝑇𝑇𝑖𝑖       𝑑𝑑 > 3𝜆𝜆    (4.16) 

𝑃𝑃𝑟𝑟(𝑑𝑑) is the received power in dBm at the distance d in meters, 𝑃𝑃0 is the received power 

at 1 meter in dBm. 𝑃𝑃0 is the received power at 3𝜆𝜆 in dBm. i is the track index. The terms 𝑛𝑛1𝑇𝑇𝑖𝑖 

and 𝑛𝑛2𝑇𝑇𝑖𝑖 are the path loss exponent of the corresponding slope. 𝑋𝑋1𝑇𝑇𝑖𝑖 and 𝑋𝑋2𝑇𝑇𝑖𝑖 are lognormal 

constants corresponding to the received power variations throughout the first and the second 

part of each track modeled by one slope. 

 Dual One Slope with Second Order Polynomial Model  

As previously mentioned, measured power values are separated into two slopes, since 

the received power highly decrease for tag-reader distances shorter than 3𝜆𝜆 (which is equal to 

2.1 meters) and vary slightly for distances greater than 3𝜆𝜆. A detailed analysis is described and 

illustrated in section 4.5.3, where the different propagation models are assessed. 

The Dual One Slope with Second Order Polynomial Model (DOSSOM) is hence given 

by: 

𝑃𝑃𝑟𝑟(𝑑𝑑) = �
𝑃𝑃0 − 10.𝑛𝑛𝑇𝑇𝑖𝑖 . 𝑙𝑙𝑙𝑙𝑎𝑎10(𝑑𝑑)+𝑋𝑋𝑇𝑇𝑖𝑖                             𝑑𝑑 ≤ 3𝜆𝜆
𝑃𝑃0′ − 𝑎𝑎𝑇𝑇𝑖𝑖 . 𝑙𝑙𝑙𝑙𝑎𝑎10(𝑑𝑑)2 − 𝑏𝑏𝑇𝑇𝑖𝑖 . 𝑙𝑙𝑙𝑙𝑎𝑎10(𝑑𝑑) − 𝑐𝑐𝑇𝑇𝑖𝑖   𝑑𝑑 > 3𝜆𝜆 (4.17) 

As previously defined, 𝑃𝑃𝑟𝑟(𝑑𝑑) is the received power in dBm at the distance d in meters, 

𝑃𝑃0 is the received power at 1 meter in dBm. 𝑃𝑃0 is the received power at 3𝜆𝜆 in dBm. i is the 

track index, 𝑋𝑋𝑇𝑇𝑖𝑖 is a lognormal variable for the received power error throughout the first part 

of each track (Figure 4.1) modeled by the one slope variation. nTi is the path loss exponent 

corresponding to the first part of the path.  

Thus, the attenuation parameter of the first part of each track 𝑇𝑇𝑇𝑇 is determined as 

follows: 
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𝑛𝑛𝑇𝑇𝑖𝑖 =  
𝑃𝑃𝑟𝑟(𝑑𝑑) − 𝑃𝑃0−𝑋𝑋𝑇𝑇𝑖𝑖
−10𝑙𝑙𝑙𝑙𝑎𝑎10(𝑑𝑑)  (4.18) 

aTi, bTi and cTi are constant parameters of the second order polynomial model that 

corresponds to the second part, i is the track (Figure 4.1). 𝑃𝑃0′  is the received power at 3𝜆𝜆. They 

are determined by forming a squared matrix as follows:  

�
𝑙𝑙𝑙𝑙𝑎𝑎10(𝑑𝑑1)2 𝑙𝑙𝑙𝑙𝑎𝑎10(𝑑𝑑1) 1
𝑙𝑙𝑙𝑙𝑎𝑎10(𝑑𝑑2)2 𝑙𝑙𝑙𝑙𝑎𝑎10(𝑑𝑑2) 1
𝑙𝑙𝑙𝑙𝑎𝑎10(𝑑𝑑3)2 𝑙𝑙𝑙𝑙𝑎𝑎10(𝑑𝑑3) 1

��
𝑎𝑎Ti
𝑏𝑏Ti
𝑐𝑐Ti
� = �

𝑃𝑃𝑟𝑟(𝑑𝑑1) − 𝑃𝑃0′
𝑃𝑃𝑟𝑟(𝑑𝑑2) − 𝑃𝑃0′

𝑃𝑃𝑟𝑟(𝑑𝑑3) − 𝑃𝑃0′
� (4.19) 

Where 𝑑𝑑1,𝑑𝑑2, and 𝑑𝑑3  are three different real tag-reader distances over the 

corresponding track. 

Let 

𝐴𝐴 =  �
𝑙𝑙𝑙𝑙𝑎𝑎10(𝑑𝑑1)2 𝑙𝑙𝑙𝑙𝑎𝑎10(𝑑𝑑1) 1
𝑙𝑙𝑙𝑙𝑎𝑎10(𝑑𝑑2)2 𝑙𝑙𝑙𝑙𝑎𝑎10(𝑑𝑑2) 1
𝑙𝑙𝑙𝑙𝑎𝑎10(𝑑𝑑3)2 𝑙𝑙𝑙𝑙𝑎𝑎10(𝑑𝑑3) 1

� (4.20) 

And 

𝐵𝐵 =  �
𝑃𝑃𝑟𝑟(𝑑𝑑1) − 𝑃𝑃0′
𝑃𝑃𝑟𝑟(𝑑𝑑2) − 𝑃𝑃0′

𝑃𝑃𝑟𝑟(𝑑𝑑3) − 𝑃𝑃0′
� (4.21) 

The solution of equation (4.19) determines the attenuation parameters of each track as 

follows:   

�
𝑎𝑎𝑇𝑇𝑖𝑖
𝑏𝑏𝑇𝑇𝑖𝑖
𝑐𝑐𝑇𝑇𝑖𝑖

� =  𝐴𝐴−1𝐵𝐵 (4.22) 

 Propagation Models Representations 

As signals propagating in our case study have a frequency of 433 MHz, the two 

empirical indoor propagation models OSM and SOPPM, found in the literature and presented 

in section 4.4, as well as the two proposed models described in the previous subsections 4.5.1 

and 4.5.2 are applied on the received power values collected, during the offline stage, over the 

three tracks A60, A90 and A120 (Figure 4.1). These three tracks were selected because they 
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include a sufficient number of reference positions to better reflect the signal attenuation in the 

considered environment. Power variations are shown in Figure 4.6, Figure 4.7 and Figure 4.8 

respectively. 

 

Figure 4.6 Received Power by the different empirical propagation models over the track A60 
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Figure 4.7 Received Power by the different empirical propagation models over the track A90 

 

Figure 4.8 Received Power by the different empirical propagation models over the track 

A120 
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According to the illustrated Figure 4.6, Figure 4.7 and Figure 4.8, the one slope 

propagation model performs better when the tag-reader distance small, more precisely while 

LoS conditions are dominant. Whereas, when the tag-reader distance is significant, the second 

order propagation model presents a better fit by taking into consideration all signals’ 

fluctuations due to the classroom geometry and materials as well as unmovable furniture, 

already detailed on chapter 3, subsection 3.4.1. 

 Distance Estimation 

After determining the propagation model parameters, tags-reader distances are 

estimated during the online phase. The averaged RSS acquisitions are further converted to 

power values in dBm. 

Knowing the power captured by the reader and following equation (4.16) (DOSM 

model), the distance can be estimated as: 

�̂�𝑑 = 10
( 
𝑃𝑃𝑟𝑟(𝑑𝑑)−𝑃𝑃0′−𝑋𝑋𝑇𝑇2𝑖𝑖

−10𝑛𝑛𝑇𝑇2𝑖𝑖
)
 (4.23) 

Whereas, by applying DOSSOM (equation 4.17), the tags-reader distances can be 

estimated, by resolving the quadratic relationship: 

𝑎𝑎𝑇𝑇𝑖𝑖 . (𝑙𝑙𝑙𝑙𝑎𝑎10(�̂�𝑑)2 + 𝑏𝑏𝑇𝑇𝑖𝑖 . (𝑙𝑙𝑙𝑙𝑎𝑎10(�̂�𝑑) + (𝑐𝑐𝑇𝑇𝑖𝑖 − 𝑃𝑃0′ − 𝑃𝑃𝑟𝑟(𝑑𝑑)) = 0 (4.24) 

𝑃𝑃𝑟𝑟(𝑑𝑑)is the received power captured by the RFID reader in dBm, at the tag-reader 

estimated distance �̂�𝑑 in meter. 𝑎𝑎Ti, 𝑏𝑏Ti and 𝑐𝑐Ti are the propagation channel constants already 

determined by equations (4.18) and (4.22). 

Finally, the distance error 𝜖𝜖𝑑𝑑 can be calculated as follows: 

𝜖𝜖𝑑𝑑 = |𝑑𝑑𝑟𝑟 − �̂�𝑑| (4.25) 

where 𝑑𝑑𝑟𝑟 is the real tag-reader distance. 
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 Distance Error Analysis  

In this section, the Mean Distance Errors (MDE) obtained with the different indoor 

propagation models are studied and analyzed. As already stated, this analysis is assessed during 

the offline stage in a way to validate the performance of the proposed propagation models 

(DOSM and DOSSOM). Table 4.1 shows the variation of the MDEs and the 90% Cumulative 

Density Functions (CDFs) of the distance errors along the three different tracks A60, A90 and 

A120 respectively. 

Table 4.1 MDE with Average RSS over the three tracks A60, A90 and A120 

Propagation 

Models 

Track A60 Track A90 Track A120 

MDE [m] CDF 90% MDE [m] CDF 90% MDE [m] CDF 90% 

COST 231 0.99 5.8 2.45 3.7 2.18 5.2 

SOPPM 0.67 3.1 1.73 3.5 1.91 4.1 

DOSM 0.56 2.7 1.04 0.9 1.11 1.5 

DOSSOM 0.51 1.9 0.53 0.91 0.8 1.2 

According to Table 4.1, it can be noticed that the obtained MDEs differ from one track 

to another depending on the signal attenuation and the multipath effects.  As already mentioned, 

track A60 is almost far from materials like the big heater near track A120, where the signals 

propagation is obviously affected. However, track A60 is mostly affected by the signals’ 

diffraction due to the asymmetrical wall shape (Figure 4.1). 

With A60, DOSM and DOSSOM present almost the same performance as SOPPM, due 

to the limited number of positions.  They preform similarly over track A90, due to the limited 

impact of furniture affecting the signal propagation. However, these two models perform better 

than to the SOPPM. Concerning, track A120, DOSSOM presents better results by taking into 

account the signals' fluctuations due to the big heater.  

The optimal MDE, obtained with the existing propagation models, is 67 centimeters 

over track A60. However, the optimal MDEs obtained, over the same track, with DOSM and 

DOSSOM are 56 and 51 centimeters, respectively. Hence, it can be noticed that the proposed 

indoor propagation models DOSM and DOSSOM improve the distance estimation by 79.18 

percent compared to the distance errors obtained with the COST 231 model over track A90. 



107 
 

Moreover, these proposed models enhance the distance estimation by 23.88 percent compared 

to results obtained with the best performing model SOPPM that matches perfectly with the 

received power. Thus, DOSM and DOSSOM are effective propagation models that can 

improve the accuracy in the proposed localization system.  

 Weighted Average Attenuation Factors  

In the literature, several studies evaluate the impact of the environment calibration on 

localization systems accuracy [17]-[22]. However, most of these studies have focused on 

signals propagation characteristics only [17] and [18]. Work in [17] creates a Ray Launching 

based simulation model to evaluate an indoor localization system implemented in an office. 

Positions errors highly depend on the number of considered Bluetooth Low Energy (BLE) 

devices used to extract the accurate signal attenuation parameters. In the same context, [18] 

focuses on the calibration of Wi-Fi-based indoor tracking systems to be used by smartphones. 

Experiment was conducted in a multi-room office laboratory. To build an accurate signal 

propagation model corresponding to the indoor environment, a novel in-motion calibration 

methodology is introduced. This calibration uses three different propagation models based on 

RSS collection, supplemented by a particle filter. According to the presented results, using the 

in-motion calibration mechanism considerably improves the tracking accuracy. In these studies 

[17] and [18], some important challenges, such as the fluctuation of RSS measurements and 

the long durations as well as manpower needed for data collection are not addressed. 

Beyond this, some studies focused on avoiding time-consumption for data collection. 

For instance, [19] develops a new interpolation algorithm to optimize the number of pre-chosen 

calibrated points to build a radio map. In addition, work in [20] proposes a novel Simultaneous 

Calibration and Localization (SCAL) algorithm to improve real-time positioning and 

calibrating accuracy in indoor scenarios. The proposed framework is divided into the Target 

Localization and Beacon Calibration (TLBC) section and the Global Optimization (GO) 

section. Positioning accuracy is improved to reach 0.24 meters. Despite the improvement 

achieved by the proposed solutions [19] and [20], issues like the computational complexity and 

the system’s cost were not addressed.   

Looking at beamforming-based localization approaches, work in [21] applies an 

adaptive beamforming AoA estimation technique based on the Minimum Variance Distortion 

less Response (MVDR) algorithm. This technique reaches a sub metric positioning accuracy. 
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In the same context, [22] presents an Ultra-Wide Band Impulse Radio (UWB-IR) beamforming 

array targeted for a precise directional positioning and tracking of moving objects in complex 

indoor environments. This beamforming transmitting array is able to achieve full scanning 

range from -90 to +90 degrees with a resolution of 5 degrees. Despite the high accuracy 

achieved in both studies, the use of beamforming for angles estimation requires a complex end-

user hardware, which increases the system’s cost and complexity. 

In our case, to trade-off between the system’s performance, complexity and hence cost, 

we propose an RSS calibration method via the Weighted Average Attenuation Factor (WAAF). 

It aims to increase the accuracy of the localization system through a better propagation channel 

model. Compared to the attenuation factor AF90 of our conventional localization system, 

already introduced in chapter 2, subsection 2.4.4, WAAF approach takes into account all the 

positions over all tracks, in order to extract accurate attenuation parameters corresponding to 

the considered environment (Figure 4.1).  

In fact, our conventional indoor localization system uses only the calibration parameters 

of the track A90, that is characterized by the highest number of positions. These attenuation 

parameters are abbreviated as AF90. 

𝐴𝐴𝐹𝐹90 = �𝑛𝑛𝑇𝑇90;  𝑎𝑎𝑇𝑇90; 𝑏𝑏𝑇𝑇90; 𝑐𝑐𝑇𝑇90� (4.26) 

The proposed calibration procedure WAAF uses the attenuation parameters 

corresponding to the seven tracks, and not only those of A90. These parameters are extracted 

via either DOSM or DOSSOM, which are expressed in two segments. The first segment is for 

tag-reader distances up to 3𝜆𝜆 and the second one is for tag-reader distances greater than 3𝜆𝜆.  

Applying WAAF with DOSM, equation (4.16) becomes: 

𝑃𝑃𝑟𝑟(𝑑𝑑) = �
𝑃𝑃0 − 10.𝑛𝑛𝑤𝑤1 . 𝑙𝑙𝑙𝑙𝑎𝑎10(𝑑𝑑)+𝑋𝑋𝑤𝑤1       𝑑𝑑 ≤ 3𝜆𝜆
𝑃𝑃0′ − 10.𝑛𝑛𝑤𝑤2 . 𝑙𝑙𝑙𝑙𝑎𝑎10(𝑑𝑑)+𝑋𝑋𝑤𝑤2       𝑑𝑑 > 3𝜆𝜆 (4.27) 

The attenuation parameters are then defined in the following equations: 

While d ≤ 3λ, 
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 𝑛𝑛𝑤𝑤1= �𝑛𝑛1𝑇𝑇𝑖𝑖

7

𝑇𝑇=1

𝑁𝑁′𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑖𝑖�

𝑁𝑁′𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇
 (4.28) 

While d > 3λ, 

 𝑛𝑛𝑤𝑤2= �𝑛𝑛2𝑇𝑇𝑖𝑖

7

𝑇𝑇=1

𝑁𝑁′′𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑖𝑖�

𝑁𝑁′′𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇
 (4.29) 

With i indicates the track. 𝑛𝑛𝑤𝑤1 and 𝑛𝑛𝑤𝑤2 are the WAAF corresponding to the first and 

the second slope of the propagation model, respectively. 𝑛𝑛1𝑇𝑇𝑖𝑖 and 𝑛𝑛2𝑇𝑇𝑖𝑖 are the slopes associated 

to each track. 𝑁𝑁′𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇 and 𝑁𝑁′′𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇 represent the respective total number of positions over the 

two segments. N′Pos
Ti� and N′′Pos

Ti� are the respective number of positions over each track of 

the corresponding slope.   

Furthermore, applying WAAF with DOSSOM, equation (4.17) becomes:  

𝑃𝑃𝑟𝑟(𝑑𝑑) = �
𝑃𝑃0 − 10.𝑛𝑛𝑤𝑤1 . 𝑙𝑙𝑙𝑙𝑎𝑎10(𝑑𝑑)+𝑋𝑋𝑤𝑤1                                𝑑𝑑 ≤ 3𝜆𝜆
𝑃𝑃0′ − 𝐴𝐴𝑤𝑤2 . 𝑙𝑙𝑙𝑙𝑎𝑎10(𝑑𝑑)2 − 𝐵𝐵𝑤𝑤2 . 𝑙𝑙𝑙𝑙𝑎𝑎10(𝑑𝑑) − 𝐶𝐶𝑤𝑤2   𝑑𝑑 > 3𝜆𝜆 (4.30) 

The attenuation parameters are then defined in the following equations: 

While d ≤ 3λ, 

 𝑛𝑛𝑤𝑤1= �𝑛𝑛𝑇𝑇𝑖𝑖

7

𝑇𝑇=1

𝑁𝑁′𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑖𝑖�

𝑁𝑁′𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇
 (4.31) 

With i indicates the track. 𝑛𝑛𝑤𝑤1 is the weighted average attenuation factor corresponding 

to the first slope of the propagation model. 𝑛𝑛𝑇𝑇𝑖𝑖 is the attenuation factor relative to each 

track. 𝑁𝑁′𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇 represents the total number of positions over the first segment and  𝑁𝑁′𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑖𝑖�   the 

respective number of positions over each track.  

While d > 3λ, 
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The weighted average coefficients 𝐴𝐴𝑤𝑤2,𝐵𝐵𝑤𝑤2 and 𝐶𝐶𝑤𝑤2, corresponding to the second 

order polynomial modeling the second segment of the propagation channel, are then defined 

as: 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝐴𝐴𝑤𝑤2 = � aTi

7

i=1

N′′Pos
Ti�

N′′Total

 𝐵𝐵𝑤𝑤2 = � bTi

7

i=1

N′′Pos
Ti�

N′′Total

Cw2 = �  cTi

7

i=1

N′′Pos
Ti�

N′′Total

 (4.32) 

With i indicates the track. 𝑎𝑎𝑇𝑇𝑖𝑖, 𝑏𝑏𝑇𝑇𝑖𝑖 and 𝑐𝑐𝑇𝑇𝑖𝑖 are the constants associated to each track. 

They are given by equation (4.22) in sub-subsection 4.5.2. 

𝑁𝑁"𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇𝑇𝑇 represents the total number of positions over the second segment and  𝑁𝑁"𝑃𝑃𝑃𝑃𝑃𝑃
𝑇𝑇𝑖𝑖�   

the respective number of positions over each track. 

It can be noticed that WAAF coefficients are directly proportional to the number of 

calibrated positions. This procedure takes into account all positions in order to cover the whole 

environment.  

To evaluate the accuracy improvement thanks to WAAF calibration, a comparison 

between Estimated Distance Errors obtained, by applying the conventional RSS average 

combining technique, with AF90 and WAAF attenuation factors is elaborated.  

It is worth recalling that, within the online stage, RSSs are collected every 70 

centimeters ≅ 𝜆𝜆, over the three tracks A60, A90 and A120, selected for the validation of the 

proposed calibration procedure improvements’. 

Hence, examined estimated distance errors at two tag-reader distances of 2.8 ≅ 4𝜆𝜆  and 

3.5 ≅ 5𝜆𝜆  meters, are illustrated in Table 4.2. These are the nearest distances to 3 meters; value 

where the RSS fluctuations were studied in section 4.2. 
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Table 4.2 Comparison of the Estimated Distance Errors via AF90 and WAAF Attenuation 

Factors 

Tracks 
Tag-Reader 

Distance [m] 

Estimated Distance Errors [m] 

AF90 WAAF 

A60 
2.8 0.71 0.58 

3.5 0.83 0.72 

A90 
2.8 0.63 0.54 

3.5 0.68 0.63 

A120 
2.8 0.83 0.41 

3.5 0.75 0.48 

It can be noticed that the suggested WAAF calibration approach improves the estimated 

distance errors compared to the conventional one, that is based on the attenuation parameters 

of the central track (A90) only.  

Finally, once the RSS combining approach by the MLE is introduced and the WAAF 

calibration technique is elaborated, the following section is dedicated to present the overall 

proposed ILS.  

 Complete Proposed ILS System 

In short, the proposed ILS based on MLE with WAAF is divided into two stages: offline 

and online stage.  

During the offline stage, a defined number of RSS values are collected. These samples 

are combined via the MLE. This combined RSS value is then converted into received power in 

dBm. In order to determine the attenuation parameters that cover the whole classroom 

environment, the proposed empirical indoor propagation model DOSM or DOSSOM, 

associated with the weighted average constant parameters is applied.  

The attenuation parameters using DOSM propagation with WAAF are previously 

defined in equations (4.28) and (4.29). In addition, the attenuation coefficients using DOSSOM 

propagation with WAAF are already expressed in equations (4.31) and (4.32). 

Within the online stage, another defined number of RSS samples are collected at each 

unknown location and combined with the same technique (MLE) used during the calibration 

phase. The best RSS sample is further converted into received power in dBm. The RFID reader 
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position is then estimated by applying either the defined propagation model DOSM or 

DOSSOM, followed by multilateration.  

The DOSM propagation model with WAAF is already presented in equation (4.27). 

Moreover, the DOSSOM propagation with WAAF is also previously expressed in the equation 

(4.30). 

The complete proposed localization system is thus summarized by the following block 

diagram (Figure 4.9): 

 

Figure 4.9 Block diagram of the complete ILS based on MLE with WAAF 
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 Localization Assessment  

This section evaluates the complete proposed localization system.  

Within the online stage, localization is achieved with four active RFID tags deployed 

in the 63.75 square meters’ classroom environment i.e. with a deployment density of 0.062 

RFID tags per square meter. Each tag is attached on the center of each wall of the classroom 

environment as illustrated in Figure 4.10. 

 

Figure 4.10 Two-dimensional layout of the classroom environment (Online Stage) 

 The position error is estimated at thirty-two different positions. Among these positions, 

twenty-four are uniformly distributed in the space, with a distance of 70 centimeters ≅ 𝜆𝜆,  over 

the three tracks A60, A90 and A120. This step differs from the one used within the calibration 

stage (50 centimeters) in order to evaluate our system’s accuracy on tracks.  
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Eight particular positions are chosen out of the considered tracks, to assess the effects 

of the classroom geometry and structure as well as those produced by the metallic elements 

distributed within. P1 and P7 were selected to check the impact of the LCD projector on the 

positioning error. P3 and P8 reflect the influence of the pillar on the left side of the classroom. 

P5 and P2 assess the heater’s effect. Finally, P4 and P6 are between tracks A60 and A90, on 

the right side of the classroom, where the impact of the metallic objects is less compared to 

other areas.  

Twenty samples of the RSS are acquired at each position; they are combined by the 

conventional averaging as well as by the Maximum Likelihood Estimator (MLE), in both the 

calibration and the positioning stages. 

Moreover, tags-to-reader distances were estimated using one of the propagation models 

DOSM and DOSSOM, considering the two calibrations approaches: that with the basic 

attenuation parameters of the central track A90 (AF90) and that with the Weighted Average 

Attenuation Factor (WAAF) defined in the section 4.6.  

Then, by applying the multilateration technique, the position of the RFID reader is 

estimated.  

Positions errors’, obtained by performing the MLE in both stages, were determined and 

compared to those obtained while combining the RSS samples by averaging. 

 Location assessment via AF90 vs WAAF  

The following shows the location accuracy, using the RSS averaging technique within 

the offline and online stages, in order to evaluate the positioning improvement thanks to the 

proposed WAAF calibration approach. 

Figure 4.11 and Figure 4.12 illustrate the CDF of the positions errors’ achieved through 

the two different attenuation factors: AF90 and WAAF. Experiments were conducted with the 

two introduced indoor propagation models DOSM and DOSSOM. 
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Figure 4.11 presents the CDF of the obtained positions errors’ with the two calibration 

parameters AF90 and WAAF while applying the DOSM as indoor propagation model. 

 

Figure 4.11 Comparative CDF for the positions errors with DOSM 

According to Figure 4.11,  positions errors’, reached at 90% CDF, are 2.2 and 1.5 meters 

with AF90 and WAAF, respectively. The localization accuracy increases by 31.81 percent 

while applying DOSM with WAAF compared to that obtained by only DOSM.  
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Figure 4.12 compares the CDF of the positions errors’ obtained while applying the 

DOSSOM as a propagation model.  

 

Figure 4.12 Comparative CDF for the positions errors with DOSSOM 

According to the CDF presented in Figure 4.12, the positions errors’ of the localization 

system based on the averaging technique, achieved at 90% CDF, are 2 and 1.3 meters while 

applying AF90 and WAAF, respectively.  

In short, the DOSSOM with WAAF calibration improves the position accuracy of 35 

percent, as compared to DOSSOM.  

Overall, the suggested indoor localization architecture improves the position accuracy 

by up to 41 percent hence reducing the position error from 2.2 to 1.3 meters. 
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 Location Assessment by Averaging versus MLE 

In this sub-section, experiments were conducted, using the calibration parameters AF90 

and WAAF independently within the offline stage, in order to investigate the localization 

performance via averaging and MLE as RSS combining techniques.  

As previously mentioned in section 4.3, these techniques are used to combine the 

received power acquisitions in both offline and online stages.  

Obtained CDF, presented in Figure 4.13 and Figure 4.14, illustrate the positions errors’ 

achieved through the two different attenuation factors: AF90 and WAAF. Experiments were 

performed with the proposed indoor propagation models DOSM and DOSSOM. 

Figure 4.13 presents the CDF of the obtained positions errors’ using the calibration 

parameters AF90 and WAAF independently while applying DOSM. 

 

Figure 4.13 CDFs for the positions errors with the average and MLE using DOSM 

According to Figure 4.13 (a), the obtained positions errors’, at 90% CDF with 

calibration parameters AF90, are 2 and 1.5 meters with the averaging technique and the MLE, 

respectively. The location accuracy achieved with the MLE is increased by 20 percent while 

using the calibration parameters of the central track AF90 and DOSM. 

Figure 4.13 (b) represents the CDF of the positions errors’ using DOSM with WAAF. 

The positions errors’, at 90% CDF, are 1.5 and 1.1 meters with the averaging technique and 
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the MLE respectively. The location accuracy using MLE increases by 26.66 percent while 

applying DOSM with WAAF. 

Finally, Figure 4.14 compares the CDF of the positions error obtained using the two 

calibration parameters of AF90 and WAAF independently with the DOSSOM as empirical 

propagation model.  

 

Figure 4.14 CDFs for the positions errors with the average and MLE using DOSSOM 

Based on Figure 4.14 (a), it can be noticed that the positions errors’, achieved at 90% 

CDF, are 2 and 1.3 meters with the averaging technique and MLE respectively. Hence, the 

localization system based on MLE increases the location accuracy for 35 percent while using 

the calibration parameters of the central track AF90 with DOSSOM.  

However, the location accuracy, achieved at 90% CDF, while performing the WAAF 

calibration parameters is equal to 1.25 meters and 90 centimeters with the average technique 

and MLE (Figure 4.14 (b)). Thus, the efficiency of the MLE with the WAAF is well 

demonstrated and validated for indoor localization purposes. MLE and WAAF procedures 

increase the location accuracy by 28 percent.  

Overall, the suggested indoor localization architecture improves the position accuracy 

by up to 60 percent hence reducing the position error from 2.2 meters to 90 centimeters. 
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 Summary 

The main challenge of the proposed localization system is to mitigate locations error. 

The MLE is introduced as a combining technique in order to improve the calibration phase’s 

reliability and the localization phase’s accuracy. It is applied to combine the RSS samples 

collected at each position in both offline and online stages. It improves the received signals’ 

stability compared to the typical method, i.e. averaging.  

Moreover, two new empirical indoor localization models were proposed. They were 

compared with those found in the literature, using real measurements in a classroom 

environment of 63.75 square meters. Experimental results confirm that two propagation models 

DOSM and DOSSOM present an improvement in estimated distances and positions error. 

In addition, the presented WAAF propagation channel modeling shows closest 

agreement of the predicted path loss in the indoor environment. This approach gives a reliable 

calibration that considers all multipath parameters.  

Concerning the proposed system’s accuracy, it was validated during the positioning 

phase, by applying the proposed propagation models (DOSM or DOSSOM) followed by the 

multilateration technique and using four active RFID tags only. 

Quantitatively, the location error of the suggested system is 90 centimeters, with a 

cumulative density function at 90%, while deploying 0.062 RFID tags per square meters only. 

This accuracy will be optimized more, by introducing the constellation approach in the 

following chapter.  
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Chapter 5  The Constellation of Tags 

  Introduction 

As discussed in chapter 4, section 4.2, the RSS variability is an essential parameter in 

indoor localization. This stability could be achieved through signals diversity [1]. The multiple 

antennas technology was proven to be efficient by improving the spectral efficiency over 

conventional single antenna systems [2], [3]. The capacity limits of the multiple antennas 

technology were extensively studied in various practical scattering propagation environments 

[4]-[6]. Besides, the spatial diversity of the emitted signals is well performed by the Multiple-

Input Single-Output (MISO) architecture. These systems introduced many techniques to reduce 

the effect of multipath fading [5], [6]. In addition, the classical approaches consist of using 

multiple receiving antennas and performing combining or selection and switching techniques 

to improve the quality of the received signals. Based on this idea, the concept of using multiple 

antennas for localization is very challenging. Therefore, our proposed approach is focused on 

using a group of tags that operate together at the same frequency in our reader-based 

localization system. We named this configuration: a constellation of tags.  

Moreover, several techniques can be used to exploit the antennas signals’ diversity [7], 

[8]. In our work, the MLE is suggested to combine the received signals strength and assess the 

location accuracy. 

This chapter is organized into four sections; section 5.2 presents the constellation 

approach with different radii, shapes, and number of RFID tags. In section 5.3, the error of 

distances estimated with the optimal constellation are compared to those obtained with a single 

tag in two scenarios: real and simulated environments. Then, localization by the proposed 

system is assessed and analyzed with both the optimal constellation and the single tag 

configurations, and through the two different RSS combining techniques i.e. averaging and the 

Maximum Likelihood Estimator, in section 5.4. Finally, the last section focuses on conclusions 

based on obtained results. 

 Constellation of UHF-RFID Tags 

We introduce the concept of constellation of RFID tags in indoor localization, aiming 

to minimize the location uncertainty. As already mentioned in the introduction, the 

constellation is a set of tags that are close to each other and operating at the same frequency. 
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Preliminarily, a MISO-based ILS is introduced in this section. Then, the constellation approach 

is proposed along with its different radii, shapes, and number of tags. By applying the One 

Slope propagation Model (OSM), mean estimated distance errors of the different constellations 

are analyzed and compared to each other to reach the optimal constellation of RFID tags. 

 MISO-Based Indoor Localization System 

The MISO architecture is one of the several forms of smart antenna technologies with 

only one receiving antenna. Performance of wireless communication systems can be improved 

by adopting multiple antennas at the transmitting side [3]. Few papers present works using 

MISO for localization purposes [9]. Most traditional researches are focused on the channel 

capacity [10].  

 

Figure 5.1 MISO Communication System 

Notwithstanding these previous studies, [11] proposes a comparative study of RSSI-

based localization algorithms for Wireless Sensor Networks (WSNs) indoors using spatial 

diversity. They show that the Single Input Multiple Output (SIMO) and MISO systems present 

similar performances. Obtained results indicate that the usage of a multiple antennas system 

significantly improves the localization accuracy to 87 centimeters in an indoor environment of 

400 square meters. Additionally, [12] proposes an ILS based on a single-frequency continuous-

wave Doppler radar sensor. It was implemented under the form of SIMO architecture with 

redundant receiving channels. The method was validated by simulations. Two different 

trajectories were recovered in a simulated environment scenario of 0.8 x 0.8 square meters. 
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Accuracy errors, between the estimated and the actual trajectories, were 11.4 and 14.1 

centimeters respectively. Despite good performance, [11] implemented the WSN in a 

homogenous indoor environment and [12] validated their approach without any interference 

and by simulations only. In the following, we present a technique to improve the accuracy of 

our low-cost RFID localization system in a classroom environment. The complexity of this 

classroom is attributed to its geometry and to the materials that constitute this environment, as 

previously discussed in chapter 3, sub-section 3.4.1.  

 Constellation of Active UHF-RFID Tags for Reader 
Localization 

As previously mentioned in chapter 2, section 2.4, the RFID reader-based localization 

system includes tags used as anchor or beacons and a reader to locate. The suggested 

constellation of tags can have different shapes and may include a variable number of tags. For 

instance, Figure 5.2 presents the constellation of four active RFID tags for reader localization. 

First, our work was focused on investigating the optimal constellation’s radius and shape as 

well as on the optimal number of tags constituting it. As multiple transmitting antennas can 

reduce multipath by benefiting from signals’ diversity, different experiments with the 

constellation of RFID tags will be analyzed, in the following subsections, in order to increase 

the location accuracy. 

 

Figure 5.2 Constellation of four RFID tags 
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 Optimal Constellation’s Radius 

In this subsection, different radii of the constellation are empirically examined over 

track A90. The experiment was conducted in the classroom at EFREI-Paris spaced of 63.75 

square meters, where Figure 5.3 shows the layout of the scenario. 

The center of the constellation was on the center of the front wall. The RFID reader 

was moving forward with a step equal to 50 centimeters to collect the RSS at each reference 

position as presented in Figure 5.3.  

 

Figure 5.3 Two-dimensional layout of the classroom environment  

Signals emitted by the group of tags and captured by the reader antenna were combined 

by the averaging technique. Furthermore, to determine the optimal radius of the constellation 

of RFID tags, the estimated tag-reader distances errors’ were analyzed for different radii 

starting from 𝜆𝜆/8 up to 7𝜆𝜆/4 (Figure 5.4). 7𝜆𝜆/4 is the maximum reached radius due to the 

classroom height. Constellations with radius 𝜆𝜆/8 to 𝜆𝜆 were studied based on real measurements. 
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Whereas, constellations with radius 5𝜆𝜆/4, 3𝜆𝜆/2 and 7𝜆𝜆/4, respectively, were evaluated through 

different simulations due to some practical aspects that prevent real measurements.  

 

Figure 5.4 Different radii for the constellation of tags 

Table 5.1 shows the mean estimated distance errors over the track A90 (Figure 5.3) for 

the different constellation radii. 

Table 5.1 The mean estimated distance errors for different radii of constellations with OSM 

Constellation’s Radius 
R [cm] 

𝜆𝜆/8 

8.75 

𝜆𝜆/4 

17.5 

𝜆𝜆/2 

35 

3𝜆𝜆/4 

52.5 

𝜆𝜆 

70 

5𝜆𝜆/4 

87.5 

3𝜆𝜆/2 

105 

7𝜆𝜆/4 

122.5 

Track 
A90 

Mean 
Distance 

Error [m] 
2.24 2.09 2.31 2.05 1.94 1.98 2.13 2.2 

Standard 
deviation 1.58 1.03 1.43 1.31 1.26 1.32 1.36 1.41 

Looking on values of  Table 5.1, it can be noticed that the mean estimated distance 

error, obtained over track A90, presents a maximum error for the radius equal to 𝜆𝜆/8, which 

confirms the effect of coupling between tags’ antennas. The minimal distance error is reached 

for the constellation with radius R equal to 𝜆𝜆. Moreover, the standard deviation presents low 

variation with the radius equal to 𝜆𝜆. Thus, a constellation of tags with radius 𝜆𝜆 will be used in 

the following tests. 
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 Optimal Shape and Number of Tags 

In order to determine the best constellation and after the selection of the optimal radius, 

it is also challenging to determine the best shape and the optimal number of tags that constitute 

the constellation. Several shapes, with a radius R equal to 𝜆𝜆, are studied over the same track 

A90: a triangle constellation with three tags (Figure 5.5 (a)), diamond shape with four tags 

(Figure 5.5 (b)), square cross with five tags (Figure 5.5 (c)) and pentagon with five tags (Figure 

5.5 (d)).  

 

Figure 5.5 Constellation of tags with different shapes and different number of tags 

The mean estimated distance errors over track A90 for the different shapes and different 

numbers of tags in the constellation are shown in Table 5.2. 

Table 5.2 The mean estimated distance errors for different constellations with OSM 

Constellation Tags’ Number 3 Tags 4 Tags 5 Tags 5 Tags (Penta) 

Track 
A90 

Mean Distance Error [m] 2.04 1.94 1.92 1.95 

Standard deviation 1.07 1.26 1.05 1.31 
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It is worth mentioning that by increasing the number of RFID tags constituting the 

constellation, with a defined radius, the inter-tags distance “C” decreases and the coupling 

between tags antennas’ increases (Figure 5.5).  

In Table 5.2, it is apparent that there are fewer errors in the constellation with five tags 

where one of them is at the constellation center (Figure 5.5 (c)). However, adding an extra tag 

to the four-tag constellation, in order to improve the accuracy by just 2 cm, makes the choice 

of a four-tag constellation (diamond shape) cost effective. 

 Constellation versus Single Tag 

In this section, performance of the optimal constellation of tags (diamond shape with a 

radius equal to λ) is compared to those obtained with a single tag under the same conditions.  

To validate the constellation approach while avoiding the long durations needed for on-

site measurements, a reliable modelling of the classroom environment can be a suitable 

alternative, as shown in Figure 5.6 .  

 

Figure 5.6 Three-dimensional layout of the classroom 

It is worth recalling that the experimental and the simulated results already presented 

in chapter 3 had a similar behavior, with maximum deviation of 0.5 dB. Hence, the behavior 

of the constellation of tags will be studied in-depth, via the simulated model, over the tracks 
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A60, A90 and A120 (Figure 5.3) in the subsection 5.3.1.1. As already mentioned in chapter 4, 

subsection 4.5.3, these three tracks are chosen as they have enough number of positions that 

may better reflect signals propagation. 

 (Tags-Reader) Distances Estimation  

To evaluate the optimal constellation of tags features in localization, a first comparison 

with the single tag configuration in terms of estimated distances is essential. The single tag 

and, alternatively, the center of the constellation was placed at the center of the front wall as 

shown in Figure 5.3.  

Received power values at the various positions were measured to characterize the signal 

behavior in terms of the tag-reader distance over the tracks A60, A90 and A120 (Figure 5.3).  

Over each track, the estimated distances errors were analyzed first while a single tag is 

used, then with the optimal constellation of tags, and finally for each tag of the optimal 

constellation independently to see the behavior of each one. Actually, it is important to present 

behaviors separately in order to show that each tag’s signal takes a different path to reach the 

reader due to multipath in the classroom. Moreover, comparison is realized on distance errors, 

obtained by the single tag and constellation, following the block diagram illustrated in Figure 

5.7. 

 

Figure 5.7 Steps for the estimated distance error calculation 
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5.3.1.1 Measurements Accuracy 

Based on real power measurements, estimated distances errors for the single tag and 

the constellation of tags scenarios are evaluated. Table 5.3 shows MDEs based on real power 

values collected by the RFID reader.  

Table 5.3 Mean estimated distance errors based on real measurements 

 Single Tag Constellation of Tags 

Track A60 
Mean Distance Error [m] 0.99 0.82 

Standard deviation 0.59 0.49 

Track A90 
Mean Distance Error [m] 2.45 1.98 

Standard deviation 1.64 1.26 

Track A120 
Mean Distance Error [m] 2.18 0.73 

Standard deviation 1.12 0.46 

Based on the MDEs presented in Table 5.3, it can be noticed that the constellation of 

four tags architecture presents less errors compared to that with a single tag. For instance, the 

constellation of tags reduces distances errors by 17 centimeters over the track A60, 42 

centimeters over A90 and 45 centimeters over A120.  

 Moreover, the constellation of tags also presents more stability as the standard 

deviation is smaller than that for the single tag configuration. Thus, the concept of using 

multiple transmitting antennas, to reduce the effect of multipath fading on distances estimation, 

is well validated.  

Furthermore, Figure 5.8 (a), Figure 5.9 (a) and Figure 5.10 (a) present the estimated 

distances errors’ distribution over the three tracks A60, A90 and A120 for the single tag 

scenario. Those obtained by the optimal constellation of tags and by each tag of the optimal 

constellation independently are shown in Figure 5.8 (b), Figure 5.9 (b) and Figure 5.10 (b). 
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Figure 5.8 Distance errors for single tag and constellation of tags scenarios over track A60 

 

Figure 5.9 Distance errors for single tag and constellation of tags scenarios over track A90 
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Figure 5.10 Distance errors for single tag and constellation of tags scenarios over track 

A120 

Scales of Figure 5.8 and Figure 5.10 are not uniform with that of Figure 5.9 because, 

according to Figure 5.3, RSS observations are collected every 50 centimeters to reach 4 meters 

over tracks A60, A120, and 7 meters over track A90.  

Back to the subsection 5.2.1, MISO systems achieve a better performance in terms of 

reliability through signals diversity [9]. Referring to Figure 5.8 (b), Figure 5.9 (b) and Figure 

5.10 (b), the estimated distance error, at each position, differs from one tag to another. Thus, 

the transmitted signals take different paths to reach the reader due to many effects such as the 

multipath fading. It is worth mentioning that the constellation of tags assessment versus the 

single tag is studied via averaging technique. It can be noticed that combining multiple signals 

emitted by a group of tags performs better than a signal tag. 

5.3.1.2 Simulations 

Following the simulated setup presented in chapter 3, section 3.4, the whole experiment 

done in the real environment are reproduced over WinProp (Figure 5.11).  
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Figure 5.11 single tag and constellation of tags simulated scenarios 

Restate that the single tag and alternatively, the center of the constellation was placed 

on the center of the front wall, as shown in Figure 5.3.  

Also, the received power values are collected each 50 centimeters by moving the 

configured RFID reader forward over the corresponding tracks (Figure 5.3).  

Table 5.4 illustrates the MDEs with the single tag and with the constellation of tags 

configurations.  

Table 5.4 The mean estimated distance errors by simulation 

 Single Tag Constellation of Tags 

Track A60 
Mean Distance Error [m] 1.02 0.81 

Standard deviation 0.59 0.45 

Track A90 
Mean Distance Error [m] 2.41 1.93 

Standard deviation 1.62 1.21 

Track A120 
Mean Distance Error [m] 1.19 0.71 

Standard deviation 1.04 0.49 
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According to the MDE values presented in Table 5.4, the constellation performs better 

than single tags thanks to signals diversity. For instance, within simulations, the constellation 

of tags decreases the distances errors to 21 centimeters over the track A60, 48 centimeters over 

A90 and 42 centimeters over A120. In addition, the constellation of tags presents more stability 

due to the receiving signals’ diversity created by the group of RFID tags. In fact, the obtained 

standard deviation is smaller than that for the single tag system in the indoor environment.  

Furthermore, referring to Table 5.3 and Table 5.4, it can be noticed that measurements 

and simulations present very closed results. More precisely, these tables show that the 

maximum difference in MDEs obtained between measurements and simulations is only 4 

centimeters over A60, and 1 centimeter over tracks A90 and A120 in the single tag scenario. 

Similarly, this difference reaches only 1 centimeter over A60, 5 centimeters over A90 and 2 

centimeters over A120 in the constellation of tags scenario. 

 Localization Assessment  

This subsection aims to assess the localization performance of the proposed system, 

comparing it to the conventional system under different aspects. Experiment was performed in 

the unfurnished classroom environment that has been presented in chapter 3, section 3.2.  

Restate also, as described in chapter 2, section 2.4, the signal propagation within the 

offline stage is characterized over seven paths A30 to A150, using one RFID tag placed on the 

center of the front wall, as shown in Figure 5.3. Two hundred RSS values were collected every 

50 centimeters over the seven trajectories.  

First, the RSS samples are combined via the averaging technique. Then, MLE is applied 

in order to increase the location accuracy and improve the system’s reliability. The propagation 

models DOSM or DOSSOM, with WAAF already introduced in chapter 4, were applied over 

each track to determine reliable attenuation coefficients, corresponding to the classroom 

environment. 

Within the online stage, the localization phase is performed in a way similar to the 

process described in chapter 4, section 4.8. Position errors are estimated at thirty-two different 

positions. Only twenty-four locations are uniformly distributed in the space with a distance of 

70 centimeters over the three paths A60, A90 and A120, as illustrated in Figure 4.12. Eight 

other positions are chosen randomly to evaluate the localization accuracy. 
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Figure 5.12 Two-dimensional layout of the classroom environment (online stage with 

constellation) 

The localization based on a single tag is performed with four independent RFID tags 

(Figure 5.13). Each one is fixed on the center of each wall, as shown in Figure 5.12.  

 

Figure 5.13 Multilateration with the single tags’ scenario 
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Whereas the localization based on the constellation of tags was carried out with four 

constellations of four RFID tags each (Figure 5.14). The center of each constellation is situated 

on the center of each wall.  

 

Figure 5.14 Multilateration with the constellation of tags scenario 

In this stage, twenty RSS samples are collected at each position.  

Then, by applying the multilateration technique, and following the proposed DOSM 

and DOSSOM indoor propagation models associated with the Weighted Average Attenuation 

Factors (WAAF), that cover the whole classroom environment, errors were estimated at the 

thirty-two different positions illustrated in Figure 5.12. 

 Localization Assessment based on Constellations 

In this subsection, location accuracy is analyzed while RSS samples are combined by 

averaging.  

After performing the WAAF calibration procedure that was introduced in the previous 

chapter, positions errors with the constellation of tags are analyzed and compared with those 

obtained using single tags. Figure 5.15 presents the Cumulative Density Functions (CDF) of 

the positions errors’ while applying the Dual One Slope propagation Model (DOSM) 

associated with the WAAF calibration approach.  
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Figure 5.15 CDF for positions errors by RSS Averaging using DOSM and WAAF 

According to the CDF illustrated in Figure 5.15, positions errors’ achieved, at 90% 

CDF and applying DOSM associated with WAAF, are 1.5 meters and 90 centimeters with the 

single tag and the constellation of tags, respectively. In short, the location accuracy is improved 

by 40 percent while performing the constellation of tags with DOSM and WAAF. 

As a following step, the location accuracy was studied with the Dual One Slope with 

Second-Order Polynomial propagation Model (DOSSOM). Figure 5.16 presents CDF of 

positions errors’ by applying DOSSOM with WAAF.  
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Figure 5.16 CDF for positions errors via RSS Averaging using DOSSOM and WAAF 

As shown in Figure 5.16, positions errors’ achieved, at 90% CDF while using 

DOSSOM associated with WAAF, are 1.3 meters and 80 centimeters with the single tag and 

the constellation of tags, respectively. Thus, the use of the constellation of tags with DOSSOM 

and WAAF increases the location accuracy by 38.4 percent.  

Considering the gathered results, localization based on the constellation approach, 

while combining RSS samples by averaging, improves location accuracy by 46.7 percent as 

compared to that obtained with the single tags architecture. Thus, the efficiency of using the 

constellations of tags for localization purposes in an indoor environment is well proved. 
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 Localization Assessment based on Constellations and 
RSS Combined by MLE 

As already demonstrated in chapter 4, the proposed ILS presents an improvement in the 

location accuracy while using the MLE as RSSs combining technique in the single tag scenario. 

Assessment presented in 4.8.2, multilateration along with DOSM, and DOSSOM with WAAF 

indoor propagation models, are applied to estimate positions errors at the thirty-two different 

positions appearing in Figure 5.12.  

Obtained results by performing the constellation approach are analyzed and compared 

to those results obtained in the single tag scenario.  

Figure 5.17 presents the CDF of positions errors’ while applying DOSM associated 

with WAAF in the classroom environment. 

 

Figure 5.17 CDF for positions errors via MLE using DOSM and WAAF 

According to the CDF illustrated in Figure 5.17, positions errors’, achieved at 90% 

CDF and applying DOSM with WAAF, are 1.1 meters and 70 centimeters with the single tag 

and the constellation of tags, respectively. In short, the location accuracy is improved by 36.4 

percent while performing the constellation of tags with DOSM and WAAF. 
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Finally, location accuracy was studied with the Dual One Slope with Second-Order 

Polynomial propagation Model (DOSSOM) and WAAF. Figure 5.18 presents the CDF of 

positions errors’ using DOSSOM associated with WAAF.  

 

Figure 5.18 CDF for positions errors via MLE using DOSSOM and WAAF 

As illustrated in Figure 5.18, positions errors’, achieved at 90% CDF while using 

DOSSOM, are 90 and 60 centimeters with the single tag and the constellation of tags, 

respectively. Thus, the use of the constellation of tags with DOSSOM associated with WAAF 

increases location accuracy by 33.33 percent.   

Recall that, in the single tag scenario, the proposed RFID based localization achieves 

optimal accuracy of 1.3 meters and 90 centimeters, while combining RSS samples by applying 

the averaging technique and the Maximum Likelihood Estimator, respectively. However, the 

constellation scenario’s location accuracy reaches 80 and 60 centimeters, while using the 

averaging technique and the Maximum Likelihood Estimator, associated with WAAF 

respectively. Thus, the location accuracy is improved by 60 percent while performing the 

constellation of tags within the proposed system based on MLE and WAAF. 
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 Summary 

A new approach for a positioning system based on constellations of RFID tags is 

presented and studied in order to increase the localization accuracy. It consists in replacing the 

single tag by a group of tags and follows the same concept as that of MISO communication 

systems.  

Various radii and different numbers of tags per constellation are studied in-depth. 

Moreover, mean estimated distance errors, using the average value of the power received by 

the RFID reader and emitted by the constellation, are widely elaborated. Based on 

measurements and simulations, the optimal constellation is constituted of four RFID tags and 

has a radius equal to the wavelength. In terms of the distance error, the constellation 

performance is compared to those obtained with the single tag scenario. 

Besides, using the Weighted Average Attenuation Factor (WAAF) calibration 

procedure, a series of localization experiments are completed with both single tag and 

constellation of tags scenarios by applying the multilateration technique and following the 

OSM, DOSM, and DOSSOM indoor propagation models. RSSs are combined with two 

methods i.e. Averaging technique and the Maximum Likelihood Estimator. As a result, the 

optimal estimated positioning error achieved thanks to the constellation approach, the 

DOSSOM model and the Maximum Likelihood Estimator combining technique is around 60 

centimeters, with the cumulative distribution function at 90% while deploying 0.25 RFID tags 

per square meter only. 
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Global Evaluation of Performance and Deployment 

Density 

The main aim of the thesis was to develop and implement an accurate and reliable ILS 

based on the active UHF-RFID technology. It shall also provide the high locations accuracy 

with a reduced number of RFID tags deployed.  

The concept of our localization system is classified as a moving RFID reader and fixed 

active tags. It is divided into two stages: offline and online. The offline stage represents the 

environment calibration and the online one is properly the positioning phase.  

Performance of most RFID based indoor localization systems depend mainly on the 

number of deployed RFID tags or readers and on advanced positioning algorithms. Our 

attention is drawn to the number of deployed RFID tags and the location accuracy achieved 

with active UHF RFID positioning systems already presented in chapter 2, section 2.2, as 

compared to our proposed system features. 

Associated to the installed software, different indoor location methods such as 

LANDMARC, VIRE and others have been introduced [1]-[3]. LANDMARC is the first 

feasible technique using active RFID tags as anchors, usually placed in the form of a regular 

grid with limited number of RFID readers. For instance, [1] introduces the LANDMARC 

concept as a solution while 4 readers and 24 RFID tags operating at 308 MHz, are deployed in 

an indoor environment of 36 square meters. Recently, [2] establishes an RFID based 

localization system using 4 readers and 28 reference tags, operating at 433 MHz. The improved 

LANDMARC approach presents an average estimated positioning error of 75 centimeters in 

50 square meters. Therefore, VIRE method is applied to improve the localization performance 

based on LANDMARC. [3] adapts VIRE solution by adopting an array formed by 8 reference 

tags and one RFID reader. This approach is validated in 9 square meters through simulations. 

The achieved average location error is 37 centimeters.  

Otherwise, researchers focused also on developing algorithms to improve the 

localization system performance. For instance, [4] shows a novel hybrid system for indoor 

localization; both SA-LANDMARC and COCKTAIL algorithms were introduced within a 

tested area of 36 square meters using 49 RFID deployed tags, operating at 303.82 MHz. The 

accuracy reached 70 and 45 centimeters respectively. Despite the SA-LANDMARC’s 
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implementation simplicity and COCKTAIL’s efficiency, the achieved high precision, using 

both algorithms, refers to the dense deployment of RFID tags i.e., around one tag per square 

meter.  

In this framework, the different indoor localization architectures were studied and 

compared to the proposed system based on either single tags or constellation of tags, to evaluate 

its performance. The following Table C. 1 characterizes the different active UHF RFID-based 

ILSs found in the literature and ours, in terms of locations accuracy and the number of RFID 

tags deployed in the considered indoor environment. 

Table C. 1 Comparative summary for different RFID-based ILS 

RFID based ILS Accuracy 
[meters] 

Number of 
Active Tags 

deployed 
Technique 

Tag density  

[ 𝒎𝒎𝟐𝟐] 

[1] L. M. Ni 2 24  LANDMARC 0.66 

[2] D. Cui 0.75 28  LANDMARC 0.56 

[3] E. Ferraz 0.37 8  VIRE 0.88 

[4] Z. Dian 0.45 49  COCKTAIL 1.36 

Proposed 
System 

Single Tags 0.9 4  Multilateration 0.062 

Constellations 0.6 16  Multilateration 0.25 

According to Table C. 1, the presented localization systems provide several solutions 

for indoor positioning. Authors focused on the location accuracy while neglecting the 

complexity and the cost of the number of deployed UHF RFID tags. More precisely, [1], [2] 

and [3] use around 0.66, 0.56 and 0.88 active RFID tags per square meter while performing 

LANDMARC and VIRE algorithm. The solution of [4] uses 1.36 active RFID tags per square 

meter to improve the location accuracy. After providing a fair number of use case examples, 

we can notice that most systems count on a large number of deployed active RFID tags for 

better performance.  

For this reason, we have suggested reducing the number of tags and improving the 

stability of the RSS via MLE. The proposed localization system based on either single tags or 

constellations is able to determine the reader’s location with an optimal position error of 90 
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and 60 centimeters using only four and sixteen active RFID tags, respectively, in a classroom 

environment of 63.75 square meters. 
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Conclusions and Future Works 

Conclusions 
Most ILSs have some common and critical issues such as the instability of RSS 

measurements affected by the multipath effects, the human error as well as the thorough cost 

of manpower/time for data collection.  

In addition, none of the indoor propagation models found in the literature and used for 

calibration have yet successfully provided a reliable radio map covering all indoor 

environments.  

In the same context, ILSs often need an accuracy of the sub-meter level and adaptation to 

multiple scenarios. Hence, there is no unique solution that can cover all challenges of 

reliability, simplicity, accuracy, etc.  

To this end, our work conclusions are summarized in accordance with four objectives. 

The first one was to model indoor environments in order to reduce time needed for real 

measurements. Then, based on empirical studies, the second objective was to suggest two 

generic and configurable indoor propagation models i.e. the Dual One Slope propagation 

Model (DOSM) and the Dual One slope with Second Order propagation Model (DOSSOM) 

followed by a reliable calibration procedure, the Weighted Average Attenuation Factor 

(WAAF), that covers the whole considered indoor environment. Moreover, in order to improve 

localization performance, while implementing a simple and low-cost system, two purposes 

were elaborated:  introducing constellations of RFID tags instead of single tags, as well as 

combining RSS samples collected by the RFID reader via the Maximum Likelihood Estimator 

(MLE).  

Indoor Environment Modeling 

Series of experiments were conducted in a classroom to analyze the coverage of 

propagating signals indoors. These experiments need the collection of a large amount of data, 

which require manpower and is large time-consuming; all this complicate the creation of a 

reliable fingerprinting.  

For this reason, the indoor environment is modeled, via the WinProp tool, in order to 

reduce the need for costly measurements.  
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Empirical losses and Fresnel parameters, corresponding to all materials that constitute 

the considered medium, were defined.  

Signals propagation characteristics are then analyzed using 3D Ray-Tracing.  

Experimental and simulated results had similar behavior with a maximal distance error 

difference of 10 centimeters (Figure 3.24), over the classroom environment. 

Empirical Indoor Propagation Models and Reliable Calibration 

Procedure  

It is widely recognized that indoor propagation characteristics greatly differ from the 

outdoor ones, mostly because of the indoor environmental particularities, such as shorter tags-

reader distances, power fluctuations, and obstacle effects. In the context of propagation 

modeling, several empirical indoor propagation models, found in the literature, tend to focus 

on a particular characteristic including temporal fading or inter-floors losses. However, none 

of these models have yet successfully created reliable attenuation parameters, totally covering 

the considered indoor environment. 

 The importance of the suggested models DOSM and DOSSOM reside in representing 

signals behavior better, while being generic and configurable.  

Associated with the new calibration approach WAAF, DOSM and DOSSOM present 

higher reliability in characterizing signals attenuation by covering the entire classroom 

environment and using only one active RFID tag.   

Constellation of Tags 

In order to even more improve the location accuracy, the concept of constellation was 

introduced.  

The constellation is a group of tags that operate at the same frequency. Using 

constellations can reduce the multipath effects by benefiting from signals diversity. After 

investigating performance of the constellation with different radii, shapes and number of tags, 

the diamond four-tags constellation) with radius equal to the wavelength presents the optimal 

accuracy.  
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Localization Performance 

Once the attenuation parameters extracted accurately, multilateration is applied to 

estimate the reader location.  

Most conventional ILSs combine RSS samples by averaging; the proposed system 

performs by applying the Maximum Likelihood Estimator (MLE) as combining technique 

during both stages.  

The effectiveness of using MLE with WAAF is validated by reaching a location 

accuracy of 90 and 60 centimeters with the single and the constellation of RFID tags, 

respectively.  

Finally, the analysis on the impact of tags density proposes a trade-off challenge 

between the optimized deployment and the location accuracy. Regarding our system’s cost and 

complexity, only four active RFID tags are used in the single tag and sixteen in the constellation 

of tags scenario. 

Future Works 
Based on the aforementioned conclusions, some future research axis can be addressed 

to further improve the proposed localization system: 

- The system resolution varies with the number of RSS samples collected by the RFID reader 

in both offline and online stages. Hence, the optimal number of power acquisitions should 

be well investigated. 

- A theoretical study regarding the constellation of tags may be useful to confirm the optimal 

dimensions of the constellation of RFID tags already demonstrated empirically. 

- Location accuracy provided by the proposed indoor localization system may be 

investigated in a three-dimensional plane in the same classroom environment and with the 

same number of deployed RFID tags. 

- Experiments may be conducted in different and more complex indoor environments to fully 

justify the effectiveness of the empirical and configurable indoor propagation models 

(DOSM and DOSSOM) and validate the solution with the optimal constellation of RFID 

tags. 
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