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”All models are wrong, but some are useful.”

George E. P. Box (1978)
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Lévy processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
2.3.6 Analysis and discussions . . . . . . . . . . . . . . . . . . . . . . . . 117

2.4 Optimal investment strategy of the life insurance company . . . . . . . . . 119
2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3 Optimal Asset Allocation Strategies of Euro-denominated Life Insur-
ance Funds 123
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.2 Dataset statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

3.2.1 Risk-free asset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
3.2.2 Risky assets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

3.3 Optimal asset allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
3.3.1 Optimal Investment Strategy . . . . . . . . . . . . . . . . . . . . . 147
3.3.2 Numerical illustration . . . . . . . . . . . . . . . . . . . . . . . . . 151

3.4 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
3.4.1 Sensitivity of the optimal asset allocation to different levels of in-

terest rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
3.4.2 Sensitivity of the optimal asset allocation to different constraints,

α and c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
3.4.3 Sensitivity of the optimal asset allocation to the parameters in the

basic risk process, Xt . . . . . . . . . . . . . . . . . . . . . . . . . . 155
3.4.4 Sensitivity of the optimal asset allocation to different financial mar-

ket conditions in the return on investment generating process, Rt . 156
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

4 Performance evaluation of portfolio optimization strategies for the life
insurance company 163
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
4.2 Asset allocation strategies and benchmark choices . . . . . . . . . . . . . . 165

4.2.1 Recall: the optimal investment strategies . . . . . . . . . . . . . . . 165

8



TABLE OF CONTENTS

4.2.2 Benchmark choices . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
4.3 Backtesting design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

4.3.1 The strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
4.3.2 Portfolio rebalancing disciplines . . . . . . . . . . . . . . . . . . . . 169
4.3.3 Performance appraisal measures . . . . . . . . . . . . . . . . . . . . 170
4.3.4 Transaction costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
4.3.5 The value of the parameters . . . . . . . . . . . . . . . . . . . . . . 172
4.3.6 Backtesting procedures . . . . . . . . . . . . . . . . . . . . . . . . . 173

4.4 Empirical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
4.4.1 The effectiveness of asset allocation strategies . . . . . . . . . . . . 178
4.4.2 Our asset allocation strategies versus B&H benchmarks . . . . . . . 186

4.5 Further discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
4.5.1 On the constraints, α and c . . . . . . . . . . . . . . . . . . . . . . 192
4.5.2 On the weightings of the benchmarks . . . . . . . . . . . . . . . . . 197
4.5.3 On the upper bounds of the investment weightings, γ(i)

max . . . . . . 200
4.5.4 On the performance of our strategies versus the real industry . . . . 202

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

General Conclusion 207

List of Figures 216

List of Tables 219

Appendices 221
.1 Appendix A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
.2 Appendix B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
.3 Appendix C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
.4 Appendix D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
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GENERAL INTRODUCTION

Life insurers are important financial intermediaries on account of their capacity to
reallocate risks in the economy and their often long-term investment horizons. In most
European countries, life insurance benefits from its characteristics in terms of the capital
guarantee, tax incentives, long-term investment horizon, diversification effect, and invest-
ment return. In the good years, insurers build up surpluses by offering lower returns to
savers than those of their portfolio, enabling them to draw on this reserve during the bad
years to offer higher returns. Thereby reducing the shortfall risk of the life insurers while
providing for higher guaranteed interest rates.

About 40% of their net worth is invested in life insurance and pension funds by Euro-
pean households in an average year from 2016 to 2018 [ECB, 2019]. According to the Bank
of France 1, the value of euro-denominated life insurance contracts held by French house-
holds accounts for approximately 32% of their financial wealth by the end of September
2020. At the same time, the corresponding proportion of unit-linked contracts is about
7%.

As shown by the progress in outstandings (see Figure 1), the French have invested
massively in euro-denominated life insurance contracts over the past forty years, from
20 billion euros in 1982 to 1500 billion euros in 2019. Nevertheless, a slowdown in euro-
denominated contracts has also been witnessed in recent years. The development of unit-
linked contracts has been accelerated since the end of the 20th century, their share in life
insurance contracts exceeded 27% in 2019.

1. Banque de France, https://www.banque-france.fr/presentation-trimestrielle-de-lepargne-des-
menages
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General Introduction

Figure 1 – Mathematical reserves by type of product in France, 1982 - 2019 (in billions
of euros)

Source: ACPR

However, while the overall prospect for life insurers during the period seems to be
very positive, some challenges have been forming in both investment activity and the life
insurance business. The declining rate of return of their investment portfolios 2 and the
underwriting profitability driven by low premium growth have created concerns for all life
insurance companies in the past several years.

The current loose monetary policy conducted by the European Central Bank results
in extraordinarily low-interest rates. Life insurers typically allocate a large proportion of
sovereign bonds and corporate bonds in their portfolio, therefore a generalized decrease in
interest rates directly affects the rate of return of these portfolios. Lower-for-longer yields
prompt life insurers to seek riskier and more illiquid investments to earn their targeted
return. This increased risk-taking may lead to a further buildup of vulnerabilities among
them [IMF, 2019]. Low-interest rates are becoming a threat to the stability of the life
insurance industry, especially in countries where products with relatively high guaranteed
returns sold in the past still represent a prominent share of the liabilities [Berdin and
Gründl, 2015].

2. According to the analysis and summaries in [ACPR, 2020b], the average investment rate of return
of euro-denominated funds in the past five years is less than 3%, while the return offered to the insured
has also declined below 1.5% in 2019.
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General Introduction

According to the European Insurance and Occupational Pension Authority (EIOPA)’s
recent Financial Stability Report ([EIOPA, 2019a]), the current low yield environment
represents the prominent risk for life insurers, which are currently struggling to pay guar-
anteed rates of return and to maintain strong profitability in the long term. In a survey
conducted by the EIOPA to assess the risks and vulnerabilities of the European insurance
and pension sectors, the obtained results suggest that in addition to the prolonged pe-
riod of ultra-low rates, credit risk, equity risk, and property risk are also relevant for the
life insurance sector [EIOPA, 2020b]. Moreover, the prolonged period of low yields raises
negative prospects on the profitability of life insurers’ investment portfolios because of
reinvestment risk.

Since the return on life insurer’s assets tends to adjust quicker to low interest rates
than the growth rate of the liabilities, which includes the return promises to policyholders,
a low interest rate environment poses a serious threat to life insurers’ solvability [Niedrig,
2015]. Besides, policyholders used to keep their life insurance contracts for very long
periods of time to accumulate wealth and benefit from the fiscal advantage after holding
eight years in France. The duration of the liability side might have become higher than
the duration of the asset side. Under the Solvency II regulation, the current level of
interest rates increases the present value of current liabilities more than the present value
of assets. This, in turn, reduces the market value of equity capital with adverse effects on
the solvency position of the life insurance company.

In the context of the gradual decrease in the return on euro-denominated contracts
related to the decline in long-term interest rates, the excellent performance of the devel-
oped stock markets allowed unit-linked products (which accounts for 27% of outstanding
in 2019 as shown in Figure 1) to be shown as an attractive alternative that enabled in-
vestors to benefit at least partly from the rise in stock market prices while remaining
within the attractive taxation framework. Net inflows into unit-linked life insurance con-
tracts have notably increased during the past two decades. At the same time, net inflows
into euro-denominated life insurance contracts have declined not only because of the di-
minishing rate of returns but also due to the age pyramid changes in France. On the
one hand, outflows comprised of claims paid, benefits and redemptions remain increasing
significantly. On the other hand, inflows mainly on premiums show a declining trend in
past several years.

Life insurance companies have tried to drive the inflows into unit-linked contracts in
order to limit the inflows into euro-denominated contracts and reduce their buying of
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General Introduction

bonds which offered a very small return. In 2020, there was a negative net inflow of life
insurance contracts in France, including a net inflow of 23.9 billion euros in unit-linked
contracts and a net outflow of 30.9 billion euros from euro-denominated contracts [Fraysse
et al., 2021].

To continue offering favorable returns to their clients while guaranteeing their invested
capital, the life insurance companies decided to modify the structure of their assets grad-
ually in line with the emerging economic model of life insurance in euros. However, by
turning to more risky assets, which potentially carry a positive risk premium, they are
less likely to be able to guarantee the capital (even if they maintain a liquidity ”cushion”
as a cash reserve). All these factors now pose a significant risk on the life insurance model,
in its euro version.

Inspired by the general framework of the classical ruin theory and the stochastic
properties of the risk model that considers two major processes comprised of the basic
insurance business and the investment activity, we apply such methodologies to model
multiple risk exposures of life insurers and search for optimal investment strategies and
risk management. The theoretical foundation of ruin theory, known as the classical risk
process model (or the Cramér–Lundberg model), was introduced in [Lundberg, 1903]. The
initial goal of early researchers of the field was to determine the probability for the surplus
to become negative. In the second half of the 20th century, this theory was far developed in
different directions, with one of the endeavors to incorporate risky investments. Inspired
by ideas from mathematical finance, the model was suggested where capital is allowed
to be invested in risky assets (e.g., [Harrison, 1977], [Delbaen and Haezendonck, 1987],
[Paulsen, 1993]). Then, the integrated risk process comprises two basic processes, i.e.,
a basic risk process and a return on investment generating process. It is assumed that
the two processes are independent. The basic risk process describes an insurance company
that experiences two opposing cash flows: inflows of cash premiums and outflows of claims.
In the return on investment generating process, the asset portfolio is capable of allocating
risk-free and risky investments.

The objective of this thesis is to continue on the efforts undertaken with recent de-
velopment in ruin theory and risk models in order to better understand and manage the
portfolio optimization problems related to the asset management of life insurers. Many
attempts have been made to life insurance portfolio optimization. However, much more
remains to be done, especially in such a low-interest-rate environment, because of the
variety and complexity of existing and potential risks. The challenges, in this thesis, are
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General Introduction

to model the income of a life insurance company and to provide closed-form formulas
for their first two moments and then to generate optimal investment strategies for life
insurers in such a lower-for-longer interest rate environment. This thesis is organized as
follows.

The first chapter is an introductory of euro-denominated life insurance. It presents a
literature survey on the consequences of low interest rates and a background analysis of the
economic environment of French life insurance companies. It highlights and compares the
situations of the life insurance industry in France and Europe. The prudential framework,
Solvency II, is discussed and analyzed. The chapter examines the declining returns on
euro-denominated life insurance contracts and the paradigm shift in the activity of life
insurance companies facing significant potential outflows. It provides practical solutions
to the problems faced by life insurance companies.

The second chapter is dedicated to the mathematical modeling of the income of a
life insurance company. It provides indispensable tools for grasping expositions of results
of the next chapter. It shows the elements of stochastic calculus that are needed in the
calculation of our mathematical modeling. It formulates the explicit form of the first two
moments of the income of a life insurance company with three case studies where the basic
risk process and the return on investment generating process are modeled by Brownian
Motion with drift, the sum of a Brownian Motion and a compound Poisson process and
Lévy Process, respectively. By calculating the first-order partial derivatives, we obtain
the relationships between each variable and the first two moments of the income of a
life insurance company. This chapter closes with a discussion on the optimal investment
strategy.

The third chapter is devoted to find the optimal asset allocation of the portfolio of
a life insurance company. A dataset consisting of one risk-free asset and four categories
of risky assets is displayed. We construct the optimal investment strategy based on the
obtained formulae in Chapter 2. The optimization problem is solved numerically with real
data by incorporating certain practical constraints, such as the probability of insolvency,
reserves, and the maximum investment ratios by asset class. We investigate how the
optimal asset allocation depends on a series of parameters through sensitivity analysis.
Some implications for both life insurers and regulations are proposed with numerical
results.

The last chapter focuses on the performance evaluation of our proposed asset alloca-
tion strategy in comparison with the buy-and-hold (B&H) strategies invested in one asset,
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as well as the customized security-based benchmarks that reflected our proposed strategy
in the long term. The backtesting design of the empirical analysis is presented, including
portfolio rebalancing disciplines, performance appraisal measures, transaction costs, and
the backtesting procedures. The effectiveness of the strategies is examined comprehen-
sively. We further analyze the robustness of our asset allocation strategies under different
scenarios and compare the performance with real-world data.

Finally, this dissertation ends with a general conclusion, the main limitations of the
study, and future research perspectives.
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Chapter 1

ECONOMIC ANALYSIS OF

EURO-DENOMINATED LIFE INSURANCE

IN FRANCE

1.1 Introduction

The French life insurance market is one of the largest in Europe. It represents more
than EUR 2.1 trillion in technical provisions 1 at the end of 2019 [ACPR, 2020a]. In the
life insurance business, euro-denominated funds have been the cornerstone of any life
insurance contracts in France since the mid-1980s, and they represent around 80% of the
outstanding managed assets in life insurance. The capital guarantee and tax advantages
provided by the life insurance product in euro-denominated funds are massively sought
by households [Cazenave-lacrouts et al., 2018]. Life insurers used to derive most of their
financial income from the investment of premiums received from their policyholders in
fixed-rate bonds. Besides these attractive features, the success of euro-denominated funds
was due to the relative high-interest rates mainly during 1980-2010, with highly weighted
default-risk-free bonds in the portfolios of life insurers. For example, at the end of the
1990s, the public bonds used to represent about one-third of the overall investment of Life

1. Technical provisions are intended to represent the current amount the insurance company would
have to pay for an immediate transfer of its obligations to a third party. Technical provisions comprise
two components: the best estimate of the liabilities and a risk margin.
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Economic Analysis of Euro-denominated Life Insurance in France

insurance companies.

However, the economic model of euro-denominated life insurance has recently experi-
enced a real upheaval because of
· Very low, sometimes negative, interest rates: For example, the French ten-year bond
yield decreased to 1.00 % by 2014 and further dropped to -0.40 % by 2019.
· A rise in outflows and a decrease in inflows 2: not only because of the declining returns
but also due to the age pyramid changes.

To continue offering favorable returns to their clients while guaranteeing their invested
capital, the life insurance companies first decided to modify gradualy the structure of their
assets in line with the emerging economic model of life insurance in euros. Secondly, they
have developed unit-linked contracts and euro-growth contracts in an attempt to limit
the flows into euro-denominated life insurance contracts. Some companies have included
new rules to limit the percentage of inflows in euro-denominated funds in recent years.
However, in the first case, by turning to more risky assets, which potentially carry a
positive risk premium, they are less likely to be able to guarantee the capital (even if they
maintain a liquidity ”cushion” as a cash reserve). All these factors now pose a significant
risk on the life insurance model, in its euro version.

The new prudential framework Solvency II came into force on January 1, 2016. It
posted a solvency capital requirement (SCR) and a minimum capital requirement (MCR)
under insurers, providing ample protection against the risks they are exposed to. The
continued low-interest-rate environment weighted on life insurers, leading to a reduction
in their own funds and an increase in their capital requirements. The positive point is
that the French insurance sector has displayed high solvency levels [ACPR, 2020a], which
indicates high financial stability, allowing French insurers to face an unfavorably low-
interest-rate environment for more years.

The remainder of this chapter proceeds as follows. Section 1.2 provides a synthetic
review of the related literature in life insurance and the background analysis of the eco-
nomic environment for life insurers. Section 1.3 outlines the situations of the life insurance
industry in France and Europe. Section 1.4 presents a comprehensive analysis of the de-
clining returns on euro-denominated funds and feasible solutions to life insurers. The final
section concludes.

2. The flow of euro-denominated funds is shown and analyzed in Section 1.3.2
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1.2 Literature review and background analysis

1.2.1 Literature review

According to the European Insurance and Occupational Pension Authority (EIOPA)’s
recent Financial Stability Report ([EIOPA, 2019a]), the risk of a prolonged low yield
environment remains the key challenge for European life insurers, putting pressure on
both solvency positions and long-term profitability. The economic model of life insurance
has been changed in a very low-interest-rate environment. This phenomenon leads to a
reduction in the rate of return on euro-denominated funds since the majority is invested
in bonds. If the 10-year French bond remains negative for too long, it will force insurers
to invest both collected savings and the proceeds from the sale of maturing bonds into
well-rated lower rates bonds. What is more, we notice that the emergence of numerous old
contracts will become a completely free reinvestment in other financial products thanks
to the tax exemption on the benefits after the holding period of 8 years.

Since the peak of long-term interest rates in Europe in the 1980s, the impact of low-
interest-rate on life insurance companies has been studied for decades. Long-term interest
rates serve as the valuation basis to determine premiums, policy reserves, guaranteed
rates of return, and profit-sharing [Holsboer, 2000]. As capital market rates approach
the valuation interest rate, life insurers have a problem: even if their existing portfolios
are invested in assets that yield above the valuation rate, they immediately lock in a
loss with cash flow from new business reinvestment. [Boubel and Séjourné, 2001] deal
with the development of European life insurance markets through diversification of life
insurance products and delivery networks. Since the mid-1980s, the decline in rates of
return on traditional contracts denominated in the national currency and invested in the
bond markets caused by the decline in long-term interest rates was noticeable in countries
with a finishing inflationary environment (e.g., France and many countries in southern
Europe). In France, the inflation rate was still superior to 10% in the early 1980s (13,4% in
1981), while in 1986, it was not more than 2.7% as shown in Figure 1.1. This led insurers
to switch to other assets. This fall in long-term nominal rates reflects a steady decline
over more than two decades in the long-term risk-free real interest rate, rather than a fall
in expected inflation since the 2000s, which has remained broadly stable in [Bean et al.,
2015] until recently.
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Figure 1.1 – Average annual inflation rate in France since 1980.

Source: France-Inflation.com

[Berdin and Gründl, 2015] showed that a prolonged period of low-interest rate would
markedly affect the solvency situation of life insurers, leading to a relatively high cumula-
tive probability of default, especially for less capitalized companies. This has become even
more true since their publication. In a study of the secular determinants of the world’s
long-term real interest rates, [Rachel and Smith, 2015] attribute about two-thirds of the
decline in real-world rates since the 1980s to secular factors that determine the desired
saving and investment rates. [Sobrun and Turner, 2016] argue that recent estimates of un-
observed concepts, such as the theoretical policy rate, the natural rate, and the long-term
rate premium, suggest that the “new normal” world interest rate is lower than before.

Numerical analysis in [Kling et al., 2007] suggests that allowing to accumulate re-
sources during years of high rate of returns in order to distribute them in the case of
poor performance in bad years substantially reduces the shortfall risk of the life insurers
while allowing for higher guaranteed interest rates. The sensitivity analysis in [Schmeiser
and Wagner, 2015] shows that if the risk-free interest rate approaches the interest rate
guarantee (which is currently the case in many European countries), the insurer’s position
follows with equity capital drifting to zero. The policyholder guarantees offered become
worthless, and that the insurer faces residual costs due to excessive equity capital, which
may not be reduced at short notice. [Gründl et al., 2016] investigate the extent to which
changes in macroeconomic conditions, market developments, and insurance regulation
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may affect the role of insurers in long-term investment financing. They conclude that
regulation should neither unduly favor nor hinder long-term investment as such but place
a priority on incentivizing prudent asset-and-liability management with mechanisms that
allow for a “true and fair view” of insurers’ risk exposures.

Several studies examine the relationship between interest rates and surrenders 3 and
explore reasons for life insurance surrender (e.g., [Dar and Dodds, 1989], [Kuo et al., 2003],
[Haefeli and Ruprecht, 2012], [Gemmo and Götz, 2016], and [Nolte and Schneider, 2017]).
[Gollier, 2015] pointed out the possibility of the insurance crisis: should the interest rates
start to rise in the euro area, in particular rapidly, insurers would end up with a consid-
erable stock of bonds showing an unrealized loss. Policyholders would be drawn to other
products on the market that would be more attractive than today. In [Kubitza et al., 2020],
their empirical results show that policyholders’ surrender activity is more sensitive toward
interest rate changes when policies are relatively young and have low guaranteed returns.
An increase in interest rates leads to withdrawals of life insurance policies. Moreover, the
long-standing policyholders should also potentially exercise their surrender option when
the tax advantage is over after 8 years. Many life insurance products around the world
involve guaranteed rates joined with a profit-sharing policy. France is characterised by
relatively short-term, low guaranteed rates in comparison to other European countries
[Borel-Mathurin et al., 2018]. These characteristics are extremely country-dependent as
they are the result of a combination of legal obligations and competition. The legal, fis-
cal, accounting and regulatory environments do vary from one country to another: even
though the entry into force of the Solvency II is supposed to bring more standardisation,
large differences still remain in Europe.

1.2.2 Background analysis

As mentioned in Section 1.1, there have been two general trends in French life insurance
in the last two decades: the declining rate of return on euro-denominated funds under
sustained low-interest-rate and the net inflow reduction of euro-denominated life insurance
contracts, respectively. We present a background analysis on the two general trends with
a data set built from reports collected by the French insurance and banking supervisor,
namely the Autorité de Contrôle Prudentiel et de Résolution (ACPR), and the French
national institute of statistics and economic studies, namely the Institut national de la

3. A surrender is a full cancellation of a life insurance policy.
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statistique et des etudes économiques (Insee).
As shown in Figure 1.2 4, since the 1990s, there has been a general downward trend

in the real return of euro-denominated funds from 7.00% to 5.00% in 2000 and 1.46%
in 2019, which means only 1.20% net of social contributions 5. However, as life insurers
invest the majority of insurance savings in long-term government bonds, such a decrease
should not come as a surprise in a low inflation environment and an always increasing
demand for low-risk assets in Europe.

Figure 1.2 – France 10-year government bonds yield, inflation rate and the performance
of life insurance products in euro-denominated funds, 1994-2019.

Source: Bloomberg, ACPR, Insee

Indeed, the European central bank’s monetary policy decisions addressing the con-
sequences of the 2007-2008 financial crises (both quantitative easing and the cut of the
reference rates) reinforced a drop in the 10-year bond yields too. This trend had already
been observed after introducing the single currency, which stabilized the nominal interest
rates at low levels across the Eurozone. As the inflation rate has been stable over the
last two decades, around the ECB target of 2.00%, the convergence in nominal interest

4. France 10-year Bond Yield is estimated by the average of France 10-year Monthly Bond Yields.
5. The interests generated by single life insurance contracts are subject to social security contributions

every year. The rate of deductions applicable is that in force on the date of acquisition of the interest.
That was 17.20% since the beginning of 2019. They are directly deducted by the insurer who transfers
them to the tax authorities when the interest is entered into the contract.
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rates engendered a drop in real ones [Franks et al., 2018]. Under these circumstances, the
return of euro-denominated funds also plunged whenever new assets had to be added into
the portfolio for replacing the maturing ones or placing the net inflows. In 2019, 10-year
French government bonds yielded between the range of -0.40% to 0.60%. Moreover, when
inflation is considered, the real return rates on euro-denominated funds decrease more
rapidly in the past three years. If this level of bond yields persist several years more, the
returns on euro-denominated funds will approach zero.

In our contention, a good benchmark to use as “secure savings” for making an informed
investment choice is the Passbook A (Livret A in French), which is the most popular fi-
nancial product in France. This secure and liquid savings account has a regulated ceiling
deposit amount to 22,500 euros. It bears a guaranteed interest rate, which has been de-
creased from 0.75% in 2016 to 0.50% in 2019 and is tax-exempt. Such features reveal
the fierce competition that the life insurers must now face when considering the annual
return. There is no limit for the amount invested in the life insurance products, and as
far as life insurance has tax advantages under the French inheritance law, the French
citizens still perceive euro-denominated funds as good investments. However, the spread
between the returns of those two products is diminishing and, according to the trend, is
going to approach zero in the foreseeable future. Moreover, the reduction of the return
on euro-denominated funds creates a real risk of outflows from the companies since, at
the same time, most contracts have become fiscally free of reinvestment. Having mas-
sive amounts free of reinvestment (free of withdrawals) after the 8-year holding period
of tax-advantage, the management of the life insurance company becomes closer to the
one of banks [Bobtcheff et al., 2016]. They face a liquidity problem and are exposed to
information asymmetry: they do not know if and when the policyholders will take their
money back. It is not only a problem of life expectancy any more.

One of the motivations for holding life insurance is to create an additive pension to
the pay-as-you-go systems. The recent creation of a new retirement savings product 6

dedicated to individual or collective retirement could create incentives for people who
have long-term investment prospects. A survey of French savings and retirement by Le

6. In French, le Plan d’epargne retraite (PER). It is a new retirement savings product in the appli-
cation of the retirement savings reform by the French law of May 22, 2019, relating to the growth and
transformation of companies (PACTE) and its implementing texts: the order of July 24, 2019, reforming
supplementary retirement savings and the decree of July 30, 2019. It has been available since October
1, 2019. The aim is to enhance the attractiveness of long-term savings and direct them more towards
corporate financing. https://www.economie.gouv.fr/
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Cercle des Épargnants 7 revealed several behavioral changes. Life insurance and Passbook
A remain the most popular savings choices, while retirement savings products attract
growing interest. Considering retirement savings, life insurance as the best investment
for retirement has declined for several years. There is more and more competition from
the retirement savings plan. In 2021, the PER is positioned as the leading option for
retirement savings from respondents in the survey.

The second trend observed from euro-denominated life insurance is a rise in outflows
and a decrease in inflows: not only because of the decline in the rate of returns but also
due to changes in the age pyramid. Like in other advanced industrial countries, in France,
demographic aging has become a widely debated topic [Béland and Viriot Durandal, 2013].

Figure 1.3 – Population distribution by age group in France, 2006-2019.

Source: Insee

[Boutillier et al., 2001] conclude that the share of 40-59 years old in the total popula-
tion positively influences the outstanding amount of life insurance contracts. Marked by
the baby boom period, the proportion of the population between the ages of 40-59 has
increased until 2006. A decline in this proportion is presented in Figure 1.3: the propor-
tion declined from a peak of 27.4% in 2006 to 26% in 2019. A decreasing outstanding
amount of life insurance contracts caused by a gradually declining proportion of the 40-59
years old population leads to the reasonably declining inflows to euro-denominated life

7. Sondage 2021: Les Français, l’épargne et la retraite. https://www.cercledesepargnants.com/barometre-
de-lepargne/
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insurance business.

In the survey of household wealth by Insee, the holding rate of life insurance contracts
increases with age: the holding rate of life insurance contracts by households aged 60 and
more (around 44%) is far larger than those aged under 60 [Cazenave-Lacrouts et al., 2018],
as shown in Figure 1.4. This generation has reached retirement age, and those who have
accumulated life insurance contracts to increase their pensions have begun to withdraw
some of their contracts, either in the form of an annuity or in the form of capital. Both the
retirement of many generations and their higher holding rates of life insurance contracts
indicate larger outflows from the asset portfolios of life insurance business by the elderly
based on their needs, in case of withdrawal for retirement and inheritance transfers.

Figure 1.4 – Holding rate of life insurance contracts by age in France, in 2018.

Source: Insee

The proportion of the French population aged 60 and over has been increasing. The
population projections in France in Figure 1.5 further shows that the proportion of the
French population aged 60 and over will increase gradually by 2070 [Blanpain and Buisson,
2016].
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Figure 1.5 – Evolution of the population projections of France, from 1990 to 2070.

Source: Insee

Nevertheless, on the brighter side, life insurance remains the preferred financial invest-
ment of households after the passbook ([Coppoletta-Solotareff et al., 2015] and [Cazenave-
Lacrouts et al., 2018]): 39% of metropolitan households own at least one contract in 2018,
which was 36.5% in 2015 as shown in Table 1.1. Despite the significant drop in the rate
of returns of euro-denominated funds, French households still seem to favor the security
of this investment rather than its returns, especially since the financial crisis of 2008.

Table 1.1 – Holding rate of life insurance contracts in mainland France between 1998 and
2018.

Year 1998 2004 2010 2015 2018

Holding rate 28.9% 26.2% 34.7% 36.5% 39.0%

Source: Insee

Indeed, this product offers savers an attractive tax framework and the opportunity to
secure at least part of their savings. Life insurance thus retains its attractiveness because
it allows one to accumulate wealth over the course of life and transmit it in succession in
favorable tax conditions.
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1.3 Life insurance in a low-interest-rate environment

1.3.1 Taxation, investment supports & constraints

The French life insurance market is mainly segmented into euro-denominated and unit-
linked contracts, where the former makes it possible to guarantee the invested capital while
the latter carries a risk of losses. From the end of 2014, life insurers offered a third type:
euro-growth contracts. The synthesis comparison between the three funds is shown in
Table 1.2.

Table 1.2 – Comparison between Euro-denominated funds, Unit-linked products and Euro-
growth funds.

Thematic Euro-denominated
funds

Unit-linked products Euro-growth funds

Capital guarantee Yes No Yes, with a minimum hold-
ing period of 8 years

Annual Guaranteed Inter-
est Rate and the profit-
sharing clause

Yes No Yes, with a minimum hold-
ing period of 8 years

Risk-bearer Insurer Insured Insurer

Target return and financial
performance

French government bonds
yield + margin

Investment support yield Mathematical provision +
diversification provision

Source: [Agbojan et al., 2016]

The common characteristic of the three different funds is related to taxation incentives
of life insurance contracts: life insurance maintains a favorable tax regime for both income
tax and inheritance tax. Any contract that has been subscribed for at least 8 years will
benefit from a reduction in interest when it comes to redemption. While this taxation
remains very attractive, it is also very complicated because the successive amendments
have introduced rules that vary according to the quality of the beneficiary, the subscription
date, the date of payment of funds, and the age of the subscriber.

In the event of partial or total redemption, the interest (capital gains) are subject
to tax. For a full redemption, the interest is determined by the difference between the
value of the contract at the time of redemption and all of the payments made on the
contract. For a partial redemption, the interest is determined by the proportion between
the payments and the capital obtained. The government has introduced a new tax system
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for redemptions made on life insurance contracts. A distinction must be made between
payments (and subscriptions) made on the contract before and after September 27, 2017.

- Payments (and subscriptions) until September 26, 2017
In principle, interest from payments made until September 26, 2017, is taxable at the
progressive income tax scale. Policyholders can opt for the application of a tax. The tax
rate depends on the seniority of the contract, which is shown in Table 1.3.

Table 1.3 – Tax rates for payments (and subscriptions) until September 26, 2017.

The seniority of the contract Tax rate

Between 0 and 4 years 35%

Between 4 years and 8 years 15%

Over 8 years 7.5%

Source: FFA

- Payments (and subscriptions) from September 27, 2017
The government has implemented the ”flat tax” or single lump-sum tax, which applies
in principle to interest linked to payments after 09/27/2017. The flat tax standardizes
the taxation of life insurance. The tax rate also depends on the seniority of the contract,
which is shown in Table 1.4.

Table 1.4 – Tax rates for payments (and subscriptions) from September 27, 2017.

The seniority of the contract Tax rate

Between 0 and 8 years 12.8%

Over 8 years 15% (payments less than or equal to e150,000)
7.5% (payments over e150,000)

Source: FFA

In the event of retirement, the life insurance contract offers the possibility of taking
out a life annuity and choosing this option during the life of the contract. The annuity
resulting from a life insurance contract is subject to taxation according to a fraction
depending on the age of the annuitant when the annuity is set up, which is shown in
Table 1.5.

Interest generated in life insurance contracts is also subject to social security contri-
butions annually as soon as they are entered into an account at the overall rate of 17.2%
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Table 1.5 – Taxable annuity fraction by the age of the annuitant.

Taxable annuity fraction

Up to 49 years old 70%
50 to 59 years old 50%
60 to 69 years old 40%
From 70 years old 30%

Source: FFA

(since January 1, 2018) directly taken by the life insurance company.

1.3.1.1 Euro-dominated funds (les fonds en euros)

Euro-denominated funds offer a great deal of security for the saver, whatever the
economic situation, because the fund on which the savings are invested is made up of
low-risk investments, mainly on bonds that are not very sensitive to the markets. More
specifically, euro-denominated funds are generally invested in bonds from 60% to 80%, the
rest being invested in shares, real estate, and other financial assets. This diversification
promotes the return on euro-denominated funds, whose rates of return offered in recent
years would not have been achieved if they had been 100% fixed-rate bonds.

In addition to this diversification, life insurers have an obligation to guarantee the
sums of the investments, which makes the euro-denominated funds guaranteed capital.
Moreover, life insurers also ensure that the investor retains the earnings generated each
year.

The main features of euro-denominated funds are as follows:
· Capital guarantee and annual minimum rate guaranteed by the insurer. Historically, life
insurance contracts have generally had a guaranteed minimum rate. In order to limit the
risks taken by insurers, regulation has come to limit the possibilities in this area. If the
proceeds of the investments are not sufficient to pay the principal and interest, the own
funds of the life insurers will come as collateral.
· ”Ratchet effect” (l’effet cliquet). The interests served are definitively acquired. This
mechanism ensures the policyholders the profits of the past year and thus protects against
a possible reversal of stock market trends. Then, the profit generated by the life insurance
is always acquired, in addition to the amounts initially paid to the contract.
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· Life insurers mainly bear risk: various legal (French Insurance Code 8) and regulatory
constraints (Solvency II) govern the management of euro-denominated funds.
· The security of euro-denominated funds remains closely linked to the solidity and com-
petence of the life insurance company.

The advantages of euro-denominated funds are the security through the capital guar-
antee provided by insurance organizations; the stability: low volatility of financial returns;
and liquidity, which allows redemption within a reasonable time. However, there is one
limitation: lack of transparency to investigate their compositions and compare with dif-
ferent life insurers, except for the annual returns published and analyzed every year in
the financial press.

The compensation of contracts in euro-denominated funds is based on several elements:
technical interest rates, profit sharing, and the minimum guaranteed rate [CielEden, a].
· The technical interest rate (le taux d’intérêt technique):
Throughout the period of validity of the contract, insurance companies have the pos-
sibility to remunerate the capital invested based on a minimum rate: this is called the
technical interest rate. It can neither exceed 75% of the semi-annual average rate of French
sovereign bonds at the date of subscription for the first eight years nor 60% of this rate
or 3.5% annually after the eighth year (see article A.132-1 of the Code des Assurances
[Légifrance, 2020]).
· Profit-sharing (la participation aux bénéfices):
Life insurance companies have an obligation to redistribute part of their profits during
the year to the policyholders of euro-denominated contracts. This redistribution cannot
be less than:
- 85% of the financial benefits: They result from the gains that insurers have made by
investing the capital entrusted to them by the contract holders;
- 90% of the technical benefits: They arise intrinsically from the difference between the
premiums collected and the technical interests (see article A.331-4 of the Code des As-
surances).

Profit-sharing is theoretically donated every year. The company has the choice to
be able to allocate a portion of these profits to a reserve account commonly known as
”the provision for participation in profits” (la provision pour participation aux bénéfices,
PPB). When the total amount is not redistributed, the benefits in that reserve must be
returned to the insured within a maximum of eight years (see article A.132-7 of the Code

8. Code des Assurance in French.
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des Assurances). This ”reserve” allows the insurers to smooth the financial results of euro-
denominated contracts over time.
· The minimum guaranteed rate (le taux minimum garanti):
Some life insurers offer a minimum guaranteed rate. In this case, this minimum rate of
return includes the minimum interest paid based on the technical interest rate and profit-
sharing (see articles A.132-2 and A.132-3 of the Code des Assurances). Since 2010, this
minimum guaranteed rate is not offered for the entire duration of the contract but on
an annual basis and are limited to 85% of the average rate of return on assets over the
previous two years.

1.3.1.2 Unit-linked products (les unités de compte)

In unit-linked life insurance contracts, savings are invested in financial markets mainly
through funds, even if some contracts offer the possibility of a direct holding of financial
assets. The main advantage of unit-linked contracts is that they offer various investments,
providing different investment strategies to investors searching for diversity and perfor-
mance. The number and types of funds chosen differ from contracts and companies. The
more elaborated contracts offer an open-architecture, with an infinite choice of invest-
ments.

While in euro-denominated contracts, the invested amount and capitalized interest
are guaranteed by the insurer. In unit-linked contracts, the insurer only commits to the
number of units held. The value can fluctuate depending on the performance in financial
markets or other investment instruments. Therefore, unit-linked contracts present a direc-
tional risk to the saver: in the event of a decline in the markets, the value of the contract
may decrease. After numerous cases of failure to provide the right advice at the end of
the 1990s, information on the risk taken by the investors has been reinforced during the
last years, mainly thanks to MiFID and MiFID II 9 regulations.

9. The Markets in Financial Instruments Directive (MiFID) is a European regulation that increases the
transparency across the European Union’s financial markets and standardizes the regulatory disclosures
required for firms operating in the European Union. MiFID implemented measures, such as pre and post-
trade transparency requirements, and set out the conduct standards to be followed by financial companies.
MiFID has a defined scope that primarily focuses on stocks. The directive has been in force across the
European Union (EU) since 2007. MiFID II replaced MiFID in 2018, which extends the requirements
to more financial instruments, including commodities, debt instruments, futures and options, exchange-
traded funds, and currencies. https://www.esma.europa.eu/
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1.3.1.3 Euro-growth funds (les fonds euro-croissance)

The euro-growth contract was designed by the public authorities and insurers, launched
at the end of 2014. Its objective is to generate more efficient returns than those of euro-
denominated funds without taking excessive risks. Life insurers see it as a way of trans-
ferring the amount invested in euro-denominated funds and serving as a financing source
for small and medium-sized enterprises [CielEden, b].

The commitments in euro-growth funds are expressed contractually in two ways: in
euros and diversification parts. The commitment expressed in diversification parts includes
a minimum value expressed in euros for each part. The valuation of each part will depend
on the technical and financial results of the fund.

Table 1.6 – The outstanding amount of euro-growth funds between 2014 and 2019 (direct
business, in billions of euros).

Year 2014 2015 2016 2017 2018 2019

Amount 1.0 1.7 1.9 2.2 2.5 3.1

Source: FFA

Unlike euro-denominated funds that offer a capital guarantee and availability of the
amounts invested at any time, the capital invested in a euro-growth fund will be guaran-
teed only after 8 years following the first payment. They are considered for a long-term
investment. Until now, this formula seems particularly unsuccessful: at the end of 2019,
the overall outstanding was 3.1 billion euros as shown in Table 1.6.

1.3.1.4 Two alternatives to classic euro-denominated funds

In the French life insurance market, there are two alternative products with higher
expected average rates of return relative to traditional euro-denominated funds 10: the real
estate euro-denominated funds and the dynamic euro-denominated funds. For the savers,
the major difference between the classic and the alternatives is that insurers will require
the savers to invest part of their savings in unit-linked products (with a minimum of 20,
30, or even 50%) to access the alternative euro-funds.

1. Real estate euro-denominated funds
They are characterized by a higher relative weight of real estate investments in the alloca-

10. Good Value for Money (GVfM) https://www.goodvalueformoney.eu/espace-documentaire/
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tion. However, faced with the difficulty of investing large amounts of net inflows into the
funds at reasonable prices, life insurers have severely limited the investment possibilities
for their clients in recent years, making these funds a rare product.

2. Dynamic euro-denominated funds
They are characterized by higher risk exposures of assets to stocks and real estate. Life
insurers usually adopt the constant proportion portfolio insurance strategy (CPPI, see
[Black and Perold, 1992]) to manage this fund.

Figure 1.6 – The performance of life insurance products in classic euro-denominated funds,
dynamic euro-denominated funds and real estate euro-denominated funds, 2006-2019.

Source: ACPR, GVfM

Figure 1.6 presents the relative performance of the three euro-denominated funds.
Compared with dynamic euro-denominated funds, the returns of classic and real estate
ones are less volatile. Under a downward trend in the rate of returns, real estate euro-
denominated funds have relatively higher returns. But all three rate of returns fall below
2% in 2019.

1.3.1.5 Investment constraints on euro-denominated funds

French law (see article R332-3 of the Code des Assurances) dictates the list of assets
that may be eligible for insurance liabilities. These assets are classified into broad cate-
gories: bonds and other interest rate securities, shares or equivalent securities, real estate
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assets, loans, and deposits. The asset portfolio structure representing the commitments
must meet certain constraints to limit the impact of the market risk and the liquidity
risk.

The main limits of the composition of euro-denominated funds in terms of investment
(%) are (maximum investment ratios by asset class):
· 100% for bonds and bond funds;
· 65% for equities and equity funds;
· 40% for real estate;
· 10% for the loans;
· 0.5% for the premiums of financial derivatives.

The assets held in the portfolio must also meet constraints to limit the counterparty
risk, requiring sufficient counterparties dispersion. The rules of dispersion are:
· 5% for bonds and loans of the same issuer outside the OECD (Organization for Economic
Co-operation and Development), this ratio can be raised to 10%, but the share of issuers
exceeding 5% cannot exceed 40%;
· 10% on one building or one real estate fund;
· 1% for risky mutual fund and mutual fund in innovation issued by the same organization.

1.3.2 Life insurance business

In this subsection, we analyze the life insurance business in France and the operating
conditions of the different life insurance products presented in the previous Section 1.3.1
based on the annual data set (e.g., [FFSA, 2009], [FFA, 2016] and [FFA, 2020b]) obtained
from the French Insurance Federation 11.

When observing the life insurance business ([FFA, 2020a]) in Figure 1.7, the premiums
remain at around 120 - 140 billion euros for the past 15 years. At the same time, the trend
for outflows including benefits, claims paid, and withdrawals has been increasing, causing
a relative decline in net inflow.

11. The French Insurance Federation (la Fédération Française de l’Assurance, FFA) was created in
July 2016. It gathers under a single umbrella organisation the French Federation of Insurance Compa-
nies (la Fédération française des sociétés d’assurances, FFSA) and the Association of Mutual Insurance
Companies (le Groupement des entreprises mutuelles d’assurance, GEMA). https://www.ffa-assurance.fr
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Figure 1.7 – Evolution of the premiums, withdrawals and net inflows of life insurance
contracts in France, from 1999 to 2019 (direct business, in billions of euros).

Source: FFA

Firstly, we decompose the outflow of benefits, claims paid, and withdrawals. It shows
that the increase in outflows since 2006 is due to the increase in redemptions, mainly to
the jumps in redemptions during the 2007-08 financial crisis, 2011-12 public debt crisis
in Eurozone, and the promulgation of the Sapin 2 law 12 on December 2016 as shown in
Figure 1.8.

12. In the law of Sapin 2, the high council of financial stability is authorized to suspend, delay or limit
the withdrawals of money or shifts on the life insurance in the event of a serious or characterized threat
to the financial system. Withdrawals will be blocked for 3 months. (Loi Sapin 2, see article L631-2-1 of
the Code Monétaire et Financier)
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Figure 1.8 – Breakdown of withdrawals of life insurance contracts in France, from 2005
to 2019 (direct business, in billions of euros).

Source: FFA

The outflows of euro-denominated funds have increased from 60 billion euros in 2005
to approximately 100 billion euros in 2019 [FFA, 2020b]. However, the outflows have
stabilized at around 90-110 billion euros in the last decade 13. The maximum outflow
amount for unit-linked products in 2019 is around 25 billion euros, far less than that
of euro-denominated funds since euro-denominated funds take the largest part in the
composition of life insurance contracts, as shown in Figure 1.9. Secondly, the net inflows
from the unit-linked contracts have increased before the 2007-08 financial crisis and after
the 2011-12 public debt crisis in Eurozone. This phenomenon was noticed for the first
time at the end of the 1990s when the inflow of unit-linked products exceeded the inflow
of euro-denominated products [Boubel and Séjourné, 2001]. This trend is highly related
to the performance of the stock markets, where we show the CAC 40 stock index as an
example in Figure 1.10. The gradual decline in the return on euro-denominated funds,
related to the fall in long-term interest rates, spreads throughout Europe [EIOPA, 2020a].
The excellent performance of the stock markets allowed unit-linked products to perform
as an attractive alternative that enabled investors to benefit at least partly from the rise

13. This is shown in more detail in the monthly data of euro-denominated funds in ACPR. Since we
do not have the authority for this monthly data, we quote the chart in the ACPR article [Perdu and
Marionnet, 2019] and refer it in Figure 15 in Appendix .1 for review.
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in stock market prices while remaining within the attractive taxation framework of life
insurance.

Figure 1.9 – Evolution of the premiums, withdrawals and net inflows of euro-denominated
funds (upper) and unit-linked products (bottom) in France, from 2005 to 2019 (direct
business, in billions of euros).

Source: FFA
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Figure 1.10 – The performance of unit-linked contracts and the evolution of the CAC 40
index at the end of the year, from 2000 to 2019.

Source: FFA

The Fourgous amendment 14 can also account for this trend: since the law of July
26th, 2005, there exists a possibility of transforming the mono-support contract into a
multi-support contract without having to close the original contract and losing the re-
lated tax precedence. This measure aims to encourage investment in shares, which are
available on multi-support contracts. In addition to euro-denominated funds, it will offer
the opportunity to invest the savings in unit-linked products. It is a symbol of flexibility,
but it includes a requirement: the capital invested in the units of account must be greater
than 20% of the assets, leading to a net inflow of unit-linked products.

By the act of Pact (La Loi Pacte), savers can benefit from an exceptional tax advantage
in the event of a transfer from life insurance to a new retirement savings product (PER).
Any redemption carried out on a life insurance contract of holding more than 8 years will
be subject to a doubled tax deduction from October 1, 2019, to January 1, 2023, provided
that the sums are reinvested in a PER and that the redemption is made for at least 5
years before retirement. During this period, the outflow of euro-denominated contracts
will also potentially increase with the transfer of policyholders.

A partial explanation of the decreasing net inflow from euro-denominated contracts
14. L’amendement Fourgous, loi n.2005-842 du 26 juillet 2005 pour la confiance et la modernisation de

l’économie
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since the early 2010s lies in the issuance of euro-growth contracts in 2014 (see Figure
1.11). Since the objective of euro-growth funds is to generate more efficient returns than
those of euro-denominated funds, without taking excessive risk in the long-term (at least
eight years), it is reasonable that euro-growth contracts absorb one part of the shares
in the net inflows from euro-denominated contracts. What is more, the approval of the
Pact law 15 for the transformation and growth of businesses, which modified the terms of
investment in life insurance contracts, provides for the possibility of transforming part or
total of the existing contracts into a euro-growth contract within the same insurer, while
retaining the tax precedence of the policyholders. This law will also potentially increase
the net inflows into euro-growth contracts in the future. However, these contracts remain
largely unknown, and a bigger part of the inflows is invested in unit-linked contracts.

Figure 1.11 – Life insurance net inflow from euro-denominated, unit-linked, and euro-
growth contracts in France, from 2005 to 2019 (direct business, in billions of euros).

Source: FFA

Lastly, [Séjourné, 2004] analyzed the volatility of the stock markets and the behavior of
French households. A return to an upward trend in the financial markets could encourage

15. La Loi Pacte: ”Loi n. 2019-486 du 22 mai 2019 relative à la croissance et la transformation des
entreprises”
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savers to regain a reflex of securing capital gains. The incentive to change the portfolio
seems to rise with volatility. However, it is noted that this was not the case during the
downturn in the financial markets, which perhaps indicates the asymmetric behavior
according to the direction of the stock market fluctuations. It is reasonable that the net
inflows from unit-linked contracts have been increasing in recent years, and that could
remain on an increasing trend when it keeps in a bull market. In the context of the trend
that the subscription of unit-linked contracts is preferred over euro-denominated funds,
it is necessary to pay attention in a long-term financial stability perspective to the shift
of market risk exposures from insurers to policyholders.

1.3.3 Life insurance investment

Figure 1.12 – Structure of the investments of life, capitalization and composite companies
(book value, breakdown in %, bar charts) and evolution of outstanding investments of life,
capitalization and composite companies (market value and book value, direct business, in
billions of euros, line charts) in France, from 1999 to 2019.

Source: FFA
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Life insurance plays a key role in financing the economy. The outstanding investments
of life insurance companies in France have increased during the past two decades, from 600
billion euros to 1200 billion euros in book value, as shown in the line chart in Figure 1.12.
The life insurance industry continued to make an important contribution to financing the
economy in France.

In the past two decades, the market value of investments by life insurance companies
fell below the book value in 2008 and 2011 due to the financial crisis in 2007-08 and
the Eurozone public debt crisis in 2011. In an environment of declining long-term inter-
est rates, the investment ratio of bonds and fixed-income UCIs 16 has declined year by
year since the Eurozone debt crisis, from the peak of 73% in 2012 to 67% in 2019. The
investment ratios in both equities and real estate have increased since 2012.

Although the decline in the investment proportion of fixed-income securities is not ob-
vious, in the context of a continued increase in the book value of outstanding investments,
which means a higher proportion of assets have shifted to risky investments (equities and
real estate). This gradual shift has partly contributed to the increase in the market value
of investments, which positively impacts the portfolio of life insurance companies.

Since the allocation structure of the life insurance industry contains the investments of
all products in life, capitalization and composite companies, we focus on euro-denominated
funds and analyze their investment structure based on the data collated from GVfM.

The proportion allocated to bonds and money market instruments in euro-denominated
funds has a downward trend in recent years. In contrast, the proportion of real estate in-
vestment shows a gradual rise. The allocation to equities has remained basically stable, as
shown in Figure 1.13. It is worth noting that the allocation ratio of money market securi-
ties has been declining from 2011 to 2016, and the allocation ratio is below 2% by 2019.
This declining trend is in contrast to the analysis in Section 1.3.2. Since euro-denominated
funds face an increase in outflows, life insurers will have to consider meeting the rising
liquidity needs by increasing the allocation ratio of money markets products.

16. The Undertakings for the Collective Investment in Transferable Securities (UCITS) is a regulatory
framework of the European Commission that creates a harmonized regime throughout Europe for the
management and sale of mutual funds. The Autorité des Marchés Financiers (AMF) distinguishes six
main families of UCITS (les organismes de placement collectif en valeurs mobilières, OPCVM) according
to the type of funds managed: money market, bond, equity, alternative, diversified, and formula (e.g.,
guaranteed and protected) funds. https://www.amf-france.org/
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Figure 1.13 – Structure of the investments of euro-denominated funds in France, from
2011 to 2019 (bonds in a line chart in the secondary axis).

Source: GVfM

Table 1.7 – Structure of the bond investment in euro-denominated funds from 2015 to
2019.

2015 2016 2017 2018 2019

Corporate bonds 51.60% 63.30% 57.90% 59.40% 59.40%
Government bonds 36.70% 37.00% 42.10% 40.60% 40.60%

Source: GVfM

Table 1.7 presents the bond investment structure in euro-denominated funds from
2015 to 2019. It reflects the investment trend of euro-denominated funds from government
bonds to corporate bonds.

When comparing the asset allocation of euro-denominated funds with that of the life
insurance industry, the investment strategy in euro-denominated funds is more conserva-
tive with allocating more bonds and fewer stocks. The characteristics of euro-denominated
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funds, including capital guarantee, require life insurers to allocate lower-risk assets in their
portfolio.

1.3.4 Life insurance companies & Solvency II

1.3.4.1 Solvency framework

In the financial and insurance sector, the French law (Code des Assurances) imposes
strict obligations on insurance companies on the one hand on their solvency and the other
hand on the representation of their commitments by regulated assets. Solvency is a central
issue for the insurance business. The supervisory authorities conduct regular monitoring
of this solvency for the insured behalf through a regulatory state. The insurers should
consider the balance between the long-term interest of the insured, the fulfillment of the
contractual commitments, and sustainable solvency [Chelly and Robert, 2017].

Solvency II, which came into force on January 1, 2016, represents a major development
in the insurance world, leading to a shift in risk management practices and the strategic
management of insurance companies. The main objective of the Solvency II regime is to
protect insurance companies by setting up a harmonized European prudential framework
in line with the best professional practices [Hull and Gruson, 2018].

The principal characteristics and the three pillars of Solvency II are as follows [Morin
and Thourot, 2017]: The new European Solvency system completely changes the vision
of financial policy for insurance companies. Under Solvency II, the insurer will have to
settle an amount of its capital used to cover the investment risk. This capital level is
estimated by Value-at-Risk models, and it depends on the portfolio risk level. The riskier
the portfolio is, the more the insurer must enhance the capital. This market risk covering
method modifies objectives according to which the insurers guide their investment policy.
The insurers must take account, in addition to the traditional factors, of the settled
amount in its own capital.

- Pillar I: Quantitative requirements
Pillar I covers quantitative requirements for calculating technical provisions and Solvency
Capital Requirement (SCR) using either a standard formula given by the regulators or
an internal model developed by the insurance company. The SCR is the capital required
to ensure that the insurance company will meet its obligations over the next 12 months
with a probability of at least 99.5%. In addition to the SCR capital, a Minimum capi-
tal requirement (MCR) must be calculated, representing the threshold below which the

43



Economic Analysis of Euro-denominated Life Insurance in France

national supervisor would intervene. The MCR is intended to correspond to an 85% prob-
ability of adequacy over a one-year period and is bounded between 25% and 45% of the
SCR. For supervisory purposes, the SCR and MCR can be regarded as ”soft” and ”hard”
floors, respectively. That is, a regulatory ladder of intervention applies once the capital
holding of the insurance undertaking falls below the SCR, with the intervention becom-
ing progressively more intense as the capital holding approaches the MCR [Guégan and
Hassani, 2019].

- Pillar II: Qualitative requirements
It enables supervisory authorities to assess the internal control, risk management and
governance of each insurance company. This pillar is based on the control of authorities
and the internal control of companies. It requires insurers to identify, measure, monitor,
manage and report risks they are exposed to. Insurers must put risk management at the
heart of decision-making and are required to conduct an own risk and solvency assessment.

- Pillar III: Information requirements
This pillar aims to redefine the supervisory reporting and public disclosure of financial and
other information by insurance companies, especially on the accessibility and transparency
of information produced, as well as the comparability at the European level.

1.3.4.2 Analysis of the solvency of insurance companies

Under Solvency II standards, equity capital is classified following its potential to be
called up to absorb losses [ACPR, 2017]. Solvency II established a minimum capital re-
quirement (MCR) below which an undertaking is considered to be no longer financially
viable. To avoid losing their authorization to operate, insurers must ensure that their
MCR coverage ratio is always more than 100% (i.e., the amount of their eligible equity
capital must exceed their MCR level). Since 2016, the MCR coverage ratio displays a
rising trend in insurance companies, as shown in Table 1.8. The coverage ratio in non-
life insurance companies (792%) is higher than life and composite insurance companies
(602%), which means more financially viable in non-life insurance companies. In 2019, the
MCR coverage ratio remained at a high level of 651% for the population as a whole.
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Table 1.8 – The average MCR coverage rate of insurance companies in France, from 2016
to 2019.

2016 2017 2018 2019

All insurance companies 550% 593% 593% 651%
Life and composite insurance companies 484% 528% 531% 602%

Non-life insurance companies 746% 773% 763% 792%

Source: ACPR

Next, we analyze the distribution of the MCR coverage ratio in life and compound
insurance companies and obtain complementary results for the average ratio, as shown in
Figure 1.14.

Figure 1.14 – Distribution of MCR coverage ratio in life and composite insurance compa-
nies (5 percentile, first quartile, median, third quartile, and 95 percentile, respectively).

Source: ACPR

The average MCR ratio in life and composite insurance companies from 2016 to 2019
is less than the median, which means that more insurance companies have lower MCR
ratios, lying between the first quantile and the median. The third quantile of the MCR
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coverage ratio has increased significantly compared with the past three years, from an
average of 1000% to 1378%.

Figure 1.15 displays the average SCR coverage ratio in quarterly scope. This ratio
in life and composite insurance companies reveals an identical trend with the French
10-year Government bond yield, shown in Figure 1.2. The French 10-year Government
bond yield moved into negative for most of the second half of 2019 before returning to
a slightly positive level at the end of the year. This situation weighed on the solvency of
life insurers, leading to a mechanical reduction in their own funds and an increase in their
capital requirements. The negative impact was maximum in the third quarter of 2019
(193%) with a decrease in the SCR coverage rate of 37% compared to the same time in
2018 (230%).

Figure 1.15 – The average SCR coverage rate of insurance companies in France, the
quarterly scope from 2016 to 2019 (life and composite insurance companies data labeled).

Source: ACPR

However, the rise in MCR and SCR ratios at the end of 2019 enabled an improvement
that was directly reflected in assessing the prudential balance sheet at market value and
calculating insurers’ capital requirements. The steepening of the EIOPA risk-free rate
curve used for discounting future cash flows as part of the assessment of technical provi-
sions of insurers made it possible to ease prudential capital requirements [EIOPA, 2019b].
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In addition, several organizations have implemented measures to strengthen their capital
base (through capital increases or the issue of subordinated debt) and protect themselves
against a further decline in interest rates. Lastly, life insurance companies benefited from
the provisions of the decree 17 of December 24, 2019, which amended the rules for recog-
nizing provisions for profit-sharing in shareholders’ equity eligible for regulatory capital.
The inclusion of these reserves in surplus equity strengthened capital requirements by an
average of 30 points [ACPR, 2020a].

1.3.5 Life insurance in EU level

In this subsection, we compare life insurance in Europe based on data from insurance
organizations published by the European Insurance and Occupational Pensions Authority
(EIOPA). The French insurance market ranks as the leading market in continental Europe
in terms of size and the volume of gross premiums (life plus non-life) [EIOPA, 2019b].

Figure 1.16 – Total assets of insurance companies in main European countries as of
12/31/2019, in billions of euros.

Source: EIOPA

17. Arrêté du 24 décembre 2019 relatif aux fonds excédentaires en assurance vie.
https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000039682972/
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At the end of 2019, the French insurance market (3,108 billion euros) thus ranked first
in Europe, just ahead of the United Kingdom (2,805 billion euros) and Germany (2,473
billion euros) in assets as shown in Figure 1.16. In the asset composition of major European
countries, a larger part of the assets of insurance companies in continental European
countries is made up of non-unit-linked investments (for example, euro-denominated funds
in France). In comparison, assets in non-continental countries such as the United Kingdom
and Ireland are mainly made up of unit-linked investments.

Figure 1.17 – The SCR coverage rate in leading European countries from 2015 to 2019,
including transitional measures.

Source: EIOPA

The solvency condition in leading European countries is presented by the SCR coverage
ratios in Figure 1.17. Although the SCR coverage ratio in Germany dropped by around
40% in 2019, its ratio of more than 300% still ranks first among major European countries.
The SCR coverage ratio of the French market (267%) rose, at the end of 2019, above the
average solvency ratio observed in the European Union (243 % end of 2019).
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1.4 Diminishing rate of return on euro-denominated
funds

1.4.1 Analysis of different rates

The profit-sharing rate 18 of policyholders depends directly on the financial results of
the insurers. It is determined by regulatory constraints and the distribution and provi-
sioning strategy specific to each insurer.

Analysis of the impact of the low interest rate environment on life insurance, therefore,
requires a study of the rate of return on insurer assets 19. In addition to the profit-sharing
rate and the rate of return on assets, the revaluation rate 20, technical rate, inflation rate,
and 10-year government bond yield must be considered.

Figure 1.18 – Comparative trend of different rates, from 2011 to 2019.

Source: ACPR, [Capitaine and Ahado, 2020]

18. Profit-sharing rate = (technical interest + profit-sharing paid + net allocation to provision for profit
sharing) / average mathematical provisions

19. Rate of return on assets = net financial income / average net book value
20. Revaluation rate: Interest rate consisting of the guaranteed return and participation in the technical

and financial profits of the contract, as defined in Articles L.132-22 and A.132-7 of the Insurance Code.
Gross of the technical rate and tax and social security contributions, but net of charges on outstandings,
this is the rate actually paid to policyholders in respect of year N.
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The sharp drop in revaluation rates is by an acceleration in the decline in interest
rates and the appearance of negative rates on benchmark bonds. The 10-year government
bond yield hit its lowest in 2019, as shown in Figure 1.18. The revaluation rate follows
the decline in the rate of return on assets observed since 2015 with a variation fluctuating
over the years [Ahado et al., 2017], which allows the profit-sharing provision (PPB) to be
supplied. In 2019, the difference between the revaluation rate and the rate of return on
assets was 1.16%, which automatically increases the reserve by insurance organizations
of unserved profit sharing. Thus, the provision for participation in profits continued to
increase in 2019 at a sustained rate to stand at 4.7% of life insurance provisions, shown
in Figure 1.19.

Figure 1.19 – The trend of the provision for participation in profits since 2006.

Source: ACPR

Besides, lower inflation rates (on average around 1%, less than the ECB inflation
target 21) offset some of the falls in the revaluation rates. The real returns net of inflation
paid to policyholders is 0.36% in 2019, where around zero in 2018.

Moreover, as observed for the first time in 2019, the average annual technical rate
guaranteed for the entire duration of the contract was higher than that of the 10-year

21. The European Central Bank aims at inflation rates of below, but close to, 2% over the medium
term.
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government bond yield, i.e., 0.43% and 0.13%, respectively (Figure 1.18).

1.4.2 Changes in investment behaviours

In a low-interest-rate environment, insurers have been changing their investment pol-
icy towards higher-paying investments by increasing the proportion of shares (at the cost
of raising additional capital), private bond investments, or even real estate in their in-
vestments, or by accepting more geographical diversification for example, even if this
is accompanied by greater risk-taking. [EIOPA, 2017] investigated both a quantitative
and qualitative section focusing on the asset side of the balance sheet at a European
level. Thirteen French groups participated in this survey. Several trends are identified:
a small decrease in the debt portfolio against a small increase in other investments; a
trend towards lower credit rating quality fixed income securities with downgrades of a
large number of sovereign and corporate bonds; a trend towards more illiquid investments
such as non-listed equity and loans excluding mortgages; the increased average maturity
of the bond portfolio; the tendency to invest into new asset classes such as infrastructure,
mortgages, loans and real estate. Natixis Investment Managers commissioned a global sur-
vey [Natixis, 2019] of 200 Chief Investment Officers (CIOs) at insurers in Europe, North
America, and Asia. The survey results reveal three key trends driving investment strategy
for insurance CIO teams: Three-quarters of insurers rank interest rates as key portfolio
risk. 89 % of insurers globally say regulations deter them from investing in higher-risk
assets. Two-thirds of insurers outsource at least some of their portfolio, mainly to gain
access to expertise.

1.4.3 Concerns and solutions at different levels

French life insurers have multiple defense lines that should allow them to meet their
commitments for many years to come if the current low-interest-rate environment contin-
ues [Juilliard, 2020]. If it were to continue, such a situation would gradually weigh on their
long-term financial performance and credit quality. The following concerns and solutions
are proposed from the perspective of life insurers and insurance industry supervision.

Life insurer

1. Mean reversion and long-term investments
It has been acknowledged that the returns of most financial assets do not follow a random
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walk. For example, certain studies ([Fama and French, 1988] and [Bansal and Yaron, 2004])
indicate that equity prices tend to follow the mean reversion. [Campbell and Viceira, 2002]
estimate a vector autoregressive model to describe the US yield processes. Their results
show that the relative risk of holding shares decreases rapidly for holding periods of
between 1 and 20 years, while the risk of holding long-term bonds increases sharply for
holding periods of between 1 and 5 years. For time horizons between 20 and 50 years, the
volatilities of aggregate returns on shares and long-term bonds are close. [Bec and Gollier,
2009] obtain similar results using French data.

Thanks to the smoothing of shocks on asset returns, and the temporal diversification of
equity risk, savers with a long-term investment horizon may benefit from a more favorable
risk-return performance than short-term investors [Gollier, 2015]. In euro-denominated
funds, both the tax advantage when holding the contract at least 8 years and the relative
long liability durations should encourage life insurers to benefit from a long-term risky
investment.

2. Optimal asset allocation
The assets of a life insurance company consist of the policyholders’ premiums, so each
contract represents a specific liability for the life insurer. The main goal of life insurance
companies may not be to maximize investment returns but instead to pay more attention
to the management of premiums such that the guaranteed returns of policyholders can
appropriately meet future benefits. Therefore, the optimal asset allocation strategy to
maximize investment returns should be based on certain constraints, such as guaranteed
capital and insolvency probability.

Based on this starting point, we will first apply the ruin theory to model the income
of a life insurance company, which including the basic life insurance business process
and return on investment generating process, and then build the optimal asset allocation
strategy based on the obtained formulae of the income of a life insurance company. We
introduce and discuss the optimal asset allocation strategy in detail in Chapter 3.

Life insurance industry

1. On the minimum guaranteed rate
French life insurers have a large scope to adjust the rates of return served to policyhold-
ers in line with changes in the financial markets. For more than 20 years, the minimum
guaranteed returns granted to policyholders on their savings contracts have been system-
atically reduced to the extent that there are no longer any policies with multi-year return
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guarantees [Juilliard, 2020]. The low level of minimum guaranteed rates gives them the
flexibility to adjust the yields served to policyholders downwards. As shown in Figure
1.18, the average annual technical rate declined to 0.43% in 2019.

This same technique could be applied for several more years if the low-interest-rate
environment persists. However, if this were to be the long-term case, insurers could be
forced to stop any profit-sharing paid and pay policyholders the minimum guaranteed
rate of return.

2. On tax rates and management fees linked to the holding period
Since the tax advantage disappears completely after only eight years, developing incentives
on tax rates linked to the holding period after eight years should potentially reduce the
withdrawals from the long-standing policyholders if the tax advantage that they would
lose in the process is sufficient. Moreover, they potentially benefit from a more favorable
risk-return performance with a longer-term investment horizon.

The reduction in managing fees for longer holding periods in life insurance contracts
will also have similar influences as increasing incentives on tax rates.

3. On the development of euro-growth funds
In recent years, measures have been taken to limit the inflow of euro-denominated funds
and encourage investment in unit-linked funds in the life insurance market. The combined
effect of the two should have prompted the share of euro-growth funds to increase no-
tably because of its characteristics, as shown in Section 1.3.1. However, the outstanding
amount of euro-growth funds only increased from 1 billion euros to 3.1 billion euros since
its issuance, which accounts for around 0.15% in overall life insurance markets in 2019.
Incentives that may promote euro-growth funds can be further expanded to potential
investors and existing policyholders of traditional life insurance contracts.

1.5 Conclusion

In this chapter, we dealt with the asset portfolio issues of euro-denominated life insur-
ance in a low-interest-rate environment in France.

First of all, we investigated the background focused on the economic environment of
the French life insurance industry. Secondly, we gave a comprehensive overview of the
situation of the life insurance sector in France based on datasets from several institutions:
including investment supports and constraints on euro-denominated funds and other life
insurance products; life insurance activities and investments; the solvency (Solvency II)
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regulations imposed on life insurance companies and relevant solvency condition of the life
insurance industry, as well as a comparison in EU level. Next, we analyzed the declining
rates of return on euro-denominated funds through comparison with different rates.

The insurers should consider the balance between the long-term interest of the insured,
the fulfillment of the contractual commitments, and sustainable solvency. We proposed
solutions from different perspectives to solve multiple problems faced by life insurance
companies.

In the following chapters, we will address those risk exposures by applying ruin the-
ory and risk models. In the modelization, the risk process comprises two independent
processes, a basic risk process and a return on investment generating process. The basic
risk process describes an insurance company that experiences two opposing cash flows:
inflows of premiums and outflows of claims and withdrawals. In return on investment
generating process, the portfolio is capable of allocating risk-free and risky assets. The
risk process covers the multiple risks of the insurance business and the investment process
of life insurers. The optimal asset allocation strategy is derived through the risk process.
We get implications by examining the sensitivity of the optimal investment strategy to
some parameters, including interest rates, probabilities of insolvency, guaranteed capital
levels, and premium rates.
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Chapter 2

ANALYSIS OF LIFE INSURANCE

CONTRACTS VIA MATHEMATICAL

MODELING

2.1 Introduction

The economic result of a life insurance company depends not only on its life insurance
business, but also on how well life insurers invest their capital. Euro-denominated life
insurance faces multiple challenges and risks in terms of their life insurance business and
investment activities in a low-interest-rate environment, as discussed in Chapter 1. In
the second chapter, we construct a mathematical model of the income of life insurance
companies by applying the ruin theory and risk models.

The ruin theory and risk models with investment income has a long history, going back
to [Lundberg, 1903] with the ruin problem. In Lundberg’s model, the company did not earn
any investment income on its capital. [Cramér, 1938] modeled the value of an insurance
company using a compound Poisson process with a drift, and estimated the probability of
ruin of insurance companies. In the first half of the 20th century, the theory of stochastic
process was far less developed, and the first attempt which incorporate investment incomes
was undertaken by [Segerdahl, 1942] with the assumption that capital earns interest at a
fixed rate rf , which can be understood as the risk-free rate. Three decades later, with the
inspiration from mathematical finance, the model was suggested that capital is allowed
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to be invested in risky assets, with a risky rate of return R.

A path-breaking in the studies of ruin problems with compounding assets was made
by [Harrison, 1977], considering a generalization of the classical model of collective risk
theory. He obtains a general upper bound for the probability of ruin, a general solution
for the case where the cumulative income process of an insurance company has no jumps.
The results show that if the income process is well approximated by a Brownian motion
with a drift, then the process of the asset is well approximated by a certain diffusion
process, which he calls compounding Brownian motion, and the probability of ruin is well
approximated by a corresponding first passage probability. [Delbaen and Haezendonck,
1987] give a general description of the classical risk process when macro-economic factors
such as interest and inflation are taken into account, and they study the effects of factors
on bounds on ruin probabilities. Their numerical results turned out that if the real interest
rate tends to zero, the probability of ruin is a function of premiums, of the initial surplus
and of the claimsize distribution.

The problem of ruin in a risk model when assets earn investment income is treated
in [Paulsen, 1993], [Paulsen, 1998], [Paulsen, 2008] and [Paulsen and Gjessing, 1997].
Their studies cover presentations of the relevant integro-differential equations, exact and
numerical solutions, asymptotic results, bounds on the probability of ruin and also the
possibility of minimizing the ruin probability by investment and possibly reinsurance
control. They mainly focus on the continuous time models, but the discrete time models
are also considered. The situation where the reserve of an insurance business is currently
invested in an asset that may yield negative interest is addressed in [Kalashnikov and
Norberg, 2002]. They obtain upper and lower bounds for the probability of ruin which are
in general power functions of the initial reserve. [Morales and Schoutens, 2003] present
a risk model achieved by incorporating a Lévy process when the aggregate claims and
premium fluctuations evolve by jumps. They show how the infinite activity feature of
such a family of processes can be used to account for discrete premium fluctuations as
well as for semi-heavy tailed claims. [Klüppelberg and Kostadinova, 2008] consider an
integrated insurance risk process when the insurance business is modeled by a compound
Poisson process and the price of the risky asset is modeled by an exponential Lévy process.
Their results show that the model carries a high risk which may originate either from large
insurance outflows or from the risky investment. [Vostrikova and Spielmann, 2020] study
the ruin problem with investment where the insurance business part X is a Lévy process,
and the return on investment R is a semi-martingale. They obtain upper bounds on the
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finite and infinite time ruin probabilities that decrease as a power function when the initial
capital increases. [Devolder, 2011] investigates the market risk of a life insurer offering a
fixed guaranteed rate and investing the premium in a risky fund by comparing various
risk measurements, including a static approach, a dynamic approach, and a continuous
approach based on the probability of ruin. The results are useful to measure and compare
various liquidity and solvency conditions on long-term life insurance products. The ruin
theory could also be useful to address the problem of determining appropriate target
levels of Solvency Capital Requirement coverage ratio ([Loisel and Gerber, 2012]). In risk
management, insurance companies have already started to set risk limits to guarantee
that the Solvency Capital Requirement coverage ratio stays above a certain level with a
large enough probability because of the new regulation framework Solvency II.

In our research, we analyze the income of life insurance companies through three
case studies, where the insurance business and the investment are modeled by different
processes to reflect different economic conditions. We study the effects of factors in the
insurance business and investment processes on the income of life insurance companies
based on the obtained formulae for the first two moments of the integrated risk process,
i.e., the result of the insurance business and the net gains of the investment.

The work is arranged as follows. In Section 2.2, we present the elements of stochastic
calculus which are needed in the calculation of our mathematical modeling. Then, we
introduce the risk models and formulate the explicit form of the first two moments of
the income of a life insurance company with three case studies, followed by analysis and
discussions in Section 2.3. Section 2.4 shows the optimal asset allocation strategy to apply
in Chapter 3. Finally, we give the conclusion in Section 2.5.

2.2 The elements of Stochastic Calculus

The first step of our work is to prepare the elements of stochastic calculus required in
deriving the formulae of the moments of the integrated risk processes in Section 2.3. We
present the notions of independence, conditional expectations, and properties of condi-
tional expectations in Section 2.2.1, Information and Conditioning. Section 2.2.2, Brown-
ian Motion, introduces Brownian motion and its properties. Itô integral and Itô’s formula
are introduced in Section 2.2.3, Stochastic Calculus. Section 2.2.4, Jump Processes, defines
a jump process and presents stochastic integrals and stochastic calculus with respect to
jump processes. We refer to [Shreve, 2004, chapter. 2, 3, 4 and 11] and [Gallardo, 2008,
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chapter. 4 and 5] for the details.

2.2.1 Information and Conditioning

We first introduce the definitions related to information and conditioning in stochastic
calculus.

Definition 2.2.1.1. Let Ω be a nonempty set. Let T be a fixed positive number, and
assume that for each t ∈ [0,T] there is a σ-algebra F (t). Assume further that if s ≤ t,
then every set in F (s) is also in F (t). Then we call the collection of σ-algebras F (t),
0 ≤ t ≤ T , a filtration.

Definition 2.2.1.2. Let X be a random variable defined on a nonempty sample space Ω.
The σ-algebra generated by X, denoted σ(X), is the collection of all subsets of Ω of the
form of {ω ∈ Ω|X(ω) ∈ B}, where B ranges over the Borel subsets of R.

Definition 2.2.1.3. Let M be a random variable defined on a nonempty sample space Ω.
Let G be a σ-algebra of subsets of Ω. If every set in σ(X) is also in G , we say that X is
G -measurable.

Definition 2.2.1.4. Let Ω be a nonempty sample space equipped with a filtration F (t),
0 ≤ t ≤ T . Let X(t) be a collection of random variables indexed by t ∈ [0, T ]. We say this
collection of random variables is an adapted stochastic process if, for each t, the random
variable X(t) is F (t)-measurable.

In the continuous-time models of this thesis, asset prices and risk processes will all be
adapted to a filtration that we regard as a model of the flow of public information.

Definition 2.2.1.5. Let (Ω, F , P) be a probability space, and let G and H be sub-σ-
algebras of F . We say these two σ-algebras are independent if

P(A ∩B) = P(A) · P(B), for allA ∈ G , B ∈H .

Let X and Y be random variables on (Ω, F , P). We say these two random variables are
independent if the σ-algebras they generate, σ(X) and σ(Y ), are independent. We say that
the random variable X is independent of the σ-algebra G if G and σ(X) are independent.

Definition 2.2.1.6. Let X be a square-integrable random variable. The variance of X,
denoted Var(X), is

V ar(X) = E
[
(X − E(X))2

]
.
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Because (X − E(X))2 is nonnegative, Var(X) is always defined, although it may be infinite.
The standard deviation of X is

√
V ar(X). The linearity of expectations shows that

V ar(X) = E
[
X2
]
− (E(X))2 .

Let Y be another random variable and assume that E(X), V ar(X), E(Y ) and V ar(Y ) are
all finite. The covariance of X and Y is

Cov(X, Y ) = E [(X − E(X)) · (Y − E(Y ))] .

The linearity of expectations shows that

Cov(X, Y ) = E [XY ]− E(X) · E(Y ).

In particular, E[XY ] = E(X) · E(Y ) if and only if Cov(X, Y ) = 0. Assume, in addition
to the finiteness of expectations and variances, that V ar(X) > 0 and V ar(Y ) > 0. The
correlation coefficient of X and Y is

ρ(X, Y ) = Cov(X, Y )√
V ar(X)V ar(Y )

.

If ρ(X, Y ) = 0 (or equivalently, Cov(X, Y ) = 0), we say that X and Y are uncorrelated.

Definition 2.2.1.7. Let (Ω, F , P) be a probability space, let G be a sub-σ-algebra of F

, and let X be a random variable that is either nonnegative or integrable. The conditional
expectation of X given G , denoted E[X|G ], is any random variable that satisfies
(i) E[X|G ] is G -measurable, and
(ii) ∫

A
E[X|G (ω)]dP(ω) =

∫
A
X(ω)dP(ω) for all A ∈ G .

Proposition 2.2.1. Let (Ω, F , P) be a probability space, let G be a sub-σ-algebra of F .
(i) If X and Y are integrable random variables and c1 and c2 are constants, then

E
[
c1X + c2Y

∣∣∣G ] = c1 E [X|G ] + c2 E [Y |G ] .

(ii) If X, Y and XY are integrable random variables, and X is G -measurable, then

E
[
XY

∣∣∣G ] = X E [Y |G ] .
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(iii) If H is a sub-σ-algebra of G (H contains less information than G ) and X is an
integrable random variable, then

E
[
E
[
X
∣∣∣G ] ∣∣∣H ]

= E [X|H ] .

(iv) If X is integrable and independent of G , then

E
[
X
∣∣∣G ] = E [X] .

(v) If ϕ(x) is a convex function of a dummy variable x and X is integrable, then

E
[
ϕ(X)

∣∣∣G ] ≥ ϕ (E [X|G ]) .

Definition 2.2.1.8. Let (Ω, F , P) be a probability space, let T be a fixed positive number,
and let F (t), 0 ≤ t ≤ T , be a filtration of sub-σ-algebra of F . Consider an adapted
integrable stochastic process M(t), 0 ≤ t ≤ T .
(i) If

E[M(t)|F (s)] = M(s) for all 0 ≤ s ≤ t ≤ T,

we say this process is a martingale. It has no tendency to rise or fall.
(ii) If

E[M(t)|F (s)] ≥M(s) for all 0 ≤ s ≤ t ≤ T,

we say this process is a submartingale. It has no tendency to fall; it may have a tendency
to rise.
(iii) If

E[M(t)|F (s)] ≤M(s) for all 0 ≤ s ≤ t ≤ T,

we say this process is a submartingale. It has no tendency to rise; it may have a tendency
to fall.

Definition 2.2.1.9. Let (Ω, F , P) be a probability space, let T be a fixed positive number,
and let F (t), 0 ≤ t ≤ T , be a filtration of sub-σ-algebra of F . Consider an adapted
stochastic process X(t), 0 ≤ t ≤ T . Assume that for all 0 ≤ s ≤ t ≤ T and for every
nonnegative, Borel-measurable function f, there is another Borel-measurable function g
such that

E[f(X(t))|F (s)] = g(X(s)).
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Then we say that the X is a Markov process.

Definition 2.2.1.10. Let (Ω, F , P) be a probability space, let τ be a random variable
defined on the probability space taking values in [0,∞]. Then τ is called a stopping time if

{τ ≤ t} ∈ F (t) for all t ≥ 0.

Remark 2.2.1. A stopping time τ has the property that the decision to stop at time t
must be based on information available at time t.

2.2.2 Brownian Motion

In this subsection, we present Brownian motion and develop its basic properties.

Definition 2.2.2.1. Let (Ω, F , P) be a probability space. For each ω ∈ Ω, suppose there
is a continuous function W(t) of t ≥ 0 that satisfies W (0) = 0 and that depends on ω.
Then W(t), t ≥ 0, is a standard Brownian motion if for all 0 = t0 < t1 < · · · < tm the
increments

W (t0),W (t1)−W (t0),W (t2)−W (t1), ...,W (tm)−W (tm−1)

are independent and each of these increments is normally distributed with

E [W (ti+1)−W (ti)] = 0,

V ar [W (ti+1)−W (ti)] = ti+1 − ti.

Theorem 2.2.2.1. Brownian motion is a F-martingale, where F is natural filtration of
this Brownian motion.

Proof. Let 0 ≤ s ≤ t be given. Then

E
[
W (t)

∣∣∣F (s)
]

= E
[
(W (t)−W (s)) +W (s)

∣∣∣F (s)
]

= E
[
W (t)−W (s)

∣∣∣F (s)
]

+ E
[
W (s)

∣∣∣F (s)
]

= E [W (t)−W (s)] +W (s)
= W (s)
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Theorem 2.2.2.2. Let W be a standard Brownian motion. Then the quadratic variation
of W , [W,W ](T ) = T for all T ≥ 0 almost surely.

Proof. Let Π = {t0, t1, ..., tn} be a partition of [0,T]. Define the sampled quadratic varia-
tion corresponding to this partition to be

QΠ =
n−1∑
j=0

(W (tj+1)−W (tj))2 .

The sampled quadratic variation is the sum of independent random variables. Therefore,
its mean and variance are the sums of the means and variances of these random variables.
By Definition 2.2.1.10, we have

E
[
(W (tj+1)−W (tj))2

]
= V ar [W (tj+1)−W (tj)] = tj+1 − tj,

which implies

E (QΠ) =
n−1∑
j=0

E
[
(W (tj+1)−W (tj))2

]
=

n−1∑
j=0

(tj+1 − tj) = T.

Moreover,

V ar
[
(W (tj+1)−W (tj))2

]
=E

[(
(W (tj+1)−W (tj))2 − (tj+1 − tj)

)]2
=E

[
(W (tj+1)−W (tj))4

]
− 2 (tj+1 − tj)E

[
(W (tj+1)−W (tj))2

]
+ (tj+1 − tj)2 .

The fourth moment of a normal random variable with zero mean is three times its variance
squared, therefore,

E
[
(W (tj+1)−W (tj))4

]
= 3 (tj+1 − tj)2 ,

V ar
[
(W (tj+1)−W (tj))2

]
= 3 (tj+1 − tj)2 − 2 (tj+1 − tj)2 + (tj+1 − tj)2

= 2 (tj+1 − tj)2 ,
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and
V ar(QΠ) =

n−1∑
j=0

V ar
[
(W (tj+1)−W (tj))2

]
= 2

n−1∑
j=0

(tj+1 − tj)2

≤
n−1∑
j=0

2‖Π‖ (tj+1 − tj) = 2‖Π‖ T.

In particular, lim
‖Π‖→0

V ar(QΠ) = 0, and we conclude that when lim
‖Π‖→0

‖Π‖ = 0, the limit in
probability, lim

‖Π‖→0
[Qn−E(Qn)] = 0 and since by definition, [W,W ](T ) = lim

‖Π‖→0
Qn, we get

[W,W ]T = T .

Remark 2.2.2. Let Π = {t0, t1, ..., tn} be a partition of [0,T]. We can compute the cross
variation of W(t) with t and the quadratic variation of t with itself, which are

lim
‖Π‖→0

n−1∑
j=0

(W (tj+1)−W (tj)) (tj+1 − tj) = 0, (2.2.2.1)

and
lim
‖Π‖→0

n−1∑
j=0

(tj+1 − tj)2 = 0. (2.2.2.2)

To see that the limit in (2.2.2.1) is 0, we observe that

∣∣∣ (W (tj+1)−W (tj)) (tj+1 − tj)
∣∣∣ ≤ max

0≤k≤n−1

∣∣∣∣∣W (tk+1)−W (tk)
∣∣∣∣∣ (tj+1 − tj) ,

and so ∣∣∣∣∣
n−1∑
j=0

(W (tj+1)−W (tj)) (tj+1 − tj)
∣∣∣∣∣ ≤ max

0≤k≤n−1

∣∣∣ (W (tk+1)−W (tk))
∣∣∣T.

Since W is continuous, max0≤k≤n−1

∣∣∣ (W (tk+1)−W (tk))
∣∣∣ has limit zero as ‖Π‖ → 0.

To see that the limit in (2.2.2.2) is 0, we observe that

n−1∑
j=0

(tj+1 − tj) ≤ max
0≤k≤n−1

(tk+1 − tk)
n−1∑
j=0

(tj+1 − tj) = ‖Π‖ · T,

which obviously has limit zero as ‖Π‖ → 0. We capture (2.2.2.1) and (2.2.2.2) by writing

dW (t) dt = 0, dt dt = 0. (2.2.2.3)
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Theorem 2.2.2.3. Let W(t), t ≥ 0, be a Brownian motion with a filtration F (t), t ≥ 0,
and let σ be a constant. The process

Z(t) = exp
{
σW (t)− 1

2σ
2t
}
, (2.2.2.4)

t ≥ 0, is a martingale.

Proof. For 0 ≤ s ≤ t, we have

E
[
Z(t)

∣∣∣F (s)
]

= E
[
exp

{
σW (t)− 1

2σ
2t
} ∣∣∣∣∣F (s)

]

= E
[
exp {σ (W (t)−W (s))} exp

{
σW (s)− 1

2σ
2t
} ∣∣∣∣∣F (s)

]

= exp
{
σW (s)− 1

2σ
2t
}
E
[
exp {σ (W (t)−W (s))}

∣∣∣F (s)
]

= exp
{
σW (s)− 1

2σ
2t
}
E [exp {σ (W (t)−W (s))}] ,

(2.2.2.5)

where we have used Proposition 2.2.1 (ii) and (iv) for the last two steps, respectively.
To compute the expected value of exp {σ (W (t)−W (s))}, we apply transfer theorem.
Because W (t)−W (s) is normally distributed with mean zero and variance t− s,

E [exp {σ (W (t)−W (s))}]

= 1√
2π(t− s)

∫ +∞

−∞
exp

{
xσ − x2

2t

}
dx

= 1√
2π(t− s)

∫ +∞

−∞
exp

{
(t− s)σ2

2 − 1
2(t− s) [x− (t− s)σ]2

}

= 1√
2π(t− s)

exp

{
(t− s)σ2

2

}∫ +∞

−∞
exp

{
− 1

2(t− s) [x− (t− s)σ]2
}
dx

= 1√
2π(t− s)

exp

{
(t− s)σ2

2

}∫ +∞

−∞
exp

{
− 1

2(t− s)u
2
}
du

=exp
{1

2σ
2(t− s)

}
.
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Substituting this expected value into (2.2.2.5), we obtain the martingale property

E
[
Z(t)

∣∣∣F (s)
]

= exp
{
σW (s)− 1

2σ
2s
}

= Z(s).

2.2.3 Stochastic Calculus

This subsection is devoted to the Itô integrals and develops their properties. These
are used to model the value of a portfolio that results from trading assets in continuous
time. The fact that the calculus differs from ordinary calculus is because Brownian motion
has nonzero quadratic variation and is the source of the volatility term in Black-Scholes-
Merton partial differential equation.
We fix a positive number T and an expression such as the following:

∫ t

0
∆(t) dW (t). (2.2.3.1)

The basic ingredients here are a standard Brownian motion W (t), t ≥ 0, together with a
filtration F (t), t ≥ 0, for this Brownian motion. We let the integrand ∆(t) be an adapted
stochastic process. Requiring ∆(t) to be adapted means that we require ∆(t) to be F (t)-
measurable for each t ≥ 0. In other words, the information available at time t is sufficient
to evaluate ∆(t) at that time.
The problem we face when trying to assign meaning to the Itô integral (2.2.3.1) is that
Brownian motion paths cannot be differentiated with respect to time.
To define the integral (2.2.3.1), Itô devised the following way around the nondifferentiabil-
ity of the the Brownian paths. We first define the Itô integral for simple integrands ∆(t)
and then extend it to nonsimple integrands as a limit of the integral of simple integrands.
Let Π = {t0, t1, ..., tn} be a partition of [0, T ]; i.e.,

0 = t0 ≤ t1 ≤ · · · ≤ tn = T.

Assume that ∆(t) is constant in t on each subinterval [tj, tj+1). Such a process ∆(t) is a
simple process. We have
I(t) = ∆(t0)[W (t)−W (t0)] = ∆(0)W (t), 0 ≤ t ≤ t1,

I(t) = ∆(t0)W (t1) + ∆(t1)[W (t)−W (t1)], t1 ≤ t ≤ t2,
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I(t) = ∆(t0)W (t1) + ∆(t1)[W (t2)−W (t1)] + ∆(t2)[W (t2)−W (t1)], t2 ≤ t ≤ t3,

and so on. In general, if tk ≤ t ≤ tk+1, then

I(t) =
k−1∑
j=0

∆(tj)[W (tj+1)−W (tj)] + ∆(tk)[W (t)−W (tk)]. (2.2.3.2)

The process I(t) in (2.2.3.2) is the Itô integral of the simple process ∆(t), we write as

I(t) =
∫ t

0
∆(u) dW (u).

Next, we assume that ∆(t), t ≥ 0, is a general stochastic process adapted to the filtration
F (t), t ≥ 0. We also assume the square-integrability condition

E
∫ t

0
∆2(t) dt <∞. (2.2.3.3)

We define the Itô integral for ∆(t) by the formula
∫ t

0
∆(t) dW (u) = lim

n→∞

∫ t

0
∆n(u) dW (u), 0 ≤ t ≤ T, (2.2.3.4)

where ∆n(t), 0 ≤ t ≤ T , are simple functions such that

E
∫ t

0
(∆n(s)−∆(s))2 ds −→

n→+∞
0.

Theorem 2.2.3.1. Let T be a positive constant and let ∆(t), 0 ≤ t ≤ T , be an adapted
stochastic process that satisfies (2.2.3.3). Then I(t) =

∫ t
0 ∆(u) dW (u) defined by (2.2.3.4)

has the following properties.
(i) (Continuity) As a function of the upper limit of integrand t, the paths of I(t) are
continuous.
(ii) (Adaptivity) For each t, I(t) is F (t)-measurable.
(iii) (Linearity) If I(t) =

∫ t
0 ∆(u) dW (u) and J(t) =

∫ t
0 Γ(u) dW (u), then

I(t)± J(t) =
∫ t

0 (∆(u)± Γ(u)) dW (u);

furthermore, for every constant c, cI(t) =
∫ t
0 c∆(u) dW (u).

(iv) (Martingale) I(t) is a martingale.
(v) (Itô isometry) E I2(t) = E

∫ t
0 ∆2(u) du.

(vi) (Quadratic variation) [I, I](t) =
∫ t
0 ∆2(u) du.
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The processes for which we develop stochastic calculus are the Itô processes defined
below.

Definition 2.2.3.1. Let W(t), t ≥ 0, be a Brownian motion, and let F (t), t ≥ 0, be an
associated filtration. An Itô process is a stochastic process of the form

X(t) = X(0) +
∫ t

0
∆(u) dW (u) +

∫ t

0
Θ(u) du, (2.2.3.5)

where X(0) is nonrandom and ∆(u) and Θ(u) are adapted stochastic processes. 1

In order to understand the volatility associated with Itô processes, we must determine
the rate at which they accumulate quadratic variations.

Lemma 2.2.1. The quadratic variation of the Itô process (2.2.3.5) is

[X,X](t) =
∫ t

0
∆2(u)du.

Proof. We write (2.2.3.5) in the differential notation,

dX(t) = ∆(t)dW (t) + Θ(t)dt

and then we use the differential multiplication table, dW (t) dW (t) = dt, dt dW (t) =
dW (t) dt = 0, dt dt = 0, to compute

dX(t)dX(t) = ∆2(t) dW (t) dW (t) + 2∆(t) Θ(t) dW (t) dt+ Θ2(t) dt dt
= ∆2(t) dt.

This says that, at each time t, the process X is accumulating quadratic variation at
rate ∆2(t) per unit time, and hence the total quadratic variation accumulated on the
time interval [0,1] is [X,X](t) =

∫ t
0 ∆2(u) du. This quadratic variation is solely due to the

quadratic variation of the Itô integral
∫ t
0 ∆(u)dW (u). The ordinary integral

∫ t
0 Θ(u)du has

zero quadratic variation and thus contributes nothing to the quadratic variation of X.

1. We assume that E
∫ t

0 ∆2(u)du and
∫ t

0
∣∣Θ(u)

∣∣du are finite for every t > 0 so that the integrals on
the right-hand side of (2.2.3.5) are defined and the Itô integral

∫ t
0 ∆(u)dW (u) is a martingale.
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Definition 2.2.3.2. Let X(t), t ≥ 0, be an Itô process as described in Definition 2.2.3.1,
and let Γ(t), t ≥ 0, be an adapted process. We define the integral with respect to an Itô
process

∫ t

0
Γ(u) dX(u) =

∫ t

0
Γ(u)∆(u) dW (u) +

∫ t

0
Γ(u)Θ(u) du. (2.2.3.6)

Theorem 2.2.3.2. Let X(t), t ≥ 0, be an Itô process as described in Definition 2.2.3.1,
and let f(t, x) be a continuous function for which the partial derivatives ft(t, x), fx(t, x),
and fxx(t, x) are defined, continuous and bounded. Then, for every T ≥ 0, the Itô formula
for an Itô process is

f (T,X(T ))

=f (0, X(0)) +
∫ T

0
ft (t,X(t)) dt+

∫ T

0
fx (t,X(t)) dX(t)

+ 1
2

∫ T

0
fxx (t,X(t)) d[Xc, Xc](t)

=f (0, X(0)) +
∫ T

0
ft (t,X(t)) dt+

∫ T

0
fx (t,X(t)) ∆(t)dW (t)

+
∫ T

0
fx (t,X(t)) Θ(t)dt+ 1

2

∫ T

0
fxx (t,X(t)) ∆2(t)dt,

(2.2.3.7)

where Xc stands for the continuous martingale part of X.

Remark 2.2.3. Every term on the right-hand side has a solid definition, and in the end
the right-hand side reduces to a sum of a nonrandom quantity, three ordinary (Lebesgue)
integrals with respect to time, and an Itô integral. However, it is easier if this theorem is
in differential notation. We may write (2.2.3.7) as

df (t,X(t))

=ft (t,X(t)) dt+ fx (t,X(t)) dX(t) + 1
2fxx (t,X(t)) d[Xc, Xc](t)

=ft (t,X(t)) dt+ fx (t,X(t)) ∆(t)dW (t)

+ fx (t,X(t)) Θ(t)dt+ 1
2fxx (t,X(t)) ∆2(t)dt.

(2.2.3.8)

Theorem 2.2.3.3. Let W(s), s ≥ 0, be a standard Brownian motion, and let ∆(s) be a
nonrandom function of time. Define I(t) =

∫ t
0 ∆(s) dW (s). For each t ≥ 0, the random

variable I(t) is normally distributed with expected value zero and variance
∫ t

0 ∆2(s) ds.
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Proof. (I(t))t≥0 is a martingale and I(t) = 0 for each t ≥ 0, we must have E (I(t)) =
I(0) = 0. Itô’s isometry (Theorem 2.2.3.1(v)) implies that

V ar (I(t)) = E
(
I2(t)

)
=
∫ t

0
∆2(s)ds.

The next is to show that I(t) is normally distributed. We shall do this by establishing that
I(t) has the moment-generating function of a normal random variable with mean zero and
variance

∫ t
0 ∆2(s) ds, i.e.,

E euI(t) = exp
{1

2u
2
∫ t

0
∆2(s) ds

}
for all u ∈ R. (2.2.3.9)

Because ∆(s) is not random, (2.2.3.9) is equivalent to

E exp
{
uI(t)− 1

2u
2
∫ t

0
∆2(s) ds

}
=E exp

{∫ t

0
u∆(s) dW (s)− 1

2

∫ t

0
(u∆(s))2 ds

}
.

(2.2.3.10)

The last expectation is equal to 1 since the process

exp
{∫ t

0
u∆(s) dW (s)− 1

2

∫ t

0
(u∆(s))2 ds

}

is a martingale, and it is a generalized geometric Brownian motion with mean rate of
return zero, and volatility u∆(s), which takes the value 1 at t = 0.

2.2.4 Jump Processes

In this subsection, we present the processes with jumps and independent increments,
including the Poisson process and compound Poisson process, as well as stochastic inte-
grals and stochastic calculus for jump processes. We will consider the jump process in
Case 2 and Case 2 bis in Section 2.3.3 when the basic insurance business process is mod-
eled by the sum of a Brownian Motion with a drift and a compound Poisson process. The
withdrawals in life insurance business will be modeled by a compound Poisson process.

The most elementary and useful jump process is the standard Poisson process (Nt)t∈R+

which is a counting process, i.e., (Nt)t∈R+ has jumps of size +1 only, and its paths are
constant between two jumps.
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Definition 2.2.4.1. Let N(t) be a Poisson process with intensity λ > 0, and let 0 = t0 <

t1 < ... < tn be given. Then the increments

N(t1)−N(t0) , N(t2)−N(t1), ..., N(tn)−N(tn−1)

are stationary and independent, and

P ({N(tj+1)−N(tj) = k}) = λk(tj+1 − tj)k
k! e−λ(tj+1−tj), k = 0, 1, ... .

Then, we calculate the mean and variance of Poisson increments. With the exponential
power series, we have:

ex =
∞∑
k=0

xk

k! =
∞∑
k=1

xk−1

(k − 1)! =
∞∑
k=2

xk−2

(k − 2)! ,

and according to Definition 2.2.4.1, we have

∞∑
k=0

P ({N(t)−N(s) = k}) = e−λ(t−s)
∞∑
k=0

λk(t− s)k
k! = e−λ(t−s) · eλ(t−s) = 1.

The expected increment is

E[N(t)−N(s)] =
∞∑
k=0

k
λk(t− s)k

k! e−λ(t−s)

= λ(t− s)e−λ(t−s)
∞∑
k=1

λk−1(t− s)k−1

(k − 1)!

= λ(t− s) · e−λ(t−s) · eλ(t−s)

= λ(t− s).

The second moment of the increment is

E
[
(N(t)−N(s))2

]
=
∞∑
k=0

k2λ
k(t− s)k
k! e−λ(t−s)

=e−λ(t−s)
∞∑
k=1

(k − 1 + 1)λ
k(t− s)k
(k − 1)!

=e−λ(t−s)
∞∑
k=2

λk(t− s)k
(k − 2)! + e−λ(t−s)

∞∑
k=1

λk(t− s)k
(k − 1)!
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=λ2(t− s)2e−λ(t−s)
∞∑
k=2

λk−2(t− s)k−2

(k − 2)!

+ λ(t− s)e−λ(t−s)
∞∑
k=1

λk−1(t− s)k−1

(k − 1)!

=λ2(t− s)2 + λ(t− s).

And

V ar[N(t)−N(s)] = E
[
(N(t)−N(s))2

]
− (E[N(t)−N(s)])2

= λ(t− s).

Theorem 2.2.4.1. Let N(t) be a Poisson process with intensity λ. Define the compensated
Poisson process

M(t) = N(t)− λt.

Then M(t) is a martingale.

Proof. Let 0 ≤ s < t be given. Because N(t) − N(s) is independent of F (s) and has
expected value λ(t− s), we have

E[M(t)
∣∣∣F (s)] = E[M(t)−M(s)

∣∣∣F (s)] + E[M(s)
∣∣∣F (s)]

= E[N(t)−N(s)− λ(t− s)
∣∣∣F (s)] +M(s)

= E[N(t)−N(s)]− λ(t− s) +M(s)
= M(s).

Since the jumps of the Poisson process are of constant size, it is not realistic to develop
financial markets based on it. We need jump processes that can have random jump sizes.
Let N(t), t > 0 be a Poisson process with intensity λ, and let Z1, Z2,... be a sequence
of identically distributed random variables with mean β = E(Zi). Assume the random
variables Z1, Z2,... are mutually independent and also independent of the Poisson process
N(t), t > 0.
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Definition 2.2.4.2. The process Q(t)t∈R+ given by the random sum

Qt := Z1 + Z2 + · · ·+ ZNt =
N(t)∑
k=1

Zk, t ∈ R+,

is called a compound Poisson process.

Like the simple Poisson process N(t), the increments of the compound Poisson process
Q(t) are independent. For 0 ≤ s < t,

Q(s) =
N(s)∑
i=1

Zi,

which sums up the first N(s) jumps, and

Q(t)−Q(s) =
N(t)∑

i=N(s)+1
Zi,

which sums up jumps N(s) + 1 to N(t), are independent. Moreover, Q(t)−Q(s) has the
same distribution as Q(t− s) because N(t)−N(s) has the same distribution as N(t− s),
and (Zk)k∈N∗ are i.i.d.
The mean of the compound Poisson process is

EQ(t) =
∞∑
k=0

E
[
k∑
i=1

Zi

∣∣∣∣∣N(t) = k

]
P {N(t) = k}

=
∞∑
k=0

βk
(λt)k
k! e−λt = βλte−λt

∞∑
k=1

(λt)(k−1)

(k − 1)! = βλt.

(2.2.4.1)

On average, there are λt jumps in the time interval [0, t], the average jump size is β,
and the number of jumps is independent of the size of the jumps. Before to present the
variance of the compound Poisson process, we prove the following theorem.

Theorem 2.2.4.2. Suppose that X is a random variable with finite second moment E[X2].
As a consequence E[|X|] <∞, and for any random variable Y, E[X2|Y ] and E[X|Y ] are
well defined with E[E[X2|Y ]] = E[X2] <∞ and E[E[|X||Y ]] = E[|X|] <∞. Then

V ar(X) = E [V ar(X|Y )] + V ar (E[X|Y ]) ,
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where V ar(X|Y ) is defined as

V ar(X|Y ) = E
[
(X − E(X|Y ])2 |Y

]
= E[X2|Y ]− (E[X|Y ])2 .

Proof. The two terms on the right are

E [V ar(X|Y )] = E
[
E[X2|Y ]

]
− E

[
(E[X|Y ])2

]
= E[X2]− E

[
(E[X|Y ])2

]
,

and

V ar (E[X|Y ]) = E
[
(E[X|Y ])2

]
− (E [E[X|Y ]])2 = E

[
(E[X|Y ])2

]
− (E[X])2 .

Combining last two expressions gives the result.

Theorem 2.2.4.3. Let N be a nonnegative integer-valued Poisson process with intensity
λ. Let Zn : n ≥ 1 be a sequence of independent and identically distributed random variables
with mean β = E[Z1] and finite variance σ2

J = V ar(Z1). Suppose that N is independent
of the sequence Zn : n ≥ 1. Then

V ar

(
Nt∑
n=1

Zk

)
= σ2

J E[Nt] + β2V ar(Nt) = λt
(
σ2
J + β2

)
.

Proof. Let S =
Nt∑
i=1
Zi with fixed t, then

V ar(S|Nt = n) = nσ2
J and E[S|Nt = n] = nβ,

therefore
V ar(S|Nt) = Ntσ

2
J and E[S|Nt] = Ntβ.

Then the conditional variance formula gives

V ar(S) = E [V ar(S|Nt)] + V ar (E[S|Nt]) = λt
(
σ2
J + β2

)
.

Theorem 2.2.4.4. Let Q(t) be the compound Poisson process as described in Definition
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2.2.4.1. The compensated compound Poisson process

Q(t)− βλt

is a martingale.

Proof. Let 0 ≤ s < t be given. Because the increments Q(t) − Q(s) is independent of
F (s) and has the mean βλ(t− s), we have

E
[
Q(t)− βλt

∣∣∣F (s)
]

= E
[
Q(t)−Q(s)

∣∣∣F (s)
]

+Q(s)− βλt

= βλ(t− s) +Q(s)− βλt
= Q(s)− βλs.

Next, we will present the stochastic integral when the integrator is a process with
jumps.

Definition 2.2.4.3. Let (Ω,F ,P) be a probability space, and let F (t), t ≥ 0, be a fil-
tration on this space. We say that a standard Brownian motion W is a Brownian motion
relative to the filtration F (t), t ≥ 0 of W (t) is F (t)-measurable for every t and for every
u > t the increment W (u)−W (t) is independent of F (t). Similarly for a Poisson process
N(t) and a compound Poisson process Q(t).

We define the stochastic integral ∫ t

0
Φ(s) dX(s),

where the integrator X is cad-log process which can have jumps. More precisely,

X(t) = X(0) + I(t) +R(t) + J(t), (2.2.4.2)

where X(0) is a nonrandom initial condition, the process

I(t) =
∫ t

0
Γ(s)dW (s)

is an Itô integral of an adapted process Γ(s) with respect to a Brownian motion, the
process

R(t) =
∫ t

0
Θ(s)ds
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is a Riemann integral for some adapted process Θ(t), and J(t) is an adapted, right-
continuous pure jump process with J(0) = 0. By right-continuous, it means that J(t) =
lims↓tJ(s) for all t ≥ 0. The left-continuous version of such a process will be denoted
J(t−). We define the continuous part of X(t) to be

Xc(t) = X(0) + I(t) +R(t) = X(0) +
∫ t

0
Γ(s)dW (s) +

∫ t

0
Θ(s)ds.

Definition 2.2.4.4. Let X(t) be a process of the form (2.2.4.2) and let Φ be an adapted
process. The stochastic integral of Φ with respect to X is defined to be

∫ t

0
Φ(s) dX(s) =

∫ t

0
Φ(s)Γ(s)dW (s) +

∫ t

0
Φ(s)Θ(s)ds+

∑
0<s≤t

Φ(s)∆J(s).

In differential notation

Φ(t)dX(t) = Φ(t)Γ(t)dW (t) + Φ(t)Θ(t)dt+ Φ(t)dJ(t)
= Φ(t)dI(t) + Φ(t)dR(t) + Φ(t)dJ(t)
= Φ(t)dXc(t) + Φ(t)dJ(t).

To write the Itô formula for processes with jumps, we need to calculate the quadratic
variation.
Let X(t) be a jump process,we choose 0 = t1 < t2 < · · · < tn = T , denote the set of
these times by Π = {t0, t1, ..., tn}, and denote the length of the longest subinterval by
‖Π‖ = maxj(tj+1 − tj), and define

QΠ(X) =
n−1∑
j=0

(X(tj+1)−X(tj))2 .

The quadratic variation of X on [0,T] is defined to be

[X,X](T ) = lim
‖Π‖→0

QΠ(X),

as ‖Π‖ → 0 and as the number of points in Π approach infinity. Let X(1) and X(2) be
jump processes, we define the concept of cross variation.

CΠ(X1, X2) =
n−1∑
j=0

(X1(tj+1)−X1(tj)) (X2(tj+1)−X2(tj)) ,
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and
[X1, X2](T ) = lim

‖Π‖→0
CΠ(X1, X2).

Theorem 2.2.4.5. Let X1(t) = X1(0) + I1(t) + R1(t) + J1(t) be a jump process, where
I1(t) =

∫ t
0 Γ1(s)dW (s), R1(t) =

∫ t
0 Θ1(s)ds, and J1(t) is a right-continuous pure jump

process. Then Xc
1(t) = X1(0) + I1(t) +R1(t) and

[X1, X1] (T ) = [Xc
1, X

c
1](T ) + [J1, J1](T )

=
∫ T

0
Γ2

1(s)ds+
∑

0<s≤T
(∆J1(s))2 .

Let X2(t) = X2(0) + I2(t) +R2(t) +J2(t) be a jump process, where I2(t) =
∫ t

0 Γ2(s)dW (s),
R2(t) =

∫ t
0 Θ2(s)ds, and J2(t) is a right-continuous pure jump process. Then Xc

2(t) =
X2(0) + I2(t) +R2(t), and

[X1, X2] (T ) = [Xc
1, X

c
2](T ) + [J1, J2](T )

=
∫ T

0
Γ1(s)Γ2(s)ds+

∑
0<s≤T

∆J1(s)∆J2(s).
(2.2.4.3)

Proof. We have

CΠ(X1, X2) =
n−1∑
j=0

(X1(tj+1)−X1(tj)) (X2(tj+1)−X2(tj))

=
n−1∑
j=0

(Xc
1(tj+1)−Xc

1(tj) + J1(tj+1)− J1(tj))

× (Xc
2(tj+1)−Xc

2(tj) + J2(tj+1)− J2(tj))

=
n−1∑
j=0

(Xc
1(tj+1)−Xc

1(tj)) (Xc
2(tj+1)−Xc

2(tj)) (2.2.4.4)

+
n−1∑
j=0

(Xc
1(tj+1)−Xc

1(tj)) (J2(tj+1)− J2(tj))

+
n−1∑
j=0

(J1(tj+1)− J1(tj)) (Xc
2(tj+1)−Xc

2(tj))

+
n−1∑
j=0

(J1(tj+1)− J1(tj)) (J2(tj+1)− J2(tj)) .

For the first term on the right-hand side of (2.2.4.3), by the theory of continuous processes,
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we have

lim
‖Π‖→0

n−1∑
j=0

(Xc
1(tj+1)−Xc

1(tj)) (Xc
2(tj+1)−Xc

2(tj)) = [Xc
1, X

c
2](T )

=
∫ T

0
Γ1(s)Γ2(s)ds.

For the second term on the right-hand side of (2.2.4.4), we fix ω ∈ Ω. Then
∣∣∣∣∣
n−1∑
j=0

(Xc
1(tj+1)−Xc

1(tj)) (J2(tj+1)− J2(tj))
∣∣∣∣∣

≤ max
0≤j≤n−1

∣∣∣ (Xc
1(tj+1)−Xc

1(tj))
∣∣∣ · n−1∑

j=0

∣∣∣ (J2(tj+1)− J2(tj))
∣∣∣

≤ max
0≤j≤n−1

∣∣∣ (Xc
1(tj+1)−Xc

1(tj))
∣∣∣ · ∑

0<s≤T

∣∣∣∆J2(s)
∣∣∣.

As ‖Π‖ → 0, the factor max0≤j≤n−1

∣∣∣ (Xc
1(tj+1)−Xc

1(tj))
∣∣∣ has limit zero, whereas∑0<s≤T

∣∣∣∆J2(s)
∣∣∣

is a finite number not depending on Π. Hence, the second term on the right hand side of
(2.2.4.4) has limit zero as ‖Π‖ → 0. Similarly, the third term on the right hand side of
(2.2.4.4) also has limit zero. For the fourth term on the right hand side of (2.2.4.4), we fix
an arbitrary ω ∈ Ω, which sets the paths of these processes, and choose the points in Π so
close together that there is at most one jump of J1 in each interval (tj, tj+1], at most one
jump of J2 in each interval (tj, tj+1], and if J1 and J2 have a jump in the same interval,
then these jumps are simultaneous. Let A1 denote the set of indices j for which (tj, tj+1]
contains a jump of J1, and let A2 denote the set of indices j for which (tj, tj+1] contains
a jump of J2. Then we have

n−1∑
j=0

(J1(tj+1)− J1(tj)) (J2(tj+1)− J2(tj))

=
∑

j∈A1∩A2

(J1(tj+1)− J1(tj)) (J2(tj+1)− J2(tj))

=
∑

0<s≤t
∆J1(s)∆J2(s).
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Remark 2.2.4. Equality (2.2.4.3) in differential notation says that if

X1(t) = X1(0) +Xc
1(t) + J1(t), X2(t) = X2(0) +Xc

2(t) + J2(t),

then
dX1(t)dX2(t) = dXc

1(t)dXc
2(t) + dJ1(t)dJ2(t).

In particular,
dXc

1(t)dJ2(t) = dXc
2(t)dJ1(t) = 0.

It shows that the cross variation between two processes is zero if one of them is continuous
and the other is pure jump process. In order to get a nonzero cross variation, both processes
must have a dW term or the processes must have simultaneous jumps. It means that the
cross variation between a Brownian motion and a compensated Poisson process is also
zero.

Theorem 2.2.4.6. Let X(t) be a jump process and f(x) a function for which f ′(x) and
f ′′(x)are defined, continuous and bounded. Then

f (X(t))

=f (X(0)) +
∫ t

0
f ′ (X(s)) dXc(s) + 1

2

∫ t

0
f ′′ (X(s)) dXc(s)dXc(s) (2.2.4.5)

+
∑

0<s≤t
[f (X(s))− f (X(s−))] .

Proof. Fix ω ∈ Ω, which fixes the path of X, and let τ0 = 0 < τ1 < τ2 < ··· < τn−1 < τn = t

be the jump times in [0, t) of this path of the process X. We set τ0 = 0, which is not a
jump time, and τn = t, which may or may not be a jump time. Whenever u < v are both
in the same interval (τj, τj+1), there is no jump between times u and v, and from the Itô
formula for continuous processes, we have

f (X(v))− f (X(u)) =
∫ v

u
f ′ (X(s)) dXc(s) + 1

2

∫ v

u
f ′′ (X(s)) dXc(s)dXc(s).

Letting u ↓ τj and v ↑ τj+1 and using the right-continuity of X, we conclude that

f (X(τj+1−))− f (X(τj))

=
∫ τj+1

τj
f ′ (X(s)) dXc(s) + 1

2

∫ τj+1

τj
f ′′ (X(s)) dXc(s)dXc(s).
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And adding the jump in f(X) at time τj+1, we have

f (X(τj+1))− f (X(τj))

=
∫ τj+1

τj
f ′ (X(s)) dXc(s) + 1

2

∫ τj+1

τj
f ′′ (X(s)) dXc(s)dXc(s)

+ f (X(τj+1))− f (X(τj+1−)) .

And summing over j = 0, ..., n− 1, we obtain

f (X(t))− f (X(0))

=
n−1∑
j=0

[f (X(τj+1))− f (X(τj))]

=
∫ t

0
f ′ (X(s)) dXc(s) + 1

2

∫ t

0
f ′′ (X(s)) dXc(s)dXc(s)

+
n−1∑
j=0

[f (X(τj+1))− f (X(τj+1−))] .

Corollary 2.2.4.1. Let W (t) be a Brownian motion and let N(t) be a Poisson process
with intensity λ > 0, both defined on the same probability space (Ω,F ,P) and relative to
the same filtration F (t), t ≥ 0. Let u1 and u2 be fixed real numbers and define

Y (t) = exp
{
u1W (t) + u2N(t)− 1

2u
2
1t− λ(eu2 − 1)t

}
.

Then, if the process W (t) and N(t) are independent, (Y (t))t≥0 is a martingale and E (Y (t)) =
1 for all t ≥ 0.

Proof. We use the Itô formula to show that Y is a martingale.
First, we define

X(s) = u1W (s) + u2N(s)− 1
2u

2
1s− λ(eu2 − 1)s,

and f(x) = ex, so that Y (s) = f (X(s)). The process X(s) has Itô integral part I(s) =
u1W (s), Riemann integral part R(s) = −1

2u
2
1s− λ(eu2 − 1)s, and pure jump part J(s) =

u2N(s). And
dXc(s) = u1dW (s), dXc(s)dXc(s) = u2

1ds.
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Next, we observe that if Y has a jump at time s, then

Y (s) = exp
{
u1W (s) + u2(N(s−))− 1

2u
2
1s− λ(eu2 − 1)s

}
= Y (s−)eu2 .

Then
Y (s)− Y (s−) = (eu2 − 1)Y (s−)∆N(s).

By the Itô formula (2.2.4.5) for jump processes,

Y (t)
=f (X(t))

=f (X(0)) +
∫ t

0
f ′ (X(s)) dXc(s) + 1

2

∫ t

0
f ′′ (X(s)) dXc(s)dXc(s)

+
∑

0<s≤t
[f (X(s))− f (X(s−))]

=1 + u1

∫ t

0
Y (s)dW (s)− 1

2u
2
1

∫ t

0
Y (s)ds− λ(eu2 − 1)

∫ t

0
Y (s)ds

+ 1
2u

2
1

∫ t

0
Y (s)ds+

∑
0<s≤t

[Y (s)− Y (s−)]

=1 + u1

∫ t

0
Y (s)dW (s)− λ(eu2 − 1)

∫ t

0
Y (s)ds

+ (eu2 − 1)
∫ t

0
Y (s−)∆N(s)

=1 + u1

∫ t

0
Y (s)dW (s)− (eu2 − 1)

∫ t

0
Y (s−)dM(s),

(2.2.4.6)

where M(s) = N(s) − λs is a compensated Poisson process. Because the fact that Y
has only finitely many jumps,

∫ t
0 Y (s)ds =

∫ t
0 Y (s−)ds. In the last line of (2.2.4.6), the

Itô integral
∫ t

0 Y (s)dW (s) is a martingale, and the integral of the left-continuous process
Y (s−) with respect to the martingale M(s) is also. Therefore, Y is a martingale. Because
Y (0) = 1, and Y is a martingale, we have EY (t) = 1 for all t, and

E exp
{
u1W (t) + u2N(t)− 1

2u
2
1t− λ(eu2 − 1)t

}
= 1 for all t ≥ 0.

Remark 2.2.5. From the last line, we can obtain the joint moment-generating function
formula

E exp {u1W (t) + u2N(t)} = exp
{1

2u
2
1t
}
· exp {λt(eu2 − 1)} .
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This is the product of moment-generating function E eu1W (t) = exp
{

1
2u

2
1t
}

for W (t) and
the moment-generating function E eu2N(t) = exp {λt(eu2 − 1)} for N(t). Since the joint
moment-generating function factors into the product of moment-generating functions,
the random variables W (t) and N(t) are independent.

Theorem 2.2.4.7. Let X1(t) and X2(t) be jump processes, and let f(t, x1, x2) be a contin-
uous function whose first and second partial derivatives appearing in the following formula
are defined, continuous and bounded. Then

f (t,X1(t), X2(t))

=f (0, X1(0), X2(0)) +
∫ t

0
ft (s,X1(s), X2(s)) ds

+
∫ t

0
fx1 (s,X1(s), X2(s)) dXc

1(s) +
∫ t

0
fx2 (s,X1(s), X2(s)) dXc

2(s)

+ 1
2

∫ t

0
fx1,x1 (s,X1(s), X2(s)) dXc

1(s)dXc
1(s)

+
∫ t

0
fx1,x2 (s,X1(s), X2(s)) dXc

1(s)dXc
2(s)

+ 1
2

∫ t

0
fx2,x2 (s,X1(s), X2(s)) dXc

2(s)dXc
2(s)

+
∑

0<s≤t
[f (s,X1(s), X2(s))− f (s,X1(s−), X2(s−))] .

Corollary 2.2.4.2. Let X1(t) and X2(t) be jump processes. Then

X1(t)X2(t) =X1(0)X2(0) +
∫ t

0
X2(s)dXc

1(s) +
∫ t

0
X1(s)dXc

2(s)

+ [Xc
1, X

c
2] (t) +

∑
0<s≤t

[X1(s)X2(s)−X1(s−)X2(s−)]

=X1(0)X2(0) +
∫ t

0
X2(s−)dX1(s) +

∫ t

0
X1(s−)dX2(s)

+ [X1, X2] (t). (2.2.4.7)

Proof. Take f(x1, x2) = x1x2 so that

fx1 = x2, fx2 = x1, fx1x1 = 0, fx1x2 = 1, fx2x2 = 0.
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The two-dimensional Itô formula implies

X1(t)X2(t) =X1(0)X2(0) +
∫ t

0
X2(s)dXc

1(s) +
∫ t

0
X1(s)dXc

2(s)

+
∫ t

0
1dXc

1(s)dXc
2(s) +

∑
0<s≤t

[X1(s)X2(s)−X1(s−)X2(s−)] .

This establishes the first equality in (2.2.4.7). To obtain the second equality, we denote the
pure jump parts of X1(t) and X2(t) by J1(t) = X1(t)−Xc

1(t) and J2(t) = X2(t)−Xc
2(t),

respectively, and begin with the last line of (2.2.4.7), using (2.2.4.3)

X1(0)X2(0) +
∫ t

0
X2(s−)dX1(s) +

∫ t

0
X1(s−)dX2(s)

+ [X1, X2] (t)

=X1(0)X2(0) +
∫ t

0
X2(s−)dXc

1(s) +
∫ t

0
X2(s−)dJ1(s)

+
∫ t

0
X1(s−)dXc

2(s) +
∫ t

0
X1(s−)dJ2(s)

+ [Xc
1, X

c
2] (t) +

∑
0<s≤t

[J1(s)J2(s)]

=X1(0)X2(0) +
∫ t

0
X2(s)dXc

1(s) +
∫ t

0
X1(s)dJ c2(s) + [Xc

1, X
c
2] (t)

+
∑

0<s≤t
[∆X1(s)X2(s−) +X1(s−)∆X2(s) + ∆X1(s)∆X2(s)] .

(2.2.4.8)

Now, it remains to show that the last sum is the same as

[Xc
1, X

c
2] (t) +

∑
0<s≤t

[X1(s)X2(s)−X1(s−)X2(s−)]

in the second line of (2.2.4.7). We expand the typical term in the sum in the second line
of (2.2.4.7):

[X1(s)X2(s)−X1(s−)X2(s−)]
= (X1(s−) + ∆X1(s)) (X2(s−) + ∆X2(s))−X1(s−)X2(s−)
=X1(s−)X2(s−) +X1(s−)∆X2(s) + ∆X1(s)X2(s−) + ∆X1(s)∆X2(s)
−X1(s−)X2(s−)

=X1(s−)∆X2(s) + ∆X1(s)X2(s−) + ∆X1(s)∆X2(s).
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This is the typical term in the sum appearing at the end of (2.2.4.8).

For stochastic calculus without jumps, we know from Girsanov’s Theorem how to
change the measure using the Radon-Nikodym derivative process

Z(t) = exp
{
−
∫ t

0
Γ(s)dW (s)− 1

2

∫ t

0
Γ2(s)ds

}
.

This process satisfies the stochastic differential equation

dZ(t) = −Z(t)Γ(t)dW (t) = Z(t)dXc(t),

where Xc(t) = −
∫ t

0 Γ(s)dW (s) and [Xc, Xc](t) =
∫ t

0 Γ2(s)ds. We may rewrite Z(t) as

dZ(t) = exp
{
Xc(t)− 1

2[Xc, Xc](t)
}
. (2.2.4.9)

For stochastic calculus with jumps, the analogous stochastic differential equation is

dZX(t) = ZX(t−)dX(t), (2.2.4.10)

where the integrator X is now allowed to have jumps. The solution to (2.2.4.10) is like
(2.2.4.9), except now, whenever there is a jump in X, (2.2.4.10) says there is a jump in
ZX of size

∆ZX(s) = ZX(s−)∆X(s).

Therefore,
ZX(s) = ZX(s−) + ∆ZX(s) = ZX(s−) (1 + ∆X(s)) .

And, we have the following corollary for this result.

Corollary 2.2.4.3. Let X(t) be a jump process. The Doleans-Dade exponential of X is
defined to be the process

ZX(t) = exp
{
Xc(t)− 1

2[Xc, Xc](t)
} ∏

0<s≤t
(1 + ∆X(s)) .

This process is the solution to the stochastic differential equation (2.2.4.10) with initial
condition ZX(0) = 1, which in integral form is

ZX(t) = 1 +
∫ t

0
ZX(s−)dX(s). (2.2.4.11)
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Proof. We write X(t) as X(t) = Xc(t) + J(t) +
∫ t
0 Θ(s)ds, where

Xc(t) =
∫ t

0
Γ(s)dW (s)

is the continuous part of X and J(t) is the pure jump part. We define

Y (t) = exp
{∫ t

0
Γ(s)dW (s) +

∫ t

0
Θ(s)ds− 1

2

∫ t

0
Γ2(s)ds

}
.

= exp
{
Xc(t)− 1

2[Xc, Xc](t)
}
.

From the Itô formula for continuous processes, we know that

dY (t) = Y (t)dXc(t) = Y (t−)dXc(t).

Next, we define K(t) = 1 for t between 0 and the time of the first jump of X, and we set

K(t) =
∏

0<s≤t
(1 + ∆X(s))

for t greater than or equal to the first jump time of X. The process K(t) is a pure jump pro-
cess, and ZX(t) = Y (t)K(t). If X has a jump at time t, then K(t) = K(t−) (1 + ∆X(s)).
Then,

∆K(t) = K(t)−K(t−) = K(t)∆X(t).

Because Y (t) is continuous and K(t) is a pure jump process, [Y,K](t) = 0. We use Itô
product rule for jump processes to obtain

ZX(t) = Y (t)K(t)

= Y (0) +
∫ t

0
K(s−)dY (s) +

∫ t

0
Y (s−)dK(s)

= 1 +
∫ t

0
Y (s−)K(s−)dXc(s) +

∑
0<s≤t

Y (s−)K(s−)∆X(s)

= 1 +
∫ t

0
Y (s−)K(s−)dX(s)

= 1 +
∫ t

0
ZX(s−)dX(s).

This is (2.4.11).
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2.3 Mathematical modeling of euro-denominated life
insurance

To make the ideas of the life insurance business transparent, we introduce the risk
process employing two basic processes following the survey of [Paulsen, 2008], i.e.,
· a basic risk process X with X0 = 0,
· a return on investment generating process R with R0 = 0.

Suppose that the basic risk process of an insurance company can be described by the
process X = (Xt)t≥0 such that

Xt = aXt+ σXWt +
Nt∑
k=1

Zk. (2.3.0.1)

with aX 6= 0, σX 6= 0, and t ≥ 0, where W = (Wt)t≥0 is a standard Brownian Motion,
N = (Nt)t≥0 is a nonnegative integer-valued Poisson process with intensity λ, and Zk =
(Zk)k∈N , a sequence of independent and identically distributed random variables with
mean E[Zk] = βZ and finite variance V ar(Zk) = σ2

Z . We suppose that W, N and (Zk)k∈N
are independent.

In this modelization, aX is the premium rate, i.e., the amount paid by the policyholders
to the life insurers over a period of time, λ is the intensity of the Poisson process, βZ is
the average size of withdrawals by the policyholders, σ2

Z is the variance of withdrawals,
while σX represents fluctuations in premium income and maybe also small withdrawals.

The life insurance business in France has been developing prosperously and smoothly
for most of its history. Households have invested massively in euro-denominated funds.
And the withdrawals were not so numerous before the 2010s. In such a situation, the basic
risk process does not incorporate the compound Poisson process, and (Xt)t≥0 is simply
given by

Xt = aXt+ σXWt.

Suppose that the log price of the risky asset R = (Rt)t≥0 corresponds to a Black-Scholes
model: for t > 0,

dRt = aRdt+ σRdBt,

with R0 = 0, where aR is a constant, describing the drift; σR > 0 is a constant, describing
the volatility; B = (Bt)t≥0 is a standard Brownian Motion independent of (Xt)t≥0. Here,
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the log is understood as the stochastic logarithm, i.e., the process such that the price is
the Doléans-Dade’s exponential of (Rt)t≥0.

The life insurance company invests the proportion (1− γ) in a risk-free asset with an
interest rate of r ≥ 0 and the proportion (0 < γ < 1) in a risky asset with a log price of
this asset of Rt, so that the aggregated risk process (Yt)t≥0 of this company verifies: for
t > 0:

dYt = dXt + (1− γ)Ytrdt+ γYtdRt, (2.3.0.2)

with Y0 = y, corresponds to the initial capital of an insurance company. 0 < γ < 1 means
short selling is not allowed, and the portfolio is self-financing.

Then, the return on investment generating process is

R
(γ)
t = [γaR + (1− γ)r]t+ γσRBt.

To give the expressions of the aggregated risk process, we introduce

µγ = γaR + (1− γ)r, (2.3.0.3a)
σγ = γσR, (2.3.0.3b)

Then, we have
R

(γ)
t = µγt+ σγBt. (2.3.0.3c)

Therefore, (2.3.0.2) is equivalent to:

dYt = dXt + YtdR
(γ)
t . (2.3.0.4)

As known, the solution of (2.3.0.4) is given by [Paulsen, 1996] (Theorem 11.3):

Y
(γ)
t = E(R(γ))t

[
y +

∫ t
0

dXs
E(R(γ))s

]
,

where E(R(γ)) is Doléans-Dade’s exponential,

E(R(γ))t = exp
(
µγt+ σγBt −

1
2σ

2
γt
)
.

In the case when γ = 0, which means a completely risk-free investment,

Y
(0)
t = exp(rt)

[
y +

∫ t
0

dXs
exp(rs)

]
.

The rest of this section is to give the expressions for the expectation, E, and the
variance, V ar, of the income of the insurance company with investment in three cases.

86



Analysis of Life Insurance Contracts via Mathematical Modeling

In Case 1 and Case 1bis, we consider the situation of one risky asset and multiple risky
assets, respectively, when the basic risk process is modeled by Brownian Motion with a
drift; in Case 2 and Case 2bis, we consider the situation of one risky asset and multiple
risky assets, respectively, when the basic risk process is modeled by the sum of a Brownian
Motion and a compound Poisson process; in General Case, we consider the situation of
one risky asset when X = (Xt)t≥0 and R = (Rt)t≥0 are both Lévy Processes, respectively.

2.3.1 Case 1: One Risky Asset Modeled by Brownian Motion

In this case, we suppose the insurance business process, X and the investment gener-
ating process, R are modeled by two independent Brownian Motions.

Xt = aXt+ σXWt,

and
Rt = aRt+ σRBt.

We remind that this case corresponds to large investments in euro-denominated funds
and small and regular withdrawals (without significant impact on the insurance business)
under the development of the life insurance market, as it has been observed during a very
long period in France. We assume the possibility to invest in one risk-free and one risky
asset 2. Then, we derive the formulas for the expectation and the variance of the income
of a life insurance company.

2.3.1.1 Expectation of the income of a life insurance company

In this subsection, we show that the expectation of the income of the insurance company
is a function of µγ, t, y and aX , given below.

Proposition 2.3.1. For 0 < γ < 1, t ≥ 0 and µγ 6= 0:

E
[
Y

(γ)
t (y)

]
= eµγt

(
y + aX

µγ

)
− aX
µγ
, (2.3.1.1)

where µγ is defined in (2.3.0.3a). If µγ = 0, then

E
[
Y

(γ)
t (y)

]
= y + aXt.

2. Case 1bis and Case 2bis discuss multiple risky assets in investment.
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Proof. First, we calculate conditional expectation of Yt conditionally to E(R(γ))t = ht.
Namely, we show that:

E
[
Y

(γ)
t (y)

∣∣∣∣∣E (R(γ)
)

0≤s≤t
= (hs)0≤s≤t

]
= ht

(
y + aX

∫ t

0

ds

hs

)
. (2.3.1.2)

Since W and B are independent Brownian Motions, and hence, R(γ) and X are indepen-
dent,

E
[
Y

(γ)
t (y)

∣∣∣∣∣E (R(γ)
)

0≤s≤t
= (hs)0≤s≤t

]
= ht

(
y + E

∫ t

0

dXs

hs

)
. (2.3.1.3)

Taking into account the expression for Xt in Case 1 :
∫ t

0

dXs

hs
= aX

∫ t

0

ds

hs
+ σX

∫ t

0

dWs

hs
. (2.3.1.4)

We note that (
∫ t

0
dWs

hs
) is a local martingale, and by localisation procedure, we show that:

E
(∫ t

0

dWs

hs

)
= 0. (2.3.1.5)

From (2.3.1.3), (2.3.1.4) and (2.3.1.5) we get (2.3.1.2).
We know from the properties of conditional expectation that:

E
[
Y

(γ)
t (y)

]
= E

{
E
[
Y

(γ)
t (y)

∣∣∣∣∣E (R(γ)
)

0≤s≤t
= (hs)0≤s≤t

]}
.

So, we have:

E
[
Y

(γ)
t (y)

]
= E

[
E(R(γ))t

(
y + aX

∫ t

0

ds

E(R(γ))s

)]

= y E
[
E(R(γ))t

]
+ aX E

[∫ t

0

E(R(γ))tds
E(R(γ))s

]
.

(2.3.1.6)

Now, for the first part of (2.3.1.6)

E
[
E(R(γ))t

]
= E

[
exp

(
µγt+ σγBt −

1
2σ

2
γt
)]

= exp (µγt) , (2.3.1.7)

since E
[
exp

(
σγBt − 1

2σ
2
γ

)]
= 1.

For the second part of (2.3.1.6) we get:
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E
[∫ t

0

E(R(γ))tds
E(R(γ))s

]

=E
{∫ t

0
exp

[
(µγ(t− s) + σγ(Bt −Bs)−

1
2σ

2
γ(t− s)

]}
.

It is known that there is equality in law (Bt −Bs)0≤s≤t
L= (Bt−s)0≤s≤t, so that doing time

change u = t− s we have:

E
[∫ t

0

E(R(γ))tds
E(R(γ))s

]
= E

[∫ t

0
exp

(
µγu+ σγBu −

1
2σ

2
γu
)
du
]
.

Using Fubini Theorem, we exchange the expectation and integration over [0, t] and since

E
[
exp

(
µγu+ σγBu −

1
2σ

2
γu
)]

= exp (µγu) ,

we get:

E
[∫ t

0

E(R(γ))tds
E(R(γ))s

]
=
∫ t

0
exp(µγu)du.

During financial crisis or even more extreme market conditions, for instance, when aR ≤
0 ≤ r, there will be one allocation that µγ = γaR + (1 − γ)r = 0. Then, there should be
two expressions for E

[∫ t
0
E(R(γ))tds
E(R(γ))s

]
:

E
[∫ t

0

E(R(γ))tds
E(R(γ))s

]
=


eµγu

µγ

∣∣∣∣∣
t

0
= eµγt−1

µγ
, if µγ 6= 0,

t, if µγ = 0.
(2.3.1.8)

Finally, from (2.3.1.6), (2.3.1.7) and (2.3.1.8):

E
[
Y

(γ)
t (y)

]
=
 eµγt

(
y + aX

µγ

)
− aX

µγ
, if µγ 6= 0,

y + aXt, if µγ = 0.
(2.3.1.9)

Discussion 1:
As we can see in (2.3.1.9), the basic variables that influence the expectation of the income
of the insurance company are: initial capital y, premium rate aX and investment return
µγ.
The question is now how the expectation of the income depends on µγ, y and aX .
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The impact of each variable on E[Y (γ)
t (y)], keeping others unchanged:

• initial capital y,
∂ E

[
Y

(γ)
t (y)

]
∂y

=
 eµγt, if µγ 6= 0

1, if µγ = 0

The impact of y on E[Y (γ)
t (y)] is positive. The expected income of the life insurance

company will increase following a rise in the initial capital.
• premium rate aX ,

∂ E
[
Y

(γ)
t (y)

]
∂aX

=


eµγt−1
µγ

, if µγ 6= 0
t, if µγ = 0

The impact of aX on E[Y (γ)
t (y)] is positive if µγ > 0. When the premiums in the insurance

business increase, life insurers can generate more income when the investment rate of
return is positive.
• investment return µγ,

∂ E
[
Y

(γ)
t (y)

]
∂µγ

=
 yeµγtt+ aX

(µγt−1)eµγt+1
µ2
γ

, if µγ 6= 0
0, if µγ = 0

We know that yeµγtt > 0. Moreover, for aX (µγt−1)eµγt+1
µ2
γ

, we obtain as follows.
For µγ 6= 0, we have:
- when µγ > 0,
if µγt− 1 ≥ 0, then t ≥ 1

µγ
and aX

(µγt−1)eµγt+1
µ2
γ

> 0;
if µγt − 1 < 0, then 0 < µγt < 1, 0 < t < 1

µγ
, and 1 < eµγt < e, we have −1 <

(µγt− 1) eµγt < 0, 0 < (µγt− 1) eµγt + 1 < 1, so aX (µγt−1)eµγt+1
µ2
γ

> 0;
- when µγ < 0, (which means investment loss), then µγt < 0, (µγt− 1) < −1, and 0 <
eµγt < 1, we have −1 < (µγt− 1) eµγt < 0, 0 < (µγt− 1) eµγt + 1 < 1, so aX (µγt−1)eµγt+1

µ2
γ

>

0;
Hence, the impact of µγ on E[Y (γ)

t (y)] is positive, if the investment rate of return, µγ is
non-zero.
When µγ = 0, there is no relation between µγ and E[Y (γ)

t (y)], which means the expectation
of the income is the sum of initial capital and premiums, without any investment profit.
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2.3.1.2 Variance of the income of a life insurance company

In this subsection, we give the expression for the variation of the risk process, as a
function of y, aX , σX , µγ and σγ and hence, as a function of γ.

Proposition 2.3.2. For 0 < γ < 1 and t ≥ 0,
when µγ 6= 0, µγ + σ2

γ 6= 0 and 2µγ + σ2
γ 6= 0:

V ar
[
Y

(γ)
t (y)

]
= y2

[
e(2µγ+σ2

γ)t − e2µγt
]

+ 2aXy
µγ

[
e(2µγ+σ2

γ)t − e2µγt
]
− σ2

γ (e2µγt − eµγt)

µ2
γ + µγσ2

γ

(2.3.1.10)

+ 2a2
X

e(2µγ+σ2
γ)t − eµγt

µ2
γ + µγσ2

γ

+ 1− e(2µγ+σ2
γ)t

2µ2
γ + µγσ2

γ

− e2µγt − 2eµγt + 1
2µ2

γ


+ σ2

X

e(2µγ+σ2
γ)t − 1

2µγ + σ2
γ

;

when µγ = 0:

V ar
[
Y

(γ)
t (y)

]
=y2

(
eσ

2
γt − 1

)
+ 2aXy

eσ
2
γt − 1− σ2

γt

σ2
γ

+ a2
X

2eσ2
γt − 1−

(
σ2
γt+ 1

)2

σ4
γ

+ σ2
X

eσ
2
γt − 1
σ2
γ

,

(2.3.1.11)

where µγ and σγ are defined in (2.3.0.3a) and (2.3.0.3b).

Before proving Proposition 2.3.2, we propose and prove Lemma 2.3.1.

Lemma 2.3.1. Suppose that (gt)t≥0 is a deterministic continuous function verifying the
integral equation

gt = g0 + ft + k
∫ t

0
gsds, (2.3.1.12)

with differentiable deterministic function (ft)t≥0. Then

gt = ekt
(
g0 +

∫ t

0
e−ksf

′

sds
)
. (2.3.1.13)
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Proof. The relation in (2.3.1.12) is equivalent to:

g
′

t = f
′

t + kgt, g0 = 0. (2.3.1.14)

Differenting (2.3.1.13) we get (2.3.1.14). And since the solution of the equation is unique,
the result claimed follows.

Proof. We know that:

V ar
[
Y

(γ)
t (y)

]
= E

{[
Y

(γ)
t (y)

]2}
−
{
E
[
Y

(γ)
t (y)

]}2
.

From Proposition 2.3.1, it follows that it remains to calculate E
{[
Y

(γ)
t (y)

]2}
. We do this

calculus using the Itô Formula (Theorem 2.2.3.2). To avoid the complicated notations,
we omit for a moment the index (γ). From (2.3.0.2), (2.3.0.3c), (2.3.0.4) and Case 1 it
follows that:

dYt = aXdt+ σXdWt + Ytµγdt+ YtσγdBt. (2.3.1.15)

The Ito Formula with the function f(x) = x2 gives:

Y 2
t = Y 2

0 + 2
∫ t

0
YsdYs + 1

2

∫ t

0
2d〈Y c〉s,

where Y c is the continuous martingale part of the process Y , and 〈Y c〉 is the predictable
quadratic variation of Y c. Since Y 2

0 = y2 and (2.3.1.14) we get:

Y 2
t =y2 + 2aX

∫ t

0
Ysds+ 2σX

∫ t

0
YsdWs + 2µγ

∫ t

0
Y 2
s ds

+ 2σγ
∫ t

0
Y 2
s dBs + 〈Y c〉t.

(2.3.1.16)

Since 〈Y c〉t = 〈σX
∫ t

0 dWs + σγ
∫ t

0 YsdBs〉, with independent W and B, we get

〈Y c〉t = σ2
Xt+ σ2

γ

∫ t

0
Y 2
s ds. (2.3.1.17)

Let τn= inf {t ≥ 0 :| Yt |> n} with inf {∅} = +∞. Then
(∫ t∧τn

0 YsdWs

)
t≥0

and
(∫ t∧τn

0 Y 2
s dBs

)
t≥0

are local martingales. It implies that there exists a sequence of stopping times (sn)n≥1 go-
ing to +∞ such that

(∫ t∧τn∧sn
0 YsdWs

)
t≥0

and
(∫ t∧τn∧sn

0 Y 2
s dBs

)
t≥0

are martingales.
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We put τ ′n = τn ∧ sn, then from (2.3.1.16) and (2.3.1.17):

Y 2
t∧τ ′n

=y2 + 2aX
∫ t∧τ ′n

0
Ysds+ 2σX

∫ t∧τ ′n

0
YsdWs + 2µγ

∫ t∧τ ′n

0
Y 2
s ds

+ 2σγ
∫ t∧τ ′n

0
Y 2
s dBs + σ2

X

(
t ∧ τ ′n

)
+ σ2

γ

∫ t∧τ ′n

0
Y 2
s ds.

(2.3.1.18)

We take the mathematical expectation in (2.3.1.18), and since
(∫ t∧τ ′n

0 YsdWs

)
t≥0

and(∫ t∧τ ′n
0 Y 2

s dBs

)
t≥0

are martingales, we get that:

E
[
Y 2
t∧τ ′n

]
=y2 + 2aX

∫ t∧τ ′n

0
Ysds+ 2µγ

∫ t∧τ ′n

0
Y 2
s ds

+ σ2
X

(
t ∧ τ ′n

)
+ σ2

γ

∫ t∧τ ′n

0
Y 2
s ds.

(2.3.1.19)

Since Ys ≥ 0, we can do limit passage, lim
n→+∞

, in each term in the right-hand side by

Lebesgue’s Monotone Convergence Theorem. We prove that
[
Y 2
t∧τ ′n

]
n∈N

is uniformly inte-
grable and we pass to the limit in the left-hand side.
This gives using Fubini Theorem that:

E
(
Y 2
t

)
= y2 + 2aX

∫ t

0
E (Ys) ds+ 2µγ

∫ t

0
E
(
Y 2
s

)
ds+ σ2

Xt+ σ2
γ

∫ t

0
E
(
Y 2
s

)
ds.

We get with
gt = E

(
Y 2
t

)
,

ft = 2aX
∫ t

0
E (Ys) ds+ σ2

Xt,

and
k = 2µγ + σ2

γ,

from Proposition 2.3.1 and Lemma 2.3.1 that:

E
(
Y 2
t

)
= e(2µγ+σ2

γ)t
{
y2 +

∫ t

0
e−(2µγ+σ2

γ)s [2aX E (Ys) + σ2
X

]
ds
}
. (2.3.1.20)
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When µγ 6= 0, the integral part in the right-hand side of (2.3.1.20) is:
∫ t

0
e−(2µγ+σ2

γ)s [2aX E (Ys) + σ2
X

]
ds

=
∫ t

0
e−(2µγ+σ2

γ)s
[
2aX

(
yeµγs + aX

eµγs − 1
µγ

)
+ σ2

X

]
ds

=
∫ t

0

[
2aXye−(µγ+σ2

γ)s + 2a2
X

µγ
e−(µγ+σ2

γ)s

+
(
σ2
X −

2a2
X

µγ

)
e−(2µγ+σ2

γ)s
]
ds (2.3.1.21)

=
−2aXy

e−(µγ+σ2
γ)t

µγ + σ2
γ

∣∣∣∣∣
t

0

+
−2a2

X

µγ

e−(µγ+σ2
γ)t

µγ + σ2
γ

∣∣∣∣∣
t

0


+
−(σ2

X −
2a2

X

µγ

)
e−(2µγ+σ2

γ)t

2µγ + σ2
γ

∣∣∣∣∣
t

0


=2aX

(
y + aX

µγ

)
1− e−(µγ+σ2

γ)t

µγ + σ2
γ

+
(
σ2
X −

2a2
X

µγ

)
1− e−(2µγ+σ2

γ)t

2µγ + σ2
γ

.

This gives, when µγ 6= 0 the following relation

E
(
Y 2
t

)
=e(2µγ+σ2

γ)t
y2 + 2aX

(
y + aX

µγ

)
1− e−(µγ+σ2

γ)t

µγ + σ2
γ

+
(
σ2
X −

2a2
X

µγ

)
1− e−(2µγ+σ2

γ)t

2µγ + σ2
γ

 (2.3.1.22)

=y2e(2µγ+σ2
γ)t + 2aX

(
y + aX

µγ

)
e(2µγ+σ2

γ)t − eµγt
µγ + σ2

γ

+
(
σ2
X −

2a2
X

µγ

)
e(2µγ+σ2

γ)t − 1
2µγ + σ2

γ

.
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When µγ = 0, the integral part in the right-hand side of (2.3.1.20) is:
∫ t

0
e−(2µγ+σ2

γ)s [2aX E (Ys) + σ2
X

]
ds

=
∫ t

0
e−σ

2
γs
[
2aX (y + aXs) + σ2

X

]
ds

=
∫ t

0

(
2aXye−σ

2
γs + 2a2

Xse
−σ2

γs + σ2
Xe
−σ2

γs
)
ds

=− 2aXy
e−σ

2
γt

σ2
γ

∣∣∣∣∣
t

0
− 2a2

X

e−σ
2
γt
(
σ2
γt+ 1

)
σ4
γ

∣∣∣∣∣
t

0
− σ2

X

e−σ
2
γt

σ2
γ

∣∣∣∣∣
t

0

=2aXy
1− e−σ2

γt

σ2
γ

+ 2a2
X

1− e−σ2
γt − σ2

γte
−σ2

γt

σ4
γ

+ σ2
X

1− e−σ2
γt

σ2
γ

.

(2.3.1.23)

This gives, when µγ = 0:

E
(
Y 2
t

)
=eσ2

γt

y2 + 2aXy
1− e−σ2

γt

σ2
γ

+ 2a2
X

1− e−σ2
γt − σ2

γte
−σ2

γt

σ4
γ

+σ2
X

1− e−σ2
γt

σ2
γ

)
(2.3.1.24)

=y2eσ
2
γt + 2aXy

eσ
2
γt − 1
σ2
γ

+ 2a2
X

eσ
2
γt − 1− σ2

γt

σ4
γ

+ σ2
X

eσ
2
γt − 1
σ2
γ

.

For the calculation of [E (Yt)]2 by Proposition 2.3.1, when µγ 6= 0:

[E (Yt)]2 =
[
eµγt(y + aX

µγ
)− aX

µγ

]2

= e2µγt
(
y2 + 2yaX

µγ
+ a2

X

µ2
γ

)
− 2eµγtaX

µγ

(
y + aX

µγ

)
+ a2

X

µ2
X

= y2e2µγt + 2aXy
e2µγt − eµγt

µγ
+ a2

X

e2µγt − 2eµγt + 1
µ2
γ

;

(2.3.1.25)

when µγ = 0:
[E (Yt)]2 = (y + aXt)2

= y2 + 2aXyt+ a2
Xt

2.
(2.3.1.26)
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We take back the notations of the index (γ).
When µγ 6= 0, from (2.3.1.22) and (2.3.1.25), we finally have:

V ar
[
Y

(γ)
t (y)

]
=E

{[
Y

(γ)
t (y)

]2}
−
{
E
[
Y

(γ)
t (y)

]}2

=
y2e(2µγ+σ2

γ)t + 2aX
(
y + aX

µγ

)
e(2µγ+σ2

γ)t − eµγt
µγ + σ2

γ

+
(
σ2
X −

2a2
X

µγ

)
e(2µγ+σ2

γ)t − 1
2µγ + σ2

γ


−
[
y2e2µγt + 2aXy

e2µγt − eµγt

µγ
+ a2

X

e2µγt − 2eµγt + 1
µ2
γ

]
(2.3.1.27)

=y2
[
e(2µγ+σ2

γ)t − e2µγt
]

+ 2aXy
µγ

[
e(2µγ+σ2

γ)t − e2µγt
]
− σ2

γ (e2µγt − eµγt)

µ2
γ + µγσ2

γ

+ 2a2
X

e(2µγ+σ2
γ)t − eµγt

µ2
γ + µγσ2

γ

+ 1− e(2µγ+σ2
γ)t

2µ2
γ + µγσ2

γ

− e2µγt − 2eµγt + 1
2µ2

γ


+ σ2

X

e(2µγ+σ2
γ)t − 1

2µγ + σ2
γ

;

When µγ = 0, from (2.3.1.24) and (2.3.1.26), we have:

V ar
[
Y

(γ)
t (y)

]
=E

{[
Y

(γ)
t (y)

]2}
−
{
E
[
Y

(γ)
t (y)

]}2

=
y2eσ

2
γt + 2aXy

eσ
2
γt − 1
σ2
γ

+ 2a2
X

eσ
2
γt − 1− σ2

γt

σ4
γ

+ σ2
X

eσ
2
γt − 1
σ2
γ

 (2.3.1.28)

−
(
y2 + 2aXyt+ a2

Xt
2
)

=y2
(
eσ

2
γt − 1

)
+ 2aXy

eσ
2
γt − 1− σ2

γt

σ2
γ

+ a2
X

2eσ2
γt − 1−

(
σ2
γt+ 1

)2

σ4
γ

+ σ2
X

eσ
2
γt − 1
σ2
γ

.
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Discussion 2:

As we can see in (2.3.1.27) and (2.3.1.28), there are more parameters that influence the
variance of the income of the insurance company compared with those in the expectation
of the income of the insurance company: initial capital y, risky remuneration aR, risk-
less interest rate r, volatility of risky investment σR, premium rate aX , fluctuations in
premium income σX and time t.
The impact of each variable on V ar

[
Y

(γ)
t (y)

]
, keeping others unchanged:

• initial capital y,
when µγ 6= 0,

∂V ar
[
Y

(γ)
t (y)

]
∂y

=2y
[
e(2µγ+σ2

γ)t − e2µγt
]

+ 2aX
µγ

[
e(2µγ+σ2

γ)t − eµγt
]
− σ2

γ (e2µγt − eµγt)

µ2
γ + µγσ2

γ

,

and it is an increasing linear function of y. So, for sufficiently big y, the relation between
V ar

[
Y

(γ)
t (y)

]
and y will be positive;

when µγ = 0,

∂V ar
[
Y

(γ)
t (y)

]
∂y

= 2y
(
eσ

2
γt − 1

)
+ 2aX

eσ
2
γt − 1− σ2

γt

σ2
γ

> 0,

the impact of y on V ar
[
Y

(γ)
t (y)

]
is positive, because σγ > 0 by our assumption.

In general, the greater the initial capital investment, the higher the corresponding vari-
ance in the income of a life insurance company, regardless of its investment result.
• premium rate aX and fluctuations in premium income σX in the risk process Xt,
when µγ 6= 0,

∂V ar
[
Y

(γ)
t (y)

]
∂aX

=2y
µγ

[
e(2µγ+σ2

γ)t − eµγt
]
− σ2

γ (e2µγt − eµγt)

µ2
γ + µγσ2

γ
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+ 4aX

e(2µγ+σ2
γ)t − eµγt

µ2
γ + µγσ2

γ

+ 1− e(2µγ+σ2
γ)t

2µ2
γ + µγσ2

γ

− e2µγt − 2eµγt + 1
2µ2

γ

 ,
∂V ar

[
Y

(γ)
t (y)

]
∂σX

= 2σX
e(2µγ+σ2

γ)t − 1
2µγ + σ2

γ

> 0,

when µγ = 0,

∂V ar
[
Y

(γ)
t (y)

]
∂aX

= 2y
eσ

2
γt − 1− σ2

γt

σ2
γ

+ 2aX
2eσ2

γt − 1−
(
σ2
γt+ 1

)2

σ4
γ

> 0,

∂V ar
[
Y

(γ)
t (y)

]
∂σX

= 2σX
eσ

2
γt − 1
σ2
γ

> 0.

When µγ 6= 0, the relation between aX and V ar
[
Y

(γ)
t (y)

]
is not clear; when µγ = 0,

the impact of aX on V ar
[
Y

(γ)
t (y)

]
is positive, and the impact of σX on V ar

[
Y

(γ)
t (y)

]
is

positive.
• investment return µγ and the volatility of the risky investment σR, since the two deriva-
tives are complicated, we do not list the formulas. Both relations are not clear.

Remark 2.3.1. As we can see, the impacts of y and aX on E[Y (γ)
t (y)] are both positive,

while the impacts of y and aX on V ar
[
Y

(γ)
t (y)

]
are not clear when µγ 6= 0.

The reason for this situation can be explained as when the initial investment or the pre-
mium rate increases, the expectation of the income of the insurance company increases, the
uncertainty of the variance of the income also increases, however, it is not clear whether
the variance increases, decreases, or remains unchanged.
In other words, increasing the initial investment or the premium rate does not necessarily
lead to a higher Sharpe ratio [Sharpe, 1994].

2.3.2 Case 1bis: Multiple Risky Assets Modeled by Brownian
Motion

In this modelization, we suppose that there are multiple risky assets in risky investment.

Let n ∈ N∗ be the number of risky assets. We model the log prices of the risky assets by
dependent Brownian Motions

(
B

(i)
t

)
t≥0

with drafts:

R
(i)
t = a

(i)
R t+ σ

(i)
R B

(i)
t , 1 ≤ i ≤ n.
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We denote by C the covariance matrix of n-dimensional Brownian Motion
(−→
Bt

)
t≥0

, −→Bt =(
B

(1)
t , B

(2)
t , ..., B

(n)
t

)>
,

C = (ci,j)1≤i≤n
1≤j≤n

=



c11, · · · , c1j, · · · , c1n
... . . . ... ... ...
ci1,

..., cij,
..., cin

... ... ... . . . ...
cn1, · · · , cnj, · · · , cnn


,

with ci,i = V ar
(
B

(i)
1

)
=
(
σ(i)

)2
, ci,j = cov

(
B

(i)
1 , B

(j)
1

)
.

In this case Y (γ)
t satisfies the equation:

dY
(γ)
t = dXt + Y

(γ)
t (1− γ)rdt+ Y

(γ)
t

n∑
i=1

γidR
(i)
t , (2.3.2.1)

where γ = γ1 + γ2 + ... + γn and (γi)1≤i≤n are the proportions of the investment in i-th
risky asset.
From the properties of Brownian Motion,

(∑n
i=1 γiR

(i)
t

)
t≥0

is Brownian Motion with the
drift

a
(γ)
R =

n∑
i=1

γia
(i)
R ,

and the variance is

(
σ

(γ)
R

)2
= 〈C−→γ ,−→γ 〉 =

n∑
i=1

n∑
j=1

γiγjσ
(i)
R σ

(j)
R ci,j, (2.3.2.2)

where −→γ = (γ1, γ2, ..., γn)T , and 〈·, ·〉 is the scalar product.
Then (2.3.2.1) is equivalent to:

dY
(γ)
t = dXt + Y

(γ)
t dR

(γ)
t , (2.3.2.3)

where
R

(γ)
t =

[
(1− γ)r + a

(γ)
R

]
t+ σ

(γ)
R Bt,

and (Bt)t≥0 is a new Brownian Motion obtained by linear combination of the previous
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Brownian Motions B(i), 1 ≤ i ≤ n.
More precisely, there is equality in law,(

n∑
i=1

γiσ
(i)
R B

(i)
t

)
t≥0

L=
(
σ(γ)Bt

)
t≥0

,

which provides the equality of all characteristics of the processes, in particular, the equality
of two moments at fixed t = T .
To simplify the notations, let

µγ = (1− γ)r + a
(γ)
R , (2.3.2.4a)

σγ = σ
(γ)
R , (2.3.2.4b)

Then:
R

(γ)
t = µγt+ σγBt. (2.3.2.4c)

Finally, by the same reasoning as in the proofs of Proposition 2.3.1 and Proposition
2.3.2 in Case 1, we obtain the expressions for the expectation and variance of the income
of a life insurance company when there are multiple risky assets in risky investment.

Proposition 2.3.3. For 0 < γ < 1 and t ≥ 0,
when µγ 6= 0:

E
[
Y

(γ)
t (y)

]
= eµγt

(
y + aX

µγ

)
− aX
µγ
, (2.3.2.5)

if in addition µγ + σ2
γ 6= 0, 2µγ + σ2

γ 6= 0, then

V ar
[
Y

(γ)
t (y)

]
=y2

[
e(2µγ+σ2

γ)t − e2µγt
]

+ 2aXy
µγ

[
e(2µγ+σ2

γ)t − e2µγt
]
− σ2

γ (e2µγt − eµγt)

µ2
γ + µγσ2

γ

+ 2a2
X

e(2µγ+σ2
γ)t − eµγt

µ2
γ + µγσ2

γ

+ 1− e(2µγ+σ2
γ)t

2µ2
γ + µγσ2

γ

− e2µγt − 2eµγt + 1
2µ2

γ


+ σ2

X

e(2µγ+σ2
γ)t − 1

2µγ + σ2
γ

;

(2.3.2.6)
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when µγ = 0, we get:
E
[
Y

(γ)
t (y)

]
= y + aXt, (2.3.2.7)

V ar
[
Y

(γ)
t (y)

]
=y2

(
eσ

2
γt − 1

)
+ 2aXy

eσ
2
γt − 1− σ2

γt

σ2
γ

+ a2
X

2eσ2
γt − 1−

(
σ2
γt+ 1

)2

σγ4 + σ2
X

eσ
2
γt − 1
σ2
γ

;

(2.3.2.8)

where µγ and σγ is defined in (2.3.2.4a) and (2.3.2.4b).

2.3.3 Case 2: One Risky Asset, when (Xt)t≥0 is Modeled by the
sum of a Brownian Motion and a compound Poisson pro-
cess

Here we suppose that the basic risk process is described in (2.3.0.1):

Xt = aXt+ σXWt +Qt, (2.3.3.1)

where (Qt)t∈R+ is the compound Poisson process,

Qt =
Nt∑
k=1

Zk,

with Nt, a nonnegative integer-valued Poisson process with intensity λ, and (Zk)k∈N , a
sequence of independent and identically distributed random variables with mean E[Zk] =
βZ and finite variance V ar(Zk) = σ2

Z . Suppose that Nt is independent of the sequence
(Zk)k∈N . Then, from Theorem 2.2.4.4 in Section 2.2.4, we have

E(Qt) = E
(
Nt∑
n=1

Zk

)
= λβZt, (2.3.3.2)

and
V ar(Qt) = V ar

(
Nt∑
n=1

Zk

)
= λβ2

Zt+ λσ2
Zt. (2.3.3.3)

For the compound Poisson process (Qt), λ, βZ , and σ2
Z represent the intensity of the

Poisson process, the mean of withdrawal sizes, and the variance of withdrawals in the
basic insurance business, respectively.
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2.3.3.1 Expectation of the income of a life insurance company

In this subsection, we show that the expectation of the income of the insurance com-
pany is a function of µγ, t, y, aX , λ and βZ , given below.

Proposition 2.3.4. For 0 < γ < 1 and t ≥ 0 :

E
[
Y

(γ)
t (y)

]
=
 eµγt

(
y + aX+λβZ

µγ

)
− aX+λβZ

µγ
, if µγ 6= 0,

y + (aX + λβZ) t, if µγ = 0,
(2.3.3.4)

where µγ is defined in (2.3.0.3a), and E is mathematical expectation.

Proof. First, we calculate conditional expectation of Yt conditionally to E(R(γ))t = ht.
Namely, we show that:

E
[
Y

(γ)
t (y)

∣∣∣∣∣E (R(γ)
)

0≤s≤t
= (hs)0≤s≤t

]

=ht
[
y + (aX + λβZ)

∫ t

0

ds

hs

]
.

(2.3.3.5)

Since W and B are independent Brownian Motions, W , N and (Zk)k∈N are independent,
and hence, R(γ) and X are independent,

E
[
Y

(γ)
t (y)

∣∣∣∣∣E (R(γ)
)

0≤s≤t
= (hs)0≤s≤t

]
= ht

(
y + E

∫ t

0

dXs

hs

)
. (2.3.3.6)

Taking into account (2.3.3.1), and from (2.3.3.2) we have:

E
(∫ t

0

dXs

hs

)
= E

(
aX

∫ t

0

ds

hs

)
+ E

(
σX

∫ t

0

dWs

hs

)
+ E

(∫ t

0

dQs

hs

)
. (2.3.3.7)

We note that
∫ t

0
dWs

hs
is a local martingale, and by localisation procedure, we show that:

E
(
σX

∫ t

0

dWs

hs

)
= 0. (2.3.3.8)

The property of Q implies that

E
(∫ t

0

dQs

hs

)
= λβZ

∫ t

0

ds

hs
. (2.3.3.9)
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From the Case 1 and the relation in (2.3.3.5), we conclude substituting aX by ax + λβZ ,
then the expectation in this case is:

E
[
Y

(γ)
t (y)

]
=
 eµγt

(
y + aX+λβZ

µγ

)
− aX+λβZ

µγ
, if µγ 6= 0,

y + (aX + λβZ) t, if µγ = 0.
(2.3.3.10)

Discussion 3:

As we compared the two expressions of the expectation of the income of the insurance
companies between (2.3.3.10) in Case 2 and (2.3.1.9) in Case 1, the difference is that the
expectation of the income also depends on the intensity of the Poisson process λ, and the
mean of withdrawal sizes βZ . The impact of each variable on E

[
Y

(γ)
t (y)

]
, keeping others

unchanged:
• the intensity of the Poisson process λ,

∂ E
[
Y

(γ)
t (y)

]
∂λ

=


βZ(eµγt−1)
µγ

, if µγ 6= 0
t, if µγ = 0

when βZ < 0 and µγ > 0, the impact of λ on E[Y (γ)
t (y)] is negative,

when βZ = 0, there is no relation between λ and E[Y (γ)
t (y)],

when βZ > 0 and µγ > 0, the impact of λ on E[Y (γ)
t (y)] is positive;

• the mean of withdrawal sizes βZ ,

∂ E
[
Y

(γ)
t (y)

]
∂βZ

=


λ(eµγt−1)
µγ

, if µγ 6= 0
t, if µγ = 0

the impact of βZ on E[Y (γ)
t (y)] is positive when µγ > 0, because λ > 0 by the assumption.

2.3.3.2 Variance of the income of a life insurance company

In this subsection, we give the expression for the variance of the risk process, as a
function of y, aX , σX , λ, βZ , σZ , µγ and σγ and hence, as a function of γ. We denote
aλ,β = aX +λβZ , σ2

λ,β = σ2
X +λ (β2

Z + σ2
Z) and as before µγ and σγ are defined in (2.3.0.3a)

and (2.3.0.3b).

103



Analysis of Life Insurance Contracts via Mathematical Modeling

Proposition 2.3.5. For 0 < γ < 1 and t ≥ 0,
when µγ 6= 0, µγ 6= −1

2σ
2
γ and µγ 6= −σ2

γ:

V ar
[
Y

(γ)
t (y)

]
=y2

[
e(2µγ+σ2

γ)t − e2µγt
]

+ 2aλ,βy
e(2µγ+σ2

γ)t − eµγt
µγ + σ2

γ

− e2µγt − eµγt

µγ


+ 2a2

λ,β

e(2µγ+σ2
γ)t − eµγt

µ2
γ + µγσ2

γ

+ 1− e(2µγ+σ2
γ)t

2µ2
γ + µγσ2

γ

− e2µγt − 2eµγt + 1
2µ2

γ


+ σ2

λ,β

e(2µγ+σ2
γ)t − 1

2µγ + σ2
γ

;

when µγ = −1
2σ

2
γ:

V ar
[
Y

(γ)
t (y)

]
=y2

(
1− e−σ2

γt
)

+ 4aλ,βy
e−σ

2
γt − 2e− 1

2σ
2
γt + 1

σ2
γ

+ 4a2
λ,β

σ2
γt− 3− e−σ2

γt + 4e− 1
2σ

2
γt

σ4
γ

+ σ2
λ,βt;

when µγ = −σ2
γ:

V ar
[
Y

(γ)
t (y)

]
=y2

(
e−σ

2
γt − e−2σ2

γt
)

+ 2aλ,βy

(
σ2
γt− 1

)
e−σ

2
γt + e−2σ2

γt

σ2
γ

+ a2
λ,β

1− 2σ2
γte
−σ2

γt − e−2σ2
γt

σ4
γ

+ σ2
λ,β

1− e−σ2
γt

σ2
γ

when µγ = 0:

V ar
[
Y

(γ)
t (y)

]
=y2

(
eσ

2
γt − 1

)
+ 2aλ,βy

eσ
2
γt − 1− σ2

γt

σ2
γ

+ a2
λ,β

2eσ2
γt −

(
σ2
γt+ 1

)2
− 1

σ4
γ

+ σ2
λ,β

eσ
2
γt − 1
σ2
γ

.
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Proof. We know that:

V ar
[
Y

(γ)
t (y)

]
= E

{[
Y

(γ)
t (y)

]2}
−
{
E
[
Y

(γ)
t (y)

]}2
.

From Proposition 2.3.4, it follows that it remains to calculate E
{[
Y

(γ)
t (y)

]2}
.

We omit (γ) for the simplicity of the notation.
We do the calculus using the Itô Formula from Theorem 2.2.4.7 in Section 2.2.4:

f (Y (t))

= f (Y (0)) +
∫ t

0
f ′ (Y (s)) dY c(s) + 1

2

∫ t

0
f ′′ (Y (s)) d〈Y c, Y c〉s

+
∑

0<s≤t
[f (Y (s))− f (Y (s−))] ,

(2.3.3.11)

where Y c is continuous martingale part of Y . In our case,

dY c
t = σXdWt + σγRYt−dBt.

Equation (2.3.3.11) in differential form is:

dYt = dXt + Yt−dRt

= aXdt+ σXdWt + dQt + µγYt−dt+ σγYt−dBt,
(2.3.3.12)

The Ito formula with the function f(x) = x2 in integral form gives:

Y 2
t =y2 + 2aX

∫ t

0
Ysds+ 2σX

∫ t

0
YsdWs + 2µγ

∫ t

0
Y 2
s ds

+ 2σγ
∫ t

0
Y 2
s dBs + 〈Y c〉t + [Q,Q]t + 2

∫ t

0
Ys−dQs,

(2.3.3.13)

because the last term in the right-side hand of (2.3.3.11) in our case is:

∑
0<s≤t

[
Y 2(s)− Y 2(s−)

]
=

∑
0<s≤t

[
(Y (s−) + ∆Ys)2 − (Y (s−))2

]
=

∑
0<s≤t

[(2Y (s−) + ∆Qs) · (∆Qs)]
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=
∑

0<s≤t

[
2Y (s−) ·∆Qs + (∆Qs)2

]
= [Q,Q]t + 2

∫ t

0
Ys−dQs,

and 〈Y c〉t = 〈σX
∫ t

0 dWs + σγ
∫ t

0 YsdBs〉, with independent W and B, gives

〈Y c〉t = σ2
Xt+ σ2

γ

∫ t

0
Y 2
s ds. (2.3.3.14)

Let τn= inf {t ≥ 0 :| Yt |> n} with inf {∅} = +∞. Then
(∫ t∧τn

0 YsdWs

)
t≥0

and
(∫ t∧τn

0 Y 2
s dBs

)
t≥0

are local martingales. It implies that there exists a sequence of stopping times (sn)n≥1 go-
ing to +∞ such that

(∫ t∧τn∧sn
0 YsdWs

)
t≥0

and
(∫ t∧τn∧sn

0 Y 2
s dBs

)
t≥0

are martingales.
We put τ ′n = τn ∧ sn, then from (2.3.3.13) and (2.3.3.14):

Y 2
t∧τ ′n

=y2 + 2aX
∫ t∧τ ′n

0
Ysds+ 2σX

∫ t∧τ ′n

0
YsdWs + 2µγ

∫ t∧τ ′n

0
Y 2
s ds

+ 2σγ
∫ t∧τ ′n

0
Y 2
s dBs + σ2

X

(
t ∧ τ ′n

)
+ σ2

γ

∫ t∧τ ′n

0
Y 2
s ds

+ [Q,Q]t∧τ ′n + 2
∫ t∧τ ′n

0
Ys−dQs.

(2.3.3.15)

We take mathematical expectation in (2.3.3.15), and since
(∫ t∧τ ′n

0 YsdWs

)
t≥0

and
(∫ t∧τ ′n

0 Y 2
s dBs

)
t≥0

are martingales, we get that:

E
[
Y 2
t∧τ ′n

]
=y2 + 2aX E

∫ t∧τ ′n

0
Ysds+ 2µγ E

∫ t∧τ ′n

0
Y 2
s ds+ σ2

X

(
t ∧ τ ′n

)
(2.3.3.16)

+ σ2
γ E

∫ t∧τ ′n

0
Y 2
s ds+ E [Q,Q]t∧τ ′n + 2E

∫ t∧τ ′n

0
Ys−dQs.

From Theorems 2.2.4.3 and 2.2.4.4 in Section 2.2.4, we calculate

E [Q,Q]t = E
∫ t

0

∫
R
x2 dµQ(x) = E

∫ t

0

∫
R
x2 dνQ(x, t)

= E
∫ t

0

∫
R
x2 dFZ(x)λds = V ar(Qt)

= λt
(
β2
Z + σ2

Z

)
.
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and, the integral of a continuous stochastic process with respect to the compound Poisson
process,

2E
∫ t

0
Ys−dQs = 2E

∫ t

0
Ys−

∫
R
xFZ (dx)λds

= 2λβZ
∫ t

0
E (Ys) ds.

Since Ys ≥ 0, we can do limit passage, lim
n→+∞

, in each term in the right-hand side by

Lebesgue’s Monotone Convergence Theorem. We prove that
[
Y 2
t∧τ ′n

]
n∈N

is uniformly inte-
grable and we pass to the limit in the left-hand side.
This gives using Fubini Theorem that:

E
(
Y 2
t

)
= y2 + 2aX

∫ t

0
E (Ys) ds+ 2µγ

∫ t

0
E
(
Y 2
s

)
ds+ σ2

Xt+ σ2
γ

∫ t

0
E
(
Y 2
s

)
ds

+ λt
(
β2
Z + σ2

Z

)
+ 2λβZ

∫ t

0
E (Ys) ds.

We get with

gt = E (Y 2
t ),

k = 2µγ + σ2
γ + 2λβZ , and

ft = 2aX
∫ t

0 E (Ys) ds+ σ2
Xt+ λt (β2

Z + σ2
Z) + 2λβZ

∫ t
0 E (Ys),

then, the equations for V ar
[
Y

(γ)
t (y)

]
can be obtained from Case 1, replacing aX by

aX + λβZ and σ2
X by σ2

X + λ(β2
Z + σ2

Z).

Discussion 4:

As we compared the expressions of the variances of the income of the insurance companies
between Case 1 and Case 2, the compound Poisson process (Qt) in the basic risk process
has additional impacts on the variance through the intensity of the Poisson process, λ,
the mean of withdrawal sizes, βZ , and the variance of withdrawals, σ2

Z . The impact of the
each variable on V ar

[
Y

(γ)
t (y)

]
, keeping others unchanged:

• the intensity of the Poisson process, λ, and the mean of withdrawal sizes, βZ , since
their derivatives are complicated, we do not list the formulas. The relations are not clear.
• the standard deviation of withdrawal sizes, σZ =

√
σ2
Z ,
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(1) when µγ 6= 0, µγ 6= −1
2σ

2
γ and µγ 6= −σ2

γ:

∂V ar
[
Y

(γ)
t (y)

]
∂σZ

= 2λσZ
e(2µγ+σ2

γ)t − 1
2µγ + σ2

γ

> 0;

(2) when µγ = −1
2σ

2
γ :

dV ar
[
Y

(γ)
t (y)

]
dσZ

= 2λσZt > 0;

(3) when µγ = −σ2
γ:

dV ar
[
Y

(γ)
t (y)

]
dσZ

= 2λσZ
1− e−σ2

γt

σ2
γ

> 0;

(4) when µγ = 0:

dV ar
[
Y

(γ)
t (y)

]
dσZ

= 2λσZ
eσ

2
γt − 1
σ2
γ

> 0.

The impact of σZ on V ar
[
Y

(γ)
t (y)

]
is positive.

Remark 2.3.2. In this case, the relationships between each variable and the variance
of the income of the insurance company are the same as the relationships in Case 1,
in addition, the variance of withdrawals, σ2

Z, in the compound Poisson process in the
insurance business, has a positive impact on V ar

[
Y

(γ)
t (y)

]
. It is intuitive that the increase

of the fluctuation in withdrawal sizes in the insurance business will contribute to the
increase of the variance of the income of the insurance company.

2.3.4 Case 2bis: Multiple Risky Assets, when (Xt)t≥0 is Modeled
by the sum of a Brownian Motion and a compound Poisson
process

By the same reasoning for the proofs of Case 1bis, Proposition 2.3.4 and Proposition
2.3.5 in Case 2, we give the expressions for the expectation and variance of the income
of the insurance company when there are multiple risky assets in risky investment. As in
Case 2, aλ,β = aX + λβZ , σ2

λ,β = σ2
X + λ (β2

Z + σ2
Z), µγ and σγ are defined in (2.3.2.4a)
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and (2.3.2.4b).

Proposition 2.3.6. For 0 < γ < 1 and t ≥ 0 :

E
[
Y

(γ)
t (y)

]
=



eµγt
(
y + aX+λβZ

µγ

)
− aX+λβZ

µγ
, if µγ 6= 0, µγ 6= −1

2σ
2
γ, µγ 6= −σ2

γ

y + (aX + λβZ) t, if µγ = 0
e−

1
2σ

2
γt

(
y − aX+λβZ

1
2σ

2
γ

)
+ aX+λβZ

1
2σ

2
γ
, if µγ = −1

2σ
2
γ

e−σ
2
γt

(
y − aX+λβZ

σ2
γ

)
+ aX+λβZ

σ2
γ

, if µγ = −1
2σ

2
γ

When µγ 6= 0, µγ 6= −1
2σ

2
γ and µγ 6= −σ2

γ, we get

V ar
[
Y

(γ)
t (y)

]
=y2

[
e(2µγ+σ2

γ)t − e2µγt
]

+ 2aλ,βy
e(2µγ+σ2

γ)t − eµγt
µγ + σ2

γ

− e2µγt − eµγt

µγ


+ 2a2

λ,β

e(2µγ+σ2
γ)t − eµγt

µ2
γ + µγσ2

γ

+ 1− e(2µγ+σ2
γ)t

2µ2
γ + µγσ2

γ

− e2µγt − 2eµγt + 1
2µ2

γ


+ σ2

λ,β

e(2µγ+σ2
γ)t − 1

2µγ + σ2
γ

.

When µγ = −1
2σ

2
γ, we have

V ar
[
Y

(γ)
t (y)

]
=y2

(
1− e−σ2

γt
)

+ 4aλ,βy
e−σ

2
γt − 2e− 1

2σ
2
γt + 1

σ2
γ

+ 4a2
λ,β

σ2
γt− 3− e−σ2

γt + 4e− 1
2σ

2
γt

σ4
γ

+ σ2
λ,βt.

When µγ = −σ2
γ, we obtain

V ar
[
Y

(γ)
t (y)

]
=y2

(
e−σ

2
γt − e−2σ2

γt
)

+ 2aλ,βy

(
σ2
γt− 1

)
e−σ

2
γt + e−2σ2

γt

σ2
γ

+ a2
λ,β

1− 2σ2
γte
−σ2

γt − e−2σ2
γt

σ4
γ

+ σ2
λ,β

1− e−σ2
γt

σ2
γ

.
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Finally, when µγ = 0,

V ar
[
Y

(γ)
t (y)

]
=y2

(
eσ

2
γt − 1

)
+ 2aλ,βy

eσ
2
γt − 1− σ2

γt

σ2
γ

+ a2
λ,β

2eσ2
γt −

(
σ2
γt+ 1

)2
− 1

σ4
γ

+ σ2
λ,β

eσ
2
γt − 1
σ2
γ

.

2.3.5 General case: when: X = (Xt)t≥0 and R(γ) = (R(γ)
t )t≥0 are

both Lévy processes

Let X = (Xt)t≥0 be a Lévy process with the parameters (aX , σ2
X , νX), where aX is

drift parameter, σ2
X is the variance coefficient of the Brownian part, and νX is the Lévy

measure,
∫
R (x2 ∧ 1) νX(dx) <∞. We assume in addition that X is square-integrable, i.e.,

∀t ≥ 0,E (|X2
t |) <∞. Moreover,

Xt = X0 + δX · t+ σXWt +
∫ t

0

∫
R
x(µX − νX)(ds, dx),

where µX is the measure of the jumps of X,

δX = aX +
∫
|x|>1

xνX(dx). (2.3.5.1)

Let R = (Rt)t≥0 be also a Lévy process with the parameters (aR, σ2
R, νR), where aR is

drift parameter, σ2
R is the variance coefficient of the Brownian part, and νR is the Lévy

measure,
∫
R (x2 ∧ 1) νR(dx) <∞.

We suppose that the jumps of the process R, ∆Rt = Rt − Rt− > −1, for all t > 0, that
E(e2Rt) <∞, and that X and R are independent processes.
We consider a risk process, Y = (Yt)t≥0, of the insurance company such that, for 0 ≤ t ≤ T ,

Yt = y +Xt +
∫ t

0
Ys−dRs, (2.3.5.2)

where X = (Xt)t≥0 is a basic process and R = (Rt)t≥0 is risky remuneration.
If the insurance company invests the proportion of (1− γ) in a risk-free asset with interest
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rate (r > 0) and the proportion of (0 < γ < 1) in a risky asset with the return Rt, then

Yt = y +Xt + (1− γ)r
∫ t

0
Ys−ds+ γ

∫ t

0
Ys−dRs

=y +Xt +
∫ t

0
Ys−dR

(γ)
s , (2.3.5.3)

where R(γ)
s is also a Lévy process with the characteristics of (γaR + (1− γ)r,

γ2σ2
R, νR(s, x/γ)).

For simplicity, we consider the model in (2.3.5.2), since to apply it to (2.3.5.3) it is suffi-
cient to replace the parameter aR by γaR+(1−γ)r, σ2

R by γ2σ2
R and νR(s, x) by νR(s, x/γ).

Then, as well-known by [Paulsen, 1996], the equation (2.3.5.2) has a unique strong solu-
tion: for t > 0,

Yt = E(R(γ))t
(
y +

∫ t

0

dXs

E(R(γ))s−

)
, (2.3.5.4)

where E(R(γ)) is Doléans-Dade’s exponential,

E(R(γ))t = exp
{
Rt −

1
2 < Rc, Rc >t

} ∏
0<s≤t

e−∆Rs (1 + ∆Rs) .

We can show that ∀t ≥ 0,

eR̂t = E(R)t

= exp
{
Rt −

1
2 < Rc, Rc >t

} ∏
0<s≤t

e−∆Rs (1 + ∆Rs) ,
(2.3.5.5)

where
(
R̂t

)
t≥0

is also a Lévy process.
Then, equation (2.3.5.4) is equivalent to

Yt = eR̂t
(
y +

∫ t

0
e−R̂sdXs

)
.

We denote by
Λt(ε) = E

(
e−εR̂t

)
,

the Laplace transform of R̂t of the parameter ε, for ε belonging to the domain of the
existence of this Laplace transform.
It is known that

E
(
e−εR̂t

)
= e−tΦ(ε),
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where Φ(ε) is the Laplace exponent of the process R̂.
If we denote by

(
âR, σ̂R

2, ν̂R
)

the characteristics of R̂, then

Φ(ε) = εâR −
1
2ε

2σ̂R
2 −

∫
R

(
e−εx − 1

)
ν̂R(dx). (2.3.5.6)

Next, we express the characteristics
(
âR, σ̂R

2, ν̂R
)

via (aR, σ2
R, νR), we obtain the expres-

sion of Φ(ε) containing the parameters of the process R,

Φ(ε) = εaR −
1
2σ

2
R(ε− ε2) + ε

∫
R
ln(1 + x)νR(dx). (2.3.5.7)

Proof. From (2.3.5.5) we know ∀t ≥ 0,

Rt −
1
2 < Rc, Rc >t

∑
0<s≤t

[ln (1 + ∆Rs)−∆Rs] = R̂t. (2.3.5.8)

We look on the continuous martingale part of the left-hand side and right-hand side in
(2.3.5.8), ∀t ≥ 0, since Rc

t = R̂c
t , we have σ2

R = σ̂R
2.

From (2.3.5.8), since Rc
t = aRt+M c

t +Md
t ,

aRt+M c
t +Md

t −
1
2 <Rc, Rc >t +

∫ t

0

∫
R

[ln(1 + x)− x] (µR − νR)(dx)

+ t
∫
R

[ln(1 + x)− x] νR(dx) = âRt+M c
t + M̂d

t ,

then aRt− 1
2σ

2
Rt+ t

∫
R [ln(1 + x)− x] νR(dx) = âRt,

âR = aR −
1
2σ

2
R +

∫
R

[ln(1 + x)− x] νR(dx).

From (2.3.5.8), ∆R̂t = R̂t − R̂t− = ∆Rt + ln(1 + ∆Rs)−∆Rs = ln(1 + ∆Rs).

t
∫
R
(e−εx − 1)ν̂R(dx) = E

[∫ t

0

∫
R
(e−εx − 1)ν̂R(dx)

]
= E

 ∑
0<s≤t

(
e∆R̂s − 1

)
= E

 ∑
0<s≤t

(
eln(1+∆Rs) − 1

) = E

 ∑
0<s≤t

∆Rs


= E

[∫ t

0

∫
R
−εxνR(dx)

]
= t

∫
R
−εxνR(dx).
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Hence,

Φ(ε) =ε
{
aR −

1
2σ

2
R +

∫
R

[ln(1 + x)− x] νR(dx)
}

− 1
2ε

2σ2
R + ε

∫
R
xνR(dx) (2.3.5.9)

=εaR −
1
2σ

2
R(ε− ε2) + ε

∫
R
ln(1 + x)νR(dx).

We denote also ∀t ≥ 0

It =
∫ t

0
eR̂sds, Jt =

∫ t

0
e2R̂sds.

Let us calculate E(Yt).

2.3.5.1 Expectation of the income of a life insurance company

Proposition 2.3.7. For t ≥ 0,

E(Yt) =
 y + δXt, if Φ(−1) = 0,
ye−tΦ(−1) + δX

1−e−tΦ(−1)

Φ(−1) , if Φ(−1) 6= 0,

where δX is defined by (2.3.5.1), Φγ(·) is given in (2.3.5.11).

Proof. We denote for fixed t > 0, E(R) = (E(R)s)0≤s≤t and h = (hs)0≤s≤t the trajectory
of E(R). Then

E
[
Yt
∣∣∣E(R) = h

]
= E

[
ht

(
y +

∫ t

0

dXs

hs

)]
,

since X and R are independent processes. Moreover,

Xs = X0 + δX · s+Ms,

where M = M(s)0≤s≤t is a martingale, such that

Ms = δXWs +
∫ t

o

∫
R
x(µX − νX)(ds, dx).
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So that,

E
[
Yt
∣∣∣E(R) = h

]
= E

[
ht

(
y + δX

∫ t

0

ds

hs
+
∫ t

0

dMs

hs

)]

= ht

(
y + δX

∫ t

0

ds

hs

)
,

since E
(∫ t

0
dMs

hs

)
= 0 by the martingale property. Then, replacing hs by R̂s and ht by R̂t,

we get

E(Yt) = E
[
eR̂t

(
y + δX

∫ t

0
e−R̂sds

)]
= E

(
yeR̂t

)
+ E

[
δX

∫ t

0
e+(R̂t−R̂s)ds

]
,

by the change of the variable s = t− s and the fact (R̂t − R̂s)0≤s≤t
L= (R̂t−s)0≤s≤t,

E(Yt) = ye−tΦ(−1) + δX E
(∫ t

0
eR̂t−sds

)
= ye−tΦ(−1) + δX E

(∫ t

0
eR̂sds

)
,

Hence,
E(Yt) = ye−tΦ(−1) + δX E(It).

For E(It) by Fubini theorem:

E(It) =
∫ t

0
E(eR̂s)ds =

∫ t

0
e−sΦ(−1)ds =

=
 t, if Φ(−1) = 0,

1−e−tΦ(−1)

Φ(−1) , if Φ(−1) 6= 0.
(2.3.5.10)

From (2.3.5.9), we can calculate

Φγ(−1) = − [γaR + (1− γ)r]−
∫
R
ln(1 + γx)νR(dx). (2.3.5.11)

Finally,

E(Yt) = ye−tΦ(−1) + δX E(It)
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=
 y + δXt, if Φ(−1) = 0,
ye−tΦ(−1) + δX

1−e−tΦ(−1)

Φ(−1) , if Φ(−1) 6= 0.

2.3.5.2 Variance of the income of a life insurance company

Proposition 2.3.8. For t ≥ 0, when Φ(1) 6= 0, Φ(2) 6= 0 and Φ(1) 6= Φ(2),

V ar(Yt) =y2
[
e−tΦ(−2) − e−2tΦ(−1)

]
+ 2yδX

[
1
2
d

dt
E(I2

t )− e−tΦ(−1) E(It)
]

+ δ2
X

{
E(I2

t )− [E(It)]2
}

+
[
σ2
X +

∫
R
x2νX(dx)

]
E(Jt),

where Φ(·) is defined in (2.3.5.9), E(It) is given in (2.3.5.10), E(I2
t ) is given in (2.3.5.17),

and E(Jt) is given in (2.3.5.14).

Proof. First, we calculate E(Y 2
t ):

E
[
Y 2
t

∣∣∣∣∣E(R) = h

]

=E

h2
t

(
y +

∫ t

0

dXs

hs

)2


=E

h2
t

(
y + δX

∫ t

0

ds

hs
+
∫ t

0

dMs

hs

)2


=E

h2
t

(
y + δX

∫ t

0

ds

hs

)2

+ 2h2
t

(
y + δX

∫ t

0

ds

hs

)
·
∫ t

0

dMs

hs
+ h2

t

(∫ t

0

dMs

hs

)2


Due to the properties of the stochastic integral with respect to a martingale,

E
[
Y 2
t

∣∣∣∣∣E(R) = h

]
=h2

t

(
y + δX

∫ t

0

ds

hs

)2

+ 0 + h2
t E

(∫ t

0

dMs

hs

)2


=h2
t

(
y + δX

∫ t

0

ds

hs

)2

+ h2
t E

(∫ t

0

d[M,M ]s
h2
s

)

=h2
t

(
y + δX

∫ t

0

ds

hs

)2

+ h2
t

(
σ2
X +

∫
R
x2νX(dx)

) ∫ t

0

ds

h2
s
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Then, replacing hs by R̂s and ht by R̂t, we get

E(Y 2
t ) =E

[
e2R̂t

(
y + δX

∫ t

0
e−R̂sds

)2]

+
(
σ2
X +

∫
R
x2νX(dx)

)
· E

(
e2R̂t

∫ t

0
e−2R̂sds

) (2.3.5.12)

We calculate two mathematical expectations expressed in the right-hand side. For the
second one, by change of the variable we get

E
(
e2R̂t

∫ t

0
e−2R̂sds

)
= E

∫ t

0
e2(R̂t−R̂s)ds = E

∫ t

0
e2R̂t−sds

= E
∫ t

0
e2R̂sds = E(Jt).

(2.3.5.13)

By Fubini theorem,

E(Jt) = E
∫ t

0
e2R̂sds =

∫ t

0
E e2R̂sds =

∫ t

0
e−sΦ(−2)ds

=
 t, if Φ(−2) = 0,

1−e−tΦ(−2)

Φ(−2) , if Φ(−2) 6= 0.
(2.3.5.14)

For the first term in (2.3.5.12) we obtain:

E
[
e2R̂t

(
y + δX

∫ t

0
e−R̂sds

)2]

=E
[
y2e2R̂t + 2yδXe2R̂t

∫ t

0
e−R̂sds+ δ2

Xe
2R̂t

(∫ t

0
e−R̂sds

)2]

=E
[
y2e2R̂t + 2yδXeR̂t

∫ t

0
eR̂t−R̂sds+ δ2

X

(∫ t

0
eR̂t−R̂sds

)2]
(2.3.5.15)

=E
[
y2e2R̂t + 2yδXeR̂t

∫ t

0
eR̂t−sds+ δ2

X

(∫ t

0
eR̂t−sds

)2]

=y2e−tΦ(−2) + 2yδX E
(
eR̂t

∫ t

0
eR̂sds

)
+ δ2

X E
[(∫ t

0
eR̂sds

)2]

=y2e−tΦ(−2) + 2yδX ·
1
2
d

dt
E(I2

t ) + δ2
X · E(I2

t ).

Then, from (2.3.5.12), (2.3.5.13) and (2.3.5.15)

E(Y 2
t ) =y2e−tΦ(−2) + 2yδX ·

1
2
d

dt
E(I2

t ) + δ2
X · E(I2

t )
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+
(
σ2
X +

∫
R
x2νX(dx)

)
E(Jt),

Finally, from Proposition 2.3.7,

V ar(Yt) =E(Y 2
t )−

(
E(Y 2

t )
)2

=y2e−tΦ(−2) + 2yδX ·
1
2
d

dt
E(I2

t ) + δ2
X · E(I2

t )

+
(
σ2
X +

∫
|x|≤1

x2νX(dx)
)
E(Jt)−

[
ye−tΦ(−1) + δX E(It)

]2
=y2

[
e−tΦ(−2) − e−2tΦ(−1)

]
(2.3.5.16)

+ 2yδX
[

1
2
d

dt
E(It)2 − e−tΦ(−1) E(It)

]

+ δ2
X

{
E(I2

t )− [E(It)]2
}

+
[
σ2
X +

∫
R
x2νX(dx)

]
E(Jt).

For the calculation of E(I2
t ) in (2.3.5.16), we know from Corollary 1 in [Salminen and

Vostrikova, 2018], that if Φ is bijective on [0, n] then

E(I2
t ) = 2! e

−Φ(0)t − e−Φ(2)t∏
1≤i≤2

[Φ(i)− Φ(0)]
+ 2! e−Φ(1)t − e−Φ(2)t∏

0≤i≤2, i 6=1
[Φ(i)− Φ(0)]

= 2 e−Φ(0)t − e−Φ(2)t

[Φ(1)− Φ(0)][Φ(2)− Φ(0)] + 2 e−Φ(1)t − e−Φ(2)t

[Φ(0)− Φ(1)][Φ(2)− Φ(1)]

= 2 1
Φ(1)− Φ(0)

[
e−Φ(0)t − e−Φ(2)t

Φ(2)− Φ(0) + e−Φ(2)t − e−Φ(1)t

Φ(2)− Φ(1)

]
,

and from (2.3.5.9), we get with Φ(0) = 0. Then, if Φ(1) 6= 0, Φ(2) 6= 0 and Φ(1) 6= Φ(2),
we get

E(I2
t ) = 2

Φ(1)

[
1− e−Φ(2)t

Φ(2) + 1− e−Φ(1)t

Φ(2)− Φ(1)

]
. (2.3.5.17)

2.3.6 Analysis and discussions

We tabulated the contents of discussions and remarks in Case 1 and Case 2. By
calculating the first-order partial derivatives, we obtain the relationships between each
variable and the first two moments of the income of the life insurance company in both

117



Analysis of Life Insurance Contracts via Mathematical Modeling

cases. The impact of each variable on the expectation of the income of a life insurance
company is filled in Table 2.1. It shows that the expected income of a life insurance
company is positively related to the initial capital, the premium rate, and the investment
return when the investment return is non-negative. In Case 2, the basic risk process
negatively impacts the expected income of a life insurance company through the intensity
of the Poisson process and the average size in withdrawal events. The expectation of the
income of a life insurance company E

[
Y

(γ)
t (y)

]
is an increasing function of the proportion

invested in a risky asset γ, under the conditions for no-arbitrage and positive cash flows
from the insurance process.

Table 2.1 – The impact of each variable on the expected income of a life insurance company

Variables Case 1 Case 2

µγ 6= 0 µγ = 0 µγ 6= 0 µγ = 0

initial capital, y positive positive positive positive
premium rate, aX positive positive positive positive

fluctuations in premium income, σX none none none none
investment rate of return, µγ positive none positive none

volatility, σγ none none none none
proportion invested in a risky asset, γ positivea none positiveb none
the intensity of the Poisson process, λ none none negative negative

average size of withdrawals, βZ none none negative negative
variance of withdrawal sizes, σ2

Z none none none none

a. if the no-arbitrage condition aR > r holds and aX > 0.
b. if the no-arbitrage condition aR > r holds and aX > λβZ .

Table 2.2 – The impact of each variable on the second moment of the income of a life
insurance company

Variables Case 1 Case 2

µγ > 0 µγ = 0 µγ > 0 µγ = 0

the initial capital, y positive positive positive positive
the premium rate, aX complex positive complex positive

fluctuations in premium income, σX positive positive positive positive
the investment return, µγ complex none complex none

the investment volatility, σγ complex positive complex positive
the intensity of the Poisson process, λ none none complex positive

average size of withdrawals, βZ none none complex positive
the variance of withdrawal sizes, σ2

Z none none positive positive

When the investment return is positive, the impact on the second moment of the
income of the life insurance company is determined by a mixture of the premium rate,
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the investment return, the investment volatility, the intensity of the Poisson process, and
the average size in withdrawal events, as shown in Table 2.2. The complex impact of the
premium rate on the second moment can be explained as when the premium rate increases,
the expectation of the income of the insurance company rises, and the uncertainty of the
second moment of the income of the insurance company also increases. However, it is not
clear whether the second moment increases, decreases, or remains unchanged. It indicates
that a higher premium rate does not necessarily lead to a higher rate of return on life
insurance contracts when considering the second moment of the income of a life insurance
company.

Compared with Case 1, the difference in Case 2 is that the compound Poisson process
also impacts the income of the life insurance company through the intensity of the Poisson
process, the mean of withdrawal sizes, and the variance of withdrawals.

2.4 Optimal investment strategy of the life insurance
company

Life insurance companies usually evaluate their completion at predetermined times,
e.g., every year or every quarter of a year. It seems reasonable to choose an investment
strategy that maximizes the wealth at the end of their planning period. Moreover, there
are certain regulatory or financial bounds on the amount of risk which a life insurance
company may take on. The following portfolio optimization problem is based on these
considerations.

The aim is to maximize the expectation of the income of a life insurance company
subject to the condition that the probability that the result of the exercise at the end of
the period T is less than the saving capital must be less or equal to α, i.e.,

max
0<γ<1

E
(
Y

(γ)
T

)
,

subject to the condition

P
(
Y

(γ)
T ≤ −c

)
≤ α,

where T is the investment period, c is a saving capital and α is the probability of insol-
vency. Such problems are typical for the financial industry, see e.g., [Korn, 1997], [Jorion,
2000], and [Kostadinova, 2007].
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We need to verify if E
[
Y

(γ)
t (y)

]
is an increasing function of γ.

In Case 1 : we know from Proposition 2.3.1,

E
[
Y

(γ)
t (y)

]
=
 eµγt

(
y + aX

µγ

)
− aX

µγ
, µγ 6= 0,

y + aXt, µγ = 0.

For 0 < γ < 1 and t ≥ 0,
- when µγ 6= 0:

∂ E
[
Y

(γ)
t (y)

]
∂γ

=(aR − r)teµγt
(
y + aX

µγ

)
− aX(aR − r)eµγt

µ2
γ

+ aX(aR − r)
µ2
γ

=y(aR − r)teµγt + aX(aR − r) [eµγt (µγt− 1) + 1]
µ2
γ

,

since the function f(x) = ex(x− 1) + 1 ≥ 0 for x ≥ 0 in the second part of the right-hand
side, with the no-arbitrage condition, aR > r ≥ 0 and aX > 0 we know that

∂ E
[
Y

(γ)
t (y)

]
∂γ

> 0;

- when µγ = 0:
∂ E

[
Y

(γ)
t (y)

]
∂γ

= 0.

In Case 2 : we know from Proposition 2.3.4,

E
[
Y

(γ)
t (y)

]
=
 eµγt

(
y + aX+λβZ

µγ

)
− aX+λβZ

µγ
, µγ 6= 0

y + (aX + λβZ) t, µγ = 0.

For 0 < γ < 1 and t ≥ 0,
- when µγ 6= 0:

∂ E
[
Y

(γ)
t (y)

]
∂γ

=y(aR − r)teµγt + (aX + λβZ)(aR − r) [eµγt (µγt− 1) + 1]
µ2
γ

,
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then, with the no-arbitrage condition, aR > r ≥ 0 and the assumption that aX +λβZ > 0,
we calculate the limit of the partial derivative function

lim
t→0+

∂ E
[
Y

(γ)
t (y)

]
∂γ

= 0,

lim
t→+∞

∂ E
[
Y

(γ)
t (y)

]
∂γ

= +∞;

- when µγ = 0:
∂ E

[
Y

(γ)
t (y)

]
∂γ

= 0.

In the General Case, we know from Propsition 2.3.7 that for t ≥ 0,

E
[
Y

(γ)
t (y)

]
=
 y + δXt, if Φ(−1) = 0,
ye−tΦ(−1) + δX

1−e−tΦ(−1)

Φ(−1) , if Φ(−1) 6= 0,

where δX = aX +
∫
|x|>1 xνX(dx), Φγ(−1) = − [γaR + (1− γ)r] −

∫
R ln(1 + γx)νR(dx). If

we invest γ part in a risky asset,

E
[
Y

(γ)
t (y)

]
= e−tΦ(−1)

[
y − δX

Φγ(−1)

]
+ δX

Φγ(−1) ,

where Φγ(−1) = − [γaR + (1− γ)r] −
∫
R ln(1 + γx)νR(dx). We know that Φγ(−1) is an

analog of (−µγ) for the Case 1 and Case 2.
Therefore, we conclude that with a non-zero investment rate of return, the expectation
of the income of a life insurance company, E

[
Y

(γ)
t (y)

]
is an increasing function of the

proportion invested in a risky asset, γ, given the no-arbitrage condition and positive cash
flows from its insurance business.

2.5 Conclusion

In this chapter, we studied a portfolio optimization problem that is related to the
portfolio management of life insurance business – euro-denominated funds.

In a persistently very low-interest-rates environment, euro-denominated life insurance
business faces multiple risks: diminishing returns on euro-denominated funds, increasing
risk exposures in asset allocations, and unpredicted dramatic redemptions of the contracts.
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We apply a risk model based on this background.
Then, we obtain the expressions on the expectations and the variances of the income

of a life insurance company with investments in three cases:
1. when both the basic risk process Xt and the return on investment generating process
R

(γ)
t of the insurance company are modeled by two independent Brownian Motions;

2. when the basic risk process Xt is modeled by the sum of a Brownian Motion and a
compound Poisson process, and the return on investment generating process R(γ)

t of the
insurance company is modeled by a Brownian Motion;
3. when the two processes are both modeled by Lévy processes.

By calculating the first-order partial derivatives, we show the relationships between
each variable and the expectation (and the variance) of the income of life insurance com-
pany in the first two cases. We conclude that the optimal expectation-variance of the
income of the life insurance company depends on both the basic risk process Xt and the
return on investment generating process R(γ)

t .
Under certain conditions for the insurance business and for the investment process,

the expectation of the income of a life insurance company is an increasing function of
the investment proportion in a risky asset. We solve the optimization problem based on
real-world constraints and data in the next chapter.
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Chapter 3

OPTIMAL ASSET ALLOCATION

STRATEGIES OF EURO-DENOMINATED

LIFE INSURANCE FUNDS

3.1 Introduction

In recent years, several investigations on simulations and empirical analysis have been
developed which try to find the optimal asset allocation for an insurance company. [Wang
et al., 2007] study the optimal investment problem for an insurer through the martingale
approach. When the insurer’s risk process is modeled by a Lévy process and the secu-
rity market is described by the standard Black-Scholes model, closed-form solutions to
the problems of mean-variance efficient investment and constant absolute risk aversion
(CARA) utility maximization are obtained. They analyze the effect of the claim process
on the mean-variance efficient investment using their explicit solutions. They find that the
mean-variance efficient strategies do depend on the claim process. While in [Kostadinova,
2007], the price of the risky asset follows a general exponential Lévy process and the total
claim amount in the risk process is modeled by a compound Poisson process. An approx-
imation of the optimal investment strategy which maximizes the expected wealth of the
insurance company under a risk constraint on the Value-at-Risk is provided. The differ-
ence between the optimal investment strategy in the two regimes is discussed, namely the
dangerous claims regime and the dangerous investment regime. [Brokate et al., 2008] focus
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on asymptotic tail estimations and apply numerical methods to find the distribution tail.
They also determine the optimal investment by maximizing the expected wealth subject
to a risk bound given in terms of a Value-at-Risk. Their method shows higher accuracy
when the risky investment is not too small. [Liu et al., 2012] consider the problem of min-
imizing the ruin probability when a dynamic Value-at-Risk constraint is imposed. They
show that the exposure to risky assets could be increased because of the risk diversifica-
tion effect for the negatively correlated or uncorrelated risky assets and the stochastic of
the insurance business.

[Huang and Lee, 2010] use a multi-asset model to investigate the optimal asset al-
location of life insurance reserves and obtain formulae for the first two moments of the
accumulated asset value. They provide a new perspective for solving both single-period
and multi-period asset allocation problems regarding life insurance policies. [Yu et al.,
2010] apply the simulation optimization approach to the multi-period asset allocation
problem of non-life insurers. They construct a simulation model to simulate operations of
a property-casualty insurer and develop multi-phase evolution strategies (MPES) to be
used with the simulation model to search for promising asset allocations for the insurer.
They find that the re-allocation strategy resulting from MPES outperforms re-balancing
strategies. Their approach to the asset allocation decisions for better investment perfor-
mance is also applicable to other financial institutions, such as life insurance companies.
[Fidan Neslihan et al., 2016] do in-sample and out-of-sample simulations for portfolios of
stocks from the Dow Jones, S&P 100, and DAX indices to compare portfolio optimiza-
tion with the Second-Order Stochastic Dominance (SSD) constraints with mean-variance
and minimum variance portfolio optimization, with the superior performance of portfolios
with SSD constraints.

In the previous chapter, we have obtained the results for the first two moments of
the income of a life insurance company in three cases. These solutions will be applied to
search for the optimal asset allocation strategies. At the regulatory level, the Prudential
Solvency II framework applied since 2016 impacts the asset management of insurance
institutions. In order to meet the requirements, life insurance companies must maintain
a certain level of capital to prove their financial ability to absorb shocks. To this end,
they must optimize their asset allocation strategies while managing potential risks. Our
research includes such parameters as the saving capital and the probability of insolvency
of the life insurer into the constraints when obtaining the optimal investment strategies
and the corresponding asset allocations.
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The work is arranged as follows. We select and analyze a dataset consisting of one risk-
free asset and the four main categories of risky assets available to life insurance companies
in Section 3.2. In Section 3.3, based on the obtained formulae for the first two moments
of the income of a life insurance company with investments in Chapter 2, we solve the
optimization problem numerically with an investment strategy under certain constraints.
Then, we conduct a sensitivity analysis to show how the optimal asset allocation depends
on selecting a series of parameters in Section 3.4. Finally, we give a conclusion in Section
4.6.

3.2 Dataset statistics

We analyzed and presented the investment structure of French life insurance companies
in Section 1.3.3 Chapter 1. In general, five main categories of assets describe the asset
allocation structure, namely bonds (the sum of government bonds and corporate bonds),
equities, real estate, loans and money market instruments and others, as plotted in Figure
1.12 and Figure 1.13. Besides, the life insurance company is assumed to invest in a risk-
free asset and a risky asset (multiple risky assets in Case 1bis and Case 2bis) in the
mathematical modeling in Chapter 2. Based on these considerations, we choose one risk-
free asset and four main risky assets in our dataset in this section.

This section contains two subsections. Section 3.2.1 presents the risk-free asset and
its interest rate. Section 3.2.2 describes four main risky assets, consisted of government
bonds, corporate bonds, stocks and real estates.

3.2.1 Risk-free asset

The risk-free interest rate, also referred to as the risk-free rate of return, is a theoretical
interest rate of an investment that carries zero risk. This rate represents the minimum
interest an investor would expect from a risk-free investment over a specific period of time.
Technically, the risk-free interest rate is purely theoretical, as all investments have some
type of risk attached to them. The analysis in [Tobin and Golub, 1997] provides support
to the concept that the risk-free rate may not be directly observable. [Kemp, 2009] states
that the risk-free rate means different things to different people, and there is no consensus
on how to measure and choose it.

There are different views on what exactly the risk-free rate means [Kemp, 2009, chap-
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ter. 5]. On the one hand, the ‘risk-free rate’ might merely be the conventional name
given to an assumption fed into a pricing algorithm, e.g., the short-term interest rate in
the Black-Scholes-Merton model ([Black and Scholes, 1973] and [Merton, 1973]). On the
other hand, the ‘risk-free rate’ might be shorthand for what might more accurately be
described as a ‘reference rate’, i.e., a convenient interest rate that can be used for a wide
range of purposes, but which is not strictly free of all risks. Inter-bank lending rates (e.g.,
Euribor and Libor) and short-dated government bonds are examples of potential proxies
for risk-free assets.

Euribor stands for Euro Interbank Offered Rate. It is a daily reference rate based
on the averaged interest rates at which Eurozone banks offer to lend unsecured funds to
other banks in the euro wholesale money market (or interbank market). It is considered
the most liquid and active interest rate 1. We remind that one of the main categories of
assets in the investment structure of life insurance companies is loans and money market
instruments. Moreover, long-term government bonds are considered risky assets, which
will be described in the next subsection. Based on the above points, the 3-month Euribor
is the proxy of the risk-free asset in our research. Recently, this interest rate became
negative, life insurance companies can have access to an alternative asset.

We collect the monthly data on the 3-month Euribor from the European Central
Bank. The monthly time series covers a period from January 31, 2003, to December 31,
2019. The annualized average interest rate of the 3-month Euribor is calculated based on
the collected monthly data. We plot the annualized average interest rate of the 3-month
Euribor in Figure 3.1.

1. Euribor is not free of credit risk. Investors depositing money in such a way in the interbank market
would become exposed to the risk of default of the bank with which they have deposited their money
(because Euribor relates to unsecured funds).

126



Optimal Asset Allocation Strategies of Euro-denominated Life Insurance Funds

Figure 3.1 – Time series of the 3-month Euribor interest rate and the risk-free rate.

The 3-monthly Euribor interest rate is negative since 2015 without considering the in-
flation rate. As noticed in Chapter 1, the return on investment of life insurance companies
suffers from the decline in nominal interest rates, both long-term and short-term, because
of their heavy asset allocation in fixed-income securities. Besides, the first time the net
outflow of euro-denominated funds in 2011, the liquidity needs of life insurance companies
have risen to a certain degree, increasing the demand for liquid assets to meet the insureds’
withdrawal and redemption requirements. Consequently, it is reasonable and profitable
for life insurance companies to hold cash than to invest in negative interest rates.

We assumed the non-negative risk-free rate in the mathematical modeling in Chapter
2. Then we can define the risk-free interest rate:

r = max(Euribor3M, 0), (3.2.1.1)

where Euribor3M represents the 3-month Euribor. Figure 3.1 also displays the time series
of non-negative risk-free rates.

3.2.2 Risky assets

In this subsection, four risky indices are presented and analyzed. We employ both
government bonds and corporate bonds in our dataset to represent the asset class of fixed
income securities because the revaluation rate of euro-denominated funds is evidently
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correlated with 10-year government bond yield.

Government bonds are relatively risk-free for domestic investors because, by definition,
there is no risk of default – a bond is a form of government obligation which is being
discharged by paying another form of government obligation (i.e., its currency). From
another point of view, however, the issue is that with coupon-bearing bonds, investors
do not know in advance what their income will be on the reinvested coupons [Tobin and
Golub, 1997]. Therefore, the return of government bonds cannot be considered risk-free
because of the reinvestment risk, especially in a declining interest rate environment. This
explains why we use government bonds as risky assets in this study.

3.2.2.1 Data description - period from 2002 to 2019

The dataset used for the analysis of the return on investment generating process
include the France 10-year Government bond (asset 1), the Bloomberg Barclays Euro
Aggregate Corporate Total Return Index Value Unhedged EU 2 (asset 2), the EURO
STOXX 50 Index 3 (asset 3) and the Euronext IEIF REIT Europe Index 4 (asset 4) from
December 31, 2002, to December 31, 2019, obtained from the Bloomberg terminal. After
data cleaning, each asset covers 4289 daily data, 4288 daily returns. These four assets
(and indices) are used as risky assets to represent government bonds, corporate bonds,
stocks, and real estate. We plot the time series of four risky assets (and indices) in Figure
3.2 and Figure 3.3.

2. The Bloomberg Barclays Euro Aggregate Corporate Total Return Index is a broad-based benchmark
that measures the investment grade, euro-denominated, fixed-rate corporate bond market. Published
returns for Bloomberg Barclays benchmark indices measure the total return of a fixed income instrument,
which includes capital appreciation and security price movements, interest payments and accruals, and
principal repayments (scheduled or unscheduled) in the case of amortizing or sinkable bonds. Source:
Bloomberg Barclays Methodology.

3. The EURO STOXX 50 Index, Europe’s leading blue-chip index for the Eurozone, provides a blue-
chip representation of super-sector leaders in the Eurozone in terms of free-float market capitalization.
The index covers 50 stocks from 8 Eurozone countries: Belgium, Finland, France, Germany, Ireland, Italy,
the Netherlands and Spain. The EURO STOXX 50 Index is licensed to financial institutions to serve as
an underlying for a wide range of investment products such as exchange-traded funds (ETFs), futures,
options and structured products worldwide. Source: STOXX Index Methodology Guide

4. The Euronext IEIF Real Estate Investment Trust (REIT) Europe Index selects companies whose
market capitalization is more than 0.4% of the Universe (Property companies listed on European regulated
markets that have opted for a tax transparency regime), with a minimum free float of 20% and with a
minimum daily average turnover representing 0.2% The index serves as an underlying for structured
products, funds and exchange traded funds. Source: Euronext Index Rule Book.

128



Optimal Asset Allocation Strategies of Euro-denominated Life Insurance Funds

Figure 3.2 – Time series of the France 10-year Government bond yield (expressed as a
percentage) and the Bloomberg Barclays Euro Aggregate Corporate Total Return Index.

Source: Bloomberg

Figure 3.3 – Time series of the EURO STOXX 50 Index, Stock and the Euronext IEIF
REIT Europe Index, REIT.

Source: Bloomberg
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The daily return of the risky asset is defined as

xi = ln(Si/Si−1), i = 1, 2, ..., n,

where xi is the return at date i, and Si is the risky asset price at date i.

We take the arithmetic average rate of return over n time periods of equal length as
the mean return:

x̄ = 1
n

n∑
i=1

xi = 1
n

(x1 + ...+ xn).

The volatility is measured by the sample standard deviation of the logarithmic daily
returns:

s =
√∑n

i=1(xi − x̄)2

n− 1 .

The expected return and volatility are approximated by the annualized average return
and standard deviation of the daily returns in the period, respectively. We assume that
T = 252 trading days in any given year. Then, the annualized average return:

aR = (1 + x̄)252 − 1,

and the annualized volatility:
σR = s ·

√
252.

Consequently, different estimates are considered depending upon investment periods.
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Figure 3.4 – Daily rates of return in the Government bond and the Corporate bond.

Figure 3.5 – Daily rates of return in the Stock and the REIT.

Figure 3.4 and Figure 3.5 present the daily rates of return for the four series of indices.
Daily returns fluctuate around zero and are characterized by volatility clustering. Three
assets (corporate bonds, stocks and real estate) demonstrate higher volatility in 2007-2009
and 2015-2016. However, the corporate bond index appears volatile during the European
sovereign debt crisis. Since for each of these three assets, there is no homogeneity during
the entire period from 2002 to 2019, we will use two normality tests to obtain the statistics
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year by year in Section 3.2.2.
Then, we present the variance-covariance matrix. Covariance is a measure of the ex-

tent to which corresponding elements from two sets of ordered data moved in the same
direction. Let X = (xi)1≤i≤N and Y = (yi)1≤i≤N be two sets of ordered assets of the size
N. We use the following standard formula to compute covariance,

Cov(xi, yi) = 1
N

N∑
i=1

(xi − x̄)(yi − ȳ),

where,
x̄ is the mean of the N returns in the first data set,
ȳ is the mean of the N returns in the second data set.

Table 3.1 – Summary statistics on rates of returns on four series of indices.

Government bond Corporate bond Stock REIT

Count 4288 4288 4288 4288
Mean 0.000100 0.000162 0.000104 0.000139

Std. Deviation 0.000057 0.001624 0.013449 0.012960
Skewness -0.352976 -0.532390 -0.075084 -0.644866
Kurtosis -1.353210 2.675116 6.175035 8.557335

Min -0.000017 -0.008956 -0.090110 -0.147347
25% 0.000036 -0.000684 -0.006083 -0.005394
50% 0.000118 0.000211 0.000392 0.000561
75% 0.000149 0.001102 0.006548 0.006125
Max 0.000188 0.008443 0.104376 0.076377

Table 3.1 reports the summary of statistics for the return series. Four patterns are
evident from the table. Firstly, these four indices exhibit a positive average daily rate
of returns in our data period. Secondly, the volatility of the stock index and the REIT
are higher than that of the government bond and the corporate bond, as reflected in the
standard deviations. The stock index has the largest standard deviation. The government
bond is the least volatile series. Thirdly, all series have negative skewness. A negative
skewness implies that large negative changes in returns occur more often than positive
changes. Besides, the France 10-year government bond yield has negative kurtosis, which
means that its frequency distribution of daily returns has thinner tails than a normal curve
with the same mean and standard deviation. As shown in Figure 3.6(a), the government
bond has a flatter distribution than that of the other three assets and displays a non-
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normal distribution that fails to resemble a bell curve. The other three assets display
positive kurtosis, which implies that large changes occur more often than would be the
case if the series had a normal distribution, as shown in Figure 3.6 (a, b, and c). This
is also confirmed by the one-sample Kolmogorov–Smirnov(K-S) tests in Table 3.2, which
reject the null hypothesis of the normal distribution for all series.

Figure 3.6 – Histogram of the frequency distribution of daily returns of four risky assets.

(a) Government bond (b) Corporate bond

(c) Stock (d) REIT
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Table 3.2 – One-sample Kolmogorov–Smirnov tests on rates of returns on four series of
indices.

Government bond Corporate bond Stock REIT

Count 4288 4288 4288 4288
Normal Parametersa,b Mean 0.000100 0.000162 0.000104 0.000139

Std. Deviation 0.000057 0.001624 0.013449 0.012960
Most Extreme Differences Absolute 0.146 0.055 0.075 0.093

Positive 0.132 0.033 0.069 0.081
Negative -0.146 -0.055 -0.075 -0.093

Test statistic 0.146 0.055 0.075 0.093
Asymp.Sig. (2-tailed) 0.000c 0.000c 0.000c 0.000c

a. Test distribution is Normal; b. Calculated from data; c. Lillefors Significance Correction.

We present the variance-covariance matrix of the four assets for the whole data set
period, 2003 - 2019.

C2003−2019 =


0.000000813, −0.000000031, −0.000001088, −0.000001497
−0.000000031, 0.000664797, −0.001171425, −0.000327940
−0.000001088, −0.001171425, 0.045572271, 0.028983914
−0.000001497, −0.000327940, 0.028983914, 0.042314258

 .

Covariance measures the directional relationship between the returns on two assets. As
we can see, the covariances between the government bond and the other three assets are all
negative, which means that the government bond yield moves inversely with these three
more risky assets. This is consistent with the long-term downward trend of government
bond yields. Among the other three risky assets, the stock index and the REIT tend to
move together. As mentioned, the REIT includes all publicly traded property companies
listed on European regulated markets, and such a composition makes it behave like a
stock index. This explains why the stock index and the REIT tend to move together. The
corporate bond index moves inversely with the stock index and the REIT. The negative
covariance between bonds and stocks as well as real estate highlights the diversification
benefits of the asset portfolio.
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3.2.2.2 Normality test

- One-sample Kolmogorov-Smirnov Test
In statistics, the one-sample K-S test is a nonparametric test of the equality of continu-
ous, one-dimensional probability distributions used to compare a sample with a reference
probability distribution. The K-S test is named after Andrey Nikolaevich Kolmogorov and
Nikolai Vasilyevich Smirnov. The K-S statistic quantifies a distance between the empir-
ical distribution function of the sample and the cumulative distribution function of the
reference distribution. The null distribution of this statistic is calculated under the null
hypothesis that the sample is drawn from the reference distribution. In the one-sample
case, the distribution considered under the null hypothesis may be continuous, purely
discrete, or mixed. The K-S test can be modified to serve as a goodness of fit test. In
the special case of testing for normality of the distribution, samples are standardized and
compared with a standard normal distribution. This is equivalent to setting the mean and
variance of the reference distribution equal to the sample estimates, and it is known that
using these to define the specific reference distribution changes the null distribution of
the test statistic.

Given the cumulative distribution function F (x), [Conover, 1999] defined the test
statistic proposed by [Kolmogorov, 1933] as,

Dn = sup
x
|Fn(x)− F (x)|,

where supx is the supremum taken over R. The empirical distribution function Fn for n
independent and identically distributed (i.i.d.) ordered random variables xi is defined as

Fn(x) = 1
n

n∑
i=1

I[−∞,x](xi),

where I[−∞,x](xi) is the indicator function, equal to 1 if xi ≤ x and equal to 0 otherwise.
- χ2 Test for Normality

The χ2 goodness-of-fit test can be used to test the hypothesis that data comes from a
normal hypothesis [Cochran, 1952]. An attractive feature of the χ2 goodness-of-fit test
is that it can be applied to any univariate distribution for which we can calculate the
cumulative distribution function. The χ2 goodness-of-fit test is applied to binned data.
The χ2 test is an alternative to the K-S goodness-of-fit test.
The χ2 test is defined for the hypothesis:
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H0: The data comes from a normal distribution.
Ha: The data does not come from a normal distribution.
To calculate the χ2 goodness of fit, the data is divided into k bins. Each bin has approx-
imately 10 data, and the test statistic is defined as

χ2 =
k∑
i=1

(Oi − Ei)2

Ei(1− Ei)
,

where Oi is the observed frequency for bin i, and Ei is the expected frequency for bin i.
The expected frequency is calculated by

Ei = [F (Yu)− F (Yl)] ·N,

where F is the cumulative distribution function for the distribution being tested, Yu is
the upper limit for class i, Yl is the lower limit for class i, and N is the sample size.

3.2.2.3 Data description - year by year from 2002 to 2019

We denote by (Si)1≤i≤n the last prices of an asset, n is the total number of the data
for the period of one year.
For the four risky assets (government bonds, corporate bonds, stocks and real estate), we
calculate the following parameters, respectively:

xi = log(Si)− log(Si−1), 2 ≤ i ≤ n,

x̄ = 1
n− 1

n∑
i=2

xi, S2 = 1
n− 2

n∑
i=2

(xi − x̄)2.

ui = xi − x̄
S

, 2 ≤ i ≤ n.

The following four figures show the histograms of the frequency distribution of (xi) with
a normal distribution curve, with Figure 3.7 for the government bond, Figure 3.8 for
the corporate bond index, Figure 3.9 for the stock index, and Figure 3.10 for the REIT,
respectively. By comparing the frequency and the normal distribution curve, we can have
a basic understanding of whether it comes from a normal distribution. For some samples,
we cannot determine whether it comes from a normal distribution through the histogram.
Next, we perform the K-S test and the χ2 test.
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Figure 3.7 – Histogram of the frequency distribution of (xi) of the 10-year Government
Bond (GB) Yield year by year.
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Figure 3.8 – Histogram of the frequency distribution of (xi) of the Corporate Bond (CB)
Index year by year.
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Figure 3.9 – Histogram of the frequency distribution of (xi) of the Stock Index (SI) year
by year.
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Figure 3.10 – Histogram of the frequency distribution of (xi) of the REIT (RE) year by
year.
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As discussed in Section 3.2.2, the government bond displays a non-normal distribution
for the whole dataset period, confirmed by the one-sample K-S test that rejects the null
hypothesis of the normal distribution for the government bond. In Figure 3.7, we can
observe that the distribution of each year is similar to the distribution of the whole
dataset period.

For the normality test with respect to the yearly dataset, the null hypothesis, H0: the
sample (xi)2≤i≤n comes from a normal distribution. To further verify whether it comes
from a normal distribution, we implement the K-S test and display the results in Table 3.3.
There is only one p-value (Sig.) larger than 0.05 in the year 2007 for the government bond.
Thus, we can conclude that government bonds scarcely come from a normal distribution.
For the other three more risky assets (corporate bonds, stocks, and real estate), it is
difficult to distinguish in the frequency distribution histograms. We further employ the
K-S test and χ2 test. We present the results of the K-S test in Table 3.3 and the results
of χ2 test in Table 3.4, respectively.

Table 3.3 – One-sample K-S tests on (xi) on four series of risky assets (indices).

Year df statistic-
GB

Sig.-
GB

statistic-
CB

Sig.-CB statistic-
SI

Sig.-SI statistic-
RE

Sig.-RE

2003 247 0.085 0.000 0.074 0.003 0.055 0.067 0.056 0.058
2004 255 0.090 0.000 0.077 0.001 0.060 0.026 0.092 0.000
2005 252 0.063 0.019 0.043 .200* 0.045 .200* 0.092 0.008
2006 251 0.084 0.000 0.023 .200* 0.093 0.000 0.088 0.000
2007 252 0.052 0.100 0.024 .200* 0.050 .200* 0.056 0.054
2008 253 0.072 0.003 0.068 0.007 0.100 0.000 0.046 .200*
2009 253 0.097 0.000 0.061 0.023 0.042 .200* 0.059 0.032
2010 254 0.132 0.000 0.031 .200* 0.089 0.000 0.068 0.006
2011 254 0.148 0.000 0.070 0.005 0.063 0.017 0.077 0.001
2012 251 0.204 0.000 0.049 .200* 0.073 0.003 0.053 0.089
2013 252 0.074 0.002 0.093 0.000 0.059 0.033 0.066 0.010
2014 252 0.087 0.000 0.041 .200* 0.074 0.002 0.045 .200*
2015 253 0.096 0.000 0.088 0.000 0.060 0.028 0.047 .200*
2016 253 0.088 0.000 0.051 .200* 0.077 0.001 0.100 0.000
2017 252 0.087 0.000 0.071 0.003 0.065 0.012 0.046 .200*
2018 252 0.086 0.000 0.047 .200* 0.069 0.005 0.063 0.017
2019 252 0.117 0.000 0.055 0.058 0.107 0.000 0.047 .200*

df: degree of freedom
*: This is a lower bound of the true significance. The SPSS does not give a specific number of the p-value but tells that it
is greater than 0.2, which is statistically significant.

As we can see from Table 3.3, for the corporate bond index, the p-value (Sig.) is
larger than 0.05 in the following periods: 2005-2007, 2010, 2012, 2014, 2016, and 2018-
2019, indicating that these nine yearly periods of samples follow the normal distribution;
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for the stock index, the p-value is larger than 0.05 in the following periods: 2003, 2005,
2007 and 2009, indicating that these four yearly periods of samples follow the normal
distribution; for the REIT, the p-value is larger than 0.05 in the following periods: 2003,
2007, 2008, 2012, 2014-2015, 2017 and 2019, indicating that these eight yearly periods of
samples follow the normal distribution.

In Table 3.4, the χ2 test shows the same result as in the K-S test for the corporate
bond index. For the stock index, there are four more years that show a normal distribu-
tion compared with the results of the K-S test, which are 2004, 2011, 2013, and 2017.
Concerning the REIT, when we compare with the results of the K-S test, it comes from
a normal distribution in the year 2018 but does not in the year 2015 under the χ2 test.

Table 3.4 – χ2 tests on (xi) on three series of risky indices.

Year χ2 statistics-CB χ2 statistics-SI χ2 statistics-RE

2003 16.25 11.59 16.91
2004 19.27 11.81 29.08
2005 10.28 8.14 21.13
2006 2.47 21.64 49.39
2007 2.97 12.59 10.48
2008 19.91 57.03 12.99
2009 21.23 5.56 21.45
2010 4.04 31.50 20.53
2011 29.59 12.00 28.37
2012 8.66 17.85 10.76
2013 17.18 13.10 25.01
2014 8.37 25.17 14.14
2015 27.74 18.94 20.72
2016 7.56 15.70 38.98
2017 16.33 11.04 13.79
2018 7.74 17.67 12.63
2019 12.09 44.35 9.28

In the χ2 test, the degree of freedom = 8, the probability associated with the χ2 distribution = 0.05, the critical value
(the inverse of the one-tailed probability of the χ2 distribution) = 15.51.
If the χ2 test statistic is less than the critical value, there is a good fit. We do not reject the null hypothesis that the data
comes from a normal distribution.

As shown in Table 3.3 and Table 3.4, for the stock index and the REIT, their data
for 2006, 2010, and 2016 do not come from a normal distribution under both the K-S test
and the χ2 test. Risky assets such as stocks and REIT were very volatile in the 2006 bull
market. The fear of the European sovereign debt crisis in 2010 has also increased volatil-
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ity in risky assets markets. The Brexit referendum outcome on June 24, 2016, exceeded
market expectations, which also caused turmoil in the international financial market. The
normality test results of these three years confirm that the normality assumption of the
Black-Scholes model does not capture certain extreme movements. Based on the results
of the two normality tests, we can conclude that the K-S test is more strict than the χ2

test since four annual samples of the stock index do not come from a normal distribution
under the K-S test.

Table 3.5 – The annualized rate of return and volatility of five series of indices.

Risk-
free

Government
Bond

Corporate
Bond

Stock
Index

Real
Estate

Year r a
(1)
R σ

(1)
R a

(2)
R σ

(2)
R a

(3)
R σ

(3)
R a

(4)
R σ

(4)
R

2003 0.0233 0.0414 0.000128 0.0692 0.0328 0.1542 0.2710 0.1099 0.0712
2004 0.0211 0.0410 0.000128 0.0746 0.0260 0.0681 0.1402 0.3088 0.0824
2005 0.0218 0.0340 0.000118 0.0396 0.0225 0.2127 0.1101 0.2082 0.1034
2006 0.0308 0.0380 0.000128 0.0054 0.0223 0.1518 0.1479 0.4467 0.1559
2007 0.0428 0.0430 0.000119 0.0002 0.0219 0.0679 0.1587 -0.3020 0.2643
2008 0.0463 0.0423 0.000200 -0.0375 0.0411 -0.4428 0.3927 -0.4765 0.3740
2009 0.0123 0.0364 0.000085 0.1564 0.0315 0.2104 0.2796 0.2577 0.3775
2010 0.0081 0.0311 0.000189 0.0471 0.0233 -0.0576 0.2364 0.0648 0.1973
2011 0.0139 0.0330 0.000196 0.0147 0.0362 -0.1694 0.2881 -0.1506 0.2391
2012 0.0057 0.0252 0.000247 0.1365 0.0228 0.1384 0.2080 0.2348 0.1546
2013 0.0022 0.0221 0.000126 0.0237 0.0232 0.1794 0.1646 0.0774 0.1372
2014 0.0021 0.0167 0.000286 0.0840 0.0152 0.0120 0.1721 0.2104 0.1353
2015 0 0.0086 0.000150 -0.0056 0.0251 0.0383 0.2314 0.1212 0.2083
2016 0 0.0047 0.000141 0.0471 0.0220 0.0070 0.2194 -0.1367 0.2601
2017 0 0.0081 0.000084 0.0241 0.0189 0.0649 0.1032 0.0547 0.1054
2018 0 0.0078 0.000058 -0.0125 0.0168 -0.1435 0.1374 -0.1879 0.1298
2019 0 0.0013 0.000199 0.0624 0.0183 0.2477 0.1316 0.2906 0.1350

r, risk-free rate, a(i)
R , annualized mean, and σ

(i)
R , annualized volatility.

Table 3.5 presents the interest rate of one risk-free asset and the annualized return and
volatility of the four risky assets, year by year. Regarding bonds, the government bond
shows a decreasing return from about 4% to around 0 with minimum volatility, while
the corporate bond index is more volatile than the government bond, but comparatively
stable volatility than the stock index and the REIT. Both the stock index and the REIT
have higher annualized volatility, within 10% to 40%. Most of the time, their annualized
rates of return are close. However, in some years, the return varies greatly, such as 2004,
2006-2007, and 2014.
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Next, we compute the variance-covariance matrix of the four assets year by year.

C2003 =


0.000000016 −0.000000427 0.000003486 0.000000515
−0.000000427 0.001083207 −0.004274875 −0.000020306
0.000003486 −0.004274875 0.073734000 0.003216463
0.000000515 −0.000020306 0.003216463 0.005083592

 ;

C2004 =


0.000000016 −0.000000353 −0.000000064 −0.000000750
−0.000000353 0.000679430 −0.000793603 −0.000039701
−0.000000064 −0.000793603 0.019724900 0.003751312
−0.000000750 −0.000039701 0.003751312 0.006815330

 ;

C2005 =


0.000000014 −0.000000187 −0.000000465 −0.000000456
−0.000000187 0.000508638 −0.000018206 0.000376649
−0.000000465 −0.000018206 0.012174140 0.003615727
−0.000000456 0.000376649 0.003615727 0.010740760

 ;

C2006 =


0.000000016 −0.000000046 −0.000000844 −0.000002028
−0.000000046 0.000498743 −0.000327960 −0.000422819
−0.000000844 −0.000327960 0.021962380 0.014470500
−0.000002028 −0.000422819 0.014470500 0.024399000

 ;

C2007 =


0.000000014 −0.000000140 0.000000035 −0.000001090
−0.000000140 0.000480262 −0.001653039 −0.002096064
0.000000035 −0.001653039 0.025287980 0.030132280
−0.000001090 −0.002096064 0.030132280 0.070122000

 ;

C2008 =


0.000000040 −0.000000782 0.000003196 0.000003916
−0.000000782 0.001695793 −0.005684324 −0.004260003
0.000003196 −0.005684324 0.154827000 0.106716000
0.000003916 −0.004260003 0.106716000 0.140458000

 ;
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C2009 =


0.000000007 −0.000000100 0.000002849 0.000003663
−0.000000100 0.000996525 −0.002887472 −0.002464118
0.000002849 −0.002887472 0.078462000 0.076236000
0.000003663 −0.002464118 0.076236000 0.143105000

 ;

C2010 =


0.000000036 0.000000179 −0.000000091 −0.000001354
0.000000179 0.000544730 −0.000939434 −0.000201894
−0.000000091 −0.000939434 0.056126500 0.037377480
−0.000001354 −0.000201894 0.037377480 0.039090000

 ;

C2011 =


0.000000039 −0.000000024 0.000003059 0.000003338
−0.000000024 0.001319038 −0.003126853 −0.000904821
0.000003059 −0.003126853 0.083322000 0.054868000
0.000003338 −0.000904821 0.054868000 0.057409000

 ;

C2012 =


0.000000061 0.000000140 −0.000002350 0.000000159
0.000000140 0.000519866 −0.001228831 −0.000562984
−0.000002350 −0.001228831 0.043457000 0.023769140
0.000000159 −0.000562984 0.023769140 0.024004730

 ;

C2013 =


0.000000016 −0.000000340 0.000000338 −0.000000279
−0.000000340 0.000539640 0.000295744 0.000886312
0.000000338 0.000295744 0.027189720 0.015040650
−0.000000279 0.000886312 0.015040650 0.018896870

 ;

C2014 =


0.000000082 0.000000183 0.000000790 0.000000613
0.000000183 0.000232245 −0.000291637 0.000036809
0.000000790 −0.000291637 0.029752240 0.016873390
0.000000613 0.000036809 0.016873390 0.018403310

 ;
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C2015 =


0.000000023 −0.000000483 −0.000000946 −0.000001046
−0.000000483 0.000633570 0.000044250 0.001142921
−0.000000946 0.000044250 0.053770950 0.037562580
−0.000001046 0.001142921 0.037562580 0.043561000

 ;

C2016 =


0.000000020 −0.000000329 −0.000002015 −0.000000916
−0.000000329 0.000486220 0.000965777 0.001911025
−0.000002015 0.000965777 0.048318000 0.044994450
−0.000000916 0.001911025 0.044994450 0.067919400

 ;

C2017 =


0.000000007 −0.000000013 0.000000406 0.000000206
−0.000000013 0.000358384 −0.000374121 0.000276005
0.000000406 −0.000374121 0.010688760 0.003814368
0.000000206 0.000276005 0.003814368 0.011159130

 ;

C2018 =


0.000000003 −0.000000127 −0.000000247 −0.000000087
−0.000000127 0.000283137 −0.000071295 0.000195953
−0.000000247 −0.000071295 0.018944960 0.010098740
−0.000000087 0.000195953 0.010098740 0.016920450

 ;

C2019 =


0.000000040 0.000000341 0.000001230 0.000000295
0.000000341 0.000335139 −0.000013636 0.000062253
0.000001230 −0.000013636 0.017398000 0.008328682
0.000000295 0.000062253 0.008328682 0.018285370

 .

The covariance coefficients between the government bond and the other three more risky
assets are mostly negative, and the absolute value is close to 0, which shows that as a
risky asset in our study, it does not move together with other risky assets. As we described
in the analysis of euro-denominated funds in Section 1.3.1, there are several advantages
in euro-denominated life insurance, e.g., capital guarantees and an annual minimum rate
of return. Life insurance companies invest a large proportion of their savings in bonds,
mostly long-term government bonds. The stable yield of government bonds has been one
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of the main points which allowed for the long-term development and prosperity of euro-
denominated life insurance in the past forty years. It is noticed that the government bond
yields have declined to less than 1% or even negative (below the minimum rate of return)
in recent years. Life insurers have to increase investments in more risky assets (including
alternative investments) to sustain capital guarantees in euro-denominated contracts.

Since 2012, the covariance coefficients between the corporate bond index and the stock
index and the REIT are no longer mostly negative as in 2003-2012, indicating that the
diversification benefits will decline. The covariance coefficients between the stock index
and the REIT are larger if the markets are in bull, bear, and bull-bear transitions, such as
2008-2009, 2011, 2015-16, 2018. They tend to move together in a more volatile market. In
the rest of the period, the comparatively low correlation with the stock index also makes
the REIT an excellent portfolio diversifier that reduces overall portfolio risk and improves
returns. These reflect the characteristics of REIT-based alternative investment.

3.3 Optimal asset allocation

In this section, we propose and obtain the optimal investment strategy that maximizes
the income of a life insurance company under some practical constraints related to the
ruin probability, based on the derived formulae in the previous chapter. Then, we perform
a numerical illustration of our optimal investment strategy to find the optimal asset
allocation with real data from the French life insurance sector and financial markets in
2019.

3.3.1 Optimal Investment Strategy

In order to illustrate the portfolio optimization problem, we consider the risk-free asset
and the four risky assets as described in Section 3.2. The goal of the optimal investment
strategy is to maximize the expected income of a life insurance company, E(Y (γ)

T ) subjected
to the condition that the probability that the result of the exercise at each time in the
period [0, T ] is less than a saving capital must be less or equal to α, i.e.,

P
(
Y

(γ)
T ≤ −c

)
≤ α,

where Y (γ)
T is defined as the income of a life insurance company, c is a saving capital and α

is the probability of insolvency, α = 1% or 0.5%. In other words, it is reasonable to choose
an investment strategy that can maximize the income of a life insurance company at the
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end of a predetermined investment horizon while controls the risk at specific regulatory
or financial bounds.
From (2.3.2.4a), we have

µγ = a
(1)
R γ1 + a

(2)
R γ2 + a

(3)
R γ3 + a

(4)
R γ4 + rγr,

and a
(1)
R , a(2)

R , a(3)
R , and a

(4)
R are the rates of return of the four risky assets. γ1, γ2, γ3, and

γ4 are the proportions of each risky asset, γi ≥ 0. Here, r and γr are the risk-free rate and
the proportion of the risk-free asset, respectively, and

γr = 1−
4∑
i=1

γi = 1− (γ1 + γ2 + γ3 + γ4) ≥ 0.

From (2.3.2.2), we also have

σ2
γ =

4∑
i=1

4∑
j=1

γiγjσ
(i)
R σ

(j)
R ρi,j,

where σ(i)
R is the standard deviation of the risky asset i and ρi,j is the correlation coefficient

between asset i and j, i, j ∈ {1, 2, 3, 4}.
As it was mentioned, the objective is to find

max
γ∈J

E
(
Y

(γ)
T

)
,

subject to the condition

P
(
−Y (γ)

T ≥ c
)
≤ α,

where J =
{

(γr, γ1, γ2, γ3, γ4)
∣∣∣∣∣

4∑
i=1

γi ≤ 1, 0 ≤ γi ≤ γ(i)
max

}
, γ(i)

max is the maximum invest-

ment ratio by asset class authorized by French insurance regulations.
Since the explicit formula for the probability P

(
−Y (γ)

T ≥ c
)

is unknown, we will use the
upper estimation of this probability, namely

P
(
−Y (γ)

T ≥ c
)
≤

E
[(
Y

(γ)
T

)2
]

c2 . (3.3.1.1)

As we can see, as c→ +∞, the right-hand side of the above inequality tends to zero, and
there exists c0 > 0 such that for c ≥ co

E
[(
Y

(γ)
T

)2
]

c2 ≤ α, (3.3.1.2)
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c0 is the minimum saving capital required under a given probability of insolvency.
The use of the upper bound is better than the numerical calculation of the mentioned
probability because such numerical calculations can lower the probability of ruin, which
is a dangerous situation.
Of course, the maximization of E

(
Y

(γ)
T

)
under (3.3.1.2) will not give the same result as

the maximization of E
(
Y

(γ)
T

)
under (3.3.1.1). The maximum of E

(
Y

(γ)
T

)
under (3.3.1.2)

will be smaller than the maximum of E
(
Y

(γ)
T

)
under (3.3.1.1), since (3.3.1.2) is stronger

than (3.3.1.1).
Again, for security reasons, it is better to underestimate the maximum of E

(
Y

(γ)
T

)
than

overestimate it.
It is more common for life insurance companies to get positive investment rates of return
µγ > 0, so that up to now, we consider this situation. For simplicity in the numerical
illustration in section 3.3.2, we assume y = 0.

3.3.1.1 Case 1 and Case 2

For Case 2 (and Case 2bis), we get

E
(
Y

(γ)
T

)
= aλ,β

µγ

(
eµγT − 1

)
,

E
[(
Y

(γ)
T

)2
]

=
2a2

λ,β

µγ

e(2µγ+σ2
γ)T − eµγT

µγ + σ2
γ

+
(
σ2
λ,β −

2a2
λ,β

µγ

)
e(2µγ+σ2

γ)T − 1
2µγ + σ2

γ

,

where
aλ,β = aX + λβZ ,

σ2
λ,β = σ2

X + λ
(
β2
Z + σ2

Z

)
.

If we consider Case 1 (and Case 1bis), aλ,β and σ2
λ,β should be simply replaced by aX and

σ2
X . So, for the maximization problem, we need to consider only the second case for the

modeling of Xt because other cases can be obtained by changing the parameters.
We introduce the functions

f(x) = ex − 1
x

,

and
g(x) = ex

x
.
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Then, given c, α, T , aX , σ2
X , γ(1)

max, γ(2)
max, γ(3)

max, γ(4)
max and r, we solve numerically the

maximization problem to find

max
γ∈J

[aλ,βT · f(µγT )] , (3.3.1.3)

subject to the constraint:

2a2
λ,βT

2 · g(µγT ) · f
[
(µγ + σ2

γ)T
]

+ (σ2
λ,β −

2a2
λ,β

µγ
)T · f

[
(2µγ + σ2

γ)T
]
≤ α · c2. (3.3.1.4)

When we find →γ ∗ = (γ∗r , γ∗1 , γ∗2 , γ∗3 , γ∗4) which gives the optimal investment proportions, we
calculate µ∗ and σ∗, the annualized rate of return and volatility of this optimal investment
strategy in the return on investment generating process,

µ∗ = a
(1)
R γ∗1 + a

(2)
R γ∗2 + a

(3)
R γ∗3 + a

(4)
R γ∗4 + rγ∗r ,

σ∗ =
√
σ2
∗ =

√√√√ 4∑
i=1

4∑
j=1

γ∗i γ
∗
jσ

(i)
R σ

(j)
R ρi,j.

The maximized expected income of a life insurance company will be equal to

aλ,β
µ∗

(
eµ∗T − 1

)
,

and the interest rate of the contract for the holding period (HPY) will be equal to

ln

[
aλ,β
µ∗

(
eµ∗T − 1

)/
(aλ,βT )

]
= ln

(
eµ∗T − 1
µ∗T

)
.

3.3.1.2 The General Case

Concerning the general case with y = 0, we know:

E
(
Y

(γ)
T

)
= δX

1− e−tΦ(−1)

Φ(−1) ,

E
[(
Y

(γ)
T

)2
]

= δ2
X · E(I2

t ) +
(
σ2
X +

∫
R
x2νX(dx)

)
E(Jt),

where
δX = aX +

∫
|x|>1

xνX(dx),
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Φ(ε) = εaR −
1
2σ

2
R(ε− ε2) + ε

∫
R
ln(1 + x)νR(dx),

E(I2
t ) = 2

Φ(1)

[
1− e−Φ(2)t

Φ(2) + 1− e−Φ(1)t

Φ(2)− Φ(1)

]
,

E(Jt) = 1− e−tΦ(−2)

Φ(−2) ,

Φ(−1) 6= 0, Φ(1) 6= 0, Φ(−2) 6= 0, Φ(2) 6= 0 and Φ(1) 6= Φ(2).
With the function f(x) = ex−1

x
, we obtain

E
(
Y

(γ)
T

)
= δXt · f [−t · Φ(−1)] ,

E
[(
Y

(γ)
T

)2
]

=δ2
X · E(I2

t ) +
(
σ2
X +

∫
R
x2νX(dx)

)
E(Jt)

=
[
aX +

∫
|x|>1

xνX(dx)
]2

·
{

2t
Φ(1) · f [−t · Φ(2)] + 2t

Φ(2)− Φ(1) · f [−t · Φ(1)]
}

+
[
σ2
X +

∫
R
x2νX(dx)

]
· t · f [−t · Φ(−2)] .

Then, we can also solve numerically the maximization problem to find

max
γ∈J
{δXt · f [−t · Φ(−1)]} ,

subject to the constraint:
[
aX +

∫
|x|>1

xνX(dx)
]2

·
{

2t
Φ(1) · f [−t · Φ(2)] + 2t

Φ(2)− Φ(1) · f [−t · Φ(1)]
}

+
[
σ2
X +

∫
R
x2νX(dx)

]
· t · f [−t · Φ(−2)] ≤ α · c2.

3.3.2 Numerical illustration

In this subsection, we will perform a numerical illustration of Case 2bis on the obtained
optimal investment strategy in Section 3.3.1.

As already mentioned, the dataset used for the risky assets include the France 10-year
Government Bond (1, government bond), the Bloomberg Barclays Euro Aggregate Cor-
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porate Total Return Index Value Unhedged EU (2, corporate bond), the EURO STOXX
50 Index (3, stock) and the Euronext IEIF REIT Europe Index (4, REIT) from December
31, 2018, to December 31, 2019. To illustrate the type of calculation, we use the data for
the exercise of the French life insurance companies in the same year as the financial mar-
ket, i.e., 2019 (at the time of calculation). The expected annualized return and volatility
are approximated by the average and standard deviation of the daily rate of returns in
the period, see Section 3.2.2.

Let’s remind that in a low interest rate environment, short-term interest rates in the
Eurozone have been negative for several years, as shown in Figure 3.1. For example, the
3-month Euribor rate is around -0.35% in 2019. For that reason, life insurance companies
can also hold cash rather than invest in negative interest rates. From (3.2.1.1), we know
the risk-free rate is assumed to be zero in 2019.

To limit the impact of market risk and the liquidity risk, the French Insurance Code
specifies certain constraints on the structure of the asset portfolio of life insurance com-
panies. From Section 1.3.1, the main limits of the composition of euro-denominated funds
in terms of investment (%) are (maximum investment ratios by asset class):
· 100% for bonds and bond funds;
· 65% for equities and equity funds;
· 40% for real estate.

Then, we have γ(1)
max = γ(2)

max = 100%, γ(3)
max = 65% and γ(4)

max = 40%.
We obtain the premium of 144.6 billion euros, the claims, benefits paid and redemp-

tions of 122.7 billion euros and a corresponding net inflow of 21.9 billion euros in 2019
from the French Insurance Federation. The variance in the basic risk process is estimated
based on monthly data from January 2012 to December 2019, when the average annual
net inflow of life insurance business has declined to a new level of less than 20 billion
euros, as shown in Figure 1.7 of Chapter 1.

The following set of parameters has been used in the numerical calculation of the
maximization problem.
In the basic risk process (Xt)t≥0, the parameters in billion of euros are given by:

aλ,β = 21.9, and σλ,β = 4.97.

In the return on investment generating process (Rt)t≥0:

r = 0, a(1)
R = 0.1263%, a(2)

R = 6.2396%, a(3)
R = 24.7671%, and a

(4)
R = 29.0565%,

σ
(1)
R = 0.0199%, σ(2)

R = 1.8270%, σ(3)
R = 13.1638% and σ

(4)
R = 13.4955%,
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(ρi,j)1≤i≤4
1≤j≤4

=


1 0.0935 0.0467 0.0109

0.0935 1 −0.0056 0.0251
0.0467 −0.0056 1 0.4669
0.0109 0.0251 0.4669 1

 .

We set the one-year investment period, T = 1 year, the probability of insolvency, α = 0.5%
and assume the saving capital, c = 330 billion euros.
Given all the parameters above, we find the optimal allocation of the maximization,

→
γ
∗ = (γ∗r , γ∗1 , γ∗2 , γ∗3 , γ∗4) = (0.0046, 0.0166, 0.8875, 0.0424, 0.0489),

the corresponding optimal annualized rate of return (µ∗) and volatility (σ∗) in the return
on investment generating process are 7.8909% and 1.9401%, respectively. The maximized
expected income of a life insurance company in one year is 22.7531 billion euros, and the
holding period yield on life insurance contracts is 3.8216%.

Using these ex-post data, we observe that a substantial proportion of the savings of
the life insurance company should have been invested in corporate bonds in order to offer
the optimal holding period yield of 3.82% if not endowed in a smoothing reserve, while
the corresponding average rate in the life insurance industry was 2.62% from the ACPR in
2019. The comparison with real data and the analysis of these differences will be presented
in Section 3.4.4..

3.4 Sensitivity analysis

The optimal asset allocations depend on the selection of a range of parameters. In
this section, we examine the sensitivity of the optimal investment strategy to certain
parameters in the integrated risk process, Yt. The parameters used to find the optimal
asset allocation in Section 3.3.2 serves as the benchmark for calculating the sensitivity
analysis in the following subsections.

3.4.1 Sensitivity of the optimal asset allocation to different lev-
els of interest rates

Firstly, we examine the sensitivity of the optimal asset allocation to different levels
of interest rates. The gradual decrease in the return on euro-denominated contracts was
highly related to the decline in the France 10-year government bond yield, as shown in
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Figure 1.2. This encouraged the life insurers to allocate more corporate bonds in their
portfolio. We propose two rates in this sensitivity analysis: one negative rate (-1%) and one
average rate (the average France 10-year government bond yield in the past two decades
is about 4%), while keeping other parameters unchanged.

Table 3.6 – Optimal asset allocation of the portfolio under different yields

a
(1)
R Cash Government

bonds
Corporate
bonds

Stocks REITs µ∗ σ∗ Holding
period
yield

-1% 0.0209 0.0000 0.8886 0.0423 0.0488 7.8907% 1.9416% 3.8215%
0.1263% 0.0046 0.0166 0.8875 0.0424 0.0489 7.8909% 1.9401% 3.8216%
4% 0.0008 0.3575 0.5158 0.0530 0.0729 7.8934% 1.7378% 3.8227%

In Table 3.6, the results show that as the France 10-year government bond yield
increases, the holding period yield rises. µ∗ increases while σ∗ decreases in the return on
investment generating process, which indicates a diversification benefit. When the long-
term government bond yield remains low or negative, the investment strategy becomes
conservative. Life insurance companies should hold more cash and liquid assets to meet
the liquidity needs in case of increasing outflows from the life insurance business. If the
rate is at a high level 5, the investment strategy will become aggressive, such that most of
the proportion will be shifted from corporate bonds to government bonds. At the same
time, the proportion of stocks and REITs has also improved.

3.4.2 Sensitivity of the optimal asset allocation to different con-
straints, α and c

In Section 3.3.2, we assume that the saving capital and the probability of insolvency
in the inequality constraint are 330 and 0.5%, respectively. Table 3.7 shows the optimal
asset allocation based on two insolvency probabilities α (0.499% and 0.501%). We also

5. In this sensitivity analysis, we suppose the change in the 10-year government bond yields while
keeping other returns unchanged. In reality, yield spreads on corporate bonds fall when government bond
yields rise [Duffee, 1998]. Our analysis employs the total return corporate bond index, and the total return
can be decomposed approximately into several return components, for instance, yield income, rolldown
return, expected change in price based on investor’s views of yields and yield spreads, expected credit
losses and expected currency gains or losses. Such return components may offset each other, and it is
not clear how the total returns vary when government bond yields change. We are conscious that other
returns may also be affected by this change.
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explore the optimal asset allocation under two saving capitals c (329 and 331) in Table
3.8.

Both α and c can be viewed as the risk tolerance measures of the life insurance com-
pany, such that as α or c increases, the insurer’s risk-averse attitude decreases, and the
investment strategy becomes more aggressive, generating a higher holding period yield.

Table 3.7 – Optimal asset allocation of the portfolio under different probabilities of insol-
vency

α Cash Government
bonds

Corporate
bonds

Stocks REITs µ∗ σ∗ HPY

0.499% 0.0108 0.0341 0.8669 0.0407 0.0475 7.6788% 1.8894% 3.7219%
0.500% 0.0046 0.0166 0.8875 0.0424 0.0489 7.8909% 1.9401% 3.8216%
0.501% 0.0064 0.0070 0.8872 0.0451 0.0543 8.1031% 1.9925% 3.9211%

Table 3.8 – Optimal asset allocation of the portfolio under different saving capitals

c Cash Government
bonds

Corporate
bonds

Stocks REITs µ∗ σ∗ HPY

329 0.0329 0.0679 0.8146 0.0391 0.0455 7.2485% 1.7861% 3.5193%
330 0.0046 0.0166 0.8875 0.0424 0.0489 7.8909% 1.9401% 3.8216%
331 0.0018 0.0021 0.8781 0.0526 0.0654 8.5341% 2.1119% 4.1226%

These two parameters can be tailored according to the financial situation of life insur-
ers to reflect their attitudes on investment risks. For instance, when the higher returns
accumulated in previous years provide a cushion for taking risks, life insurers can increase
the value of such parameters on the premise of meeting regulatory requirements. As a re-
sult, the investment strategy becomes more aggressive to accumulate investment returns,
increase profit-sharing to the policyholders, and enhance the provision for participation
in profits.

3.4.3 Sensitivity of the optimal asset allocation to the parame-
ters in the basic risk process, Xt

The sensitivity of the optimal asset allocation to two net inflows (21.84 and 21.96) is
investigated, as shown in Table 3.9.
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Table 3.9 – Optimal asset allocation of the portfolio under different net inflows

aλ,β Cash Government
bonds

Corporate
bonds

Stocks REITs µ∗ σ∗ HPY

21.84 0.0000 0.0048 0.8814 0.0509 0.0629 8.4450% 2.0857% 4.0811%
21.9 0.0046 0.0166 0.8875 0.0424 0.0489 7.8909% 1.9401% 3.8216%
21.96 0.0406 0.0469 0.8275 0.0393 0.0457 7.3400% 1.8083% 3.5624%

As the net inflow of the life insurance business increases, the investment strategy
becomes more conservative, resulting in a decline in holding period yield. This explains
why life insurers have limited the subscription and capital inflows in euro-denominated
life insurance in a low-interest-rate environment in recent years. Keeping other variables
unchanged, the increase in the investable funds following the increase in the net inflow will
lead to a more defensive investment strategy. In other words, the investment will be more
conservative to meet the constraints in (3.3.1.4) when increasing the net inflow without
enhancing the saving capital.
We examine the sensitivity of the optimal asset allocation to the variance in the basic
insurance process for two values (24.26 and 25.23). We display the corresponding results
in Table 3.10. Both the increased capital outflows and the raised volatility in the life
insurance business will prompt life insurers to invest in a more conservative strategy. Life
insurance companies should hold more cash and cash equivalents to provide sufficient
liquidity to deal with unpredictable redemptions.

Table 3.10 – Optimal asset allocation of the portfolio under different levels of variance in
the basic risk process

σλ,β Cash Government
bonds

Corporate
bonds

Stocks REITs µ∗ σ∗ HPY

4.93 0.0030 0.0093 0.8941 0.0430 0.0506 7.9950% 1.9647% 3.8704%
4.97 0.0046 0.0166 0.8875 0.0424 0.0489 7.8909% 1.9401% 3.8216%
5.02 0.0051 0.0275 0.8776 0.0416 0.0482 7.7889% 1.9157% 3.7737%

3.4.4 Sensitivity of the optimal asset allocation to different fi-
nancial market conditions in the return on investment gen-
erating process, Rt

In Section 3.3.2, we illustrated the optimal investment strategy numerically with the
dataset in 2019. The performance of the optimal investment strategy under the market
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ups and downs still remain to be analyzed. In this section, we analyze the sensitivity of
the optimal asset allocation to different financial market conditions.

Next, we will test the impact of the yearly financial market conditions on the opti-
mal investment strategy from 2003 to 2018. In order to make the yearly optimal asset
allocations comparable, we keep the following parameters at their level of calculation in
2019, including the saving capital c, the probability of insolvency α, the investment period
T , the premium rate aλ,β, the variance in the basic risk process σ2

λ,β, and the maximum
investment ratio by asset class γ(i)

max. Table 3.11 presents the optimal asset allocation of
each calendar year under the maximization objective in (3.3.1.3) and the constraint in
(3.3.1.4).

Table 3.11 – Optimal asset allocation of the portfolio based on different financial market
conditions, from 2003 to 2019.

Year Risk-free
asset

Government
bonds

Corporate
bonds

Stocks REITs µ∗ σ∗ HPY

2003 0.0007 0.1731 0.5967 0.0505 0.1790 7.5898% 2.3082% 3.8189%
2004 0.0008 0.7388 0.1478 0.0002 0.1124 7.6043% 0.9978% 3.8262%
2005 0.0011 0.7351 0.0267 0.1118 0.1253 7.5933% 2.0609% 3.8207%
2006 0.0013 0.9054 0.0001 0.0002 0.0930 7.6009% 1.4534% 3.8245%
2007 0.0031 0.5031 0.0000 0.4938 0.0000 5.5307% 7.8541% 2.7781%
2008 0.5215 0.4785 0.0000 0.0000 0.0000 4.4394% 0.0096% 2.2279%
2009 0.0008 0.6761 0.3070 0.0152 0.0009 7.6052% 0.9272% 3.8267%
2010 0.0000 0.0000 0.6000 0.0000 0.4000 5.4161% 7.9710% 2.7203%
2011 0.0000 1.0000 0.0000 0.0000 0.0000 3.3027% 0.0197% 1.6559%
2012 0.0074 0.5513 0.4157 0.0067 0.0189 7.6047% 0.9527% 3.8265%
2013 0.0000 0.6475 0.0160 0.3364 0.0001 7.5017% 5.5510% 3.7743%
2014 0.0039 0.1640 0.8037 0.0008 0.0276 7.6023% 1.2888% 3.8252%
2015 0.0000 0.6000 0.0000 0.0000 0.4000 5.3632% 8.3482% 2.6936%
2016 0.0007 0.1744 0.8244 0.0005 0.0000 3.9638% 1.8198% 1.9885%
2017 0.0001 0.0002 0.5993 0.2893 0.1111 3.9302% 3.6239% 1.9715%
2018 0.0000 1.0000 0.0000 0.0000 0.0000 0.7825% 0.0058% 0.3915%
2019 0.0046 0.0166 0.8875 0.0424 0.0489 7.8909% 1.9401% 3.8216%

Firstly, the optimal investment proportions among five assets vary notably year after
year. The proportion allocated to stocks is less than 10% on average in the yearly optimal
asset allocation statistics, except for the following three years, 2007, 2013, and 2017. The
average statistics on these yearly optimal asset allocations are presented in Table 3.12.
The same finding is that a less than 10% allocation to real estate on average, except
for the maximum investment ratio of 40% in 2010 and 2015. In addition to the above
five years, bonds accounted for the vast majority of the proportion, of which government
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bonds accounted for nearly half of the total investment, and corporate bonds accounted
for nearly one-third. The allocation to the risk-free asset is minimal except for the year
of the financial crisis in 2008.

The obtained investment proportions over the years are more volatile than in reality,
while the yearly average investment proportions resemble the structure of the investments
of euro-denominated funds as observed in Figure 1.13. Several reasons can explain this
observation. Our dataset includes five assets to represent asset classes in the investment
process of life insurers. In reality, there are thousands of assets available for investment.
We consider the maximum investment ratios by asset class (γ(i)

max) in our constraints,
but not the dispersion rules that limit the counterparty risk (see Section 1.3.1), e.g., the
maximum investment ratio of 10% on one building or one real estate fund. In addition, our
model looks for the asset allocation that maximizes the return on investment subject to
the inequality constraint (3.3.1.4). Therefore, there is a higher probability that the results
will be affected by the performance of one specific asset. There are neither transaction
costs nor re-balancing costs in our model since we do not consider the initial portfolio.
Moreover, it is now in an environment of ever-decreasing interest rates. The historical
yields of the government bonds are higher, which offers higher returns for older issued
bonds still held by the French life insurance companies.

Table 3.12 – Average statistics on the optimal asset allocation from 2003 to 2019.

Risk-free
asset

Government
bonds

Corporate
bonds

Stocks REITs µ∗ σ∗ HPY

Mean 0.0321 0.4920 0.3073 0.0793 0.0892 5.9601% 2.7725% 2.9878%

Secondly, the optimal annualized investment return is between 3% and 8%. The in-
vestment rate of return is less than 1% due to the unilateral decline in the three main
risky assets (corporate bond, stock, and real estate) and a low yield on government bonds
in 2018. Thirdly, the annualized volatility is mostly below 5%. There are three years when
the volatility is more than 7% in 2007, 2010, and 2015. The large fluctuations in these
three years are related to higher allocations to stocks or real estate. This trend of the an-
nualized investment rate of return is similar to the performance of life insurance products
in dynamic euro-denominated funds with higher risk exposures of assets to stocks and
real estate, as plotted in Figure 1.6.

Lastly, the holding period yield of life insurance contracts is mostly around 2-4%.
The results show that this optimal investment strategy can generate a holding period
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yield of close to 3% in most financial market conditions given the level of calculation in
2019. The calculated holding period yields in our model and the rate of returns on classic
euro-denominated funds and dynamic euro-denominated funds are presented in Figure
3.11.

Figure 3.11 – The performance of the calculated holding period yield and the returns on
classic euro-denominated funds and dynamic euro-denominated funds, 2006-2019.

Source: ACPR, GVfM

Compared with the other two returns observed in the real data, the calculated holding
period returns are more volatile. As discussed in Section 1.3.1, the return of contracts in
euro-denominated funds is based on several elements: management fees, technical interest
rates, profit sharing (and the provision for participation in profits), and may also include
a minimum guaranteed rate. Euro-denominated contracts designed in this way enable
life insurers to smooth the financial results of euro-denominated funds and stabilize the
fluctuations of holding such life insurance contracts.

Moreover, the parameters used in the calculations are based on the level in 2019,
the optimal rate of return (µ∗) in return on investment generating process (Rt) and the
holding period yield could be underestimated. The reason is as follows.

As observed in Figure 1.7 , the outflow from life insurance contracts ranged between
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40 billion to 80 billion euros from 1999 to 2007. In 2011, it started to exceed 100 billion
euros, resulting in a decline in the net inflow of life insurance contracts. If we calculate
the optimal asset allocation based on the data of the life insurance business in 2019, cer-
tain parameters in the basic insurance business process (Xt) will be overestimated for the
past years (i.e., σ2

λ,β) 6, including both the overestimated outflow and the overestimated
volatility of the insurance business. Then, keeping other parameters remain unchanged,
this overestimation will make the investment strategy more conservative and underesti-
mate the optimal investment rate of return (µ∗) and the holding period yield.

3.5 Conclusion

In this chapter, we selected one government bond, one corporate bond index, one
stock index, and one real estate investment trust to represent the four risky assets, and
we assumed a non-negative risk-free rate based on the 3-month Euribor interest rate and
cash. We performed data description, normality test, and data analysis.

Then, based on the results in the previous chapter of mathematical modeling, we
obtained the strategy of maximizing investment return subject to certain constraints to
find the optimal asset allocation of the life insurance company. Next, we applied one case
analysis with the numerical illustration of this optimal investment strategy through the
dataset in 2019. The sensitivity analysis examined the impact of each parameter on the
optimal asset allocation and brought certain implications for life insurance companies.
We also conducted a sensitivity analysis of the optimal asset allocation under different
financial market conditions, including both extreme and less volatile ones from 2003 to
2018. The results provided a holding period yield of around 3% in most financial market
conditions, given the unchanged constraints and insurance business in 2019.

The numerical results verified the assumptions and analysis in Chapter 2. We con-
cluded that the optimal asset allocation of the investment of the life insurance company
depends on both the basic risk process Xt and the return on investment generating process
R

(γ)
t .

A small change in the value of benchmark parameters will lead to evident shifts in the
optimal asset allocations. By adjusting the value of the parameters α (probability of insol-
vency) and c (saving capital) in the inequality constraint, life insurers can find an optimal

6. The sensitivity of the optimal asset allocation of the portfolio under different levels of variance in
the basic risk process is examined in Section 3.4.3 and presented in Table 3.10.
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investment strategy that achieves an authority’s requirement. When the investable funds
rised following by the increase in net flows, the life insurance company should improve
the capital level for an optimal asset allocation. Life insurers should hold more liquid
and risk-free assets in the contexts of low interest rates and unpredictable redemptions to
reduce its liquidity risk and insolvency risk.
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Chapter 4

PERFORMANCE EVALUATION OF

PORTFOLIO OPTIMIZATION STRATEGIES

FOR THE LIFE INSURANCE COMPANY

4.1 Introduction

We proposed and analyzed our optimal asset allocation strategy for the life insurance
company and implemented the strategy in one-year period in the numerical illustration in
the previous chapter. Based on the integrated risk process of the value of a life insurance
company which models the basic insurance process and the investment process, the asset
allocation strategy is solved to maximize the expected value of a life insurance company
subject to some practical constraints in the investment period. As well known, life in-
surance companies are long-term institutional investors in the financial market. As for
the French life insurance products, such as euro-denominated funds, are mostly preferred
by their long-term investment performance, tax incentives, and capital guarantees. The
long-term performance of our proposed asset allocation strategy is the focus of our study
in this chapter.

The objective of this chapter is to analyze the performance of our strategy comprehen-
sively. It is essential because it is the primary concern of life insurers and policyholders. If
the final value at the end of each year is lower than the guaranteed capital, this will bring
significant challenges to life insurance companies. Performance evaluation is one of the
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most important steps of portfolio management. Performance results can be used to assess
the quality of the investment strategy and propose changes that might improve it. First,
we will turn to the subject of benchmarks. It is necessary to choose benchmarks that
reflect the financial assets available to our proposed investment strategies. In the absence
of an official benchmark, we will construct a benchmark suitable for our strategy. Next,
we will choose tools to evaluate the effectiveness of our strategies and the benchmarks.
We will also review different ratios used in performance appraisal.

Our contribution in this chapter is twofold. First, our strategy allows us to analyze how
to construct and dynamically rebalance the investment portfolio to control the risks faced
by capital guarantees. By parameterizing the probability of insolvency and the saving
capital, life insurance companies can select different parameters in each investment period
reflecting their financial situation and expectations of the basic insurance business and
financial markets; therefore, it is computationally simple and can be easily implemented
in practice.

Second, we empirically examine the effectiveness of the proposed strategy for a life in-
surance company by comparing our strategy with a simple buy-and-hold strategy (B&H)
and the benchmarks constructed for our strategy under various scenarios. Some perfor-
mance measures reflecting the ability to sustain the pre-specified insured value and limit
the downward risks while retaining upward returns are considered to demonstrate the
return-risk profile of each strategy. In addition, the Omega functions of the strategies are
plotted to further illustrate their relative performance. The underlying portfolio of each
strategy is rebalanced to reflect changes in market conditions. The rebalancing frequency
will have a significant impact on the performance of the strategy under consideration.
Because the rebalancing frequency determines the extent to which the strategy partici-
pates, and rebalancing entails transaction costs. The parameters that life insurers choose
to reflect their risk attitude may also affect the effectiveness of hedging. To demonstrate
these effects, different parameter combinations and rebalancing frequencies are considered
in this chapter.

We find that both our strategy and the constructed benchmarks are able to limit the
negative returns while retaining certain higher returns compared with the B&H strategy
except for the B&H strategy that invests only in the corporate bond index. The benchmark
is not as good as our less frequent rebalancing strategies in obtaining upside returns.
Compared with most of the B&H strategies that invests in one asset, both can limit
negative returns while retaining certain high returns, and the income distribution is highly
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right-skewed. As the probability of insolvency or the saving capital rises, the upward
return of our strategy increases, despite the phenomenon of diminishing marginal increase
in the holding period interest rate. In the presence of transaction costs, the maximum
drawdown of our strategy with lower rebalancing frequencies (semi-annually and annually
rebalancing) is zero during the eight-year investment period. In the presence of transaction
costs, the performance of our strategy with lower rebalancing frequencies is better than
the real-world results of the life insurance industry in the same dataset period.

This chapter is organized as follows. Section 4.2 briefly reviews our asset allocation
strategy and proposes the benchmark choices. Section 4.3 discusses the design of the back-
testing. Section 4.4 reports and analyzes the empirical results, and Section 4.5 conducts
further research to check the robustness of the obtained results and the validity of the
constructed benchmarks and compare with the real-world data. Section 4.6 concludes this
chapter.

4.2 Asset allocation strategies and benchmark choices

In this section, the asset allocation strategies that we proposed in Chapter 3 will be first
recalled. Then, we will discuss and present the process of designing investment benchmarks
that reflect the investment process and the constraints that govern the construction of
the portfolio for the life insurance companies.

4.2.1 Recall: the optimal investment strategies

We select the investment strategy constructed based on Case 2bis of Section 3.3.1 in
Chapter 3 for performance evaluation. We recall that the basic risk process and the return
on investment generating process of a life insurance company are described in (2.3.0.1)
and (2.3.0.3c), where

Xt = aXt+ σXWt +
Nt∑
k=1

Zk, (4.2.1.1)

and
R

(γ)
t = µγt+ σγBt. (4.2.1.2)

The related optimal asset allocation strategy is then to solve numerically the maximization
problem

max
γ∈J

[aλ,βT · f(µγT )] , (4.2.1.3)
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subject to the constraint:

2a2
λ,βT

2 · g(µγT ) · f
[
(µγ + σ2

γ)T
]

+ (σ2
λ,β −

2a2
λ,β

µγ
)T · f

[
(2µγ + σ2

γ)T
]
≤ α · c2, (4.2.1.4)

where J =
{

(γr, γ1, γ2, γ3, γ4)
∣∣∣∣∣

4∑
i=1

γi ≤ 1, 0 ≤ γi ≤ γ(i)
max

}
, γ(i)

max is the maximum invest-

ment ratio by asset class authorized by French insurance regulations.
The obtained →γ ∗ = (γ∗r , γ∗1 , γ∗2 , γ∗3 , γ∗4) will give the optimal investment proportions. We

calculate µ∗ and σ∗, the investment rate of return and volatility of this optimal investment
strategy in the return on investment generating process,

µ∗ = a
(1)
R γ∗1 + a

(2)
R γ∗2 + a

(3)
R γ∗3 + a

(4)
R γ∗4 + rγ∗r , (4.2.1.5)

σ∗ =
√
σ2
∗ =

√√√√ 4∑
i=1

4∑
j=1

γ∗i γ
∗
jσ

(i)
R σ

(j)
R ρi,j. (4.2.1.6)

Then, the interest rate of the contract for the holding period (HPY) will be equal to

HPY = ln

[
aλ,β
µ∗

(
eµ∗T − 1

)/
(aλ,βT )

]
= ln

(
eµ∗T − 1
µ∗T

)
. (4.2.1.7)

4.2.2 Benchmark choices

Benchmarks are an important part of the investment process for performance evalua-
tion. An asset-based benchmark is a set of securities that includes assets available to the
portfolio. A benchmark should reflect the investment process and the constraints for the
construction of the portfolio. If the benchmark does not reflect the investment process,
then the evaluation and analysis from the comparison with the benchmark would be bi-
ased. The following performance measurements would be incorrect when benchmarks are
misspecified, and the evaluation analysis shall be useless.

As far as we know, there are no benchmarks dedicated to euro-denominated funds of
the French or European life insurance companies. Only the supervisory authorities and
the professional press summarize and compare the returns on the various marketed life
insurance contracts. The asset allocation of the French life insurers mainly consists of
fixed-income investments. Therefore, practitioners commonly approximate the risk and
return profile for life insurance investments with bond investments. As shown in Figure
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1.2 of Chapter 1, the participation rate of euro-denominated funds is usually compared
with the French 10-year government bonds yield. Due to the profit-sharing mechanism
and smoothing reserves of euro-denominated funds, since 2011, the difference between
the participation rate of euro-denominated funds and the French 10-year government
bond yield has enlarged. However, as long-term interest rates continue to decline and life
insurers increase allocations to other asset classes, applying the 10-year government bond
yield as the benchmark of euro-denominated funds is no longer appropriate.

The choice of benchmark often has a significant effect on the evaluation of portfolio
performance. Portfolios should be compared only with benchmarks that reflect the uni-
verse of securities available to them. From the definitive list in [Bailey and Tierney, 1998],
valid benchmarks should be unambiguous, investable, measurable, appropriate, reflec-
tive of current investment opinions, specified in advance, and accountable. We introduce
the seven types of benchmarks based on the discussion in [Bailey et al., 2007]: absolute
(including target) return benchmarks, broad market indexes, style indexes, factor-model-
based benchmarks, returns-based (Sharpe style analysis) benchmarks, manager universes
(peer groups), and custom security-based (strategy) benchmarks. Based on the properties
of a valid benchmark and the advantages and disadvantages of different types of bench-
marks, the most suitable benchmark for our strategy should be the last type, custom
security-based (strategy) benchmarks.

Custom security-based benchmarks are also referred to as strategy benchmarks be-
cause they should reflect the strategies of a portfolio. After identifying the investment
process, the benchmark is constructed by selecting securities and weightings consistent
with that process and investment constraints. Custom security-based benchmarks are
particularly appropriate when the strategy cannot be closely matched to a broad market
index or style index. The disadvantages of such benchmarks are costly to calculate and
maintain.

In Chapter 3, we have chosen five assets to reflect the investment structure of life in-
surance companies in France. Therefore, we build custom security-based (strategy) bench-
marks that include these five assets to compare with our proposed strategies in Section
4.2.1. The next step is to assign weightings to each asset in the portfolio of the bench-
mark. Since the daily weighting of each asset in the life insurance company’s portfolio is
not available, and the annual change of the holdings are relatively small, we propose to
calculate the annual average investment ratio of each asset based on the two structures
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of the investments 1, which have been plotted in Figure 1.12 and Figure 1.13. Then, we
assign the weightings to the five assets in the benchmark.

Table 4.1 – Annual average investment ratios calculated based on the FFA (1999 - 2019)
and GVfM (2011 - 2019) datasets.

Data Source Risk-free rate (RF) Government Bond (GB) Corporate Bond (CB) Stock Index (SI) REITs (RE)

FFA 2.5% 35% 35% 24% 3.5%
GVfM 3% 32% 50% 9% 6%

From the datasets of the two institutes, FFA and GVfM, we obtain two series of
weightings, as shown in Table 4.1. The FFA data (1999-2019) that includes the investment
structure of life, capitalization and composite insurance companies has a longer period
than the GVfM data (2011-2019) composed of euro-denominated funds in France. The
main difference between the two series is the weightings of investment in corporate bonds
and stocks. The average weighting of corporate bonds is much higher than the weighting of
stocks in the GVfM structure, reflecting the relative conservative investment style of euro-
denominated funds because of their capital guarantee characteristics, which is basically
consistent with the study from the Bank of France ([Capitaine et al., 2020]). The average
annual weightings from these two institutions are assumed to be invested in the two
benchmarks when employing the performance evaluation of our strategies.

4.3 Backtesting design

In this section, we present the backtesting design of the empirical analysis. Sections
4.3.1 - 4.3.6 introduce the investigated strategies, portfolio rebalancing disciplines, per-
formance appraisal measures, transaction costs, the value of the parameters, and the
backtesting procedures.

4.3.1 The strategies

Three different strategies are investigated herein: our asset allocation strategy, the
buy-and-hold (B&H) strategy invested in one asset, and two benchmarks based on the
B&H strategy in constant weightings (GVfM and FFA).

1. In Section 4.5.2, we compared another two methods for obtaining the daily hypothetical weightings
of the benchmarks, including linear interpolation and equal-to-year-end.
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Our asset allocation strategy and two benchmarks are first compared with the B&H
strategy invested in one asset to gauge their effectiveness as asset allocation. Following
[Barberis, 2000] and [Kandel and Stambaugh, 1996], the B&H strategy invested in one
asset is defined as 100% of the investment in each of the five assets until the end of
the investment period. Whereas for the two benchmarks, the constant weightings do not
change until the investment period is over. In contrast to the B&H strategies. While our
strategies frequently adjust the amount invested in four risky assets based on the market
movements. It is important to examine the advantages of our strategies over the simple
BH strategies in terms of hedging the downside risk and the return performance.

Second, our asset allocation strategy is compared with the two benchmarks to see
their relative hedging effectiveness. Our asset allocation strategy has different theoretical
foundations than does the strategy used by life insurers [Agbojan et al., 2016]. Conse-
quently, a comparison of the performance of our asset allocation strategy with that of the
proposed benchmarks is practical in the French life insurance industry context.

4.3.2 Portfolio rebalancing disciplines

In general, the portfolios can be rebalanced based on three different disciplines: the
time discipline, the market move discipline, and the portfolio mix discipline. The first
method requires a portfolio rebalancing at predetermined time intervals, such as daily,
weekly, monthly, etc. The second method takes a rebalancing when the market has a pre-
specified percentage move since the last rebalancing, and the third one suggests adjusting
the portfolio whenever the difference between the fixed and the current portfolio mix
exceeds a pre-specified range.

Our asset allocation strategy induces a dynamic rebalancing of the underlying port-
folio. The weightings based on the market movements and constraints can be calculated
at predetermined time intervals. Typically, the strategy with a higher frequency of port-
folio rebalancing will provide a better hedge against downside risk than that with lower
rebalancing frequency, but it will entail higher transaction costs. To examine how the re-
balancing frequency may affect the hedging effectiveness of our asset allocation strategy,
portfolios are rebalanced at five predetermined time intervals: weekly, monthly, quarterly,
semi-annually, and annually. 2

2. In the thesis, we define 252 trading days as a year, 126 trading days as half a year, 63 trading days
as a quarter, 21 trading days as a month and 5 trading days as a week.
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4.3.3 Performance appraisal measures

Our strategy is to limit downside losses while pursuing upside gains for the life insur-
ance company. The distribution of returns should theoretically be asymmetrical with a
short left tail and a long right tail. To provide a profound understanding of the hedging ef-
fectiveness, the ability to sustain a guaranteed value and to reshape the return distribution
of each strategy is assessed.

We conduct the empirical analysis in the following way. We first compute the 5%
ventile (V5) and the average value for the poorest-performed 5% portfolios (AV5), the
75% quartile (Q75) and the average value for the best-performed 25% portfolios (AQ75).
Then we calculate the protection ratios of each strategy. In addition, we also analyze the
whole return-distributions. Finally, we compute the Sortino ratio, the Omega ratio, and
the maximum drawdown for each strategy.

4.3.3.1 V5 and AV5

When we sort the realized portfolio values in ascending order and divide them into 20
equal groups, AV5 is the average of the values in the first group, and V5 is the highest
value in this group. Both measures focus on the left tail of the frequency distribution,
indicating the ability of the strategy to limit the downside risk. Higher V5 and AV5
values reveal that the strategy is more effective in limiting downside risks.

4.3.3.2 Q75 and AQ75

Q75 and AQ75 are used to measure the ability of the strategy to capture upside
returns. Both measures focus on the right tail of the frequency distribution, indicating
the ability to capture the upside returns. Higher Q75 and AQ75 implicate a higher ability
to retain higher returns in the upward markets.

4.3.3.3 Protection ratio

The protection ratio is widely applied in evaluating the performance of portfolio in-
surance strategies (we refer to [Black and Perold, 1992] and [Bertrand and Prigent, 2005]
for details). The protection ratio is defined as the percentage of the realized portfolios
that meet the insured value under a particular strategy (e.g., [Do, 2002] and [Jiang et al.,
2009]). This measure shows the ability of the strategy to guarantee an insured value. The
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disadvantage of this ratio is that it cannot present the asymmetric characteristics of the
return distribution created by the strategy.

4.3.3.4 Sortino ratio

The Sortino ratio was developed by [Sortino and Van der Meer, 1991] to differentiate
between good and bad volatilities in the Sharpe ratio. [Chaudhry and Johnson, 2008]
found that the Sortino Ratio is the superior performance measure exhibiting more power
and less bias than the Sharpe ratio when the distribution of excess returns is skewed.
It is calculated by the difference between the portfolio return and the chosen minimum
acceptable return (MAR, usually 0%), and then divided by the downside deviation of
the returns. The downside deviation uses only the standard deviation of negative returns.
The Sortino ratio is goal-oriented in that it measures performance relative to the goal the
investor is trying to achieve rather than measuring performance relative to the market.
The advantage of this ratio is that it eliminates the volatility of positive returns from its
calculation.

4.3.3.5 Maximum drawdown

Maximum Drawdown (MDD) is measured as the maximum cumulative peak-to-trough
loss during a continuous period ([Magdon-Ismail and Atiya, 2004]). Maximum drawdown
is an indicator used to assess the relative riskiness of one portfolio strategy versus another,
as it focuses on capital preservation, which is a main concern of institutional investors
such as life insurers. A low maximum drawdown is preferred as it reveals that losses from
the portfolio were small. If an investment never lost during the investment period, then
the maximum drawdown would be zero.

4.3.3.6 Omega ratio

Omega ratio [Keating and Shadwick, 2002]. It is the ratio of the averages of the gains
above a threshold to the averages of the losses below the same threshold. Omega involves
all the moments of the whole return distribution, including skewness and kurtosis, so it is
an appropriate indicator of the effectiveness of portfolio strategies [Bacmann and Scholz,
2003]. The portfolio with a higher Omega ratio fares better than the one with a lower
Omega.
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4.3.4 Transaction costs

Transaction costs will affect the performance of investment strategies [Fabozzi et al.,
2006, chapter. 3]. To study the effects, we consider the cases with and without transaction
costs. According to [Perold, 1988] and [Wagner, 1989], the implementation shortfall (IS) is
the most important ex-post trade cost measurement used in finance. The IS provides the
total cost 3 associated with implementing the investment decision and is calculated as the
difference between the return for a paper portfolio, where all transactions are assumed to
take place at the decision price, and the portfolio’s actual return, which reflects realized
transactions, including all fees and costs.

Transaction costs are assumed to be 0.1% for bonds and 0.3% 4 for the stock index
and the REITs 5. The cost of trading in the risk-free asset is assumed to be zero, as shown
in Table 4.2.

Table 4.2 – Transaction costs (TC) of five assets.

Risk-free rate (RF) Government Bond (GB) Corporate Bond (CB) Stock Index (SI) REITs (RE)

Transaction cost None 0.1% 0.1% 0.3% 0.3%

Transaction costs are deduced from the portfolio value at the first trading date and
each rebalancing date in the investment period.

4.3.5 The value of the parameters

In order to measure the performance of our strategy, we also need the value of some
parameters in the inequality constraint. On the one side, since the daily data of euro-
denominated life insurance business is not available, on the other hand, to evaluate the

3. The IS decomposes the total cost of the trade into four categories: delay cost, trading cost, op-
portunity cost, and fixed fees. The fixed fees component includes all explicit fees, such as commissions,
exchange fees, and taxes. In our backtesting implementation, we only consider the fixed fees as transaction
costs.

4. According to the General Directorate of Public Finances in France, the tax on the acquisition of
equity securities or similar is 0.3%. Usually, the transaction cost of bonds is lower than that of stocks, and
we assume that the transaction cost of bonds is 0.1%. For the 3-month Euribor rate that is assumed as
a non-negative risk-free rate, we assume that it has no transaction costs. https://bofip.impots.gouv.fr/.

5. See Appendix .2 for a comparison of the performance of our proposed strategy under different
combinations of transaction costs of four risky assets.
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performance of our strategy under different financial market movements, we need to as-
sume that the following parameters have the same value as used in Chapter 3:
The parameters in the inequality constraint are given by:

α = 0.5%, and c = 330 billion euros.
The parameters in billion of euros in the basic risk process X are given by:

aλ,β = 21.9, and σ2
λ,β = 24.745.

The maximum investment ratios for bonds, stocks and real estate are known as:
γ(GB)
max = γ(CB)

max = 100%, γ(SI)
max = 65% and γ(RE)

max = 40%.

4.3.6 Backtesting procedures

Assume that the investment period is from time t = 0 to t = T . The implementation
procedure for our asset allocation strategy can be described as follows:

(1) At time t = 0, calculate the proportions →γ ∗ according to (4.2.1.3) and (4.2.1.4), and
then construct the portfolio by investing in the five assets. In the presence of transaction
costs, the optimal weightings are calculated based on each investment rate of return after
the deduction of the transaction cost.

(2) On the next rebalancing date, record the portfolio value (the value of the life
insurance company) and calculate the corresponding interest rate of the contract for the
holding period (HPY). The HPY is calculated according to (4.2.1.7). Then, calculate the
new proportions →γ ∗ following the procedure (1) and reconstruct the portfolio based on
the information available on this date. This step continues until the end of the investment
period, t = T . At the end of the eight-year investment period, calculate and record the
cumulated HPY.

(3) The above procedure tracks the portfolio values for one realization of the strategy
considered. To perform an empirical analysis, the procedure is re-applied on every trading
day in the sample period. Consequently, we obtain a series of realizations with overlapped
periods in each scenario for each strategy.

4.4 Empirical results

In this analysis, the initial investment of a life insurance company is the net inflow
from the life insurance business in the previous year. We assumed it to be a constant as
described in Section 4.3.5.
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The insured values are 100%, and 104% 6 of the initial investment.

The investment period is eight years, T = 8 years. The reasons are as follows. Firstly,
life insurance companies are long-term investors. Secondly, one of the most attractive
characteristics of life insurance contracts to policyholders (or investors) is the highest tax
advantage when holding the contract for at least eight years. Additionally, as a long-term
investment, the capital in euro-growth funds is guaranteed only with a minimum holding
period of 8 years. In this way, we can also indirectly determine whether our strategy is
suitable for the optimal asset allocation of the euro-growth fund.

The datasets we used for this analysis are the same as in Chapter 3. There are 4289
observations in each of the five data series. The expected return and volatility are ap-
proximated by the annualized average return and annualized standard deviation of the
daily returns within two rebalancing dates in the investment period, respectively. Con-
sequently, different estimates are used for different investment periods. As the procedure
in this chapter is re-employed on each trading day in the sample period, we obtained a
series of different realizations for the strategies.

We have obtained 2273 realizations in each scenario for the benchmarks and the B&H
strategies, as shown in Figure 4.1 and Figure 4.2, respectively. For our asset allocation
strategies, we have obtained 2279, 2231, 2147, 2021, and 1769 7 different realizations for
weekly, monthly, quarterly, semi-annually, and annually rebalancing disciplines, respec-
tively. We plot the realizations of our strategies in Figure 4.3.

6. We know that the average annual technical rate can be regarded as equivalent to the minimum
guaranteed rate. From Figure 1.18 in Chapter 1, the mean of the average annual technical rate from 2011
to 2019 is less than 0.5%. Then the corresponding eight-year minimum guaranteed interest rate is less
than 4%. Consequently, we assume the second insured value to be 104%.

7. For instance, the number of different annually rebalancing realizations is obtained by:
4289− 2 ∗ 252− 2016 = 1769.
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Figure 4.1 – Realizations of the two benchmarks, GVfM and FFA, without and with
transaction costs.

Note: This figure plots the realizations of the final HPYs under the two benchmarks
based on the weighings of GVfM and FFA for the cases without and with transaction

costs.

By observing Figures 4.1 and 4.2, we can find that the final HPY under the B&H
strategy that only invests in the stock index and the REITs and the benchmarks based
on two weightings is relatively lower from 2012 to 2016 and higher around 2017. The
realizations from 2012 to 2016 (the corresponding starting date of the backtesting, 2004 -
2008) consist of the bear market during the 2007-08 financial crisis, causing the relatively
lower final HPYs. The results achieved around 2017 (the corresponding starting date of
the backtesting, 2009) do not include the extreme decline of the 2007-08 financial crisis,
therefore the final HPYs are relatively higher.

In Figure 4.3, the realizations of our strategy show a certain periodicity. During the
backtesting, the final HPYs are close at the interval of the rebalancing frequency (for
example, the final HPY is similar every three months under the quarterly rebalancing
strategy). Since the investment period is as long as eight years by our backtesting design,
the periodicity in the backtesting is generated by the partial overlap of the cumulative
HPYs.
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Figure 4.2 – Realizations of the B&H strategy invested in one asset, without and with
transaction costs.

Note: This figure plots the realizations of the final HPYs under the B&H strategy
invested in each of the five assets for the cases without (upper) and with (bottom)

transaction costs.
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Figure 4.3 – Realizations of our asset allocation strategies under different rebalancing
frequencies, without and with transaction costs.

Note: This figure plots the realizations of the final HPYs under our asset allocation
strategies by different rebalancing frequencies for the cases without (upper) and with

(bottom) transaction costs.

We analyze and compare the realizations of the strategies in the rest of this section.
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4.4.1 The effectiveness of asset allocation strategies

Table 4.3 – 5% Ventile (V5) and the average values for the poorest-performed 5% ventile
(AV5) realizations for various strategies, without and with transaction costs (TC).

V5

B&H RF B&H GB B&H CB B&H SI B&H RE
Without TC 1.0169 1.0814 1.1770 0.9141 0.9177
With TC 1.0169 1.0808 1.1764 0.9128 0.9163

Benchmark
GVfM

Benchmark FFA

Without TC 1.1258 1.0884
With TC 1.1243 1.0867

Our proposed strategy
Weekly rebalanc-
ing

Monthly rebal-
ancing

Quarterly rebal-
ancing

Semi-annually
rebalancing

Annually rebal-
ancing

Without TC 1.0694 1.0902 1.1200 1.0870 1.0673
With TC 1.0730 1.2048 1.2263 1.2366 1.2603

AV5

B&H RF B&H GB B&H CB B&H SI B&H RE
Without TC 1.0118 1.0657 1.1671 0.8902 0.8759
With TC 1.0118 1.0651 1.1665 0.8889 0.8747

Benchmark
GVfM

Benchmark FFA

Without TC 1.1189 1.0811
With TC 1.1175 1.0795

Our proposed strategy
Weekly rebalanc-
ing

Monthly rebal-
ancing

Quarterly rebal-
ancing

Semi-annually
rebalancing

Annually rebal-
ancing

Without TC 1.0477 1.0662 1.0883 1.0566 1.0054
With TC 1.0550 1.1793 1.2057 1.2174 1.2122

Table 4.3 presents the results of the V5 and AV5 for various strategies. As stated in
Section 4.3.3, V5 and AV5 measure the ability of hedging against the downside risk. If only
one asset is invested under the B&H strategy, the stock index and the REITs investment
still have downside risks, which confirms that the diversification among asset classes is
necessary even in the long-term (for example, the investment period is 8 years). While
investing only in the corporate bond index, it has an outstanding performance in the
long-term of hedging the downside risks, which explains why our asset allocation strategy
gives the corporate bond index the highest weight in Chapter 3.

Both our strategies and the benchmarks are able to limit the negative returns, as
they have positive returns in comparison with the B&H strategy invested in only one
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asset. The ability to hedge against the downside risk is higher when investing in the
GVfM weightings than the FFA weightings. Because the GVfM weightings have lower
allocations of the stock index and the REITs and higher allocation of the corporate bond
index. In general, the ability of our strategy to hedge against the downside risks increases
as the frequency of rebalancing decreases, and this is true regardless of whether or not
there are transaction costs.

The impact of transaction costs on B&H strategies and the benchmarks is insignificant
because they do not require frequent rebalancing in our backtesting design. Contrary to
intuition, the performance of our strategy improves as the transaction costs are present.
This is mainly due to the following reason. After the deduction of the transaction cost,
the investment rate of return as inputs to the inequality constraints declines at each
rebalancing date, which leads to a change in the weightings. Given the four assets with
different transaction costs, the government bond and the corporate bond index will be
assigned higher weightings than the stock index and the REITs. Therefore, our strategy
performed better in the presence of transaction costs.

Table 4.4 reports Q75 and AQ75 to measure the ability to obtain the upside returns
for various strategies. Our asset allocation strategies perform better in capturing upside
returns when the portfolios are rebalanced quarterly and annually, which means that the
transaction costs are important factors when rebalancing the portfolios.

The effects of portfolio rebalancing frequency on the Q75 and AQ75 are not the same
as those on the V5 and AV5. As the rebalancing frequencies decrease, the Q75 and AQ75
do not increase too much; on the contrary, the results decrease when the rebalancing
frequency shifts from quarterly to annually for our asset allocation strategies.

The results show that the Q75 and AQ75 under the two benchmarks are lower than
those under the B&H strategy invested in risky assets and our asset allocation strate-
gies. The differences reflect the implicit costs inherent in the benchmarks with constant
weightings in the long term. Because there is a trade-off between the ability to capture
the upside return and hedge the downside risk when diversifying without rebalancing, in
general, the protection against the market downside risk can only be hedged by sacrificing
some upside returns.
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Table 4.4 – 75% quartile (Q75) and the average values for the best-performed 25% quartile
(AQ75) of realizations for various strategies, without and with transaction costs (TC).

Q75

B&H RF B&H GB B&H CB B&H SI B&H RE
Without TC 1.0915 1.1507 1.2235 1.1163 1.1621
With TC 1.0915 1.1501 1.2228 1.1146 1.1603

Benchmark
GVfM

Benchmark FFA

Without TC 1.1500 1.1330
With TC 1.1485 1.1312

Our proposed strategy
Weekly rebalanc-
ing

Monthly rebal-
ancing

Quarterly rebal-
ancing

Semi-annually
rebalancing

Annually rebal-
ancing

Without TC 1.1265 1.1396 1.1862 1.1738 1.1619
With TC 1.1123 1.2985 1.3305 1.3009 1.3315

AQ75

B&H RF B&H GB B&H CB B&H SI B&H RE
Without TC 1.1010 1.1604 1.2522 1.1925 1.2838
With TC 1.1010 1.1598 1.2515 1.1906 1.2818

Benchmark
GVfM

Benchmark FFA

Without TC 1.1743 1.1629
With TC 1.1728 1.1610

Our proposed strategy
Weekly rebalanc-
ing

Monthly rebal-
ancing

Quarterly rebal-
ancing

Semi-annually
rebalancing

Annually rebal-
ancing

Without TC 1.1413 1.1539 1.2173 1.2132 1.1931
With TC 1.1307 1.3537 1.3778 1.3455 1.3638

To see the extent to which the strategies protect against downward risk, we compute
the protection ratio for the BH strategy in the same way as calculating the protection
ratios for the benchmarks and for our strategies. Table 4.5 presents the protection ratio
for different strategies under two insured values.

The results show that both the benchmarks and our strategies generate obviously
higher protection ratios than the simple BH strategy invested in the stock index and the
REITs. As the insured value increases, the BH strategy with only investing in risk-free
assets will not provide policyholders with a minimum guaranteed interest rate for eight
years. The BH strategy with only investing in the 10-year government bond could provide
the minimum guaranteed interest rate. However, if the yields on government bonds remain
low in the long term, life insurers investing in government bonds alone will not be fully

180



Performance evaluation of portfolio optimization strategies for the life insurance company

insured.

Table 4.5 – Insured value protection ratios for various strategies, without and with trans-
action costs (TC).

Insured value = 100%

B&H RF B&H GB B&H CB B&H SI B&H RE
Without TC 100% 100% 100% 43.07% 54.42%
With TC 100% 100% 100% 42.98% 54.16%

Benchmark
GVfM

Benchmark FFA

Without TC 100% 100%
WithTC 100% 100%

Our proposed strategy
Weekly rebalanc-
ing

Monthly rebal-
ancing

Quarterly rebal-
ancing

Semi-annually
rebalancing

Annually rebal-
ancing

Without TC 100% 100% 100% 99.41% 89.60%
With TC 99.82% 100% 100% 100% 100%

Insured value = 104%

B&H RF B&H GB B&H CB B&H SI B&H RE
Without TC 57.50% 100% 100% 40.61% 49.09%
With TC 57.50% 100% 100% 40.48% 48.83%

Benchmark
GVfM

Benchmark FFA

Without TC 100% 100%
With TC 100% 100%

Our proposed strategy
Weekly rebalanc-
ing

Monthly rebal-
ancing

Quarterly rebal-
ancing

Semi-annually
rebalancing

Annually rebal-
ancing

Without TC 93.02% 96.37% 98.56% 93.86% 81.68%
With TC 95.52% 100% 100% 100% 100%

Two benchmarks with different weightings fully protect the insured values regardless
of the transaction costs, demonstrating the role of asset allocation in diversifying the
portfolio risk again.

In the absence of transaction costs, the performance of our strategies improves as the
rebalancing frequency increases in case the insured value is lower; however, when the in-
sured value is higher, the results show that quarterly rebalancing performs best among the
rebalancing frequencies. Apart from the weekly rebalancing, other rebalancing frequen-
cies can fully protect the insured values with transaction costs. When the insured value
increases, the protection ratios of our strategy decline more in the absence of transaction
costs than with transaction costs which are most evident with the weekly rebalancing.
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To clearly illustrate the capability of our asset allocation strategies in reshaping the
return distributions, the sample distributions for the final HPY values under the two
benchmarks, the B&H strategy, and our strategies are plotted. Figure 4.4 is the plot for
the two benchmarks, Figure 4.5 is the plot for the B&H strategy, and Figure 4.6 is for
our strategies.

Obviously, both the benchmarks and our strategies have a desirable risk profile with a
short left tail and a short right tail in their distributions compared with the BH strategy
invested in the stock index and the REITs. In long-term investment, life insurance com-
panies can effectively hedge tail risks through asset allocation, but they also need to pay
some extreme returns as the cost. While under our optimal asset allocation strategies, life
insurers can hedge tail risks more effectively and retain higher overall returns.

Figure 4.4 – Frequency distributions under the two benchmarks with the B&H strategies,
GVfM and FFA, without and with transaction costs.

Note: This figure plots the sample distributions of the final HPYs under the two
benchmarks based on the weighings of GVfM and FFA for the cases without and with

transaction costs.
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Figure 4.5 – Frequency distributions under the B&H strategy invested in one asset, with-
out and with transaction costs.

Note: This figure plots the sample distributions for the final HPYs under the B&H
strategy for the cases without (upper) and with (bottom) transaction costs.
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Figure 4.6 – Frequency distributions under our asset allocation strategies with different
rebalancing frequencies, without and with transaction costs.

Note: This figure plots the realizations of the final HPYs under our asset allocation
strategies by different rebalancing frequencies for the cases without (upper) and with

(bottom) transaction costs.

Table 4.6 presents some statistics of the sample distributions for various strategies.
Without transaction costs, the highest average HPY was recorded by the B&H strategy
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that only invests in the corporate bond index. However, the B&H strategy that only
invests in the stock index or the REITs does not obtain the highest average HPY. The
time period of our data (2002-2019) includes the 2007-08 financial crisis, and part of the
final HPYs is affected by that bear market. This is why the HPY remains low during the
period of 2012-16 ( with a corresponding starting period of 2004-08).

Table 4.6 – Statistics of sample distributions for various strategies, without and with
transaction costs.

B&H RF B&H GB B&H CB B&H SI B&H RE

Mean 1.0554 1.1170 1.2033 1.0148 1.0585
Without TC St.dev 0.0363 0.0376 0.0350 0.1250 0.1618

Skewness 0.0280 -0.2724 0.8810 0.7138 0.6805

Mean 1.0554 1.1164 1.2026 1.0133 1.0569
With TC St.dev 0.0363 0.0375 0.0350 0.1248 0.1615

Skewness 0.0280 -0.2724 0.8810 0.7137 0.6804

Benchmark
GVfM

Benchmark
FFA

Mean 1.1408 1.1128
Without TC St.dev 0.0239 0.0336

Skewness 1.5536 1.1383

Mean 1.1393 1.1111
With TC St.dev 0.0239 0.0335

Skewness 1.5536 1.1382

Our proposed strategy
Weekly rebal-
ancing

Monthly
rebalancing

Quarterly re-
balancing

Semi-annually
rebalancing

Annually
rebalancing

Mean 1.0964 1.1128 1.1526 1.1333 1.1132
Without TC St.dev 0.0358 0.0346 0.0505 0.0612 0.0756

Skewness -0.2531 -0.3922 -0.0261 0.1487 -0.5988

Mean 1.0929 1.2579 1.2826 1.2741 1.2949
With TC St.dev 0.0303 0.0700 0.0683 0.0516 0.0625

Skewness 0.112 0.7424 0.6744 0.8381 -0.8898
Note: This table presents the mean, standard deviation, and skewness of the sample return distributions for various

strategies.

As with the previous findings, compared to the benchmark performance based on the
FFA weightings, the average HPY under the benchmark of the GVfM weightings is higher
but with a lower standard deviation. In the presence of transaction costs, the standard
deviation of our strategy is higher than the benchmarks, but it obtains a higher average
final HPY.

Since both the benchmarks and our strategies effectively hedge the tail risk, we use
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the absolute value of skewness for analysis. More extreme values appear on the right
tail of the two benchmarks because of their highest skewness. Our strategy has more
extreme values on the left without transaction costs and more extreme values on the right
with transaction costs. The above results show that when there are transaction costs, our
strategy is likely to obtain a higher HPY, consistent with Q75 and AQ75 analysis.

4.4.2 Our asset allocation strategies versus B&H benchmarks

Now we analyze the relative performance of our asset allocation strategies and the
benchmarks under different scenarios.

First, the results of V5 and AV5 presented in Table 4.3 as well as the results of Q75 and
AQ75 presented in Table 4.4 show that our strategy, except for the weekly rebalancing,
is more capable of limiting the downside losses than the benchmarks in the presence of
the transaction costs. Moreover, our strategy can better capture upward profits than the
benchmarks in most cases with and without transaction costs.

Second, by comparing the protection ratios for two insured values in Table 4.5, we can
see that the protection ratios of our strategy are close to the benchmarks.

Third, as we stated previously, the Sortino ratio measures return adjusted by the
downside risk. Our analysis chooses the mean of the average technical interest rate as the
minimum acceptable return, consistent with the insured value. Since there are cases in
our strategies and the benchmarks with no negative HPY, there is no downside deviation
of the HPYs. To make it comparable, we choose to calculate the Sharpe ratio as an
alternative indicator, and its risk-free rate is assumed to be equal to the MAR.

The B&H strategy that invests in the corporate bond index achieves the highest Sharpe
ratio, followed by our strategy under the semi-annually rebalancing in the presence of
transaction costs, and then the benchmark based on GVfM investment weightings, as
shown in Table 4.7. In the absence of transaction costs, the Sortino ratio (1.3150) of our
quarterly rebalancing strategy is higher than its Sharpe ratio (0.7826). This indicates that
the standard deviation of the HPYs, which are less than the MAR of our strategy, is lower
than the overall standard deviation. As the Sortino ratio is goal-oriented, life insurers can
measure relative performance to obtain the desired results.
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Table 4.7 – Sharpe ratios and Sortino ratios for various strategies, without and with
transaction costs (TC).

Sharpe Ratio, rf = MAR = 4%

B&H RF B&H GB B&H CB B&H SI B&H RE
Without TC 0.1434 0.7180 1.6397 -0.0732 0.0389
With TC 0.1434 0.7130 1.6344 -0.0777 0.0354

Benchmark
GVfM

Benchmark FFA

Without TC 1.4780 0.7598
With TC 1.4582 0.7429

Our proposed strategy
Weekly rebalanc-
ing

Monthly rebal-
ancing

Quarterly rebal-
ancing

Semi-annually
rebalancing

Annually rebal-
ancing

Without TC 0.5503 0.7367 0.7826 0.5346 0.3390
With TC 0.6087 1.0967 1.2522 1.6002 1.4372

Sortino Ratio, MAR = 4%

B&H RF B&H GB B&H CB B&H SI B&H RE
Without TC 0.1103 / / -0.0455 0.0195
With TC 0.1103 / / -0.0478 0.0176

Benchmark
GVfM

Benchmark FFA

Without TC / /
With TC / /

Our proposed strategy
Weekly rebalanc-
ing

Monthly rebal-
ancing

Quarterly rebal-
ancing

Semi-annually
rebalancing

Annually rebal-
ancing

Without TC 0.3783 0.6681 1.3150 0.3595 0.1258
With TC 0.2980 / / / /

”/”: all the realizations of the Final HPY are non-negative.

Table 4.8 – Maximum drawdown ratios for various strategies, without and with transaction
costs (TC).

Benchmark
GVfM

Benchmark FFA

Without TC -7.63% -10.95%
With TC -7.87% -11.22%

Our proposed strategy
Weekly rebalanc-
ing

Monthly rebal-
ancing

Quarterly rebal-
ancing

Semi-annually
rebalancing

Annually rebal-
ancing

Without TC -4.09% -6.01% -7.21% -13.62% -14.49%
With TC -7.76% -8.12% -0.35% 0 0

Next, we evaluate the relative riskiness of our asset allocation strategies and the bench-
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marks by calculating the maximum drawdown, enumerated in Table 4.8. Each ratio rep-
resents the maximum drawdown among all the realizations under this strategy.

In the absence of transaction costs, the maximum drawdown of the benchmark is -
7.63%. Our strategy performs better when the frequency of rebalancing is relatively high,
and the maximum drawdown of weekly, monthly and quarterly rebalancing strategies are
-4.09%, -6.01% and -7.21%, respectively.

Unexpectedly, if our strategy is not rebalanced frequently, it performs very well when
there are transaction costs. The maximum drawdown of annually, semi-annually and quar-
terly rebalancing are very few, -0.35%, 0 and 0, respectively. This result is significant
because the result of the portfolio is considered for each of the rebalancing dates.

For the annual rebalancing strategy, its 1,769 different realizations were achieved with-
out any drawdown during the eight-year investment period, which means the portfolio
value does not decline. In other words, based on the results obtained previously, we know
that the portfolio value of the annually rebalancing strategy has been retaining the upward
returns without any downside risks.

Figure 4.7 – 2147 paths of the HPY by quarterly rebalancing strategy with transaction
costs in 8 years (32 quarters).

We have the same findings for the semi-annually rebalancing strategy with 2021 re-
alizations. Among the 2147 paths of the quarterly rebalancing strategy, the maximum
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drawdown of the portfolio value was less than 0.5%, as plotted in Figure 4.7. For illus-
tration purposes, only paths for the quarterly rebalancing strategy with transaction costs
are displayed 8.

Finally, we will compare each strategy through the Omega ratio. As discussed in
Section 4.3.3, the Omega ratio is the ratio of the averages of the gains above a threshold to
the averages of the losses below the same threshold. To discover the relative performance
of different strategies in terms of the Omega measure, we plot their Omega ratio as a
function of the threshold, L, in different cases in Figure 4.8 and Figure 4.9.

When we focus on the case without transaction costs, the Omega ratio of the B&H
strategy that only invests in one asset is distributed on both sides of the graph. When
the threshold is lower than 1, the B&H strategy that only invests in the stock index
and the REITs performs the worst. When the threshold is higher than 1.1, the B&H
strategy that only invests in the corporate bond index is the best. The rest, including the
benchmarks and our strategies, are mainly distributed in the middle. As demonstrated in
[Bertrand and Prigent, 2011], that a lower threshold level implies that the investors are
more concerned with risk control, and a higher level means that they worry more about
the return performance of the portfolio.

When we compare the performance of our strategies and the benchmarks, we find that
the benchmark seems to have a higher Omega ratio. However, the Omega curve of the
benchmark does not seem to be more convex than the Omega curve of our strategy. It
means that the benchmark’s Omega ratio will decline faster as the threshold increases.
At a higher threshold, the benchmark’s Omega ratio could be lower than some of our
strategies.

Indeed, when we focus on the drawing of partial enlargement, with the threshold
between 1.25 and 1.5, the best three performances are the B&H strategy invested in
the REITs, the B&H strategy invested in the stock index, and our annually rebalancing
strategy. The common point of these three strategies is that their Omega curves are
more convex. As the threshold increases, the Omega ratio decreases slower than those
with less convex Omega curves. The semi-annual and quarterly rebalancing strategies
also rely on greater convexity to surpass other strategies after increasing the threshold.
While considering other strategies, their Omega ratios are close to 0 because of poorer
performance in obtaining upside returns.

8. See Figure 18 and 19 in Appendix .3 and Figure 20, 21, 22 and 23 in Appendix .4 for a comparison
of the paths of the HPY under the benchmarks and other rebalancing frequencies of our strategies.
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Figure 4.8 – Omega ratio as a function of the threshold: without transaction costs, drawing
of complete (upper) and partial enlargement (bottom).

Next, we shift our perspective to the case with transaction costs. In addition to the
weekly rebalancing strategy, the other four strategies performed at the top and surpassed
the B&H strategy that only invests in the corporate bond index and the two benchmarks.
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When the threshold is lower than 1.3, the annual rebalancing strategy performs best. The
B&H strategy that only invests in the stock index and the REITs performs the worst in
hedging downside risks, but its Omega curve appears to be the most convex.

Figure 4.9 – Omega ratio as a function of the threshold: with transaction costs, drawing
of complete (upper) and partial enlargement (bottom).
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Similarly, we turn our attention to the drawing of partial enlargement to examine the
ability of each strategy to achieve higher upside returns. Not surprisingly, the Omega ratio
of the B&H strategy that only invests in the REITs exceeds our semi-annual rebalancing,
annual rebalancing, monthly rebalancing, and quarterly rebalancing strategies when the
threshold is in the range of 1.39 to 1.46, explaining why life insurance companies have
been increasing their weighting in real estate, in recent years [EIOPA, 2017]. By increasing
the REITs and real estate investment, life insurers have a higher probability of achieving
upside returns. The Omega ratio based on the GVfM weightings is close to zero when the
threshold is approximately 1.37. Our asset allocation strategies and the benchmarks can
outperform the BH strategy in hedging the downside risk while under-performing the BH
strategy to capture the upside return. By observing the changes in the Omega ratio, our
strategies’ ability to realize higher returns has been further verified.

4.5 Further discussions

In Section 4.4, we provide a full perspective of the effectiveness of the benchmarks, our
asset allocation strategies, as well as the B&H strategies. However, the results obtained
above rely on the choice of parameter values, such as α and c, and the constraints, for
instance, the upper bounds on the weightings of each asset in the investment. We propose
to check their robustness along these dimensions. In Section 4.2.2, we assumed that the
daily weightings of the benchmark are equal to the annual average investment ratio of each
asset during the dataset period. It is also worth discussing whether there will be better
results if the benchmark reflects the changes in the weightings each year. In addition,
the participation rate provided to policyholders is also known in the market, and the
comparison with the real-world data is also of practical significance.

4.5.1 On the constraints, α and c

As we know from the results of the numerical illustration in Section 3.4.2 of Chapter
3. Both α and c can be viewed as the risk tolerance measures of the life insurance com-
pany, such that as the α or c increases, the insurer’s risk-averse attitude decreases, and
the investment strategy will be more aggressive. These two parameters can be tailored
according to the financial situation of life insurers to reflect their attitudes on investment
risks.
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According to the results of the previous section, the quarterly rebalancing strategy
performed relatively well, and the frequency of quarterly rebalancing was also moderate.
We consider the quarterly rebalancing strategy under the cases with and without trans-
action costs in the following analysis. The values we assigned to α and c were 0.5% and
330, respectively. We choose two values for α, 0.499% and 0.501%, and then two values
for c, 329.5 and 330.5. Then four combinations of α and c, each including one basis and
one new assigned value, are assumed, as shown in the table below.

Table 4.9 – Five combinations of the parameter α and c under the quarterly rebalancing
strategy.

1: Low c 2: Low α 3: Benchmark c and α 4: High α 5: High c

α 0.5% 0.499 % 0.5% 0.501% 0.5%
c 329.5 330 330 330 330.5

The results of various ratios are presented in Table 4.10. In the absence of transaction
costs, as α or c decreases, the performance of our strategies in hedging downside risks
increases (with higher V5, AV5, and protection ratios), and the investment style is more
conservative, with diminishing maximum drawdown and the increasing of Sharpe ratio
and Sortino ratio. The ability to obtain upside returns increases with α and c (with higher
Q5 and AQ75).

When considering transaction costs, we find that with the increase of α or c, the
strategy continuously enhances the ability to pursue upside returns and does not weaken
its protection and hedging against downside risks.

In addition, we also find that based on the comparison with Benchmark c and α, with
the increase of α or c, the strategy’s performance is reflected with the phenomenon of
diminishing marginal growth rates on the ratios regardless of whether transaction costs are
considered. For instance, such phenomenon is shown when comparing Low α, Benchmark,
and High α, or Low c, Benchmark, and High c.

With the increase of α or c (equivalent to the increase of the right-hand side of the
inequality constraint of our strategy 9), the second moment of the value of the life insurance
company on the left-hand side of the inequality can also grow correspondingly, which

9. Recall the constraint:

2a2
λ,βT

2 · g(µγT ) · f
[
(µγ + σ2

γ)T
]

+ (σ2
λ,β −

2a2
λ,β

µγ
)T · f

[
(2µγ + σ2

γ)T
]
≤ α · c2,
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Table 4.10 – Various portfolio evaluation ratios for our proposed strategy with quarterly
rebalancing under different combinations of α and c.

Without Trans-
action costs

Low c Low α Benchmark c and
α

High α High c

V5 1.1201 1.1202 1.1200 1.1205 1.1200
AV5 1.0895 1.0890 1.0883 1.0875 1.0866
Q75 1.1837 1.1844 1.1862 1.1880 1.1888
AQ75 1.2130 1.2143 1.2173 1.2197 1.2211
protection ratio
(Insured value:
104%)

99.35% 99.07% 98.65% 98.28% 98.04%

Sharpe ratio 0.8054 0.7980 0.7826 0.7681 0.7576
Sortino ratio 2.2902 1.5018 1.3150 1.0592 0.9777
Maximum draw-
down

-6.79% -6.93% -7.21% -7.59% -7.89%

With Transac-
tion costs

Low c Low α Benchmark c and
α

High α High c

V5 1.2018 1.2222 1.2263 1.2299 1.2322
AV5 1.1839 1.2023 1.2057 1.2090 1.2106
Q75 1.2977 1.3237 1.3305 1.3370 1.3392
AQ75 1.3434 1.3708 1.3778 1.3847 1.3880
protection ratio
(Insured value:
104%)

100% 100% 100% 100% 100%

Sharpe ratio 1.1910 1.2513 1.2522 1.2523 1.2526
Sortino ratio / / / / /
Maximum draw-
down

-0.44% -0.34% -0.35% -0.35% -0.35%

”/”: all the realizations of the Final HPY are non-negative.

means that the value of the life insurance company can assume more fluctuations in the
investment. However, there are constraints on the investment weightings; namely, the sum
of investment proportions cannot be higher than 100%, as well as the lower and upper
bounds on the weightings of each asset. Therefore, the HPY will eventually be affected
by the constraints on the weightings and cannot increase with α or c.

Following the methodology of the Omega function, we calculate the Omega ratios for
each combination of α and c of our quarterly rebalancing strategy under two cases with
and without transaction costs, as plotted in Figure 4.10 and Figure 4.11.

We observe that regardless of whether the transaction cost is considered, as α or c
increases, the Omega ratio of each combination also rises under each level of the threshold.
The same result is also obtained when looking at the drawing of partial enlargement. The
robustness of our optimal asset allocation strategy under different constraints of α and c

is verified.
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Figure 4.10 – Omega ratio as a function of the threshold: the quarterly rebalancing strat-
egy under different combinations of α and c, without transaction costs, drawing of com-
plete (upper) and partial enlargement (bottom).

195



Performance evaluation of portfolio optimization strategies for the life insurance company

Figure 4.11 – Omega ratio as a function of the threshold: the quarterly rebalancing strat-
egy under different combinations of α and c, with transaction costs, drawing of complete
(upper) and partial enlargement (bottom).
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4.5.2 On the weightings of the benchmarks

In this section, we will obtain the hypothetical daily investment weightings of the
benchmark by applying two methods, linear interpolation and equal-to-year-end.

We know that the annual GVfM dataset is from 2011 to 2019, and each stands for
the weighting of the year-end. For the linear interpolation method, first, we assume that
the weightings at the end of 2010 are equal to the weightings of 2011. Then, through
linear interpolation, we will obtain the daily weightings of the five assets from 2011 to
2019. In the equal-to-year-end method, the weighing of each day in the year has the same
weighting as the year-end.

Moreover, in the analysis of performance evaluation in Section 4.3.1, it is assumed
that there is no rebalancing during the eight-year investment period. In this section, we
will analyze the benchmarks’ performance according to different rebalancing disciplines,
namely weekly, monthly, quarterly, semi-annually and annually. We will also use the con-
stant weightings with no rebalancing in the 8-year investment period as a reference for
the weightings obtained by the two methods.

Since each performance indicator among the cases is close, we only show the Omega
ratios for comparison. The Omega functions of the benchmarks without and with trans-
action costs are plotted in Figures 4.12 and Figure 4.13.

First of all, in the absence of transaction costs, all benchmarks can effectively hedge
against downside risks, but they are less capable of retaining upside returns. Among them,
the benchmark without rebalancing during the 8-year investment period performed best.
The performance of the weightings calculated based on the equal-to-year-end method is
better than that of the linear interpolation method.

Next, in the presence of transaction costs, the benchmark without rebalancing during
the 8-year investment period performed best as before. The performance of the strategy
increases as the rebalancing frequency decreases. Based on the same rebalancing frequency,
the performance of the weightings calculated based on the equal-to-year-end method is
better than that of the linear interpolation method. The weekly rebalancing strategy can
neither effectively hedge against downside risks nor seek upward returns.

In summary, transaction costs have a greater impact on the B&H strategy. The less
frequently the portfolio is rebalanced, the B&H strategy can obtain a better risk-return
profile.
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Figure 4.12 – Omega ratio as a function of the threshold: benchmarks with different
weightings under different rebalancing frequencies, without transaction costs, drawing of
complete (upper) and partial enlargement (bottom).
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Figure 4.13 – Omega ratio as a function of the threshold: benchmarks with different
weightings under different rebalancing frequencies, with transaction costs, drawing of
complete (upper) and partial enlargement (bottom).
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4.5.3 On the upper bounds of the investment weightings, γ(i)
max

As introduced in Section 4.3.5, the upper bounds on the weightings of each asset in the
investment are following the French Insurance Code, which has practical meaning when
analyzing the effectiveness of our strategies. However, from the perspective of modeliza-
tion, different upper bounds on the weightings will cause our optimal asset allocation to
be biased.

We assume that the upper bounds on the weightings of each asset are set to 100%. The
difference from the regulatory requirements is that the upper bounds on the weightings
invested in the stock index and the REITs are 65% and 40%, respectively. We assume that
other parameters remain unchanged, as in Section 4. The performance of our strategies
is examined based on each of the following two different upper bounds on the weightings
(as shown in Table 4.11) by quarterly rebalancing discipline with and without transaction
costs.

Table 4.11 – Upper bounds on the investment weightings, by the French Insurance Code
and hypothesis.

RF GB CB SI RE

By the French Insurance Code (Benchmark) 100% 100 % 100% 65% 40%
Hypothesis 100% 100 % 100% 100% 100%

For illustration purposes, we only display the Omega ratios of our strategies based
the two upper bounds on the investment weightings for the performance measurement, as
plotted in Figure 4.14.

When the threshold is low (as shown in the upper drawing), the strategy under the
French insurance law’s upper bounds performs better than the strategy based on our
hypothetical upper bounds. If there are no restrictions on the upper bounds on the in-
vestment weightings of the stock index and the REITs, our strategy will be less effective
in hedging against downside risks. When the threshold is high (as shown in the bottom
drawing), the strategy under the hypothetical upper bounds can obtain upside returns.
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Figure 4.14 – Omega ratio as a function of the threshold: the quarterly rebalancing strat-
egy under two upper bounds on the investment weightings, with transaction costs, drawing
of complete (upper) and partial enlargement (bottom).

For more fluctuated risky assets with relatively low upper bounds on the investment
weightings, the hedge comes at the cost of low average upward returns. Our results confirm
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that it makes sense for the law to restrict the upper bounds on the investment weight-
ings of risky assets for relatively risk-averse institutional investors such as life insurance
companies.

4.5.4 On the performance of our strategies versus the real in-
dustry

Through the empirical results in Section 4.4 and the further discussions in this section,
we have a comprehensive understanding of our strategy. From a practical point of view, it
is worth further comparing our strategy with the real-world results of euro-denominated
funds. We know that the comparisons will be based on the fact that there are only 5
investable financial assets under our strategy. These five investable assets are included in
the asset pools of life insurance companies. In addition, our strategy cannot consider the
historical holdings in long-term bonds prior to our dataset (2003), when long-term bond
yields were higher. Thus if we compare the performance of our strategy with real-world
results, it will underestimate the performance of our strategy. Nevertheless, we still find
that our strategy can outperform the industry’s results in the following aspects.

As analyzed before, the participation rate 10 of euro-denominated funds is determined
by life insurers at the end of each year and is under the capital guarantee. When deciding
this interest rate, life insurance companies perfectly know the annual financial performance
and the average 10-year government bond yield over the year. This interest rate should
be lower than their investment rate of return of the current year. Since at least one part
of the return is endowed in the smoothing reserve (PPB, see Section 1.3.1), distributed
to the policyholders within 8 years.

The cumulated HPY of our strategies with quarterly and annually rebalancing (28.26%
and 29.46%) can still exceed the cumulative interest rate provided by the life insurers at
the industry level (28.10%) as shown in Table 4.12, even if the participation rate of euro-
denominated funds includes some of the profits in the PPB for the past eight years that are
not considered in our strategy. The average yield of the French 10-year government bonds
during that period (1995 - 2002) is around 5.4% 11, as shown in Figure 1.2 in Chapter 1.

10. It is the interest rate that policyholders receive each year, also known as the revaluation rate
11. An equivalent 8-year cumulative return of investing in 10-year government bonds will be around

52%
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Table 4.12 – Average cumulated HPY of an 8-year investment period of the B&H strategy,
our benchmarks, our strategies, and the real industry data of euro-denominated funds,
with transaction costs, from 2003 to 2019.

B&H RF B&H GB B&H CB B&H SI B&H RE
5.54% 11.64% 20.26% 1.33% 5.69%

Benchmark GVfM Benchmark FFA
13.93% 11.11%

Our proposed strategy
Weekly rebalancing Monthly rebalancing Quarterly rebalancing Semi-annually rebalancing Annually rebalancing
9.29% 25.79% 28.26% 27.41% 29.49%

Industry
28.10%

The 10-year government bond yields decreased to below 3% since 2011. When we only
compare the performance after 2011, as seen in Table 4.13, in addition to our weekly
rebalancing strategy, the average 8-year cumulative interest rate is higher than that be-
tween 2003 and 2019. The industry’s average 8-year cumulative interest rate dropped from
28.10% to 19.77%, mainly due to the decline in 10-year government bond yields.

Table 4.13 – Average cumulated HPY of an 8-year investment period of the B&H strategy,
our benchmarks, our strategies, and the real industry data of euro-denominated funds,
with transaction costs, from 2011 to 2019.

B&H RF B&H GB B&H CB B&H SI B&H RE
0.84% 5.62% 18.70% 15.91% 16.02%

Benchmark GVfM Benchmark FFA
11.98% 11.14%

Our proposed strategy
Weekly rebalancing Monthly rebalancing Quarterly rebalancing Semi-annually rebalancing Annually rebalancing

8.35% 35.98% 36.72% 32.18% 31.20%

Industry
19.77%

Industry’s 8-year cumulated investment rate of return
27.17%

Moreover, as presented in Figure 1.18 in Chapter 1, the average annual investment
rate of return of euro-denominated funds is about 3.05% between 2011 and 2019; that is,
the 8-year cumulative investment rate of return is 27.17%. During this period, the 8-year
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cumulative investment rate of return of our strategy, except for the weekly rebalancing
one, is more than 50% higher than that of the industry.

This shows that in the period of 2011 to 2019, our strategy is not only more secure
in protecting the annual distribution rate to policyholders but also is more capable of
obtaining upward returns than the industry.

4.6 Conclusion

In this chapter, we empirically compared our asset allocation strategies with the con-
structed benchmarks and the B&H strategy to investigate its effectiveness in terms of
portfolio protection and performance in an eight-year investment period.

First of all, we chose the type of custom security-based (strategy) benchmarks to build
the benchmarks of our asset allocation strategies.

Based on the empirical results, we firstly found that both our strategies and the
benchmarks are capable of hedging against the downside risk in the sense that they
truncate the left tail of the return distributions compared with the B&H strategy.

Next, based on the analysis of the B&H strategy, asset allocation is essential in long-
term investment. The corporate bond index can provide excellent returns and lower risks
in the long term, with the highest Sharpe ratio. The B&H strategy that only invested
in the stock index and the REITs could neither provide downside protection nor achieve
upside returns during the eight-year holding period in our datasets.

Thirdly, compared with the B&H strategy, our strategies and the benchmarks could
hedge against downside risks because they truncated the left tail of the return distribution.
However, in the absence of transaction costs, the ability to obtain upward returns was
not as good as the B&H strategy that only invested in the corporate bond index. This
is because some of the upward returns are sacrificed in order to diversify risks through
asset allocation. The two benchmarks we assumed had different investment weightings
because of their distinct constitutes. The performance of the B&H strategy based on the
GVfM weightings was better than that based on the weightings obtained from the FFA.
The main reason was due to the relative risk-averse and the pursuit of safety by euro-
denominated life insurance. We also found that the presence of transaction costs has an
insignificant effect on the performance of the B&H strategies.

We examined the impact of different rebalancing disciplines on the performance of our
strategies in comprehensive scenarios. When comparing our asset allocation strategies,
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we found that the performance of the quarterly rebalancing strategy ranked leading in
the absence of transaction costs, followed by the monthly and semi-annual rebalancing
strategies, weekly and annual rebalancing strategies were relatively poorer. In the presence
of transaction costs, our strategies with relatively lower rebalancing frequencies (including
quarterly, semi-annual, and annual rebalancing) performed better than those with higher
rebalancing frequencies.

Unexpectedly, by calculating the maximum drawdown of different strategies, we found
that when there are transaction costs, the semi-annual or annual rebalancing strategy can
maintain and increase the value of the life insurance company with no risk among each of
the 8-year investment periods in our datasets. The maximum drawdown of the quarterly
rebalancing strategy was only -0.35%. From this perspective, our strategy is suitable
for euro-denominated funds and euro-growth funds whose capital is guaranteed with a
minimum holding period of eight years.

In further discussions, we verified the robustness of our strategy by assigning different
values to the parameters in the inequality constraints, α and c, and evaluating the per-
formance of the quarterly rebalancing strategy. We also found that when other variables
remain unchanged, increasing the value of alpha or c will result in a diminishing marginal
increase in HPY. Two methods to calculate the benchmark weightings also verified the
validity of the assumption of the constant benchmark weightings. The lower the rebalanc-
ing frequency of the B&H strategy, the better the performance. In addition, by comparing
the performance of the quarterly rebalancing strategies based on different upper bounds
on the investment weightings, we confirmed that for euro-denominated life insurance,
which is built up for the more risk-averse investors, a relatively low upper bounds on the
weightings invested in risky assets could provide a higher downside hedge, as the cost of
some upward returns. Moreover, We can also conclude that when there are transaction
costs, the performance of our strategy at lower rebalancing frequencies is better than the
real-world results of the life insurance industry in the same period.
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GENERAL CONCLUSION

In Europe, a milestone was reached when the long-term yield for the ten-year bench-
mark government bond dipped to negative for the first time in 2019 since the peak in
the 1980s. Euro-denominated life insurance business is vulnerable to changes in long-term
interest rates because those interest rates act as the technical interest rate to determine
insurance premiums, reserves, guaranteed rates, and profit-sharing [Holsboer, 2000]. More-
over, life insurers used to assume that the entire portfolio could be invested in long-term
bonds, that the returns were high enough to guarantee the policyholder a certain return
on their contracts in a perfectly secure environment. However, the asset returns of life
insurers could fall below the average guaranteed interest rate in prolonged low interest
rates, thus putting policyholders’ investments at risk.

When the yield of the long-term bonds is approaching the guaranteed rate, it becomes
more difficult to serve the guaranteed returns made long ago when interest rates were
high. It creates pressures on the profitability of life insurance investment activities. The
net inflow into euro-denominated funds declines with the continuous increase in outflows
(e.g., claims, benefits paid, and redemptions) and the gradual decrease in inflows (i.e.,
premiums), which from another viewpoint, also poses challenges to the life insurance
business model.

As we have seen in Chapter 1, in a persistent low-interest-rate environment, the con-
ditions under which the life insurance business operates are modified. To continue to offer
a favorable return to the insured, life insurers should allocate more risky assets to their
portfolio. But doing so, they would be exposed to not being able to guarantee the capital.
This thesis has investigated portfolio optimization problems of life insurance companies
in the context of the gradual decline in long-term interest rates. To solve this double
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problem that obviously challenges the life insurance business model, we applied the ruin
theory and risk models. Important developments in both financial economics and mathe-
matics were made for the management of life insurance. However, many remain to do. The
works undertaken in this thesis made a modest contribution toward understanding and
managing the portfolio optimizations of life insurance companies. In the mathematical
modeling of the income of a life insurance company, the explicit expressions of the first
two moments have been derived. The obtained formulae enable the analysis of portfolio
problems and the optimal investment strategies for life insurance companies. To construct
the optimal asset allocation strategy, we incorporated certain practical constraints, such
as the probability of insolvency, reserves, and the maximum investment ratios by asset
class. In the empirical analysis and back-testing, by applying our proposed strategy to
euro-denominated funds and euro-growth funds of the life insurer’s portfolio, we found
that our proposed strategy has achieved outstanding performance in the long term under
multiple conditions, for instance, capital guarantee, risk control, and profitability. Our
main results are presented and summarized as follows.

First, we presented an economic analysis of French life insurance based on obtained
dataset. We included a literature survey on a low-interest-rate environment and life in-
surance. A comprehensive overview of the situation of the life insurance sector in France
was implemented, including investment supports and constraints on euro-denominated
funds and other life insurance products; life insurance activities and investments; the sol-
vency regulations imposed on life insurance companies and solvency conditions of the life
insurance industry, as well as a comparison at the EU level. The diminishing rates of re-
turn on euro-denominated funds were analyzed by comparing with the technical interest
rate, the profit-sharing rate, the rate of return on insurer assets, the inflation rate, and
the provision for participation in profits. The conditions in the life insurance business
and investment activities indicate that the traditional business model of life insurers is
changing. Euro-denominated contracts are partly abandoned and are no longer intensively
promoted by most financial intermediaries. Nevertheless, the large stock that is still in-
vested in euro-denominated funds exposes life insurance companies to not being able to
keep on offering attractive returns. Dissatisfied investors could then choose to withdraw
their capital massively and invest in attractive alternatives. Unit-linked contracts receive
more attention in terms of volume and growth rate, and euro-growth funds could take
place for a major role as a long-term investment choice. However, other long-term savings
products, particularly those dedicated to retirement (e.g., in French, le Plan d’epargne
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retraite), could also attract household savings.

Those risks analyzed in the first chapter were the starting points of Chapter 2. We
addressed the mathematical modeling of the income of a life insurance company by ap-
plying the ruin theory and risk models following [Paulsen, 2008]. Then we obtained the
expressions on the first two moments of the income of a life insurance company in three
case studies: 1) when both the basic risk process and the return on investment generating
process are modeled by two independent Brownian Motions, 2) when the basic risk pro-
cess is modeled by the sum of a Brownian Motion and a compound Poisson process, the
return on investment generating process remaining the same as in Case 1, 3) when two
processes are both modeled by Lévy processes. Similar formulae were derived when there
are multiple risky assets in the first two cases. The relationships between each variable
and the first two moments of the income of a life insurance company were displayed. We
concluded that with a non-zero investment rate of return, the expected income of a life
insurance company is an increasing function of the investment in risky assets, given the
no-arbitrage condition and positive cash flows from its life insurance business. Moreover,
the results showed that both the basic risk process and the return on investment generat-
ing process have complex impacts on the second moment of the income of a life insurance
company.

Third, we derived the optimal asset allocation strategies under some practical con-
straints for the asset portfolio of life insurance companies. The dataset that we used
comprises one risk-free asset and four risky asset classes that life insurance companies
can choose to build up their portfolio, namely, one government bond, one corporate bond
index, one stock index, and one real estate investment trust. Those four categories of
risky assets show large differences in return and risk, which allows the portfolio to be
diversified. We conducted data description, normality test and data analysis. Based on
the formulas obtained in Chapter 2, we solved the maximization problem of the expected
income of a life insurance company at the end of the predetermined investment period
subject to the ruin probability. We obtained the optimal investment strategies using the
upper bound of this probability and some practical constraints, including the maximum
investment ratios by asset class, the probability of insolvency, and the saving capital. We
numerically illustrated the optimal asset allocation strategy of Case 2bis with real data in
2019, in which the compound Poisson process models the outflows in the basic insurance
business process to analyze the economic problems observed in Chapter 1. The numerical
results showed that the current interest rate environment forced life insurers to change
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their asset allocation from government bonds to more risky corporate bonds.

The sensitivity analysis investigated how the optimal asset allocations depend on the
parameters in Xt and Rt, and the constraints. By varying life insurers’ risk tolerance
measures in the inequality constraint, such as the saving capital level or the probability
of insolvency, we found that the holding period yield of life insurance contracts increases
with insurers’ stock and REIT investments. The investment strategy would be more con-
servative when the net inflows in the life insurance business increased without enhancing
the saving capital or when the insurance business became more volatile. If the govern-
ment bond yield becomes negative, the optimal investment strategy would allocate more
cash and cash equivalents. Under different market conditions in the period of 2003 to
2018, given the level of calculation in 2019, the results showed a holding period yield of
around 3% on average. Our investment strategy appeared to be more volatile than the
traditional euro-denominated funds. Because the rate of return served to the policyholders
was smoothed by life insurers through the revaluation rate, including the technical inter-
est rates, profit-sharing, and the provision for participation in profits. The performance
of our optimal investment strategy resembled one of the alternatives to the traditional
euro-denominated funds, namely the dynamic euro-denominated funds.

Fourth, based on the five-asset dataset in Chapter 3, we backtested the performance of
the proposed asset allocation strategy compared with the buy-and-hold (B&H) strategies
and the constructed benchmarks in an eight-year investment period, without and with
transaction costs. The empirical results show that in the presence of transaction costs,
our strategy with lower rebalancing frequencies performs better in hedging against down-
side risks, capturing upside returns, reshaping return distributions, and realizing capital
guarantees for both euro-denominated funds and euro-growth funds.

In the further discussions section in Chapter 4, we tested the robustness of the asset
allocation strategy and the constructed benchmarks. When other parameters remain un-
changed, with the increase of α or c, the interest rate of the contract for the corresponding
holding period (HPY) will increase accordingly. However, due to the bounds on the in-
vestment weightings, the HPY showed diminishing marginal growth rates. The empirical
results verified the sensitivity analysis in Chapter 3. By parameterizing α and c in our
modelization, life insurance companies could select different values for this pair of param-
eters according to their own financial situation, which is easy to compute and implement
in practice. Under different time frames, the performance of our strategy was superior to
the real results of euro-denominated funds in the industry. Especially in the last decade,
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when the government bond yield was lowering, our strategy has not only outperformed the
revaluation rate of euro-denominated funds but also surpassed the industry’s cumulative
investment rate of return.

One of the main limitations in our results is the low data granularity and data availabil-
ity in the life insurance business, which biased the value of parameters in the insurance
business process and the performance of the optimal investment strategy. In addition,
portfolio optimization depends on the number of assets that life insurers can invest in. A
more comprehensive asset structure could improve the analysis and increase robustness
to the results by adding the constraint of the dispersion rules. Moreover, as investment
strategies rely on assumptions, the problem with our results is the model risk arising from
the differences between the real world and the one assumed in our model. We focus on an
analytically tractable case, where the returns are normal and the processes are continuous.
Besides, as the implementation of the optimal investment strategy needs estimation for
parameters in both the life insurance business and financial markets, such as the variance
in the insurance business and the expected return and volatility of financial assets, it is
also worth examining how the accuracy of these estimates may affect its effectiveness.
These issues are left for future research.

Nevertheless, the results have profound economic implications. Given the importance
of the life insurance sector among institutional investors, we show that the stochastic
properties of both the life insurance business and the investment activity could greatly
impact the economic results of life insurers. In terms of investment, by adjusting the
level of saving capital and the probability of insolvency, parameters which reflect their
attitude of risk tolerance, life insurers can find the optimal investment strategy that meets
an authority’s requirement. In terms of the life insurance business, on the one hand, life
insurers should continue to limit the inflow into euro-denominated funds and encourage
policyholders and potential investors to transfer and invest in unit-linked and euro-growth
funds in the long term. On the other hand, they should hold sufficient cash or liquid assets
to reduce their liquidity risk and insolvency risk in the context of low-interest rates, rising
outflows, and unpredictable redemptions.

The ongoing recession is challenging the profitability of the corporate sector resulting
in rating downgrades, increased defaults, and unemployment, especially in the Covid-19
pandemic. In addition, the risk of deterioration of corporates’ ratings could affect the
market value of insurers’ corporate bond holdings [EIOPA, 2020b]. It is worth noting that
the levels of government and public debts are increasing dramatically with the activation
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of the Public Sector Purchase Programme (PSPP) by the European Central Bank, which
indicates there is no needs to increase interest rates in the short term. However, it would
be essential to consider the case in the medium-long term when interest rates in the euro
area start to rise, which would bring new challenges and pressures to the life insurance
business.
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APPENDICES

.1 Appendix A

Figure 15 – Evolution of redemptions and other outflows from euro-denominated contracts
(in billions of euros) and the share of redemptions in outflows (12 rolling months).

Source: [Perdu and Marionnet, 2019], ACPR
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.2 Appendix B

In Table 14, we propose four combinations of transaction costs for the government
bond, corporate bond index, stock index, and REITs to compare the impact of transaction
costs on the performance of our strategy.

Table 14 – Four different combinations of transaction costs (TC) of four risky assets.

TC Combinations Government Bond (TC1) Corporate Bond (TC1) Stock Index (TC2) REITs (TC2)

TC1=TC2=0.1% 0.1% 0.1% 0.1% 0.1%
TC1=0.1%, TC2=0.3% 0.1% 0.1% 0.3% 0.3%
TC1=0.3%, TC2=0.1% 0.3% 0.3% 0.1% 0.1%
TC1=TC2=0.3% 0.3% 0.3% 0.3% 0.3%

Figure 16 – Realizations of our asset allocation strategy under quarterly rebalancing
frequency, with different combinations of transaction costs.

Note: This figure plots the realizations of the final HPYs under our asset allocation
strategy by quarterly rebalancing frequency for the cases with four combinations of

transaction costs.
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Figure 17 – Omega ratio as a function of the threshold: the quarterly rebalancing strategy
under different combinations of transaction costs, drawing of complete (upper) and partial
enlargement (bottom).

As shown in Figure 16 and Figure 17, the impact of different transaction costs on the
performance of our proposed strategy is not evident in the presence of transaction costs.
For illustration purposes, only the quarterly rebalancing strategy is displayed.
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.3 Appendix C

Figure 18 – 2273 paths of the HPY by the B&H strategy with the GVfM weightings with
transaction costs in 8 years.

Figure 19 – 2273 paths of the HPY by the B&H strategy with the FFA weightings with
transaction costs in 8 years.
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.4 Appendix D

Figure 20 – 2279 paths of the HPY by weekly rebalancing strategy with transaction costs
in 8 years (400 weeks).

Figure 21 – 2231 paths of the HPY by monthly rebalancing strategy with transaction
costs in 8 years (96 months).
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Figure 22 – 2021 paths of the HPY by semi-annually rebalancing strategy with transaction
costs in 8 years (16 semi-years).

Figure 23 – 1769 paths of the HPY by annually rebalancing strategy with transaction
costs in 8 years.
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RÉSUMÉ

Les assureurs-vie sont des intermédiaires financiers importants en raison de leur ca-
pacité à réaffecter les risques dans l’économie et de leurs horizons d’investissement souvent
à long terme. Dans la plupart des pays européens, l’assurance-vie bénéficie de ses car-
actéristiques en termes de garantie de capital, d’incitations fiscales, d’horizon d’investissement
à long terme, d’effet de diversification et de retour sur investissement. Dans les bonnes
années, les assureurs accumulent des excédents en offrant aux épargnants des rendements
inférieurs à ceux de leur portefeuille, leur permettant de puiser dans cette réserve pen-
dant les mauvaises années pour offrir des rendements plus élevés. Réduisant ainsi le risque
de manque à gagner des assureurs-vie tout en prévoyant des taux d’intérêt garantis plus
élevés.

Environ 40 % de leur valeur nette est investie dans l’assurance-vie et les fonds de pen-
sion par les ménages européens au cours d’une année moyenne de 2016 à 2018 [ECB, 2019].
Selon la Banque de France, la valeur des contrats d’assurance-vie en euros détenus par
les ménages français représente environ 32 % de leur patrimoine financier à fin septembre
2020. Parallèlement, la part correspondante des contrats en unités de compte est d’environ
7 %.

La politique monétaire accommodante actuellement menée par la Banque centrale
européenne se traduit par des taux d’intérêt extraordinairement bas. Les assureurs-vie
allouent généralement une large proportion d’obligations souveraines et d’obligations
d’entreprises dans leur portefeuille; par conséquent, une baisse généralisée des taux d’intérêt
affecte directement le taux de rendement de ces portefeuilles. Des rendements inférieurs à
long terme incitent les assureurs-vie à rechercher des investissements plus risqués et plus
illiquides pour obtenir le rendement visé. Cette prise de risque accrue peut conduire à une
nouvelle accumulation de vulnérabilités parmi eux [IMF, 2019]. Les faibles taux d’intérêt
deviennent une menace pour la stabilité du secteur de l’assurance-vie, en particulier dans
les pays où les produits à rendements garantis relativement élevés vendus dans le passé
représentent encore une part importante du passif [Berdin and Gründl, 2015].

Dans un contexte de baisse progressive du rendement des contrats en euros liée à la
baisse des taux d’intérêt à long terme, l’excellente tenue des marchés boursiers développés
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a permis aux produits en unités de compte (qui représentent 27 % de l’encours en 2019)
se présenter comme une alternative attractive permettant aux investisseurs de bénéficier
au moins en partie de la hausse des cours boursiers tout en restant dans le cadre d’une
fiscalité attractive. La collecte nette sur les contrats d’assurance-vie en unités de compte
a notamment augmenté au cours des deux dernières décennies. Dans le même temps, la
collecte nette sur les contrats d’assurance-vie en euros a diminué non seulement en raison
de la baisse des taux de rendement mais aussi en raison de l’évolution de la pyramide des
âges en France. D’une part, les sorties constituées de sinistres payés, de prestations et de
rachats continuent d’augmenter de manière significative. En revanche, les encaissements
principalement sur primes affichent une tendance à la baisse depuis plusieurs années.
Les compagnies d’assurance-vie ont tenté de tirer la collecte sur les contrats en unités
de compte afin de limiter la collecte sur les contrats en euros et de réduire leurs achats
d’obligations qui offraient un rendement très faible.

Pour continuer à offrir des rendements favorables à leurs clients tout en garantissant
leur capital investi, les compagnies d’assurance-vie ont décidé de modifier progressivement
la structure de leurs actifs en fonction du modèle économique émergent de l’assurance-vie
en euros. Cependant, en se tournant vers des actifs plus risqués, potentiellement porteurs
d’une prime de risque positive, ils sont moins susceptibles de garantir le capital (même
s’ils conservent un � coussin � de liquidité comme réserve de trésorerie). Tous ces facteurs
font désormais peser un risque important sur le modèle d’assurance-vie dans sa version
euro.

Cette thèse étudie les problèmes d’optimisation de portefeuille des compagnies d’assurance-
vie dans le contexte de la baisse progressive des taux d’intérêt à long terme. Pour résoudre
ce double problème qui remet évidemment en cause le modèle économique de l’assurance-
vie, nous appliquons la théorie de la ruine et les modèles de risque. Des développements im-
portants à la fois en économie financière et en mathématiques ont été réalisés pour la ges-
tion de l’assurance-vie. Cependant, beaucoup restent à faire. Les travaux menés dans cette
thèse apportent une modeste contribution à la compréhension et à la gestion des optimisa-
tions de portefeuille des compagnies d’assurance-vie. Pour la modélisation mathématique
du revenu d’une compagnie d’assurance-vie, les formules des deux premiers moments sont
dérivées. Les formules obtenues permettent d’analyser les problèmes de portefeuille et les
stratégies d’investissement optimales pour les compagnies d’assurance-vie. Nous intégrons
certaines contraintes pratiques, telles que la probabilité d’insolvabilité, les réserves, et les
ratios d’investissement maximum par classe d’actifs pour trouver l’allocation d’actifs op-
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timale.

Le premier chapitre est une introduction à l’assurance-vie libellée en euros. Il présente
une étude bibliographique sur les conséquences de taux d’intérêt bas et une analyse con-
textuelle de l’environnement économique des sociétés d’assurance-vie françaises. Il met en
lumière et compare les situations du secteur de l’assurance-vie en France et en Europe.
Le cadre prudentiel Solvabilité II est discuté et analysé. Le chapitre examine la baisse des
rendements des contrats d’assurance-vie libellés en euros et le changement de paradigme
dans l’activité des compagnies d’assurance-vie confrontées à des sorties potentielles im-
portantes. Les conditions dans les affaires d’assurance-vie et les activités d’investissement
indiquent que le modèle d’affaires traditionnel des assureurs-vie est en train de changer.
Les contrats libellés en euros sont en partie abandonnés et ne sont plus intensément promus
par la plupart des intermédiaires financiers. Néanmoins, le stock important qui est encore
investi dans des fonds en euros expose les compagnies d’assurance-vie à ne pas pouvoir
continuer à offrir des rendements attractifs. Les investisseurs insatisfaits pourraient alors
choisir de retirer massivement leur capital et d’investir dans des alternatives intéressantes.
Les contrats en unités de compte reçoivent plus d’attention en termes de volume et de
taux de croissance, et les fonds euro-croissance pourraient jouer un rôle majeur en tant
que choix d’investissement à long terme. Cependant, d’autres produits d’épargne longue,
notamment ceux dédiés à la retraite (le Plan d’Epargne Retraite), pourraient également
attirer l’épargne des ménages.

Le deuxième chapitre est consacré à la modélisation mathématique des revenus d’une
compagnie d’assurance-vie. Il fournit des outils indispensables pour saisir les expositions
des résultats du chapitre suivant. Il montre les éléments du calcul stochastique qui sont
nécessaires dans le calcul de la modélisation mathématique. Il formule la forme explicite
des deux premiers moments du revenu d’une compagnie d’assurance-vie avec trois études
de cas où le processus de risque de base et le processus générateur de retour sur investisse-
ment sont modélisés par le Brownian Motion avec la dérive, somme d’un Brownian Motion
et d’un processus de Poisson composé et processus de Lévy, respectivement. En calculant
les dérivées partielles du premier ordre, on obtient les relations entre chaque variable et les
deux premiers moments du revenu d’une compagnie d’assurance-vie. Les relations entre
chaque variable et les deux premiers moments du revenu d’une compagnie d’assurance-
vie sont affichées. Nous concluons qu’avec un taux de rendement d’investissement non
nul, le revenu attendu d’une compagnie d’assurance-vie est une fonction croissante de
l’investissement en actifs risqués, compte tenu de la condition de non-arbitrage et des flux
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de trésorerie positifs de son activité d’assurance-vie. De plus, les résultats montrent qu’à
la fois le processus de risque de base et le processus de génération de retour sur investisse-
ment ont des impacts complexes sur le deuxième moment du revenu d’une compagnie
d’assurance-vie.

Le troisième chapitre est consacré à la recherche de l’allocation d’actifs optimale du
portefeuille d’une compagnie d’assurance-vie. Un ensemble de données composé d’un actif
sans risque et de quatre catégories d’actifs risqués est affiché. Nous construisons la stratégie
d’investissement optimale sur la base des formules obtenues au Chapitre 2. Le problème
d’optimisation est résolu numériquement avec des données réelles en incorporant certaines
contraintes pratiques, telles que la probabilité d’insolvabilité, les réserves et les ratios
d’investissement maximum par classe d’actifs. Nous étudions comment l’allocation d’actifs
optimale dépend d’une série de paramètres à travers une analyse de sensibilité. Certaines
implications tant pour les assureurs-vie que pour la réglementation sont proposées avec des
résultats chiffrés. L’analyse de sensibilité étudie comment les allocations d’actifs optimales
dépendent des paramètres de Xt et Rt, et des contraintes. En faisant varier les mesures de
tolérance au risque des assureurs-vie dans la contrainte d’inégalité, telles que le niveau de
capital d’épargne ou la probabilité d’insolvabilité, nous constatons que le rendement de
la période de détention des contrats d’assurance-vie augmente avec le stock des assureurs
et les investissements en REIT. La stratégie d’investissement serait plus prudente lorsque
la collecte nette dans les affaires d’assurance vie augmentait sans augmenter le capital
d’épargne ou lorsque les affaires d’assurance devenaient plus volatiles. Si le rendement
des obligations d’État devient négatif, la stratégie d’investissement optimale consisterait
à allouer plus de liquidités et d’équivalents de liquidités.

Le dernier chapitre se concentre sur l’évaluation de la performance de notre stratégie
d’allocation d’actifs proposée par rapport aux stratégies d’achat et de conservation (B&H)
ainsi qu’aux benchmarks dans une période d’investissement de huit ans.. Il montre com-
ment sont construits les repères qui reflètent nos stratégies. La conception de backtest-
ing de l’analyse empirique est présentée, y compris les disciplines de rééquilibrage du
portefeuille, les mesures d’évaluation des performances, les coûts de transaction et les
procédures de backtesting. L’efficacité des stratégies est examinée en détail. Les résultats
empiriques montrent qu’en présence de coûts de transaction, notre stratégie avec des
fréquences de rééquilibrage plus faibles est plus performante pour se couvrir contre les
risques de baisse, capturer des rendements à la hausse, remodeler les distributions de ren-
dement et réaliser des garanties de capital pour les fonds libellés en euros et les fonds de
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croissance en euros. Dans la section des discussions plus approfondies du Chapitre 4, nous
testons la robustesse de la stratégie d’allocation d’actifs et des indices de référence con-
struits. Lorsque les autres paramètres restent inchangés, avec l’augmentation de α ou c, le
HPY augmentera en conséquence. Cependant, en raison des limites sur les pondérations
d’investissement, le HPY montre des taux de croissance marginaux décroissants. Les
résultats empiriques vérifient l’analyse de sensibilité du Chapitre 3. En paramétrant α et c
dans notre modélisation, les compagnies d’assurance-vie pourraient sélectionner différentes
valeurs pour ce couple de paramètres en fonction de leur propre situation financière, ce
qui est facile à calculer et mettre en œuvre dans la pratique. Sous différentes échéances,
la performance de notre stratégie est meilleure que les résultats réels des fonds libellés
en euros de l’industrie. Surtout au cours de la dernière décennie, lorsque le rendement
des obligations d’État baissait, notre stratégie a non seulement surperformé le taux de
réévaluation des fonds libellés en euros, mais a également dépassé le taux de rendement
cumulé des investissements du secteur.
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L. Gallardo. Mouvement brownien et calcul d’Itô: cours et exercices corrigés. Hermann,
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Résumé : La prospérité d’une compagnie
d’assurance-vie est due non seulement aux
bénéfices de son activité principale, mais aussi
aux revenus d’investissement du capital à sa
disposition. L’environnement prolongé de taux
bas a remis en cause ces deux principales acti-
vités de l’assurance-vie. Dans cette thèse, nous
étudions les problèmes d’optimisation de porte-
feuille liés aux fonds en euros des assureurs-
vie. Pour continuer à offrir une rémunération
attractive aux assurés, les assureurs vie de-
vraient introduire davantage d’actifs risqués
dans leurs portefeuilles. Mais, ce faisant, ils
s’exposeraient à ne pas pouvoir garantir le capi-
tal. Par ailleurs, la maturité du marché français
de l’assurance-vie crée des conditions poten-
tielles de retraits massifs. Nous appliquons la

théorie de la ruine pour modéliser les propriétés
stochastiques de ces deux processus dans trois
cas et dérivons les expressions explicites des
deux premiers moments du revenu d’une com-
pagnie d’assurance-vie. La maximisation du re-
venu attendu d’une compagnie d’assurance-vie
est résolue sous les contraintes de la proba-
bilité de ruine. La stratégie d’investissement
optimale est obtenue en utilisant l’estimation
supérieure de cette probabilité. Nous avons
réalisé l’illustration numérique, l’analyse de sen-
sibilité et le backtesting avec des données
réelles du secteur de l’assurance-vie et des
marchés financiers. Nos résultats indiquent des
implications économiques pour les compagnies
d’assurance-vie dans leurs activités d’assu-
rance et d’investissement.

Title: Optimization of the asset portfolio of life insurance companies under capital guarantee con-
straints

Keywords: Life insurance, portfolio optimization, euro-denominated funds, ruin theory

Abstract: The prosperity of a life insurance
company is due not only to earnings in its prin-
cipal business but also to investment profits of
the capital at its disposal. The prolonged low-
interest-rate environment has been challenging
these two main activities of life insurance. In
this dissertation, we study portfolio optimization
problems related to euro-denominated funds of
life insurers. To continue to offer a favorable re-
turn to the policyholders, life insurers should
allocate more risky assets to their portfolios.
But, doing so, they would be exposed to not
being able to guarantee the capital. Besides,
the maturity of the French life insurance market
creates potential conditions for massive with-
drawals. We apply the ruin theory to model the

stochastic properties of these two processes in
three case studies and derive the correspond-
ing explicit expressions of the first two moments
of the income of a life insurance company. The
maximization of the expected income of a life
insurance company is solved under the con-
straints of ruin probability. The optimal invest-
ment strategy is obtained using the upper esti-
mation of this probability. We conducted the nu-
merical illustration, the sensitivity analysis, and
the backtesting with real data from the life insur-
ance sector and financial markets. Our results
indicate economic implications for life insurance
companies in their insurance business and in-
vestment activities.
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