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Chapter 1 – General introduction – Part I

Chapter 1. General Introduction 

Since  their  discovery  in  the  16th and  19th centuries,  micro-organisms  are  known  to  be

dramatically  diverse  and  distributed  everywhere  around  the  globe  (Martiny  et  al.,  2006;  Opal,

2009). In common language, they are often referred to as microbes, but microorganisms include not

solely  bacteria  but  also  archaea  and  unicellular  Eukarya.  Long  believed  to  be  pathogenic,

microbiology  was  consequently  mainly  oriented  towards  hygienist  policies  or  development  of

antibiotics (Opal, 2009). Such approaches were successful in terms of public health but, in parallel,

researchers  (then  people)  realized  the  huge,  beneficial  impacts  they have  of  their  environment

(Whitman et al., 1998; Gentile and Weir, 2018).

Microbes are indeed implied in numerous environmental processes such as nutrients cycle and

other biochemical processes, and interact in multiple ways with other organisms, particularly when

they live as a host’s symbionts (Larimer et al., 2010; Fierer, 2017). Such communities of microbes,

named microbiotas when associated to a host (or microbiomes to consider the microbial community

genomes),  are indeed beneficial  to their  host,  such as protection against pathogens or diseases,

nutrition, resistance to various stress, such as pH, heat, drought, or salinity in plants microbiotas

(Rodriguez et al., 2019).

Such a paradigm shift led researchers to wonder how microbes interact with animals and plants,

as well as with their whole biotope, giving birth to a new field of research, microbial ecology, which

aims to decipher how microbial communities are structured, evolve, and react to environmental

variations. Thanks to tremendous advances in molecular biology and DNA sequencing, a major

shift  occurred  in  past  decades.  A set  of  tools  and techniques  permitted  the  characterization  of

microbial  communities  of  various  environments,  from  soil  and  oceans  to  plants  and  animals

compartments (Quince et al., 2017). Firstly descriptive, these techniques are now putting more and

more effort into obtaining functional insights of microbial systems.

A way to embrace functional studies is to dive into ecological interactions between microbes,

their  host  or  their  environment.  Interactions  are  widely  diverse,  from antagonist  behaviors  as

competition,  to  mutualistic  symbiosis.  Effects  of  the  environment  include  for  example  climate,

nutrients  availability,  pH…  (Yan  et  al.,  2021).  Effects  from  the  host  encompass  for  example

interactions among organisms that comprise a causal system and gives rise to emergent properties

selection from the host, the existence of mutual benefits and their co-evolution and stability, species

or individual specificity (Andreote et al., 2014).
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Chapter 1 – General introduction – Part I

A major part of microbial ecology deals with microbes-microbes interactions, from species pairs

to  multi-species  relationships.  Indeed,  such  a  quantity  of  organisms  of  various  species  are

permanently interacting each other, forming an intricate and complex network (R. Poudel, 2016). In

the past  few years,  metabolic  dependencies  (often  referred as  cross-feeding and relying  on the

secretion of public goods) took more and more attention in research as a possible key for a generic

understanding of microbial communities and microbiota assembly process.

Such complexity raises issues with experimental approaches which, despite being the preferred

approach of demonstration, are often complemented or preceded with modelling and computational

approaches. Thus, recent developments in microbial ecology uses a wide panel of  system siology

methods which has recently being conceptualize as microbial system ecology (Muller et al., 2018).

Hereafter, we present a summary of microbial ecology, followed by a mini-review of microbial

system ecology approaches, mainly focused on bacteria. We then used these methods combined

with experimental work in order to explore putative metabolic dependencies within a subset of the

bacterial microbiota of Arabidopsis thaliana’s roots.
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Chapter 1 – General introduction – Part I

Part I – Microbiomes and microbial ecology

1. The world of microorganisms

Outlines:

In this first section, we provide a general summary of what microbes and microbial communities

are, their distribution, and their importance in their hosts and ecosystems balance.

1.1 What and where are microorganisms ?

Micro-organisms (or microbes) are an ubiquitous form of life, in the way they can be found in

every  ecosystem  on  Earth.  In  soils,  the  first  10  cm  are  known  as  the  main  reservoir  of

microorganisms on earth, consisting of communities of free-living organisms. Animals and plants

contain dense communities of microbes bound to their host, their microbiota, that are involved into

many host-microbe and microbe-microbe interactions  (Marchesi  and Ravel,  2015;  Pacheco and

Segrè, 2019). Microorganisms exist in tremendous quantities : prokaryotes (bacteria and archaea)

alone are estimated to be around 4-6*1030 individuals, accumulating 350-550 Pg of carbon, which

is around 60-100% of the estimated total carbon  in plants (Whitman et al., 1998). In oceans, their

biomass is estimated to 104 to 106 cells per milliliter  (Sunagawa et al., 2015). Microbes are far

more diverse than any other taxonomic or phylogenetic group : if we stick to their basic definition,

i.e. organisms that are so tiny that they cannot be seen by eyesight, they include bacteria, archaea,

various eukaryotes like protists, some fungi,  some plankton, or even algae (figure 1 and box 1).

Some microorganisms can however be visible in some ways, since some are capable of aggregating

together, like fungi and algae in combinations forming lichens, or in communities forming biofilms.

Their  physiological  (i.e.  functional)  diversity is  also considerably greater  than  any other  group

(Prosser  et  al.,  2007).  For  example,  a  community  of  800  bacteria  recovered  from  arctic  ice

displayed several categories of temperature tolerance, and various enzymatic activities (proteolytic,

glycosidic, amylolytic, lipolytic, and DNA-hydrolyzing). A wide variability of antibiotics sensibility

was also found (Miteva et al., 2004). In another study, a community of 198 bacterial morphotypes

from two  distinct  deep  subsurface  geological  formations  near  South  Carolina  were  distributed

among  21  biotypes  (but  in  an  uneven  manner,  some  types  being  more  prevalent  than  others)

(Frederickson et al., 1991).
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Chapter 1 – General introduction – Part I

Box 1: An overview of micro-organisms

Prokaryot
es

Bacteria

Bacteria (gathered into the eponymous taxonomic domain) are the first
organisms we think of when speaking about microorganisms. Being the
first to have been studied, microbiology methods were developed towards
how to handle them. They are single-cell prokaryotes (meaning they do
not have a nucleus : the DNA exists as a long, folded thread with no
specific  location  in  the  cell).  They  exist  in  various  shapes  and  often
appear grouped together. They form a domain of life.

Archaea

Archaea look similar to bacteria, but this domain of life diverged early in
evolutionary history.  Archaea widely differ and have specific chemical
composition, biochemical activities, and are known to be extremophile,
colonizing environments such as hot springs,  deep-sea vents,  salt  flats
and  of  course  also  more  conventional  habitats.  Archaea  are  closer  to
Eukarya than to Bacteria.

Eukaryot
es

Fungi
Fungi  is  a  sister  group  of  animals  in  Opisthokonta  and  are  both
multicellular and unicellular. 

Algae

Algae, like plants, are photosynthetic and have cell walls. They occur in
moist and aquatic environments. Algae can be unicellular or multicellular
(in the late case, they exhibit a wide variety of shapes). Some can reach
hundreds of meters long and are thus not considered as microorganisms,
but single-celled ones aggregate  in mono or multi-specific colonies. 

Others Viruses

Viruses  are  barely living  beings,  since they are just  a  DNA sequence
encapsulated  into  a  protective  protein  capsid.  They  lack  the  basic
metabolism of other organisms and are obligate parasites which need to
infect their host in order to usurp their metabolic functions to reproduce. 

Source:  Biologydictionary.net  Editors.  “Microorganism.”  Biology  Dictionary,  Biologydictionary.net,  27  Apr.  2017,

https://biologydictionary.net/microorganism/. & https://www.britannica.com/science/microbiology/

1.1.1 The biogeography of microorganisms

Despite  the  absolute  prevalence  of  microbes  all  around  the  globe,  microbial  biogeography

exhibits clear spatial patterns, for instance driven by abiotic factors like ocean depth, which, as   the

outcome of several environmental factors, stratifies the diversity of oceans microbiomes (Sunagawa

et al., 2015). The clearest evidence is the uneven distributions of species along locations (even for

taxa  found  everywhere),  for  example  latitudinal  gradients,  and  the  existence  of  endemic  (i.e.

restricted  to  a  location)  species  microorganisms  (Oakley  et  al.,  2010).  Different  environments

exhibit different communities (example in figure 2, taken from Schulz et al., (2017), particularly 

extreme environments such as arctic zones, hot springs or abysses which exhibit highly specific

microorganisms communities  (Hanson et al., 2012). Most bacteria are then restricted to specific

environments (animal, plants, seawater, soil ...) which overlap only a few (Nemergut et al., 2011). 
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Chapter 1 – General introduction – Part I

A second evidence is that genetic similarity patterns among microbial taxa in different locations

are known. Population genetics used these patterns to study divergence among locations and find a

history of their spatial and temporal evolution. It showed for example that genetic divergence is

correlated  with  spatial  distance  (as  for  macro-organisms),  formalized  as  the  distance-decay

relationship (Soininen et al., 2007), illustrated on figure 3 (after Nemergut et al., (2013), modified).

For example,  distance-decay is observed in microbial  eukaryotic communities of Sturt  National

Park, Australia (Green et al., 2004).
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Figure 1: The phylogenetic tree displaying the three kingdoms of life. Bacteria (gray) are the most diverse
group. Archaea are in green, and eukaryotic microorganisms are in red. Note that leaves names are species
cited as examples representative of their whole taxa: many internal branches are not displayed, as well as
taxonomic levels such as phyla, order or families. (Creative Commons figure, from Wikimedia Commons).
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1.1.2 Temporal patterns in microbial communities

Microbial composition also displays temporal patterns, within years but also within seasons or

days. A recent example is the existence of a persistent microbial seed bank in the English Channel,

microbial relative abundance being variations of this reservoir  (Caporaso et al., 2012). Depending

on  the  community  and  environment,  timescales  and  spatial  scales  can  vary  dramatically.  For

example, in surface seawater communities, variations are typically in the order of days to weeks,

kilometers in the horizontal direction, and in the vertical direction, millimeters for the immediate

sea-surface micro-layer (Fuhrman, 2009). Another example is air microbiome : its composition was

found to be affected by multiple temporal factor : seasonality,  night/day cycle (which might be

confounded with temperature variation) affected both absolute and relative abundance of microbial

taxa (Gusareva et al., 2020). (figure 4).
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Figure 2: Bacterial phyla prevalence varies among environments. For example, Parcubacteria are mostly
associated with groundwater, and Firmicutes to humans. The central column and colored stack bars in the
second  and  third  column  detail  if  genomic  sequences  were  obtained  from  metagenomes  exclusively
(black+brown)  or  were  previously  observed  either  in  the  SILVA  database  or  by  genome  sequencing
(white+green  and  blue).  Sequences  are  clustered  in  OTUs  (Operational  Taxonomic  Units)  (Creative
Commons figure, from Schulz et al., 2017).
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Finally, differential functional diversity is at stake regarding the environment or the community :

microbes living in plants or guts will not display the same metabolism as free-living microbes in the

ocean. Each community is  representative of its  environment.  However these differences can be

more subtle. For example, Gut and ocean microbiomes display large physiological differences, but

were found to  have  an  overlap  of  functions  which  gathers  much more  genes  abundances  than

specific  functions.  In  addition,  significant  difference  of  genes  abundances  between  functional

categories were found between the two ecosystems (Sunagawa et al., 2015).
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Figure  3:  The  relation  between  geographic  distance  and  dissimilarity  (represented  as  UniFrac
distance, which is a measure of phylogenetic dissimilarity) between soil rotifers communities (after
Nemergut et al. 2013, modified).

Figure  4:  emporal  patterns  of  the  Air  microbiota.  A)  variation  in  the  relative  abundance  of  bacterial  taxa
according to a day/night cycle (temperature effect). B) abundance variation of bacterial taxa according to season.
The sampling location was in West Siberia (Creative Commons figure from Gusareva 2020).
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1.2 Microbiology and microbial ecology

In 1859, Darwin formalized the theory of evolution by random variation and natural selection.

Coupled to the re-discovery of Mendel’s laws of heredity, the elucidation of DNA’s structure by

Franklin, Watson and Crick, and the development of molecular biology, this was the foundation of

all  biology in  the  20th  century,  including  microbiology  (Opal,  2009).Various  applied  branches

appeared,  such  as  soil  microbiology  or  food  microbiology.  Finally,  microbiology  expanded

dramatically with the development of microbial ecology, which studies microbes in their ecosystem

and roughly aims to find “who’s there” and “what are they doing”. Community ecology concepts

started  to  be  applied  on  microbial  communities  in  an  attempt  to  decipher  interactions  among

microbes  that  comprise  a  causal  system  and  give  rise  to  emergent  properties.  However  it

encountered issues rapidly due to the lack of theoretical framework, preventing any mechanistic

analysis  and  predictive  power,  for  two  main  reasons.  First,  an  initial  lack  of  data  (mainly

identification and  in vitro culture issues) prevents the acquisition of theoretical tools required to

detect underlying processes of microbial ecology. Second, ecological theories were not part of the

microbiology mindset,  which  had a  reductionist,  mainly physiological  approach  (Prosser  et  al.,

2007). Nonetheless, microbial ecology flourished rapidly and underwent a revolution in the 2000’.

Thanks to progress in DNA sequencing and the development of other -omics data technologies,

molecular  data  accumulated  quicker  and  quicker,  revealing  the  huge taxonomic  and  functional

diversity of microbes. The main issue of microbial ecology was then to define rigorously what is a

microbial community, notably for delimiting contiguous environments at various time and spaces

scales, in order to differentiate communities, microbes being everywhere (Konopka, 2009).

1.3 Microbes are fundamental in ecosystems

1.3.1 Implications in biogeochemical cycles and ecological processes

Microorganisms  play  a  fundamental  role  because  of  their  implication  into  biogeochemical

processes and organic matter recycling. Oceans’ microbial life is particularly essential, as they are

responsible for nearly all the primary production and respiration of this ecosystem (Moran, 2015).

Soil microbial communities are key components of nutrient cycling, and their activity drives plant

community composition and productivity (Bérard et al., 2015). The soil microbial decomposers are

thus one of the components of the soil fertility ecosystem service (Guo et al., 2020a).

Various  biogeochemical  processes  (methane  oxidation,  nitrogen/carbon  fixation  and  cycles

linkage,  phosphorus  uptake,  sulfite  oxidation ...)  are  insured  by diverse microbial  communities
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(ocean water and sediment, freshwater soil and sediment, contaminated groundwater, bioreactors ...)

(Madsen, 2011). For instance,  nutrient cycling by microorganisms involves numerous reactions,

such as nitrogen fixation, nitrification/denitrification, ammonification (…). Consequently, very little

nitrogen escapes to the atmosphere, organic and inorganic nitrogen quantity in the biosphere being

at an apparent homeostasis. Both soils and oceans participate to nutrients cycles, but differ in which

nitrogen-transforming  reactions  prevalence,  and are  assured  by different  microbial  networks  of

interacting micro-organisms (Kuypers et al., 2018). Such capacities allow microorganisms are also

able to treat nitrogen pollution from agriculture, fossil fuels or waste waters (Ogbonna et al., 2000;

Kuypers et al., 2018) and there are microbial consortia able to degrade pollutants as among many

examples, hydrocarbons from oil facilities and reservoirs (Liu et al., 2018).

Environmental remediations by microbial consortia are developing, as well as agricultural soil

enhancement to improved crop yield or biocontrol, for instance with Trichoderma strains (Powlson

et al., 2001; Woo and Pepe, 2018).More broadly, microbial communities engineering is a growing

business (see Box 2).  Understanding microbial  communities structure is essential  to understand

ecosystems functions and predict Earth’s response to global changes such as warming and ocean

acidification,  and  calls  for  a  deeper  knowledge  about  microbial  functions,  processes  and

interactions (Fuhrman, 2009). Indeed, some processes might not be performed by single species, but

induced or enhanced by interactions, such as in Dombrowski et al., (2017), where biogeochemical

interdependencies  between members  of  hydrothermal  vents’ microbial  communities  for  carbon-

cycling are suggested.

Box 2 : Microbial factories

Microbes have long been exploited for food and beverages : microbial fermentation is indeed at

the origin of many alcohols, such as beer. Currently, microbes-mediated chemical production is

widely  used  for  the  production  of  various  organic  chemicals,  with  applications  in  biofuels,

cosmetics,  pharmaceuticals,  flavors  (Liu  and  Nielsen,  2019), or  plant  biocontrol  and  growth-

promotion (Chubukov et al., 2018)... Microbial factories developed with metabolic engineering, a

discipline which emerged in the early 1990s, which aims to improve the yield and productivity of

microbial processes  toward specific biochemical production (Jiang et al., 2020). The framework to

build a microbial factory starts from the discovery of implied genes, then pathway design and

optimization  (i.e.  genetic  engineering),  host  optimization  if  needed,  scaling-up  from  lab  to

industrial  level.  Several  tools  and  techniques  are  employed,  from  molecular  biology  to

computational biology (Chubukov et al., 2018). However, issues are numerous and improving the

19



Chapter 1 – General introduction – Part I

stability and robustness is a major challenge, such as the management of the accumulation of toxic

byproducts,  accumulation  of  cofactors,  and  competition  between  production  and  cell  growth

(Orozco-Mosqueda et al., 2018).

An extend of microbial factories and metabolic engineering is microbiome engineering, where

the factory is roughly a part of a host’s microbiota, dedicated towards a function, such as pathogen

protection, nutrients uptake, or growth promotion in plants, or treatment for obesity in humans

(Orozco-Mosqueda et al., 2018; Lim et al., 2020). Methods to inoculate an engineered microbiota

into a host are diverse. As an example, a plant can be inoculated from its soil and rhizosphere, its

seeds  or  seedlings,  or  directly  into  tissues  (Orozco-Mosqueda  et  al.,  2018).  Microbiome

engineering does not necessarily imply sophisticated molecular techniques,  such as genetically

modified organisms, but can make great use of ecological processes. For example, soil microbiome

can be influenced by agricultural management practice such as organic farming, or by a change in

land utilization  (Foo et al., 2017). The use of synthetic microbial communities as factories also

imply  deciphering  microbe-microbe  interactions.  Thus,  microbial  consortia  incorporating

interacting strains, for example co-dependent strains by syntrophic exchanges or protection against

antibiotics  can  improve  the  productivity  (for  example  via  distribution  of  tasks  and  pathways

separation) and robustness of the system. 

The  design  of  a  synthetic  microbial  consortia  goes  with  four  elements  :  (1)  viability  (the

capacity to survive the gastrointestinal tract), (2) colonization (the ability to become part of the

native gut microbiota), (3) localization of the disease, (4) genetic tractability (whether an organism

can feasibly be engineered) (Inda et al., 2019).

1.3.2 Microbiotas as a host symbionts

Microbial communities do not exist as free-living organisms only. Microorganisms are organised

within a microbiota when associated with a host.  Symbiotic microorganisms within the microbiota

are essential to their host development and homeostasis. These microbiota are becoming important

objects in microbiome engineering research (box 2).
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1.3.2.1 The gut microbiome

Animal-associated microbes mainly colonize the skin surface or the gut epithelium, 99% of them

being in the large intestine. In humans, there are an average of 1012 bacterial cells per gram of

intestinal content, reaching 1000 different species (probably more due to the difficulty to detect rare

species), with a dominance of a few phyla (up to 99% of total abundance)  (Zilber-Rosenberg and

Rosenberg, 2008) including mainly Firmicutes, Bacteroidetes, Actinobacteria and Verrucomicrobia

(Hacquard  et  al.,  2015).  The  gut  microbiota  is  influenced  by  multiple  factors  of  the  host  :

phylogeny, age, disease status, geography, diet  (Yatsunenko et al., 2012; Gerber, 2014; Li et al.,

2017; Gentile and Weir, 2018) (figure 5). For example, regarding diet, the rise of herbivory could

have  driven the evolution of many mammalians gut microbiome (Hacquard et al., 2015). Diet is

however less likely to drive the gut microbiome of birds and flying mammals (Song et al., 2020).

Microbe-microbe interactions are highly relevant in the gut microbiome, and a well-known example

is about a case of metabolic cross-feeding, where microbes of the human colon form a complex

metabolic network of producers and consumers in order to produce fatty acids and other beneficial

metabolites (Vázquez-Castellanos et al., 2019).

Figure  5: Similarity  and  dissimilarity  of  the  gut  microbiota  of  various  animal  taxa,
represented by a principal-coordinate analysis of unweighted UniFrac distances between
fecal samples. Samples are gathered by class, with a distinction for the order Chiroptera.
Species from the same taxa have similar microbiotas, while species belonging to different
taxa are dissimilar (from Song et al. 2020, used with authorization).
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The gut microbiota has thus an immense potential in medicine, since its has been linked with

pathogen and disease resistance (for example by competing with pathogens for resources and space,

inhibitory  metabolites,  killing)  (Pickard  et  al.,  2017;  McLaren  and  Callahan,  2020),  but  its

composition  can  be  cause  or  consequence  of  host  troubles  as  obesity,  malnutrition,  diabetes,

inflammatory bowel diseases, and even asthma (Kumar et al., 2018; Inda et al., 2019). Imbalanced

microbiota can for example be the result of spatial redistribution of species (Tropini et al., 2017) or

relative-abundances variations, taxonomic and functional shifts (Lloyd-Price et al., 2019). A direct

application, in reference with the previously mentioned microbial factories, would be the design of

synthetic  microbial  consortia  aiming  to  modulate  the  gut  microbiome and  restore  homeostasis

(Vázquez-Castellanos et al., 2019). Some probiotics or lactic bacteria have already been engineered

to diagnose conditions in the gut and synthesize therapeutics or anti-inflammatory cytokines in vivo

(Inda et al., 2019).

1.3.2.2 The plant microbiome
In plants, the endosphere root microbial communities are overall structured similarly, belonging

to  only  four  bacterial  taxa  :  Proteobacteria,  Actinobacteria,  Bacteroidetes  and  Firmicutes

(Proteobacteria  being  always  enriched  compared  to  the  surrounding  soil).  Such  a  taxonomic

signature is ubiquitous, indicating the robustness of the forces behind root microbiota composition

(Hacquard,  2016).  In  contrast,  leaf-associated  microorganisms  display  more  compositional  and

seasonal  variations,  being  more  subject  to  stochastic  processes  (Maignien  et  al.,  2014;

Vandenkoornhuyse et al., 2015). Also, seeds ecology has its importance into the acquisition of a

plant’s  microbiota  (Nelson,  2018). Root  and  leaves  compartments  harbor  shared  ‘systemic’

microorganisms including bacteria and fungi (Vandenkoornhuyse et al., 2015). The composition of

the  plant  microbiome  depends  on  various  factors,  whose  effect  size  vary  according  to  the

compartments  (rhizosphere,  endosphere,  phyllosphere)  and  the  microorganisms  taxa :  soil

properties, land use, host genotype and functional profile (Schöps et al., 2018; Wu et al., 2018).

As for the animal microbiota, the plant microbiota displays important functions  to the host, from

an  enhanced  nutrition  to  resistance  to  various  stresses  as  drought,  heat,  or  salinity  (figure  6)

(Hacquard et al., 2015; Orozco-Mosqueda et al., 2018). Regarding plant nutrition, mycorrhizas, a

symbiosis that ‘help to feed the world’ (Marx, 2004) represent arguably the most frequent symbiosis

on earth (Smith and Read, 2008), i.e. a symbiosis formed with ~90% of the land plants whatever the

ecosystem considered. Conditioned mutual exchanges of mineral nutrients and water from a fungi

to the plant, in exchange of photosynthesis-derived organic compounds have allowed the stability of

this  key  symbiosis  since  more  than  400  millions  of  years  (Kiers  et  al.,  2011).  Bacteria  also
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participate  in  plant  nutrition.  The  most  representative  examples  are  symbiotic  nitrogen-fixing

bacteria in leguminous plants. For instance, various Pseudomonas, Bacillus, Azotobacter, Serratia,

Azospirillum are capable of improving nutrient availability in soil, plant nutrient uptake, as well as

being involved in nitrogen cycling. Regarding plants defense, Trichoderma may activate a state of

alert  in  the  plant,  inducing  a  response  to  pathogen  attack,  which  eventually  anticipates  the

establishment  of  an acquired  resistance  (Woo and Pepe,  2018).  Another  example is  the  fungus

Claviceps purpurea which, despite having  a pathogenic behavior, produces alkaloids that are toxic

to mammalian species, reducing herbivory of the host plant (Hardoim et al., 2015).

Plants being immobile organisms, unable to migrate to avoid environmental stresses, these host-

microbe interactions become even more important. Thus, given the complex microbial consortia

and its impact on plants growth and productivity,  and the dependency of plants to their microbiota,

plants cannot be considered as standalone entities anymore (Vandenkoornhuyse et al., 2015). They

are rather defined as holobionts, that is to say a host and its numerous microorganisms associates, in

which  all  organisms  are  interacting  to  maintain  the  stability  of  the  system  (box  3)

(Vandenkoornhuyse et al., 2015).

To make it short, the plant microbiome impacts the host phenotype and fitness (i.e. its success to

survive  and  reproduce).  The  fitness  measurement  of  the  microbiota  components  is  possible,

however  measuring plant  fitness of the plant  alone is  much more difficult,  because this  would

require  axenic  growth  and  therefore  a  disconnection  from  most  of  the  environmental  factors.

Measures of plant fitness consequently include in general both the endosphere and ectosphere, and

match in fact to the fitness of the plant holobiont (Vandenkoornhuyse et al., 2015).

Deciphering the mechanisms underlying the structure and dynamics of the plant microbiome is

crucial  to  go  towards  a  sustainable  agriculture.  Indeed,  maximizing  the  functions  of  plant

microbiotas, or designing core microbiotas, either gathering all functions or enhancing particular

functions, destined to be inoculated are promising ways to counter emerging pathogens, climate

change, and  make pesticides and fertilizers obsolete (Duhamel and Vandenkoornhuyse, 2013; Toju

et al., 2018)..
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Figure 6:  A summary of the benefits brought by the plant microbiota to its
host : enhanced nutrition, stress and pathogen resistance (from Toju et al.
2018, used with authorization).

Box 3 : The holobiont and the hologenome

The  holobiont  is  the  animal  or  plant  with  all  of  its  associated  microorganisms,  and  the

hologenome is the sum of the genetic information of the host and its microbiota (figure 7) (Zilber-

Rosenberg and Rosenberg, 2008). The hologenome theory of evolution considers the holobiont as

a  single  entity,  in  which  a  majority  of  the  genetic  information  and  variability  is  brought  by

microorganisms.  Animals  and  plants  alone  are  then  not  considered  as  autonomous  entities

(Bordenstein and Theis, 2015). The theory was raised from empirical data. First, all animals and

plants have symbiotic relationships with microorganisms. Second, part of the symbionts can be

transmitted between generations, vertically or pseudo-vertically. Third, the holobiont’s fitness is

affected  by these  associations.  Finally,  the  genetic  variation  encoded  in  the  holobiont  can  be

modulated and change according to environmental conditions faster that the host alone  (Zilber-

Rosenberg and Rosenberg,  2008).  Highlighting the role  of microorganisms in their  host’s  life,

these data questioned the role of microbes in the evolution of their host, leading to the hologenome

theory  of  evolution,  a  recent  eco-evolutionary  framework.  Its  conceptual  and  evidence-based

foundation are expected to serve as a road map for hypothesis-driven, experimentally validated

research on holobionts and their hologenomes, by catalyzing the fusion of biology's sub-disciplines

(Theis et al., 2016).

Although  coevolution  is  at  stake,  it  is  not  the  sole  feature  of  the  hologenome,  and  the
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hologenome do not arise by cooperation only. All evolution drivers and ecological interactions are

involved (Bordenstein and Theis, 2015), and the rules of evolutionary biology are compatible with

the holobiont, which are shaped by selection and neutrality. Thus, microbial genomes encode traits

which can either be damaging, beneficial, or neutral to the holobiont. A frequent misconception is

to assimilate the holobionts as an organ, a superorganism, or a metagenome (Theis et al., 2016).

They are neither of that. An organ is composed of similar cells from the same genome, performing

specific functions. Superorganisms are used in a context of multiple individuals from the same

species, such as ants, bees, or termites colonies. Metagenome refers also to the sum of genetic

information in a sample, but does not incorporate the symbiotic aspect of the holobiont (Theis et

al., 2016).

Figure 7: Holobionts are entities composed of the host and all of its symbiotic microbes, whether they
have or have not co-evolved with the host. (from Theis et al. 2016, used with authorization).

1.3.3 Microbiome functional diversity and  redundancy, core microbiome

Clustered organisms display “core” and “flexible” genomes, which are respectively common to

all organisms and organism-specific. Core genomes tend to perform central functions, such as DNA

replication or protein synthesis while flexible genomes encode generally accessory functions such

as  transport  reactions,  and  are  suspected  to  control  important  aspects  in  the  definition,

diversification and overlap of species’ ecological niches (Fuhrman, 2009; Curiel Yuste et al., 2014).

Consequently, microbial communities display both a functional diversity and redundancy, which

has its importance in how the community is structured. Functional aspects have to be considered

when designing core microbiotas or microbial factories, respectively in order to mimic the functions
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of a whole community with a reduced pool of species, or to optimize a biological process (Toju et

al., 2018). Redundant functions will be likely to allow broader species choices, while specific ones

will likely be more restrictive. In addition, functions taken alone are not enough : since a species

might  be  influenced  by  another,  ecological  interactions  between  microbes  must  be  taken  into

account, which implies to dive into the study of microbiomes’ assembly rules.
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Figure 8: The processes that produce assembly rules
in plant communities and the scales at which they are
most  influential.  A  global  species  pool  defines  a
regional  species  pool  through speciation,  extinction
and migration of species (phylogeographic assembly).
The  regional  species  pool  defines  a  local  site  with
species  that  are  able  to  disperse  there  (dispersal
assembly).  Habitat  filtering  and  biotic  interactions
define the actual community from the local pool (after
Götzenberger et al., 2012, modified).
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2. Microbiomes’ assembly rules

Outlines:

This second part deals with the rules and processes governing the assembly of communities. An

overview of deterministic and stochastic processes is provided, as well as an overview of abiotic

factors  at  play,  followed by biotic  factors,  i.e.  host-microbe and microbe-microbe interactions.

Metabolic dependencies between microbes are then more deeply detailed.

2.1 Processes behind communities assembly

A community  is  defined  as  a  group  of  organisms  representing  multiple  species  living  in  a

specified place and time (Vellend, 2010). Community ecology is the discipline seeking to analyze

how biological assemblages are structured (which species and their abundances), what are their

functional interactions and how community structure changes in space and time (Konopka, 2009).

Understanding how communities  assemble  has  been a  central  question  since  the  early days  of

ecology,  and  the  term  “assembly  rule”  was  introduced  by  Diamond  (1975),  who  identified

forbidden combinations of species among fruit-eating birds in New Guinea. Assembly rules was

then defined as any ecological process selecting for or against a species from the regional species

pool, thus defining the local community composition (Götzenberger et al., 2012). In some ways,

microbial communities differ from macro-organisms communities, because these processes can act

a bit differently (box 4) but in every  case however, mechanisms underlying communities patterns

are numerous and sorted in four distinct processes (Vellend, 2010):

• Drift, random changes in species abundances (i.e. births, deaths, offspring production).

• Dispersal, the movement of organisms across space, leading to migration.

• Speciation, the creation of new species (relying on mutation)

• Selection,  a  deterministic  process  where  the  most  adapted  species  /  individuals  can

survive, reproduce, and spread whereas the others decline.

Figure 8 displays how these processes articulate together to shape, as an example, the structure

of a community of plants. Speciation and dispersal are the two forces which bring new organisms

into communities, and drift and selection are the one affecting changes in the presence, absence, and

abundance of species  (Nemergut et  al.,  2013).  Correlated to spatial  distance (and connectivity),

selection  and  drift  increase  dissimilarity  between  communities  while  dispersal  decreases  it.
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Speciation (mutations) increases dissimilarity regardless of spatial distance  (Hanson et al., 2012).

Communities patterns are various (Vellend, 2010):

• Species-area relationships

• Abundances and relative abundances

• Composition-environment relationships

• latitudinal gradients

• Distance-decay of similarity

• Diversity-productivity relationships

• Diversity-disturbance relationships

On the first hand, communities are then driven by stochastic factors. Indeed, drift, speciation and

dispersal all rely on random (n.b. : by random, we mean observable but not predictable) events, and

on the other hand, by deterministic processes gathered under the term “selection”, because all these

processes  imply a  response  of  an organism/species  to  environmental  abiotic  and biotic  factors.

Abiotic  factors  can  be  environmental,  like  pH,  temperature,  humidity,  nutrients  availability

(Nemergut et al., 2013). Biotic factors gather a wide set of ecological interactions between species,

each with different outcomes (beneficial/neutral/detrimental, box 6) for each species.

Figure 9: Typical rank-abundance plot followed by most samples of microbial communities. A few abundant species
dominate the community, and most species coexist in low abundances (after Nemergut et al. 2013, modified).
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Box 4 : the specificity of microbial community ecology

Despite many common principles, microbial community ecology differs in several ways from

classical community ecology (even if some macro-organisms can display some of the following

traits)  (Nemergut  et  al.,  2013).  First,  the  species  scale  is  not  always  available.  For  example,

bacterial strains can be isolated thanks to the identification of different phenotypes, or species can

be differentiated by fixing a threshold of similarity in their 16S RNA (Rosselló-Mora and Amann,

2001).  Second,  most  microbes have no or weak active dispersal  activity :  dispersal  is  mainly

passive, through wind, water, or “hitchhiking” on moving macro-organisms. Paradoxically, this

gives microbes a much higher dispersal potential than macro-organisms, without an expense of

energy  (Martiny et  al.,  2006). Third,  many microbes have dormancy capacities in response to

environmental stresses (Martiny et al., 2006). Microbes also have a short generation time and have

rapid evolutionary capacities able to mask interactions  (Yoshida et al., 2007), and can exchange

genetic material  (Ochman, Howard et al., 2000). Fourth, spatial and temporal structure are more

complex in microbial communities; for example, because a microbial community can occupy a

very tiny spatial scale, even only one gram of soil samples will capture all variations of multiple

factors, making it difficult to discover and explain assembly patterns. All together, these traits can

lead to ecological responses unique to microbial communities. Last, microbial communities tend to

be more phylogenetically structured than expected by chance, containing groups of closely related

taxa (however a few communities exhibit the opposite pattern) (Nemergut et al., 2013).

Species abundances of microbial communities usually follow a power law distribution, with a

few extremely abundant species followed by numerous species of low and very low abundance

(figure 9, Lennon and Jones, 2011). In the meantime, abundant species in a given sample are also

highly prevalent in others samples from a similar environment (Nemergut et al., 2011).

29



Chapter 1 – General introduction – Part I

2.1.1 The relative importance of deterministic and stochastic events

The relative contribution of stochastic and deterministic events is not clearly known, particularly

for  microbial  communities  (Morrison-Whittle  and Goddard,  2015).  Extreme views exist  on the

subject, from Hubbell’s theory to authors like Clark (Clark, 2009), for which stochasticity is only an

attribute  of  models,  artifacts  of  unknown  or  left-aside  processes.  Mostly,  it  is  admitted  that

deterministic and stochastic processes combine to generate coexistence, with a primacy of selection,

neutral  processes  being  mostly  underlying.  The  contribution  of  each  process  can  also  vary

depending on time and spatial scales (Morrison-Whittle and Goddard, 2015; Zhou and Ning, 2017).

However,  it  has  to  be mentioned that  the  effect  of  stochasticity is  in  general  more  difficult  to

measure because of a recurrent bias, which is sampling across environmental gradients or habitat

types.  This  sampling  emphasizes  the  strength  of  environmental  selection,  and  therefore  may

artificially minimize the effect of drift (Hanson et al., 2012).

2.2 The niche theory, habitat filtering, and the neutral theory

The niche theory assumes that deterministic factors, both abiotic (pH, temperature, salinity…)

and biotic (species traits, ecological interactions) shape community structure. It implies that species

differ in their niche, the niche being a set of biotic and abiotic conditions defining the volume in

which the species can persist (figure 10) (a more precise definition is in box 5). The idea that two

species coexisting in  the same place must occupy different  niches,  already present  in Darwin’s

work, and Hutchinson formalized the concept (Pocheville, 2015). A distinction is made between the
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Figure 10:  Illustration of  how overlapping niches between species  are avoided. In (A),  two species have partially
overlapping fundamental niches for a given resource, which leads to competition. The weakest  competitor sees its
fundamental niche reduced on a smaller range of the usable resource (realized niche). By natural selection, such cases
can lead to niche differentiation, where the two fundamental niches would be clearly distinct. In (B), the two species
have a complete niche overlap : the weakest competitor cannot avoid extinction because of competitive exclusion.
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fundamental niche, i.e. the maximal, theoretical volume where a species can survive indefinitely ,

and  the  realized  niche,  i.e.  a  reduced  volume,  limited  because  of  interactions  with  present

competitors, where the species actually survives. Various frameworks exist under this theory, such

as niche differentiation, which implies microbial communities less phylogenetically clustered than

expected by chance, and habitat filtering, which relies on the opposite statement.

Niche  differentiation  (or  niche  segregation/partitioning/separation)  is  the  process  in  which

competing species  use the environment  differently to  coexist,  despite  having similar  ecological

niches. Indeed, according to the competitive exclusion principle, two species with identical niches

cannot  coexist  because  of  competition,  leading  one  of  them to  exclusion.  Differentiating  their

respective niche, such as occupying different spaces or consuming different foods  (Caldwell and

Vitt,  1999; Brochet et  al.,  2021),  facilitate their  coexistence.  Other species differentiate in their

competitive abilities based on varying environmental conditions : for example, some might be more

efficient in dry season while others perform better in rainy seasons,  such as plants in the Sonoran

Desert (Angert et al., 2009). Another kind of partition can be caused by predators by maintenance of

low enough densities of competing species (Grover, 1994). Niche differentiation is then a shift from

potential to realized niche, which may cause evolutionary changes afterwards. Niche differentiation

has been widely used to explain community patterns both in field and experimental studies, mostly

on relatively small scales. Indeed, neutral processes are believed to be of a greater importance at

very  large  scales,  but  niche  differentiation  might  still  be  at  play  (Tang  and  Zhou,  2011).  An

examples of field study is by  (Kang et al., 2020), where niche differentiation caused by grazing

implied various responses from species. For experimental examples, mixtures of several plants led

to  relative  differences  of  height  and  leaf  surface  between  species  compared  to  monocultures

(Zuppinger-Dingley et al., 2014). Closer to microorganisms,  (Burson et al., 2019) experimentally

highlighted the coexistence of phytoplankton species thanks to differential use of the underwater

light spectrum, which can result from niche partitioning.

Habitat  filtering works as the opposite by selecting the ecological traits  that confer the best

tolerance  to  a  site,  leading  to  a  convergence  in  traits  distributions  among  species  (no

differentiation).  Such process  might  lead  to  competition  between species,  however  competition

might in return also lead to trait convergence, because only strongly competitive and ecologically

equivalent species would remain (Zhang et al., 2017). It is in general hard to predict who between

niche  differentiation  or  habitat  filtering  shapes  a  community.  However,  we dispose  of  hints  on

spatial and temporal scales. For example, the study of spatial distribution of functional traits in
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plants highlighted an higher effect of habitat filtering at small  spatial scales, during early plant

succession  (Ulrich et al., 2017). Habitat filtering is likely to determine the niche occupancy, thus

community structure of many plants communities worldwide, as demonstrated by (Li et al., 2018).

Concerning  microbial  communities,  (Yang  et  al.,  2019) supposed  habitat  filtering  in  Chinese

grassland  in  reason  of  numerous  unique  OTUs  in  different  habitats,  interpreted  as  habitats

specialists.

In opposition to the niche theory,  Hubell’s neutral theory of biodiversity is a null hypothesis

assuming  that  all  species  are  ecologically  equivalent  and  have  equal  rates  of  birth,  death,

immigration, emigration. A community’s structure is then independent of species traits and only

determined by stochastic processes (drift, dispersal, speciation) (Vellend et al., 2014). Both neutral

and niche theories managed to explain community structure, depending on which pattern, time and

spatial scales were considered.
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Box 5 : An history of ecological niche theory (Pocheville, 2015)

Niche is  a core concept  in ecology and has been widely used to explain the assembly and

coexistence of communities. It is roughly the description of a species’s ecology. Grinnell (1917)

first described the niche as every factor (abiotic or biotic) conditioning the existence of a species at

a given location. Those can be for instance  temperature, humidity, food, competitors, predators.

Grinnell then got interested in ecologically equivalent organisms which are driven to occupy the

same niche in  different  locations  because of  evolutionary convergence.  Ecological  equivalents

brought  Elton  (1927)  to  define  the  niche  as  the  position  in  trophic  chains  prior  to  habitat

parameters. 

In 1957, Posterior to the principle of competitive exclusion, Hutchinson formalized the niche as

an attribute of species instead of the environment. Niche was then not the “niche occupied by a

species” but the “niche of that species”, and was described as a space of multiple environmental

variables,  representing  the  limits  of  species  viability,  and  delimiting  the  formed  area  as  the

fundamental niche. In contrast, the niche actually occupied, smaller because of restrictions caused

by competitors, was named the realized niche. The Hutchinson shift is considered as a major step

and was the start of quantification and predictive theories.

In 1960, Mac Arthur and Levins extended Hutchinson’s approach with the concept of resource

utilization distribution. Niche was then equivalent to the frequency of utilization of a resource by a

population. Resources can either belong to food, space, or time variables. The vision of the niche

furnished easy to measure items and got dramatically used, in what is known today as the niche 

theory,  which essentially dealt with competition.  It built the basis to study assembly rules and

coexistence of communities, with models mostly based on Lotka-Volterra’s equations. 

The 1980 were a backslash, because research could converge towards a usable theory. Niche

theory’s validity started to  be questioned by Simberloff,  Strong, and others.  Meanwhile,  other

factors such as environmental stresses, predation, or mutualism started to get a better consideration

in the study of community assembly.

An ultimate revision was brought by Leibold and Chase, who defined the niche as the union of

responses of an organism to various factors, as well as the organism’s impact on factors. A typical

example is a species in need of a resource in a given quantity,  but its consumption depletes the

resource in a proportional way. The rate of the resource renewal is then a major component. 
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2.3 Factors and events affecting microbial communities

2.3.1 External or abiotic factors

Various processes can affect a microbial community structure. Among them, wind dispersal and

deposit  (via  aerosols  and currents),  as  well  as rain,  are  known to be relevant  vectors  affecting

microbial communities, with a capacity to connect different microbial ecosystems at a local scale.

Microbes are however deferentially dispersed due to their life-strategies and morphological features

(Womack et al., 2010; Griggs et al., 2021). As previously mentioned, physio-chemical properties of

the biotope are determinant : climate, nutrients availability, pH, humidity, temperature (Zogg et al.,

1997; Carrero-Colón et al., 2006; Drenovsky et al., 2010; Meron et al., 2012; Mello et al., 2016;

Zhou et al., 2018; Chai et al., 2019; Cui et al., 2021). Landscape features, connectivity to other

microbial  sources, vectoring by animal hosts, neighboring plants and animals, are also multiple

environmental factors shaping microbiota composition (Hacquard, 2016; Griggs et al., 2021).

Stochastic events such as the order of arrival (also called assembly history or priority effects) of

microbial  species  in  the  system  may  also  be  at  play.  For  example,  manipulation  of  early

immigration  history  in  wood  decomposer  communities  revealed  differences  in  fungal  species

richness  and  composition  (resulting  in  different  carbon dynamics),  most  likely associated  with

different magnitudes in species interactions (Fukami et al., 2010). Echoing these results, Diamond

(1975) observed that community composition varied among sites which seemed similar in several

ways,  thus  suggesting  that  assembly  history  could  lead  to  multiple  stable  equilibria.  A single

equilibrium is  more  likely to  be  reached  in  systems  which  have  a  small  species  pool,  a  high

connectivity, a low productivity and frequent disturbances. Multiple equilibria are more likely to

exist in the opposite scheme (Chase, 2003). The same microbe might then have facilities or trouble

to  establish  in  a  system  according  to  its  timing  of  arrival,  which  echoes  the  barrier  against

pathogens offered by a microbiota to its host, a supplemental filter after host selection.

2.3.2 Selection by the host

2.3.2.1 Vertical transmission
In plants, microbes associated with the embryo and endosperm are more likely to be transmitted

vertically than those associated with the seed coat. Despite the existence of a large cohort of studies,

knowledge of implied mechanisms is scarce (Vandenkoornhuyse et al., 2015). Limits are similar in

humans where, despite a lack of evidence in humans, there is support for vertical transfer (from

mother to offspring) in animal models, but the colonization mechanisms are unclear (Walker et al.,

2017).
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2.3.2.2 Horizontal transmission and pseudo-vertical transmission
In  plants,  root  colonization  by  soil  microbes  is  in  part  deterministic  and  a  host-controlled

process. Bulk soil constitutes a reservoir of microbes in which variations in root morphology and

exudates  allow  plants  to  actively  recruit  their  rhizosphere  microbiota  in  the  surrounding  soil

(Bulgarelli  et  al.,  2013;  Griggs  et  al.,  2021).  The  process  of  recruitment  lead  to  a  significant

reduction in microbial diversity from soil to rhizosphere and endosphere, and is influenced by plant

age, which exert a continuous selective pressure over time (Griggs et al., 2021). Furthermore, the

colonization  of  the  internal  compartments  of  the  plant  could  be  an  attractive  goal  because  of

reduced competition to reduced microbial diversity (Hartmann et al., 2009). The effect of host plant

is not limited to the roots but extend to other compartments, which exert distinct selective pressure.

Indeed,  compartments of cultivated agaves were found to have a convergent microbiota’s structure,

independent to spatial distance (up to 2000km) (Coleman-Derr et al., 2016). Plants emit from their

roots a large variety and quantities of organic exudates (carbohydrates, carboxylic acids, phenolic

amino acids) and inorganic ions, according to plant physiological and developmental stage. These

exudates have the capacity to condition the rhizospheric environment and therefore the rhizospheric

microbial community composition. Furthermore, inhibitory (antimicrobial) or stimulatory (sugars)

exudates modulate selective pressure  (Hartmann et al., 2009). Because most of the seeds fall and

germinate close to the mother plant, the plantlets come in contact with similar microorganisms than

the mother. Thus associated to this short term seed dispersion has been hypothesized this pseudo-

vertical transmission (Wilkinson and Sherratt, 2001).

The gut microbiota is known to be colonized during early life, although much more research has

been conducted on bacteria than on archaea and eukaryotes. The initial microbiome colonization is

crucial for the development of individuals. At birth, a subset of the maternal microbiota is supposed

to be transferred, here again a pseudo-vertical transmission of microorganisms from the mother to

the  baby.  Within  a  year  (for  humans),  significant  shifts  in  composition  and  abundances  were

highlighted, with strong fluctuations of the microeukaryotic community, as well as a diversification

delay caused by cesarean-section and formula milk (Wampach et al., 2017).

2.3.3 Microbe-microbe interactions

2.3.3.1 An overview of ecological interactions
In comparison to abiotic factors, much less is known about how microbial interactions shape

microbial communities (Nemergut et al., 2013). Determining how species interact is challenging :

in situ, the observed behavior of a species is the integration of all its interactions with the other

community members. Disentangling the nature of individual interactions is then hard. In addition,
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when  it  comes  to  microbes,  particularly  host-associated  ones,  it  becomes  difficult  to  directly

observe the community in situ (Logan et al., 2018). Ecological interactions between microbes are

wide  and  range  from  mutualistic  exchange  of  metabolic  products  to  antagonistic  secretion  of

antibiotics and direct predation (Coyte and Rakoff-Nahoum, 2019; Pacheco and Segrè, 2019).

The  simplest  form  of  an  interaction  is  pairwised  (two  participants  only)  and  is  classified

according to its outcome, which ranges from positive for both (mutualism, noted +/+) to negative

for both (competition, -/-). Various outcomes lie in between, with combinations of positive, neutral,

or negative outcomes such as ammensalism (-/0) or commensalism (+/0) (Figure 11, box 6, (Zélé et

al.,  2018).  However,  microbe-microbe  interactions  are  far  from  being  limited  to  pairwise-

associations. Microbial communities incorporate numerous species of a high taxonomic diversity,

characterized by a dense network of high-order (i.e. more than two species) interactions. It is also

argued that ecological interactions is somehow incomplete and miss various and crucial nuances,

and a enhancement of this framework is needed, including not only ecological outcome, but various

attributes  which are specificity,  cost,  contact  dependencies,  spatial  and time dependencies,  site,

habitat, and compounds involved (Pacheco and Segrè, 2019).

Figure 11: Ecological interactions and their outcomes for pairwised-species
(+: beneficial, -: detrimental, 0: neutral). (after Zélé, Magalhães, Kéfi, &
Duncan 2018, modified).
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Box 6 : Ecological interactions (Coyte and Rakoff-Nahoum, 2019)

Competition  occurs  when  species  fight  over  a  common  and  not  sufficient  resource(s)  (of

almost every conceivable kind), resulting in a negative outcome (-/-) for both. When a species is a

stronger competitor then the other, the competition is defined as asymmetric. Depending on the

intensity of the niches overlap, the weakest competitor disappears or adapts its realized niche to

avoid  competition  (already  mentioned  on  figure  10).  Competition  can  either  be  indirect,  for

example via resource consumption (exploitative competition), or direct (interference competition),

via fighting or secreting toxins, such as the type IV secretion systems in microbes.

Ammensalism is  when  one  species  has  a  behavior  impacting  negatively  another  species,

without  being  affected  in  return  (0/-).  Ammensalism  is  often  assimilated  to  asymmetric

competition with a strong competitor, a typical example being the aforementioned toxin secretion

capacities of some organisms (such as Penicillium secreting the well-known antibiotic, penicillin).

Predation is the action of predator consuming a prey, resulting in an asymmetric +/- outcome.

For example, the bacteria Bdellovibrio bacteriovorus feeds on other bacteria.

Parasitism has a similar outcome to predation (+/-), but the parasite does not kill its host in

order  to  feed  itself.  Instead,  it  might  for  example  multiply  inside  it,  like  bacteriophages  in

bacteria. Depending on the parasite ecology, the host might be kept alive or killed after some time. 

Mutualism (or  cooperation)  involves  species  supporting  each  other,  resulting  in  positive

outcomes  for  both  (+/+).  Most  well-known  mutualism  cases  involve  organisms  with  widely

different living requirements : plants and pollinators, plants and nitrogen-fixing microbes, lichens,

corals… Cooperation is often costly, but mandatory to the species survival; returned benefits must

then be higher than the costs to be evolutionary stable.

Commensalism is  a  situation  where  one  species  derives  a  benefit  from  another  without

affecting it in return. The outcome is then positive end neutral  (+/0). 

In  the  microbiome,  metabolic  dependencies  (also  often  referred  under  the  broader  term

“metabolic  interactions”)  are  typically  mutualistic  and  commensal  i.e.  bidirectional  or

unidirectional). They involve species growing on the exudates of another. Such interactions are

called cross-feeding or syntrophies, and terms are often confused and used similarly. However, a

clear classification has to be made and is described in section 2.3.3.5.
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2.3.3.2 Time and spatial patterns affect existence, magnitude, and outcomes of ecological 
interactions

Interactions between organisms also depend on various attributes, space and time being among

the most important. They must be taken into account to get more precise insights of an interactions,

because  they  can  involve  unexpected  mechanisms  regarding  the  outcome  (Pacheco  and Segrè,

2019).

Time-dependent  sharing  of  compounds  or  toxin  secretion  is  known  to  modulate  microbial

interactions. For example, (Kelsic et al., 2015) modeled the coexistence of four antibiotic secreting

and degrading bacteria to show how four organisms with varying degrees of antibiotic production.

They could stably coexist in various temporal modes (stable equilibrium, limit cycles, or chaotic

oscillations) without spatial separation (figure 12C).

Regarding  space  in  the  case  of  metabolic  interactions,  There  are  evidence  suggesting  its

importance,  despite  relatively  unknown  mechanisms  (Borer  et  al.,  2020).  The  confinement  of

bacterial cells and their limited relocation capacities makes space critical for numerous processes

(access to nutrients, metabolites exchanges, protection from pathogens or predators) (Stewart, 2003;

Borer et al., 2018; Testa et al., 2019). Single species biofilms can engage cross-feeding between

spatially  distinct  sub-populations,  but  cross-feeding  interactions  where  one  species  depends  on

nutrients  provided  by  surrounding  other  species  imply  a  close  proximity  of  partners.  Such

interaction leaves a signature in spatial organization of the assemblage (Dong and Fisher, 2019).

Species intermixing can also be strongly influenced by antimicrobial activities rather than cross-

feeding interactions (figure 12B). Examples of such interactions involving the nuances brought by

space  coupled  with  antimicrobial  activities  can  be  mentioned.  First,  Aggregatibacter

actinomycetemcomitans  (Aa)  and  Streptococcus gordonii  (Sg)  are  bacteria  from the human oral

cavity.  Sg produces lactate, which is  Aa preferred carbon source, but also secretes toxic hydrogen

peroxide.  Aa  adapts then its dispersion at an optimal distance where it can assimilate lactate and

detoxify  hydrogen  peroxide.  Thus,  spatial  configuration  results  in  a  beneficial  relation  for  Aa

despite a clear antagonistic action from Sg (Stacy et al., 2014). In a second experiment, E. coli were

exposed to a Streptomyces strain producing antibiotics. In a two species culture, the E. coli colonies

grew  outside  the  radius  formed  by  this  antagonistic  strain  but  the  addition  of  an  antibiotic-

degrading Streptomyces within the killing radius allowed them to grow in an area around this 3rd

strain (figure 12A) (Kelsic et al., 2015).
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Figure 12: Illustration of the effects of space and time on microbial interactions. (A) An antibiotic-degrading bacteria
can protect another bacteria from a 3rd bacteria’s antibiotic secretions. (B) A three-species system with antibiotics
secretion and degradation activities (right) display more spatial heterogeneity than a system with antibiotics secretion
only (left). Such systems are also more durable in time. (C) Possible time patterns (abundances of four species) of a
system with antibiotics secretion (from Kelsic et al. 2015, used with authorization).

Finally,  microbes’ spatial  distribution  and  co-occurrences  must  be  taken  into  account  when

looking for interactions. Most often, interactions are not known, but co-occurrences can be carried

out from samples, and be used to select or discard putative interactions for further hypothesis testing

and modeling. In the gut microbiota, some microbes were found to be differentially distributed in

space (Welch et al., 2017). Such differences may weaken interactions by preventing the encounter

of microbes. Moreover, in a spatially limited environment strong competition for space may bypass

any cooperative effects (Coyte et al., 2015). This was highlighted in (Levy and Borenstein, 2013):

putative interaction pairs were classified based on the co-occurrences of species. Microbes were on

average more competitive against  species with whom they commonly co-occurred compared to

species with which they rarely associated, which might be a signature of habitat filtering, putting

competition as a major driver of the microbial community.

2.3.3.3 Interactions existence, magnitude and outcome are environment-dependent

Interactions are environment-dependent  (Pacheco and Segrè, 2019), a fact which is especially

problematic  when  studying  uncultivable  organisms  or  when  designing  synthetic  microbial

communities. Indeed, some members may have metabolic dependencies that must be taken into

account, or could be competing for the same nutrient. Other interactions might work differently

according to the surrounding environment. Environmental factors are various, such as host species.
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For instance, according to the host plant species, several bacterial taxa responded differently to the

antagonistic activity of Streptomyces (Bakker et al., 2014).

An important environmental condition is the growth media which,  according to its  available

nutrients, drives which compounds will be directly available and competed for. However they drive

which  compounds  will  be  producible  via  microbes  metabolism,  later  excreted  and initiators  of

metabolic interactions  (Heinken and Thiele, 2015; Magnúsdóttir et al., 2017). For example, when

nutrients are limited, starved microbes compensate by engaging in behaviors that facilitate nutrient

acquisition, notably by excreting molecules promoting cross-feeding (Fritts et al., 2021).

Interactions  between  organisms  can  dramatically  change  according  to  the  environment,  as

demonstrated in (Zuñiga et al., 2019): the availability of nutrients (notably nitrogen) influenced the

community stability by shifting members from cooperating (low nitrogen) with various metabolic

exchanges to competing (high nitrogen). Environment-dependent metabolic interactions are more

deeply  discussed  in  chapter  2,  regarding  available  nutrients,  activatable  metabolism,  and

compensatory metabolic interactions. In recent years, research accumulated evidences of metabolic

interactions  (also  called  metabolic  dependencies)  and  started  to  question  the  importance  of

competition as a main driver of microbial communities (Pacheco and Segrè, 2019).2.3.3.4 A wide

set of methods to study microbial interactions

Metabolic  interactions  are  far  from  being  easy  to  decipher  among  a  complex  network  of

interacting  microbes.  There  are  various  methods  to  find  and  quantify  ecological  interactions

underlying the structure and dynamics of a microbiome. They range from  in vivo analysis, with

microbial abundances and co-occurrences obtained by specific DNA sequencing and quantifying, to

in  silico modelling  of  microbes  metabolism  or  growth  rates  within  time  and  environmental

conditions.  In silico methods have been intensively used for many advantages (data abundance,

reduced costs…), under more and more system-biology-oriented approaches. Nevertheless, most of

these methods are still vulnerable to mistakes via unmeasured external factors. Therefore, they are

most often treated as hypothesis generators, from which the strongest predictions should be tested

experimentally (Coyte and Rakoff-Nahoum, 2019).
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3. Data and methods in Microbial ecology

Outlines :

Microbial ecology gained much more analysis power with the rise of all -omics technologies and

their use in experimental and modelling approaches. In this short section, we give the basics of

omics data, in order to properly introduce the second part of this general introduction, focused on

metabolic  cross-feeding  and  microbial  system  ecology  (a  system  biology  extension)  used  to

disentangle metabolic interactions.

3.1 The -omics revolution

Microscopic  observations  and  in  vitro isolation  were  for  long  the  only way to  characterize

microbes. Taxonomy and classification were thus limited, relying for instance on shapes or cell wall

properties  (i.e.  gram-positive  or  gram-negative  species),  cellular  organization,  structure  formed

around  plant  roots.  Microbial  species  and  communities  profiling  made  substantial  progress

alongside advances in molecular biology and DNA sequencing, until the maturation (initiated in

2005) of mass sequencing techniques, commonly called “next-generation sequencing” or “High-

throughput DNA sequencing”  (Heather and Chain, 2016). Such techniques allowed an immense

jump  ahead  in  microbial  research,  providing  tremendous  amount  of  “-omics”  data  and  the

information  they  carry  (see  box  7 and  figure  13  from  (Noecker  et  al.,  2016),  bypassing  the

limitations  caused  by  many  uncultivable  (in  vitro)  organisms.  For  example,  “shotgun

metagenomics” is the untargeted (“shotgun”) sequencing of all (“meta”) microbial genomes in a

sample.  -Omics  data  can  be  used  to  get  the  taxonomic  profile  of  a  microbial  community,  its

functional profile  (by assigning sequences to  physiological  functions),  or simply recover  whole

genome sequences. Another standard and widely used possibility is the identification of microbial

species, thanks to genetic markers like high-throughput barcoding or 16S rRNA gene sequencing. In

this case however, many species share the same markers and cannot be distinguished; they are then

clustered in an “Operational Taxonomic Unit” (OTU), which share a fixed amount of sequence

identity.  Such abundance data can be for example used to study the dynamics of a community,

under  various  environmental  conditions  or  for  competition/mutualism experiments.  -Omics  data

also allow the reconstruction of metabolic pathways and networks, (Franzosa et al., 2015; Quince et

al., 2017).
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Box 7 : An non-exhaustive list of -omics data (Joyce and Palsson, 2006)

Genomics focus on the structure, function, evolution, mapping and editing of genomes, i.e. all

DNA of an organism. After being sequenced, genomes are assembled, meaning all the sequence

fragments are (computationally) aligned and merged in longer, contiguous sequences. Genomes

are then annotated, which is the process to attach biological information to sequences, like gene

prediction and protein-coding sequences. Annotation data are stored in various databases such as

BIGG,  AGORA,  or  MetaCyc.,  and  can  afterwards  be  used  to  annotate  other  organisms.  The

database choice matters : for example, BIGG references numerous strains of E. coli while AGORA

records more general networks, and MetaCyc keeps only curated pathways of various organisms

(Caspi  et  al.,  2008;  Jansma and Aidy,  2020).  Genomics  can  be  used  for  comparative  studies

(genome structure  across  species)  or  functional  analysis  (genes  and proteins,  often  used  with

transcriptomics).

Transcriptomics is the sequencing of all RNA in a sample. It permits building a more precise

functional  profile  of  a  community than with genomics,  capturing a  snapshot  in  time of genes

expression,  deciphering  functions  diversity,  importance,  and  distribution  among  organisms.

Transcriptomics can also reveal changes in functional activity in response to perturbations. As

DNA,  RNA can  be  sequenced  with  the  so-called  RNA-seq  technologies.  Metagenomics  and

metatranscriptomics do the same as the previous technologies, but for all species directly from a

sample instead of one cultivated/isolated species.

Proteomics rely mostly on micro-arrays and mass spectrometry-based quantification of peptide

mass  and  abundance  in  a  sample,  providing  a  more  direct  measure  of  protein  activity  than

transcriptomics. Proteomics also permits the elucidation of protein structure, the detection of post-

translational  modifications,  the discovery of new drugs for disease treatments,  or the protein's

interactions networks.

Metabolomics studies  all compounds  involved  in  cells  or  tissues  metabolism  (substrates,

intermediates,  products…),  providing  a  snapshot  of  the  physiological  state.  Exometabolomics

emphasizes metabolites which are excreted in extracellular spaces. A major challenge in biology is

currently  to  integrate  this  abundance  of  information  from  different  sources  into  synthetic

knowledge, to link the different levels of the systems (Vandenkoornhuyse et al., 2010; Franzosa et

al., 2015).
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Figure 13: Schemes of microbiome analysis (composition, dynamics, and functions) with -omics data. Each -omic type
targets different molecular levels (DNA, RNA, protein, metabolites …) and has its own use. Depending on the research
question,  -omics  data  are  preferred  to  others,  but  research  is  currently  going  towards  the  integration  of  all  the
information brought by multi-omics data (after Noecker, McNally, Eng, & Borenstein, 2016, modified).

3.2 Metabolic networks and system biology are the basis to study 
metabolic interactions

Metabolism is the set of chemical reactions taking place within an organism  (Nielsen, 2017).

Metabolism is composed of metabolic pathways (figure 14), structured as an intricate metabolic

network (figure 15). Each pathway starts with initial reactants (nutrients from the environment, or

products or byproducts of previous pathways) to produce final compounds,  further used by the

organism to maintain its balance and grow  (Shah et al.,  2021). Metabolic networks (also called

genome-scale  metabolic  models,  or  GEM)  are  reconstructed  from  genomes’  annotation,  and

incorporate all reactions, enzymes, compounds found in all recorded metabolic pathways, whether

they are complete or not. Roughly, analyzing micro-organisms metabolic networks allow to predict

their function, their homeostasis (stability and regulation), as well as their growth requirements and

the compounds they can and cannot produce, hence potentially exchange to or receive from others

under metabolic interactions processes  (Larhlimi et  al.,  2011; Watson et  al.,  2015;  Çakır  et  al.,

2020).
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In silico metabolic analysis is made possible with the use of computational and mathematical

modeling, which are the basis of system biology. In systems biology, biological entities (molecules,

cells, organisms, etc.) are seen as the connected components of networks, interacting together. The

whole complex is then referred to as the “system”, and models attempt to explain, simulate and

predict  its  behavior.  Reconstructed  metabolic  networks  are  among the  dominant  approaches  in

system  biology  (Watson  et  al.,  2015;  Nielsen,  2017).  In  recent  years,  large  volumes  of  data

generated by -omics approaches furnished sufficient quantitative data to support massively such in

silico system-based research,  mainly on model  organisms :  human,  mouse,  yeast  (Shahzad and

Loor,  2012),  or  the  brown algae  Ectocarpus  siliculosus (Tonon  et  al.,  2011).  However,  omics

approaches have methodological limits (incomplete genomes’ annotation, parameterization issues,

statistical  issues,  computational  limits  (etc.))  (Vandenkoornhuyse  et  al.,  2010) and large-scale

models and networks do not necessarily allow the desired holistic, deep understanding of biological

phenomenons but rather give emergent properties sticking to a global overview. A combinations of

top-down  and  bottom-ups  approaches  is  then  necessary,  notably  for  microbiome  engineering

(Lawson  et  al.,  2019).  Such  combinations  of  approaches  are  shared  by  many.  For  instance,

Vrancken  et  al.,  (2019) and  Vandenkoornhuyse  et  al.,  (2010) stated  getting  a  holistic  and
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Figure  14:  An  example  of  metabolic  pathway,  here  for  serine  biosynthesis  in  Saccharomyces  cerevisiae.
Chemical reactions are black arrows, reactants and products are blue squared. Involved genes are black squares
(Creative Commons figure, from wikipathways.org).
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mechanistic view of a microbiota would be extremely difficult in complex, natural communities,

which  is  however  the  purpose  of  ecology.  In  Vandenkoornhuyse  et  al.,  (2015),  the  authors

encourage the use of  system  biology and environmental -omics data with manipulation of small

microbial  communities  to  elucidate  the  interactions  involved  within  the  holobiont.  Microbial

systems  ecology is  then  defined as  the  holistic  study of  microbial  communities  using  systems

biology approaches (Muller et al., 2018), and the study of microbial communities embraces a more

systems-oriented approach, notably regarding metabolic interactions (see general introduction, part

II) (Pacheco and Segrè, 2019).
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Figure 15:  A schematic part of the metabolic network of Homo sapiens.  Each colored line represents an essential
metabolic pathway, from seed reactants to final metabolites. Some pathways can cross each other (Creative Commons
figure, Wikimedia Commons).



46



Chapter 1 – General introduction – Part I

Objectives of the PhD

Microbial  communities  have  a  great  importance  in  multiple  ecological  processes,  but  the

mechanisms underlying their structure, dynamics, and functions remain largely unknown. However

since the rise of -omics techniques, tremendous amounts of data were collected and opened multiple

research  areas  and directions.  The  early steps  of  microbial  ecology were  oriented  towards  the

development  of descriptive methods,  which allowed to decipher spatial,  time, host,  genetic  (...)

patterns, similarity and dissimilarity between and within microbial communities. Microbial ecology

still lacks a strong theoretical background but is now more and more structuring itself in order to

move towards mechanistic research. Mechanistic approaches aim to decipher the inner structure of

complex  co-associations  and  ecological  interactions  networks  of  microbes  giving  emergent

properties  to  microbial  communities.  Such  organization  goes  notably  with  the  maturation  of

microbial system ecology, which intensively use modelling of integrated -omics data, the principal

framework being a constant shift between top-down and bottom-up designs in a design-built-test-

learn cycle.

This PhD aimed to study metabolic dependencies of the root microbiota of Arabidopsis thaliana,

based on annotated genomes and reconstructed metabolic networks of 193 isolated bacteria, picked

in order to be representative of the host-plant microbiota.

A primary goal was to provide a framework and entry door to microbial system ecology, with a

mini-review (general introduction, part II, submitted to Frontiers in Microbiology) focused on an

overview of methods used to predict metabolic dependencies within microbes. The importance of

metabolic  dependencies  is  further  discussed,  as well  as  the nature of  microbial  ecology,  which

allows a crossroads between community ecology and system biology.

Then, a major work was dedicated to environment-dependent interactions (chapter 2, submitted

to Microbiome).  With a generic  ambition,  we explored with metabolic  modelling the effect  on

bacteria’s  metabolism of growth constraints  exerted by several  rich and poor growth media.  In

addition,  the effects  of the addition of artificial  root  exudates  in each medium was considered.

Metabolic  dependencies  were  studied  with  several  angles.  First  (1),  metrics  dedicated  to  find

putative metabolic dependencies were explored. Then (2), we considered the whole community and

every possible exchangeable compound, and finally (3), minimal combinations of genomes able to

produce targeted compounds (amino-acids, vitamins, and phytohormones).
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This modelling approach opened a door to an experimental approach, in the aim to confront the

previous metrics to the outcomes of bacterial co-cultures (chapter 3, draft to be submitted). Several

SynComs  of  bacteria  quadruplets  were  cultivated,  and  ecological  interactions  were  inferred

regarding the abundances of strains compared to their monoculture. In fine, competition seemed to

dominate most  Syncoms,  but some SynComs of interest  were replicated afterwards in  order  to

investigate  further  a  potential  exploitation  of  bacterial  exudates  by an  Achromobacter.  We also

identified several methodological bias that could have masked the effects of cross-feeding.

Finally, we discuss the main interpretations of these results in terms of microbiota structure and
dynamics via metabolic dependencies, the integration of these two different approaches, and on
short and long term perspectives.
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Part II. Metabolic cross-feeding with Microbial 
System Ecology to disentangle coexistence in 
microbiomes: A mini-review

In the previous  part, we detailed all the main assembly rules of microbial communities, from

abiotic  to  biotic  factors,  i.e.  ecological  interactions.  Among  them,  microbe-microbe  metabolic

dependencies are  more  and  more  thought  to  be  essential  drivers  of  microbiotas  structure  and

dynamics, unsettling the historical importance given to antagonistic interactions like competition.

Such advances in research were allowed, mostly, by the arrival of Next-Generation Sequencing and

integration of  system biology in microbiology.

In this  part,  written as a mini-review (submitted to Frontiers in Microbiology),  we first remind

the importance of metabolic dependencies within a microbial community. We then provide details

on  how System biology is  applied  to  microbiology,  in  a  framework  named  Microbial  System

Ecology.  Such framework aim to (1) reconcile modelling and experimental approach, which are

used  respectively  for  prediction  and  validation  and  (2)  conjugate  top-down  and  bottom-up

approaches, used respectively to obtain an overview (mainly descriptive) of a community leading to

more precise hypothesis, and an the other hand to get a mechanistic understanding of a particular

process.
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Abstract

Understanding how microorganism-microorganism interactions shape microbial assemblages is a

key  to  deciphering  the  evolution  of  dependencies  and  co-existence  in  complex  microbiomes.

Metabolic dependencies in cross-feeding exist in microbial communities and can at least partially

determine microbial community composition. To parry the complexity and experimental limitations

caused by the tremendous number of possible interactions, new concepts from systems biology aim

to  decipher  how  the  components  of  a  system  interact  with  each  other  to  better  connect  the

components of the system. The idea that cross-feeding does impact microbiome assemblages has

developed both theoretically and empirically, following a systems biology framework applied to

microbial systems, formalized as microbial systems ecology and relying on integrated -omics data.

This  framework  merges  cellular  and  community  scales  and  offers  new  avenues  to  untangle

microbial  coexistence  primarily  by  metabolic  modeling,  one  of  the  main  approaches  used  for

mechanistic studies. In this mini-review, we first give a concise explanation of microbial cross-

feeding. We then discuss how microbial systems ecology can enable progress in microbial research.

Finally,  we  provide  an  overview  of  a  microbial  systems  ecology  framework  mostly  based  on

genome-scale metabolic-network reconstruction that combines top-down and bottom-up approaches

to assess the molecular mechanisms of deterministic processes of microbial community assembly,

that is particularly suitable for use in synthetic biology and microbiome engineering.

1 Introduction

Deciphering  the  assembly  rules  of  microbial  communities  is  vital  for  a  mechanistic

understanding of the general principles driving microbiome activity and functions  (Vellend et al.,

2014;  Morrison-Whittle  and  Goddard,  2015).  Microbial  communities  are  governed  by  both

stochastic and deterministic factors (Vellend, 2010; Stegen et al., 2012), and recent advances show
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that deterministic processes largely contribute to shaping microbial community assembly (Ning et

al.,  2020;  Xu  et  al.,  2020).  Ecological  interactions  including  commensalism,  competition,  and

mutualism contribute to the self-organizational properties of microbiomes  (Stegen et  al.,  2013).

However, how these different interactions act in concert to shape microbial assemblages remains

poorly understood  (Nemergut et al., 2013). Microbial communities are likely not only driven by

antagonistic interactions but also by non-antagonistic symbioses, defined in 1879 by De Bary as the

“living  together  of  unlike  organisms”,  which  are  now  recognized  as  central  drivers  of

(co-)evolution. Symbiosis is often associated with obligate mutualism but is actually a continuum of

interactions  between mutualism and parasitism  (Ewald,  1987;  Drew et  al.,  2021),  all  implying

dependency of one organism on another (figure 1A) (Raina et al., 2018). Among these interactions,

metabolic dependencies by cross-feeding likely explain patterns in microbial communities, which

can be seen as an intricate community of symbionts (Mas et al., 2016; Zomorrodi and Segrè, 2017;

Amor and Bello, 2019; Coyte and Rakoff-Nahoum, 2019; Pacheco and Segrè, 2019; Seif et al.,

2020; Zhu et al., 2020). Indeed, in community ecology, competition and related Gause’s competitive

exclusion were previously considered to be the main drivers of community assembly but this role

was questioned by observation of the unexpectedly complex microbial communities according to

general ecology theories (Pacheco and Segrè, 2019). In parallel with other eco-evolutionary factors

like viruses, which can maintain microorganism community richness according to, for instance, the

‘killing the winner hypothesis’ (Winter et al., 2010), cross-feeding is increasingly believed to play

an important role in the complexity of microorganism communities (Zengler and Zaramela, 2018).

2 Metabolic cross-feeding as a major driver of microbiota 
assemblages

Microbial cross-feeding refers to the interaction between microorganisms in which molecules

resulting from the metabolism of one microorganism are further metabolized by another (figure

1B&E)  (Smith et  al.,  2019). Currently,  it  is not known if microbial  cross-feeding is  specific to

particular  compounds,  environmental  constraints,  or  species,  limited  to  pairs  of  interacting

organisms,  or  extended  to  several  symbionts,  or  optional  or  obligatory for  the  survival  of  the

microorganisms (Zengler and Zaramela, 2018). Also, different types of cross-feeding are recognized

depending  on  whether  they  are  unidirectional  (one  microorganism  benefits  from  another)  or

bidirectional (both microorganisms benefit from each other’s secretions) or depending on which

compounds are exchanged (figure  1B&E).   A closely associated term is  syntrophy,  which also

defines  the  consumption  of  an  organism’s  secretion  by an auxotrophic  organism  (Smith  et  al.,
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2019). The definition varies from an obligatory mutualistic metabolism  (Morris  et  al.,  2013) to

optional  (Hillesland, 2018). The compounds involved also vary,  and are sometimes restricted to

waste products  (Oliveira et al., 2014) sometimes not  (Stams and Plugge, 2009; Pande and Kost,

2017).

One example of known mutual cross-feeding is between Rhodococus ruber and Bacillus cereus.

R. ruber degrades a tetrahydrofuran, which results in acidic metabolites that are taken up by  B.

cereus, which, in return, regulates pH and secretes nutrients that are essential for R. ruber (Liu et

al.,  2019). Less  specific  cross-feeding  can  also  occur.  For  instance,  Akkermansia  muciniphila

degrades  and ferments  its  host’s  mucus,  leading to  the  production  of  oligosaccharides  that  are

available  for  other  microorganisms  (Belzer  et  al.,  2017).  A  hierarchy  in  the  importance  of

microorganisms for the microbiota stability has also been demonstrated in relation to cross-feeding

(Gutiérrez and Garrido, 2019) using a species-deletion approach in a consortium of 14 bacteria.

Cross-feeding can also enable degradation of chains of complex molecules (Vet et al., 2020).

One key process is extracellular secretion of a wide range of “public goods”, including enzymes,

proteins, byproducts, waste, co-factors, amino-acids, and vitamins. They benefit all the organisms in

the community that are able to assimilate them (Croft et al., 2005; Yu et al., 2009; Seth and Taga,

2014; Rodionova et al.,  2015; Cavaliere et al.,  2017; Zengler and Zaramela, 2018; Fritts et al.,

2021). Many microorganisms are auxotrophic for various metabolites, lack essential pathways or

genes, and thus rely on extracellular sources  (Mee et al., 2014), but still possess enzymes whose

activity depends on these metabolites (Degnan et al., 2014).

Trying to  discover  if  and how a microorganism secretes  or assimilates  a  given extracellular

compound  is  challenging  (figure  1C)  (Sung  et  al.,  2017;  D’Souza  et  al.,  2018;  Zengler  and

Zaramela, 2018). Moreover, ecological interactions are affected by temporal and spatial patterns

(Kelsic et al., 2015), and by the organisms’ surrounding environment (Bakker et al., 2014). Notably,

available nutrients control the metabolic activity of microorganisms, whether or not they depend on

others  (figure  1D)  (Heinken  and Thiele,  2015;  Magnúsdóttir  et  al.,  2017).  For  example,  when

nutrients  are  limited,  microorganisms  can  compensate  by  engaging  in  behaviors  that  facilitate

nutrient acquisition, notably by excreting molecules that promote cross-feeding (Fritts et al., 2021),

even if they usually compete  (Zuñiga et al., 2019). Another example of an environmental effect

involves two mutants of  Pseudomonas stuzeri. Depending on the pH, the mutants can shift from

competition to strong cross-feeding of nitrite, which is a toxic compound at low pH (Borer et al.,

2020).
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2.1 Evolution and stability of cross-feeding

Energy  saving  could  account  for  the  origin  of  frequent  occurrences  of  auxotrophy  in

microorganisms. First, the cost of producing certain metabolites is avoided by obtaining them from

the environment  (Zengler and Zaramela, 2018). Second, mutual cross-feeding has been shown to

reduce the energetic cost of some metabolic pathways, for example amino-acids biosynthesis (Mee

et al., 2014). Metabolic exchanges are thus a way to divide the cost of labor (Thommes et al., 2019).

However it has been predicted that costless secretions may be numerous and represent sources of

cross-feeding opportunities (Pacheco et al., 2019). Gene loss is the cause of auxotrophy, which may

arise when a costly function can be performed by one or more other members of the community,

and may cause selective pressure (Boon et al., 2014; D’Souza et al., 2014; Mas et al., 2016; Meijer

et al., 2020). 

Evolution of beneficiaries and providers via gene loss and public goods have been formalized in

the Black Queen Hypothesis (BQH) (Morris et al., 2012a). This hypothesis relies on the fact that

many vital genetic functions are leaky, thereby producing public goods for the community. BQH

involves costly functions, so the benefits of losing it and relying on others are greater than those of

than  keeping  it.  Providers  are  hypothesized  to  be  organisms  that  lost  the  race  to  profit  from

leakiness  and  are  stuck  in  their  role  of  providers  (Morris,  2015).  The  BQH of  evolution  also

explains an evolutionary trajectory of competition avoidance toward a steady-state equilibrium for

the coexistence of microorganisms (Mas et al., 2016). Wastes are hypothesized to be detoxified by

other  organisms  (Cavaliere  et  al.,  2017).  Selection  via  gene-loss  would  have  then  generated

numerous  commensal  and  even  mutualistic  dependencies  between  different  microorganisms,

leading to high species richness in communities but requiring a certain degree of stability (Boon et

al., 2014).

Cooperative  behaviors  are  considered  to  be  unstable  because  of  the  constant  threat  of  the

emergence of organisms that benefit from the cooperative interactions but do not contribute to them

(Cavaliere et al., 2017). Despite hypotheses like the BQH, it is still not clear how such interactions

occur and are maintained (Zomorrodi and Segrè, 2017). When the auxotrophic organism is a mutant

derived from a given microorganism population that relies on its conspecifics or symbionts without

contributing in return, the dependency is classified as “cheating” and can be detrimental to non-

cheating  organisms  (Ferriere  et  al.,  2002).  In  plant-microorganism  symbioses,  it  has  been

demonstrated  that  plants  are  able  to  sanction  less  cooperative  microorganisms  with  a  carbon

embargo  (Kiers  et  al.,  2011).  Research involving game theory,  notably the prisoner’s  dilemma,
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helped explain these evolutionary and stability issues  (Gore et  al.,  2009; Zomorrodi and Segrè,

2017).

2.2 The growing importance of metabolic cross-feeding compared to 
competition

Experimental  results  suggested that  microbiota  are  dominated  by  competition  (Coyte  and

Rakoff-Nahoum,  2019).  However,  results  vary  and  although  some  studies  suggest  that

microorganism communities are governed by antagonistic interactions and rarely cooperate (Biggs

et  al.,  2017;  Venturelli  et  al.,  2018),  others  revealed  rich  networks  of  metabolic  dependency

interactions  among  microorganisms  (Medlock  et  al.,  2018).  However,  few true  interspecies

cooperation has been validated to date (Coyte and Rakoff-Nahoum, 2019). Niche differentiation and

metabolic  dissimilarity  between  co-occurring  microorganisms  could  be  explained  by

complementary biosynthetic  capabilities  rather  than  by competitive  exclusion  (Zelezniak  et  al.,

2015). The fact that several bacterial taxa cannot be grown alone  in vitro could result from such

dependencies (Mas et al., 2016). Interestingly, it was observed that in microbial communities spread

along a competitive-cooperative axis, the most competitive microorganisms were characterized by

larger genomes and were mainly present in soil, while the most cooperative had smaller genomes

and were present in both free-living and host-associated habitats  (Machado et  al.,  2021). Many

communities seemed to be engaged in a trade-off between competition and cooperation, echoing the

trade-off between being metabolically independent and relying on others (Thommes et al., 2019).

Deciphering microbial interactions is a major challenge in microbiome research to enable the

shift from descriptive approaches to a mechanistic understanding of microbiome assemblages. Such

complex systems involving hundreds of interacting organisms make it difficult to determine which

interactions primarily drive community stability or modulate shifts in assembly trajectories. In the

following sections, we discuss the potential of microbial systems ecology (MSE) to disentangle the

mechanisms  of  cooperation  and  co-existence  in  a  microbiome.  Microbial  Systems  Ecology:  a

crossroads between system biology and community ecology.
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Figure 1: (A) Symbiosis (and hence cross-feeding) is not necessarily mutualistic. Depending on the effect of the receiver
(blue bacteria symbols) on the provider’s fitness, the interaction can go from cooperation to parasitism. (B) There are
several subcategories of cross-feeding (Smith et al. 2019), depending on which compounds are exchanged and on the
directionality of the exchange (mutual or not). (C) The existence of cross-feeding  depends on the secretion, transport,
and assimilation capacity  of  the  public  good (D’Souza  et  al.  2018).  (D)  Metabolic  interactions  are  environment-
dependent, notably regarding available nutrients. If a required nutrient (red triangle) is freely available in the growth
medium, then cross-feeding is not indispensable for the receiver organism. Otherwise, when this particular nutrient is
not  available,  but  is  synthesized  by  the  producer  from  another  nutrient  (brown  square),  cross-feeding  becomes
obligatory for the receiver. (E) Cross-feeding categories are defined in panel B.
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3 Microbial Systems Ecology: a crossroads between system 
biology and community ecology

Systems  biology  is the  computational  and  mathematical  study  of  interactions  between  the

components  of  biological  entities  (molecules,  cells,  organs,  organisms),  considered  as  complex

systems  (Snoep  and  Westerhoff,  2005).  Connecting  components  is  preferred  to  characterizing

isolated parts (Kitano, 2002b), because the latter are not sufficient to understand the behavior of the

system as  a  whole.  System biology  involves  a  cycle  of  theory,  modeling,  testing  hypotheses,

followed by experimental validation. In addition to the structure of the system (gene interactions,

biochemical  pathways,  etc.),  biological  systems  must  integrate  dynamics  and  robustness

components, i.e., how they behave over time under varying conditions, as well as their sensitivity to

perturbations (Kitano, 2002b; Alon, 2006). Omics approaches produce sufficient quantitative data to

support simulation-based research, leading to genome-scale modeling to analyze the cell function

properties of the system, mainly based on graph theory  (Kitano, 2002a; Rodriguez et al., 2019).

Research  includes  reconstruction  of metabolic  networks,  transcriptional  regulatory  networks,

interactome networks, hormone signaling (etc.), for various applications including crop protection

or  sustainable  agriculture,  therapies  for  obesity,  diabetes,  and  inflammatory  bowel  disease,  or

conservation biology (Amor and Bello, 2019; Rodriguez et al., 2019; Vázquez-Castellanos et al.,

2019).

MSE is defined as the holistic study of microbial communities using systems biology (Muller et

al.,  2018).  In  microbiology,  the  cellular  and  the  individual  levels  are  often  intertwined:  the

components  of  the system are  cells  and are  also individuals  of  different  microbial  species  and

components of the community, creating an ideal crossroads which, in systems biology, is used to

analyze populations and communities. MSE includes numerous approaches to study assembly rules,

co-existence,  trophic  networks  (etc.)  in  microbial  communities.  Such  communities  are  seen  as

networks of networks: i.e., community members consisting of collections of interwoven molecular

networks (Muller et al., 2018). MSE is mainly based on the construction of predictive models using

a corpus of computational methods that make it possible to mine large amounts of data, notably to

predict putative interactions or phenotypes under different growth conditions (Franzosa et al., 2015;

Bordron et  al.,  2016).  Nevertheless,  most  of these methods are  still  vulnerable to  mistakes via

unmeasured external factors. They are therefore often treated as hypothesis generators, of which the

strongest have to be tested experimentally (Coyte and Rakoff-Nahoum, 2019; Goyal et al., 2021).
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Considerable efforts have been made to analyze and model microbiomes and predict microbial

interactions  (Li et al., 2016; Knight et al., 2018; Kumar et al., 2019) notably based on predicted

metabolism by identifying keystone genes and functions and by identifying the microorganisms’

ecological  niches.  Genome-encoded  metabolism can  reveal  fundamental  niches  while  resource

usage,  realized niches,  and their  overlaps between species can be inferred from transcriptomes,

proteomes,  and metabolomes  (Mee et  al.,  2014; Muller et  al.,  2018) thus making it possible to

identify core and specific metabolism or to predict metabolic interactions. For example, in a set of

five  bacteria,  such  models  found  that  species-specific  metabolism  is  related  to  secondary

metabolism, and metabolic interactions were required to perform copper bioleaching  (Bordron et

al.,  2016).  Despite  the  immense  and  untapped  potential  of  -omics,  niche  inference  remains  a

challenging  task  due  to  niche  multi-dimensionality,  the  complexity of  trophic  interactions,  and

fluctuating environmental conditions (Muller et al., 2018).

3.1 Microbial Systems Ecology approaches and framework

3.1.1 Metabolic network reconstruction

Once an organism’s genome has been sequenced and annotated, its metabolic network can be

inferred  (Mendoza  et  al.,  2019).  Metabolic  networks  are  often  referred  to  as  “genome-scale

metabolic models” (GEMS) gathering all the metabolic capacities of an organism, linking chemical

reactions, reactants, products, and enzymes needed to reconstruct metabolic pathways (Jansma and

Aidy, 2020). GEMs can predict cell behavior under various conditions (notably nutritional): which

metabolic functions organisms are capable of achieving, which compounds can be produced, or

what are the growth requirements of a particular network. However, the main limit is that GEMs are

mainly drafts, and their reliability depends to a great extent on how well annotated the organism

concerned already is. This applies to only a few dozen well-known organisms including humans,

the  mouse,  Arabidopsis  thaliana,  yeast,  some  bacteria  (Shahzad  and  Loor,  2012).  Under-

investigated organisms produce more general GEMs, because specific genes are less annotated,

resulting in gaps or incomplete pathways, which is problematic when attempting to establish precise

functional profiles (Jansma and Aidy, 2020). Indeed, it has been demonstrated that many GEMs are

limited to well-conserved, primary metabolic pathways rather than secondary metabolic pathways,

thus limiting the representation of the organisms they model  (Monk et al., 2014). Such problems

can be overcome with additional steps like gap-filling and manual curation  (Prigent et al., 2017),

but these are subject to false positives when working with unknown organisms (Henry et al., 2010;

Frioux et al., 2020).

59



Chapter 1 – General introduction – part II

When  data  on  stoichiometric  reactions  are  available,  metabolic  networks  can  be  enhanced

through quantitative analysis of metabolite fluxes within the network. After  considering available

nutrients,  fluxes  of  metabolites  within  and  between  pathways  are  computed  to  maximize  an

objective  function,  such  as  biomass  production.  A standard  approach  is  flux  balance  analysis

(Bordbar et al., 2014). However, the objective function is often difficult to define, and such methods

require high-quality GEMs. What is more, they still only provide a static view of the community;

models that incorporate metabolic modelling, dynamics of species abundance and of concentrations

of metabolites over time are an active field of development  (Muller et al., 2018; Vrancken et al.,

2019). For a recent review of computational tools dedicated to the reconstruction and analysis of

metabolic networks, we recommend the one by Mendoza et al., (2019).

Simulations of GEMs under environmental constraints are used to identify potential competition

for  nutrients,  to  predict  cross-feeding  or  ecological  niches,  with  applications  in  metabolic

engineering (Heinken and Thiele, 2015; Magnúsdóttir et al., 2017; Frioux et al., 2018; Muller et al.,

2018; Mendoza et al., 2019). These approaches enable more direct quantification of interactions

than techniques that rely on natural communities  in vivo.  However,  problems increase with the

number  of  species  studied  simultaneously,  and  precise  metabolic  modeling  rapidly  becomes

impractical for natural communities because of the tremendous number of possible configurations

(Coyte  and  Rakoff-Nahoum,  2019).  Specific  approaches  are  dedicated  to  considering  multiple

species  at  once,  for  example,  community  flux  balance  analysis  (Khandelwal  et  al.,  2013) but

generally speaking, existing methodological limits (Vandenkoornhuyse et al., 2010) do not produce

the  necessary holistic  understanding of  microbiota  but  rather  give   an  only slightly more  than

general  overview  of  emergent  properties,  or  are  limited  to  a  small  fraction  of  a  community.

Metabolic  networks  are  thus  mostly used  in  bottom-up (reductionist)  approaches  (Shahzad and

Loor, 2012), but it is important to also take top-down (global) approaches or combinations of both

into consideration (Lawson et al., 2019) (figure 2).
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3.1.2 The microbial systems ecology framework calls for shifts 
between top-down and bottom-up approaches

In MSE, the study of complex systems like microbiomes uses both top-down and bottom-up

approaches  within  a  design-build-test-learn  process  that  is  particularly suitable  for  microbiome

engineering and synthetic biology (figure 2), where the optimum and minimum combinations of

organisms are investigated in order to perform a biological function (for an exhaustive explanation

and review, see Lawson et al., (2019). Such a process works in cycles, where the design and build

phases are adapted to the functions targeted, and the test and learn phases are used to correct any

errors and to optimize the system.

Top-down approaches start from a complete microbial community (or at least a sufficiently big

and representative set  of  microorganisms)  and aim to discover  signature patterns of underlying

biological mechanisms (figure 2 A&B). Top-down approaches are basically descriptive and were

developed using many multivariate statistics, meta-omics, and experimental data, to capture key

microbiome functions or effects or particular environmental variables rather than prioritizing which

organism or pathway is at play behind an observed phenotype (Ramette, 2007; Shahzad and Loor,

2012; Lawson et al., 2019). Most of our knowledge about the gut microbiome was obtained using

top-down approaches and helped discern dysbiosis patterns associated with diseases (Bashan et al.,

2016;  Amor and Bello,  2019).  For example,  one method involves clustering the members  of  a

community  according  to  their  metabolic  functions,  and/or  building  co-occurrence  networks  to

identify coexistences and to propose hypotheses to explain the origin of the coexistence (Faust and

Raes,  2012;  Layeghifard  et  al.,  2017).  To  achieve  that  goal,  simple  metrics  computed  from

metabolic networks are used to compute metabolic overlap, metabolic interaction potential, or the

functional distance between organisms (Zelezniak et al., 2015; Russel et al., 2017), leading to the

formulation of hypotheses about ecological processes involved, including metabolic interactions.

Top-down  approaches  offer  a  macro-scale  framework  but  miss  intricate  details,  consequently

limiting both holistic and mechanistic views of complex (i.e. natural) communities (Vrancken et al.,

2019).

This limit is offset by bottom-up approaches that ignore the whole system and start from single

microorganisms to build simple sub-communities to deduce the functional properties that could

emerge from a small subsystem, and then gradually increase model complexity (figure 2 C&D)

(Amor and Bello, 2019; Lawson et al., 2019). Bottom-up approaches use proficient computational

and mathematical modeling (for details see Vrancken et al., (2019)), notably based on GEMs, for
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example with constraint-based analytics able to directly identify combinations of GEMs able to

produce  a  compound  that  cannot  be  produced  by single  genomes  (Frioux  et  al.,  2018). Such

approaches have (for example) been used to predict mutualism and competition in relatively big

microbial consortia  (Friedman et al.,  2017; Kong et al.,  2018). Overall,  cooperative interactions

(including metabolic dependencies) are often key components of bottom-up designs in synthetic

biology (Amor and Bello, 2019) and in general, core metabolism is a reliable starting point, as it

captures carbon and energy metabolism (Lawson et al., 2019).
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Figure 2: Schematic view of top-down and bottom-up approaches in microbial systems ecology. The list of methods,
techniques, and goals is not exhaustive. In this framework, deciphering the structure and dynamics of a microbiota
implies continuous and iterative shifts between approaches, either top-down / bottom-up and  in silico /  in vitro /  in
vivo. Top-down modeling (A) intensively used -omics data obtained from high-scale top-down experiments involving
numerous species (B). For example, top-down models can use descriptive and multivariate statistics to detect structural
and time patterns in species abundances, or cluster microorganisms in functional groups. Both can subsequently be
correlated with their co-occurrences or modeled with generalized Lotka-Volterra models (respectively based on relative
abundances and growth rates with an interactions matrix), which are also used to model the potential influence of a
microorganisms on others. In bottom-up modeling (C), a reductionist approach is preferred, and small subsystems of
microorganisms are analyzed in more detail, with emphasis on modeling how they putatively interact. Most models are
based on reconstructed metabolic networks, which are crucial to predict interactions such as nutrient competition or
exchange. Software based on constraint-based programming exist to rapidly find combinations that can then be further
modeled using flux analysis or regular Lotka-Volterra models. Putative interactions must be tested when possible (D).
Each approach and method used  contributes  its  own knowledge and should be  completed  with  other  knowledge.
Approaches  must  be  chosen  based  on  the  research  goal:  microbiome  engineering,  synthetic  biology,  deciphering
assembly rules of the community with a mechanistic and holistic view (etc.). Methods and techniques are provided as
examples and do not claim to be exhaustive (see Shahzad and Loor  (2012), Fransoza et al.  (2015), Amor and Bello
(2019), Lawson et al. (2019), Lloyd-Price et al. (2019), Vrancken et al. (2019) for more).
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4 Conclusion

Disentangling ecological processes within a microbial community is the only way to obtain a

mechanistic  view  of  its  composition,  stability,  productivity  (etc.).  Ecological  interactions,

particularly cross-feeding, must thus be taken into account in any microbial ecology project, notably

in synthetic biology and microbiome engineering, with many applications including human health

and sustainable  agriculture  (Toju  et  al.,  2018;  Henriques  et  al.,  2020).  With  this  goal  in  view,

microbial  systems  ecology frameworks  are  being  developed  to  unify top-down and  bottom-up

approaches in an iterative design-build-test-learn cycle (Lawson et al., 2019). Still, MSE should be

used cautiously to avoid being drowned under hundreds of irrelevant models. Whenever possible,

predictions of an MSE framework should tested experimentally (Röling and Van Bodegom, 2014;

Muller et  al.,  2018; Vázquez-Castellanos et  al.,  2019),  and in return,  experimental observations

should improve models. To build reliable and in-depth knowledge, efforts should focus on a few

aspects, such as GEM quality (in order to go beyond research on conserved, well-known metabolic

pathways), integrate -omics data (Franzosa et al., 2015), niche modeling, and microbial secretome

with exometabolomics (Jacoby and Kopriva, 2019).
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Chapter 2 – Multi-genomes metabolic modelling 
predicts functional inter-dependencies in the 
Arabidopsis root microbiome

Structure, dynamics, and ecological interactions in microbial communities can be investigated

and predicted in silico with numerous modelling methods, formalized as Microbial System Ecology

(MSE). In this chapter, following the previous development around metabolic dependencies and

MSE,  genome-scale  reconstructed  metabolic  network  were  used  to  find  putative  metabolic

dependencies  among  a  set  of  193  bacteria  from  the  Arabidopsis  thaliana root microbiota.

Reconstructed metabolic networks were notably used to predict  the number and composition of

metabolites producible by each genome. Three hypothesis were tested :

• The  number  and  composition  of  predicted  producible  compounds  (thus  metabolism)  is

clustered by phylogeny.

• Available nutrients apply severe nutritional constraints on genomes’ predicted metabolism.

• Metabolic cooperation via cross-feeding between genomes counter nutritional constraints.

All  hypothesis  were  validated.  Microbial  taxa  displayed  highly differentiated  metabolism in

terms of predicted producible compounds, and phylogenetically distant genomes had a higher and

more diverse production of metabolites, as well as reduced sets of shared metabolites. Nutritional

constraints  dramatically  reduced  the  per-genome  predicted  number  of  producible  metabolites.

However, putative cooperation by metabolites cross-feeding acted as a counter to these constraints.

At the whole community scale, the added-value brought by cooperation rose the predicted number

of metabolites to a similar level as the unconstrained-one. At the scale of simple subsystems (pairs

of triplets of genomes), there were numerous combinations able to produce previously unproducible

targeted metabolites.
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Abstract

Metabolic dependencies among microbes likely explain co-existence in microbiota. In this  in

silico study, we explored genome-scale metabolic models (GEMs) of 193 bacteria isolated from

Arabidopsis thaliana roots.  We analysed their  predicted producible  metabolites under  simulated

nutritional constraints, including ‘root exudate-mimicking growth media’ and assessed the potential

of putative metabolic exchanges of end and by-products to parry those constraints. We found that

the genome-encoded metabolic potential is quantitatively and qualitatively clustered by phylogeny,

highlighting  metabolism  differentiation  between  taxonomic  groups.  Random,  synthetic

combinations of increasing number of strains (SynComs) indicated that the number of producible

compounds  by  GEMs  increased  with  average  phylogenetic  distance,  but  most  SynComs  were

centered  around  an  optimal  phylogenetic  distance.  Moreover,  relatively  small  SynComs  could

recapitulate the capacity of the whole community due to metabolic redundancy. Inspection of 30

specific end-product metabolites (i.e. target metabolites: amino acids, vitamins, phyto-hormones)

indicated that a majority of the strains had the genetic potential  to produce almost all  of these

targeted  compounds.  Their  production  was  predicted  (1)  to  depend  on  external  nutritional

constraints, and (2) to be facilitated by nutritional constraints mimicking root exudates, suggesting

the key importance of nutrients availability and root exudates to modulate the number of producible

metabolites.  An Answer-set-programming  solver  allowed  to  identify numerous  combinations  of

strains  predicted to  depend on each other  under  severe nutritional  constraints  to  produce  these

targeted compounds thus indicating a putative sub-community level of functional redundancy. This

study  predicts  a  metabolic  restriction  caused  by  available  nutrients  in  the  environment.  By

extension,  it  highlights  the  importance  of  the  environment  for  niche  potential,  realization,
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partitioning,  and overlap.  The results  also suggest  that  metabolic  dependencies and cooperation

among root microbiota members is likely relevant to compensate for environmental constraints and

to maintain co-existence in complex microbial communities.

1 Introduction

Microorganisms  are  known  to  colonize  macroorganisms,  establishing  a  dense  network  of

interactions and contributing to essential functions maintaining their host homeostasis (Turner et al.,

2013). These functions are various, ranging from protection against pathogens to nutrient uptake, or

resistance to  stresses such as  heat  or  drought  (Berendsen et  al.,  2012;  Rodriguez et  al.,  2019).

Together with other factors such as temperature, pH, oxygen, nutrients  (Hacquard et al., 2015) or

priority  effects  (Toju  et  al.,  2018),  the  host  itself  is  a  niche  which  influences  its  microbiota

composition (Compant et al., 2019; Griggs et al., 2021). In plants, soil can be seen as the reservoir

of  microorganisms  from which  microorganisms  are  recruited  to  compose  the  root  microbiota

(Trivedi et al., 2020; Xiong et al., 2021) and where root exudates play an active role (Haichar et al.,

2008; Badri and Vivanco, 2009). Last, microbe-microbe interactions are essential in shaping the

structure and dynamics of a microbiota (Konopka, 2009; Hassani et al., 2018; Pacheco and Segrè,

2019), resulting in a dense network of interactions (Sung et al., 2017).

Understanding the diverse interactions between microbes represent a critical step for a holistic,

community-level  understanding  of  microbiota  functioning.  These  microbe-microbe  interactions

spread on a spectrum going from competition to cooperation  (Coyte and Rakoff-Nahoum, 2019),

depending on time,  space,  other  species presence,  and energetic  cost (etc)  (Pacheco and Segrè,

2019).  Two  main  competing  theories  explain  microbial  assemblages.  The  niche  differentiation

theory states that phylogenetically similar species are more likely to compete with each other due to

their shared functional traits and resource overlap, leading to less probable co-existence (Lam et al.,

2020). The habitat filtering theory suggests that dominant species exhibit similar functional traits,

because their presence is determined by environmental parameters  (Levy and Borenstein, 2013).

Until now, the relative importance of cooperation and cooperation remains unclear (Johnson et al.,

2012;  Coyte  and  Rakoff-Nahoum,  2019).  Different  approaches  often  give  conflicting  results  :

several computational approaches predicted many cross-feeding possibilities while some  in vitro

experiments rather highlighted competition (Coyte and Rakoff-Nahoum, 2019). However, metabolic

interactions  and  particularly  metabolic  dependencies  are  reported  to  play  a  major  role  in

maintaining community diversity, stability and in explaining microbial co-existence (Morris et al.,
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2012a; Mee et al., 2014; Lovley, 2017; Sung et al., 2017; Zomorrodi and Segrè, 2017; Seif et al.,

2020). Extracellular metabolites can thus play a major role in microbial community assembly (Fritts

et al., 2021), and metabolic dependencies among strains might explain why some microbes cannot

be cultured in standard laboratory conditions (Bernstein et al., 2019).

Microbial system ecology approaches are now regularly used to model complex systems such as

ecological processes  (Faust et al., 2018; Muller et al., 2018; Kumar et al., 2019; Mataigne et al.,

submitted). The acquisition and analysis of -omics data, coupled with modelling approaches, allow

to computationally predict an organism’s resource usage, biosynthetic capabilities, deficiencies, and

growth across various conditions, notably available nutrients (Muller et al., 2018; Bernstein et al.,

2019), which are herein referred as “nutritional constraints” (table 1). These models rely on the

reconstruction of  metabolic networks (GEnome-scale Metabolic models (GEMs))  from annotated

genomes (Feist et al., 2009; Henry et al., 2010). Thus, predicting fundamental niche overlaps and

competition between members of a microbial community becomes possible (Alneberg et al., 2020).

Studying phylogenetic  structure  of  microbial  communities  also  permitted  to  detect  correlations

between the phylogenetic signal and  metabolism (Easson and Thacker, 2014; Goberna and Verdú,

2016; Li et al., 2017; Aguirre De Cárcer, 2019).

We questioned  in silico (1) how phylogeny shapes GEMs both at single strain and (2) small

random combinations of strains (SynComs) scales, (3) how strong is the effect of the  constraint

applied  by  available  nutrients  (including  root  exudates)  on  GEMs’,  and  (4)  how  metabolic

cooperation can balance these nutritional constraints. We tested 4 hypotheses. -(i) unconstrained

metabolism (see definition in table 1) is highly clustered by phylogeny,  meaning that predicted

producible metabolites are differentiated or overlapped between strains according to their taxonomy

(H1);  (ii)  combinations  of  GEMs would  have  more  producible  metabolites  than  single  GEMs,

depending on the phylogenetic similarity between the corresponding bacteria (H2); (iii) available

nutrients have a potential impact on the metabolism of bacteria, leading to a reduction of producible

metabolites from unconstrained to constrained metabolism (H3); (iv) metabolic cooperations are

frequent and likely compensate for nutritional constraints by allowing the production of specific key

compounds (H4), under the strong postulate that every compound produced by a bacterium can be

shared with others. This postulate is at least partially supported by several studies which analyzed or

predicted bacteria and plants secretomes  (Bednarek et al.,  2010; Baran et al.,  2015; Orsi et al.,

2017).  To  address  these  hypotheses  we  analyzed  a  collection  of  genomes  of  bacterial  strains

isolated  from  the  roots  of  Arabidopsis  thaliana (Bai  et  al.,  2015) and  used  system  biology
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approaches to predict in silico the genomes functioning. Metabolism of each bacteria was predicted

with GEMs reconstructed from genomes’ annotation.

2 Materials and Methods

Table 1 provides vocabulary and definitions and Figure 1 adduces  a graphical summary of what

has been done regarding data and metrics acquisition.

Table 1 :  Description of  the metrics  used. The term “community”  means either  the  full  community or  a  random
subsample of strains (SynCom) (but precise terms are employed when necessary). The acronyms in bold in the table are
used throughout the text.

Metric Description

Nutritional constraint

Available nutrients on which a GEM can rely on (i.e. the initial reactants of
the whole network).  Nutritional  constraints are modelled with simulated
growth  media.  In  this  paper,  an  “unconstrained”  GEM  represents  its
metabolic potential, i.e. all the metabolites it encodes and can produce in
theory. 

Predicted Produced Metabolites 
(PPM)

The  list  (number  and  composition)  of  all  metabolites  predicted  to  be
producible  by one  or  several  GEMs at  once  (also  referred  as  a  meta-
GEM), under a nutritional constraint or without constraint. Such a metric
is used to summarize the  unconstrained and constrained (by available
nutrients) metabolism inferred from genomes.

Core Predicted Produced 
Metabolites (CPPM)

The  part  (number  and  composition)  of  a  community  PPM  which  is
producible by every GEM individually in a set of GEMs.

Targeted Predicted Producible 
Metabolites (TPPM)

A set of metabolites on which a part of this study is focused. Their ability
to  be  produced  by  one  or  several  GEMs  is  analyzed  (number  and
composition), under a nutritional constraint or not.

Community’s added value
The part of the PPM (number and composition) of several GEMs which is
only producible by metabolic interactions within a community (i.e.,  not
producible by any single GEM).

Average phylogenetic distance
The average of all pairwise phylogenetic distances between pairs of strains
in a synthetic subsample of strains (SynCom). The full community also
has its average phylogenetic distance.

2.1 Genomes data

We used 193 annotated bacterial genomes (Bai et al., 2015) all isolated from A. thaliana roots

collected in Cologne soils (Germany), and selected to build a taxonomically representative core set

of bacteria of the host-plant (Bai et al., 2015). Annotated genomes (Bai et al., 2015; Wippel et al.,

2021) were  downloaded  from  the  At-SPHERE  database  (  http://www.at-sphere.com/ ).  Both

taxonomy  and  phylogeny  of  the  whole  set  of  genomes  (Bai  et  al.,  2015) were  used.  The

phylogenetic tree was inferred by maximum likelihood (Bai et al., 2015) from a multi-alignment of
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31 bacterial AMPHORA (Wu and Eisen, 2008) genes obtained with Clustal Omega v1.2.1 (Sievers

et al., 2011) passed into FastTree v2.1 (Price et al., 2010).

2.2 Reference database

The reference to link genomes’ annotation to metabolism was the MetaCyc database, a collection

of organism specific Pathway/Genome Databases (PGDBs).  MetaCyc contains ~2500 metabolic

pathways from many organisms (Caspi et al., 2008). Two criteria motivated this choice. First, the

database has been manually curated. Second, our metabolic networks reconstruction tools (mpwt

and AuReMe (Aite et al., 2018; Belcour et al., 2020) are pre-configured to work with this curated

database.

2.3 Metabolic networks (GEMs) reconstruction

Metabolic  networks  of  each  genome  were  simulated  with  genome-scale  metabolic  models

(GEMs)  reconstructed  with  an  automated  command-line  version  of  PathwayTools  (Karp  et  al.,

2002, 2011, 2020) using the mpwt program of the metage2metabo tool suite (Belcour et al., 2020),

then converted in  padmet  and sbml  format  with  AuReMe and padmet-utils  (Aite  et  al.,  2018).

GEMs in  sbml format were parsed with the python lxml package when needed. All GEMs were

drafts, used without gap-filling or manual curation procedure. Those steps are usually required to

improve the quality of a GEM (Thiele and Palsson, 2010), but are likely to introduce false positives,

particularly with poorly known organisms, hiding potential metabolic dependencies. Consequently,

we  chose  to  rely  on  drafts  of  GEMs,  preferring  false  negatives  (due  to  flaws  in  genomes’

annotation) than false positives.

2.4 Metrics from genomes and GEMs

In order to detect patterns between strains and metabolism, a set of metrics (complete definitions

are provided in table 1) were used and applied on single GEM (i.e. single strains) and on random

combinations (“SynComs”) comprising 2 to 20 GEMs. The Python API of “Miscoto scope” (Frioux

et al., 2018) was used to compute all the Predicted Produced Metabolites, (PPM) for single GEM,

SynComs, and the full community under simulated nutritional constraints. AuReMe reports were

parsed  to  record  constraints-free  PPM.  Phylogenetic  distances  were  computed  based  on  the

phylogenetic tree with the Python package ete3  (Huerta-Cepas et al., 2016). Genomes sizes were

available in the annotation data. For each SynCom was also computed the Core Predicted Produced
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Metabolites (CPPM), using sets data structure in Python 3 and AuReMe and Miscoto scope outputs

(Figure 1). The full community’s added value was also computed with Python sets.

2.5 Targeted Predicted Producible Metabolites (TPPM)

TPPM are compounds for which the capacity of production was studied, for single GEM and for

the whole community (i.e. meta-GEM, where all GEMs can leak and exchange any compound). The

production  of  TPPM  from  GEM  can  be  computed  under  various  nutritional  constraints  with

simulated growth media (see the dedicated section below). There were 30 TPPM in this study : 17

amino-acids (Serine, Alanine, and glutamic acid were excluded because present in Artificial Root

Exudates, which were part of the growth media), 8 B vitamins (thiamine diphosphate, riboflavin,

nicotinate,  (R)-pantothenate,  pyridoxine,  biotin,  tetrahydro-folate,  adenosylcobalamin)  and  5

phytohormones (auxin,  salicylic acid,  abscisic acid,  ethylene,  jasmonic acid).  Amino-acids were

chosen for their fundamental, ubiquist biological importance. Vitamins were chosen according to

their importance in metabolism. Phyto-hormones were chosen in regards to the root-associated trait

of  the  studied  microbial  community.  In  addition,  these  metabolites  biosynthesis  pathways  are

relatively well-known, reducing the risk of false negatives in reconstructed metabolic networks.

When under a nutritional constraint (see below), TPPM production was computed for each GEM

with  the  Python API of  “Miscoto  scopes”  (Frioux et  al.,  2018).  Without  nutritional  constraint,

TPPM production was assessed with their absence/presence in AuReMe reports.

2.6 Nutritional constraint (growth media) modeling 

Nutritional  constraints  were set  up with the simulation of  various growth media.  We used two

online resources to choose the growth media : MetaCyc (previously mentioned), which contains few

growth media with their detailed list of nutrients, and the KOMODO database  (Oberhardt et al.,

2015). KOMODO references a huge number of growth media, providing their composition, as well

as the constituents MetaCyc IDs. We modelled 9 growth media (5 poorly nutritive with essentially

mineral nutrients and 4 highly nutritive, with more carbon sources, table 2), in which a common list

of cofactors (Kim et al., 2015) were added. Each medium has an ‘Artificial Root Exudates’ (based

on Baudoin et al., (2003) enriched version (i.e. 22 media in total) (Table 2). Growth media, except

rich  media,  were  chosen according  to  two conditions  :  (1)  none of  the  TPPM should  be  in  a

medium’s  nutrients,  and  (2)  the  nutrients  mustn’t  contain  any  “mixture  compound”,  such  as

tryptone or yeast extract, whose composition is not characterized in MetaCyc. ‘Rich’ media did not

fully match these conditions because they contained vitamins. Among them, LB-lennox-enriched
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medium contains tryptone and yeast extract. All growth media were used to investigate a range of

nutritional constraints on PPM, but some were discarded when analyzing the production of TPPM

they were incompatible with (table 2).

Table 2 : Summary table of the used growth media for nutritional constraints. Since rich media   always contain some
TPPM, the set of studied growth media varies according to the analysis: TPPM were either analyzed all at once, without
vitamins, or only phyto-hormones, according to the content of the media. Detailed media composition can be found on
gitlab.

Growth media Type Contains TPPM With Mixture Analyzed TPPM

M63

Poor No

No

All

M9

mineral medium

hydrogen 
oxidizing

MBM

basal

Rich

Vitamins Amino-acids, phyto-hormonesphb pyruvate

MMJS

LB-lennox 
enriched

Vitamins + amino-
acids

Tryptone (amino-
acids) + Yeast extract

Phyto-hormones

2.7 Putative GEMs combinations for metabolic interactions

For each nutritional constraint (i.e. each medium), Miscoto mincom (Frioux et al., 2018) (a version

implemented into the metage2metabo  (Belcour et  al.,  2020) package) was used with the whole

microbial community as input (GEMs in sbml format). This tool uses Answer Set Programming, a

declarative approach oriented toward combinatorial problem-solving  (Collet et al.; Laniau et al.,

2017). It rapidly found all the simplest combinations (called “solutions'') of GEMs able to produce

as many specified TPPM as possible under growth constraints. More complex solutions (with more

GEMs) are ignored.  TPPM were either  all  of the aforementioned compounds,  non-vitamins,  or

phyto-hormones  only,  in  accordance  with  the  aforementioned  condition  “no  TPPM  in  growth

media”  (table  2).  Splitting  TPPM  was  also  important  because  results  are  strongly  TPPM-

dependent : for example, GEMs with an essential, but rare reaction for the production of a given

TPPM will be very represented, potentially masking alternative possible combinations for other

TPPM. Results of each run were stored in a json format. 
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2.8 Quasi-Poisson GLMs 

The correlations between number of PPM/CPPM and SynCom size, genome size, and phylogenetic

distance  were  computed  (without  nutritional  constraint)  on  random  SynComs.  First,  for  each

number of members (variable ’SynCom size’) going from 2 to 20 (with a step of 1), 500 SynComs

were built by randomly picking strains from the initial pool of 193 strains, without replacement.

First,  independence  between explanatory variables  were  assessed  (supplementary figure  IV D).

Then two Generalized Linear Models based on a quasi-poisson distribution (in order to counter

overdispersion of the response metrics, supplementary figure IV, C1 to C4) were built, modelling

the  response  of  number  of  PPM  and  CPPM  of  SynComs  according  to  average  phylogenetic

distance, average genome size, and SynCom size. A supplemental polynomial (degree 2) term of

phylogenetic distance was added to model the curve of the response metrics. :

Y∼P(μi, θ)

μi = exp(β0 + β1Pi + β2Gi + β3Si)

With i being a SynCom, Y being its number of PPM or CPPM, P its average phylogenetic distance,

G its average genome size, S its number of strains (i.e. GEMS). The maximum SynCom size to put

in the model was 12 strains. This size was chosen for its position at the start of the plateau reached
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Figure 1: Genome sequence data processing and metrics acquisition. Our analysis relies on reconstructed metabolic
networks, one per genome, for which PPM and TPPM production were computed, under several nutritional constraints.
PPM can also be computed for communities of several cooperating GEMs : in that case, the part of the PPM and
TPPM producible only by the community (‘added-value’) is also returned. Last, minimal combinations of GEMs able to
produce as many TPPM as possible were computed.
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by all the metrics values or variance (supplementary figure IV, B1 to B4). This was also the size

whose bigger Syncoms started to show no significant difference from one SynCom size to the next

when tested with many bootstrapped subsamples (for each SynCom size: 500 iterations of 50 strains

each, one-sided Wilcoxon, Mann & Whitney tests, supplementary figure I). The models’ residuals

were slightly biased and non-normal, caused by the uneven spreads of values in different SynComs

sizes (figures S5 and S6). Since R2 are not automatically returned with the models we used, they

were computed with the following formula : 1 - Residual deviance / Null  deviance (which are

available in models’ R summaries). For computing time and resources, SynCom’s PPM added value

was left aside for this analysis.

2.9 Other statistical analyses

Tests of the effect of taxonomy on metrics distributions and growth media on the number of PPM

were  performed  using  non-parametric  tests  (Wilcoxon,  Mann  &  Whitney  rank-sum  tests).

Corresponding  effect  sizes  were  computed  with  the  Cliff’s  delta  method.  Principal  Coordinate

Analysis (PCoA) were performed on Jaccard distance matrices, with the pcoa and vegdist function

of the R packages ape and Vegan (Oksanen et al., 2020). Permanovas on the distance matrices were

performed with the adonis function associated with a multivariate analogue of Levene’s test for

homogeneity  of  variances  (PERMDISP2 procedure),  with  the  betadisper function  of  the  same

package.  Growth media dendrogram was built by hierarchical clustering with the R base hclust

function (with the default ‘complete’ method’), after computation of Bray-Curtis distances (with the

vegdist function)  based  on  the  composition  of  the  corresponding  full  community’s  PPM

(qualitatively,  i.e.  which  compounds are  producible  under  which  nutritional  constraint,  by how

many  GEMs).  Tests  implying  taxonomic  effect  excluded  Bacteroidetes  and  Firmicutes  phyla

because of their small sample sizes (4 and 7 strains respectively). Significance threshold was fixed

at 0.01.

2.10 Scripting

The organization of data acquisition and links between tools inputs and outputs (Figure 1) was

made with homemade Python 3 scripts. All Miscoto outputs were stored in  json format, and the

relevant data they contained (PPM and TPPM, number of genomes producing a TPPM under a

given nutritional constraint ...) was parsed and stored as csv tables. Figures and data analysis were

performed with R 4 with the ggplot2 package (Wickham, 2016) and Python 3 with the matplotlib

and seaborn packages. Scripts and data are available at 

https://gitlab.com/mataivic/article_metabolic_modelling_thaliana_microbiome
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3 Results

3.1 A link between genome-predicted unconstrained metabolism and 
phylogeny

We first tested how phylogeny structured the distributions of the different metrics, under the

hypothesis  that  GEMs  unconstrained  metabolism differs  along  phylogeny (H1).  Unconstrained

metabolism corresponded to the situation where all the putative genes carried by a genome are

functioning (table 1). Only Actinobacteria and Proteobacteria distributions were statistically tested

(i.e. the number of strains was insufficient  for other phyla). Smaller genomes sizes and number of

PPM  were  observed  in  Actinobacteria  compared  to  Proteobacteria  (figure  2B,  p=0.0038  and

p<0.0001,  with effect  sizes of -0.27 and -0.48).  The bigger  the genomes are,  the higher  is  the

number of PPM and TPPM (figure 2C). The Bacteroidetes in the culture collection (n=4) displayed

small  genomes  and  number  of  PPM, while  the  Firmicutes  (n=7)  number  of  PPM and size  of

genomes were similar to the other phyla. Differentiation in PPM composition was also detected

among phyla  based  on PERMANOVAs (p<0.001,  R2=0.213,  p  (permdisp)  = 0.005)  with  well

separated groups (including Bacteroidetes and Firmicutes) observed on PCoA (figure 2D). When

considering the 30 TPPM only, this effect remained significant (p<0.001, R2=0.175, p (permdisp) =

0.2325), but between-group differentiation was reduced (figure 2D,  supplementary figure II D).

The same patterns are conserved at the class level (supplementary figure II). This suggests a strong

metabolic  differentiation  between  phyla  at  the  whole  GEMs  scale,  but  a  more  conserved

metabolism when considering the TPPM.

3.2 SynCom unconstrained PPM are greater than that of single strains
and rapidly reaches saturation

We extended the previous single-GEM approach to random SynComs in order to analyze the

metabolic capacities (number of PPM and CPPM, without nutritional constraint) of merged GEMs

(i.e. fully cooperative with all possible metabolic exchanges) (H2). The correlations of number of

PPM and CPPM to SynCom size (n=2 to 20 members on plots, n=2 to 12 in GLMs), genomes size,

and phylogenetic distance were explored. The three of them were significantly correlated both with

the number of PPM (R2=0.86 diagnostic plots on supplementary figure V and CPPM (R2=0.82,

diagnostic plots on supplementary figure VI).

SynComs  size  strongly  increased  SynComs  PPM  (coefficient=0.36,  p<2e-16)  and  CPPM

(coefficient=-0.65,  p<0.001),  but  this  effect  was  more  pronounced  for  small-size  SynComs.
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Notably,  data  from SynComs  with  many strains  largely  overlapped,  plateauing  at  about  2,000

producible metabolites and 400 core-metabolites. Increasing SynCom size up to 193 strains would

result in less and less variations in SynComs, until reaching the full community with a PPM of 2383

and a CPPM of 263. Interestingly, increasing SynComs size rapidly returned numbers of PPM and

CPPM close to the full microbial collection (figure 3) likely due to  metabolic redundancy. Roughly,

SynComs composed of more than ~12 GEMs, displayed numbers of PPM and CPPM closer to the

values of the full 193-members community than the values of the smallest SynComs (figure 3).

Phylogenetic  distance  increased  SynComs  PPM  (polynomial  coefficients=1.32  and  -1.83,

p<0.001) and decreased SynComs CPPM (polynomial coefficients=-4.37 and 1.2, p<0.001) (figure

3.A&B). However, PPM reached a peak at a phylogenetic distance of ~1.3 for small SynComs then

decreased (Figure 3A; Figure 4A). This decrease turned into a  plateau at higher SynCom sizes

(Figure 3A). CPPM among GEMs decreased then reached a plateau. This highlighted more and

more diverse metabolism and less and less shared metabolism between strains. Most SynComs were

concentrated  around  this  phylogenetic  distance  rather  than  spread  equally  along  all  possible

distances, particularly for big SynComs (figure 3 and S4, A1 to A4). This corresponds to the values

of most combinations of Proteobacteria and Actinobacteria (supplementary figure III A to B) and

explained by the fact that these two phyla were dominant in the dataset.

Genomes  sizes  significantly  increased  both  PPM  (coefficient=0.23,  p<0.001)  and  CPPM

(coefficient=0.46,  p<0.001)  (figure  3C&D).  Thus,  genomes  sizes  compensated  for  the  negative

effect  of  phylogenetic  distance  on  metabolic  redundancy.  At  a  fixed  phylogenetic  distance,

SynComs  with  bigger  genomes  have  both  a  higher  metabolic  diversity  and  a  bigger  core

metabolism than SynComs with smaller  genomes (supplementary figure III  C1&C2).  SynComs

were also aggregated around an optimal value,  linked to the corresponding optimal phylogenetic

distance and the taxonomic composition of SynComs.

The  combination  of  GEMs  of  phylogenetically  distant  strains  is  positively  correlated  to

metabolic  diversity  and negatively correlated  with  metabolic  redundancy.  However  our  results

displayed  many supplementary  patterns  we  did  not  predict  :  most  combinations  of  GEMs are

aggregated around the same mean phylogenetic distance, a few GEMs are sufficient to approximate

the full community metabolism, and big genomes both increase metabolic diversity and redundancy.
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Figure 2: Description of the 193 genomes collection from A. thaliana roots microbiota (A) Phylogenetic tree
(maximum likelihood from a multi-alignment of AMPHORA genes in Clustal Omega) (B) Boxplots displaying
the quantitative effect of Phyla on genomes sizes and distributions of the number of PPM. (C) Dotplots of the
number of PPM and TPPM as a function of genomes size. (D) PCoA displaying the qualitative effect of phyla on
metabolites' production (i.e. which compounds are produced by which taxa). Across the panels, Colors match
genomes’' phyla.
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Figure 3:  Correlations between explanatory metrics (mean phylogenetic distance (A&B), and mean genome
size, (C&D)) and response metrics: number of PPM (A&C), and CPPM  (B&D). These correlations were used
for  the  quasi-Poisson  GLM models.  In  each  panel,  the  black  dot  corresponds to  the  full  community  (193
genomes) values. The number of PPM increases rapidly with SynCom Size, mean phylogenetic distance, and
mean genome size, then starts plateauing slowly towards the full community value.  (see also  supplementary
figure  III, notably panels B1 to B4). The number of CPPM was negatively correlated with SynCom size and
mean phylogenetic distance, and positively correlated with mean genome size.
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3.3 PPM and TPPM number and composition depends on nutritional  
constraints

In this analysis,  we predicted the shift  between unconstrained and constrained GEMs under the

effect of available nutrients (referred as ‘nutritional constraints’, exemplified here by the simulated

growth media composition, table 1) (H3). “Poor media” refer to severe constraints with essentially

mineral  nutrients,  while  “rich  media”  refer  to  more  permissive  constraints,  with  more  carbon

sources (see methods).

At the single GEM scale, PPM under nutritional constraints were dramatically reduced compared

to PPM of unconstrained GEMs (all p<0.001 with Holm correction, figure 4A, right plot). PPM

under poor media were significantly lower than PPM under rich media (p<0.001, Cliff’s delta effect

size = -0.8978 without ARE and p<0.001, Cliff’s delta effect size = -0.5102 with ARE; figure 4A).

Media supplementation with compounds artificially mimicking exudates composition of plant roots

(ARE) is predicted to significantly increase the number of PPM compared to the non-supplemented

media (green vs. orange colour in figure 4A, table 3, P<0.001). Notably, PPM compositions were

more similar (i.e. similar sets of producible compounds) across media containing ARE, irrespective

of the media poor/rich initial aspect (Figure 4B). Hence, the addition of ARE is predicted to unlock

the production of the same metabolites across media.  Most of the GEMs have the potential  to

produce most of the TPPM (27 out of 30 being producible by single GEM within the full dataset),

but  cannot  complete  the  entire  pathways  under  most  of  the  nutritional  constraints.  The

supplementation  of  growth  media  with  ARE  was  predicted  to  increase  the  number  of  TPPM

producible by single GEM (figure 4D).

 At the full community scale, the added-value brought by metabolic exchange between all GEMs

increased the community’s number of PPM at similar values regardless of the nutritional constraints

(figure  4C).  Depending  on  the  media  type  (poor/rich)  and  the  absence/presence  of  ARE,  the

community  added-value  increased  the  number  of  PPM  from  22%  to  140%.  Thus,  GEMs

functioning is limited by available nutrients that condition which reactions can be activated, but

metabolic  exchanges  between  all  GEMs  of  a  community  can  largely  compensate  for  growth

constraints,  whether they are severe or not. The next part of the analysis  was to focus on how

smallest assemblages can also compensate for growth constraints.
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Figure  4:  Effect  of  nutritional  constraints  on  PPM  and  TPPM.  (A)  Boxplots  of  GEMs’ number  of  PPM
according to the growth media, compared to no applied constraints. (B) Hierarchical clustering (‘complete’
method, Bray-Curtis distances) of growth media according to the composition of the community’s PPM (without
community’s added value).  (C) Full  community’s  number of  PPM according to the growth media, with the
added-value brought by metabolic cross-feeding. (D) TPPM production per growth media. Decimal numbers
indicate the fraction of GEMs capable of producing the compound. Gray cells correspond to growth media
already containing the TPPM, which are thus irrelevant.. On all figures axes, poor media are labeled in black,
rich media in red, ARE-enriched media in bold and standard media in plain text

80



Chapter 2

Table 3 : Wilcoxon rank-sum tests on the effect of ARE on the number of PPM.

Media (with and without ARE 

comparison)

Mann & Whitney p 

value

Effect size (Cliffs' 

delta)

M63 P<0.001* -0.9786 

M9 P<0.001* -0.9787

mineral medium P<0.001* -0.9788 

hydrogen oxydizing P<0.001* -0.9787

MBM P<0.001* -0.9788

basal P<0.001* -0.9723

phb_pyruvate P<0.001* -0.785

MMJS P<0.001* -0.7081

LB lennox enriched P<0.001* -0.523

3.4 Simplest SynComs are predicted to produce  TPPM through 
metabolic exchanges

We used ‘Miscoto mincom’, an answer-set programming solver designed to automatically find,

under a simulated nutritional constraint, all the simplest (i.e. smallest) combinations of GEMs that

complete the metabolic pathways to produce the specified TPPM (30 in total) (H4). Combinations

of GEMs are considered as a meta-GEM where an incomplete pathway in a single GEM can be

completed by another, thanks to exchange of intermediate products.

Possible combinations were numerous and always small. Most of the time, 2 or 3 GEMs were

sufficient to produce the TPPM. The sets of combinations were also regularly identical from one

media to another (figure 5A), suggesting the important effect of identical nutrients among growth

media and shared reactions among GEMs. The total number of GEMs involved in combinations

varied according to the TPPM included in the analysis. For example 67 GEMs were returned when

all TPPM were considered under poor media (11 under rich media), while the whole set of 193

GEMs (for a few media) were returned when only amino-acids or vitamins were considered (figure

5A).

Globally, rich media (amino-acids and phytohormones TPPM) returned very few combinations,

meaning  they  allow  more  GEMs  to  produce  TPPM  without  predictable  mandatory  metabolic

dependencies  or  cooperation  (figure  5A).  For  example,  there  were  less  than  10  minimal
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combinations of two different GEMs able to produce 12 amino-acids, while poor media returned

dozens to thousands of combinations of two or three GEMs. The addition of ARE also decreased

the number of simplest combinations (for example from 2288 to 82 for rich media with vitamins as

TPPM), with the exception of the situation “all TPPM + poor media” (figure 5A, first row). In such

a situation,  the ARE-enriched poor media contained more combinations (724 for ARE-enriched

poor media, 448 for standard poor media, for 14 producible TPPM).

GEMs  combinations  increased  the  number  of  producible  TPPM  compared  to  single-GEMs

capacities under several growth constraints (figure 5B). Under poor media (i.e severe nutritional

constraints), 6 to 7 supplementary amino-acids were predicted to be producible by thousands of

combinations  of  two  or  three  GEMs  compared  to  individual  GEMs  (often  6  amino-acids).

Interestingly, for rich media all amino-acids were predicted to be producible by single GEMs, but

none could produce themself the 17 targeted amino-acids, resulting in a few combinations of strains

predicted  to  exchange  end  products  instead  of  intermediate  metabolites  (figure  5B).  Among

vitamins and phyto-hormones, only nicotinic acid (vitamin B3) and salicylic acid were producible,

with required metabolic exchanges between 2 GEMs under the constraints of poor media.

The frequencies of GEMs in solutions was highly unequal with few GEMs occurring in several

hundreds  solutions  (figure  6A).  The  other  GEMs  were  much  less  frequent  with  only  a  few

occurrences. Thus, for all TPPM at once, the majority of solutions can be aggregated with a set of 7

GEMs (supplementary table S1), belonging to strains of the phyla proteobacteria and, surprisingly,

firmicutes (despite being very underrepresented in the dataset). When splitting TTPMs by category,

the majority of solutions can be aggregated with a set of 15 GEMs (supplementary table S1). We

did not find any clear correlation between a GEM frequency and its corresponding genome’s size

(figure  6B).  In  fact,  the  high  frequency of  these  particular  GEMs were  driven by their  strong

contribution  to  the  production  of  a  few particular  TPPM.  We noted  the  case  of  salicylic  acid

(supplementary figure  VII). In MetaCyc, the bacterial  salicylic acid pathway is composed of two

reactions  depending on the  availability  of  chorismate  (which  has  a  longer  pathway),  but  other

reactions out of this pathway are also recorded in the database. The first reaction is encoded into 5

GEMs only, which are part of the aforementioned 7 main GEMs. The second one is encoded into 47

GEMs. Most of the combinations for the completion of this pathway of salicylic acid are then built

with those GEMs. We noted that it differs with the total of 74 GEMs returned by the solver, which

highlights the production of salicylic acid by the reactions in other pathways than the main one

described above (as described in Lefevere et al. (2020) in plants and Mishra et al. (2021) in plants
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and bacteria). One GEM was remarkable as it was the only one predicted to encode the complete

salicylic  acid pathway:  the  Pseudomonas identified as ’Root569’,  and could putatively produce

salicylic acid by itself under the condition of being placed under the constraint of  a rich medium.

Hence, many small combinations of GEMs could compensate for diverse nutritional constraints

by  exchanging  metabolites,  unlocking  the  production  of  several  TPPM  unreachable  by  single

GEM. 
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Figure 5:  Minimal combinations of GEM to produce TPPM. (A) Summary of the number of combinations of
GEMs able to produce the TPPM, for all TPPM simultaneously, amino-acids only, vitamins only, and phyto-
hormones  only.  (B)  Details  of  producible  and unproducible  TPPM with  single  GEM capacities  (red)  and
combinations added-values with metabolic completions (green). TPPM and nutritional constraints are ordered
in the same way as for panel A. Results are given for each nutritional constraint (black : poor, red : rich),
without (plain) or with (bold) ARE. The list of nutritional constraints vary according to the considered TPPM,
in accordance with the no-TPPM-in-media condition (i.e. growth media containing TPPM in their composition
were excluded when necessary). On all figures axes, poor media are labeled in black, rich media in red, ARE-
enriched media in bold and standard media in plain text.
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Figure 6: Frequencies of GEMs in minimal combinations to produce TPPM. (A) 20th most occurring GEMs in
all possible minimal combinations for all TPPM, only amino-acids, only vitamins, and only phyto-hormones.
(B) Occurrences of GEMs in minimal combinations as a function of their genomes sizes. Text-annotated dots are
the most occurring GEMs. There was no relation between a genome size and its frequency in combinations.
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4 Discussion

4.1 Fundamental ecological niche signature in GEMs

The analysis of the PPM of the 193 GEMs of the A. thaliana culture collection demonstrated that

phylogenetically  related  bacterial  species  are  expected  to  share  more  similar  metabolism than

distant species. The first hypothesis (H1) was validated, and is consistent with the literature (Jaffe et

al.,  2020). Previous research attempted to  predict ecological traits from genomic and metabolic

information  (Barberán  et  al.,  2014;  Alneberg  et  al.,  2020),  highlighting  differentiation  between

taxonomic groups and hierarchical  conservation within groups  (Martiny et  al.,  2015).  However

finding fundamental niche signatures in GEMs remains a challenging task (Muller et al., 2018), and

complementary  trait-based  approaches  have  been  used  to  determine  ecological  attributes  or

correlate overlapping niches with phylogeny (Barberán et al., 2014; Fahimipour and Gross, 2020).

4.2 Phylogenetic distance, similarity and complementarity, antagonism
and cooperation in SynComs

SynComs allowed a more diverse metabolism when they contain phylogenetically distant strains,

our second hypothesis (H2) was validated, along with many unpredicted results (discussed below).

Several studies used metrics similar to ours and obtained comparable results (Zelezniak et al., 2015;

Russel  et  al.,  2017;  Hester  et  al.,  2019;  Lam et  al.,  2020),  highlighting  a  correlation  between

metabolic similarity/dissimilarity and phylogenetic distance. Phylogenetically distant bacteria can

be predicted  to have less metabolic resource overlap and a higher potential to cooperate (Hester et

al.,  2019), while phylogenetically closer are expected to compete  (Lam et al.,  2020). Based on

similarity  and  dissimilarity,  other  studies  attempted  to  go  further  and  interpret  whether  niche

differentiation or habitat filtering were at play. Results are conflicting and research is consequently

currently far from a consensus. For example, some studies found that species in the gut microbiome

tend to co-occur more frequently with their competitors, thus highlighting habitat filtering  (Levy

and Borenstein, 2013), while it was shown that increased phylogenetic relatedness was correlated to

competitive  exclusion  among  bacterivorous  protist  species  (Violle  et  al.,  2011),  favoring  niche

differentiation.

Rather  than  favoring  niche  differentiation  or  habitat  filtering,  SynComs  unconstrained

metabolism question the aggregation of most SynComs around a putative optimal  phylogenetic

distance,  along with a  metabolic  diversity peak for  smaller  SynComs (figure 3A).  The peak is
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probably due to the taxonomic composition of SynComs with a high phylogenetic distance. These

Syncoms all incorporate a Firmicutes or a Bacteroidetes (supplementary figure III A&B), which

both display lower metabolic capacities than the other phyla, causing an inevitable decrease of PPM

compared  to  other  combinations.  The  aggregation  of  SynComs  around  the  same  phylogenetic

distance  is  however  more  interesting.  Closely  related  bacteria  have  similar  needs,  and  thus

encounter strong resource competition (Sung et al., 2017) despite many cross-feeding opportunities.

On the contrary,  very distant  bacteria  avoid competition,  i.e.  are  adapted to  different  niches  to

colonize, and have a limited overlap in their needs. The observed optimal phylogenetic distance in

our results could be interpreted as a trade-off between metabolic similarity and dissimilarity. Such

optimum niche overlap would limit competition for resources among closely related species while

being sufficient to promote exchanges of metabolites. as previously described in  (Machado et al.,

2021).  However,  the  existence  of  microbial  communities  at  both  ends  of  the  competitive-

cooperation spectrum is also highlighted, mostly dependent on the environment (soil, free-living, or

host-associated environments). 

4.3 Metabolism is nutritional-constraint dependent

Sets of constraints were modeled using different growth media compositions. The third working

hypothesis  (H3),  stating  that  the  available  nutrients  have  a  deep  impact  on  the  metabolism of

bacteria, was validated.

GEMs displayed low metabolic capabilities under severe growth constraints, alleviated by ARE

which is in line with the nature of the genome collection used, isolated from A. thaliana’s roots.

This result suggests that exudates from plant roots are important determinants determining the range

of producible metabolites in the root microbiome. This was particularly visible for TPPM: the same

set of TPPM was produced when  ARE were added, regardless of the growth medium. This could

either reflect the fact that our TPPM are core, essential compounds that most bacteria rely on and

are supposed to metabolize. TPPM would create similar metabolic patterns among GEMs, activated

by ARE. 

These findings highlight the importance of nutrient availability for the bacterial community’s

metabolic profile (Erlandson et al., 2018). However, there is currently no consensus on the effects

of all nutrients on microbial communities. For example, despite nitrogen being a strong predictor of

metabolism, its enrichment has various impacts on soil microbiota’s diversity and composition (Cui

et al., 2021). Root Exudates are known to manipulate microbial communities but the effect of only a
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few compounds were recently elucidated (Musilova et al., 2016; Voges et al., 2019; Jacoby et al.,

2021).

The high difference observed between unconstrained and constrained metabolism could also

exhibit  the  difficulty  to  correctly  model  an  environment  through  the  simulated  nutritional

constraints.  Indeed, some TPPM were unproducible in any media,  despite full  completion rates

within several GEMs (such as auxin and B12 vitamin). However, it could also reflect the fact that

most growth media are unadapted to all these organisms, which many are known to be difficult to

grow in vitro (Mas et al., 2016). Hence, metabolic cooperation would be especially relevant with

such microorganisms. To parry in vitro culture issues, attempts of reverse ecology exist, for example

by computing the nutrients set required by a metabolic network to produce biomass (Borenstein et

al., 2008; Zelezniak et al., 2015; Laniau et al., 2017; Hester et al., 2019). Such approaches allowed

the  computation  of  overlapped  and  differentiated  growth-requirements  of  several  organisms,

strengthening the study of ecological niche and metabolic interactions.

4.4 Metabolic dependencies are predicted to be major drivers of 
microbial communities structure

Metabolic exchanges were found to be essential to improve GEMs’ metabolic capacities, both at

the whole community and for combinations of a few  GEMs, validating our fourth hypothesis (H4).

However,  we  did  not  expect  such  high  differences  between  poor  and  rich  media,  nor  the

counterintuitive effect of ARE on very poor media with many TPPM.

4.4.1 Metabolic exchanges are nutritional-constraint dependent and compensate 
severe growth constraints

Rich  growth media  and ARE unlocked more  PPM and  TPPM for  single  GEMs,  with  little

metabolic  cooperation  required  (figure  5).  Indeed,  growth constraints  are  likely weaker  in  rich

media since most nutrients are available, thereby unlocking many reactions and their associated

metabolic pathways. Reciprocally under poor media, i.e. severe growth constraints, single GEMs

were not self-sufficient and more metabolic exchanges were required to produce some TPPM. This

was visible by the high difference in the number of possible combinations of GEMs able to produce

TPPM. However,  when considering all  TPPM at  once on very poor media (M9, M63, mineral

medium), the supplementation with ARE behaved differently and increased the number of predicted

metabolic  interactions  between  GEMs  (figure  5A),  which  was  unexpected  because  they  are

supposed to  improve single  GEMs autonomy.  We concluded that  under  very severe  nutritional

constraints,  an extremely small  subset  of  GEMs are able  to  produce intermediate  products and
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cooperate. In this case ARE unlocked enough chemical reactions in other GEMs to compensate for

the constraints, without permitting the full completion of TPPM’s pathways, hence increasing the

number of combinations. The combined effect of nutrients availability in soil and nutrients secreted

by  the  host  might  then  be  a  strong  conditioner  of  metabolic  interactions.  In  support  of  this

statement, Klitgord and Segré (2010) found that there is always a way to predict a growth medium

inducing metabolic interactions between pairs of seven species. However, they failed to predict a

viable media for individual species, highlighting again the importance of cooperation. Finally, at the

full community scale, the major compensation predicted by cooperation between all GEMs (figure

4C)  also  highlights  the  importance  of  metabolic  cooperation  to  counter  strong  nutritional

constraints.

4.4.2 Minimal combinations of GEMs reflect functional redundancy for targeted
compounds

The results obtained herein allowed to predict the putative cooperation between GEMs able to

produce relevant TPPM of the root microbiome (amino-acids, vitamins, phyto-hormones). For most

TPPM  categories,  a  number  of  putative  combinations  were  returned  when  strong  nutritive

constraints, with or without ARE were applied. These results are coherent with previous research

such as Frioux et al. (2018) and Thommes et al. (2019). The number of solutions predicted echoed

recent  research which predicted a large range of metabolites that  can be secreted without cost,

generating countless cross-feeding opportunities  (Pacheco et al.,  2019). Even if these results are

strongly linked to the considered TPPM and constraints, it can be emphasized that combinations of

bacteria are predicted to be able to co-metabolize to complete core, ubiquist metabolic pathways.

This observation can be interpreted as a  community-level  functional  redundancy  (Frioux et  al.,

2018) and as  an  insurance  of  completion  of  metabolic  processes  for  a  range of  environmental

constraints,  for  nutrition  or  interaction  with  host  plants  (Lebeis  et  al.,  2015).  These  putative

redundancies  in  metabolic  completions  might  be  key  for  stability  processes  under  variable

environmental constraints. Beside these core metabolic functions, it would be interesting to extend

the analysis of minimal communities for secondary, more specific metabolism.

The  software  used,  Miscoto  mincom  (Frioux  et  al.,  2018), worked  in  a  way  where  most

parsimonious solutions only, the simplest combinations of GEMs fitting the applied constraints, are

calculated.  However,  these  putative  solutions  do  not  imply  that  more  complex  combinations

shouldn’t  exist  to  produce  the  TPPM.  Finally,  we  did  not  explore  all  solutions  to  make  the

distinction between mutualistic cross-feeding or one-way auxotrophies.  One strain could be the
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final producer of a TPPM by taking advantage of the secretion of another strain, without mutualistic

exchanges, or several exchanges might be required. Both interacting behaviors likely coexist, even

at the level of a single bacteria, depending on the other bacteria. Up to date the knowledge on these

behaviors among co-existing bacteria is lacking. Additional hypotheses in the bacterial secretomes

might fit better what is actually occuring in living systems.

4.4.3 Genomes size effects remains unclear

Bacteria  with  big  genomes  are  usually  considered  as  generalist  species  with  wider  niches

(Sriswasdi et al., 2017). They indeed have a higher unconstrained metabolism (higher PPM) thus

likely a higher probability to possess uncommon, important reactions involved in the production of

the  chosen  TPPM.  Antagonistic  bacteria  are  also  more  likely  to  have  larger  genomes,  linking

antagonistic and generalist strategies  (Russel et al., 2017). On the contrary, bacteria with reduced

genomes  are  more  likely  to  be  involved  in  metabolic  interactions  due  to  their  reduced  set  of

reactions  (Giovannoni  et  al.,  2014;  Gil  and  Peretó,  2015).  In  our  results,  bacteria  with  larger

genomes  exhibited  both  a  higher  metabolic  similarity  and  complementarity  than  others

(supplementary  figure  III  C1&C2),  highlighting  a  putative  reservoir  of  functions  which

compensated for low phylogenetic distances, without many hints about their orientation towards

cooperation or antagonism. The absence of correlation between GEMs’ corresponding genomes

sizes and their frequencies in putative metabolic interactions did not permit either to establish a link

between generalist/specialist behavior and cooperation or auxotrophies provider. 

4.4.4 Few strains are enough to reach the community’s potential

As  SynComs  sizes  increased,  their  metabolism quickly  became  similar  (Figure  3  and  S4).

According to the results, the full community’s unconstrained metabolism can be approximated with

a few dozen GEMs only (in link with H2). In addition, most of the combinations for the production

of TPPM involved a reduced set of GEMs. It echoes many studies which identified core microbiota

composed of a reduced pool of species (Toju et al., 2018) to perform and/or optimize a biological

function  (Niu  et  al.,  2017),  analyze  the  impact  of  core  strains  on  the  whole  microbiome

(Bodenhausen et al., 2014; Lebeis et al., 2015), or to study host colonization processes (Bai et al.,

2015). Other studies supported that a mirobiota’s functional stability is kept regardless of the strains

pick, as long as each functional group is picked (Louca et al., 2016).
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5 Conclusions and prospects

Metabolic  diversity  and similarity  were detected  along genomes  taxonomy.  From the  multi-

genomes  metabolic  modelling  analyses  performed  herein  we  predicted  functional  inter-

dependencies and highlighted a long lasting ecological paradigm, the trade-off between competition

and cooperation. We also found that putative metabolic interactions are numerous and constraint-

dependent showing community level interlinkages, and cooperation permitting to buffer nutritional

constraints.  Such numerous interactions  highlighted the importance of richness and diversity in

microbial  communities for community-level functioning. Altogether,  these results  bring hints of

knowledge on the path to decipher microbial interactions in a microbiota applicable beyond the

limits of the set of genomes used to produce the results.

In  this  view,  deeper  and  more  realistic  genome-based  modelling  approaches  mobilizing

exchanges' costs, fluxes analysis, the use of a constant of nutrient depletion through time, would

possibly provide a closer look on the community-level genomic toolbox to respond to constraints

and to decipher evolutionary and behavioral responses to these constraints either under fluctuating

or  constant  environments.  All  these  approaches  leading  to  putative  responses  will  have  to  be

combined to experimental validations. In this aim, the integration of multi-omics data, including

secretome (Fritts et al., 2021), a current frontier of research is needed to break down padlocks on

the interoperability of the data.
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Supplementals

Supplementary figure I: Method for fixing the maximum Syncom size to inject into Poisson GLMs, we compared
every (s, s+1) pairs of SynComs’ PPM and CPPM, s being a SynCom size in [2,20]. For each (s, s+1) pair, 200
pairs  of  random subsets  of  size  n=50 SynComs were  taken,  and  their  PPM and CPPM were  tested  with
Wilcoxon, Mann & Whitney tests. Boxplots of the 200 p values are displayed for all size comparisons and for
PPM (top) and CPPM (bottom). Red lines are p=0.05 and green crosses are 1st quantiles. SynComs of 12
strains were chosen as a limit because it was the minimal size at which less than 10% of the p values were under
0.05 for PPM and CPPM.
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Supplementary  figure  II:  description  of  the  193 genomes  collection  from A.  thaliana roots  microbiota  (A)
Phylogenetic tree (maximum likelihood from a multi-alignment of AMPHORA genes) (B) Boxplots displaying
the quantitative effect of class on genome sizes and PPM distributions. (C) Plots of the producible metabolites
or TPPM as a function of genome sizes. (D) PCoA displaying the qualitative effect of phyla on metabolites'
production (i.e. which compounds are produced by which taxa). Colors match strains classes.
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Supplementary  figure  III: Details of the correlations between explanatory metrics and response metrics for
SynComs with two strains only. (A-B) Patterns of SynComs’ taxonomic composition in the correlation of PPM
and CPPM to phylogenetic distance. Proteobacteria and Actinobacteria combinations are responsible for the
PPM peak. (C-D) there is also a taxonomic signal among the response of PPM and CPPM to genome sizes. (E-
F) Effect of genome sizes on SynComs' PPM and CPPM. SynComs with a bigger average genome size have
both bigger PPM and CPPM than SynComs with a smaller average genomes size. For each plot, only SynComs
with 2 strains are represented
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Supplementary figure IV: Details on phylogenetic and metabolic metrics. A1 to A4 : density plots show that for
each SynCom size, most values are concentrated around a narrow range. B1 to B4 : Boxplots showing the reach
of a plateau (in terms of values and/or variances) for each metric.  Only data for SynComs’ size below the
plateaus were kept in regression models (size 2 to 12 strains). C1 to C4 : distributions of the different metrics,
split  by SynCom size.  D :  phylogenetic  distance and genome size  are not  correlated,  making their  use as
independent variables valid in the quasi-poisson regression.
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Supplementary figure V: Diagnostic plots of the quasi-poisson GLM modelling the response
of PPM in SynComs.
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Supplementary figure VI: Diagnostic plots of the quasi-poisson GLM modelling the response
of the CPPM in SynComs
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Supplementary table I : Taxonomy of most occurring GEMs in the putative combinations of GEMs permitting TPPM
production  through  metabolic  exchanges.  The  TPPM  categories  in  which  each  GEM  is  the  most  involved  are
mentioned.

Identifier Involved TPPM Phylum Class Order Family Genus

Root11 All Firmicutes Bacilli Bacillales Bacillaceae Bacillus

Root131
Amino-acids, 
vitamins

Firmicutes Bacilli Bacillales Bacillaceae Bacillus

Root569
Phyto-hormones
(salicylic acid)

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas

Root401
Phyto-hormones
(salicylic acid)

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas

Root329
Phyto-hormones
(salicylic acid)

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas

Root68
Phyto-hormones
(salicylic acid)

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas

Root71
Phyto-hormones
(salicylic acid)

Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas

Root381 Amino-acids Proteobacteria Alphaproteobacteria Rhizobiales Bradyrhizobiaceae Bosea

Root483D
1

Amino-acids Proteobacteria Alphaproteobacteria Rhizobiales Bradyrhizobiaceae Bosea

Root404 Vitamins (B3) Proteobacteria Betaproteobacteria Burkholderiales Rhizobacter NA

Root52 Vitamins (B3) Firmicutes Bacilli Bacillales Paenibacillaceae Paenibacillus

Root198D
2

Vitamins (B3) Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae Duganella

Root336D
2

Vitamins (B3) Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae Duganella

Root351 Vitamins (B3) Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae Massilia

Root418 Vitamins (B3) Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae Massilia

98



Chapter 2

Supplementary figure VII: Supplementary figure 7 : A schematic view of the salicylic acid biosynthesis pathway.
There are only two reactions, being possessed respectively by 47 and 6 GEMs, Root569 being the only GEM
with a complete pathway. Under not constraining growth media, Root569 has the capacity to produce salicylic
acid by itself, but lost this ability under severe nutritional constraints. In such cases, the set of strains has to
exchange intermediate metabolites to produce salicylic acid. An hypothesis would be that Root569 is incapable
of producing chorismate under severe growth constraints, while other strains are.
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Chapter 3. Cross-feeding and predicted metabolic 
diversity promote coexistence in A. thaliana root 
microbiota

In  this  chapter,  we  attempted  to  correlate  in silico patterns  from the  previous  chapter  with

abundances of co-cultured bacterial strains of Arabidopsis thaliana root microbiome. 41 synthetic

ommunities  (SynComs)  were  designed  along  a  gradient  of  predicted  producible  metabolites.

SynComs size was set to 3 strains, according to the Answer Set Programming results of the previous

chapter.  A fourth,  shared strain (Mesorhizobium  sp) was added to all  SynComs for a total  of 4

strains.  SynComs were cultivated  in  a  liquid  M9 minimal  media  enriched with  Artificial  Root

Exudates,  and samples  were taken at  four different  timepoints  (48h, 72h, 96h, and late  7 days

timepoint). Strains monocultures were sampled after 7 days only. Among the SynComs with display

apparent cross-feeding patterns, two were replicated, in a liquid M9+ARE media again then in a

split-system device.

We hypothesized that SynComs with a bigger set of predicted producible metabolites would

display  more  cooperation  patterns  (i.e.  strains  with  better  growth  in  SynComs  than  their

monoculture) and less competition

Competition  was  quite  common,  with  some  strains  dominating  SynComs  and  others  being

apparently excluded, when compared to their monocultures. However, absolute abundances seemed

to confirm that competition is reduced in SynComs with a high metabolic diversity, possibly due to

less niche overlap. Enhanced growth of strains in SynComs was less common than expected, and

without apparent link with the gradient of metabolic diversity. However there was a particularly

interesting pattern involving an Achromobacter sp in three different SynComs. 

The constant strain Mesorhizobium sp was a slow grower and was apparently excluded (i.e. very

low abundances), but harbored growth in one SynCom. Replication of these cultures confirmed that

Achromobacter sp was able  to grow better  when cultivated with other  strains,  likely due to an

ability to feed on bacteria’s secretion. 

The split-system protocol suggested an ability of Mesorhizobium sp to profit from nutrient flow

without  contact  to  the provider(s),  thus  a  possible  avoidance of contact-dependent  competition.

When  cultivating  Achromobacter  sp in  the  split-system,  results  suggested  the  same  ability.

However, these results need replication with more statistical robustness to be confirmed.
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Abstract

Deciphering  the  intricate  network  of  interactions  between  microorganisms  is  crucial  to

understand the assembly rules of microbial communities. Using strains isolated from A. thaliana’s

roots, we reconstructed metabolic networks and  predicted in silico the metabolites producible by a

range of microbial metabolic networks combinations. We then explored the outcome of 41 4-strains

bacterial  co-cultures  representing  a  diversity  gradient  of  predicted  producible  metabolites. A

constant  strain  (Mesorhizobium  sp) was  included  in  every  SynCom in  order  to  analyze  more

precisely  its  interaction  profile.  Each  strain  was  also  cultivated  alone  in  order  to  compare

abundances  in  co-cultures  and  monocultures.  SynComs  with  a  high  number  of  producible

metabolites were expected to enhance strains growth  through cross-feeding. In most SynComs, one

or two strains were dominating in terms of abundances. Also, most SynComs seemed to harbor

competition, with many strains harboring a reduced growth compared to their monocultures, some

being potentially excluded because of very low abundances. A few other strains seemed unaffected

and, interestingly, competition seemed to decrease when reaching the higher end of the gradient of

metabolites  diversity.  Interestingly,  some  strains  displayed  an  improved  growth  in  SynComs

compared to their monoculture, suggesting a dependency to the other SynComs members, but with

no  apparent  link  with  the  gradient.  An  Achromobacter sp strain,  for  which  the  results  were

replicated,  appeared  to  benefit  from  cross-feeding  in  different  SynComs,  suggesting  a  low

specificity to the provider. By replicating the results involving this strain, we identified that this

growth benefit  depended on the provider growth. The use of a dedicated growth system suggested

that  such  a  benefit  could  occur  without  contact  through  soluble  compound(s)  secreted  in  the

environment,  but  remained  to  be  statistically  confirmed.  The  same  protocol  on  the  constant

Mesorhizobium sp in a SynCom of particular interest suggested (without statistical confirmation)
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that these strains responded differently,  Achromobacter sp doing better in mixed co-culture, and

Mesorhizobium sp being isolated from other strains, likely because it could benefit from the flow

and  avoid  contact-dependent  competition.  Our  results  highlight  the  strong  prevalence  of

competition in small co-cultures experiment but also the existence of strong dependency of some

strains  on  cross-feeding.  However,  the  difficulty  to  detect  more  cross-feeding  with  our  initial

protocol might be due to various issues, such as unmeasured antagonistic interactions. For instance,

cross-feeding  could  be  a  more  underlying  interaction,  softening  competition,  for  instance  to

maintain a low-level metabolism. More sophisticated models and adapted experimental protocols

were thus suggested as perspectives.

1 Introduction

Given the microbial community complexity, a current important question of microbial ecology is

to decipher how ecological  interactions  as competition and cooperation shape the structure and

dynamics  of  microbial  communities  (Boon  et  al.,  2014;  Hansen  et  al.,  2020).  After  an  initial

consensus prioritizing competition, the relative importance of competition and cooperation have

been regularly questioned (Mas et al., 2016; Coyte and Rakoff-Nahoum, 2019; Pacheco and Segrè,

2019).  Cooperative  processes  were  recognized  as  central  to  microorganisms’ ecology  despite

inherent  stability  issues  (West  et  al.,  2006;  McNally and Brown,  2016;  Rakoff-Nahoum et  al.,

2016).  Recently,  the rapid development of -omics technologies allowed tremendous progress in

microbial  research, both for experimental and modeling approaches  (Aguiar-Pulido et al.,  2016;

Hamilton et al., 2017; Li et al., 2017; Muller et al., 2018; Lloyd-Price et al., 2019; Jansma and Aidy,

2020).  For  instance,  the  reconstruction  of  organisms’ metabolic  networks  with  GEnome-scale

metabolic Models (GEMs) from annotated genomes permit to predict metabolic exchanges (Muller

et al., 2018). Also, the development of mathematical modelling in microbiology offers novel ways

to  model  the  evolutionary  dynamics  of  cooperation  (Lewin-epstein  and  Hadany,  2020).  Such

methods  are  notably  employed  with  host-associated  microbes  and  for  the  design  of  microbial

factories with synthetic biology, targeting gut and plant microbiotas with applications for health

(Heintz-Buschart et al., 2016) and sustainable agriculture (Ray et al., 2020).

Various approaches, including top-down, bottom-up experimental and  in silico approaches tried

to decipher the determinants of microbial communities assembly. These approaches are formalized

as microbial system ecology (Mataigne et al., submitted), and provided massive descriptive data and

identified  many  patterns  and  a  few  mechanisms  involved  in  the  organization  of  microbial
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communities  (Knight et al., 2018; Amor and Bello, 2019; Lawson et al., 2019). However, even if

such  results  allowed  massive  steps  forward  into  microbial  ecology,  we  still  miss  detailed

mechanistic understanding of ecological processes. Notably, different approaches regularly lead to

contradictory results. For instance,  in silico models generally predict many metabolic interactions

through  cross-feeding  (Lawson  et  al.,  2017;  Smith  et  al.,  2019),  while  standard  experimental

approaches with co-cultures generally struggle to validate cross-feeding or cooperation between

microbial consortia, highlighting mostly competitive processes  (Foster and Bell, 2012). Despite a

few known cases of validated cross-feeding  (Lin et al., 2018; Bui et al., 2019; Liu et al., 2019;

Blasche et al., 2021), cooperative interactions remain difficult to highlight experimentally, except

under particular environmental conditions or experimental protocols. Indeed, cross-feeding has been

shown to occur only under some circumstances, such as various stress relievers  (Liu et al., 2019)

particular nutrient composition (D’Souza and Kost, 2016), or spatial configuration. Indeed, in other

situations,  stronger  interactions  can  occur  and mask cross-feeding  (Goldford  et  al.,  2018).  For

example, in  (D’Souza and Kost, 2016), amino-acids auxotrophic  E. coli strains had a significant

fitness advantage in an amino-acids supplying growth media. Despite highlighting the importance

of  metabolic  dependencies,  these  results  did  not  confirm  any  metabolic  exchanges  between

organisms,  the  auxotrophic  strains  relying  only  on  the  composition  of  their  surrounding

environment.  Hence,  in  order  to  reconcile  modelling  and  experimental  approaches  to  find

microorganisms effectively feeding on the secretions of others, studies are currently encouraged to

combine modelling and experimental  approaches. In silico models with dedicated metrics should

inform  hypothesis building  with  in vitro  experiments as hypothesis  validators  (Lawson et  al.,

2019).  Following  this  scientific  ambition,  we  herein  combined  modelling  and  experimental

approaches. We focused on a regularly cited pattern, stating that in silico models often predict that

the metabolic diversity of a microbial community (i.e. producible metabolites) is correlated with

high phylogenetic distance (thus strains’ dissimilarity) and is an indicator of potential cross-feeding

and less competition between bacteria  (Zelezniak et al.,  2015; Russel et al., 2017; Hester et al.,

2019; Lam et al.,  2020). Cross-feeding would take place due to the high number of potentially

exchangeable metabolites, and competition would be reduced because of less overlap of ecological

niches due to high phylogenetic distances.

In this study, we considered small consortia of bacterial strains and tested how a simple metric as

the number of predicted producible metabolites (‘PPM’) can be used to predict coexistence, and

possibly cross-feeding, between bacterial strains. Hence, we hypothesized that SynComs with high

PPM would allow a better co-existence between strains due to more cross-feeding interactions and
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less  overlapping  niches,  thus  reduced  competition.  Strains  benefiting  from cross-feeding  were

expected  to  display  higher  abundances  when  cultivated  in  SynComs  than  cultivated  alone

(‘monocultures’),  while  competing  strains  would  display  the  opposite.  SynComs  with  less

competition  were  expected  to  harbor  an  improved  global  growth.  Hence,  we  designed  41

combinations of 4-strains synthetic communities (SynComs) along a gradient of PPM (predicted by

GEMs),  which also follows phylogenetic  relatedness.  In  total,  83 bacterial  strains of a  culture-

collection representative of Arabidopsis thaliana root microbiota were used. We noticed however a

lack of statistical power for some results, which incites carefulness for all interpretations.

2 Material and methods

2.1 Culture collection and genome-scale metabolic models

We used a culture collection of 193 strains of Arabidopsis thaliana root microbiome available at

the  Max  Planck  Institute  for  Plant  Breeding  research  (Köln,  Germany),  for  which  annotated

genomes were also available on www.at-sphere.com (downloaded on October 2018)  (Bai et al.,

2015).  For  each  genome,  a  draft  genome-scale  metabolic  model  (GEM)  was  reconstructed

(Mataigne et al., in prep) with an automated version of “Pathway Tools” (Karp et al., 2002, 2011,

2020) (the  “mpwt”  program  from  the  metage2metabo  tool  suite  (Belcour  et  al.,  2020) and

“AuReMe" (Aite et al., 2018). The reference database was MetaCyc (Caspi et al., 2008) (the default

database, which contains almost 2500 curated metabolic pathways from many organisms). There

was no gap-filling or manual curation procedure, since these organisms are relatively unknown, and

we preferred to keep false negatives rather than introduce false-positives.

2.2 Construction of the predicted produced metabolites gradient

We generated 50,000 random SynComs of size N=4 strains using Python 3. Each strains had its

reconstructed  GEM,  for  which  we  had  computed  the  number  of  compounds  it  can  produce

(“Predicted producible Metabolites” abbreviated in “PPM”) with “Miscoto scope”  (Frioux et al.,

2018). PPM must be computed under a simulated nutritional constraint, which was a minimal media

M9 with Artificial Root Exudates (ARE) supplements (supplementary file F1). Hence, SynComs’

PPM were simply the union of its strains’ PPM, plus the supplemental PPM obtained by metabolic

exchange between strains (under the strong assumption that everything can be exchanged).

The PPM of the 50000 SynComs ranged from 112 to 481 metabolites and was then divided into

ranks matching the  15-quantiles,  in  each 3 SynComs were picked (figure 1).  We chose to  use
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quantiles instead of a linear division of the PPM range in order to have the same number of random

SynComs per rank, facilitating the presence of a constant strain in each rank (i.e. present in every

picked SynCom). This constant strain was referred to as Root695 (Mesorhizobium sp). The picked

SynComs were  also the  closest  possible  to  the  minimum,  median,  and maximum phylogenetic

distance  of  their  gradient’s  quantile.  Phylogenetic  distances  were  computed  with  the  Python

package ete3, from a tree computed by (Bai et al., 2015). The SynCom size of 4 strains (3 strains +

constant  strain)  was chosen according to  previous  modelling  results  (Mataigne et  al.,  in  prep),

where many SynComs of 3 strains were predicted to be able to produce amino-acids by metabolic

cross-feeding, in which the constant strain was added. SynComs composition within the gradient of

predicted producible  metabolic  compounds were not  fully random. SynComs containing strains

displaying identical 16S rRNA were discarded in order to allow a correct mapping after sequencing

(see below). 

Four SynComs out of the 45 picks (supplementary file F2) were discarded post-sequencing due

to  contaminations,  resulting  in  a  final  number  of  41  SynComs  mobilizing  83  bacterial  strains

(supplementary file F4). In fine, the chosen SynComs spread along a gradient from 235 to 438 PPM

(figure 1).

106



Chapter 3

Figure 1: The gradient of PPM from which SynComs were picked. (A) The
gradient  of  PPM  was  built  on  50000  random  Syncoms  (each  of  size=4
bacteria, in blue). The gradient was divided into 15 ranks following the PPM
‘s  15th-quantiles  to  have the same number of  random SynComs per  rank.
Three SynComs (red) were picked per rank. In fine, picked SynComs created a
gradient  going  from  235  to  438  PPM.  (B)  Picked  SynComs  followed  the
minimum, median, and maximum of the distribution of phylogenetic distances
of each rank. 

2.3 Bacteria cultures

Individual strains were cultured in Petri dishes on 50% TSB with agar. After 48h, each SynCom

was constructed  by colony picking the four strains into 160µL of minimal M9 media amended with

artificial root exudates (ARE,  Baudoin et al., (2003), see composition in supplementary file F5).

10µL were transferred in 990µL of liquid culture (M9+ ARE), in triplicates (figure 2). Samples

were disposed (in a random order) into an incubator at 20°C and 180 rpm. Sampling was done by

taking 30 µL, at 5 time points: 0h, 48h, 72h, 96h, and 7-days after inoculation. Each sample was
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stored at -80°C. Monocultures of single strains were set up with a single replicate and a late 7-days

time-point.

Four  Syncoms found to  display potential  patterns  of  cross-feeding were  replicated  and also

cultured in pairs. The experimental protocol was identical, except minor adjustments.

2.4 Cultures in split-system

To validate the cross-feeding observed in four SynComs  and to test whether it is dependent on

contact between strains, we used a split-system device, made of two compartments separated by a

semipermeable membrane (figure 3). The strains of interest (Root565 and Root695) were isolated in

the  first  compartment,  while  the  other  strains  of  the  SynCom  were  placed  in  the  second

compartment. A negative control was included by letting the second compartment empty (referred

as “mock” throughout the text). The compartments were filled with 250ml of M9+ARE inoculated

with each strain pre-cultivated in liquid 50%TSB cultures. TSB cultures were centrifuged and the

pellet was washed three times with M9+ARE. The OD was adjusted to 0.2 with M9+ARE and

300µL of each strain adjusted culture was inoculated into the split-system. Each compartment was

sampled at three time-points (24h, 48h, 72h) to measure optical density.  .

108

Figure 2: Experimental pipeline used to analyse the strains growth within each  Syncoms. Quantitative analyses
were made possible by the use of a reference (spike-in) added in each culture before DNA extractions. Figure
drawn with BioRender.  
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2.5 DNA extraction, purification, and sequencing

After transferring all samples on 96-well plates (10 µL per sample), DNA extraction was done

with two buffers (15µL and 30µL, separated by 30min at 95°C). 5.82µL (10x more for the second

set of cultures)  of an artificial spike-in plasmid (Guo et al., 2020b) per 3.5mL of buffer was added.

This  spike-in  plasmid  allowed  to  have  strains’ abundances  relative  to  a  reference  value,  thus

mimicking absolute abundances,  making samples comparable for the data analysis. A first PCR was

then performed with 1µL of each sample with 799F and 1192R primers (0.75µL both), with buffer

(2.5µL),  MgCl2  0.5µL),  BSA 3% (2.5µL),  dNTPs  (0.5µL),  BIORON  DFS-Taq  (0.4µL),  H2O

(16.1µL) for a total mix of 25µL.

Digestion to remove primers and enzymes was done by adding a digestion mix to the PCR mix

(for each plate-well) made of antarctic phosphatase (1µL), ExoI (1µL), and antarctic phosphatase

buffer (3µL) and incubating at 37°C for 30min, then 85°C (enzymes deactivations) for 15min. The

mix was centrifuged 10min at 3000rpm and 3µL of the supernatant was used for a second PCR to

barcode the samples on the 2 strands  (i.e. 1 barcoding PCR primer per plate and 1 barcoding primer
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observe the consequence of not being in physical contact. Here we aimed at observing the
importance of bacterial excretions for the growth of a given strain. The compartment to
the left is separated from the compartment to the right by a semipermeable membrane. In
the picture, one compartment contained a strain of interest (the receiver of the putative
cross-feeding interaction, to the right) while the other contained the rest of the SynCom
(the providers)
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per well, resulting in a plate/well combination for each sample). Negative controls of PCR were

verified with 5µL of each sample on gel electrophoresis.

Purification was performed with the Ampure magnetic bead kit. For each sample, the initial mix

was 10µL of PCR product with 10mL of EtOH and 20µL of beads, incubated at room temperature

for 5 min, then on a magnetic rack for 3 min followed by a washing step with 70µL of EtOH, for

1min (repeated one time). After removing EtOH and 5min drying, 50µL of nuclease free H2O were

added to each sample to elute the amplicons. The supernatants were collected.

After pooling all samples together at equimolar concentration, the amplicon sequencing library

was  sequenced  using  a  2x300  sequencing  kit  on  a  MiSeq  (Illumina)  sequencer  following  the

manufacturer recommendations (figure 1).

2.6 Formatting sequencing data

Fastq MiSeq sequencing files  were demultiplexed into a  reads  abundances table  (number of

reads of each strain+spike-in+contaminants) per sample (727 samples in total) with Python scripts,

bash scripts, and usearch (Edgar, 2010). Fourteen samples with 0 spike-in reads were discarded. The

16S  RNA sequences  database  was  divided  into  databases  per  sample,  each  sample  file  being

mapped  on  a  database  containing  the  expected  SynComs  and  the  spike-in.  For  each  sample,

sequences for which usearch returned no hits were mapped a second time, on the full  database

containing all the 83 used strains. The matched sequences were considered as contaminants. Sample

counts  were  normalized  according to  spike  quantity in  the  sample.  After  all  the  trimming and

filtration steps, 541 samples of SynComs among which, 473 contained the constant strain) and 43

samples of monocultures were kept.

2.7 Data analysis

Abundances in  reads of each sample were normalized to  the spike-in abundance.  The linear

regression  with  SynComs_total_abundance~SynComs_PPM  was  performed  at  the  7-days

timepoint,  where all SynComs’ were stable. The response variable was log2 transformed, and one

datapoint was excluded because of a negative log value (the number of abundance reads was lower

than the spike-in reads, thus inferior to 1). Statistical testing of the abundance difference of Root565

and Root695 in different SynComs or paired cultures were done with t-tests (the best suited test for

very small samples; distributions were assumed to be normal).  All statistical analyses were done in

R.
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3 Results

3.1 Reduced competition in SynComs with high PPM

Our hypothesis stated that SynComs with more PPM were more likely to coexist, compared to

SynComs of lower PPM. The total abundances (4 strains at once) of SynComs (at the final time

point) were significantly and positively correlated with their PPM (p=5.5e-7, R2=0.215, figure 4).

Such a better global growth linked to high PPM suggests less nutrient competition between strains

of SynComs with high PPM, thus less overlapping niche between phylogenetically distant strains

(because PPM is correlated with phylogenetic distance). 

Figure  4 :  Plot  of  Syncoms’  abundances  in  reads  (base  2  log-
transformed) as a function of their PPM in the corresponding samples.
All  data  are  from  the  7  days  time-point.  Because  all  replicates  are
independent, they are not summarized as means of triplicates. 

3.2 Cases of cross-feeding identified among many competitive 
situations

Despite  the  softened  competition  highlighted  in  SynComs  with  high  PPM,  most  Syncoms

(examples : C27, C16, C24, C6, C22, etc., supplementary figure II) displayed dominance of one

strain with high abundances and/or growth rates compared to the other SynCom’ members. Four

SynComs  displayed  two  dominant  strains  (C37,  C15,  C44,  C18,  supplementary  figure  II).

Dominated  strains  had  very  low  abundances  and  growth  rates  close  to  0.  Unfortunately,

contaminations  caused  the  loss  of  about  a  half  of  monocultures,  limiting  co-cultures  and

monocultures  comparisons.  Among the  tested  strains  that  displayed growth,  17 grew relatively
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equally in SynComs and monocultures, thus apparently insensitive to competition or cooperation

(examples  :  Root918/C32,  Root65/C16,  Root935/C24+C2,  Root186/C10,  Root275/C4,  etc.,

supplementary figure II). Compared to available monocultures, 11 strains (out of 43 monocultures)

had  lower  abundances  in  SynComs  (examples:  Root901/C28+C43,  Root68/C33,  C3/Root420,

Root1204/C35,  etc.,  supplementary  figure  II).  30  strains  did  not  grow  and  had  abundances

extremely close to 0 at all time-points. 5 of these strains harbored slightly better growth in their

monoculture (supplementary figure II ). Strains with improved growth in SynComs compared to

their monocultures were rare (supplementary figure II). For example, Root558 in C6 displayed such

a pattern, and was the only growing strain in the SynCom. Root267 in C22 and R935 in C44 also

displayed such patterns, apparently neutral to other strains, but growths’ standard deviations were

too high to be sure. 

3.3 An Achromobacter sp with an apparent benefit from cross-feeding 
in three SynComs

The most interesting case of improved growth was the one of Root565 (Achromobacter sp) in

SynComs C37, C31, and C15 (supplementary figure II, figure 5 A&C&E). In SynCom C37, this

strain grew better than in its monoculture (~2 times more), while the other most abundant strain

(Root267 -Acidovorax sp-) was inhibited (~1.6 times less). Root565 growth was dramatically higher

in C31 (~4 times more), and also possibly in C15 (~3 times more, but a doubt remained about this

tendency because of a high standard-deviation). In C31, Root50 (Sphingomonas sp) was poorly

abundant but unaffected. The absence of Root318D1 (Variovorax sp) monoculture in C31 did not

permit  to  infer  the  outcome  for  this  putative  provider,  and  in  C15  the  other  dominant  strain,

Root473 (Variovorax sp) did not seem affected. Additional cultures confirmed that Root565 had a

strongly improved growth in all the three SynComs compared to its monoculture (figure 5A). Those

growth differences were statistically significant in most cases and time-points (supplementary table

1). 

Paired co-cultures indicated that all strains used as providers significantly improved Root565

growth  (supplemental  table  2),  with  Root473 (SynCom C15)  permitting  the  maximum growth

improvement  (25 times  more  when comparing  the  means  at  the  96h time-point).  Root267 and

Root318D1 (both in SynCom C37) were the second most enhancing strains, followed by Root50

(SynCom C31, figure 5C). In each case, the differential growth increased at each time point. This

preliminary  experiment  and  the  very  interesting  results  obtained  need  to  be  confirmed  in  an

additional independent experiment with more replicates. The abundance of Root565 was correlated
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to the abundance of its paired co-cultured strain (p=3.84e-20, R2=0.843, with all replicates and all

time-points, figure 5E). Indeed, Root267 and Root983 grew well on monocultures (figure 5F). Note

that neither the pair Root565/Root29 and the monoculture of Root29 were analyzed because no

reads of Root29 were detected. 

Figure 5: Abundances (in read counts relative to spike) of strains in the second set of cultures of SynComs C15,
C31, C37, and C41 along time-points. A) Abundances of Root565 in SynComs, compared to its monoculture. B)
Abundances of Root695 in SynComs, compared to its monoculture. C) Abundances of Root565 in all possible
pairs of strains of SynComs C15, C31, C37 (except Root695). D) Abundances of Root695 in all possible pairs of
strains of SynCom C42. E) Correlation between the abundance of Root565 (same as in C) with the abundance
of its paired strain in co-cultures (all time-points and replicates). F) Abundances of each strain’s monocultures
(Root29 and Root473 were discarded because of contaminations).

In the split-system experiment, Root565 grew slightly better when associated  with C31 and C37

compared  to  the  control  (figure  6A),  but  only  the  first  time  point  (24h)  was  significant
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(supplementary table 3). However, the insignificance of later time-points were likely due to an early

saturation of the SynComs. C15 was dropped because of contaminations.

In fine, these results did demonstrate that Root565 is able to feed and grow by uptaking other

strains’ secretions,  at  least  in  homogeneous  intermixing  conditions.  The  growth  improvement

depended on the provider’s growth rate. Root565 was also able to uptake nutrients secreted by the

provider by a non-contact process, i.e. by a nutrient flow only.

3.4 The constant strain is a slow grower and a weak competitor that 
could benefit of non-contact secretions

The strain Root695 (Mesorhizobium sp) was added as a fourth member of each of the cultured

SynComs,  in  order  to  discriminate  strains  with  a  different  impact  on  its  growth  (enhancer  or

inhibitor). Root695’s monocultures unfortunately got contaminated, strongly limiting this analysis.

In most of the SynComs, Root695 exhibited very low abundances compared to the other strains, no

growth or  suppression (supplementary figure II  and figure S2),  suggesting a  weak competition

capacity  combined  to  a  weak  growth  capacity  on  M9+ARE  media,  potentially leading  to

competitive exclusion. The SynCom C42 was the only one where Root695 exhibited a clear growth

pattern (supplementary file S6 and figure S2). 

The  SynCom  C42  was  cultivated  again,  as  well  as  all  possible  pairs  of  Root695  and  the

SynCom’s members. In this second set of co-cultures, Root695 still grew in the whole SynCom, but

significantly less than its monoculture (TP1: p=0.03, TP2: p=0.000876, TP3: p=0.00275), with a

decrease at the third time-point (figure 5B). When looking at pairwise co-cultures, only Root135

displayed a  significant  growth-inhibiting  effect  on Root695 at  the third  time-point  (p=0.00493,

other measurements were insignificant, supplementary table 4). Root29 was discarded because of

no reads detected, and the last time point of the co-culture Root695-Root983 was contaminated)

(figure 5D).  In the split-system protocol,  Root695 seemed to harbor an improved growth when

isolated from the rest of the SynCom, benefiting only from the flow of their secretions (figure 6B).

We however could not obtain a statistical difference (TP1: p=0.374, TP2: p=0.205, TP3: p=0.141)

so these results remain observations to confirm. 
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Hence, we observed that Root695 is a slow-grower and a weak competitor. We also observed some

hints stating that Root695 could benefit from cross-feeding and avoid competition only if away

enough  from  its  competitors,  by  relying  on  the  metabolites  flow,  but  a  replication  of  the

experiments with more statistical power is needed. If these observations appeared to be correct,

Root695 could benefit from other strains’ secretion, but the benefit might have been erased by other

factors, likely spatial or contact-dependent effects.

4 Discussion

Adopting  a  microbial  system ecology  point  of  view,  this  study aimed  to  confirm  in  silico

predictions, we tested whether antagonistic or cooperative behaviors shaped the composition of 41

4-strains SynComs built with 83 strains derived from A. thaliana’s root microbiota. SynComs were

built along a gradient of PPM, a metric often assimilated to cross-feeding opportunities and less

competition, and the abundance of each strain in every SynComs was compared to its abundance

when  cultivated  alone  (“monoculture”).  Cross-feeding  and  competition  were  investigated  with
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Root 565 (Mock+SynComs C31, C37. C15 was discarded because of contaminants.
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comparisons of strains’ abundances in SynComs and monocultures. In addition,  SynComs’ total

abundances served as a milestone for the strength of competition along the gradient.

4.1 The prevalence of antagonistic interactions

In  most  co-cultures,  one  strain  appeared  to  dominate  the  others  in  terms  of  abundance.

Abundances of strains in SynComs were most often lower than in their corresponding monoculture.

In accordance with previous studies (Hibbing et al., 2010; Foster and Bell, 2012; Romdhane et al.,

2021),  such  results  highlight  a  high  prevalence  of  antagonistic  interactions  between  SynCom’s

members.  Regular  cases  of  competitive  exclusion  in  the  SynComs  suggest  that  competition  is

mostly  responsible.  However,  since  half  of  monocultures  were  missing,  we  might  miss  many

interesting patterns. 

However, the higher total abundances of strains in SynComs with higher PPM (figure 4) can be

interpreted  as  a  reduced  competition  due  to  metabolic  dissimilarity  along  with  phylogenetic

distance, as regularly mentioned in the literature, in accordance with our prediction  (Zelezniak et

al.,  2015;  Russel  et  al.,  2017;  Hester  et  al.,  2019;  Lam et  al.,  2020).  In such SynComs,  niche

differentiation might be at play (Jacoby et al., 2018). However, we noticed that some studies take

the counterpart of this statement. For example,(Simonet and McNally, (2021) stated that genomic

relatedness is correlated with cooperative genes content in gut-microbiome genomes. In (Griffin et

al., 2004), a cooperative trait (the production of siderophores), was demonstrated to be enhanced by

relatedness between bacteria.

4.2 Some strong cross-feeding patterns for Achromobater sp

In our study, we detected some strains with an improved growth in SynComs rather than in

monocultures, notably for the strain referred to as “Root565” (Achromobacter sp) (figure 3A&C).

According to the results of additional paired co-cultures, this strain was able to uptake the secretions

of all of its co-cultured strains. The growth enhancement of Root565 was  correlated to the growth

capacity of its pair (figure 3E), but did not permit to know if Root565 is particularly adapted to

Variovorax, Acidovorax, and Sphingomonas species or harboring a generalist, non-species specific

cross-feeding. The involved compounds remain to elucidate, and might be either diverse or specific.

Similarly, some bacteria from A. thaliana root microbiota were characterized to uptake efficiently

root  exudates,  and  could  consequently  secrete  used  as  supplemental  substrate  by  other  strains

(Jacoby et  al.,  2018). Achromobacter species  are  frequent  and dominant  in  plant  microbiomes

(Yadav et al., 2017; Lata et al., 2019), and some species are known to be involved into their host’s
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drought stress tolerance  (Hussain et  al.,  2018; Jha,  2020;  Khoshru et  al.,  2020).  Regarding the

growth of Root565 when feeding on others’ secretions, further research should focus on providers’

growth rates, providers’ diversity (i.e. specific or generalist cross-feeding), and secretomes to build

models explaining precisely this case of cross-feeding, for instance with fluxes balance analysis

(Orth et al., 2010; Douglas, 2020) and exometabolomics. A research goal would be to identify what

are the shared and common compounds excreted by the different providers and how Root565 can

uptake them, particularly waste metabolites (Goldford et al., 2018). 

4.3 Cross-feeding could exist in many cases but might be masked by 
antagonistic interactions

The metric we used, PPM, is voluntarily simple, but might not be suited to investigate cross-

feeding  efficiently.  Indeed,  a  complex  community’s  interaction  profile  might  not  be  well-

represented  by  such  a  simple  metric.  Moreover,  the  apparent  high  prevalence  of  antagonistic

interactions in our SynComs does not disprove the existence of cross-feeding interactions. Indeed,

competition  for  other  nutrients  can  still  occur  between microorganisms exchanging compounds

(Hillesland and Stahl,  2010),  or  cross-feeding partners  could  still  be  competing  for  the  shared

nutrients or on other aspects  (McCully et al., 2017b). Cross-feeding could be then an underlying

process, useful to soften competition or to maintain a low-level metabolism of dormant organisms,

which could explain the very low abundances of many microorganisms species in microbiomes,

such as the constant strain Root695 (Nemergut et al., 2013; McCully et al., 2017b, 2017a; Goldford

et al., 2018; Fritts et al., 2021). Such a case would also explain the difficulty to detect cross-feeding

without  appropriate  methods. Nevertheless,  the  capacity  of  a  bacteria  to  feed  on  organisms’

secretions  have  been  repeatedly observed experimentally.  For  example,  Goldford  et  al.,  (2018)

found that all isolates of a relatively large community were able to grow on a media composed of

the secretions of other isolates. They discovered that such cross-feeding stabilized competition, in a

collective interactions network rather than with pairwise interactions.

4.4 The importance of spatial configuration and metabolites flow

Connex to the aforementioned ability to feed on others’ secretions is the spatial configuration of

organisms and the flux of secreted metabolites in the environment. Indeed, It was demonstrated that

spatial segregation between symbionts (i.e. via compartmentalization provoked by the host, biofilms

...) is a way to reduce competition over a shared resource such as public goods (Keymer et al., 2008;

Chomicki  et  al.,  2020).  Our  main  experiment  mixed  strains  in  liquid  cultures,  without  any
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heterogeneity  such  as  spatial  structure.  Consequently,  such  protocol  might  explain  the  high

prevalence  of  competitive  behaviors,  for  example  because  of  contact-dependent  inhibition  of

growth (Ikryannikova et al., 2020), in addition to resource competition. 

We attempted to determine if Root565 and Root695 could benefit from the flow of other strains’

secretions, without contact-dependent mechanisms, with the use of a split-system device. Root565

seemed to perform less, while Root695 seemed to perform better than in liquid, mixed co-cultures.

However,  the lack of  statistical  power could not  highlight  a  significant  difference,  so this  new

hypothesis remains to be confirmed. If confirmed, such results could strongly highlight the capacity

of  some  bacteria  to  feed  on  others’ secretion,  with  or  without  contact-dependent  mechanisms,

according to the bacteria’s strategy. Such a contact-independent ability would be considered as a

way to profit from the provider’s secretions while avoiding contact-dependent competition for other

environmental variables that can bypass the benefit of cross-feeding.

5 Perspectives

Competition  and  cooperation  might  be  intricate  interactions,  and  the  observed  experimental

outcomes might strongly depend on how traits, metrics, spatial scale, and experimental protocols

are combined, making it difficult to return general patterns. We identified several ways to strengthen

or  extend our  results.   Syncoms combinations  from the  strains  previously listed  as  potentially

involved in cross-feeding could be tested again, possibly more extensively, as what has been done

for Root565. The modelling and experimental validation of a steady state reached by competition or

cross-feeding  could  be  promising.  The  importance  of  spatial-scale  and  nutrient  flow  in  cross-

feeding interactions should be further explored, notably to determine what and how metabolites can

flow in the environmental matrix, or if many species can avoid contact-dependent competition and

still profit from public goods. Refined in silico models could be investigated, for instance with Flux

Balance  Analysis  could  provide  better  predictions  or  testable  hypotheses.  We  could  also  have

crossed PPM with previous results  (Mataigne et al., in prep) based on combinatory analytics with

Answer-Set-Programming, which returned putative combinations of cooperative strains. However,

such combinations  were extremely numerous and oriented  towards  the production of  particular

targeted compounds,  not  on strains  abundances,  which  would  have imply a  more sophisticated

experimental design. In addition, more robust predictions could be obtained with approaches using

functional-traits rather than phylogeny  (Boon et al.,  2014). However such approaches rely on a

better knowledge of organisms’ ecology, data we do not dispose of yet. Finally, a way to improve
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experimental set-ups for finding cross-feeding relationships would be to prioritize exometabolomics

studies, as well as bacteria’s uptake capacity of nutrients.
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Supplementals

Supplementary figure I : A closer look at the constant strain’s abundances (Root695) in all Syncoms. All SynComs’
curves are split in four panels (following the ranks of the gradient of PPM) for visibility purposes. The SynCom C42
was the only one where Root695 exhibited a clear growth pattern.  

Supplementary table 1: t-tests for testing the difference of Root565 abundances in monocultures and SynComs (liquid
cultures) C15, C31, C37.

TP1

group1 group2 p p.signif

Root565 Root565_in_C15 0.00643 **

Root565 Root565_in_C31 0.525 ns

Root565 Root565_in_C37 0.303 ns

TP2

group1 group2 p p.signif

Root565 Root565_in_C15 0.000114 ***
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Root565 Root565_in_C31 0.0169 *

Root565 Root565_in_C37 0.00404 **

TP3

group1 group2 p p.signif

Root565 Root565_in_C15 0.00184 **

Root565 Root565_in_C31 0.217 ns

Root565 Root565_in_C37 0.346 ns

Supplementary table 2: pairwise t-tests for testing the difference of Root565 abundances in monocultures and paired
co-cultures from SynComs’ members (liquid cultures) C15, C31, C37.

TP1

group1 group2 p p.signif

Root565 Root565+Root267 0.552 ns

Root565 Root565+Root318D1 0.519 ns

Root565 Root565+Root473 0.00162 **

Root565 Root565+Root50 0.00372 **

TP2

group1 group2 p p.signif

Root565 Root565+Root267 0.000549 ***

Root565 Root565+Root318D1 0.0357 *

Root565 Root565+Root473 0.000356 ***

Root565 Root565+Root50 0.00369 **

TP3

group1 group2 p p.signif

Root565 Root565+Root267 0.00111 **

Root565 Root565+Root318D1 0.000882 **

Root565 Root565+Root473 0.00000211 *****

Root565 Root565+Root50 0.064 ns
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Supplementary table 3: pairwise t-tests (with Holm correction) for testing the difference of Root565 abundances in the
split-system device.

TP1

group1 group2 p p.signif

565-C31 565-Mock 0.03 *

565-C37 565-Mock 0.00258 **

TP2

group1 group2 p p.signif

565-C31 565-Mock 0.42 ns

565-C37 565-Mock 0.498 ns

TP3

group1 group2 p p.signif

565-C31 565-Mock 0.41 ns

565-C37 565-Mock 0.809 ns

Supplementary table 4: pairwise t-tests for testing the difference of Root695 abundances in monocultures and paired
co-cultures from SynComs’ members (liquid cultures) C42.

TP1

group1 group2 p p.signif

Root695 Root135+Root695 0.597 ns

Root695 Root983+Root695 0.839 ns

TP2

group1 group2 p p.signif

Root695 Root135+Root695 0.168 ns

Root695 Root983+Root695 0.332 ns

TP3

group1 group2 p p.signif

Root695 Root135+Root695 0.00493 **
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Supplementary file F1 : sbml configuration file modeling the M9+ARE media

<?xml version="1.0" encoding="UTF-8"?>
<sbml xmlns="http://www.sbml.org/sbml/level2" level="2" version="1">
    <model>
        <listOfSpecies>
            <!-- M9 -->
            <species id="M_NA__43___c" name="Na+" compartment="c"/>
            <species id="M_Pi_c" name="phosphate" compartment="c"/>
            <species id="M_CL__45___c" name="Cl-" compartment="c"/>
            <species id="M_K__43___c" name="K+" compartment="c"/>
            <species id="M_MG__43__2_c" name="Mg2+" compartment="c"/>
            <species id="M_SULFATE_c" name="sulfate" compartment="c"/>
            <species id="M_AMMONIUM_c" name="ammonium" compartment="c"/>

            <!-- ARE -->
            <species id="M_Glucopyranose_c" name="D-glucopyranose" compartment="c"/> <!-- glucose 1 -->
            <species id="M_ALPHA__45__GLUCOSE_c" name="α-D-glucopyranose" compartment="c"/> <!-- glucose 2 -->
            <species id="M_GLC_c" name="β-D-glucopyranose" compartment="c"/> <!-- glucose 3 -->
            <species id="M_BETA__45__D__45__FRUCTOSE_c" name="β-D-fructofuranose" compartment="c"/> <!-- fructose 1 -->
            <species id="M_CPD__45__15382_c" name="keto-D-fructose" compartment="c"/> <!-- fructose 2 -->
            <species id="M_SUCROSE_c" name="sucrose" compartment="c"/>
            <species id="M_CIT_c" name="citrate" compartment="c"/>
            <species id="M_Lactate_c" name="lactate" compartment="c"/> <!-- lactate 1 -->
            <species id="M_D__45__LACTATE_c" name="(R)-lactate" compartment="c"/> <!-- lactate 2 -->
            <species id="M_L__45__LACTATE_c" name="(S)-lactate" compartment="c"/> <!-- lactate 3 -->
            <species id="M_SUC_c" name="succinate" compartment="c"/>
            <species id="M_L__45__ALPHA__45__ALANINE_c" name="L-alanine" compartment="c"/>
            <species id="M_SER_c" name="L-serine" compartment="c"/>
            <species id="M_GLT_c" name="L-glutamate" compartment="c"/>

            <!-- Cofactors -->
            <species id="M_NAD_c" name="NAD" compartment="c" boundaryCondition="false"/>
            <species id="M_NADP_c" name="NADP" compartment="c" boundaryCondition="false"/>
            <species id="M_ADP_c" name="ADP" compartment="c" boundaryCondition="false"/>
            <species id="M_WATER_c" name="WATER" compartment="c"/>
            <species id="M_ATP_c" name="WATER" compartment="c"/>
            <species id="M_NADPH_c" name="NADPH" compartment="c"/>
            <species id="M_PROTON_c" name="PROTON" compartment="c"/>
            <species id="M_OXYGEN__45__MOLECULE_c" name="OXYGEN" compartment="c"/>
            <species id="M_Pi_c" name="Pi" compartment="c"/>
            <species id="M_PPI_c" name="PPi" compartment="c"/>
            <species id="M_CARBON__45__DIOXIDE_c" name="CARBON-DIOXYDE" compartment="c"/>
            <species id="M_CO__45__A_c" name="CO-A" compartment="c"/>
            <species id="M_UDP_c" name="UDP" compartment="c"/>
            <species id="M_NADH_c" name="NADH" compartment="c"/>
            <species id="M_AMP_c" name="AMP" compartment="c"/>
            <species id="M_AMMONIA_c" name="AMMONIA" compartment="c"/>
            <species id="M_HYDROGEN__45__PEROXIDE_c" name="HYDROGEN-PEROXYDE" compartment="c"/>
            <species id="M_Acceptor_c" name="Acceptor" compartment="c"/>
            <species id="M_Donor__45__H2_c" name="Donor" compartment="c"/>
            <species id="M_3__45__5__45__ADP_c" name="3-5-ADP" compartment="c"/>
            <species id="M_GDP_c" name="GDP" compartment="c"/>
            <species id="M_CARBON__45__MONOXIDE_c" name="CARBON-MONOXYDE" compartment="c"/>
            <species id="M_GTP_c" name="GTP" compartment="c"/>
            <species id="M_FAD_c" name="FAD" compartment="c"/>
        </listOfSpecies>
    </model>
</sbml>
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Supplementary file F2 : Summary of the  45 SynComs (C11, C17, C8, C41 were excluded of the
analysis because of contaminants)

124

ID ScopeRank Rank Isolates Mean_PhyloDist PPM
C27 112.0-238.0 Min Root1203-Root172-Root672-Root695 0,5898333333 235
C32 112.0-238.0 Median Root181-Root553-Root695-Root918 0,9884216667 235
C29 112.0-238.0 Max Root1464-Root180-Root402-Root695 1,3413116667 237
C23 238.0-291.0 Min Root274-Root278-Root31-Root695 0,3307816667 247
C16 238.0-291.0 Median Root1455-Root65-Root670-Root695 0,8891883333 289
C34 238.0-291.0 Max Root1497-Root280D1-Root627-Root695 1,296585 262
C38 291.0-308.0 Min Root258-Root274-Root672-Root695 0,6271783333 292
C17 291.0-308.0 Median Root190-Root343-Root483D1-Root695 1,0000333333 306
C24 291.0-308.0 Max Root61-Root695-Root77-Root935 2,0351766667 306
C26 308.0-322.0 Min Root274-Root483D2-Root672-Root695 0,6511283333 308
C7 308.0-322.0 Median Root405-Root561-Root695-Root74 1,0144233333 321
C2 308.0-322.0 Max Root166-Root280D1-Root695-Root935 2,0404483333 317
C9 322.0-333.0 Min Root1212-Root31-Root434-Root695 0,808955 323
C40 322.0-333.0 Median Root335-Root423-Root630-Root695 1,0258033333 329
C21 322.0-333.0 Max Root423-Root52-Root553-Root695 1,8696466667 331
C37 333.0-342.0 Min Root267-Root318D1-Root565-Root695 0,8757983333 336
C6 333.0-342.0 Median Root151-Root456-Root558-Root695 1,05027 341
C10 333.0-342.0 Max Root1464-Root186-Root672-Root695 2,00653 336
C15 342.0-350.0 Min Root29-Root473-Root565-Root695 0,874535 342
C35 342.0-350.0 Median Root1204-Root431-Root695-Root983 1,1447216667 346
C3 342.0-350.0 Max Root420-Root52-Root670-Root695 2,036045 347
C41 350.0-358.0 Min Root1212-Root157-Root695-Root71 0,8616583333 351
C8 350.0-358.0 Median Root1221-Root224-Root55-Root695 1,1899383333 352
C45 350.0-358.0 Max Root186-Root190-Root627-Root695 1,9300533333 357
C39 358.0-365.0 Min Root1221-Root695-Root720-Root74 0,9611016667 358
C14 358.0-365.0 Median Root343-Root472D3-Root695-Root70 1,2059916667 358
C13 358.0-365.0 Max Root1293-Root420-Root695-Root70 2,0885366667 361
C22 365.0-372.0 Min Root1312-Root267-Root695-Root710 0,9841766667 369
C11 365.0-372.0 Median Root122-Root1485-Root342-Root695 1,1942366667 368
C44 365.0-372.0 Max Root1293-Root267-Root695-Root935 2,0899216667 371
C25 372.0-380.0 Min Root491-Root569-Root695-Root954 0,9030433333 377
C42 372.0-380.0 Median Root135-Root29-Root695-Root983 1,2178116667 373
C28 372.0-380.0 Max Root1221-Root137-Root695-Root901 1,9812516667 379
C31 380.0-389.0 Min Root318D1-Root50-Root565-Root695 1,0296566667 380
C1 380.0-389.0 Median Root105-Root265-Root568-Root695 1,2194883333 388
C18 380.0-389.0 Max Root137-Root275-Root420-Root695 1,9928816667 387
C19 389.0-401.0 Min Root569-Root672-Root695-Root96 1,1047783333 393
C30 389.0-401.0 Median Root180-Root690-Root695-Root9 1,3616933333 397
C36 389.0-401.0 Max Root147-Root186-Root236-Root695 2,176505 397
C4 401.0-424.0 Min Root105-Root275-Root63-Root695 1,1942033333 402
C12 401.0-424.0 Median Root147-Root170-Root278-Root695 1,5856233333 405
C43 401.0-424.0 Max Root131-Root236-Root695-Root901 2,211535 402
C5 424.0-481.0 Min Root135-Root329-Root695-Root708 1,2638266667 438
C20 424.0-481.0 Median Root147-Root217-Root672-Root695 1,6471066667 429
C33 424.0-481.0 Max Root1295-Root52-Root68-Root695 1,8202733333 428
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Supplementary file F3 : taxonomy and PPM of the 83 strains used in SynComs
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Isolate Regnum Phyllum Class Order Family Genus PPM

Root105 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Hyphomicrobiaceae Devosia 91

Root1203 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Rhizobium/Agrobacterium 161

Root1204 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Rhizobium/Agrobacterium 184

Root1212 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Rhizobium/Agrobacterium 178

Root1221 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Rhizobacter 103

Root1293 Bacteria Actinobacteria Actinobacteria Micrococcales Microbacteriaceae Leifsonia 92

Root1295 Bacteria Actinobacteria Actinobacteria Streptomycetales Streptomycetaceae Streptomyces 154

Root131 Bacteria Firmicutes Bacilli Bacillales Bacillaceae Bacillus 169

Root1312 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Sinorhizobium/Ensifer 183

Root135 Bacteria Actinobacteria Actinobacteria Corynebacteriales Mycobacteriaceae Mycobacterium 88

Root137 Bacteria Actinobacteria Actinobacteria Micrococcales Cellulomonadaceae Cellulomonas 130

Root1455 Bacteria Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae Caulobacter 138

Root1464 Bacteria Actinobacteria Actinobacteria Micrococcales Microbacteriaceae Agromyces 119

Root147 Bacteria Firmicutes Bacilli Bacillales Bacillaceae Bacillus 158

Root1497 Bacteria Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingopyxis 95

Root151 Bacteria Actinobacteria Actinobacteria Propionibacteriales Nocardioidaceae Nocardioides 100

Root166 Bacteria Actinobacteria Actinobacteria Micrococcales Microbacteriaceae Microbacterium 114

Root170 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Alcaligenaceae Achromobacter 82

Root172 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Phyllobacteriaceae Mesorhizobium 176

Root180 Bacteria Actinobacteria Actinobacteria Micrococcales Microbacteriaceae Microbacterium 115

Root181 Bacteria Actinobacteria Actinobacteria Micrococcales Intrasporangiaceae Terrabacter 160

Root186 Bacteria Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Flavobacterium 60

Root190 Bacteria Actinobacteria Actinobacteria Propionibacteriales Nocardioidaceae Nocardioides 86

Root217 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Acidovorax 80

Root224 Bacteria Actinobacteria Actinobacteria Propionibacteriales Nocardioidaceae Nocardioides 137

Root236 Bacteria Actinobacteria Actinobacteria Propionibacteriales Nocardioidaceae Aeromicrobium 68

Root258 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Sinorhizobium/Ensifer 183

Root265 Bacteria Actinobacteria Actinobacteria Corynebacteriales Mycobacteriaceae Mycobacterium 82

Root267 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Acidovorax 74

Root274 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Rhizobium/Agrobacterium 127

Root275 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Acidovorax 75

Root278 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Sinorhizobium/Ensifer 180

Root280D1 Bacteria Actinobacteria Actinobacteria Micrococcales Microbacteriaceae Microbacterium 63

Root29 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Rhizobacter 156

Root31 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Sinorhizobium/Ensifer 173

Root318D1 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Variovorax 169

Root329 Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas 219

Root335 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae Massilia 118

Root343 Bacteria Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae Caulobacter 102

Root402 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Acidovorax 63

Root405 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Pelomonas 89

Root420 Bacteria Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Flavobacterium 55

Root423 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Sinorhizobium/Ensifer 166

Root431 Bacteria Actinobacteria Actinobacteria Streptomycetales Streptomycetaceae Streptomyces 132

Root434 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Variovorax 126

Root456 Bacteria Actinobacteria Actinobacteria Kineosporiales Kineosporiaceae 110

Root472D3 Bacteria Actinobacteria Actinobacteria Propionibacteriales Nocardioidaceae Aeromicrobium 70

Root473 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Variovorax 121

Root483D1 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Bradyrhizobiaceae Bosea 147

Root483D2 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Rhizobium/Agrobacterium 171

Root491 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Rhizobium/Agrobacterium 128

Root50 Bacteria Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas 152

Root52 Bacteria Firmicutes Bacilli Bacillales Paenibacillaceae Paenibacillus 118

Root55 Bacteria Actinobacteria Actinobacteria Streptomycetales Streptomycetaceae Streptomyces 146

Root553 Bacteria Actinobacteria Actinobacteria Micrococcales Microbacteriaceae Microbacterium 57

Root558 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Sinorhizobium/Ensifer 181

Root561 Bacteria Proteobacteria Gammaproteobacteria Xanthomonadales Rhodanobacteraceae Rhodanobacter 98
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Isolate Regnum Phyllum Class Order Family Genus PPM

Root565 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Alcaligenaceae Achromobacter 88

Root568 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Acidovorax 65

Root569 Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas 194

Root61 Bacteria Actinobacteria Actinobacteria Micrococcales Microbacteriaceae Microbacterium 112

Root627 Bacteria Proteobacteria Gammaproteobacteria Xanthomonadales Rhodanobacteraceae Rhodanobacter 98

Root63 Bacteria Actinobacteria Actinobacteria Streptomycetales Streptomycetaceae Streptomyces 155

Root630 Bacteria Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Pseudoxanthomonas 75

Root65 Bacteria Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Pseudoxanthomonas 73

Root670 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Bradyrhizobiaceae Bosea 142

Root672 Bacteria Proteobacteria Alphaproteobacteria Sphingomonadales Erythrobacteraceae Altererythrobacter 123

Root68 Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas 194

Root690 Bacteria Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Lysobacter 73

Root695 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Phyllobacteriaceae Mesorhizobium 166

Root70 Bacteria Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Acidovorax 60

Root708 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Rhizobium/Agrobacterium 183

Root710 Bacteria Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas 152

Root720 Bacteria Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas 154

Root74 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Sinorhizobium/Ensifer 183

Root77 Bacteria Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae Phenylobacterium 51

Root9 Bacteria Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas 192

Root901 Bacteria Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Flavobacterium 56

Root918 Bacteria Actinobacteria Actinobacteria Micrococcales Cellulomonadaceae Oerskovia 120

Root935 Bacteria Bacteroidetes Flavobacteriia Flavobacteriales Flavobacteriaceae Flavobacterium 53

Root954 Bacteria Proteobacteria Alphaproteobacteria Rhizobiales Rhizobiaceae Sinorhizobium/Ensifer 183

Root96 Bacteria Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Lysobacter 72

Root983 Bacteria Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Lysobacter 73
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Supplementary data X : Composition of the liquid media M9+ARE
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M9 salt solution 10X
Final amount for 1L

Na2HPO4 x 2H2O 0.422M 75.1118g.l-1 75.1118g
KH2PO4 0.22M 29.9398g.l-1 29.9398g
NaCl 0.0855M 4.9966g.l-1 4.9966g
NH4Cl 0.0935M 5.0013g.l-1 5.0013g
Dissolve the salts in 800 mL. Adjust pH to 7.2 with NaOH. mq water up to final voume of 1 L. Autoclave 15 min 121°C 

MgSO4 1M 1000X
Final amount for 0.1L

MgSO4 x 7H2O 1M 246.47g.l-1 24.647g
mq water up to final volume of 0.1L. Autoclave 15min 121°C

CaCl2 1M 3333X
Final amount for 0.1L

CaCl2 x 2H2O 1M 147.01g.l-1 14.701g
mq water up to final volumn of 0.1L. Autoclave 15min 121°C

Microelements/trace elements 100X
Molar concentration 100X mg/L

FeSO4 x 7H2O 5.00e-5 1390.050
MnSO4 xH2O 1.00e-6 16.902
ZnCl2 1.00e-5 136.300
CuSO4 x 5H2O 1.00e-6 24.969
CoCl2 x 6H2O 1.00e-6 23.793
BO3H3 1.00e-5 61.830
EDTA 5.00e-5 1461.200
HCl 1.00e-3 10mL HCl 10M
Na2MoO4 x 2H2O 1.00e-6 24.195
NiCl2 x 6H2O 2.00e-7 4.754
Filtrate

Artificial Root Exudate 5X Final volume 500mL
Amount

Glucose 4.1g
Fructose 4.1g
Saccharose 2.1g
Citric acid 1.6g (1.75g C6H8O7 x H2O)
Lactic acid
Succinic acid 2.3g (5.35g C4H4NaO4 x 6H2O)
Alanine 2g
Serine 2.4g
Glutamic acid 2g
Filtrate

Mix
Stock solution Concentration Final volume 50mL 100mL 500mL
M9 salt solution 10X 5mL 10mL 50µL
MgSO4 1M 1000X 50µL 100µL 500µL
CaCl2 1M 3333X 15µL 30µL 150µL
Microelements 100X 500µL 1mL 5mL
ARE 5X 10mL 20mL 100mL
mq 33.935mL 67,87mL 339.35mL

1.6g (4.03mL 50 % w/v C3H5NaO3)
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General Discussion

1 Metabolic cross-feeding, coexistence, and community 
assembly : a summary

In its early years, despite the great benefits taken from the adaptation of macro-ecology theories

and methods, microbial ecology suffered of a lack of precise theoretical background, as well as lack

of understanding between micro and macro-scales (Balser et al., 2006; Prosser et al., 2007; Widder

et al., 2016). One key padlock in microbial ecology is the understanding of a species and what is

called a species. The species concept has progressively been modified with the acceptance of a

phylogenetic  species  concept  (Mishler  and  Brandon,  1987) allowing  to  describe  any

microorganisms of a microbial  community,  known or unknown, by the use of DNA fragments.

More recently, the intensive use of -omics data and modelling permitted highlighting the importance

of cross-feeding and cooperative interactions into microbiota’s structure, but the lack of integration

of positive interactions in the niche theory framework limited a deep formalized understanding of

microbial communities. This issue is being progressively solved with accumulating  modeling and

experimental evidences (Koffel et al., 2021). 

1.1 The prevalence and importance of cross-feeding

Various approaches permit the prediction of cross-feeding interactions. The most straightforward

method method  is  the  use  of  reconstructed  metabolic  networks,  which  simulate  an  organism’s

metabolism, thus its potential interactions with others. Other approaches can for example involve

the simulation of evolution within a community, and show that cross-feeding can emerge as a result

of gene loss or compounds leakage.  Most methods usually predict a strong prevalence of cross-

feeding interactions, thus cooperative behaviors within microbial communities   (San Roman and

Wagner, 2018). Hence, cooperation via the secretion of metabolites could be the answer to species

coexistence within microbial communities, whose species richness and diversity are greater than

expected by classical theoretical ecology (Vandenkoornhuyse et al., 2015; Mas et al., 2016). Some

argue that cross-feeding could be an answer to an evolutionary dilemma : resource investment vs.

function trade-off, in other words the amount of energy spent compared to the efficiency of the

performed function (Carlson, 2007; Flamholz et al., 2013; Carlson et al., 2018).
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Considering the high frequencies of auxotrophies and their benefit to organisms’ fitness, as well

as a likely unavoidable leaking of  public goods  during bacterial  growth  (Morris  et  al.,  2012b;

Morris,  2015),  microbial  communities  are  shaping  complex,  highly  connected  intercellular

networks  (D’Souza et al.,  2014).  Hence, microbial communities are fundamentally decentralized

systems  (Gralka  et  al.,  2020),  despite  the  probable  existence  of  core,  key species.  The results

presented in chapter 2 shed light on such statements, since a number of cross-feeding possibilities

(under  well-defined  environmental  constraints)  have  been  hypothesized,  but  with  some  highly

redundant bacterial strains and a relatively high degree of functional redundancy among members

of the community. 

The importance of cross-feeding can also be highlighted by its potential for niche construction.

Niche construction is a process where organisms modify their environment, in a manner that affect

both their and others’ dynamics, such as biofilms construction, antibiotics secretion, emission of a

detoxifying enzyme, byproducts secretion (Callahan et al., 2014; Loudon et al., 2016; San Roman

and  Wagner,  2018). In  silico predictions  of  interactions  with  metabolic  models  often  returns

dramatically  high  amounts  of  possible  cross-feeding  interactions  between  microorganisms  on

various carbon sources, suggesting high possibilities of niche construction (San Roman and Wagner,

2018), since metabolites excretion  create conditions that allow the coexistence of many different

species, sometimes even on a single carbon source (Gralka et al., 2020). 

However, despite its promotion of species coexistence, cross-feeding is inherently an unstable

situation,  and  and  mathematically  challenging  to  solve.  Different  ways  are  explored,  such  as

competition between cross-feeding mutualists and cheaters, the parameters favoring the emergence

and invasion of a cheater, nutrient specificity, biosynthesis rates (Sun et al., 2019).

1.2 Cross-feeding selective drivers

Related to the evolutionary stability of cross-feeding is its evolutionary origin. Many bacteria are

often characterized by genome streamlining, a genome-reduction process occurring in nutrient-rich

and/or constant environments, leading to the loss of metabolic functions. By this process, a bacteria

reduces the metabolic cost of a function that is not mandatory under these permissive environmental

conditions, and gains a selective advantage over other bacteria that still pay these costs (Giovannoni

et al., 2005; D’Souza et al., 2014). Hence, the auxotrophic bacteria  depends on available external

sources of the involved nutrient that can be supplied by prototrophic bacteria,  creating a cross-

feeding interaction. Accordingly to some studies, auxotrophy is common in the bacterial domain of

life. Notably, auxotrophies for amino-acids, nucleosides, and vitamins are very frequent (D’Souza et
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al., 2014; Mee et al., 2014; Liu et al., 2018). Far from being a load, it can provides a fitness gain

(verified with experimental assays) if the considered auxotrophy is compensated by the molecule

availability  in  the  environment (D’Souza  et  al.,  2014).  If  gene  loss  and  auxotrophy  confer  a

selective  advantage  under  appropriate  environmental  conditions,  by  energy  saving,  then  the

microbial community complexity should be explained with auxotrophs relying on each other and

forming a complex inextricably wollen network of interactions. This selective advantage of being

auxotroph has been experimentally demonstrated  by the enhanced root colonization observed of a

genetically diminished bacteria for amino-acids production (Cole et al., 2017). In addition, there can

also be  positive  selection for the excretion or transport  of these valuable compounds  (Douglas,

2020; Fritts et al., 2021). It was also demonstrated that cross-feeding at high fluxes return a better

functional return on investment than monocultures (Pande et al., 2014; Carlson et al., 2018).

1.3 Integration of cross-feeding with competition and environmental 
factors :  from in silico predictions to experimental validation

Due to the complexity of microbiomes, synthetic communities emerged as a powerful and suited

tool to decipher microbial interactions  (Jacoby and Kopriva, 2019).  Metabolic modelling  of such

synthetic  consortia  recognized cross-feeding as an ubiquitous process in  microbial  communities

(Widder  et  al.,  2016;  Pande and Kost,  2017).  Moreover,  experimental  approaches validated the

capacity  of  numerous  bacteria  to  feed  on  others’ exudates  (Goldford  et  al.,  2018).  However,

experimental  approaches  still  struggle  to  confirm  in  silico predictions  (Fritts  et  al.,  2021),

suggesting a predominance of competition (Foster and Bell, 2012), even in synthetic communities

designed for cooperation  (Hillesland and Stahl, 2010). Nonetheless, it does not necessarily mean

that cross-feeding does not exist.  Its benefits  might be  most often  bypassed by competition, thus

undetected  when using simple experimental protocols,  as discussed in chapter 3.  Making the part

between cooperative and competitive outcomes is then not an easy task.

1.3.1 The difficulty to find simple and appropriate metrics

Several  studies  attempted to  predict  cross-feeding  with  simple  metrics  obtained  from

reconstructed  metabolic  networks  and  phylogeny,  as  we did  in  chapter  2,  with  similar  results.

However,  we could not confirm these in silico predictions with experimental observations  with

classical co-cultures and regular metrics such as SynComs evenness  (chapter 3).  Such mismatch

between modelling and experiments are regularly discussed, notably regarding phylogeny being a

weak predictor of metabolic functionality and cooperation  (Young, 2016; Simonet and McNally,
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2021).  In addition, in  Lam et al.,  (2020),  it  is argued that metabolic completion scores must be

normalized according to phylogenetic distance, which is treated as a bias. 

1.3.2 Cross-feeding as a mostly underlying process compared to competition ?

In  chapter  3,  we  found  that  competitive  exclusion  shaped  most  of  the  tested  SynComs,  in

opposition  with  our  hypothesis  stating  that  phylogenetic  distance  is  favorable  to  cross-feeding.

However, as discussed in the same chapter, there are limits mostly identified as the interference of

other  interactions,  possibly  due  to  the  oversimplification  of  natural  habitats  in  experimental

protocol, that could have masked the effect of cross-feeding.

Competition for other nutrients can still occur between microorganisms exchanging compounds,

sometimes  bypassing  cross-feeding  (Hillesland  and  Stahl,  2010).  In  some  cases,  the  cross-fed

nutrients are valuable both for the receiver and producer, leading to competition  between cross-

feeding  partners.  In  such  cases,  the  receiver  must  have  a  competitive  advantage  towards  the

acquisition of  the  public  good in  order  to  maintain  mutualism  (McCully et  al.,  2017a).  Cross-

feeding could be an underlying process stabilizing co-existence of competitive guilds in a dense

network of high-order interactions (Goldford et al., 2018). Also, competitors between receivers can

benefits  to  the  stability  of  cross-feeding,  as  demonstrated  by  (Celiker  and Gore,  2012),  where

Escherichia coli competes with Saccharomyces cerevisiae cheaters for extracellular sucrose. E. coli

limited yeast population and public good availability at durable levels. 

Cross-feeding might be relevant in  harsh conditions, to prevent starvation of several species at

once (McCully et al., 2017b; Fritts et al., 2021), as highlighted in chapter 2 and further discussed in

chapter  3.  Such  situations  make  the  existence  of  cross-feeding  interactions  not  necessarily

correlated with organisms’ abundances (which is already discussed in chapter 3), but suggests that

positive interactions are a mechanism of maintenance of coexistence  and are consistent with the

idea that microbial communities are decentralized, highly interconnected networks. Indeed, the high

functional  redundancy  and  predicted  possibilities  of  combinations  capable  of  cross-feeding

highlighted in chapter 2 suggested such intricate and diverse connections.

Nevertheless, we found that cross-feeding can occasionally be the main driver of a small bacteria

consortium. Indeed, the growth patterns of an  Achromobacter sp did show that dependencies to

other  strains’  exudates  dramatically  improved  its  growth  (chapter  3).  The  observed  growth

enhancement did not seem specific to the providers’ taxa, and apparently depend on their growth

rate, thus their capacity to excrete wastes (or to set up overflow metabolism). 
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1.3.3 A few competitive behaviors at the origin of many cross-feeding 
opportunities ?

Metabolic leakage is however not necessarily a metabolic deficiency (i.e. the loss of compounds

that could have been further metabolized). For instance,  cells may get rid of  elements  that are in

excess.  Various mechanisms  can  explain  such excretion  as  an  optimal  strategy.  An  example,

identified in  E.  coli (Basan et  al.,  2015) is  referred  to  as  overflow metabolism  and is  a  good

example to explain that metabolic cross-feeding is not necessarily dissociated from competition.

Overflow  metabolism is  the secretion  of  large  quantities  of  organic  byproducts  as  a result  of

competitive strategies adopted by some microbial species. It does not mean waste metabolism, but it

rather  possibly  reflects an  optimum resource  usage.  Hence,  those  byproducts  constitute  public

goods that can initiate and stabilize cross-feeding interactions in microbial communities. (Carlson et

al., 2018). Hence, such a mechanism would mean that a few highly competitive species can benefit

to multiple cooperating ones. 

1.3.4 Environmental constraints

Finally,  deciphering  ecological  interactions  cannot  be  done  without  considering  the

environmental context, and the way to model it. Notably, as seen in chapter 2 and the literature,

many interactions  outcomes  depend  on nutrient  availability  and utilization  (Coyte  and Rakoff-

Nahoum,  2019).  Cooperative  behavior  are  thought  to  be  favored  by  nutrient  depletion,  and

competitive behavior are prominent under weak nutritional constraints  (Magnúsdóttir et al., 2017;

Coyte and Rakoff-Nahoum, 2019). In addition, time, and space can modify how microorganisms

interact together.

In brief, depending on numerous conditions, species can either be competing or enter an obligate

mutualism, which was highlighted both by experimental and modeling methods (Mahowald et al.,

2009;  Hoek et  al.,  2016),  and causes  challenges  to  experimental  validation  of  predicted  cross-

feeding  interactions  based  on  reconstructed  metabolic  networks.  Consequently,  experimental

validations of cross-feeding should attempt to be closer to the modelling parameters (Widder et al.,

2016;  Zhalnina  et  al.,  2018b) or  reciprocally  modelling  should  be  more  realistic  of  the

environmental reality and/or experimental protocols..
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2 Metabolic cross-feeding is not only about GEMs and various 
padlocks have to be considered 

If the data mining of GEMs constitutes the basis of in silico predictions of cross-feeding between

organisms, it was highlighted that numerous other factors, detailed hereafter, have to be considered.

2.1 Metabolites availability, secretion, transport, and uptake

We repeatedly discussed that microbes metabolism and metabolic dependencies are dependent

on available nutrients, which are key environmental constraints. Consequently, a connected and as

much  important  area  of  research  is  the  screening  of  nutrients  composition  of  the  surrounding

environment,  notably  the  secretome  of  microbes  and  hosts,  also  called  the  exometabolome

(Douglas, 2020).

Most of the exometabolome is composed of compounds derived from living-cells and not cell

lysis, and is believed to contain mostly by-products, whose intracellular accumulation would cause

damage such as redox imbalance  (Pinu et al., 2018; Douglas, 2020). However, there is growing

evidence of bigger variety of exometabolites, such as enzymes, sugars, organic acids, amino-acids,

vitamins (Fritts et al., 2021). Advances in exometabolomics assays could  produce giant steps into a

mechanistic understanding of microbiomes, notably regarding metabolic interactions or substrates

preferences, both with applications in  in vitro culture and microbiome engineering  (Lubbe et al.,

2017). Such data would indeed determine with a higher precision which compounds a microbe is

capable to secrete and uptake (Jacoby and Kopriva, 2019), opening the gate to discover all resultant

multi-way  cross-feedings  (Douglas,  2020).  As  examples,  two  recent  studies  have  applied

exometabolomics  workflows  on  the  rhizosphere  of  Avena  barbata and  Arabidopsis  thaliana,

providing information about which compounds are uptaken by bacteria when supplied with root

exudates only (Jacoby et al., 2018; Zhalnina et al., 2018a).

Close to metabolites secretion is their transport from providers to receivers organisms. Transport

can be passive or active, contact-dependent or not (D’Souza et al., 2018). Identifying genes coding

for transporters of cross-fed nutrients’ is an active part of research  (Douglas, 2020).  Finally, the

capacity  of  various  microbes  to  uptake  various  public  goods  must  be  taken  into  account  and

investigated. Indeed, we only have relatively few knowledge about which compounds are consumed

or to which extent  microbes differ  in their  substrate  preferences  (Jacoby et  al.,  2018).  Species’

specificity is to consider first, but specific structures such as biofilms since they constitute a strategy
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to assimilate particulate compounds and could favor cooperation rather than cheating because of

particular spatial arrangements (Sivadon et al., 2019).

2.2 Root exudates composition and their effect on microbiota

Specific exudates components can be used to recruit or deter certain microbial strains, mediated

via  defined  biochemical  mechanisms,  for  instance  by  secreting  scopoleptin,  an  anti-microbial

compound (Stringlis et al., 2018). A well-known mechanism is the mutualistic exchange of carbon

and nitrogen between the plants (carbon donor) and its microbiota (nitrogen donor). However, since

they  can  serve  as  nutrients  for  microbes,  plant  root  exudates  can  also  mediate  metabolic

interactions, from competition to metabolic cross-feeding, depending on their composition and on

the  composition  of  the  microbial  pool.  It  was  also  demonstrated  that  plant  root  exudates  vary

according to the plant genotype and development stage; for example, exudates of Avena barbata’s

seedlings  are  enriched in  sucrose,  while  senescing individuals  secretes more quaternary amines

(Zhalnina et al., 2018a). In Arabidopsis thaliana, natural root exudates variations were discovered

by comparing several accessions (Monchgesang et al., 2016). To go further, a way to embrace host-

microbes interactions is to consider cross-kingdom models gathering components of all partners, i.e.

metanetworks dealing for example co-transcriptome networks (Zhang et al., 2019), co-occurrences

networks of bacteria and fungi (Wassermann et al., 2019), or interactions between GEM of bacteria,

fungi, and host plant.

2.3 Spatial scale

Ideally,  spatial  scale  should be considered in any case of cross-feeding,  associated to public

goods transport mechanisms. Indeed, spatial patterns can have different effects which are not fully

understood yet. For example, Ebrahimi et al., (2019) highlighted  that strains of Vibrio splendidus

form large aggregates in different ways, depending on  the strength of enzymatic activity. Weak

enzyme  producers  rearranged  spatially  to  promote  cooperative  behavior  instead  of  displaying

competitive behaviors.  In contrast,  cross-feeding partners for electrons were found to display a

cellular  activity independent  to  their  distance  and intermixing (McGlynn et  al.,  2015).  Finally,

spatially  structured  environments  (such  as  biofilms)  provoke  a  diffusion  imbalance,  hence

concentrations gradients of nutrients. These gradients influence competition and cooperation. They

tend,  notably,  to  drive  the  segregation  of  competing  organisms  and  to  promote  the  mixing  of

cooperative ones (Carlson et al., 2018). In summary, most natural environments are far from being

homogeneous and are characterized by various microscale gradients (Cordero and Datta, 2016), to
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which cross-feeding partners answer in different ways.  Such an issue needs to be answered by

learning to how to scale observed patterns and models (Gralka et al., 2020).

2.4 Genomes annotation

The prediction of metabolic interactions with reconstructed metabolic  networks relies on the

annotation of genomes. As mentioned in the general introduction (part II),  a metabolic network

quality and reliability strongly depends on how well the organism’s genome can be annotated (i.e.

how many biological sequences can be correctly identified). Up to now, a major part of meta-omics

data cannot be annotated (50-80% in 2018) because of a lack of knowledge about involved genes,

genome assembly and gene prediction accuracy. Such an amount of missing data obviously leads to

an incomplete picture of the studied systems, hence research is somehow limited to well-known

organisms, processes or pathways, reliability decreasing as annotation’s quality decreases (Raina et

al.,  2018).  This  issue  is  frequently  encountered  in  microbiology and  particularly  in  symbiotic

systems, since they imply many poorly known organisms, that probably contain specific, unknown

genes (Porter et al., 2017).

2.5 Models complexity or simplicity ?

Current research frequently aims to improve models with a better generalization and an increased

complexity (i.e less specific to a model organism or particular conditions, sometimes with more

species, with the consideration of both cooperative and competition) (Wade et al., 2016).

However, all approaches face challenging issues. On the first hand, models of a high complexity

cannot be correctly parameterized, notably without supporting experimental data (Karr et al., 2012).

For example,  flux balance analysis  requires  flux measurements.  On the other  hand, too simple

models (for example Lotka-Voltera models or consumer-resource models) cannot enlighten cellular

mechanisms, organisms being considered as “black boxes” (Momeni et al., 2017). For instance, in

synthetic  biology and microbiome engineering,  metabolic  networks  are  often  too  complex  and

cannot be handled efficiently for the development of microbial factories. Hence, some frameworks

attempted  to  cope with  a  compromise  of  both  sides,  by  using  simplified  metabolic  networks.

Roughly, these methods operate a reduction of metabolic networks in order to keep the core parts

significantly involved in the studied process. However, the part of the networks to be conserved is

decided by the user, and is far from being an easy task (Richelle et al., 2020).

Such issues are being partially compensated with the combination of top-down and bottom-up

approaches,  working  together  iteratively  in  a  design-build-test-learn  process  (Lawson  et  al.,
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2019) (as detailed in the general introduction, part II). Notably, statistical modelling approaches are

developed in order  to  predict  coexistence and species  abundances of numerous assemblages of

species by learning on the results of limited experimental assays (Maynard et al., 2020). Finally, it

was demonstrated that models at an intermediate scale can accurately (i.e. close to experimental

data)  quantify  metabolic  processes  such  as  cross-feeding  and  competitive  exclusion  within

reasonably complex microbial consortia (up to 14 amino-acids-auxotrophic bacteria)  (Liao et al.,

2020).

3 Conclusion and perspectives

The present work confirmed the patterns generally observed when investigating microbial cross-

feeding in host-associated microbiota, i.e. numerous predicted interactions, that turned out to be

difficult to validate with standard experimental protocols. 

In terms of direct perspectives, a particular attention should be given to the sole observed and

highly  effective  experimental  pattern  of  cross-feeding  with  the  strain  Achromobacter  sp.  First,

pairwise models of this strain coupled with different providers could be computed and compared,

notably with flux balance analysis between organisms (Budinich et al., 2017), under the condition

to find a suitable growth function. Second, constraints on what compounds can be excreted or not

could  be  incorporated,  if  possible.  Third,  models  studying  time  and  space  dynamics  of  these

combinations could follow.  Finally, the stability of such pairwise (or more) associations could be

modeled, notably according to the flow rate of metabolites between strains. Indeed, high rates are

supposed to allow cheater to appear more quickly (Sun et al., 2019).

However, at a larger study-scale with many microorganisms, pairwise interactions might not be

suitable. Indeed, many predictions from pairwise assays might not occur in the community, because

of high-order  interactions  (i.e.  when a pairwise interactions  is  altered by the presence of other

species), or because of a more heterogeneous environment (De Vos et al., 2017; Gralka et al., 2020).

Alternatively,  other  methods  such  as  leave-one-out  protocols  can  be  employed,  in  which  the

community is built by alternatively adding or removing members  (Maynard et al., 2020). In any

case, any mechanistic model, even complex in terms of number of species, environmental factors or

any other parameter, should stick on simple  to intermediate scales, for example two-dimensional

niches (San Roman and Wagner, 2018; Koffel et al., 2021).

In  regards  to  the  aforementioned  padlocks,  microbial  system  ecology  proposes  several

conceptual  and  technical  attempts.  Computational  and  mathematical  modelling  are always
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incorporated into microbiome engineering frameworks, and put great efforts to explain and predict

coexistence, notably by integrating as much as possible (i) ecological processes such as interactions,

(ii) fluctuating environments, (iii) evolutionary aspects (Escalante et al., 2015; Wade et al., 2016),

and (iv) integrated -omics data, i.e. the cross-talk between species abundances, metabolites fluxes,

gene expression (Volkova et  al.,  2020).  For example,  metatranscriptomics combined with GEM

analysis can be helpful to decipher the effects of environmental parameters on genes’ expression

and the metabolic pathways they are involved in. Another possibility is the recent development of

single cell technologies such as microfluidics also offer promising tool to study the complexity of

microbial ecology (Richards et al., 2019; Mauger et al., 2021). Notably, they provide new ways to

understand how microbial  communities  can exchanges  metabolites  through cross-feeding,  since

they give access to levels of definition never captured before (Richelle et al., 2020; Mauger et al.,

2021).  For  instance,  microfluidics  demonstrated  that  cells  generate  metabolite  gradients  on  the

micrometer scale, resulting in glucose-acetate cross-feeding interactions among sub-populations of

cells allowing antibiotic resistance (Dal Co et al., 2019).

Conceptually, there is a need to see beyond lists of species, genes, and metabolites. For instance,

energy flow must be integrated from nutrients (biomass precursor) to effective growth (biomass

production)  (Gralka et al., 2020).  Another  way to apprehend microbial communities  would be to

think in terms of functional units instead of single  species, each unit representing a key metabolic

or ecological role.  Echoing our results  about functional redundancy detailed in chapter 2,  such

approach is convenient to identify functionally redundant taxa that can replace each other, without

threatening the stability of the metabolic process they assure (Bordenstein and Theis, 2015; Gralka

et al., 2020). All the presented approaches are the building blocks of synthetic ecology (Zomorrodi

and Segrè, 2016), i.e. artificial microbial communities designed to perform a task while maintaining

the resilience and complexity close to native microbial communities (Bosi et al., 2017). Microbial

system  ecology  has  many  applications,  from  medicine,  environment  science,  sustainable

agriculture, and biotechnology. These applications require a deep understanding of microbiotas and

how microbes interact with their hosts and their  environments. The present work falls into this

ambition and highlights several key points that need to be addressed, for example phylogenetic

signal,  functional  redundancy,  mechanisms  of  coexistence,  environmental  parameters  and

integration to the niche theory.
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Supplementary chapter 5 Phylogenetic and 
functional clustering in a representative bacterial 
consortia of the Arabidopsis thaliana’s root 
microbiota

(Side project : preliminary results)
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Phylogenetic and functional clustering in a 
representative bacterial consortia of the 
Arabidopsis thaliana’s root microbiota

Abstract

Disentangling the structure of microbial communities is challenging in multiple ways, notably

because of the intermixing of effects  from environmental variables and from biotic interactions

occurring  between  microorganisms.  There  are  different  approaches  that  permit  studying  both

aspects, without however being self-sufficient and requiring integration with other methods. Co-

occurrences networks are among these approaches, and are regularly used to study the effect of

environmental  shifts  on  the  structure  of  microbial  communities,  and  to  open a  door  upon the

acquisition of the underlying interaction network.  In  this  study,  we inferred the co-occurrences

network of the root microbiota of 7-weeks old Arabidopsis thaliana plants, whose germ-free seeds

had been colonized with a representative consortia of root and soil derived bacteria. The network

was relatively poorly dense, likely due to the reduced size of the inoculum compared to natural

communities,  but  followed  a  scale-free  topology,  as  regularly  observed  in  many  biological

networks. We identified some keystone nodes, connecting nodes among and within hubs, or being

central to most paths in the networks. Most of these keystones contained strains involved in relevant

interactions  with the host  plant,  notably nutrition.  Finally,  we observed phylogenetic  clustering

within  the  different  modules  and  connected  nodes  compared  to  unconnected  ones,  as  well  as

functional  similarity  and  redundancy  between  nodes  of  the  same  modules.  Such  clustering

highlighted habitat  filtering,  i.e.  selection of the best suited traits  to colonize this  environment,

leading to a higher similarity between micro-organisms, that could possibly be an early-colonization

effect.

1 Introduction

Networks  are  widely used  in  biology and ecology,  due  to  their  usefulness  to  represent  and

analyze how biological components are connected and possibly interact together. Several biological

entities can be represented as networks, such as genes regulatory networks, metabolic networks, or

pollination networks  (Olesen et al., 2007). However, inferring the complete or exact interactions

between  species  is  challenging  due  to  the  inherently  intricate  and  complex  nature  of  biotic

147



Chapter 5 – Supplementary side-project

interactions, particularly when it comes to study microbial communities. Indeed, such communities

harbor  thousands  of  coexisting  species,  and  deciphering  their  functioning  harbors  additional

challenges compared to macro-ecology, for example species’ definition, quite different dispersal

abilities,  dormancy,  complex  spatial  and  temporal  structure  (Rosselló-Mora  and  Amann,  2001;

Martiny et al., 2006).

Co-occurrences  networks  have  been  used  to  efficiently  analyze  variations  and  resilience  of

microbial  communities  structures  in  response  to  environmental  variations,  such  as  stresses  in

agriculture soils (i.e. effects of soil compaction, chemical inputs, etc.) (Karimi et al., 2017; Ramirez

et  al.,  2018;  Schlatter  et  al.,  2018;  Price  et  al.,  2021).  Co-occurrences  networks  are  suited  to

decipher community dynamics by highlighting shifts in their structure (Layeghifard et al., 2017).

However,  co-occurrences  networks  are  not  interaction  networks.  Connected  species  are  only

statistically significant co-occurrences or co-exclusion (Röttjers and Faust, 2019), , and identifying

the ecological interaction between them is much more challenging. Interactions between organisms

are  diverse,  classified  according  to  the  outcome  for  both  organisms  :  negative  for  both

(competition), beneficial for both (mutualism), negative for one and positive for the other (predation

and  parasitism).  In  between,  there  are  also  interactions  with  no  effect  for  one  the  organism

(commensalism and  ammensalism) (Faust  and  Raes,  2012;  Pacheco  and  Segrè,  2019).  Hence,

abundances-based occurrences between two species within a network can translate an interaction

outcome,  but  without  many  clues  about  which  interaction  is  taking  place.  Moreover,  species

abundances extracted from meta-omics data are compositional, thus require additional statistical

treatments other than standard correlation coefficients to avoid false correlations (Aitchison, 1982;

Friedman and Alm, 2012; Gloor et al., 2017). Finally, networks being intricate associations of many

organisms, there is a risk for false associations. Indeed, an organism A might seem to directly affect

the presence of  an organism B, while it actually affects an intermediate organism C, which has a

direct effect on B. Some methods can actually fix this issue  by using conditional independence (i.e.

A and B are conditionally independent if P(A | B,C) = P(A | C)) (Kurtz et al., 2015). 

There are  two main ecological  principles for interpreting co-occurrences networks.  First,  the

principle of competitive exclusion states that two species with similar niches exclude each other.

Similar species would then not coexist, hence would not co-occur (Faust and Raes, 2012). Second,

the principle of habitat filtering states the opposite, arguing that the environment filters the species

accordingly to their capacity to survive within. Hence, species with similar niches would be more

likely to coexist (Zhang et al., 2017). On this basis, many hypothesis can be made. For example two
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competing species could be negatively correlated in the network, while cooperating ones would be

positively  correlated.  However,  such  statements  are  not  fully  validated.  Consequently,  co-

occurrences network are best suited to study the structure and dynamics of a microbial community

with  a  global  point  of  view.  Deciphering  the  underlying  interaction   networks  is  much  more

challenging and subject to many errors, and studies require complementary data to go further. The

use of metrics on the constructed networks like centrality degree allow to go further and to build

hypotheses and predictions on why microorganisms co-occur (Berry and Widder, 2014a).

In  this  exploratory analysis,  we used  a  co-occurrence  network  to  analyze  the  structure  of  a

representative  bacterial  consortia  of  Arabidopsis  thaliana’s  root  microbiota. The  network  was

inferred based on  OTUs abundances obtained from a previous study (Bai et al., 2015). We aimed to

identify putative keystone species with metrics dedicated to networks analyses, as well to link the

observed structure to known ecological mechanisms such as habitat filtering. We hypothesized that

a  few OTUs would  harbor  high  centrality measures,  but  without  making assumptions  on their

ecological  role (the formulation of hypotheses about underlying interactions between connected

OTUs  is  however  briefly  discussed).  In  accordance  with  previous  studies  that  highlighted

phylogenetic clustering in co-occurrences networks (Horner-Devine and Bohannan, 2006), we also

hypothesized that the closer two OTUs were in the networks (i.e. short paths), the smaller was their

phylogenetic distance.

2 Material and methods

2.1 Data acquisition

Raw data  were  taken from a  previous  study (Bai  et  al.,  2015).  In  this  study,  two synthetic

bacterial consortia were used, one derived from soil and roots, the other from leaves of A. thaliana.

After  being isolated and gathered in  a  culture collection,  they were inoculated to  germ-free  A.

thaliana plants by different methods. We took interest in root+soil derived inoculum in particular

(referred as ‘R+S’), composed of 193 bacterial strains of Arabidopsis thaliana root microbiota and

30 bacterial isolates from soil was inoculated in sterilized calcined clay directly before the sowing

of surface-sterilized germ-free seeds of A. thaliana (this inoculation is referred as ‘clay’ throughout

the text). This inoculum was chosen because we disposed of the annotated genomes of all the 193

root-derived bacterial strains, obtained in the same study (Bai et al., 2015). However, the 30 soil-

derived bacterial strains did not have their  genomes sequenced at the time of this study, which

causes a few gaps in the data analysis. In Bai et al., (2015), bacterial abundances were measured by
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16S RNA sequencing after seven weeks. The resulting abundances table displayed the abundances

of OTUs rather than strains because some strains have identical 16S RNA sequences and cannot be

distinguished by sequencing when present in the same sample.

2.2 Data filtering

The  co-occurrences  table  gathered  many  samples  from  various  inoculum  and  inoculation

methods.  Because  co-occurrences  networks  methods  need  homogeneous  sample  sets  to  build

reliable associations, the table was filtered to keep only samples of the same plant compartment

(roots) from  replicates that had been inoculated with the same inoculum (‘R+S’) and the same

substrate (‘clay’).  Then,  in order to have the most  homogeneous table  as possible,  OTUs were

filtered according to  their  prevalence.  We applied a  stringent  threshold :  kept  OTUs had to  be

present in at least 80% of the samples.

2.3 Co-occurrences network

The co-occurrences network was inferred with the R package SpiecEasi,  that assumes that the

network is sparse and has a built-in statistical treatment for compositional data (Kurtz et al., 2015).

The network’s modules were computed with the edge-betweenness centrality algorithm (available

in the R package igraph (Csardi and Tamas, 2006)). Key module members and the associated Z-P

plot were detected according to the algorithm described in (Deng et al., 2012).

2.4 Bacterial strains metrics, and scale to the OTU level

A phylogenetic tree had been previously computed (Bai et al., 2015) and was used to compute

phylogenetic distances between all pairs of strains with the Python package ete3 (Huerta-Cepas et

al., 2016). Phylogenetic distance between two OTUs were obtained by computing the phylogenetic

distances  of  all  possible  strains  pairs  among them, without  considering  OTU’s belonging,  then

computing the mean (i.e merging the 2 OTUs together and taking all the pairs of strains). Genome-

scale  metabolic models (GEM) were reconstructed from annotated genomes with an automated

version of Pathway Tools (Karp et al., 2002, 2011, 2020; Belcour et al., 2020) and AuReMe (Aite et

al., 2018). The list of chemical reactions of each metabolic network was then available in AuReme

reports.The list of chemical reactions of each GEM (one per strain) was then available in AuReme

reports. An OTUs’ reactome (i.e. the whole set of encoded reactions) were computed by merging

the reactomes of all its strains. Phylogenetic distances between connected and unconnected OTUs
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We tested the relation between phylogenetic distances and connected OTUs in two manners.

First, by comparing all the phylogenetic distances for all directly connected OTUs (82 OTUs pairs)

with all the phylogenetic distances of all non-existing edges in the network (i.e. all not directly

connected OTUs), which returns many OTUs pairs (2546). Even if rank tests are suited for uneven

samples sizes,  the extremely big difference between connected OTUs) (n=82) and unconnected

OTUs (n=2546) led to a supplemental analysis with a random sub-sampling procedure : (I) 1000

sets of 82 unconnected OTUs pairs were sampled; (ii) for each set, the phylogenetic distance mean

was recorded and (iii) we computed the distribution of these 1000 means as well as the probability

to observe the phylogenetic distance mean of the observed connected edges under this distribution.

The  difference  of  distributions  of  phylogenetic  distances  between  connected  and  unconnected

OTUs were tested in R with a one-sided Wilcoxon rank sum-test.

2.5 Modules’ phylogenetic distances

Phylogenetic clustering within the network modules was computed as follows. For each module

of the network,  the phylogenetic  distances between all  the members (every possible  pair)  were

computed. All intra-modules distances were then gathered into a single dataset (n=208). Then, for

each pair of modules, the phylogenetic distances between every member of the first module and

every member of the second module were computed. All these distances were also gathered into a

single dataset (n=1067). The difference of distributions of phylogenetic distances between intra and

inter-modules OTUs were tested in R with a one-sided Wilcoxon rank sum-test.

2.6 Accumulative null models

Functional redundancy within the network’s modules was tested against null models, one for the

reactome (all chemical reactions found in the strains’ GEM), and one for the core reactome (all

chemical reactions common to every strain’s GEM), both along the number of bacterial strains. For

an increasing number of GEMs (i.e strains) going from 1 to 35, 500 random picks were done,

picked from the set of 193 GEM. For each pick, the reactome and the core reactome were recorded

from  the  GEM.  Thus,  for  each  number  of  strains,  a  null  distribution  of  reactomes  and  core

reactomes were set. For each module, its reactome and core reactome were computed, by adding

one-by-one (in a random order) the reactome of each strain of the module.
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3 Results

3.1 The co-occurrences network follows a scale-free topology

The basis of the study was to build a co-occurrences networks of bacterial strains in root samples

of A. thaliana microbiota (germ-free younglings inoculated with a synthetic consortia). As expected

with the SpiecEasi method, the network was sparse (figure 1A) which can also be explained by a

limited microbial diversity contained in the initial inoculum (Bai et al., 2015). Most connections

between OTUs were positive, only a few OTUs were negatively associated. When identifying key

module  members  with  their  within  and  among-module  connectivity  (Z-P values)  (Deng  et  al.,

2012), 3 OTUs (9 -Arthrobacter-, 18 -Variovorax-, 73 -Rhizobium-) were assigned as modules hubs,

4 OTUs (35 -Afipia-, 55 -Rhizobacter-, 56 -Brevibacillus,182 -Ensifer-) as modules connectors, one

OTU  (74  -Mesorhizobium+Aminobacter-)  as  network  hubs  (figure  1B).  It  appeared  that  the

network had a scale-free topology, that is to say only a few nodes with a high degree (i.e. number of

connections) and many nodes with a weak degree (figure 1C). All the OTUs found to be relevant in

their among and within-module connectivity were included in the OTUs (i.e. nodes) with highest

centrality measures. Accordingly, some nodes displayed a high centrality (i.e. were part of many
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Figure 1: Co-occurrences network’s properties. A) Co-occurrences network of OTUs mostly composed of root-derived
bacterial strains of a representative consortia of A. thaliana root microbiota. Red and green edges represent negative
and positive associations. Node sizes match the OTU abundance in all samples. Node colors match their taxonomy. B)
ZP-plot  of  the network’s  nodes.  P is the connectivity  of  a node to  the members  of  other  modules,  while  Z is  the
connectivity of a node to the members of its own module. C) Nodes’ degrees plot of the network: following the scale-free
network topology, most nodes have few edges while a few have many edges. D) Centrality of the network nodes. Connex
to the nodes’ degrees, some nodes are central (many paths go through them) while others are peripherals.
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paths of the network) while others were peripherals (figure 1D). 19 OTUs were isolated from the

network, and among them 15 did not have any edge.

3.2 Phylogenetic clustering and functional redundancy in modules

The co-occurrence network was clustered into several modules with the betweenness centrality

algorithm. In the biggest connex part of the network (i.e. without all the unconnected nodes), 8

modules were returned, containing 2 to 11 OTUs (1 to 27 strains). It appeared that phylogenetic

distances between members (strains in OTUs) of the same module were slightly but significantly

smaller than that of members of different modules (Figure 2B, Wilcoxon, Mann & Whitney p =

0.0041).  This  result  remained  true  when  considering  the  difference  in  phylogenetic  distance

between connected and unconnected OTUs (figure 2C, Wilcoxon, Mann & Whitney p = 2e-4). In

addition to phylogenetic clustering, there was also a functional redundancy within modules. Indeed,

most  modules  displayed less  diverse chemical  reactions  (figure  3A) and more shared chemical

reactions  (figure  3B)  between  strains  compared  to  combinations  of  strains  expected  from null

models.
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Figure 2: Co-occurrences network’s modules and phylogenetic clustering. A) Modules of the co-occurrences networks
displayed on figure 1A. B) Distribution (density curves) of phylogenetic distances between OTUs pairs for OTUs in the
same  module  (red)  and  OTUs  pairs  in  different  modules  (blue).  C)  Distribution  (density  curves)  of  phylogenetic
distances between directly connected OTUs (red) and not directly connected OTUs (blue).
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Figure 3: Modules’ metabolic properties compared to null models. A) Metabolic diversity (in
terms of number of different chemical reactions) of modules compared to a null model. B)
metabolic  redundancy,  i.e.  shared chemical reactions between strains of  the same module,
compared to a null model. Nulls models were computed with random picks of the bacterial
strains pool
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4 Discussion

Many studies involving co-occurrences networks attempt to describe the structure of microbial

communities.  For instance,  they are useful to analyze the impact of fertilizers on soil microbial

communities (Ishimoto et al., 2021), to compare microbiota of spatially segregated populations of

the same species (Riera and Baldo, 2020), to detect response to herbivory (Malacrinò et al., 2021),

or to compare diets (Read et al., 2019). In our study, the network we built is oriented towards the

structure of the community after its  establishment and  colonization  of  the roots of  young host-

plants, reflecting the early life of the system.

4.1 The network is a basis to hypothesize interactions, notably between
keystone species and the host

Centrality measures  are  commonly used to  find important  nodes  in  a network,  i.e.  keystone

OTUs/species with a relevant ecological importance in a microbial community (Layeghifard et al.,

2017). Keystone species are species that are, regardless of their abundance, considered as central to

the structure and function of their community (Agler et al., 2016).  Our network followed a scale-

free topology, that describes networks with a few nodes highly connected with a high degree and a

high betweenness (i.e. a high centrality),  and many nodes displaying the opposite  (figure 1C&D)

(Layeghifard et al., 2017).  Such a topology is common in microbiology and other fields, thus in

accordance with the literature, and the alteration of central nodes is thought to be potentially highly

detrimental (Ma et al., 2020). Such keystone nodes (species) suggest the idea of a limited set of core

microbes  among  microbial  communities.  However,  our  network  is  inferred  from  a  reduced

inoculum of bacteria, which might have overly simplified the result. Indeed, networks inferred from

full  natural samples are usually much more dense because of the high number of species they

contain,  creating numerous paths  even if they still follow a scale-free topology.  Hence, in nature,

core microbiota are bigger and denser, and likely allow a sufficient connection between members

and maintain the system resilience when faced with perturbations.

Thus,  our  first  hypothesis  was  validated.  In  addition  to  these  centrality  measures,  the

computation  of  among  and  within-modules  connectivity  highlighted 3  module  hubs,  4  module

connectors, and one network hub (figure 1B). Most of the strains contained in these OTUs belonged

to  genus  that  are  known to  have  symbiotic  or  beneficial  relation  with  the  host-plant,  such  as

nitrogen fixation (Rogel et al., 2001; Pini et al., 2011; Satola et al., 2013; De Meyer et al., 2019).

Hence, species highly interacting with the host plant are likely to be relevant into the microbiota
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structure.  For  example,  we  suggest  that  such  keystone  species  could  be  the  origin  of  niche

engineering, due to unique secretions that would be the result of their interaction with the host. New

niches would then be colonized by other species, likely specialists, because generalists are usually

identified as peripheral nodes (Deng et al., 2012), that might be less involved in relations with the

host  and  could  profit  from  the  engineered  environment  by  keystone  species.  Co-occurrence

networks are known to recapitulate interaction networks in some conditions, but they present some

issues.  First,  spurious  correlations  (thus  interactions)  can  arise  in  the  neighborhood  of  highly

connected nodes (likely keystones). Second, according to some studies co-occurrences networks

could be more suited to decipher competitive interactions, but not to predation or parasitism (Hirano

and  Takemoto,  2019).  Third,  co-occurrences  networks lose  their  interpretability  when  habitat

filtering has a significant effect  (Berry and Widder, 2014b), which was detected in our network

(figure 2 and 3).

4.2 Phylogenetic and functional clustering reveal habitat filtering

Patterns of co-occurrences in microorganisms are known to be driven by deterministic processes.

(Horner-Devine et al., 2007). Among those, it appears that biotic and abiotic environmental factors

play a great influence in selecting the species that can colonize an environment, a process referred

to as habitat filtering. Habitat filtering is a process which selects for the best trait values that give

tolerance to  an environment,  leading to  a  functional  convergence among species  (Zhang et  al.,

2017). Our co-occurrences network displayed significant patterns of phylogenetic and functional

clustering. Directly connected OTUs were slightly, but significantly more phylogenetically related

than unconnected ones, as well as intra-modules OTUs and inter-modules OTUs (figure 2B). OTUs

within  a  module  had a  more  similar  metabolism (in  terms  of  chemical  reactions  diversity and

redundancy)  than  expected  by  a  null  model.  This  result  validated  our  second  hypothesis  that

assumed a correlation between phylogenetic relatedness and closeness in the network,  and also

highlighted that the functional clustering  was correlated with the phylogenetic clustering (figure 3).

Phylogenetic clustering has been frequently observed in natural communities  (Horner-Devine

and Bohannan, 2006; Violle et al., 2011; Mondav et al., 2017), and is recognized to be a proxy of

habitat filtering (Gerhold et al., 2015).  Niche analysis revealed strong niche overlaps between co-

occurring bacteria,  highlighting shared ecological properties between members of the community

(Michalska-Smith et al., 2021). Indeed, phylogenetically close species are often functionally similar

(Martiny et al., 2015), a redundancy which also reflects habitat filtering.  However, phylogenetic

clustering  can  also  arise  from biotic  interactions,  in  cases  where  dissimilar  species  have  been

156



Chapter 5 – Supplementary side-project

excluded due to weak competition abilities, leaving relatively similar species (Goberna et al., 2014;

Zhang et al., 2017).

Finally, our co-occurrences network harbored mostly positive edges and relatively few negative

ones.  Negative edges  are  supposed to  translate co-exclusion mechanisms,  including differential

niche  adaptation  (Faust  et  al.,  2012). Hence,  low  proportions  of  negative  edges   suggest  a

prevalence  of  overlapping  niches  between  the  members  of  the  community (Ma  et  al.,  2020),

strengthening  the  possibility  of  habitat  filtering  in  this  environment.  One  could  think  about

conflicting  statements  here.  Indeed,  overlapping  niches  and phylogenetic  relatedness  are  likely

synonyms of  competition,  however  the  weak prevalence  of  negative  edges  suggests  otherwise.

However,  we  mentioned  above  the  fact  that  co-occurrences  networks  struggle  to  infer  correct

interactions when habitat filtering is important, a statement that reconciles these statements.

5 Conclusion and prospects

This co-occurrences network analysis on  A. thaliana root microbiota extended many previous

studies highlighting both the scale-free topology and the phylogenetic and functional clustering of

microbial communities. The first constitutes a basis for inferring deeper interaction networks, and

the latter shed light on environmental filtering, most likely by the host plant. A perspective to this

work would be to proceed to a similar analysis on A. thaliana’s leaf microbiota, both with a leaf-

derived inoculum and the same root-derived inoculum. Such approaches would both highlight the

structure of the leaf microbiota, and the microbes that are able to establish in both compartments, or

transition from roots  to  leaves.  Another  possibility would  be to  investigate  how generalist  and

specialist  species  are  distributed  in  the  networks. For  example,  according  to  (Barberán,  Bates,

Casamayor,  &  Fierer  (2012), generalist  species  are  species  encountered  in  most  samples  in

relatively  high  to  high  abundances,  while  specialists  are  encountered  in  few  samples,  in  high

abundances.

 Some limits must however be mentioned, particularly the method of identifying keystone species

with co-occurrences networks, that has not yet arrived at a consensus. The validity of this approach

should  be  subject  to  experimental  testing  of  removal/addition  of  keystone  taxa  in  microbial

communities,  which  is  challenging  to  do  (Röttjers  and  Faust,  2019).  Co-occurrence  networks

approaches are not interaction networks, yet enable exploring biotic interactions, but do not permit

to  go  much  further  since  they  rather  highlight  statistically  significant  co-occurrences or  co-

exclusion  (Röttjers and Faust,  2019). Hence,  they need to be combined with   more functional-

oriented data  and integrated to other approaches,  for example with Lotka-Volterra models  (Berry
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and  Widder,  2014b),  metabolic  networks  to  study  putative  competition  or  cooperation  for

metabolites (Muller et al., 2018), or experimental validation of co-occurrences and co-exclusions..

They are then more useful to describe a community structure  with many unknowns about how

connected species interact, and generate hypotheses to be tested  (Hartman et al., 2018; Ramirez et

al., 2018).
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Résumé

Les communautés microbiennes forment un réseau complexe d’interactions entre organismes, qui

façonnent  leur  structure.  Parmi  ces  interactions,  les  échanges  de  métabolites  entre  organismes,

nommés ‘cross-feeding’, sont considérés comme fréquents et importants. Ces échanges peuvent être

prédits  in  silico  avec  des  réseaux métaboliques  inférés  à  partir  de génomes.  Ces  modèles  sont

intégrés  dans  un  cadre  de  travail  nommé  ‘microbial  system ecology’,  qui  rassemble  plusieurs

méthodes de modélisation ainsi que leur validation expérimentale, à différentes échelles d’étude.

Dans  cette  thèse,  nous  avons  utilisé  ce  cadre  pour  prédire  de  nombreuses  et  hypothétiques

associations de bactéries du microbiote racinaire d’Arabidopsis thaliana permettant le production

de métabolites non productibles par des bactéries seules. Nous avons également modélisé l’impact

des  nutriments  disponibles  dans  le  milieu,   et  prédit  que  ces  contraintes  nutritionnelles  sont

largement compensées par des comportements de cross-feeding. En parallèle, nous avons également

utilisé des métriques simples pour corréler le potentiel de cross-feeding et de compétition avec le

métabolisme  des  bactéries  et  leur  distance  phylogénétique.  Ces  métriques  ont  été  testées

expérimentalement  avec  un  ensemble  de  petites  communautés  synthétiques.  La  compétition

semblait dominer dans la plupart des communautés, mais a été déterminée comme étant plus faible

dans les communautés abritant des souches à métabolisme différent. Nous avons identifié quelques

bactéries  profitant  des  exsudats  d’autres  espèces,  particulièrement  une  Achromobacter  sp.

Finalement, les résultats suggèrent que le cross-feeding est courant mais potentiellement masqué

par de la forte compétition pour d’autres ressources, par exemple spatiales.

1 Introduction

Les  microorganismes  sont  reconnus  comme  des  éléments  majeurs  de  nombreux  processus

environnementaux. Lorsqu’ils sont associés à un organisme hôte (animal ou végétal), ils constituent

son microbiote, et sont impliqués dans de nombreux processus qui lui sont bénéfiques (nutrition,

résistance aux maladies ou à divers stress environnementaux)  (Larimer et al., 2010; Fierer, 2017;

Amor and Bello, 2019). Les nombreuses fonctions associées aux communautés microbiennes ont

également  conduit  au  design  de  petits  communautés  synthétiques,  optimisées  pour  assurer  une

fonction donnée une fois inoculée dans un environnement. Il peut par exemple s’agir de protection

des plantes,  de médecine,  ou de dépollution  (Liu et  al.,  2017; Chubukov et  al.,  2018; Liu and

Nielsen, 2019).



1.1 Les règles d’assemblages des communautés microbiennes

Un  aspect  fondamental  des  communautés  microbiennes,  est  l’étude  des  mécanismes

d’assemblage qui leur donnent leur structure (i.e. la composition et abondances des espèces) et leur

dynamique temporelle. L’écologie des communautés est la discipline qui cherche à caractériser les

assemblages d’espèces. Ces mécanismes sont nombreux et regroupés en quatre processus distincts

(Vellend, 2010) :

• La dérive : des changements aléatoires d’abondances des espèces (natalité, mortalité)

• La dispersion (migration …)

• La spéciation, i.e. l’apparition de nouvelles espèces

• La sélection, seul processus déterministe, où seuls les individus / espèces les plus adaptés

sont sélectionnés survivent, et se reproduisent.

L’importance relative de chaque processus,  particulièrement  entre  ceux stochastiques et  ceux

déterministes, est encore relativement peu connue, malgré d’abondantes connaissances accumulées

(Morrison-Whittle  and Goddard,  2015).  D’une manière générale,  il  est  établi  que les processus

stochastiques sont plus déterminants dans la détermination de pool d’espèces globaux, tandis que

les  processus  déterministes  sont  plus  importants  à  l’échelle  des  pools  d’espèces  locaux

(Götzenberger  et  al.,  2012).  Les  effets  déterministes  impliqués  dans la  sélection sont  variés,  et

impliquent  la  réponse  des  organismes  à  un  ou  des  facteurs  environnementaux,  qu’ils  soient

abiotiques  (humidité,  température,  salinité,  acidité  …),  ou  biotiques,  c’est-à-dire  comment  les

espèces interagissent les unes avec les autres.

1.1.1 La théorie des niches

La théorie des niches considère que chaque espèce est définie par sa « niche » écologique, un

ensemble  de  conditions  biotiques  et  abiotiques  qui,  une  fois  considérées  comme des  « axes »,

définissent le volume dans lequel cette espèce peut s’implanter et survivre. La coexistence de deux

espèces est possible car leur niches sont différentes, ce qui limite la compétition entre espèces : il

s’agit  de  la  différenciation  de  niches,  qui  peut  s’opérer   de  nombreuses  manières  différentes

(occupation d’espaces différents, consommation de ressources différentes..)  (Brochet et al., 2021).

La différentiation de niche entraîne un décalage entre la niche fondamentale d’une espèce et sa

niche réelle, c’est-à-dire la différences entre les dimensions qu’elle peut potentiellement occuper

dans un environnement et celle qu’elle occupe réellement. Selon la théorie des niches, les espèces

que l’on trouve au sein d’une communauté sont celles qui ont su différencier suffisamment leurs

niches par rapport à celles des autres.



A l’opposé de la différentiation de niches, la théorie de « l’habitat filtering » propose que les

traits  les  plus  aptes  pour  survivre  à  un  environnement  sont  sélectionnés.  En  conséquence,  les

espèces présentes dans un même biotope ont toutes des traits similaires (Zhang et al., 2017).

1.1.2 Facteurs externes impliqués dans les règles d’assemblages des 
communautés

La structure d’une communauté microbienne est affectée par de nombreux facteurs  stochastiques,

tels que les précipitations, la dispersion par le vent, l’ordre d’arrivée des espèces dans un milieu

(Fukami  et  al.,  2010).  Les  facteurs  physico-chimiques  déjà  évoqués  de  l’environnement  ont

également un poids certain (salinité, acidité, composition en nutriments) (Cui et al., 2021). D’autres

facteurs tels que l’utilisation des sols, la connectivité à d’autres communautés, le transport par des

vecteurs animaux, ainsi que les plantes et animaux voisins sont également en jeu (Hacquard, 2016;

Griggs et al., 2021). Enfin, dans le cas des microbiotes, l’hôte exerce une sélection. Par exemple, les

plantes  conditionnent  fortement  quels  microbes  du  sol  qui  pourront  coloniser  ses  différents

compartiments, grâce à leurs exsudats racinaires  (Bulgarelli et al., 2013; Griggs et al., 2021). Le

transfert peut également être vertical, de génération en génération (Walker et al., 2017).

1.1.2 Les interactions biotiques entre organismes

En comparaison des facteurs abiotiques,  les différentes interactions entre les membres d’une

même communauté microbienne sont moins connues. Elles sont en effet particulièrement difficiles

à étudier en raison de la  forte concentration de nombreux individus  de nombreuses espèces au

même  endroit,  les  patterns  observés  étant  le  résultat  de  multiples  interactions.  De  plus,  elles

dépendent également d’autres paramètres, tels que les échelles spatiales et temporelles, ou encore

les  ressources  disponibles  (Kelsic  et  al.,  2015;  Zuñiga  et  al.,  2019;  Fritts  et  al.,  2021).  Les

interactions  précises  par  paires  d’espèces  sont  donc moins  bien connues.  Elles  sont  néanmoins

variées, allant de l’antagonisme et la compétition (prédation, sécrétion d’antibiotiques, compétition

pour une ressource) au mutualisme (coopération pour des bénéfices réciproques). Les interactions

peuvent  également  être  commensales  (sans  effet  pour  une  espèce,  bénéfique  pour  l’autre)  ou

ammensales (sans effet pour une espèce, négative pour l’autre) (Zélé et al., 2018; Coyte and Rakoff-

Nahoum, 2019; Pacheco and Segrè, 2019).

1.1.3 Une interaction métabolique : le cross-feeding

Une interaction de « cross-feeding » entre deux microorganismes désigne la situation où l’un

d’entre eux (le bénéficiaire) assimile un exsudat issu du métabolisme de l’autre (le fournisseur), et

l’utilise  comme  nutriment  pour  son  propre  métabolisme.  Une  telle  interaction  peut  être  tantôt

bénéfique dans le cas où l’échange est mutuel, tantôt négatif pour le fournisseur (dans un cas de

parasitisme), tantôt sans effet pour le fournisseur (relation commensale) (figure 1A). Il en existe



différents types (figure 1B), et peut être  obligatoire ou non à la survie du bénéficiaire, ou bien

impliquer un bénéficiaire spécifiquement associé à un fournisseur précis ou généraliste, ou encore

restreint ou non aux déchets du bénéficiaire (Morris et al., 2013; Pande and Kost, 2017; Hillesland,

2018; Zengler and Zaramela, 2018; Smith et al., 2019). Cette interaction repose sur la sécrétion de

« biens communs » par les fournisseurs,  qui  peuvent être des enzymes,  protéines,  sidérophores,

cofacteurs,  acides  aminés,  vitamines  (etc)  (Fritts  et  al.,  2021),  mis  à  disposition  de  tous  les

organismes qui peuvent les assimiler, sous condition qu’ils puissent être acheminés du fournisseur

au bénéficiaire (figure 1C) (Sung et al., 2017; D’Souza et al., 2018; Zengler and Zaramela, 2018).

Les nutriments déjà disponibles dans le milieu vont notamment dicter le métabolisme des micro

organismes, ainsi que quelles interactions de cross-feeding seront indispensables ou non à la survie

de  certains  (figure  1D)  (Magnúsdóttir  et  al.,  2017).  En  effet,  sous  de  pauvres  conditions

nutritionnelles, il a été démontré que de nombreux microorganismes compensent ces contraintes par

de  nombreux  comportements  de  cross-feeding,  même  entre  des  espèces  habituellement

compétitrices  (Zuñiga et al., 2019; Fritts et al., 2021). Pour finir, les échanges de composés entre

microorganismes permettent la production de métabolites no productibles par des organismes isolés,

donnant à la communauté microbienne une « plus-value ».

De nombreuses approches expérimentales ont conclu à la prépondérance de la compétition dans

les interactions microbiennes. Cependant, des travaux récents tendent à montrer que l’échange de

métabolites, qu’ils soient commensaux ou mutualistes, sont également d’une grande importance, et

suggèrent l’existence de compromis entre compétition et coopération (Zelezniak et al., 2015; Coyte

and Rakoff-Nahoum, 2019; Thommes et al.,  2019; Machado et al.,  2021). Parmi ces études, un

grand nombre s’appuie sur la modélisation du métabolisme à partir des génomes et la prédiction des

interactions métaboliques, dont un grand nombre est encore à valider expérimentalement. De telles

approches  impliquent  de nombreuses  méthodes,  et  ont  été  regroupées  dans  un cadre  de travail

dénommé « microbial system ecology »



1.2 L’approche par ‘microbial system ecology’

La biologie  des  systèmes  est  la  discipline  qui  s’applique  à  modéliser  mathématiquement  et

informatiquement le fonctionnement des différents systèmes biologiques : cellules, tissus, organes

(etc). Le but est d’obtenir les propriétés émergentes du système par la connexion de ses différents

composants, plutôt que les propriétés de ses composants seuls : le système est vu comme un réseau.

La « microbial system ecology » (‘MSE’) reprend les principes de la biologie des systèmes en les

appliquant à l’écologie des communautés (Muller et al., 2018).

Figure 1: (A) Les interactions de cross-feeding ne sont pas nécessairement mutualistes. Selon l’effet du bénéficiaire sur
le fournisseur, l’interaction peut être mutualiste, commensale ou parasitaire. (B) Il existe différents types de cross-
feeding  (Smith  et  al.  2019),  selon  la  nature  du  composé  échangé  et  sur  sa  directionnalité  (échange  mutuel  ou
unidirectionnel). (C) L’existence de cross-feeding est conditionné à la sécrétion au transport, et à l’assimilation du
« bien  commun »  échangé  (D’Souza  et  al.  2018).  (D)  Les  interactions  métaboliques  dépendent  du  contexte
environnemental.  Si  un  nutriment  est  déjà  disponible  dans  le  milieu,  le  cross-feeding  n’est  pas  obligatoire  pour
l’organisme bénéficiaire.  Si  un nutriment n’est  disponible que par excrétion d’un organisme producteur,  le  cross-
feeding devient obligatoire pour le bénéficiaire (E) Définitions des différents types de cross-feeding représentées en B).



L’échelle des communautés microbiennes présente un avantage : la plupart des organismes d’un

microbiote sont unicellulaires (les bactéries par exemple), et l’application des méthodes de MSE

permet  un  croisement  entre  outils  de  biologie  cellulaire  et  d’écologie  des  communautés.  Une

majeure partie des modèles se base sur les réseaux métaboliques des organismes reconstruits à partir

de leurs génomes séquencés puis annotés (ce qu’on appelle la génomique) (Mendoza et al., 2019;

Jansma  and  Aidy,  2020).  Le  croisement  avec  d’autres  données  -omiques  (transcriptomique,

protéomique,  métabolomique)  permet  de  renforcer  les  modèles.  Les  différentes  interactions

biotiques entre organismes peuvent ainsi être prédits à partir de la simulation de leur mode de leur

écologie  (Muller et al., 2018)(Mee et al., 2014; Kumar et al., 2019). Néanmoins, nombre de ces

modèles  sont  encore  vulnérables  à  de  nombreux  biais,  et  servent  souvent  de  générateurs

d’hypothèses à tester expérimentalement (Coyte and Rakoff-Nahoum, 2019; Goyal et al., 2021). 

Figure 2: résumé schématique des approches top-down et bottom-up en microbial system ecology, avec une liste non-
exhaustive de méthodes, techniques, et analyses. Sous ce cadre de travail, analyser la structure et la dynamique d’un
microbiote implique un constant va-et-vient entre les approches top-down / bottom-up et in silico / in vitro / in vivo, de
façon itérative en direction du but recherché (par exemple le design d’une communauté synthétique). La modélisation
top-down  (A)  utilise  des  données  -omiques  à  grande  échelle  associé  à  des  analyses  descriptives  et  statistiques
multivariées pour détecter des patterns (spatiaux, temporels, environnementaux, fonctionnels …), par exemple à partir
de l’abondance des espèces ou de la diversité de leurs gènes. Ces données sont souvent issues d’expériences à grande
échelle (B),  comme l’échantillonnage d’une communauté entière.  La modélisation bottom-up préfère une approche
réductionniste,  où  des  petits  sous-système  sont  analysés  de  façon  plus  détaillée  et  méchanistique,  notamment
concernant les interactions entre microorganismes. De nombreux modèles se basent sur des réseaux métaboliques
construits à partir de génomes annotés, pouvant prédire de la compétition pour un nutriment ou bien son échange par
cross-feeding. De plus, la dynamique de ces interactions peut être modélisé avec des modèles de type Lotka-Volterra.
(D) idéalement,  les  prédictions des  modèles  doivent être testées  expérimentalement.  Chaque méthode présente ses
avantages et inconvénients, et fournit des connaissances précises qui doivent être synthétisées en un ensemble cohérent
afin d’obtenir une analyse complète (plus de détails dans Shahzad 2012, Fransoza et al. 2015, Amor and Bello 2019,
Lawson et al. 2019, Lloyd-Price et al. 2019, Vrancken et al. 2019).



Les différentes approches de la MSE s’articulent autour de deux grandes catégories de méthodes.

Les méthodes dites « top-down » (figure A&B), qui sont essentiellement descriptives et considèrent

de  grandes  communautés  et  tentent  d’y  découvrir  des  patterns  d’organisation.  A l’opposé,  les

méthodes dites « bottom-up » (figure C&D) se basent sur de très petites sous-communautés afin

d’étudier finement les interactions entre microorganismes. Toutes peuvent être modélisatrices ou

expérimentales, et se nourrissent et s’interrogent les unes les autres dans un cadre de progression

itératif dénommé « Design-Build-Test-Learn » (figure 2) (Lawson et al., 2019).

1.3 Objectifs de la thèse

Cette thèse de doctorat a pour but d’étudier les interactions métaboliques par cross-feeding entre

des bactéries du microbiote racinaire d’Arabidopsis thaliana, représenté par 193 génomes annotés

et considérés comme représentatif du microbiote principal de la plante. 

Tout d’abord, l’introduction générale a été enrichie d’une mini-review (soumise à  Frontiers in

Microbiology) pensée comme une porte d’entrée à la microbial system ecology pour les chercheurs

non familiers avec cette discipline. 

Ensuite, un travail important a été dédié à la prédiction d’interactions de cross-feeding entre les

différentes  bactéries,  sous  différentes  contraintes  nutritionnelles,  incluant  notamment  l’effet  des

exsudats  racinaires.  Les  échanges  de  métabolites  à  l’échelle  de  la  communauté  entière

compensaient largement les différentes contraintes nutritionnelles. Après avoir ciblé la production

de  métabolites  en  particulier  (acides  aminés,  vitamines,  phytohormones),  de  nombreuses

interactions hypothétiques ont été recensées, avec une redondance importante de certaines bactéries

parmi les combinaisons proposées. En parallèle, nous avons établi une corrélation entre le potentiel

à coopérer et la distance phylogénétique entre deux souches bactériennes.

Finalement, un protocole expérimental simple a été mis au point pour tester la vraisemblance de

la  corrélation  établie  entre  distance  phylogénétique  (traduite  en  diversité  de  métabolites

productibles, car plus des bactéries sont distantes, plus leur production est variée) et  potentiel de

cross-feeding. 41 petits communautés synthétiques de 4 bactéries (dont une commune à toutes les

communautés) ont été construites le long d’un gradient de diversité métabolique, puis cultivées en

laboratoire. La compétition semblait moins forte entre les espèces avec une plus grande diversité

métabolique (donc un plus grande distance phylogénétique). De plus, nous avons identifié quelques

souches bactériennes capables de se nourrir des exsudats des autres, notamment une Achromobacter

sp.



2. Matériel et méthodes

Les données de départ consistaient en un pool de 193 génomes annotés de souches bactériennes

considérées comme représentatives du microbiote racinaire d’Arabidopsis thaliana. 

2.1 Modélisation et prédictions

Pour  chaque  génome  (et  donc  chaque  souche),  un  réseau  métabolique  (« Genome-scale

metabolic model » : GEM) a été reconstruit à l’aide des outils  Pathway Tools (Karp et al., 2011;

Belcour et al.,  2020),  AuReMe (Aite et al., 2018), et la base de données  MetaCyc (Caspi et al.,

2008).  Un  arbre  phylogénétique  était  également  disponible.  Plusieurs  métriques  pouvaient  être

extraites de chaque GEM :

• Le nombre et la liste des métabolites productibles (« Predicted Producible Metabolites » :

PPM). 

• Plusieurs PPM de différents GEMs peuvent être calculés en même temps, et ainsi inclure les

métabolites uniquement productibles grâce aux échanges de composés intermédiaires entre

GEMs. C’est la « plus-value » apportée par la communauté.

• Dans le cas de plusieurs GEMs à la fois, l’intersection des PPM des GEMs, c’est-à-dire les

métabolites  productibles  par  tous  les  GEMs  considérés  (« Core  Predicted  Producible

Metabolites » : CPPM).

• Le nombre de métabolites cibles (acides aminés, vitamines, phytohormones) productibles

(« Targeted Predicted Producible Metaoblites » : TPPM), par un ou plusieurs GEMs à la fois

(en  incluant  les  composés  productibles  par  complétion  métaboliques  grâce  au  cross-

feeding).

Ces  trois  métriques  peuvent  être  calculées  sous  une  contrainte  nutritionnelle,  c’est-à-dire  une

simulation des nutriments directement disponibles dans l’environnement, ou sans contrainte. Sous

contrainte,  la  production  des  GEM  est  donc  limitée  par  les  nutriments  disponibles,  et  sans

contrainte, c’est leur production théorique complète qui est obtenue. Plusieurs contraintes ont été

utilisées en simulant des milieux de culture, réparties en deux catégories : sévère (milieux pauvres

en nutriments,  essentiellement  minéraux)  et  modérée  (milieux riches  en nutriments,  notamment

carbonés). Chaque contrainte existait en une version alternative, enrichie en composants simulant

des  exsudats  racinaires  (« Artificial  Root  Exudates » :  ARE).  Finalement,  les  prédictions  de

combinaisons de GEM pour produire les TPPM ont été calculées avec un solveur d’Answer Set

programming (ASP, programmation par ensemble-réponse), Miscoto (Frioux et al., 2018)



2.2 Approche expérimentale

Les 41 communautés synthétiques (SynComs) testées étaient réparties le long d’un gradient de

PPM (également corrélé à la distance phylogénétique moyenne entre les membres des SynComs),

parmi un pool de 50000 SynComs générées aléatoirement. Chaque SynCom contenait 4 membres,

ce qui correspond à la taille de la plupart des combinaisons renvoyées par le solveur ASP auxquelles

a été ajouté une souche supplémentaire (‘Root695’,  mesorhizobium sp), constante dans toutes les

SynComs. Cette  souche était  peu compétitrice avec une croissance lente :  son ajout a donc été

estimé comme peu impactant sur les autres membres, et sa constance avait pour but d’obtenir un

éventail d’interactions plus précis pour une souche en particulier. Chaque SynCom a été cultivée en

incubateur  à  20°C,  en  milieu  liquide  minimal  « M9 »  auquel  a  été  ajouté  un  mix  mimant  les

exsudats racinaires d’A. thaliana.

2. Résultats et discussion

2.1 Effet de différentes contraintes nutritionnelles sur le métabolisme 
du microbiote racinaire d’Arabidopsis thaliana

Dans cette analyse prédictive, le nombre maximal de PPM de chaque GEM, c’est-à-dire sans

contrainte nutritionnelle, a été comparé au PPM de ces mêmes GEM sous différentes contraintes

nutritionnelles. Il est apparu que les différentes contraintes, qu’elles soient sévères ou modérées,

impactaient très fortement le nombre de PPM de chaque GEM (figure 3A) par rapport au PPM non

contraints. L’effet des milieux pauvres était plus important que celui des milieux riches. Cependant,

l’ajout des ARE compensaient en partie ces contraintes, en augmentant significativement les PPM

contraints (figure 3A). De plus, les ARE débloquaient la production des mêmes métabolites d’un

milieu à l’autre : en effet, une classification hiérarchique de la liste des métabolites productibles

rassemblaient  les  milieux  avec  ARE  dans  une  même  branche,  peu  importe  la  sévérité  de  la

contrainte appliquée (figure 3B). A l’échelle de la communauté, sous l’hypothèse forte que tous les

métabolites  soient  secrétables  et  échangeables  entre  GEM,  la  plus-value  apportée  par  la

communauté compensait largement toutes les contraintes nutritionnelles, en ramenant le PPM de la

communauté à une valeur similaire quel que soit la contrainte (figure 3C). Finalement, une attention

particulière sur les TPPM a permis de mettre en évidence la sévérité des contraintes nutritionnelles

sur  le  métabolisme  des  bactéries.  La  majorité  des  TPPM était  théoriquement  productible  sans

contrainte, alors qu’une faible partie d’entre eux l’étaient sous les différentes contraintes, et ce par

un nombre réduit de GEM. Les ARE avaient de nouveau un effet positif, débloquant la production

de plusieurs TPPM pour un nombre relativement important de GEM (figure 1D).



Ainsi, nous avons démontré que le métabolisme des 193 bactéries est dépendant des nutriments

présents dans l’environnement, et sont particulièrement adaptés pour utiliser les composés carbonés

excrétés  les  racines  de  la  plante  hôte.  Nous  avons  également  démontré  que  des  échanges

métaboliques entre bactéries (à l’échelle de la communauté entière) peuvent compenser fortement la

contrainte appliquée par des limitations en nutriments.

2.2 Corrélation entre distance phylogénétique et diversité métabolique

Dans cette analyse, nous avons cherché à corréler différentes métriques issues des génomes et

des GEM associés à la diversité (PPM) et redondance (CPPM) métabolique des différentes souches

bactériennes, et par extension leur potentiel de coopération ou compétition. Pour différente tailles

de SynCom allant de 2 à 20, et 500 SynComs par taille, nous avons calculé pour chaque SynCom le

PPM, le CPPM, la distance phylogénétique moyenne et la taille de génome moyenne. 

Nous avons observé que :

• Les PPM augmentent et les CPPM diminuent significativement avec la taille des SynComs.

La différence d’une taille à l’autre se réduit au fur et à mesure que la taille grandit (figure 4).

De  plus,  l’étendue  des  valeurs  prise  par  les  différentes  métriques  se  réduit  également,

témoignant d’un rapprochement progressif de la communauté entière, donc une plus grande

ressemblance entre les SynComs.

• Les  PPM  augmentent  et  les  CPPM  diminuent  significativement  avec  la  distance

phylogénétique moyenne des SynComs. Pour les SynComs de petite taille, un optimum de

PPM est atteint vers une distance phylogénétique d’environ 1.3. Cet optimum se transforme

en plateau au fur et à mesure que la taille des SynComs augmente (figure 4A&B).

• Les PPM et les CPPM augmentent significativement avec la taille moyenne des génomes

(figure 4C&D).

• Bien  qu’une  corrélation  soit  établie,  la  plupart  des  PPM  et  CPPM  des  SynComs  sont

concentrées autour d’une distance phylogénétique précise (environ 1.3) au lieu de se répartir

le  long  des  axes.  Cela  était  dû  à  la  composition  taxonomique  du  pool  de  bactéries,

majoritairement composé de proteobacteria et d’actinobacteria : les combinaisons entre ces

souches  renvoyaient  des  métriques  autour  de  ces  valeurs.  Les  valeurs  extrêmes

correspondent aux combinaisons contenant d’autres phyla, ce qui est également la cause du

pic  de  PPM des  petites  SynComs :  les  combinaisons  de phyla  donnant  des  SynComs à

grande distance phylogénétique représentaient des souches avec des PPM plus faibles que

les proteobacteria et actinobacteria.



Figure 3: Effet des contraintes nutritionnelles sur les PPM et TPPM. (A) Boxplots du nombre de PPM par GEM
selon  les  contraintes  nutritionnelles,  comparée  au  nombre  de  PPM  sans  contrainte.  (B)  Classification
hiérarchique des contraintes nutritionnelles selon la composition des PPM de chaque GEM qui en résultent. (C)
PPM  de  la  communauté  entière  selon  la  contrainte   nutritionnelle,  avec  la  plus-value  apportée  par  des
interactions de cross-feeding entre les 193 GEM. (D) Détail de la production de TPPM selon les contraintes
nutritionnelles.  Les nombres indiquent la proportion de GEM capables de produire les TPPM. Les cellules
grises sont exclues de l'analyse et  correspondent au cas où un milieu de culture modélisé contient  déjà un
TPPM. Sur toutes les figures, les contraintes sévères sont labellisées en noir, les contraintes modérées en rouge,
et les contraintes avec ajout d'ARE sont en gras.



Figure 4: Corrélations entre les PPM (A&C) / CPPM (B&D) et les différentes métriques explicatives :  distance
phylogénétique moyenne (A&B), taille moyenne des génomes (C&D), et taille des SynComs (code couleur). Les 
points noirs représentent les valeurs de la communauté entière (193 GEM).

D’après ces résultats, la capacité fonctionnelle de toute la communauté est donc atteignable par un

nombre relativement  réduit  de GEM (une combinaisons d’une dizaine de GEM étant déjà  plus

proches de la  communauté entière  qu’une combinaisons  de 2 GEM). Ceci  illustre  une certaine

redondance métabolique parmi les membres de la communauté, ce qui fait écho à certaines études

affirmant l’existence de « core » microbiotes pouvant assurer certaines fonctions aussi  bien que

toute la communauté (Toju et al., 2018). Les souches phylogénétiquement distantes présentent un

métabolisme plus diversifié et moins redondant, ce qui est souvent interprété comme un pattern

limitant  la  compétition  pour  les  mêmes  nutriments  et  favorisant  la  coopération  pour  certains

métabolites (Hester et al., 2019; Lam et al., 2020). Cependant, la forte concentration des SynComs à

des valeurs intermédiaires suggère l’existence d’un compromis entre compétition et coopération

(Machado et al., 2021), où les différentes espèces seraient suffisamment proches pour s’échanger



des  métabolites  dont  elles  ont  besoin  (car  proximité  phylogénétique  implique  généralement

proximité fonctionnelle), et suffisamment éloignées pour éviter une forte compétition. 

2.3 Prédictions d’interactions de cross-feeding pour la production de 
métabolites clés

Dans cette dernière analyse prédictive, le programme Miscoto a été utilisé pour prédire toutes les

combinaisons  minimales  (i.e.  les  plus  petites)  de  GEM capables  de produire  le  plus  de  TPPM

possibles, sous les différentes contraintes nutritionnelles.

Les combinaisons renvoyées par le programme étaient toutes de petite taille (2 GEM pour les

contraintes  modérées,  3  GEM pour les  contraintes  sévères).  Elles  étaient  très  nombreuses  sous

contraintes sévères et peu nombreuses sous contraintes modérées, et permettaient le production de

plusieurs  TPPM impossibles  à  produire  par  des  GEM isolés.  Toutefois,  le  gain de  TPPM était

mineur sous contraintes modérées. Ces patterns se maintenaient en réduisant le nombre de TPPM

uniquement  les  acides  aminés,  ou  bien  uniquement  les  vitamines,  ou  bien  uniquement  les

phytohormones). L’ajout d’ARE diminuait le nombre de combinaisons ainsi que la plus-value en

TPPM qu’elles apportaient, sauf dans l’analyse qui considérait toutes les TPPM à la fois, où elles

les augmentaient lorsque ajoutées à des milieux pauvres. (figure 5A).  Cependant, le nombre total

de GEM impliqués variaient fortement (de 67 à 193, en fonction de la contrainte nutritionnelle et

des  TPPM considérés).  Certains  GEM étaient  très  fréquents  dans  les  combinaisons,  tandis  que

d’autres très peu (figure 5), ce qui fait que l’ensemble des solutions peut être résumé avec une

quinzaine de GEM. La taille des génomes correspondant à chaque GEM n’avait pas d’effet sur cette

fréquence d’occurrence, écartant une analyse complémentaire entre opportunité de cross-feeding et

comportement généraliste (généralement synonyme de gros génome) (figure 5).

Cette analyse a permis de montrer que les interactions de cross-feeding sont dépendantes du

milieu, plus particulièrement des nutriments disponibles. En effet, moins de combinaisons sous de

sévères  contraintes  nutritionnelles  signifie  que  les  GEM  de  la  communauté  sont  capables  de

produire  plus  de  TPPM  de  façon  autonome,  alors  que  de  la  coopération  est  nécessaire  sous

contraintes sévères. Les ARE réduisent le nombre de combinaisons possibles en rendant les souches

autonomes, sauf sous les contraintes les plus sévères, où elles débloquent suffisamment de réactions

pour assurer  un métabolisme minimal  et  les  interactions de cross-feeding qui  en découlent.  Le

nombre  élevé  de  combinaisons  suggère  un  degré  de  redondance  fonctionnelle  au  sein  de  la

communauté,  une assurance de pouvoir  accomplir  de nombreuses  fonctions  par  diverses routes

métaboliques  pour  faire  face  aux  variations  environnementales  (pour  les  TPPM  étudiées).

Néanmoins, la prépondérance de certaines souches suggèrent des différences d’importance entre



souches,  l’essentiel  du  métabolisme  étudié  pouvant  être  accompli  par  un  « core »  microbiote

relativement réduit.

Figure 5: Combinaisons minimales de GEM pour produire les TPPM (toutes catégories confondues et acides aminés
seulement). (A) Nombre de combinaisons, nombre de GEM par combinaison, et  nombre total de GEM impliqués, selon
les contraintes nutritionnelles. (B) Nombre de TPPM productibles par des GEM seuls, productibles uniquement par
cross-feeding, et improductibles, selon la contrainte nutritionnelle. (C) Top 20 des GEM les plus fréquents dans les
combinaisons, selon la contrainte nutritionnelle. (D) Il n’y a pas de corrélation entre la fréquence d’un GEM dans les
combinaisons et la taille des génomes à partir desquels ils ont été modélisés.



2.4 Test expérimentaux basés sur les métriques prédictives

L’analyse  prédictive  par  modélisation  à  partir  des  GEM  a  été  suivie  par  une  phase

expérimentale. 41 communautés synthétiques (SynComs) de 4 souches ont été construites suivant

un gradient de PPM. Une bactérie constante était commune à toutes les SynComs afin d’étudier plus

précisément son profil d’interaction. Nous avions formulé l’hypothèse que  des SynComs avec des

PPM  élevés  (donc  composées  de  bactéries  suffisamment  distantes  phylogénétiquement)

permettraient une meilleure co-existence des différentes bactéries, grâce à une compétition réduite

(avec des niches moins chevauchantes), et potentiellement grâce à du cross-feeding.

Dans de nombreuses SynComs, la compétition pour les ressources entre souches semblait être la

force principale dirigeant la dynamique des différentes abondances. En effet, la plupart renfermaient

une  ou  deux  souches  dominantes,  excluant  les  autres  (par  exclusion  compétitive),  en  restant

toutefois  moins  abondantes  que  dans  leurs  monocultures.  L’analyse  des  abondances  totales  par

SynComs a cependant suggéré une compétition moins forte dans les SynComs avec un PPM élevé.

La souche constante s’est avéré avoir un taux de croissance très faible, en plus d’être une faible

compétitrice dans toutes les SynComs, sauf une (C42), où  il existait un pattern de croissance clair.

Malgré la forte compétition apparente, plusieurs SynComs présentaient des indices de cross-feeding

potentiel, avec des souches plus abondantes en SynComs qu’en monocultures. Une de ces souches,

labellisée  Root565  (Achromobacter  sp)  et  présente  dans  trois  SynComs  (C15,  C31  et  C37),

présentait l’effet le plus fort et ses cultures ont été répliquées. 

Ces cultures supplémentaires ont confirmé la capacité de Root565 a mieux se développer en

présence d’autres  souches plutôt  qu’en monoculture (figure 6A),  donc à profiter  des secrétions

d’autres espèces. Cette capacité ne semblait pas spécifique à certains fournisseurs, mais est apparue

comme dépendante du taux de croissance du fournisseur (figure 1C, 1E et 1F) : plus le fournisseur

croît vite, plus il fournit de secrétions, et plus Root565 peut en profiter. Une culture supplémentaire

de la Syncom C42 n’a pas permis de mettre en évidence de cross-feeding en faveur de la bactérie

constante  Root695,  sa  croissance  étant  moins  forte  qu’en  monoculture  (figure  1B).   L’effet

individuel de chaque souche sur la croissance  de Root695 était  significatif pour une seule des trois

souches co-cultivées (figure 1D). Toutefois, des cultures dans des compartiments séparés, où R695

bénéficiait du flux d’exsudats des autres souches sans être en contact avec elles, ont suggéré la

possibilité  de  cross-feeding  sans  besoin  de  contact  entre  bactéries,  un  mécanisme  pouvant

également limiter la compétition. Ces résultats restent cependant à répliquer et à confirmer.



Figure  6: Abondances (en reads relatifs à la quantité de spike-in) des souches Root565 et Root695 dans 4 des 41
SynComs testées (C15, C31, C37, C42), en fonction des différents time-points. (A) Abondance de Root565 dans les
SynComs C15, C31, C37 et sa monoculture. (B) Abondance de Root695 dans C42 et sa monoculture. (C) Abondances
de Root565 en paires de co-cultures avec toutes les souches possibles des SynComs C15, C31, C37 (sauf Root695).
(D)Abondances  de  Root695  en  paires  de  co-cultures  avec  toutes  les  souches  possibles  de  la  SynCom  C42.  (E)
Corrélation entre l’abondance de ROot565 (comme en (C)) avec l’abondance de la souche co-cultivée en paire (tous
time-points et tous réplicats). F) Abondances de toutes les souches en monoculture. Root29 et Root473 ne sont pas
incluses à cause de contaminations.



3. Discussion générale

Les travaux effectués pendant cette thèse ont permis de démontrer, in silico :

• L’effet des nutriments disponibles sur le métabolisme des bactéries, ainsi que l’importance

des  interactions  de  cross-feeding  pour  compenser  les  milieux  imposant  de  sévères

contraintes nutritionnelles. Les exsudats racinaires de la plante hôte, A. thaliana, jouent un

rôle prépondérant pour que les différentes souche de bactéries réalisent leur métabolisme et

certaines interactions, ce qui témoigne d’un certain degré d’adaptation du microbiote à son

hôte.

• Ces interactions de cross-feeding sont importantes autant à l’échelle de la communauté qu’à

l’échelle  de  petits  assemblages.  Cela  assure  une  redondance  fonctionnelle  et  permet  la

production de métabolites clés par diverses routes métaboliques, permettant potentiellement

de faire face à un environnement fluctuant. De cette manière, de petits assemblages peuvent

se rapprocher -pour les voies métaboliques étudiées-, de la capacité de la communauté tout

entière.

• Une corrélation entre distance phylogénétique, compétition et coopération, déjà établi dans

la littérature scientifique (Zelezniak et al., 2015; Russel et al., 2017; Lam et al., 2020) ainsi

que l’existence hypothétique d’un compromis entre compétition et  coopération parmi les

membres du microbiote étudié (Machado et al., 2021).

Expérimentalement, il a été observé que:

• La compétition est  moins forte entre les bactéries dont le métabolisme est suffisamment

différent (PPM élevé, niches distinctes)

• Des  interactions  de  cross-feeding  existent  -sans  corrélation  apparente  avec  les  PPM- et

peuvent avoir un effet important sur la croissance des souches bénéficiaires des secrétions

des autres

D’après les modèles, le cross-feeding est une interaction essentielle pour expliquer la coexistence

de  différentes  espèces  dans  un  microbiote,  particulièrement  sous  certaines  conditions

environnementales (Widder et al., 2016; Magnúsdóttir et al., 2017; Pande and Kost, 2017). En effet,

il  est  par  exemple  connu  que  dans  un  environnement  très  pauvre  en  nutriments,  des  bactéries

habituellement  compétitrices  peuvent  établir  des  interactions  mutualistes  pour  maintenir  leurs

populations  (Coyte  and  Rakoff-Nahoum,  2019).  Ces  résultats  s’accordent  avec  une  partie

relativement importante  de la littérature, où les interactions de cross-feeding sont prédits comme

très  fréquentes dans de nombreuses  approches  de modélisation,  sans  qu’elles  soient  confirmées

expérimentalement  (Fritts et al.,  2021), la compétition étant souvent à l’œuvre  (Foster and Bell,

2012). Un tel écart peut cependant s’expliquer par plusieurs hypothèses. Les métriques que nous



avons utilisées pour le protocole expérimental sont simples,  et  peuvent mal représenter à elles-

seules les interactions de cross-feeding car elles ne permettent pas de l’isoler des autres interactions.

En effet, la compétition sur d’autres axes des niches écologiques peut surpasser un cross-feeding

existant, masquant sa détection  (Hillesland and Stahl, 2010). Il est également possible qu’il y ait

compétition entre plusieurs souches pour les métabolites secrétés (McCully et al., 2017). D’autres

hypothèses  avancent  que  le  cross-feeding  est  une  interaction  principalement  sous-jacente  qui

permettant de compenser la compétition  (Goldford et al.,  2018) ou de maintenir de nombreuses

espèces à un niveau de métabolisme minimal, les préservant de l’extinction mais n’améliorant pas

significativement  leur  croissance  (McCully  et  al.,  2017;  Fritts  et  al.,  2021).  Finalement,  la

compétition  elle-même  pourrait  être  à  l’origine  d’interactions  par  cross-feeding,  grâce  à  un

mécanisme appelé « overflow metabolism ». Ce mécanisme décrit le métabolisme d’une espèce très

compétitrice qui, en conséquence, à une activité métabolique importante et secrète de nombreux

métabolites secondaires et déchets, dont peuvent profiter de nombreuses autres espèces  (Basan et

al., 2015; Carlson et al., 2018).

identifier  toutes  les  interactions  prenant  place  au  sein  d’une  communauté  microbienne  est

extrêmement difficile, particulièrement concernant les interactions d’échanges de métabolites. La

recherche doit placer ses efforts dans plusieurs aspects principaux :

• L’identification du secrétome (ou examétabolome) des différents microbes, pour connaître

précisément quels métabolites sont secrétés (Jacoby and Kopriva, 2019; Douglas, 2020).

• Les mécanismes de transport dans le milieu et d’assimilation par les bénéficiaires de ces

mêmes métabolites (D’Souza et al., 2018).

• L’hétérogénéité  du  milieu,  notamment  spatiale,  ainsi  que  les  divers  gradients  qui  en

découlent (par exemple des gradients de concentration en nutriments) (Carlson et al., 2018;

Ebrahimi et al., 2019; Gralka et al., 2020).

• La composition et  l’effet  des exsudats de l’organisme hôte,  dans le   cas de microbiotes

(Monchgesang et al., 2016; Zhalnina et al., 2018).

• La qualité d’annotation des génomes (Raina et al., 2018).

Les  perspectives  de ces  travaux sont  nombreux,  et  le  projet  le  plus  prometteur  serait  de  se

focaliser sur l’écologie de la souche bactérienne Root565, qui a présenté d’importantes capacités à

se nourrir par cross-feeding. Afin de déterminer quels secrétions sont bénéfiques à cette souche, des

expériences supplémentaires sont envisageables, tel que des cultures de la souche seule avec des

secrétions  bactériennes  en  seule  source  de  nutriments,  et  des  modèles  métaboliques  plus

perfectionnés, tel que des analyses de flux, sont possibles.
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Titre : Modélisation, prédiction, et test expérimental d’interactions de cross-feeding au sein du microbiote
d’Arabidopsis thaliana: une approche par microbial system ecology.
Mots clés : Microbiote, cross-feeding, Microbial system ecology
Résumé : les communautés microbiennes forment
un réseau complexe d’interactions entre organismes,
qui façonnent leur structure. Parmi ces interactions,
les échanges de métabolites entre organismes,
nommés ‘cross-feeding’, sont considérés comme
fréquents et importants. Ces échanges peuvent être
prédits in silico avec des réseaux métaboliques
inférés à partir de génomes. Ces modèles sont
intégrés dans un cadre de travail nommé ‘microbial
system ecology’, qui rassemble plusieurs méthodes
de modélisation ainsi que leur validation
expérimentale, à différentes échelles d’étude. Dans
cette thèse, nous avons utilisé ce cadre pour prédire
de nombreuses et hypothétiques associations de
bactéries du microbiote racinaire d’Arabidopsis
thaliana permettant le production de métabolites non
productibles par des bactéries seules. Nous avons
également modélisé l’impact des nutriments
disponibles dans le milieu, et prédit que ces

contraintes nutritionnelles sont largement
compensées par des comportements de cross-
feeding. En parallèle, nous avons également utilisé
des métriques simples pour corréler le potentiel de
cross-feeding et de compétition avec le
métabolisme des bactéries et leur distance
phylogénétique. Ces métriques ont été testées
expérimentalement avec un ensemble de petites
communautés synthétiques. La compétition
semblait dominer dans la plupart des
communautés, mais a été déterminée comme étant
plus faible dnas les communautés abritant des
souches à métabolisme différent. Nous avons
identifié quelques bactéries profitant des exsudats
d’autres espèces, particulièrement une
Achromobacter sp. Finalement, les résultats
suggèrent que le cross-feeding est courant mais
potentiellement masqué par de la forte compétition
lorsque des bactéries sont en contact.

Title : Genome-scale modelling, prediction, and experimental testing of cross-feeding interactions within the
root microbiota of Arabidopsis thaliana : a microbial system ecology framework.
Keywords : Microbiota, cross-feeding, Microbial system ecology
Abstract : Microbial communities form complex,
intricate networks of interacting organisms that highly
participate in their structure and dynamics. Among
these interactions, the exchange of metabolites
between organisms, i.e. cross-feeding, is more and
more considered as highly frequent and important.
Cross-feeding behaviors can be investigated in silico
with reconstructed metabolic networks, that allow
modelling of organisms’ metabolism, hence
predictions of possibly exhcnaged metabolites.
These modelling approaches take place in a
particular framework, microbial system ecology,
which organizes numerous modelling approaches
and their experimental validation, from bottom-up to
top⁻ down scales. In this work, we used such a
framework on a representative part of the root
microbiota of Arabidopsis thaliana to carry out
numerous and putative combinations of bacterial
strains that would allow the production of

metabolites that were not producible by single
strains. We also modelled the impact of available
nutrients on strains metabolism, and predicted that
cross-feeding can largely compensate severe
nutritional constraints. In parallel, we used simple
metrics correlating the capacity to exchange
metabolites with bacteria’s metabolism and
phylogenetic distance. Such metrics were tested
experimentally, with a number of small synthetic
communities. Competition seemed to dominate
most of the communities, but with a weaker effect in
SynComs displaying metabolically divergent
bacteria. We identified a few bacteria apparently
able to feed on other’s exudates; notably an
Achromobacter sp. Finally, results suggest that
cross-feeding is frequent, but potentially masked by
strong, contact-dependent competition.




