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SUMMARY

Synaptic plasticity is a biological mechanism, integrating neuronal activity in the evo-

lution of recurrent connections between neurons. Several studies from biology and

computational neuroscience have explored the influence of spike-timing dependent

plasticity (STDP) on learning and memory. This PhD work is based on experimental

data about STDP in the striatum, and studies its implications, first in mathematical

models of neuronal networks seen as stochastic processes, and then in a learning task

based on the functional role of the striatum.

We have developed a general class of models to reproduce different STDP rules

in a stochastic setting, modeling spike trains as point processes. Synaptic plasticity is

a slow process, compared to neuronal activity, supporting an analysis of this system

using slow-fast theory. After having characterized the dynamics of complex shot-noise

processes, and introduced several auxiliary models, we prove that the scaled system

wis tight, and that stochastic averaging principles are verified. Adding regularity

hypotheses, we prove a convergence theorem in the slow-fast limit, and apply it to

different sets of STDP rules. The simplest STDP rule consists in updating the synaptic

weights as a function of the time between pre- and postsynaptic spikes. These models

also depend a lot on the choice of which spikes to consider when updating the synaptic

weight. Using the previously proven averaging principle, we study the influence of

different models of synaptic dynamics. A theoretical and numerical analysis of the

synaptic weight asymptotic behavior is performed and has led us to conclude on the

potential impact of each STDP rule on a simple network.

Neuronal dynamics can be represented using auto-exciting stochastic processes,

called Hawkes processes. We develop a new formalism to study these objects, by

representing them as Markov processes in the space of non-negative real sequences.

Using a Markovian approach, we prove results on the existence of stationary Hawkes

processes for a simple subclass of Hawkes processes.

At the same time, we also study the influence of anti-Hebbian STDP in networks

inspired from the striatum, a subcortical nucleus involved in procedural learning.

Anti-Hebbian STDP is specific to the striatum, and we investigated its implication

when learning sequences of cortical spikes. We found that the striatal network with

anti-Hebbian STDP is able to discriminate rewarded and non-rewarded patterns. Other

properties of striatal neurons are subsequently added to the model and improve the

network performance. In particular, with collateral inhibition, which is displayed

between striatal neurons, the system learnsmore patterns than classical algorithms. Fi-

nally, experimental results have recently shown that two regions of the dorsal striatum,

the dorsolateral (DLS) and the dorsomedial (DMS) striatum display different kinds of

STDP. Using a simple model accounting for these region-specific STDPs, we study the

influence of STDP rules on learning in a complex task, composed by a learning phase,

a maintenance phase where the network is subject to random activity, and a relearning

phase. We show that STDP present at DMS synapses leads to a quicker forgetting of

learned patterns and consequently to higher flexibility, while STDP at DLS synapses

helps maintaining these patterns in memory.
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RÉSUMÉ

La plasticité synaptique est un mécanisme biologique intégrant l’activité neuronale

dans l’évolution des connections récurrentes entre différents neurones. De nombreuses

études de biologie et de neurosciences computationelles ont exploré l’influence de la

spike-timing dependent plasticity (STDP, plasticité fonction du temps d’occurrence des

impulsions) sur l’apprentissage et la consolidation de la mémoire. Ces travaux de

thèse s’appuient sur des données expérimentales de STDP dans le striatum, et étudie la

dynamique associée dans des réseaux de neurones vue comme des processus stochas-

tiques, puis dans une tâche d’apprentissage inspirée du rôle du striatum.

Nous avons développé une classe générale demodèles, pour reproduire différentes

règles de STDP dans un cadre stochastique, en modélisant notamment les ensembles

de potentiels d’action par des processus ponctuels. La plasticité synaptique est un

processus lent comparé à l’activité neuronale, justifiant une analyse de ce système

avec des arguments de la théorie lent-rapide. Après avoir caractérisé le comporte-

ment de processus de type shot-noise et introduit différents systèmes auxiliaires, il a

été possible de démontrer que le système dimensionné était relativement compact et

par conséquent, que la propriété d’homogénéisation était vérifiée. En ajoutant des

hypothèses de régularité, un théorème de convergence dans la limite lent-rapide est

énoncé et appliqué à différentes règles de STDP. La plus simple des règles de STDP

consiste à mettre à jour les poids synaptiques en fonction de l’intervalle de temps entre

les potentiels d’action présynaptique et postsynaptique. Le choix du modèle implique

aussi de choisir quels potentiels d’action prendre en compte dans l’évolution du poids

synaptique. En utilisant le théorème d’homogénéisation prouvé précédemment, nous

avons étudié l’influence de ces différentes modélisations sur la dynamique des poids

synaptiques. Une analyse théorique et numérique de l’évolution des poids synaptiques

nous a amené à conclure sur l’impact des différents types de STDP sur un système neu-

ronal simple.

Les neurones peuvent être modélisés par des processus stochastiques auto-

excitants, appelés processus de Hawkes. Nous avons développé un formalisme nou-

veau pour étudier ces objets en les représentant comme des processus de Markov dans

l’espace des suites réelles positives. En utilisant des arguments de théorie markovi-

enne, nous avons pu montrer l’existence de versions stationnaires d’une sous-classe

des processus de Hawkes.

En parallèle de ces travaux d’essence mathématique, nous avons étudié l’influence

de la STDP de type anti-Hebienne dans des réseaux reproduisant certaines propriétés

du striatum, un noyau sous-cortical impliqué dans l’apprentissage procédural. La

plasticité anti-Hebbienne est une spécificité du striatum, et nous avons donc analysé son

implication dans l’apprentissage de séquences demotifs corticaux. Nous avonsmontré

que seul ce typedeplasticité permet dediscriminer lesmotifs associés àune récompense

et ceux sans. D’autres propriétés des neurones striataux ont ensuite été ajoutées au

modèle et ont amélioré la performance du réseau. En particulier, l’inhibition collatérale

présente entre les neurones striataux permet d’atteindre des performances supérieures

à certains algorithmes classiques d’apprentissage. Enfin, des résultats expérimentaux

v
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ont récemment démontré que deux régions du striatum dorsal, le striatum dorsolatéral

(DLS) et le striatum dorsomédial (DMS) sont caractérisées par deux types de STDP de

polarités différentes. En utilisant un modèle simple prenant en compte ces spécificités,

nous avons étudié l’influence des règles de STDP sur la dynamique d’apprentissage

dans une tâche complexe, combinant une phase d’apprentissage, suivie d’une phase

d’activité aléatoirepourmesurer lamaintenancedesmotifs dans lamémoiredu système

et d’une phase de ré-apprentissage. Les conclusions de cette étude mettent en avant

que la plasticité présente dans le DMS permet au réseau d’oublier rapidement tous

motifs précédemment acquis, alors que la STDP du DLS participe à la maintenance de

ces mêmes motifs.
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Coronal slice of mouse brain with cortex (C) and striatum (S). [C. Piette].



Evolution, development, learning ... everything changes along generations,

through life, during experiments as a result of complex processes that are direct con-

sequences of interactions between the subject and its environment. All species have

been shown to evolve on long timescales following Darwinism and other intricate laws,

that still motivate many studies in both ecology and evolution. Similarly, all animals

adapt their behavior throughout their life thanks to numerous mechanisms, most of

them implicating the nervous system. Biology, and more specifically neuroscience

have studied such long-term changes, and the processes from which those transfor-

mations originate. Directly at the cellular level, experimental studies have shown that

activity-induced adjustments in neuronal connectivity are correlated with behavioral

changes and learning. In particular, spike-timing dependent plasticity (STDP) is de-

fined as plasticity mechanisms that are based on the spike timings of the neighboring

neurons. It has been the focus of a wide range of studies starting from neurophysiology

to computational neuroscience, and even having implications in computer science.

InChapter 1, I present synaptic plasticity, as amechanism for shaping brain activity

during learning. I detail how STDP was defined, first as a timing-based learning rule

in computational neuroscience, and then how experimental works have proven its

existence in brain slices, and then in awake animals. Several models of STDP are

then described ranging from phenomenological pair-based rules and their extensions,

to biophysical calcium-based models. I conclude by exploring different theoretical

assumptions that have been made by physicists when investigating the influence of

STDP on neuronal network dynamics.

Then, inChapter 2, I develop a general stochastic setting, that will prove necessary

to investigate the influence of STDP on stochastic networks. Using a simple network

with two neurons connected by one synapse, I will introduce integrate-and-firemodels,

and different mechanisms for random spike generation. Considering that spikes trains

are the principal object of interestwhen studying simple neuronal networks, I introduce

the notions of point processes, and detail how random spiking can be modeled using

non-homogeneous Poisson processes. Finally, since STDP happens at longer timescales

than neuronal activity, a simple slow-fast approximation is established, based on the

proofs of stochastic averaging principles.

Finally, in Chapter 3, I shortly introduce a neuronal system, the striatum, where

STDP has been proven to exist, andwhich has an important role in procedural learning.

In particular, the striatum is characterized by its principal neurons, the medium-sized

spiny neurons (MSNs), whose connections with cortex exhibit a quite distinctive prop-

erty known as anti-Hebbian STDP. I briefly present how heterogeneities in MSNs and

synaptic plasticity are necessary for the implementation of action selection and pro-

cedural learning in a more global system called the basal ganglia. The influence of

different types of STDP, presented in Chapter 1, in such networks is detailed, both from

an experimental and a computational point of view.



CHAPTER 1

LEARNING IN NEURONAL NETWORKS WITH SPIKE-TIMING

DEPENDENT PLASTICITY

1.1 Synaptic plasticity as a primary substrate for learning

and memory

Complex mechanisms account for the establishment of memory
Interacting with others and the environment lead to the accumulation of knowledge,

the development of memory and of characteristic skills. This process is commonly

referred to as learning, and is crucial to many aspects of life. How do we learn?

This simple question has led to more than a century of research, honoured by

several Nobel Prizes in a large array of different fields. It has long been hypothesized

that learning occurs, partly at least, through the adaptation of neuronal maps in the

brain. A crude simplification of the brain systemwould be tomodel it as a combination

of several areas, involved in specific tasks, ranging from the integration of sensory

inputs to motor skill implementation. Sensations, context, feelings are all integrated

during brain processing, through the involvement of different circuits. Each of these

areas is composed by numerous cells, critical to all nervous mechanisms and called

neurons. They can convey information through electrical and chemical signaling.

These large networks of neurons, recurrently connected at synaptic junctions, are the

basis of brain activity, and as such have been the focus of the neuroscientific community

since its beginning.

Coming back to learning, it is now accepted that most learning processes result

from modifications of neuronal activity [Ath+18]. The development of the engram
(physical means by which memories are stored) at the neuronal level, and its stor-

age over time is complex and rests on several mechanisms that still motivate many

experimental and computational works.

Memory can be characterized by several assertions from a computational point of

view [CF16]. First, learning needs to create persistence frommemory-less components,

through positive/negative feedbacks or biological multistable systems. Second, these

changes must be robust to noise, considering the fact the brain always exhibits spon-

taneous random activity. Using these two assertions, it is then possible to define the

network capacity, as the quantity of information that can be stored in the system during

learning and recollected later.

Computers now challenge humans in many tasks, and part of this success results

from hypotheses based on biological learning. Deep learning in particular has been

influenced by several properties of neuronal networks. Would it then be possible to see

the brain as a gigantic computer, where learning is the result of supervised algorithms,

as defined by classicalmachine learning [Hen+21]? Wedare say here that this restrictive

viewmay be of interest, to analyze brain behavior, but will not enable us to understand

the brain and its mechanisms in their full extent.

3
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Pre-synaptic neuron

Post-synaptic neuron

Synaptic weight W

Spike-timing dependent
plasticity (STDP)

Post-synaptic spike train

Pre-synaptic spike train

Post-synaptic membrane potential X

Figure 1.1: A simple neural network with two neurons.

The critical role of neuronal maps does not end once memory is stored. In fact,

accumulating evidence and patterns along life is not the sole purpose of the brain. Each

action taken during life is the result of a complex decision process that happens in the

brain using previously stored information, and the current context. Each decision will

lead to consequences, and to a subsequent remodeling of neuronal circuits. Learning

is therefore an ongoing and online process, which makes it complex to grasp and to

model [Gar19].

Synaptic plasticity or how the brain shapes itself to encode memory
Different mechanisms may modify neuronal activity in order to store memory as part

of learning. As defined before, neuronal cells transmit chemical/electrical signals at

synapses, mainly in a unidirectional way.

In the following, I will consider a simple neuronal network, only composed of

two neurons: the presynaptic neuron and the postsynaptic neuron located on either side

of the synapse, see Figure 1.1. The presynaptic neuron conveys large depolarizations

of its membrane potential, called spikes (and represented by the presynaptic spike

train), towards the synapsewhere neurotransmitters are released and cross the synaptic

cleft. On the other side of the synapse, they induce local changes in the postsynaptic

membrane potential X . The intensity W of this connection, rendering the amplitude

of the changes, is determinant for the triggering of postsynaptic spikes and more

generally for neuronal network dynamics. More complex neuronal systems are just

multidimensional versions of this simplemodel, where the synapticweight is described

by the connectivity matrix pWi,jqwhere pi, jq represents a pair of two neurons.

It has been postulated and proven that information can be stored following the

modifications of these synaptic weights. All processes related to this are gathered

under the name synaptic plasticity [Nab+14]. Activity-dependent changes in synaptic

weight is therefore a crucial part of learning and encoding memory.
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Different types of synaptic plasticity have been discovered and studied experimen-

tally, in many species, in various environments [SBD18]. It is common to distinguish

plasticity mechanisms based on the timescale on which they modify neuronal dynam-

ics. Short-term synaptic plasticity leads to modulation of the synaptic weight on the

neuronal timescale, usually around several milliseconds up to seconds [ZR02]. Con-

versely, long-term synaptic plasticity relates to changes that lasts for hours, days and

even longer. Another distinction is made between synaptic changes that results in a

reinforced connection (synaptic potentiation) or its reverse (synaptic depression)
Although synaptic plasticity results from complex processes, general principles

have been inferred from experimental data and previous modeling studies. In 1949,

Donald Hebb postulated that synaptic changes should result from correlated activity

from presynaptic and postsynaptic neurons, or in Carla Shatz’s words [Sha92] as,

“Cells that fire together wire together”. This hypothesis was later on confirmed by many

experimental studies, and is still today a widely accepted fact in neuroscience [Seu00].

Of course, this simple postulate does not account for all brain dynamics and is

therefore regularly questioned. In particular, supposing that only pre- andpostsynaptic

activity are actors in synaptic plasticity leads to the neglect of other resources that the

brain uses to develop memory maps. Neuromodulators (e.g. dopamine, serotonin or

acetylcholine) are known to influence, not only neuronal dynamics but most definitely

also synaptic weights changes [Fon+18; BMP19; MG20]. The greatest example of

neuromodulation is the control of goal-directed behavior and reward signaling by

dopamine. Indeed, it has been shown that dopamine shapes also synaptic plasticity,

and is one of its necessary components.

Spike-timing dependent plasticity, an insight in complex
mechanisms of synaptic plasticity
FollowingHebbian theory,many experimental studies have shown that synapticweight

changes were correlated to pre- and postsynaptic neuronal activity, usually quantified

through the firing rate of each neuron. If both neurons exhibit high firing rates and are

recurrently activated together, synaptic transmission between both neurons should be

enhanced, or in other words going through long-term potentiation.

Some computational studies went even further and hypothesized that spikes tim-

ing should also play a role in improving learning capacities [Ger+96]. It is quite logical

to consider that individual spikes, at the order of their apparition and the duration

between spiking events is a lot more resourceful than only looking at averaged spiking

activity.

This computational hypothesis was later experimentally demonstrated, in several

experimental studies, in different brain areas [Fel12] and has been characterized ever

since as STDP. Under this name are gathered all plasticity processes that depend on the

timing of pre- and postsynaptic spikes, see Figure 1.1.

Numerous experimental protocols have been developed to study STDP since its

discovery. Most study the evolution of synaptic transmission, usually through the size

of the excitatory post-synaptic currents (EPSCs), after a protocol composed of sequences

of paired spikes from either side of a specific synapse, at a certain frequency and with

a certain delay [Fel12]. The delay ∆t between the pre- and postsynaptic spikes is the

quantity of interest in such studies, with ∆t“t
post
´t

pre
, t

pre
(resp., t

post
) the timing of the

presynaptic spike (resp., the postsynaptic one).
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Studies have shown that the synaptic weight changes depend on ∆t, and have led

to a reformulation of Hebb’s postulate in terms of STDP. Hebbian STDP plasticity is the

result of a pre-post pairing, i.e. t
pre
ăt

post
leads to potentiation; and a post-pre pairing,

i.e. t
post
ăt

pre
, leads to depression. An example of Hebbian STDP taken from [BP98]

is given in Figure 1.2a. Experiments have shown that this type of plasticity occurs

at several synapses [BP98; BP01]. Plasticity protocols following this principle are

characterized as “Hebbian” because they follow some parts of Hebb’s postulate: (i)

when a presynaptic neuron actively participate, through its spiking activity to the

initiation of a spike in the postsynaptic neuron, the synapticweight should be enhanced

(ii) when the postsynaptic neuron spikes before correlated activity from the presynaptic

neuron, it should lead to depression.

Other forms of STDP have been discovered experimentally see [Fel12]. Anti-
Hebbian STDP follows the opposite sequence: pre-post pairings lead to depression, and

post-pre pairings lead to potentiation. This has been observed experimentally in the

striatum, see [FGV05] for example, see Figure 1.2b.

The protocols used to induce STDP are of a great importance in the final form of

plasticity that is observed experimentally. Changes in the number of spike pairings or

their frequency usually lead to different results. The first studies were performed in
vitro using brain slices, and electrophysiological recordings [Fel12]. The use of different

slice preparations techniques as well as the presentation of different neuromodulators

such as dopamine or GABA, have also highlighted that STDP depends on numerous

parameters [Pai+13]. Later on, STDPprotocolswere also realized in vivo, in anesthetized
and awake animals [Mor+19] , showing that STDP is amechanism that needs to be taken

into account when building models for learning.

1.2 Models of spike-timing dependent plasticity

STDP was first studied as a model before being discovered experimentally [Ger+96].

Experimental confirmations of this synaptic plasticity rule have considerably increased

the interest of the computational neuroscience community. Indeed, a large literature

of computational models of STDP emerged at the beginning of the 21st century. This

introduction will not be an exhaustive review of all existing works on STDP, but will

instead detail how STDP models have emerged and why they currently represent a

pool of interesting update rules for learning systems.

STDP models developed in computational neurosciences range from detailed bio-

physical descriptions of the synaptic plasticity mechanisms [GB10] to simple phe-

nomenological models directly based on experimental data [MDG08].

From experiments to models: pair-based rules of STDP
Most experimental studies about STDP are based on pairing protocols, where pre-

and postsynaptic spikes are repeated at a certain frequency for a given number of

repetitions. This gives in fact a map Φp∆tq of the synaptic weight changes as a function

of ∆t, two examples of such STDP curves are given in Figure 1.2.

Accordingly, a large class of models has been developed on the principle that the

synaptic weight change due to a pair pt
pre
, t

post
q of instants of pre- and post-synaptic

spikes, only depends on ∆t“t
post
´t

pre
through some generic function Φp∆tq, inferred

from experimental data.
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In most models, the plasticity curve is taken as an exponential one, see Figure 1.2c:

Φp∆tq “
#

A
post-pre

expp∆t{τ
post-pre

q, ∆tă0,
A

pre-post
expp´∆t{τ

pre-post
q, ∆tą0,

whereA
post-pre

(resp.,A
pre-post

) represent themaximumamplitude of the synapticweight

update after a post-pre (resp., pre-post) pairing. Both constants can be taken as negative

or positive. τ
post-pre

(resp., τ
pre-post

) represents the STDP temporal window for post-pre

(resp., pre-post) pairings.

Exponential STDP curves are quite close to experimental data and are widely used

in computational neuroscience because, they are convenient to simulate in computa-

tional models [MDG08] and can lead to analytical studies.

Another study [GK02a] propose, starting from classical Hebbian rate-based rules,

to extend synaptic plasticity by taking into account the neuronal membrane potential

instead of the firing rate. Using this hypothesis, and approximating the membrane

potential by spiking activity, they derive synaptic plasticity rules that are similar to

pair-based STDP as defined above.

An important part of modeling STDP in pair-based rules focuses on the choice

of which pairings to consider when updating the synaptic weight. Indeed, when the

postsynaptic neuron spikes, it is possible to devise several schemes to define the associ-

ated synaptic weight update ∆W as the sum over a certain set of previous presynaptic

spikes of the plasticity curve Φp∆tq. A similar choice needs to be made about the other

types of updates, happening at presynaptic spikes. Many pair-based models have

been developed over the years [MDG08], but three schemes are used in the majority of

theoretical works.

We start with the simplest rule, the all-to-all version (following [MDG08] termi-

nology), where all pairs of spikes give an update of the synaptic weight. The all-to-all

scheme leads the synaptic weight being updated at each postsynaptic spike, occurring

at time t
post

by the sum over all previous presynaptic spikes occurring at time t
pre
ăt

post

of the quantity Φpt
post

´ t
pre
q. Switching the role of pre- and postsynaptic spikes, the

synaptic weight is updated in the same way at presynaptic spikes. An example of

which pairings to consider for the all-to-all case is given in Figure 1.2c (bottom left).

A second intuitive scheme is the nearest neighbor symmetric model: whenever one

neuron spikes, the synaptic weight is updated by only considering the last (and thus

closest) spike of the other neuron. If the postsynaptic neuron fires at time t
post

, the

contribution to the synaptic update is reduced to Φpt
post

´ t
pre
q , where t

pre
is the last

presynaptic spike before t
post

. See Figure 1.2c (top right), for an example of the nearest

neighbor symmetric model.

Finally, the nearest neighbor reduced symmetricmodel has also some important prop-

erties and is defined as a restriction of the nearest neighbor symmetricmodel to consecu-

tive pairings. A postsynaptic spike at t
post

is paired with the last presynaptic spike at

t
pre
ăt

post
, only if there are no other postsynaptic spikes in the time interval pt

pre
, t

post
q.

See Figure 1.2c (bottom right), for an example of the nearest neighbor reduced sym-

metric model.

Several studies have investigated the role of these different pairing interac-

tions [ID03; MAD07; MDG08], but its influence on the synaptic weight dynamics

has not been discussed in theoretical works, except in [BMG04].
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c

a b

Figure 1.2: Spike-timing dependent plasticity, from experiments to pair-based rules.
(a) Hebbian STDP, taken from [BP98]

(b) Anti-Hebbian STDP, taken from [FGV05]

(c) Pair-based STDP rules, models based on the choice of two parameters, the STDP

curve (top left) and the pairing scheme.

EPSC [excitatory post-synaptic current]
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Extensions of pair-based models: how to fit to biology by adding new
components to a simple model
Pair-based STDP relies on very few assumptions, mainly the shape of the STDP curve

and the pairing scheme, and would therefore have some difficulty to match experi-

mental data produced when studying STDP. In particular, more complex protocols of

pairings have been tested, including triplets of spikes or changes in frequency where

pair-based STDP does not account for the diversity of behaviors observed experimen-

tally. These limitations have led computational neuroscientists to develop more com-

plex STDP rules, that better fit experimental data. A large literature has been built on

these variations of canonical pair-based models, and it is sometimes quite difficult to

find one’s way in the variety of new hypotheses that have emerged from this process.

The first variation of pair-based STDP models occurred when neuroscientists

started to investigate the influence of the current value of the synaptic weightW on the

synaptic update ∆W . Indeed, it seemed logical to suppose that synaptic weights that

were almost null, would undergo a smaller synaptic depression than stronger synaptic

weights. Early experimental data from [BP98] highlighted that long-term depression

scaledwith the synapticweight value, whereas long-termpotentiation did not. In order

to take this fact into account, several studies introduced multiplicative STDP,

∆W “ F pW qΦp∆tq

whereF pW q represent themultiplicative influence of the current synapticweight value.

Several papers have studied the influence of multiplicative rules, compared to additive

ones [RLS01], and the influence of the exponent of F pW q was studied in more details

by [Güt+03].

A second important fact that was added to pair-based STDP models was the exis-

tence of delays in cellular signaling pathways that could lead to shifts in the plasticity

curves Φp∆tq. In particular, the backpropagating action potentials need some time,

after being elicited at the cell soma, to retropropagate and ultimately influence distal

synapses. Similarly, when the presynaptic neuron spikes, there is a delay due to chemi-

cal transmission and channel dynamics before seeing a quantitative effect at the level of

the synapse. For all these reasons, translated plasticity curves were the focus of several

works [LS08; BA10].

Pair-based rules have been shown to poorly fit with experimental data when more

complex protocols are used. This is the case for example in protocols repeating se-

quences of three spikes (called triplets) from the presynaptic and postsynaptic neu-

rons [FD02; PG06a] where protocols repeating sequences of three spikes from the

presynaptic and postsynaptic neurons are presented to the synapse. For this reason,

more detailed models that take into account the influence of several pre- and post-

synaptic spikes have been proposed. These models vary a lot in their hypotheses,

mainly because they are based on different experimental data.

First, it was observed, using triplet-based protocols, that previous pre- and post-

synaptic spikes have a “suppressive” effect on the induction of Hebbian STDP ob-

served [FD02]. A newmodel of STDP integrating this suppression effect was proposed

in the same study [FD02]. A few years later, [PG06a] showed that previous pre-synaptic

spikes enhance the depression obtained for a post-pre pairing, whereas previous post-

synaptic spikes lead to a bigger potentiation than in a classical pre-post pairing. This

led to the formulation of the triplets model [PG06a].
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It is interesting to note that these twomodels are derived fromopposite experimen-

tal conclusions. Indeed, they are based on data obtained from different brain regions:

visual cortex in [FD02], and hippocampus in [PG06a]. A global model considering both

mechanisms, the NMDA-model, is defined in [BA16].

More recently the influence of neuromodulators has been shown to radically

change STDP curves. Three-factor learning rules have been developed to take this

new experimental data into account, leading to a great variety of new models. A large

literature focuses on multiplicative influence of neuromodulators on STDP synaptic

updates [FG16; KIT17; Ger+18], mainly by supposing that,

∆W “ F pdqΦp∆tq

where F pdq represents the influence of the neuromodulator d. More complex models

directly add the dependence of the STDP rules on neuromodulators inside the plasticity

function [GHR15], i.e., taking

∆W “ Φdp∆tq.

All those models require a large amount of experimental data when fitting

biologically-relevant parameters. A last, simpler, approach consists in including the

influence of neuromodulators as an additive process,

∆W “ Φp∆tq ` F pdq.

Over the years a large diversity of STDP pair-based rules were developed in order

to reproduce new experimental protocols and results, leading to a profusion of such

models.

From models to experiments: biophysical models of STDP
Pair-based models can be characterized as phenomenological models of STDP in the

sense that experimental STDP curves are taken as a core parameter of the models.

Another important class of plasticity models is derived from biological phenomena

and aims at reproducing experimental STDP curves using biological mechanisms.

Biophysical models gather all the current knowledge on how synaptic plasticity

is implemented at the synaptic level and integrate all biological mechanisms that are

relevant in plasticity modelling. In particular, chemical reactions and protein interac-

tions are described in details leading to gigantic systems with numerous parameters,

most of them chosen from experimental data. The general idea in using such models

is to explain using such models, how STDP as observed, in pairings protocols, can

be elicited and to identify the underlying mechanisms. For STDP, most biophysical

models are based on the CamKII protein system, or the endocannabinoid network,

see [GB07; Cui+16]. These models, as biologically grounded as they can be, are hard

to simulate and even more complex to integrate in large neuronal networks. However,

their conclusions are useful when building simpler models which can then be used in

more complex systems.

Many experimental studies have pointed out the crucial role of calcium transients

in the establishment of plasticity. At the same time, biophysical models have studied

the importance of calcium concentration in the dynamics of plasticity. All these works

have led to the development of many STDP models based on the postsynaptic calcium
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concentration [GB10; ID21]. These models are able to reproduce experimental results

from pair-based protocols but alsomore complex ones, such as triplets. The general de-

pendency on postsynaptic calcium concentration can be integrated in plasticity updates

using

∆W “ F pCq

where C is the postsynaptic calcium concentration.

A simple phenomenological calcium-based model [GB12] was able to reproduce

most of the experimental STDP curves with only a few parameters which made it ideal

to fit with electrophysiological data. Recent works have extended this model by adding

the influence of the number of pairings, and of different signaling pathways [VVT18] or

by modeling heterosynaptic plasticity thanks to local calcium diffusion at the synaptic

level [Men+20]. The influence of neurotransmitters such as GABA has also been taken

into account in calcium-based models [HF17].

Instead of supposing that STDP rules are dependent on the postsynaptic calcium

concentration, another class ofmodels are based on the hypothesis that the postsynaptic

membrane potential X is the quantity of interest. These models were shown to also

reproduce the results of STDP protocols [GK02a; CG10], with

∆W “ F pXq.

Numerous models were developed over the years to reproduce STDP, a significant

part of which are simple enough to be implemented in large neuronal networks and

can be studied using tools from statistical physics and mathematics.

1.3 Theoretical study of STDP

Pair-based models of STDP have attracted quite early the interest of physicists, because

of their simplicity. They can be studied theoretically, using either dynamical systems

theory, stochastic processes or statistical physics.

Three main approaches have been developed in order to gain theoretical insights

on the role of STDP in neuronal networks. Most studies consider a feedforward network

of neurons, with a (sometimes large) collection of presynaptic neurons, and a single

postsynaptic cell that integrates all these inputs. Pair-based STDP, most of the time

with the all-to-all formulation, is then applied to the synaptic weights between the

pre- and the postsynaptic cells. The asymptotic behavior of the neuronal network is

often studied, with most works mostly aiming at characterizing the distribution of the

synaptic weights for large windows of time.

Slow-fast analysis
An important feature of long-term synaptic plasticity, as STDP, is that there are essen-

tially two different timescales in action.

On the one hand, the decay time of themembrane potential, and themean duration

between two presynaptic spikes or two postsynaptic spikes are of the order of several

milliseconds. Consequently, interacting pairs of spikes are on the same timescale.

Accordingly, pair-based models also integrate this fast timescale with an exponential

decay time around 50 milliseconds, see [BP98; FGV05]. Similarly, in calcium-based
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models, the interaction between pre- and postsynaptic spikes is integrated at the cal-

cium level, and its concentration decays with a time constant of about 20 milliseconds,

see [GB12]. On the other hand, the effect of STDP on synaptic weights takes place on

a slower timescale, where it can take seconds and even minutes for changes to occur

see [BP98; FGV05]

Most computational models of synaptic plasticity incorporate this timescale dif-

ference by implementing small updates of the synaptic weights. A first example

is [KGH99], who “introduced a small parameter η [..] with the idea in mind that

the learning process is performed on a much slower time scale than the neuronal dy-

namics.” Similarly, [Rob99] defines two timescales pt, xq such that “the measurable

changes in behavior occur during the course of several training cycles (t), whereas the

neuronal activity modulation that is responsible for synaptic change is greatest within

each cycle (x).”, with t representing the long timescales of synaptic plasticity, and x
neuronal activity. Other models also make this assumption, sometimes mixing it with

a mean-field approximation leading to a Fokker-Plank equation [RLS01; RBT00a].

It should be noted thatmodels using this assumption do not seem to agreewith ob-

servations from numerous experimental studies, see [BP98; FGV05; Fel12]. Classically

(in experimental works), the protocol to induce plasticity consists in stimulating both

neurons at a certain frequency a fixed number of times with a fixed delay ∆t, over a pe-
riod of one or two minutes (60-150 pairings at 1 Hz for example). This part is designed

to reproduce conditions of correlations between the two neurons, when mechanisms

of plasticity are known to be triggered. However, measurements of the synaptic weight

show that changes take place on a different timescale: after the protocol, it is observed

that at least several minutes are necessary to have a significant and stable effect on the

synaptic weight. In other words, the change in synaptic weights happens long after the

end of the plasticity induction.

To tackle this added complexity, an approach consists in updating the synaptic

weights with a fixed, or random, delay. This is not completely satisfactory since the

evolution of the synaptic weight is generally believed to be an integrative process of

past events rather than a delayed action. Another approach which I will use consists

in implementing this delay through an exponentially filtered process to represent the

accumulation of past information. A recent article [RBS16] also takes this fact into

account by adding an “induction” function to canonical models of STDP.

Separating the timescales into two components leads to a simplification of the dy-

namical system. Indeed, it is then possible to find theoretical estimates by studying

the fast system, in our case plasticity induction, by supposing that the slow variables,

the synaptic weights, are constant. Once the behavior for fixed slow variables has

been studied, it is possible to solve the slow dynamics using the estimates of the fast

processes. In particular, one can consider that the fast system is only present in the

slower dynamics through averaged functionals. Similar principles are used in theo-

retical studies of STDP leading to simpler dynamics that are then studied analytically

see [KGH99; KH00; KGH01].

A story of correlations
The first thorough study of pair-based STDP was developed in [KGH99], and used the

previously defined slow-fast approximation. Their analysis led to the conclusion that a

fundamental quantity in the study of STDP was the cross-correlation between the pre-
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and postsynaptic neurons. The asymptotic behavior of the synaptic weight dynamics,

Relation (4) of [KGH99] is given by,

dw
dt ptq “

ż `8

´8

Φpsqµps, tq ds,

where,

— Φp¨q represents the STDP curve;

— µp¨, tq“〈S1pt`sqS2ptq〉, the correlation between the spike trains at time t.

The quantity 〈¨ ¨ ¨〉 is defined in terms of temporal and ensemble averages, 〈¨ ¨ ¨〉 is

the ensemble average and ¨ ¨ ¨ the temporal average over the spike trains. Therefore,

µps, tq“〈S1pt`sqS2ptq〉 represents the cross-correlogram of the pre- and postsynaptic

neurons, i.e the distribution of presynaptic spikes relative to postsynaptic ones.

It is quite striking to see that in the slow-fast approximation, the synaptic weight

update is solely determined by the convolution of the plasticity curve Φ and the cor-

relation function. This quantity can either be directly taken from electrophysiological

data, where cross-correlograms are commonly drawn, or can be computed based on

neuronal models used in the system. Many studies have tried to analytically compute

this quantity, and only succeed using some approximations. In [KH00] for example,

the authors use the integrate-and-fire model and employ themselves to compute this

correlation function under some assumptions.

One interesting fact about this equation is that one can study the influence of highly

correlated inputs in this framework [KGH99; KGH01; GK02a], leading to estimations

of the synaptic weight dynamics with biologically inspired inputs.

It is however important to stress here, that this framework supposes that all pre-

and postsynaptic spikes are taken into account at each pairing, therefore restricting its

use only to the all-to-all pairing scheme.

Mean-field analysis
Another approximation is sometimes made, usually in addition to the timescale sep-

aration, and relates to having a large number of independent presynaptic neurons N
in a stochastic context. Under the approximation of N being large, and therefore after

scaling each single synaptic weight by a factor 1{N , it is possible to obtain a Fokker-

Plank equation for the weight distribution [RBT00a; RLS01; BMG04]. In this case, the

temporal evolution of each synaptic strength is assumed to follow a diffusion process

and, consequently, verifies theMarkovian property. The analysis is done with the asso-

ciated Fokker-Planck equations, and the corresponding equilibrium distribution when

it exists, see [RLS01; RBT00a].

This approach can also be compared with mean-field analysis, in the sense that

usually, limit equations lead to dynamics that depends on the mean synaptic weight,

see [RBT00a]. This approximation leads to the characterization of asymptotic synaptic

weight distribution, in simple cases, usually with independent presynaptic inputs, and

as such, is a great tool to study STDP in a theoretical setting.

However, the scaling of each synaptic weight by the factor 1{N is not biologically

plausible. Indeed, in that case, the importance of a single pairing is diluted over the
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large number of inputs in the mean-field limit, whereas by definition STDP relies on

the repetition of such correlated pairings. Furthermore, for the postsynaptic neurons

to spike, one may expect it to receive highly correlated inputs. The Fokker-Planck

approach would not be able to take into account these types of inputs, and it therefore

greatly limits its potential application tomore biologically-plausible neuronal networks.

An extension of this formalism to higher orders, the Kramers-Moyal expansion, is also
used in this context for some non-Markovian models, see [LF12].



CHAPTER 2

A PROBABILISTIC APPROACH TO NEURONAL NETWORKS

2.1 Stochastic models for neuronal activity

Neurons are complex cells that integrate many different biological processes in order to

emit action potentials and transmit them to other neuronal cells. Modeling neurons has

been an active topic of research for the past century, and many books have reviewed

large classes of models. We refer to them for a general presentation of neuronal

dynamics in computational neuroscience [Izh07; ET10; Ger+14].

The following sections will be devoted to building a stochastic model for neuronal

activity, using different mathematical tools, starting with point processes and then

slow-fast analysis.

Neuronal dynamics
Neurons can be modeled through complex systems, where different compartments in-

teract to reproduce neuronal dynamics. These compartments are related to functionally

diverse parts of the neuron, and are of interest when studying in details how action

potentials are generated and how they travel along the axons to convey information to

other neurons.

When modeling neuronal networks with numerous neurons, those complex mod-

els do not scale well in numerical complexity and are hard to study using theoretical

tools. Most of the research therefore focuses on reducing neuronal dynamics to a

system with only one scalar variable to represent cell activity and usually define it as

the membrane potential X of the neuron. The equivalence between the membrane

potential used in models and the actual membrane potential in biological experiments

is not straightforward, as this potential greatly depends on where it is measured along

the neuron’s membrane. However, its repetitive use in computational neuroscience has

proved that, even if it is not directly related to a specific biological quantity, it still en-

ables neuroscientists to reproduce complex dynamics with a simple model of neuronal

activity.

The membrane potential is subject to different ionics flows and depends on the

dynamics of numerous channels, that open or close depending on the neuron’s state

and the signals it receives. A first simple hypothesis is to suppose that there exists a

resting potentialXeq, towhich themembrane potential decayswhen it is not stimulated,

and that the membrane acts as a resistance-capacitance system. These leaky-integrate
dynamics lead to the following equation for X ,

τ dX{ dt “ ´pXptq ´Xeqq `RI

where τ represents a time constant, R the resistance of the neuron and I external input
currents.

Regarding neuronal models, an important topic is spike generation, in particular

in simple models as the leaky-integrate neuron, where all biological mechanisms that

15
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trigger action potentials are not taken into account. It has been known for a long time

that a neuron spikes when it depolarizes, i.e when its membrane potential is high.

Most models in computational neuroscience [Izh07; ET10; Ger+14] use integrate-and-fire
models, where a spike is emitted as soon as themembrane potentialX reaches a specific

value Xth. After the spike, the neuron resets to another value Xreset, that is often taken

as the resting potential Xeq. In mathematical terms, this translates to:

#

τ dX{ dt “ ´pXptq ´Xeqq `RI if X ă Xth

Xptq Ñ Xreset when Xpt´q “ Xth.

Thismodel leads tomembrane potentials that are not continuous functions of time.

In a mathematical setting, càdlàg functions model this type of dynamics1.

The dynamics ofX in the absence of spikes are said to be linear, in the sense that, for

any type of inputs I“I1 ` I2, it is possible to compute X through a linear combination

of X1 and X2, i.e the membrane potentials with I “ I1 and I “ I2. Experimental

neurons follow the same principles when their membrane potential is below the spike

threshold, and as such, linear integrate-and-fire neurons are known to correctly model

subthreshold dynamics.

However, upon neuronal depolarization (i.e membrane potential rise), linear ap-

proximations do not satisfyingly reproduce biological data. Indeed, spikes result from

auto-exciting processes that take place in the soma and more complex models are

needed to reproduce similar dynamics. The introduction of nonlinear models has

solved this issue, by replacing the leaky term by more complex, nonlinear functionals

of the membrane potential, leading to,

#

τ dX{ dt “ fpXptqq `RI if X ă Xth

Xptq Ñ Xreset when Xpt´q “ Xth.

where fpXq is the nonlinear model. Two nonlinear models have emerged and estab-

lished themselves as good approximations for neuronal dynamics, the first of them

known as the quadratic modelwith fpXq9X2
, and the second one called the exponential-

integrate-and-fire neuronwith fpXq9 exppXq.
These models are not sufficient to reproduce other neuronal patterns of activity,

that are sometimes of interest in neuronal networks. Bursting for example, i.e the

capacity of a neuron to fire discrete groups (i.e bursts) of spikes, cannot intrinsically

be modeled under these simple assumptions (without any additional input). The same

problem emerges when modelling adaptation: the fact that under constant input, a

neuron is able to raise or decrease its firing rate over time.

A second variable needs to be added to the model to properly reproduce these

behaviors. The adaptation variable U usually follows slower dynamics than X and

represents many underlying ionic currents that are responsible for complex neuronal

behaviors. Adaptive nonlinear integrate-and-fire models have therefore been intro-

duced [Izh07; ET10; Ger+14] and their dynamics follow,

$

’

&

’

%

τ dX{ dt “ fpXptqq `RI if X ă Xth

τU dU{ dt “ gpUptq, Xptqq if X ă Xth

Xptq Ñ Xreset, Uptq Ñ Upt´q ` Ureset when Xpt´q “ Xth.
1
a function f is said to be càdlàg if, it is right continuous and has a left limit at every point t, fpt´q

denotes the left limit of f at t.
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where gpU,Xqmodels the dynamics of the slow adaptation variable and τU the adapta-

tion timescale. When the neuron spikes, the adaptation variable U can also be updated

by Ureset or not, depending on the model.

When building a computational neuronal network, different arguments need to

be considered to choose which neuronal models to use. Theoretical models, which

aim at investigating neuronal dynamics using mathematical tools, need the simplest

model that reproduces the studied phenomenon, in order to manipulate analytical ex-

pressions. Computational models, designed for computer experiments and therefore

limited by computer capacity and complexity, are able to manipulate more complex

descriptions. Overall, choosing the right model results from a complex balance be-

tween keeping a contiguous proximity to biological reality and using the best adapted

technique to investigate neuronal dynamics.

Random generation of spikes
In the natural brain, spontaneous neuronal activity is abundant, which causes noisy

spiking dynamics. It is important to distinguish extrinsic noisy activity, that is related

to random spikes coming from external neurons, from intrinsic noise. Most models

introduce noise using an extrinsic random current, sometimes in the form of random

spikes andmore often as a diffusive random noise, usually taken as a Gaussian process,

to integrate the effect of large populations of neurons [Ger+14]. In integrate-and-fire

models, where the firing mechanisms is deterministic, it is necessary to introduce such

external noise in order to trigger spikes in a random fashion. In particular, when the

external noise is taken as a diffusive process, spiking times are defined as the first time

when the stochastic process X reaches a particular value, i.e its threshold potential

Xth. There is an extensive on first passage times exists; which has investigated the

distribution of spike timings in diffusive neuronal models.

However, neurons cut out from their networks also display randomness in their

spikingmechanisms, highlighting the existence of noise inside the neuronal cell. Exper-

imental data suggest that the firing process itself has a significant random component,

which can lead to randomness in the spike trains even in the presence of deterministic

input.

A first approach to model this intrinsic randomness was developed in Wilson-

Cohan neuronal networks: neurons [Cow68] switch between different states: quiescent

(corresponding to subthreshold dynamics), activated (to spikes) and refractory (the

refractory period, i.e is caused bymechanisms that unable a neuron to generate another

spike). Later on, in order to study neuronal dynamics, a stochastic version of thismodel

was developed, in which neurons switch between states at a rate that depends on the

membrane potential [Cow91]. Even if spikes in this model where modeled indirectly

as a switch between two neuronal states, it is, to our knowledge the first introduction of

a stochastic mechanism for spiking. Since then, several models have been built on this

hypothesis, some of them keeping the Wilson-Cohan formalism of different neuronal

states [BC07; Hel18].

Later on, some works have added variability in the threshold mechanisms, by

adding a random component when generating spikes [GH92]. Extending this idea,

spikegeneration canbemodeled througha randomvariable thatdependson the current

value of themembrane potential, leading to the development of Poisson neurons. These

neurons are characterized by their membrane potential X , usually defined as a simple
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leaky-integrate process, but spike triggering results from a Poisson process. In other

words, if the neuron state at time t isXpt´q, it is natural to assume that the probability

that the neuron spikes between times t and t` dt is equal to βpXpt´qq dt, where β
represents the activation function. This function is often taken as nondecreasing, because

neurons tend to spike as their membrane potential rises. Under this hypothesis, spikes

are generated through a random process, even in the presence of a constant input.

Several models have used this approximation either with β as a linear function of the

membrane potential [KGH99] or more complex nonlinear activation functions [Chi01].

The Poisson neuron model is able to reproduce intrinsic spike emissions and is a

powerful tool for theoretical studies of stochastic neuronal networks [RT16].

2.2 Spiking trains as point processes

Spikes represent good estimates for neuronal activity, even if it would be overly simplis-

tic to reduce neuronal dynamics to these events. Once a spiking mechanism is defined,

either by using integrate-and-fire neurons or Poisson neurons, neuronal activity can be

represented, under this approximation, by the sets of spiking events ptkqkPN. This can
be completed by the definition of the neuron spike train N , i.e the measure,

N pdtq “
ÿ

kPN
δtkpdtq,

where δx is the Dirac measure at t“x.
N is a classical object in probability theory, and can be seen, under some supple-

mentary assumptions as a point measure. A point measure on R`, is an integer-valued

Borelian positive measure on R` which is Radon (which has finite values on any com-

pact set in R`). In particular, a point measure is carried by a subset of R` which is at

most countable andwithout any finite limiting point. It is however quite realistic to use

these objects when considering biological neuronal dynamics such as refractoriness to

suppose that explosion events do not occur.

As explained in the previous section, spike generation is a stochastic process and

accordingly the measure N is also a random object. Indeed, simulating the same

neuronal dynamics several times would result in distinct realizations of the spike train.

It is possible to define a probability measure pP,Ωq on the point measures N . Each

realization N pwq would then be characterized by stochastic spikes timings ptkpwqqkPN.
The stochastic process N pdwq is called a point process, and has led to many works in

the probability community [Ver70; DV08]. Such processes have been used to model

earthquake events, population dynamics, finance and of course, neuroscience.

In the following, thepoint process formalism is used for a simple system, composed

by two neurons connected at one synapse. We only choose to model each spike train

by a point process, with Npre for the presynaptic neuron and Npost for the postsynaptic

cell. We suppose that the postsynaptic cell follow leaky-integrate dynamics, and that

its input is only defined by the presynaptic neuron spikes. In other words, at each

presynaptic spike, the membrane potentialX of the postsynaptic neuron is updated by

a quantity W which represents the synaptic weight. This process can be formulated,

setting aside the reset of the neuron after a spike and taking Xeq“0, using a stochastic

differential equation,

dXptq “ ´1
τ
Xptq dt`WNprepdtq.
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Poisson processes
In order to model the postsynaptic neuron spikes, Poisson processes need to be intro-

duced. They represent a significant subset of point processes [Kin92] and are character-

ized by their intensity measure µ on R`, which appears when computing the number

of points of the Poisson process in a measurable set A, i.e

N pAq “ PoissonpµpAqq,

where Poissonpλq is a Poisson law with parameter λ, i.e

P pN pAq“kq “ µpAqk

k! e´µpAq.

They also need to display an independence property, i.e for any disjoint subsets A and

B, N pAq and N pBqmust be independent random variables.

These processes are commonly used in stochastic theory because thanks to the

independence property they share, they lead to simpler proofs and can then be used to

build more complex objects.

Going back to our simple model of neuronal dynamics, I will assume that the

presynaptic neuron spikes according to a homogeneous Poisson process, i.e their inter-

spike times are taken as identically independent exponential variable of parameters λ.
It corresponds to taking a Poisson process with an intensity measure proportional to

the Lebesgue measure, µpdtq “ λ dt. In particular, the following property is verified,

PpNpreprt, t` dtsq“1q “ λ dt` opdtq.

For the postsynaptic neuron, following the hypothesis developed in the previous

section, I would need to build a nonhomogeneous Poisson process that verifies,

PpNpostprt, t` dtsq“1q “ βpXpt´qq dt` opdtq.

where βp¨q is the activation function and represents the influence of the postsynaptic

membrane potential on spiking.

In order to reproduce this property using homogenous Poisson processes, I need

to introduce a Poisson point process P on R2
with rate 1 and define the firing instants

of the output neuron ptpost,kq as the jumps of the point process Npost defined by

ż

R`
fpuqNpostpduq def.

“

ż

R`
fpuqP

´

p0, βpXpu´qqs , du
¯

“

ż

R2
`

fpuq1tsPp0,βpXpu´qqsuPpds, duq, (2.1)

for any non-negative Borelian function f on R`.
Classical properties of Poisson processes give that, for tą0 and xPR,

P pNpostpt, t` dtq“1|Xpt´q“xq“βpxq dt`opdtq,

as expected, Npost is a Poisson process with intensity pβpXptqqq.
Poisson processes are natural objects to represent neuronal spike trains and their

use in theoretical studies of neuronal networks benefit from the large amount of existing

works on the subject.
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Hawkes processes, a natural formulation for an auto-exciting process
The influence of postsynaptic spikes on the membrane potential results in its resetting

to a constant value Er, the reset potential. This property can be integrated easily in the

stochastic differential equations developed in the last section,

dXptq “ ´1
τ
Xptq dt`WNprepdtq ` pXr ´Xpt´qqNpostpdtq.

This dynamic is of real interest in probability because it produces a Poisson process

whose intensity βpXptqq depends on previous jumps. It could also be postulated

that instead of being reset to a specific value, a postsynaptic spike just decreases (or

increases) the membrane potential by a fixed value ∆Xr leading to

dXptq “ ´1
τ
Xptq dt`WNprepdtq `∆XrNpostpdtq.

For most neurons, ∆Xr would be taken as negative modeling the inhibitory influence

of a postsynaptic spike on the postsynaptic membrane potential. However, for bursting

neurons one could imagine that ∆Xr may be taken as positive, in order to model the

fact that after a first spike, a bursting neuron is more prone to spike again. These

assumptions are of course only possible when using Poisson neurons, because of the

absence of fixed spike threshold. In particular, the spiking rate of a neuron following

this dynamic is equal to,

λpostptq “ βpXpt´qq “ β

ˆ
ż

p´8,tq

W expp´pt´sq{τqNprepdsq

`

ż

p´8,tq

∆Xr expp´pt´sq{τqNpostpdsq
˙

.

This formulation is close to the SRM (spike response model), see [Ger+14] for a

review, where the impact of each spiking event (from the presynaptic and the postsy-

naptic neurons) are modeled by response kernels (here exponentials).

Such auto-exciting (or auto-inhibiting) processes have been studied in probability

since their discovery by Hawkes in 1974 [HO74], and applied to various domains as

finance, genetics or neuroscience.

AHawkes process is a point processNHawkes whose intensity is a function of previous

jumps, i.e

λHawkesptq “ β

ˆ
ż

p´8,tq

hpt´sqNHawkespdsq
˙

.

It is quite evident from the previous expression that neuronal dynamics can fit, after

small adaptations, under this formalism with h being an exponential function. These

processes exhibit complex dynamics, and the existence of stationary processes verifying

this definition has led to several works in stochastic process theory.

The first formulation of the Hawkes process dates back to [Haw71; HO74], and

chose to focus on linear activation function β. This enabled the authors to study the

existence of stationary Hawkes processes using cluster branching processes theory.

Later on, the latter analysis was extended to nonlinear Hawkes processes, i.e with

nonlinear activation function β, primarily in [BM96]. Hawkes processes can also be

extended to study multidimensional recurrent systems. This approach has already

been applied to the analysis of neuronal networks dynamics in [RRT13] for example.
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2.3 Synaptic plasticity and neuronal activity, a slow-fast

system

Up until now, neuronal networks have been considered with fixed connections and

therefore lacking any synaptic plasticity. In particular, the synaptic weightW is taken

as a constant of themodel. This is a simplisticmodel of neuronal activity, and to explain

the influence of synaptic plasticity a more accurate version needs to be developed. We

have introduce in the first chapter the notion of synaptic plasticity, the evolution of

the synaptic strength as a function of neuronal activity, and would lead to stochastic

differential equations of the following form,

#

dXptq “ ´ 1
τ
Xptq dt`W pt´qNprepdtq,

dW ptq “ F pXptqq dt.
(2.2)

where F represents synaptic plasticity mechanisms and is responsible for the fact that

W “ pW ptq, tą0q is now a function of time. We chose in this example to use synaptic

plasticity that only depends on the value of the postsynaptic potential X .

When focusing on long-term synaptic plasticity, i.e synaptic changes that operate

on longer timescales than neuronal dynamics, it is interesting to apply a slow-fast

decomposition to this system.

Scaling of the neuronal and synaptic weight dynamics
In order to represent this timescale separation, most studies introduce a small scaling

parameter ε.
Neuronal processes, associated to the point processes Npre and Npost, occur on a

timescale which is much faster than the timescale of the evolution of pW ptq, tą0q. For
our simple model, after scaling, the SDE (2.2) becomes, for εą0,

#

dXεptq “ ´ 1
τ
Xptqdt

ε
`Wεpt´qNpre,εpdtq,

dWεptq “ F pXεq dt.
(2.3)

where Npre,ε corresponds to the Poisson process Npre with the timescale change tÞÑt{ε,
Using this formulation, Xε is the fast variable, in the sense that when ε goes to 0, it
is sped up. The increments of the variable W are of order Op1q and for this reason,

pWεptq, tą0q is described as a slow process. The corresponding scaling results, known as

separation of timescales, are routinely used in mathematical models of computational

neuroscience see, for example [KGH99].

Stochastic averaging
In a mathematical context, these types of results are referred to as averaging principles.

See [PSV77] and Chapter 7 of [FW98] for general presentation. They aim at establishing

a limit result, or averaging principle, for pWεptq, tą0qwhen ε goes to 0 for certain types

of dynamics.

In particular, in most formalisms, the stochastic systems studied verifies some

Markovian property, in particular the system (2.3), can be formulated using martingale

problems.
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We denote by pXwptq, tą0q the solution of Relation (2.2) when the process

pW ptq, tą0q is constant and equal to w. Under appropriate conditions, it has a unique

equilibrium distribution Πw. The averaging principle for the simple model can be ex-

pressed as follows. Under some conditions, the processes pWεptq, tą0q is tight for the
convergence in distributionwhen ε goes to 0, and any limiting point pwptq, tą0q satisfies
the following integral equation,

wptq “ wp0q`
ż t

0

ż

R
F pxqΠwpsqpdxq ds, tě0. (2.4)

See Section 5 of Chapter 1 of [Bil99] for general results on tightness properties and

convergence in distribution.

An important part of the proof using stochastic averaging principles is dedicated

to the tightness of the slow variable pWε, tą0q viewed as càdlàg processes. In particular,

using that,

Wεptq “ Wεp0q`
ż t

0
F pXεpsqq ds,

the tightness of the family of processes pWεptqq is equivalent to the tightness of

ˆ
ż t

0
F pXεpsqq ds, tą0

˙

.

A general approach to prove averaging principles is presented in [Kur92] for jump

processes.

An elegant idea first developed in [PSV77] is to introduce the notion of occupation

measure, it computes a local average of the fast variable value, as a measure defined by,

for all tą0 and Borelian set B,

νεpA, r0, tsq “
ż t

0
1tBupXεpsqq ds,

where 1tBu is the indicator function of a Borelian B.

Indeed, it is then possible to rewrite the previous expression as,

ˆ
ż t

0

ż

R
F pxqνεpdx, dsq, tą0

˙

.

As expressed in [Kur92], an important hypothesis is that the process pXεptq, tą0q
verifies the compact containment condition, i.e that the set,

tXεptq, t ą 0, ε ą 0u

is relatively compact, which directly leads to the fact that the occupation measure νε is
also tight. If the function F is bounded, the resulting tightness ofWε is straightforward.

Most applications of slow-fast analysis need these two conditions to prove the stochastic

averagingprinciples [KK+13]. This is also the case of [Hel18] for the time-elapsedmodel

of plasticity forwhich this representation holds. Note that this is one of the few rigorous

proofs I know of an averaging principle for a stochastic model of plasticity.

However, in a real biological system, the compact containment condition, and the

boundedness of the slow variable dynamics may not be verified as easily, and would

lead to more complex proofs.
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Once tightness is proven, one last step is still needed to prove convergence of the

scaled system to the averaged version described by equation (2.4). If Relation (2.4) has

a unique solution for a given initial state, a result for the convergence in distribution of

pWεptq, tą0qwhen ε goes to 0 is therefore obtained. Uniqueness holds if the integrand,

with respect to s, of the right-hand side of Relation (2.4) is locally Lipschitz as a function

of wpsq. Regularity properties of the invariant distribution Πw as a function of w need

to be verified.

Stochastic averaging principles gather a set of tools that have been used to study

slow-fast systems. However, several assumptions classically used on this subject are

equivalent to the boundedness of the dynamics. In biological systems, such condi-

tions may not be always verified and therefore applying slow-fast analysis is not as

straightforward as it seems in a first approach.





CHAPTER 3

PROCEDURAL LEARNING IN THE STRIATUM

During my PhD, I was also part of the “Dynamic and Pathophysiology of Neuronal

Networks” teamatCollègede France, led byDr. LaurentVenance. The experimentalists

there are working on electrophysiological and behavioral approaches to examine the

role of the dorsal striatum in procedural learning. Here, I will be referring to the dorsal

striatum as the striatum, for simplification, leaving aside its ventral part, the nucleus

accumbens. Most of the work I report here is focused on the striatal system, using

mathematical tools and computational neuroscience to understand its dynamics and

properties. In particular, the striatum displays a specific type of synaptic plasticity,

anti-Hebbian STDP and I will develop several properties of anti-Hebbian STDP either

in stochastic neuronal networks or in computational models of the striatum. In the

following section, I will introduce the striatum as a core subcortical nucleus, that is

part of a larger system, the basal ganglia, involved in action selection and procedural

learning. Then, I will describe the different properties of the striatal neuronal network,

in particular by defining itsmain constituents, themedium-spiny neurons (MSNs), that

will be the basis of all the computational work in this report. Finally, I will detail how

anti-Hebbian STDP has been discovered at corticostriatal synapses and what are the

current views on the implication of anti-Hebbian STDP in models. Most information

from this introduction has been taken from [Mil07; ST16] for the biological system

and [PS95] for the computational part.

3.1 The striatum, a subcortical structure involved in

procedural learning

The input nuclei of the basal ganglia
The striatum represents the entry system of the basal ganglia, a large group of subcor-

tical nuclei involved in action selection, goal-directed behavior and procedural learn-

ing [ST16].

As the main input to the basal ganglia, the striatum is characterized by a conver-

gence of a large array of excitatory neurons descending from the cortex or the thalamic

nuclei. Cortical and thalamic glutamatergic (excitatory) axons converge at the level of

the striatal neurons, and represent the main cause of neuronal activity in the striatum.

The striatum is of particular interest because of its capacity to integrate cortical

inputs from all cortices, starting from the sensorimotor cortex (responsible for sen-

sory integration and motor commands) to the limbic cortex (which supports diverse

functions including emotion, behavior, long-termmemory). The striatumuses this con-

vergence of different sources of information to select correct associations and determine

future actions based on this large collection of signals.

The striatum is primarily composed by projections neurons, called the medium-

sized spiny neurons (MSNs) because of the size and shape of their dendritic tree.
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dMSN

iMSN

Figure 3.1: Schematic representation of the striatal heterogeneity and the anatomo-
functional compartments of the dorsal striatum, adapted from [PV19].
Schematic representation of the direct and indirect trans-striatal pathways of the basal

ganglia. Striosomes are shown with black dots distributed between the dorsolateral

striatum (blue) and the dorsomedial striatum (orange). Grouped black dots represent

striosomes surrounded by the annular compartment (red line, [BC15]), whereas iso-

lated black dots illustrate the exo-patch [Smi+16]. Striosomal SPNs mainly project to

SNc whereas SPNs from the matrix belong to the direct or indirect pathway. The direct

and indirect pathways are represented, respectively, in green and purple.

GPe, external segment of the globus pallidus; EP, entopeduncular nucleus; STN: sub-

thalamic nucleus; SNr, substantia nigra pars reticulata; SNc, substantia nigra pars

compacta.
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Because of their roles as the only neurons projecting outside of the striatum, they are

also referred to as striatal projection neurons (SPNs). Accordingly, MSNs project to

other parts of the basal ganglia, and twomain pathways have been characterized in the

past decade. For a simplified picture of the basal ganglia organization see Figure 3.1

(right). It has been shown that two subtypes of MSN differ in their target nuclei. Direct-
pathway neurons, dMSNs, directly extend their axons into the EP (entopeduncular

nucleus) and the SNr (substantia nigra pars reticulata), which represent the output

nuclei of the basal ganglia. Conversely, indirect-pathway neurons, iMSNs, project to the

GPe (external globus pallidum), whose neurons then project to the STN (subthalamic

nucleus) as a final step before being received at the EP and SNr. Information traveling

through this pathway goes to several intermediate steps before arriving at the output

neurons of the basal ganglia. This simplistic view of the basal ganglia system is

presented and discussed in [Mil07].

The basal ganglia are composed of nuclei whose projecting neurons share a quite

uncommon property when comparing to the rest of the brain: all neurons are in-

hibitory and transmit information at synapses using the GABA (gamma-aminobutyric

acid) neurotransmitter. An exception must be made for neurons from the STN which

are excitatory. When comparing with the cortex, where the majority of the cells are

excitatory, and inhibition is only present through local interneurons, it highlights the

fact that the basal ganglia has its own dynamics, quite distinct from cortical ones. In

particular, the MSNs have inhibitory projections to their target neurons, which exhibit

tonic (spontaneous) firing activity, and modulate these rates through the intensity of

inhibition.

The striatum, and more generally the basal ganglia, are linked to several neuro-

logical disorders, such as Parkinson’s disease or Huntington’s disease. The continuous

effort of experimentalists and neuroscientists working on the basal ganglia, has mainly

been driven by the understanding of these diseases and by the prospect to heal them.

Functional role of the striatum
The basal ganglia are a key structure for action selection, and the control of voluntary

motormovements. The striatum, as themain input structure of this system, has distinct

functional roles which can be linked to three of its main properties.

The striatum integrates numerous cortical inputs at each MSN, and a large num-

ber of those excitatory neurons need to be activated at the same time to trigger a spike

at the MSN. Indeed, MSN are known to exhibit low rest potentials (Xeq “ ´80mV )

and only spike when receiving enough excitatory currents concurrently to reach the

spike potential (Xth “ ´50mV ). Therefore, MSNs play a great part in filtering ran-

dom cortical activity, and extracting from noise, relevant information, characterized by

correlated cortical spiking. It is particularly interesting to notice that MSNs integrate

excitatory inputs from variate cortical structures, which then “share” information at the

level of the striatum to decide on which action to perpetrate in response to a particular

situation. From the machine learning point of view, the striatal layer mimics the role

of a perceptron, whose input layer would be represented by cortical neurons, and the

output layerwould bemodeled by theMSNs [Wic93; PS95]. MSNs are then able to send

this filtered information to the following stages of the circuit, leading to action selection

and motor processing. This detection of coincidence is enhanced by the presence of

collateral inhibition between MSNs, i.e they also project to neighboring MSNs, and
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therefore inhibit them while spiking. This competition between inhibitory cells lead to

winner-take-all dynamics, where a single active neuron shuts down the other MSNs, en-

hancing signal-to-noise ratio. This hypothesis, based on strong collateral inhibition has

been tempered in recent works, where MSN inhibition has been shown to be weaker,

leading to winner-share-all dynamics [WAS07].

A second important fact about the striatum is that its synaptic connections are

highly plastic. In particular, corticostriatal synapses are modified following corre-

lated activity from cortical and striatal neurons [PS95] and also display STDP [FV10].

Accordingly, the ability of MSNs to select important information from spontaneous

cortical activity is shaped by synaptic plasticity. Indeed, corticostriatal synapses learn

to modulate MSN activity to the right intensity to participate in the pattern detection

task. Many synaptic mechanisms have been proven to be involved in different types

of learning, and in particular for the striatum, in procedural learning. This particular

type of learning refers to the process of acquiring skills in a motor task that is even-

tually can be performed automatically, without having to consciously remember the

information. Learning to ride a bike is an example of procedural learning, in the sense

that, when cycling, people do not move their feet with explicit, conscious, orders, but

rather just replicate a sequence that they have learned to perform. It is usually op-

posed to declarative memory, where the subject is able to consciously recall particular

information.

Finally, for learning to occur in the striatum, striatal neurons need to be taught

through some mechanisms which cortical associations are contextually appropriate or

not. Reward mechanisms are usually associated to dopaminergic signaling [SDM97],

and the striatum is one of the brain areas where dopamine plays a major role. A

subset of MSNs, mainly located at striosomes (patches of chemical compartments in

the striatum, see Figure 3.1) are known to directly project to the SNc, one of the

main pools of dopaminergic neurons in the brain. Striatal activity therefore greatly

influences the release of dopamine in the rest of the brain, and in particular in the

striatum. Indeed, neurons from the SNc are known to project directly to the dorsal

striatum and therefore locally influence striatal activity, and even synaptic plasticity,

with signals based on reward. Goal-directed learning in particular has been shown

to rely on the influence of dopamine in the striatum [YK06; BO10]. More precisely,

dopamine is a good candidate to represent reward or RPE (reward prediction error)

directly at the level of the striatum.

Dichotomies in the dorsal striatum
As explained in the previous sections, the striatum has to perform several different

tasks at the same time, keeping in mind that it only has a single type of projecting

neurons, the MSNs. Several heterogeneities have been observed at the level of the

striatum, both structurally and functionally that can explain its ability to “multitask”.

Direct vs indirect pathways

As explained in Section 3.1, MSNs can be discriminated based on their output targets,

and their belonging to the direct or indirect pathways. Furthermore, neurons from the

direct and indirect pathways are associated with different dopaminergic receptors (D1-

like for direct pathway neurons, and D2-like for indirect ones). Indirect pathwayMSNs
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also have a greater excitability (they are more prone to spike) than MSNs belonging

to the direct pathway. Finally, [Per+22] have proven that in some regimes, MSNs

may exhibit different STDP rules at their corticostriatal synapses. These neurons also

have different functions, because direct and indirect pathways neurons tend to exert

an opposite influence on the basal ganglia output. The differential influence of the

direct, and the indirect pathways has been the focus of many studies. Excitatory inputs

received by the direct MSNs lead to a decrease of activity in the output neurons of the

basal ganglia, which in turn stop inhibiting key areas for motor processing, enabling

motor activity. The direct pathway is therefore involved in the release of inhibition,

necessary for the correct implementation of learned motor skills. The indirect pathway

goes through one more inhibitory connection, and as such has the opposite influence

on the output neurons of the basal ganglia. It has been shown that its role is to

prevent actions from being processed. The balance resulting from the activity of

both systems is key in order to perform action selection, and to correctly process

complex motor programs. These facts have been used when modeling the action

selection process [CJB10; Dun+19], or when studying the influence of the basal ganglia

in Parkinsonian models [Rub17; HOD18]

The dorsolateral (DMS) vs dorsomedial (DMS) striata

The second duality that is present in the (dorsal) striatum consists in the distinction

between theDLS andDMS regions of the striatum, see 3.1 (DLS in blue, DMS in orange).

These two parts are not clearly segregatedwhen looking at the dorsal striatum, but they

integrate inputs from different cortical areas, sensorimotor cortices for the DLS and

associative ones for the DMS. Again, MSNs display different properties in these two

regions, in particular, at the level of their corticostriatal plasticity [Per+22]. Another

important variation between those two regions is that striatal interneurons (neurons

that only project inside the striatum) have different distributions [Fin+18]. It has been

shown that these two regions also exhibit clear functional differences [BO10]: the DLS

is involved in habit formation, i.e learning to associate stimulus to a succession of

actions without taking into any rewards, whereas DMS participate in goal-directed

learning (learning based on rewards). They are both involved when learning a new

task, and their complementary action seems necessary for procedural learning. For a

more detailed presentation on this topic, see Section IV.2.2.1.

Patch vs matrix compartments

Finally, the striatum can be subdivided in two types of chemically-distinct patterns.

Striosomes are patches of MSNs which project to the SNc, and the matrix which forms

the rest of theMSNs [BC15; Smi+16]. In the first models of the striatum, these two parts

where supposed to represent the two systems in actor-critic model [PS95], where the

matrix would be responsible for choosing an action based on current information (the

actor) and the striosomes, thanks to their associationwith dopaminergic neurons of the

SNc, would predict, using an internal model of the world, the reward that would result

from doing a particular move (the critic). Dopamine would then be used to correctly

update both systems (as is expected in the actor-critic model) because dopaminergic

neurons project back to the whole striatum.

Even if at first view, the striatum seems to be quite restricted in its actions, due

to the fact that its only influence is exerted through a single type of cells, the MSNs,
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different local variations of the striatal network explain its ability tomultitask efficiently,

while sharing relevant information.

3.2 Corticostriatal STDP and importance of anti-Hebbian

plasticity

STDP at corticostriatal synapses
The striatum, while integrating inputs from all cortical areas (from motor to limbic

parts) and from some thalamic nuclei, is involved in both action selection and proce-

dural learning. [Yin+09] proved that procedural learning depends on corticostriatal

plasticity, leading to various studies to characterize the shape and role of corticos-

triatal plasticity [Kor+12; PV19]. Plasticity observed in vitro (using brain slices) and

in vivo (in anesthetized or awake rodents) depend on several conditions, first of all

the induction protocols (rate-based, STDP), then striatal heterogeneity, and finally the

presence/absence of neuromodulators [PV19].

For a long time, corticostriatal plasticity was known to be depression-based, i.e

leading to a decrease in the synaptic weight value. However, after applying STDP pro-

tocols at corticostriatal synapses, [FGV05] described that they displayed anti-Hebbian

STDP. In short, pre-post pairings (a presynaptic spike followed by a postsynaptic spike)

lead to long-term depression while reversed pairings trigger long-term potentiation.

It is important to stress here that, anti-Hebbian STDP has not been as extensively

studied as Hebbian one, even if it was discovered at the same time [Bel+97]. Several

studies have later on confirmed the presence of anti-Hebbian STDP at corticostriatal

synaspes [Pai+13; Val+17], and have studied the influence of the induction protocol on

synaptic plasticity. Changes in frequency [Per+22], number of pairings [Cui+16], age of

the rodents [Val+17] have shown that STDP is highly dependent on these parameters,

leading to legitimate questions about its active role in in vivo synaptic plasticity, and of

course in behavior. In vivo studies have confirmed that corticostriatal STDP could be

elicited, while maintaining a biological level of activity [Mor+19].

It is to be noted that some works have reported Hebbian STDP at corticostriatal

synapses. These conflicting observations have been explained by the use (or lack of

use) of ionotropic GABA antagonists [Pai+13]. Moreover, the influence of dopamine

on the shape of STDP is also of great importance [She+08], when starting to consider

models of goal-directed learning [GHR15], or the influence of three-factor learning

rules [KIT17; Ger+18; PV19].

I would like to stress here, that when talking about corticostriatal synapses, I am

referring to synapses ontoMSNs. However, several studies have also demonstrated that

STDP could also be elicited at corticostriatal synapses located on the different types

of interneurons present in the striatum. In particular, fast-spiking inhibitory interneu-

rons (FS), cholinergic interneurons and low threshold-spiking interneurons (LTS) also

exhibit different types of STDP [FV10]. Similarly, plasticity was also induced at thala-

mocortical synapses, i.e where thalamic afferents connect to striatal neurons [Men+20].

In conclusion, striatal neurons have highly plastic synapses, and various works

have proven that anti-Hebbian plasticity has an important role to play in learning.

However, few models have tried to study how anti-Hebbian STDP impacts neuronal

dynamics, and this work aims at reporting some new principles for anti-Hebbian STDP.
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Functions of anti-Hebbian STDP
In order to understand the role of anti-Hebbian STDP, modeling studies are often

necessary and it is quite appalling to see that most computational works on synaptic

plasticity only focus on Hebbian STDP. Theoretical studies analyzing different types of

STDPs, even if scarce in numbers, exist [Rob00; CF03; RA04; ZD07; RL10; BK12].

An exception must be made for a sequence of publications on the role of anti-

Hebbian STDP in electrosensory systems, in the mormyrid electric fish. These fish

are known to have an electric organ located in their tail that generates a weak electric

field. A motor command causes the electric organ to discharge in pulses and the

animals can then navigate by detecting small distortions in the electrical field caused

by external objects. Moreover, it has been shown that anti-Hebbian STDP was present

at parallel fiber synapses [Bel+97] and several computational models have been built

on this hypothesis [RL10]. They explain that anti-Hebbian STDP helps the system to

create a negative image of the electrical field generated by a motor command. When

this negative image is subtracted to the actual electric field sensed by the fish, small

distortions are easily detected, helping the fish to navigate. Anti-Hebbian plasticity

has been shown to be perfect in order to reproduce this phenomenon [RB00; WRL03]

and this cancellation mechanisms has been studied both with computer simulations

and theoretical studies [RL10]. An important point raised by several articles, is that

anti-Hebbian STDP alone, is not able to generate sustained spiking activity. Indeed,

as a causal pre-post pairing leads to depression, the synaptic weights will eventually

converge to a situation where they are not large enough to trigger spiking activity.

In order to counteract this phenomenon, and to reproduce experimental data, non-

associative potentiation (only triggered by presynaptic activity) is often added to the

associative anti-Hebbian STDP rule [RB00; WRL03; RA04].

Hebbian STDP is known to act as a correlation tool, in the sense that neurons

whose firing are correlated, will be even more correlated after the action of synaptic

plasticity. This auto-exciting process has been shown to be of great importance in the

formation of neuronal assemblies and syncfire chains [GBV10], mainly in the cortex.

Anti-Hebbian STDP follows the opposite principles, in the sense that as soon as the

postsynaptic neuron spikes, it immediately reduces the value of the synaptic weights

that have led to its spiking. Anti-Hebbian STDP therefore acts as a homeostatic mecha-

nisms, that can limit the growth of the synaptic weights to a value sufficient to trigger

spikes [RA04]. This view has also emerged in studies on learning temporal spiking

sequences, where the goal is not only to spike in response to a pattern, but to spike at the

right time. Theoretical studies have shown that algorithms needed to solve this task,

as the Chronotron [Flo12] or ReSuMe [PK10] have dynamics similar to anti-Hebbian

rules [Güt14]. For a more specific introduction on this topic see, Section IV.1.1.1.
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This PhD is the result of an interdisciplinary collaboration between mathematics

and neuroscience, where I have been working under the supervision of

— Dr Philippe Robert, in the MAMBA (Modelling and Analysis for Medical and

Biological Applications) team from INRIA Paris;

— Dr Laurent Venance, in the DPRN (Dynamic and Pathophysiology of Neuronal

Networks) team, in the CIRB (Center for Interdisciplinary Research in Biology) at

Collège de France, Paris.

This work is built on experimental results, mainly the expression of anti-Hebbian STDP

at corticostriatal synapses, observed in Laurent Venance’s team. Duringmy PhD, I have

developed two main applications of this synaptic plasticity rule in neuronal networks

models.

This report is divided in two parts, in order to present the different paths that I

have pursued:

— Part A starts by studying STDP in stochastic neuronal networks, detailing a rigor-

ous framework in which we have applied stochastic theory to synaptic plasticity.

This line of research led to five articles: three published [RV21b; RV21c; RV21a],

one submitted [RV22b] and one in last stages of redaction [RV22a]. In these five

papers, the work was equally distributed betweenmyself andmy PhD supervisor

Dr. Philippe Robert. In more details,

– Chapter 1: P. Robert and G. Vignoud. Stochastic Models of Neural Plasticity.

SIAM Journal onAppliedMathematics 81.5 (Sept. 2021), 1821–1846 (reproduced
fully in its published version, with minor orthographic and typographic

corrections).

– Chapter 2: P. Robert and G. Vignoud. Stochastic Models of Neural Synaptic

Plasticity: A Scaling Approach. SIAM Journal on Applied Mathematics 81.6
(2021), 2362–2386 (reproduced fully in its published version, with minor

orthographic and typographic corrections).

– Chapter 3: P. Robert and G. Vignoud. Averaging Principles for Markovian

Models of Plasticity. Journal of Statistical Physics 183.3 (June 2021), 47–90

(reproduced fully in its published version, with minor orthographic and

typographic corrections).

– Chapter 4: P. Robert and G. Vignoud. Spontaneous dynamics of synaptic

weights in stochastic models with pair-based spike-timing-dependent plas-

ticity. accepted at Physical Review E (2022) (reproduced in its current version,

in review in PRE).

– Chapter 5: P. Robert and G. Vignoud. A Markovian approach to Hawkes

processes. In writing. 2022 (reproduced in its current version).

— Part B will implement anti-Hebbian STDP in simple models of the striatum, us-

ing computer simulations to study the influence of synaptic plasticity on different

learning tasks. For this part, I have been directed, from the computational neuro-

science side, byPr. JonathanTouboul (BrandeisUniversity) andwaspartly funded

by a Fulbright grant to work at Brandeis University for a five months period. Two

articles emerged from these projects, the first has been accepted [Per+22] and the

http://dx.doi.org/10.1137/20M1382891
http://dx.doi.org/10.1137/20M1382891
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second in last writing stages [VTV22]. In both papers, I have designed the model,

the task, done the simulations, analyzed the results and written the paper under

the tight supervision of Pr. Jonathan Touboul and my second PhD advisor Dr.

Laurent Venance.

– Chapter 1: G. Vignoud et al. A synaptic theory for sequence learning in the

striatum. Preprint. 2022 (reproduced in its current version).

– Chapter 2: S. Perez et al. Striatum expresses region-specific plasticity consis-

tent with distinct memory abilities. Cell Reports 38.11 (2022), 110521 (repro-

duced partially, with a general presentation of the experimental results, and

my specific contribution in full). In this paper, the model is used to draw

conclusion on the respective roles of different types of plasticity, studied in

their full extent in the associated paper [Per+22], by my colleagues from Dr.

Laurent Venance team.

Both lines of works were based on the same experimental mechanisms, but the

collaboration between them did not end there. Indeed, the composition of a rigorous

setting for synaptic plasticity in stochastic neuronal networks was enriched by several

biologically plausible properties, after lengthy discussions withmy advisors. Similarly,

the analysis of synaptic weights dynamics in computational models of the striatum

was greatly helped by theoretical results obtained in the stochastic framework. As a

conclusion, although, both projects have been built together, and have influenced each

other over the course of my PhD, I present them separately here, for clarity.

Stochastic neural networks and synaptic plasticity

If numerous models of neuronal cells have been proposed in the mathematical liter-

ature, few of them include a variable for the time-varying strength of the connection

between two neurons. We introduce a general, mathematical framework to study

synaptic plasticity. We develop and use this formalism in a serie of four articles, that I

will detail sequentially.

In Chapter A.1 [RV21b], we investigate a system composed of two neurons con-

nected by a single synapse, and a stochastic process describing its dynamical behavior

is presented and analyzed. The notion of plasticity kernel is introduced as a key com-

ponent of plastic neuronal networks models, generalizing a notion used for pair-based

models. We show that most STDP rules from computational neuroscience can be rep-

resented by this formalism. An important subclass of plasticity kernels, where cellular

processes such as the neuronal membrane potential and the concentrations of chemical

components have Markovian dynamics, is defined and investigated.

After having defined the general formalism needed to study STDP, we apply a

slow-fast analysis to the dynamics of the associated neuronal network. This work

is presented in Chapter A.2 [RV21c]. In this chapter we develop and investigate a

scaling approachof thesemodels basedon several biological assumptions. Experiments

show that long-term synaptic plasticity evolves on a slower timescale than the cellular

mechanisms driving the activity of neuronal cells. For this reason, a scaled version of

the stochastic model is introduced, and an averaging principle is stated for a subclass

of Markovian plasticity kernels. These averaging principles are used to study two

important STDP models, pair-based rules and calcium-based rules, and are compared

with the approximations of STDP models from computational neuroscience. Discrete

http://dx.doi.org/https://doi.org/10.1016/j.celrep.2022.110521
http://dx.doi.org/https://doi.org/10.1016/j.celrep.2022.110521


44 CONTRIBUTIONS

models of STDP rules are also investigated for the analytical tractability of their limiting

dynamical system.

The proof of the averaging principle is developed in Chapter A.3 [RV21a]. We

consider a stochastic system with two connected nodes, whose unidirectional connec-

tion is variable and depends on point processes associated to each node, that represent

the simple neuronal network defined before. We study the scaling regime when the

rate of both point processes is large compared to the evolution of the connection. The

central result of this chapter is the averaging principle for the connection dynamics.

Mathematically, the key variable is the point process, associated to the output node,

whose intensity depends on the past activity of the system. The proof rests on a de-

tailed analysis of several of its unbounded additive functionals in the slow-fast limit,

and technical results on interacting shot-noise processes.

InChapterA.4 [RV22b], we apply the timescale separation (consequence of [RV21c;

RV21a]) to derive the long-time limits of a single synaptic weight subject to pair-based

STDP.We show, using theoretical arguments and computer simulations, that thepairing

scheme (choice of presynaptic andpostsynaptic spikes to consider) controls the synaptic

weight dynamics for small external input on an excitatory synapse. This result implies

in particular that mean-field analysis of plasticity may miss some important properties

of STDP. Anti-Hebbian STDP favors the emergence of a stable connection. In the case

of an inhibitory synapse the pairing schemes matter less, and we observe convergence

of the synaptic weight to a stable value only for Hebbian STDP. We study different

asymptotic regimes for STDP rules, raising interesting questions for future works on

adaptative neural networks and, more generally, on adaptative systems.

All previous chapters have highlighted the importance of stationary distributions

of neuronal dynamics with constant synaptic weights. Considering that a neuron can

be modeled as an auto-exciting process, we have developed an interest in the study of

stationary Hawkes processes. In Chapter A.5 [RV22a], we develop a new formalism

for Hawkes process, where we prove that the sequence of jump timings can be seen as

a Markovian chain on the space of positive real sequences. In addition, we study the

transient behavior in details the casewhere each jump induces an exponential influence

on the Hawkes intensity. Under this hypothesis, the system is described by a simpler

Markov chain, and we prove several estimations on this type of Hawkes process, using

Markovian theory, either for stationary or transient processes.

STDP in the striatum: implications on learning and memory

One of the focuses of this PhDwas to build a simplifiedmodel of the striatum,with anti-

Hebbian STDP and reward signaling, and thus investigate the impact of anti-hebbian

forms of STDP on learning and memory. In particular, I have developed a simple

numerical model of the striatum, integrating cortical spiking inputs to study the role

of anti-Hebbian STDP in learning. I have tested this network on two different tasks,

which I will present in this part.

In Chapter B.1 [VTV22], we study the influence of anti-Hebbian STDP on a spe-

cific task, related to the striatum prominent role in procedural learning. Sequences

of cortical spikes are presented to the striatal output neurons (MSN) and combined

information from the output, reward and timing between the different spikes modify

the intensity of each connection, through two mechanisms: anti-Hebbian STDP and

reward signaling. The network learning capacity is measured by a score, based on
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the prediction of rewarded and nonrewarded patterns. The learning dynamics and

efficiency are compared between different settings (number of neurons, intensity of

the plasticity, types of STDP, tolerance to random noise). Two important properties of

the striatal networks, spiking latency and collateral inhibition have subsequently been

added to the model and lead to an improvement of the global accuracy. In conclusion,

we show that anti-Hebbian STDP favors the learning of complete sequence of spikes,

such as is needed in the striatum, whereas, even if Hebbian STDP helps to correlate

the spiking of two connected neurons, it is not sufficient to integrate long sequences of

correlated input spikes.

Finally, in Chapter B.2 [Per+22], I present a project where I have directly collab-

orated with experimentalists. Electrophysiological and behavioral experiments were

performed to study the different properties of two regions of the striatum, who me-

diate different types of learning: goal-directed behavior in DMS and habits in DLS.

We show that symmetric and asymmetric anti-Hebbian STDP exist in DMS and DLS,

respectively, with opposite plasticity dominance upon increasing corticostriatal activ-

ity. In this chapter, I use the mathematical model, defined in Chapter B.1 to study the

computational properties of these STDP rules in procedural learning. We developed

a complex task, composed by a learning phase, followed by a period of random ac-

tivity, and finally a relearning phase in order to investigate the influence of STDP on

the maintenance of learned patterns. We found that symmetric anti-Hebbian STDP

favored memory flexibility by allowing a rapid forgetting of patterns, while asymmet-

ric anti-Hebbian STDP contributed to memory maintenance, consistent with memory

processes at play in procedural learning.

Other PhD works, not presented in this document

During the course of my PhD, I have also been involved in several projects of data

analysis, through local collaborations in Laurent Venance’s team. These projects, which

helped me to gain experience while closely working with experimentalists, are not

reported in the main document, as they are not directly linked with my PhD subject.

In the following section, I will shortly present four of those works to give a complete

overview of my PhD.

First, using experimental data from the lab, I have developed a tool to discriminate

between direct- and indirect-pathway MSNs using electrophysiological properties. I

have first developed an algorithm to compute all interesting properties fromAP (action

potential) protocols, then I have trained severalmachine learning techniques to correctly

classify both types of neurons. In particular, I have shown that using the combination

of two algorithms leads to a good performance in the classification task. This work

was presented at an international conference [Vig+19], and has been subsequently used

in the lab by experimentalists to identify neurons, without having to use genetically-

modified mouse lines.

In the second half of my PhD, I have also worked with Pr. Bertrand Degos (a

neurologist that works part-time in Laurent Venance’s team), and two of his interns

on quantitatively measuring parkinsonian symptoms from videos. Bradykinesia is

defined as a motor slowness and is associated with a decrease of the amplitude and

speed of movement. As a key parkinsonian feature, it is currently assessed by the

MDS-UPDRS score, a subjective protocol that lacks reproducibility and makes follow-

up challenging. Using deep learning, we developed a tool to compute an objective score
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of bradykinesia. A large database of videos showing parkinsonian patients performing

MDS-UPDRS protocols has been acquired in a Movement Disorder unit, and several

deep learning algorithms, includingDeepLabCut [Mat+18], were applied to detect a 2D

skeleton of the hand composed of 21 points, and transpose it into a 3D representation.

A two- and three-dimensional semi-automated analysis tool was then developed to

study the evolution of several key parameters during the protocol repetitions. This tool

was presented at several medical conferences [Des+20], and a paper is currently being

written. Both interns that have worked on this project, C. Desjardins and Q. Salardaine

have received the APinnov 2021 Trophy.

Using the same deep learning network, DeepLabCut [Mat+18], I have developed,

in the lab, a process to followdifferent points of interest in videoswheremice are subject

to behavioral experiments. In particular, I was involved in a project with S. Valverde

on the Engrailed-1 homoprotein [Pez+22]. Engrailed-1 is a homeoprotein transcrip-

tion factor able to transfer between cells and to regulate transcription, translation and

chromatin epigenetic status. The goal here is to develop En1 as a therapeutic homeo-

protein in a Parkinson’s Diseasemousemodel by virally addressing it to mesencephalic

dopaminergic neurons of the SNc and test if it exerts a long-lasting epigenetic protec-

tion and has pro-survival activity. By overexpressing En1 in the SNc following the

local and unilateral injection of an AAV virus, we wanted to test En1’s ability to protect

dopaminergic neurons from degeneration by looking at rotational behavior amplified

by amphetamine sensitization. Using DeepLabCut, we were able to automatically

compute the number of turns, and the distance on which the mice had run.

Finally, I have supervised two interns, C. Richard and G. Yasmine-Degobert, who

haveworked on the influence of feedforward inhibition in a computationalmodel of the

striatal network. Results from both internships have highlighted the role of inhibition

in the striatum, and its differential influence in DMS and DLS. A general model of the

striatum, based on these works and on the results obtained during my PhD on the

influence of STDP, is currently in formation, and will tackle several interesting issues

about procedural learning in the basal ganglia.
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CHAPTER 1

STOCHASTIC MODELS OF NEURAL SYNAPTIC PLASTICITY

In neuroscience, learning andmemory are usually associated to long-term changes

of neuronal connectivity. In this context, synaptic plasticity refers to the set of mecha-

nisms driving the dynamics of neuronal connections, called synapses and represented

by a scalar value, the synaptic weight. Spike-Timing Dependent Plasticity (STDP) is a

biologically-based model representing the time evolution of the synaptic weight as

a functional of the past spiking activity of adjacent neurons.

If numerousmodels of neuronal cells have been proposed in themathematical liter-

ature, few of them include a variable for the time-varying strength of the connection.

A new, general, mathematical framework is introduced to study synaptic plasticity

associated to different STDP rules. The system composed of two neurons connected

by a single synapse is investigated and a stochastic process describing its dynamical

behavior is presented and analyzed. The notion of plasticity kernel is introduced as

a key component of plastic neural networks models, generalizing a notion used for

pair-based models. We show that a large number of STDP rules from neuroscience

and physics can be represented by this formalism. Several aspects of these models

are discussed and compared to canonical models of computational neuroscience. An

important sub-class of plasticity kernels with a Markovian formulation is also de-

fined and investigated. In these models, the time evolution of cellular processes such

as the neuronal membrane potential and the concentrations of chemical components

created/suppressed by spiking activity has the Markov property.

abstract

1.1 Introduction

Central nervous systems, as the brain, are the main substrate for memory and learning,

two essential concepts in the understanding of behavior.

It is widely accepted that neurons constitute the main relay for information in

complex neural networks composing the brain. This multi-scale system, ranging from

single neuronal cells to complex brain areas, is known to be the basis of memory

consolidation, i.e. the transformation of a temporary information into a long-lasting

stable memory. The memory trace, or engram, is the focus of studies in neuroscience,

see [TMK18] for example. Biological, computational and mathematical models are

developed to understand mechanisms by which an engram emerges during learning,

maintains itself, and evolves with time.

Synapses are the key components for the transmission of information between

connected neurons, and accordingly, it is assumed that the encoding of memory is

integrated in the intensity of these connections. From a biological point of view, a

synapse is a structure, located at the junction of two neurons, where the transmission

of chemical/electrical signals is possible. A neuronal connection is unidirectional in

the sense that the signal goes from an input neuron, called the pre-synaptic neuron, to
the output one, the post-synaptic neuron. The intensity of the connection is referred to as

the synaptic efficacy/strength and is represented by a scalar variable, the synaptic weight

51
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W . The impact of an input signal, a spike, from the pre-synaptic neuron is modeled as

a jump of the membrane potential X of the post-synaptic neuron. The amplitude of this

jump is used to quantify the synaptic weight.

A synaptic plasticity mechanism is defined as a collection of activity-dependent

cellular processes that modifies the synaptic connectivity. During learning, specific

patterns of neural activity may elicit short, from milliseconds to seconds, and/or long,

fromminutes to hours, -termchanges in the associated synapticweights. In this context,

it is conjectured that memory is directly associated to synaptic plasticity, see [TDM14].

The state of a neuronal cell
In this paperwewill investigate stochasticmodels of the dynamic of the synapticweight

of a connection from a pre-synaptic neuron to a post-synaptic neuron.

The post-synaptic neuron is represented by its membrane potential X which is a

key parameter to describe its current activity. In neuroscience numerous models of an

individual neuronal cell and neuronal networks have been used to investigate learning

abilities and plasticity. See [Ger+14] for a review.

The leaky-integrate-and-fire model describes the time evolution of the membrane

potential as a resistor-capacitor circuit with a constant leaking mechanism. Due to dif-

ferent input currents, themembrane potential of a neuronmay rise until it reaches some

threshold after which a spike is emitted and transferred to the synapses of neighboring

cells. A large class of neural models based on this hypothesis has been developed,

see [Ger+14] and references within.

To take into account the important fluctuations within cells, due to the spiking

activity and thermal noise in particular, a random component in the cell dynamics has

to be included in mathematical models describing the membrane potential evolution.

For several models this random component is represented as an independent additive

diffusion component, like Brownian motion, of the membrane potential.

In our approach, the random component is at the level of the generation of spikes.

When the value of the membrane potential of the output neuron is at X“x, a spike

occurs at rate βpxq where β is the activation function. See [Chi01] for a discussion. In

particular the instants when the output neuron spikes are represented by an inhomoge-

neous Poissonprocess. Considering a constant synapticweightW , the time evolution of

the post-synaptic membrane potential pXptqq is represented by the following stochastic

differential equation (SDE):

dXptq “ ´1
τ
Xptq dt`WNλpdtq ´ g pXpt´qqNβ,Xpdtq, (1.1)

where Xpt´q is the left limit of X at tą0:

— τ is the exponential decay time constant of the membrane potential associated to

the leaking mechanism.

— The sequence of firing instants of the pre-synaptic neuron is represented by a

Poisson point process Nλ on R` with rate λ. At each pre-synaptic spike, the

membrane potential X is increased by the amountW .

— The sequence of firing instants of the post-synaptic neuron is an inhomogeneous

Poisson point process Nβ,X on R` whose rate function is given by pβpXpt´qqq.
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— The drop of potential due to a post-synaptic spike is represented by the func-

tion g, i.e. after a post-synaptic spike, the membrane potential is reset to

Xpt´q´gpXpt´qq.

Considering that the point process Nβ,X depends on pXptqq, Relation (1.1) can be seen

as a fixed point equation.

Synaptic plasticity
Synaptic plasticity refers to different mechanisms that leads to the modification of

the synaptic weight. Consequently, we need to consider a time varying version of

the synaptic strength W ptq. Although synaptic plasticity is a complex mechanism,

general principles have been inferred from experimental data and previous modeling

studies. One of the founding principles is Hebb’s postulate (1949), later on summarized

by [Sha92] as, “Cells that fire together wire together”.
Synaptic potentiation, resp. depression, is associated to an increase, resp. a decrease,

of the synaptic strength. Plasticity is described as a set of mechanisms controlling the

potentiation and thedepressionof synapses. It usuallydependson thepre-synaptic and

post-synaptic signaling, i.e. of past instants of pre-synaptic and post-synaptic spikes.

In the literature this class of mechanisms are referred to as Spike-Timing Dependent
Plasticity (STDP). Several experimental protocols have been developed to elicit STDP

at synapses: sequences of spikes pairing from either side of a specific synapse are

presented, at a certain frequency and with a certain delay. Occurrence, magnitude

and polarity of STDP have been shown to depend on protocols used in experiments:

frequency, number of pairings, types of synapses where it is applied, the neuronal

sub-population, brain area, just to cite a few key parameters, see [Fel12].

We now introduce two important classes of synaptic plasticity mechanisms. Most

models of the literature belong to, or are a variation of, one of these two classes.

a. Pair-based models.
Each pair t“ptpre, tpostq of instants of pre-synaptic and post-synaptic spikes is

associated to an increment ∆W of the synaptic weight at time maxptpre, tpostq,

∆W “ Φp∆tq, (1.2)

where ∆tdef.“ tpost´tpre and Φ is the some function on R, the STDP curve. The

function Φ, usually taken from experimental data, is sharply decreasing to 0 as

∆t goes to infinity, so that distant spikes have a negligible contribution.

Many variants and extensions of pair-based models have been developed over

the years to fit with experimental results. Triplets-rules, described in Sections 1.A

and 1.A, add a dependency between spikes of the same neuronal cell. Additional

examples can be found in [BA16].

b. Calcium-based models.
Another class of models infers from explicit biological mechanisms the shape of

the STDP curve. Post-synaptic calcium traces have been found experimentally to

be critical in the establishment of plasticity, see [Fel12] and references therein. In

a classical model, when the calcium concentrationCca in the post-synaptic neuron
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reaches some specific threshold, STDP is induced accordingly. The analogue of

Relation (1.2) for calcium-based STDP rules is,

dW ptq “ F pCcaptqq dt, (1.3)

for some function F . The dynamics of Cca is only driven by instants of pre- and

post-synaptic spikes. Consequently, the dependence of plasticity on the instants

of spikes is not expressed directly as in pair-based models, but through some

intermediate biological variable. Several biophysical models are based on this

calcium hypothesis, see [GB10] for a review.

It should be noted that there are other STDP models, such as the ones based on

exponential filtered traces of the membrane potential, see [CG10]. Pair-based and

calcium-based models are nevertheless the most widely used STDP rules in large-scale

plastic neural networks.

Models of plasticity in the literature
To understand how synaptic plasticitymay shape the brain, the study of STDP in neural

networks has attracted a lot of interest in different domains:

a. Experiments, with measurements of a large variety of STDP rules.

b. Computational models, for numerical simulations of these protocols with several

populations of neuronal cells.

c. Mathematical models, to investigate the qualitative properties of STDP rules.

Many computational models have been developed to investigate STDP rules in

different contexts. See [KGH99] and [MAD07] and the references therein.

Mathematical studies of models of plasticity are quite scarce. Most models are

centered on evolution equations of neural networks with a fixed synaptic weight. See

Sections 1 and 2 of [RT16] for a review. [Hel18] investigates a Markovian model of a

Nearest Neighbor Symmetric Model STDP rule. See Section 1.2. This is one of the few

stochastic analyses in this domain.

Contributions
Amathematicalmodel of plasticity describing a pre- and a post-synaptic neuron should

include the spiking mechanisms of the two neuronal cells. It is given by the time

evolution of the membrane potentialX of the post-synaptic cell, as described by Equa-

tion (1.1). It must also include the dynamics of plasticity of the type (1.2) or (1.3) for

the time evolution of the synaptic weightW .

The difficulty lies in the complex dependence of the evolution of W with respect

to the instants of spikes of both cells, the processes Nλ and Nβ,X of Equation (1.1).

For pair-based models for example, this is a functional of all pairs of instants of both

processes. In general, there does not exist a simple Markovian model to describe the

membrane potential dynamics and the evolution of the synaptic weight.

In Section 1.2, we introduce the notion of plasticity kernelwhich describes in a gen-

eral way how the spiking activity is taken into account in the synaptic weight dynamics
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as a functional of the point processes Nλ and Nβ,X . A differential system associated

to the dynamics of the variables X and W is presented. Under mild conditions, it is

proved that it has a unique solution for a given initial state. It is, to the best of our

knowledge, the first attempt to have a general mathematical framework that describes

most STDP rules of the literature. A large set of examples is presented in Section 1.2 and

Section 1.A: most STDP models of [MDG08; GB10; Clo+10; BA16] can be represented

within this formalism. Section 1.C gives a graphical representation of several STDP

rules, see Figures 1.3 and 1.4.

Section 1.3 is devoted to an important sub-class of STDP rules, plasticity kernels of
class M. These kernels have a representation in terms of a finite dimensional process

whose coordinates can be interpreted as concentrations of chemical components cre-

ated/suppressed by spiking activity. If a classical Markovian analysis of the associated

stochastic processes is not really possible, their main advantage is that one can for-

mulate a tractable model with two timescales, when the cellular dynamics are “fast”.

This approach is developed in the follow-up paper [RV21c]. For these models, when

the synaptic weight is fixed, the fast stochastic processes have the Markov property.

Section 1.3 discusses these aspects and several examples are presented in Section 1.D.

Finally in Section 1.4, a discrete formulation of the stochastic system is defined and its

fast processes invariant distribution is analyzed. The case of a calcium-based model

is analyzed. Section 1.B discusses modeling issues on the incorporation of plasticity:

via a time-smoothing kernel, as we do in the paper, or directly with an instantaneous

information.

STDP in recurrent neural networks
In this paper, we consider only two neurons (the pre-synaptic neuron and the post-

synaptic) that are connected by a single synapse. As it will be seen, a large variety of

models have been used in the literature to describe the time evolution of a synaptic

weight. Our goal is to propose a general, basic, mathematical framework where most

of these models of plasticity can be investigated. The dynamics of the synaptic weight

pW ptqq depends in an intricate way on the point process Nλ for pre-synaptic spikes and

Nβ,X for post-synaptic spikes.

For a neural network whose nodes are the vertices of a graph G, an extension of

this model would be as follows: the membrane potential process pXiptqq of node iPG
should satisfy the SDE,

dXiptq“´
1
τ
Xiptq dt`

ÿ

jÑi

Wj,ipt´qNβ,Xjpdtq´gpXipt´qqNβ,Xipdtq,

where jÑi indicates that there is a synapse pj, iq, from node j to node i, and pWj,iptqq is
the corresponding process for the synaptic weight. The associated differential quantity

W pt´qNλpdtq for instants of pre-synaptic of the synapse pj, iq is given by

Wj,ipt´qNβ,Xjpdtq.

Each synaptic weight pWj,iptqq will be subject to synaptic plasticity, with defined plas-

ticity kernels Γp,i and Γd,i that can be different. For synaptic weight pWj,iptqq, we will

define Nβ,Xj as the Poisson process representing the pre-synaptic neuron and similarly,

Nβ,Xi for the post-synaptic neuron.
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Themodels and some results of our paper can be extended to themultidimensional

case, in particular the existence and uniqueness result, Theorem 4. For simplicity and

because of its importance as a generic model, we will restrict ourselves to the case of a

network with two-nodes.

1.2 Models of neural plasticity

We consider two neurons connected by one synapse. A synapse is a unidirectional

connection from the input neuron to the output neuron allowing the transmission of

‘information’. When the input, or pre-synaptic, neuron spikes, some neurotransmitters

are released at the level of the synapse, where they can interact with the output, or post-
synaptic, neuron. Following synaptic transmission, a pre-synaptic spike increments the

membrane potential X of the output neuron by a scalar value, the synaptic weightW .

The dynamics of neural plasticity is described in terms of the time evolution of

pXptqq and pW ptqq. For tě0,

a. XptqPR is the membrane potential of the output neuron at time t. This is the

difference between the internal and the external electric potentials of the neuron.

The dynamics of the process pXptqq associated to the output neuron is a classical

model of neuroscience. See [Ger+14] for a survey.

b. W ptqPR represents the intensity of synaptic transmission at time t, i.e. the increment

of the post-synaptic membrane potentialX when the input neuron spikes at time

t. The evolution of pW ptqq at time tą0 depends in general on the total sample path

of ppXpsq,W psqq, 0ďsďtq, in an intricate way.

To take into account inhibitory mechanisms, these two variables are real-valued and,

consequently, may have negative values. Real synapses have a constant sign: they

can be either excitatory (with a non-negative synaptic weight) or inhibitory (with a

non-positive synaptic weight). In the following sections, other variables will be added

to formalize the evolution equations of pXptq,W ptqq.

Definitions and notations
Sequences of pre- and post-synaptic spikes play an important role in the study of spike-
timing dependent plasticity. Mathematically, it is convenient to describe them in terms

of point processes. See [Daw93] for general definitions and results on point processes.

We denote by M`pRd
`q the set of positive Radon measures on Rd

`, i.e. with finite

values on any compact subset of Rd
`. A point measure on Rd

`, dě1, is an integer-valued

Borelian positive measure on Rd
` which is Radon. A point measure is carried by a

subset of Rd
` which is at most countable and without any finite limiting point. The

set of point measures on Rd
` is denoted by MppRd

`qĂM`pRd
`q, it is endowed with the

natural weak topology of M`pRd
`q and its corresponding Borelian σ-field.

If mPMppRd
`q and APBpRd

`q is a Borelian subset of Rd
`, then mpAq denotes the

number of points ofm in A, i.e.

mpAq “

ż

Rd
`

1Apxqmpdxq.
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A point process on Rd
` is a probability distribution on MppRd

`q. Two independent

Poisson point processes are assumed to be defined on a filtered probability space

pΩ,F , pFtq,Pq, see [Kin92]:

a. A point process Nλ on R` to represent the instants of pre-synaptic spikes is

assumed to be Poisson with rate λą0, ptpre,nq is the increasing sequence of its

jumps, i.e.

Nλ“
ÿ

ně1
δtpre,n , with 0ďtpre,1ďtpre,2 ď ¨ ¨ ¨ ď tpre,n ď ¨ ¨ ¨ ,

where δa is the Dirac measure at aPR`.

b. A Poisson point process P on R2
` with rate 1. It is used to define the inhomoge-

neous point process of post-synaptic spikes in Relation (1.5).

The variable t of the point processes Nλpdtq and Ppdx, dtq is interpreted as the time

variable. For tě0, the σ-field Ft of the filtration pFtq of the probability space is assumed

to contain all events before time t for both point processes, i.e.

σ
〈
P1 pAˆps, tsq ,P2 pAˆps, tsq , APB pR`q , sďt

〉
Ă Ft. (1.4)

A stochastic process pUptqq is adapted if, for all tě0, Uptq is Ft-measurable. It is a

càdlàg process if, almost surely, it is right continuous and has a left limit at every point

tą0, Upt´q denotes the left limit of pUptqq at t. The Skorokhod space of càdlàg functions

from r0, T s to S is Dpr0, T s,Sq. See [Bil99].
The set of real continuous bounded functions on the metric space SĂRd

is denoted

by CbpSq, and Ckb pSqĂCbpSq is the set of bounded, k-differentiable functions on S with

respect to each coordinate, with the respective derivatives bounded and continuous.

We conclude this preliminary section with an elementary but important lemma

concerning the filtering of a stochastic process with an exponential function.

Lemma 1 (Exponential filtering). If µ is a non-negative Radon measure on R`, αą0 and
h0PR, then

Hptq “ h0e
´αt
`

ż

p0,ts
e´αpt´sqµpdsq

is the unique càdlàg solution of the differential equation,

dHptq“´αHptq dt`µpdtq,

such that Hp0q“h0.

This type of process is a central object in mathematical models of neuroscience.

It is used to represent leaky-integrate phenomena of chemical components within cells.

See [Ger+14] for a general review.
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The dynamics of the post-synaptic membrane potential
It is represented as a càdlàg stochastic process pXptqq following leaky-integrate dynam-

ics illustrated in Figure 1.1a:

a. It decays exponentially to 0 with a fixed characteristic decay time τ , set without

loss of generality to τ“1.

b. It is incremented by the current synaptic weight variable at each firing instant of

the input neuron, i.e. at each instant of the Poisson point process Nλ.

c. The firing mechanism of the output neuron is driven by a function β from R
to R`, the activation function. When the membrane potential is x, the output

neuron fires at rate βpxq. This function is usually assumed to be non-decreasing,

in other words, the larger the membrane potential is, the more likely the neuron

is to spike.

d. After a post-synaptic spike, the neuronal membrane potential X is decreased

by the amount gpxq, where g is some function on R. In general, the membrane

potential is reset to 0 after a spike, i.e. gpxq“x, see [RT16]. However, in some

cases, the reset potential may not depend on the membrane potential before the

spike, g can be constant for example.

Post-synaptic spikes. If the instants of pre-synaptic spikes are represented by the

Poisson process Nλ, the firing instants of the output neuron tpost,n are expressed as the

jumps of the point process Nβ,X on R` defined by

ż

R`
fpuqNβ,Xpduq def.

“

ż

R`
fpuqP

´

p0, βpXpu´qqs , du
¯

“

ż

R2
`

fpuq1tsPp0,βpXpu´qqsuPpds, duq, (1.5)

for any non-negative Borelian function f on R`.
Classical properties of Poisson processes give that, for tą0 and xPR,

P
´

Nβ,Xpt, t` dtq‰0
ˇ

ˇ

ˇ
Xpt´q“x

¯

“βpxq dt`opdtq,

as expected, Nβ,X is Poisson process with intensity pβpXptqqq.

The following stochastic differential equation summarizes the description of the

time evolution of pXptqq given by a), b), c) and d),

dXptq “ ´Xptq dt`W pt´qNλpdtq ´ gpXpt´qqNβ,Xpdtq.

Time evolution of the synaptic weight
In this work, the synaptic weightW will stay in a defined real (not necessarily bounded)

interval KW . For several examples, the plasticity process leads to dynamics for which

the process pW ptqq stays in KW for all time t.
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— Taking KW“R leads to free dynamics of the synaptic weight, that can be either

negative or positive, change its sign because of the plasticity rules. This situation

occurs in models of neural networks where excitatory/inhibitory neurons are not

separated in distinct classes..

— If KW“R`, the synaptic weight is non-negative and plasticity processes cannot

change its sign. This is a model for excitatory neurons whose spikes lead to the

increase of the post-synaptic membrane potential.

— Conversely, if KW“R´, the cell is an inhibitory neuron, which has the opposite

effect on the post-synaptic membrane potential.

— Finally, KW can also be bounded in order to represent saturation mechanisms,

i.e. the synaptic weights needs to stay in a biological range of value. In that case,

potentiation refers to a diminution of the amplitude of the negative jump, whereas

depression indicates an augmentation. In experimentalworks, thedenominations

are inverted, for the sake of clarity we chose to stay with the previous names.

We can now introduce the notion of plasticity kernels.

Definition 2 (Plasticity kernel). A plasticity kernel is a measurable function

Γ: MppR`q2 ÝÑ M`pR`q, pm1,m2q ÝÑ Γpm1,m2q,

M`pR`q is the set of positive Radon measures on R` and, for any tą0, the functional

pm1,m2q ÝÑ Γpm1,m2qpduX r0, tsq (1.6)

is GtbGt-measurable, where µpduXr0, tsq denotes the restriction of the Radon measure µ to the
interval r0, ts and pGtq is the filtration on MppR`q, such that for tě0, Gt is the σ-field generated
by the functionalsmÑmpp0, ssq, with sďt.

If Γ is a plasticity kernel and m1, m2PMppR`q, the measure Γpm1,m2qpduXr0, tsq
depends only on the variablesmipr0, ssq, for iPt1, 2u and sďt.

In our model, the infinitesimal elements at time t for the update of plasticity are

expressed as ΓpNλ,Nβ,Xqpdtq for some plasticity kernel Γ. This quantifies how the

interaction between the instants of pre-synaptic and of post-synaptic spikes, Nλ and

Nβ,X leads to specific synaptic changes. For example, the order and timing between

instants of pre- and post-synaptic spikes may have an impact on plasticity.

In previous works [SWW10; FSG10; LS14; Fel12], the notion of STDP Temporal

Kernels referred to the curve of synaptic weight change ∆W as a function of ∆t for
pair-based models. [PG06a] introduced more complex kernels, with multi-spikes in-

teractions. The plasticity kernels defined above extend this notion to more general

interactions between pre- and post-synaptic spikes.

Plasticity is represented as a process, integrating, with some decay, the past inter-

actions of the spiking activity on either side of the synapse. Two non-negative process

are introduced: pΩpptqq and pΩdptqq, the first one is associated to potentiation (increase

ofW ) and the other to depression (decrease ofW ). For aPtp, du,

Ωaptq “ Ωap0qe´αt `
ż

p0,ts
e´αpt´sqΓapNλ,Nβ,Xqpdsq, (1.7)
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where αą0 and the variables Γp and Γd are plasticity kernels associated to potentiation

and depression respectively. The process pΩaptqq can be seen as a exponential filtering

of the random measure ΓapNλ,Nβ,Xqpdtq in the sense of Lemma 1. In Section 1.B of

Supplementary Materials, another stochastic model of plasticity with no exponential

filtering of the plasticity kernels is introduced and discussed.

As explained in the introduction of this section, the functionM need to be chosen

so that the synaptic weight W stays at all time in its definition interval KW . The time

evolution of pW ptqq depends then on the past activity of the input and output neurons,

through pΩpptqq and pΩdptqq and is described by,

dW ptq
dt “M pΩpptq,Ωdptq,W ptqq , (1.8)

with, M verifying, for any piecewise-continuous càdlàg functions pωpptqq and pωdptqq
on R`, a solution pwptqq of the ODE

dwptq
dt “Mpωpptq, ωdptq, wptqq,

with wp0qPKW , is such that wptqPKW , for all tě0.
We now give some examples of functions M associated to different synaptic do-

mains KW . For KW“R, we can chose the additive implementation of STDP rules,

where,

Mpωp, ωd, wq
def.

“ Mpωp, ωdq “ ωp ´ ωd (1.9)

In that case, the dynamics are unbounded and we see the update only depends on the

potentiation/depression plasticity variables Ωa.

If we want to model bounded synaptic weight in KW“rAd, Aps, we can consider

the functionM given by

Mpωp, ωd, wq
def.

“ pAp´wq
nωp´pw´Adq

nωd ´ µpw ´ Arq, wPrAd, Aps, (1.10)

where AdďArďAp, and ną0. This corresponds to a multiplicative influence of W .

See [Güt+03]. It is straightforward to see that in that case, the synaptic weight

stays bounded between Ap and Ad for any plasticity processes Ωa. The expression

´µpW ptq´Arq is for the exponential decay of the synaptic weight W to Ar, its rest-

ing value. This term represents homeostatic mechanisms, i.e. mechanisms that maintain

steady internal physical and chemical conditions to allow the functioning of the system.

See [TN04].

Finally, an unbounded dynamics for an excitatory synapse, with KW“R` can be

enforced by,

Mpωp, ωd, wq
def.

“ ωp´wωd, (1.11)

Examples of plasticity kernels
We show that several important STDP rules of the literature can be expressed with

plasticity kernels Γp and Γd. Further extensions are presented in 1.A and Section 1.A
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Pair-based models

For pair-based mechanisms, the synaptic weight is modulated according to the respec-

tive timing of pre-synaptic and post-synaptic spikes, as illustrated in Figure 1.1b. This

follows the fact that most STDP experimental studies are based on pairing protocols,

where pre- and post-synaptic spikes are repeated at a certain frequency for a given

number of pairings.

Accordingly, a large class of models have been developed on the principle that the

synaptic weight change due to a pair ptpre, tpostq of instants of pre- and post-synaptic

spikes, depends only on ∆t“tpost´tpre. The synaptic update is then taken proportional

to Φp∆tq, where Φ is some function converging to 0 at infinity, that is referred to as the

STDP curve. An example of exponential STDP curves is given in Figure 1.1b (top left).

Many pair-based models have been developed over the years, varying mainly which

pairs of spikes are taken into account when updating the synaptic weight.

We start with the simplest rule, the all-to-all version (following [MDG08] terminol-

ogy), where all pairs of spikes give an update of the synaptic weight.

All-to-all model
The all-to-all scheme consists in updating the synaptic weight at each post-synaptic

spike, occurring at time t by the sum over all previous pre-synaptic spikes occurring at

time săt of the quantityΦpt´sq. Switching the role of pre- and post-synaptic spikes, the

synaptic weight is updated in the same way with other constants. See Figure 1.1b (bot-

tom left) for an example of all-to-all interactions.
The plasticity kernels are defined by, form1,m2PMppR`q and aPtp, du,

ΓPA

a pm1,m2qpdtq def.

“

ˆ
ż

p0,tq
Φa,2pt´sqm2pdsq

˙

m1pdtq

`

ˆ
ż

p0,tq
Φa,1pt´sqm1pdsq

˙

m2pdtq, aPtp, du. (1.12)

The functions Φa,i, aPtp, du and iPt1, 2u are non-negative and non-increasing functions

functions converging to 0 at infinity.

If f is a non-negative Borelian function on R`, we have

ż

R`
fptqΓPA

a pNλ,Nβ,Xqpdtq

“
ÿ

tpre

fpuq
ÿ

tpostătpre

Φa,2ptpost´tpreq`
ÿ

tpost

fpuq
ÿ

tpreătpost

Φa,1ptpre´tpostq.

Remarks.

a. The exponential STDP functionsΦpsq“B expp´γsq, sě0, are often used in this con-

text. See [MDG08]. Several studies also consider the case when Φ is a translated

exponential kernel. See [LS08].

b. Hebbian STDP plasticity is said to occur when
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— a pre-post pairing, i.e. tpreătpost leads to potentiation, ∆Wą0;
— a post-pre pairing, tpostătpre, leads to depression, ∆Wă0.

Experiments have shown that this type of plasticity occurs for several populations

of neuronal cells [BP98]. Early models can be found in [RBT00a; RLS01; MDG08]

for a review.

Following Hebb’s postulate, a ‘causal’ pre-post pairing (a post-synaptic spike

occurs after a pre-synaptic one) should lead to potentiation,

ΓPAH

p pm1,m2qpdtq “
ˆ
ż

p0,tq
Φp,1pt´sqm1pdsq

˙

m2pdtq.

Conversely, a post-pre pairing (anti-causal activation) leads to depression,

ΓPAH

d pm1,m2qpdtq “
ˆ
ż

p0,tq
Φd,2pt´sqm2pdsq

˙

m1pdtq.

This corresponds to Φp,2“0 and Φd,1“0 in Equation (1.12).

c. Other forms of STDP have been discovered experimentally see [Fel12]. Anti-
Hebbian STDP models follows the opposite principles: Pre-post pairings lead to

depression, and post-pre pairings lead to potentiation. It has also been observed

experimentally in the striatum, see [FGV05] for example.

It corresponds to the case where Φp,1“0 and Φd,2“0, and symmetric LTD rules to

Φp,1“Φp,2“0 and, finally, symmetric LTP by Φd,1“Φd,2“0. This is the motivation

of the general setting defined in Equation (1.12).

d. Pre/post-synaptic-only plasticity rules can also be expressed into this formalism.

These models include a component to express the direct influence of the pre- or

post-synaptic spikes on the plasticity without any interaction between the two

spike trains. In that case, the kernel ΓPA1
a would have the following expression,

form1,m2PMppR`q and aPtp, du,

ΓPA1
a pm1,m2qpdtq def.

“

ˆ
ż

p0,tq
Φa,2pt´sqm2pdsq

˙

m1pdtq

`

ˆ
ż

p0,tq
Φa,1pt´sqm1pdsq

˙

m2pdtq `Da,1m1pdtq `Da,2m2pdtq, (1.13)

where the constants Da,i, aPtp, du, iPt1, 2u, are non-negative.

Nearest neighbor symmetric model
In the nearest neighbor symmetric model, whenever one neuron spikes, the synaptic

weight is updated by only taking into account the last spike of the other neuron, as

can be seen in Figure 1.1b (top right). If the pre-synaptic neuron fires at time tpre, the

contribution to theplasticity kernel isΦa,2ptpre´tpostq , where tpost is the last post-synaptic

spike before tpre.
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Nλ, tpre Nβ,X , tpost
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(a) A simple stochastic model for a synaptic connection.
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(b) Synaptic plasticity kernels for pair-based rules.
(Top left) STDP curve: update of the potentiation (in red) and depression (in blue) kernels as

a function of ∆t“tpost´tpre. Exponential STDP curves of the form Φa,ip∆tq“Ba,i expp´γa,i∆tq
are used in this example.

(Bottom left) All-to-all pair-based rules: all pairings of pre-synaptic (in green) and post-synaptic

(in purple) spikes are taken into account for the synaptic updates. Grey arrows indicate the

interactions between the different spikes, see the associated updates as a function of the STDP

curve above (blue and red points in (Top left)).

(Top right)Nearest neighbor symmetric pair-based rules: for each pre-synaptic spike (in green), only

the interaction with the previous post-synaptic spike (in purple) is taken into account for the

synaptic update, and conversely for post-synaptic spikes. Grey arrows indicate the interactions

between the different spikes.

(Bottom right) Nearest neighbor reduced symmetric pair-based rules: only consecutive pairings of

pre-synaptic (in green) and post-synaptic spikes (in purple) are taken into account for the

synaptic update, and conversely for post-synaptic spikes. Grey arrows indicate the interactions

between the different spikes.

Figure 1.1: Stochastic models of STDP.

The corresponding kernels ΓPS
are defined by, form1,m2PMppR`q and aPtp, du,

ΓPS

a pm1,m2qpdtq def.

“ Φa,2pt0pm2, tqqm1pdtq`Φa,1pt0pm1, tqqm2pdtq, (1.14)

with the following definition, formPMppR`q and tą0,

t0pm, tq “ t´ supts : săt,mptsuq‰0u, (1.15)
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with the convention that t0pm, 0q“ ` 8. The quantity t0pm, tq is the delay between t
and the last point ofm before t.

Nearest neighbor reduced symmetric model
For the nearest neighbor reduced symmetric, a pre-synaptic spike at t is pairedwith the last

post-synaptic spike at sďt, only if there are no pre-synaptic spikes in the time interval

ps, tq, and similarly for post-synaptic spikes. See Figure 1.1b (bottom right).

Accordingly, the kernels ΓPR
are defined, form1,m2PMppR`q and aPtp, du, by

ΓPR

a pm1,m2qpdtq def.

“
`

Φa,2pt0pm2, tqq1tt0pm2,tqďt0pm1,tqu

˘

m1pdtq
`
`

Φa,1pt0pm1, tqq1tt0pm1,tqďt0pm2,tqu

˘

m2pdtq, (1.16)

with same notations as in (1.14). For tą0, the inequality t0pm2, tqăt0pm1, tq is equivalent
to the relationm1ppt0pm2, tq, tqq“0 so that there is a unique point ofm1 paired to t0pm2, tq
as expected, and similarly by switching m1 and m2. The updates of Relation (1.16) are

therefore done only for consecutive pre- and post-synaptic spikes.

Calcium-based models

Pair-based models can be characterized as phenomenological models of STDP in the

sense that experimental STDP curves are taken as a core parameter of the models.

Another important class of synaptic models are derived from biological phenomenons

and aims at reproducing experimental STDP curves using simple biological models. A

common hypothesis is to use the calcium concentration in the post-synaptic neuron as

a key parameter to model STDP, see [SBC02] and [GB12]. Several biophysical models

have studied the link between calcium concentration, and its direct implication on

the dynamics of plasticity. A calcium-based model with saturation mechanisms has

investigated the dependency on the number of pairings and the existence of different

mechanisms for plasticity in [VVT18].

For these models, synaptic plasticity is expressed as a functional of the post-

synaptic calcium concentration. For m1, m2PMppR`q, the points of m1, resp. m2, elicit

calcium transfers of amplitudes C1, resp. C2, followed by an exponential decay with

rate γ. If pCmptqq is the process of the calcium concentration associated to the couple

m“pm1,m2q, it is therefore the solution of the differential equation

dCmptq “ ´γCmptq dt` C1m1pdtq ` C2m2pdtq,

with some fixed initial condition. By Lemma 1, it can be expressed as

Cmptq
def.

“ Cmp0qe´γt`C1

ż

p0,ts
e´γpt´sqm1pdsq`C2

ż

p0,ts
e´γpt´sqm2pdsq. (1.17)

The mechanisms for potentiation, resp. depression, are triggered depending on the

calcium concentration. For aPtp, du, the plasticity kernel ΓC

a is defined by,

ΓC

a pm1,m2qpdtq def.

“ hapCmptqq dt, (1.18)

for somenon-negative functionha onR`. The functionha is usually a threshold function

of the type

hapxq
def.

“ Ba1txěθau, xě0, (1.19)



STOCHASTIC MODELS OF SYNAPTIC PLASTICITY 65

for someBaPR` and θaě0, as done in [GB12]. In that case, the process pΩaptqq associated
to ΓCa has therefore an impact on the synaptic weight as soon as the concentration of

calcium is above level θa.
Further examples of STDP rules are presented in Section 1.A.

The plasticity process
This section is devoted to the formal definition of the stochastic process describing the

time evolution of the synaptic weight.

Definition 3. The stochastic process pXptq,Ωpptq,Ωdptq,W ptqq with the initial state
px0, ω0,p, ω0,d, w0q, is the solution in DpR`,RˆR2

`ˆKW q of the SDEs, for tą0,
$

’

&

’

%

dXptq “ ´Xptq dt`W pt´qNλpdtq ´ gpXpt´qqNβ,Xpdtq,
dΩaptq “ ´αΩaptq dt` ΓapNλ,Nβ,Xqpdtq, aPtp, du,

dW ptq “M pΩpptq,Ωdptq,W ptqq dt,
(1.20)

where, Γp and Γd are plasticity kernels and Nβ,X is the point process defined by Relation (1.5)

and the functionM is expressed by Relation (1.8).

The system (1.20) can be interpreted as fixed point equation for the process pXptqq
with an intricate dependence due to the point process Nβ,X as an argument of the

plasticity kernels. Theorem 4 gives an existence and uniqueness result for the solutions

of Equations (1.20). We now introduce the main assumptions on the parameters of our

model which will be used throughout this paper.

Examples of different dynamics are presented in Section 1.C, for pair-based in

Figure 1.3 and calcium-based in Figure 1.4.

Assumptions A

a. Firing rate function.

β is a non-negative, continuous function on R and βpxq“0 for xď´cβď0.

b. Drop of potential after firing.

g is continuous on R and 0ďgpxqďmaxpcg, xq holds for all xPR, for cgě0.

c. Dynamic of plasticity.

The functionM is such that, for any wPKW and any càdlàg piecewise-continuous

functions h1 and h2 on R`, the ODE

dwptq
dt “Mph1ptq, h2ptq, wptqqwith wp0q“w, (1.21)

for all points of continuity of h1 and h2, has a unique continuous solution

pSrh1, h2spw, tqq in KW .

Theorem 4. Under Assumptions A, the system (1.20) has a unique càdlàg adapted solution
with initial state px0, ω0,p, ωd,0, w0q in RˆR2

`ˆKW .
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Proof. The construction is done on the successive intervals between two consecutive

instants of jump of the system. The non-decreasing sequence psnq of these instants is

defined by induction.

The first jump of pXptqq occurs at time s1 and is defined as the minimum of the

first jumps of the processes

pNλpp0, tsqq and
ˆ
ż

p0,ts
P
´

`

0, β
`

x0e
´u
˘‰

, du
¯

˙

. (1.22)

With Relation (1.21), for 0ďtăs1, we set Xptq“x0e
´t

andW ptq“SrΩ1
p,Ω1

dspw0, tq, with

Ω1
aptq

def.

“ ω0,a`

ż

p0,tq
e´αpt´sqΓap0, 0qpdsq, aPtp, du,

andW ps1q“W ps1´q, where 0 is the null point process.

a. If s1 is the first point of Nλ, define

f1
def.

“ ` and Xps1q “ x0e
´s1`W ps1´q.

b. If s1 is the first point of the second point process of Relation (1.22), set

f1
def.

“ ´ and Xps1q “ x0e
´s1´g

`

x0e
´s1

˘

.

The mark f1 indicates the nature of the jump occurring at time s1, i.e. if the spike was

fired by the pre- or post-synaptic neuron.

The process pXptq,Ω1
pptq,Ω1

dptq,W ptqq satisfies the equations (1.20) on the time in-

terval r0, s1s and, by Relation (1.4), s1 is a stopping time with respect to pFtq.

Assume by induction that, for ně0, the variables psk, fk, 1ďkďnq and the adapted

càdlàg process pXptq,W ptq, tPr0, snsq are defined, and sn is a stopping time. For aPtp, du,
let

Ωn`1
a ptq

def.

“ ωa`

ż

p0,tq
e´αpt´sqΓa

˜

n
ÿ

k“1
δsk1tfk“`u,

n
ÿ

k“1
δsk1tfk“´u

¸

pdsq. (1.23)

In Definition 2, the GtbGt measurability property, gives that for any ně1 and kăn,
the process pΩj

aptqq does not depend on the index jPtk, . . . , nu on r0, sks. The instant

sn`1ąsn is defined as the minimum of the first jumps of the two point processes,

pNλprsn, tsq, tąsnq,

ˆ
ż

rsn,ts

P
“`

0, β
`

Xpsnqe
´pu´snq

˘‰

, du
‰

, tąsn

˙

. (1.24)

The fact that sn is a stopping time and the strong Markov property of the Poisson

processes Nλ and P give that sn`1 is also a stopping time. For snďtăsn`1, set

W ptq“SrΩn`1
p ,Ωn`1

d spW psnq, t´snq and Xptq
def.

“ Xpsnqe
´pt´snq,

andW psn`1q“W psn`1´q, and
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a. If sn`1 is a point of Nλ, define fn`1“`, and

Xpsn`1q
def.

“Xpsnqe
´psn`1´snq`W psn`1´q.

b. Otherwise, we set fn`1“´, and

Xpsn`1q
def.

“Xpsnqe
´psn`1´snq´g

`

Xpsnqe
´psn`1´snq

˘

.

We have thus defined by induction a stochastic process pXptq,W ptqq on sequence of

time intervals psn, sn`1q, ně1. We now prove that the process is defined on the whole

real half-line, i.e. that the sequence psnq is almost surely converging to infinity. This is

the object of the following lemma.

Lemma 5 (Non-explosive behavior). Under Assumptions A, the sequence of successive jump
instants psnq is almost surely converging to infinity.

Proof. Denote by E0 the event where the sequence psnq is bounded and assume that

it has a positive probability. On the event E0, almost surely, only a finite number of

points of the Poisson process Nλ may be points of the sequence psnq. Therefore, there
exists some N0PN and a subset E1 of E0 of positive probability such that for něN0, one

has fn“´, i.e. the jumps are due to the second point process of Relation (1.24) after

time sN0 .

On the event E1, forněN0 one hasXpsn´qă|XpsN0q|, almost surely, because p|Xptq|q
can only decrease when there are no pre-synaptic spikes. Consequently, as βpxq is null
for xă´cβ , we have that maxpβpXptqq:tąsN0qă ` 8. Therefore, the successive jump

instants psn, něN0q cannot stay bounded on the event E1. This is a contradiction. The

sequence psnq is therefore converging to infinity almost surely.

A direct consequence of this result is that, from the very definition of the sequence

psnq, for any tą0, there exists n0 such that if něn0 then

n
ÿ

k“1
δsk1tfk“`u X r0, ts “ Nλ X r0, ts and

n
ÿ

k“1
δsk1tfk“´u X r0, ts “ Nβ,X X r0, ts, a.s.,

recall that µXr0, ts is the measure µPMpR`q restricted to the interval r0, ts. For aPtp, du,
again with the GtbGt-measurability property of plasticity kernels, the quantity

Ωn
aptq“Ωap0q`

ż

p0,tq
e´αpt´sqΓa pNλ,Nβ,Xq pdsq

is constant for něn0, it is defined as Ωaptq. Furthermore, for sďt and něn0,

dW psq “M
`

Ωn
p ptq,Ωn

dpsq,W psq
˘

ds “M pΩpptq,Ωdpsq,W psqq ds.

We have thus the existence of a solution to Relation (1.20). The uniqueness is clear on

any time interval r0, sns, ně1, and therefore almost surely on R`.
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1.3 Markovian plasticity kernels

In this section we introduce an important subclass pMq of plasticity kernels that leads

to a Markovian formulation of the whole plasticity process. In this context, it turns out

that the associated synaptic weight process pW ptqq can be investigated with a scaling

approach which is often used, sometimes implicitly, in the literature of physics in

neuroscience. As it will be seen, plasticity kernels of pair-based models of Section 1.2

and of calcium-basedmodels of Section 1.2 are of classM. The follow-up paper [RV21c]

is devoted to the scaling analysis of these plasticity kernels.

Definition 6 (Kernels of class pMq). A plasticity kernel Γ is of class pMq if, for m1,
m2PMppR`q,

Γpm1,m2qpdtq “ n0pzptqq dt` n1pzpt´qqm1pdtq ` n2pzpt´qqm2pdtq, (1.25)

where

a. For i“0, 1, 2, na,i is a non-negative measurable function on R`
`, where `PN˚.

b. pzptqq is a càdlàg function with values in R`
`, solution of the SDE

dzptq “ p´γ d zptq`k0q dt` k1pzpt´qqm1pdtq ` k2pzpt´qqm2pdtq. (1.26)

— γPR`
`, adb“paiˆbiq if a“paiq and b“pbiq in R`

`.
— k0PR`

` is a constant and k1 and k2 are measurable functions from R`
` to R`. Fur-

thermore, the pkiq are such that the function pzptqq has values in R`
` whenever

zp0qPR`
`.

It is important to note that the function pzptqq is a functional of the pair pm1,m2q.

The fact that zptq stay non-negative is an important feature of class pMq kernels. For

example, we may have functions k1 or k2 of the form,

kipzq “ Bi´bidz

where BiPR`
`, and biPt0, 1u`.

If Γ is of class pMq and pzptqq is its associated càdlàg process, with Relation (1.26)

it is easily seen that, for any tą0, the functional
#

pMppR`q2,GtbGtq ÝÑ pM`pr0, tsq,BpM`pr0, tsqqq
pm1,m2q ÝÑΓpm1,m2qpduX r0, tsq

is indeed Gt-measurable, where pGtq is the filtration of Definition (2).

Proposition 7 (AMarkovian formulation of plasticity). IfΓa, aPtp, du, are plasticity kernels
of class pMq associated to pna,i, kiq, iPt0, 1, 2u, aPtp, du and γPR`

` and under Assumptions A,
the solution of Relations (1.20) of Theorem 4 is such that the stochastic process pUptqq def.

“

pXptq, Zptq,Ωpptq,Ωdptq,W ptqq is a Markov process on SMp`q
def.

“ RˆR`
`ˆR2

`ˆKW , solution
of the SDE,

$

’

’

’

’

’

’
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’
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’

’

’

’

’

’

’
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dXptq “ ´Xptq dt`W ptqNλpdtq ´ g pXpt´qqNβ,X pdtq ,
dZptq “p´γ d Zptq ` k0q dt

`k1pZpt´qqNλpdtq ` k2pZpt´qqNβ,Xpdtq,
dΩaptq “ ´αΩaptq dt`na,0pZptqq dt

`na,1pZpt´qqNλpdtq`na,2pZpt´qqNβ,Xpdtq, aPtp, du,

dW ptq “M pΩpptq,Ωdptq,W ptqq dt.

(1.27)
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Proof. Theorem 4 shows the existence and uniqueness of such a process pUptqq. The

process pUptqq is a piecewise deterministic Markov process in the sense of [Dav93] and

consequently has the Markov property. See Chapter 2 of [Dav93]. An expression of its

infinitesimal generator is given in Section 1.D of Supplementary Materials.

It should be noted that, due to the dimension of the state space, the Markov

property of pUptqq cannot be really used in practice in our analysis. The representation

in terms of SDEs in Relation (1.27) turns out to be useful in the scaling approach

presented in [RV21c].

Motivation for Markovian kernels
Theprocesses pΩpptqq and pΩdptqqdetermining the synaptic plasticity dependon thepro-

cess pZptqq in a non-linear way. The coordinates of pZptqq“pZiptqqmay be interpreted as

the concentration of chemical components created/suppressed by pre-synaptic and/or

post-synaptic spikes, with some leaking mechanism. Calcium is such an example, see

Relation (1.17). A simple case is when each coordinate of pZptqq is associated either to

pre- or post-synaptic spikes, i.e. it satisfies

dZiptq “ ´γiZiptq dt`BiNλpdtq or dZiptq “ ´γiZiptq dt`BiNβ,Xpdtq.

Moreover, if Zi needs to be reset to Bi when one of the neurons spikes, we just need to

replace Bi by Bi´Zipt´q in these equations.

We now show that calcium-based models and several pair-based models, can be

represented in such a setting, i.e. that their plasticity kernels are of class pMq.

Examples
Calcium-based models

For this set of models, the class pMq property is fairly clear. Relations (1.17) and (1.18)

give that, for aPtp, du andm1,m2PMppR`q,

ΓCa pm1,m2qpdtq def.

“ hapCmptqq dt,

where, ifm“pm1,m2q, pCmptqq is a càdlàg solution of the differential equation

dCmptq “ ´γCmptq dt` C1m1pdtq ` C2m2pdtq.

The process pZptqq is simply the one-dimensional process pCNλ,Nβ,X
ptqq. Markovian

dynamics of the calcium-based model are illustrated in Figure 1.4-(a).

Pair-based models

Several kernels associated to pair-based models defined by Relation (1.12) are also of

class pMq. This type of Markov property has been mentioned in [MDG08]. Markovian

models including STDPmodels described in Section 1.2 are presented in Section 1.D of

Supplementary Materials.
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All-to-all model

The class pMq holds when the STDP functions Φ are exponential, i.e. when, for aPtp, du
and iPt1, 2u,

Φa,iptq“Ba,i expp´γa,itq, tě0.

withBa,iPR` and γa,ią0. Form1 andm2PMppR`q, denote by pza,iptqq, the càdlàg solution
of the differential equation

dza,iptq “ ´γa,iza,iptq dt`Ba,imipdtq,

with za,ip0q“0. Lemma 1 gives the relation

za,iptq “ Ba,i

ż

p0,ts
e´γa,ipt´sqmipdsq.

The process pzptqq is then defined as pzp,1ptq, zp,2ptq, zd,1ptq, zd,2ptqq. The plasticity kernel

of this model, see Relation (1.12), can be expressed as

ΓPA

a pm1,m2q “ na,1pzpt´qqm1pdtq`na,2pzpt´qqm2pdtq,

the functions pna,iq are defined by, for z“pza,iqPR4
`, na,1pzq“za,2 and na,2pzq“za,1.

An example of dynamics with plasticity kernels and associated Markov process

pZa,iq is presented in Figure 1.3-(a). Similar models, using auxiliary processes pZa,iq
can be devised for nearest STDP rules. See Section 1.D of Supplementary Materials,

Figure 1.3-(b) for the nearest neighbor symmetric STDPandFigure 1.3-(c) for the nearest

neighbor reduced symmetric STDP.

Nearest neighbor models

FormPMppR`q and tą0, the variable t0pm, tq of Relation (1.15) used in the two models

presented in Section 1.2,

t0pm, tq “ t´ supts : săt,mptsuq‰0u,

can be expressed as the solution pzmptqq of the differential equation,

dzmptq “ dt´zmpt´qmpdtq,

with zmp0q“0.
For m1 and m2PMppR`q, we define pzptqq“pzm1ptq, zm2ptqq, Relation (1.26) holds

with γ“p0, 0q, k0“p1, 1q and, for z“pz1, z2q, k1pzq“p´z1, 0q and k2pzq“p0,´z2q.

In this setting, both nearest models are of class M:

— The nearest neighbor symmetric model, ΓPS

a of Relation (1.14),

with na,0pzq“0, na,1pzq“Φa,2pz2q and na,2pzq“Φa,1pz1q.

— The nearest neighbor reduced symmetric model, ΓPR

a of Relation (1.16),

with na,0pzq“0, na,1pzq“Φa,2pz2q1tz2ďz1u and na,2pzq“Φa,1pz1q1tz1ďz2u.
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Extensions
For all-to-all models, the exponential STDP function allows the representation of time

evolution of plastic synapticity with a finite-dimensional process pZptqq and, therefore,
the associated kernels are of class M.

For a general functionΦ, it is however possible to express the systemas aMarkovian

system, by taking the instants of all past instants of spikes

pZ1,kptqq
def.

“ ptkpNλ, tq, kě0q and pZ2,kptqq
def.

“ ptkpNβ,X , tq, kě0q
with, for kě0,mPMppR`q and tą0,

tkpm, tq “ t´ suptsďt : mprs, tsqąku
tkpm, tq represent the time between t and the kth last spike of m. In an analogous way

as for Definition (1.15), we have, for kě1,
dtkpm, tq “ dt`ptkpm, t´q ´ tk´1pm, t´qqmpdtq,

so that the processes pZi,kptq, kě0q, iPt1, 2u would satisfy SDE as in Relation (1.27).

Keeping track of all instant previous spikes, we can express the plasticity kernels with

an infinite dimensional Markovian process. Unfortunately, there are fewer results,

concerning equilibrium distributions for example, in such a context. This is why we

restrict our study to finite-dimensional systems.

Markov processes associated to cellular processes
When the plasticity process pW ptqq is constant and equal towPR, the associated solution

pXwptq, Zwptqq of the first two SDEs of Relations (1.27) is clearly a Markov process

driven by the pre- and post-synaptic spikes. The invariant distribution of this Markov

process plays in important role in the scaling analysis of the process pW ptqq developed
in [RV21a; RV21c]. For reasons explained in the introduction of [RV21c], these processes

are referred to as fast processes.
It is easily seen that its infinitesimal generator is defined by, if fPC1

b pRˆR`
`q and

v“px, zqPRˆR`
`, then

BF
w pfqpvq

def.

“ ´x
Bf

Bx
px, zq`

B

´γdz ` k0,
Bf

Bz
px, zq

F

` λ
´

fpx`w, z`k1pzqq´fpvq
¯

` βpxq
´

fpx´gpxq, z`k2pzqq´fpvq
¯

, (1.28)

with

Bf

Bz
px, zq“

ˆ

Bf

Bzi
px, zq, iPt1, . . . , `u

˙

.

Examples of fast processes for classical STDP rules are presented in Section 1.D of

Supplementary Materials. The following proposition is proved in Section 5 of [RV21a].

Proposition 8. Under the Assumptions A-a and A-b and if the functions k1 and k2 are
bounded and all coordinates of γ are positive then the Markov process pXwptq, Zwptqq has a
unique invariant distribution Πw.

The explicit expression of Πw is not known in general. For several STDP models,

like calcium-based models, this is a limitation for a detailed analysis of the plasticity

process pW ptqq. See Section 4 of [RV21c]. The next section is devoted to a class of

discrete models of synaptic plasticity for which the corresponding Πw has an explicit

expression for the analogue of calcium-based models.
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1.4 Discrete models of STDP rules

In this section, we introduce a discrete model of plasticity associated to Relation (1.27),

where the membrane potential X , the cellular processes Z and the synaptic weight

W are integer-valued variables. It amounts to represent these quantities as multiple

of a “quantum”, instead of a continuous variable. For example, pre-/post-synaptic

receptors (like the AMPA receptor for example) have a measurable influence on the

membrane potential, where one quantum would represent the influence of a single

receptor. This is a biologically plausible assumption for potential and cellular processes.

The leaking mechanism (´aUptqdt in the continuous model, UPtX,Z,W u and aą0, in
the SDEs) is represented by the fact that each quantum leaves the cell/synapse at rate

a.

$
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dXptq “ ´NI,Xpdtq `W pt´qNλpdtq ´NI,βXpdtq,
dZjptq “´NI,γjZjpdtq ` k0,jpZpt´qqN j

1 pdtq`k1,jpZpt´qqNλpdtq
`k2,jpZpt´qqNI,βXpdtq, j“1, . . . , `,

dW ptq “ ´NI,µW pdtq`ApNI,Ωppdtq´Ad1tW pt´qěAduNI,Ωdpdtq.

(1.29)

The processes pΩaptqq, aPtp, du satisfy the same SDE as in Relation (1.27), the functions

na,i and ki, i P t0, 1, 2u are defined on N`
with values in N`

. The variables Ap and Ad are
integers and γ“pγjqPR`

`.

For ξą0, Nξ, resp. pN i
ξ q , is a Poisson process on R` with rate ξ, resp. independent

i.i.d. sequences of such point processes. As before, with Relation (1.5) and Ipxq“x and

a process pUptqq, the notation NI,Updtq stands for P pp0, Upt´qq, dtq, where P is a Poisson

process in R2
` with rate 1. We have in particular

PpNI,Updtq‰0|Upt´qq“Upt´q dt`opdtq.

All Poisson processes are assumed to be independent.

We have taken gp¨q as the constant function equal to 1. As it can be seen, the firing

rate in the evolution of pXptqq is the linear function x ÞÑβx. The time evolution of the

discrete random variable pW ptqq is driven by two inhomogeneous Poisson processes,

one for potentiation and the other for depression.

As before we define pXwptq, Zwptqq as the Markov process pXptq, Zptqq when

pW ptqq is constant and equal to wPN. If Q“pqppx, zq, px1, z1qqq is the jump matrix of

pXwptq, Zwptqq, we have,

$

’

&

’

%

qppx, zq, px´1, zqq“x, qppx, zq, px, z`k0pzqqq“1
qppx, zq, px`w, z`k1pzqqq“λ, qppx, zq, px´1, z`k2pzqqq“βx,

qppx, zq, px, z´eiqq“γizi, iPt1, . . . , `u.

where ei is the ith unit vector of N`
. If f is a function on NˆN`

, with the notation

∇pa,bqpfqpvq“pfpv`pa, bqq´fpvqq, for v, pa, bqPZ``1
, Q can be expressed as

Qpfqpx, zq
def.

“
ÿ

px1,z1q

qppx1, z1q, px, zqqfpx1, z1q

“x∇p´1,0qpfqpx, zq`
ÿ̀

j“1
γjzj∇p0,´ejqpfqpx, zq`∇p0,k0pzqqpfqpx, zq

`λ∇pw,k1pzqqpfqpx, zq`βx∇p´1,k2pzqqpfqpx, zq.
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Proposition 9. Under Assumptions A-a and A-b and if the coordinates of functions k0, k1 and
k2 are bounded and all coordinates of γ are positive then the Markov process pXwptq, Zwptqq has
a unique invariant distribution on N1``.

Proof. Since the state space is atmost countable, the proof is simpler than its continuous

counterpart, Proposition 9, where annoying technical intricacies hide the simplicity of

the result. Let Ck be an upper bound for the coordinates of ki, i“0, 1, 2. For px, zqPN``1
,

define, for ηą0, fpx, zq“x`ηpz1` ¨ ¨ ¨ `z`q. We have

Qpfqpx, zq ď ´x` λw´βx´ η
ÿ̀

j“1
γjzj ` η`p1`λqCk ` η`βCkx

ď ´βp1´η`Ckqx´minp1, γjqfpx, zq`D,

withD a constant. If η is chosen so that ηă1{`Ck, then there exists γą0 andK such that

Qpfqpx, zqă´γ holds whenever fpx, zqąK. We can now use Proposition 8.14 of [Rob03]

to conclude the proof of the proposition.

A Discrete Version of Calcium-Based Models
A comparison between continuous and discrete models of calcium-based STDP is pre-

sented in Section 1.C, and illustrated by Figure 1.4. The state of the system corresponds

to the case when pZptqq is a one-dimensional process pCptqq solution of the SDE,

#

dCptq “ ´NI,γCpdtq ` C1Nλpdtq ` C2NI,βXpdtq,
dΩaptq “ p´αΩaptq`hapCptqqq dt, aPtp, du,

where C1, C2PN and, for aPtp, du, AaPN and ha is a non-negative function.

Definition 10. For a fixedW“w, theMarkov process pXwptq, Cwptqq is defined by its transition
rate matrix QC“pqCppx, cq, px

1, c1qqq is given by, for px, cqPN2,
#

qCppx, cq, px`w, c`C1qq“λ, qCppx, cq, px´1, cqq“x,
qCppx, cq, px, c´1qq“γc, qCppx, cq, px´1, c`C2qq“βx.

λ 1
1`βx

γc

x

c

`w

`C2

`C1

β
1`βx

Figure 1.2: Stochastic queue for the associated fast process of the discrete calcium-
based model.

This process can be seen as a network of twoM{M{8 queues with simultaneous

arrivals, see Chapter 6 of [Rob03], as illustrated in Figure 1.2.
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Proposition 11 (Equilibrium of fast process). For wPN, the Markov process on N2 of
Definition 10 has a unique invariant distribution ΠCQ

w , and the generating function of Cw is
given by, for uPr0, 1s,

E
`

uC
w˘

“ exp
ˆ

´λ

ż `8

0
p1´∆pu, s, wqq ds

˙

, (1.30)

with

∆pu, s, wq “
´

1`pu´1qp1psq
¯C1

˜

1`
C2
ÿ

i“1
pu´1qkp2ps, kq

¸w

p1psq “ e´γs and p2ps, kq “
β

β`1´γk

ˆ

C2

k

˙

`

e´γks´e´pβ`1qs˘ .

Due to its use in the scaling results of [RV21c], only the distribution of the calcium

variable Cw
is considered. The joint generating function of pXw, Cwq could be obtained

with the same approach.

It might be tempting to try to solve the equilibrium equations for the transition

rates of Definition 10. It does not seem that there is a way to solve themwith generating

functions methods. The proof below relies in fact on a convenient representation of

the Markov process with a Poisson marked point process, it then gives a satisfactory

representation of the equilibrium distribution.

Proof. To each arrival instant t of the Poisson process Nλ on R is associated a vector of

N2w`C1`wC2

u“ppxi, 1ďiďwq, pyi, 1ďiďwq, pz0,j, 1ďjďC1q, pzi,j, 1ďiďw, 1ďjďC2qq

We take pUnq“ppXn,iq, pYn,iq, pZn,i,jqq, where pXn,iq, pYn,iq and pZn,i,jq, sequences of i.i.d.
exponentially distributed random variables with respective parameters 1, β and γ, and
independent of Nλ. The interpretation of these variables are as follows, for 1ďiďw, for
the nth instant of the Poisson process Nλ,

a. Xn,i is the lifetime of the ith quantum of potential generated at time t (if any);

b. Yn,i, the duration of time after which this ith quantum of potential initiates a firing

of the neuron;

c. Zn,0,j , the lifetime of the jth quantum of calcium generated at t, for 1ďjďC1;

d. Zn,i,j , the lifetime of the ith quantum of calcium created if the event described by

(c) occurs, for 1ďjďC2.

Define

N λpds, duq def.

“
ÿ

nPZ
δptn,Unq,

it is well known that N λ is a Poisson marked point process with intensity measure

µpds, duq def.

“ λ dsbwi“1 E1pdxiq bwi“1 Eβpdyiq bC1
j“1 Eγpdz0,jq b

w
i“1 b

C2
j“1Eγpdzi,jq, (1.31)

where Eξpdxq is the exponential distribution with parameter ξą0. See Chapter 5 of

[Kin92] for example.
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Assuming that Xwp0q“Cwp0q“0, with the interpretation of the coordinates of the

mark u, it is easy to get the representation, for tě0,

Xw
ptq “

ż

p0,ts

w
ÿ

i“1
1ts`xiąt,s`yiątuN λpds, duq,

indeed, if there is an arrival at sďt, its ith quantum iPt1, . . . , wu of this arrival with

lifetime xi with firing time yi is still present at t if s`x1ąt and s`yiąt. Similarly,

Cw
ptq “

ż

p0,ts

C1
ÿ

j“1
1ts`z0,jątuN λpds, duq

`

ż

p0,ts

w
ÿ

i“1

C2
ÿ

j“1
1txiąyi,s`yiăt,s`yi`zi,jątuN λpds, duq.

Using invariance by time-translation of the Poisson process N λ, we get that the random

variable pXwptq, Cwptqq has the same distribution as

`

X
w
ptq, Cwptq

˘

def.

“

˜

ż

p´t,0s

w
ÿ

i“1
1ts`xią0,s`yią0uN λpds, duq ,

ż

p´t,0s

C1
ÿ

j“1
1ts`z0,ją0uN λpds, duq `

w
ÿ

i“1

C2
ÿ

j“1
1!xiąyi,s`yiă0,

s`yi`zi,ją0
)N λpds, duq

¸

.

The random variables pX
w
ptq, C

w
ptqq are non-decreasing and converging to

`

X
w
p8q, Cwp8q

˘

def.

“

˜

ż

p´8,0s

w
ÿ

i“1
1ts`xią0,s`yią0uN λpds, duq ,

ż

p´8,0s

«

C1
ÿ

j“1
1ts`z0,ją0u `

w
ÿ

i“1

C2
ÿ

j“1
1txiąyi,s`yiă0,s`yi`zi,ją0u

ff

N λpds, duq
¸

. (1.32)

ThevariableX
w
p8q andCwp8q are almost surely finite since, with standard calculations

with Poisson processes, we obtain that

E
“

X
w
p8q

‰

“
λ

β`1w, E
”

Cwp8q

ı

“
λ

γ

ˆ

C1`C2
βw

β`1

˙

.

Recall the formula for Laplace transform of Poisson point processes,

E
„

exp
ˆ
ż

´fps, uqN λpds, duq
˙

“ exp
ˆ
ż

`

1´ e´fps,uq
˘

µpds, duq
˙

,

for any non-negative Borelian function f on R2w`C1`wC2
` , where µ is defined by Rela-

tion (1.31). See Proposition 1.5 of [Rob03] for example. For uPr0, 1s, we therefore get

the relation

´ lnE
”

uCwp8q
ı

“
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λ

ż

R`

˜

1´E
«

u

řC1
j“1 1tEγ,0,jąsu

ff

E

«

u

řw
i“1

řC2
j“1 1tE1,iąEβ,i,Eβ,iăsăEβ,i`Eγ,i,ju

ff¸

ds “

λ

ż

R`

˜

1´
`

1´e´γs`ue´γs
˘C1 E

«

u
1
tEβ,1ăs^E1,1u

řC2
j“1 1tsăEβ,1`Eγ,1,ju

ffw¸

ds,

where pE1,iq, pEβ,iq and pEγ,i,jq are independent i.i.d. exponentially distributed random

variables with respective parameters 1, β and γ. We have

E

«

u

řC2
j“1 1tE1,1ąEβ,1,Eβ,1ăsăEβ,1`Eγ,1,ju

ff

“

1´ppsq`E
”

E r1´qps, Eβ,1q`uqps, Eβ,1qsC2
1tEβ,1ăs^E1,1u

ı

with

ppsq “ P
´

Eβ,1ăE1,1^s
¯

“
β

β ` 1
`

1´e´pβ`1qs˘ ,

and

qps, Eβ,1q “ P
´

s´Eβ,1ăEγ,1,1

ˇ

ˇ

ˇ
Eβ,1

¯

“ e´γps´Eβ,1q,

E
”

E r1´qps, Eβ,1q`uqps, Eβ,1qsC2
1tE1,1ąEβ,1,Eβ,1ăsu

ı

“

C2
ÿ

k“0
pu´1qk

„

β

ˆ

C2

k

˙

e´γks
ż s

0
e´pβ`1´γkqh dh



“

C2
ÿ

k“0
pu´1qkp2ps, kq

with,

p2ps, kq “
β

β ` 1´ γk

ˆ

C2

k

˙

`

e´γks´e´pβ`1qs˘

Note that, p2ps, 0q“ppsq the proposition is thus proved.
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Appendix

1.A Additional examples of plasticity kernels

Suppression models
Computational models of pair-based rules of Section 1.2 are easy to implement in large

neural networks and they capture some essentials properties of STDP.

Nevertheless, they have been shown to fit poorly with experimental data when

more complex protocols are used. See [FD02; PG06a]. For this reason, more detailed

models taking into account the influence of several pre- and post-synaptic spikes have

been proposed. [BA16] is a review of these so-called ‘triplet-based’ rules and their

influence on the stability of the synaptic weights distribution. Themodel of this section

is a variant of the pair-based model with an additional dependence on earlier instants

of post- and pre-synaptic spikes. Another variant is described in Section 1.A.

It was observed, using triplet-based protocols in [FD02], that preceding pre- and

post-synaptic spikes have a ‘suppression’ effect on the Hebbian STDP observed. Moti-

vated by these experiments, the following model, extending pair-based rules, has been

proposed.

If there is a pre-synaptic spike, resp. post-synaptic spike, at time tě0, we denote by

`1ptq [resp. `2ptq] the instant of the last pre-synaptic [resp. post-synaptic spike], before
t. For this model, when a pre-synaptic spike occurs at time tě0, the contribution to

ΓS

ap¨, ¨qpdtq is the sum over all post-synaptic spikes before time sďt of the quantities

p1´Φ
S,1pt´`1ptqqq p1´Φ

S,2ps´`2psqqqΦa,2pt´sq,

and similarly for post-synaptic spikes, where Φ
S,i is a non-negative non decreasing

function verifying Φ
S,ip0qď1 and limtÑ`8 Φ

S,iptq“0, for iPt1, 2u. In particular, if the

instants t1 and t2 of consecutive pre-synaptic spikes are too close, i.e. t2´t1“t2´`1ptq is
small, the synaptic weight is not significantly changed at the instant t2. And similarly

for consecutive post-synaptic spikes.

The plasticity kernels ΓS

a, aPtp, du, are defined by, form1,m2PMppR`q,

ΓS

apm1,m2qpdtq def.

“
„

p1´Φ
S,1pt0pm1, tqq

ż

p0,tq
p1´Φ

S,2pt0pm2, sqqqΦa,2pt´sqm2pdsq


m1pdtq

`

„

p1´Φ
S,2pt0pm2, tqq

ż

p0,tq
p1´Φ

S,1pt0pm1, sqqqΦa,1pt´sqm1pdsq


m2pdtq

with the t0pm, tq defined by Equation (1.15).

Triplet-based models
[PG06a] shows that preceding pre-synaptic spikes enhance the depression obtained for

a post-pre pairing, whereas preceding post-synaptic spikes lead to a bigger potentiation

than in a classical pre-post pairing. The plasticity kernels ΓT

a, aPtp, du of the associated
model are defined by, form1,m2PMppR`q,
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ΓT

apm1,m2qpdtq def.

“
ˆ

1`
ż

p0,tq
Φ

T,a,1pt´sqm1pdsq
˙ˆ

ż

p0,tq
Φa,2pt´sqm2pdsq

˙

m1pdtq

`

ˆ

1`
ż

p0,tq
Φ

T,a,2pt´sqm2pdsq
˙ˆ

ż

p0,tq
Φa,1pt´sqm1pdsq

˙

m2pdtq. (1.33)

where, for aPtp, du, iPt1, 2u, Φ
T,a,i is a non-negative non-decreasing function converging

to 0 at infinity.

It is interesting to note that this model is in contradiction with the suppression

model described just before. Bothmodels are based on experimental data fromdifferent

neuronal cells: visual cortical in [FD02], and hippocampal in [PG06a]. A global model

taking into account both mechanisms, the NMDA-model, is defined in [BA16].

Voltage-based models
In [CG10], another class of plasticity rules, voltage-based models, has been used to

explain plasticity with biophysical mechanisms, similarly to calcium-based models.

In particular, filtered traces of the membrane potential X are used in the synaptic

update. Adapting notations from [CG10], we have for depression,

Γdpdtq “
«

Bd

ˆ
ż

p0,tq
e´γd,2pt´sqXpt´ sq ds´θd

˙`
ff

Nλpdtq,

and for potentiation,

Γppdtq “ Bp

ˆ
ż

p0,tq
e´γp,0pt´sqXpt´sq ds´θp

˙`

ˆ

ˆ
ż

p0,tq
e´γp,2pt´sqXpt´sq ds´θd

˙`

ˆ

ˆ
ż

p0,tq
e´γp,1pt´sqNλpdsq

˙

dt.

See Relations (1) and (2) of [CG10].

In their model, an adaptive-exponential integrate-and-fire model (AdEx) is used

to represent the post-synaptic neuron, instead of a Poisson point process. They take

θp above the threshold potential of the AdEx model, leading to a simple estimation in

terms of the post-synaptic spike train:

ˆ
ż

p0,tq
e´γp,0pt´sqXpt´ sq ds´θp

˙`

dt „ Nβ,Xpdtq.

However, θd lies around the resting potential of the neuron, leading to synaptic update

that are functions ofX directly and not only of the spike-trains. This feature justifies the

denomination voltage-basedmodels and is not easily taken into account in the framework

presented here. To include such a STDP rule, one could extend the definition of a

plasticity kernel to Γpm1,m2, xq by adding a direct dependence on a càdlàg adapted

process pxptqq.
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We present a variation of the voltage-based model using filtered functionals of pre-

and post-synaptic spike trains that fits in our formalism. Notice that both models are

not equivalent in the sense that in [CG10], sub-threshold-activity can lead to plasticity,

whereas our model needs post-synaptic spikes.

If there is a pre-synaptic spike at time tą0, the synaptic weight is depressed by the

quantity

Bd

ˆ
ż

p0,tq
e´γd,2pt´sqNβ,Xpdsq´θd

˙`

,

where, for xPR, x`“maxpx, 0q, and if some filtered variable is above some threshold θd
at that time.

If there is a pre-synaptic spike at time t, the synaptic weight will be potentiated by

a quantity involving the product of two filtered variables,

Bp

ˆ
ż

p0,tq
e´γp,2pt´sqNβ,Xpdsq´θd

˙` ż

p0,tq
e´γp,1pt´sqNλpdsq,

The plasticity kernels are thus defined by, form1,m2PMppR`q,

ΓV

d pm1,m2qpdtqdef.“
«

Bd

ˆ
ż

p0,tq
e´γd,2pt´sqm2pdsq´θd

˙`
ff

m1pdtq,

ΓV

p pm1,m2qpdtqdef.“
«

Bp

ˆ
ż

p0,tq
e´γp,2pt´sqm2pdsq´θd

˙`ˆż

p0,tq
e´γp,1pt´sqm1pdsq

˙

ff

m2pdtq.

1.B Plasticity models without exponential filtering

In the model of Section 1.2, with Relation (1.7) we defined a filtering procedure with

an exponential kernel of rate αą0 for the function Ωa, where Ωpptq and Ωdptq are used

to quantify the past activity of input and output neurons leading to potentiation and

depression respectively. It is given by, for aPtp, du,

dΩaptq “ ´αΩaptq dt` ΓapNλ,Nβ,Xqpdtq,

where ΓapNλ,Nβ,Xqpdtq represents the plasticity kernels for potentiation, a“p, and, for
depression, a“d.

Therefore, the update of the synaptic weight at time t depends on a functional

of the synaptic processes that happened before t. The dynamic of the synaptic weight

pW ptqq is defined by,

dW ptq “M pΩpptq,Ωdptq,W ptqq dt,
Several studies of computational neuroscience have investigated the role of STDP in

a stochastic setting. See [KGH99; KH00; Rob99; RLS01; MDG08] for example. These

references use more “direct” dynamics for the synaptic weight. The update at time

t depends only on the current synaptic plastic processes ΓapNλ,Nβ,Xqpdtq at time t,
instead of a smoothed version over the past activity. The associated model can be

defined so that the corresponding synaptic weight process pW ptqq satisfies the relation

dW ptq “M
`

ΓppNλ,Nβ,Xq,ΓdpNλ,Nβ,Xq,W pt´q
˘

pdtq,

for some functionalM .
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Biological arguments for exponential filtering

It should be noted that themodel associated to pW ptqq does not seem to be in agreement

with observations of numerous experimental studies. See [BP98; FGV05; Fel12]. In

a classical experiment, the protocol to induce plasticity consists in stimulating both

neurons at a certain frequency a fixed number of times with a fixed delay ∆t, over a
period of up to one or two minutes (60-100 pairings at 1 Hz for example). This part

is designed to reproduce conditions of correlations between the two neurons, when

mechanisms of plasticity are known to be triggered. However, measurements of the

synaptic weight show that changes take place on a different timescale. After the end

of the protocol, it is observed that at least several minutes are necessary to have a

significant and stable effect on the synaptic weight. In other words, the change in

synaptic weights happens long after the end of the plasticity induction.

For this reason we have chosen to use a filter, possibly with an exponential kernel,

on the past synaptic activity. Therefore it does not only depend on the instantaneous

synaptic variable ΓdpNλ,Nβ,Xqpdtq at time t, but on the whole past ΓdpNλ,Nβ,Xqpdsq,
sďt, with a smoothing exponential kernel which gives the desired dynamical feature

for the synaptic weight. Another recent article [RBS16] also takes this fact into account

by adding an “ìnduction” function to the classical models of STDP.

A toy example
We define

$

’

&

’

%

Mpωp, ωd, wq “ ωp´ωd, pωp, ωd, wqPR2
`ˆR,

MpΓ1,Γ2, wq “ Γ1´Γ2, Γ1,Γ2PM`pR`q,
Γppdtq´Γdpdtq “ pF´W ptqq dt,

with Fą0. The equations for the time evolution of synaptic weights are given by

dW ptq
dt “ ε

`

F´W ptq
˘

and

dW ptq
dt “ α2

ż t

0
e´αpt´sqpF´W psqq ds,

with the initial conditionW p0q“W p0q“w0ą0. We get that

W ptq “ F`pw0´F qe
´εt, tě0,

so that pW ptqq converges to F as t gets large, as it can be expected. By differentiating

the relation for pW ptqqwe obtain,

d2W ptq

dt2 ` α
dW ptq

dt `W ptq “ F,

withW p0q“w0 andW
1p0q“0. If we take α“2εwith εă1, we get that

W ptq “ F ` pw0´F qe
´εt

˜

cos
´

t
?

1´ε2
¯

`

c

ε2

1´ ε2 sin
´

t
?

1´ε2
¯

¸

,

in particular ppW ptq´W ptqqeεt{pw0´F qq is a periodic function with maximal value of

the order of 1{ε. Both functions pW ptqq and pW ptqq converge to F as t goes to infinity at

the same exponential rate but differ at the second order.

A comparison of both models is also done in Section 1.C of the Appendix and

illustrated for pair-based rules in Figure 1.3 and for calcium-based ones in Figure 1.4.



STOCHASTIC MODELS OF SYNAPTIC PLASTICITY 81

1.C Graphical representation of models of plasticity

In this section, we will consider several examples of simple dynamics of the Markovian

system defined in Section 1.3.

We will start by comparing the effect of three different Hebbian pair-based rules,

both on model with, Section 1.3, and without, Section 1.B, exponential filtering. Then,

we will focus on calcium-based models and show that the discrete model of Section 1.4

can be a good approximation of the continuous model of Section 1.3.

We consider two different timescales to compare the induction of plasticity in the

model with/without exponential filtering:

— A fast timescale, on the order of themembrane potential dynamics (see plain black

line under each row), where the input and output spike patterns are presented.

— A slow timescale (20 times slower in this example), on the order of the synaptic

weight modifications (see dotted black line), where no input is presented.

Input and output spikes patterns are fixed in both Figures (see first row).

Pair-based STDP rules (Figure 1.3)
In this section, we describe the dynamics of the different stochastic processes involved

in the pair-based STDP model.

In particular, we compare the various interpretation of the pair-based rules that

are described in Section 1.2 in Figure 1.3,

a. all-to-all model;

b. nearest neighbor symmetric model;

c. nearest neighbor reduced symmetric model.

The different interactions are represented by grey arrows (first row).

Exponential STDP curves are considered with their associatedMarkovian descrip-

tion, see Section 1.D.

Finally, we focus on Hebbian STDP rules with Bd,1“0 and Bp,2“0.
In the second row, the time evolution of the membrane potential,

dXptq “ ´Xptq dt`W pt´qNλpdtq ´Xpt´qNβ,Xpdtq,

is presented. Two interesting facts are to be noted here, at each pre-synaptic spike

(green, first row), the current value of the synaptic weight W pt´q is added to the

membrane potential Xptq. It can be seen in this example that the size of the jump

varies across time. In addition, a complete reset ofX occurs after a post-synaptic spike

(purple, first row), corresponding to gpxq“x.
Then we focus on the instantaneous synaptic variables Zp,1 (brown, third row) and

Zd,2 (brown, fourth row), that follows different dynamics depending on the rule chosen.
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(a) Hebbian all-to-all

pair-based rules

Section 1.3

(b) Hebbian nearest

neighbor symmetric

pair-based rules

Section 1.3

(c) Hebbian nearest

neighbor reduced

symmetric

pair-based rules

Section 1.3
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Figure 1.3: Synaptic plasticity kernels for pair-based rules.
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a. For all-to-all pairings, each synaptic spike is pairedwith all previous post-synaptic

spikes, and conversely. They are already described in the main text, by the set of

equations, for aPtp, du,

#

dZp,1ptq “ ´γp,1Zp,1ptq dt`Bp,1Nλpdtq,
dZd,2ptq “ ´γd,2Zd,2ptq dt`Bd,2Nβ,Xpdtq.

All pairs of pre-synaptic and post-synaptic spikes are taken into account.

b. For nearest neighbor symmetric scheme, each pre-synaptic spike is paired with the

last post-synaptic spike, and conversely, the system changes slightly:

#

dZp,1ptq “ ´γp,1Zp,1ptq dt`pBp,1´Zp,1pt´qqNλpdtq,
dZd,2ptq “ ´γd,2Zd,2ptq dt`pBd,2´Zd,2pt´qqNβ,Xpdtq.

The variable Zp,1, resp. Zd,2 is reset to Bp,1, resp. Bd,2, after a pre-synaptic spike,

resp. post-synaptic spike.

c. For nearest neighbor reduced symmetric scheme, where only immediate pairing

matters, we have:

#

dZp,1ptq “ ´γp,1Zp,1ptq dt`pBp,1´Zp,1pt´qqNλpdtq´Zp,1pt´qNβ,Xpdtq,
dZd,2ptq “ ´γd,2Zd,2ptq dt`pBd,2´Zd,2pt´qqNβ,Xpdtq´Zd,2pt´qNλpdtq,

The variable Zp,1 is reset to Bp,1, after a pre-synaptic spike and to 0 after a post-

synaptic spike, and conversely for Zd,2.

This simple example shows how different pair-based rules shape the instantaneous

plasticity variables Z. This dependence is subsequently transferred to the potentiation

kernel Γp (red, third row) and the depression kernel Γd (blue, fourth row). With

exponential pair-based models, we have na,0pzq“0, nd,1pzq“zd,2, np,1pzq“0, nd,2pzq“0,
np,2pzq“zp,1, and therefore, they follow,

#

Γppdtq “ Zp,1pt´qNβ,Xpdtq
Γdpdtq “ Zd,2pt´qNλpdtq.

It is then not surprising to observe that for a same sequence of pre- and post-

synaptic spikes the plasticity kernels are different.

Consequently, it is the same for the slow plasticity variables Ωp (red, fifth row) and

Ωd (blue, fifth row), that follows,

#

dΩpptq “ ´αΩpptq dt` Zp,1pt´qNβ,Xpdtq
dΩdptq “ ´αΩdptq dt` Zd,2pt´qNλpdtq,

We choose in this example a linear function M , leading to the following time

evolution of the synaptic weight (sixth row),

dW ptq “ pΩpptq ´ Ωdptqq dt.
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This example shows that a simple change in the STDP rule can lead to very different

dynamics for the synapticweight. All-to-all rules lead to global potentiation (the dotted

line represents the initial value) whereas nearest neighbor rules lead to depression.

Finally, as can be expected from the slow plasticity variables Ωa that are still

positive long after the end of the stimulus (see in the dotted part), the synaptic weight

is modified long after the patterns of spikes.

On the contrary, considering the model without exponential filtering (seventh

row),

dW ptq “ Γppdtq ´ Γdpdtq,
we see that in that case, the synaptic weight is only updated during the stimulus. We

notice that the polarity of the global plasticity is the same as with exponential filtering,

but the dynamics are completely different, as showedwith the toymodel in Section 1.B.

Calcium-based STDP rules (Figure 1.4)
In this section, we focus on the dynamics of the calcium-based models,

a. the continuous version, described in Section 1.3;

b. the discrete version from Section 1.4.

The continuous membrane potential (second row, left) follows,

dXptq “ ´Xptq dt`W pt´qNλpdtq ´Nβ,Xpdtq.

We consider a different function gpxq“1 than in the previous case. Its discrete analogue

(second row, right) verifies,

dXptq “ ´
Xpt´q
ÿ

i“1
N1,ipdtq `W pt´qNλpdtq ´

Xpt´q
ÿ

i“1
Nβ,ipdtq.

It is plainly clear that both processes are almost identical, except that the exponen-

tial decay in the continuous model is replaced by aM{M{8 queue in the discrete case.

In the case of large jumps, they lead to a similar dynamical evolution.

The same conclusions can be drawn for the calcium concentration, where the

continuous version (third row, left) follows,

dCptq “ ´γCptq dt`C1Nλpdtq`C2Nβ,Xpdtq,

and the discrete version (third row, right),

dCptq “ ´
Cpt´q
ÿ

i“1
Nγ,ipdtq ` C1Nλpdtq ` C2

Xpt´q
ÿ

i“1
Nβ,ipdtq.

In both cases, the plasticity kernels Γp (fourth row, red) and Γd (fourth row, blue)

verify,

#

Γppdtq “ 1tCpt´qěθpu dt
Γdpdtq “ 1tCpt´qěθdu dt.
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Figure 1.4: Synaptic plasticity kernels for calcium-based rules.
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When the calcium reaches the thresholds θp for potentiation (third row, red) and

θd (third row, blue), the plasticity kernels are “activated” and are equal to dt. We see

that both models leads to similar values of the kernels, even if some discrepancies start

to appear.

The slow plasticity variables (fifth row) are just obtained by integration of the

kernels with an exponential filtering,

#

dΩpptq “ ´αΩpptq dt` Γppdtq dt
dΩdptq “ ´αΩdptq dt` Γdpdtq dt.

A second discretization is applied in the synaptic update, the continuous version (sixth

row, left) verifies,

dW ptq “
`

ApΩpptq ´ Ad1tW pt´qě0uΩdptq
˘

dt,

and the discrete one (sixth row, right),

dW ptq “ ApNΩppt´qpdtq ´ Ad1tW pt´qěAduNΩdpt´qpdtq.

We note here that we need to force W to stay non-negative in order to have a valid

description of the system. We observe that, even after two different discretizations,

both synaptic weights follow a similar evolution.

Using a model without exponential filtering (seventh row) leads to a different

dynamical evolution of the synaptic weight, for the continuous model,

dW ptq “ ApΓppdtq ´ Ad1tW pt´qě0uΓdpdtq,

and the discrete one,

dW ptq “ Ap1tCpt´qěθpuN 1
1 pdtq ´ Ad1tW pt´qěAd,Cpt´qěθduN 2

1 pdtq.

As a conclusion, the discrete models approximate well the continuous one and

therefore, using the exact expressions of the discrete model can give an interesting

insight on the dynamics of the continuous model.

1.D Fast systems of STDP models

We first start with the generator of a general STDP of class M as in Definition 6. For

u“px, z, ωp, ωd, wqPSMp`q and fPC1
b pSMp`qq, i.e. f is a bounded C1

-function, and all its

respective derivatives are bounded, by using Equations (1.27), it is not difficult to show

that the extended infinitesimal generator A of pUptqq can be expressed as,

Apfqpuq “ p´αωp`np,0pzqq
Bf

Bωp
puq` p´αωd`nd,0pzqq

Bf

Bωd
puq

´x
Bf

Bx
puq`

B

´γdz`k0,
Bf

Bz
puq

F

`Mpωp, ωd, wq
Bf

Bw
puq

`λ
”

f
´

u`we1`k1pzqde2`np,1pzqe``2`nd,1pzqe``3

¯

´f puq
ı

`βpxq
”

f
´

u´gpxqe1`k2pzqde2`np,1pzqe``2`nd,1pzqe``3

¯

´fpuq
ı
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with the following notations, ei is the unit vectors for the coordinates with index i. The
notation

ˆ

Bf

Bz
puq

˙

def.

“

ˆ

Bf

Bui
puq, 2ďiď``1

˙

is for the gradient vector with respect to the coordinates associated to z, i.e. from index

2 to index ``1. Finally e2 is the vector whose coordinates are 1 for the indices associated
to z and 0 elsewhere and, for aPR`

`, the quantity ade2 is the vector whose ith coordinate

is ai´1, for 2ďiď``1, and 0 otherwise.

For sake of completeness, we detail the processes of fast variables for the classical

STDP rules described in Section 1.2.

Pair-based models with exponential kernels Φ
For pair-based mechanisms, we follow the classification discussed in [MDG08]:

— For all-to-all pairings, each synaptic spike is pairedwith all previous post-synaptic

spikes, and conversely. They are already described in the main text, by the set of

equations, for aPtp, du,
$

’

&

’

%

dXptq “ ´Xptq dt`wNλpdtq´g pXpt´qqNβ,X pdtq ,
dZa,1ptq “ ´γa,1Za,1ptq dt`Ba,1Nλpdtq,
dZa,2ptq “ ´γa,2Za,2ptq dt`Ba,2Nβ,Xpdtq.

— In the nearest neighbor symmetric scheme each pre-synaptic spike is paired with

the last post-synaptic spike, and conversely. The system changes slightly:

$

’

&

’

%

dXptq “ ´Xptq dt`wNλpdtq´g pXpt´qqNβ,X pdtq ,
dZa,1ptq “ ´γa,1Za,1ptq dt`pBa,1´Za,1pt´qqNλpdtq,
dZa,2ptq “ ´γa,2Za,2ptq dt`pBa,2´Za,2pt´qqNβ,Xpdtq.

The variable Za,1, resp. Za,2 is reset to Ba,1, resp. Ba,2, after a pre-synaptic spike,

resp. post-synaptic spike.

— For nearest neighbor symmetric reduced scheme, where only immediate pairing

matters, we have:

$

’

&

’

%

dXptq “ ´Xptq dt`wNλpdtq´g pXpt´qqNβ,X pdtq ,
dZa,1ptq “ ´γa,1Za,1ptq dt`pBa,1´Za,1pt´qqNλpdtq´Za,1pt´qNβ,Xpdtq,
dZa,2ptq “ ´γa,2Za,2ptq dt`pBa,2´Za,2pt´qqNβ,Xpdtq´Za,2pt´qNλpdtq,

for exponential pair-based models, with na,0pzq“0, na,1pzq“za,2 and na,2pzq“za,1.

Nearest pair-based models with general kernels Φ
In the case of nearest pair-based models, we have a simple description of the sys-

tem, based on the time since the last spike as detailed in Section 1.3. We define

pZptqq“pZ1ptq, Z2ptqq, such that,

#

dZ1ptq “ dt´Z1pt´qNλpdtq,
dZ2ptq “ dt´Z2pt´qNβ,Xpdtq.

In this setting, both nearest models are of class M:
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— The nearest neighbor symmetric model of Relation (1.14), with

na,0pzq“0, na,1pzq“Φa,2pz2q, na,2pzq“Φa,1pz1q.

— The nearest neighbor symmetric reduced model of Relation (1.16), with

na,0pzq“0, na,1pzq“Φa,2pz2q1tz2ďz1u, na,2pzq“Φa,1pz1q1tz1ďz2u.

In fact, we have here two different Markovian systems that represents the same

dynamics for nearest exponential STDP rules.

Triplet-based models
Generator for triplet-basedmechanisms can also be defined in a similar way, see [BA16]

for a list of different implementations.

— The suppression model of Section 1.A from [FD02], where the Markovian system

is given by:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

dXptq “ ´Xptq dt`wNλpdtq´g pXpt´qqNβ,X pdtq ,
dZa,1ptq “ ´γa,1Za,1ptq dt`p1´Zs,1pt´qqBa,1Nλpdtq,
dZa,2ptq “ ´γa,2Za,2ptq dt`p1´Zs,2pt´qqBa,2Nβ,Xpdtq,
dZs,1ptq “ ´δ1Zs,1ptq dt`p1´Zs,1pt´qqNλpdtq,
dZs,2ptq “ ´δ2Zs,2ptq dt`p1´Zs,2pt´qqNβ,Xpdtq,

with na,0pzq“0, na,1pzq“p1´zs,1qza,2 and na,2pzq“p1´zs,2qza,1.

— The triplet-based model, see [PG06a], we have:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

dXptq “ ´Xptq dt`wNλpdtq´g pXpt´qqNβ,X pdtq ,
dZa,1ptq “ ´γa,1Za,1ptq dt`Ba,1Nλpdtq,
dZa,2ptq “ ´γa,2Za,2ptq dt`Ba,2Nβ,Xpdtq,
dZs,a,1ptq “ ´δa,1Zs,a,1ptq dt`Da,1Nλpdtq,
dZs,a,2ptq “ ´δa,2Zs,a,2ptq dt`Da,2Nβ,Xpdtq,

with na,0pzq“0, na,1pzq“p1` zs,a,1qza,2 and na,2pzq“p1` zs,a,2qza,1.

Calcium-based models
For models of calcium-based plasticity, we have:

— Calcium transients as exponential traces in [GB12], which is the dynamics used

as an example in this paper. The system is,

#

dXptq “ ´Xptq dt`wNλpdtq´gpXpt´qqNβ,Xpdtq,
dCptq “ ´γCptq dt`C1Nλpdtq`C2Nβ,Xpdtq.
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— Calcium transients modeled in a discrete setting as for the example in Section 1.4.

The associated Markov process has the following transitions transition rates, for

px, cqPN2
,

px, cq ÝÑ

#

px`w, c`C1q λ,

px´1, cq x,
ÝÑ

#

px, c´1q γc,

px´1, c`C2q βx.

The functions of calcium-based models are given by, for aPtp, du, na,0pcq“hapcq,
na,1px, cq“0 and na,2pcq“0.

Voltage-based models
Models of Section 1.A, which are adaptations of [CG10] by replacing the direct depen-

dence on filtered traces of X , can also be analyzed with this formalism. The dynamics

are given by
$

’

&

’

%

dXptq “ ´Xptq dt`wNλpdtq´g pXpt´qqNβ,X pdtq ,
dZp,1ptq “ ´γp,1Zp,1ptq dt`Nλpdtq,
dZa,2ptq “ ´γa,2Za,2ptq dt`Nβ,Xpdtq,

with na,0pzq“np,1pzq“nd,2pzq“0, np,2pzq“Bpzp,1pzp,2´θdq
`
, nd,1pzq“Bdpzd,2´θdq

`
.
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CHAPTER 2

STOCHASTIC MODELS OF NEURAL PLASTICITY: A SCALING

APPROACH

In neuroscience, synaptic plasticity refers to the set of mechanisms driving the

dynamics of neuronal connections, called synapses and represented by a scalar value,

the synapticweight. A Spike-TimingDependentPlasticity (STDP) rule is a biologically-

based model representing the time evolution of the synaptic weight as a functional

of the past spiking activity of adjacent neurons. A general mathematical framework

has been introduced in [RV21b].

In this paper we develop and investigate a scaling approach of these models based

on several biological assumptions. Experiments show that long-term synaptic plas-

ticity evolves on a much slower timescale than the cellular mechanisms driving the

activity of neuronal cells, like their spiking activity or the concentration of various

chemical components created/suppressed by this spiking activity. For this reason, a

scaled version of the stochastic model of [RV21b] is introduced and a limit theorem,

an averaging principle, is stated for a large class of plasticity kernels. A companion

paper [RV21a] is entirely devoted to the tightness properties used to prove these

convergence results.

These averagingprinciples are used to study two important STDPmodels: pair-based
rules and calcium-based rules. Our results are compared with the approximations

of neuroscience STDP models. A class of discrete models of STDP rules is also

investigated for the analytical tractability of its limiting dynamical system.

abstract

2.1 Introduction

In [RV21b] we have introduced a general class of mathematical models to represent

and study synaptic plasticity mechanisms. Their purpose is to investigate the synaptic

weight dynamics, i.e. the evolution of the unilateral connection between two neurons.

These models rely on two clearly stated hypotheses: the effect of plasticity is seen on

the synaptic strength on long timescales and it only depends on the relative timing of the
spikes. This type of plasticity, known as Spike-Timing-Dependent Plasticity (STDP), has

been extensively studied in experimental and computational neuroscience, see [Fel12;

MDG08] for references.

This paper is devoted to a scaling analysis of an important subclass of STDP

rules, Markovian plasticity kernels. These kernels have a representation in terms of

finite dimensional vectors whose coordinates are shot-noise processes. See Section 3

of [RV21b] and Section 2.2 below.

We start with a simple example of the models investigated in this paper. See

Section 2.2 for a detailed presentation. The stochastic process can be represented by

the following variables,

a. the membrane potential X of the output cell;

95
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b. the synaptic weight W , modeling the strength of the connection from the input

neuron to the output neuron.

When the input neuron is spiking (a presynaptic spike), a chemical/electrical signal is

transmitted to the output neuron through the synapse. If the couple of variables pX,W q
is px,wq just before this event, it is then updated to px`w,wq.

In stateX“x, the output neuron emits a spike at rate βpxq, where β is the activation
function. This is a postsynaptic spike. It is usually assumed that β is a nondecreasing

function of the membrane potential X .

Consequently, after a presynaptic spike and the associated rise inmembrane poten-

tialX , the probability that a postsynaptic spike occurs is increased. As seen in [RV21b],

STDP synaptic mechanisms depend, in a complex way, on past spiking times of both

adjacent neurons.

More formally, in our simple example, the time evolution is described by the

following set of stochastic differential equations (SDEs),

$

’

&

’

%

dXptq “ ´Xptq dt`W ptqNλpdtq,
dZptq “ ´γZptq dt`B1Nλpdtq `B2Nβ,Xpdtq,
dW ptq “ Zpt´qNβ,Xpdtq,

(2.1)

where hpt´q is the left-limit of the function h at tą0 and, for i“t1, 2u, BiPR`. Through-
out the paper, the notation pY ptqq is used to represent the stochastic process tÞÑY ptq on
R`.

We discuss briefly the random variables involved.

a. The point processes Nλ and Nβ,X .

These random variables are point processes representing the sequences of spike

times of the pre- and postsynaptic neurons.

In the present work, Nλ is assumed to be a Poisson process with rate λ. It can be

represented either as a nondecreasing sequence of points ptn, ně1q of R`, or as
nonincreasing function, the counting measure

tÞÑNλpp0, tsq “
ÿ

ně1
1ttnďtu

with jumps of size 1, or, finally as a random measure, the sum of Dirac measures

at the points ptnq,

Nλpdxq “
ÿ

ně1
δtn .

Each point tn of Nλpdtq is associated to a presynaptic spike and the consequent

increment of the postsynaptic membrane potential Xpt´q byW ptq.

The point process Nβ,X accounts for the instants of the postsynaptic spikes.

It is a nonhomogeneous Poisson process with (random) intensity function

pβpXpt´qqq. See Relation (2.3) for a formal definition. See [Kin92] for an ex-

tensive introduction to Poisson processes and [Daw93] for theoretical aspects of

random measures.
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b. The process pZptqq.
pZptqq encodes the past spiking activity of both neurons through an additive

functional of Nλ and Nβ,X with an exponential decay factor γą0. It is not difficult

to see that, for tě0,

Zptq “ Zp0q`B1

ż t

0
e´γpt´sqNλpdsq`B2

ż t

0
e´γpt´sqNβ,Xpdsq.

See Lemma 2.1 of [RV21b]. In our general model, pZptqq is a multidimensional

process which can be thought as a vector of cellular processes associated to the

concentration of chemical components created/suppressedby the spiking activity

of both neurons. See also [AK15] for a general presentation of stochastic processes

in the context of biochemical systems.

c. The processes pW ptqq. The synaptic weight W is increased at each jump of Nβ,X

by the value of pZptqq.

From a biological point of view, the relevant process is pW ptqq, because it describes the
synaptic strength, i.e. the intensity of transmission between two connected neurons.

This value can be measured through electrophysiological experiments for example.

Many computational models have been developed to investigate synaptic plasticity

in different contexts. See [MDG08; GB10; Clo+10; BA16; KGH99] and the references

therein.

From a mathematical perspective, the variables pXptq, Zptq,W ptqq, solutions of

SDE (2.1) are central to the model. However, as will be seen in this article, the point

process of instants of postsynaptic spikesNβ,X is the key component of the system since

it drives the time evolution of pZptqq and pW ptqq and, consequently, of pXptqq.

Mathematical models of plasticity in the literature
Numerous works in physics have investigated mathematical models of plasticity. We

quickly review some of them. Most studies focus on the dynamics of a collection of

synaptic weights projecting to a single postsynaptic cell. There are basically two types

of approximations used.

a. Separation of timescales.

The cellular processes are averaged to give a simpler dynamical system for the

evolution of the synaptic weight. This is a classical approach in the literature.

See [KGH99; RKO18; Eur+99; Rob00]. [ARJ20] uses an analogous description of

the evolution of synaptic weights in the context of a mean-field approximation of

several populations of neurons. This is the approach of the paper, see Section 2.1

below.

b. Fokker-Planck approach.

In this case, the time evolution of the synaptic strength alone is assumed to follow

a diffusion process and, consequently, has the Markovian property. The analy-

sis is done with the associated Fokker-Planck equations and the corresponding

equilibrium distribution when it exists. See [RLS01; Hor+00; KH00; RBT00a]. An

extension, the Kramers-Moyal expansion is also used in this context for some non-

Markovian models, see [LF12]. We refer to [Paw67; Gar10] for general properties

of the Kramers-Moyal expansion.
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Mathematical studies ofmodels of plasticity are quite scarce. Mostmodels are centered

on evolution equations of neural networks with a fixed synaptic weight. See Sections 1

and 2 of [RT16] for a review. In [AFH12] and [PSW17], an ODE/PDE approach for

a population of leaky integrate-and-fire neurons is presented for a specific pair-based

STDPrule. See [Che+15] for the connectionbetween stochasticmodels andPDEmodels.

[Hel18] investigates a Markovian model of a pair-based STDP rule. This is one of the

few stochastic analyses in this domain.

Multiple timescales
An important feature of long-term neural plasticity explored in this paper is that there

are essentially two different timescales in action.

On the one hand, the decay time of themembrane potential and themean duration

between two presynaptic spikes or two postsynaptic spikes are of the order of several

milliseconds. See [GK02b]. Consequently, interacting pairs of spikes are on the same

timescale. For example, pair-based models have an exponential decay whose inverse

is around 50 milliseconds. See [BP98; FGV05]. Similarly, for calcium-based models,

the calcium concentration decays with a time constant of the order of 20 milliseconds.

See [GB12]. The stochastic process pZptqq represents fast cellularmechanisms associated

to STDP and accordingly, its timescale is also of the same order.

On the other hand, the synaptic weight process pW ptqq changes on a much slower

timescale. It can take seconds and even minutes to observe an effect of an STDP rule

on the synaptic weight. See [BP98]. Computational models of synaptic plasticity have

used similar scaling principles. Kempter et al. [KGH99] for the equation (1) of this

reference for plasticity updates and with different neuronal dynamics, but built in the

same framework, [KH00]. We can mention also [RBT00a], [Rob99; Rob00] where a

separation of the timescales is also assumed. A final example is [RLS01] where the

parameter λ speeds up the rate of pre- and postsynaptic spikes in the equation for

plasticity updates.

Computational models of plasticity incorporate this timescale difference by only

implementing small updates of the synaptic weights. However, it does not really take

into account the fact that significant changes occur after the end of the experiment.

To take into account this phenomenon, a possible approach consists in updating the

synapticweightswith afixed, or random, delay. This is not completely satisfactory since

the evolution of the synaptic weight is generally believed to be an integrative process of

past events rather than a delayed action. A more thorough analysis is done in Section

SM2 of [RV21b]. Another approach which we will use consists in implementing this

delay through an exponentially filtered process to represent the accumulation of past

information.

It is important to stress here, that even if synaptic plasticity depends on the imme-

diate timing of individual spikes, which happens on a fast timescale, it has a slow and

delayed impact on the synaptic weight. This justifies the term of long-term plasticity

and the fact that we can consider a separation of the timescales. Fast synaptic plasticity

processes also exist, in the sense that they modulate the synaptic weight on the same

timescale as the fast neuronal processes (spikes, membrane potential). This is referred

to as short-term synaptic plasticity. See [ZR02]. For this type of dynamics, the timescale

is of the order of milliseconds, much faster than the plasticity considered in this paper

which can last several hours. This is not investigated in this paper. [Gal+19] analyzes
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such models; in this case, separation of the timescales does not occur, and a mean-field

approximation is developed.

The scaling approach of this paper represents the model as a slow-fast system.

Neuronal processes, associated to the point processesNλ andNβ,X , occur on a timescale

which is much faster than the timescale of the evolution of pW ptqq. For our simple

model, with the scaling, the SDE (2.1) becomes, for εą0,
$

’
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dXεptq “ ´Xεptq dt{ε`WεptqNλ{εpdtq,
dZεptq “ ´γZεptq dt{ε`B1Nλ{εpdtq `B2Nβ{ε,Xεpdtq,
dWεptq “ Zεps´qεNβ{ε,Xεpdtq.

As can be seen, the variables pXεptqq and pZεptqq evolve on the timescale tÞÑt{ε, with

ε small; they are fast variables. The increments of the variable W are scaled with the

parameter ε, and the integration of the differential element εNβ{ε,Xεpdsq on a bounded

time-interval is Op1q. For this reason, pWεptqq is described as a slow process. This is a

classical assumption in the corresponding models of statistical physics. Approxima-

tions of pWεptqq when ε is small are discussed and investigated with ad hoc methods.

The corresponding scaling results, known as separation of timescales, are routinely

used in approximations in mathematical models of computational neuroscience; see,

for example, [KGH99].

Mathematical proofs of averaging principles
In a mathematical context, these types of results are referred to as averaging principles.

See [PSV77] and Chapter 7 of [FW98] for general presentation. They have been used

to study various biochemical systems, see for example [Bal+06] and [KK+13]. See

also the general presentation [BG06] in the context of dynamical systems and recent

developments in [KP17]. We discuss the specific difficulties to prove such convergence

results in our stochastic models of STDP rules:

a. Tightness of functionals of occupation measures.

Recall that the fast process is pXεptq, Zεptqq. Part of the technical problems of

the proof of an averaging principle is related to the tightness properties of linear

functionals of the fast process occupation measures.

The main difficulty originates, as could be expected, from the scaled point pro-

cess εNβ{ε,Xεpdsq associated to postsynaptic spikes and, more precisely, from the

tightness of families of processes of the form

ˆ
ż t

0
ZεpsqεNβ{ε,Xεpdsq

˙

. (2.2)

This is done in the paper by [RV21a]. If the model was expressed in terms of

functionals of the occupation measure of type

ˆ
ż t

0
F pXεpsq, Zεpsqq ds

˙

,

where sÑF pXεpsq, Zεpsqq is a bounded continuous function onR`, as it is usually
the case, the proof of this tightness property would be quite simple. From this
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point of view, this is the case of [Bal+06], Kang andKurtz [KK+13]. In these papers

the proof of the tightness results associated to occupation measures is essentially

achieved through a quite direct use of [Kur92]. There are technical difficulties, of

course, but they are not related to these functionals of occupation measures. The

only (unpublished) paper we know that establishes an averaging principle for a

specific pair-based rule of Wilson-Cowan models of neural networks is [Hel18]

and here too, this is a quite direct application of [Kur92].

Due to our quite general framework it does not seem to be possible to han-

dle functionals of the form (2.2) with this approach. The process pZεpsqq is not

bounded, and neither is the differential element Nβ{ε,Xεpdsq since pβpXεpsqq is also
not bounded. The proof of this tightness result motivates a large part of the most

technical estimates of [RV21a].

For our general models of [RV21a] the tightness properties are stated on an a

priori, bounded time interval r0, S0q only. More specifically, it is shown that it may

happen that the limit in distribution of pWεpt0qq as ε goes to 0 blows up, i.e., hits

infinity in finite time t0. Contrary to all slow-fast results mentioned above where

this phenomenon does not occur, convergence is proved on the real half-line.

This is an indication perhaps that some stochastic processes have to be controlled

carefully and that the difficulty of the tightness results mentioned above is not an

artifact of the method used.

b. Regularity properties.

The results of the paper by [RV21a] do not provide convergence results as such.

This is the purpose of the present paper of having convergence results and explicit

expressions of the asymptotic dynamical system. To have a convergence result

as in this paper, regularity properties of the invariant distribution Πw of the fast

process pXεptq, Zεptqqwhen the synapticweight is fixed atw have to be established.

A typical property is that

w ÝÑ

ż

R``1
`

Gpx, zqπwpdx, dzq

is locally Lipschitz for some function G on R``1
` . This is a delicate question in

general, and there are very few cases where an explicit expression ofΠw is known.

This type of result can be proved if there exists a “uniform” Lyapunov function

on a neighborhood of w, see [Has80]. Sections 3 and 4 of our paper are devoted

to the proof of these type of results. Different arguments are used.

Contributions
AscaledversionofMarkovianplasticity kernels as introduced in [RV21b] is presented in

Section 2.2. The difficulty is to take into account the two different timescales mentioned

above. This is done by assuming that the membrane potential X is a “fast” variable,

i.e. that it evolves on a fast timescale. An averaging principle for the synaptic weight

process has to be established in this context.

Under convenient assumptions, an averagingprinciple, Theorem12, shows that the

evolution equationof the synapticweight pW ptqq converges to adeterministic dynamical
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system as ε goes to 0. The proof of this quite technical result uses tightness results

proved in the companion paper by [RV21a].

Sections 2.3 and 2.4 investigate the implications of averaging principles for classical

models of pair-based and calcium-based STDP rules. In particular, wework out explicit

results for the time evolution of the synapticweight for several pair-based rules. Related

results of the literature in physics are discussed in Section 2.3.

For calcium-based STDP models, the situation is more complicated since an ex-

plicit representation of invariant distributions of a class ofMarkov processes is required

to express the asymptotic time evolution of the synaptic weight. Section 2.5 consid-

ers an analytically tractable discrete model of calcium-based STDP rules introduced

in [RV21b]. With a scaling approach similar to that of Section 2.2, the dynamical

system verified by the asymptotic synaptic weight can be investigated and an explicit

representation of the invariant distributions of the corresponding Markov processes

has been obtained in [RV21b].

2.2 A scaling approach

We begin with some formal definitions. Two independent point processes are defined

on the probability space,

a. Nλ is the Poisson process with rate λą0;

b. P is an homogeneous Poisson point process on R2
` with rate 1.

If h is a càdlàg function and pV ptqq a càdlàg process, we define Nh,V the point process

on R` by
ż

R`
fpuqNh,V pduq def.

“

ż

R2
`

fpuq1tsPp0,hpV pu´qqsuPpds, duq, (2.3)

for anynonnegativeBorelian function f onR`, whereP is a homogeneousPoissonpoint

process on R2
` with rate 1. The filtration of the space contains the natural filtrations of

Nλ and P . See [RV21b].

Markovian plasticity kernels

We go back to the general Markovian formulation of STDP developed in [RV21b].

Important features are added to the simple model described in the introduction:

— The dynamics of the membrane potential X is unchanged, except for the influ-

ence of a postsynaptic spike on X , which is now modeled by a general decrease

xÑgpxqě0.

— We consider a multidimensional fast plasticity process pZptqq in R`
`, that can

encode the activity of several chemical components. They can be defined as shot-
noise processes. A shot-noise process pSptqq associated to a point process P on R`
with amplitude kp¨q and exponential decay αą0 is a solution of the SDE,

dSptq “ ´αSptq`kpSpt´qqPpdtq.
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See [GP60] for the corresponding definition. In our case pZptqq is a vector of

shot-noise processes associated to Nλ and/or Nβ,X , with amplitude pkip¨qq, i“1,
2. See Relation (2.4) below. In this paper, the term “shot-noise process” will refer

to the stochastic process defined in this reference, and not to a specific source of

neuronal noise, as is usually the case in neurosciences.

— The influence of these fast plasticity variables is integrated through general func-

tionals zÑna,ipzqě0 with exponential decay into two slow variables Ωa. In partic-

ular, the process pΩpptqq (resp., pΩdptqq) encodes in some way the memory of the

spiking activity leading to potentiation, i.e., increasing the synaptic weight (resp.,

to depression, i.e., decreasing the synaptic weight).

— The synaptic weightW is updated thanks to a functionalM of both slow plasticity

variables and its current value.

More rigorously, the random variable pXptq, Zptq,Ωpptq,Ωdptq,W ptqq is a Markov pro-

cess, solution of the SDE

$
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dXptq “ ´Xptq dt`W ptqNλpdtq ´ g pXpt´qqNβ,X pdtq ,
dZptq “p´γ d Zptq ` k0q dt

`k1pZpt´qqNλpdtq ` k2pZpt´qqNβ,Xpdtq,
dΩaptq “ ´αΩaptq dt`na,0pZptqq dt

`na,1pZpt´qqNλpdtq`na,2pZpt´qqNβ,Xpdtq, aPtp, du,

dW ptq “M pΩpptq,Ωdptq,W ptqq dt.

(2.4)

where pZptqq is a nonnegative `-dimensional process, `ě1, and the following hold:

— γPR`
`, adb“paiˆbiq if a“paiq and b“pbiq in R`

`.

— k0PR`
` is a constant and k1 and k2 are measurable functions from R`

` to R`
. Fur-

thermore, the pkiq are such that the function pzptqq has values in R`
` whenever

zp0qPR`
`.

— For i“0, 1, 2, na,i is a nonnegative measurable function on R`
`.

— M is a general measurable function.

The firing instants of the output neuron are the jumps of the point process Nβ,X

on R`, and the presynaptic spikes are represented by the Poisson process Nλ.

See [RV21b] for more details. Recall the set of assumptions used in this reference.

Assumptions A

a. Firing rate function.

β is a nonnegative, continuous function on R, and βpxq“0 for xď´cβď0.

b. Drop of potential after firing.

g is continuous on R and 0ďgpxqďmaxpcg, xq holds for all xPR, for cgě0.
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c. Dynamic of plasticity.

There exists an interval KWĂR such that, for any càdlàg piecewise-continuous

functions h1 and h2 on R`, the ODE

dwptq
dt “Mph1ptq, h2ptq, wptqq (2.5)

for all points of continuity of h1 and h2 has a unique continuous solution pwptqq
such that wptqPKW for all tě0 when wp0qPKW .

A scaled model of Markovian plasticity of kernels
To take into account the multiple timescales mentioned in the introduction, a scaling

parameter εą0 is introduced for stochastic processes following (2.4):

a. The exponential decay of pXptqq, pZptqq and the rates λ and βp¨q are scaled with

the factor 1{ε.

b. The functionsna,i, aPtp, du, iPt1, 2u, associated to synaptic updates due toneuronal

spikes are scaled by ε.

The initial condition of pUεptqq is assumed to be fixed:

Uεp0q “ U0 “ px0, z0, ω0,p, ω0,d, w0q. (2.6)

This leads to the definition of a scaled version of the system (2.4), where we denote

pUεptqq“pXεptq, Zεptq,Ωε,pptq,Ωε,dptq,Wεptqq:
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dXεptq “ ´
1
ε
Xεptq dt`WεptqNλ{εpdtq´g pXεpt´qqNβ{ε,Xε pdtq ,

dZεptq “
1
ε

´

´γ d Zεptq`k0

¯

dt
`k1pZεpt´qqNλ{εpdtq`k2pZεpt´qqNβ{ε,Xεpdtq,

dΩε,aptq “ ´αΩε,aptq dt`na,0pZεptqq dt
`ε

´

na,1pZεpt´qqNλ{εpdtq`na,2pZεpt´qqNβ{ε,Xεpdtq
¯

, aPtp, du,

dWεptq “M pΩε,pptq,Ωε,dptq,Wεptqq dt.

(2.7)

From Relations (2.7), the dynamics of the processes pΩε,pptqq, pΩε,dptqq and pWεptqq is
slow in the sense that the fluctuationswithin a bounded time-interval are limited either

because of thedeterministic differential elementdtwith a locally bounded coefficient, or

via a driving Poisson process with rate of order 1{ε but with jumps of size proportional

to ε. The processes pXεptqq and pZεptqq are fast, for each of them the fluctuations are

driven either by the deterministic differential element dt{ε, or the jumps of Poisson

point processes with rates of the order of 1{ε.
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Averaging principles
We are interested in the limiting behavior of the synaptic weight process pWεptqqwhen

the scaling parameter ε goes to 0. An intuitive, rough picture of the results that can be

obtained is as follows: for ε small enough, on a small time-interval, the slow process

pΩp,εptq,Ωd,εptq,Wεptqq is almost constant, and, due to its fast timescale, the process

pXεptq, Zεptqq is “almost” at its equilibrium distribution Πw associated to the current

value of pWεptqq. If this statement holds in an appropriate way, we can then write a

deterministic ODE for the time evolution of a possible limit of pΩp,εptq,Ωd,εptq,Wεptqq.
We now introduce the framework of our main theorem concerning averaging

principles. If we set the process pWεptqq to be a constant equal to w, the time evolution

of pXεptq, Zεptqq in Relation (2.7) has the Markov property. The corresponding process

will be referred to as the fast process. Its infinitesimal generator is defined as follows:

if fPC1
b

`

R`ˆR`
˘

, wPKW and px, zqPRˆR`
`, then

BF
w pfqpx, zq

def.

“ ´x
Bf

Bx
`

〈
´γ d z`k0,

Bf

Bz
px, zq

〉

` λ
”

fpx`w, z`k1pzqq´fpx, zq
ı

` β pxq
”

fpx´gpxq, z`k2pzqq´fpx, zq
ı

. (2.8)

We now introduce a set of general assumptions driving the system (2.4).

Assumptions B

a. There exists Cβě0 such that

βpxqďCβp1`|x|q @xPR. (2.9)

b. All coordinates of the vector γ are positive. There exists Ckě0 such that 0ďk0ďCk
and the functions ki, i“1, 2, in C1

b pR`
`,R`

`q, are upper-bounded by Ckě0.

c. There exists a constant Cn such that, for jPt0, 1, 2u, aPtp, du, the function na,j is
assumed to be nonnegative and Borelian such that

na,jpzqďCnp1`}z}q

for zPR`
`, where }z}“z1` ¨ ¨ ¨ `z`. Additionally, for any wPKW , the discontinuity

points of

px, zqÞÑpna,0pzq, na,1pzq, βpxqna,2pzqq

for aPtp, du are negligible for the probability distribution Πw of the operator de-

fined by Relation (2.8).

d. M can be decomposed as, Mpωp, ωd, wq“Mppωp, wq´Mdpωd, wq´µw, where

Mapωa, wq is nonnegative continuous function, nondecreasing on the first co-

ordinate for a fixed wPKw, and,

Mapωa, wq ď CMp1`ωaq,

for all wPKW , for aPtp, du.
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Note that, in the (large) list of STDP models presented in [RV21b], only the fast

processes of triplet-based and voltage-based models may not verify these assumptions;

in particular, the functions na,i depend on the product of different shot-noises Zptq.
Nevertheless, Assumptions B result mainly from technical arguments, and is in any

way necessary to obtain Theorem 12. An extension using quadratic functions na,i
instead of linear ones may be proved using the stronger analytical estimations in the

proof.

We can now state the main result concerning the scaled model. Its proof is the

main result of the paper by [RV21a].

Theorem 12 (Averaging principle). Under Assumptions A and B and for initial condi-
tions satisfying Relation (2.6), there exists S0Pp0,`8s, such that the family of processes
pΩp,εptq,Ωd,εptq,Wεptq, tăS0q, εPp0, 1q, of the system (2.7), is tight for the convergence in
distribution.

As ε goes to 0, any limiting point pωpptq, ωaptq, wptq, tăS0q, satisfies the ODEs, for
aPtp, du,

$
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dωaptq
dt “´αωaptq`

ż

RˆR`
`

”

na,0pzq`λna,1pzq`βpxqna,2pzq
ı

Πwptqpdx, dzq,

dwptq
dt “Mpωpptq, ωdptq, wptqq,

(2.10)

where, for wPKW , Πw is the unique invariant distribution Πw on RˆR`
` of the Markovian

operator BF
w defined by Relation (2.8).

If KW is bounded, then S0“`8 almost surely.

Remarks
We quickly discuss several aspects of these results.

a. Uniqueness.

If Relation (2.10) has a unique solution for a given initial state, the convergence

in distribution of pWεptqq when ε goes to 0 is therefore obtained. Such a unique-

ness result holds if the integrand, with respect to s, of the right-hand side of

Relation (2.10) is locally Lipschitz as a function of wpsq. One therefore has to

investigate regularity properties of the invariant distribution Πw as a function of

w. This is a quite technical topic; however, methods based on classical results of

perturbation theory and their generalizations in a stochastic context (see [Has80]),

can be used to prove this type of properties. These problems are investigated for

several important examples in Sections 2.3, 2.4, and 2.5.

b. Blow-up phenomenon.

The convergence properties are stated on a fixed time interval r0, S0q. The reason

is that, for some of our models the variable S0 is finite. The limit in distribution

of pWεptqq, as ε goes to 0, blows up, i.e., hits infinity in finite time. An analog

property holds for some mathematical models of large nonplastic random neural

networks. In this case, the blow-up phenomenon is the result of mutually exciting

dynamics. In our case, the strengthening of the connection may grow without

bounds when the function z ÞÑn2pzq exhibits some linear growth with respect to z
and when the activation function β also has a linear growth. See [RV21a].
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Figure 2.1: Applications of Theorem 12 to the simple model of Section 2.1.

Simple model dynamics
To illustrate Theorem 12, we go back to the simple model detailed in Section 2.1.

We present in Figure 2.1 different possible behaviors of the asymptotic dynamics, for

different values of B1 and B2. We represent the scaled process for different values of ε
(in yellow, orange and red), the simulated ODE of the asymptotic dynamics (in black)

and the analytical solution of the same ODE (in grey, dotted line). In all cases, the

scaled processes converge indeed towards the solution of the ODE. We simulated the

different processes starting from two deterministic initial values w0“1.0 and w0“3.0.
In particular, we observe different asymptotic regimes:

(a) The scaled system converges to an ODE that explodes in finite time for all initial

conditions. The time of explosion texp,w0 depends on the initial condition.

(b) The limiting ODE leads to solutions of wptq that diverge towards `8 but that do

not explode.

(c) Depending on the initial condition (relative to weq), the asymptotic wptq either
converges to 0 (w0ăweq) or explodes in finite time (w0ąweq).

(d) The scaled processes converge to an ODE that has a stable fixed point weq, and all

the asymptotic processes w converge to this value.

We have shown with this simple example that the blow-up phenomenon does not

only result from technical arguments but does indeed take place for some systems.
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Moreover, we also highlight the fact that depending on the initial conditions, several

behaviors are possible as in Figure 2.1(c).

Several important examples of pair-based and calcium-based models are now

investigated in light of Theorem 12. In order to have simpler expressions, we restrict our

study in the following sections to the linear neuron without reset receiving excitatory

inputs, leading to the following set of assumptions,

Assumptions L (Linear)

a. The initial conditions of Relation (2.6) are such that U0“p0, 0`, 0, 0, 0q.

b. The output neuron is without reset; i.e., the function g is null. The SDE associated

to the membrane potential is

dXw
ptq “ ´Xw

ptq dt` wNλpdtq. (2.11)

c. There are only excitatory inputs, i.e., 0ĂKWĂR`.

d. M verifies Assumptions A-c and B-d and is LM -Lipschitz.

e. The activation function is linear, βpxq“ν`βx, xě0 for νě0 and βą0.

In that case,X stays in R` and we can have an explicit expression of the stationary

distribution of the important point process Nβ,Xw .

Proposition 13. Under Assumptions L, if pXw
8ptq,´8ďtď`8q is a stationary version of

SDE (2.11), then the point processNβ,Xw
8
of Relation (2.3) extended on the real line is stationary,

and if f is a bounded Borelian function with compact support on R, then

´ lnE
„

exp
ˆ

´

ż `8

´8

fpsqNβ,Xw
8
pdsq

˙

“ ν

ż `8

´8

`

1´e´fpsq
˘

ds`λ
ż `8

´8

ˆ

1´ exp
ˆ

´βw

ż `8

0

`

1´e´fps`tq
˘

e´t dt
˙˙

ds. (2.12)

Proof. Setting

pXw
8ptqq

def.

“

ˆ

w

ż t

´8

e´pt´sqNλpdsq
˙

, (2.13)

it is easily seen that this process is almost surely defined and that it satisfies Rela-

tion (2.11). The stationarity property of pXw
8ptqq and, consequently of Nβ,Xw

8
, comes

from the invariance by translation of the distribution of Nλ.

The independence of P and Nλ, and the formula for the Laplace transform of

Poisson point processes (see Proposition 1.5 of [Rob03]) give the relation

E
„

exp
ˆ

´

ż `8

´8

fpsqNβ,Xw
8
pdsq

˙

“ E
„

exp
ˆ

´

ż `8

´8

`

1´e´fpsq
˘

βpXw
8psqq ds

˙

.

If F is a nonnegative bounded Borelian function with compact support on R, with

Relation (2.13) and Fubini’s theorem, we get

ż `8

´8

F psqXw
8psq ds “

ż `8

´8

ˆ

w

ż `8

0
F pu`sqe´s ds

˙

Nλpduq. (2.14)
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We conclude the proof by using again the formula for the Laplace transform of Nλ

E
„

exp
ˆ

´

ż `8

´8

gpsqNλpduq
˙

“ E
„

exp
ˆ

´λ

ż `8

´8

`

1´e´gpuq
˘

du
˙

.

where the function g is defined by

gpuq
def.

“ βw

ż `8

0

`

1´e´fps`uq
˘

e´s ds, uě0.

The proposition is proved.

2.3 Pair-based rules

We investigate scaled models of pair-based rules (see [RV21a]) with Assumptions L.

In this setting, we are able to derive a closed form expression of the asymptotic equa-

tion (2.10).

All-to-all model
We recall theMarkovian formulation of the all-to-all pair-basedmodelwith exponential

functions Φ. All pairs of pre- and postsynaptic spikes are taken into account in the

processes pΩaptqq, aPtp, du. See Section 3.1.3 of [RV21b]. In our framework, this is

defined as follows.

Assumptions PA
For wě0, the fast process associated to the operator BF

w of Relation (2.8) is expressed as

pXwptq, Zwptqq, where pXwptqq is the solution of Relation (2.11) and

#

dZw
a,1ptq “ ´γa,1Z

w
a,1ptq dt`Ba,1 Nλpdtq,

dZw
a,2ptq “ ´γa,2Z

w
a,2ptq dt`Ba,2 Nβ,Xwpdtq,

(2.15)

for aPtp, du, where γ“pγa,iqą0 and B“pBa,iq in R4
`. For aPtp, du the process pΩaptqq is

such that

dΩaptq “ ´αΩaptq dt`Za,2pt´qNλpdtq`Za,1pt´qNβ,Xpdtq.

i.e., na,0”0, na,1pzq“za,2, and na,2pzq“za,1 for zPR4
`.

We denote ΠPA

w the invariant distribution of the process pXwptq, Zwptqq. The exis-

tence of ΠPA

w is given by Proposition 4 of Section 5 of [RV21a].

Proposition 14. Under Assumptions L and PA, then for aPtp, du,
ż

RˆR4
`

pna,0pzq`λna,1pzq`βpxqna,2pzqqΠPA

w pdx, dzq “
ν

βλ
Λa,1`pΛa,1`Λa,2qw.

with
Λa,1 “ βλ2

ˆ

Ba,1

γa,1
`
Ba,2

γa,2

˙

and Λa,2“βλ
Ba1

1`γa,1
. (2.16)
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Proof. Assume that the initial point of SDE (2.15) is a random variable pXw, Zwq with

distribution ΠPA

w .

For aPtp, du, it is easily seen that E
“

Zw
a,1
‰

“λBa,1{γa,1 and E rXws “λw. Denote

pY wptqq“pXwptqZw
a,1ptqq; then with Relation (2.15), we get

dY w
ptq “ ´p1`γa,1qY w

ptq dt`
´

wZw
a,1pt´q`Ba,1X

w
pt´q`wBa,1

¯

Nλpdtq.

By integrating this ODE on r0, ts and taking the expected value, we obtain

p1`γa,1qE
“

XwZw
a,1
‰

“ λwE
“

Zw
a,1
‰

` λBa,1E rXw
s ` λwBa,1

“
p1`γa,1q
γa,1q

λ2Ba,1w ` λwBa,1.

By integrating the second SDE of Relation (2.15) on r0, ts and taking the expected

value, we have

´γa,2EpZw
a,2q dt`Ba,2EpβpXw

qq “ 0,

and, with

E rβpXw
qs “ Ba,2pν`βEpXw

qq “ Ba,2pν`λβwq,

the proposition is proved.

Theorem 15. Under Assumptions L and PA, as ε goes to 0, the family of processes
pΩε,pptq,Ωε,dptq,Wεptqq of Relation (2.7) converges in distribution to the unique solution
pωpptq, ωdptq, wptqq of the relations

$

’

&

’

%

ωaptq “
ν

λβ
Λa,1

1´e´αt
α

` pΛa,1`Λa,2q e
´αt

ż t

0
eαswpsq ds, aPtp, du,

dwptq
dt “M pωpptq, ωdptq, wptqq ,

where Λa,i, iPt1, 2u, aPtp, du are defined by Relation (2.16).

Proof. This is a direct consequence of Theorem 12 and of Proposition 14.

Note that, for aPtp, du, the parameter Λa,1 is proportional to the area under the

two STDP curves Φa,ipxq“Ba,i expp´γa,ipxqq, i“1, 2. It represents the averaged potenti-

ation/depression rate as if we had considered two neurons without any interactions.

Two important facts results from this property,

— the term in the dynamics for the constant firing rate of the output neuron, ν, is
proportional to Λa,1, as expected;

— the term Λa,2 reflects the dependence between pre- and postsynaptic spikes.
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Nearest neighbor symmetric model
Similar results can be obtained for the nearest neighbor symmetric scheme of Sec-

tion 3.1.4 of [RV21a] with general STDP curves Φ. For this class of models, whenever

one neuron spikes, the synaptic weight is updated by only taking into account the last

spike of the other neuron. In our framework, this is defined as follows.

Assumptions PNS For wě0, the fast process associated to the operator BF
w of Rela-

tion (2.8) can be expressed as pXwptq, Zwptqq, where pZwptqq is the solution of the SDEs,

#

dZw
1 ptq “ dt´Zw

1 pt´qNλpdtq,
dZw

2 ptq “ dt´Zw
2 pt´qNβ,Xwpdtq.

(2.17)

It it easily seen that for Zw
1 ptq“t0pNλ, tqwhen t is greater than the first point of Nλ and,

similarly, Zw
2 ptq“t0pNβ,Xw , tq under an analogue condition, with

t0pm, tq“t´ supts : săt : mptsuq‰0u, (2.18)

the distance between the first point of m at the left of t and t. For aPtp, du, the process
pΩaptqq is such that

dΩaptq “ ´αΩaptq dt`Φa,2pZ2pt´qqNλpdtq`Φa,1pZ1pt´qqNβ,Xpdtq,

i.e., na,0pzq“0, na,1pzq“Φa,2pz2q, and na,2pzq“Φa,1pz1q for zPR2
`.

The functions Φa,1 and Φa,2 are quite general nonnegative, nonincreasing, and

differentiable functions, instead of exponential functions, as is usually assumed for

tractable models of many STDP rules.

Proposition 16. For wě0, the Markov process pXwptq, Zwptqq has a unique invariant distri-
bution ΠPS

w . If f is a bounded Borelian function on R2
` and aě0, then

ż

RˆR2
`

fpx, z1qΠPS

w pdx, dzq “ E
“

f
`

we´Eλp1`Sq, Eλ
˘‰

,

ż

RˆR2
`

1tz2ěauΠPS

w pdx, dzq“ exp
ˆ

´νa´λ

ż a

0

`

1´ exp
`

´βw
`

1´es´a
˘˘˘

ds

´λ

ż 0

´8

`

1´ exp
`

´βw
`

1´e´a
˘

es
˘˘

ds
˙

,

whereEλ and S are independent random variables,Eλ has an exponential distribution with rate
λ, and, for ξě0,

E
“

e´ξS
‰

“ exp
ˆ

´ξλ

ż `8

0
ue´ue´ξe

´u du
˙

.

Proof. The first condition of Assumption B-a is clearly not satisfied, the coordinates of

the vector γ being´1. This is not a concern since this condition is only used to construct

a Lyapunov function as in the proof of Proposition 4 of Section 5 of [RV21a]. We only

show that one can construct such a function for this model. Set, for px, zqPRˆR2
`,

Hpx, zq
def.

“
1
xδ
` x`z1`z2,
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for some δą0; then,

Bw
F pHq ď

1
xδ

ˆ

δ`λ

ˆ

xδ

px`wqδ
´1

˙˙

`λw ` 2´ x´ λz1´pν`βxqz2,

Choosing δăλ{4, we set x0 “ min px1, x2q, where

x1 “
w

21{δ ´ 1 , x2 “

ˆ

λ

4pλw`3q

˙1{δ

,

such that if xďx0, then B
w
F pHq ď ´1.

Moreover, if xěx0, we also have Bw
F pHq ď ´1 for Hpx, zqěK0, where

K0 “

ˆ

δ

xδ0
`λw`3

˙

{minp1, λ, ν ` βx0q.

In particular,H is a Lyapunov function forBF
w . Consequently, there exists a unique

invariant distribution.

We denote by pXw, Zw
1 , Z

w
2 q a random variable with distribution ΠPS

w . It is easily

checked that, for tą0,

pXw
ptq, Zw

1 ptqq“

ˆ

w

ż t

0
e´pt´sqNλpdsq, t0pNλ, tq

˙

dist.

“

ˆ

w

ż 0

´t

esNλpdsq, t0pNλ, 0q
˙

,

where t0p¨, ¨q is defined by Relation (2.18). By letting t go to infinity, we thus get, with

t0
def.

“ t0pNλ, 0q,

pXw, Zw
1 q

dist.

“

ˆ

w

ż 0

´8

esNλpdsq, t0pNλ, 0q
˙

“

ˆ

we´t0
ˆ

1`
ż

p´8,´t0q

es`t0Nλpdsq
˙

, t0

˙

.

The strong Markov property of Nλ gives the desired relation for the representation of

the law of pXw, Zw
1 q. Again, with the formula of the Laplace transform of Poisson point

processes, we have

E
„

exp
ˆ

´ξ

ż

p´8,´t0q

es`t0Nλpdsq
˙

“E
„

exp
ˆ

´ξ

ż 0

´8

esNλpdsq
˙

“ exp
ˆ

´λ

ż `8

0

´

1´e´ξe´s
¯

ds
˙

.

The stationary distribution of pZ2ptqq is the distribution of the distance of the first point

of Nβ,X at the left of 0 at equilibrium, and hence, for aě0,

P pZw
2 ěaq“P

`

Nβ,Xw
8
pp´a, 0qq“0

˘

“P
`

Nβ,Xw
8
pp0, aqq“0

˘

.

Relation (2.12) gives, for ξě0,

´ lnE
”

e´ξNβ,Xw8
pp0,aqq

ı

“νa
`

1´e´ξ
˘

`λ

ż a

0

`

1´ exp
`

´βw
`

1´e´ξ
˘̀

1´es´a
˘˘˘

ds

`λ

ż 0

´8

`

1´ exp
`

´βw
`

1´e´ξ
˘ `

1´e´a
˘

es
˘˘

ds.

By letting ξ go to infinity, we have obtained the desired expression. The proposition is

proved.
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Theorem 17 (Averaging principle). Under Assumptions L and PNS, as ε goes to 0,
the family of processes pΩε,pptq,Ωε,dptq,Wεptqq of Relation (2.7) converges in distribution to
pωpptq, ωdptq, wptqq, the unique solution of the ODE

$

’

’

&

’

’

%

ωaptq “

ż t

0
e´αpt´sq

ż

R5
`

pβpxqΦa,1pz1q`λΦa,2pz2qqΠPS

wpsqpdx, dzq ds, aPtp, du,

dwptq
dt “M pωpptq, ωdptq, wptqq ,

where ΠPS

w is defined in Proposition 16.

Proof. For wě0, let pXw
8, Z

w
8,1, Z

w
8,2q be random variables with distribution Πw, and, for

aPtp, du, let

Ψapwq
def.

“ E
”

βpXw
8qΦa,1pZ

w
8,1q

ı

`λE
”

Φa,2pZ
w
8,2q

ı

.

The ODE can be rewritten as

dwptq
dt “M

ˆ
ż t

0
e´αpt´sqΨppwpsqq ds,

ż t

0
e´αpt´sqΨdpwpsqq ds, wptq

˙

.

With Theorem 12, all we have to prove is that this ODE has a unique solution. This is

a simple consequence of the Lipschitz property of Ψa. Indeed, first, the distribution of

Zw
8,1 does not depend on w and βp¨q is an affine function ofXw

8 given by Relation (2.13).

Finally, the identity

E
”

Φa,2pZ
w
8,2q

ı

“ ´

ż `8

0

9Φa,2puqPpZw
8,2ďuq du,

Proposition 16, and simple estimations give that the function Ψa has the Lipschitz

property. The theorem is proved.

Links with models of physics
In this section, averaging principles for STDP rules of [KGH99] are discussed. We start

by characterizing which type of STDP rules are used, in particular, their model takes

into account all pairing of pre- and postsynaptic spikes that last less than the interval

of the experiment T . It is supposed that T is really large compared to the neuronal

dynamics. Accordingly, in the limit of large T , it corresponds to the pair-based all-to-all

model of Assumptions PA.

After adapting notation, the main equation for the asymptotic behavior of the

synaptic weight dynamics (Relation (4) of this reference) is expressed, via a separation

of timescale argument, as

d rw
dt “ w1ν1

ptq ` w2ν2
ptq `

ż `8

´8

rΦpsqrµps, tq ds, (2.19)

where S1
(resp., S2

) is the process of presynaptic spikes (resp., postsynaptic spikes),

— ν1ptq “ xS1ptqy, the presynaptic spike rate and w1
the intensity of synaptic plas-

ticity triggered by presynaptic spikes only;
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— ν2ptq “ xS2ptqy, the postsynaptic spike rate and w2
the intensity of synaptic plas-

ticity triggered by postsynaptic spikes only;

—
rΦptq represents the STDP curve;

— rµps, tq“xS1pt`sqS2ptqy, the correlation between the spike trains.

The quantity x¨ ¨ ¨y ą is defined in terms of temporal and ensemble averages that are
not completely clear from a mathematical point of view, x¨ ¨ ¨y is the ensemble average

and ¨ ¨ ¨ is the temporal average over the spike trains. The model of [KGH99] is without

exponential filtering; see Section 2.A.

In our setting, we choose MpΓp,Γd, wq“Γp´Γd, na,0pzq“0, na,1pzq“Da,1`za,2 and

na,2pzq“Da,2`za,1, where za,i are defined as in Assumptions PA. Theorem 24 gives the

following equation:

dw
dt “ pDp,1´Dd,1qλ` pDp,2´Dd,2q

ż

R`
βpxqΠPA

wptqpdxq

`

ż

R`
pλz2`βpxqz1qΠPA

wptqpdx, dz1, dz2q, (2.20)

where ΠPA

w is defined in Proposition 14.

We then have the following equivalence:

[KGH99] Our model

Presynaptic plasticity w1 Dp,1´Dd,1
Presynaptic rate ν1ptq λ

Postsynaptic plasticity w2 Dp,2´Dd,2

Postsynaptic rate ν2ptq

ż

R`
βpxqΠPA

wptqpdxq

STDP

ż `8

´8

rΦpsqrµps, tq ds
ż

R`
pλz2`βpxqz1qΠPA

wptqpdx, dz1, dz2q

The equivalence of the last row can be explained as follows.

We set

Φaptq “ Ba,1 expp´γa,1tq1ttą0u `Ba,2 exppγa,2tq1ttă0u,

and

µpt, wq “

$

’

’

&

’

’

%

lim
hŒ0

EΠPA

w
pNλr0, hsNβ,Xrt, t`hsq

h2 , for tą0;

lim
hŒ0

EΠPA

w
pNλr0, hsNβ,Xrt, t`hsq

h2 , for tă0,

provided that the limits related to second order properties of the point processes Nλ

and Nβ,X exist.

In Section 2.B, a heuristic argument shows that

ż

R`
pλz2`βpxqz1qΠPA

wptqpdx, dz1, dz2q “

ż `8

´8

pΦppsq´Φdpsqqµps, wptqq ds,

leading to the equivalence between both models.
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2.4 Calcium-based rules

We investigate scaled models of calcium-based rules introduced in Section 3.1.1

of [RV21b]. In this section, we show that the asymptotic equation (2.10) has a unique

solution. Some regularity properties of the invariant distribution of the operator BF
w ,

with respect to the variable w, have to be obtained.

Assumptions C In this case, the vector pZptqq is a nonnegative one-dimensional process

pCptqq. ForwPKW , the fast process associated to the operatorBF
w of Relation (2.8) can be

expressed as pXwptq, Cwptqq, where, as before, pXwptqq is the solution of Relation (2.11)

and the SDE for pCwptqq is

dCw
“ ´γCw

ptq dt` C1Nλpdtq ` C2Nβ,Xwpdtq, (2.21)

where C1 and C2ě0, γą0. For aPtp, du, the process pΩaptqq is such that

dΩaptq “ p´αΩaptq`hapCptqqq dt,

i.e., na,0pcq“hapcq, na,1pcq“0, and na,2pcq“0 for cPR`. The functions hp and hd are

assumed to be L-Lipschitz. They represent, respectively, the influence of the calcium

concentration C on potentiation and depression.

Proposition 18. For wPKW , the Markov process pXwptq, Cwptqq has a unique invariant dis-
tribution ΠC

w, and its Laplace transform is given by, for a and bě0,

´ ln
ż

R2
`

e´ax´bcΠC

wpdx, dcq “ ν

ż 0

´8

`

1´e´bC2eγu
˘

du

`λ

ż 0

´8

ˆ

1´ exp
ˆ

´aweu´bC1e
γu
´ βw

ż u

0

´

1´e´bC2eγpu´sq
¯

es ds
˙˙

du.

Proof. The existence and uniqueness of ΠC

w is a direct consequence of Theorem 12 since

Assumptions B hold in this case and Proposition 4 of Section 5 of [RV21a] can be used.

With Proposition 13 and Lemma 2.1 of [RV21b], a stationary version pXw
8ptq, C

w
8ptqq

of the fast process pXwptq, Cwptqq can be represented as

ˆ

w

ż t

´8

e´pt´sqNλpdsq, C1

ż t

´8

e´γpt´sqNλpdsq`C2

ż t

´8

e´γpt´sqNβ,Xw
8
pdsq

˙

. (2.22)

Hence, we have to calculate E rexpp´aXw
8p0q´bCw

8p0qqs, that is,

Ψpa, bq def.

“ E
„

exp
ˆ

´

ż 0

´8

pawes`bC1e
γs
qNλpdsq´bC2

ż 0

´8

eγsNβ,Xw
8
pdsq

˙

.

We proceed as in the proof of Proposition 13. By the independence of P and Nλ,

E
„

exp
ˆ

´bC2

ż 0

´8

eγsNβ,Xw
8
pdsq

˙ˇ

ˇ

ˇ

ˇ

Nλ



“ exp
ˆ

´

ż 0

´8

`

1´e´bC2eγs
˘

βpXw
8psqq ds

˙

and, with the help of Relation (2.14), we follow the same methods to obtain the desired

result.
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Theorem 19. Under Assumptions L and C, if the functions hp and hd are Lipschitz then, as ε
goes to 0, the family of processes pΩε,pptq,Ωε,dptq,Wεptqq converges in distribution to the unique
solution pωpptq, ωdptq, wptqq of the relations
$

’

’

&

’

’

%

ωaptq “

ż t

0
e´αpt´sq

ż

R2
`

hapcqΠC

wpsqpdx, dcq ds, aPtp, du,

dwptq
dt “M pωpptq, ωdptq, wptqq ,

(2.23)

almost surely, where, for wPKW , ΠC

w is the probability distribution defined in Proposition 18.

Proof. The application of Theorem 12 is straightforward. All we have have to prove

now is that ODE (2.23) has a unique solution.

From the representation (2.22), for any 0ďwďw1, the random variables Cw
8p0q and

Cw1

8 p0q can be constructed on the same probability space. The Lipschitz property of ha,
with the constant L, gives

dapw,w
1
q
def.

“

ˇ

ˇ

ˇ
E rhapCw

8p0qqs´E
”

hapC
w1

8 p0qq
ıˇ

ˇ

ˇ
ď LE

”

|Cw
8p0q´Cw1

8 p0q|
ı

“ C2LE
„
ˇ

ˇ

ˇ

ˇ

ż 0

´8

eγsNβ,Xw
8
pdsq´

ż 0

´8

eγsNβ,Xw1
8
pdsq

ˇ

ˇ

ˇ

ˇ



.

with (2.13), we have Xw
8ptq“wX

1
8ptq for all t and, therefore,

dapw,w
1q

C2L
ď E

„
ż 0

´8

eγsP
“`

βpwX1
8psqq, βpw

1X1
8psqq

‰

, ds
‰



“ βpw1´wqE
„
ż 0

´8

eγsX1
8psq ds



“
β

γ
pw1´wq

Let pwptqq, pw1ptqq be two solutions of ODE (2.23) with the same initial point; then

∆aptq
def.

“

ˇ

ˇ

ˇ

ˇ

ˇ

ż t

0
e´αpt´sq

«

ż

R2
`

hapcqΠC

wpsqpdx, dcq´
ż

R2
`

hapcqΠC

w1psqpdx, dcq
ff

ds

ˇ

ˇ

ˇ

ˇ

ˇ

ď

ż t

0

ˇ

ˇ

ˇ
E
“

hapC
wpsq
8 p0qq

‰

´E
”

hapC
w1psq
8 p0qq

ı
ˇ

ˇ

ˇ
ds ď C2L

β

γ

ż t

0
|wpsq´w1psq| ds.

With Relation (2.23) and the Lipschitz property ofM , we get, for tďT ,

}w´w1}t
def.

“ sup
sďt
|wpsq´w1psq| ď LM

ż t

0
e´µpt´sqp∆ppsq`∆dpsqq ds

ď 2TLMC2L
β

γ

ż t

0
}w´w1}s ds.

This implies that p}w´w1}tq is identically 0. The theorem is proved.

The Lipschitz assumptions for the functions php, hdq ofAssumptions Cdo not apply

to the classical threshold functions pSp, Sdq from [GB12] defined by

Sapxq “ 1txěθau, xě0. (2.24)
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Additionally, even in the case of Lipschitz functions, the quantities

ż

RˆR`
hapcqΠC

wpdx, dcq, aPtp, du,

of the ODE (2.23) do not have a closed form expression in general.

Theorem 19 highlights the importance of the calcium concentration on the dynam-

ics of the synaptic weight. Interestingly, calcium has been the subject of a wide array of

experimental studies, and biologists have developed severalmeans to follow its concen-

tration both locally and globally during experiments. In particular, it is now possible

to monitor calcium concentration in dendrites of postsynaptic neurons during stim-

ulations with calcium fluorescence indicators, such as GCaMP for example [NOI01],

See [HS08]. It may be therefore possible to infer these cumulative functions from

such experiments and study the dynamics of Theorem 19 for those realistic calcium

concentrations.

From the point of view of numerical analysis, it is quite difficult to obtain some

simple numerical results to express solutions of the ODE (2.23). It could be done,

by simulations, to estimate the quantities EΠC

w
phapCqq, aPtp, du for a large number of

values for w. A recent article (see [GWO16]) has derived some approximations for

specific cases.

For this reason, the next section investigates a class of discrete calcium-based

models for which the invariant distributions have an explicit expression which can be

used in practice.

2.5 Discrete models of calcium-based rules

In this section, we study a simple model of plasticity where the membrane potentialX ,

the calcium concentrationC, and the synaptic weightW are integer-valued variables. It

amounts to representing these threequantitiesX ,C, andW asmultiples of a “quantum”

instead of a continuous variable. A general class of such discrete models has been

introduced in Section 4 of [RV21b].

This amounts to describing the model of plasticity as a chemical reaction network

of interacting chemical species: C (calcium), W synaptic quanta, X ions. The associated

chemical reactions could be described as

#

H
λ
á WX`C1C,

X β
á C2C,

#

BdW áHá BpW ,

W µ
áH,

#

X 1
áH,

C γ
áH.

In this setting, the state variable is the vector of the number of copies of the different

chemical species. See [Fei19] for a general introduction to chemical reaction networks

and also Chapter 2 of [AK15]. It should be noted that our model is not strictly speaking

a chemical reaction network since some reactions rates are defined by the processes

pΩaptqq, aPtp, du.
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Figure 2.2: Comparison between continuous and discrete calcium-based models.
λ“0.1, γ“2, C1“C2“1, Bp“2, Bd“1, βpxq“p0.01xq`, α“0.01 and δ“0.
For the continuous model, we tookMpωp, ωd, wq“ωp´ωd.
Inset, standard deviations, sd, ofWε and w at the end of the simulations.

The expected value of w
MC

is computed with Monte Carlo estimations of ΠCQ

w .

The expected value of w
AR

is computed with estimated ΠCQ

w with the expressions of

Section 2.C.
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The state of the system is associated to the solution of the following SDEs;

$

’

’

’

’
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’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

%

dXptq “ ´

Xpt´q
ÿ

i“1
N1,ipdtq `W pt´qNλpdtq ´

Xpt´q
ÿ

i“1
Nβ,ipdtq,

dCptq “ ´

Cpt´q
ÿ

i“1
Nγ,ipdtq ` C1Nλpdtq ` C2

Xpt´q
ÿ

i“1
Nβ,ipdtq,

dΩaptq “

”

´αΩaptq`hapCptqq
ı

dt, aPtp, du,

dW ptq “ ´

W pt´q
ÿ

i“1
Nµ,ipdtq `BpNΩppt´qpdtq ´Bd1tW pt´qěBduNΩdpt´qpdtq,

where C1, C2PN and, for aPtp, du, BaPN and ha is a nonnegative function. For ξą0,
Nξ (resp., pNξ,iq) is a Poisson process on R` with rate ξ (resp., an i.i.d. sequence

of such point processes). For aPtp, du, as before, the notation NΩapt´qpdtq stands for

P rp0,Ωapt´qq, dts, where P is a Poisson process inR2
`with rate 1. All Poisson processes

are assumed to be independent.

Outside the leakingmechanism, the time evolution of the discrete randomvariable

pW ptqq is driven by two inhomogeneous Poisson processes, one for potentiation and

the other for depression with respective intensity functions pΩpptqq and pΩdptqq.
The scaling is done in an analogous way as in Section 2.2. The corresponding SDEs

are then expressed as

$

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

%

dXεptq “ ´

Xεpt´q
ÿ

i“1
N1{ε,ipdtq `Wεpt´qNλ{εpdtq ´

Xεpt´q
ÿ

i“1
Nβ{ε,ipdtq,

dCεptq “ ´

Cεpt´q
ÿ

i“1
Nγ{ε,ipdtq ` C1Nλ{εpdtq ` C2

Xεpt´q
ÿ

i“1
Nβ{ε,ipdtq,

dΩε,aptq “ ´αΩε,aptq dt`hapCεptqq dt, aPtp, du,

dWεptq “ ´

Wεpt´q
ÿ

i“1
Nµ,ipdtq`BpNΩε,pptqpdtq´Bd1tWεpt´qěBduNΩε,dptqpdtq,

(2.25)

Definition 20 (Fast processes). For a fixed W“w, the fast variables of the SDEs (2.25) are
associated to a Markov process pXwptq, Cwptqq on N2 whose transition rates are given by, for
px, cqPN2,

px, cq ÝÑ

#

px`w, c`C1q λ,

px´1, cq x,
ÝÑ

#

px, c´1q γc,

px´1, c`C2q βx.

The next result is the equivalent of Theorem 19 in a discrete setting.

Theorem 21 (Averaging principle for discrete calcium-based model). If hp and hd
are functions on N with a finite range of values, as ε goes to 0, the family of processes
pΩε,pptq,Ωε,dptq,Wεptqq defined by Relations (2.25) converges in distribution to the unique
solution pωpptq, ωdptq, wptqq of the relations

$

’

’

’

&

’

’

’

%

ωaptq “

ż t

0
e´αpt´sq

ż

N2
hapcqΠCQ

wpsqpdx, dcq ds, aPtp, du,

dwptq “ ´
wpt´q
ÿ

i“1
Nµ,ipdtq`BpNωpptqpdtq´Bd1twpt´qěBduNωdptqpdtq,

(2.26)

where ΠCQ

w is the invariant distribution of the Markov process of Definition 20.
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The threshold functions pSp, Sdq defined by Relations (2.24) and used in classical

models of calcium-based STDP [GB12] satisfy the conditions of the theorem. For the

proof, see the appendix of [RV21a].

The theorem shows that the limiting process pwptqq is a jump process on N driven

by two nonhomogeneous Poisson processes whose intensity functions pωaptqq, aPtp, du
are continuous.

The explicit expression of the invariant distribution of pCwptqq is given in Proposi-

tion 4.3 of [RV21b]. Only the distribution of the calcium variable Cw
is considered due

to its role in the expression of pωaptqq, aPtp, du in Theorem 21.

Proposition 22 (Equilibrium of fast process). For wPN, the Markov process on N2 of
Definition 20 has a unique invariant distribution ΠCQ

w , and the generating function of Cw is
given by, for uPr0, 1s,

E
`

uC
w˘

“ exp
ˆ

´λ

ż `8

0
p1´∆pu, s, wqq ds

˙

(2.27)

with

∆pu, s, wq “
´

1`pu´1qp1psq
¯C1

˜

1`
C2
ÿ

i“1
pu´1qkp2ps, kq

¸w

p1psq “ e´γs and p2ps, kq “
β

β`1´γk

ˆ

C2

k

˙

`

e´γks´e´pβ`1qs˘ .

We present in Figure 2.2 simulations for different values of θp and θd of the contin-
uous model (Section 2.4) with step functions Sa (left) and of the discrete model (right).

In particular, we simulate the scaled system for different values of ε and we also esti-

mate the solution of (2.23) and (2.26), w
MC

, using Monte Carlo estimations to compute

ΠC{CQ
w pCěθaq.

Moreover, for the discrete case, we are able to compute ΠCQ

w pCěnq for n“0, 1, 2; see
Section 2.C. Based on these analytical results, we are able to obtain the numerical values

of the parameters of the dynamic of the asymptotic process pw
AR
ptqq. Simulations of

the expected values of pw
AR
ptqq are represented in green in Figure 2.2.

These simulations illustrate Theorems 19 and 21, with the convergence of the scaled

processesWε towards our asymptotic process. For the continuous case, we observe that

even if the step function Sa does not verify the conditions of 19, convergence seems to

hold anyway. This is also illustrated by the decrease in standard deviations (inset) as ε
goes to 0. For the discrete case, we note the same phenomenon for the expected value

and the standard deviation. Recall that the limiting process is stochastic in this context.

Finally, it also shows that, qualitatively, the two classes of models continuous/discrete

behave quite similarly.
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Appendix

2.A Averaging principles for models without exponential

filtering

In Section SM2 of [RV21b] more “direct” dynamics for the time evolution of synaptic

weight have been presented. For aPtp, du, the update at time t depends only on the

instantaneous synaptic plastic processes

ΓapNλ,Nβ,Xqpdtq “ na,0pZpt´qq dt`na,1pZpt´qqNλpdtq`na,2pZpt´qqNβ,Xpdtq

at time t. The corresponding synaptic weight process pW ptqq satisfies the relation

dW ptq “M
`

ΓppNλ,Nβ,Xq,ΓdpNλ,Nβ,Xq,W pt´q
˘

pdtq,

for some functionalM .

Recall that for our model, the dynamic of the synaptic weight pW ptqq is defined by,

dW ptq “M pΩpptq,Ωdptq,W ptqq dt,

where pΩaptqq, aPtp, du, is a filtered/smoothed version of ΓapNλ,Nβ,Xq,

dΩaptq “ ´αΩaptq dt`na,0pZptqq dt` ΓapNλ,Nβ,Xqpdtq

It turns out that a stochastic averaging principles also holds for the model without

an exponential filtering. We first introduced the scaled version of this system.

Definition 23 (Scaled dynamical system for instantaneous plasticity). We define the
stochastic process pXptq,W ptqq with initial state px0, w0q, satisfying the evolution equations,
for tą0,

$
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’

%

dXεptq “ ´
1
ε
Xεptq dt`Wεpt´qNλ{εpdtq ´ gpXεpt´qqNβ{ε,Xε

pdtq,

dZεptq “
1
ε

´

´γ d Zεptq`k0

¯

dt
`k1pZεpt´qqNλ{εpdtq`k2pZεpt´qqNβ{ε,Xε

pdtq,

dW εptq “ εM
`

ΓppNλ,Nβ,Xq,ΓdpNλ,Nβ,Xq,W ptq
˘

pdtq,

(2.28)

where Γp and Γd are plasticity kernels. The functionalM is defined by

M : M`pR`q2ˆR ÞÑ M`pR`q (2.29)

pΓp,Γd, wq ÑMpΓp,Γd, wq.

We have to modify Assumptions B-(d) by Assumptions B*-(d), in the following

way,M can be decomposed as,MpΓp,Γd, wq“MppwqΓp´MdpwqΓd ´ µw, whereMapwq
is non-negative continuous function, and,

Mapwq ď CM ,

for all wPKW , for aPtp, du.
An analogue of Theorem 12 in this context is the following result.
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Theorem 24 (Averaging principle for instantaneous plasticity). Under Assumptions A
and B* and for initial conditions satisfying Relation (2.6), there exists S0Pp0,`8s, such that
the family of processes pW εptq, tăS0q associated to Relations (2.28) and (2.29), is tight for the
convergence in distribution as ε goes to 0. Almost surely, any limiting point pwptq, tăS0q

satisfies the relation

dwptq “
ż

RˆR`
`

M
´

rpna,0pzq`λna,1pzq`βpxqna,2pzqq dtsaPtp,du , wptq
¯

Πwptqpdx, dzq. (2.30)

where, for wPKW , Πw is the invariant measure Πw of the operator BF
w of Relation (2.8).

Proof. Due to the specific expression of M , the arguments follow the ones used

in [RV21a]. The proof is skipped.

Comparison with Theorem 12
Both theorems show that the dynamics of the synaptic weight w in the decoupled

stochastic system depend on an integral over the stationary distribution of the fast

process. However, in Theorem 12, the averaging property occurs at the level of the

synaptic plasticity processes ωa,

dωaptq
dt “ ´αωaptq `

ż

RˆR`
`

”

na,0pzq`λna,1pzq`βpxqna,2pzq
ı

dΠwptqpx, zq,

and, the functionM is applied afterwards to have the update of the synaptic weight w,

dwptq
dt “Mpωpptq, ωdptq, wptqq.

In Theorem 24, with no exponential filtering, the averaging is applied directly at the

level of the synaptic update,

dwptq “
ż

RˆR`
`

M
´

rpna,0pzq`λna,1pzq`βpxqna,2pzqq dtsaPtp,du , wptq
¯

Πwptqpdx, dzq.

In particular, with a linear functionM , both models are equivalent except for the

exponential filtering of the plasticity kernels.

2.B Links with models of physics: a heuristic approach

In this section we give a, non-rigorous, derivation of Relation (2.19) of [KGH99] to

establish a connection with our main results in this specific case. For wPKW , from the

definition of Φa, aPtp, du,

ż 0

´8

ΦapsqEΠPA

w

ˆ

Nβ,Xr0, hs
h

Nλrs, s`hs

h

˙

ds

“ Ba,1EΠPA

w

ˆ
ż 0

´8

exppγa,1sqEΠPA

w

„

Nβ,Xr0, hs
h

Nλrs, s` hs

h

ˇ

ˇ

ˇ

ˇ

F0



ds
˙

“ Ba,1EΠPA

w

ˆ

EΠPA

w

„

Nβ,Xr0, hs
h

ˇ

ˇ

ˇ

ˇ

F0


ż ´h

´8

exppγa,1sq
Nλrs, s` hs

h
ds
˙
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„ Ba,1EΠPA

w

ˆ

βpXp0qq
ż ´h

´8

exppγa,1sq
Nλrs, s` hs

h
ds
˙

and, if Nλ“ptn, nPZq, with t0ď0ăt1,

“ Ba,1EΠPA

w

˜

βpXp0qq
ÿ

tnď´h

1
h

ż tn`h

tn

exppγa,1sq ds
¸

„ Ba,1EΠPA

w

˜

βpXp0qq
ÿ

nď0
exppγa,1tnq

¸

“ EΠPA

w
pβpXp0qqZa,1p0qq “

ż

R5
`

βpxqza,1ΠPA

w pdx, dzq

by using a representation of Za,1p0q similar to that of Xw
8p0q with Relation (2.13). Simi-

larly,
ż `8

0
ΦapsqEΠPA

w

ˆ

Nβ,Xr0, hs
h

Nλrs, s`hs

h

˙

ds „
ż

R5
`

λza,2ΠPA

w pdx, dzq.

Extensions
The interest of Relation (2.19) is that it may be formulated for a general plasticity curve

Φa for all-to-all pair-based models. Recall that the corresponding plasticity kernels are

of class M only for exponential functions. We conjecture that under the conditions, for

aPtp, du,

—

ż `8

´8

|Φapsq| ds ă `8;

— lim
tÑ0`

Φaptq and lim
tÑ0´

Φaptq exist;

the convergence of the scaled process to the ODE (2.19) with a convenient rµ should

hold. For Markovian plasticity kernels, this is done by using Markov properties of the

fast processes pXεptq, Zεptqq. See [RV21a]. We do not have this tool in the case of a

general plasticity curve. The proof of such an extension should require an additional

analysis.

2.C Computation of ΠCQ

w for C1“C2“1
Proposition 25 (Equilibrium of fast process). For C1“C2“1 and wPN, the Markov process
onN2 ofDefinition 20 has a unique invariant distributionΠw, and if the distribution of pXw, Cwq
is Πw, the generating function of Cw is given by, for uPr0, 1s,

gwpuq “ E
`

uCw
˘

“ exp
ˆ

´λ

ż `8

0

`

1´
`

1´e´γs`ue´γs
˘

p1´ppsq ` uppsqqw
˘

ds
˙

, (2.31)

with
ppsq “

`

e´γs´e´pβ`1qs˘L
pβ`1´γq.
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In particular, knowing that,

ΠCQ

w pCě0q “ 1,

we can easily compute,

ΠCQ

w pCě1q “ 1´ ΠCQ

w pC“1q

with,

gwp0q “ exp
ˆ

´λ

ż `8

0

`

1´
`

1´e´γs
˘

p1´ppsqqw
˘

ds
˙

and,

ΠCQ

w pCě2q “ 1´ gwp0q ´ g1wp0q

with,

g1wp0q “ λ

„
ż `8

0

`

e´γs p1´ppsqqw ` wppsq
`

1´e´γs
˘

p1´ppsqqw´1˘ ds


gwp0q.
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CHAPTER 3

AVERAGING PRINCIPLES FOR MARKOVIANMODELS OF

PLASTICITY

In this paper we consider a stochastic system with two connected nodes, whose

unidirectional connection is variable and depends on point processes associated to

each node. The input node is represented by an homogeneous Poisson process,

whereas the output node jumps with an intensity that depends on the jumps of

the input node and the connection intensity. We study a scaling regime when the

rate of both point processes is large compared to the dynamics of the connection.

In neuroscience, this system corresponds to a neural network composed by two

neurons, connected by a single synapse. The strength of this synapse depends on the

past activity of both neurons, the notion of synaptic plasticity refers to the associated

mechanism. A general class of such stochastic models has been introduced in [RV20]

to describe most of the models of long-term synaptic plasticity investigated in the

literature. The scaling regime corresponds to a classical assumption in computational

neuroscience that cellular processes evolve much more rapidly than the synaptic

strength.

The central result of the paper is an averaging principle for the time evolution of the

connection intensity. Mathematically, the key variable is the point process, associated

to the output node, whose intensity depends on the past activity of the system. The

proof of the result involves a detailed analysis of several of its unbounded additive

functionals in the slow-fast limit, and technical results on interacting shot-noise

processes.

abstract

3.1 Introduction

Neurons exchange electrical and chemical signals at specific spots, called synapses. The

synaptic transmission between neural cells is unidirectional, in the sense that, the signal

goes from the pre-synaptic neuron towards the post-synaptic neuron. This interaction

is modulated over time, and particularly by the concomitant activity of both neurons.

In [RV20] we have introduced a general class of mathematical models to represent and

study synaptic plasticity mechanisms.

A basic model to investigate such phenomenon consists of a pre-synaptic neuron

connected through a synapse to a post-synaptic neuron. The associated stochastic

process is described by two random variables pX,W q and the spiking activity of each

neuron is represented by a point process.

a. Point process for pre-synaptic spikes: Nλ.

This point process is associated to the instants when the pre-synaptic neuron is

spiking, i.e. when it transmits a chemical/electrical signal to the post-synaptic

neuron via the synapse. We assume that Nλ is an homogeneous Poisson process

with rate λ.
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b. Synaptic weight: W .

It describes the strength of the connection from the pre-synaptic neuron to the

post-synaptic neuron.

c. Post-synaptic membrane potential: X .

This variable is for the current activity of the post-synaptic neuron. At a jump

of Nλ, the membrane potential X is incremented by W , where W is the current

synaptic weight.

d. Point process for post-synaptic spikes: Nβ,X .

In state X“x, the post-synaptic neuron emits a spike at rate βpxq, where β is the
activation function of the neural cell. The point process associated to these instants

is an inhomogeneous Poisson process denoted by Nβ,X . This is a key variable of

the stochastic model. See Relation (3.6) for a formal definition.

As explained in [RV20], for some synaptic mechanisms, the time evolution of W
may depend, in a complex way, on past spiking times of both adjacent neurons. In our

model it is a functional of the point processes Nλ and Nβ,X . The model relies on two

clearly stated hypotheses: the effect of plasticity only depends on the relative timing of
the activity of both neuronal cells and is seen over the synaptic strength on long timescales.

Accordingly, the purpose of the current paper is to prove limit theorems for a

scaled version of the corresponding stochastic processes pXptq,W ptqq.

A simple model
We begin by the description of a simplified model to highlight the role of the different

components in these stochastic models. We consider the following set of Stochastic

Differential Equations (SDEs),

$

’

&

’

%

dXptq “ ´Xptq dt`W pt´qNλpdtq,
dZptq “ ´γZptq dt`B1Nλpdtq `B2Nβ,Xpdtq,
dW ptq “ Zpt´qNβ,Xpdtq,

(3.1)

where hpt´q is the left-limit of the function h at tą0 and, for i“t1, 2u, BiPR`.
In this model, the time evolution of pW ptqq is overly simplified, plasticity processes

are modeled by an increase of the synaptic weightW at each jump of Nβ,X by the value

of pZptqq.
The process pZptqq encodes the past spiking activity of both neurons through an

additive functional of Nλ and Nβ,X with an exponential decay factor γą0. The process
pZptqq is associated to a cellular process, in the generalmodel this is amulti-dimensional

process.

The main process of interest is the strength of the synaptic connection pW ptqq. It

has been extensively studied both in experimental neuroscience and in physics, there

are nevertheless few rigorous mathematical results on the dynamical evolution ofW .

From a mathematical perspective, the variables pXptq, Zptq,W ptqq, solutions of

SDE (3.1) are central to the model. The point process Nβ,X is nevertheless the key

component of the system since it drives the time evolution of pZptqq and pW ptqq and,
consequently, of pXptqq. Most of the mathematical difficulties of our paper are related

to asymptotic estimates of linear functionals of Nβ,X .
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The scaling approach of this paper follows from the fact that the model can be

expressed as a slow-fast system. An important property of this system is that neuronal

processes, associated to the point processes Nλ and Nβ,X , occur on a timescale which

is much faster than the timescale of the evolution of pW ptqq. See Sections 1 and 4.1

of [RV20] and the references therein for a discussion on this topic.

Using this scaling for the simple model, SDE (3.1) becomes, for εą0,
$

’

&

’

%

dXεptq “ ´Xεptq dt{ε`Wεpt´qNλ{εpdtq,
dZεptq “ ´γZεptq dt{ε`B1Nλ{εpdtq `B2Nβ{ε,Xεpdtq,
dWεptq “ Zεpt´qεNβ{ε,Xεpdtq.

(3.2)

Pre-synaptic spikes occur at rate λ{ε and when the membrane potential of the post-

synaptic cell is x, a post-synaptic spike occurs at rate βpxq{ε. The variables pXεptqq and
pZεptqq evolve on the timescale tÞÑt{ε, with ε small, they are fast variables.

Conversely, the increments of the variableW are scaled with the parameter ε, the
integration of the differential element εNβ{ε,Xεpdsq on a bounded time-interval is Op1q.
For this reason, pWεptqq is described as a slow process.

This is a classical assumption in the corresponding models of statistical physics.

Approximations of pWεptqqwhen ε is small are discussed and investigated with ad hoc

methods, see [KGH99] for example.

Averaging principles
The main goal of the present paper is to establish a limit result, or averaging principle,

for pWεptqqwhen ε goes to 0 for a general class of synaptic plasticity models.

We denote by pXw, Zwq the solution pXptq, Zptqq of Relation (3.2) when the process

pW ptqq is constant and equal to w. Under appropriate conditions, it has a unique

equilibrium distribution Πw. The averaging principle for the simple model can be

expressed as follows.

There exists S0Pp0,`8s, such that the processes pWεptq, 0ďtăS0q is tight for the

convergence in distribution when ε goes to 0, and any limiting point pwptq, 0ďtăS0q

satisfies the following integral equation,

wptq “ wp0q`
ż t

0

ż

R2
`

zβpxqΠwpsqpdx, dzq ds, tPr0, S0q. (3.3)

See Section 5 of Chapter 1 of [Bil99] for general results on tightness properties and

convergence in distribution.

We discuss now some of the technical difficulty to derive such results for our

model. The integration of SDE (3.2) gives the relation

Wεptq “ Wεp0q`
ż t

0
Zεps´qεNβ{ε,Xεpdsq.

The tightness of the family of processes pWεptqq is equivalent to the tightness of

ˆ
ż t

0
ZεpsqεNβ{ε,Xεpdsq

˙

(3.4)
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A general approach to prove averaging principles is presented in [Kur92] for jump

processes. See Chapter 7 of [FW98] and especially [PSV77] for an introduction to

averaging principles. If we had an expression of the type

ˆ
ż t

0
F pXεpsq, Zεpsqq ds

˙

,

where sÑF pXεpsq, Zεpsqq is a bounded continuous function on R`, a direct use of the

results of [Kur92], Lemma 1.3 and 1.5, would give the desired tightness. This is the

case of [Hel18] for the time-elapsed model of plasticity for which this representation

holds, one of the few rigorous results in this domain.

It does not seem to be possible to handle functionals of the form (3.4) in this way.

The process pZεpsqq is clearly not bounded and neither is the intensity of the point

process Nβ{ε,Xε , since pβpXεpsqq is also not bounded. Remember that fast processes are

on a rapid time scale so visit their state space “quickly”, the values of the integrals

of (3.4) can be large and therefore must be controlled in an appropriate way.

Two other interesting properties emerge from the stochastic averaging result from

Section 3.4.

a. Uniqueness.

If Relation (3.3) has a unique solution for a given initial state, a result for the

convergence in distribution of pWεptqq when ε goes to 0 is therefore obtained.

Uniqueness holds if the integrand, with respect to s, of the right-hand side of

Relation (3.3) is locally Lipschitz as a function of wpsq. Regularity properties of

the invariant distribution Πw as a function of w need to be verified and this is not

a concern in the case of our simple model. We will consider in fact much more

general models for pXw, Zwq, when Zw
a multi-dimensional process in particular.

We did not try to state a set of conditions that can ensure the desired regularity

properties of the correspondingΠw. Theproof of theHarris ergodicity of pXw, Zwq

for a fixed w of Section 3.C of Appendix, though not really difficult, is already

cumbersome.

The proof of Proposition 45 for the simple model gives an example of how this

property can be established. In a general context, this kind of result is generally

proved via the use of a common Lyapounov function for pXw, Zwq for all w is in

the neighborhood of some w0ą0. See [Has80], for example. Uniqueness results

have already been obtained in Sections 5 and 6 of [RV20] for several important

practical cases. In Section 3.8 we investigate these questions for our simplemodel.

b. Blow-up phenomenon.

The convergence properties are stated on a fixed time interval r0, S0q. For some

models, the variable S0 cannot be taken as `8, see the example of Section 3.4

and Proposition 47. More specifically, the limit in distribution of pWεptqq as ε
goes to 0 blows-up, i.e. hits infinity in finite time. An analogue property holds

for some mathematical models of large populations of neural cells with fixed

synaptic strengths. See [CCP11] for example, where the blow-up phenomenon

is the result of mutually exciting dynamics of populations of neural cells. In our

case, the strengthening of the connection may grow without bounds when the

activation function β has a linear growth. See Proposition 47 of Section 3.8.
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A brief description of the general model of synaptic plasticity
We shortly describe the general setting of the models investigated in this paper. See

Section 3.2 for a detailed presentation.

a. The process pXptqq.
The output neuron follows leaky-integrate dynamics as in Equation (3.1). In

addition, the influence of a post-synaptic spike Nβ,X at time tą0 is represented as

a drop ´gpXpt´qq of the post-synaptic potential after the spike.

b. Theprocess pZptqq“pZiptqq is amulti-dimensional process satisfying the same type

of ODE as in our simple case but with the constants B1 and B2 being replaced by

functions k1 and k2 ofZptq. A constant drift term k0 is also added to the dynamics.

The ith component pZiptqq satisfies an SDE of the type

dZiptq “ p´γiZiptq`k0,iq dt`k1,ipZpt´qqNλpdtq`k2,ipZpt´qqNβ,Xpdtq.

c. Evolution of pW ptqq.
The dependence is more sophisticated since it involves two additional processes

pΩp,Ωdq. The first one, pΩpptqq integrates, with an exponential decay α a linear

combination of the processes leading to potentiation, i.e. to increase the synaptic

weight. The process pΩdptqq has a similar role for depression, i.e. to decrease the

synaptic weight. They are expressed as, for aPtp, du,

Ωaptq“

ż t

0
e´αpt´sq rn0,apZpsqq ds`n1,apZps´qqNλpdsq`n2,apZps´qqNβ,Xpdsqs .

The changes of pZptqq are thus integrated “smoothly” in the evolution of pW ptqq
in agreement with measurements of the biological literature. See Appendix A

of [RV20]. Finally, pW ptqqPKW verifies

dW ptq “M pΩpptq,Ωdptq,W ptqq dt,

where KWĂ R represents the synaptic weight domain, and the functional M is

such thatW ptq stays in KW for all tě0.

It has been shown in Section 3 of [RV20] that these models encompass most clas-

sical STDP models from statistical physics. The multiple coordinates of pZptqq can be

interpreted as the concentrations of chemical components implicated in plasticity, that

are created/suppressed by spiking mechanisms

Links to non-linear Hawkes point processes
The spiking instants of a neuron can also be seen as a self-exciting point process since

its instantaneous jump rate depends on past instants of its jumps. This corresponds to

the class of Hawkes point process M on R` associated to a function φ and exponential

decay γ. More precisely, it is a non-homogeneous Poisson point process M whose

intensity function pλptqq is given by

pλptqq “

ˆ

φ

ˆ
ż t

0
e´γpt´sqMpdsq

˙˙

.
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These processes have received of lot of attention from the mathematical literature, for

some time now. They are mainly used in models of mathematical finance, but also in

neurosciences. See the pioneering works of [HO74] and [Ker64].

A special case of the first equation of Relation (3.1) is, for wě0,

dXptq “ ´Xptq dt`wNλpdtq´Nβ,Xpdtq,

if Xp0q“0, Lemma 30 below gives the representation

Xptq “ w

ż t

0
e´pt´sqNλpdsq´

ż t

0
e´pt´sqNβ,Xpdsq, @tě0.

Hence, Nβ,X can be seen as an extended Hawkes process with activation function β
and exponential decay 1.

In the systemof equations (3.1), pXptqq and pZptqq can also be represented as amulti-

dimensional Hawkes processes. See [Haw71]. However in our model, an important

feature not present in studies of Hawkes processes has been added: the synaptic weight

process pW ptqq is not constant.

Extensions
The stochastic model with plastic connections presented in this paper may also be used

in other contexts than neuroscience. Auto-exciting processes, Hawkes process, used

in finance [ELL11], genomics [GS05; RS10], sociology [CS08] suppose, in general, that

the influence of each point process on the others is constant over time. For example

in [CS08], a Hawkes process is defined to describe the cascade of influences that exist

in a social network, taking the example of Youtube videos views. The coefficients that

model interactions between different individuals are constant. One could extend this

model by taking into account the fact that individuals who watch repeatedly videos at

the same time, may develop a stronger interaction. It should be therefore possible to

extend these classes of models by adding a dependence of the connections on the past

activity of the Hawkes process as for our models. Using classical results on stationary

distributions of Hawkes processes with fixed connectivity, a slow-fast analysis similar

to the one developed here should then be possible for these models.

Organization of the paper
In Section 3.2, themain processes and definitions are introduced aswell as assumptions

toprove anaveragingprinciple. The scaling ispresented inSection3.3 and the averaging

principle in Section 3.4. In this section the general strategy for the proof of the main

theorem is detailed. Section 3.5 investigates monotonicity properties and a coupling

result, crucial in the proof of tightness, is proved. Section 3.6 is devoted to the proof of

tightness results when the process pWεptqq is assumed to be bounded. Finally, the proof

of the main theorem is completed in Section 3.7. In Section 3.B of Appendix, several

useful tightness results are proved for interacting shot-noise processes. The ergodicity

properties of fast processes are analyzed in Section 3.C of Appendix. Section 3.D of

the Appendix discusses averaging principles for related discrete models of synaptic

plasticity.
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3.2 A stochastic model for plasticity

We define the stochastic model associated to Markovian plasticity kernels introduced

in [RV20]. The probabilistic setting of these models along with formal definitions are

detailed in the following section.

Definitions and notations
The space of Borelian subsets of a topological space H , is denoted as BpHq. Let

pΩ,F , pFtq,Pq be a filtered probability space. We assume that two independent Poisson

processes, P1 and P2 on R2
`, with intensity dxˆ dy are defined on pΩ,F , pFtq,Pq. See

[Kin92] for example. For PPtP1,P2u and A, BPBpR`q and a Borelian function f on R`,

P pAˆBq def.“
ż

AˆB

Ppdx, dyq,
ż

R`
fpyqPpA, dyqdef.“

ż

AˆR`
fpyqPpdx, dyq.

For tě0, the σ-field Ft of the filtration pFtqtě0 is assumed to contain all events before

time t for both point processes, i.e.

σ
´

P1 pAˆps, tsq ,P2 pAˆps, tsq , APB pR`q , sďt
¯

Ă Ft. (3.5)

A stochastic process pHptqq is adapted if, for all tě0, Hptq is Ft-measurable. It is a càdlàg
process if, almost surely, it is right continuous and has a left limit at every point tą0,
Hpt´q denotes the left limit of pHptqq at t. The Skorohod space of càdlàg functions from

r0, T s to S is denoted as Dpr0, T s, Sq. See [Bil99] and [EK09]. The mention of adapted

stochastic processes, or of martingale, will be implicitly associated to the filtration

pFtqtě0.

The set of real continuous bounded functions on the metric space SĂRd
is denoted

by CbpSq. Ckb pSqĂCbpSq is the set of bounded, k-differentiable functions on S with

respect to each coordinate, with all derivatives bounded and continuous. The multi-

dimensional extensions to S are denoted by Ckb pS,Sq.

Inhomogeneous Poisson Process for the Output Node. We introduce an important

point processNφ,H , that represents the jumps of a nodewhose activity process is pHptqq,
with activation function φ. φ is a non-negative càdlàg function on R, it is defined by

ż

R`
fpuqNφ,Hpduq def.

“

ż

R`
fpuqP2

´

p0, φpHpu´qqs , du
¯

, (3.6)

for any Borelian function f on R`.

The plasticity process
In the rest of thepaper,wewill consider amore generic connected systemwithplasticity,

inspired from the neuronal example given in the Introduction. An input node will be

represented by an homogeneous Poisson process with intensity λ, taking up the role

of the pre-synaptic neuron. This input node will interact with an output node, whose

activity X (i.e. membrane potential) integrates over time the jumps of the input node,

with an amplitudeW and an exponential decay taken with time constant 1. The output
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node jumpswith an inhomogeneous rate βpXq that depends on the output node activity

X . The connection intensityW is plastic and depends on previous interactions between

both nodes, through a Markovian multi-dimensional variable Z, in the same way that

the synaptic weight undergoes synaptic plasticity in the neuronal model.

Definition 26 (Time evolution). The càdlàg process

pUptqq“pXptq, Zptq,Ωpptq,Ωdptq,W ptqq P RˆR`
`ˆR2

`ˆKW ,

is solution of the following Stochastic Differential Equations (SDE), starting from some initial
state Up0q“U0“px0, z0, ω0,p, ω0,d, w0q.

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

dXptq “ ´Xptq dt`W ptqNλpdtq´g pXpt´qqNβ,X pdtq ,
dZptq “ p´γdZptq`k0q dt`k1pZpt´qqNλpdtq`k2pZpt´qqNβ,Xpdtq,
dΩaptq “ ´αΩaptq dt`na,0pZptqq dt

`na,1pZpt´qqNλpdtq`na,2pZpt´qqNβ,Xpdtq, aPtp, du,

dW ptq “M pΩpptq,Ωdptq,W ptqq dt,

(3.7)

with the notation adb“pakbkq for the Hadamard product, for a“pakq, b“pbkqPR`
`.

Recall that, see Section 3.1, KW is an interval of R which contains the range of

values for the connection intensity.

We now state the assumptions used for the proof of Theorem 29.

Inputs jumps

The jumps of the input node are given by a Poisson process with rate λą0,

Nλpdtq def.

“ P1 pp0, λs, dtq , (3.8)

where P1 is the Poisson point process introduced in Section 3.2.

Output jumps

When the output node activity is x, a jump of the output node occurs at rate βpxq and
leads to a decrease of output activity x´gpxq:

— It is assumed that β is a non-negative, continuous function on R and that βpxq“0
for xď´cβď0. Additionally, there exists a constant Cβě0 such that

βpxqďCβp1`|x|q, @xPR. (3.9)

— The function g is continuous on R and 0ďgpxqďmaxpcg, xq holds for all xPR, for
some cgě0.

The jumps of the output node are represented by the point process Nβ,X . Recall that

Nβ,Xpdtq“P2

´

p0, βpXpt´qqs , dt
¯

.
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The process pZptqq

The process pZptqq is a multi-dimensional process, with values in R`
`, it is driven by

the general spiking activity of the system, and therefore, depends only on the point

processes Nλ and Nβ,X . For some models it describes the time evolution of chemical

components within the synapse. pZptqq is a càdlàg function with values in R`
`, solution

of the stochastic differential equation

dZptq “ p´γ d Zptq`k0q dt` k1pZpt´qqNλpdtq ` k2pZpt´qqNβ,X , (3.10)

where, as before, d is for the Hadamard product, k0PR`
` is a constant and k1 and k2 are

measurable functions from R`
` to R`

. Furthermore, the pkiq are chosen such that pzptqq
has values in R`

` whenever zp0qPR`
`.

It is assumed that

a. all coordinates of the vector γ are positive;

b. the non-negative functions ki, i“t0, 1, 2u, are C1
b pR`

`,R`
`q and bounded by Ckě0.

The process pΩpptq,Ωdptqq

These variables, in R2
` encode, with an exponential decay, the total memory of instan-

taneous plasticity processes represented by the process pZptqq. The process pΩpptqq is
driving potentiation of the connection, i.e. the derivative of the connection intensity

is an increasing function of this variable. In an analogous way, pΩdptqq is associated to

depression, i.e. the derivative of the connection intensity is a decreasing function of

this variable. The system of equations for pΩpptq,Ωdptqq is a set of two one-dimensional

SDEs, for aPtp, du,

dΩaptq “ ´αΩaptq dt`na,0pZptqq dt
`na,1pZpt´qqNλpdtq`na,2pZpt´qqNβ,Xpdtq.

We suppose that there exists a constantCn such that, for jPt0, 1, 2u, aPtp, du, na,j verifies,

na,jpzqďCnp1`}z}q, (3.11)

where, for zPR`
`, }z}“z1` ¨ ¨ ¨ `z`.

For any wPKW and aPtp, du, the discontinuity points of

px, zqÞÑpna,0pzq, na,1pzq, βpxqna,2pzqq

are negligible for the invariant probability distribution Πw of pXptq, Zptqq when pW ptqq
is constant equal to w. See Section 3.C.

When pW ptqq is constant, the process pXptq, Zptqq can be seen as generalized shot-

noise processes, see Section 3.B. It is well-known that the invariant distribution of the

classical, one-dimensional, shot-noise process is absolutely continuousw.r.t Lebesgue’s

measure. See examples of Sections 5 and 6 of [RV20] and the reference [BCR19] for

criteria in this domain.
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Dynamics of the connection intensity

The functional M drives the dynamics of the connection intensity, the correspond-

ing equation is given by Relation (3.7). In particular, for any wPKW and any càdlàg

piecewise-continuous functions h1 and h2 on R`, the ODE

dw
dt ptq“Mph1ptq, h2ptq, wptqqwith wp0q“w, (3.12)

for all points of continuity of h1 and h2, has a unique continuous solution de-

noted by pSrh1, h2spw, tqq in KW . We assume that M can be decomposed as

Mpωp, ωd, wq“Mppωp, wq´Mdpωd, wq ´ µw, whereMapωa, wq is non-negative continuous
function, non-decreasing on the first coordinate for a fixed wPKw, and,

Mapωa, wq ď CMp1` ωaq,

for all wPKW , for aPtp, du.

Discrete models of plasticity
A model of plasticity with discrete state space has been introduced in [RV20]. The

proof of the associated averaging principles for the continuous case can be adapted to

such systems. Relevant parts of the proof are briefly presented in Section 3.D of the

Appendix.

3.3 The scaled process

The SDEs of Definition 26 are difficult to study without any additional hypothesis.

Existence and uniqueness of solutions to this system are guaranteed by Proposi-

tion 1 of [RV20]. It can be seen as an intricate fixed point equation for the processes

pXptq,W ptqq involving functionals of these processes likeNβ,X defined byRelation (3.6).

As explained in Section 4 of [RV20], pXptq, Zptqq are associated to fast dynamics

at the cellular level while the process pW ptqq evolves on a much longer timescale. For

this reason, a scaling parameter εą0 is introduced so that pXptq, Zptqq evolves on the

timescale tÞÑt{ε. More precisely:

— Fast Processes: pXptqq and pZptqq.
The point processes associated to input and output jumps driving the time evolu-

tion of pXptqq and pZptqq are sped-up by a factor 1{ε: NλÑNλ{ε and Nβ,XÑNβ{ε,X .

The deterministic part of the evolution is changed accordingly dtÑ dt{ε.

— Slow Processes: pW ptqq and pΩpptq,Ωdptqq.
Update of pΩpptqq and pΩdptqq due to fast jump processes have a small amplitude,

NλÑεNλ{ε and Nβ,XÑεNβ{ε,X .

Formally, we define the scaled process pUεptqq“pXεptq, Zεptq,Ωε,pptq,Ωε,dptq,Wεptqq, the
evolution equations of Definition 26 become

dXεptq “ ´Xεptq dt{ε`WεptqNλ{εpdtq´g pXεpt´qqNβ{ε,Xε pdtq , (3.13)

dZεptq “ p´γdZεptq`k0q dt{ε`k1pZεpt´qqNλ{εpdtq (3.14)
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` k2pZεpt´qqNβ{ε,Xεpdtq,
dΩε,aptq “ ´αΩε,aptq dt`na,0pZεptqq dt (3.15)

`
`

na,1pZεpt´qqεNλ{εpdtq`na,2pZεpt´qqεNβ{ε,Xεpdtq
˘

, aPtp, du

dWεptq “M pΩε,pptq,Ωε,dptq,W ptqq dt. (3.16)

For simplicity, the initial condition of pUεptqq is assumed to be constant,

Uεp0q “ U0 “ px0, z0, ωp,0, ωd,0, w0q. (3.17)

Some simplifications of this (heavy) mathematical framework can be expected when

ε goes to 0. We first introduce the notion of fast variables which correspond to the

processes pXptq, Zptqqwith the connection intensity process pW ptqq taken as constant.

Fast processes
Definition 27. For wPKW , pXwptq, Zwptqq is the Markov process in RˆR`

` defined by the
SDEs

$

’

&

’

%

dXw
ptq “ ´Xw

ptq dt`wNλpdtq´g pXw
pt´qqNβ,Xw pdtq ,

dZw
ptq “ p´γdZw

ptq`k0q dt
`k1pZ

w
pt´qqNλpdtq`k2pZ

w
pt´qqNβ,Xwpdtq.

Let fPC1
b pRˆR`

`q, then, with Equations (3.13) and (3.14), we have that

pMF
f,εptqq

def.

“

ˆ

fpXεptq, Zεptqq´fpx0, z0q´
1
ε

ż t

0
BF
WεpsqpfqpXεpsq, Zεpsqq ds

˙

is a local martingale, where, for v“px, zqPRˆR`
` and,

BF
w pfqpvq

def.

“ ´x
Bf

Bx
px, zq`

B

´γdz ` k0,
Bf

Bz
px, zq

F

` λ
´

fpx`w, z`k1pzqq´fpuq
¯

` βpxq
´

fpx´gpxq, z`k2pzqq´fpuq
¯

, (3.18)

with

Bf

Bz
px, zq“

ˆ

Bf

Bzi
px, zq, iPt1, . . . , `u

˙

and xz, z1y is the usual scalar product of z and z1PR`
`. The operator BF

w is called the

infinitesimal generator of the fast processes pXwptq, Zwptqq.
In Proposition 50 of Appendix 3.C, we establish that, under the conditions of

Sections 3.2 and 3.2, the fast process pXwptq, Zwptqq has a unique invariant distribution

Πw.

Functionals of the occupation measure
We start with a rough, non-rigorous, picture of results that are usually established for

slow-fast systems.
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Definition 28 (Occupation measure). The occupation measure is the non-negative measure
νε on r0, T sˆRˆR`

` such that

νεpGq
def.

“

ż

r0,T sˆRˆR`
`

Gps, x, zqνεpds, dx, dzq def.

“

ż

r0,T s
Gps,Xεpsq, Zεpsqq ds. (3.19)

for any non-negative Borelian function G on r0, T sˆRˆR`
`.

The integration of Relation (3.15) gives the identity, for a“tp, du

Ωε,aptq “ ω0,a´α

ż t

0
Ωε,apsq ds`

ż t

0
na,0pZεpsqq ds

`

ż t

0
na,1pZεps´qqεNλ{εpdsq`

ż t

0
na,2pZεps´qqεNβ{ε,Xεpdsq.

An averaging principle is said to hold when the convergence in distribution

lim
εÑ0

ˆ
ż t

0
GpXεpsq, Zεpsqq ds

˙

“ lim
εÑ0

˜

ż

RˆR`
`

Gpx, zqνεpds, dx, dzq
¸

“

˜

ż t

0

ż

RˆR`
`

Gpx, zqΠwpsqpdx, dzq ds
¸

, (3.20)

holds for a sufficiently rich class of Borelian functions G. Usually, it is enough to prove

the weak convergence of the occupation measure for bounded Borelian functions G.
In our case, there are important exampleswhereG has a linear growthwith respect

to the coordinates x or z“pzjq. The all-to-all models of pair-based rules for example,

which are widely used in computational neuroscience lead to unbounded functionals

of the occupationmeasure. See Section 3.3 of [RV20]. Additionally, convergence results

in distribution of the jump processes such as,

lim
εÑ0

ˆ
ż t

0
GpXεpsq, ZεpsqqεNλ{εpdsq

˙

“

˜

λ

ż t

0

ż

RˆR`
`

Gpx, zqΠwpsqpdx, dzq ds
¸

,

and

lim
εÑ0

ˆ
ż t

0
GpXεpsq, ZεpsqqεNβ{ε,Xεpdsq

˙

“

˜

ż t

0

ż

RˆR`
`

Gpx, zqβpxqΠwpsqpdx, dzq ds
¸

are also required. They are not straightforward consequences of Relation (3.20) as it is

usually the case for bounded G. See [Kur92] for example. These technical difficulties

have to be overcome to establish the tightness of the processes pΩεptqq, and consequently

of pWεptqq. As a result, additional limit results have to be established at this point, see

Section 3.6. Furthermore, as ε goes to 0, the process pΩε,pptq,Ωε,dptq,Wεptqq should
converge to a process pωpptq, ωdptq, wptqq satisfying the relation,

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ωaptq “ ωa,0´α

ż t

0
ωpsq ds`

ż t

0

ż

R`
`

na,0pzqΠwpsq pR`, dzq ds

`λ

ż t

0

ż

R`
`

na,1pzqΠwpsq pR`, dzq ds`
ż t

0

ż

RˆR`
`

βpxqna,2pzqΠwpsqpdx, dzq ds.

dw
dt ptq “Mpωpptq, ωdptq, wptqq
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3.4 Averaging principles results

We fix Tą0, throughout the paper the convergence in distribution of processes is

considered on the bounded interval r0, T s.

Main result
We start by reviewing the assumptions detailed in Section 3.2 on the different parame-

ters of the stochastic model.

Assumptions.

a. It is assumed that β is a non-negative, continuous function on R and that βpxq“0
for xď´cβď0. Additionally, there exist a constant Cβě0 such that

βpxqďCβp1`|x|q, @xPR.

b. g is continuous function on R and 0ďgpxqďmaxpcg, xq holds for all xPR, for some

cgě0.

c. All coordinates of the vector γ are positive.

d. There exists a constant Ckě0 such that 0ďk0ďCk and functions ki, i“1, 2, in
C1
b pR`

`,R`
`q, are upper-bounded by Ckě0.

e. There exists a constant Cn such that, for jPt0, 1, 2u, aPtp, du, na,j verifies,

na,jpzqďCnp1`}z}q,

where, for zPR`
`, }z}“z1` ¨ ¨ ¨ `z`. Moreover, for any wPKW , the discontinuity

points of

px, zqÞÑpna,0pzq, na,1pzq, βpxqna,2pzqq

for aPtp, du, are negligible for the probability distribution Πw of Section 3.C.

f. M can be decomposed as,

Mpωp, ωd, wq“Mppωp, wq´Mdpωd, wq ´ µw,

whereMapωa, wq is non-negative continuous function, non-decreasing on the first

coordinate for a fixed wPKw, and,

Mapωa, wq ď CMp1`ωaq,

for all wPKW , for aPtp, du.

The main result of the paper is the following theorem.
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Theorem 29 (Asymptotic time evolution of plasticity). Under the conditions of Section 3.2
and for initial conditions satisfying Relation (3.17), there existsS0Pp0,`8s, such that the family
of processes pΩε,pptq,Ωε,dptq,Wεptq, tăS0q, εPp0, 1q, of the system of Section 3.3, is tight for
the convergence in distribution. As ε goes to 0, any limiting point pωpptq, ωdptq, wptq, tăS0q,
satisfies the ODEs, for aPtp, du,

$

’

’

&

’

’

%

dωa
dt ptq “´αωaptq`

ż

RˆR`
`

´

na,0pzq`λna,1pzq`βpxqna,2pzq
¯

Πwptqpdx, dzq,

dw
dt ptq “Mpωpptq, ωdptq, wptqq,

(3.21)

where, for wPKW , Πw is the unique invariant distribution Πw on RˆR`
` of the Markovian

operator BF
w . If KW is bounded, then S0“`8 almost-surely.

Convergence in distribution. As already mentioned, most of the efforts in this paper

are devoted to the proof of the tightness property of pΩε,pptq,Ωε,dptq,Wεptqq. We note

that our result identifies the limiting points, but it does not state any weak convergence

results for the scaled processes. Regularity properties are actually required on pΠwq to

have such results. For example, it would be sufficient to have that the mapping,

Ψa : w ÞÑ
ż

RˆR`
`

pna,0pzq`λna,1pzq`βpxqna,2pzqqΠwpdx, dzq,

locally Lipschitz for w, for aPtp, du, so that Relation (3.21) has a unique solution.

Due to the generality of our model, we did not try to state a set of conditions

that can ensure the desired regularity properties of the corresponding Πw. Uniqueness

results are obtained in Sections 5 and 6 of [RV20] for several important cases. The same

properties for the simple model are worked out in Section 3.8. However at this stage, a

case by case analysis seems mandatory.

A blow-up phenomenon. As it can be seen, when S0ă`8 the convergence is only

proved on a bounded time interval. In the proof, the variable S0 results from the

domain definition of the solution to a deterministic differential equation. This is not an

artifact of our methods, see Proposition 47 in Section 3.8 for an example.

Steps of the proof
The proof of the theorem is organized as follows. See also Figure 3.1 of Appendix.

a. Section 3.5. A stochastic upper-bound U of the original process is introduced and

a coupling argument is used to control pWεptqq. This is an important ingredient

in the proof of tightness results for pΩε,pptq,Ωε,dptq,Wεptqq.

b. Section 3.6. Under the temporary assumption that the process pW ptqq is bounded

byK, we establish tightness results for the truncated process U
K
, when ε goes to

0, of variables associated to fast processes pX
K
ε ptq, Z

K
ε ptqq of the type

ˆ
ż

r0,T s
G
´

s,X
K

ε psq, Z
K

ε psq
¯

ds
˙
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where G is a continuous Borelian function with a linear growth with respect to

the coordinates xPR and zPR`
`. An averaging principle is shown for this truncated

process.

c. In Theorem 43 of Section 3.7, using monotonicity arguments, we are able to

obtain a deterministic, analytical bound, uniform in K, for the limiting points of

the truncated process. From there, we prove an averaging principle for the

dominating process U (without truncation) in Proposition 44 where the explicit

formof theODEverified by the limiting points is known. As a direct consequence,

we are able to prove that this limit is unique and that the scaled dominating

process converges to the solution. Using the fact that the processW ptq is bounded
by W ptq and the previous convergence, we establish the desired results for the

process Uεptq of Theorem 29.

Technical results on shot-noise processes
The processes pXptqq and pZptqq are closely related to shot-noise processes and their

generalizations. See for example [Sch18], [Ric44] and [GP60] for an introduction. We

give a quick overview of their use in our proofs. In Appendix 3.B, the results below

and several technical lemmas for these processes are detailed and proved.

The following lemma gives an elementary representation result for general shot-

noise process associated to a positive Radon measure. See Lemma 1 of [RV20].

Lemma 30. If µ is a positive Radon measure on R` and γą0, the unique càdlàg solution of the
ODE

dZptq “ ´γZptq`µpdtq,

with initial point z0PR` is given by

Zptq “ z0e
´γt
`

ż

p0,ts
e´γpt´sqµpdsq. (3.22)

In view of SDEs (3.2) it is natural to introduce a scaled version of these processes.

Definition 31 (Scaled shot-noise process). For εą0, we define the shot-noise process pSxε ptqq,
solution of the SDE

dSxε ptq “ ´Sxε ptq dt{ε`Nλ{εpdtq,

where the initial point is xě0.

Proposition 32. For ξPR and xě0, the convergence in distribution of the processes

lim
εŒ0

ˆ
ż t

0
eξS

x
ε puq du

˙

“
`

E
“

eξSp8q
‰

t
˘

holds, and
sup

0ăεă1
0ďtďT

E
“

eξSεptq
‰

ă`8. (3.23)

Proof. See Section 3.B of Appendix.
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We now introduce another shot-noise process pRεptqq associated to the point pro-

cess NI{ε,Sε defined by Relation (3.6) where Ipxq“x, xPR`. It is in fact a shot-noise

process whose intensity function is pSεptqq,

dRεptq “ ´γRεptq dt{ε`NI{ε,Sεpdtq, (3.24)

with the initial condition Rεp0q“0.
It turns out that tightness properties of three families of linear functionals of such

processes

ˆ
ż t

0
Rεpsq ds

˙

,

ˆ
ż t

0
RεpsqεNλ{εpdsq

˙

,

ˆ
ż t

0
RεpsqεNI{ε,Sεpdsq

˙

,

are central to establish Theorem 29. The motivation comes from the three terms in the

expression of pΩε,aptqq, aPtp, du of Relation (3.15) and the fact that, with the condition

of Relation (3.11), for jPt0, 1, 2u, njpzqďC0
n`Cnz for zPR`.

The necessary results are stated in Proposition 33 which is used in Section 3.7.

Proposition 33. For HεPtSε, Rεu, the families of processes
ˆ
ż t

0
Hεpuq du

˙

,

ˆ
ż t

0
Hεpuq

2 du
˙

and
ˆ
ż t

0
RεpuqSεpuq du

˙

, εPp0, 1q,

are tight for the convergence in distribution.

Proof. We first prove the tightness of the second family of processes. With Cauchy-

Schwartz’ Inequality, we have

ż t

s

Hεpuq
2 du ď

?
t´s

d

ż t

s

Hεpuq4 du.

Moreover, Relation (3.23) gives an estimate of Sε moments and Proposition 49 of

Appendix states that

sup
εPp0,1q,tě0

E
“

Rεptq
4‰
ă `8

Gathering up previous estimates, we show that there exists a constant C indepen-

dent of ε and s, t such that

E

«

ˆ
ż t

s

Hεpuq
2 du

˙2
ff

ď Cpt´sq2.

Kolmogorov-Čentsov’s Criterion, see Theorem 2.8 and Problem 4.11 of [KS98], implies

that the family of variables
ˆ
ż t

0
Hεpuq

2 du
˙

is tight.

By using repeatedly Cauchy-Schwartz’ Inequality, for 0ďsďt, we have

E

«

ˆ
ż t

s

Hεpuq du
˙4

ff

ď pt´sq2E

«

ˆ
ż t

s

Hεpuq
2 du

˙2
ff

ď Cpt´sq4
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and

E

«

ˆ
ż t

s

RεpuqSεpuq du
˙2

ff

ď

g

f

f

eE

«

ˆ
ż t

s

Rεpuq2 du
˙2

ff

g

f

f

eE

«

ˆ
ż t

s

Sεpuq2 du
˙2

ff

ď Cpt´sq2

Kolmogorov-Čentsov’s Criterion can then also be applied to the two other families of

processes of the proposition. The proposition is proved.

3.5 A coupling property

In this section a process

pUptqq“pXptq, Zptq,Ωptq,W ptqq

inD
`

r0, T s,R4
`

˘

is introduced. It has similaritieswith the process pUptqq ofDefinition 26

but fewer coordinates and simpler parameters. More importantly, all its coordinates

are non-negative. We first prove, via a coupling, that the sample paths of the processes

pUptqq and pUptqq can be compared in a sense to be made precise. Secondly, we derive

several technical estimates for pUptqq which are important to prove the tightness of the

scaled processes ppΩεptq,W εptqqq defined in Section 3.3.

The process pUptqq is the solution of the SDEs

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

dXptq “ ´Xptq dt`W ptqNλpdtq,
dZptq “

`

´γZptq ` Ck
˘

dt` CkNλpdtq`CkNβ,Xpdtq,
dΩptq “´αΩptq dt`Cn

`

1``Zptq
˘

dt`Cn
`

1``Zpt´q
˘

Nλpdtq
`Cn

`

1``Zpt´q
˘

Nβ,Xpdsq
dW ptq “ CM

`

1`Ωptq
˘

dt,

(3.25)

with βpxq“Cβp1`xq and with initial condition Up0q given by

px0, z0, ω0,W 0q“pmaxpx0, 0q, max
iPt1,...,`u

tz0,iu, max
aPta,pu

tω0,au, |w0|q.

Cβ ,Cn,Ck andCM are non-negative constants associated to the conditions of Section 3.2,

and γ
def.

“ minpγi : i“1, . . . , `q.
Throughout this section, for tě0, if pUptqq is a solution of Relations (3.7), the

inequality UptqďUptqwill stand for the four relations, XptqďXptq,

max
iPt1,...,`u

tZiptquďZptq, max
aPtp,du

tΩaptquďΩptq, and |W ptq|ďW ptq.
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A coupling property
We start by proving amonotonicity property of the behavior of both systems “between”

jumps.

Define uptq “ pxptq, zptq, ωpptq, ωdptq, wptqq that follows,

$

’

’

’

&

’

’

’

%

dxptq “ ´xptq dt,
dziptq “ p´γiziptq`k0q dt, iPt1, . . . , `u,
dωaptq “ ´αωaptq dt`n0,apzptqq dt, aPtp, du,

dwptq “M pωpptq, ωdptq, wptqq dt.

and uptq “ pxptq, zptq, ωptq, wptqqwith,

$

’

’

’

&

’

’

’

%

dxptq “ ´xptq dt,
dzptq “

`

´γzptq`Ck
˘

dt,
dωptq “ ´αωptq dt`Cn p1` `zptqq dt,
dwptq “ CM p1` ωptqq dt.

Lemma 34. Under the conditions of Sections 3.2, 3.2, and 3.2 and if the initial conditions are
such that up0qďup0q, then for all tě0, uptqďuptq.

Proof. The result is clear for the function pxptqq and also for the functions pziptqq. For

pωaptqq, with aPtp, du, we have

d pωptq´ωaptqq “ ´α pωptq´ωaptqqq dt`pCnp1``zptqq´n0,apzptqqq dt,

by Condition (3.11), we obtain

Cnp1``zptqq´n0,apzptqq ě Cnp1`}zptq}q´n0,apzptqq ě 0.

Lemma 30 gives the relation

eαt pωptq´ωaptqq“ pωp0q´ωap0qq`
ż t

0
e´αsCn p1``zpsq´n0,apzpsqqq dsě0.

Finally, again with Lemma 30, Condition 3.2 and the last inequality, we have, for tě0,

dpwptq ´ wptqq “ ´µpwpsq ´ wpsqq dt` pCMp1` ωpsqq ´Mppωppsq, wpsqqq dt

This leads to,

wptq ď wptq.

In the same way, we can prove that,

wptq ě ´wptq.

The lemma is proved.

Proposition 35 (Coupling). Under the conditions of Section 3.2, there exists a coupling of
pUptqq and pUptqq such that, almost surely, for all tą0, pUptqqďpUptqq, in particular

|W ptq| ď W ptq, @tě0.
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Proof. All we have to prove is that if Up0qďUp0q and if τ is the first jump of either pUptqq
or pUptqq, then UptqďUptq for tďτ . Our statement is then easily proved by induction on

the sequence of jumps of both processes.

Since pUptqq and pUptqq are governed by the deterministic ODEs of Lemma 34, the

relationUptqďUptqholds for 0ďtăτ . The processes pW ptqq and pW ptqq being continuous,
|W pτq|“|W pτ´q|ďW pτ´q“W pτq.

The instant of jump τ is the minimum of τ1, τ2 and τ 2, with

$

’

’

’

’

’

&

’

’

’

’

’

%

τ1 “ infttą0 : Nλpp0, tsq‰0u,

τ2 “ inf
"

tą0 : Nβ,Xpp0, tsq“
ż

p0,ts
P2

´

p0, βpXps´qs , ds
¯

‰0
*

,

τ 2 “ inf
"

tą0 : Nβ,Xpp0, tsq“
ż

p0,ts
P2

´

`

0, βpXps´qq
‰

, ds
¯

‰0
*

.

Since, for xďx, βpxqďβpxqďβpxq is a non-decreasing function and thatXďX holds until

the first jump, the inequality τ 2ďτ2 holds almost surely.

If τ1ăτ 2, then

Xpτq“Xpτ´q`W pτ´qďXpτ´q`W pτ´q“Xpτq.

For iPt1, . . . , `u,
Zipτq“Zipτ´q`kipZpτ´qq ď Zpτ´q`Ck“Zpτq

and

Ωapτq “ Ωapτ´q`na,1pZpτ´qq ď Ωapτ´q`Cn p1`}Zpτq}q
ď Ωpτ´q`Cn

`

1``Zpτq
˘

“ Ωpτq.

Thus we have UpτqďUpτq. The same arguments work in a similar way when τ2“τ 2ăτ1.

In this case, we have

Xpτq“Xpτ´q´gpXpτ´qq ď Xpτ´q“Xpτq.

The last case τ 2ăminpτ2, τ1q is not more difficult, since the components of pUptqq do not

experience jumps and those of pUptqq have positive jumps due to Nβ,X . The proposition

is proved.

The process pU εptqq is defined by the SDEs,

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

dXεptq “ ´Xεptq dt{ε`W εptqNλ{εpdtq,
dZεptq “

`

´γZεptq ` Ck
˘

dt{ε`CkNλ{εpdtq`CkNβ{ε,Xε
pdtq,

dΩεptq “ ´αΩεptq dt`Cn
`

1``Zεptq
˘

dt
`Cn

`

1``Zεpt´q
˘

´

εNλ{εpdtq`εNβ{ε,Xε
pdtq

¯

dW εptq “ CM
`

1` Ωεptq
˘

dt,

(3.26)

and with U εp0q“Up0q“px0, z0, ω0, w0q.

The infinitesimal generator B
F

w of Relation (3.18) is given by, for v“px, zq and

fPC1
b pRˆR`q,

B
F
wpfqpvq

def.

“ ´x
Bf

Bx
pvq`p´γz`Ckq

Bf

Bz
pvq

` λ
´

fpv`we1`Cke2q´fpvq
¯

` Cβpx`1q
´

fpv`Cke2q´fpvq
¯

, (3.27)

where e1“p1, 0q and e2“p0, 1q.
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3.6 Asymptotic results for the truncated process

In this section we study the scaling properties of fast processes of pUptqq defined by

Relation (3.26). In this section, we fixKą0 and consider an analogue process for which

the impact of the connection intensity is truncated at K. In Section 3.6 an averaging

principle will be established for this process as a first step in the proof of themain result

of the paper.

Definition of the truncated process

We define pU
K
ptqq as the solution of the SDEs,

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

dXK
ε ptq “ ´X

K
ε ptq dt{ε`K^WK

ε ptqNλ{εpdtq,
dZK

ε ptq “

´

´γZ
K
ε ptq ` Ck

¯

dt{ε`CkNλ{εpdtq`CkNβ{ε,X
K
ε
pdtq,

dΩK

ε ptq “ ´αΩK

ε ptq dt`Cn
´

1``ZK

ε ptq
¯

dt

`Cn

´

1``ZK
ε pt´q

¯´

εNλ{εpdtq`εNβ{ε,X
K
ε
pdtq

¯

dWK

ε ptq “ CM

´

1` ΩK

ε ptq
¯

dt,

(3.28)

and with U
K
ε p0q“Up0q“px0, z0, ω0, w0q.

We begin with a lemma giving a stochastic upper bound of pX
K

ε ptqq in terms of a

standard shot-noise process.

Lemma 36. There exists a constant CXą0 independent of ε such that the relation

X
K

ε ptq ď CX`KSεptq (3.29)

holds for tě0, where pSεptqq is the shot-noise process of Definition 31.
For any ηą0, there exists a compact subset K of R2

` such that,

sup
0ăεă1
0ďtďT

P
´´

X
K

ε ptq, Z
K

ε ptq
¯

RK
¯

ď η.

Proof. With Relation (3.22), we have, for tě0,

X
K
ε ptq “ x0e

´t
`

ż t

0
e´pt´uq{εK^Wεpu´qNλ{εpduq.

Which gives, for sďtďT ,

X
K

ε ptq ď x0e
´t{ε
`K

ż t

0
e´pt´uq{εNλ{εpduq ď x0`KSεptq,

and therefore

E
”

X
K
ε ptq

ı

ď CX`KE rSεptqs ď CX`λKT.

Relation (3.22) gives the inequality

E
”

Z
K
ε ptq

ı

ď z0`Ck

ż t

0
expp´γpt´ sqq

´

1`λ`Cβp1`E
”

X
K
ε psq

ı

q

¯

ds

which leads to,

sup
0ăεă1
0ďtďT

E
”

Z
K
ε ptq

ı

ă `8.

We conclude by using Markov’s inequality.
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Tightness of the truncated process
The next important lemma is used to prove tightness properties of the processes pΩεptqq.

Lemma 37 (Tightness of linear functionals of the fast processes). The family of processes
ˆ
ż t

0
X
K

ε puq du
˙

,

ˆ
ż t

0
Z
K

ε puq du
˙

,

ˆ
ż t

0
X
K

ε puqZ
K

ε puq du
˙

, εPp0, 1q,

are tight for the convergence in distribution. The processes

pM
K
ε,1ptqq

def.

“

ˆ
ż t

0
Z
K
ε pu´q

“

εNλ{εpduq´λ du
‰

˙

pM
K

ε,2ptqq
def.

“

ˆ
ż t

0
Z
K

ε pu´q
”

εN
β{ε,X

K
ε
pduq´β

´

X
K

ε puq
¯

du
ı

˙

converge in distribution to 0 as ε goes to 0.

Proof. Relation (3.29) gives for 0ďsďt,
ż t

s

X
K

ε puq du ď CXpt´sq `K

ż t

s

Sεpuq du,

The tightness of the three processes results from this relation and Proposition 33.

Indeed, Relation (3.22) shows that, for tě0,

Z
K
ε ptq´z0 “ Ck

ż t

0
e´γpt´sq{ε ds` Ck

ż t

0
e´γpt´sq{εNλ{εpdsq

` Ck

ż t

0
e´γpt´sq{εP2

˜˜

0, Cβ
1`XK

ε psq

ε

ff

, ds
¸

ď
Ck
γ
` Ck

ż t

0
e´γpt´sq{εNλ{εpdsq

` Ck

ż t

0
e´γpt´sq{εP2

ˆˆ

0, Cβ
1`CX
ε



, ds
˙

` Ck

ż t

0
e´γpt´sq{εP2

ˆˆ

Cβ
1`CX
ε

, Cβ
1`CX
ε

`CβK
Sεpsq

ε



, ds
˙

.

The first two terms of the right-hand side of last relation are, up to the constants γ
instead of 1 and Cβp1`CXq instead of λ, equal to Sεptq. Similarly, up to the constant

CβK of Sεptq instead of 1, the last term is equal to Rεptq.

The two processes pM
K
ε,iptqq, i“t1, 2u are martingales with predictable increasing

processes

ˆ

ελ

ż t

0
Z
K
ε puq

2 du
˙

and

ˆ

ε

ż t

0
Z
K
ε puq

2Cβ

´

1`XK
ε puq

¯

du
˙

.

For tě0, we have

E
”

M
K
ε,1ptq

2
ı

ď

ż t

0
E
”

Z
K
ε puq

2
ı

du,
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and,

E
”

M
K

ε,2ptq
2
ı

“εCβ

ˆ

E
”

M
K

ε,1ptq
2
ı

`

ż t

0
E
”

Z
K

ε puq
2X

K

ε puq
ı

du
˙

ď εCβ

ż t

0

ˆ

E
”

Z
K
ε puq

2
ı

`

c

E
”

Z
K
ε puq

4
ı

c

E
”

X
K
ε puq

2
ı

˙

du,

with Cauchy-Schwartz’ inequality.

Using the upper-bounds for pX
K
ε ptqq and pZ

K
ε ptqq and Relation (3.23) for Sε and

Proposition 49 of the Appendix for Rε, we obtain that the quantity E
”

M
K
ε,2ptq

2
ı

con-

verges to 0 as ε goes to 0. The last statement of the lemma follows from Doob’s

inequality.

We now define the associated occupation measure νKε in the same way as in

Section 28. Let G be a non-negative Borelian function on r0, T sˆR2
`, define ν

K
ε the

non-negative measure on r0, T sˆR2
` by

ż

r0,T sˆR2
`

Gps, x, zqνKε pds, dx, dzq
def.

“

ż

r0,T s
G
´

s,X
K
ε psq, Z

K
ε psq

¯

ds.

Lemma 38. The family of random Radon measures νKε , εPp0, 1q, is tight for the convergence in
distribution and for any bounded Borelian function on r0, T sˆR2

`, the set of processes

pIGptqq
def.

“

ˆ
ż t

0
G
´

u,X
K
ε puq, Z

K
ε puq

¯

du, 0ďtďT
˙

is tight for the convergence in distribution.

Proof. For aą0, εPp0, 1q, and K a Borelian subset of R2
`, we have

P
´

νKε pr0, T sˆKc
qąa

¯

ď
1
a
E
“

νKε pr0, T sˆKc
q
‰

ď
T

a
sup

0ăεă1
0ďtďT

P
´´

X
K
ε ptq, Z

K
ε ptq

¯

RK
¯

Lemma 36 shows the existence of a compact set KĂR2
` such that the last term of the

right-hand side of this inequality can be made arbitrarily small. Lemma 1.3 of [Kur92]

gives that the family of random measures pνKε , 0ăεă1q is tight.
for the last part of the proposition, we use the criterion of modulus of con-

tinuity, see [Bil99]. This is a simple consequence of the inequality, for 0ďs, tďT ,
|IGptq´IGpsq|ď}G}8|t´s|. The lemma is proved.

Proposition 39. The family of random variables pΩK

ε ptq,W
K
ε ptq, ν

K
ε q, εPp0, 1q, is tight.

Proof. Tightness properties of pνKε q have been proved in Lemma 38. Relation (3.22)

gives the relation, for tě0,

ΩK

ε ptq´ω0e
´αt
“

ż t

0
e´αpt´sqCn

´

1``ZK
ε psq

¯´

1`λ`Cβp1`X
K
ε psqq

¯

ds
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`

ż t

0
e´αpt´sqCn

´

1``ZK
ε ps´q

¯”

εNλ{εpdsq´λ ds`εN
β{ε,X

K
ε
pdsq´β

´

X
K
ε psq

¯

ds
ı

. (3.30)

Lemma 37 shows that the family of processes associated to the first term of the right-

hand side of this identity is tight, and that the process of the second term is vanishing

in distribution as ε goes to 0. The family of processes pΩK

ε ptqq is therefore tight and the

tightness of pW
K

ε ptqq follows from its representation with pΩK

ε ptqq. The proposition is

proved.

Averaging principle for the truncated process pUK
ptqq

The goal of this section is to prove the following averaging principles for the truncated

process. We start by stating the two following lemmas that are proved in Appendix 3.A

and that are essential to the proof of averaging principle.

We fix a sequence pεnq such that pνKεnq is converging in distribution to νK . The first
result focus on identifying the limiting linear functional of νK .

Lemma 40. For any continuous bounded Borelian function G and a, b, cPR`, the sequence of
processes

ˆ
ż t

0

´

aX
K
εnpsq`bZ

K
εnpsq`cX

K
εnpsqZ

K
εnpsq

¯

G
´

X
K
εnpsq, Z

K
εnpsq

¯

ds
˙

converges in distribution to
ˆ
ż t

0

ż

R2
pax`bz`cxzqGpx, zqνKpds, dx, dzq

˙

.

The second lemma shows that νK can be expressed as the product of the invariant

measure Πw and the Lebesgue measure. This is Lemma (1.4) of [Kur92].

Lemma 41. For any non-negative Borelian function F on R`ˆR2
`, almost surely,

ż T

0
F ps, x, zqνKpds, dx, dzq “

ż T

0
F ps, x, zqΠK^wKpsqpdx, dzq ds,

where, for wPR`, Πw is the unique invariant distribution of the Markov process associated to
the infinitesimal generator BF

w defined by Relation (3.27).

With these two lemmas, Proposition 42 can be established.

Proposition 42. Any limiting point pωKptq, wKptqq of the family of processes pΩK

ε ptq,W
K

ε ptqq,
when ε goes to 0, verifies, almost surely for all tě0, the ODE

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ωKptq “ ω0´α

ż t

0
ωKpsq ds

`

ż t

0

ż

R2
Cnp1``zqp1`λ`Cβp1`xqqΠwKpsq^Kpdx, dzq ds

wKptq “ w0 `

ż t

0
CM

`

1` ωKpsq
˘

ds,

holds, where Πw is the unique invariant distribution of the Markov process associated to the
infinitesimal generator BF

w defined by Relation (3.27).
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Proof. Relation (3.30) gives the identity, for tě0,

ΩK

ε ptq “ ω0e
´αt
`e´αtM

K

ε ptq`e
´αt

ż t

0
eαsCnp1``Zεpsqq

´

1`λ`Cβp1`X
K

ε psqq
¯

ds,

with

M
K

ε ptq
def.

“

ż t

0
eαsCn

´

1``ZK

ε psq
¯ ”

εNλ{εpdsq`εNβ{ε,X
K
ε
pdsq´pλ`βpXK

ε psqqq ds
ı

.

Lemma 37 shows that pM
K
ε ptqq is converging in distribution to 0 when ε goes to 0.

We now use Lemmas 40 and 41 and we get that pωKptq, wKptqq satisfies the desired

relation.

3.7 Proof of an averaging principle

Finally, this section gathers all the results from the previous sections to prove Theo-

rem 29. The proof is done in two steps:

a. Using an analytical result, an averaging principle for pUptqq is proved.

b. The coupling of Section 3.5 is then used to show that a stochastic averaging result

also holds in the general case.

Averaging principle for the coupled process pUptqq
We now turn to an analytical result by considering the dynamical system of Proposi-

tion 42 when K“`8 and by showing an existence and uniqueness results which will

be crucial in the proof of the general theorem.

For wě0, Πw is the invariant distribution of the Markov process pX
w
ptq, Z

w
ptqq

satisfying the SDE

dXw
ptq “ ´X

w
ptq dt` wNλpdtq,

dZw
ptq “

`

´γZ
w
ptq`Ck

˘

dt`CkNλpdtq`CkNβ,X
wpdtq.

Its existence is a consequence of Proposition 50.

Theorem43. Under conditions of Section 3.2, there existsS0Pp0,`8s and a unique continuous
function pωptq, wptqq on r0, S0q, solution of the ODE, for 0ďtăS0,

$

’

’

&

’

’

%

ωptq “ ω0´α

ż t

0
ωpsq ds`

ż t

0

ż

R2
`

Cnp1``zqp1`λ`Cβp1`xqqΠwpsqpdx, dzq ds,

wptq “ w0 `

ż t

0
CM p1` ωppsqq ds,

(3.31)

with pω0, w0qPR2
`

Any limiting point pωKptq, wKptqqq of the family of processes pΩK

ε ptq,W
K

ε ptqq, when ε
goes to 0 is such that, for all 0ďtăS0,

ωKptq ď ωptq and wKptq ď wptq.
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Proof. The existence of limiting points of the processes pΩK

ε ptq,W
K
ε ptqq is due to Propo-

sition 42. If pX
w
, Z

w
q is a random variable with distribution Πw, we have

X
w dist.

“ w

ż `8

0
e´sNλpdsq,

and, with standard calculations, we obtain the relations

E
“

X
w‰
“λw, E

”

`

X
w˘2

ı

“

ˆ

λ2
`
λ

2

˙

w2, (3.32)

and, consequently,

γE
“

Z
w‰
“ Ck

`

1`λ`Cβ
`

1`E
“

X
w‰˘˘

“ Ck p1`λ`Cβp1`λwqq .

The SDEs for pX
w
ptqq and pZ

w
ptqq give

dXw
Z
w
ptq “

`

´pγ`1qXw
ptqZ

w
ptq`CkX

w
ptq

˘

dt
`pwZ

w
pt´q`CkX

w
pt´q`CkwqNλpdtq`CkX

w
pt´qNβ,X

wpdtq,

and thus, at equilibrium, we obtain the relation

E
“

X
w
Z
w‰
“ Ck

1
γ`1

´

λw
`

1`E
“

Z
w‰˘

`p1`λ`CβqE
“

X
w‰
`CβE

”

`

X
w˘2

ı¯

.

We have therefore that the function

w ÞÑ Cn

ż

R2
`

p1``zqp1`λ`Cβp1`xqqΠwpdx, dzq

is a non-decreasing and locally Lipschitz function. The existence and uniqueness

follows from standard results for ODEs. There exists some S0ą0, such that, on the time

interval r0, S0q, the solution pωptq, wptqq of the ODE is the limit of a Picard’s scheme

pωnptq, wnptqq associated to Relation (3.31) with

pω0ptq, w0ptqq“pω
K
ptq, wKptqq,

for all KPR`. See Section 3 of Chapter 8 of [HS74] for example. We now prove by

induction that pωKptq, wKptqqďpωnptq, wnptqq holds on r0, S0q for all ně1. If this is true
for n, then

ωn`1ptq “ ω0e
´αt
`

ż t

0
e´αpt´sq

ż

R2
Cnp1``zqp1`λ`Cβp1`xqqΠwnpsqpdx, dzq ds

ě ω0e
´αt
`

ż t

0
e´αpt´sq

ż

R2
Cnp1``zqp1`λ`Cβp1`xqqΠwKpsq^Kpdx, dzq ds

“ ωKptq,

and the relation wn`1ptqěw
Kptq follows directly. The proof by induction is completed.

We just have to let n go to infinity to obtain the last statement of our proposition.
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Proposition 44. Under conditions of Section 3.2, for the convergence in distribution,

lim
εÑ0
ppΩεptq,W εptqq, tăS0q “ ppωptq, wptqq, tăS0q,

where pΩεptq,W εptqq is the process defined by SDEs (3.26) and ppωptq, wptqq, tăS0q by
ODE (3.31).

Proof. FromProposition 42, let pωKptq, wKptqq be a limiting point, there exists a sequence

pεnq such that the sequence of processes pΩK

εnptq,W
K

εnptqq is converging to a continuous

process pωKptq, wKptqq.
With the same notations as in Proposition 43, for any TăS0, by continuity of

pωptq, wptqq on r0, T s, the quantity

K0
def.

“ 1` sup
tďT

wptq

is finite. Since wKptqďwptq holds for all tě0, the uniqueness result of Proposition 43

gives the identity

ppωKptq, wKptqq, tďT q“ppωptq, wptqq, tďT q

for all KěK0. Consequently, for any ηą0, there exists n0ą0 such that for něn0,

P
ˆ

sup
sďT

W
K0
εn psq ě K0

˙

ď P
ˆ

sup
sďT

W
K0
εn psq ě 1` sup

tďT
wK0ptq

˙

ď η,

since the process pωK0ptq, wK0ptqq is upper-bounded, coordinate by coordinate on the

time interval r0, S0q, by pωptq, wptqq, defined by Relation (3.31). Note that S0 is indepen-

dent of the sequence pεnq. Hence, for něn0, Relation (3.28) gives

P

˜

Xεnpsq“X
K0
εn psq, Zεnpsq“Z

K0
εn psq,

Ωεnpsq“ΩK0
εn psq,W εnpsq“W

K0
εn psq, @sďT

¸

ě P
ˆ

sup
sďT

W
K0
εn psqďK0

˙

ě 1´η. (3.33)

This shows that the sequence of processes ppΩεnptq,W εnptqq, tďT q is converging in

distribution to ppωptq, wptqq, tďT q. The proposition is proved.

Averaging principle for the process pUεptqq
We now conclude this section with the proof of Theorem 29. We fix TăS0.

The coupling property of Proposition 35 and Relation (3.33) give the existence of

K0 and n0 such that for něn0, the inequality

P
ˆ

sup
tďT

|Wεnptq| ďK0

˙

ě 1´η

holds.

We get that the results of Lemma 37 hold with X
K
εn and Z

K
εn replaced by Xεn and

}Zεn}, and β by β. With the same arguments as in the proof of Lemma 38, the family



AVERAGING PRINCIPLES FOR MARKOVIAN MODELS OF PLASTICITY 155

of random measures pνεnq defined by Relation (3.19) is tight and Lemma 40 holds for

pXεnptqq and p}Zεn}ptqq.
With Relations (3.15) and (3.16), we get, for aPtp, du and tě0,

Ωε,aptq “ ω0,a`

ż t

0
e´αpt´sqna,0pZεpsqq ds

`

ż t

0
e´αpt´sqna,1pZεps´qqεNλ{εpdsq`

ż t

0
e´αpt´sqna,2pZεps´qqεNβ{ε,Xεpdsq,

and

Wεptq “ Wεp0q`
ż t

0
M pΩε,ppsq,Ωε,dpsq,W ptqq ds.

Relation (3.11) of the assumptions of Section 3.2 gives that na,jpzqďCnp1`}z}q for zPR`
,

aPtp, du and jPt0, 1, 2u. Lemma 37 applied to pXεnptqq and p}Zεn}ptqq shows that the

family of processes pΩε,aptqq is tight, consequently that the same property hold for

pWεptqq due to the relation satisfied by M of Section 3.2. We have thus obtained the

tightness of the sequence of processes

pΩεn,pptq,Ωεn,dptq,Wεnptq, νεnq.

By taking a subsequence, we can assume it is converging in distribution to some process

pωpptq, ωdptq, wptq, νq.

We now identify the measure ν. Lemma (1.4) of [Kur92] shows that, for any

bounded Borelian function G on R`ˆRˆR`
`,

ż T

0
Gps, x, zqνpds, dx, dzq “

ż T

0

ż

RˆR`
`

Gps, x, zqγpsqpdx, dzq ds,

where pγpsqq is a predictable measure-valued process.

The continuity of the different functions gp¨q and kip¨q give that, for fPC1
b pRˆR`

`q,

px, z, wqÞÑBF
w pfqpx, zq is continuous,whereBF

w is the operator definedbyRelation (3.18).

Moreover, using

— condition of Section 3.2 for the growth of the function β;

— the boundedness of ki, iPt1, 2u of Condition of Section 3.2,

we have that, for fPC1
b pRˆR`

`q, there exists a constant C0 such that, for px, zqPRˆR`
`,

|BF
w pfqpx, zq| ď C0p1`|x|`}z}q p}f}8`}∇f}8q .

We apply the equivalent of Lemma 40 to pXεnptqq and pZεnptqq to get the relation,

for Tą0,

lim
nÑ`8

ż T

0
BF
Wεn psq

pfq pXεnpsq, Zεnpsqq ds “
ż T

0

ż

RˆR`
`

BF
wpsqpfqpx, zqνpds, dx, dzq.

From the SDEs (3.14) and (3.14) we have

f pXεnpsq, Zεnpsqq “ fpx0, z0q`M
f
εnptq
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`
1
ε

ż t

0
BF
Wεn psq

pfq pXεnpsq, Zεnpsqq ds, (3.34)

where pM f
εnptqq is the associated martingale.

In the sameway as in the proof of Lemma 41, we show that pεnM
f
εnptqq is converging

in distribution to 0 which leads to the identity, almost surely for any tďT ,
ż t

0

ż

RˆR`
`

BF
wpsqpfqpx, zqνpds, dx, dzq“0,

for f in a countable dense subset S of the functions of C1
b pRˆR`

`qwith compact support.

Consequently,
ż t

0

ż

RˆR`
`

BF
wpsqpfqpx, zqγpsqpdx, dzq ds “ 0,

which gives that for almost all tPr0, T s
ż

RˆR`
`

BF
wptqpfqpx, zqγptqpdx, dzq “ 0, @fPS.

Proposition 50 of the Appendix gives therefore that, γptq“Πwptq, for almost all

tPr0, T s (for Lebesgue’s measure), so that

ż T

0
Gps, x, zqνpds, dx, dzq “

ż T

0

ż

RˆR`
`

Gps, x, zqΠwpsqpdx, dzq ds,

holds almost surely for all bounded continuous functions on R`ˆRˆR`
`.

To establish the first identity of Relation (3.31), we need the convergence in distri-

bution

lim
nÑ`8

¨

˝

ż t

0
e´αpt´uq

¨

˝

n0 pZεnpuqq
n1 pZεnpuqq

β pXεnpuqqn2 pZεnpuqq

˛

‚du

˛

‚“

¨

˝

ż t

0
e´αpt´uq

ż

RˆR`
`

¨

˝

n0 pzq
n1 pzq

β pxqn2 pzq

˛

‚Πwpuqpdx, dzq du

˛

‚.

This is consequence of the fact that pwptqq is almost surely continuous and that, with

the conditions of Section 3.2, for any wPKW ,

px, zqÞÑpn0pzq, n1pzq, βpxqn2pzqq,

is Πw almost everywhere continuous.

The theorem is therefore proved.

3.8 The simple model

In this section we consider the simple model defined in Section 3.1. Recall that the

associated SDEs are

$

’

&

’

%

dXptq “ ´Xptq dt`W pt´qNλpdtq,
dZptq “ ´γZptq dt`B1Nλpdtq `B2Nβ,Xpdtq,
dW ptq “ Zpt´qNβ,Xpdtq,
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with γą0, B1, B2PR`, and β is assumed to be a Lipschitz function on R`.
This is not, strictly speaking, a special case of the processes defined by Rela-

tions (3.7), but the tightness results of Section 3.A of Appendix concerning occupation

times of fast processes can obviously be used.

Let, for wě0, pXwptq, Zwptqq be the fast processes associated to the model of Defi-

nition 27. Proposition 50 shows that pXwptq, Zwptqq has a unique invariant distribution
Πw. We denote by pXw

8, Z
w
8q a random variable with distribution Πw.

Proposition 45. The function

w ÞÑ E rZw
8βpX

w
8qs “

ż

R2
`

zβpxqΠwpdx, dzq

is locally Lipschitz on R`.

Proof. Assuming Xwp0q“Zwp0q“0, Lemma 30 and Definition 3.6 give the relations

$

’

’

&

’

’

%

Xw
ptq “ w

ż t

0
e´pt´sqNλpdsq “ wX1

ptq

Zw
ptq “ B1

ż t

0
e´γpt´sqNλpdsq`B2

ż t

0
e´γpt´sqP2pp0, βpwX1

ps´qq, dsq.

the random variable pXwptq, Zwptqq is converging in distribution to pXw
8, Z

w
8q as well as

any of its moments. Define

Ψtpwq
def.

“ E
„

β
`

wX1
ptq

˘

ż t

0
e´γpt´sqP2pp0, βpwX1

ps´qq, dsq


,

for x,yě0,

|Ψtpxq´Ψtpyq|

ď E
„

ˇ

ˇβ
`

xX1
ptq

˘

´β
`

yX1
ptq

˘
ˇ

ˇ

ż t

0
e´γpt´sqP2pp0, βpxX1

ps´qq, dsq


`

ˇ

ˇ

ˇ

ˇ

E
„

β
`

yX1
ptq

˘

ż t

0
e´γpt´sqP2ppβpxX

1
ps´qq, βpyX1

ps´qq, dsq
ˇ

ˇ

ˇ

ˇ

.

We note that pX1ptqq is a functional of Nλ and is therefore independent of the Poisson

process P2. We now take care of the two terms of the right-hand side of the last

expression.

For the first term, if Lβ is the Lipschitz constant of the function β, we obtain

E
„

ˇ

ˇβ
`

xX1
ptq

˘

´β
`

yX1
ptq

˘ˇ

ˇ

ż t

0
e´γpt´sqP2pp0, βpxX1

psqq, dsq


“ E
„

ˇ

ˇβ
`

xX1
ptq

˘

´β
`

yX1
ptq

˘
ˇ

ˇ

ż t

0
e´γpt´sqβpxX1

psqq ds


ď Lβ|x´y|E
„

X1
ptq

ż t

0
e´γpt´sqβpxX1

psqq ds


, (3.35)

and, for the second term, if |y´x|ď1,
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ˇ

ˇ

ˇ

ˇ

E
„

β
`

yX1
ptq

˘

ż t

0
e´γpt´sqP2ppβpxX

1
psqq, βpyX1

psqq, dsq

ˇ

ˇ

ˇ

ˇ

ď E
„

β
`

yX1
ptq

˘

ż t

0
e´γpt´sq

ˇ

ˇβpxX1
psqq´βpyX1

psqq
ˇ

ˇ ds


ď Lβ|x´y|E
„

`

βp0q`Lβp1`xqX1
ptq

˘

ż t

0
e´γpt´sqX1

psqq ds


. (3.36)

Fubini’s Theorem gives the relation,

E
„

X1
ptq

ż t

0
e´γpt´sqβpxX1

psqq ds


“

ż t

0
e´γsE

“

X1
ptqβpxX1

pt´sqq
‰

ds,

and the convergence in distribution of the Markov process pX1ptqq implies the con-

vergence of pE rX1ptqβpxX1pt´sqqsq to a finite limit when t goes to infinity. With

Relations (3.35) and (3.36) and the expressions of pXwptqq and pZwptqq, we deduce that

for xě0, there exists a constant Fx independent of t such that

|E rZx
ptqβ pXx

ptqqs´E rZy
ptqβ pXy

ptqqs| ď Fx|x´y|

holds for all tě0 and y such that |y´x|ď1. We conclude the proof of the proposition by

letting t go to infinity.

The averaging principle for the simple model, announced in Section 3.1 of the

introduction can now be stated.

Theorem 46. If the function β is Lipschitz, there exists some S0pw0qą0, such that the
family of processes pWεptq, tăS0pw0qq defined by Relation (3.2) converges in distribution to
pwptq, tăS0pw0qq, the unique solution of the ODE

dw
dt ptq “

ż

R2
`

zβpxqΠwptqpdx, dzq

with wp0q“w0.

Proof. For tě0,

Wεptq “ w0 `

ż t

0
Zεps´qεNβ{ε,Xεpdsq,

we then proceed as in Section 3.7 by using in particular the analogue of Lemma 37

and 40.

An explicit representation of the limiting connection intensity process can be ob-

tained when linear activation functions.

Proposition 47. If the activation function β is such that βpxq“ν`β0x and

Λ2“λβ
2
0B2

ˆ

λ

γ
`

1
2pγ`1q

˙

, Λ1“λβ0

ˆ

B1

γ`1`
λB1`2νB2

γ

˙

,Λ0“
ν

γ
pλB1`νB2q,

then if Λ2ą0, the asymptotic weight process pwptq, 0ďtăS0pw0qq of Theorem 46 with initial
point w0ě0 can be expressed as:
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a. If ∆def.

“Λ2
1´4Λ2Λ0ą0, then

wptq “
s2pw0`s1qe

?
∆t
´s1pw0`s2q

pw0`s2q´pw0`s1qe
?

∆t
, S0pw0q“

1
?

∆
ln
ˆ

w0`s2

w0`s1

˙

,

with
s1

def.

“
Λ1´

?
∆

2Λ2
and s2

def.

“
Λ1`

?
∆

2Λ2
.

b. If ∆“0, then

wptq “
2w0Λ2`Λ1

Λ2p2´p2Λ2w0`Λ1qtq
´

Λ1

2Λ2
, S0pw0q“

2
2w0Λ2`Λ1

.

c. If ∆ă0, then

wptq “

?
´∆

2Λ2

ˆ

tan
ˆ

1
2
?
´∆ ¨ t` arctan pz0q

˙

`

Z

z0

π
`

1
2

^

π

˙

´
Λ1

2Λ2
,

with
S0pw0q“

2
?
´∆

´π

2´ arctan pz0q
¯

and z0
def.

“
2w0Λ2`Λ1
?
´∆

.

It should be noted that under the conditions of this proposition, this model always

exhibits a blow-up phenomenon.

Proof. The SDEs give the relation

dXwZw
ptq “ ´pγ`1qXwZw

ptq dt
` pwZw

pt´q`B1w`B1X
w
pt´qqNλpdtq `B2X

w
pt´qNβ,Xwpdtq.

If the initial point has the same distribution as pXw
8, Z

w
8q, by integrating and by taking

the expected valued of this SDE, we obtain the identity

pγ`1qE rXw
8Z

w
8s “ λwB1 ` pλB1`νB2qE rXw

8s ` β0B2E
“

pXw
8q

2‰
`λwErZw

8s.

With Relations (3.32), we have

E rXw
8s “ λw, E

“

pXw
8q

2‰
“

ˆ

λ2
`
λ

2

˙

w2,

and, similarly,

γErZw
8s “ λB1`B2pν`β0ErXw

8sq “ λB1`B2pν`β0λwq.

By using Theorem 46, with these identities, we obtain that pwptqq satisfies the ODE

dw
dt ptq “ E rZw

8 pν`β0X
w
8qs “ Λ2w

2
`Λ1w`Λ0, (3.37)

on its domain of definition. We conclude the proof with trite calculations.
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Appendix

Truncated process UK

Scaled system U
K
ε Eq.(3.28)

Tightness in Proposition 39

SAP in Proposition 42

Coupled process U
System of SDE Eq.(3.25)

Scaled system Uε Eq.(3.26)

SAP + Convergence

in Proposition 44

Limit pω,wq in Eq.(3.31)

Stochastic process U
System of SDE Eq.(3.7)

Scaled system Uε Eq.(3.16)

SAP in Theorem 29

Limit pωp, ωd, wq in Eq.(3.21)

Section 3.5
Coupling property

in Proposition 35

|W ptq|ďW ptq

Section 3.6
W
K
ptqďK

Section 3.7
Monotonicity +

Analytical ODE +

Uniqueness of limit

Section 3.7
CouplingÑ

Wε Uniformly

Bounded

Section 3.6
Ñ Tightness

Section 3.6 + Appendix 3.A
Ñ SAP

Appendix 3.B
Shot-Noise

Processes

Appendix 3.C
Existence and

Unicity Πw

Figure 3.1: Graphical representation of the steps of the proof of averaging principles.

3.A Proofs of technical results for occupation times

Proof of Lemma 40
Denote, for tě0, a, b, cPR`, and εą0,

Lεptq
def.

“ aX
K
ε ptq`bZ

K
ε ptq`cX

K
ε ptqZ

K
ε ptq.

LetG be a continuous bounded Borelian function. From Proposition 37, we can extract

a sub-sequence pεnq such that, for the convergence in distribution

lim
nÑ`8

ˆ
ż t

0
LεnpuqG

´

X
K
εnpuq, Z

K
εnpuq

¯

du
˙

“ pLptqq,

where pLptqq is a continuous càdlàg process.

We will now prove that the process pLptqq is such that,

pLptqq “

ˆ
ż t

0

ż

R2
pax`bz`cxzqGpx, zqνKpds, dx, dzq

˙
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holds almost-surely for tPr0, T s.
For Aą0, the convergence of pνKεnq to νK gives the convergence in distribution,

lim
nÑ`8

ˆ
ż t

0
A^LεnpsqG

´

X
K
εnpsq, Z

K
εkn
psq

¯

ds
˙

“

˜

ż t

0

ż

R2
`

A^pax`bz`cxzqGpx, zqνKpds, dx, dzq
¸

. (3.38)

Using again the upper-bound, Relation (3.29), for pX
K
ε ptqq with Relation (3.23), and

Proposition 49 for Rε, we obtain that

CL
def.

“ sup
0ăεă1
0ďtďT

E
“

Lεpsq
2‰
ă`8,

hence, for ηą0,

P
ˆ
ż T

0
pLεpsq´Aq

` dsěη
˙

ď
1
η

ż T

0
E
“

pLεpsq´Aq
`
‰

ds

ď
1
ηA

ż T

0
E
“

Lεpsq
2‰ ds ď CLT

ηA
.

Since G is bounded, with the elementary relation x“x^A`px´Aq`, xě0, then, for
ně1,

P
ˆ

sup
0ďtďT

ˇ

ˇ

ˇ

ˇ

ż t

0
LεnpuqG

´

X
K

εnpuq, Z
K

εnpuq
¯

du

´

ż t

0
A^LεnpuqG

´

X
K
εnpuq, Z

K
εnpuq

¯

du
ˇ

ˇ

ˇ

ˇ

ěη

˙

ď
CLT

ηA
}G}8. (3.39)

For any Aą0 and ně1, Cauchy-Schwartz’s inequality gives the relation

E
„
ż T

0
A^LεnpuqG

´

X
K
εnpuq, Z

K
εnpuq

¯

du


ď
a

CLT }G}8.

With Relation (3.38) and the fact that the left-hand side of (3.38) has a bounded second

moment, by letting n go to infinity, we get the inequality

E

«

ż T

0

ż

R2
`

A^pax`bz`cxzqGpx, zqνKpds, dx, dzq
ff

ď
a

CLT }G}8.

By letting A go to infinity, the monotone convergence theorem shows that

lim
AÑ`8

E

«

ż T

0

ż

R2
`

A^pax`bz`cxzqGpx, zqνKpds, dx, dzq
ff

“ E

«

ż T

0

ż

R2
`

pax`bz`cxzqGpx, zqνKpds, dx, dzq
ff

ď
a

CLT }G}8. ă `8.
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With Relation (3.39) and the integrability properties proven just above, we obtain that,

for εą0, there exists n0 such that if něn0, then the relation

P
ˆ

sup
0ďtďT

ˇ

ˇ

ˇ

ˇ

ż t

0
LεnpuqG

´

X
K

εnpuq, Z
K

εnpuq
¯

du

´

ż T

0

ż

R2
`

pax`bz`cxzqGpx, zqνKpds, dx, dzq

ˇ

ˇ

ˇ

ˇ

ˇ

ěη

¸

ď ε

holds. Lemma 40 is proved.

Proof of Lemma 41
Following [PSV77] and [Kur92], we first show that there exists an optional process pΓKs q,
with values in the set of probability distributions on R2

` such that, almost surely, for

any bounded Borelian function G on R`ˆR2
`,

ż

R`ˆR2
`

Gps, x, zqνKpds, dx, dzq “
ż

R`ˆR2
`

Gps, x, zqΓKs pdx, dzq ds. (3.40)

Recall that the optional σ-algebra is the smallest σ-algebra containing adapted càdlàg

processes. See Section VI.4 of [RW00] for example. This is a simple consequence of

Lemma 1.4 of [Kur92] and the fact that, due to Relation (3.19), the measure νKpds,R2q

is the Lebesgue measure on r0, T s.
Let fPC1

b pR2
`q be a bounded C1

-function on R2
` with bounded partial derivatives,

we have the relation

εf
´

X
K
ε ptq, Z

K
ε ptq

¯

“ εfpx0, z0q`εM
f
ε ptq

`

ż t

0
BF

K^W
K
ε psq
pfq

´

X
K
ε psq, Z

K
ε psq

¯

ds, (3.41)

where, for tě0, if pV K

ε psqq
def.

“ pX
K

ε psq, Z
K

ε psqq,

M
f
ε ptq

def.

“

ż t

0

´

f
´

V
K
ε ps´q`

´

K^W
K
ε psq, 1

¯¯

´f
´

V
K
ε ps´q

¯¯

„

Nλ{εpdsq´
λ

ε
ds


`

ż t

0

´

f
´

V
K

ε ps´q`p0, 1q
¯

´f
´

V
K

ε ps´q
¯¯

»

–N
β{ε,X

K
ε
pdsq´

β
´

X
K
ε psq

¯

ε
ds

fi

fl ,

Proposition 37 shows that the martingale pεM
f

ε ptqq is converging in distribution to 0 as

ε goes to 0.
Relation (3.41) gives therefore the convergence in distribution

lim
εÑ0

ˆ
ż t

0
BF

K^W
K
ε psq
pfq

´

X
K

ε psq, Z
K

ε psq
¯

ds
˙

“0.

The convergence in distribution of pΩK

εnptq,W
K
εnptq, ν

K
εnq, Proposition 40 and Rela-

tion (3.40) give that, for any f in C1
b pR2

`q, the relation

˜

ż t

0

ż

R2
`

BF
K^wKpsqpfqpx, zqΓ

K

s pdx, dzq ds, 0ďtďT
¸

“ p0, 0ďtďT q. (3.42)
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holds with probability 1.
Let pfnq be a dense countable sequence in C1

b pR2
`q and E1 be the event, where

Relation (3.42) holds for all f“fn, ně1. Note that that P pE1q“1. On E1, there exists a

(random) subset S1 of r0, T swith Lebesgue measure T such that

ż

R2
`

BF
K^wKpsqpfnqpx, zqΓ

K

s pdx, dzq “ 0, @sPS1 and @ně1,

and, consequently,

ż

R2
`

BF
K^wKpsqpfqpx, zqΓ

K

s pdx, dzq “ 0, @sPS1 and @fPC1
b pR2

`q.

By Proposition 50, for sPS1, the probability distribution ΓKs is the invariant distribution

ΠK^wKpsq. Lemma 41 is proved.

3.B Shot-noise processes

This section presents several technical results on shot-noise processes which are crucial

for the proof of Theorem 29. See [Sch18], [Ric44] and [GP60] for an introduction.

A scaled shot-noise process
Recall that pSxε ptqq, with initial point xě0, has been introduced by Definition 31. We

will have the following conventions,

pSεptqq
def.

“
`

S0
ε ptq

˘

, pSxptqq
def.

“ pSx1 ptqq and pSptqq
def.

“
`

S0
1ptq

˘

.

The process pSptqq is in fact the standard shot-noise process of Lemma 30 associated

to the Poisson process Nλ, for tě0,

Sptq “

ż t

0
e´pt´sqNλpdsq dist.

“

ż t

0
e´sNλpdsq. (3.43)

In particular pSptqq is a stochastically non-decreasing process, i.e. for yě0 and sďt,

P pSpsqěyq ď P pSptqěyq . (3.44)

A classical formula for Poisson processes, see Proposition 1.5 of [Rob03] for example,

gives the relation, for ξPR,

E
“

eξSptq
‰

“ exp
ˆ

´λ

ż t

0

`

1´ exp
`

ξe´s
˘˘

ds
˙

, (3.45)

in particular E rSxptqs“x expp´tq`λ p1´ expp´tqq. It also shows that pSxptqq is converg-
ing in distribution to Sp8q such that,

E
“

eξSp8q
‰

“ exp
ˆ

´λ

ż `8

0

`

1´ exp
`

ξe´s
˘˘

ds
˙

ă`8.
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It is easily seen that pSxε ptqq
dist.

“ pSxpt{εqqand thus with Relation (3.22), pSxε ptqq can be

represented as, for tě0,

Sxε ptq
def.

“ xe´t{ε`

ż t

0
e´pt´sq{εNλ{εpdsq “ xe´t{ε`Sεptq. (3.46)

We remind here the results of Proposition 32, that will be proved in the following

paragraph. For ξPR and xě0, the convergence in distribution of the processes

lim
εŒ0

ˆ
ż t

0
eξS

x
ε puq du

˙

“
`

E
“

eξSp8q
‰

t
˘

holds, and

sup
0ăεă1
0ďtďT

E
“

eξSεptq
‰

ă`8.

Proof of Proposition 32. Let T1 and T2 be two stopping times bounded by N , θą0, and
verifying 0ďT2´T1ďθ. Using Relation (3.46) and the strongMarkov property of Poisson

processes, we have that

E
„
ż T2

T1

eξS
x
ε puq du



“ εE

«

ż T2{ε

T1{ε

eξS
xpuq du

ff

“ εE

«

ż pT2´T1q{ε

0
eξS

SxpT1{εqpuq du
ff

ď εE

«

eξS
xpT1{εqE

«

ż θ{ε

0
eξSpuq du

ffff

ď θeξxE
“

eξSpN{εq
‰

E
“

eξSp8q
‰

ď θeξxE
“

eξSp8q
‰2
,

holds, by stochastic monotonicity of pSptqq of Relation (3.44).

Aldous’ Criterion, see Theorem VI.4.5 of [JS87] gives that the family of processes

ˆ
ż t

0
eξSεpuq du

˙

,

is tight when ε goes to 0. For pě1 and a fixed vector ptiqPRp
`, the ergodic theorem for

the Markov process pSptqq gives the almost-sure convergence of

lim
εÑ0

ˆ
ż ti

0
eξSεpuq du, i “ 1, . . . , p

˙

“ lim
εÑ0

˜

ε

ż ti{ε

0
eξSpuq du, i “ 1, . . . , p

¸

“
`

E
“

eξSp8q
‰

ti, i “ 1, . . . , p
˘

.

Hence, due to the tightness property, the convergence also holds in distribution for the

processes

lim
εÑ0

ˆ
ż t

0
eξSεpuq du

˙

“
`

E
“

eξSp8q
‰

t
˘

.

The last part is a direct consequence of the identity pSxε ptqq
dist.

“ pSxpt{εqq, and of

Relation (3.45), which gives

E
“

eξSεptq
‰

“ exp
˜

´λ

ż t{ε

0

`

1´ exp
`

ξe´s
˘˘

ds
¸

ď exp
ˆ

´λ

ż `8

0

`

1´ exp
`

ξe´s
˘˘

ds
˙

.

The proposition is proved.
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Interacting shot-noise processes
Recall that pRεptqq defined by Relation (3.24) is a shot-noise process with intensity equal

to the shot-noise process pSεptqq.
We start with a simple result on moments of functionals of Poisson processes.

Lemma 48. If Q is a Poisson point process on R` with a positive Radon intensity measure µ
and f is a Borelian function such that

Ikpfq
def.

“

ż

fpuqkµpduq ă `8, 1ďkď4,

then

E

«

ˆ
ż

fpuqQpduq
˙4

ff

“

´

I4`6I2
1I2`4I1I3`3I2

2`I
4
1

¯

pfq.

Proof. It is enough to prove the inequality for non-negative bounded Borelian functions

f with compact support on R`.
The formula for the Laplace transform of Poisson point processes, see Proposi-

tion 1.5 of [Rob03], gives for ξě0,

E
„

exp
ˆ

ξ

ż `8

0
fpuqQpduq

˙

“ exp
ˆ
ż `8

0

`

eξfpuq´1
˘

µpduq
˙

.

The proof is done in a straightforward way by differentiating the last identity with

respect to ξ four times and then set ξ“0.

Proposition 49. The inequality

sup
εPp0,1q,tě0

E
“

Rεptq
4‰
ă `8

holds.

Proof. Denote, for tě0,

Jk,εptq
def.

“

ż t

0
e´γkpt´uq{ε

Sεpuq

ε
du,

the identity pSεptqq
dist.

“ pSpt{εqq and Relation (3.43) coupled with Fubini’s Theorem give

the relations

Jk,εptq“

ż t{ε

0
e´γkpt{ε´uqSpuq du“ 1

γk´1

ż t{ε

0

`

e´pt{ε´vq´e´γkpt{ε´vq
˘

Nλpdvq

dist.

“
1

γk´1

ż t{ε

0

`

e´v´e´γkv
˘

Nλpdvq ď
1

|γk´1|Jk

with

Jk
def.

“

ż `8

0

`

e´kγv`e´v
˘

Nλpdvq.

Relation (3.22) applied to Rεptq gives

Rεptq “

ż t

0
e´γpt´uq{εP2

ˆˆ

0, Sεpu´q
ε



, du
˙

.
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The quantity Sεpuq is a functional of the point process P1 and is therefore independent

of the Poisson point process P2. Lemma 48 gives therefore that

E
“

Rεptq
4
| P1

‰

“ J4,εptq`6J1,εptq
2J2,εptq`4J1,εptqJ3,εptq`3J2,εptq

2
`J1,εptq

4,

hence,

E
“

Rεptq
4‰
ď E

«

J4

|4γ´1|`
6J2

1J2

|γ´1|2|2γ´1|`
4J1J3

|γ´1||3γ´1|`
3J2

2
|2γ´1|2`

J
4
1

|γ´1|4

ff

.

Again with Proposition 32 we obtain that, for kě1, the variable Jk has finite moments

of all orders, therefore by Cauchy-Shwartz’ Inequality, the right-hand side of the last

inequality is finite. The proposition is proved.

3.C Equilibrium of fast processes

For wPKW , recall that the Markov process pXwptq, Zwptqq of Definition 27 is such that

dXw
ptq “ ´Xw

ptq dt`wNλpdtq´g pXw
pt´qqNβ,Xw pdtq (3.47)

dZw
ptq “ p´γdZw

ptq`k0q dt`k1pZ
w
pt´qqNλpdtq`k2pZ

w
pt´qqNβ,Xwpdtq. (3.48)

Proposition 50. Under the conditions of Sections 3.2 and 3.2, the Markov process
pXwptq, Zwptqq solution of the SDEs (3.47) and (3.48) has a unique invariant distribution
Πw, i.e. the unique probability distribution µ on RˆR`

` such that

@

µ,BF
w pfq

D

“

ż

RˆR`
`

BF
w pfqpx, zqµpdx, dzq “ 0, (3.49)

for any fPC1
b pRˆR`

`q, where BF
w is the operator defined by Relation (3.18).

Proof. We denote by pXw
n , Z

w
n q the embedded Markov chain of the Markov process

pXwptq, Zwptqq, i.e. the sequence of states visited by pXwptq, Zwptqq after each jump, of

either Nλ or Nβ,X .

The proof of the proposition is done in three steps. We first show that the return

time of pXwptq, Zwptqq to a compact set of RˆR`
` is integrable. Then we prove that

the Markov chain pXw
n , Z

w
n q is Harris ergodic, and consequently that it has a unique

invariant measure. For a general introduction on Harris Markov chains, see [Num04;

MT93]. Finally, the proof of the proposition uses the classical framework of stationary

point processes.

Integrability of return times to a compact subset
Suppose that wě0. The conditions of Section 3.2 on the functions β and g, and Rela-

tion (3.47) show that Xwptqě´c0, for all tě0, if Xwp0qě´c0, with c0“cβ`cg. The state

space of the Markov process pXwptq, Zwptqq can be taken as Sdef.

“ r´c0,`8qˆR`
`.

Define, for px, zqPS and 0ăaď1,

Hpx, zq
def.

“ x`a}z}, with }z}
def.

“
ÿ̀

i“1
zi,
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we get that

BF
w pHqpx, zq “ ´x`

˜

´a
ÿ̀

i“1
γizi`k0,i

¸

` λ

˜

w`a
ÿ̀

i“1
k1,ipzq

¸

` βpxq

˜

´gpxq`a
ÿ̀

i“1
k2,ipzq

¸

hence, with the assumptions of Section 3.2 and 3.2 on the function k. and β, and a ď 1,

BF
w pHqpx, zq ď ´x´aγ}z} ` `Ck ` λpw``aCkq`Cβ p1` xq `aCk

ď p`aCβCk´1qx´ aγ}z} ` p`Ck`λw`λ`Ck``CβCkq
ď p`aCβCk´1qx´aγ}z}`C,

where γą0 is the minimum of the coordinates of γ and C is a constant independent of

x, z and a. We fix 0ăaď1 sufficiently small so that `aCβCkă1 and Kąc0 such that

CăγK{2´1 and Căp1´`aCβCkqK{2´1.

If Hpx, zqąK then maxpx, a}z}qąK{2 and therefore BF
w pHqpx, zqď´1, H is therefore a

Lyapounov function forBF
w . One deduces that the same result holds for the return time

of Markov chain, pXw
n , Z

w
n q in the set IK “ tpx, zq : Hpx, zqďKu.

Harris ergodicity of pXw
n , Z

w
n q

Proposition 5.10 of [Num04] is used to show that IK is a recurrent set. A regeneration
property would be sufficient to conclude. In particular, we can prove that IK is a small
set, that is, there exists some positive, non-trivial, Radon measure ν on S such that,

Ppx0,z0q

´

pXw
1 , Z

w
1 qPS

¯

ě νpSq, (3.50)

for any Borelian subset S of S and all px0, z0qPIK .
We denote by s1, resp. t1, the first instant of Nλ, resp. of Nβ,Xw , then, for

pXw
0 , Z

w
0 q“px0, z0qPIK , by using the deterministic differential equations between jumps,

we get

Ppx0,z0q ps1ăt1q“E
„

exp
ˆ

´

ż s1

0
βpx0 expp´sq

˙

ds


ě E
“

expp´c1
βs1q

‰

“p0
def.

“
λ

λ`c1
β

,

since β is bounded by some constant c1
β on the interval r´c0, Ks.

In the following argument, we restrict X to be non-negative, the extension to

r´c0,`8s is straightforward. For A“r0, AsPBpR`q and B“r0, BsPBpR`
`q, from Equa-

tions (3.47) and (3.48), we obtain the relation

Ppx0,z0q

´

pXw
1 , Z

w
1 qPAˆB

¯

ě p0P
´

pXw
1 , Z

w
1 qPAˆB | s1ăt1

¯

“ p0P
ˆ

x0e
´s1`wPA,

pz0´k0qde
´γis1`k0`k1

`

pz0´k0qde
´γis1`k0

˘

PB

ˇ

ˇ

ˇ

ˇ

s1ăt1

˙
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ě P
ˆ

x0e
´s1`wPA,

H
`

pz0´k0qde
´γis1`k0

˘

PB

ˇ

ˇ

ˇ

ˇ

s1ăt1

˙

“ p0P
ˆ

x0e
´s̄1`wPA,

H
`

pz0´k0qde
´γis̄1`k0

˘

PB

˙

,

where Hpzq“z`k1pzq, s̄1
dist.

“ ps1|s1ďt1q. By using the fact that k1 is in C1
b pR`

`,R`
`q by the

conditions of Section 3.2 and in the same way as Example of Section 4.3.3 page 98

of [MT93], we can prove that the random variable

`

x0e
´s̄1`w,H

`

pz0´k0qde
´γis̄1`k0

˘˘

has a density, uniformly bounded below by a positive function h on R`ˆR`
`, so that

Ppx0,z0q

´

pXw
1 , Z

w
1 qPAˆB

¯

ě

ż

AˆB

hpx, zq dx dz,@APBpR`q, BPBpR`
`q,

for all px0, z0qPIKq. This relation is then extended to all Borelian subsets S of S, so
that Relation (3.50) holds. Proposition 5.10 of [Num04] gives therefore that pXw

n , Z
w
n q is

Harris ergodic.

If wă0, the last two steps can be done in a similar way. In this case, the process

p´Xwptqq satisfies an analogous equation with the difference that the process Nβ,Xw

does not jump when ´Xwptqącβ since βpxq“0 for xď´cβ .

Characterization of Πw

Let
pΠw be the invariant probability distribution of pXw

n , Z
w
n q. With the above notations,

E
pΠw rminps1, t1qs ď E

pΠw rs1s “
1
λ
ă `8,

the probability defined by the classical cycle formula,

1
E

pΠw rminps1, t1qs
E

pΠw

«

ż minps1,t1q

0
fpXw

puq, Zw
puqq du

ff

,

for any bounded Borelian function onRˆR`
` is an invariant distribution for the process

pXwptq, Zwptqq.
Proposition 9.2 of [EK09] shows that any distribution is invariant for pXwptq, Zwptqq

if and only if it satisfies Relation (3.49). It remains to prove the uniqueness of the

invariant distribution, using the fact that the embedded Markov chain has a unique

invariant distribution.

Although this is a natural result, we have not been able to find a reference in the

literature. Most results are stated for discrete time, the continuous time is usually

treated by looking at the process on a “discrete skeleton”, i.e. at instants multiple of

some positive constant. See Proposition 3.8 of [Asm03] for example. As this technique

is not adapted to our system, we derive a different proof using the Palmmeasure of the

associated stationary point process.

If µ is some invariant distribution of the Markov process pXwptq, Zwptqq, we build

a stationary version ppXwptq, Zwptqq, tPRq of it on the whole real line. In particular, we

have that pXwptq, Zwptqq
dist.

“ µ, for all tPR.
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We denote by pSn, nPZq the non-decreasing sequence of the jumps (due to Nλ and

Nβ,Xw), with the convention S0ď0ăS1 The sequence ppXwpSnq, Z
wpSnqq, ně0q has the

same distribution as the process ppXw
n , Z

w
n q, ně0q, the Markov chain with initial state

pXwpS0q, Z
wpS0qq. Since, for any tPR,

´

pXw
ps`tq, Zw

ps`tqq, sPR
¯

dist.

“

´

pXw
psq, Zw

psqq, sPR
¯

,

the marked point process T def.

“

´

Sn, pX
wpSnq, Z

wpSnq
¯

, nPZq is a stationary point pro-

cess, i.e.

ppSn, X
w
pSnq, Z

w
pSnq, nPZq dist.

“ ppSn´t,X
w
pSnq, Z

w
pSnq, nPZq, @tPR.

The Palm measure of T is a probability distribution
pQ such that the sequence

ppSn´Sn´1, X
wpSnq, Z

wpSnq, nPZq is stationary. See Chapter 11 of [Rob03] for a quick

presentation of stationary point processes and Palm measures.

Under
pQ, the Markov chain ppXwpSnq, Z

wpSnqq, ně0q is at equilibrium. Using

Harris ergodicity, we have proved in the previous section that the Markov chain

ppXw
n , Z

w
n q, ně0q has a unique invariant measure. Considering that both sequences

ppXw
n , Z

w
n q, ně0q and ppXwpSnq, Z

wpSnqq, ně0q have the same distribution, we have that

pQ
`

RZ
`, ¨

˘

is uniquely determined.

Moreover, remembering that,

pQ pSn´Sn´1ątq “ E
pQ

„

exp
ˆ

´

ż t

0
β
`

Xw
pSn´1qe

´s
˘

ds
˙

We have that
pQ is entirely determined by the ergodic distribution of the embedded

Markov chain and consequently that the Palmmeasure
pQ is unique. By Proposition 11.5

of [Rob03], the distribution of T is expressed with
pQ.

We have, for every bounded function f ,

Eµ rfpXw
p0q, Zw

p0qqs “ ET
“

fpXw
pS0qe

S0 , Zw
pS0qde

γS0q
‰

,

which uniquely determines the invariant distribution µ.
The proposition is proved.

3.D Averaging principles for discrete models of plasticity

In this section, we present a general discrete model of plasticity, state the associated

averaging principle theorem and give a sketch of its proof. We will only point out the

differences with the proof of the main result of this paper, Theorem 29.

For this model of plasticity, the membrane potential X , the plasticity processes

Z and the synaptic weight W are integer-valued variables. This system is illustrated

in Section 7 of [RV20] for calcium-based models. It amounts to represent these three

quantitiesX ,Z andW asmultiple of a “quantum” instead of a continuous variable. The

leakingmechanism inparticular, the term corresponding to´γY ptq dt in the continuous

model, Y PtX,Z,W u and γą0, in the SDEs, is represented by the fact that each quantum

leaves the system at a fixed rate γ.
The main advantage of this model is that simple analytical expressions of the

invariant distribution are available.
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Definition 51. The SDEs for the discrete model are
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

dXptq “ ´NI,Xpdtq `W pt´qNλpdtq´NI,βXpdtq,
dZptq “ ´NI,γZpdtq `B1Nλpdtq `B2NI,βXpdtq,
dΩaptq “ ´αΩaptq dt`na,0pZptqq dt

`na,1pZpt´qqNλpdtq`na,2pZpt´qqNI,βXpdtq, aPtp, du,

dW ptq “ ´NI,µW pdtq`ApNI,Ωppdtq ´ Ad1tW pt´qěAduNI,Ωdpdtq,

(3.51)

where β, γ, µ are non-negative real numbers,B1,B2PN` and, for aPtp, du,AaPN. The functions
na,i are assumed to be bounded by Cn.

For aPtp, du, the function I of NI,G for GPtX, βX, γZ, µW,Ωp,Ωdu, defined by rela-

tion (3.6), is the identity function Ipxq“x, xPR and Nλ is a Poisson process on R` with

rate λ. All associated Poisson processes are assumed to be independent.

Definition 52. For a fixed w, the process of the fast variables pXwptq, Zwptqq on NˆN` of the
SDEs is the Markov process whose transition rates are given by, for px, zqPNˆN`,

px, zq ÝÑ

#

px`w, z`B1q λ,

px´1, zq x,
ÝÑ

#

px, z´1q γz,

px´1, z`B2q βx.

Theorem53 (Averaging Principle for aDiscreteModel). If the assumptions of Definition 51
are verified, the family of scaled processes pWεptqq associated to Relations (3.51) is converging
in distribution, as ε goes to 0, to the càdlàg integer-valued process pwptqq satisfying the ODE

dwptq “ ´NI,γwpdtq`ApNI,ωppdtq´Ad1twpt´qěAduNI,ωdpdtq, (3.52)

and, for aPtp, du,

dωa
dt ptq “ ´αωaptq`

ż

NˆN`
pna,0pzq`λna,1pzq`βpxqna,2pzqqΠwptqpdx, dzq,

where Πw is the invariant distribution of the Markov process of Definition 52.

Proof. Again, we have to show that, on a fixed finite interval, the process pW ptqq is
bounded with high probability. A coupled process that stochastically bounds from

above the discrete process is also defined.

Definition 54. The process pXptq, Zptq,Ωptq,W ptqq satisfies the following SDEs
$

’

’

’

&

’

’

’

%

dXptq “ ´NI,Xpdtq `W pt´qNλpdtq´NI,βXpdtq,
dZptq “ ´NI,γZpdtq `B1Nλpdtq `B2NI,βXpdtq,
dΩptq “ ´αΩptq dt`Cn dt`CnNλpdtq`CnNI,βXpdtq,
dW ptq “ ApNI,Ωpdtq,

(3.53)

where B1, B2PN` and, for aPtp, du, ApPN.
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It is not difficult to prove that this process is indeed a coupling that verifies the

relationW ptqďW ptq, for all tě0 and that the process pW ptqq is non-decreasing.
From the SDEs governing the scaled version of the coupled system, we obtain

E
“

W εptq´w0
‰

ď ApE
„
ż t

0
NI,Ωε,p ds



ďAptE
„

sup
sďt

Ωε,ppsq



ď AptE
„

ω0`Cn sup
sďt

ż s

0
e´αps´uq

´

du` εNλ{εpduq`εNI,βX{εpduq
¯



ď Apt

ˆ

ω0`
Cn
α
p1`λq`E

„
ż t

0
βXεpuq



du
˙

ď Apt

ˆ

ω0`
Cn
α
p1`λq`λβE

„
ż t

0
W εpuq du

˙

ď D`D

ż t

0
E
“

W εpuq
‰

du,

for all tďT , for some constant Dě0. Gronwall’s Lemma gives a uniform bound, with

respect to ε,

E
„

sup
tďT

W εptq



“ E
“

W εpT q
‰

q ď pD`w0qe
DT .

Using Markov inequality, we have then that, for any ηą0, the existence of K0 and n0
such that něn0, the inequality

P
ˆ

sup
tďT

W εnptqďK0

˙

ě 1´η

holds. We can then finish the proof in the same way as in Section 3.7. The tightness

property of the family of càdlàg processes pW εptqq, εPp0, 1q are proved with Aldous’

criterion, see Theorem VI.4.5 of [JS87].

We have to prove the uniqueness of the solution of Relation (3.52) and the con-

vergence in distribution of the scaled process to the process wptq. For this, we need to

have some Lipschitz property on the limiting system, and finite first moments for the

invariant distribution of pXwptq, Zwptqq. This is proved in Section 7 of [RV20] for the

case where Z is a one-dimensional process, the extension to multi-dimensional Z is

straightforward.
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CHAPTER 4

ON THE SPONTANEOUS DYNAMICS OF SYNAPTIC WEIGHTS IN

STOCHASTIC MODELS WITH PAIR-BASED STDP

We investigate spike-timing dependent plasticity (STPD) in the case of a synapse

connecting two neuronal cells. We develop a theoretical analysis of several STDP

rules using Markovian theory. In this context there are two different timescales,

fast neuronal activity and slower synaptic weight updates. Exploiting this timescale

separation, we derive the long-time limits of a single synaptic weight subject to STDP.

We show that the pairing model of presynaptic and postsynaptic spikes controls the

synaptic weight dynamics for small external input, on an excitatory synapse. This

result implies in particular that mean-field analysis of plasticity may miss some

important properties of STDP. Anti-Hebbian STDP favors the emergence of a stable

synaptic weight. In the case of an inhibitory synapse the pairing schemes matter

less, and we observe convergence of the synaptic weight to a non-null value only for

Hebbian STDP. We extensively study different asymptotic regimes for STDP rules,

raising interesting questions for future works on adaptative neuronal networks and,

more generally, on adaptative systems.

abstract

4.1 Introduction

Neuronal networks, through the dynamics of their connections, are able to store com-

plex patterns over long periods of time, and as such are good candidates for the

establishment of memory. In particular, the intensityW of the connection between two

neurons, the synaptic weight, is seen as an essential building block to explain learning

and memory formation [TDM14].

Synaptic plasticity (processes that can modify the synaptic weight) is a complex

mechanism [CM08], but general principles have been inferred from experimental data

and used for a long time in computational models. Spike-timing dependent plasticity

(STDP) refers to plasticity processes that depend on the timing of presynaptic and

postsynaptic spiking activity [Fel12].

Experiments show that long-term synaptic plasticity is characterized by the coexis-

tence of two different timescales. Membrane potential and pre/postsynaptic interspike

intervals evolve on the order of several milliseconds, see [GK02b]. Synaptic weights

W change on a slower timescale ranging from seconds to minutes before observing an

effect of STDP protocols on the synaptic weights. The analysis of slow-fast limits for

a general class of STDP models is detailed in [RV21b; RV21c; RV21a]. Computational

models of synaptic plasticity have also used similar scaling principles, see [KGH99;

Rob99; KH00; RBT00a].

In pair-based models, the synaptic weight updates depend only on ∆t“tpost ´ tpre
for a subset of instants of pre/postsynaptic spikes tpre{tpost.

Hebbian STDP plasticity occurs when

175
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— a pre-post pairing, tpreătpost leads to an increase of the synaptic weight value

(potentiation), which translates into ∆Wą0;

— a post-pre pairing, tpostătpre, leads to a smaller synaptic weight (depression), and

therefore ∆Wă0.

Hebbian STDP has been observed at many different synapses [BP98; Fel12] and is

extensively studied in computational models [KGH99; Rob99; KH00; RBT00a; KGH01;

RLS01; GK02a; BMG04; RA04; SJT07; GMH11].

Other types of polarity havebeenobserved experimentally, they are oftenneglected

in theoretical studies of STDP. For example, Anti-Hebbian STDP follows the opposite

principles and has been observed experimentally in the striatum, see [FGV05; RL10].

Different types of STDP rules were analyzed in [Rob00; CF03; RA04; ZD07; RL10;

BK12].

In theoretical works, the system, in general, is reduced to a single neuron receiv-

ing a large number of excitatory inputs subject to STDP, leading to a Fokker-Plank

approach [RBT00a; RLS01; BMG04].

The pre-/postsynaptic spike correlation function [KGH99; KGH01; GK02a] is used

to study the influence of STDP with high correlated inputs. However, this method re-

lies on the assumption that all pairs of pre- and postsynaptic spikes impact the synap-

tic weight update. Several studies have questioned this hypothesis [ID03; MAD07;

MDG08], and its influence on the synaptic weight dynamics has not been discussed in

theoretical works, except in [BMG04].

Finally, most studies focus on excitatory inputs, whereas inhibitory synapses also

exhibit STDP [HNA06; Fel12], but few theoretical works exist [LS14].

Here we develop a theoretical study of a large class of rules, for a system with

two neurons and a single synapse. This simple setting is used to test the influence

of STDP on an excitatory and an inhibitory synapse, for three different classes of

pairing interactions leading to an extensive categorizationof thedifferent dynamics. We

question in particular if several interesting properties of the synaptic weight dynamics

are lost when using classical models with numerous excitatory inputs, leading to an

underestimation of the role of STDP in learning systems.

4.2 Theoretical analysis

Spiking neurons and Poisson processes
The spike train of the presynaptic neuron is represented by an homogeneous Poisson

process Nλ“ptpre,nq1ďn, where ptpre,n`1 ´ tpre,nq1ďn is a sequence of i.i.d. exponential

random variables with parameter λ. The quantity Nλpa, bq denotes the number of

ptpre,nq in the interval ra, bs, in particular,

P
´

Nλpt, t` dtq‰0
¯

“λ dt`opdtq.

We define a stochastic process pXptqq following leaky-integrate dynamics:

a. It decays exponentially to 0 with a fixed exponential decay, set to 1.

b. It is incremented by the synaptic weight Wą0 at each presynaptic spike, i.e. at

each jump of Nλ.
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The firing mechanism of the postsynaptic neuron is driven by an activation function
β, when X is x, the output neuron fires at rate βpxq. The sequence of instants of

postsynaptic spikes pt
post,nq is a point process Nβ,X on R` such that

P
´

Nβ,Xpt, t` dtq‰0
ˇ

ˇ

ˇ
Xpt´q“x

¯

“βpxq dt`opdtq.

The notation fpt´q is the left-limit of f at t.
For simplicity, we chose to differentiate between excitatory and inhibitory synapses

at the level of the activation function, instead of allowing for negative W . Indeed, for

an excitatory synapse, the activation function βpxq“ν`βx is used, ν is the rate of the

external input to the postsynaptic neuron, it models external noise. For inhibitory

synapses, we consider βpxq“maxpν´βx, 0q. A linear activation function has been

used, mainly to enable explicit analytical computations, and for comparison with other

computational studies with similar hypotheses, see [KGH99].

Pair-based STDP rules

PNS

P
o
st

PA PNR

P
re

∆t = tpost − tpre

1/γ1

1/γ2

B1

B2

Figure 4.1: Synaptic plasticity kernels for pair-based rules.
Example of an exponential plasticity curve as a function of ∆t, with different

parameters (top left). Examples of pre- and postsynaptic pairings for all-to-all (PA,

bottom left), nearest neighbor symmetric (PNS, top right) and nearest neighbor

symmetric reduced (PNR, bottom right) STDPs.

We study an important implementation of STDP referred to as pair-based rules.

For a pair ptpre, tpostq of instants of pre- and postsynaptic spikes, the synaptic weight

update ∆W depends only on ∆t“tpost´tpre, as illustrated in Figure 4.1.
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An important choice for the model is to decide which pairings to take into account

in the plasticity update. A large choice of different schemes have been analyzed in the

literature [MDG08]. We have chosen to focus on three versions, that are summarized

in Figure 4.1:

— All-to-all pair-based model (PA): all pairs of spikes are taken into account in the

synaptic plasticity rule.

— Nearest neighbor symmetricmodel (PNS):whenever one neuron spikes, the synaptic

weight is updated by only taking into account the last spike of the other neuron.

— Nearest neighbor symmetric reduced model (PNR): only consecutive pairs of spikes

are used to update the synaptic weight.

The synaptic weight update is therefore composed of the sum over relevant spikes,

of a kernel Φp∆tq known as the plasticity curve, here we chose an exponential kernel,

given by,

Φp∆tq “
#

B2 exppγ2∆tq ∆tă0,
B1 expp´γ1∆tq ∆tą0.

where B1, B2PR represents the amplitude of the STDP and γ1, γ2 ą 0 the characteristic

time of interaction, see Figure 4.1 (top left).

All-to-all model (PA)

The all-to-all pair-based model supposes that all pairs of spikes are taken into account

in the synaptic plasticity rule. The synaptic weight is updated at each postsynaptic

spike occurring at time tpost, by taking into account all presynaptic spikes before time

tpost:

∆W ptpostq “ B1
ÿ

tpre,nătpost

e´γ1ptpost´tpre,nq “ ZPA
1 ptpost´q

and conversely,

∆W ptpreq “ B2
ÿ

tpost,nătpre

e´γ2ptpre´tpost,nq “ ZPA
2 ptpre´q

The processes pZPA
i ptqq, i“1, 2 can be expressed as solutions of the stochastic differential

equations,
#

dZPA
1 ptq “ ´γ1Z

PA
1 ptq dt`B1Nλpdtq,

dZPA
2 ptq “ ´γ2Z

PA
2 ptq dt`B2Nβ,Xpdtq,

they are two shot-noise processes, see [GP60; RV21b].

The synaptic weight updates correspond to the evaluation of pZPA
1 ptqq at jumps of

the point process Nβ,X for postsynaptic activity, and similarly for pZPA
2 ptqqwith Nλ,

dWPA
ptq “

ÿ

tpre,nďt

ZPA
2 ptpre,n´qδtpre,n

`
ÿ

tpost,nďt

ZPA
1 ptpost,n´qδtpost,n,

where δa is the Dirac mass at a. Equivalently,

dWPA
ptq “ ZPA

2 pt´qNλpdtq ` ZPA
1 pt´qNβ,Xpdtq.
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Nearest-neighbor symmetric model (PNS)

In the nearest neighbor symmetric model, whenever one neuron spikes, the synaptic

weight is updated by only taking into account the last spike of the other neuron, as

can be seen in Figure 4.1 (top right). If the presynaptic neuron fires at time tpre, the

contribution to the plasticity kernel is Φptpre´tpostq , where tpost is the last postsynaptic

spike before tpre and similarly for postsynaptic spikes.

The nearest neighbor symmetric rule leads to,

$

’

’

’

&

’

’

’

%

dZPNS
1 ptq “ ´γ1Z

PNS
1 ptq dt

`pB1 ´ Z
PNS
1 pt´qqNλpdtq,

dZPNS
2 ptq “ ´γ2Z

PNS
2 ptq dt

`pB2 ´ Z
PNS
2 pt´qqqNβ,Xpdtq.

At each presynaptic spike, pZPNS
1 ptqq, resp. pZPNS

2 ptqq, is reset to B1, resp. B2.

Nearest-neighbor symmetric reduced model (PNR)

Finally, for thenearest neighbor symmetric reduced scheme, only consecutivepairs of spikes

are used to update the synaptic weight. The synaptic weight is updated at presynaptic

spike time tpre only if there are no presynaptic spikes since the last postsynaptic spike.

And similarly for postsynaptic spike times. See Figure 4.1 (bottom right).

This rule leads to pZPNR
i ptqq, i“1, 2, solutions of

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

dZPNR
1 ptq “ ´γ1Z

PNR
1 ptq dt

`pB1 ´ Z
PNR
1 pt´qqNλpdtq

´ZPNR
1 pt´qqNβ,Xpdtq,

dZPNR
2 ptq “ ´γ2Z

PNR
2 ptq dt

`pB2 ´ Z
PNR
2 pt´qqqNβ,Xpdtq

´ZPNR
2 pt´qNλpdtq.

A general formulation for pair-based rules with exponential kernels

All these pair-based rules can be represented by a system of the form

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

dXptq “ ´Xptq dt`W pt´qNλpdtq,
dZ1ptq “ ´γ1Z1ptq dt

`pB1 ´K1,1Z1pt´qqNλpdtq
´K1,2Z1pt´qNβ,Xpdtq,

dZ2ptq “ ´γ2Z2ptq dt
`pB2´K2,2Z2pt´qqNβ,Xpdtq
´K2,1Z2pt´qNλpdtq,

dW ptq “ Z1pt´qNβ,Xpdtq ` Z2pt´qNλpdtq

(4.1)

where γ1, γ2ą0, B1, B2PR, K“pKijqPt0, 1u2ˆ2
.
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For the three pair-based STDP rules detailed, we have,

KPA
“

ˆ

0 0
0 0

˙

, KPNS
“

ˆ

1 0
0 1

˙

, KPNR
“

ˆ

1 1
1 1

˙

.

See Supplemental Material for Figure 4.5 at [URLwill be inserted by publisher] for

an example of dynamics for each pairing scheme.

A slow-fast system
We consider that the processes pXptqq and pZ1ptq, Z2ptqq evolve on a fast time scale tÞÑt{ε
for some small εą0. The increments of the variableW are scaled with the parameter ε,
pWεptqq is described as the slow process.

For ε small, on a short time interval, the slow process pWεptqq is almost constant,

and, due to its faster dynamics, the process pXεptq, Z1,εptq, Z2,εptqq is “almost” at its equi-

libriumdistribution associated to the current value ofWεptq«w. This corresponds to the
equilibrium of the process pXwptq, Zw

1 ptq, Z
w
2 ptqq, whereW ptq“w is at a constant value.

Classical results on Markov systems imply that there is unique stationary distribution

ΠK
w on R`ˆR2

, for simplicity we will denote ΠPX

w “ΠKPX

w , see [RV21b]

Using averaging principle arguments, the asymptotic dynamic of pWεptqq is given
by the ordinary differential equation,

dw
dt ptq “

ż

R`ˆR2
pλz2`βpxqz1qΠK

wptqpdx, dzq

“ EΠK
wptq
rλZ2`βpXqZ1s “ fK

pwptqq.

(4.2)

A more rigorous development of this result is given in Supplemental Material 4.B

at [URL will be inserted by publisher], as is a comparison with computational mod-

els in Supplemental Material 4.C. Five different asymptotic behaviors for w, solu-
tion of (4.2) are defined using analytical asymptotic properties in Table 4.1. We de-

fine numerical approximates of these possible behaviors, depending on the values of

p`8“P pWεptq“ `8q, p0“P pWεptq“0q and p
stable

“1´p`8´p0, and a fixed parameters

p
bif
, see Appendix 4.A.

4.3 Results

In the following section, we study the dynamics of the synaptic weight, using analytical

computations and numerical simulations. We investigate the influence of B1 and B2
because they represent biologically relevant parameters. Indeed most experimental

studies only focus on the polarity of STDP, i.e the signs of B1 and B2 in the present

model. In particular, we will focus on four different types of STDP classified as follow,

Hebbian STDP (B1ą0, B2ă0), anti-Hebbian STDP (B1ă0, B2ą0), symmetric LTD (S-

LTD, B1ă0, B2ă0) and symmetric LTP (S-LTP, B1ą0, B2ą0), which have all been

shown to exist experimentally [Fel12]. We also choose to study the relative importance

of the external firing rate ν, compared to other rate-related variables λ, β. Accordingly,
analytical expressions are given for general parameters, while simulations are always

realized with γ1“γ2“β“λ“1. See Supplemental Material 4.D at [URL will be inserted

by publisher] for proofs and lengthy analytical expressions.
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LTD (long-term depression)
@w0, lim

tÑ`8
wptq “ 0 p`8 ă p

bif

p0 ě p
bif

p
stable

ă p
bif

LTP (long-term potentiation)
@w0, lim

tÑ`8
wptq “ `8 p`8 ě p

bif

p0 ă p
bif

p
stable

ă p
bif

UFP (unstable fixed point

Dw
eq
, @w0ăweq

, lim
tÑ`8

wptq “ 0
and @w0ąweq

, lim
tÑ`8

wptq “ `8

p`8 ě p
bif

p0 ě p
bif

p
stable

ă p
bif

SFP (stable fixed point)
Dw

eq
, @w0, lim

tÑ`8
wptq “ w

eq

p`8 ă p
bif

p0 ă p
bif

p
stable

ě p
bif

MFP (multiple fixed points)
Other behaviors

Complementary set

Table 4.1: Different behaviors, theoretical definitions and numerical estimations.

In this framework, we study the asymptotic behavior of the dynamical system (4.2)

for the three pair-based rules.

We will show that the synaptic weight wptq usually exhibits one of three different

asymptotic behaviors, which all have a biological interpretation:

— Convergence ofwptq towards 0, which corresponds the disconnection (or pruning)

of the synapse: the presynaptic neuron loses its ability to influence the postsy-

naptic neuron.

— Divergence of wptq to infinity, leading to a perfect coupling between the pre- and

postsynaptic neurons, through an unstable system which, in a biological system,

will be stopped by saturation mechanisms.

— Convergence to a non null value weq, resulting in self-sustained activity, i.e., pre-

and postsynaptic activities coupled with STDP are sufficient to have a bounded

stable synaptic weight.

Stability and divergence depends on the polarity of STDP
Starting with the all-to-all scheme for an excitatory synapse, i.e. βpxq“ν`βx, we have,

dw
dt ptq “ fPA

pwq “ APA

0 `A
PA

1 w “ APA

1
`

w´wPA

˘

.
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(a) Excitatory synapse, PA, ν = 0

(b) Excitatory synapse, PA, ν = 1

LTD

LTP

SFP

UFP

MFP

APA
1 = 0

APA
0 = 0

ε=0.02

ε=0.01

ε=0.005

Figure 4.2: All-to-all pair-based STDP for an excitatory synapse.
(a) Dynamics of the synaptic weight as a function of B1 and B2 for ν“0. (left) Classification

based on numerical simulations for different asymptotic dynamics of the synaptic weights (see

different colors). Theoretical boundaries are also drawn (see legend for their expressions).

(right) Two examples of temporal evolutions of the synaptic weights, for different values of ε.
(b) Same as (a) for ν“1.
(γ1“γ2“β“λ“1)

with

APA

0
def.

“ νλ

ˆ

B1

γ1
`
B2

γ2

˙

,

APA

1
def.

“ βλ2
ˆ

B1

γ1
`
B2

γ2
`

B1

λp1`γ1q

˙

and

wPA def.

“ ´APA

0 {A
PA

1 .

The signs ofAPA

0 andAPA

1 determine the asymptotic behavior of w. We study the impact

of B1 and B2 with, or without, external input rate ν on the dynamics in Figure 4.2.

If ν“0, thenwPA“0. Without external input ν, the synapticweights cannot converge

to a positive stable solution.
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— IfAPA

1 ă0, pwptqq converges to 0, as shown by the blue region of Figure 4.2 (a), with

some examples of dynamics at point A.

— If APA

1 ą0, pwptqq diverges to `8, the red region of Figure 4.2 (a) and example B.

If νą0,wPA
is a non-null fixedpoint. This gives twonewbehaviors in the bifurcation

map, see Figure 4.2 (b).

— If APA

1 ă0 and APA

0 ą0, the fixed point is stable (green region) and all simulations

converge to wPA
independently of the initial point. See example A.

— IfAPA

1 ą0 andAPA

0 ă0, the fixed point is unstable (orange region), exampleB shows

that in that case, the dynamics depends on the initial value of synaptic weight. It

diverges to `8 if starting above wPA
, and converges to 0 otherwise.

Influence of pairing scheme
Nearest neighbor symmetric STDP

For nearest neighbor symmetric STDP with βpxq“ν`βx, the associated dynamical

system is given by,

dw
dt ptq “ fPNS

pwq
def.

“ APNS

0 `APNS

1 w`APNS

2 hPNS

pwq,

with,

APNS

0
def.

“
νλ

λ`γ1
B1`

νλ

ν`γ2
B2,

APNS

1
def.

“ λβ
1`λ

1`λ`γ1
B1, A

PNS

2 “λB2,

and

hPNS

pwq
def.

“ γ2

ż

R`
e´γ2τ

´

1´ exp
´

´ντ

´λ

ż τ

0

`

1´ exp
`

´βw
`

1´es´τ
˘˘˘

ds

´λ

ż 0

´8

`

1´ exp
`

´βw
`

1´e´τ
˘

es
˘˘

ds
˙˙

dτ ´ ν

ν`γ2
.

The asymptotic behavior of pwptqq can be analyzed rigorously in this case.

If ν“0, let
APNS

3
def.

“ fPNS
1
p0q“λβ

ˆ

1` λ
1` λ` γ1

B1`
λ

γ2
B2

˙

— If APNS

1 ă0 and APNS

3 ă0, pwptqq converges to 0 in finite time (blue).

— If APNS

1 ą0 and APNS

3 ą0, The system diverges to infinity when both parameters are

positive (red).

— If APNS

1 ă0 and APNS

3 ą0, a stable fixed point wPNS
exists (green), see example A.
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(a) Excitatory synapse, PNS, ν = 0

(b) Excitatory synapse, PNR, ν = 0

(c) Excitatory synapse, PNR, ν = 0.2
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Figure 4.3: Different pairing schemes leads to diverse dynamics.
(a) Dynamics of the synaptic weight as a function of B1 and B2 for nearest neighbor symmetric

STDP and ν“0. (left) Classification based on numerical simulations for different asymptotic

dynamics of the synaptic weights (see different colors). Theoretical boundaries are also drawn

(see legend for their expressions). (right) Two examples of temporal evolutions of the synaptic

weights, for different values of ε. (b) Same as (a) for nearest neighbor symmetric reduced STDP

and ν“0. (c) Same as (a) for nearest neighbor symmetric reduced STDP and ν“0.2.
(γ1“γ2“β“λ“1)
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— If APNS

1 ą0 and APNS

3 ă0, an unstable fixed point wPNS
exists (orange), example B.

We prove the existence of the fixed point wPNS
, provide a numerical estimation,

and compute an approximation of wPNS
when w«0, Figure 4.3(a) shows a comparison

with numerical experiments.

The picture is similar for the case νą0, with slightly different conditions, where the

same dynamics are verified except that APNS

3 ă0 is replaced by APNS

0 ă0 (see Figure 4.6

Supplemental Material at [URL will be inserted by publisher] for a comparison).

Discussion. Nearest neighbor symmetric STDP has significant differences with the

all-to-all scheme. First, a positive stable fixed point may exist in the absence of external

noise. The condition on APNS

1 is a condition on B1 only: if B1ă0 the system either

converges to 0 or to a positive fixed point. The all-to-all case does not exhibit such a

simple behavior, because APA

0 and APA

1 both depend on B1 and B2.

Nearest neighbor symmetric reduced STDP

A theoretical study of pwptqq solution of (4.2) with βpxq“ν`βx is possible, but more

involved than for PA and PNS. Computer simulations were done using this scheme,

and the results are illustrated in Figure 4.3(b) and (c).

For ν“0, there exists a (narrow) range of parameters in theHebbian region (bottom

right) where a stable fixed point occurs, see example B in Figure 4.3(b). Symmetrically,

an unstable fixed point seems to exist in the anti-Hebbian region (top left) and example

A.
For νą0, a second fixed point appears leading to more complex behaviors charac-

terized by the presence of a stable and an unstable fixed point at the same time Fig-

ure 4.3(c). If the stable fixed point is lower than the unstable one, see example A and

(top left) in Figure 4.3(c), the synaptic weight either converges to a non null value or

diverges to infinity. For Hebbian parameters (bottom right), the situation is reversed,

see example B in Figure 4.3(c). The spectrum of values with this complex behavior

narrows when ν is increasing. In particular, for large values of ν, only a perfect balance

in the parameters may lead to other behaviors than whole depression or potentiation.

See Figure 4.7 in Supplemental Material at [URL will be inserted by publisher] for

examples of the influence of ν on the dynamics.

Discussion. There are several differences of interestwith the twoother STDPpair-based

rules for an excitatory synapse. First, for all-to-all and nearest neighbor symmetric

pairings at an excitatory synapse, the stable fixed point only appears for anti-Hebbian

parameters, whereas an unstable one exists for Hebbian STDP. With nearest neighbor

symmetric reduced STDP, we have numerically shown that a more complex behavior

with several fixed points may occur. Second, the nearest neighbor symmetric reduced

STDP needs an almost exact balance of the parameters to enable convergence of the

system toward a fixed point.

Table 4.2 gathers all results for an excitatory synapse as a function of the different

types of biologically-relevant STDPs.

All-to-all STDP with an inhibitory synapse
We now study the dynamics (4.2) of the synaptic weight for an inhibitory synapse, i.e.

when βpxq“pν´βxq`.
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ν Symmetric LTD Symmetric LTP Hebbian Anti-Hebbian

PA

“ 0 LTD LTP

LTD if APA

0 ă0 LTD if APA

0 ă0

LTP if APA

0 ą0 LTP if APA

0 ą0

ą 0 LTD LTP

LTD if APA

0 ă0 LTD if APA

1 ă0

LTP if APA

1 ą0 LTP if APA

0 ą0

UFP if not SFP if not

PNS

“ 0 LTD LTP

LTP if APNS

3 ą0 LTD if APNS

3 ă0

UFP if not SFP if not

ą 0 LTD LTP

LTP if APNS

0 ą0 LTD if APNS

0 ă0

UFP if not SFP if not

PNR*

“ 0 LTD LTP LTD/LTP/SFP LTD/LTP/UFP

ą 0 LTD LTP LTD/LTP/MFP LTD/LTP/MFP

Table 4.2: Different pairing schemes lead to diverse dynamics for an excitatory
synapse.
(S-LTD: symmetric LTD, S-LTP: symmetric LTP, * with simulations and
γ1“γ2“β“λ“1).

We restrict our study to two cases.

For small w,

dw
dt ptq “ fPA

pwq “ APA

0 ´A
PA

1 w`opwq

“ ´APA

1
`

w`wPA

˘

`opwq.

with APA

0{1 defined before.

When w ě ν{β, we have

dw
dt ptq “

APAI

wptqλ`γ1

ˆ

1`ηPAI

„

wptq

wPAI

γ1˙

with

APAI def.

“

„

ν

β

λ`γ1 cpλqB1ν

pλ` γ1q pλ`γ1`1q ,

wPAI def.

“
β

ν

ˆˇ

ˇ

ˇ

ˇ

B2

B1

ˇ

ˇ

ˇ

ˇ

pλ`γ1q pλ` γ1`1q
γ2 pλ` 1q

˙1{γ1

,

ηPAI def.

“

ˇ

ˇ

ˇ

ˇ

B2

B1

ˇ

ˇ

ˇ

ˇ

B1

B2
.

Using arguments on themonotony of the functionals, it should be possible to prove

the stability properties, only using the two extreme cases defined above. In particular,

the two relevant parameters are APA

0 and B2.
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(a) Inhibitory synapse, PA, ν = 1

(b) Inhibitory synapse, PNS, ν = 1

(c) Inhibitory synapse, PNR, ν = 1
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Figure 4.4: Pair-based STDP for an inhibitory synapse.
(a) Dynamics of the synaptic weight as a function of B1 and B2 for all-to-all STDP and ν“1.
(left) Classification based on numerical simulations for different asymptotic dynamics of the

synaptic weights (see different colors). Theoretical boundaries are also drawn (see legend for

their expressions). (right) Two examples of temporal evolutions of the synaptic weights, for

different values of ε. (b) Same as (a) for nearest neighbor symmetric STDP and ν“1. (c) Same

as (a) for nearest neighbor symmetric reduced STDP and ν“1.
(γ1“γ2“β“λ“1)
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Symmetric LTD Symmetric LTP Hebbian Anti-Hebbian

PA* LTD LTP

LTD if APA

0 ă0 LTP if APA

0 ą0

SFP if not UFP if not

PNS/PNR* LTD LTP LTD/SFP LTP/UFP

Table 4.3: Different pairing schemes lead to diverse dynamics for an inhibitory
synapse.
(S-LTD: symmetric LTD, S-LTP: symmetric LTP, * with simulations and
γ1“γ2“β“λ“1).

— For B2ą0 and APA

0 ą0, the synaptic weight diverges to infinity (in red).

— For B2ă0 and APA

0 ă0, it converges to 0 in finite time (in blue).

— For B2ą0 and APA

0 ă0, there is an unstable fixed point (orange, example A).

— ForB2ă0 andAPA

0 ą0, the system exhibits a stable equilibrium (green, example B).

We note here an inversion with the properties observed for the excitatory synapse,

where only anti-Hebbian STDP led to a stable fixed point, compared to the inhibitory

case where only Hebbian STDP elicits this type of behavior.

This analysis is completed with the other schemes in Figure 4.4(b) for PNS and

Figure 4.4(c) for PNR. The dynamics are similar to the all-to-all case for this range of

parameters, only the values of the fixed points seems to change (compare B for the three

cases).

All these behaviors are gathered in Table 4.3.

It is striking that the pairing scheme does not seem to have a decisive impact on

the dynamics for an inhibitory synapse, considering the important impact displayed

for an excitatory synapse.

4.4 Conclusion

We have developed a simple and rigorous analysis of synaptic weight dynamics via a

slow-fast approximation and numerical simulations. For an excitatory synapse, anti-

Hebbian STDP can lead to a stable fixed point, with some slight variations depending

on the pairing scheme used. For an inhibitory synapse, numerical arguments showed

that all schemes were similar, with the existence of a stable fixed point for Hebbian

STDP.

This study investigates rigorously the synapticweight dynamics for several pairing

schemes, for all polarities of STDP, and for excitatory/inhibitory inputs. As such, it

extends and complete previous results that only focus on all-to-all Hebbian STDP at

excitatory synapses.

The nervous system is characterized by its diversity, and in particular, by the

existence of many types of neurons which display different properties. Several models

in theoretical neuroscience consider neurons that integrate a large quantity of random
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inputs approximated by a Brownian diffusion and the postsynaptic spikes resultmainly

from noise and not from correlated presynaptic inputs [RLS01; RBT00b]. When the

impact of the presynaptic spikes is lost in the external noise (consistent with a large

number of external uncorrelated inputs), pairing schemes do not influence the type

of dynamics observed see [BMG04] for example. These assumptions often lead to a

mean-field formulation where the synaptic weight dynamics is essentially driven by

the mean global synaptic weight, see [BMG04; BA16].

However, neurons, in the striatum [MDC01; Pid+11] or in the cortex [AG00], need

short bursts of presynaptic concentrated activity for their membrane potential to be

depolarized enough to trigger spikes. In particular, pattern learning tasks, where a set

of highly correlated inputs is repeated and learn to trigger/or not trigger a postsynaptic

spike, are a good example of systems where presynaptic inputs cannot be reduced to a

diffusive process. In this article, we have focused on similar network dynamics, where

the postsynaptic spike train is determined by the presynaptic spike train, and not just

a diffusive process. When considering such dynamics, as we have seen, the different

STDP schemes have an important impact. A potential mean-field approximation in this

context seems therefore to be unlikely.

It is not a surprise that this regime of activity leads to diverse interesting behaviors

for the synaptic weight dynamics, where the asymptotic behavior strongly depends on

the polarity of the STDP curve and the pairing scheme. Wehave shown, using analytical

and numerical arguments, that several key parameters need to be taken into account

while implementing STDP in networks with correlated dynamics, and in particular in

recurrent networks [BGH07; GBV10; TAG18]. This conclusion should also apply to

more complex pairing schemes such as triplets rules [PG06b; BA16].

Theoretical studies of plasticity in networks are quite scarce. Recently, [Löc17]

studies short-term plasticity in a large network, and [Luc+16] the noise-enhanced cou-

pling of two excitatory neurons subject to STDP,which can be extended to the formation

of multiclusters in adaptive networks [BSY19]. The need for a general theory is great

and this work is a first step in developing a rigorous framework to investigate the role

of STDP in network dynamics
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Appendix

4.A Computer methods

For each set of parameters, we have run several simulations, with different initial

weight values uniformly taken in r0, w
max
s. We have tested the dynamics of the synaptic

weight for the different pairing schemes defined before for a wide range of parameters.

Simulations have been done using Python 3.X for the simple network of a presynaptic

and a postsynaptic neuron. We used a discrete Euler scheme for the dynamics of the

membrane potential X and the plasticity variables Z1 and Z2. Whenever the synaptic

weight was either 0 or reached the maximal value w
max

the dynamics was stopped, and

the synaptic weight state recorded.

To compare different dynamics, synapses and pairing schemes, we perform, for

each set of parameters, independent simulations and from this array of dynamics we

compute several variables:

— The probability of diverging to infinity, p`8“P pWεptq“ `8q, approximated by

the proportion of simulations where the synaptic weight goes above w
max

.

— The probability of converging to 0, p0“P pWεptq“0q, approximated by the propor-

tion of simulations whose synaptic weight goes below 0.

— The probability to have a stable fixed point defined by the complementary prob-

ability p
stable

“1´p`8´p0.

While varying B1 and B2, we simulated P“500 neuronal networks for each condi-

tion with dt“0.0005. We also plot the temporal dynamics for specific values of B1 and

B2, typically used P“50 simulations for each scaling ε with dt“0.0002. The following

parameters are fixed in the simulations γ1“γ2“β“λ“1.
Simulations were run on the INRIA CLEPS cluster and HPC resources

from GENCI-IDRIS (Grant 2022-A0100612385), using GNU parallel (Tange, O.

(2020, May 22). GNU Parallel 20200522 (‘Kraftwerk’). Zenodo. https

://doi.org/10.5281/zenodo.3841377).

4.B Slow-fast approximations, averaging principles

We have the scaled system, for εą0,
$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

dXεptq “ ´1{εXεptq dt`Wεpt´qNλ{εpdtq,
dZ1,εptq “ ´γ1Z1,εptq dt{ε` pB1 ´K1,1Z1,εpt´qqNλ{εpdtq

´K1,2Z1,εpt´qNβ{ε,Xεpdtq,
dZ2,εptq “ ´γ2Z2,εptq dt{ε` pB2´K2,2Z2,εpt´qqNβ{ε,Xεpdtq

´K2,1Z2,εpt´qNλ{εpdtq,
dWεptq “ Z1,εpt´qεNβ{ε,Xεpdtq ` Z2,εpt´qεNλ{εpdtq

(4.3)

where γ1, γ2ą0, B1, B2PR, K“pKij, i, jPt1, 2uqPt0, 1u2ˆ2
.

Approximations of pWεptqqwhen ε is small are discussed and investigated with ad

hoc methods. The corresponding scaling results, known as separation of timescales,
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are routinely used in approximations in mathematical models of computational neuro-

science, for example [KGH99].

We first need to define the processes pXwptq, Zw
1 ptq, Z

w
2 ptqq which follow the fast

processes dynamicswith a constant synapticweightw andprove that a unique invariant

distribution exists for the associated dynamics. This corresponds to the equilibrium of

the process pXwptq, Zw
1 ptq, Z

w
2 ptqq such that

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

dXwptq “ ´Xwptq dt` wNλpdtq,
dZw

1 ptq “ ´γZw
1 ptq dt` pB1 ´K1,1Z

w
1 pt´qqNλpdtq

´K1,2Z
w
1 pt´qNβ,Xwpdtq,

dZw
2 ptq “ ´γZw

2 ptq dt` pB2 ´K2,2Z
w
2 pt´qqNβ,Xwpdtq

´K2,1Z
w
2 pt´qNλpdtq.

(4.4)

This is the purpose of Proposition 55.

Proposition 55 (Equilibrium of fast processes). For K“pKij, i, jPt1, 2uqPt0, 1u2ˆ2,
γ1, γ2ą0,B1, B2PR, and eachwě0, theMarkov process pXwptq, Zw

1 ptq, Z
w
2 ptqq solution of (4.4)

has a unique stationary distribution ΠK
w on R`ˆR2.

Proof. See Proposition 25 of [RV21a].

Theorem 56 (Averaging principle). There exists S0Pp0,`8s such that, when ε goes to 0, the
process pWεptq, tăS0q is converging in distribution to pwptq, tăS0q, solution of the equation

dw
dt ptq “ EΠK

wptq
rλZ2`βpXqZ1s , (4.5)

where ΠK
w is defined in Proposition 55.

Proof. See [RV21c] and [RV21a].

4.C Comparison to classical computational models

In this section, we compare averaging principles for STDP rules leading to Relation (4.5)

with the results of [KGH99] in the all-to-all pair-based scheme.

The asymptotic behavior of the synaptic weight dynamics, Relation (4) of [KGH99],

is a consequence of a similar slow-fast argument,

d rw
dt ptq “

ż `8

´8

rΦpsqrµps, tq ds, (4.6)

where,

—
rΦpsq represents the STDP curve;

— rµps, tq“ăS1pt`sqS2ptqą, the correlation between the spike trains.
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The quantity 〈¨ ¨ ¨〉 is defined in terms of temporal and ensemble averages, 〈¨ ¨ ¨〉 is the
ensemble average and ¨ ¨ ¨ the temporal average over the spike trains.

In our setting, Theorem 56 gives the following equation,

dw
dt ptq “ EΠPA

wptq
rλZ2`βpXqZ1s ,

with

Φptq def.

“ B1 expp´γ1tq1ttą0u `B2 exppγ2tq1ttă0u.

We have, using simple calculus,

λEΠPA

wptq
rZ2s “

ż 0

´8

B2 exppγ2τqλEΠPA

wptq
rβpxqs dτ

We denote by ΠPA

2ÞÑ1,tpτq the rate of having a post-pre pairing with delay τ at time t. For
the post-pre pairing, we can consider that ΠPA

2ÞÑ1,tpτq does not depend on τ and that it is

just equal to the product of both rates, i.e there is no causality, and

ΠPA

2ÞÑ1,tpτq “ λEΠPA

wptq
rβpxqs .

We easily conclude that,

λEΠPA

wptq
rZ2s “

ż 0

´8

ΦpτqΠPA

2ÞÑ1,tpτq dτ,

with ΠPA

2ÞÑ1,tpτq « ăS
1pt`τqS2ptqą.

Similarly, we have

EΠPA

wptq
rβpXqZ1s “ EΠPA

wptq

«

ÿ

tpreătpost

B1 expp´γ1ptpost ´ tpreqqβpXq

ff

We denote by ΠPA

1ÞÑ2,tpτq the rate of having a pre-post pairing with delay τ at time t.
For the pre-post pairing, this quantity depends on τ because spikes of the presynaptic

neuron influence the spiking of the postsynaptic one, so we have, by using the fact that

ΠPA
is the invariant distribution,

EΠPA

wptq

«

ÿ

tpreătpost

B1 expp´γ1ptpost ´ tpreqqβpXq

ff

“

ż `8

0
B1 expp´γ1τqΠPA

1ÞÑ2,tpτq dτ.

See SM2 of [RV21c], hence

EΠPA

wptq
rβpXqZ1s “

ż `8

0
ΦpτqΠPA

1ÞÑ2,tpτq dτ,

with ΠPA

1ÞÑ2,tpτq « ăS
1ptqS2pt`τqą. This shows the equivalence between [KGH99] and

our result for the all-to-all pair-based STDP rules.
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4.D Proofs

All-to-all STDP at an excitatory synapse

We prove that,

EΠPA

wptq
rλZ2`βpXqZ1s “ APA

0 `A
PA

1 w “ APA

1
`

w´wPA

˘

.

where,

APA

0 “ νλ

ˆ

B1

γ1
`
B2

γ2

˙

, APA

1 “ βλ2
ˆ

B1

γ1
`
B2

γ2
`

B1

λp1`γ1q

˙

Proof. First, it is easy to show that,

E
”

ZPA,w
1

ı

“ λ
B1

γ1
, and E

”

ZPA,w
2

ı

“ ν
B2

γ2
`βλ

B2

γ2
w

Moreover, denoting pY wptqq“pXwptqZPA,w
1 ptqq, we get

dY w
ptq “ ´p1`γ1qY

w
ptq dt`

´

wZPA,w
1 pt´q`B1X

w
pt´q ` wB1

¯

Nλpdtq,

by integrating this ODE on r0, ts and taking the expected value, we obtain

E
”

XwZPA,w
1

ı

“
λwE

”

ZPA,w
1

ı

`λB1E rXws `λwB1

1`γ1
“

ˆ

λ2

γ1
`

λ

1`γ1

˙

B1w.

Nearest neighbor symmetric STDP at an excitatory synapse
Estimation of fPNS

EΠPNS

wptq
rλZ2`βpXqZ1s “ APNS

0 `APNS

1 w`APNS

2 hPNS

pwq

with,

APNS

0 “
νλ

λ`γ1
B1`

νλ

ν`γ2
B2, A

PNS

1 “λβ
1`λ

1`λ`γ1
B1, A

PNS

2 “λB2,

and,

hPNS

pwq “ γ2

ż

R`
e´γ2τ

ˆ

1´ exp
ˆ

´ντ´λ

ż τ

0

`

1´ exp
`

´βw
`

1´es´τ
˘˘˘

ds

´λ

ż 0

´8

`

1´ exp
`

´βw
`

1´e´τ
˘

es
˘˘

ds
˙˙

dτ´ ν

ν`γ2
.

For the proof, see Section 3.2 [RV21c].



194 STOCHASTIC NEURAL NETWORKS AND SYNAPTIC PLASTICITY

Dynamics of w

We start with some calculations for hPNS
of Section 4.3.

Lemma 57. hPNS is a convex function, and,

hPNS

p0q “ 0, hPNS

p`8q “ 1´ ν

ν`γ2
, hPNS

1
p0q “ λβγ2

pν`γ2q2

Proof. We compute,

hPNS
1
pwq “ λβγ2

ż

R`
e´pν`γ2qτ

ˆ
ż τ

0

`

1´es´τ
˘

exp
`

´βw
`

1´es´τ
˘˘

ds

`

ż 0

´8

`

1´e´τ
˘

es exp
`

´βw
`

1´e´τ
˘

es
˘

ds
˙

exp
ˆ

´λ

ż τ

0

`

1´ exp
`

´βw
`

1´es´τ
˘˘˘

ds´λ
ż 0

´8

`

1´ exp
`

´βw
`

1´e´τ
˘

es
˘˘

ds
˙

dτ.

We have h1pwq is an increasing function in w, so hpwq is convex.

The system

dw
dt ptq “ APNS

0 `APNS

1 w`APNS

2 hPNS

pwq

has the following dynamics.

ν LTD LTP STABLE FP UNSTABLE FP

0 APNS

3 ă0 APNS

3 ą0 APNS

3 ă0 APNS

3 ą0

APNS

1 ă0 APNS

1 ą0 APNS

1 ą0 APNS

1 ă0

ą 0 APNS

0 ă0 APNS

0 ą0 APNS

0 ă0 APNS

0 ą0

APNS

1 ă0 APNS

1 ą0 APNS

1 ą0 APNS

1 ă0

Table 4.4: Bifurcations parameters for the nearest neighbor symmetric scheme.

where

APNS

3 “ λβ

ˆ

1`λ
1`λ`γ1

B1`
λ

γ2
B2

˙

“ fPNS
1
p0qν“0.

Proof.
Case ν “ 0

We have fPNSp0q “ 0 and limwÑ`8 f
PNSpwq “ signpAPNS

1 qˆ8. We need to look then

at the sign of fPNS
1
p0q “ APNS

3 .
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If APNS

1 and APNS

3 are of the same sign, fPNS

1 has no positive roots. Therefore, if

APNS

1 ą0 and APNS

3 ą0, we have limtÑ`8wptq “ `8. Reciprocally, if APNS

1 ą0 and APNS

3 ă0,
we have limtÑ`8wptq “ 0.

If APNS

1 and APNS

3 are not of the same sign, fPNS

1 has a unique positive root wPNS
.

Then, if APNS

1 ă0 and APNS

3 ą0, wPNS
is a stable fixed point and APNS

1 ą0 and APNS

3 ă0, it is
an unstable fixed point.

Case ν ą 0
We have fPNSp0q “ APNS

0 and limwÑ`8 f
PNSpwq “ signpAPNS

1 qˆ8

Similarly as for ν“0, if APNS

0 and APNS

1 are not of the same sign, fPNS

1 has a unique

positive root wPNS
, following the convexity of fPNS

. Then, if APNS

0 ą0 and APNS

1 ă0, wPNS

is a stable fixed point and APNS

0 ă0 and APNS

1 ą0, it is an unstable fixed point.

It is slightly more complex for the other cases. We will focus on the case, APNS

0 ą0
and APNS

1 ą0. We have that fPNSp0q ą 0 and that limwÑ`8 f
PNSpwq “ `8. As fPNS

is

convex, two cases are possible. Either fPNS
has no positive root, and in that case, it

is easy to see that limtÑ`8wptq “ `8. However, it is also possible that fPNS
has two

positive roots and in that case it would lead to more complex dynamics. we just need

to look at fPNS
1
p0q and show that it is positive to prove that this case does not happen.

APNS

0 ą0 leads to a first inequality,

B1 ě ´B2
λ`γ1

ν`γ2
ě 0.

We can then say that,

fPNS
1
p0q “ APNS

1 `APNS

2
λβγ2

pν`γ2q2
“ B1λβ

1`λ
1`λ`γ1

`B2
λ2βγ2

pν`γ2q2

ě ´B2λβ
pλ`γ1q

1`λ
1`λ`γ1

´
λγ2
ν`γ2

ν`γ2
“ ´B2λβ

λν`λ2ν`γ1ν`γ1γ2 ` λνγ1

pν`γ2q2p1`λ`γ1q
ě 0

The same arguments are true for the other case.

Approximation for w small

We have the following expansion for w small,

fPNS

pwq “ νB1
λ

λ`γ1
`λβwB1

1`λ
1`λ`γ1

`λB2
ν`λβw

γ2`ν`λβw
`opwq.

Leading to the following differential system,

dw
dt ptq “

aPNSwptq2 ` bPNSwptq ` cPNS

wptq ´ wPNS

approx

` opwptqq,

where,
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aPNS

“ B1
λ2β2p1`λq
1`λ`γ1

, bPNS

“ B1
νλ2β

λ`γ1
`B1

λβp1`λqpγ2`νq

1`λ`γ1
`B2λ,

cPNS

“ B1
νλpγ2`νq

λ`γ1
`B2

ν

β
and wPNS

approx
“ ´

γ2`ν

λβ
.

Proof.

fPNS

pwq “ νB1
λ

λ`γ1
`λβwB1

1`λ
1`λ`γ1

`λB2´λγ2B2

ż

R`
exp

´

´τ pγ2`ν`λβwq
¯

dτ`opwq.

Therefore, if

∆PNS

“ bPNS
2
´ 4aPNScPNS

ą 0,
we have an analytical expression for the fixed points of the dynamics wPNS

w«0,

wPNS

w«0 “
´bPNS ` { ´

?
∆PNS

2aPNS

.

Nearest neighbor symmetric reduced STDP at an excitatory synapse
To study the invariant distribution, we need to use a different formulation of the nearest

reduced symmetric rule.

For wě0, we can define pXwptq, T PNR,w
1 , T PNR,w

2 ptqq, the solution of the SDEs,

$

’

&

’

%

dXwptq “ ´Xw
ptq dt` wNλpdtq,

dT PNR,w
1 ptq “ dt´T PNR,w

1 pt´qNλpdtq,
dT PNR,w

2 ptq “ dt´T PNR,w
2 pt´qNβ,Xwpdtq.

(4.7)

and,

dw
dt ptq “ fPNR

pwq “ EΠPNR

wptq
rλZ2`βpXqZ1s

“ EΠPNR

wptq

“

1tT1ăT2uB1βpXq expp´γ1T1q

` 1tT2ăT1uB2λ expp´γ2T2q
‰

All-to-all STDP at an inhibitory synapse
Definition 58. We define the density of probabilityQpyq of the exponential Shot-Noise process
Y associated to Nλ, according to Gilbert and Pollack (1960). A general expression of Qpyq can
be found in Gilbert and Pollack (1960). In our case, we will use,

#

Qpyq “ cpλqyλ´1 , 0 ď y ď 1,
lim
yÑ`8

Qpyq “ 0,

with,

cpλq “
e´γeλ

Γpλq
where, γe Euler constant and Γ Euler function.
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We have the two following limits, for small w,

dw
dt ptq “ fPA

pwq “ APA

0 ´A
PA

1 w “ ´APA

1
`

w ` wPA

˘

.

where,

APA

0 “ νλ

ˆ

B1

γ1
`
B2

γ2

˙

and APA

1 “ βλ2
ˆ

B1

γ1
`
B2

γ2
`

B1

λp1`γ1q

˙

.

We can compute, when wěν{β,

dw
dt ptq “

APAI

wptqλ`γ1

ˆ

1`ηPAI

„

wptq

wPAI

γ1˙

where,

APAI

“

„

ν

β

λ`γ1 cpλqB1ν

pλ`γ1q pλ`γ1`1q , w
PAI

“
β

ν

ˆ
ˇ

ˇ

ˇ

ˇ

B2

B1

ˇ

ˇ

ˇ

ˇ

pλ`γ1q pλ`γ1`1q
γ2 pλ`1q

˙1{γ1

,

and,

ηPAI

“

ˇ

ˇ

ˇ

ˇ

B2

B1

ˇ

ˇ

ˇ

ˇ

B1

B2
.

Proof. For wě0, we have to calculate,

I1
def.

“

ż

pν ´ βxq`z1ΠPA

w pdx, dzq, and I2
def.

“ λ

ż

z2ΠPA

w pdx, dzq.

We have,

I2 “
λB2

γ2

ż

pν ´ βxq`ΠPA

w pdx, dzq “
λB2

γ2

ż ν
βw

0
pν ´ βwyqQpyq dy

We have two cases, if w!ν{β, then,

I2 “
λB2

γ2
pν´βwλq .

And, if wěν{β,

I2 “ cpλq
λB2

γ2

ż ν
βw

0
pν ´ βwyq yλ´1 dy

“ cpλq
λB2

γ2
ν

„

ν

βw

λˆ
ν

λ
´

1
λ`1

˙

“ cpλq
B2

γ2

ν

λ`1

„

ν

βw

λ

Then,

I1 “

ż

maxp0, ν ´ βxqz1ΠPA

w pdx, dzq “
ż ν

βw

0
pν ´ βwyqB1y

γ1Qpyq dy

We have two cases again, if w ! ν{β, then,

I1 “
λB1

γ1
pν´βwλq´

λB1

γ1`λ`1βw

Again, if w ě ν{β,

I1 “

ż

maxp0, ν ´ βxqz1ΠPA

w pdx, dzq “ cpλq

ż ν
βw

0
pν´βwyqB1y

γ1yλ´1 dy

“
cpλqB1ν

pλ`γ1qpλ`γ1`1q

„

ν

βw

λ`γ1
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(a) Hebbian all-to-all

pair-based rules

(b) Hebbian nearest

neighbor symmetric

pair-based rules

(c) Hebbian nearest

neighbor symmetric

reduced
pair-based rules
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Figure 4.5: Markovian formulation of pair-based models.
(a) Temporal dynamics of pX,Z1, Z2,W q with a specific pre- and postsynaptic spike

trains for all-to-all STDP. (first line) Pre- and postsynaptic spike trains, with associated

pairings. (second line) Presynaptic plasticity variableZ1 (in brown)with value at jumps

of the postsynaptic neuron (in red). (third line) Postsynaptic plasticity variable Z2 (in

brown) with value at jumps of the presynaptic neuron (in blue). (fourth line) Resulting

dynamics of the synaptic weight W . (b) Same as (a) for nearest neighbor symmetric

STDP. (c) Same as (a) for nearest neighbor symmetric reduced STDP.



STOCHASTIC MODELS WITH PAIR-BASED STDP 199

-1 B1 1

-1

B2

1
A

B

Bifurcation

-1 B1 1

-1

B2

1
A

B

Bifurcation

wPNS

wPNS
w≈0

0

1

3

5

W
ε

A (−0.8, 1.0)

wPNS

wPNS
w≈0

0

1

3

5
B (0.8,−1.0)

wPNS

wPNS
w≈0

0

1

3

5

W
ε

A (−0.8, 1.0)

wPNS

wPNS
w≈0

0

1

3

5
B (0.8,−1.0)

(a) Excitatory synapse, PNS, ν = 0

(b) Excitatory synapse, PNS, ν = 1

LTD
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UFP

MFP

APNS
1

APNS
3 = 0

APNS
0 = 0

ε=0.02
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Figure 4.6: Nearest neighbor symmetric pair-based STDP for an excitatory synapse.
(a) Dynamics of the synaptic weight as a function of B1 and B2 for ν“0. (left) Classification

based on numerical simulations for different asymptotic dynamics of the synaptic weights (see

different colors). Theoretical boundaries are also drawn (see legend for their expressions).

(right) Two examples of temporal evolutions of the synaptic weights, for different values of ε.
(b) Same as (a) for ν“1.
(γ1“γ2“β“λ“1)
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(a) Excitatory synapse, PNR, (B1, B2) = (−0.85, 1.0)

(b) Excitatory synapse, PNR, (B1, B2) = (0.85,−1.0)

Figure 4.7: Influence of ν on dynamics with the pair-based nearest-neighbor reduced
symmetric scheme.
(a) Dynamics of the synaptic weight for different values of ε (change of color) and values of

external input ν (different plots, increasing from left to right, top to down) for anti-Hebbian

STDP. (b) Same as (a) for Hebbian STDP.

(γ1“γ2“β“λ“1)
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CHAPTER 5

AMARKOVIAN APPROACH TO HAWKES PROCESSES

In this paper, stationary non-linear Hawkes processes are revisited by formulating

the Hawkes dependence as a Markovian property on the space of non-negative

sequences. A characterization of the associated point process is obtained in terms of

the solution of stochastic differential equations. When the influence of past jumps

decreases exponentially over time, the Palm measure of the associated stationary

point process is expressed with the distribution of the stationary version of a one-

dimensional Harris ergodic Markov chain. Finally a scaling result for some Hawkes

processes exhibiting a blow-up phenomenon is derived.

abstract

5.1 Introduction

The references [RV21b; RV21c; RV21a; RV22b] have introduced a class of general

stochastic models describing the influence synaptic plasticity in stochastic neuronal

networks. In such models, the firing rate of the postsynaptic neuron depends on

the postsynaptic potential membrane, which is driven by the spiking activity of the

presynaptic neuron, Nλ, and also by its own spiking activity, Nβ,X .

An important class of mathematical models, Hawkes processes, has a similar

feature: given the past instants tn, ně1 of aHawkes process up to time t, the rate at which

a new jump occurs in the time interval pt, t` dtq is given by

Φ
˜

ÿ

n:tnďt
hpt´tnq

¸

.

The function h, the memory function, expresses the impact at time t of a jump which

has occurred at time săt with the quantity hpt´sq. The function h is assumed to be

non-increasing converging to 0, the influence of a jump in the distant past vanishes.

The activation function Φ modulates the global impact of past jumps.

This class of models has been used in various situations such as, mathematical

finance, [BH09], population dynamics, [Bou16], biology, [RS10], queueing systems,

[DP18], learning theory, [Ete+16], or neurosciences, [GDT17], . . .

From a mathematical point of view, these processes have generated, and still

generates, a considerable interest. The pioneering works are:

— [HO74] which shows that when the activation function is linear, these processes

can be represented by an age-dependent branching process, a special class of the

so-called Crump-Mode-Jagers models.

— [Ker64] shows in a more general context, that the functional relation defining sta-

tionaryHawkes processes can be expressed as a fixed point equationwhich can be
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solved through a Picard scheme, thereby proving the existence and uniqueness of

such processes. [BM96] has considerably developed this approach in a stochastic

calculus context.

Up to now, these are in fact the two main approaches to investigate Hawkes processes.

Appendix 5.B tries to present some aspects of the overwhelming literature of this

domain.

In this work, we reformulate the Hawkes property using the jumps times of the

point process. For a stationary Hawkes process, this amounts to investigate the prop-

erties of its Palm measure. See Appendix 5.A for a quick introduction and references.

This is a preliminary work to investigate Hawkes processes in a multi-dimensional

framework where the literature is quite scarce due to the fact that the Picard scheme

give only rough conditions for the existence of stationary Hawkes processes.An advan-

tage of this approach is that theHawkes property can be described in terms of aMarkov

chain in an infinite dimensional state space for which some tools are available. In the

following the term stability will refer to the existence and uniqueness of a stationary

Hawkes process.

This paper is organized as follows. Section 5.2 presents some basic definitions,

Section 5.3 introduces theHawkes property in terms of a stochastic differential equation

and Section 5.4 gives a characterization of the Palm measure of a stationary Hawkes

process as an invariant measure of a Markov chain in the state space of non-negative

sequences. Section 5.5 uses this approach to investigate Hawkes process with an

exponential memory function. A new, weaker, stability condition is derived and a

representation of the Palm measure is obtained in this case. The transient behavior is

also analyzed, i.e. when the Hawkes process starting from the null measure blows-

up in finite time almost surely. A scaling result for the points of the point process is

obtained, it described the accumulation of the points in terms of a Poisson process.

Appendix 5.A presents the main definitions and results concerning point processes

and the stationarity property.

We conclude this section with a formulation of some conditions for the functions

h and Φ that will be used in the rest of the paper.

Assumptions A.

A-1. The memory function. The non-negative function h is continuous onR`, non-increasing,
converging to 0 at infinity and

α
def.

“

ż `8

0
hptq dt ă `8.

A-2. The activation function. The non-negative function Φ is continuous and such that,

a) Φp0qą0;
b) the quantity

β
def.

“ lim sup
yÑ`8

Φpyq
y

is finite.

A-3 The constants α and β are such that αβă1.
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5.2 Definitions

Probability space
It is assumed that on the probability space pΩ,Pq is defined a Poisson point process on

R`ˆR with intensity measure dxb dy and that pFtq is a filtration such that, for tPR, Ft

is the σ-field generated by the random variables PpAˆps, tsq, where A is a Borelian set

of R` and sďt. If λ and f are non-negative Borelian functions f on R, we define

ż

R
fpsqPpp0, λpsqs, dsq def.

“

ż

R`ˆR
fpsq1tvďλpsquPpdv, dsq.

Without any indication on the filtration, the martingale properties in the paper are

understood with respect to this filtration.

State space of non-negative sequences
Werefer toAppendix 5.A for general definitions concerning point processes. Wedenote

by S the space of sequences of non-negative real numbers

S def.

“
 

x“pxkqPpR`Yt`8uqNzt0u : xk0“`8ñxk“`8, @kěk0
(

. (5.1)

A functional from S to the space of positive measures with a mass at 0 is introduced as

follows, if x“pxkqPS, the positive measuremx on R´ is defined by

mx “ δ0 `

`8
ÿ

k“1
δtk , with tk“´

k
ÿ

i“1
xi, kě1, (5.2)

with the convention that δ´8”0.
The measure mx is a positive measure carried by points associated to xPS. It

should be stressed that mx is not necessarily a point measure, i.e it may not have

Radon property, since we do not exclude the fact that the sequence pxkq converges to 0
sufficiently fast so that the measuremx may have a finite accumulation point.

Let x“pxkqką0 be an element of S. Note that 0 is always a point of mx and that

the coordinates of x are the inter-arrivals times of mx, in particular x1 is the distance

to the first point of mx on the left of 0. The point measures with a finite number of

points correspond to sequences pxkq which are constant and equal to `8 after some

finite index. In this case, if k0 is the first index where xk0“ `8, with a slight abuse of

notation we write it as a finite vector x“px1, x2, . . . , xk0´1,`8q.
On S , the distance, for x“pxkq, y“pykqPS,

dpx, yq “
`8
ÿ

1

1
2k minp|xk´yk|, 1q, (5.3)

with the convention, for uPR`, |u´8|“|8´u| “ `8 and |8´8|“0. It easily checked

that S is a separable Polish space, i.e. a complete separable metric space.

An important subset of S is

Sh def.

“

#

x“pxkqPS : hp0q `
`8
ÿ

k“1
h

˜

k
ÿ

i“1
xi

¸

“

ż `8

0
hpuq qmxpduqă`8

+

, (5.4)

with Definition (5.30) of qm of the Appendix, we have xPSh if hPL1pqmxq.
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Definition 59. For xPS and aě0, we set

T px, aq def.

“ inf
tě0

#

ż t

0
Φ
˜

hp0q `
ÿ

kě1
h

˜

s`
k
ÿ

i“1
xi

¸¸

ds ě a

+

(5.5)

“ inf
tě0

"
ż t

0
Φ
ˆ
ż

h ps´uq mxpduq
˙

ds ě a

*

,

if xPSh and T px, aqdef.“ 0 if xPSzSh, with the convention hp`8q“0.

Lemma 60. Under Assumptions A-1 and A-2-a, if xPSh, then

lim
tÑ`8

ż t

0
Φ
ˆ
ż

h ps´uq

˙

mpduq ds “ `8.

In particular, for xPSh and aě0, the variable T px, aq is finite.

Proof. Note that, for any tě0, the monotonicity property of h gives the relation

ż

p´8,0q
hpt´uqmxpduq ď

ż

p´8,0q
hp´uqmxpduq ă `8,

and with Lebesgue’s Theorem we obtain the identity

lim
tÑ`8

ż

p´8,0q
hpt´uqmxpdxq “ 0. (5.6)

Our lemma is proved since Φ is continuous with Φp0qą0.

5.3 Hawkes SDEs

We first recall the classical definition of an Hawkes process, see [HO74].

Definition 61. A Hawkes process is a point process N on R such that, for any sPR, the
process

ˆ

N pps, tsq´
ż t

s

Φ
ˆ
ż

p´8,uq

hpu´xqN pdxq
˙

du, těs
˙

is a local martingale with respect to the filtration pFt, těsq, where, for tPR, Ft is the σ-field
containing the σ-field associated to the random variables N ppu, vsq, uďvďt.

If N is a Hawkes process, for any sPR the dual predictable projection of the process

of pN pps, tsq, těsq is almost surely,

ˆ
ż t

s

Φ
ˆ
ż

p´8,uq

hpu´xqN pdxq
˙

du, těs
˙

,

see Theorem VI (21.7) of [RW00] for example. In the terminology of randommeasures,

see [Jac79], the stochastic intensity of N is

ˆ

Φ
ˆ
ż

p´8,uq

hpu´xqN pdxq
˙

, uPR
˙

.

We now introduce a dynamical system extending a Radon measure on R´ into a

measure on R exhibiting a Hawkes property on R`. The Markovian approach used in

this paper relies heavily on this construction.
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Proposition 62 (Hawkes SDE). If mPMppR´q verifies hPL1pqmq, then there exists a
unique positive random measure Nm on R such that Nm”m on R´, the counting measure
pNmpp0, tsq, tě0q satisfies the stochastic differential equation

dNmpp0, tsq “ P
ˆˆ

0,Φ
ˆ
ż

p´8,tq

hpt´xqNmpdxq
˙˙

, dt
˙

, (5.7)

for all tą0.
Under Assumptions A-1 and A-2-(a), the points of Nm on R` form a non-decreasing

sequence of stopping times pTnq, such that if

E1
def.

“

ż T1

0
Φ
ˆ
ż

p´8,sq

h ps´xqNmpdxq
˙

ds

and En`1
def.

“

ż Tn`1

Tn

Φ
ˆ
ż

p´8,sq

h ps´xqNmpdxq
˙

ds, ně1, (5.8)

then pEn, ně1q is an i.i.d. sequence of exponential random variables with parameter 1 and E1
is independent of F0 and, for ně1, the sequence pEk, kąnq is independent of FTn .

Proof. The proof is done by constructing by induction the sequence of points pTnq of
Nm.

T1
def.

“ inf
"

tě0 :
ż

p0,ts
P
ˆˆ

0,Φ
ˆ
ż

p´8,0s
hps´xqmpdxq

˙˙

, ds
˙

‰0
*

,

Two cases are then possible, either T1“`8, and, in this case Nm“m, or T1ă`8 and we

can go on to the next iteration.

By induction, for ně1, if T1ďT2ď ¨ ¨ ¨ ďTnă`8, it is possible to define

Tn`1
def.

“ inf
"

těTn :
ż

pTn,ts

P

˜

Φ
ˆ
ż

p´8,0s
hps´xqmpdxq

˙

`

n
ÿ

k“1
h ps´Tkq , ds

¸

‰0
+

, (5.9)

Again, if Tn`1“`8, we have,

Nm “ m`
n
ÿ

k“1
δTk ,

if not, we can build Tn`2. The first part of the proposition is proved, as Nm has been

build verifying (5.7) directly proving existence and uniqueness.

For tě0, the independence properties of the Poisson process P give

PpT1ět | F0q “ exp
ˆ

´

ż t

0
Φ
ˆ
ż

p´8,0s
hps´xqmpdxq

˙

ds
˙

. (5.10)

From Lemma 60, we obtain

lim
tÑ`8

PpT1ětq “ 0,
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so that the variableT1 is almost surelyfinite and it clearly has the stopping timeproperty.

Define

E1
def.

“

ż T1

0

ż

p´8,0s
hps´xqmpdxq ds,

from Relation (5.10), we get

PpE1ět | F0q “ P
ˆ
ż T1

0
Φ
ˆ
ż

p´8,0s
hps´xqmpdxq

˙

ds ě t

˙

“ e´t,

hence E1 is exponentially distributed with parameter 1 and independent of F0. Using

Definition (5.5), the randomvariableT1 has the samedistribution as the randomvariable

T px,E1qwhere x is the unique element of S such thatm“mx.

If by induction, for ně1, the n stopping times T1ďT2ď ¨ ¨ ¨ ďTn are defined almost

surely, Tn`1 as defined by (5.9) is clearly a stopping time, it is almost surely finite with

the same argument as forT1, and, with the strongMarkovproperty ofP for the stopping

time Tn,

PpTn`1´Tnět | FTnq “

exp
˜

´

ż Tn`t

Tn

Φ
˜

ż

p´8,0s
hps´xqmpdxq`

n
ÿ

k“1
hps´Tkq

¸

ds
¸

,

hence,

PpEn`1ět | FTnq “ P
ˆ
ż Tn`1

Tn

Φ
ˆ
ż

p´8,0s
hps´xqNmpdxq

˙

ds ě t

ˇ

ˇ

ˇ

ˇ

FTn

˙

“ e´t.

proving that En`1 is an exponential random variable.

The strong Markov property of the Poisson process P gives that En`1 is indepen-

dent of FTn . The second part of the proposition is proved.

In the proof we have seen that the condition Φp0qą0 in Lemma 60 guarantees that

there is almost surely an infinite number of points in R` for SDE (5.7).

Note that it cannot be excluded that this non-decreasing sequence of points may

have a finite limit with positive probability and therefore that Nm is not necessarily

a point process. As it will be seen, it can blow-up in finite time, i.e. the limit of its

sequence pTnq of points in R` may be finite with positive probability. Proposition 68

gives a condition for which the sequence pTnq converges almost surely to infinity when

m is the null measure. Proposition 77 considers a case when there is such a blow-up

and derives a limiting result for the accumulation of points.

However, when the sequence pTnq is converging almost surely to infinity, Nm is a

point process, and it is not difficult to see that the dual predictable projection of the

process of pNmpp0, tsq, tě0q is
ˆ
ż t

0
Φ
ˆ
ż

p´8,sq

hps´xqNmpdxq
˙

ds, tě0
˙

.

see Theorem VI (27.1) of [RW00]. Consequently, the stochastic intensity function of Nm

on R` is indeed
ˆ

Φ
ˆ
ż

p´8,sq

hps´xqNmpdxq
˙˙

.

Proposition 62 extends a point measurem on R´ to a point process on R, it can be

also seen as a dynamical system on point processes on R´ in the following way.
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A dynamical system
IfmPMppR´q is such that hPL1pqmq and Nm defined by Relation (5.7) is a point process,

for tě0, we introduce a (random) dynamical system pTtpmqq in MppR´q as,
ż

p´8,0s
fpxqTtpmqpdxq “

ż

fpxqθt˝Nmpdxq “
ż

p´8,ts

fpx´tqNmpdxq, (5.11)

for any non-negative Borelian function on R´, Ttpmq is the point process Nm seen from

the point t.
A stationary Hawkes point process is in particular associated to a distribution Q

on MppR´q which is invariant distribution for the group of transformations pθtq on
MppRq. See Definition 78 in Section 5.A.

When Φp0q“0, the null measure is clearly a solution of Relation (5.7). The next

proposition shows that, under somemild condition, the null point process is the unique

stationary Hawkes process in such a case.

Proposition 63. Under Assumptions A-1 and
ż

R`
thptq dt ă `8,

if for some Kě0, the non-negative function Φ satisfies the relation ΦpxqďKx, for all xě0,
then there does not exist a stationary Hawkes process N which is non-trivial, i.e. such that
PpNı0qą0.

Under the additional condition that the function Φ is Lipschitz with constant K
such that αKă1, this result is given by Theorem 1 of [BM96; BM01].

Proof. Fix λą0. Since the set of the distributions of stationary Hawkes processes whose

intensity is less than λą0 is a convex and closed subset of the unit ball of PpMppRqq, it is
therefore compact by the Banach-Alaoglu theorem. See [Rud73]. If there is a non-trivial

stationary Hawkes processes, by Choquet’s Theorem, there exists a non-trivial ergodic

distribution with respect to the flow pθtq. See Proposition 12.4 and Choquet’s Theorem

of [Phe01]. The Birkhoff-Khinchin ergodic theorem, see [CFS82], gives the almost sure

convergence

lim
tÑ`8

N pp0, tsq
t

“ EpN pp0, 1sqą0,

since N is non-trivial, we obtain therefore that PpN pR`q“`8q“1. If T1 is the first

positive point of N , the variable T1 is in particular finite with probability 1.
As in the proof of Proposition 62, we have

PpT1ět | F0q “ exp
ˆ

´

ż t

0
Φ
ˆ
ż

p´8,0s
hps´xqN pdxq

˙

ds
˙

By Fubini’s Theorem, we have

V
def.

“

ż `8

0
Φ
ˆ
ż

p´8,0s
hps´xqN pdxq

˙

ds ď K

ż `8

0

ż

p´8,0s
hps´xqN pdxq ds

“ K

ż `8

0
N pr´s, 0sqhpsq ds.
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The stationary property of the point process N shows that there exists some λą0
such that EpN pr´s, 0sqq“λs, for all sě0. The integrability of pthptqq gives that V is an

integrable random variable, and therefore, is almost surely finite. As a consequence we

have that, almost surely, PpT1“`8|F0qą0. This is a contradiction. The proposition is

proved.

5.4 A Markov chain formulation

A different formulation of the stationary Hawkes process
In this section, we give an alternative version of Proposition 62 in terms of a Markovian

dependence on the state space of sequences. We begin by a characterization of the Palm

measure of a stationary Hawkes process.

Proposition 64. If Conditions A-1 and A-2 a) hold and if Q is the distribution on MppRq of
a stationary Hawkes process N“ptn, nPZq associated to Φ and h then, the sequence of inter-
arrivals pτn, nPZqdef.“ ptn´tn´1, nPZq is a stationary sequence under its associated Palm measure
pQ. Moreover, the sequence of random variables

˜

ż τn`1

0
Φ
˜

ÿ

kďn

h

˜

s`
n
ÿ

i“k`1
τi

¸¸

ds, nPZ

¸

, (5.12)

is i.i.d. with a common exponential distribution with parameter 1.
If there exists a stationary sequence pτn, nPZq satisfying Relation (5.12), then there exists

a stationary Hawkes process associated to Φ and h.

Proof. From the point of view of Proposition 62 this proposition is quite intuitive, one

has nevertheless to be careful, as always in this setting since Proposition 62 is stated

under the distribution Q.

The stationary property of the sequence pτn, nPZqdef.“ pTn´Tn´1q under pQ is clear, by

definition of
pQ. To prove the second part of the proposition, we use Proposition 11.8,

page 315 of [Rob03] which gives that

lim
tŒ0

EQ pf | N pr´t, 0sq“0q “ E
pQpfq,

where ER denotes the expectation with respect to the distributionR on MppRq and f is

a bounded Borelian function on MppRq such that tÞÑfpθtpmqq is Q-almost surely right

continuous at t“0.
For nPZ andmPMppRq, define

Ψnpmq
def.

“

ż tn`1pmq

tnpmq

Φ
ˆ
ż

p´8,0s
hps´xqmpdxq

˙

ds,

then, since , Q-almost surely, we have t0pmqă0ăt1pmq and tnpmqătn`1pmq, for tě0
sufficiently small,

Ψnpθtpmqq “

ż tn`1pmq´t

tnpmq´t

Φ
ˆ
ż

p´8,´ts

hps´x`tqmpdxq
˙

ds.
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By continuity of Φ and h, we get that

lim
tŒ0

Ψnpθtpmqq “ Ψnpmq,

Q-almost surely. Let F be a continuous bounded Borelian function on Rn
` then

lim
tŒ0

EQ
”

F
´

Ψi pN q , 1ďiďn
¯

| N pr´t, 0sq‰0
ı

“ E
pQ

”

F
´

Ψi pN q , 1ďiďn
¯ı

.

Since the event tN pr´x, 0sq“0u is F0-measurable and that for any 1ďkďn, the variable
ż tk`1

tk

Φ
ˆ
ż

p´8,ss

h ps´xqN pdxq
˙

ds

is independent of Ftk , we get with Proposition 62 again, by induction on k for example,

that

lim
tŒ0

EQ
”

F
´

Ψi pN q , 1ďiďn
¯

| N pr´t, 0sq‰0
ı

“ E
”

F
´

Ei, 1ďiďn
¯ı

,

where pEi, 1ďiďnq are n independent random variables with a common exponential

distribution with parameter 1. By gathering these results we obtain that

E
pQ

”

F
´

Ψi pN q , 1ďiďn
¯ı

“ E
”

F
´

Ei, 1ďiďn
¯ı

.

Under the probability distribution
pQ, the random variables Ψi p¨q, 1ďiďn, are i.i.d. with

a common exponential distribution with parameter 1 Relation (5.12) is a consequence

of the relation

ΨnpN q “
ż tn`1

tn

Φ
˜

ÿ

kďn

h ps´tkq

¸

ds “
ż τn`1

0
Φ
˜

ÿ

kďn

h

˜

s`
n
ÿ

i“k`1
τi

¸¸

ds,

by invariance of
pQwith respect to

pθ, the sequence pΨnp¨qqně1 is stationary under
pQ and,

therefore, is i.i.d. with a common exponential distribution with parameter 1.
Now we assume that there exists a stationary sequence τ“pτn, nPZq of integrable

random variables satisfying Relation (5.12). Recall thatmτ is the point process defined

by Relation (5.2). Using a similar proof as in Proposition 62, we can show that mτ

satisfies an Hawkes SDE (5.7) on R. For uPR, the same property clearly holds for

θupmτ q, the point processmτ translated at u, see Definition (5.32). ForKą0, letUK be an

independent uniform random variable on r´K,Ks, the point process θUK pmτ q satisfies

the Hawkes property. With the same method used for the proof of Proposition 11.2

of [Rob03], we obtain that, as K goes to infinity, θUK pmτ q converges in distribution to a

stationary point process whose Palm measure is given by the distribution τ . It is not

difficult to show that the Hawkes property is preserved in the limit. The proposition is

proved.

We can now state themain result concerning the relation between theHawkes SDE

and the Markov transition kernel K.

Proposition 65. TheMarkov chain associated to transition kernel K of Definition (5.14) has an
invariant distribution with integrable coordinates if and only if there exists a stationary Hawkes
process.
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Proof. If there exists a stationary Hawkes point process ptnq, Proposition 64 shows that

the distribution of ptn`1´tnq under its Palm distribution is an invariant distribution

of the Markov chain pXnq. Conversely, if the Markov chain associated to transition

kernel K has an invariant distribution, then one can construct a stationary version of

the Markov chain X def.

“ pXnq, in particular X satisfies Relation (5.12). Proposition 64

shows then that there exists a stationary Hawkes point process in this case.

AMarkov chain on S
The previous proposition has highlighted the importance of the Palm space, and there-

fore led us to develop a second formulation of the Hawkes process, conditioned to

jumping at t“0, using Markovian kernels.

Definition 66. The sequence of random variables pX x
n q with initial point X x

0 “xPS is defined
by induction, for ně0,

X x
n`1“pXn`1,X x

n q“pT pX x
n , En`1q,X x

n q, (5.13)

where pEnq is an i.i.d. sequence of exponentially distributed random variables with parameter 1
and T is defined by Relation (5.5).

The associated Markovian kernel is denoted by K
ż

S
fpyqKpx, dyq “ ExpfpX x

1 qq, (5.14)

for a non-negative Borelian function f on S.

The element X x
n`1 is obtained by shifting X x

n and addingXn`1“T pX x
n , En`1q at the

beginning of the sequence. The sequence pX x
n q clearly has the Markov property.

Proposition 67 (The Markov chain pX x
n q and Hawkes SDEs). If Conditions A-1 and A-2

a) hold and mPMppR´q is such that mpt0uqą0, then the distribution of Nm, the solution of
Relation (5.7) can be expressed as

Nm
dist.

“ m`
ÿ

ně1
δTn

with, T0“0 and, for ně1, Tn`1´Tn“Xn`1 where the sequence pXnq is defined by induction by

ż Tn

Tn´1

Φ
˜

ż

R´
hps´uqmpduq`

n´1
ÿ

k“1
h ps´Tkq

¸

ds

“

ż Xn

0
Φ
˜

ż

R´
hpTn´1`s´uqmpduq`

n´1
ÿ

k“1
h

˜

s`
n´1
ÿ

i“k`1
Xi

¸¸

ds “ En, (5.15)

where pEnq is an i.i.d. sequence of exponentially distributed random variable with parameter
1. The process pX x

n q“ppXn, . . . , X1,X x
0 qq is the Markov chain with transition kernel Kp¨, ¨q of

Relation (5.14) and initial point

X x
0 “psn`1´snq, ifm“psn, ně0q, ¨ ¨ ¨ ďsnďsn´1ď ¨ ¨ ¨ ďs1ďs0“0.

Proof. This is a straightforward consequence that Relation (5.15) is a rewriting of Rela-

tion (5.8) of Proposition 62.
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The chain starting from the empty state
Wenowstudy theMarkov chain pX 0

nqwith transition kernelK definedbyRelation (5.14)

when the initial state empty, i.e. it is the constant sequence equal to `8, i.e. X 0
0“p`8q.

This initial state corresponds to the case of an isolated point at time 0 without any point

before that, i.e. on the time interval p´8, 0q.
This Markov chain has the same distribution as the sequence pX 0

nq defined by, for

ně1,
X 0
n“pX

0
n, X

0
n´1, X

0
n´2, . . . , X

0
2 , X

0
1 ,`8q, (5.16)

where the sequence pX0
nq is defined Relation (5.15). We denote by pT 0

nq is the corre-

sponding non-decreasing sequence of points defined by T 0
0“0 and, for ně1,

T 0
n “

n
ÿ

k“1
X0
k .

Proposition 68. Under Conditions A-1, A-2 and A-3, there exists νą0 and β0ą0 such that,
αβ0ă1 and almost surely for all ně1,

T 0
n “

n
ÿ

k“1
X0
k ě

1
ν

n
ÿ

k“1
pEk´αβ0q ,

and consequently, the process

N 0 def.

“ δ0 `

`8
ÿ

n“1
δT 0

n

is almost surely a point process on R`.

This proposition shows in particular that the sequence of points of the solution Nm

of Relation (5.7) withm“δ0 is a point process on R, the sequence pT 0
nq converges almost

surely to `8.

Proof. Conditions A-2 and A-3 gives the existence νą0 and β0 such that αβ0ă1 and the

relation Φpxqďν`β0x holds for all xě0. Equation (5.15) gives, for ně1,

En “

ż T 0
n

T 0
n´1

Φ
˜

n´1
ÿ

k“0
h

˜

s`
n´1
ÿ

i“k`1
X0
i

¸¸

ds ď νX0
n`β0

ż X0
n

0

n´1
ÿ

k“0
h

˜

s`
n´1
ÿ

i“k

X0
i

¸

ds (5.17)

hence

En ´ αβ0 ď νX0
n´β0HpX

0
nq`β0

ż X0
n´1`X

0
n

X0
n´1

n´2
ÿ

k“0
h

˜

s`
n´2
ÿ

i“k`1
X0
i

¸

ds.

with the notation, for xě0,

Hpxq“

ż `8

x

hpsq ds and α“Hp0q.

By using Inequality (5.17) for the index n´1 and by adding these relations, we get

n
ÿ

k“n´1
Ek´αβ0 ď ν

“

X0
n`X

0
n´1

‰

´β0
“

HpX0
nq`HpX

0
n`X

0
n´1q

‰
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` β0

ż X0
n´2`X

0
n´1`X

0
n

X0
n´2

n´3
ÿ

k“0
h

˜

s`
n´3
ÿ

i“k`1
X0
i

¸

ds.

By proceeding by induction, we finally get the relation

n
ÿ

k“1
pEk´αβ0q ď ν

n
ÿ

k“1
X0
k´β0

n
ÿ

k“1
HpX0

n`X
0
n´1` ¨ ¨ ¨ `X

0
kq.

In particular the sequence pT 0
nq is almost surely converging to infinity. The proposition

shows that when the initial state is the empty state, there is no blow up phenomenon,

the sequence of points does not converge to some finite value.

To prove the second part of the propostion, i.e that N is indeed a point process,

we need that the sequence pT 0
nq is going to infinity almost surely. This is a direct

consequence of Proposition 68 and the law of large numbers.

5.5 Exponential memory

In this section we assume that the function h associated to the memory of previous

jumps is exponentially decreasing.

hpuq“ expp´u{αq,

for some αą0. In this case, the past activity of the Hawkes process can be encoded

by a one-dimensional Markov process. One of the early analyses is [Oak75]. [DLO19]

considers a more general model for which h is the density of the sum of exponential

randomvariables with different parameters. The trick is to use themethod of the stages

so that a multi-dimensional Markov process can encode the past activity of the Hawkes

process.

In this section, we give a existence and uniqueness result of the stationary Hawkes

chain with a weaker condition than the classical relation αLă1, where L is the Lips-

chitz constant associated to Φ. The result is obtained by using the Markov process of

Section 5.4. At the same time an explicit representation of the distribution of the cor-

responding Palm measure in terms of the invariant distribution of a one-dimensional

Markov chain is obtained. We conclude this sectionwith non-Lipschitz activation func-

tions Φ for which the solution of the Hawkes SDE blows-up in finite time. A limit result

gives a scaling description of how the accumulation of the points of Hawkes process

occurs.

Proposition 69. Let xPSh, mx defined by Relation (5.2) and Nmx“pTnq of Proposition 62,
then

pZnq
def.

“

ˆ
ż

p´8,Tns

hpTn ´ sqNmxpdsq
˙

“

ż

p´8,0s
exp p´pTn´uq{αqmxpduq`

n
ÿ

k“1
exp p´pTn´Tkq{αq

is a Markov chain on p1,`8q such that, for ně0,

Z0“

ż

p´8,0s
es{αmxpdsq, and Zn`1“1`e´Xn`1{αZn, (5.18)
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where Xn`1“Tn`1´Tn is the unique solution of the equation
ż Xn`1

0
Φ
`

e´s{αZn
˘

ds “ En`1, (5.19)

where pEnq are i.i.d. random variables with an exponential distribution with parameter 1.

Proof.

Zn`1 “

ż

p´8,Tn`1s

expp´pTn`1 ´ sq{αqNmxpdsq

“ 1` expp´pTn`1´Tnq{αq

ż

p´8,Tns

expp´pTn ´ sq{αqNmxpdsq

“ 1` expp´Xn`1{αqZn,

and Relation (5.15) gives that

En`1 “

ż Tn`1

Tn

Φ
˜

ż

R´
hps´uqmpduq`

n
ÿ

k“1
h ps´Tkq

¸

ds

“

ż Tn`1´Tn

0
Φ
˜

e´s{α

˜

ż

R´
hpTn´uqmxpduq`

n
ÿ

k“1
h pTn´Tkq

¸¸

ds

“

ż Xn`1

0
Φ
`

e´s{αZn
˘

ds

is an exponentially distributed randomvariablewith parameter 1 and that the sequence

pEnq is i.i.d.

Proposition 70 (Harris ergodicity). If Φ satisfies Condition A-2, and if αβeă1, where

βe
def.

“ lim sup
uÑ`8

ż u

u´1

Φpsq
s

ds (5.20)

then the sequence pZnq is a Harris Markov chain on r1,`8q.

For a general introduction on Harris Markov chains, see [Num04].

Proof. The proof will be in two steps. We will first prove, via a Lyapunov function, that

the set r1, Ks is recurrent, for some Ką0. Then, we will show that the subset r1, 2s is
also recurrent and small, see [Num04] for example. Proposition 5.10 of [Num04] gives

then that the Markov chain pZnq is Harris ergodic.

We first exhibit a Lyapunov function for this Markov chain. Equation (5.19) can be

rewritten as, if Z0“z0,

E1 “

ż X1

0
φ
`

e´s{αz0
˘

ds “ α

ż z0

z0e´X1{α

Φ puq
u

du “ α

ż z0

Z1´1

Φ puq
u

du. (5.21)

Let, for yě1,

F pyq “

ż y´1

1

Φ puq
u

du,
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we thus have

Ez0pF pZ1qq ´ EpF pz0qq “

ż z0

z0´1

Φ puq
u

du´ 1
α
,

hence there exist ηą0 and Ką0 such that if z0ěK then

Ez0pF pZ1qq ´ EpF pz0qq ď

ˆ

βe`η´
1
α

˙

ă 0.

The function F is a Lyapunov function for the Markov chain pZnq. The interval r1, Ks
is a recurrent set for the Markov chain. See Theorem 8.6 of [Rob03].

By using Relation (5.21), we obtain, for z0Pr1, Ks,

Pz0pZ1 ă 2q “ P
ˆ

E1

α
ą

ż z0

1

Φpuq
u

du
˙

“ exp
ˆ

´α

ż z0

1

Φpuq
u

du
˙

ě exp
ˆ

´α

ż K

1

Φpuq
u

du
˙

ą 0,

the interval r1, 2s is a recurrent set for the Markov chain pZnq.
For 0ătďz0, the relation

PpZ1´1ďtq “ exp
ˆ

´α

ż z0

t

Φ puq
u

du
˙

gives that the density of Z1 is given by, for z0ďK,

α
Φ ptq
t

exp
ˆ

´α

ż z0

t

Φ puq
u

du
˙

ěα
Φ ptq
t

exp
ˆ

´α

ż K

t

Φ puq
u

du
˙

.

There is a positive lower bound independent of z0ďK. We can now use the same

argument as in example of Section 4.3.3 page 98 of [MT93] to prove that r1, 2s is a small

set. The proposition is proved.

Definition 71. For zą1 and yą0, under Assumption A-2, we define GΦpz, yq by the relation
ż GΦpz,yq

0
Φ
`

e´s{αz
˘

ds “ y. (5.22)

Theorem 72. [Invariant distribution of pXnq] Under Assumption A-2, and if αβeă1, then for
any xPSh, the Markov chain pXnq of Definition 66 converges in distribution to the law of

˜

GΦ

˜

Z˚´n, α

ż Z˚
´n

Z˚
´n`1´1

Φpuq
u

du
¸

, ně1
¸

where GΦ is defined by Relation (5.22) and pZ˚n , nPZq is the stationary version of the Harris
Markov chain pZnq of Proposition 69.

Proof. For ně1, with the above notation, by definition Xn`1“GΦpZn, En`1q, i.e.

En`1 “ α

ż Zn

Zn`1´1

Φ puq
u

du.
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For někě1, pXn, Xn´1, . . . , Xn´k`1q are the k-first coordinates of Xn, they can be ex-

pressed as

pGΦpZn´1, Enq, GΦpZn´2, En´1q, . . . , GΦpZn´k, En´k`1qq

“

˜

GΦ

ˆ

Zn´1, α

ż Zn´1

Zn´1

Φpuq
u

du
˙

, . . . GΦ

˜

Zn´k´1, α

ż Zn´k´1

Zn´k´1

Φpuq
u

du
¸¸

.

The Harris ergodicity of pZnq implies that the random variable pZn, Zn´1, . . . , Zn´kq is
converging in distribution to pZ˚0 , Z

˚
´1, . . . , Z

˚
´kq. Due to Assumption A-2, the mapping

pz, yqÞÑGΦpz, yq is continuous, the continuous mapping theorem concludes the proof

of our result.

Theorem 72 shows that in the case of exponential memory, the invariant distribu-

tion of pXnq can be expressed in terms of a one-dimensional stationary Markov chain.

The following corollary rephrases this result in terms of Hawkes processes. This is a

direct application of Proposition 65.

Corollary 73. If Φ is a continuous function such that Φp0qą0 and αβeă1, where βe is defined
by Relation (5.20), then there exists a unique stationary Hawkes process.

Note that the condition αβeă1 is weaker than the classical conditions of the litera-

ture: Φ Lipschitz with Lipschitz constant β such that αβă1.

Transient Hawkes processes
From now on, we assume a polynomial behavior for Φ so that, for xą0,

Φpxq“pν`βxqγ,

where ν, β and γ are positive real numbers.

Theorem 72 shows that pXnq is converging in distribution for all α, ν and β when

γă1, and, when γ“1, the convergence occurs if αβă1.

Proposition 74. If Φpuq“pν`βuqγ and if γą1 with β, νą0, then the Markov process pZnq is
transient.

Proof. From Relation (5.21), we have

E1 “ α

ż z0

Z1´1

Φ puq
u

du,

where E1 is an exponentially distributed random variable with parameter 1. Let, for

uě0, Φppuq
def.

“ pβuqγ and, on the event tγE1ăαβ
γzγ0 u, we define the variable Z1,p such

that

E1 “ α

ż z0

Z1,p´1

Φp puq

u
du “ αβγ

γ
pzγ0´pZ1,p´1qγq ,

then, since ΦpďΦ, we have z0´Z1,p`1ěz0´Z1`1ě0 and E2
def.

“ γE1{pαβ
γq, then

z0´Z1,p`1 “ z0

˜

1´
ˆ

1´E2

zγ0

˙1{γ
¸

.
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The elementary inequality

1´p1´ hq1{γ ď 2
γ
h, 0ďhď1{2,

gives the relation, for aě1

Ez0 ppz0´Z1`1qaq ď za0Pp2γE1ěαβ
γzγ0 q ` E

´

pz0´Z1,p`1qa1t2γE1ďαβγz
γ
0u

¯

ď za0 exp
ˆ

´
αβγ

2γ zγ0

˙

`
2a

αaβaγ
E pEa

1 q

z
apγ´1q
0

.

Since γą1, we deduce that

lim
z0Ñ`8

Ez0 pZ1´z0q “ 1 and sup
z0ě1

Ez0
`

pZ1´z0q
2˘
ă `8. (5.23)

Theorem 8.10 of [Rob03] shows that the Markov chain is transient. Strictly speaking

Theorem 8.10 is for a Markov chain with a countable state space, nevertheless a glance

at the proof of this result shows that it is also valid in our setting. The proposition is

proved.

Relation (5.19) of Proposition 69 gives that theHawkes Point Process pTnq of Propo-
sition 62 is such that

En`1ěβ
γZγ

n

ż Tn`1´Tn

0
e´sγ{α ds “ α

γ
βγZγ

n

`

1´e´γpTn`1´Tnq{α
˘

, (5.24)

where pEnq is an i.i.d. sequence of exponential random variables with parameter 1.
Under the assumptions of Proposition 74 the sequence pZnq is converging in distribution

to infinity and, with the last relation, the relation

lim
nÑ`8

Tn`1´Tn “ 0

holds for the convergence in law. This result suggests that the points pTnq are closer

and closer asymptotically. We investigate this aspect in the rest of the section.

We now study of the asymptotic behavior of pZnq in the transient case. We start

with a technical lemma.

Lemma 75. If γě2 then, for any δą0,

sup
z0ą1

Ez0
`

eδ|Z1´z0|
˘

ă `8. (5.25)

Proof. From Relation (5.21), we get, for z0ě1 and 1ďtďz0,

Pz0 pz0´Z1`1ětq “ P
ˆ

E1ěα

ż z0

z0´t

Φpuq
u

˙

ď exp
ˆ

´bzγ0

ˆ

1´
ˆ

1´ t

z0

˙γ˙˙

, (5.26)

with b
def.

“αβγ{γ. Note that, by Definition (5.18) of Z1, z´Z1`1ě0, hence, for δą0,

Ez0
`

eδ|Z1´z0´1|˘
´1 “ δ

ż z0

0
eδtPz0 pz0´Z1`1ětq dt
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ď δ

ż z0

0
exp

ˆ

δt´bzγ0

ˆ

1´
ˆ

1´ t

z0

˙γ˙˙

dt

“ δz0

ż 1

0
exp pδuz0´bz

γ
0 p1´p1´uq

γ
qq du.

When z0 is sufficiently large, we split the integral into two terms,

z0

ż 1

1´p1´2δ{pbzγ´1
0 qq1{γ

exp pδuz0´bz
γ
0 p1´p1´uq

γ
qq du ď z0 exp p´δz0q ,

and

z0

ż 1´p1´2δ{pbzγ´1
0 qq1{γ

0
exp pδuz0´bz

γ
0 p1´p1´uq

γ
qq du

ď z0

˜

1´
ˆ

1´ 2 δ

bzγ´1
0

˙1{γ
¸

exp
`

δz0
`

1´ p1´ 2δ{pbzγ´1
0 qq

1{γ˘˘ .

The lemma is proved.

Proposition 76. If γě2, then, almost surely,

lim
nÑ`8

Zn
n
“ 1.

Proof. This is a consequence of Relations (5.23) and (5.25). Theorem 8.11 of [Rob03]

shows that, almost surely, the relation

lim inf
nÑ`8

Zn
n
ě 1

holds. Condition b) of Proposition 8.11 follows from Lemma 75 and Condition c) of

this proposition is replaced in this context by the fact that if z0ăK0, then there exists

n0ě1 such that Pz0pZn0ěK0qą0.
Notice that Znďn`z0 holds for all ně1, we get therefore that almost surely

lim
nÑ`8

Zn
n
“ 1.

The proposition is proved.

For xPSh andmx defined by Relation (5.2), if Nmx“pTnq the point process of Propo-
sition 62, we know that the sequence pTn`1´Tnq is converging in distribution to 0. The
following proposition gives a much more detailed description of the accumulation of

points:

for ně1, the point process seen from the nth point, i.e. the point process

pTn´Tk, 1ďkďnq scaled by the factor nγ converges in distribution to a Poisson point

process.

Proposition 77 (Asymptotic behavior of points of a transient Hawkes process). Assume
that Φpuq“pν`βuqγ , and that γě2 with β, νą0, if xPSh, mx defined by Relation (5.2) and
Nmx“pTnq the point process of Proposition 62, then the point process pnγpTn´Tkq, 1ďkănq
converges in distribution to a Poisson process with rate βγ .
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Proof. Define Pn“pn
γpTn´Tkq, 1ďkănq. The representation of pTnq in terms of the

Markov chain pZnq of Proposition 69 and Relation (5.19) give

En`1 “

ż Xn`1

0

`

ν`βZne
´s{α

˘γ ds, (5.27)

where pEnq is an i.i.d. sequence of exponential random variables with parameter 1 and,

as before, Xn`1“Tn`1´Tn.
For any δą0 and ně1, Relation (5.27) gives the inequality

P pXn`1ěδq ď P
ˆ

α

γ
βγ

`

1´e´δγ{α
˘

Zγ
n ď En`1

˙

. (5.28)

On the event En,δ,

En,δ def.

“

"

Xn`1 ď δ,
ν

β
eδ{αďZn

*

,

Relation (5.27) shows that

βγe´δγ{αZγ
nXn`1 ď En`1,

and therefore that the sequence of random variables pZγ
nXn`1q is therefore tight.

The elementary relation

p1`hqγ ´ 1 ď C1h, 0ďhď1,

with C1“γ2γ´1
and Relation (5.27) give the following inequality on the event En,δ.

0 ď En`1 ´ β
γZγ

n

ż Xn`1

0
e´sγ{α ds

ď C1ν pβZnq
γ´1

ż Xn`1

0
e´pγ´1qs{α ds ď C1νβ

γ´1Xn`1Z
γ´1
n .

Using the fact that pZγ
nXn`1q is tight and the almost sure convergence of pZn{nq to 1

of Proposition 76 shows that the random variables pXn`1Z
γ´1
n q is converging in distri-

bution to 0. For a sufficiently large n, Relation (5.28) shows that the probability of the

event En,δ is arbitrarily close to 1, we obtain that the sequence of random variables

pYnq
def.

“

ˆ

βγZγ
n

ż Xn`1

0
e´sγ{α ds

˙

is converging in law to an exponential distribution with parameter 1.
On the event En,δ we have

Yn ď βγZγ
nXn`1 ď eδγ{αYn,

hence, for xě0,
PpβγZγ

nXn`1 ě xq ď P
`

eδγ{αYn ě x
˘

`P
`

Ecn,δ
˘

,

hence

lim sup
nÑ`8

P pβγZγ
nXn`1 ě xq ď exp

`

´xe´δγ{α
˘

,
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and, by letting δ go to 0, we obtain

lim sup
nÑ`8

P pβγZγ
nXn`1 ě xq ď e´x.

An analogue lower bound holds for the lim inf, hence pβγZγ
nXn`1q is converging in

distribution to an exponential distribution with parameter 1. By using the almost sure

convergence of pZn{nq to 1, the same property holds for pβγnγXn`1q.

For pě1, the same argument may be used to prove that the sequence of random

variables pβγnγXn´k, 0ďkďp´1q is converging in distribution to the product of p ex-

ponential distributions with parameter 1. The key argument is again the almost sure

convergence of pZn{nq to 1.
Final step. Let f be a continuous function on R` with compact support included

in r0, K0s for some K0ą0. The relations Znďn`z0 and (5.27) give the inequality, for all

ně1,
En`1 ď pν`βpn`z0qq

γ Xn`1 ď C0pn`1qγXn`1,

for some constant C0 independent of n.
For pďn, we thus have

PpnγpTn´Tn´pq ď K0q ď P

˜

n
ÿ

k“n´p`1
kγXk ď K0

¸

ď P

˜

1
C0

p
ÿ

k“1
Ek ď K0

¸

.

We denote Nβγ a Poisson process with rate βγ , with associated exponential random

variables pEβγ

n q.

The last inequality gives that Pn is stochastically dominated by NC0`βγ , a Poisson

process with rate C0`β
γ
, in the sense that

PpPnpp0, K0sq ě pq ď PpNC0`βγ pp0, K0sq ě pq, for pďn. (5.29)

Clearly Nβγ is also stochastically dominated by NC0`βγ .

For pě1 and něp,
ˇ

ˇ

ˇ

ˇ

E
ˆ

exp
ˆ

´

ż

fpuqPnpuq

˙˙

´E
ˆ

exp
ˆ

´

ż

fpuqNβγ puq

˙˙
ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

ˇ

E
ˆ

exp
ˆ

´

ż

fpuqPnpuq

˙˙

´E

˜

exp
˜

´

n
ÿ

k“n´p`1
fpnγpTn´Tn´kqq

¸¸ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

E

˜

exp
˜

´

n
ÿ

k“n´p`1
fpnγpTn´Tn´kqq

¸¸

´E

˜

exp
˜

´

n
ÿ

k“n´p`1
f
`

nγEβγ

n

˘

¸¸
ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

E

˜

exp
˜

´

n
ÿ

k“n´p`1
f
`

nγEβγ

n

˘

¸¸

´E
ˆ

exp
ˆ

´

ż

fpuqNβγ puq

˙˙

ˇ

ˇ

ˇ

ˇ

ˇ

.

The first and third terms of the right hand side of the last inequality are respectively

bounded by the quantity PpPnpp0, K0sqěpq and PpNβγ pp0, K0sqěpq. With Relation (5.29)

we can fix p (not depending on n) sufficiently large such that it is arbitrarily small. The

second term can also be made arbitrarily small for n sufficiently large in a similar way.

We have thus proved that

lim
nÑ`8

E
ˆ

exp
ˆ

´

ż

R`
fpuqPnpuq

˙˙

“ E
ˆ

exp
ˆ

´

ż

R`
fpuqNβγ puq

˙˙

holds for all continuous function with compact support. We can use Theorem 3.2.6

of [Daw93] to finish the proof of the proposition.
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Appendix

5.A General results and definitions on point processes

Point Processes
We recall the notations on point measures and the associated random variables, the

point processes used throughout this paper. See [Nev77], Chapter 1 and 11 of [Rob03],

and [Daw93] for a general introduction on random measures.

If HPtR,R´u, we denote by CcpHq the space of continuous functions on H with

compact support and MppHq, the set of Radon point measures on H , that is positive

Radon measures carried by points, formPMppHq then

m“
ÿ

xPS

δx,

where δx is the Dirac measure at xPH and S is a countable subset ofH with no limiting

points in H . We may also represent N as the sequence px, xPSq of its points. If A is a

subset of H , we denote by

mpAq “

ż

A

mpdxq “
ÿ

xPS

1txPAu,

the number of points of m in A. A point measure m is simple if mptxuqPt0, 1u, for all
xPH . The space MppHq is endowed with the topology of weak convergence.

IfmPMppR´q, the point process qm on R` defined by

ż `8

0
fpxqqmpdxq “

ż 0

´8

fp´xqmpdxq, (5.30)

for any non-negative function f on R`.

Stationary point processes
If m is a simple point measure on R, the points of m are enumerated by an increasing

sequence ptkpmq, kPZq, numbered so that the relations

t´1pmq ă t0pmq ď 0 ă t1pmq ă ¨ ¨ ¨ (5.31)

hold, with the convention that tkpmq“`8 if there are less than kě1 points of m in R`,
and similarly on R´. The flow of translation operators pθtq on MppRq is defined by, for

tPR andmPMppRq,
ż

R
fpsqθtpmqpdsq def.

“

ż

R
fps´tqmpdsq, (5.32)

for any non-negative Borelian function f on R.
A distribution on MppHq, an element of the set PpMppHqq, is defined as a point

process on H .

Definition 78 (Stationarity). A point process N on R is stationary with intensity λą0,
if the random variable N pr0, 1sq is integrable and EpN pr0, 1sqq“λ, and if its distribution is
invariant by translation, i.e. for tPR, θtpN qdist.“ N , where θt is the translation operator defined
by Relation (5.32).
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Palm space of point processes
The set M0

ppR´q is a subset of elementsm of MppR´q such thatmp0q‰0. IfmPM0
ppR´q

thenm can be represented either by the non-decreasing sequence ptk, kě0q of its points,
or by the sequence x“pxkq“pt´k´t´k´1, kě0q of increments between them.

An operator
pθ on M0

ppRq is defined by,

pθpmq
def.

“ θt1pmqpmq1tt1pmqă`8u, (5.33)

for mPM0
ppRq, where t1pmq and pθtq by defined respectively by Relations (5.31)

and (5.32). A simple point process of M0
ppRq can be identified to its sequence of

inter-arrival times and it is easily seen that the relation

´

ptk`1´tkqppθpmqq, kPZ
¯

“

´

ptk`2´tk`1qpmq, kPZ
¯

,

holds.

The mapping
pθ is the classical shift operator on sequences. If m“ptn, nPZq is

in M0
ppRq and x“pxnq“ptn´tn´1, nPZq, then m“mx and

pθpmq“mx̄, with x̄“pxn`1q if

mpR´q“mpR`q“`8.

Equivalence between stationary point processes and Palm measure
We now recall some classical results on stationary point processes on R. A stationary

simple point process with intensity λą0 can be equivalently defined by either by

a. a distribution Q on MppRq which is invariant for the continuous flow of transla-

tions pθtq;

b. a distribution
pQ on M0

ppRq called the Palm measure of Qwhich is invariant for the

operator
pθ.

When a) is given, a distribution
pQ on M0

ppRq is constructed via Mecke’s Formula so

that property b) holds. See Chapter II of [Nev77] or Proposition 11.6 of [Rob03].

If b) holds, i.e. if
pQ is given, then the construction ofQ is done with a fundamental

construction of ergodic theory, it is the special flow associated to the operator
pθ and the

function mÞÑt1pmq on M0
p. See Chapter 11 of [CFS82], and Chapter 10 of [Rob03]. The

distribution Q is expressed as

ż

MppRq
F pmqQpdmq “ λ

ż

M0
ppRq

ż t1pmq

0
F pθspmqq ds pQpdmq, (5.34)

for any non-negative Borelian function on MppRq. The probability distribution
pQ is

simply determined by a distribution of the sequence of inter-arrival times which is

invariant by the shift operator. The space pM0
ppRq, pθ, pQq can be seen as a probability

space whose elements are positive sequences. It is sometimes called the Palm space of

Q.
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5.B Hawkes processes: a quick review

Hawkes processes have been introduced by Hawkes in 1974 in [Haw71] as a class of

inhomogeneous Poisson processes N , whose stochastic intensity pλptqq depends on

previous jumps, i.e through,

pλptqq “

ˆ

Φ
ˆ
ż

p´8,tq

hpt´ sqN pdsq
˙˙

.

The first Hawkes processes investigated were restricted to affine activation function Φ
of the form,

Φpxq “ ν ` βx,

which have a nice representation in terms of age-dependent branching processes, see

[Lew64; Ver70; DV03]. The condition of existence and uniqueness of stationaryHawkes

process in this case is

β

ż `8

0
hpsq ds ă 1,

see [HO74].

The special case where ν“0 was investigated in [BM01], where a particular interest

was dedicated to the critical Hawkes process,

β

ż `8

0
hpsq ds “ 1.

The same critical Hawkes process, with general immigration rate ν is investigated

in [Kir17]. A more precise study of the cumulant statistics of stationary Hawkes

processes is developed in [Jov15] using a Poisson cluster process representation. The

addition of an external jump process to the linearized Hawkes process, in view of

applications in neuroscience example, has been considered in [Bou16].

Hawkes processes with exponential functions hpxq“ expp´x{αq have attracted a

particular interest because the associated counting process has theMarkovian property,

see [Oak75].

Having a linear activation function Φ is very helpful because of the corresponding

branching process representation, However, when studying auto-inhibiting point pro-

cesses, non-linear activation functions Φ are natural candidates to use. In this setting

the investigation of sufficient conditions for the existence of stationary versions is more

delicate. Most proofs in this domain are based on the functional relation defining

stationary Hawkes processes that can be expressed as a fixed point equation which can

be solved through a Picard scheme, see [Ker64] for one of the pioneering papers on this

subject. . [BM96] has developed this approach when Φ is supposed to be β-Lipschitz,
with the following condition,

β

ż `8

0
|hpsq| ds ă 1.

Thinning techniques have been applied to the case of a bounded Lipschitz function Φ
in the same reference, where the condition

ż `8

0
s|hpsq| ds ă `8
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Branching Processes

References [Lew64; Ver70; DV03]

Assumptions 1

a. Φpxq “ ν ` βx with ν ą 0 and

β ě 0.

b. hpxq “ expp´x{αq.

[Oak75; EGG10]

Assumptions 2

a. Φpxq “ ν ` βx with ν ą 0 and

β ě 0.

b. h : R` Ñ R`.

[Haw71; HO74; BM01; Jov15; Bou16; Kir17]

Analytical Methods

References [Ker64]

Assumptions 3

a. Φ : RÑ R`.

b. h : R` Ñ R.

[BM96; Che+17]

Markovian Processes

References [Lin02; Num04; Hai10]

Assumptions 3

a. Φ : RÑ R`.

b. h : R` Ñ R.

[BM96; Kar12; Hod16; RDL20; Gra19; Raa19;

Cos+20]

Assumptions 4

a. Φ : RÑ R`.

b. hpxq “ expp´x{αq.
[DLO19]

Table 5.1: Overview of works on the existence of stationary Hawkes processes.

is sufficient to prove the existence and uniqueness of the stationary version of the

Hawkes process.

Proofs based on contraction arguments are problematic when looking at inhibitory

connections. Other techniques have been developed to circumvent these problems, but

always need some additional (sometimes strong) assumptions.

In [BM96], renewal theory is used to investigate Hawkes processes, with finite

memory. This approach has been extended in [Gra19; Raa19; Cos+20]. It is also

possible to limit the influence of intensity rate to the last jump of the Hawkes process

as done in [HL17].A recent study [RDL20] has added a refractory effect to prevent

explosion in the study of non-linear Hawkes processes.

To go further, it is interesting to see Hawkes processes, as Markov process in

general state spaces, either using counting processes [DLO19] or Markov theory in
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the state of càdlàg functions [Kar12]. Coupling methods [Lin02] and general Markov

theory [Num04; Hai10] are natural tools in this setting.
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CHAPTER 1

A SYNAPTIC THEORY FOR SEQUENCE LEARNING IN THE

STRIATUM

Spatio-temporal patterns have been observed in a variety of brain areas in response

to stimuli, prior or during action, or even in spontaneous activity. However, the

biological mechanisms endowing neurons with the ability to distinguish between

different sequences remain largely unknown. In fact, learning sequences of spikes

raises multiple challenges, such as maintaining in memory spike history and dis-

criminating partially overlapping sequences. Medium spiny neurons (MSN) in the

striatum, expressing intense plasticity with cortex, have been reported to play a

critical role in integrating context elements and develop sensorimotor associations.

We theoretically explore the capacity of anti-Hebbian spike-timing dependent plas-

ticity (STDP), observed at cortico-striatal synapses of MSNs, to drive the learning

of sequences. To this purpose, we design a spiking model of the MSN receiving

spike patterns defined as sequential input from a fixed set of cortical cells. We use

a simple three-factor synaptic plasticity rule that combines anti-Hebbian STDP and

non-associative potentiation associated to a subset of the presented patterns called

rewarded patterns. We study, in various situations, the ability of the MSN to discrim-

inate rewarded from non-rewarded patterns by firing only after presentation of a

rewarded pattern. In particular, we show that two well-known biological properties

of striatal networks, spiking latency and collateral inhibition, contribute to a signifi-

cant increase in accuracy, by allowing a better discrimination of partially overlapping

sequences. Altogether, these results argue that the anti-Hebbian STDP observed at

cortico-striatal synapses may serve as a biological substrate for learning sequences

of spikes.

abstract

1.1 Introduction

Nerve cells generate spatio-temporal patterns of action potentials, generally construed

to convey information in the central nervous system. While spiking sequences have

indeed been observed on a variety of timescales and in vastly distinct brain areas, the bi-

ological mechanisms employed to encode, store a sequence or distinguish between dif-

ferent sequences are still largely unknown. At behavioral timescales (seconds), episodic

experiences are by nature a sequence of events [Xie+22]. In brain, these result in the

generation of spatio-temporal spike sequences, as for instance with hippocampal place

cells activating following the animal’s movement [MKM08], parietal cortex sequences

emerging in a virtual navigation-decision tasks [HCT12]. Generating dynamical out-

put also require the formation of sequential cortical activity, as observed for instance in

bird’s ability to repeat spatio-temporal sequences over tens of seconds andwith tempo-

ral structure maintaining millisecond accuracy within synfire chains [Ike+04], or more

generally the generation of sequential activation of neural assemblies [Buz10]. Shorter

timescale cortical spike sequences lasting tens of milliseconds were also reported in the

relative timing of spikes between sequences in oscillating neural assemblies [WL96],

235
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or in sequential activation after an up state transition [Luc+07], in response to a single

spike [Hem+19], or even in spontaneous patterns of activity [LBH09]. Theoretically,

Hebbian plasticitywas reported to naturally generate sequential activity (see e.g. [PB20]

for a recent work in an unsupervised learning setting).

The ubiquity of sequences in brain activity suggests that the nervous system shall

have developed the ability to identify and distinguish sequences and spike in response

to a given set of sequences (and remain silent for other types of input). Theoretically,

this is a complex task. Firstly, identifying a sequence requires the ability to integrate

signals on a timescale of several spikes. Moreover, difficulties arise for sequences that

share a significant amount of input, overlap except for their last spikes, or even could be

seen as incompatible. Interestingly, despite ample work in computational neuroscience

and machine learning related to the learning of temporal sequences [Güt14], we did

not identify any work dealing with the specific task of identifying specific sequences

by firing or not depending on the full pattern of input (and differentially learn sub- or

super-patterns)

An ample part of the literature related to learning sequences found solutions

to the problem of replicating a target output spike train; algorithms based on error

backpropagation [BKL02], high-threshold projection [Mem+14], Remote Supervision

Methods (ReSuMe) [PK10], or the Chronotron [Flo12] which uses a modification of the

Victor & Purpura distance for spike trains to compute error terms, were shown to be

successful in performing those tasks. Closer to the problem at hand, some algorithms

were designed to decode statistical information from spike trains, or even to simply

spike in response to particular sequences of input spikes. Those techniques, that

include the Tempotron [GS06; US09], and its extensions [Güt+13; Güt14], differ from

the problem at hand in that the neuron is not required to take a decision at the end

of the task but may fire at any point during the presentation of the stimulus. In the

context of motor decision making for instance, this would be problematic in that it may

trigger movement in response to a part of a stimulus that should, when completed, not

give rise to a spike.

Here, we explore whether biological learning rules observed in the striatum allow

the acquisition of the ability to discriminate between different sequences. The dorsal

striatum, a subcortical nucleus and the main input structure of the basal ganglia, has

indeed been shown to play a major role for action selection [YK06; GG15; JC15] and a

prominent site for memory formation and procedural learning [PV19; Ath+18; Pet+21].

In this variety of tasks, one may expect that the striatum needs to use information

from sequences of evidences to take a decision. In contrast with associative recurrent

cortices that are efficient to recollect missing information when presented with partial

patterns, the striatum is a largely feedforward network, that combines a variety of

cortical input to produce an output. Corticostriatal synapses were shown to be highly

plastic. They display anti-Hebbian Spike Timing Dependent Plasticity (STDP) [FGV05;

Fin+10; Men+20], whereby a cortical spike followed by a striatal medium spiny neuron

(MSN) spike leads to a depression of the associated synaptic weight. While many

computational studies have investigated the impact ofHebbian STDP, only a few studies

have investigated anti-Hebbian STDP. Those concentrated on the question of stability of

synaptic weights [Rob00; CF03; BK12], compensation of dendritic attenuation [RA04],

cancellation of correlated signals and novelty detection [ZD07; RL10], in particular in

the electrosensory system of the mormyrid electric fish.

As shown in all theseworks, whenpresentedwith correlated activity, anti-Hebbian

STDP will generally lead to depression of the associated synapses ; this mechanism
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could naturally endow the systemwith the patience necessary to listen to full sequences

and identify specific ones. We will show here that the combination of anti-Hebbian

STDP with a simple, non-associative LTP is sufficient for a single MSN neuron to learn

and distinguish sequences. We will note that while the simplest model of neuron

with instantaneous firing will be able to learn sequences, they will however have a

tendency to spike too early, in situations where partial sequences and longer sequences

are presented. Going back to biology, we will observe that incorporating two key

biological observations from the striatal network, spike latency and collateral inhibition,

participate to the remarkable ability to identify and learn sequences of spikes.

1.2 Results

Sequence learning in the striatum
Given a spatio-temporal sequence of cortical spikes, we will say that a MSN has learnt

a specific subset of sequences if it acquires the ability to spike in response to a specific

subset of sequences, after the end of the correlated activity and not to spike in response

to the others.

While basic, this notion of sequence learning is quite distinct from the literature.

Indeed, as precisely reviewed in [Güt14], sequence learning has been classically divided

into two different types of tasks: (i) reproducing a target spike train or (ii) classify a

pattern by spiking, at any time, during the presentation of specific input sequences. The

second task relates to the role of the striatal neurons which integrate cortical correlated

patterns and then spike to trigger further downstream pathways leading to motor

processing and eventually, an action. As such, it is similar to the task we set out to

study here.

Since the latter task is not designed to wait until the end of a pattern to fire, when

the network classifies a spike pattern B and fires during its presentation (at the end

of subpattern A), it will also fire for any pattern that starts by (or just contains) A,
and thus the specificity of pattern B and the extra information it contains compared to

A is never taken into account. Assuming that the striatum needs to distinguish such

patterns in some situations and to possibly respond differently to each of them, we have

developed a new task where the striatal network, represented by one or two MSNs,

integrates sequences of cortical spikes and naturally learns to spike at the end of the

patterns.

This task, is different from the two previously defined in the sense that (i) a target

spike train is not defined and used in the learning rule, and (ii) because the MSN needs

to spike at the end of the pattern presentation and not earlier to produce a correct

classification.

This novel tasks raises two main challenges: (i) the neuron shall keep the memory

of past spikes for the whole duration of the pattern before firing, and (ii) some com-

binations of sequences may be harder to learn, for instance when the tasks include a

rewarded patternA that is a sub-pattern of another rewarded or non-rewarded patterns

B Ą A, since in both cases the neuron will have a tendency to fire in response to the

subpattern.
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Simple models of striatal dynamics

Our scientific approach will consist in exploring the ability of striatal networks to

achieve this task using simple, yet increasingly realistic, mathematical models. The

striatum is a complex nucleus, composed primarily of MSNs that are the only cells that

project outside of the striatum to other structures. These neurons integrate numerous

cortical and thalamic inputs, and have been often described as coincidence detectors,

since their high threshold requires the concomitant arrival of many spikes to induce a

spike, which are oftenfired after a period of latency. Those neurons have beendescribed

in depth, both biologically and computationally, and severalmathematicalmodelswere

proposed to describe their behavior [Izh07; Hum+09; HWG09; YAK11; GHR15]. Within

the striatum, MSNs have been also described to produce sparse inhibitory collateral

connections among themselves, which reportedly plays a major role in the regulation

of MSN firings or their overall activity [WAS07].

Our approach will consist in starting from the most simple setting of a single

MSN receiving many cortical input and expressing the type of cortico-striatal plasticity

observed experimentally, and build our way towards more complex models of two-

neuron networks with non-linearities and adaptation, and assess in each case the

performance of the system.

MSNs as linear leaky-integrate-and-fire neurons

Leaky-integrate-and-fire dynamics. We started by modeling the MSN as a linear

leaky integrate-and-fire neuron [YAK11; Bur06; Ger+14], where the MSN integrates

cortical and external inputs and fires when hitting a threshold. In detail, between two

spikes, the membrane potential V of the neuron satisfies a linear differential equation:

τ
dV
dt “ ´pV ptq ´ Veqq `RIptq `

?
τVnoiseptq

Spikes are emitted when the voltage exceeds a threshold Vth, at which time the neu-

ron’s voltage is instantaneously reset to Vr and resumes input integration after a delay

τrefractory“10ms. Vnoiseptq represents Gaussian white noise, with a standard deviation of

ηnoise“0.5mV .

Inference of the parameters from experimental data. In order to fit the model, we

used electrophysiological data from MSNs recordings in the mouse dorsolateral stria-

tum in response to steps of input current with increasing amplitude. An example of

electrophysiological data is depicted in Figure 1.1a1. These protocols are standard to

characterize the neuron spiking properties and are helpful to characterize the neuron

type.

In particular, it is possible to extract from these protocols the resting membrane

Veq, the threshold Vth and the reset Vr potentials. Moreover, the R-I curve of the

neuron is presented in Figure 1.1a2 (in blue). It represents the change in membrane

potential as a function of input current intensity, and is used to compute R after fitting

a linear curve to the experimental data (Figure 1.1a2, in green). τ can then be fitted

directly on the electrophysiological traces. Once all these parameters are fixed, the

model is completely constrained, and we can reproduce the action potential protocol

using simulations (Figure 1.1a3). The model simulations reproduce relatively well
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Figure 1.1: MSNs as integrated-and-fire neuronswith two types of synaptic plasticity
at corticostriatal synapses.
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Figure 1.1: MSNs as integrated-and-fire neuronswith two types of synaptic plasticity
at corticostriatal synapses.

(a) Integrate-and-firemodel (M1) for theMSN. (a1) Electrophysiological data (unpublished)
from a MSN, recorded during an AP protocol (presentation of current steps with in-

creasing intensity). Membrane potential in mV, first spiking event (in black). (a2) R-I

curve from the same MSN, mean membrane potential value as a function of current

intensity (in blue). Linear regression to determine R (in green). (a3) Response of an

integrate-and-fire model, using values fitted on experimental data, to an AP protocol

(presentation of current steps with increasing intensity). Membrane potential in mV,

first spiking event (in black). (a4) Firing rates as a function of current intensity, ex-

perimental data (in blue), simulations with an integrate-and-fire neuron (green circle),

exact FI curve for the integrate-and-fire model (green line).

(b) Integrate-and-fire parameters, from experiments and previous models. Values for the

integrate-and-fire model parameters, fitted to each electrophysiological experiment

(black crosses). Mean values over all experiments (green circles, M1). Values from

the integrate-and-fire parameters from [YAK11] (red triangles) and from Izhikevich

models [Izh07] (brown triangles, M2).

(c) STDP applied at corticostriatal synapses. Synaptic weight update ∆W as a function

of ∆t, using an exponential function, parametrized by Apost´pre, for the change after

a post-pre pairing (in orange) and Apre´post for pre-post pairings (in purple), with ex-

ponential decay τs. Two examples of STDP are presented, asymmetric Hebbian STDP

(dashed line) and anti-Hebbian STDP (solid line).

(d) Non-associative potentiation to represent reward signals. Simple example of synaptic

updates resulting from spike train from two input neurons (top, neuron 1 in green,

neuron 2 in blue) and one output neuron (second line, in brown). Synaptic update

resulting from asymmetric anti-Hebbian STDP only (third line) or with non-associative

reward-LTP (in red, bottom line).

electrophysiological data, considering the restricted numbers of parameters in the

model. However, this type of model does not scale properly for high input currents, as

can be seen when looking at the F-I curve (firing rate as a function of input intensity,

Figure 1.1a4, blue data and green simulations).

Using experimental data from several MSNs, we fitted Veq, Vth, Vr,R and τ for each
neuron and also computedC“τ{R. All these parameters are represented in Figure 1.1b,

along with their averaged value (green circles) and values from previous studies (red

triangles for [YAK11] and brown triangles for a non-linear version by [Izh07]). In

particular, we notice that the values inferred from experimental data are consistent

with canonical models, except for the reset potential Vr which is sometimes taken as

equal to the rest potential Veq, notably in [Izh07]. We have chosen to use a different

value when modeling the MSN, because MSNs reset to values close to their threshold

potential leading to a greater excitability immediately after a spike compared to when

they are at their resting potential. In the following sections, MSNs will be modeled

either using the linear integrate-and-fire model (M1) with parameters inferred using

experimental data (the averages over all experiments, green circles), or the non-linear

model (M2) from [Izh07]. Parameters are provided in Table 1.1.
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Cortical inputs. In the cortical input received by the MSN (term Iptq in equation 1.2),

we explicitly distinguish the spikes received from P cortical neurons, noted Istimptq
(and with which plasticity will be modeled, see below) and an additional input Iextptq
modeled as a Poisson process with rate λext:

Iptq “ Istimptq ` Iextptq.

Each spike induces instantaneous jumps in the MSN membrane potential, with a

constant amplitudeWext“1nA (high enough to be able to evoke spiking activity in the

MSN) for external spikes and synaptic weights W ptq “ pWiptqq1ďiďP for each of the P
cortical neuron considered, that vary through plasticity mechanisms.

Istimptq “ τ
ÿ

1ďiďP

ÿ

tkiďt

Wipt
k
i´qδpt´ t

k
i q, Iextptq “ τWext

ÿ

tkextďt

δpt´ tkextq,

where we noted, for a function f being potentially discontinuous at time t, fpt´q the
value reached immediately before the jump, ptki qkě0 is the sequence of spikes of neuron

i and ptkextqkě0 the sequence of external spike times, that have exponentially distributed

inter-spike intervals. The factor τ allows appropriate scaling of weights for direct

comparison with experimentally measured EPSCs (excitory post-synaptic currents).

Synaptic plasticity at cortico-striatal synapses

Spike-timing dependent plasticity. Synaptic weights from the P cortical neurons to

the MSN are subject to pair-based STDP, which is modeled as synaptic weight updates

arising after each spike according to the spike timing relative to all previous spikes of

the other neuron (all-to-all implementation in the parlance of [MDG08]). In detail:

— If the MSN spikes at time t
post

(postsynaptic spike), then all weights are updated.

Noting t
pre,i the previous spikes of cortical neuron i, the synaptic weight Wi is

updated according to:

Wiptpostq “ Wiptpost´q ` ε
ÿ

tpre,iătpost

Φpt
post
´ t

pre,iq

where ε denotes the plasticity rate, chosen in our simulations as ε“0.02.

— If presynaptic cortical neuron i P t1, ¨ ¨ ¨ , P u spikes at time t
pre,i, noting tpost the

times of the MSN spikes, then the synaptic weightWi is updated as:

Wiptpre,iq “ Wiptpre,i´q ` ε
ÿ

tpostătpre,i

Φpt
post
´ t

pre,iq.

Denoting ∆t“t
post

´ t
pre

the timing between the presynaptic (cortical) spike and

the postsynaptic (MSN) spike, we use an exponential STDP kernel [MDG08]:

Φp∆tq “

$

&

%

A
post-pre

exp
´

∆t
τs

¯

if ∆t ă 0

A
pre-post

exp
´

´∆t
τs

¯

if ∆t ą 0

with τs“20 ms.

An example of this STDP curve and of the impact of each parameter is given

in Figure 1.1c.
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Non-associative reward-LTP. Anti-Hebbian plasticity and the prominence of depres-

sion associated was often combined with non-associative LTP to prevent neurons from

becoming silent altogether [RB00; WRL03; RA04]. Indeed, synaptic weights involved in

the firing of a postsynaptic neuron are reduced by anti-Hebbian STDP, leading to their

decrease, a process that may persist until no postsynaptic spike is produced; in other

words, in the absence of an additional LTP, the synaptic weights subject to anti-Hebbian

learning decrease until the network becomes silent.

We chose to use non-associative LTP to model rewards signals, leading to the

following synaptic update rule, where at each presynaptic spike of cortical neuron i,
the associated synaptic weightWi was updated by,

∆Wi “ εAreward.

where Areward is either null (corresponding to the absence of any LTP) or positive

(corresponding to non-associative potentiation of active presynaptic neurons).

This model offers an approximation of more detailed models proposed in the

literature, in particular three-factor learning rules [KIT17; Fon+18; Ger+18], by just

considering a simple reward signal consisting in the potentiation of the synaptic weight

at each presynaptic spike.

Eventually, synaptic weights are clipped within a realist range

rwmin, wmaxs“r0., 2.snA. An example of simple synaptic weight dynamics with

P“2 cortical neurons, with and without reward is presented in Figure 1.1d.

Pattern recognition in the striatum

Patterns of correlated cortical activity. Learning at the level of the striatum is based

on the detection of correlated sequences of cortical inputs. We emulated learning

through a simple task, whereNp patterns of cortical activity are presented to the MSN,

whose spiking models the output of the network. A pattern represents a sequence

of cortical activity with duration tduration“50ms, and is composed by two different

processes (i) correlated activity from a subset of cortical neurons (always present at

each presentation of the pattern) (ii) random spiking activity from all cortical neurons.

In Figure 1.2a, a simple learning task is detailed with two patterns: pattern A
which corresponds to a spike from cortical neuron 4 happening at time toffset; patternB
where cortical neuron 1 spikes at toffset, followed after a delay tdelay by a spike of cortical

neuron 3, see Figure 1.2a (top right).

During learning, the network is presented with patterns, chosen randomly from

the set of Np patterns. Among the patterns, a fixed subset was chosen to be rewarded

with a probability 1{2. Accordingly, the rest of the patterns were defined as non-

rewarded patterns. In the example of Figure 1.2a, pattern A was chosen to not be

rewarded p´q and pattern B rewarded p`q. During training, rewarded patterns are

subject to a positive potentiation signal (Arewardą0) while non-rewarded patterns do not

pAreward“0q. For all patterns, STDP rules are also applied at the synaptic weight matrix

W depending on pre- and postsynaptic spikes.

Accuracy, a measure of the network performance in the classification task. A re-

warded pattern was deemed learnt if the MSN fired after the presentation of the whole

sequence of correlated cortical activity, while non-rewarded patterns should not elicit

any spike. For example, in Figure 1.2a, both patterns were tested, before and after
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learning. Before learning, patterns A and B did not trigger any spikes of the MSN,

leading to a correct classification for A (as a non-rewarded pattern) and a misclassifica-

tion for B. After learning, pattern A still did not elicit any spike while the MSN emited

a spike after the presentation of all cortical spikes of pattern B, leading to a correct

classification.

The accuracy of the learning process was estimated through the averaged numbers

of correct responses:

Accuracy “
1
Np

ÿ

1ďkďNp

rkσk ` p1´ rkqp1´ νkq, (1.1)

where rk“1 if k is a rewarded pattern and 0 otherwise, σk“1 if the MSN spiked after

the correlated cortical activity and 0 otherwise, and νk“1 if the neuron spikes, and 0
otherwise.

We stress here that to correctly classify a rewarded pattern, the MSN cannot spike

during the cortical pattern, the spike has to be elicited at the end of the sequence. We

made this choice to model the capacity of the striatum to take decision based on whole

sequences of cortical activity, and not only on the first spikes.

The accuracy (and other network properties) is computed on a frozen network,

where all sources of noise have been shut-off. All patterns are presented, and evaluated

on this test network,with theMSNmembranepotential reset to its restingvaluebetween

each pattern.

Impact of STDP and reward-LTP on two simple tasks

In order to test whether simple models of cortico-striatal learning perform in learning

sequences, we designed two simple tasks. We compared the evolution of different

properties as a function of pattern iterations (Figure 1.2b and c), using four different

types of STDP:

— Symmetric LTD:Apost´pre“Apre´post“´1, which represents STDPwhere correlated

spiking only leads to depression of the synaptic weight.

— Asymmetric Hebbian STDP: Apost´pre“´1 and Apre´post“1, which emulates the

classical Hebbian STDP rules where pre-post pairings lead to potentiation, while

post-pre pairings lead to depression.

— Asymmetric anti-Hebbian STDP: Apost´pre“1 and Apre´post“´1, which is the re-

verse of the asymmetric Hebbian STDP.

— Symmetric LTP: Apost´pre“Apre´post“1, which represents STDP where correlated

spiking only lead to potentiation of the synaptic weight.

We distinguishHebbian learning rules (asymmetric Hebbian STDP and symmetric

LTP), characterized by Apre´post“1, from anti-Hebbian learning rules (asymmetric anti-

Hebbian STDP and symmetric LTD) withApre´post“´1. Finally, we also tested the tasks

with or without reward LTP (right or left respectively), and either starting from low or

high synaptic weights (solid or dashed lines).
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Task A, random inputs. In the first task, we presented theMSNwith random activity

from the cortical neurons (100Hz for each cortical neuron) and studied the norm of the

synaptic weight matrix W (Figure 1.2b). We observe in Figure 1.2b (left) that without

reward-LTP, symmetric LTD leads to a decrease of the synaptic weight norms (blue

line), regardless of the initial values. Conversely, symmetric LTP (red lines) leads to the

general potentiation of the synaptic weight, again for both low and high initial synaptic

weights. The picture is more complex for asymmetric Hebbian and anti-Hebbian

STDP, whose dynamics change depending on the initial values. Asymmetric Hebbian

STDP (in green) converges to a stable regime, while asymmetric anti-Hebbian STDP

(in brown) either leads to complete depression when starting too low, or to complete

potentiation when starting too high.

When adding reward-LTP Figure 1.2b (right), all rules lead to the potentiation of

the synaptic weights, except symmetric LTD where depression still dominates.

Task B, learning to respond to one pattern. We next turned to investigate the dy-

namics of the system in response to a single pattern, obtained as a Poisson process

with intensity λpoisson“1 kHz on a time interval of duration tpoisson“5ms, conditioned
with having at least two spikes. We computed the probability that the MSN remains

silent (top), the relative timing of the first spike of the MSN (middle) and the resulting

accuracy (bottom), for both a non-rewarded pattern (left) and a rewarded one (right).

Starting with the non-rewarded patterns, the simulations show several important

features. First, when starting from low synaptic weights (not sufficient to trigger

spiking), and in the absence of non-associative reward-LTP, the synapticweights are not

updated (indeed the postsynaptic neuron never spikes), and therefore the probability

to remain silent is equal to 1 throughout learning, leading to an accuracy of 1 for each

type of STDP. The picture ismore complexwhen the network starts with initial synaptic

weights high enough to trigger spikes of the postsynaptic neurons (dashed lines). In

that case, symmetric LTD is able to reduce the synaptic weight enough to silent them,

which translates in an increase in accuracy during learning, reachingmaximal accuracy

quickly. Asymmetric anti-Hebbian STDP is also able to reduce synaptic weights, also

leading to an increase of accuracy. However, this is not as efficient as symmetric LTD,

mainly because the network is unstable if the synaptic weights are too high initially, as

was observed in Task A. Conversely, when the postsynaptic neuron spikes, symmetric

LTP and asymmetric Hebbian STDP only lead to an increase of the synaptic weights

involved in spiking, making it impossible for these Hebbian rules to silence the neuron

when presented with a non-rewarded pattern. In particular, the accuracy stays equal

to zero during all the task, as the MSN always spikes in response to the pattern.

We now present results for Task B with a rewarded pattern, in Figure 1.2c (right).

When the network starts with small synaptic weights, the pattern does not trigger any

MSN spike, as seen previously for the unrewarded pattern. However, thanks to the

reward-LTP mechanism, the presence of presynaptic spikes results in the potentiation

of the associated synaptic weight, and therefore leads to the triggering of MSN spikes.

When looking at Hebbian rules, numerical experiments show that the MSN starts to

spike after a short training (see the decrease in the probability to remain silent, top

panel), and once the MSN spikes, the synaptic weights are still potentiated (even more,

due to the fact that Apre´postą0), forcing the first postsynaptic spike to be triggered at

the beginning of the pattern (the relative timing of the first spike goes to 0, middle
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Figure 1.2: Learning sequences in the striatum, using anti-Hebbian rules and non-
associative reward-LTP.

(a) Classification task using the striatal network. Schematic representation of the striatal

network (right) with P“4 cortical neurons (in green), a random input neuron with rate

λext (in yellow) and one MSN, represented by its membrane potential V (in brown).

Two mechanisms of synaptic plasticity are considered in the dynamics of the synaptic

weight W (in blue): STDP (in purple) and LTP related to the reward signal (reward-

LTP) (in red). Example of the learning task (left), with test sessions and the training

protocol (middle). Np“2 patterns A and B are presented to the network, with A being

non-rewarded p´q andB rewarded p`q. Each pattern represent sequential activity (top

right), A with a single cortical spike and B with two spikes separated by a delay tdelay.

All pattern have a duration of tduration, and correlated cortical spikes are presented at

toffset. Spiking activity of the cortical neurons (in green for pattern spikes and grey for

randomspikes) and the random input neuron (in yellow) are represented alongwith the

membrane potential V of the output neuron (MSN, M1, in brown). In the test sessions,

below the MSN potential, are represented accuracy results (correct classification in

green, wrong classification in red).

(b)Dynamics of learning with random noise (Task A). Evolution of the norm of the synaptic

weights, during the presentation of cortical random spikes, withP“10 cortical neurons,
without (left) or with (right) non-associative reward-LTP, for different types of STDP

rules (color) and different values of initial synaptic weights (low in solid lines, high in

dashed lines).

(c) Dynamics of learning with a Poisson sequence (Task B). Different learning properties,

during the presentation of a Poisson sequence, with P“10 cortical neurons, without

(left) orwith (right) non-associative reward-LTP, for different types of STDP rules (color)

and different values of initial synaptic weights (low in solid lines, high in dashed

lines). (top) Probability to observe no spike during pattern presentation, (middle)

relative timing of the first postsynaptic spike, (bottom) accuracy. (Note: the traces from

symmetric LTP and asymmetric Hebbian STDP are superimposed.)

Low synaptic weights “r0., 0.05snA / high synaptic weights “r0.05, 0.5snA /

Areward“0.5 / N“500 independent networks / Membrane potential X and plasticity

reset between each pattern.

panel). In particular, this response (spiking before the end of the pattern) is not the

correct behavior, and leads to an accuracy of 0 (bottom panel).

For anti-Hebbian rules, another type of dynamics emerges. At first, only Areward
acts on the synaptic weight, leading to the potentiation of W . Once a spike is elicited

at the MSN, the associated synaptic weight undergo a combination of potentiation

(from Areward) and depression (from Apre´postă0), with Areward`Apre´postă0. After each

postsynaptic spike, synaptic weights are therefore decreased. Several iterations are

needed for this resulting depression to decrease the synaptic weight enough to stop

triggering spikes at the postsynaptic neuron. When this event arrives, the synaptic

weights are again only subject to potentiation,which leads to spiking of thepostsynaptic

neuron in the followingpresentation. TheMSN therefore alternates between answering

correctly to the pattern (by spiking) or not (by remaining silent). Anti-Hebbian rules
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lead to an equilibrium where the MSN oscillates between those two states. This can

be seen by the fact, that the probability to remain silent converges to 0.5 in both cases,

resulting in an accuracy of 0.5. Asymmetric anti-Hebbian STDP is particularly stable

in this regime, while symmetric LTD loses efficacy after extended training.

When starting from higher synaptic weights, symmetric LTD and asymmetric anti-

Hebbian STDP are able to displace the postsynaptic spikes to the end of sequence of

cortical activity (see bluedotted lines, inmiddle panel), resulting in a non-zero accuracy.

As a conclusion, only symmetric LTDandasymmetric anti-Hebbian STDPcorrectly

learn to classify both types (rewarded and non-rewarded) of patterns, whereasHebbian

rules perform poorly. It is particularly interesting to notice that anti-Hebbian rules have

been shown to be present at corticostriatal synapses [FGV05], and therefore enable the

correct classification of patterns of sequential cortical activity. This conclusion results

of course from our definition of accuracy, where rewarded patterns are only classified

correctly when they spike after the pattern.

These simple experiments have however pointed out that the anti-Hebbian rules,

coupled with non-associative reward-LTP lead to an equilibrium where the neuron

oscillates between sub- and supra-threshold states. In particular, the accuracy, mea-

sured as defined above, suffers from this dynamics and does not render the fact that

the network has indeed learned the correct combination of weights to elicit a spike at

the end of the pattern. In order to compare with systems where a stable equilibrium is

reached, we define a new metric that we call MaxAccuracy as,

MaxAccuracyptq “ max
rt´T1,t`T1s

tAccuracyptqu

where Accuracyptq represents the value of accuracy computed at time t, following

Eq. 1.1, and rt´T1, t`T1s represents an interval of pattern iterations (T1 will be taken

as 10 test iterations in the rest of the paper). In particular, when using this measure,

the oscillatory behavior described before is “hidden” thanks to the max, which will be

useful when comparingwithmore stable learning rules. We stress that this equilibrium

results from the simple hypotheses of the model, in particular the absence of reward-

prediction errors, and other mechanisms that would lead to the convergence of the

synaptic weights to stable values.

Sequence learning using anti-Hebbian rules with a single output cell
Now that the setting has been detailed, and after testing the direct influence of both

STDP rules and reward signaling, we aim at testing the previous conclusions on more

complex tasks.

Task 1, learning sequences of cortical associations

We now focus our attention on the ability of the network to learn to discriminate Np

patterns composed of sequences of cortical spikes.

More practically, the Np are chosen as follows:

a. Each pattern is assigned to a number n of cortical spikes uniformly (between 1
and Nstim inputs).
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Figure 1.3: Anti-Hebbian rules andnon-associative LTPenable learningwith a single
linear integrate-and-fire MSN (M1).



A SYNAPTIC THEORY FOR SEQUENCE LEARNING 249

Parameters (M1) (M2) [Izh07] [YAK11]

Veq pmV q -76.72 -80 -80

Vth pmV q -39.51 -20 -45

Vr pmV q -41.70 -55 -80

R pMΩq 118.50 100 80

τ pmsq 11.85 16

C pnF q 0.098 0.05 0.2

a pms´1q 0.01

b pnF ms´1q -0.02

d pnF ms´1mV q 0.15

Table 1.1: Parameters of different models for MSNs.

b. The pattern is associated to a different ordered subset of n neurons from t1, P u.

c. The temporal sequence is defined with the first spike at time toffset, and the fol-

lowing ones presented with a fixed delay tdelay“1ms.

d. Finally, each pattern is chosen to be rewarded or not, with probability 1{2.

PatternsA andB from Figure 1.2a where build following this method. For pattern

A, we have n“1 spikes of cortical neuron p4q at time ptoffsetq. For pattern B, we have

n“2 spikes of cortical neuron p1, 3q at time ptoffset, toffset`tdelayq.

During the task, we measure at test protocols (frozen network), the accuracy and

MaxAccuracy as defined before. Moreover, for each set of parameters we realize the

simulations either with,

— Areward“0.9 for rewarded patterns, and Areward“0 for non-rewarded ones, to emu-

late supervised learning using the rewarding signal;

— Areward“0 for all patterns, as a control task, where no supervision is given to the

network.

In order to compare withmore classical algorithms, we have defined an equivalent

optimization problem, where the correct classification is learned using logistic regres-

sion, implemented with the lmfit package. We trained the network taking as inputs a

binary version of thePˆNpmatrix pMp,nq, withmp,n“1 if cortical neurons nwas spiking

during pattern p, and mp,n“0 if neuron n does not spike during pattern p. The linear

matrix in the logistic regression W is constrained to only have positive coefficients, as

would happen for excitatory synapses.
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Figure 1.3: Anti-Hebbian rules and non-associative LTP enable efficient learning
with a single linear integrate-and-fire MSN (M1).

(a) Only anti-Hebbian rules lead to learning when presenting patterns composed by sequences
of cortical inputs [Task 1] (left) Accuracy (dashed lines) and MaxAccuracy (solid lines)

as a function of learning iterations, for different STDP rules, for Np“5 patterns. (right)

MaxAccuracy as a function of the number of presented patterns Np, for different STDP

rules.

(b)Anti-Hebbian rules lead to a specific equilibrium where smaller subsets of rewarded patterns
do not lead to spike of the MSN. (left) [Task 1] Accuracy (dashed lines) and MaxAccuracy

(solid lines) as a function of learning iterations, for different STDP rules, when testing

subpattern of Np“5 learned patterns. (right) MaxAccuracy when testing subpattern of

Np learned patterns, for different STDP rules.

(c-e) Influence of different types of noise on learning and performance [Task 1] MaxAccuracy

as a function of noise in cortical inputs λstim (c), of external noise injected directed in

the MSN potential λext (d) and jitter in spike times during pattern presentation τpattern
(e), for different STDP rules.

Training done for 500 patterns iterations, with test sessions every Np iterations. Mean

results computed over N“250 simulations with errors bars representing ˘SD{2.
Statistical t-test from scipy.stats Python library; *: pă0.05, **: pă0.005, ***: pă0.0005.
(below) (H0): networkswithout supervision (Areward“0), comparedwith networkswith

supervision (Areward“0.9).
(above) (H0): networkswith asymmetricHebbian STDP, compared to other STDP rules.

Anti-Hebbian rules enable learning of cortical sequences with fixed delay

The results for Task 1, with P“10,Np“5 andNstim“3 are presented in Figure 1.3a (left).

The temporal evolution of the accuracy (dashed lines) and MaxAccuracy (solid lines)

are represented for the four different types of STDP presented before. We observe that

both anti-Hebbian rules learn to classify correctly the patterns. As explained in the

previous section, the synaptic weights converge to an equilibrium, and then alternate

a few correct responses with one wrong response that initializes a new sequence of

correct responses. Using the MaxAccuracy quantification, we observe higher levels

of performance and more truthfully represent the fact that the network discriminate

patterns correctly. Hebbian rules do not perform well in this task, leading to low

accuracies. It is interesting to note that MaxAccuracy and accuracy converge to the

same values for Hebbian rules, highlighting the fact that MaxAccuracy does not always

improve the accuracy value.

Similar results are obtained for various numbers of patternsNp Figure 1.3a (right).

In particular, for all the different tasks presented here, only anti-Hebbian rules perform

significantly better than the control without supervision (comparison with black solid

lines, significativity at the bottom of each bar plot). More interestingly, Hebbian rules

perform significantly worse than without supervision. When comparing with results

from the logistic regression, we see that anti-Hebbian rules perform slightly worse than

the classical machine learning algorithm. As a conclusion, anti-Hebbian rules enable

efficient learning in Task A, while Hebbian rules performworse than a non-supervised

network.
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To further investigate the equilibriumreachedby anti-Hebbian ruleswhile learning

Task A, we have tested the response of the network to randomly selected “subpatterns”

of the rewarded patterns. For example, if during the task, the pattern p1, 3q was

rewarded, we tested the response of the MSN to the patterns p1, ∅q, p∅, 3q, where ∅
means that no spike were presented. We computed the accuracy on these subpatterns,

a correct classification was defined when the subpattern did not elicit any MSN spike.

The results are gathered in Figure 1.3b, and show that anti-Hebbian rules perform

significantly better than Hebbian ones, in a task where classical logistic regression

produce fewer correct classifications.

To appreciate the robustness of these findings, we changed the number of neu-

rons P , of stimulations by pattern Nstim, and found similar results (see Figure 1.7a-b),

except for asymmetric anti-Hebbian STDP which performs worse for higher number

of stimulations, again due to its unstable behavior. Moreover, we have also tested if

changes in Apost´pre values leads to different dynamics in Figure 1.7c. We showed that

learning really depends on Apre´post (Hebbian or anti-Hebbian rules) while Apost´pre
influence is less notable. Finally, we tried different values forAreward in Figure 1.7d, two

main conclusions can be drawn from these experiments. In order to elicit learning, we

need to have Areward `Apre´postă0, which is verified when Apre´post“´ 1, for Arewardă1.
Moreover, maximal learning is achieved when Areward ` Apre´post is small compared to

Areward. With this observation in mind, we will choose in the sequel Areward“0.9 which

verifies both of these properties.

Anti-Hebbian rules do not only learn to correctly classify rewarded patterns, but

they also converge to an equilibrium where subpatterns of cortical activity are not

sufficient to trigger spiking at the MSN. In conclusion, MSNs subject to anti-Hebbian

STDP, learn to spike only if the whole pattern is presented.

Robustness to different types of noise

In order to test the robustness of learning to spontaneous activity, we introduced three

types of noise in the neuronal network dynamics,

a. random cortical spikes at rate of λstim;

b. random MSN spikes at rate λext, implemented thanks to Iext spikes defined in

Section 1.2;

c. random jitter in the spike timings during pattern presentation, with standard

deviation τpattern.

MaxAccuracy for P“10, Np“5 and Nstim“3, with different noise values are pre-

sented in Figure 1.3c-e. In all three cases,we startwithout noise, and testwith increasing

values of the noise parameter. It is quite interesting to see that learning is robust in

the presence of random cortical spikes (Figure 1.3c), up to 1Hz, and that symmetric

LTD performs well even with higher noise values. Again this confirms the fact that

asymmetric anti-Hebbian STDP leads to more unstable dynamics, and start failing for

lower noise intensities than symmetric LTD.We emphasize here that the randompresy-

naptic spikes also leads to potentiation of the associated synaptic weights, through the

non-associative reward LTP. The same conclusions can be drawn with random MSN

spikes (Figure 1.3d). In both cases, adding noise with higher frequency (100Hz) quite
expectedly makes the network unable to learn. Finally, adding jitter in the timings
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Figure 1.4: Latency in MSNs enhance the network performance.

(a) Response of a non-linear Izhikevich model (M2) to an AP protocol (presentation of

current steps with increasing intensity) (a1) or presentation of a pulse of current (a2).

Membrane potential in mV, first spiking event (in black).

(b) [Task 1] Accuracy (dashed lines) and MaxAccuracy (solid lines) as a function of

learning iterations, for different STDP rules, forNp“5 patterns for non-linear Izhikevich
(M2) model. (right) MaxAccuracy as a function of the number of presented patterns

Np, for different STDP rules.

(c) [Task 1] MaxAccuracy as a function of the number of presented patterns Np, for

asymmetric Hebbian and anti-Hebbian STDP, comparing linear IAF (M1) and non-

linear Izhikevich (M2) models.

Training done for 500 patterns iterations, with test sessions every Np iterations. Mean

results computed over N“250 simulations with errors bars representing ˘SD{2.
Statistical t-test from scipy.stats Python library; *: pă0.05, **: pă0.005, ***: pă0.0005.
(below) (H0): networkswithout supervision (Areward“0), comparedwith networkswith

supervision (Areward“0.9).
(b, above) (H0): networks with asymmetric Hebbian STDP, compared to other STDP

rules. (c, above) (H0): (M1) compared to (M2) neuronsmodels, for asymmetricHebbian

STDP (green) and asymmetric anti-Hebbian STDP (brown).

of cortical spikes in the pattern presentation does not stop anti-Hebbian rules from

reaching high accuracy. Jitter leads to more realistic patterns of cortical activity, with a

random timing between each cortical stimulation (but with fixed average). As shown

in this section, the network is robust to noise, and accordingly in the following experi-

ments, we will suppress all noise processes, to concentrate on the higher bounds of th

network’s capacity.

Spiking latency enhances the network’s performance

Using thepreviousnetwork, anti-Hebbian ruleswere able to approach classicalmachine

learning accuracy, but they did not perform as well.

Heuristically, integrate-and-fire models have the drawback to fire instantaneously

after the depolarization of the membrane potential. This implies that when presented

with overlapping patterns, e.g. patterns A“p1q and pattern B“p1, 2q, the neuron will

not be able to learn to spike after the end of both patterns, because it will either be able

to spike in response to pattern A only, and therefore fire before the end of pattern B, or

it will spike after pattern B, and thus not spike after pattern A. This ‘impatience’ of the
MSN described by integrate-and-fire models is in fact an artifact of the simplicity of the

integrate-and-fire model. In reality, biological MSNs have been shown to display spike

latency: once a spike is triggered, the neuron spikes only after a delay.

In order to test whether the spike latency property inMSN neurons improves their

ability to learn sequences, wemodified our neuronmodel to include a nonlinearity and

adaptation, following [Izh07]. This neuron model (noted M2) was shown to display

spike latency akin to electrophysiological measurements. The equation of the voltage
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V and adaptation U are given by:

#

C dV
dt “ kpV ptq ´ VcqpV ptq ´ Veqq ´ Uptq ` Iptq

dU
dt “ apbpV ptq ´ Veqq ´ Uptqq.

with spike emitted when the voltage exceeds a threshold Vth, at which time the neu-

ron’s voltage is instantaneously reset to Vr. In these models, spike emission is due to

a runaway build up of cell membrane potential (or, mathematically, a blow-up of the

solutions [Tou08; TB09]) associatedwith the quadratic nonlinearity in the voltage equa-

tion. At the time of a spike, the adaptation variable is updated to Upt´q Ñ Upt´q ` d.
These models are known to be very versatile depending on the parameter set [Tou08;

Rub+17], and we use here the parameters provided in [Izh07] (see Table 1.1). The

parameters are compared to the integrate-and-fire model (M1) ones in Figure 1.1b. In

order to appropriately scale the input, currents Istim and Iext defined above are scaled

by RC, with R a scaling factor set as R“100MΩ
We present in Figure 1.4a, the MSN membrane potential using the non-linear

model (M2), either for step (a1) or pulse (a2) currents. Nonlinear dynamics, and spike

latency lead to dynamics of themembrane potentials closer to electrophysiological data

(compare Figure 1.1a1 and Figure 1.4a1). The latency property is more clearly visible in

the neuron’s response to cortical pulses (Figure 1.4a2), where it can be seen that when

the current pulse is just sufficient to trigger a spike (black line), initiation of a spike

takes several milliseconds.

In Figure 1.4b, we present the resulting MaxAccuracy for Task 1, using neuron

model (M2). We show that asymmetric anti-Hebbian STDP performs as well as the

logistic regression, which confirms the fact that the lack of latency was responsible for

the gap observed with (M1). We more precisely compare both models in Figure 1.4c,

and show that with asymmetric anti-Hebbian STDP, (M2) always reaches significantly

higher accuracies than (M1).

We have showed in this section, that anti-Hebbian STDP rules coupled with a

latency mechanism for spiking make a simple striatal network as efficient as logistic

regression to learn a classification task using biological learning rules.

Inhibition in striatal networks improves learning
While taking into account non-linearities and adaptation produce latencies that may

allow the appropriate learning of nested rewarded patterns, the excitatory nature of

the cortico-striatal input prevents the system from learning rewarded pattern A and a

non-rewarded pattern B that contains A (Figure 1.5a). Indeed, either the MSN spikes

for pattern A, and it has to spike for pattern B (case of Figure 1.5a, 3rd line), or it

does not spike for any of them. We note that a similar issue arises with the logistic

regression when we constrain the weights W to be positive. Biologically, as exposed

above, the striatum is a complex networkmade of a large number ofMSNs, sharing part

of their input, receiving distinct neuromodulation, and interacting together through

collateral inhibition. Heuristically, this collateral inhibition could, in nature, provide a

mechanism to learn such nested patterns. We explore this hypothesis here in a simple

model.
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Figure 1.5: Lateral inhibition facilitates learning of complex pattern sequences.

(a) Lateral inhibition in the striatal network. Schematic representation of the striatal

network (right) with P“2 cortical neurons (in green), and three different models for

MSN activity: (i) one striatal neuron (MSN) modeled as a non-linear IAF neuron (M2,

in brown), (ii) two striatal neurons (MSN
1
in brown, and MSN

2
in purple) without

collateral inhibition, (iii) two striatal neurons with collateral inhibition from MSN
2
to

MSN
1
.

Two mechanisms of synaptic plasticity are considered in the dynamics of the synap-

tic weight W (in blue): the STDP (in purple) and LTP related to the reward signal

(reward-LTP) (in red). Reward-LTP is presented for rewarded patterns at MSN
1
and

for non-rewarded patterns at MSN
2
. Example of the learning task (left), with test

sessions and the training protocol (middle). Np“2 patterns A and B are presented

to the network, with A being rewarded p`q and B non-rewarded p´q (for MSN
1
). In

the test sessions, below the MSN potential, are represented accuracy results (correct

classification in green, wrong classification in red). Spiking activity of the cortical neu-

rons (in green) are represented along with the membrane potential V of for the output

neuron(s) (MSN).

(b) Advantages of lateral inhibition in learning all possible patterns for a small number of
neurons. [Task 2] MaxAccuracy when learning all possible sequences for P neurons,

for asymmetric Hebbian and anti-Hebbian STDP, comparing linear IAF (M1) and non-

linear Izhikevich (M2) models, in the absence (J“0) or presence (J“´0.5) of lateral
inhibition.

(c)Consequence of lateral inhibitionwhen learning sequences of cortical inputs [Task 1]MaxAc-

curacy as a function of the number of presented patterns Np, for asymmetric Hebbian

and anti-Hebbian STDP, comparing linear IAF (M1) and non-linear Izhikevich (M2)

models, in the absence (J“0) or presence (J“´0.5) of lateral inhibition.

[Task 2] Training done for 2000 patterns iterations, with test sessions every 5 iterations.

[Task 1] Training done for 500 patterns iterations, with test sessions everyNp iterations.

Mean results computed over N“250 simulations with errors bars representing ˘SD{2.
Statistical t-test from scipy.stats Python library; *: pă0.05, **: pă0.005, ***: pă0.0005.
(below) (H0): networkswithout supervision (Areward“0), comparedwith networkswith

supervision (Areward“0.9).
(above) (H0): (M2) neuronswithout collateral inhibition (J“0) for asymmetric Hebbian

STDP (green) and asymmetric anti-Hebbian STDP (brown).

A striatal network with two MSNs, connected through collateral inhibition

Weconsidered a simple two-neuronnetworkmodel (neurons labeledMSN
1
andMSN

2
),

where each MSN is a non-linear integrate-and-fire neuron (model M2 of section 1.2),

which integrates the same cortical activity through two different weight matrices W1
and W2 (Figure 1.5a), and MSN

1
may be inhibited by MSN

2
through an additional

current:

I2ptq “ RCJ
ÿ

tkMSN2
ďt

δpt´ tkMSN2q,
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where ptkMSN2q are the spike times of MSN
2
, and J“´ 0.5nA. The absence of inhibition

corresponds to J “ 0. MSN
1
and MSN

2
also differ in their rewards. Here, we assumed

for simplicity that MSN
1
and MSN

2
learn opposite tasks (i.e., MSN

2
is rewarded for

non-rewarded patterns of MSN
1
, see Figure 1.5a (right)), and the accuracy is read out

onMSN
1
only. Figure 1.5a illustrates the fact that, in the absence of collateral inhibition

(fourth line), MSN
1
learns to respond to pattern A, and as a consequence also spike

for pattern B Ą A, while MSN
2
spikes after pattern B. Therefore, inhibition from

MSN
2
(fifth line) can now induce a strong enough depolarization of MSN

1
potential to

prevent it fromspiking, leading to the correct classificationof bothpatterns. Beyond this

specific case, we investigated in detail how, statistically, collateral inhibition impacted

accuracies.

Collateral inhibition enhance the network perfomance above logistic regression

In order to study more extensively this new network property, we consider a second

task, Task 2, where patterns are forced to be nested one into another, leading to the

misclassifications detailed in the previous section.

In particular, we test for P neurons, how the network is able to correctly discrimi-

nate the following P patterns, p1q, p1, 2q, ..., p1, 2, ..., P q, when considering all possible

combinations of rewarded/non-rewarded patterns. We have tested on all these com-

binations (so 2P situations) how the network performs in the discrimination task. For

example, for P“2, the network is tested on 4 different sets of 2 patterns, p1q and p1, 2q,
with each pattern being either rewarded p`q or non-rewarded p´q. For this task only,

we have chosen a delay between spikes of tdelay“0.5ms. The results are presented

in Figure 1.5b, for several values of P . As could be expected from the example of Fig-

ure 1.5a, the network with collateral inhibition is able to correctly classify all sequences

of patterns forP“2, and stay close to the optimal performance for higher values ofP . In
particular, this network completely outperforms either the network without inhibition,

or logistic regression.

It is interesting to question our choice of rewards for MSN
2
, who rewards patterns

that are not rewarded by MSN
1
, and conversely, do not reward patterns that are re-

warded by MSN
1
. Considering the fact that the collateral inhibition is unilateral from

MSN
2
to MSN

1
, two rewards strategies were possible for MSN

2
, either it rewarded as

MSN
1
(‘same’ rewards) or did the reverse (‘differential’ reward, the one used here). We

checked using Task 2, both strategies in Figure 1.8, and found that only the ‘differential’

strategy led to significant changeswhen adding collateral inhibition. As a consequence,

the ‘differential‘ reward strategy was used in the rest of the paper.

We also tested this network on Task 1 in Figure 1.5c. Collateral inhibition leads to

a significantly higher performance for all parameters tested. These results have been

confirmed for different sets of P neurons (Figure 1.9a), various Nstim (Figure 1.9b) or

different values of collateral inhibition (Figure 1.9c).

Overall, it is quite notable to observe that in all cases, asymmetric Hebbian STDP

(in green), for Task 1 or 2, still leads to poor performances, while asymmetric anti-

Hebbian STDP reaches high accuracy. The two biologically relevant properties that

have been added, spiking latency and collateral inhibition, both lead to a significant

increase in accuracy.
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Classification of more complex patterns

We have finally tested our different neuronal networks against more complex inputs,

with twodifferent tasks. First, wedefineTask 3,wherewe consider Task 1patterns, with

jittered spikes (the cortical spike times are chosen from uniforms distributions around

the delay tdelay, kept constant during the whole simulations). Then, we also consider

Task 4 where patterns of cortical activity were defined through Poisson processes of

intensity λpoisson“1 kHz, on a duration tpoisson“2ms, conditioned to have at least 2

spikes.

We present below the classification results for Task 3 (Figure 1.6a) and Task 4

(Figure 1.6b), for different values of patterns Np. Global performances are consistent

with what was observed for Task 1, in particular with collateral inhibition leading to

higher accuracies than logistic regression.

1.3 Discussion

The biological mechanisms involved in the learning of sequences are largely elusive,

and likely multifarious. To lift part of the veil on this complex phenomenon, we

developed simplemodels of cortico-striatal networks and explored their ability to learn

and identify sequences. Notably, we studied the possible role of the plasticity observed

experimentally at the level of MSNs, spike latency and collateral inhibition, at the level

of one MSN integrating spikes from a population of cortical neurons. We designed a

simple learning task as a mock-up of procedural learning to test this ability. In this

task, the MSN learns to correctly classify patterns of spikes (precisely timed sequences

of cortical spikes) by spiking at the end of the pattern for a specific subset of patterns,

and not spiking for others. Our simulation results show that even the simplest striatal

networksmodels, endowedwith two types of synaptic plasticity, anti-Hebbian learning

rules (either symmetric LTD or asymmetric anti-Hebbian STDP) and non-associative

reward-LTP, perform well in this task. However, we also observed that some types of

combinations of patterns are harder to learn simultaneously by the simplest networks,

in particular when learning nested patterns of spikes. This is where we showed that

spike latency, a prominent electrophysiological property of MSNs, solved the problem

of early spiking during a sub-pattern, and networks of neurons with spike latency were

showed to achieve similar performance as classical logistic regression. However, in that

case again, a difficulty arises when learning nested patterns, whereby the full pattern is

not rewarded but a subpattern is rewarded. In that case, we observed that the addition

of a second MSN that learns the reverse associations of patterns and that inhibits the

first MSN through lateral inhibition, fully solved the problem. In the latter situation,

the striatal network in fact outperformed classical algorithms.

Of course, the networks studied are toy models and provide a vastly simplified

view of biology. This work presents a proof of concept that anti-Hebbian STDP al-

lows for the learning of spike sequences. More realistic models, including multiple

striatal neurons belonging to various populations emulating for instance dorsolateral

and dorsomedial striata that have been shown to display distinct plasticities [Per+22],

multiple pathways, downstream neurons, possible feedback loops and precise neuro-

modulation systems, will allow assessing whether realistic models also show similar

abilities. Incorporating the direct and indirect pathways can also be interesting when

considering the influence of striatal plasticity in the process of action selection, that
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heavily rely on the distinctive dynamics specific to each pathway [Dun+19]. A simi-

lar dichotomy exists when comparing the dorsomedial (DMS) and dorsolateral (DLS)

parts of the striatum. Both regions are involved in different types of learning, specifi-

cally goal-directed behavior and habits. Differences in corticostriatal STDP have been

shown to exist experimentally, and a similar striatal network is developed in [Per+22]

to study the influence of the different types of anti-Hebbian STDP on the flexibility

and maintenance of learning. Another advantage of these models would be to provide

more realistic models of collateral inhibition. Indeed, one particular assumption made

in our model of two-cell systemwith collateral inhibition required us to assume that all

the collateral inhibition received by the MSN arose from a single sister cell, which is of

course unrealistic and required to assume that the sister MSN learnt a negative image

of the first MSN. This assumption will likely nomore be required in larger scale models

of the striatum, whereby multiple cells could contribute to the inhibition for different

patterns. This type of larger-scale model will also allow investigating the ability of

networks to learn multiple tasks and better appreciate the learning capacity of striatal

networks.

The reward signaling used in the present model was restricted to simple su-

pervision through the potentiation of synaptic weights associated to presynaptic

spikes during rewarded patterns. Detailed models, in particular three-factor learning

rules [KIT17; Fon+18; Ger+18], could also been used in this context, and in particular

by proposing more realistic models of how rewards can be implemented through, e.g.,

dopaminergic signaling, for instance along the lines of themodel of [GHR15] developed

for Hebbian STDP. Suchmodels requires to identify triggers of dopamine, and it would

be interesting to model the fact that dopaminergic neurons are not only modulated by

the value of rewards (or of the reward-prediction error). Indeed, dopaminergic neu-

rons of the SNc (substantia nigra pars-compacta), which are responsible for dopamine

in the striatum, are known to be also directly stimulated by MSNs originating from

striosomes. The integration of the dopaminergic circuit could therefore lead to more

realistic study of the influence of reward on learning in the striatum.

Altogether, this paper therefore provides another view into the functional role of

anti-Hebbian STDP in the striatum in relationship with episodic memory and learning

of temporal sequences. This STDP rule is fully pairwise, and thus allows for efficient

algorithmic implementations. It is quite remarkable to note that other artificial models

for learning temporal sequences have used anti-Hebbian STDP, as noted in [Güt14]. As

observed in the present manuscript, this ability to learn sequences seems to be in the

very nature of the anti-Hebbian learning. When learning sequences, the network is

required to sit on a narrow region where it develops the ability to spike in response to a

sequence, which in turns alters its ability to further spike in response to said sequence.

Such learning rules appear to allow the network to self-organize near this critical tran-

sition between spiking and non-spiking [MPC09]. (Self-organized) critical systems are

notorious for showing rich properties [BTW88; MB11]; anti-Hebbian spiking networks

with LTD provide a new instance of mechanism of self-organization to criticality, the

theoretical study of which constitutes a potentially rich and fascinating perspective of

this work.
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b

a

Figure 1.6: Striatal learning also perform well on more realistic patterns.
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Figure 1.6: Striatal learning also performs well on more realistic patterns.

(a) Learning patterns with jiterred inputs [Task 3] MaxAccuracy as a function of the

number of presented patterns Np, for asymmetric Hebbian and anti-Hebbian STDP,

comparing linear IAF (M1) and non-linear Izhikevich (M2) models, in the absence

(J“0) or presence (J“´0.5) of lateral inhibition. (b) Learning patterns of Poisson spike
trains [Task 4] MaxAccuracy as a function of the number of presented patterns Np,

for asymmetric Hebbian and anti-Hebbian STDP, comparing linear IAF (M1) and non-

linear Izhikevich (M2) models, in the absence (J“0) or presence (J“´0.5) of lateral
inhibition.

Training done for 500 patterns iterations, with test sessions every Np iterations. Mean

results computed over N“250 simulations with errors bars representing ˘SD{2.
Statistical t-test from scipy.stats Python library; *: pă0.05, **: pă0.005, ***: pă0.0005.
(below) (H0): networkswithout supervision (Areward“0), comparedwith networkswith

supervision (Areward“0.9).
(above) (H0): (M2) neuronswithout collateral inhibition (J“0) for asymmetric Hebbian

STDP (green) and asymmetric anti-Hebbian STDP (brown).
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b
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c d

Figure 1.7: Influence of parameters on learning with linear IAF model (M1).
[Task 1] (a) MaxAccuracy for different number of cortical neurons P , with Np“P .
Training done for [500, 1000, 2000, 2000] patterns iterations for P“r10, 20, 40, 50s, with

test sessions every Np“P iterations. (b) MaxAccuracy for different number of cortical

stimulationsNstim. (c)MaxAccuracy for different values of post-pre amplitudeApost´pre.

(d) MaxAccuracy for different values of reward-LTP Areward. (same as in Figure 1.3)
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Figure 1.8: Influence of the strategy of reward with collateral inhibition.
[Task 2] MaxAccuracy for different number of cortical neurons P , with Np“P for

different types of learning stategies and connectivity. (same as in Figure 1.5)
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b
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c

Figure 1.9: Influence of parameters on learning with non-linear IAF model (M2) and
lateral inhibition.
[Task 1] (a) MaxAccuracy for different number of cortical neurons P , with Np“P .
Training done for [500, 1000, 2000, 2000] patterns iterations for P“r10, 20, 40, 50s, with

test sessions every Np“P iterations. (b) MaxAccuracy for different number of cortical

stimulations Nstim. (c) MaxAccuracy for different values of lateral inhibition J for

asymmetric anti-Hebbian STDP. (same as in Figure 1.5).
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CHAPTER 2

REGION-SPECIFIC ANTI-HEBBIAN PLASTICITY SUBTEND

DISTINCT LEARNING STRATEGIES IN THE STRIATUM

The striatum mediates two learning modalities: goal-directed behavior in dorso-

medial (DMS) and habits in dorsolateral (DLS) striatum. The synaptic bases of these

learnings are still elusive. Indeed, while ample research has describedDLS plasticity,

little is known about DMS plasticity and its involvement in procedural learning.

Experimental results, only summarized in this section, but developed in the corre-

sponding article [Per+22], show that symmetric and asymmetric anti-Hebbian spike-

timing-dependent plasticity (STDP) exist inDMSandDLS respectively, with opposite

plasticity dominance upon increasing corticostriatal activity. Moreover, behavioral

experiments coupled with STDP occlusion protocols show that during motor skill

learning, plasticity was engaged in DMS and striatonigral DLS neurons only dur-

ing early learning stages, whereas striatopallidal DLS neurons were mobilized only

during late phases.

In the following report, we developed a mathematical model to study the compu-

tational properties of these rules in learning; we found that symmetric anti-Hebbian

STDP favored memory flexibility by allowing a rapid forgetting of patterns, while

asymmetric anti-HebbianSTDPcontributed tomemorymaintenance, consistentwith

memory processes at play in procedural learning.

abstract

2.1 Introduction

The dorsal striatum is critical for action selection and initiation [YK06; GG15; JC15] and

represents a major site for memory formation encoding for procedural learning [PV19].

The dorsal striatum is composed of two main anatomico-functional regions, the dorso-

lateral striatum (DLS) and dorsomedial striatum (DMS) based on topographic cortical

glutamatergic afferents. DLSmainly receives cortical inputs from thepremotor and sen-

sorimotor cortices, whereas DMS receives cortical afferents from prefrontal and asso-

ciative cortices [Hun+16]. Moreover, DLS and DMS appear to engage at different learn-

ing phases: the classical view posits that during reward-guided instrumental learning

DMS supports goal-directed behavior, while DLS is gradually involved in later learning

phases associated with habit formation and performance [YK06; BO10; CJ10; Tho+10;

GC13; BNR15; Van+19; CCN04]. Similarly, duringmotor skill learning DMS appears to

play a crucial role during initial phases of fast improvements, while DLS is determinant

for slower learning phases as experience accumulates [GG15; JC15; CCN04; Yin+09;

XZZ15]. Nevertheless, there is evidence that DLS does not only activate at late learning

phases, but is engaged, together with DMS, from early training phases [Tho+10; GC13;

Kim+09; Sta+10; Kup+17; Ber+18]. Acquisition and maintenance of motor skills and

habits involve corticostriatal long-term synaptic efficacy changes [PV19]. Indeed, in

vivo proxies for plasticity, such as changes in firing activity [CCN04; Yin+09; TG14;

Bar+11; Kor+12; OHa+16; Ath+18; Pet+21] or in evoked-LFP [XZZ15], were detected

269
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in the corticostriatal pathway throughout procedural learning. Conversely, trigger-

ing corticostriatal synaptic plasticity was shown to modify habitual behavior [XZZ15;

Ma+18]. Although these findings clearly highlight a causal and/or correlative link be-

tween corticostriatal plasticity and procedural learning, the nature and contribution of

DLS and DMS long-term plasticity remain to be fully determined. To investigate plas-

ticity properties at corticostriatal synapses and their potential implication in memory

storage and relearning in DMS and DLS, we characterized the spike-timing-dependent

plasticity (STDP) [Fel12], in both dorsal striatal compartments, in order to characterize

the experience-dependent changes in neuronal networks they subtend. Using brain

slice preparations preserving afferents from the somatosensory or the cingulate cortex

and the corresponding striatal projection domains [Fin+18], we investigated the DMS

and DLS corticostriatal STDP in striatal medium-sized spiny neurons (MSNs).

We observed that similar STDPparadigms trigger anti-Hebbian STDP in bothDMS

and DLS, but the specific profiles of STDP are vastly distinct: symmetric anti-Hebbian

STDP arises in DMS (yielding LTD only), contrasting with asymmetric anti-Hebbian

STDP inDLS (yielding LTDor LTP depending on spike timings). Moreover, when corti-

costriatal activity was scaled up, we found that a long-term depression (LTD) prevailed

in DMS, while long-term potentiation (LTP) prevailed in DLS. In fact, we further found

that MSNs from the DMS exhibited opposite plasticity, in a specific activity regime,

depending onwhether they belonged to the direct and indirect pathway. Duringmotor

skill learning (Rotarod task), we found that during early learning phases, plasticity was

engaged for all recordedMSNs in DMS, both belonging to the direct and indirect path-

way, and only direct pathwayMSNs inDLS. In contrast, during late learning phases, we

found that only the indirect pathwayMSNs in DLS were mobilized. To appreciate how

these distinct plasticity rules may support the different phases of procedural learning,

we developed amathematicalmodel to quantify the capacity of those plasticity rules for

memory formation and storage. Our model predicted that asymmetric anti-Hebbian

STDP facilitated themaintenance ofmemory, whereas symmetric LTD allowed reward-

dependent learning with a swift turnover of memories, potentially enhancing memory

flexibility. These findings therefore reveal how distinct corticostriatal plasticity maps

in DLS and DMS, having opposite polarities, could endow the striatum with comple-

mentary capacities for procedural learning allowing flexibility in memory acquisition

and stabilization of memories potentially allowing the development of habits.

2.2 Summary of experimental results

I reproduce in this section parts of the experimental conclusions from [Per+22]. In

particular, I focus on the results pertinent to the computational study that I have

devised and studied.

Distinct anti-Hebbian STDP profiles in sensorimotor and associative
striatum
We investigated STDP rules at corticostriatal synapses inMSNs located either in DLS or

DMS. For this purpose, we used two brain slice preparations that preserved connections

between the sensorimotor cortex (S2) and DLS, or between the associative cortex (CG2)

and DMS, and allowed to stimulate within cortical layer 5 while recording MSNs (Fig-

ure 2.1) [Fin+18]. At both synapses, we first applied the same STDP protocol consisting
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Figure 2.1: Distinct anti-Hebbian STDP profiles in DLS and DMS
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Figure 2.1: Distinct anti-Hebbian STDP profiles in DLS and DMS.
(a) STDP pairings: a single spike evoked in the recordedMSNwas paired with a single

cortical stimulation. Pairingswere repeated 100 times at 1Hz. ∆t
STDP

indicates the time

between pre- and postsynaptic stimulations. ∆t
STDP

ă0 and ∆t
STDP

ą0 refer to the post-

pre (a1) and pre-post (a2) pairings, respectively. Pre- and postsynaptic stimulations

were applied either in the sensorimotor (S2) (b) or the associative (CG2) (c) cortical and

striatal areas. (b1 and c1) Experimental setup showing the location of the stimulation

and recording electrodes in cortical and striatal sensorimotor (b1) and associative (c1)

areas.

(b) DLS-STDP displays an asymmetric anti-Hebbian polarity in rats. (b1) Experimental

setup. (b2 and b3) Averaged time-courses of (b2) LTP induced by 100 post-pre pairings

(n“16) and (b3) LTD induced by 100 pre-post pairings (n“14).
(c) DMS-STDP displays symmetric anti-Hebbian polarity. (c1) Experimental setup. (c2

and c3) Averaged time-courses of LTD induced by (c2) 100 post-pre pairings (n“11)
and (c3) 100 pre-post pairings (n“16). Bar graphs represent the average of all STDP

experiments and each point represents the percentage of change in EPSC amplitude at

50-60 min after STDP pairings in a single STDP experiment. Insets correspond to the

average EPSC amplitude at baseline and at 50-60 min after STDP pairings. Error bars

represent the SEM. ****: pă0.0001 by one sample t-test.

(d) Summary graphs of STDP in relation with ∆t
STDP

showed at 1Hz, (d1) an asym-

metric anti-Hebbian STDP in a restricted time window (´30ă∆t
STDP

ă30ms), (d2) sym-

metric anti-Hebbian STDP in a broad time window (´100ă∆t
STDP

ă100ms).
(e) Summary graphs of STDP in relation with ∆t

STDP
showed at 2.5Hz, (e1) a widening

of the temporalwindowof STDP expression and in particular of LTP being also induced

for short pre-post pairings, (e2)mainly LTDexcept for narrow (´30ă∆t
STDP

ă0ms) post-
pre pairings for which half of the MSNs exhibited LTD while the other half displayed

LTP (n“59).

of 100 pairings at 1Hz of pre- and postsynaptic stimulations with prescribed timing

∆t“´15 or `15ms. ∆tă0 indicates that postsynaptic stimulation preceded presynap-

tic stimulation (post-pre pairings) (Figure 2.1a1) and ∆tą0 indicates that presynaptic

stimulation preceded postsynaptic stimulation (pre-post pairings) (Figure 2.1a2).

We investigated corticostriatal STDP in the DLS (Figure 2.1b) and observed asym-

metric (i.e distinct plasticity polarity on both sides of ∆t“0) anti-Hebbian STDP: spike-

timing-dependent long-termpotentiation (LTP) for post-pre pairings (Figure 2.1b2) and

depression (LTD) for pre-post pairings (Figure 2.1b3). Anti-Hebbian qualifies STDP

with pre-post LTD, as defined in [Fel12]. Post-pre pairings induced tLTP (pă0.0001,
n“16), whereas pre-post pairings induced LTD (pă0.0001, n=14). This is in line

with DLS-STDP displaying anti-Hebbian polarity in native conditions [FGV05; Fin+10;

Men+20]. Striatal DLS-STDP with a Hebbian polarity has also been reported [PK08;

She+08], caused by the use of GABAA receptor antagonists. Indeed, GABAergic sig-

naling governs STDP polarity and operates as a Hebbian/anti-Hebbian switch in the

DLS [Pai+13; Val+17].

In DMS (Figure 2.1c), post-pre and pre-post pairings induced a symmetric (i.e

similar plasticity polarity, here LTD, on both sides of ∆t“0) anti-Hebbian STDP (Fig-

ure 2.1c2 and c3). Indeed, spike-timing-dependent long-term depression (LTD) was
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observed following post-pre pairings (pă0.0001, n“11) as well as following pre-post

pairings (pă0.0001, n“16).
In conclusion, corticostriatal STDP in DMS and DLS displayed both anti-Hebbian

plasticity, and differed significantly in that they displayed symmetric or asymmetric

profiles in DMS and DLS respectively.

We also characterized in the associated paper, which pathways were involved in

the different STDP rules observed. In particular, after blocking the different pathways

specifically, it was shown that post-pre DLS-LTP andDMS-LTD areNMDAR-mediated,

whereas pre-post DLS- and DMS-LTD are CB1R-mediated.

Dominance of opposite forms of plasticity in DMS and DLS with
increasing corticostriatal activity
Expression map of STDP is not only shaped by spike timing (∆t) but also by the

frequency atwhich pairings are presented (F
pairings

) [Fel12; Mar+97; STN01]. We further

characterized the induction rules of corticostriatal STDP inDLS (N
total
“130DLS-MSNs)

and DMS (N
total
“125 DMS-MSNs) by varying together ∆t (´100ď∆tď ` 100ms) and

F
pairings

(1ďF
pairings

ď5Hz).
When F

pairings
“1Hz, DLS-MSNs elicit asymmetric anti-Hebbian STDP, as ex-

plained in the previous section, characterized by LTD for pre-post pairings (∆tą0,
Figure 2.1d1), and LTP for post-pre pairings (∆tă0, Figure 2.1d1). Conversely, DMS-

MSNs develop symmetric anti-Hebbian STDP, defined by the dominance of LTD, for

both pre-post and post-pre pairings (Figure 2.1d2).

When raising the frequency F
pairings

to 2.5Hz, the STDP profiles changed for both

type of neurons. First, DLS-MSNs still exhibit asymmetric anti-Hebbian STDP, but

the temporal window of STDP has widened up to ˘100ms (Figure 2.1e1). Second,

pre-post pairings in DMS-MSNs are still characterized by LTD at their corticostriatal

synapse (Figure 2.1e2) but their behavior for post-pre pairing is less clear with neurons

exhibiting LTP or LTD.

In the associated article, a more systematic study is developped on the influence

of F
pairings

, which lead to the following conclusions,

a. the STDP expression domain (∆t) is narrower in DLS than in DMS for low F
pairings

and is widening with increasing firing activity;

b. the existence of an opposite dominance of LTP and LTD in DLS and DMS, respec-

tively.

The diversity of behaviors observed in DMS-MSNs for post-pre pairings justified

further studies on this particular protocol. We analyzed more finely which types

of neurons were recorded and postulated that appartenance of the MSN to different

pathways could be a possible explanation to the different types of STDP observed.

Two populations of MSNs exist in both DMS and DLS, and are characterized by

the structure they are projecting to. On the one hand, dMSNs that project to the GPi

(internal globus pallidus) and the SNr (substantia nigra pars reticulata) are part of the

direct pathway of the cortico-basal-ganglia network. On the other hand, iMSNs that

project to theGPe (external globus pallidus) are part of the indirect pathway. Both types

of neurons have been shown to act differently on the processus of action selection and
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motor control, and they also respond differently to dopamine. The two MSN subtypes

express different dopaminergic receptors, D1R- and D2R-like for the direct and indirect

pathways, respectively [Cal+14; Bon+19].

We proved that the observed dichotomy regarding LTP/LTD expression in DMS-

MSNs for F
pairings

“2.5Hz overlapped that of MSNs belonging in the same proportion

to the direct (striatonigral) and the indirect (striatopallidal) pathways using transgenic

mice. Indeed, DMS-dMSNs exhibit LTD for post-pre pairings, while DMS-iMSNs

display LTP.

Region-specific involvement of STDP during procedural learning
We next investigated the engagement of LTP and LTD in DLS and DMS during motor

skill learning, using behavioral experiments (rotarod task).

In order to see if these STDP rules were implicated in learning, we used ex vivo

saturation/occlusion experiments: STDPprotocols in ex vivo brain sliceswere realized,

at different stages of learning. It is expected that if STDP related process is active during

a certain stage of learning, the associated pathways tend to be saturated. When an STDP

protocol is subsequently applied in an ex-vivo experiment, it should lead to changes

in observed STDP. In particular, synaptic processes active in learning should lead to an

absence of plasticity in response to subsequent STDP protocols.

This paradigm was used to test the pathways associated to post-pre pairings for

F
pairings

“2.5Hz. DLS-MSNs belonging to the direct or indirect pathways are selectively

engaged, in terms of STDP, depending on the stages of motor skill learning: only

DLS-dMSNs are involved at early stages, and during the late stages only DLS-iMSNs

are engaged. DMS-MSN plasticity is mobilized in both MSN populations during

early stages and then showed a disengagement during late stages. Interestingly, DLS-

dMSNs show the same plasticity profiles, and occlusion, as DMS-iMSNs. All results

and methods can be found in the full paper [Per+22].

2.3 Results

Reduced mathematical model of the striatal network.
The observation that corticostriatal synapses to the DMS are subject to symmetric anti-

Hebbian STDP distinct from the asymmetric anti-Hebbian STDP at the DLS synapse (at

1Hz, see Figure 2.1) raises the question of the respective contribution of DMS and DLS

plasticity in striatal learning. To investigatewhether these twoSTDPmodalities subtend

different learning properties, we considered a simplified model of the corticostriatal

system, composed of one MSN and a fixed number of cortical neurons. We quantified

the capacity of this system to retain memory as a function of the form of corticostriatal

STDP, all parameters equal otherwise.

We considered the response of one MSN (Figure 2.2, with MSN activity illustrated

in brown), modeled as an integrate-and-fire neuron, receiving inputs from P cortical

neurons (Figure 2.2, with their activities in green) and an additional Poisson process

modeling input from other cells than the P cortical neurons (Figure 2.2, with its spiking

activity in yellow).
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Figure 2.2: A pattern recognition task to test learning, maintenance and relearning
in a computational model of the striatal network.
Schematic representation of the striatal network (right) with P“4 cortical neurons

(in green), a random input neuron with rate λr (in yellow) and one striatal neuron

(MSN), represented by its membrane potential V (in brown). Two mechanisms of

synaptic plasticity are considered in the dynamics of the synaptic weightW (in blue):

anti-Hebbian STDP (in purple) and LTP related to the reward signal (reward-LTP)

(in red). Anti-Hebbian STDP is modeled using exponential kernels (inset on the top

right), with different values for A
post-pre

and A
pre-post

“´1. Example of the learning task

(left), separated in four phases with four iterations in each phase. Each learning phase

has specific parameters (see Table 2.1). Np“2 patterns A and B are presented to the

network, with A being non-rewarded p´q and B rewarded p`q. An iteration with no

pattern presentation is represented by ∅. Spiking activity of the cortical neurons (in

green for pattern spikes and grey for random spikes) and the random input neuron

(in yellow) are represented along with the membrane potential V of the output neuron

(MSN).

The synaptic weight between cortical neuron i P t1, ¨ ¨ ¨ , P u and the MSN, noted

Wi, is subject to plasticity. We used an all-to-all pair-based learning rule corresponding

to an instantaneous update of the synaptic weightWi by an amount ∆Wi given by

∆Wi “

$

&

%

A
pre-post

ř

tpre,iătpost
exp

´

´∆t
τs

¯

for a pre-post pairing,

A
post-pre

ř

tpostătpre,i
exp

´

∆t
τs

¯

for a post-pre pairing.

with ∆t“tpost´tpre,i.
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By convention, we fixed A
pre-post

“´1, and varied the parameter A
post-pre

; A
post-pre

ă0
corresponds to symmetric anti-Hebbian STDP, while A

post-pre
ą0 corresponds to asym-

metric anti-Hebbian learning rules (Figure 2.2, top right panel).

The MSN was presented with patterns of cortical activity, built on two different

components: (i) a combination of spikes from selected cortical patterns (a set of Nstim
neurons), which were always triggered synchronously at each pattern iteration accord-

ing to a normal distribution with standard deviation τp (ii) random spikes from all

cortical neurons with rate λr{P . Examples of such patterns are presented in Figure 2.2:

pattern A, whereby cortical neurons 1, 3 and 4 fired and pattern B corresponding to

the coordinated spiking of cortical neurons 2, 3 and 4 (spikes in green), with superim-

posed random spikes (in grey). Np patterns were built according to these principles

and separated into two classes, rewarded and non-rewarded ones, with equal chances

(in Figure 2.2, A is a non-reward pattern p´q and B is a rewarded pattern p`q).

Because of the prominent role of depression in anti-Hebbian learning, particularly

in the symmetric case, potentiation mechanisms are needed in order for the system to

maintain some spiking activity [RB00]. We modeled potentiation through a reward

signal representing neuromodulation (including, but not limited to, dopaminergic sig-

naling) see [KIT17; Fon+18; Ger+18; BMP19] and Methods for a discussion. Reward-

LTP was delivered during rewarded cortical activity patterns (Figure 2.2), and affected

the weights corresponding to all presynaptic cells that spiked during the pattern pre-

sentation (even if they were noise), (see red region in Figure 2.2).

At each iteration, the system was presented with a prescribed probability η by a

pattern composed of synchronous cortical activity and random noise, or with proba-

bility 1´η only with random cortical spikes (see iterations labeled ∅ in Figure 2.2). We

considered that a rewarded cortical pattern is learnt when the MSN spiked in response

to the synchronous cortical activity. Conversely, a non-rewarded pattern was learnt if

theMSN did not fire during pattern presentation. The accuracy of striatal learning was

estimated during test protocols conducted throughout the task on a network devoid

of any plasticity and noise, with a metric combining the fraction of rewarded patterns

correctly eliciting spikes from the MSN and of non-rewarded ones that did not trigger

any spike.

To avoid transient effects associatedwith the initialization of synaptic variables, we

simulated an initial phase of spontaneous activity of the cortical network, defined by the

presentation of patterns with probability η“ηm in the absence of reward-LTP. During

the learning phase, patterns are presented at each iteration and rewards were provided

for rewarded patterns. It emulates learning, as the output neuron learns to discriminate

patterns by spiking in response to rewarded patterns and not spiking in response to

non-reward patterns, in the presence of cortical random activity. The capacity of the

network to keep patterns in memory was then estimated during a maintenance phase

where stimuli were presented again with probability η“ηm in the absence of reward-

LTP (same setup as the initial phase). Finally, the capacity to relearn previously learned

patterns was then tested in a protocol where stimuli and reward-LTP were presented

just like in the learning phase (see Table 2.1 for detailed parameters for each phase, and

Table 2.2 for model parameters).

Random input activity was parametrized by λr, which was set up to λ
MSN

“5Hz
for the learning and relearning phases (similar to MSN firing rate in non-anesthetized

animals [Mah+06]). It was chosen to be higher, λr“4λ
MSN

“20Hz in the initial and

maintenance, for technical reasons (see Methods) that do not influence our results.
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Asymmetric anti-Hebbian STDP favors memory maintenance,
whereas symmetric LTD allows accrued flexibility.
Numerical experiments showed significant differences between the learning capability

with symmetric or asymmetric anti-Hebbian STDP, particularlyduring themaintenance

and relearning phases (Figure 2.3a).

In Figure 2.3a, learning accuracy is plotted as a function of iterations during the

four different phases. We present the results for different values ofA
post-pre

(solid lines),

and some controls with A
pre-post

“0 (dotted lines). We observe that accuracy essentially

remains at random levels during the initial phase, as could be expected in the absence of

reward. As soon as rewards are provided during the learning phase, we observe a rapid

increase and stabilization of learning accuracy. When rewards are no more provided

in the maintenance phase, the accuracy drops, with different dynamics depending

on A
post-pre

, as quantified in the next section. Finally, during the relearning phase, the

system learns again previouslymemorized patterns when reward-LTP is applied anew.

The kinetics of this relearning are analyzed below. In Figure 2.3b, accuracies at the end

of each phase as a function of A
post-pre

are presented.

Initial phase

In the initial phase, the network is not able to detect patterns, as could be expected from

the fact that it does not receive any supervision, and the computed accuracy remains

around chance levels (accuracy of 0.5).

Learning phase

The learning phase led, in all cases, to a rapid rise of the accuracy, highlighting the

ability of all tested networks to store patterns. We have previously shown [VTV20] that

the combination of anti-Hebbian STDP and reward-LTP allowed a striatal network to

correctly classifies rewarded and non-rewarded sequential patterns of cortical inputs.

Heuristically, potentiation of the synaptic weights through the reward-LTP causes the

MSN to spike in response to the associated pattern. This effect is counterbalanced by

the presence of pre-post LTD, which leads to depression of the synaptic weights, and

therefore favors an equilibrium where the synaptic weights are high enough to trigger

the spike, but still remain bounded. Similarly, if the MSN spikes for non-rewarded

patterns, the pre-post LTD in the absence of reward induces a decrease in synaptic

weights that results in an absence of MSN firing. The combined action of both types

of plasticity, i.e., anti-Hebbian STDP and reward-LTP, enables learning of the rewarded

pattern in the learning phase (Figure 2.3a, plain lines). Learning with reward signals

relied on the pre-post LTD, since no learning occurred when A
pre-post

“0 (Figure 2.3a,

dotted lines). In fact, the absence of the pre-post LTD leads to a continual growth of

the synaptic weights, which results in the MSN spiking for non-rewarded patterns,

therefore reducing the accuracy.

Moreover, we note that the final accuracy at the end of the learning phase depends

on A
post-pre

. This is a consequence of the fact that as the system learns a rewarded

pattern, we do not reach a fixed equilibrium but a stationary regime: synaptic weights

associated with the pattern decrease progressively for each accurate answer (due to

the combination of reward LTP and pre-post LTD) until the MSN stops firing, leading

to a jump in synaptic weights (only reward LTP). Larger potentiations will thus allow
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a

b

c1 c2 c3 c4

d1 d2 d3

a-c)

Figure 2.3: Influence of symmetric and asymmetric anti-Hebbian STDP rules on
learning, maintenance and relearning of patterns in a striatal neuronal network.
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Figure 2.3: Influence of symmetric and asymmetric anti-Hebbian STDP rules on
learning, maintenance and relearning of patterns in a striatal neuronal network.
(a) Learning dynamics forP“10 input neurons,Nstim“3 stimulations by pattern,Np“15
patterns and the proportion of pattern presentation in the initial/maintenance phases

ηm“0. Time-evolution of the learning accuracy through an initialization, learning,

maintenance and relearning phases, for different anti-Hebbian plasticities (blue: sym-

metric, brown: no post-pre learning, orange: asymmetric). Averaged simulations

results are presented (plain lines) and controls with A
pre-post

“0 (dotted lines). (b) Ac-

curacy at the end of each phase as a function of the type of plasticity (where A
post-pre

parametrizes the plasticity). (c1) Examples of fits obtained from a set of 20 simulations

for the accuracy during the maintenance phase. Averaged simulations (for 20 simu-

lations, open circles), associated fit (plain lines), tangent at origin (dashed) and fitted

final accuracy (dotted). We represented below the sets of values for Tmaintenance obtained

with this method for A
post-pre

“0. (c2) Characteristic time of maintenance Tmaintenance as

a function of A
post-pre

. (c3) Weight similarity measures d2pW q and sppW q as a function

of A
post-pre

. (c4) Characteristic time of relearning Trelearning as a function of A
post-pre

. (d)

Dependency of characteristic time of maintenance Tmaintenance (d1), accuracy at the end

of the maintenance phase (d2) and characteristic time of relearning Trelearning (d3) on the

type of plasticity A
post-pre

and stimulus presentation frequency ηm.
(a) Mean results computed over 200 simulations. (b-d) Mean of results over 10 sets of

20 simulations with errors bars representing ˘SD{2. Statistical t-test from scipy.stats

Python library; *: pă0.05, **: pă0.005, ***: pă0.0005.

for a larger number of accurate responses, in turn increasing accuracy. On the other

side, having too much potentiation leads to unstable synaptic weights that diverge,

also reducing accuracy. Accordingly, their exist a value of A
post-pre

where the accuracy

is maximal after learning (in Figure 2.3b, A
post-pre

«0.5), but all values lead to higher

accuracy than in the initial phase.

In conclusion, pre-post LTD and reward LTP enable discrimination of rewarded

and non-rewarded patterns, for all values of A
post-pre

.

Maintenance phase

The drop in accuracy during themaintenance phase was found to be faster for symmet-

ric anti-Hebbian learning than for asymmetric anti-Hebbian learning, with a significant

impact of the value of A
post-pre

on the accuracy at the end of the maintenance phase

(Figure 2.3b). To quantify this difference, we computed the characteristic decay time

Tmaintenance of accuracy (see Figure 2.3c1). Figure 2.3c2 shows that asymmetric STDP

allows for a longer and more precise maintenance of learning even in the absence of

rewards. Phenomenologically, symmetric LTD tends to induce a global depression

of all synaptic weights in response to random stimuli, which therefore can lead the

MSN to stop firing to the patterns rapidly, while the presence of LTP in asymmetric

anti-Hebbian STDP limits this phenomenon, allowing for a more durable conservation

of the relative magnitudes of the synaptic weightW . In order to show the correlations

with synaptic weight dynamics, we computed the deviation from the synaptic weight

values at the end of the learning phase in terms of amplitude and change in orientation
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(Methods, Figure 2.3c3). These measures show that positive A
post-pre

leads to a smaller

deviation of the synaptic weights than for negative values.

Relearning phase

We next compared the relearning capacity associated with each of the learning modal-

ities. First, after the relearning phase, the system reaches the same accuracies that were

obtained at the end of the first learning paradigm. The network is therefore able to

learn again patterns that were previously learned. We evaluated the speed at which

the network recalled such previously learned association through the characteristic

time of relearning Trelearning (see Methods for its definition, Figure 2.3c4). As could

be expected, Trelearning is smaller for positive A
post-pre

, meaning that relearning is faster

for asymmetric anti-Hebbian STDP. These findings are only logical consequence of the

fact that asymmetric anti-Hebbian STDP keeps in memory learned patterns for longer

times. If A
post-pre

is increased too much, this property disappears because the network

becomes unstable with too much potentiation.

Influence of the pattern presentation rate

If learnt patterns are presented during the maintenance phase in the absence of reward

(when ηmą0), we expect to unlearn those patterns in the long run, i.e., both symmetric

and asymmetric anti-Hebbian STDP will be associated to a drop in learning accuracy

due the absence of reward-LTP. This decay is expected to be faster with larger values of

ηm. This phenomenonwas confirmed in our numerical experiments, showing a drop in

accuracy in themaintenance phase (Figure 2.3d1), and the characteristic time Tmaintenance
(Figure 2.3d2), found generally more dramatic for symmetric anti-Hebbian STDP, and

occurring faster for larger ηm. The presentation rate ηm of learnt patterns during the

maintenance phase was also found to play a significant role in the relearning phase,

with higher rates of presentations leading to a slower relearning, potentially indicating

a more dramatic deviation of the synaptic weightsW from their after-learning values,

see Figure 2.3d3. However, we noticed that relearning is still effective, even for higher

rate of presentation ηm, when comparing asymmetric and symmetric anti-Hebbian

STDP: even if the network loses its capacity to recall correctly the patterns, it stays

close (in the synaptic weight parameter space) to the optimal matrix, and therefore

relearning is efficient.

Influence of noise

Noise is an important parameter in the model presented here, in particular for its

role in the maintenance phase. We have seen that learning occurs in the presence of

noise. However, we do expect a strong dependence of final accuracies and learning

efficiency on noise levels. To test the influence of noise during the learning phase, we

systematically varied the noise frequency λ
MSN

and replicated our analysis for each

value tested (see Figure 2.5). In the absence of noise λ
MSN

“0, the system reaches high

accuracies in the learning phase, and the maximal value does not depend on A
post-pre

.

Moreover, we observe that the network conserves similar levels of accuracy throughout

the maintenance phase when assuming a complete absence of noise. Increasing noise

levels impair learning ability, and for high values of noise λ
MSN

ą10Hz, the network

shows poor learning andmaintenance abilities. Realistic noise levels on the same order
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as typical MSN firing rate is between these two regimes and allow both learning and

maintenance, with different capacities for symmetric and asymmetric anti-Hebbian

STDP as discussed above.

Beyond noise levels, we further confirmed that all observations reported were

robust tovariations in thenumberof cortical neurons, patternspresentedandnumberof

stimulations (Figure 2.4),with pP,Np, Nstimq equals to p10, 10, 3q, p10, 15, 5q and p20, 30, 3q.

Conclusions of the model on the impact of different STDP in DMS
and DLS.
Our experimental results show the existence of different types of plasticity as a function

of the region and pairing frequency, see Figure 2.1. The model therefore suggests that

at low frequency, the asymmetric anti-Hebbian STDP observed in DLS at 1Hz could

allow maintaining stimulus associations for longer durations and relearning almost

immediately previously learned associations. In contrast, the symmetric LTD observed

in DMS at that frequency leads to a faster erasure of associations, making the system

available to learn new patterns. At higher frequency, experiments done at 2.5Hz
showed that STDP elicited at iMSN neurons in the DMS switched from a symmetric

LTD to an asymmetric anti-Hebbian STDP. We could postulate from our model that in

a regime with more frequent stimulations, iMSN neurons adapt their behavior so as to

store patterns for longer times than dMSN neurons.

Overall, when presenting patterns at a slow rate, DMSwith symmetric LTD, is able

to forget quickly, whereas asymmetric anti-Hebbian STDP maintains memory in DLS.

This observation on a vastly simplified model agrees with DMS and DLS differential

involvement in motor skill learning reported in the literature [YK06; GG15; JC15; BO10;

BNR15]: both learn the task during the first trials, and then DMS disengages when

habit learning mediated by the DLS takes over initial phases of motor training or

goal-directed learning.

2.4 Discussion

To explore how the striatum is able to achieve distinct learning modalities, from goal-

directed learning to maintaining habits, we explored long-term plasticity using similar

STDP paradigm in both DMS and DLS. DLS had been the focus of most of the plasticity

characterization, and in light of the distinct roles of dorsal striatal compartments in

procedural learning [YK06; GG15; JC15; BO10; BNR15], we characterizedhere the STDP

at both DMS- andDLS-MSN corticostriatal synapses using specific brain slices [Fin+18]

allowing to stimulate in the somatosensory or CG2 layer 5 cortical area. In DMS and

DLS, we found distinct anti-Hebbian STDP: symmetric in DMS and asymmetric in DLS.

Hebbian and anti-Hebbian STDP have been reported in the dorsal striatum depending

on whether GABAergic transmission inhibitor [Pai+13; Val+17] were applied (Hebbian

STDP [PK08; She+08]) or not (anti-Hebbian STDP [FGV05; Fin+10; Men+20]). These

studies targeted DLS-MSNs, except [She+08] where MSNs were recorded indifferently

in DLS and DMS. In vivo recordings in adult rats confirmed the anti-Hebbian polarity

of striatal STDP [SRR10; Fis+17; Mor+19]. Interestingly, we found that with increasing

cortical activity, plasticity followed opposite polarity in DMS and DLS, with LTD and
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LTP dominance, respectively. Another difference between DMS- and DLS-STDP upon

increasing the frequency of stimulus presentations F
pairings

, is that plasticity expression

domain (∆t) remained wide in DMS whereas it was broadened in DLS.

We designed a simplified model in order to investigate the potential impact of the

different forms of STDP rules on maintenance and relearning in a basic classification

task. To specifically analyze the role of learning rules, we have chosen to keep all model

parameters identical otherwise. The significant differences found between therefore

establish the role of STDP form in learning abilities. Our experiments show that

different types of plasticities are expressed in different regions of the striatum and may

depend on the connectivity pathway they belong to, whereMSNs are known to display

distinct electrophysiological properties [Wil+19; Ale+21]. The specific properties of

dMSNs and iMSNs or of MSNs in DMS and DLS may also contribute to the variety

of learning abilities. Future work will be needed to finely characterize and integrate

such differences in models and study how the network combines direct and indirect

pathways endowed with distinct plasticity rules for global procedural learning in the

striatum.

Anti-Hebbian STDP has been the focus of several experimental and a few compu-

tational studies mostly in cerebellum-like structures in fish ormammals [RS11] or other

central areas [Fel12]. Different possible roles of anti-Hebbian STDP in adaptive sensory

processing have been hypothesized taking the mormyrid electric fish electrosensory

system as a central example [RL10]. According to models, Purkinje-like cells in the fish

electrosensory lobe can store and retrieve a temporally structured negative image of

prior sensory stimuli, through STDP mechanisms [RB00]. Our results possibly shed

new light on those findings. Indeed, in [RB00], the ability of the neuronal network to

store patterns of cortical activity was tested for different pair-based rules of STDP (see

their Figure 7), along with its capacity to forget the negative image after some time

without stimulus. The authors conclude that the anti-Hebbian STDP with no plasticity

for post-pre pairings, established in vitro in the fish Purkinje-like cells [Bel+97], leads

to an efficient cancellation of the stimulus, with rapid adaptation when the pattern is

not presented anymore (see Figure 8 [RB00]). The anti-Hebbian symmetric learning

rule performs similarly, whereas the asymmetric anti-Hebbian STDP does not perform

as well [RB00]. The authors explain the drop in performance of the asymmetric anti-

Hebbian STDP because of oscillations in the dynamics, produced by the alternation

between potentiation and depression (see their Figure 9 [RB00]). In particular, the au-

thors state that “the system with [asymmetric anti-Hebbian STDP] does not converge

onto an accurate negative image”. It is however interesting to note that with asym-

metric anti-Hebbian STDP, the system is still able to clone partially the stimulus. More

importantly, they show that the cloned image is kept in memory for a longer time than

with symmetric LTD (compare curves A/B and C in their Figure 8 [RB00]). In our

study, the model allows a precise analysis of the role of symmetric versus asymmetric

anti-Hebbian STDP in the maintenance of learned patterns. We show that asymmetric

anti-Hebbian STDP leads to the maintenance of learned patterns, whereas symmet-

ric LTD causes a rapid decrease in memory performance in the absence of reward.

Similar to [RB00], we show that the alternation of potentiation and depression in the

asymmetric anti-Hebbian STDP, if correctly tuned, forces the synaptic weights to retain

some information on previously learned patterns. On the contrary, with symmetric

anti-Hebbian LTD, the synaptic weights indistinctly converge to zero because they are

only subject to depression, leaving the system fresh to construct new associations and

identify novel stimuli.
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Our present experimental work shows that DLS-MSNs exhibit asymmetric anti-

Hebbian STDP, consistent with DLS role in habit behavior, where rewards are no longer

presented. Conversely, we could hypothesize that thanks to symmetric anti-Hebbian

STDP in DMS-MSNs, DMS should be able to adapt quickly between different action-

outcome associations and therefore forget rapidly previous information. Our model

shows that this role is consistentwith anti-Hebbian symmetric STDP. This is in linewith

the role of DMS which is essential for behavioral flexibility such as strategy-shifting or

reversal learning [Bon+19; Rag+02; Rag07].

2.5 Mathematical models

Neuronal network model
To simulate the impact of plasticity on learning, we built a simple neuronal network

model that includes P cortical neurons serving as input neurons to one output MSN.

The MSN integrated cortical and external input (see section below) and fired when

hitting a threshold, according to the classical leaky integrate-and-fire model [Bur06;

Ger+14]. In detail, between two spikes, the membrane potential V of the neuron

satisfies a linear differential equation:

τ
dV
dt “ ´pV ptq ´ Veqq `RIptq.

Spikes were emitted when the voltage exceeded a threshold Vth, at which time the

neuron’s voltage was instantaneously reset to Veq and resumed input integration. We

set τ“16ms, Veq“ ´ 80mV and R“80MΩ, Vth“ ´ 45mV , and the reset potential was

chosen equal to the resting potential Veq [YAK11]. In equation 2.5, Iptq represents the
synaptic input, which was generated as described below.

Connectivity and input to the MSN
The input Iptq received by the MSN is the superposition of the input received from P
cortical neurons, noted Istimptq, and an external (to the network) input Iextptq modeled

as a Poisson process with rate λr:

Iptq “ Istimptq ` Iextptq.

Spikes fromcortical neurons and the external source induce instantaneous jumps in

theMSNmembrane potential. Jumps associated with cortical sources have amplitudes

that vary through plasticity mechanisms described in the next section. These ampli-

tudes are modeled through the collection of synaptic weights W ptq “ pWiptqq1ďiďP .
Denoting tki the k-th spike time of input neuron i and δ the Dirac mass, we have

Istimptq “ τ
ÿ

1ďiďP

ÿ

tkiďt

Wipt
k
i´qδpt´ t

k
i q

where we noted, for a function f being potentially discontinuous at time t, fpt´q the
value reached immediately before the jump.

Contrasting with the network input described above whose synaptic weights are

allowed to vary in time according to plasticity rules described in the next section, the
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external input is assumed to induce jumps of fixed amplitudeWext“1nA (high enough

to evoke spiking activity in the MSN):

Iextptq “ τWext
ÿ

tkextďt

δpt´ tkextq,

where ptkextqkě0 denotes the sequence of external spike times, which have exponentially

distributed inter-spike intervals.

The factor τ needs to be added in both currents expressions becausewe chose to use

a simple model of synaptic inputs, where spikes induce a Dirac of activity. Therefore,

in order to relate synaptic weightW to EPSC amplitudes measured in experiments, we

need this scaling. In particular, the membrane potential has the following expression,

between spikes of the postsynaptic neuron,

V ptq “ Veq `R
ÿ

1ďiďP

ÿ

tkiďt

Wipt
k
i´qe

´pt´tki q{τ `RWext
ÿ

tkextďt

e´pt´t
k
extq{τ .

Cortico-striatal plasticity
We implemented a pair-basedmodel of STDP, where synaptic weightsW were updated

after each spike (all-to-all implementation [MDG08]), according to the spike timing

relative to all previous spikes of the other neuron. In detail:

— If the MSN spikes at time t
post

(postsynaptic spike), then all weights are updated.

Noting t
pre,i the previous spikes of cortical neuron i, the synaptic weight Wi is

updated according to:

Wiptpostq “ Wiptpost´q ` ε
ÿ

tpre,iďtpost

Φpt
post
´ t

pre,iq

where ε denotes the plasticity rate, chosen in our simulations as ε“0.02.

— If presynaptic cortical neuron i P t1, ¨ ¨ ¨ , P u spikes at time t
pre,i, noting tpost the

times of the MSN spikes, then the synaptic weightWi is updated as:

Wiptpre,iq “ Wiptpre,i´q ` ε
ÿ

tpostďtpre,i

Φpt
post
´ t

pre,iq.

Denoting ∆t“t
post

´ t
pre

the timing between the presynaptic (cortical) spike and

the postsynaptic (MSN) spike, we use an exponential STDP kernel [MDG08]:

Φp∆tq “

$

&

%

A
post-pre

exp
´

∆t
τs

¯

if ∆t ă 0

A
pre-post

exp
´

´∆t
τs

¯

if ∆t ą 0

with τs“20 ms.

Consistent with the anti-Hebbian form of the corticostriatal STDP [FGV05;

Men+20], we consider A
pre-post

“ ´ 1 (see e.g. [Fel12]), corresponding to synaptic de-

pression subsequent to a pre-post paired stimulation. The observation of corticostriatal

Hebbian and anti-Hebbian STDP results mainly from the use of GABAergic transmis-

sion inhibitors [She+08] or not [FGV05; Men+20], as demonstrated thereafter [Pai+13;
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Val+17]. The sign of A
post-pre

allows distinguishing between symmetric anti-Hebbian

STDP (A
post-pre

ď0) reported at DMS corticostriatal synapses from asymmetric anti-

Hebbian STDP (A
post-pre

ě0) reported at DLS corticostriatal synapses. Here, we focused

on the influence of A
post-pre

on learning and relearning.

During a learning task (see next section), the system is presentedwith a succession

of cortical patterns. Each pattern corresponds to a temporal window of a fixed duration

(100ms), where a subset of Nstim cortical neurons spike at time toffset“50ms. Two types

of noise are modeled at the level of a single cortical neuron. First, each neuron involved

in the pattern spikes at a time normally distributed with mean toffset and standard

deviation τp“0.2ms, modeling variability of the spike times. Second, cortical spikes

unrelated to the pattern are added through Poisson spikes with rate λr{P , representing
the random firing of the cortical neuron. Moreover, the influence of external inputs is

modeled at the level of the postsynaptic neuron, directly with the spikes of the random

input presented above.

In the model presented here, a pattern can either be rewarded or not through a

simple additive mechanism. If a pattern is rewarded, then each time a presynaptic

neuron i fires during the pattern (even if it is noise), its associated synaptic weight gets

potentiated, following,

∆Wi “ εAreward ą 0.
If the pattern is not rewarded, the synaptic weight is not modified.

Detailedmodels, in particular three-factor learning rules [KIT17; Fon+18; Ger+18],

are thus approximated here by the presence of a simple reward signal consisting in the

potentiation of the synaptic weight of all presynaptic neurons that spiked during the

pattern (both those involved in the pattern and those associated with noisy inputs).

A framework for corticostriatal plasticity was developed along with the use of

dopamine-dependent STDP curves [GHR15], but only focused on Hebbian STDP. Fol-

lowing the same principles about the role of dopamine in the reward system, we chose

to fix the STDP curves and modeled the reward influence through an additive potenti-

ation as used in most existing models of anti-Hebbian STDP [RB00; WRL03; RA04].

Eventually, synaptic weights are clipped within a realist range rwmin, wmaxs “

r0., 2.snA. The initial synaptic weights are drawn from a uniform distribution on

r0., 0.05snA.

Learning with anti-Hebbian STDP rules
To characterize the capacity of learning associated with each STDP forms, we defined

a fixed set of Np cortical patterns. The system was presented either with a randomly

chosen pattern of correlated cortical activity (from the setNp patterns) with probability

η, or with probability 1´η only with noise. Among the set of Np patterns, a fixed

subset was chosen to be rewarded (rewarded patterns were randomly chosen among

all patterns, each pattern having a probability 1{2 to be rewarded). A rewarded pattern

was deemed learnt if the MSN fired in response to the presentation of the pattern.

Moreover, non-rewarded patterns should not elicit any spike.

The accuracy of the learning process was estimated through the averaged numbers

of correct responses:

Accuracy “
1
Np

ÿ

1ďkďNp

rkσk ` p1´ rkqp1´ σkq, (2.1)
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where rk“1 if k is a rewarded pattern and 0 otherwise, σk“1 if the MSN spiked and 0
otherwise.

Each simulation emulated learning throughout four phases (see parameters in

Table 2.1), all of which including STDP and differing in the frequency of pattern pre-

sentation and presence of rewards:

a. The initial phase of spontaneous activity, where patterns are presented randomly

(η“ηm) and in the presence of noise. This phase is useful to avoid transient effects

due to the initialization by reaching a realistic synaptic weight regime based on

the plasticity rule. Noise was set to λr“4λ
MSN

“20Hz.

b. The learning phase during which neurons display spontaneous random activity

with pattern presented at each iteration (η“1), and Poisson noise with intensity

λr“λMSN
“5Hz consistent with firing of the MSNs in the rat striatum [Mah+06].

The reward signal was present and potentiated all synapses of presynaptic neu-

rons active during a rewarded pattern. This phase emulates learning, as the

output neuron learns to discriminate patterns by spiking in response to rewarded

patterns and not spiking in response to non-rewarded patterns.

c. The maintenance phase models spontaneous activity with λr“4λ
MSN

“20Hz and
random presentations of patterns (η“ηm) in the absence of rewards, allowing to

evaluate the system’s ability to sustain a discrimination between learnt patterns.

We chose to take λr“4λ
MSN

in order to shorten our simulations and speed up the

decrease of memory. All results are still true for λr“λMSN
, except that memory is

maintained for longer times than our simulations permitted.

d. The relearning phase, with the same parameters as the learning phase (a), is used

tomeasure the systemability to learn again patterns, after a period of spontaneous

activity.

Phase Initial Learning Maintenance Relearning

Reward No Yes No Yes

Random Noise λr 4λ
MSN

“20Hz λ
MSN

“5Hz 4λ
MSN

“20Hz λ
MSN

“5Hz
Rate of Pattern Presentation η ηm 1 ηm 1

Table 2.1: Parameters for the different phases of the learning task used in the math-
ematical model.
Anti-Hebbian STDP is present in all phases and each phase lasts for 500 iterations.

Model simulations
Simulations were performed on Python 3.X, using the Anaconda suite (Anaconda

Software Distribution, Computer software Version 2-2.4.0. Anaconda, Nov. 2016.

Web. https ://anaconda.com.). The Python libraries of numeric calculus numpy
and plotting matplotlib were used. Our custom code is freely accessible on

https://github.com/gvignoud/striatalLearning. Simulations were run on the INRIA



REGION-SPECIFIC ANTI-HEBBIAN PLASTICITY IN THE STRIATUM 287

CLEPS cluster andHPC resources fromGENCI-IDRIS (Grant 2022-A0100612385), using

GNU parallel (Tange, O. (2020, May 22). GNU Parallel 20200522 (‘Kraftwerk’). Zenodo.

https ://doi.org/10.5281/zenodo.3841377). We used a Euler scheme to simulate our

network and Poisson processes, with dt“0.2ms.
In order to study the evolution of the network during the different phases and

compute learning accuracy, we evaluated some properties of the network every 50
pattern iterations (except at the beginning of each phase, where we recorded every

5 pattern iterations). During these test sessions, we froze the network structure by

considering that

— both types of plasticity are turned off;

— the three noise components described above were suppressed (λr“0, τp “ 0);

— all patterns were successively presented to the network, and the accuracy was

computed using the responses of the MSN, as described in Eq. (2.1);

— between each pattern, the MSN potential was reset to its equilibrium value, in

order to avoid influence of one pattern to another.

For each set of parameters, we ran 200 different simulations. Statistics were com-

puted on a random split of the simulations into 10 sets of 20 simulations, in order to

compare statistics of performance of the network across multiple conditions. We use

statistical t-test from scipy.stats Python library (* pă0.05, ** pă0.005, *** pă0.0005).
We started by collecting the mean accuracy at the end of each phase Aj for

j“1, 2, 3, 4.
To characterize the kinetics of learning in the maintenance phase, we fitted a

sigmoidal function to the curve of accuracy as a function of time. This generic sigmoid

with 5 parameters, was given by:

SrA
init
, t

init
, A

end
, d, gsptq “ A

end
` pA

init
´ A

end
q ˆ

ˆ

1`
ˆ

t´ t
init

g

˙˙´d

where A
init

is the initial value of the sigmoid, tinit the starting time of the second

phase (in terms of pattern iterations), A
end

is the final value, g is a timescale parameter,

while d is a shape parameter of the sigmoid. Fitting the sigmoid allows comparing

the dynamics in the maintenance phase for various conditions, and in particular the

performance of symmetric and asymmetric anti-Hebbian STDP. The initial value was

set atA
init
“A2 and the ending value atA

end
“A1 The fits were realized by estimating the

best values of d and g to reproduce the accuracy dynamics and were performed using

the scipy.optimize.curvefit function of the scipy Python library.

We compared maintenance of the learning task through the characteristic time of

decay to represent the speed of decrease,

T
maintenance

“ min
´

max
´

0, g
d

¯

, 1000
¯

.

Finally, in order to measure the relearning characteristic time, i.e., the time neces-

sary for the system to relearn patterns after the maintenance phase, we define T
relearning

as follows. Remembering thatA1 (resp.,A2) is the accuracy after the initial phase (resp.,
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learning phase), we define T
relearning

as the time needed in the relearning phase to learn

again at least 60% of the previously learned accuracy,

T
relearning

“ inf tt ą 0|Accuracyptq´A1 ą 0.6ˆpA2´A1qu .

We investigated how synaptic weight during the maintenance phase deviate from

those at the end of the learning phase. To this end, we definedWref the synaptic weights

at the end of the learning phase, and used various metrics to analyze the divergence of

the weights from this value during maintenance:

— The divergence of the L2
norm,

d2pW q “
1

1`
?

ř

ipWi´Wref,iq2?
ř

iW
2
ref,i

which is equal to 1 when W “ Wref and decays to 0 as the Euclidean distance

between the two weight vectors increases. A large d2pW q (i.e., close to 1) means

that weights remained similar to the reference, and a decay of that quantity

estimates how quickly the weight vector deviates from reference.

— One may consider that relative values of weights, rather than their absolute am-

plitude, contain a particularly important information in learning. In that sense,

Wref provides a direction in the space of weights, andwe estimated the alignment

of the weight vector at a given time withWref through the cosine similarity of the

centered synaptic weight:

sppW q “

ř

ipWi ´Wiq ˆ pWref,i ´Wref,iq
b

ř

ipWi ´Wiq
2
b

ř

ipWref,i ´Wref,iq2

where x for x P RP
denotes the average of the vector’s component.
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c1 c2 c3

b1 b2 b3

a1 a2 a3

Figure 2.4: Learning task using various setups pP,NstimandNpq (related to Figure 2.3).
Influence of ηm on the learning parameters for (a) P“10 input neurons, Nstim“3 stim-

ulations by pattern, Np“10 patterns, (b) P“10 input neurons, Nstim“5 stimulations by

pattern, Np“15 patterns and (c) P“20 input neurons, Nstim“3 stimulations by pattern,

Np“30 patterns.

(x) Dependance of characteristic time of maintenance Tmaintenance (x1), accuracy at the

end of the maintenance phase (x2) and characteristic time of relearning Trelearning (x3)

on the type of plasticity Apost´pre and stimulus presentation frequency ηm.
Mean of results over 10 sets of 20 simulations with errors bars representing ˘SD{2.
Statistical t-test from scipy.stats Python library; *: pă0.05, **: pă0.005, ***: pă0.0005.
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Parameters Values

P p10, 20q
τ 16ms

Veq “ Vr ´80mV
R 80MΩ
Vth ´45mV
Np p10, 15q for P “ 10 and p30q for P “ 20
Nstim p3, 5q
A

post-pre
p´1.5,´1.0,´0.5, 0., 0.5, 1.0, 1.5, 2.q

A
pre-post

p´1.0, 0.q
τs 20ms

Areward p0., 0.95q
ε 0.02
τp 0.2ms

λMSN 5Hz
ηm p0., 0.01, 0.02, 0.1, 0.2, 1.0q
dt 0.2

Table 2.2: Parameters of the mathematical model to study learning features in DMS
and DLS.

Figure 2.5: Learning task with different noise values λMSN.
Accuracy at the end of each phase as a function of the type of plasticity (whereApost´pre
parameterizes the plasticity). Several values of noise λMSN are tested (see different

colors).

Mean of results over 10 sets of 20 simulations with errors bars representing ˘SD{2.
Statistical t-test from scipy.stats Python library; *: pă0.05, **: pă0.005, ***: pă0.0005.
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*

Sagittal section of a mouse brain. A retrograde AAV-GFPwas injected in the striatum,

revealing mesencephalic projections known as the MFB (medial forebrain bundle), as

well as deep-layer cortical pyramidal neurons. GFP in green; Tyrosine Hydroxylase in

red [S. Valverde].
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We discuss three possible directions for future works, based on the present report.

Beyond spike-timing dependent plasticity

STDP is a synaptic plasticity rule based on the relative pre- and postsynaptic spike

timings. As developed in the Introduction, numerous experimental works have shown

that STDP can be elicited at different types of synapses. STDPhas also been investigated

from a computational point of view, in different types of models, and implemented in

complex neuronal networks. Considering its simplicity, STDP has also attracted some

criticisms almost since its discovery.

Questioning the importance of STDP
Most experimental data on STDP have been obtained using in vitro protocols, where

pairs of spikes from the pre- and postsynaptic neurons are triggered using electric

stimulations. Several authors have pointed out that these protocols do not reproduce

realistic conditions of neuronal activity, and have therefore questioned the general

definition of STDP [LS10; Suv19]. At first, STDP is defined as a process where local

depolarizations of the membrane potential, caused by a backpropagating action po-

tential, could interact with EPSPs (excitatory post-synaptic potentials) resulting from

presynaptic spikes, and induce changes in synaptic transmission.

A first crucial issue about in vitro experimental protocols concerns themechanisms

used to trigger a postsynaptic spike. Indeed, in most studies, a brief depolarizing

current is presented to the postsynaptic neuron soma, which leads to the triggering

of a spike. In particular, the spike is not induced through natural processes, resulting

from the integration of dendritic currents. This raises the question of which particular

mechanism induces the local depolarization needed for plasticity induction, is it Na
+

spikes, calcium Ca
2+

spikes? Is it possible to have STDP, without having a postsynaptic

spike, but simply thanks to local depolarizations?

A second recurrent concern stresses that STDP protocols are not “realistic” when

looking at brain activity. In vivo recordings do not support the idea that two single

neurons repeatedly fire one after the other, with the same delay, at a fixed frequency.

For example, bursts of spiking activity, up and down states, oscillations are more

characteristic of brain dynamics than protocols of STDP. Even if some studies have

succeeded in eliciting STDP in in vivo recordings [Mor+19], the results are less clear

and more often stress that other paradigms than STDP are needed to fully understand

synaptic plasticity.

A third issue, that is already extensively addressed in the current report, is that

Hebbian STDP, has been considered, for a long time, as the only version of STDP,

while several experiments have since then shown that a great diversity of plasticity

curves exists, such as anti-Hebbian STDP at corticostriatal synapses [FGV05; Fel12].

Moreover, with in vitro protocols, networks effects are modified, if not deleted, while

the influence of local neuromodulators depends highly on the brain slices preparation.

In more realistic situations, the synaptic weights are maybe affected as much by those

processes, than by STDP, questioning its actual relevance.
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Towards biologically-plausible synaptic plasticity
Even if early STDP protocols were not realistic in term of naturalistic activity-pattern

at central synapses, experimentalists have been prone to develop more biologically-

plausible schemes to trigger synaptic plasticity. As stated in the previous section, the

main critics about STDP refer to the induction of the postsynaptic spike directly by

an electrical stimulation at the level of the soma. Several studies have tried using

presynaptic inputs to trigger the postsynaptic spikes, leading to more realistic spike

triggering. These experiments are gathered under the acronym ITDP, for input-timing
dependent plasticity (ITDP) [Cho+12; Ler+17].

The necessity of having a postsynaptic action potential to induce synaptic plas-

ticity was also recurrently questioned and has been proven false since then. Indeed,

in [FDV09], it is shown that brief subthreshold events can act as causal signals for long-

term plasticity. Even if the observed plasticity is not as "acute" as the one observed

using STDP protocols, subthreshold events are sufficient to trigger long-term synaptic

changes. The influence of the postsynaptic membrane potential, and not only of spike

trains, has also been considered in a class of computational models of STDP [CG10].

More recently, it was shown in place fields in hippocampal area CA [Bit+17]

that it was possible to induce synaptic potentiation different from STDP, considering

that its temporal window was wider than in STDP experiments (seconds instead of

milliseconds), that a “plateau” of postsynaptic activity replaced the postsynaptic spike,

and that the order of the associationdid not change the polarity of the observed synaptic

plasticity. This synaptic learning rule evolves on behavioral timescales, and may be a

good surrogate of STDP when looking at in vivo activity.

Do we really need STDP to be biologically-plausible?
STDP has been used in a wide range of computational models, and several theoretical

studies have used its simple and elegant formulation to investigate the role of synaptic

plasticity in learning. Considering the fact that STDP is currently questioned as a rele-

vantmechanism for learning in experimental studies, it seems logical to also interrogate

its use in computational models.

First, STDP can be seen as a “building block” of synaptic plasticity, and as such I

think that its use is justified when looking at complex models. Indeed, STDP protocols

results from pre- and postsynaptic pairings, and gives a real insight on the dynamics

of a single synapse, as a function of the pre- and postsynaptic spiking activity. When

building complex neuronal networks, where neurons are only represented by their

spike trains, neuroscientists need simple learning rules like STDP, and they have been

using them for long times. Prior to STDP, many computational models used “Hebbian”

synaptic plasticity in their models, where synaptic weight changes depend on the pre-

and postsynaptic firing rates, that also has its limits from a biological point of view.

This does not mean that all conclusions from computational models with rate-based

plasticity, or STDP, are useless just because the synaptic learning rules did not fulfill

a never ending (and always growing) list of biological properties. It just needs to be

considered when drawing conclusions on large scales systems and learning in general.

It is particularly interesting to notice that STDP was first formulated in computational

studies [Ger+96] and not from experiments.

Second, I also would like to stress that STDP, even if not fully biologically-based,

is still a powerful rule when learning, and as such justifies the amount of theoretical
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works that have been published on its properties. For example, it has been recently

used in deep learning [Ben+15; Ben+17] in spiking neural networks (SNN), and it could

have tremendous applications for the implementations of machine learning algorithms

in neuromorphic processors.

Finally, more complex synaptic plasticity rules related to STDP have been devel-

oped over the years, and still need theoretical studies to investigate their impact on

neuronal networks dynamics. It would be a shame to limit efforts in this direction

because STDP may not be the principal synaptic plasticity mechanisms in the brain. I

think that computational and theoretical models can be amean to understand the inter-

actions between the various synaptic plasticity observed in experiments, starting with

STDP but also integrating more biological and naturalistic synaptic plasticity rules.

Stochastic neuronal networks with STDP

Theoretical models developed in this report are limited to a simple system, with one

presynaptic neuron and one postsynaptic neuron, connected by a single synapse. This

framework was useful when studying the direct effects of pre- and postsynaptic spikes

on the synaptic weights, and such elementary results are necessary when considering

to study larger neuronal networks with synaptic plasticity. In future works, we aim at

extending our formalism to recurrent neuronal networks, and prove similar theorems

for multidimensional systems.

Nonlinear Hawkes processes
When studying STDP in the slow-fast approximation, we have proven that the invariant

distribution of the neuronal dynamics with fixed weights were crucial in determining

the system’s dynamics. Following this idea, we have developed a new formalism for

Hawkes processes, which represent a good model for neuronal activity. However,

we restricted ourselves to auto-exciting processes, while neurons are more likely to

be auto-inhibiting processes. Indeed, a postsynaptic spike leads to a decrease of the

membrane potential value, and consequently, to a decrease of the firing rate.

To reproduce this behavior using Hawkes process, the stochastic intensity λHawkes
needs to depend on negative functionals of previous jumps, i.e

λHawkesptq “ β

ˆ
ż t

´8

hpt´ sqNHawkespdsq
˙

,

where h is a negative function, and β the activation function. Nevertheless, the stochas-

tic intensity needs, by definition, to be non-negative, and it would not be possible to

use linear Hawkes process where βpxq“ν`βx. A large literature on linear Hawkes pro-

cesses exists, usually in the framework of cluster branching processes [Haw71; HO74].

When looking at nonlinear activation functions β, other proofs need to be developed

to study the existence of stationary Hawkes processes. Several articles have been ded-

icated to nonlinear Hawkes processes, usually using Picard iterations and analysis to

prove the existence and unicity of a stationary solution [Ker64; BM96]. Recent works

have also discussed the possible role of inhibition in Hawkes processes, but focus on

simpler kernels hwith finite memory in order to use renewal theory [Cos+20]. A global

theory of general Hawkes processes, with negative function h is still lacking even if

it would be of great interests for neuroscience, epidemiology or population dynamics

theory.
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Adaptative neuronal networks
Multidimensional Hawkes processes are interesting models to study neuronal dynam-

ics, they can be used to infer the connectivity matrix from the spike trains and as such

are of particular interest for neuroscientists [Rey+14]. It is indeed possible to formulate

the dynamics of spiking neuronal network as a multidimensional Hawkes process,

verifying,

$

’

’

’
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´

řN
i“0

şt

´8
h1,ipt´ sqNHawkes,ipdsq

¯

.

.

.

.

.

.

λHawkes,Nptq “ βN

´

řN
i“0

şt

´8
hN,ipt´ sqNHawkes,ipdsq

¯

where, the functionH“ptÞÑhi,jptqq1ďi,jďN represents the connectivity matrix of the neu-

ronal network. Multidimensional Hawkes processes have been studied, with fixed

connectivity H , in the linear case [Haw71] or the nonlinear case [BM96]. Again, as

explained in the previous section, most studies do not consider any inhibitory mecha-

nism, and it could be expected that adding inhibition leads to less restrictive conditions

for the existence of a stationary solution: it has a stabilizing effect on the point processes

dynamics. The importance of the excitation/inhibition balance has been known to be

central when studying neuronal dynamics for a long time [Bru00].

In the present report, wehave studied the influence of STDPonneuronal dynamics.

We claim that an even more general class of Hawkes, where the connectivity matrix

H depend on time, through some plasticity mechanisms, can be defined. This would

open the door for theoretical studies of adaptative Hawkes processes, which modify

their interactions as a function of previous activity. Adaptative cluster processes have

recently been introduced, when considering phase-dependent plasticity and are linked

to this idea [BSY19].

The influence of STDP on recurrent neuronal networks has been the focus of nu-

merous studies [GBV10], mainly in computational neuroscience. Their approachwould

benefit from the development of a theoretical framework for adaptative multidimen-

sional processes.

Mean-field analysis of STDP in neuronal networks
When looking at large neuronal networks, it is always tempting to take the limit when

the number of neurons goes to infinity, and usually end up with mean-field dynamics.

This limit has been largely studied forneuronal networkswithfixed connectivity [RT16],

and leads to interesting analytical results on the network dynamics. A similar approxi-

mation can be envisionedwhile looking at adaptative neuronal networks with synaptic

plasticity. For short-term synaptic plasticity, a recent study looks at the mean-field

approximations of the associated dynamics [Löc17].

What would happen when examining long-term synaptic plasticity? Is it possible

to couple the mean-field analysis with slow-fast arguments? If yes, in which order

shouldwe take the limits? And is this order determinant for the limit’s dynamics? All of

these questions are still pending, and futureworks on such processes will be important,

not only for neuroscience, but to other adaptative systems, with applications in finance,

epidemiology or evolution. A recent article [ARJ20] uses both approximations, but

does not consider all the possible problems that can emerge from taking this double

limit.
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Goal-directed behavior versus habits in the striatum

Computationalmodels developed in thepresent report have highlighted the crucial role

of STDP when learning to recognize patterns of correlated cortical activity. However,

as pointed out in this discussion, STDP should not be considered as the only synaptic

plasticity mechanism at play when looking at complex tasks, and more importantly

network dynamics should also be taken into account. Future works could be devoted

to a more realistic model of the striatum, integrating direct- and indirect pathways

neurons for example, or inhibitory interneurons. Several striatal models already study

those influences separately, without considering anti-Hebbian STDP. A global model of

the striatum would be a terrific tool to study the differential influence of each of these

processes, and to more clearly understand its role in procedural learning.

DMS and DLS, more differences than just STDP
DMS and DLS differential role in procedural learning could be investigated using such

a general striatal system. In the present reports, we only considered disparity in STDP

at corticostriatal synapses [Per+22], however the difference between those two regions

are not limited to synaptic plasticity. The following properties should be inserted in

any striatal network, aiming at studying why DMS and DLS subtend specific types of

learning and behaviors, respectively goal-directed behavior and habits:

— Both regions receive inputs fromdifferent cortical regions (somato-sensory versus

associative areas), and some correlated activity patters may be specific to DMS or

DLS.

— MSNs exhibit different electrophysiological properties when located in either of

those regions.

— Feedforward inhibition, through the action of fast-spiking or low-threshold spik-

ing interneurons also depends on DMS or DLS [Fin+18].

— STDP at corticostriatal synapses is specific to these regions, as was shown

in [Per+22].

Moreover, the dopaminergic signaling pathways should also be modeled, as it is

critical in goal-directedbehavior [SDM97]. Similarly, in order tomodel thewhole action

selection process, MSNs belonging to direct- or indirect pathways, and the subsequent

circuits, should be investigated following previous studies [Dun+19].

A global model of the basal ganglia, incorporating those properties, will be needed

to directly relate to behavioral experiments, and to predict animal behavior in proce-

dural learning.

Switch between goal-directed behavior and habits
Even if this global model is able to reproduce goal-directed and habitual behavior,

thanks to different properties present either in the DMS or the DLS, it may not explain

how both regions influence each other. Indeed, the striatum is differentially involved

during procedural learning, and studying how the switch between goal-directed behav-

ior and habits occur will be a great advance in our comprehension of the establishment
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of procedural memory. A recent article has shown that this question is of interest, both

for neuroscientists and experimentalists [PB19]. How is this switch implemented, why

and when? are several questions that need to be answered. Computational models are

of great help in the study of such topics, because they can emulate dynamics not easily

tested in experiments.
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