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SUMMARY

Synaptic plasticity is a biological mechanism, integrating neuronal activity in the evolution of recurrent connections between neurons. Several studies from biology and computational neuroscience have explored the influence of spike-timing dependent plasticity (STDP) on learning and memory. This PhD work is based on experimental data about STDP in the striatum, and studies its implications, first in mathematical models of neuronal networks seen as stochastic processes, and then in a learning task based on the functional role of the striatum.

We have developed a general class of models to reproduce different STDP rules in a stochastic setting, modeling spike trains as point processes. Synaptic plasticity is a slow process, compared to neuronal activity, supporting an analysis of this system using slow-fast theory. After having characterized the dynamics of complex shot-noise processes, and introduced several auxiliary models, we prove that the scaled system wis tight, and that stochastic averaging principles are verified. Adding regularity hypotheses, we prove a convergence theorem in the slow-fast limit, and apply it to different sets of STDP rules. The simplest STDP rule consists in updating the synaptic weights as a function of the time between pre-and postsynaptic spikes. These models also depend a lot on the choice of which spikes to consider when updating the synaptic weight. Using the previously proven averaging principle, we study the influence of different models of synaptic dynamics. A theoretical and numerical analysis of the synaptic weight asymptotic behavior is performed and has led us to conclude on the potential impact of each STDP rule on a simple network.

Neuronal dynamics can be represented using auto-exciting stochastic processes, called Hawkes processes. We develop a new formalism to study these objects, by representing them as Markov processes in the space of non-negative real sequences. Using a Markovian approach, we prove results on the existence of stationary Hawkes processes for a simple subclass of Hawkes processes.

At the same time, we also study the influence of anti-Hebbian STDP in networks inspired from the striatum, a subcortical nucleus involved in procedural learning. Anti-Hebbian STDP is specific to the striatum, and we investigated its implication when learning sequences of cortical spikes. We found that the striatal network with anti-Hebbian STDP is able to discriminate rewarded and non-rewarded patterns. Other properties of striatal neurons are subsequently added to the model and improve the network performance. In particular, with collateral inhibition, which is displayed between striatal neurons, the system learns more patterns than classical algorithms. Finally, experimental results have recently shown that two regions of the dorsal striatum, the dorsolateral (DLS) and the dorsomedial (DMS) striatum display different kinds of STDP. Using a simple model accounting for these region-specific STDPs, we study the influence of STDP rules on learning in a complex task, composed by a learning phase, a maintenance phase where the network is subject to random activity, and a relearning phase. We show that STDP present at DMS synapses leads to a quicker forgetting of learned patterns and consequently to higher flexibility, while STDP at DLS synapses helps maintaining these patterns in memory.

RÉSUMÉ

La plasticité synaptique est un mécanisme biologique intégrant l'activité neuronale dans l'évolution des connections récurrentes entre différents neurones. De nombreuses études de biologie et de neurosciences computationelles ont exploré l'influence de la spike-timing dependent plasticity (STDP, plasticité fonction du temps d'occurrence des impulsions) sur l'apprentissage et la consolidation de la mémoire. Ces travaux de thèse s'appuient sur des données expérimentales de STDP dans le striatum, et étudie la dynamique associée dans des réseaux de neurones vue comme des processus stochastiques, puis dans une tâche d'apprentissage inspirée du rôle du striatum.

Nous avons développé une classe générale de modèles, pour reproduire différentes règles de STDP dans un cadre stochastique, en modélisant notamment les ensembles de potentiels d'action par des processus ponctuels. La plasticité synaptique est un processus lent comparé à l'activité neuronale, justifiant une analyse de ce système avec des arguments de la théorie lent-rapide. Après avoir caractérisé le comportement de processus de type shot-noise et introduit différents systèmes auxiliaires, il a été possible de démontrer que le système dimensionné était relativement compact et par conséquent, que la propriété d'homogénéisation était vérifiée. En ajoutant des hypothèses de régularité, un théorème de convergence dans la limite lent-rapide est énoncé et appliqué à différentes règles de STDP. La plus simple des règles de STDP consiste à mettre à jour les poids synaptiques en fonction de l'intervalle de temps entre les potentiels d'action présynaptique et postsynaptique. Le choix du modèle implique aussi de choisir quels potentiels d'action prendre en compte dans l'évolution du poids synaptique. En utilisant le théorème d'homogénéisation prouvé précédemment, nous avons étudié l'influence de ces différentes modélisations sur la dynamique des poids synaptiques. Une analyse théorique et numérique de l'évolution des poids synaptiques nous a amené à conclure sur l'impact des différents types de STDP sur un système neuronal simple.

Les neurones peuvent être modélisés par des processus stochastiques autoexcitants, appelés processus de Hawkes. Nous avons développé un formalisme nouveau pour étudier ces objets en les représentant comme des processus de Markov dans l'espace des suites réelles positives. En utilisant des arguments de théorie markovienne, nous avons pu montrer l'existence de versions stationnaires d'une sous-classe des processus de Hawkes. En parallèle de ces travaux d'essence mathématique, nous avons étudié l'influence de la STDP de type anti-Hebienne dans des réseaux reproduisant certaines propriétés du striatum, un noyau sous-cortical impliqué dans l'apprentissage procédural. La plasticité anti-Hebbienne est une spécificité du striatum, et nous avons donc analysé son implication dans l'apprentissage de séquences de motifs corticaux. Nous avons montré que seul ce type de plasticité permet de discriminer les motifs associés à une récompense et ceux sans. D'autres propriétés des neurones striataux ont ensuite été ajoutées au modèle et ont amélioré la performance du réseau. En particulier, l'inhibition collatérale présente entre les neurones striataux permet d'atteindre des performances supérieures à certains algorithmes classiques d'apprentissage. Enfin, des résultats expérimentaux v vi ont récemment démontré que deux régions du striatum dorsal, le striatum dorsolatéral (DLS) et le striatum dorsomédial (DMS) sont caractérisées par deux types de STDP de polarités différentes. En utilisant un modèle simple prenant en compte ces spécificités, nous avons étudié l'influence des règles de STDP sur la dynamique d'apprentissage dans une tâche complexe, combinant une phase d'apprentissage, suivie d'une phase d'activité aléatoire pour mesurer la maintenance des motifs dans la mémoire du système et d'une phase de ré-apprentissage. Les conclusions de cette étude mettent en avant que la plasticité présente dans le DMS permet au réseau d'oublier rapidement tous motifs précédemment acquis, alors que la STDP du DLS participe à la maintenance de ces mêmes motifs.

CONTENTS

The following document will be decomposed as follows: a general introduction, a general presentation of my contributions, wo parts gathering a total of seven different chapters, each chapter corresponding to a publication, and a discussion. Each chapter will contain its own appendix and a local bibliography. Evolution, development, learning ... everything changes along generations, through life, during experiments as a result of complex processes that are direct consequences of interactions between the subject and its environment. All species have been shown to evolve on long timescales following Darwinism and other intricate laws, that still motivate many studies in both ecology and evolution. Similarly, all animals adapt their behavior throughout their life thanks to numerous mechanisms, most of them implicating the nervous system. Biology, and more specifically neuroscience have studied such long-term changes, and the processes from which those transformations originate. Directly at the cellular level, experimental studies have shown that activity-induced adjustments in neuronal connectivity are correlated with behavioral changes and learning. In particular, spike-timing dependent plasticity (STDP) is defined as plasticity mechanisms that are based on the spike timings of the neighboring neurons. It has been the focus of a wide range of studies starting from neurophysiology to computational neuroscience, and even having implications in computer science.

In Chapter 1, I present synaptic plasticity, as a mechanism for shaping brain activity during learning. I detail how STDP was defined, first as a timing-based learning rule in computational neuroscience, and then how experimental works have proven its existence in brain slices, and then in awake animals. Several models of STDP are then described ranging from phenomenological pair-based rules and their extensions, to biophysical calcium-based models. I conclude by exploring different theoretical assumptions that have been made by physicists when investigating the influence of STDP on neuronal network dynamics.

Then, in Chapter 2, I develop a general stochastic setting, that will prove necessary to investigate the influence of STDP on stochastic networks. Using a simple network with two neurons connected by one synapse, I will introduce integrate-and-fire models, and different mechanisms for random spike generation. Considering that spikes trains are the principal object of interest when studying simple neuronal networks, I introduce the notions of point processes, and detail how random spiking can be modeled using non-homogeneous Poisson processes. Finally, since STDP happens at longer timescales than neuronal activity, a simple slow-fast approximation is established, based on the proofs of stochastic averaging principles.

Finally, in Chapter 3, I shortly introduce a neuronal system, the striatum, where STDP has been proven to exist, and which has an important role in procedural learning. In particular, the striatum is characterized by its principal neurons, the medium-sized spiny neurons (MSNs), whose connections with cortex exhibit a quite distinctive property known as anti-Hebbian STDP. I briefly present how heterogeneities in MSNs and synaptic plasticity are necessary for the implementation of action selection and procedural learning in a more global system called the basal ganglia. The influence of different types of STDP, presented in Chapter 1, in such networks is detailed, both from an experimental and a computational point of view. The critical role of neuronal maps does not end once memory is stored. In fact, accumulating evidence and patterns along life is not the sole purpose of the brain. Each action taken during life is the result of a complex decision process that happens in the brain using previously stored information, and the current context. Each decision will lead to consequences, and to a subsequent remodeling of neuronal circuits. Learning is therefore an ongoing and online process, which makes it complex to grasp and to model [Gar19].

Synaptic plasticity or how the brain shapes itself to encode memory

Different mechanisms may modify neuronal activity in order to store memory as part of learning. As defined before, neuronal cells transmit chemical/electrical signals at synapses, mainly in a unidirectional way.

In the following, I will consider a simple neuronal network, only composed of two neurons: the presynaptic neuron and the postsynaptic neuron located on either side of the synapse, see Figure 1.1. The presynaptic neuron conveys large depolarizations of its membrane potential, called spikes (and represented by the presynaptic spike train), towards the synapse where neurotransmitters are released and cross the synaptic cleft. On the other side of the synapse, they induce local changes in the postsynaptic membrane potential X. The intensity W of this connection, rendering the amplitude of the changes, is determinant for the triggering of postsynaptic spikes and more generally for neuronal network dynamics. More complex neuronal systems are just multidimensional versions of this simple model, where the synaptic weight is described by the connectivity matrix pW i,j q where pi, jq represents a pair of two neurons.

It has been postulated and proven that information can be stored following the modifications of these synaptic weights. All processes related to this are gathered under the name synaptic plasticity [Nab+14]. Activity-dependent changes in synaptic weight is therefore a crucial part of learning and encoding memory.

Different types of synaptic plasticity have been discovered and studied experimentally, in many species, in various environments [SBD18]. It is common to distinguish plasticity mechanisms based on the timescale on which they modify neuronal dynamics. Short-term synaptic plasticity leads to modulation of the synaptic weight on the neuronal timescale, usually around several milliseconds up to seconds [ZR02]. Conversely, long-term synaptic plasticity relates to changes that lasts for hours, days and even longer. Another distinction is made between synaptic changes that results in a reinforced connection (synaptic potentiation) or its reverse (synaptic depression)

Although synaptic plasticity results from complex processes, general principles have been inferred from experimental data and previous modeling studies. In 1949, Donald Hebb postulated that synaptic changes should result from correlated activity from presynaptic and postsynaptic neurons, or in Carla Shatz's words [Sha92] as, "Cells that fire together wire together". This hypothesis was later on confirmed by many experimental studies, and is still today a widely accepted fact in neuroscience [Seu00].

Of course, this simple postulate does not account for all brain dynamics and is therefore regularly questioned. In particular, supposing that only pre-and postsynaptic activity are actors in synaptic plasticity leads to the neglect of other resources that the brain uses to develop memory maps. Neuromodulators (e.g. dopamine, serotonin or acetylcholine) are known to influence, not only neuronal dynamics but most definitely also synaptic weights changes [Fon+18; BMP19; MG20]. The greatest example of neuromodulation is the control of goal-directed behavior and reward signaling by dopamine. Indeed, it has been shown that dopamine shapes also synaptic plasticity, and is one of its necessary components.

Spike-timing dependent plasticity, an insight in complex mechanisms of synaptic plasticity

Following Hebbian theory, many experimental studies have shown that synaptic weight changes were correlated to pre-and postsynaptic neuronal activity, usually quantified through the firing rate of each neuron. If both neurons exhibit high firing rates and are recurrently activated together, synaptic transmission between both neurons should be enhanced, or in other words going through long-term potentiation. Some computational studies went even further and hypothesized that spikes timing should also play a role in improving learning capacities [Ger+96]. It is quite logical to consider that individual spikes, at the order of their apparition and the duration between spiking events is a lot more resourceful than only looking at averaged spiking activity.

This computational hypothesis was later experimentally demonstrated, in several experimental studies, in different brain areas [Fel12] and has been characterized ever since as STDP. Under this name are gathered all plasticity processes that depend on the timing of pre-and postsynaptic spikes, see Figure 1.1.

Numerous experimental protocols have been developed to study STDP since its discovery. Most study the evolution of synaptic transmission, usually through the size of the excitatory post-synaptic currents (EPSCs), after a protocol composed of sequences of paired spikes from either side of a specific synapse, at a certain frequency and with a certain delay [Fel12]. The delay ∆t between the pre-and postsynaptic spikes is the quantity of interest in such studies, with ∆t"t post ´tpre , t pre (resp., t post ) the timing of the presynaptic spike (resp., the postsynaptic one).

INTRODUCTION

Studies have shown that the synaptic weight changes depend on ∆t, and have led to a reformulation of Hebb's postulate in terms of STDP. Hebbian STDP plasticity is the result of a pre-post pairing, i.e. t pre ăt post leads to potentiation; and a post-pre pairing, i.e. t post ăt pre , leads to depression. An example of Hebbian STDP taken from [BP98] is given in Figure 1.2a. Experiments have shown that this type of plasticity occurs at several synapses [BP98;BP01]. Plasticity protocols following this principle are characterized as "Hebbian" because they follow some parts of Hebb's postulate: (i) when a presynaptic neuron actively participate, through its spiking activity to the initiation of a spike in the postsynaptic neuron, the synaptic weight should be enhanced (ii) when the postsynaptic neuron spikes before correlated activity from the presynaptic neuron, it should lead to depression.

Other forms of STDP have been discovered experimentally see [Fel12]. Anti-Hebbian STDP follows the opposite sequence: pre-post pairings lead to depression, and post-pre pairings lead to potentiation. This has been observed experimentally in the striatum, see [FGV05] for example, see Figure 1.2b.

The protocols used to induce STDP are of a great importance in the final form of plasticity that is observed experimentally. Changes in the number of spike pairings or their frequency usually lead to different results. The first studies were performed in vitro using brain slices, and electrophysiological recordings [Fel12]. The use of different slice preparations techniques as well as the presentation of different neuromodulators such as dopamine or GABA, have also highlighted that STDP depends on numerous parameters [Pai+13]. Later on, STDP protocols were also realized in vivo, in anesthetized and awake animals [Mor+19] , showing that STDP is a mechanism that needs to be taken into account when building models for learning.

1.2 Models of spike-timing dependent plasticity STDP was first studied as a model before being discovered experimentally [Ger+96]. Experimental confirmations of this synaptic plasticity rule have considerably increased the interest of the computational neuroscience community. Indeed, a large literature of computational models of STDP emerged at the beginning of the 21st century. This introduction will not be an exhaustive review of all existing works on STDP, but will instead detail how STDP models have emerged and why they currently represent a pool of interesting update rules for learning systems.

STDP models developed in computational neurosciences range from detailed biophysical descriptions of the synaptic plasticity mechanisms [GB10] to simple phenomenological models directly based on experimental data [MDG08].

From experiments to models: pair-based rules of STDP

Most experimental studies about STDP are based on pairing protocols, where preand postsynaptic spikes are repeated at a certain frequency for a given number of repetitions. This gives in fact a map Φp∆tq of the synaptic weight changes as a function of ∆t, two examples of such STDP curves are given in Figure 1.2.

Accordingly, a large class of models has been developed on the principle that the synaptic weight change due to a pair pt pre , t post q of instants of pre-and post-synaptic spikes, only depends on ∆t"t post ´tpre through some generic function Φp∆tq, inferred from experimental data.

In most models, the plasticity curve is taken as an exponential one, see Figure 1.2c:
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where A post-pre (resp., A pre-post ) represent the maximum amplitude of the synaptic weight update after a post-pre (resp., pre-post) pairing. Both constants can be taken as negative or positive. τ post-pre (resp., τ pre-post ) represents the STDP temporal window for post-pre (resp., pre-post) pairings. Exponential STDP curves are quite close to experimental data and are widely used in computational neuroscience because, they are convenient to simulate in computational models [MDG08] and can lead to analytical studies.

Another study [GK02a] propose, starting from classical Hebbian rate-based rules, to extend synaptic plasticity by taking into account the neuronal membrane potential instead of the firing rate. Using this hypothesis, and approximating the membrane potential by spiking activity, they derive synaptic plasticity rules that are similar to pair-based STDP as defined above.

An important part of modeling STDP in pair-based rules focuses on the choice of which pairings to consider when updating the synaptic weight. Indeed, when the postsynaptic neuron spikes, it is possible to devise several schemes to define the associated synaptic weight update ∆W as the sum over a certain set of previous presynaptic spikes of the plasticity curve Φp∆tq. A similar choice needs to be made about the other types of updates, happening at presynaptic spikes. Many pair-based models have been developed over the years [MDG08], but three schemes are used in the majority of theoretical works.

We start with the simplest rule, the all-to-all version (following [MDG08] terminology), where all pairs of spikes give an update of the synaptic weight. The all-to-all scheme leads the synaptic weight being updated at each postsynaptic spike, occurring at time t post by the sum over all previous presynaptic spikes occurring at time t pre ăt post of the quantity Φpt post ´tpre q. Switching the role of pre-and postsynaptic spikes, the synaptic weight is updated in the same way at presynaptic spikes. An example of which pairings to consider for the all-to-all case is given in Figure 1.2c (bottom left).

A second intuitive scheme is the nearest neighbor symmetric model: whenever one neuron spikes, the synaptic weight is updated by only considering the last (and thus closest) spike of the other neuron. If the postsynaptic neuron fires at time t post , the contribution to the synaptic update is reduced to Φpt post ´tpre q , where t pre is the last presynaptic spike before t post . See Figure 1.2c (top right), for an example of the nearest neighbor symmetric model.

Finally, the nearest neighbor reduced symmetric model has also some important properties and is defined as a restriction of the nearest neighbor symmetric model to consecutive pairings. A postsynaptic spike at t post is paired with the last presynaptic spike at t pre ăt post , only if there are no other postsynaptic spikes in the time interval pt pre , t post q. See Figure 1.2c (bottom right), for an example of the nearest neighbor reduced symmetric model.

Several studies have investigated the role of these different pairing interactions [ID03; MAD07; MDG08], but its influence on the synaptic weight dynamics has not been discussed in theoretical works, except in [BMG04]. 

Extensions of pair-based models: how to fit to biology by adding new components to a simple model

Pair-based STDP relies on very few assumptions, mainly the shape of the STDP curve and the pairing scheme, and would therefore have some difficulty to match experimental data produced when studying STDP. In particular, more complex protocols of pairings have been tested, including triplets of spikes or changes in frequency where pair-based STDP does not account for the diversity of behaviors observed experimentally. These limitations have led computational neuroscientists to develop more complex STDP rules, that better fit experimental data. A large literature has been built on these variations of canonical pair-based models, and it is sometimes quite difficult to find one's way in the variety of new hypotheses that have emerged from this process.

The first variation of pair-based STDP models occurred when neuroscientists started to investigate the influence of the current value of the synaptic weight W on the synaptic update ∆W . Indeed, it seemed logical to suppose that synaptic weights that were almost null, would undergo a smaller synaptic depression than stronger synaptic weights. Early experimental data from [BP98] highlighted that long-term depression scaled with the synaptic weight value, whereas long-term potentiation did not. In order to take this fact into account, several studies introduced multiplicative STDP, ∆W " F pW qΦp∆tq where F pW q represent the multiplicative influence of the current synaptic weight value. Several papers have studied the influence of multiplicative rules, compared to additive ones [RLS01], and the influence of the exponent of F pW q was studied in more details by [Güt+03].

A second important fact that was added to pair-based STDP models was the existence of delays in cellular signaling pathways that could lead to shifts in the plasticity curves Φp∆tq. In particular, the backpropagating action potentials need some time, after being elicited at the cell soma, to retropropagate and ultimately influence distal synapses. Similarly, when the presynaptic neuron spikes, there is a delay due to chemical transmission and channel dynamics before seeing a quantitative effect at the level of the synapse. For all these reasons, translated plasticity curves were the focus of several works [LS08;BA10].

Pair-based rules have been shown to poorly fit with experimental data when more complex protocols are used. This is the case for example in protocols repeating sequences of three spikes (called triplets) from the presynaptic and postsynaptic neurons [FD02;PG06a] where protocols repeating sequences of three spikes from the presynaptic and postsynaptic neurons are presented to the synapse. For this reason, more detailed models that take into account the influence of several pre-and postsynaptic spikes have been proposed. These models vary a lot in their hypotheses, mainly because they are based on different experimental data.

First, it was observed, using triplet-based protocols, that previous pre-and postsynaptic spikes have a "suppressive" effect on the induction of Hebbian STDP observed [FD02]. A new model of STDP integrating this suppression effect was proposed in the same study [FD02]. A few years later, [PG06a] showed that previous pre-synaptic spikes enhance the depression obtained for a post-pre pairing, whereas previous postsynaptic spikes lead to a bigger potentiation than in a classical pre-post pairing. This led to the formulation of the triplets model [PG06a].

INTRODUCTION

It is interesting to note that these two models are derived from opposite experimental conclusions. Indeed, they are based on data obtained from different brain regions: visual cortex in [FD02], and hippocampus in [PG06a]. A global model considering both mechanisms, the NMDA-model, is defined in [BA16].

More recently the influence of neuromodulators has been shown to radically change STDP curves. Three-factor learning rules have been developed to take this new experimental data into account, leading to a great variety of new models. A large literature focuses on multiplicative influence of neuromodulators on STDP synaptic updates [FG16; KIT17; Ger+18], mainly by supposing that, ∆W " F pdqΦp∆tq where F pdq represents the influence of the neuromodulator d. More complex models directly add the dependence of the STDP rules on neuromodulators inside the plasticity function [GHR15], i.e., taking ∆W " Φ d p∆tq.

All those models require a large amount of experimental data when fitting biologically-relevant parameters. A last, simpler, approach consists in including the influence of neuromodulators as an additive process, ∆W " Φp∆tq `F pdq.

Over the years a large diversity of STDP pair-based rules were developed in order to reproduce new experimental protocols and results, leading to a profusion of such models.

From models to experiments: biophysical models of STDP

Pair-based models can be characterized as phenomenological models of STDP in the sense that experimental STDP curves are taken as a core parameter of the models. Another important class of plasticity models is derived from biological phenomena and aims at reproducing experimental STDP curves using biological mechanisms.

Biophysical models gather all the current knowledge on how synaptic plasticity is implemented at the synaptic level and integrate all biological mechanisms that are relevant in plasticity modelling. In particular, chemical reactions and protein interactions are described in details leading to gigantic systems with numerous parameters, most of them chosen from experimental data. The general idea in using such models is to explain using such models, how STDP as observed, in pairings protocols, can be elicited and to identify the underlying mechanisms. For STDP, most biophysical models are based on the CamKII protein system, or the endocannabinoid network, see [GB07;Cui+16]. These models, as biologically grounded as they can be, are hard to simulate and even more complex to integrate in large neuronal networks. However, their conclusions are useful when building simpler models which can then be used in more complex systems.

Many experimental studies have pointed out the crucial role of calcium transients in the establishment of plasticity. At the same time, biophysical models have studied the importance of calcium concentration in the dynamics of plasticity. All these works have led to the development of many STDP models based on the postsynaptic calcium concentration [GB10;ID21]. These models are able to reproduce experimental results from pair-based protocols but also more complex ones, such as triplets. The general dependency on postsynaptic calcium concentration can be integrated in plasticity updates using ∆W " F pCq where C is the postsynaptic calcium concentration.

A simple phenomenological calcium-based model [GB12] was able to reproduce most of the experimental STDP curves with only a few parameters which made it ideal to fit with electrophysiological data. Recent works have extended this model by adding the influence of the number of pairings, and of different signaling pathways [VVT18] or by modeling heterosynaptic plasticity thanks to local calcium diffusion at the synaptic level [Men+20]. The influence of neurotransmitters such as GABA has also been taken into account in calcium-based models [HF17].

Instead of supposing that STDP rules are dependent on the postsynaptic calcium concentration, another class of models are based on the hypothesis that the postsynaptic membrane potential X is the quantity of interest. These models were shown to also reproduce the results of STDP protocols [GK02a; CG10], with ∆W " F pXq.

Numerous models were developed over the years to reproduce STDP, a significant part of which are simple enough to be implemented in large neuronal networks and can be studied using tools from statistical physics and mathematics.

Theoretical study of STDP

Pair-based models of STDP have attracted quite early the interest of physicists, because of their simplicity. They can be studied theoretically, using either dynamical systems theory, stochastic processes or statistical physics.

Three main approaches have been developed in order to gain theoretical insights on the role of STDP in neuronal networks. Most studies consider a feedforward network of neurons, with a (sometimes large) collection of presynaptic neurons, and a single postsynaptic cell that integrates all these inputs. Pair-based STDP, most of the time with the all-to-all formulation, is then applied to the synaptic weights between the pre-and the postsynaptic cells. The asymptotic behavior of the neuronal network is often studied, with most works mostly aiming at characterizing the distribution of the synaptic weights for large windows of time.

INTRODUCTION models, the interaction between pre-and postsynaptic spikes is integrated at the calcium level, and its concentration decays with a time constant of about 20 milliseconds, see [GB12]. On the other hand, the effect of STDP on synaptic weights takes place on a slower timescale, where it can take seconds and even minutes for changes to occur see [BP98;FGV05] Most computational models of synaptic plasticity incorporate this timescale difference by implementing small updates of the synaptic weights. A first example is [KGH99], who "introduced a small parameter η [..] with the idea in mind that the learning process is performed on a much slower time scale than the neuronal dynamics." Similarly, [Rob99] defines two timescales pt, xq such that "the measurable changes in behavior occur during the course of several training cycles (t), whereas the neuronal activity modulation that is responsible for synaptic change is greatest within each cycle (x).", with t representing the long timescales of synaptic plasticity, and x neuronal activity. Other models also make this assumption, sometimes mixing it with a mean-field approximation leading to a Fokker-Plank equation [RLS01;RBT00a].

It should be noted that models using this assumption do not seem to agree with observations from numerous experimental studies, see [BP98;FGV05;Fel12]. Classically (in experimental works), the protocol to induce plasticity consists in stimulating both neurons at a certain frequency a fixed number of times with a fixed delay ∆t, over a period of one or two minutes (60-150 pairings at 1 Hz for example). This part is designed to reproduce conditions of correlations between the two neurons, when mechanisms of plasticity are known to be triggered. However, measurements of the synaptic weight show that changes take place on a different timescale: after the protocol, it is observed that at least several minutes are necessary to have a significant and stable effect on the synaptic weight. In other words, the change in synaptic weights happens long after the end of the plasticity induction.

To tackle this added complexity, an approach consists in updating the synaptic weights with a fixed, or random, delay. This is not completely satisfactory since the evolution of the synaptic weight is generally believed to be an integrative process of past events rather than a delayed action. Another approach which I will use consists in implementing this delay through an exponentially filtered process to represent the accumulation of past information. A recent article [RBS16] also takes this fact into account by adding an "induction" function to canonical models of STDP.

Separating the timescales into two components leads to a simplification of the dynamical system. Indeed, it is then possible to find theoretical estimates by studying the fast system, in our case plasticity induction, by supposing that the slow variables, the synaptic weights, are constant. Once the behavior for fixed slow variables has been studied, it is possible to solve the slow dynamics using the estimates of the fast processes. In particular, one can consider that the fast system is only present in the slower dynamics through averaged functionals. Similar principles are used in theoretical studies of STDP leading to simpler dynamics that are then studied analytically see [KGH99; KH00; KGH01].

A story of correlations

The first thorough study of pair-based STDP was developed in [KGH99], and used the previously defined slow-fast approximation. Their analysis led to the conclusion that a fundamental quantity in the study of STDP was the cross-correlation between the pre-and postsynaptic neurons. The asymptotic behavior of the synaptic weight dynamics, Relation (4) of [KGH99] is given by, dw dt ptq "

ż `8 ´8 Φpsqµps, tq ds, where, -Φp¨q represents the STDP curve;

-µp¨, tq" S 1 pt`sqS 2 ptq , the correlation between the spike trains at time t.

The quantity ¨¨¨ is defined in terms of temporal and ensemble averages, ¨¨¨ is the ensemble average and ¨¨¨the temporal average over the spike trains. Therefore, µps, tq" S 1 pt`sqS 2 ptq represents the cross-correlogram of the pre-and postsynaptic neurons, i.e the distribution of presynaptic spikes relative to postsynaptic ones.

It is quite striking to see that in the slow-fast approximation, the synaptic weight update is solely determined by the convolution of the plasticity curve Φ and the correlation function. This quantity can either be directly taken from electrophysiological data, where cross-correlograms are commonly drawn, or can be computed based on neuronal models used in the system. Many studies have tried to analytically compute this quantity, and only succeed using some approximations. In [KH00] for example, the authors use the integrate-and-fire model and employ themselves to compute this correlation function under some assumptions.

One interesting fact about this equation is that one can study the influence of highly correlated inputs in this framework [KGH99; KGH01; GK02a], leading to estimations of the synaptic weight dynamics with biologically inspired inputs.

It is however important to stress here, that this framework supposes that all preand postsynaptic spikes are taken into account at each pairing, therefore restricting its use only to the all-to-all pairing scheme.

Mean-field analysis

Another approximation is sometimes made, usually in addition to the timescale separation, and relates to having a large number of independent presynaptic neurons N in a stochastic context. Under the approximation of N being large, and therefore after scaling each single synaptic weight by a factor 1{N , it is possible to obtain a Fokker-Plank equation for the weight distribution [RBT00a; RLS01; BMG04]. In this case, the temporal evolution of each synaptic strength is assumed to follow a diffusion process and, consequently, verifies the Markovian property. The analysis is done with the associated Fokker-Planck equations, and the corresponding equilibrium distribution when it exists, see [RLS01;RBT00a].

This approach can also be compared with mean-field analysis, in the sense that usually, limit equations lead to dynamics that depends on the mean synaptic weight, see [RBT00a]. This approximation leads to the characterization of asymptotic synaptic weight distribution, in simple cases, usually with independent presynaptic inputs, and as such, is a great tool to study STDP in a theoretical setting.

However, the scaling of each synaptic weight by the factor 1{N is not biologically plausible. Indeed, in that case, the importance of a single pairing is diluted over the INTRODUCTION large number of inputs in the mean-field limit, whereas by definition STDP relies on the repetition of such correlated pairings. Furthermore, for the postsynaptic neurons to spike, one may expect it to receive highly correlated inputs. The Fokker-Planck approach would not be able to take into account these types of inputs, and it therefore greatly limits its potential application to more biologically-plausible neuronal networks. An extension of this formalism to higher orders, the Kramers-Moyal expansion, is also used in this context for some non-Markovian models, see [LF12].

CHAPTER 2 A PROBABILISTIC APPROACH TO NEURONAL NETWORKS 2.1 Stochastic models for neuronal activity Neurons are complex cells that integrate many different biological processes in order to emit action potentials and transmit them to other neuronal cells. Modeling neurons has been an active topic of research for the past century, and many books have reviewed large classes of models. We refer to them for a general presentation of neuronal dynamics in computational neuroscience [Izh07;ET10;Ger+14].

The following sections will be devoted to building a stochastic model for neuronal activity, using different mathematical tools, starting with point processes and then slow-fast analysis.

Neuronal dynamics

Neurons can be modeled through complex systems, where different compartments interact to reproduce neuronal dynamics. These compartments are related to functionally diverse parts of the neuron, and are of interest when studying in details how action potentials are generated and how they travel along the axons to convey information to other neurons.

When modeling neuronal networks with numerous neurons, those complex models do not scale well in numerical complexity and are hard to study using theoretical tools. Most of the research therefore focuses on reducing neuronal dynamics to a system with only one scalar variable to represent cell activity and usually define it as the membrane potential X of the neuron. The equivalence between the membrane potential used in models and the actual membrane potential in biological experiments is not straightforward, as this potential greatly depends on where it is measured along the neuron's membrane. However, its repetitive use in computational neuroscience has proved that, even if it is not directly related to a specific biological quantity, it still enables neuroscientists to reproduce complex dynamics with a simple model of neuronal activity.

The membrane potential is subject to different ionics flows and depends on the dynamics of numerous channels, that open or close depending on the neuron's state and the signals it receives. A first simple hypothesis is to suppose that there exists a resting potential X eq , to which the membrane potential decays when it is not stimulated, and that the membrane acts as a resistance-capacitance system. These leaky-integrate dynamics lead to the following equation for X, τ dX{ dt " ´pXptq ´Xeq q `RI where τ represents a time constant, R the resistance of the neuron and I external input currents.

Regarding neuronal models, an important topic is spike generation, in particular in simple models as the leaky-integrate neuron, where all biological mechanisms that INTRODUCTION trigger action potentials are not taken into account. It has been known for a long time that a neuron spikes when it depolarizes, i.e when its membrane potential is high. Most models in computational neuroscience [Izh07; ET10; Ger+14] use integrate-and-fire models, where a spike is emitted as soon as the membrane potential X reaches a specific value X th . After the spike, the neuron resets to another value X reset , that is often taken as the resting potential X eq . In mathematical terms, this translates to:

# τ dX{ dt " ´pXptq ´Xeq q `RI if X ă X th Xptq Ñ X reset when Xpt´q " X th .
This model leads to membrane potentials that are not continuous functions of time. In a mathematical setting, càdlàg functions model this type of dynamics .

The dynamics of X in the absence of spikes are said to be linear, in the sense that, for any type of inputs I"I 1 `I2 , it is possible to compute X through a linear combination of X 1 and X 2 , i.e the membrane potentials with I " I 1 and I " I 2 . Experimental neurons follow the same principles when their membrane potential is below the spike threshold, and as such, linear integrate-and-fire neurons are known to correctly model subthreshold dynamics.

However, upon neuronal depolarization (i.e membrane potential rise), linear approximations do not satisfyingly reproduce biological data. Indeed, spikes result from auto-exciting processes that take place in the soma and more complex models are needed to reproduce similar dynamics. The introduction of nonlinear models has solved this issue, by replacing the leaky term by more complex, nonlinear functionals of the membrane potential, leading to,

# τ dX{ dt " f pXptqq `RI if X ă X th Xptq Ñ X reset when Xpt´q " X th .
where f pXq is the nonlinear model. Two nonlinear models have emerged and established themselves as good approximations for neuronal dynamics, the first of them known as the quadratic model with f pXq9X 2 , and the second one called the exponentialintegrate-and-fire neuron with f pXq9 exppXq. These models are not sufficient to reproduce other neuronal patterns of activity, that are sometimes of interest in neuronal networks. Bursting for example, i.e the capacity of a neuron to fire discrete groups (i.e bursts) of spikes, cannot intrinsically be modeled under these simple assumptions (without any additional input). The same problem emerges when modelling adaptation: the fact that under constant input, a neuron is able to raise or decrease its firing rate over time.

A second variable needs to be added to the model to properly reproduce these behaviors. The adaptation variable U usually follows slower dynamics than X and represents many underlying ionic currents that are responsible for complex neuronal behaviors. Adaptive nonlinear integrate-and-fire models have therefore been introduced [Izh07; ET10; Ger+14] and their dynamics follow,

$ ' & ' % τ dX{ dt " f pXptqq `RI if X ă X th τ U dU { dt " gpU ptq, Xptqq if X ă X th Xptq Ñ X reset , U ptq Ñ U pt´q `Ureset when Xpt´q " X th .
where gpU, Xq models the dynamics of the slow adaptation variable and τ U the adaptation timescale. When the neuron spikes, the adaptation variable U can also be updated by U reset or not, depending on the model.

When building a computational neuronal network, different arguments need to be considered to choose which neuronal models to use. Theoretical models, which aim at investigating neuronal dynamics using mathematical tools, need the simplest model that reproduces the studied phenomenon, in order to manipulate analytical expressions. Computational models, designed for computer experiments and therefore limited by computer capacity and complexity, are able to manipulate more complex descriptions. Overall, choosing the right model results from a complex balance between keeping a contiguous proximity to biological reality and using the best adapted technique to investigate neuronal dynamics.

Random generation of spikes

In the natural brain, spontaneous neuronal activity is abundant, which causes noisy spiking dynamics. It is important to distinguish extrinsic noisy activity, that is related to random spikes coming from external neurons, from intrinsic noise. Most models introduce noise using an extrinsic random current, sometimes in the form of random spikes and more often as a diffusive random noise, usually taken as a Gaussian process, to integrate the effect of large populations of neurons [Ger+14]. In integrate-and-fire models, where the firing mechanisms is deterministic, it is necessary to introduce such external noise in order to trigger spikes in a random fashion. In particular, when the external noise is taken as a diffusive process, spiking times are defined as the first time when the stochastic process X reaches a particular value, i.e its threshold potential X th . There is an extensive on first passage times exists; which has investigated the distribution of spike timings in diffusive neuronal models.

However, neurons cut out from their networks also display randomness in their spiking mechanisms, highlighting the existence of noise inside the neuronal cell. Experimental data suggest that the firing process itself has a significant random component, which can lead to randomness in the spike trains even in the presence of deterministic input.

A first approach to model this intrinsic randomness was developed in Wilson-Cohan neuronal networks: neurons [Cow68] switch between different states: quiescent (corresponding to subthreshold dynamics), activated (to spikes) and refractory (the refractory period, i.e is caused by mechanisms that unable a neuron to generate another spike). Later on, in order to study neuronal dynamics, a stochastic version of this model was developed, in which neurons switch between states at a rate that depends on the membrane potential [Cow91]. Even if spikes in this model where modeled indirectly as a switch between two neuronal states, it is, to our knowledge the first introduction of a stochastic mechanism for spiking. Since then, several models have been built on this hypothesis, some of them keeping the Wilson-Cohan formalism of different neuronal states [BC07;Hel18].

Later on, some works have added variability in the threshold mechanisms, by adding a random component when generating spikes [GH92]. Extending this idea, spike generation can be modeled through a random variable that depends on the current value of the membrane potential, leading to the development of Poisson neurons. These neurons are characterized by their membrane potential X, usually defined as a simple INTRODUCTION leaky-integrate process, but spike triggering results from a Poisson process. In other words, if the neuron state at time t is Xpt´q, it is natural to assume that the probability that the neuron spikes between times t and t`dt is equal to βpXpt´qq dt, where β represents the activation function. This function is often taken as nondecreasing, because neurons tend to spike as their membrane potential rises. Under this hypothesis, spikes are generated through a random process, even in the presence of a constant input. Several models have used this approximation either with β as a linear function of the membrane potential [KGH99] or more complex nonlinear activation functions [Chi01]. The Poisson neuron model is able to reproduce intrinsic spike emissions and is a powerful tool for theoretical studies of stochastic neuronal networks [RT16].

Spiking trains as point processes

Spikes represent good estimates for neuronal activity, even if it would be overly simplistic to reduce neuronal dynamics to these events. Once a spiking mechanism is defined, either by using integrate-and-fire neurons or Poisson neurons, neuronal activity can be represented, under this approximation, by the sets of spiking events pt k q kPN . This can be completed by the definition of the neuron spike train N , i.e the measure,

N pdtq " ÿ kPN δ t k pdtq,
where δ x is the Dirac measure at t"x.

N is a classical object in probability theory, and can be seen, under some supplementary assumptions as a point measure. A point measure on R `, is an integer-valued Borelian positive measure on R `which is Radon (which has finite values on any compact set in R `). In particular, a point measure is carried by a subset of R `which is at most countable and without any finite limiting point. It is however quite realistic to use these objects when considering biological neuronal dynamics such as refractoriness to suppose that explosion events do not occur.

As explained in the previous section, spike generation is a stochastic process and accordingly the measure N is also a random object. Indeed, simulating the same neuronal dynamics several times would result in distinct realizations of the spike train. It is possible to define a probability measure pP, Ωq on the point measures N . Each realization N pwq would then be characterized by stochastic spikes timings pt k pwqq kPN . The stochastic process N pdwq is called a point process, and has led to many works in the probability community [Ver70; DV08]. Such processes have been used to model earthquake events, population dynamics, finance and of course, neuroscience.

In the following, the point process formalism is used for a simple system, composed by two neurons connected at one synapse. We only choose to model each spike train by a point process, with N pre for the presynaptic neuron and N post for the postsynaptic cell. We suppose that the postsynaptic cell follow leaky-integrate dynamics, and that its input is only defined by the presynaptic neuron spikes. In other words, at each presynaptic spike, the membrane potential X of the postsynaptic neuron is updated by a quantity W which represents the synaptic weight. This process can be formulated, setting aside the reset of the neuron after a spike and taking X eq "0, using a stochastic differential equation, dXptq " ´1 τ Xptq dt `W N pre pdtq.

Poisson processes

In order to model the postsynaptic neuron spikes, Poisson processes need to be introduced. They represent a significant subset of point processes [Kin92] and are characterized by their intensity measure µ on R `, which appears when computing the number of points of the Poisson process in a measurable set A, i.e

N pAq " PoissonpµpAqq,
where Poissonpλq is a Poisson law with parameter λ, i.e P pN pAq"kq "

µpAq k k! e ´µpAq .
They also need to display an independence property, i.e for any disjoint subsets A and B, N pAq and N pBq must be independent random variables. These processes are commonly used in stochastic theory because thanks to the independence property they share, they lead to simpler proofs and can then be used to build more complex objects.

Going back to our simple model of neuronal dynamics, I will assume that the presynaptic neuron spikes according to a homogeneous Poisson process, i.e their interspike times are taken as identically independent exponential variable of parameters λ. It corresponds to taking a Poisson process with an intensity measure proportional to the Lebesgue measure, µpdtq " λ dt. In particular, the following property is verified, PpN pre prt, t `dtsq"1q " λ dt `opdtq.

For the postsynaptic neuron, following the hypothesis developed in the previous section, I would need to build a nonhomogeneous Poisson process that verifies, PpN post prt, t `dtsq"1q " βpXpt´qq dt `opdtq.

where βp¨q is the activation function and represents the influence of the postsynaptic membrane potential on spiking.

In order to reproduce this property using homogenous Poisson processes, I need to introduce a Poisson point process P on R 2 with rate 1 and define the firing instants of the output neuron pt post,k q as the jumps of the point process N post defined by

ż R `f puqN post pduq def. " ż R `f puqP ´p0, βpXpu´qqs , du " ż R 2 `f puq1 tsPp0,βpXpu´qqsu Ppds, duq, (2.1)
for any non-negative Borelian function f on R `.

Classical properties of Poisson processes give that, for tą0 and xPR, P pN post pt, t`dtq"1|Xpt´q"xq "βpxq dt`opdtq, as expected, N post is a Poisson process with intensity pβpXptqqq.

Poisson processes are natural objects to represent neuronal spike trains and their use in theoretical studies of neuronal networks benefit from the large amount of existing works on the subject.
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Hawkes processes, a natural formulation for an auto-exciting process

The influence of postsynaptic spikes on the membrane potential results in its resetting to a constant value E r , the reset potential. This property can be integrated easily in the stochastic differential equations developed in the last section, dXptq " ´1 τ Xptq dt `W N pre pdtq `pX r ´Xpt´qqN post pdtq.

This dynamic is of real interest in probability because it produces a Poisson process whose intensity βpXptqq depends on previous jumps. It could also be postulated that instead of being reset to a specific value, a postsynaptic spike just decreases (or increases) the membrane potential by a fixed value ∆X r leading to

dXptq " ´1 τ Xptq dt `W N pre pdtq `∆X r N post pdtq.
For most neurons, ∆X r would be taken as negative modeling the inhibitory influence of a postsynaptic spike on the postsynaptic membrane potential. However, for bursting neurons one could imagine that ∆X r may be taken as positive, in order to model the fact that after a first spike, a bursting neuron is more prone to spike again. These assumptions are of course only possible when using Poisson neurons, because of the absence of fixed spike threshold. In particular, the spiking rate of a neuron following this dynamic is equal to,

λ post ptq " βpXpt´qq " β ˆżp´8,tq W expp´pt´sq{τ qN pre pdsq `żp´8,tq ∆X r expp´pt´sq{τ qN post pdsq ˙.
This formulation is close to the SRM (spike response model), see [Ger+14] for a review, where the impact of each spiking event (from the presynaptic and the postsynaptic neurons) are modeled by response kernels (here exponentials).

Such auto-exciting (or auto-inhibiting) processes have been studied in probability since their discovery by Hawkes in 1974 [HO74], and applied to various domains as finance, genetics or neuroscience.

A Hawkes process is a point process N Hawkes whose intensity is a function of previous jumps, i.e λ Hawkes ptq " β ˆżp´8,tq hpt´sqN Hawkes pdsq ˙.

It is quite evident from the previous expression that neuronal dynamics can fit, after small adaptations, under this formalism with h being an exponential function. These processes exhibit complex dynamics, and the existence of stationary processes verifying this definition has led to several works in stochastic process theory. The first formulation of the Hawkes process dates back to [Haw71;HO74], and chose to focus on linear activation function β. This enabled the authors to study the existence of stationary Hawkes processes using cluster branching processes theory. Later on, the latter analysis was extended to nonlinear Hawkes processes, i.e with nonlinear activation function β, primarily in [BM96]. Hawkes processes can also be extended to study multidimensional recurrent systems. This approach has already been applied to the analysis of neuronal networks dynamics in [START_REF] Reynaud-Bouret | Inference of functional connectivity in Neurosciences via Hawkes processes[END_REF] for example.

Synaptic plasticity and neuronal activity, a slow-fast system

Up until now, neuronal networks have been considered with fixed connections and therefore lacking any synaptic plasticity. In particular, the synaptic weight W is taken as a constant of the model. This is a simplistic model of neuronal activity, and to explain the influence of synaptic plasticity a more accurate version needs to be developed. We have introduce in the first chapter the notion of synaptic plasticity, the evolution of the synaptic strength as a function of neuronal activity, and would lead to stochastic differential equations of the following form, # dXptq " ´1 τ Xptq dt `W pt´qN pre pdtq, dW ptq " F pXptqq dt.

(2.2)

where F represents synaptic plasticity mechanisms and is responsible for the fact that W " pW ptq, tą0q is now a function of time. We chose in this example to use synaptic plasticity that only depends on the value of the postsynaptic potential X.

When focusing on long-term synaptic plasticity, i.e synaptic changes that operate on longer timescales than neuronal dynamics, it is interesting to apply a slow-fast decomposition to this system.

Scaling of the neuronal and synaptic weight dynamics

In order to represent this timescale separation, most studies introduce a small scaling parameter ε.

Neuronal processes, associated to the point processes N pre and N post , occur on a timescale which is much faster than the timescale of the evolution of pW ptq, tą0q. For our simple model, after scaling, the SDE (2.2) becomes, for εą0,

# dX ε ptq " ´1 τ Xptq dt ε `Wε pt´qN pre,ε pdtq, dW ε ptq " F pX ε q dt. (2.3)
where N pre,ε corresponds to the Poisson process N pre with the timescale change tÞ Ñt{ε, Using this formulation, X ε is the fast variable, in the sense that when ε goes to 0, it is sped up. The increments of the variable W are of order Op1q and for this reason, pW ε ptq, tą0q is described as a slow process. The corresponding scaling results, known as separation of timescales, are routinely used in mathematical models of computational neuroscience see, for example [KGH99].

Stochastic averaging

In a mathematical context, these types of results are referred to as averaging principles. See [PSV77] and Chapter 7 of [FW98] for general presentation. They aim at establishing a limit result, or averaging principle, for pW ε ptq, tą0q when ε goes to 0 for certain types of dynamics.

In particular, in most formalisms, the stochastic systems studied verifies some Markovian property, in particular the system (2.3), can be formulated using martingale problems.
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We denote by pX w ptq, tą0q the solution of Relation (2.2) when the process pW ptq, tą0q is constant and equal to w. Under appropriate conditions, it has a unique equilibrium distribution Π w . The averaging principle for the simple model can be expressed as follows. Under some conditions, the processes pW ε ptq, tą0q is tight for the convergence in distribution when ε goes to 0, and any limiting point pwptq, tą0q satisfies the following integral equation, wptq " wp0q`ż t 0 ż R F pxqΠ wpsq pdxq ds, tě0.

(2.4)

See Section 5 of Chapter 1 of [Bil99] for general results on tightness properties and convergence in distribution.

An important part of the proof using stochastic averaging principles is dedicated to the tightness of the slow variable pW ε , tą0q viewed as càdlàg processes. In particular, using that,

W ε ptq " W ε p0q`ż t 0 F pX ε psqq ds,
the tightness of the family of processes pW ε ptqq is equivalent to the tightness of

ˆż t 0 F pX ε psqq ds, tą0 ˙.
A general approach to prove averaging principles is presented in [Kur92] for jump processes.

An elegant idea first developed in [PSV77] is to introduce the notion of occupation measure, it computes a local average of the fast variable value, as a measure defined by, for all tą0 and Borelian set B, ν ε pA, r0, tsq "

ż t 0 1 tBu pX ε psqq ds,
where 1 tBu is the indicator function of a Borelian B. Indeed, it is then possible to rewrite the previous expression as,

ˆż t 0 ż R F pxqν ε pdx, dsq, tą0 ˙.
As expressed in [Kur92], an important hypothesis is that the process pX ε ptq, tą0q verifies the compact containment condition, i.e that the set, tX ε ptq, t ą 0, ε ą 0u is relatively compact, which directly leads to the fact that the occupation measure ν ε is also tight. If the function F is bounded, the resulting tightness of W ε is straightforward. Most applications of slow-fast analysis need these two conditions to prove the stochastic averaging principles [KK+13]. This is also the case of [Hel18] for the time-elapsed model of plasticity for which this representation holds. Note that this is one of the few rigorous proofs I know of an averaging principle for a stochastic model of plasticity.

However, in a real biological system, the compact containment condition, and the boundedness of the slow variable dynamics may not be verified as easily, and would lead to more complex proofs.

Once tightness is proven, one last step is still needed to prove convergence of the scaled system to the averaged version described by equation (2.4). If Relation (2.4) has a unique solution for a given initial state, a result for the convergence in distribution of pW ε ptq, tą0q when ε goes to 0 is therefore obtained. Uniqueness holds if the integrand, with respect to s, of the right-hand side of Relation (2.4) is locally Lipschitz as a function of wpsq. Regularity properties of the invariant distribution Π w as a function of w need to be verified.

Stochastic averaging principles gather a set of tools that have been used to study slow-fast systems. However, several assumptions classically used on this subject are equivalent to the boundedness of the dynamics. In biological systems, such conditions may not be always verified and therefore applying slow-fast analysis is not as straightforward as it seems in a first approach.

CHAPTER 3 PROCEDURAL LEARNING IN THE STRIATUM

During my PhD, I was also part of the "Dynamic and Pathophysiology of Neuronal Networks" team at Collège de France, led by Dr. Laurent Venance. The experimentalists there are working on electrophysiological and behavioral approaches to examine the role of the dorsal striatum in procedural learning. Here, I will be referring to the dorsal striatum as the striatum, for simplification, leaving aside its ventral part, the nucleus accumbens. Most of the work I report here is focused on the striatal system, using mathematical tools and computational neuroscience to understand its dynamics and properties. In particular, the striatum displays a specific type of synaptic plasticity, anti-Hebbian STDP and I will develop several properties of anti-Hebbian STDP either in stochastic neuronal networks or in computational models of the striatum. In the following section, I will introduce the striatum as a core subcortical nucleus, that is part of a larger system, the basal ganglia, involved in action selection and procedural learning. Then, I will describe the different properties of the striatal neuronal network, in particular by defining its main constituents, the medium-spiny neurons (MSNs), that will be the basis of all the computational work in this report. Finally, I will detail how anti-Hebbian STDP has been discovered at corticostriatal synapses and what are the current views on the implication of anti-Hebbian STDP in models. Most information from this introduction has been taken from [Mil07;ST16] for the biological system and [PS95] for the computational part.

The striatum, a subcortical structure involved in procedural learning

The input nuclei of the basal ganglia

The striatum represents the entry system of the basal ganglia, a large group of subcortical nuclei involved in action selection, goal-directed behavior and procedural learning [ST16].

As the main input to the basal ganglia, the striatum is characterized by a convergence of a large array of excitatory neurons descending from the cortex or the thalamic nuclei. Cortical and thalamic glutamatergic (excitatory) axons converge at the level of the striatal neurons, and represent the main cause of neuronal activity in the striatum.

The striatum is of particular interest because of its capacity to integrate cortical inputs from all cortices, starting from the sensorimotor cortex (responsible for sensory integration and motor commands) to the limbic cortex (which supports diverse functions including emotion, behavior, long-term memory). The striatum uses this convergence of different sources of information to select correct associations and determine future actions based on this large collection of signals.

The striatum is primarily composed by projections neurons, called the mediumsized spiny neurons (MSNs) because of the size and shape of their dendritic tree. Because of their roles as the only neurons projecting outside of the striatum, they are also referred to as striatal projection neurons (SPNs). Accordingly, MSNs project to other parts of the basal ganglia, and two main pathways have been characterized in the past decade. For a simplified picture of the basal ganglia organization see Figure 3.1 (right). It has been shown that two subtypes of MSN differ in their target nuclei. Directpathway neurons, dMSNs, directly extend their axons into the EP (entopeduncular nucleus) and the SNr (substantia nigra pars reticulata), which represent the output nuclei of the basal ganglia. Conversely, indirect-pathway neurons, iMSNs, project to the GPe (external globus pallidum), whose neurons then project to the STN (subthalamic nucleus) as a final step before being received at the EP and SNr. Information traveling through this pathway goes to several intermediate steps before arriving at the output neurons of the basal ganglia. This simplistic view of the basal ganglia system is presented and discussed in [Mil07].

The basal ganglia are composed of nuclei whose projecting neurons share a quite uncommon property when comparing to the rest of the brain: all neurons are inhibitory and transmit information at synapses using the GABA (gamma-aminobutyric acid) neurotransmitter. An exception must be made for neurons from the STN which are excitatory. When comparing with the cortex, where the majority of the cells are excitatory, and inhibition is only present through local interneurons, it highlights the fact that the basal ganglia has its own dynamics, quite distinct from cortical ones. In particular, the MSNs have inhibitory projections to their target neurons, which exhibit tonic (spontaneous) firing activity, and modulate these rates through the intensity of inhibition.

The striatum, and more generally the basal ganglia, are linked to several neurological disorders, such as Parkinson's disease or Huntington's disease. The continuous effort of experimentalists and neuroscientists working on the basal ganglia, has mainly been driven by the understanding of these diseases and by the prospect to heal them.

Functional role of the striatum

The basal ganglia are a key structure for action selection, and the control of voluntary motor movements. The striatum, as the main input structure of this system, has distinct functional roles which can be linked to three of its main properties.

The striatum integrates numerous cortical inputs at each MSN, and a large number of those excitatory neurons need to be activated at the same time to trigger a spike at the MSN. Indeed, MSN are known to exhibit low rest potentials (X eq " ´80 mV ) and only spike when receiving enough excitatory currents concurrently to reach the spike potential (X th " ´50 mV ). Therefore, MSNs play a great part in filtering random cortical activity, and extracting from noise, relevant information, characterized by correlated cortical spiking. It is particularly interesting to notice that MSNs integrate excitatory inputs from variate cortical structures, which then "share" information at the level of the striatum to decide on which action to perpetrate in response to a particular situation. From the machine learning point of view, the striatal layer mimics the role of a perceptron, whose input layer would be represented by cortical neurons, and the output layer would be modeled by the MSNs [Wic93;PS95]. MSNs are then able to send this filtered information to the following stages of the circuit, leading to action selection and motor processing. This detection of coincidence is enhanced by the presence of collateral inhibition between MSNs, i.e they also project to neighboring MSNs, and INTRODUCTION therefore inhibit them while spiking. This competition between inhibitory cells lead to winner-take-all dynamics, where a single active neuron shuts down the other MSNs, enhancing signal-to-noise ratio. This hypothesis, based on strong collateral inhibition has been tempered in recent works, where MSN inhibition has been shown to be weaker, leading to winner-share-all dynamics [WAS07].

A second important fact about the striatum is that its synaptic connections are highly plastic. In particular, corticostriatal synapses are modified following correlated activity from cortical and striatal neurons [PS95] and also display STDP [FV10]. Accordingly, the ability of MSNs to select important information from spontaneous cortical activity is shaped by synaptic plasticity. Indeed, corticostriatal synapses learn to modulate MSN activity to the right intensity to participate in the pattern detection task. Many synaptic mechanisms have been proven to be involved in different types of learning, and in particular for the striatum, in procedural learning. This particular type of learning refers to the process of acquiring skills in a motor task that is eventually can be performed automatically, without having to consciously remember the information. Learning to ride a bike is an example of procedural learning, in the sense that, when cycling, people do not move their feet with explicit, conscious, orders, but rather just replicate a sequence that they have learned to perform. It is usually opposed to declarative memory, where the subject is able to consciously recall particular information.

Finally, for learning to occur in the striatum, striatal neurons need to be taught through some mechanisms which cortical associations are contextually appropriate or not. Reward mechanisms are usually associated to dopaminergic signaling [SDM97], and the striatum is one of the brain areas where dopamine plays a major role. A subset of MSNs, mainly located at striosomes (patches of chemical compartments in the striatum, see Figure 3.1) are known to directly project to the SNc, one of the main pools of dopaminergic neurons in the brain. Striatal activity therefore greatly influences the release of dopamine in the rest of the brain, and in particular in the striatum. Indeed, neurons from the SNc are known to project directly to the dorsal striatum and therefore locally influence striatal activity, and even synaptic plasticity, with signals based on reward. Goal-directed learning in particular has been shown to rely on the influence of dopamine in the striatum [YK06; BO10]. More precisely, dopamine is a good candidate to represent reward or RPE (reward prediction error) directly at the level of the striatum.

Dichotomies in the dorsal striatum

As explained in the previous sections, the striatum has to perform several different tasks at the same time, keeping in mind that it only has a single type of projecting neurons, the MSNs. Several heterogeneities have been observed at the level of the striatum, both structurally and functionally that can explain its ability to "multitask".

Direct vs indirect pathways

As explained in Section 3.1, MSNs can be discriminated based on their output targets, and their belonging to the direct or indirect pathways. Furthermore, neurons from the direct and indirect pathways are associated with different dopaminergic receptors (D1like for direct pathway neurons, and D2-like for indirect ones). Indirect pathway MSNs also have a greater excitability (they are more prone to spike) than MSNs belonging to the direct pathway. Finally, [Per+22] have proven that in some regimes, MSNs may exhibit different STDP rules at their corticostriatal synapses. These neurons also have different functions, because direct and indirect pathways neurons tend to exert an opposite influence on the basal ganglia output. The differential influence of the direct, and the indirect pathways has been the focus of many studies. Excitatory inputs received by the direct MSNs lead to a decrease of activity in the output neurons of the basal ganglia, which in turn stop inhibiting key areas for motor processing, enabling motor activity. The direct pathway is therefore involved in the release of inhibition, necessary for the correct implementation of learned motor skills. The indirect pathway goes through one more inhibitory connection, and as such has the opposite influence on the output neurons of the basal ganglia. It has been shown that its role is to prevent actions from being processed. The balance resulting from the activity of both systems is key in order to perform action selection, and to correctly process complex motor programs. These facts have been used when modeling the action selection process [CJB10; Dun+19], or when studying the influence of the basal ganglia in Parkinsonian models [Rub17; HOD18]

The dorsolateral (DMS) vs dorsomedial (DMS) striata

The second duality that is present in the (dorsal) striatum consists in the distinction between the DLS and DMS regions of the striatum, see 3.1 (DLS in blue, DMS in orange). These two parts are not clearly segregated when looking at the dorsal striatum, but they integrate inputs from different cortical areas, sensorimotor cortices for the DLS and associative ones for the DMS. Again, MSNs display different properties in these two regions, in particular, at the level of their corticostriatal plasticity [Per+22]. Another important variation between those two regions is that striatal interneurons (neurons that only project inside the striatum) have different distributions [Fin+18]. It has been shown that these two regions also exhibit clear functional differences [BO10]: the DLS is involved in habit formation, i.e learning to associate stimulus to a succession of actions without taking into any rewards, whereas DMS participate in goal-directed learning (learning based on rewards). They are both involved when learning a new task, and their complementary action seems necessary for procedural learning. For a more detailed presentation on this topic, see Section IV.2.2.1.

Patch vs matrix compartments

Finally, the striatum can be subdivided in two types of chemically-distinct patterns. Striosomes are patches of MSNs which project to the SNc, and the matrix which forms the rest of the MSNs [BC15; Smi+16]. In the first models of the striatum, these two parts where supposed to represent the two systems in actor-critic model [PS95], where the matrix would be responsible for choosing an action based on current information (the actor) and the striosomes, thanks to their association with dopaminergic neurons of the SNc, would predict, using an internal model of the world, the reward that would result from doing a particular move (the critic). Dopamine would then be used to correctly update both systems (as is expected in the actor-critic model) because dopaminergic neurons project back to the whole striatum.

Even if at first view, the striatum seems to be quite restricted in its actions, due to the fact that its only influence is exerted through a single type of cells, the MSNs, INTRODUCTION different local variations of the striatal network explain its ability to multitask efficiently, while sharing relevant information.

Corticostriatal STDP and importance of anti-Hebbian plasticity

STDP at corticostriatal synapses

The striatum, while integrating inputs from all cortical areas (from motor to limbic parts) and from some thalamic nuclei, is involved in both action selection and procedural learning. [Yin+09] proved that procedural learning depends on corticostriatal plasticity, leading to various studies to characterize the shape and role of corticostriatal plasticity [Kor+12; PV19]. Plasticity observed in vitro (using brain slices) and in vivo (in anesthetized or awake rodents) depend on several conditions, first of all the induction protocols (rate-based, STDP), then striatal heterogeneity, and finally the presence/absence of neuromodulators [PV19].

For a long time, corticostriatal plasticity was known to be depression-based, i.e leading to a decrease in the synaptic weight value. However, after applying STDP protocols at corticostriatal synapses, [FGV05] described that they displayed anti-Hebbian STDP. In short, pre-post pairings (a presynaptic spike followed by a postsynaptic spike) lead to long-term depression while reversed pairings trigger long-term potentiation. It is important to stress here that, anti-Hebbian STDP has not been as extensively studied as Hebbian one, even if it was discovered at the same time [Bel+97]. Several studies have later on confirmed the presence of anti-Hebbian STDP at corticostriatal synaspes [Pai+13;Val+17], and have studied the influence of the induction protocol on synaptic plasticity. Changes in frequency [Per+22], number of pairings [Cui+16], age of the rodents [Val+17] have shown that STDP is highly dependent on these parameters, leading to legitimate questions about its active role in in vivo synaptic plasticity, and of course in behavior. In vivo studies have confirmed that corticostriatal STDP could be elicited, while maintaining a biological level of activity [Mor+19].

It is to be noted that some works have reported Hebbian STDP at corticostriatal synapses. These conflicting observations have been explained by the use (or lack of use) of ionotropic GABA antagonists [Pai+13]. Moreover, the influence of dopamine on the shape of STDP is also of great importance [She+08], when starting to consider models of goal-directed learning [GHR15], or the influence of three-factor learning rules [KIT17; Ger+18; PV19].

I would like to stress here, that when talking about corticostriatal synapses, I am referring to synapses onto MSNs. However, several studies have also demonstrated that STDP could also be elicited at corticostriatal synapses located on the different types of interneurons present in the striatum. In particular, fast-spiking inhibitory interneurons (FS), cholinergic interneurons and low threshold-spiking interneurons (LTS) also exhibit different types of STDP [FV10]. Similarly, plasticity was also induced at thalamocortical synapses, i.e where thalamic afferents connect to striatal neurons [Men+20].

In conclusion, striatal neurons have highly plastic synapses, and various works have proven that anti-Hebbian plasticity has an important role to play in learning. However, few models have tried to study how anti-Hebbian STDP impacts neuronal dynamics, and this work aims at reporting some new principles for anti-Hebbian STDP.

Functions of anti-Hebbian STDP

In order to understand the role of anti-Hebbian STDP, modeling studies are often necessary and it is quite appalling to see that most computational works on synaptic plasticity only focus on Hebbian STDP. Theoretical studies analyzing different types of STDPs, even if scarce in numbers, exist [Rob00; CF03; RA04; ZD07; RL10; BK12].

An exception must be made for a sequence of publications on the role of anti-Hebbian STDP in electrosensory systems, in the mormyrid electric fish. These fish are known to have an electric organ located in their tail that generates a weak electric field. A motor command causes the electric organ to discharge in pulses and the animals can then navigate by detecting small distortions in the electrical field caused by external objects. Moreover, it has been shown that anti-Hebbian STDP was present at parallel fiber synapses [Bel+97] and several computational models have been built on this hypothesis [RL10]. They explain that anti-Hebbian STDP helps the system to create a negative image of the electrical field generated by a motor command. When this negative image is subtracted to the actual electric field sensed by the fish, small distortions are easily detected, helping the fish to navigate. Anti-Hebbian plasticity has been shown to be perfect in order to reproduce this phenomenon [RB00; WRL03] and this cancellation mechanisms has been studied both with computer simulations and theoretical studies [RL10]. An important point raised by several articles, is that anti-Hebbian STDP alone, is not able to generate sustained spiking activity. Indeed, as a causal pre-post pairing leads to depression, the synaptic weights will eventually converge to a situation where they are not large enough to trigger spiking activity. In order to counteract this phenomenon, and to reproduce experimental data, nonassociative potentiation (only triggered by presynaptic activity) is often added to the associative anti-Hebbian STDP rule [RB00; WRL03; RA04].

Hebbian STDP is known to act as a correlation tool, in the sense that neurons whose firing are correlated, will be even more correlated after the action of synaptic plasticity. This auto-exciting process has been shown to be of great importance in the formation of neuronal assemblies and syncfire chains [GBV10], mainly in the cortex. Anti-Hebbian STDP follows the opposite principles, in the sense that as soon as the postsynaptic neuron spikes, it immediately reduces the value of the synaptic weights that have led to its spiking. Anti-Hebbian STDP therefore acts as a homeostatic mechanisms, that can limit the growth of the synaptic weights to a value sufficient to trigger spikes [RA04]. This view has also emerged in studies on learning temporal spiking sequences, where the goal is not only to spike in response to a pattern, but to spike at the right time. Theoretical studies have shown that algorithms needed to solve this task, as the Chronotron [Flo12] or ReSuMe [PK10] have dynamics similar to anti-Hebbian rules [Güt14]. For a more specific introduction on this topic see, Section IV.1.1.1. -Part B will implement anti-Hebbian STDP in simple models of the striatum, using computer simulations to study the influence of synaptic plasticity on different learning tasks. For this part, I have been directed, from the computational neuroscience side, by Pr. Jonathan Touboul (Brandeis University) and was partly funded by a Fulbright grant to work at Brandeis University for a five months period. Two articles emerged from these projects, the first has been accepted [Per+22] and the second in last writing stages [VTV22]. In both papers, I have designed the model, the task, done the simulations, analyzed the results and written the paper under the tight supervision of Pr. Jonathan Touboul and my second PhD advisor Dr. Laurent Venance.

-Chapter 1: G. In this paper, the model is used to draw conclusion on the respective roles of different types of plasticity, studied in their full extent in the associated paper [Per+22], by my colleagues from Dr. Laurent Venance team.

Both lines of works were based on the same experimental mechanisms, but the collaboration between them did not end there. Indeed, the composition of a rigorous setting for synaptic plasticity in stochastic neuronal networks was enriched by several biologically plausible properties, after lengthy discussions with my advisors. Similarly, the analysis of synaptic weights dynamics in computational models of the striatum was greatly helped by theoretical results obtained in the stochastic framework. As a conclusion, although, both projects have been built together, and have influenced each other over the course of my PhD, I present them separately here, for clarity.

Stochastic neural networks and synaptic plasticity

If numerous models of neuronal cells have been proposed in the mathematical literature, few of them include a variable for the time-varying strength of the connection between two neurons. We introduce a general, mathematical framework to study synaptic plasticity. We develop and use this formalism in a serie of four articles, that I will detail sequentially.

In Chapter A.1 [RV21b], we investigate a system composed of two neurons connected by a single synapse, and a stochastic process describing its dynamical behavior is presented and analyzed. The notion of plasticity kernel is introduced as a key component of plastic neuronal networks models, generalizing a notion used for pair-based models. We show that most STDP rules from computational neuroscience can be represented by this formalism. An important subclass of plasticity kernels, where cellular processes such as the neuronal membrane potential and the concentrations of chemical components have Markovian dynamics, is defined and investigated.

After having defined the general formalism needed to study STDP, we apply a slow-fast analysis to the dynamics of the associated neuronal network. This work is presented in Chapter A.2 [RV21c]. In this chapter we develop and investigate a scaling approach of these models based on several biological assumptions. Experiments show that long-term synaptic plasticity evolves on a slower timescale than the cellular mechanisms driving the activity of neuronal cells. For this reason, a scaled version of the stochastic model is introduced, and an averaging principle is stated for a subclass of Markovian plasticity kernels. These averaging principles are used to study two important STDP models, pair-based rules and calcium-based rules, and are compared with the approximations of STDP models from computational neuroscience. Discrete models of STDP rules are also investigated for the analytical tractability of their limiting dynamical system.

The proof of the averaging principle is developed in Chapter A.3 [RV21a]. We consider a stochastic system with two connected nodes, whose unidirectional connection is variable and depends on point processes associated to each node, that represent the simple neuronal network defined before. We study the scaling regime when the rate of both point processes is large compared to the evolution of the connection. The central result of this chapter is the averaging principle for the connection dynamics. Mathematically, the key variable is the point process, associated to the output node, whose intensity depends on the past activity of the system. The proof rests on a detailed analysis of several of its unbounded additive functionals in the slow-fast limit, and technical results on interacting shot-noise processes.

In Chapter A.4 [RV22b], we apply the timescale separation (consequence of [RV21c;RV21a]) to derive the long-time limits of a single synaptic weight subject to pair-based STDP. We show, using theoretical arguments and computer simulations, that the pairing scheme (choice of presynaptic and postsynaptic spikes to consider) controls the synaptic weight dynamics for small external input on an excitatory synapse. This result implies in particular that mean-field analysis of plasticity may miss some important properties of STDP. Anti-Hebbian STDP favors the emergence of a stable connection. In the case of an inhibitory synapse the pairing schemes matter less, and we observe convergence of the synaptic weight to a stable value only for Hebbian STDP. We study different asymptotic regimes for STDP rules, raising interesting questions for future works on adaptative neural networks and, more generally, on adaptative systems.

All previous chapters have highlighted the importance of stationary distributions of neuronal dynamics with constant synaptic weights. Considering that a neuron can be modeled as an auto-exciting process, we have developed an interest in the study of stationary Hawkes processes. In Chapter A.5 [RV22a], we develop a new formalism for Hawkes process, where we prove that the sequence of jump timings can be seen as a Markovian chain on the space of positive real sequences. In addition, we study the transient behavior in details the case where each jump induces an exponential influence on the Hawkes intensity. Under this hypothesis, the system is described by a simpler Markov chain, and we prove several estimations on this type of Hawkes process, using Markovian theory, either for stationary or transient processes.

STDP in the striatum: implications on learning and memory

One of the focuses of this PhD was to build a simplified model of the striatum, with anti-Hebbian STDP and reward signaling, and thus investigate the impact of anti-hebbian forms of STDP on learning and memory. In particular, I have developed a simple numerical model of the striatum, integrating cortical spiking inputs to study the role of anti-Hebbian STDP in learning. I have tested this network on two different tasks, which I will present in this part.

In Chapter B.1 [VTV22], we study the influence of anti-Hebbian STDP on a specific task, related to the striatum prominent role in procedural learning. Sequences of cortical spikes are presented to the striatal output neurons (MSN) and combined information from the output, reward and timing between the different spikes modify the intensity of each connection, through two mechanisms: anti-Hebbian STDP and reward signaling. The network learning capacity is measured by a score, based on the prediction of rewarded and nonrewarded patterns. The learning dynamics and efficiency are compared between different settings (number of neurons, intensity of the plasticity, types of STDP, tolerance to random noise). Two important properties of the striatal networks, spiking latency and collateral inhibition have subsequently been added to the model and lead to an improvement of the global accuracy. In conclusion, we show that anti-Hebbian STDP favors the learning of complete sequence of spikes, such as is needed in the striatum, whereas, even if Hebbian STDP helps to correlate the spiking of two connected neurons, it is not sufficient to integrate long sequences of correlated input spikes.

Finally, in Chapter B.2 [Per+22], I present a project where I have directly collaborated with experimentalists. Electrophysiological and behavioral experiments were performed to study the different properties of two regions of the striatum, who mediate different types of learning: goal-directed behavior in DMS and habits in DLS. We show that symmetric and asymmetric anti-Hebbian STDP exist in DMS and DLS, respectively, with opposite plasticity dominance upon increasing corticostriatal activity. In this chapter, I use the mathematical model, defined in Chapter B.1 to study the computational properties of these STDP rules in procedural learning. We developed a complex task, composed by a learning phase, followed by a period of random activity, and finally a relearning phase in order to investigate the influence of STDP on the maintenance of learned patterns. We found that symmetric anti-Hebbian STDP favored memory flexibility by allowing a rapid forgetting of patterns, while asymmetric anti-Hebbian STDP contributed to memory maintenance, consistent with memory processes at play in procedural learning.

Other PhD works, not presented in this document

During the course of my PhD, I have also been involved in several projects of data analysis, through local collaborations in Laurent Venance's team. These projects, which helped me to gain experience while closely working with experimentalists, are not reported in the main document, as they are not directly linked with my PhD subject. In the following section, I will shortly present four of those works to give a complete overview of my PhD.

First, using experimental data from the lab, I have developed a tool to discriminate between direct-and indirect-pathway MSNs using electrophysiological properties. I have first developed an algorithm to compute all interesting properties from AP (action potential) protocols, then I have trained several machine learning techniques to correctly classify both types of neurons. In particular, I have shown that using the combination of two algorithms leads to a good performance in the classification task. This work was presented at an international conference [Vig+19], and has been subsequently used in the lab by experimentalists to identify neurons, without having to use geneticallymodified mouse lines.

In the second half of my PhD, I have also worked with Pr. Bertrand Degos (a neurologist that works part-time in Laurent Venance's team), and two of his interns on quantitatively measuring parkinsonian symptoms from videos. Bradykinesia is defined as a motor slowness and is associated with a decrease of the amplitude and speed of movement. As a key parkinsonian feature, it is currently assessed by the MDS-UPDRS score, a subjective protocol that lacks reproducibility and makes followup challenging. Using deep learning, we developed a tool to compute an objective score of bradykinesia. A large database of videos showing parkinsonian patients performing MDS-UPDRS protocols has been acquired in a Movement Disorder unit, and several deep learning algorithms, including DeepLabCut [START_REF] Mathis | DeepLabCut: markerless pose estimation of user-defined body parts with deep learning[END_REF], were applied to detect a 2D skeleton of the hand composed of 21 points, and transpose it into a 3D representation. A two-and three-dimensional semi-automated analysis tool was then developed to study the evolution of several key parameters during the protocol repetitions. This tool was presented at several medical conferences [Des+20], and a paper is currently being written. Both interns that have worked on this project, C. Desjardins and Q. Salardaine have received the APinnov 2021 Trophy.

Using the same deep learning network, DeepLabCut [START_REF] Mathis | DeepLabCut: markerless pose estimation of user-defined body parts with deep learning[END_REF], I have developed, in the lab, a process to follow different points of interest in videos where mice are subject to behavioral experiments. In particular, I was involved in a project with S. Valverde on the Engrailed-1 homoprotein [START_REF] Pezé-Heidsieck | Non-cell autonomous Engrailed regulates dendritic growth and protects DA neurons from degeneration via physiological eustress[END_REF]. Engrailed-1 is a homeoprotein transcription factor able to transfer between cells and to regulate transcription, translation and chromatin epigenetic status. The goal here is to develop En1 as a therapeutic homeoprotein in a Parkinson's Disease mouse model by virally addressing it to mesencephalic dopaminergic neurons of the SNc and test if it exerts a long-lasting epigenetic protection and has pro-survival activity. By overexpressing En1 in the SNc following the local and unilateral injection of an AAV virus, we wanted to test En1's ability to protect dopaminergic neurons from degeneration by looking at rotational behavior amplified by amphetamine sensitization. Using DeepLabCut, we were able to automatically compute the number of turns, and the distance on which the mice had run.

Finally, I have supervised two interns, C. Richard and G. Yasmine-Degobert, who have worked on the influence of feedforward inhibition in a computational model of the striatal network. Results from both internships have highlighted the role of inhibition in the striatum, and its differential influence in DMS and DLS. A general model of the striatum, based on these works and on the results obtained during my PhD on the influence of STDP, is currently in formation, and will tackle several interesting issues about procedural learning in the basal ganglia.

Stochastic neural networks and synaptic plasticity

The following document will be decomposed as follows: a general introduction, a general presentation of my contributions, wo parts gathering a total of seven different chapters, each chapter corresponding to a publication, and a discussion. Each chapter will contain its own appendix and a local bibliography.

1 Stochastic models of neural synaptic plasticity 51 2 Stochastic models of neural plasticity: a scaling approach 95

3 Averaging principles for Markovian models of plasticity 129

CHAPTER 1

STOCHASTIC MODELS OF NEURAL SYNAPTIC PLASTICITY

In neuroscience, learning and memory are usually associated to long-term changes of neuronal connectivity. In this context, synaptic plasticity refers to the set of mechanisms driving the dynamics of neuronal connections, called synapses and represented by a scalar value, the synaptic weight. Spike-Timing Dependent Plasticity (STDP) is a biologically-based model representing the time evolution of the synaptic weight as a functional of the past spiking activity of adjacent neurons.

If numerous models of neuronal cells have been proposed in the mathematical literature, few of them include a variable for the time-varying strength of the connection. A new, general, mathematical framework is introduced to study synaptic plasticity associated to different STDP rules. The system composed of two neurons connected by a single synapse is investigated and a stochastic process describing its dynamical behavior is presented and analyzed. The notion of plasticity kernel is introduced as a key component of plastic neural networks models, generalizing a notion used for pair-based models. We show that a large number of STDP rules from neuroscience and physics can be represented by this formalism. Several aspects of these models are discussed and compared to canonical models of computational neuroscience. An important sub-class of plasticity kernels with a Markovian formulation is also defined and investigated. In these models, the time evolution of cellular processes such as the neuronal membrane potential and the concentrations of chemical components created/suppressed by spiking activity has the Markov property.

Introduction

Central nervous systems, as the brain, are the main substrate for memory and learning, two essential concepts in the understanding of behavior.

It is widely accepted that neurons constitute the main relay for information in complex neural networks composing the brain. This multi-scale system, ranging from single neuronal cells to complex brain areas, is known to be the basis of memory consolidation, i.e. the transformation of a temporary information into a long-lasting stable memory. The memory trace, or engram, is the focus of studies in neuroscience, see [TMK18] for example. Biological, computational and mathematical models are developed to understand mechanisms by which an engram emerges during learning, maintains itself, and evolves with time.

Synapses are the key components for the transmission of information between connected neurons, and accordingly, it is assumed that the encoding of memory is integrated in the intensity of these connections. From a biological point of view, a synapse is a structure, located at the junction of two neurons, where the transmission of chemical/electrical signals is possible. A neuronal connection is unidirectional in the sense that the signal goes from an input neuron, called the pre-synaptic neuron, to the output one, the post-synaptic neuron. The intensity of the connection is referred to as the synaptic efficacy/strength and is represented by a scalar variable, the synaptic weight W . The impact of an input signal, a spike, from the pre-synaptic neuron is modeled as a jump of the membrane potential X of the post-synaptic neuron. The amplitude of this jump is used to quantify the synaptic weight.

A synaptic plasticity mechanism is defined as a collection of activity-dependent cellular processes that modifies the synaptic connectivity. During learning, specific patterns of neural activity may elicit short, from milliseconds to seconds, and/or long, from minutes to hours, -term changes in the associated synaptic weights. In this context, it is conjectured that memory is directly associated to synaptic plasticity, see [TDM14].

The state of a neuronal cell

In this paper we will investigate stochastic models of the dynamic of the synaptic weight of a connection from a pre-synaptic neuron to a post-synaptic neuron.

The post-synaptic neuron is represented by its membrane potential X which is a key parameter to describe its current activity. In neuroscience numerous models of an individual neuronal cell and neuronal networks have been used to investigate learning abilities and plasticity. See [Ger+14] for a review.

The leaky-integrate-and-fire model describes the time evolution of the membrane potential as a resistor-capacitor circuit with a constant leaking mechanism. Due to different input currents, the membrane potential of a neuron may rise until it reaches some threshold after which a spike is emitted and transferred to the synapses of neighboring cells. A large class of neural models based on this hypothesis has been developed, see [Ger+14] and references within.

To take into account the important fluctuations within cells, due to the spiking activity and thermal noise in particular, a random component in the cell dynamics has to be included in mathematical models describing the membrane potential evolution. For several models this random component is represented as an independent additive diffusion component, like Brownian motion, of the membrane potential.

In our approach, the random component is at the level of the generation of spikes. When the value of the membrane potential of the output neuron is at X"x, a spike occurs at rate βpxq where β is the activation function. See [Chi01] for a discussion. In particular the instants when the output neuron spikes are represented by an inhomogeneous Poisson process. Considering a constant synaptic weight W , the time evolution of the post-synaptic membrane potential pXptqq is represented by the following stochastic differential equation (SDE):

dXptq " ´1 τ Xptq dt `W N λ pdtq ´g pXpt´qq N β,X pdtq, (1.1)
where Xpt´q is the left limit of X at tą0:

τ is the exponential decay time constant of the membrane potential associated to the leaking mechanism.

-The sequence of firing instants of the pre-synaptic neuron is represented by a Poisson point process N λ on R `with rate λ. At each pre-synaptic spike, the membrane potential X is increased by the amount W .

-The sequence of firing instants of the post-synaptic neuron is an inhomogeneous Poisson point process N β,X on R `whose rate function is given by pβpXpt´qqq.

-The drop of potential due to a post-synaptic spike is represented by the function g, i.e. after a post-synaptic spike, the membrane potential is reset to Xpt´q´gpXpt´qq.

Considering that the point process N β,X depends on pXptqq, Relation (1.1) can be seen as a fixed point equation.

Synaptic plasticity

Synaptic plasticity refers to different mechanisms that leads to the modification of the synaptic weight. Consequently, we need to consider a time varying version of the synaptic strength W ptq. Although synaptic plasticity is a complex mechanism, general principles have been inferred from experimental data and previous modeling studies. One of the founding principles is Hebb's postulate (1949), later on summarized by [Sha92] as, "Cells that fire together wire together". Synaptic potentiation, resp. depression, is associated to an increase, resp. a decrease, of the synaptic strength. Plasticity is described as a set of mechanisms controlling the potentiation and the depression of synapses. It usually depends on the pre-synaptic and post-synaptic signaling, i.e. of past instants of pre-synaptic and post-synaptic spikes. In the literature this class of mechanisms are referred to as Spike-Timing Dependent Plasticity (STDP). Several experimental protocols have been developed to elicit STDP at synapses: sequences of spikes pairing from either side of a specific synapse are presented, at a certain frequency and with a certain delay. Occurrence, magnitude and polarity of STDP have been shown to depend on protocols used in experiments: frequency, number of pairings, types of synapses where it is applied, the neuronal sub-population, brain area, just to cite a few key parameters, see [Fel12].

We now introduce two important classes of synaptic plasticity mechanisms. Most models of the literature belong to, or are a variation of, one of these two classes. a. Pair-based models.

Each pair t"pt pre , t post q of instants of pre-synaptic and post-synaptic spikes is associated to an increment ∆W of the synaptic weight at time maxpt pre , t post q, ∆W " Φp∆tq, (1.2) where ∆t def.

" t post ´tpre and Φ is the some function on R, the STDP curve. The function Φ, usually taken from experimental data, is sharply decreasing to 0 as ∆t goes to infinity, so that distant spikes have a negligible contribution.

Many variants and extensions of pair-based models have been developed over the years to fit with experimental results. Triplets-rules, described in Sections 1.A and 1.A, add a dependency between spikes of the same neuronal cell. Additional examples can be found in [BA16].

b. Calcium-based models.

Another class of models infers from explicit biological mechanisms the shape of the STDP curve. Post-synaptic calcium traces have been found experimentally to be critical in the establishment of plasticity, see [Fel12] and references therein. In a classical model, when the calcium concentration C ca in the post-synaptic neuron reaches some specific threshold, STDP is induced accordingly. The analogue of Relation (1.2) for calcium-based STDP rules is,

dW ptq " F pC ca ptqq dt, (1.3) 
for some function F . The dynamics of C ca is only driven by instants of pre-and post-synaptic spikes. Consequently, the dependence of plasticity on the instants of spikes is not expressed directly as in pair-based models, but through some intermediate biological variable. Several biophysical models are based on this calcium hypothesis, see [GB10] for a review.

It should be noted that there are other STDP models, such as the ones based on exponential filtered traces of the membrane potential, see [CG10]. Pair-based and calcium-based models are nevertheless the most widely used STDP rules in large-scale plastic neural networks.

Models of plasticity in the literature

To understand how synaptic plasticity may shape the brain, the study of STDP in neural networks has attracted a lot of interest in different domains: a. Experiments, with measurements of a large variety of STDP rules. b. Computational models, for numerical simulations of these protocols with several populations of neuronal cells.

c. Mathematical models, to investigate the qualitative properties of STDP rules.

Many computational models have been developed to investigate STDP rules in different contexts. See [KGH99] and [MAD07] and the references therein.

Mathematical studies of models of plasticity are quite scarce. Most models are centered on evolution equations of neural networks with a fixed synaptic weight. See Sections 1 and 2 of [RT16] for a review. [Hel18] investigates a Markovian model of a Nearest Neighbor Symmetric Model STDP rule. See Section 1.2. This is one of the few stochastic analyses in this domain.

Contributions

A mathematical model of plasticity describing a pre-and a post-synaptic neuron should include the spiking mechanisms of the two neuronal cells. It is given by the time evolution of the membrane potential X of the post-synaptic cell, as described by Equation (1.1). It must also include the dynamics of plasticity of the type (1.2) or (1.3) for the time evolution of the synaptic weight W .

The difficulty lies in the complex dependence of the evolution of W with respect to the instants of spikes of both cells, the processes N λ and N β,X of Equation (1.1). For pair-based models for example, this is a functional of all pairs of instants of both processes. In general, there does not exist a simple Markovian model to describe the membrane potential dynamics and the evolution of the synaptic weight.

In Section 1.2, we introduce the notion of plasticity kernel which describes in a general way how the spiking activity is taken into account in the synaptic weight dynamics as a functional of the point processes N λ and N β,X . A differential system associated to the dynamics of the variables X and W is presented. Under mild conditions, it is proved that it has a unique solution for a given initial state. It is, to the best of our knowledge, the first attempt to have a general mathematical framework that describes most STDP rules of the literature. A large set of examples is presented in Section 1.2 and Section 1.A: most STDP models of [MDG08; GB10; Clo+10; BA16] can be represented within this formalism. Section 1.C gives a graphical representation of several STDP rules, see Figures 1.3 and 1.4.

Section 1.3 is devoted to an important sub-class of STDP rules, plasticity kernels of class M. These kernels have a representation in terms of a finite dimensional process whose coordinates can be interpreted as concentrations of chemical components created/suppressed by spiking activity. If a classical Markovian analysis of the associated stochastic processes is not really possible, their main advantage is that one can formulate a tractable model with two timescales, when the cellular dynamics are "fast". This approach is developed in the follow-up paper [RV21c]. For these models, when the synaptic weight is fixed, the fast stochastic processes have the Markov property. Section 1.3 discusses these aspects and several examples are presented in Section 1.D. Finally in Section 1.4, a discrete formulation of the stochastic system is defined and its fast processes invariant distribution is analyzed. The case of a calcium-based model is analyzed. Section 1.B discusses modeling issues on the incorporation of plasticity: via a time-smoothing kernel, as we do in the paper, or directly with an instantaneous information.

STDP in recurrent neural networks

In this paper, we consider only two neurons (the pre-synaptic neuron and the postsynaptic) that are connected by a single synapse. As it will be seen, a large variety of models have been used in the literature to describe the time evolution of a synaptic weight. Our goal is to propose a general, basic, mathematical framework where most of these models of plasticity can be investigated. The dynamics of the synaptic weight pW ptqq depends in an intricate way on the point process N λ for pre-synaptic spikes and N β,X for post-synaptic spikes.

For a neural network whose nodes are the vertices of a graph G, an extension of this model would be as follows: the membrane potential process pX i ptqq of node iPG should satisfy the SDE,

dX i ptq"´1 τ X i ptq dt`ÿ jÑi W j,i pt´qN β,X j pdtq´gpX i pt´qqN β,X i pdtq,
where jÑi indicates that there is a synapse pj, iq, from node j to node i, and pW j,i ptqq is the corresponding process for the synaptic weight. The associated differential quantity W pt´qN λ pdtq for instants of pre-synaptic of the synapse pj, iq is given by W j,i pt´qN β,X j pdtq.

Each synaptic weight pW j,i ptqq will be subject to synaptic plasticity, with defined plasticity kernels Γ p,i and Γ d,i that can be different. For synaptic weight pW j,i ptqq, we will define N β,X j as the Poisson process representing the pre-synaptic neuron and similarly, N β,X i for the post-synaptic neuron.

The models and some results of our paper can be extended to the multidimensional case, in particular the existence and uniqueness result, Theorem 4. For simplicity and because of its importance as a generic model, we will restrict ourselves to the case of a network with two-nodes.

Models of neural plasticity

We consider two neurons connected by one synapse. A synapse is a unidirectional connection from the input neuron to the output neuron allowing the transmission of 'information'. When the input, or pre-synaptic, neuron spikes, some neurotransmitters are released at the level of the synapse, where they can interact with the output, or postsynaptic, neuron. Following synaptic transmission, a pre-synaptic spike increments the membrane potential X of the output neuron by a scalar value, the synaptic weight W .

The dynamics of neural plasticity is described in terms of the time evolution of pXptqq and pW ptqq. For tě0, a. XptqPR is the membrane potential of the output neuron at time t. This is the difference between the internal and the external electric potentials of the neuron. The dynamics of the process pXptqq associated to the output neuron is a classical model of neuroscience. See [Ger+14] for a survey.

b. W ptqPR represents the intensity of synaptic transmission at time t, i.e. the increment of the post-synaptic membrane potential X when the input neuron spikes at time t. The evolution of pW ptqq at time tą0 depends in general on the total sample path of ppXpsq, W psqq, 0ďsďtq, in an intricate way.

To take into account inhibitory mechanisms, these two variables are real-valued and, consequently, may have negative values. Real synapses have a constant sign: they can be either excitatory (with a non-negative synaptic weight) or inhibitory (with a non-positive synaptic weight). In the following sections, other variables will be added to formalize the evolution equations of pXptq, W ptqq.

Definitions and notations

Sequences of pre-and post-synaptic spikes play an important role in the study of spiketiming dependent plasticity. Mathematically, it is convenient to describe them in terms of point processes. See [Daw93] for general definitions and results on point processes.

We denote by M `pR d `q the set of positive 

A point process on R d

`is a probability distribution on M p pR d `q. Two independent Poisson point processes are assumed to be defined on a filtered probability space pΩ, F, pF t q, Pq, see [Kin92]: a. A point process N λ on R `to represent the instants of pre-synaptic spikes is assumed to be Poisson with rate λą0, pt pre,n q is the increasing sequence of its jumps, i.e.

N λ " ÿ ně1 δ tpre,n , with 0ďt pre,1 ďt pre,2 ď ¨¨¨ď t pre,n ď ¨¨¨, where δ a is the Dirac measure at aPR `.

b. A Poisson point process P on R 2 `with rate 1. It is used to define the inhomogeneous point process of post-synaptic spikes in Relation (1.5).

The variable t of the point processes N λ pdtq and Ppdx, dtq is interpreted as the time variable. For tě0, the σ-field F t of the filtration pF t q of the probability space is assumed to contain all events before time t for both point processes, i.e. σ P 1 pAˆps, tsq , P 2 pAˆps, tsq , APB pR `q , sďt Ă F t .

(1.4)

A stochastic process pU ptqq is adapted if, for all tě0, U ptq is F t -measurable. It is a càdlàg process if, almost surely, it is right continuous and has a left limit at every point tą0, U pt´q denotes the left limit of pU ptqq at t. The Skorokhod space of càdlàg functions from r0, T s to S is Dpr0, T s, Sq. See [Bil99].

The set of real continuous bounded functions on the metric space SĂR d is denoted by C b pSq, and C k b pSqĂC b pSq is the set of bounded, k-differentiable functions on S with respect to each coordinate, with the respective derivatives bounded and continuous.

We conclude this preliminary section with an elementary but important lemma concerning the filtering of a stochastic process with an exponential function.

Lemma 1 (Exponential filtering). If µ is a non-negative Radon measure on R `, αą0 and h 0 PR, then Hptq " h 0 e ´αt `żp0,ts e ´αpt´sq µpdsq is the unique càdlàg solution of the differential equation, dHptq"´αHptq dt`µpdtq, such that Hp0q"h 0 .

This type of process is a central object in mathematical models of neuroscience. It is used to represent leaky-integrate phenomena of chemical components within cells. See [Ger+14] for a general review.

The dynamics of the post-synaptic membrane potential

It is represented as a càdlàg stochastic process pXptqq following leaky-integrate dynamics illustrated in Figure 1.1a: a. It decays exponentially to 0 with a fixed characteristic decay time τ , set without loss of generality to τ "1.

b. It is incremented by the current synaptic weight variable at each firing instant of the input neuron, i.e. at each instant of the Poisson point process N λ .

c. The firing mechanism of the output neuron is driven by a function β from R to R `, the activation function. When the membrane potential is x, the output neuron fires at rate βpxq. This function is usually assumed to be non-decreasing, in other words, the larger the membrane potential is, the more likely the neuron is to spike.

d. After a post-synaptic spike, the neuronal membrane potential X is decreased by the amount gpxq, where g is some function on R. In general, the membrane potential is reset to 0 after a spike, i.e. gpxq"x, see [RT16]. However, in some cases, the reset potential may not depend on the membrane potential before the spike, g can be constant for example. Classical properties of Poisson processes give that, for tą0 and xPR, P ´Nβ,X pt, t`dtq‰0 ˇˇXpt´q"x ¯"βpxq dt`opdtq, as expected, N β,X is Poisson process with intensity pβpXptqqq.

The following stochastic differential equation summarizes the description of the time evolution of pXptqq given by a), b), c) and d), dXptq " ´Xptq dt `W pt´qN λ pdtq ´gpXpt´qqN β,X pdtq.

Time evolution of the synaptic weight

In this work, the synaptic weight W will stay in a defined real (not necessarily bounded) interval K W . For several examples, the plasticity process leads to dynamics for which the process pW ptqq stays in K W for all time t.

-Taking K W "R leads to free dynamics of the synaptic weight, that can be either negative or positive, change its sign because of the plasticity rules. This situation occurs in models of neural networks where excitatory/inhibitory neurons are not separated in distinct classes..

-If K W "R `, the synaptic weight is non-negative and plasticity processes cannot change its sign. This is a model for excitatory neurons whose spikes lead to the increase of the post-synaptic membrane potential.

-Conversely, if K W "R ´, the cell is an inhibitory neuron, which has the opposite effect on the post-synaptic membrane potential.

-Finally, K W can also be bounded in order to represent saturation mechanisms, i.e. the synaptic weights needs to stay in a biological range of value. In that case, potentiation refers to a diminution of the amplitude of the negative jump, whereas depression indicates an augmentation. In experimental works, the denominations are inverted, for the sake of clarity we chose to stay with the previous names.

We can now introduce the notion of plasticity kernels.

Definition 2 (Plasticity kernel). A plasticity kernel is a measurable function

Γ: M p pR `q2 ÝÑ M `pR `q, pm 1 , m 2 q ÝÑ Γpm 1 , m 2 q,
M `pR `q is the set of positive Radon measures on R `and, for any tą0, the functional

pm 1 , m 2 q ÝÑ Γpm 1 , m 2 qpdu X r0, tsq (1.6)
is G t bG t -measurable, where µpduXr0, tsq denotes the restriction of the Radon measure µ to the interval r0, ts and pG t q is the filtration on M p pR `q, such that for tě0, G t is the σ-field generated by the functionals mÑmpp0, ssq, with sďt.

If Γ is a plasticity kernel and m 1 , m 2 PM p pR `q, the measure Γpm 1 , m 2 qpduXr0, tsq depends only on the variables m i pr0, ssq, for iPt1, 2u and sďt.

In our model, the infinitesimal elements at time t for the update of plasticity are expressed as ΓpN λ , N β,X qpdtq for some plasticity kernel Γ. This quantifies how the interaction between the instants of pre-synaptic and of post-synaptic spikes, N λ and N β,X leads to specific synaptic changes. For example, the order and timing between instants of pre-and post-synaptic spikes may have an impact on plasticity.

In previous works [SWW10; FSG10; LS14; Fel12], the notion of STDP Temporal Kernels referred to the curve of synaptic weight change ∆W as a function of ∆t for pair-based models. [PG06a] introduced more complex kernels, with multi-spikes interactions. The plasticity kernels defined above extend this notion to more general interactions between pre-and post-synaptic spikes.

Plasticity is represented as a process, integrating, with some decay, the past interactions of the spiking activity on either side of the synapse. Two non-negative process are introduced: pΩ p ptqq and pΩ d ptqq, the first one is associated to potentiation (increase of W ) and the other to depression (decrease of W ). For aPtp, du, Ω a ptq " Ω a p0qe ´αt `żp0,ts e ´αpt´sq Γ a pN λ , N β,X qpdsq, (1.7)

where αą0 and the variables Γ p and Γ d are plasticity kernels associated to potentiation and depression respectively. The process pΩ a ptqq can be seen as a exponential filtering of the random measure Γ a pN λ , N β,X qpdtq in the sense of Lemma 1. In Section 1.B of Supplementary Materials, another stochastic model of plasticity with no exponential filtering of the plasticity kernels is introduced and discussed.

As explained in the introduction of this section, the function M need to be chosen so that the synaptic weight W stays at all time in its definition interval K W . The time evolution of pW ptqq depends then on the past activity of the input and output neurons, through pΩ p ptqq and pΩ d ptqq and is described by, " pA p ´wq n ω p ´pw´A d q n ω d ´µpw ´Ar q, wPrA d , A p s,

dW
(1.10)

where A d ďA r ďA p , and ną0. This corresponds to a multiplicative influence of W . See [Güt+03]. It is straightforward to see that in that case, the synaptic weight stays bounded between A p and A d for any plasticity processes Ω a . The expression ´µpW ptq´A r q is for the exponential decay of the synaptic weight W to A r , its resting value. This term represents homeostatic mechanisms, i.e. mechanisms that maintain steady internal physical and chemical conditions to allow the functioning of the system. See [TN04].

Finally, an unbounded dynamics for an excitatory synapse, with K W "R `can be enforced by, M pω p , ω d , wq def.

" ω p ´wω d , (1.11)

Examples of plasticity kernels

We show that several important STDP rules of the literature can be expressed with plasticity kernels Γ p and Γ d . Further extensions are presented in 1.A and Section 1.A

Pair-based models

For pair-based mechanisms, the synaptic weight is modulated according to the respective timing of pre-synaptic and post-synaptic spikes, as illustrated in Figure 1.1b. This follows the fact that most STDP experimental studies are based on pairing protocols, where pre-and post-synaptic spikes are repeated at a certain frequency for a given number of pairings. Accordingly, a large class of models have been developed on the principle that the synaptic weight change due to a pair pt pre , t post q of instants of pre-and post-synaptic spikes, depends only on ∆t"t post ´tpre . The synaptic update is then taken proportional to Φp∆tq, where Φ is some function converging to 0 at infinity, that is referred to as the STDP curve. An example of exponential STDP curves is given in Figure 1.1b (top left). Many pair-based models have been developed over the years, varying mainly which pairs of spikes are taken into account when updating the synaptic weight.

We start with the simplest rule, the all-to-all version (following [MDG08] terminology), where all pairs of spikes give an update of the synaptic weight.

All-to-all model

The all-to-all scheme consists in updating the synaptic weight at each post-synaptic spike, occurring at time t by the sum over all previous pre-synaptic spikes occurring at time săt of the quantity Φpt´sq. Switching the role of pre-and post-synaptic spikes, the synaptic weight is updated in the same way with other constants. See Figure 1.1b (bottom left) for an example of all-to-all interactions.

The plasticity kernels are defined by, for m 1 , m 2 PM p pR `q and aPtp, du, Remarks.

Γ PA a pm 1 ,
a. The exponential STDP functions Φpsq"B expp´γsq, sě0, are often used in this context. See [MDG08]. Several studies also consider the case when Φ is a translated exponential kernel. See [LS08].

b. Hebbian STDP plasticity is said to occur when -a pre-post pairing, i.e. t pre ăt post leads to potentiation, ∆W ą0;

-a post-pre pairing, t post ăt pre , leads to depression, ∆W ă0.

Experiments have shown that this type of plasticity occurs for several populations of neuronal cells [BP98]. Early models can be found in [RBT00a; RLS01; MDG08] for a review.

Following Hebb's postulate, a 'causal' pre-post pairing (a post-synaptic spike occurs after a pre-synaptic one) should lead to potentiation,

Γ PAH p pm 1 , m 2 qpdtq " ˆżp0,tq Φ p,1 pt´sqm 1 pdsq ˙m2 pdtq.
Conversely, a post-pre pairing (anti-causal activation) leads to depression,

Γ PAH d pm 1 , m 2 qpdtq " ˆżp0,tq Φ d,2 pt´sqm 2 pdsq ˙m1 pdtq.
This corresponds to Φ p,2 "0 and Φ d,1 "0 in Equation (1.12).

c. Other forms of STDP have been discovered experimentally see [Fel12]. Anti-Hebbian STDP models follows the opposite principles: Pre-post pairings lead to depression, and post-pre pairings lead to potentiation. It has also been observed experimentally in the striatum, see [FGV05] for example.

It corresponds to the case where Φ p,1 "0 and Φ d,2 "0, and symmetric LTD rules to Φ p,1 "Φ p,2 "0 and, finally, symmetric LTP by Φ d,1 "Φ d,2 "0. This is the motivation of the general setting defined in Equation (1.12).

d. Pre/post-synaptic-only plasticity rules can also be expressed into this formalism. These models include a component to express the direct influence of the pre-or post-synaptic spikes on the plasticity without any interaction between the two spike trains. In that case, the kernel Γ PA 1 a would have the following expression, for m 1 , m 2 PM p pR `q and aPtp, du,

Γ PA 1 a pm 1 , m 2 qpdtq def. " ˆżp0,tq Φ a,2 pt´sqm 2 pdsq ˙m1 pdtq `ˆż p0,tq Φ a,1 pt´sqm 1 pdsq ˙m2 pdtq `Da,1 m 1 pdtq `Da,2 m 2 pdtq, (1.13)
where the constants D a,i , aPtp, du, iPt1, 2u, are non-negative.

Nearest neighbor symmetric model

In the nearest neighbor symmetric model, whenever one neuron spikes, the synaptic weight is updated by only taking into account the last spike of the other neuron, as can be seen in Figure 1.1b (top right). If the pre-synaptic neuron fires at time t pre , the contribution to the plasticity kernel is Φ a,2 pt pre ´tpost q , where t post is the last post-synaptic spike before t pre . 

Nearest Neighbor Symmetric

Post-synaptic

N β,X , tpost All-to-All Nearest Neighbor Reduced Symmetric Pre-synaptic N λ , tpre ∆t " tpost ´tpre 1{γ p,1 1{γ d,1 1{γ d,2 B p,1 B d,1 B d,2
(b) Synaptic plasticity kernels for pair-based rules. (Top left) STDP curve: update of the potentiation (in red) and depression (in blue) kernels as a function of ∆t"t post ´tpre . Exponential STDP curves of the form Φ a,i p∆tq"B a,i expp´γ a,i ∆tq are used in this example. (Bottom left) All-to-all pair-based rules: all pairings of pre-synaptic (in green) and post-synaptic (in purple) spikes are taken into account for the synaptic updates. Grey arrows indicate the interactions between the different spikes, see the associated updates as a function of the STDP curve above (blue and red points in (Top left)). (Top right) Nearest neighbor symmetric pair-based rules: for each pre-synaptic spike (in green), only the interaction with the previous post-synaptic spike (in purple) is taken into account for the synaptic update, and conversely for post-synaptic spikes. Grey arrows indicate the interactions between the different spikes. (Bottom right) Nearest neighbor reduced symmetric pair-based rules: only consecutive pairings of pre-synaptic (in green) and post-synaptic spikes (in purple) are taken into account for the synaptic update, and conversely for post-synaptic spikes. Grey arrows indicate the interactions between the different spikes. The corresponding kernels Γ PS are defined by, for m 1 , m 2 PM p pR `q and aPtp, du,

Γ PS a pm 1 , m 2 qpdtq def.
" Φ a,2 pt 0 pm 2 , tqq m 1 pdtq`Φ a,1 pt 0 pm 1 , tqq m 2 pdtq, (1.14) with the following definition, for mPM p pR `q and tą0, t 0 pm, tq " t ´supts : săt, mptsuq‰0u, (1.15)

with the convention that t 0 pm, 0q" `8. The quantity t 0 pm, tq is the delay between t and the last point of m before t.

Nearest neighbor reduced symmetric model

For the nearest neighbor reduced symmetric, a pre-synaptic spike at t is paired with the last post-synaptic spike at sďt, only if there are no pre-synaptic spikes in the time interval ps, tq, and similarly for post-synaptic spikes. See Figure 1.1b (bottom right). Accordingly, the kernels Γ PR are defined, for m 1 , m 2 PM p pR `q and aPtp, du, by

Γ PR a pm 1 , m 2 qpdtq def.
" `Φa,2 pt 0 pm 2 , tqq1 tt 0 pm 2 ,tqďt 0 pm 1 ,tqu ˘m1 pdtq ``Φ a,1 pt 0 pm 1 , tqq1 tt 0 pm 1 ,tqďt 0 pm 2 ,tqu ˘m2 pdtq, (1.16)

with same notations as in (1.14). For tą0, the inequality t 0 pm 2 , tqăt 0 pm 1 , tq is equivalent to the relation m 1 ppt 0 pm 2 , tq, tqq"0 so that there is a unique point of m 1 paired to t 0 pm 2 , tq as expected, and similarly by switching m 1 and m 2 . The updates of Relation (1.16) are therefore done only for consecutive pre-and post-synaptic spikes.

Calcium-based models

Pair-based models can be characterized as phenomenological models of STDP in the sense that experimental STDP curves are taken as a core parameter of the models.

Another important class of synaptic models are derived from biological phenomenons and aims at reproducing experimental STDP curves using simple biological models. A common hypothesis is to use the calcium concentration in the post-synaptic neuron as a key parameter to model STDP, see [SBC02] and [GB12]. Several biophysical models have studied the link between calcium concentration, and its direct implication on the dynamics of plasticity. A calcium-based model with saturation mechanisms has investigated the dependency on the number of pairings and the existence of different mechanisms for plasticity in [VVT18]. For these models, synaptic plasticity is expressed as a functional of the postsynaptic calcium concentration. For m 1 , m 2 PM p pR `q, the points of m 1 , resp. m 2 , elicit calcium transfers of amplitudes C 1 , resp. C 2 , followed by an exponential decay with rate γ. If pC m ptqq is the process of the calcium concentration associated to the couple m"pm 1 , m 2 q, it is therefore the solution of the differential equation

dC m ptq " ´γC m ptq dt `C1 m 1 pdtq `C2 m 2 pdtq,
with some fixed initial condition. By Lemma 1, it can be expressed as

C m ptq def. " C m p0qe ´γt `C1 ż p0,ts e ´γpt´sq m 1 pdsq`C 2 ż p0,ts
e ´γpt´sq m 2 pdsq.

(1.17)

The mechanisms for potentiation, resp. depression, are triggered depending on the calcium concentration. For aPtp, du, the plasticity kernel Γ C a is defined by,

Γ C a pm 1 , m 2 qpdtq def.
" h a pC m ptqq dt, (1.18)

for some non-negative function h a on R `. The function h a is usually a threshold function of the type h a pxq def.

" B a 1 txěθau , xě0,

(1.19)
for some B a PR `and θ a ě0, as done in [GB12]. In that case, the process pΩ a ptqq associated to Γ C a has therefore an impact on the synaptic weight as soon as the concentration of calcium is above level θ a .

Further examples of STDP rules are presented in Section 1.A.

The plasticity process

This section is devoted to the formal definition of the stochastic process describing the time evolution of the synaptic weight.

Definition 3. The stochastic process pXptq, Ω p ptq, Ω d ptq, W ptqq with the initial state px 0 , ω 0,p , ω 0,d , w 0 q, is the solution in DpR `, RˆR 2 `ˆK W q of the SDEs, for tą0,

$ ' & ' % dXptq " ´Xptq dt `W pt´qN λ pdtq ´gpXpt´qqN β,X pdtq, dΩ a ptq " ´αΩ a ptq dt `Γa pN λ , N β,X qpdtq, aPtp, du, dW ptq " M pΩ p ptq, Ω d ptq, W ptqq dt, (1.20)
where, Γ p and Γ d are plasticity kernels and N β,X is the point process defined by Relation (1.5) and the function M is expressed by Relation (1.8).

The system (1.20) can be interpreted as fixed point equation for the process pXptqq with an intricate dependence due to the point process N β,X as an argument of the plasticity kernels. Theorem 4 gives an existence and uniqueness result for the solutions of Equations (1.20). We now introduce the main assumptions on the parameters of our model which will be used throughout this paper.

Examples of different dynamics are presented in Section 1.C, for pair-based in Figure 1. for all points of continuity of h 1 and h 2 , has a unique continuous solution pSrh 1 , h 2 spw, tqq in K W .

Theorem 4. Under Assumptions A, the system (1.20) has a unique càdlàg adapted solution with initial state px 0 , ω 0,p , ω d,0 , w 0 q in RˆR 2 `ˆK W .

Proof. The construction is done on the successive intervals between two consecutive instants of jump of the system. The non-decreasing sequence ps n q of these instants is defined by induction.

The first jump of pXptqq occurs at time s 1 and is defined as the minimum of the first jumps of the processes pN λ pp0, tsqq and ˆżp0,ts

P ´`0, β `x0 e ´u˘‰ , du ¯˙. (1.22)
With Relation (1.21), for 0ďtăs 1 , we set Xptq"x 0 e ´t and W ptq"SrΩ 1 p , Ω 1 d spw 0 , tq, with

Ω 1 a ptq def.
" ω 0,a `żp0,tq e ´αpt´sq Γ a p0, 0qpdsq, aPtp, du, and W ps 1 q"W ps 1 ´q, where 0 is the null point process.

a. If s 1 is the first point of N λ , define f 1 def.
" `and Xps 1 q " x 0 e ´s1 `W ps 1 ´q.

b. If s 1 is the first point of the second point process of Relation (1.22), set

f 1 def. " ´and Xps 1 q " x 0 e ´s1 ´g `x0 e ´s1 ˘.
The mark f 1 indicates the nature of the jump occurring at time s 1 , i.e. if the spike was fired by the pre-or post-synaptic neuron.

The process pXptq, Ω 1 p ptq, Ω 1 d ptq, W ptqq satisfies the equations (1.20) on the time interval r0, s 1 s and, by Relation (1.4), s 1 is a stopping time with respect to pF t q.

Assume by induction that, for ně0, the variables ps k , f k , 1ďkďnq and the adapted càdlàg process pXptq, W ptq, tPr0, s n sq are defined, and s n is a stopping time. For aPtp, du, let

Ω n`1 a ptq def. " ω a `żp0,tq e ´αpt´sq Γ a ˜n ÿ k"1 δ s k 1 tf k "`u , n ÿ k"1 δ s k 1 tf k "´u ¸pdsq.
(1.23)

In Definition 2, the G t bG t measurability property, gives that for any ně1 and kăn, the process pΩ j a ptqq does not depend on the index jPtk, . . . , nu on r0, s k s. The instant s n`1 ąs n is defined as the minimum of the first jumps of the two point processes, pN λ prs n , tsq, tąs n q, ˆżrsn,ts P "`0 , β `Xps n qe ´pu´snq ˘‰ , du ‰ , tąs n ˙.

(1.24)

The fact that s n is a stopping time and the strong Markov property of the Poisson processes N λ and P give that s n`1 is also a stopping time. For s n ďtăs n`1 , set

W ptq"SrΩ n`1 p , Ω n`1 d
spW ps n q, t´s n q and Xptq def.

" Xps n qe ´pt´snq , and W ps n`1 q"W ps n`1 ´q, and a. If s n`1 is a point of N λ , define f n`1 "`, and

Xps n`1 q def.
" Xps n qe ´ps n`1 ´snq `W ps n`1 ´q.

b. Otherwise, we set f n`1 "´, and

Xps n`1 q def.
" Xps n qe ´ps n`1 ´snq ´g `Xps n qe ´ps n`1 ´snq ˘.

We have thus defined by induction a stochastic process pXptq, W ptqq on sequence of time intervals ps n , s n`1 q, ně1. We now prove that the process is defined on the whole real half-line, i.e. that the sequence ps n q is almost surely converging to infinity. This is the object of the following lemma.

Lemma 5 (Non-explosive behavior). Under Assumptions A, the sequence of successive jump instants ps n q is almost surely converging to infinity.

Proof. Denote by E 0 the event where the sequence ps n q is bounded and assume that it has a positive probability. On the event E 0 , almost surely, only a finite number of points of the Poisson process N λ may be points of the sequence ps n q. Therefore, there exists some N 0 PN and a subset E 1 of E 0 of positive probability such that for něN 0 , one has f n "´, i.e. the jumps are due to the second point process of Relation (1.24) after time s N 0 .

On the event E 1 , for něN 0 one has Xps n ´qă|Xps N 0 q|, almost surely, because p|Xptq|q can only decrease when there are no pre-synaptic spikes. Consequently, as βpxq is null for xă´c β , we have that maxpβpXptqq:tąs N 0 qă `8. Therefore, the successive jump instants ps n , něN 0 q cannot stay bounded on the event E 1 . This is a contradiction. The sequence ps n q is therefore converging to infinity almost surely.

A direct consequence of this result is that, from the very definition of the sequence ps n q, for any tą0, there exists n 0 such that if něn 0 then

n ÿ k"1 δ s k 1 tf k "`u X r0, ts " N λ X r0, ts and n ÿ k"1 δ s k 1 tf k "´u X r0, ts " N β,X X r0, ts, a.s.,
recall that µ X r0, ts is the measure µPMpR `q restricted to the interval r0, ts. For aPtp, du, again with the G t bG t -measurability property of plasticity kernels, the quantity

Ω n a ptq"Ω a p0q`ż p0,tq e ´αpt´sq Γ a pN λ , N β,X q pdsq
is constant for něn 0 , it is defined as Ω a ptq. Furthermore, for sďt and něn 0 , dW psq " M `Ωn p ptq, Ω n d psq, W psq ˘ds " M pΩ p ptq, Ω d psq, W psqq ds.

We have thus the existence of a solution to Relation (1.20). The uniqueness is clear on any time interval r0, s n s, ně1, and therefore almost surely on R `.

Markovian plasticity kernels

In this section we introduce an important subclass pMq of plasticity kernels that leads to a Markovian formulation of the whole plasticity process. In this context, it turns out that the associated synaptic weight process pW ptqq can be investigated with a scaling approach which is often used, sometimes implicitly, in the literature of physics in neuroscience. As it will be seen, plasticity kernels of pair-based models of Section 1.2 and of calcium-based models of Section 1.2 are of class M. The follow-up paper [RV21c] is devoted to the scaling analysis of these plasticity kernels.

Definition 6 (Kernels of class pMq). A plasticity kernel

Γ is of class pMq if, for m 1 , m 2 PM p pR `q,
Γpm 1 , m 2 qpdtq " n 0 pzptqq dt `n1 pzpt´qqm 1 pdtq `n2 pzpt´qqm 2 pdtq, (1.25) where a. For i"0, 1, 2, n a,i is a non-negative measurable function on R `, where PN ˚.

b. pzptqq is a càdlàg function with values in R `, solution of the SDE

dzptq " p´γ d zptq`k 0 q dt `k1 pzpt´qqm 1 pdtq `k2 pzpt´qqm 2 pdtq.

(1.26) -γPR `, adb"pa i ˆbi q if a"pa i q and b"pb i q in R `.

k 0 PR `is a constant and k 1 and k 2 are measurable functions from R `to R . Furthermore, the pk i q are such that the function pzptqq has values in R `whenever zp0qPR

`.

It is important to note that the function pzptqq is a functional of the pair pm 1 , m 2 q. The fact that zptq stay non-negative is an important feature of class pMq kernels. For example, we may have functions k 1 or k 2 of the form,

k i pzq " B i ´bi dz
where B i PR `, and b i Pt0, 1u . If Γ is of class pMq and pzptqq is its associated càdlàg process, with Relation (1.26) it is easily seen that, for any tą0, the functional

# pM p pR `q2 , G t bG t q ÝÑ pM `pr0, tsq, BpM `pr0, tsqqq pm 1 , m 2 q ÝÑΓpm 1 , m 2 qpdu X r0, tsq
is indeed G t -measurable, where pG t q is the filtration of Definition (2).

Proposition 7 (A Markovian formulation of plasticity). If Γ a , aPtp, du, are plasticity kernels of class pMq associated to pn a,i , k i q, iPt0, 1, 2u, aPtp, du and γPR `and under Assumptions A, the solution of Relations (1.20) of Theorem 4 is such that the stochastic process pU ptqq

def. " pXptq, Zptq, Ω p ptq, Ω d ptq, W ptqq is a Markov process on S M p q def. " RˆR `ˆR 2 `ˆK W , solution of the SDE, $ ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' %
dXptq " ´Xptq dt `W ptqN λ pdtq ´g pXpt´qq N β,X pdtq , dZptq "p´γ d Zptq `k0 q dt `k1 pZpt´qqN λ pdtq `k2 pZpt´qqN β,X pdtq, dΩ a ptq " ´αΩ a ptq dt`n a,0 pZptqq dt `na,1 pZpt´qqN λ pdtq`n a,2 pZpt´qqN β,X pdtq, aPtp, du, dW ptq " M pΩ p ptq, Ω d ptq, W ptqq dt.

(1.27)

Proof. Theorem 4 shows the existence and uniqueness of such a process pU ptqq. The process pU ptqq is a piecewise deterministic Markov process in the sense of [Dav93] and consequently has the Markov property. See Chapter 2 of [Dav93]. An expression of its infinitesimal generator is given in Section 1.D of Supplementary Materials.

It should be noted that, due to the dimension of the state space, the Markov property of pU ptqq cannot be really used in practice in our analysis. The representation in terms of SDEs in Relation (1.27) turns out to be useful in the scaling approach presented in [RV21c].

Motivation for Markovian kernels

The processes pΩ p ptqq and pΩ d ptqq determining the synaptic plasticity depend on the process pZptqq in a non-linear way. The coordinates of pZptqq"pZ i ptqq may be interpreted as the concentration of chemical components created/suppressed by pre-synaptic and/or post-synaptic spikes, with some leaking mechanism. Calcium is such an example, see Relation (1.17). A simple case is when each coordinate of pZptqq is associated either to pre-or post-synaptic spikes, i.e. it satisfies

dZ i ptq " ´γi Z i ptq dt `Bi N λ pdtq or dZ i ptq " ´γi Z i ptq dt `Bi N β,X pdtq.
Moreover, if Z i needs to be reset to B i when one of the neurons spikes, we just need to replace B i by B i ´Zi pt´q in these equations.

We now show that calcium-based models and several pair-based models, can be represented in such a setting, i.e. that their plasticity kernels are of class pMq.

Examples

Calcium-based models

For this set of models, the class pMq property is fairly clear. Relations (1.17) and (1.18) give that, for aPtp, du and m 1 , m 2 PM p pR `q,

Γ C a pm 1 , m 2 qpdtq def. " h a pC m ptqq dt,
where, if m"pm 1 , m 2 q, pC m ptqq is a càdlàg solution of the differential equation

dC m ptq " ´γC m ptq dt `C1 m 1 pdtq `C2 m 2 pdtq.
The process pZptqq is simply the one-dimensional process pC N λ ,N β,X ptqq. Markovian dynamics of the calcium-based model are illustrated in Figure 1.4-(a).

Pair-based models

Several kernels associated to pair-based models defined by Relation (1.12) are also of class pMq. This type of Markov property has been mentioned in [MDG08]. Markovian models including STDP models described in Section 1.2 are presented in Section 1.D of Supplementary Materials.

All-to-all model

The class pMq holds when the STDP functions Φ are exponential, i.e. when, for aPtp, du and iPt1, 2u, Φ a,i ptq"B a,i expp´γ a,i tq, tě0.

with B a,i PR `and γ a,i ą0. For m 1 and m 2 PM p pR `q, denote by pz a,i ptqq, the càdlàg solution of the differential equation

dz a,i ptq " ´γa,i z a,i ptq dt `Ba,i m i pdtq,
with z a,i p0q"0. Lemma 1 gives the relation

z a,i ptq " B a,i ż p0,ts
e ´γa,i pt´sq m i pdsq.

The process pzptqq is then defined as pz p,1 ptq, z p,2 ptq, z d,1 ptq, z d,2 ptqq. The plasticity kernel of this model, see Relation (1.12), can be expressed as

Γ PA a pm 1 , m 2 q " n a,1 pzpt´qqm 1 pdtq`n a,2 pzpt´qqm 2 pdtq,
the functions pn a,i q are defined by, for z"pz a,i qPR 4 `, n a,1 pzq"z a,2 and n a,2 pzq"z a,1 . An example of dynamics with plasticity kernels and associated Markov process pZ a,i q is presented in Figure 1.3-(a). Similar models, using auxiliary processes pZ a,i q can be devised for nearest STDP rules. See Section 1.D of Supplementary Materials, 

Nearest neighbor models

For mPM p pR `q and tą0, the variable t 0 pm, tq of Relation (1.15) used in the two models presented in Section 1.2, t 0 pm, tq " t ´supts : săt, mptsuq‰0u, can be expressed as the solution pz m ptqq of the differential equation,

dz m ptq " dt´z m pt´qmpdtq, with z m p0q"0.
For m 1 and m 2 PM p pR `q, we define pzptqq"pz m 1 ptq, z m 2 ptqq, Relation (1.26) holds with γ"p0, 0q, k 0 "p1, 1q and, for z"pz 1 , z 2 q, k 1 pzq"p´z 1 , 0q and k 2 pzq"p0, ´z2 q.

In this setting, both nearest models are of class M:

-The nearest neighbor symmetric model, Γ PS a of Relation (1.14), with n a,0 pzq"0, n a,1 pzq"Φ a,2 pz 2 q and n a,2 pzq"Φ a,1 pz 1 q.

-The nearest neighbor reduced symmetric model, Γ PR a of Relation (1.16), with n a,0 pzq"0, n a,1 pzq"Φ a,2 pz 2 q1 tz 2 ďz 1 u and n a,2 pzq"Φ a,1 pz 1 q1 tz 1 ďz 2 u .

Extensions

For all-to-all models, the exponential STDP function allows the representation of time evolution of plastic synapticity with a finite-dimensional process pZptqq and, therefore, the associated kernels are of class M.

For a general function Φ, it is however possible to express the system as a Markovian system, by taking the instants of all past instants of spikes pZ 1,k ptqq def.

" pt k pN λ , tq, kě0q and pZ 2,k ptqq def.

" pt k pN β,X , tq, kě0q with, for kě0, mPM p pR `q and tą0, t k pm, tq " t´suptsďt : mprs, tsqąku t k pm, tq represent the time between t and the kth last spike of m. In an analogous way as for Definition (1.15), we have, for kě1, dt k pm, tq " dt`pt k pm, t´q ´tk´1 pm, t´qq mpdtq, so that the processes pZ i,k ptq, kě0q, iPt1, 2u would satisfy SDE as in Relation (1.27).

Keeping track of all instant previous spikes, we can express the plasticity kernels with an infinite dimensional Markovian process. Unfortunately, there are fewer results, concerning equilibrium distributions for example, in such a context. This is why we restrict our study to finite-dimensional systems.

Markov processes associated to cellular processes

When the plasticity process pW ptqq is constant and equal to wPR, the associated solution pX w ptq, Z w ptqq of the first two SDEs of Relations (1.27) is clearly a Markov process driven by the pre-and post-synaptic spikes. The invariant distribution of this Markov process plays in important role in the scaling analysis of the process pW ptqq developed in [RV21a;RV21c]. For reasons explained in the introduction of [RV21c], these processes are referred to as fast processes.

It is easily seen that its infinitesimal generator is defined by, if f PC 1 b pRˆR `q and v"px, zqPRˆR `, then

B F w pf qpvq def. " ´x Bf Bx px, zq`B´γdz `k0 , Bf Bz px, zq F `λ ´f px`w, z`k 1 pzqq´f pvq ¯`βpxq ´f px´gpxq, z`k 2 pzqq´f pvq ¯, (1.28) with Bf Bz px, zq" ˆBf Bz i px, zq, iPt1, . . . , u ˙.
Examples of fast processes for classical STDP rules are presented in Section 1.D of Supplementary Materials. The following proposition is proved in Section 5 of [RV21a]. The explicit expression of Π w is not known in general. For several STDP models, like calcium-based models, this is a limitation for a detailed analysis of the plasticity process pW ptqq. See Section 4 of [RV21c]. The next section is devoted to a class of discrete models of synaptic plasticity for which the corresponding Π w has an explicit expression for the analogue of calcium-based models.

Discrete models of STDP rules

In this section, we introduce a discrete model of plasticity associated to Relation (1.27), where the membrane potential X, the cellular processes Z and the synaptic weight W are integer-valued variables. It amounts to represent these quantities as multiple of a "quantum", instead of a continuous variable. For example, pre-/post-synaptic receptors (like the AMPA receptor for example) have a measurable influence on the membrane potential, where one quantum would represent the influence of a single receptor. This is a biologically plausible assumption for potential and cellular processes. The leaking mechanism (´aU ptqdt in the continuous model, U PtX, Z, W u and aą0, in the SDEs) is represented by the fact that each quantum leaves the cell/synapse at rate a.

$ ' ' ' & ' ' ' %
dXptq " ´NI,X pdtq `W pt´qN λ pdtq ´NI,βX pdtq, dZ j ptq "´N I,γ j Z j pdtq `k0,j pZpt´qqN j 1 pdtq`k 1,j pZpt´qqN λ pdtq `k2,j pZpt´qqN I,βX pdtq, j"1, . . . , ,

dW ptq " ´NI,µW pdtq`A p N I,Ωp pdtq´A d 1 tW pt´qěA d u N I,Ω d pdtq.
(1.29)

The processes pΩ a ptqq, aPtp, du satisfy the same SDE as in Relation (1.27), the functions n a,i and k i , i P t0, 1, 2u are defined on N with values in N . The variables A p and A d are integers and γ"pγ j qPR `.

For ξą0, N ξ , resp. pN i ξ q , is a Poisson process on R `with rate ξ, resp. independent i.i.d. sequences of such point processes. As before, with Relation (1.5) and Ipxq"x and a process pU ptqq, the notation N I,U pdtq stands for P pp0, U pt´qq, dtq, where P is a Poisson process in R 2 `with rate 1. We have in particular

PpN I,U pdtq‰0|U pt´qq"U pt´q dt`opdtq.

All Poisson processes are assumed to be independent. We have taken gp¨q as the constant function equal to 1. As it can be seen, the firing rate in the evolution of pXptqq is the linear function xÞ Ñβx. The time evolution of the discrete random variable pW ptqq is driven by two inhomogeneous Poisson processes, one for potentiation and the other for depression.

As before we define pX w ptq, Z w ptqq as the Markov process pXptq, Zptqq when pW ptqq is constant and equal to wPN. If Q"pqppx, zq, px 1 , z 1 qqq is the jump matrix of pX w ptq, Z w ptqq, we have,

$ ' & ' % qppx, zq, px´1, zqq"x, qppx, zq, px, z`k 0 pzqqq"1 qppx, zq, px`w, z`k 1 pzqqq"λ, qppx, zq, px´1, z`k 2 pzqqq"βx, qppx, zq, px, z´e i qq"γ i z i , iPt1, . . . , u.
where e i is the ith unit vector of N . If f is a function on NˆN , with the notation ∇ pa,bq pf qpvq"pf pv`pa, bqq´f pvqq, for v, pa, bqPZ `1, Q can be expressed as

Qpf qpx, zq def. " ÿ px 1 ,z 1 q qppx 1 , z 1 q, px, zqqf px 1 , z 1 q "x∇ p´1,0q pf qpx, zq` ÿ j"1 γ j z j ∇ p0,´e j q pf qpx, zq`∇ p0,k 0 pzqq pf qpx, zq `λ∇ pw,k 1 pzqq pf qpx, zq`βx∇ p´1,k 2 pzqq pf qpx, zq.
Proposition 9. Under Assumptions A-a and A-b and if the coordinates of functions k 0 , k 1 and k 2 are bounded and all coordinates of γ are positive then the Markov process pX w ptq, Z w ptqq has a unique invariant distribution on N 1` . Proof. Since the state space is at most countable, the proof is simpler than its continuous counterpart, Proposition 9, where annoying technical intricacies hide the simplicity of the result. Let C k be an upper bound for the coordinates of k i , i"0, 1, 2. For px, zqPN `1, define, for ηą0, f px, zq"x`ηpz 1 `¨¨¨`z q. We have Qpf qpx, zq ď ´x `λw´βx ´η

ÿ j"1 γ j z j `η p1`λqC k `η βC k x ď ´βp1´η C k qx´minp1, γ j qf px, zq`D,
with D a constant. If η is chosen so that ηă1{ C k , then there exists γą0 and K such that Qpf qpx, zqă´γ holds whenever f px, zqąK. We can now use Proposition 8.14 of [Rob03] to conclude the proof of the proposition.

A Discrete Version of Calcium-Based Models

A comparison between continuous and discrete models of calcium-based STDP is presented in Section 1.C, and illustrated by Figure 1.4. The state of the system corresponds to the case when pZptqq is a one-dimensional process pCptqq solution of the SDE,

#

dCptq " ´NI,γC pdtq `C1 N λ pdtq `C2 N I,βX pdtq, dΩ a ptq " p´αΩ a ptq`h a pCptqqq dt, aPtp, du,

where C 1 , C 2 PN and, for aPtp, du, A a PN and h a is a non-negative function.

Definition 10. For a fixed W "w, the Markov process pX w ptq, C w ptqq is defined by its transition rate matrix Due to its use in the scaling results of [RV21c], only the distribution of the calcium variable C w is considered. The joint generating function of pX w , C w q could be obtained with the same approach.

Q C "pq C ppx, cq, px 1 , c 1 qqq is given by, for px, cqPN 2 , # q C ppx, cq, px`w, c`C 1 qq"λ, q C ppx, cq, px´1, cqq"x, q C ppx, cq, px, c´1qq"γc, q C ppx, cq, px´1, c`C 2 qq"βx. λ 1 1`β x γc x c `w `C2 `C1 β 1`β x
It might be tempting to try to solve the equilibrium equations for the transition rates of Definition 10. It does not seem that there is a way to solve them with generating functions methods. The proof below relies in fact on a convenient representation of the Markov process with a Poisson marked point process, it then gives a satisfactory representation of the equilibrium distribution.

Proof. To each arrival instant t of the Poisson process N λ on R is associated a vector of N 2w`C 1 `wC 2 u"ppx i , 1ďiďwq, py i , 1ďiďwq, pz 0,j , 1ďjďC 1 q, pz i,j , 1ďiďw, 1ďjďC 2 qq We take pU n q"ppX n,i q, pY n,i q, pZ n,i,j qq, where pX n,i q, pY n,i q and pZ n,i,j q, sequences of i.i.d. exponentially distributed random variables with respective parameters 1, β and γ, and independent of N λ . The interpretation of these variables are as follows, for 1ďiďw, for the nth instant of the Poisson process N λ , a. X n,i is the lifetime of the ith quantum of potential generated at time t (if any); b. Y n,i , the duration of time after which this ith quantum of potential initiates a firing of the neuron; c. Z n,0,j , the lifetime of the jth quantum of calcium generated at t, for 1ďjďC 1 ; d. Z n,i,j , the lifetime of the ith quantum of calcium created if the event described by (c) occurs, for 1ďjďC 2 .

Define N λ pds, duq def.

"

ÿ nPZ δ ptn,U n q ,
it is well known that N λ is a Poisson marked point process with intensity measure µpds, duq def.

" λ ds b w i"1 E 1 pdx i q b w i"1 E β pdy i q b C 1 j"1 E γ pdz 0,j q b w i"1 b C 2 j"1 E γ pdz i,j q, (1.31)
where E ξ pdxq is the exponential distribution with parameter ξą0. See Chapter 5 of [Kin92] for example.

Assuming that X w p0q"C w p0q"0, with the interpretation of the coordinates of the mark u, it is easy to get the representation, for tě0,

X w ptq " ż p0,ts w ÿ i"1 1 ts`x i ąt,s`y i ątu N λ pds, duq,
indeed, if there is an arrival at sďt, its ith quantum iPt1, . . . , wu of this arrival with lifetime x i with firing time y i is still present at t if s`x 1 ąt and s`y i ąt. Similarly,

C w ptq " ż p0,ts C 1 ÿ j"1 1 ts`z 0,j ątu N λ pds, duq `żp0,ts w ÿ i"1 C 2 ÿ j"1 1 tx i ąy i ,s`y i ăt,s`y i `zi,j ątu N λ pds, duq.
Using invariance by time-translation of the Poisson process N λ , we get that the random variable pX w ptq, C w ptqq has the same distribution as

`Xw ptq, C w ptq ˘def. " ˜żp´t,0s w ÿ i"1 1 ts`x i ą0,s`y i ą0u N λ pds, duq , ż p´t,0s C 1 ÿ j"1 1 ts`z 0,j ą0u N λ pds, duq `w ÿ i"1 C 2 ÿ j"1 1 ! x i ąy i ,s`y i ă0, s`y i `zi,j ą0
) N λ pds, duq ¸. 

The random variables pX

w ÿ i"1 1 ts`x i ą0,s`y i ą0u N λ pds, duq , ż p´8,0s « C 1 ÿ j"1 1 ts`z 0,j ą0u `w ÿ i"1 C 2 ÿ j"1 1 tx i ąy i ,s`y i ă0,s`y i `zi,j ą0u ff N λ pds, duq ¸. (1.32)
The variable X w p8q and C w p8q are almost surely finite since, with standard calculations with Poisson processes, we obtain that

E " X w p8q ‰ " λ β`1 w, E " C w p8q ı " λ γ ˆC1 `C2 βw β`1 ˙.
Recall the formula for Laplace transform of Poisson point processes, E " exp ˆż ´f ps, uqN λ pds, duq ˙ " exp ˆż `1 ´e´fps,uq ˘µpds, duq ˙, for any non-negative Borelian function f on R 2w`C 1 `wC 2 `, where µ is defined by Relation (1.31). See Proposition 1.5 of [Rob03] for example. For uPr0, 1s, we therefore get the relation

´ln E " u Cwp8q ı " λ ż R `˜1´E « u ř C 1 j"1 1 t E γ,0,j ąs u ff E « u ř w i"1 ř C 2 j"1 1 t E 1,i ąE β,i ,E β,i ăsăE β,i `Eγ,i,j u ff¸d s " λ ż R `˜1´`1´e ´γs `ue ´γs ˘C1 E « u 1 t E β,1 ăs^E 1,1u ř C 2 j"1 1 t săE β,1 `Eγ,1,j u ff w ¸ds,
where pE 1,i q, pE β,i q and pE γ,i,j q are independent i.i.d. exponentially distributed random variables with respective parameters 1, β and γ. We have

E « u ř C 2 j"1 1 t E 1,1 ąE β,1 ,E β,1 ăsăE β,1 `Eγ,1,j u ff " 1´ppsq`E " E r1´qps, E β,1 q`uqps, E β,1 qs C 2 1 tEβ,1ăs^E1,1u ı with ppsq " P ´Eβ,1 ăE 1,1 ^s¯" β β `1 `1´e ´pβ`1qs
˘,

and qps, E β,1 q " P ´s´E β,1 ăE γ,1,1 ˇˇE β,1 ¯" e ´γps´E β,1 q , E " E r1´qps, E β,1 q`uqps, E β,1 qs C 2 1 tE1,1ąEβ,1,Eβ,1ăsu ı " C 2 ÿ k"0 pu´1q k " β ˆC2 k ˙e´γks ż s 0 e ´pβ`1´γkqh dh  " C 2 ÿ k"0 pu´1q k p 2 ps, kq with, p 2 ps, kq " β β `1 ´γk ˆC2 k
˙`e ´γks ´e´pβ`1qs Note that, p 2 ps, 0q"ppsq the proposition is thus proved.

Appendix 1.A Additional examples of plasticity kernels

Suppression models

Computational models of pair-based rules of Section 1.2 are easy to implement in large neural networks and they capture some essentials properties of STDP. Nevertheless, they have been shown to fit poorly with experimental data when more complex protocols are used. See [FD02;PG06a]. For this reason, more detailed models taking into account the influence of several pre-and post-synaptic spikes have been proposed. [BA16] is a review of these so-called 'triplet-based' rules and their influence on the stability of the synaptic weights distribution. The model of this section is a variant of the pair-based model with an additional dependence on earlier instants of post-and pre-synaptic spikes. Another variant is described in Section 1.A.

It was observed, using triplet-based protocols in [FD02], that preceding pre-and post-synaptic spikes have a 'suppression' effect on the Hebbian STDP observed. Motivated by these experiments, the following model, extending pair-based rules, has been proposed.

If there is a pre-synaptic spike, resp. post-synaptic spike, at time tě0, we denote by 1 ptq [resp. 2 ptq] the instant of the last pre-synaptic [resp. post-synaptic spike], before t. For this model, when a pre-synaptic spike occurs at time tě0, the contribution to Γ S a p¨, ¨qpdtq is the sum over all post-synaptic spikes before time sďt of the quantities p1´Φ S,1 pt´ 1 ptqqq p1´Φ S,2 ps´ 2 psqqq Φ a,2 pt´sq, and similarly for post-synaptic spikes, where Φ S,i is a non-negative non decreasing function verifying Φ S,i p0qď1 and lim tÑ`8 Φ S,i ptq"0, for iPt1, 2u. In particular, if the instants t 1 and t 2 of consecutive pre-synaptic spikes are too close, i.e. t 2 ´t1 "t 2 ´ 1 ptq is small, the synaptic weight is not significantly changed at the instant t 2 . And similarly for consecutive post-synaptic spikes.

The plasticity kernels Γ S a , aPtp, du, are defined by, for

m 1 , m 2 PM p pR `q, Γ S a pm 1 , m 2 qpdtq def. " " p1´Φ S,1 pt 0 pm 1 , tqq ż p0,tq p1´Φ S,2 pt 0 pm 2 , sqqq Φ a,2 pt´sqm 2 pdsq  m 1 pdtq `"p1´Φ S,2 pt 0 pm 2 , tqq ż p0,tq p1´Φ S,1 pt 0 pm 1 , sqqq Φ a,1 pt´sqm 1 pdsq  m 2 pdtq
with the t 0 pm, tq defined by Equation (1.15).

Triplet-based models [PG06a] shows that preceding pre-synaptic spikes enhance the depression obtained for a post-pre pairing, whereas preceding post-synaptic spikes lead to a bigger potentiation than in a classical pre-post pairing. The plasticity kernels Γ T a , aPtp, du of the associated model are defined by, for

m 1 , m 2 PM p pR `q, Γ T a pm 1 , m 2 qpdtq def. " ˆ1`ż p0,tq Φ T,a,1 pt´sqm 1 pdsq ˙ˆż p0,tq Φ a,2 pt´sqm 2 pdsq ˙m1 pdtq `ˆ1`ż p0,tq Φ T,a,2 pt´sqm 2 pdsq ˙ˆż p0,tq Φ a,1 pt´sqm 1 pdsq ˙m2 pdtq. (1.33)
where, for aPtp, du, iPt1, 2u, Φ T,a,i is a non-negative non-decreasing function converging to 0 at infinity.

It is interesting to note that this model is in contradiction with the suppression model described just before. Both models are based on experimental data from different neuronal cells: visual cortical in [FD02], and hippocampal in [PG06a]. A global model taking into account both mechanisms, the NMDA-model, is defined in [BA16].

Voltage-based models

In [CG10], another class of plasticity rules, voltage-based models, has been used to explain plasticity with biophysical mechanisms, similarly to calcium-based models.

In particular, filtered traces of the membrane potential X are used in the synaptic update. Adapting notations from [CG10], we have for depression, See Relations (1) and (2) of [CG10].

Γ d pdtq " « B d ˆżp0,
In their model, an adaptive-exponential integrate-and-fire model (AdEx) is used to represent the post-synaptic neuron, instead of a Poisson point process. They take θ p above the threshold potential of the AdEx model, leading to a simple estimation in terms of the post-synaptic spike train: ˆżp0,tq e ´γp,0 pt´sq Xpt ´sq ds´θ p ˙`dt " N β,X pdtq.

However, θ d lies around the resting potential of the neuron, leading to synaptic update that are functions of X directly and not only of the spike-trains. This feature justifies the denomination voltage-based models and is not easily taken into account in the framework presented here. To include such a STDP rule, one could extend the definition of a plasticity kernel to Γpm 1 , m 2 , xq by adding a direct dependence on a càdlàg adapted process pxptqq.

We present a variation of the voltage-based model using filtered functionals of preand post-synaptic spike trains that fits in our formalism. Notice that both models are not equivalent in the sense that in [CG10], sub-threshold-activity can lead to plasticity, whereas our model needs post-synaptic spikes.

If there is a pre-synaptic spike at time tą0, the synaptic weight is depressed by the quantity

B d ˆżp0,tq e ´γd,2 pt´sq N β,X pdsq´θ d ˙`,
where, for xPR, x `" maxpx, 0q, and if some filtered variable is above some threshold θ d at that time.

If there is a pre-synaptic spike at time t, the synaptic weight will be potentiated by a quantity involving the product of two filtered variables,

B p ˆżp0,tq e ´γp,2 pt´sq N β,X pdsq´θ d ˙`ż p0,tq e ´γp,1 pt´sq N λ pdsq,
The plasticity kernels are thus defined by, for

m 1 , m 2 PM p pR `q, Γ V d pm 1 , m 2 qpdtq def. " « B d ˆżp0,tq e ´γd,2 pt´sq m 2 pdsq´θ d ˙`ff m 1 pdtq, Γ V p pm 1 , m 2 qpdtq def. " « B p ˆżp0,tq e ´γp,2 pt´sq m 2 pdsq´θ d ˙`ˆż p0,tq
e ´γp,1 pt´sq m 1 pdsq ˙ff m 2 pdtq.

1.B Plasticity models without exponential filtering

In the model of Section 1.2, with Relation (1.7) we defined a filtering procedure with an exponential kernel of rate αą0 for the function Ω a , where Ω p ptq and Ω d ptq are used to quantify the past activity of input and output neurons leading to potentiation and depression respectively. It is given by, for aPtp, du,

dΩ a ptq " ´αΩ a ptq dt `Γa pN λ , N β,X qpdtq,
where Γ a pN λ , N β,X qpdtq represents the plasticity kernels for potentiation, a"p, and, for depression, a"d. Therefore, the update of the synaptic weight at time t depends on a functional of the synaptic processes that happened before t. The dynamic of the synaptic weight pW ptqq is defined by, dW ptq " M pΩ p ptq, Ω d ptq, W ptqq dt, Several studies of computational neuroscience have investigated the role of STDP in a stochastic setting. See [KGH99; KH00; Rob99; RLS01; MDG08] for example. These references use more "direct" dynamics for the synaptic weight. The update at time t depends only on the current synaptic plastic processes Γ a pN λ , N β,X qpdtq at time t, instead of a smoothed version over the past activity. The associated model can be defined so that the corresponding synaptic weight process pW ptqq satisfies the relation

dW ptq " M `Γp pN λ , N β,X q, Γ d pN λ , N β,X q, W pt´q ˘pdtq,
for some functional M .

Biological arguments for exponential filtering

It should be noted that the model associated to pW ptqq does not seem to be in agreement with observations of numerous experimental studies. See [BP98;FGV05;Fel12]. In a classical experiment, the protocol to induce plasticity consists in stimulating both neurons at a certain frequency a fixed number of times with a fixed delay ∆t, over a period of up to one or two minutes (60-100 pairings at 1 Hz for example). This part is designed to reproduce conditions of correlations between the two neurons, when mechanisms of plasticity are known to be triggered. However, measurements of the synaptic weight show that changes take place on a different timescale. After the end of the protocol, it is observed that at least several minutes are necessary to have a significant and stable effect on the synaptic weight. In other words, the change in synaptic weights happens long after the end of the plasticity induction.

For this reason we have chosen to use a filter, possibly with an exponential kernel, on the past synaptic activity. Therefore it does not only depend on the instantaneous synaptic variable Γ d pN λ , N β,X qpdtq at time t, but on the whole past Γ d pN λ , N β,X qpdsq, sďt, with a smoothing exponential kernel which gives the desired dynamical feature for the synaptic weight. Another recent article [RBS16] also takes this fact into account by adding an "ìnduction" function to the classical models of STDP.

A toy example

We define

$ ' & ' % M pω p , ω d , wq " ω p ´ωd , pω p , ω d , wqPR 2 `ˆR, M pΓ 1 , Γ 2 , wq " Γ 1 ´Γ2 , Γ 1 , Γ 2 PM `pR `q, Γ p pdtq´Γ d pdtq " pF ´W ptqq dt,
with F ą0. The equations for the time evolution of synaptic weights are given by

dW ptq dt " ε `F ´W ptq ˘and dW ptq dt " α 2 ż t 0 e ´αpt´sq pF ´W psqq ds,
with the initial condition W p0q"W p0q"w 0 ą0. We get that W ptq " F `pw 0 ´F qe ´εt , tě0, so that pW ptqq converges to F as t gets large, as it can be expected. By differentiating the relation for pW ptqq we obtain,

d 2 W ptq dt 2 `α dW ptq dt `W ptq " F,
with W p0q"w 0 and W 1 p0q"0. If we take α"2ε with εă1, we get that

W ptq " F `pw 0 ´F qe ´εt ˜cos ´t? 1´ε 2 ¯`c ε 2 1 ´ε2 sin ´t? 1´ε 2 ¯¸,
in particular ppW ptq´W ptqqe εt {pw 0 ´F qq is a periodic function with maximal value of the order of 1{ε. Both functions pW ptqq and pW ptqq converge to F as t goes to infinity at the same exponential rate but differ at the second order. A comparison of both models is also done in Section 1.C of the Appendix and illustrated for pair-based rules in Figure 1.3 and for calcium-based ones in Figure 1.4.

1.C Graphical representation of models of plasticity

In this section, we will consider several examples of simple dynamics of the Markovian system defined in Section 1.3.

We will start by comparing the effect of three different Hebbian pair-based rules, both on model with, Section 1.3, and without, Section 1.B, exponential filtering. Then, we will focus on calcium-based models and show that the discrete model of Section 1.4 can be a good approximation of the continuous model of Section 1.3.

We consider two different timescales to compare the induction of plasticity in the model with/without exponential filtering:

-A fast timescale, on the order of the membrane potential dynamics (see plain black line under each row), where the input and output spike patterns are presented.

-A slow timescale (20 times slower in this example), on the order of the synaptic weight modifications (see dotted black line), where no input is presented.

Input and output spikes patterns are fixed in both Figures (see first row).

Pair-based STDP rules (Figure 1.3)

In this section, we describe the dynamics of the different stochastic processes involved in the pair-based STDP model.

In particular, we compare the various interpretation of the pair-based rules that are described in Section 1. Exponential STDP curves are considered with their associated Markovian description, see Section 1.D.

Finally, we focus on Hebbian STDP rules with B d,1 "0 and B p,2 "0.

In the second row, the time evolution of the membrane potential, dXptq " ´Xptq dt `W pt´qN λ pdtq ´Xpt´qN β,X pdtq, is presented. Two interesting facts are to be noted here, at each pre-synaptic spike (green, first row), the current value of the synaptic weight W pt´q is added to the membrane potential Xptq. It can be seen in this example that the size of the jump varies across time. In addition, a complete reset of X occurs after a post-synaptic spike (purple, first row), corresponding to gpxq"x.

Then we focus on the instantaneous synaptic variables Z p,1 (brown, third row) and Z d,2 (brown, fourth row), that follows different dynamics depending on the rule chosen. a. For all-to-all pairings, each synaptic spike is paired with all previous post-synaptic spikes, and conversely. They are already described in the main text, by the set of equations, for aPtp, du,

# dZ p,1 ptq " ´γp,1 Z p,1 ptq dt`B p,1 N λ pdtq, dZ d,2 ptq " ´γd,2 Z d,2 ptq dt`B d,2 N β,X pdtq.
All pairs of pre-synaptic and post-synaptic spikes are taken into account.

b. For nearest neighbor symmetric scheme, each pre-synaptic spike is paired with the last post-synaptic spike, and conversely, the system changes slightly:

# dZ p,1 ptq " ´γp,1 Z p,1 ptq dt`pB p,1 ´Zp,1 pt´qqN λ pdtq, dZ d,2 ptq " ´γd,2 Z d,2 ptq dt`pB d,2 ´Zd,2 pt´qqN β,X pdtq. The variable Z p,1 , resp. Z d,2 is reset to B p,1 , resp. B d,2
, after a pre-synaptic spike, resp. post-synaptic spike.

c. For nearest neighbor reduced symmetric scheme, where only immediate pairing matters, we have:

# dZ p,1 ptq " ´γp,1 Z p,1 ptq dt`pB p,1 ´Zp,1 pt´qqN λ pdtq´Z p,1 pt´qN β,X pdtq, dZ d,2 ptq " ´γd,2 Z d,2 ptq dt`pB d,2 ´Zd,2 pt´qqN β,X pdtq´Z d,2 pt´qN λ pdtq,
The variable Z p,1 is reset to B p,1 , after a pre-synaptic spike and to 0 after a postsynaptic spike, and conversely for Z d,2 .

This simple example shows how different pair-based rules shape the instantaneous plasticity variables Z. This dependence is subsequently transferred to the potentiation kernel Γ p (red, third row) and the depression kernel Γ d (blue, fourth row). With exponential pair-based models, we have n a,0 pzq"0, n d,1 pzq"z d,2 , n p,1 pzq"0, n d,2 pzq"0, n p,2 pzq"z p,1 , and therefore, they follow,

# Γ p pdtq " Z p,1 pt´qN β,X pdtq Γ d pdtq " Z d,2 pt´qN λ pdtq.
It is then not surprising to observe that for a same sequence of pre-and postsynaptic spikes the plasticity kernels are different.

Consequently, it is the same for the slow plasticity variables Ω p (red, fifth row) and Ω d (blue, fifth row), that follows, This example shows that a simple change in the STDP rule can lead to very different dynamics for the synaptic weight. All-to-all rules lead to global potentiation (the dotted line represents the initial value) whereas nearest neighbor rules lead to depression.

Finally, as can be expected from the slow plasticity variables Ω a that are still positive long after the end of the stimulus (see in the dotted part), the synaptic weight is modified long after the patterns of spikes.

On the contrary, considering the model without exponential filtering (seventh row), dW ptq " Γ p pdtq ´Γd pdtq, we see that in that case, the synaptic weight is only updated during the stimulus. We notice that the polarity of the global plasticity is the same as with exponential filtering, but the dynamics are completely different, as showed with the toy model in Section 1.B.

Calcium-based STDP rules (Figure 1.4)

In this section, we focus on the dynamics of the calcium-based models, a. the continuous version, described in Section 1.3; b. the discrete version from Section 1.4.

The continuous membrane potential (second row, left) follows,

dXptq " ´Xptq dt `W pt´qN λ pdtq ´Nβ,X pdtq.

We consider a different function gpxq"1 than in the previous case. Its discrete analogue (second row, right) verifies,

dXptq " ´Xpt´q ÿ i"1 N 1,i pdtq `W pt´qN λ pdtq ´Xpt´q ÿ i"1 N β,i pdtq.
It is plainly clear that both processes are almost identical, except that the exponential decay in the continuous model is replaced by a M {M {8 queue in the discrete case. In the case of large jumps, they lead to a similar dynamical evolution.

The same conclusions can be drawn for the calcium concentration, where the continuous version (third row, left) follows,

dCptq " ´γCptq dt`C 1 N λ pdtq`C 2 N β,X pdtq,
and the discrete version (third row, right),

dCptq " ´Cpt´q ÿ i"1 N γ,i pdtq `C1 N λ pdtq `C2 Xpt´q ÿ i"1 N β,i pdtq.
In both cases, the plasticity kernels Γ p (fourth row, red) and Γ d (fourth row, blue) verify, When the calcium reaches the thresholds θ p for potentiation (third row, red) and θ d (third row, blue), the plasticity kernels are "activated" and are equal to dt. We see that both models leads to similar values of the kernels, even if some discrepancies start to appear.

# Γ p pdtq " 1 tCpt´qěθpu dt Γ d pdtq " 1 tCpt´qěθ d u dt.
The slow plasticity variables (fifth row) are just obtained by integration of the kernels with an exponential filtering,

#

dΩ p ptq " ´αΩ p ptq dt `Γp pdtq dt dΩ d ptq " ´αΩ d ptq dt `Γd pdtq dt.

A second discretization is applied in the synaptic update, the continuous version (sixth row, left) verifies,

dW ptq " `Ap Ω p ptq ´Ad 1 tW pt´qě0u Ω d ptq ˘dt,
and the discrete one (sixth row, right),

dW ptq " A p N Ωppt´q pdtq ´Ad 1 tW pt´qěA d u N Ω d pt´q pdtq.
We note here that we need to force W to stay non-negative in order to have a valid description of the system. We observe that, even after two different discretizations, both synaptic weights follow a similar evolution. Using a model without exponential filtering (seventh row) leads to a different dynamical evolution of the synaptic weight, for the continuous model, dW ptq " A p Γ p pdtq ´Ad 1 tW pt´qě0u Γ d pdtq, and the discrete one,

dW ptq " A p 1 tCpt´qěθpu N 1 1 pdtq ´Ad 1 tW pt´qěA d ,Cpt´qěθ d u N 2 1 pdtq.
As a conclusion, the discrete models approximate well the continuous one and therefore, using the exact expressions of the discrete model can give an interesting insight on the dynamics of the continuous model.

1.D Fast systems of STDP models

We first start with the generator of a general STDP of class M as in Definition 6. For u"px, z, ω p , ω d , wqPS M p q and f PC 1 b pS M p qq, i.e. f is a bounded C 1 -function, and all its respective derivatives are bounded, by using Equations (1.27), it is not difficult to show that the extended infinitesimal generator A of pU ptqq can be expressed as, s for the gradient vector with respect to the coordinates associated to z, i.e. from index 2 to index `1. Finally e 2 is the vector whose coordinates are 1 for the indices associated to z and 0 elsewhere and, for aPR `, the quantity ade 2 is the vector whose ith coordinate is a i´1 , for 2ďiď `1, and 0 otherwise. For sake of completeness, we detail the processes of fast variables for the classical STDP rules described in Section 1.2.

Pair-based models with exponential kernels Φ

For pair-based mechanisms, we follow the classification discussed in [MDG08]:

-For all-to-all pairings, each synaptic spike is paired with all previous post-synaptic spikes, and conversely. They are already described in the main text, by the set of equations, for aPtp, du,

$ ' & ' % dXptq " ´Xptq dt`wN λ pdtq´g pXpt´qq N β,X pdtq , dZ a,1 ptq " ´γa,1 Z a,1 ptq dt`B a,1 N λ pdtq, dZ a,2 ptq " ´γa,2 Z a,2 ptq dt`B a,2 N β,X pdtq.
-In the nearest neighbor symmetric scheme each pre-synaptic spike is paired with the last post-synaptic spike, and conversely. The system changes slightly:

$ ' & ' %
dXptq " ´Xptq dt`wN λ pdtq´g pXpt´qq N β,X pdtq , dZ a,1 ptq " ´γa,1 Z a,1 ptq dt`pB a,1 ´Za,1 pt´qqN λ pdtq, dZ a,2 ptq " ´γa,2 Z a,2 ptq dt`pB a,2 ´Za,2 pt´qqN β,X pdtq.

The variable Z a,1 , resp. Z a,2 is reset to B a,1 , resp. B a,2 , after a pre-synaptic spike, resp. post-synaptic spike.

-For nearest neighbor symmetric reduced scheme, where only immediate pairing matters, we have:

$ ' & ' % dXptq " ´Xptq dt`wN λ pdtq´g pXpt´qq N β,X pdtq , dZ a,1 ptq " ´γa,1 Z a,1 ptq dt`pB a,1 ´Za,1 pt´qqN λ pdtq´Z a,1 pt´qN β,X pdtq, dZ a,2 ptq " ´γa,2 Z a,2 ptq dt`pB a,2 ´Za,2 pt´qqN β,X pdtq´Z a,2 pt´qN λ pdtq,
for exponential pair-based models, with n a,0 pzq"0, n a,1 pzq"z a,2 and n a,2 pzq"z a,1 .

Nearest pair-based models with general kernels Φ

In the case of nearest pair-based models, we have a simple description of the system, based on the time since the last spike as detailed in Section 1.3. We define pZptqq"pZ 1 ptq, Z 2 ptqq, such that, # dZ 1 ptq " dt´Z 1 pt´q N λ pdtq, dZ 2 ptq " dt´Z 2 pt´q N β,X pdtq.

In this setting, both nearest models are of class M:

-The nearest neighbor symmetric model of Relation (1.14), with n a,0 pzq"0, n a,1 pzq"Φ a,2 pz 2 q, n a,2 pzq"Φ a,1 pz 1 q.

-The nearest neighbor symmetric reduced model of Relation (1.16), with n a,0 pzq"0, n a,1 pzq"Φ a,2 pz 2 q1 tz 2 ďz 1 u , n a,2 pzq"Φ a,1 pz 1 q1 tz 1 ďz 2 u .

In fact, we have here two different Markovian systems that represents the same dynamics for nearest exponential STDP rules.

Triplet-based models

Generator for triplet-based mechanisms can also be defined in a similar way, see [BA16] for a list of different implementations.

-The suppression model of Section 1.A from [FD02], where the Markovian system is given by:

$ ' ' ' ' ' ' & ' ' ' ' ' ' % dXptq " ´Xptq dt`wN λ pdtq´g pXpt´qq N β,X pdtq , dZ a,1 ptq " ´γa,1 Z a,1 ptq dt`p1´Z s,1 pt´qqB a,1 N λ pdtq, dZ a,2 ptq " ´γa,2 Z a,2 ptq dt`p1´Z s,2 pt´qqB a,2 N β,X pdtq, dZ s,1 ptq " ´δ1 Z s,1 ptq dt`p1´Z s,1 pt´qqN λ pdtq, dZ s,2 ptq " ´δ2 Z s,2 ptq dt`p1´Z s,2 pt´qqN β,X pdtq,
with n a,0 pzq"0, n a,1 pzq"p1´z s,1 qz a,2 and n a,2 pzq"p1´z s,2 qz a,1 .

-The triplet-based model, see [PG06a], we have:

$ ' ' ' ' ' ' & ' ' ' ' ' ' % dXptq " ´Xptq dt`wN λ pdtq´g pXpt´qq N β,X pdtq , dZ a,1 ptq " ´γa,1 Z a,1 ptq dt`B a,1 N λ pdtq, dZ a,2 ptq " ´γa,2 Z a,2 ptq dt`B a,2 N β,X pdtq, dZ s,a,1 ptq " ´δa,1 Z s,a,1 ptq dt`D a,1 N λ pdtq, dZ s,a,2 ptq " ´δa,2 Z s,a,2 ptq dt`D a,2 N β,X pdtq,
with n a,0 pzq"0, n a,1 pzq"p1 `zs,a,1 qz a,2 and n a,2 pzq"p1 `zs,a,2 qz a,1 .

Calcium-based models

For models of calcium-based plasticity, we have:

-Calcium transients as exponential traces in [GB12], which is the dynamics used as an example in this paper. The system is,

# dXptq " ´Xptq dt`wN λ pdtq´gpXpt´qqN β,X pdtq, dCptq " ´γCptq dt`C 1 N λ pdtq`C 2 N β,X pdtq.
-Calcium transients modeled in a discrete setting as for the example in Section 1.4. The associated Markov process has the following transitions transition rates, for px, cqPN 2 , px, cq ÝÑ

# px`w, c`C 1 q λ, px´1, cq x, ÝÑ # px, c´1q γc, px´1, c`C 2 q βx.
The functions of calcium-based models are given by, for aPtp, du, n a,0 pcq"h a pcq, n a,1 px, cq"0 and n a,2 pcq"0.

Voltage-based models

Models of Section 1.A, which are adaptations of [CG10] by replacing the direct dependence on filtered traces of X, can also be analyzed with this formalism. The dynamics are given by

$ ' & ' % dXptq " ´Xptq dt`wN λ pdtq´g pXpt´qq N β,X pdtq , dZ p,1 ptq " ´γp,1 Z p,1 ptq dt`N λ pdtq, dZ a,2 ptq " ´γa,2 Z a,2 ptq dt`N β,X pdtq, with n a,0 pzq"n p,1 pzq"n d,2 pzq"0, n p,2 pzq"B p z p,1 pz p,2 ´θd q `, n d,1 pzq"B d pz d,2 ´θd q `.
CHAPTER 2

STOCHASTIC MODELS OF NEURAL PLASTICITY: A SCALING APPROACH

In neuroscience, synaptic plasticity refers to the set of mechanisms driving the dynamics of neuronal connections, called synapses and represented by a scalar value, the synaptic weight. A Spike-Timing Dependent Plasticity (STDP) rule is a biologicallybased model representing the time evolution of the synaptic weight as a functional of the past spiking activity of adjacent neurons. A general mathematical framework has been introduced in [RV21b].

In this paper we develop and investigate a scaling approach of these models based on several biological assumptions. Experiments show that long-term synaptic plasticity evolves on a much slower timescale than the cellular mechanisms driving the activity of neuronal cells, like their spiking activity or the concentration of various chemical components created/suppressed by this spiking activity. For this reason, a scaled version of the stochastic model of [RV21b] is introduced and a limit theorem, an averaging principle, is stated for a large class of plasticity kernels. A companion paper [RV21a] is entirely devoted to the tightness properties used to prove these convergence results.

These averaging principles are used to study two important STDP models: pair-based rules and calcium-based rules. Our results are compared with the approximations of neuroscience STDP models. A class of discrete models of STDP rules is also investigated for the analytical tractability of its limiting dynamical system.

Introduction

In [RV21b] we have introduced a general class of mathematical models to represent and study synaptic plasticity mechanisms. Their purpose is to investigate the synaptic weight dynamics, i.e. the evolution of the unilateral connection between two neurons. These models rely on two clearly stated hypotheses: the effect of plasticity is seen on the synaptic strength on long timescales and it only depends on the relative timing of the spikes. This type of plasticity, known as Spike-Timing-Dependent Plasticity (STDP), has been extensively studied in experimental and computational neuroscience, see [Fel12;MDG08] for references.

This paper is devoted to a scaling analysis of an important subclass of STDP rules, Markovian plasticity kernels. These kernels have a representation in terms of finite dimensional vectors whose coordinates are shot-noise processes. See Section 3 of [RV21b] and Section 2.2 below.

We start with a simple example of the models investigated in this paper. See Section 2.2 for a detailed presentation. The stochastic process can be represented by the following variables, a. the membrane potential X of the output cell; b. the synaptic weight W , modeling the strength of the connection from the input neuron to the output neuron.

When the input neuron is spiking (a presynaptic spike), a chemical/electrical signal is transmitted to the output neuron through the synapse. If the couple of variables pX, W q is px, wq just before this event, it is then updated to px`w, wq.

In state X"x, the output neuron emits a spike at rate βpxq, where β is the activation function. This is a postsynaptic spike. It is usually assumed that β is a nondecreasing function of the membrane potential X.

Consequently, after a presynaptic spike and the associated rise in membrane potential X, the probability that a postsynaptic spike occurs is increased. As seen in [RV21b], STDP synaptic mechanisms depend, in a complex way, on past spiking times of both adjacent neurons.

More formally, in our simple example, the time evolution is described by the following set of stochastic differential equations (SDEs),

$ ' & ' % dXptq " ´Xptq dt `W ptqN λ pdtq, dZptq " ´γZptq dt `B1 N λ pdtq `B2 N β,X pdtq, dW ptq " Zpt´qN β,X pdtq, (2.1)
where hpt´q is the left-limit of the function h at tą0 and, for i"t1, 2u, B i PR `. Throughout the paper, the notation pY ptqq is used to represent the stochastic process tÞ ÑY ptq on R `. We discuss briefly the random variables involved.

a. The point processes N λ and N β,X . These random variables are point processes representing the sequences of spike times of the pre-and postsynaptic neurons.

In the present work, N λ is assumed to be a Poisson process with rate λ. It can be represented either as a nondecreasing sequence of points pt n , ně1q of R `, or as nonincreasing function, the counting measure

tÞ ÑN λ pp0, tsq " ÿ ně1 1 ttnďtu
with jumps of size 1, or, finally as a random measure, the sum of Dirac measures at the points pt n q, N λ pdxq "

ÿ ně1 δ tn .
Each point t n of N λ pdtq is associated to a presynaptic spike and the consequent increment of the postsynaptic membrane potential Xpt´q by W ptq.

The point process N β,X accounts for the instants of the postsynaptic spikes.

It is a nonhomogeneous Poisson process with (random) intensity function pβpXpt´qqq. See Relation (2.3) for a formal definition. See [Kin92] for an extensive introduction to Poisson processes and [Daw93] for theoretical aspects of random measures.

b. The process pZptqq. pZptqq encodes the past spiking activity of both neurons through an additive functional of N λ and N β,X with an exponential decay factor γą0. It is not difficult to see that, for tě0,

Zptq " Zp0q`B 1 ż t 0 e ´γpt´sq N λ pdsq`B 2 ż t 0 e ´γpt´sq N β,X pdsq.
See Lemma 2.1 of [RV21b]. In our general model, pZptqq is a multidimensional process which can be thought as a vector of cellular processes associated to the concentration of chemical components created/suppressed by the spiking activity of both neurons. See also [AK15] for a general presentation of stochastic processes in the context of biochemical systems.

c. The processes pW ptqq. The synaptic weight W is increased at each jump of N β,X by the value of pZptqq.

From a biological point of view, the relevant process is pW ptqq, because it describes the synaptic strength, i.e. the intensity of transmission between two connected neurons. This value can be measured through electrophysiological experiments for example. Many computational models have been developed to investigate synaptic plasticity in different contexts. See [MDG08; GB10; Clo+10; BA16; KGH99] and the references therein.

From a mathematical perspective, the variables pXptq, Zptq, W ptqq, solutions of SDE (2.1) are central to the model. However, as will be seen in this article, the point process of instants of postsynaptic spikes N β,X is the key component of the system since it drives the time evolution of pZptqq and pW ptqq and, consequently, of pXptqq.

Mathematical models of plasticity in the literature

Numerous works in physics have investigated mathematical models of plasticity. We quickly review some of them. Most studies focus on the dynamics of a collection of synaptic weights projecting to a single postsynaptic cell. There are basically two types of approximations used. a. Separation of timescales.

The cellular processes are averaged to give a simpler dynamical system for the evolution of the synaptic weight. This is a classical approach in the literature. See [KGH99; RKO18; Eur+99; Rob00]. [ARJ20] uses an analogous description of the evolution of synaptic weights in the context of a mean-field approximation of several populations of neurons. This is the approach of the paper, see Section 2.1 below.

b. Fokker-Planck approach. In this case, the time evolution of the synaptic strength alone is assumed to follow a diffusion process and, consequently, has the Markovian property. The analysis is done with the associated Fokker-Planck equations and the corresponding equilibrium distribution when it exists. See [RLS01; Hor+00; KH00; RBT00a]. An extension, the Kramers-Moyal expansion is also used in this context for some non-Markovian models, see [LF12]. We refer to [Paw67; Gar10] for general properties of the Kramers-Moyal expansion.

Mathematical studies of models of plasticity are quite scarce. Most models are centered on evolution equations of neural networks with a fixed synaptic weight. See Sections 1 and 2 of [RT16] for a review. In [AFH12] and [PSW17], an ODE/PDE approach for a population of leaky integrate-and-fire neurons is presented for a specific pair-based STDP rule. See [Che+15] for the connection between stochastic models and PDE models.

[Hel18] investigates a Markovian model of a pair-based STDP rule. This is one of the few stochastic analyses in this domain.

Multiple timescales

An important feature of long-term neural plasticity explored in this paper is that there are essentially two different timescales in action.

On the one hand, the decay time of the membrane potential and the mean duration between two presynaptic spikes or two postsynaptic spikes are of the order of several milliseconds. See [GK02b]. Consequently, interacting pairs of spikes are on the same timescale. For example, pair-based models have an exponential decay whose inverse is around 50 milliseconds. See [BP98;FGV05]. Similarly, for calcium-based models, the calcium concentration decays with a time constant of the order of 20 milliseconds. See [GB12]. The stochastic process pZptqq represents fast cellular mechanisms associated to STDP and accordingly, its timescale is also of the same order.

On the other hand, the synaptic weight process pW ptqq changes on a much slower timescale. It can take seconds and even minutes to observe an effect of an STDP rule on the synaptic weight. See [BP98]. Computational models of synaptic plasticity have used similar scaling principles. Kempter et al. [KGH99] for the equation (1) of this reference for plasticity updates and with different neuronal dynamics, but built in the same framework, [KH00]. We can mention also [RBT00a], [Rob99; Rob00] where a separation of the timescales is also assumed. A final example is [RLS01] where the parameter λ speeds up the rate of pre-and postsynaptic spikes in the equation for plasticity updates.

Computational models of plasticity incorporate this timescale difference by only implementing small updates of the synaptic weights. However, it does not really take into account the fact that significant changes occur after the end of the experiment. To take into account this phenomenon, a possible approach consists in updating the synaptic weights with a fixed, or random, delay. This is not completely satisfactory since the evolution of the synaptic weight is generally believed to be an integrative process of past events rather than a delayed action. A more thorough analysis is done in Section SM2 of [RV21b]. Another approach which we will use consists in implementing this delay through an exponentially filtered process to represent the accumulation of past information.

It is important to stress here, that even if synaptic plasticity depends on the immediate timing of individual spikes, which happens on a fast timescale, it has a slow and delayed impact on the synaptic weight. This justifies the term of long-term plasticity and the fact that we can consider a separation of the timescales. Fast synaptic plasticity processes also exist, in the sense that they modulate the synaptic weight on the same timescale as the fast neuronal processes (spikes, membrane potential). This is referred to as short-term synaptic plasticity. See [ZR02]. For this type of dynamics, the timescale is of the order of milliseconds, much faster than the plasticity considered in this paper which can last several hours. This is not investigated in this paper. [Gal+19] analyzes such models; in this case, separation of the timescales does not occur, and a mean-field approximation is developed.

The scaling approach of this paper represents the model as a slow-fast system. Neuronal processes, associated to the point processes N λ and N β,X , occur on a timescale which is much faster than the timescale of the evolution of pW ptqq. For our simple model, with the scaling, the SDE (2.1) becomes, for εą0,

$ ' & ' % dX ε ptq " ´Xε ptq dt{ε `Wε ptqN λ{ε pdtq, dZ ε ptq " ´γZ ε ptq dt{ε `B1 N λ{ε pdtq `B2 N β{ε,Xε pdtq, dW ε ptq " Z ε ps´qεN β{ε,Xε pdtq.
As can be seen, the variables pX ε ptqq and pZ ε ptqq evolve on the timescale tÞ Ñt{ε, with ε small; they are fast variables. The increments of the variable W are scaled with the parameter ε, and the integration of the differential element εN β{ε,Xε pdsq on a bounded time-interval is Op1q. For this reason, pW ε ptqq is described as a slow process. This is a classical assumption in the corresponding models of statistical physics. Approximations of pW ε ptqq when ε is small are discussed and investigated with ad hoc methods. The corresponding scaling results, known as separation of timescales, are routinely used in approximations in mathematical models of computational neuroscience; see, for example, [KGH99].

Mathematical proofs of averaging principles

In a mathematical context, these types of results are referred to as averaging principles. See [PSV77] and Chapter 7 of [FW98] for general presentation. They have been used to study various biochemical systems, see for example [Bal+06] and [KK+13]. See also the general presentation [BG06] in the context of dynamical systems and recent developments in [KP17]. We discuss the specific difficulties to prove such convergence results in our stochastic models of STDP rules: a. T . Recall that the fast process is pX ε ptq, Z ε ptqq. Part of the technical problems of the proof of an averaging principle is related to the tightness properties of linear functionals of the fast process occupation measures.

The main difficulty originates, as could be expected, from the scaled point process εN β{ε,Xε pdsq associated to postsynaptic spikes and, more precisely, from the tightness of families of processes of the form

ˆż t 0 Z ε psqεN β{ε,Xε pdsq ˙.
(2.2) This is done in the paper by [RV21a]. If the model was expressed in terms of functionals of the occupation measure of type

ˆż t 0 F pX ε psq, Z ε psqq ds ˙,
where sÑF pX ε psq, Z ε psqq is a bounded continuous function on R `, as it is usually the case, the proof of this tightness property would be quite simple. From this point of view, this is the case of [Bal+06], Kang and Kurtz [KK+13]. In these papers the proof of the tightness results associated to occupation measures is essentially achieved through a quite direct use of [Kur92]. There are technical difficulties, of course, but they are not related to these functionals of occupation measures. The only (unpublished) paper we know that establishes an averaging principle for a specific pair-based rule of Wilson-Cowan models of neural networks is [Hel18] and here too, this is a quite direct application of [Kur92].

Due to our quite general framework it does not seem to be possible to handle functionals of the form (2.2) with this approach. The process pZ ε psqq is not bounded, and neither is the differential element N β{ε,Xε pdsq since pβpX ε psqq is also not bounded. The proof of this tightness result motivates a large part of the most technical estimates of [RV21a].

For our general models of [RV21a] the tightness properties are stated on an a priori, bounded time interval r0, S 0 q only. More specifically, it is shown that it may happen that the limit in distribution of pW ε pt 0 qq as ε goes to 0 blows up, i.e., hits infinity in finite time t 0 . Contrary to all slow-fast results mentioned above where this phenomenon does not occur, convergence is proved on the real half-line. This is an indication perhaps that some stochastic processes have to be controlled carefully and that the difficulty of the tightness results mentioned above is not an artifact of the method used.

b. R . The results of the paper by [RV21a] do not provide convergence results as such. This is the purpose of the present paper of having convergence results and explicit expressions of the asymptotic dynamical system. To have a convergence result as in this paper, regularity properties of the invariant distribution Π w of the fast process pX ε ptq, Z ε ptqq when the synaptic weight is fixed at w have to be established. A typical property is that

w ÝÑ ż R `1 `Gpx, zqπ w pdx, dzq is locally Lipschitz for some function G on R `1
`. This is a delicate question in general, and there are very few cases where an explicit expression of Π w is known. This type of result can be proved if there exists a "uniform" Lyapunov function on a neighborhood of w, see [Has80]. Sections 3 and 4 of our paper are devoted to the proof of these type of results. Different arguments are used.

Contributions

A scaled version of Markovian plasticity kernels as introduced in [RV21b] is presented in Section 2.2. The difficulty is to take into account the two different timescales mentioned above. This is done by assuming that the membrane potential X is a "fast" variable, i.e. that it evolves on a fast timescale. An averaging principle for the synaptic weight process has to be established in this context.

Under convenient assumptions, an averaging principle, Theorem 12, shows that the evolution equation of the synaptic weight pW ptqq converges to a deterministic dynamical system as ε goes to 0. The proof of this quite technical result uses tightness results proved in the companion paper by [RV21a].

Sections 2.3 and 2.4 investigate the implications of averaging principles for classical models of pair-based and calcium-based STDP rules. In particular, we work out explicit results for the time evolution of the synaptic weight for several pair-based rules. Related results of the literature in physics are discussed in Section 2.3.

For calcium-based STDP models, the situation is more complicated since an explicit representation of invariant distributions of a class of Markov processes is required to express the asymptotic time evolution of the synaptic weight. Section 2.5 considers an analytically tractable discrete model of calcium-based STDP rules introduced in [RV21b]. With a scaling approach similar to that of Section 2.2, the dynamical system verified by the asymptotic synaptic weight can be investigated and an explicit representation of the invariant distributions of the corresponding Markov processes has been obtained in [RV21b].

A scaling approach

We begin with some formal definitions. Two independent point processes are defined on the probability space, a. N λ is the Poisson process with rate λą0; b. P is an homogeneous Poisson point process on R 2 `with rate 1.

If h is a càdlàg function and pV ptqq a càdlàg process, we define N h,V the point process on R `by ż

R `f puqN h,V pduq def. " ż R 2 `f puq1 tsPp0,hpV pu´qqsu Ppds, duq, (2.3) 
for any nonnegative Borelian function f on R `, where P is a homogeneous Poisson point process on R 2 `with rate 1. The filtration of the space contains the natural filtrations of N λ and P. See [RV21b].

Markovian plasticity kernels

We go back to the general Markovian formulation of STDP developed in [RV21b]. Important features are added to the simple model described in the introduction:

-The dynamics of the membrane potential X is unchanged, except for the influence of a postsynaptic spike on X, which is now modeled by a general decrease xÑgpxqě0.

-We consider a multidimensional fast plasticity process pZptqq in R `, that can encode the activity of several chemical components. They can be defined as shotnoise processes. A shot-noise process pSptqq associated to a point process P on R ẁith amplitude kp¨q and exponential decay αą0 is a solution of the SDE, dSptq " ´αSptq`kpSpt´qqPpdtq.

See [GP60] for the corresponding definition. In our case pZptqq is a vector of shot-noise processes associated to N λ and/or N β,X , with amplitude pk i p¨qq, i"1, 2. See Relation (2.4) below. In this paper, the term "shot-noise process" will refer to the stochastic process defined in this reference, and not to a specific source of neuronal noise, as is usually the case in neurosciences.

-The influence of these fast plasticity variables is integrated through general functionals zÑn a,i pzqě0 with exponential decay into two slow variables Ω a . In particular, the process pΩ p ptqq (resp., pΩ d ptqq) encodes in some way the memory of the spiking activity leading to potentiation, i.e., increasing the synaptic weight (resp., to depression, i.e., decreasing the synaptic weight).

-The synaptic weight W is updated thanks to a functional M of both slow plasticity variables and its current value.

More rigorously, the random variable pXptq, Zptq,

Ω p ptq, Ω d ptq, W ptqq is a Markov pro- cess, solution of the SDE $ ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' %
dXptq " ´Xptq dt `W ptqN λ pdtq ´g pXpt´qq N β,X pdtq , dZptq "p´γ d Zptq `k0 q dt `k1 pZpt´qqN λ pdtq `k2 pZpt´qqN β,X pdtq, dΩ a ptq " ´αΩ a ptq dt`n a,0 pZptqq dt `na,1 pZpt´qqN λ pdtq`n a,2 pZpt´qqN β,X pdtq, aPtp, du, dW ptq " M pΩ p ptq, Ω d ptq, W ptqq dt.

(2.4) where pZptqq is a nonnegative -dimensional process, ě1, and the following hold:

-γPR `, adb"pa i ˆbi q if a"pa i q and b"pb i q in R `.

k 0 PR `is a constant and k 1 and k 2 are measurable functions from R `to R . Furthermore, the pk i q are such that the function pzptqq has values in R `whenever zp0qPR

`.

-For i"0, 1, 2, n a,i is a nonnegative measurable function on R

`.

-M is a general measurable function.

The firing instants of the output neuron are the jumps of the point process N β,X on R `, and the presynaptic spikes are represented by the Poisson process N λ .

See [RV21b] for more details. Recall the set of assumptions used in this reference. Assumptions A a. F . β is a nonnegative, continuous function on R, and βpxq"0 for xď´c β ď0.

b. D

. g is continuous on R and 0ďgpxqď maxpc g , xq holds for all xPR, for c g ě0. c. D . There exists an interval K W ĂR such that, for any càdlàg piecewise-continuous functions h 1 and h 2 on R `, the ODE dwptq dt "M ph 1 ptq, h 2 ptq, wptqq (2.5) for all points of continuity of h 1 and h 2 has a unique continuous solution pwptqq such that wptqPK W for all tě0 when wp0qPK W .

A scaled model of Markovian plasticity of kernels

To take into account the multiple timescales mentioned in the introduction, a scaling parameter εą0 is introduced for stochastic processes following (2.4):

a. The exponential decay of pXptqq, pZptqq and the rates λ and βp¨q are scaled with the factor 1{ε.

b. The functions n a,i , aPtp, du, iPt1, 2u, associated to synaptic updates due to neuronal spikes are scaled by ε.

The initial condition of pU ε ptqq is assumed to be fixed:

U ε p0q " U 0 " px 0 , z 0 , ω 0,p , ω 0,d , w 0 q. (2.6)
This leads to the definition of a scaled version of the system (2.4), where we denote pU ε ptqq"pX ε ptq, Z ε ptq, Ω ε,p ptq, Ω ε,d ptq, W ε ptqq:

$ ' ' ' ' ' ' ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' ' ' ' ' ' ' % dX ε ptq " ´1 ε X ε ptq dt`W ε ptqN λ{ε pdtq´g pX ε pt´qq N β{ε,Xε pdtq , dZ ε ptq " 1 ε ´´γ d Z ε ptq`k 0 ¯dt `k1 pZ ε pt´qqN λ{ε pdtq`k 2 pZ ε pt´qqN β{ε,Xε pdtq, dΩ ε,a ptq " ´αΩ ε,a ptq dt`n a,0 pZ ε ptqq dt `ε ´na,1 pZ ε pt´qqN λ{ε pdtq`n a,2 pZ ε pt´qqN β{ε,Xε pdtq ¯, aPtp, du, dW ε ptq " M pΩ ε,p ptq, Ω ε,d ptq, W ε ptqq dt.
(2.7)

From Relations (2.7), the dynamics of the processes pΩ ε,p ptqq, pΩ ε,d ptqq and pW ε ptqq is slow in the sense that the fluctuations within a bounded time-interval are limited either because of the deterministic differential element dt with a locally bounded coefficient, or via a driving Poisson process with rate of order 1{ε but with jumps of size proportional to ε. The processes pX ε ptqq and pZ ε ptqq are fast, for each of them the fluctuations are driven either by the deterministic differential element dt{ε, or the jumps of Poisson point processes with rates of the order of 1{ε.

Averaging principles

We are interested in the limiting behavior of the synaptic weight process pW ε ptqq when the scaling parameter ε goes to 0. An intuitive, rough picture of the results that can be obtained is as follows: for ε small enough, on a small time-interval, the slow process pΩ p,ε ptq, Ω d,ε ptq, W ε ptqq is almost constant, and, due to its fast timescale, the process pX ε ptq, Z ε ptqq is "almost" at its equilibrium distribution Π w associated to the current value of pW ε ptqq. If this statement holds in an appropriate way, we can then write a deterministic ODE for the time evolution of a possible limit of pΩ p,ε ptq, Ω d,ε ptq, W ε ptqq.

We now introduce the framework of our main theorem concerning averaging principles. If we set the process pW ε ptqq to be a constant equal to w, the time evolution of pX ε ptq, Z ε ptqq in Relation (2.7) has the Markov property. The corresponding process will be referred to as the fast process. Its infinitesimal generator is defined as follows:

if f PC 1 b `R`ˆR ˘, wPK W and px, zqPRˆR `, then B F w pf qpx, zq def. " ´xBf Bx ` ´γ d z`k 0 , Bf Bz px, zq `λ " f px`w, z`k 1 pzqq´f px, zq ı `β pxq " f px´gpxq, z`k 2 pzqq´f px, zq ı . (2.8)
We now introduce a set of general assumptions driving the system (2.4). Assumptions B a. There exists C β ě0 such that βpxqďC β p1`|x|q @xPR.

(2.9) b. All coordinates of the vector γ are positive. There exists C k ě0 such that 0ďk 0 ďC k and the functions 

k i , i"1, 2, in C 1 b pR `, R `q, are
M a pω a , wq ď C M p1`ω a q,
for all wPK W , for aPtp, du.

Note that, in the (large) list of STDP models presented in [RV21b], only the fast processes of triplet-based and voltage-based models may not verify these assumptions; in particular, the functions n a,i depend on the product of different shot-noises Zptq. Nevertheless, Assumptions B result mainly from technical arguments, and is in any way necessary to obtain Theorem 12. An extension using quadratic functions n a,i instead of linear ones may be proved using the stronger analytical estimations in the proof.

We can now state the main result concerning the scaled model. Its proof is the main result of the paper by [RV21a].

Theorem 12 (Averaging principle). Under Assumptions A and B and for initial conditions satisfying Relation (2.6), there exists S 0 Pp0, `8s, such that the family of processes pΩ p,ε ptq, Ω d,ε ptq, W ε ptq, tăS 0 q, εPp0, 1q, of the system (2.7), is tight for the convergence in distribution.

As ε goes to 0, any limiting point pω p ptq, ω a ptq, wptq, tăS 0 q, satisfies the ODEs, for 

Remarks

We quickly discuss several aspects of these results. a. U . If Relation (2.10) has a unique solution for a given initial state, the convergence in distribution of pW ε ptqq when ε goes to 0 is therefore obtained. Such a uniqueness result holds if the integrand, with respect to s, of the right-hand side of Relation (2.10) is locally Lipschitz as a function of wpsq. One therefore has to investigate regularity properties of the invariant distribution Π w as a function of w. This is a quite technical topic; however, methods based on classical results of perturbation theory and their generalizations in a stochastic context (see [Has80]), can be used to prove this type of properties. These problems are investigated for several important examples in Sections 2.3, 2.4, and 2.5. b. B -. The convergence properties are stated on a fixed time interval r0, S 0 q. The reason is that, for some of our models the variable S 0 is finite. The limit in distribution of pW ε ptqq, as ε goes to 0, blows up, i.e., hits infinity in finite time. An analog property holds for some mathematical models of large nonplastic random neural networks. In this case, the blow-up phenomenon is the result of mutually exciting dynamics. In our case, the strengthening of the connection may grow without bounds when the function zÞ Ñn 2 pzq exhibits some linear growth with respect to z and when the activation function β also has a linear growth. See [RV21a]. 

Simple model dynamics

To illustrate Theorem 12, we go back to the simple model detailed in Section 2.1. We present in Figure 2.1 different possible behaviors of the asymptotic dynamics, for different values of B 1 and B 2 . We represent the scaled process for different values of ε (in yellow, orange and red), the simulated ODE of the asymptotic dynamics (in black) and the analytical solution of the same ODE (in grey, dotted line). In all cases, the scaled processes converge indeed towards the solution of the ODE. We simulated the different processes starting from two deterministic initial values w 0 "1.0 and w 0 "3.0.

In particular, we observe different asymptotic regimes:

(a) The scaled system converges to an ODE that explodes in finite time for all initial conditions. The time of explosion t exp,w 0 depends on the initial condition.

(b) The limiting ODE leads to solutions of wptq that diverge towards `8 but that do not explode.

(c) Depending on the initial condition (relative to w eq ), the asymptotic wptq either converges to 0 (w 0 ăw eq ) or explodes in finite time (w 0 ąw eq ).

(d) The scaled processes converge to an ODE that has a stable fixed point w eq , and all the asymptotic processes w converge to this value.

We have shown with this simple example that the blow-up phenomenon does not only result from technical arguments but does indeed take place for some systems.

Moreover, we also highlight the fact that depending on the initial conditions, several behaviors are possible as in Figure 2.1(c).

Several important examples of pair-based and calcium-based models are now investigated in light of Theorem 12. In order to have simpler expressions, we restrict our study in the following sections to the linear neuron without reset receiving excitatory inputs, leading to the following set of assumptions, Assumptions L (Linear) a. The initial conditions of Relation (2.6) are such that U 0 "p0, 0 , 0, 0, 0q. " βw ż `8 0 `1´e ´f ps`uq ˘e´s ds, uě0.

The proposition is proved.

Pair-based rules

We investigate scaled models of pair-based rules (see [RV21a]) with Assumptions L.

In this setting, we are able to derive a closed form expression of the asymptotic equation (2.10).

All-to-all model

We recall the Markovian formulation of the all-to-all pair-based model with exponential functions Φ. All pairs of pre-and postsynaptic spikes are taken into account in the processes pΩ a ptqq, aPtp, du. See Section 3.1.3 of [RV21b]. In our framework, this is defined as follows.

Assumptions PA For wě0, the fast process associated to the operator B F w of Relation (2.8) is expressed as pX w ptq, Z w ptqq, where pX w ptqq is the solution of Relation (2.11) and

# dZ w a,1 ptq " ´γa,1 Z w a,1 ptq dt `Ba,1 N λ pdtq, dZ w a,2 ptq " ´γa,2 Z w a,2 ptq dt `Ba,2 N β,X w pdtq, (2.15) 
for aPtp, du, where γ"pγ a,i qą0 and B"pB a,i q in R 4 `. For aPtp, du the process pΩ a ptqq is such that dΩ a ptq " ´αΩ a ptq dt`Z a,2 pt´qN λ pdtq`Z a,1 pt´qN β,X pdtq.

i.e., n a,0 "0, n a,1 pzq"z a,2 , and n a,2 pzq"z a,1 for zPR 4 `.

We denote Π PA w the invariant distribution of the process pX w ptq, Z w ptqq. The existence of Π PA w is given by Proposition 4 of Section 5 of [RV21a].

Proposition 14. Under Assumptions L and PA, then for aPtp, du,

ż RˆR 4
`pn a,0 pzq`λn a,1 pzq`βpxqn a,2 pzqqΠ PA w pdx, dzq "

ν βλ Λ a,1 `pΛ a,1 `Λa,2 q w. with Λ a,1 " βλ 2 ˆBa,1 γ a,1 `Ba,2 γ a,2 ˙and Λ a,2 "βλ B a 1 1`γ a,1
.

(2.16)

Proof. Assume that the initial point of SDE (2.15) is a random variable pX w , Z w q with distribution Π PA w . For aPtp, du, it is easily seen that E " Z w a,1 ‰ "λB a,1 {γ a,1 and E rX w s "λw. Denote pY w ptqq"pX w ptqZ w a,1 ptqq; then with Relation (2.15), we get dY w ptq " ´p1`γ a,1 qY w ptq dt `´wZ w a,1 pt´q`B a,1 X w pt´q`wB a,1 ¯Nλ pdtq.

By integrating this ODE on r0, ts and taking the expected value, we obtain Proof. This is a direct consequence of Theorem 12 and of Proposition 14.

p1`γ a,1 qE " X w Z w a,1 ‰ " λwE " Z w a,1 ‰ `λB a,1 E rX w s `λwB a,1 " p1`γ a,1 q γ a,1 q λ 2 B a,
Note that, for aPtp, du, the parameter Λ a,1 is proportional to the area under the two STDP curves Φ a,i pxq"B a,i expp´γ a,i pxqq, i"1, 2. It represents the averaged potentiation/depression rate as if we had considered two neurons without any interactions. Two important facts results from this property, -the term in the dynamics for the constant firing rate of the output neuron, ν, is proportional to Λ a,1 , as expected;

-the term Λ a,2 reflects the dependence between pre-and postsynaptic spikes.

Nearest neighbor symmetric model

Similar results can be obtained for the nearest neighbor symmetric scheme of Section 3.1.4 of [RV21a] with general STDP curves Φ. For this class of models, whenever one neuron spikes, the synaptic weight is updated by only taking into account the last spike of the other neuron. In our framework, this is defined as follows.

Assumptions PNS For wě0, the fast process associated to the operator B F w of Relation (2.8) can be expressed as pX w ptq, Z w ptqq, where pZ w ptqq is the solution of the SDEs,

#

dZ w 1 ptq " dt´Z w 1 pt´q N λ pdtq, dZ w 2 ptq " dt´Z w 2 pt´q N β,X w pdtq.

(2.17)

It it easily seen that for Z w 1 ptq"t 0 pN λ , tq when t is greater than the first point of N λ and, similarly, Z w 2 ptq"t 0 pN β,X w , tq under an analogue condition, with t 0 pm, tq"t´supts : săt : mptsuq‰0u, (2.18) the distance between the first point of m at the left of t and t. For aPtp, du, the process pΩ a ptqq is such that

dΩ a ptq " ´αΩ a ptq dt`Φ a,2 pZ 2 pt´qqN λ pdtq`Φ a,1 pZ 1 pt´qqN β,X pdtq,
i.e., n a,0 pzq"0, n a,1 pzq"Φ a,2 pz 2 q, and n a,2 pzq"Φ a,1 pz 1 q for zPR 2 `.

The functions Φ a,1 and Φ a,2 are quite general nonnegative, nonincreasing, and differentiable functions, instead of exponential functions, as is usually assumed for tractable models of many STDP rules.

Proposition 16. For wě0, the Markov process pX w ptq, Z w ptqq has a unique invariant distribution Π PS w . If f is a bounded Borelian function on R 2 `and aě0, then Proof. The first condition of Assumption B-a is clearly not satisfied, the coordinates of the vector γ being ´1. This is not a concern since this condition is only used to construct a Lyapunov function as in the proof of Proposition 4 of Section 5 of [RV21a]. We only show that one can construct such a function for this model. Set, for px, zqPRˆR 2 `, Hpx, zq def.

ż RˆR 2 `f px, z 1 qΠ PS w pdx, dzq " E " f `we ´Eλ p1`Sq, E λ ˘‰ , ż RˆR 2 `1tz 2 ěau Π PS w pdx,
"

1 x δ `x`z 1 `z2 ,
for some δą0; then,

B w F pHq ď 1 x δ ˆδ`λ ˆxδ px`wq δ ´1˙˙`λ w `2 ´x ´λz 1 ´pν`βxqz 2 ,
Choosing δăλ{4, we set x 0 " min px 1 , x 2 q, where

x 1 " w 2 1{δ ´1, x 2 " ˆλ 4pλw`3q ˙1{δ ,
such that if xďx 0 , then B w F pHq ď ´1. Moreover, if xěx 0 , we also have B w F pHq ď ´1 for Hpx, zqěK 0 , where

K 0 " ˆδ x δ 0 `λw`3 ˙{ minp1, λ, ν `βx 0 q.
In particular, H is a Lyapunov function for B F w . Consequently, there exists a unique invariant distribution.

We denote by pX w , Z w 1 , Z w 2 q a random variable with distribution Π PS w . It is easily checked that, for tą0,

pX w ptq, Z w 1 ptqq " ˆw ż t 0 e ´pt´sq N λ pdsq, t 0 pN λ , tq ˙dist. " ˆw ż 0 ´t e s N λ pdsq, t 0 pN λ , 0q ˙,
where t 0 p¨, ¨q is defined by Relation (2.18). By letting t go to infinity, we thus get, with t 0 def.

" t 0 pN λ , 0q,

pX w , Z w 1 q dist.
"

ˆw ż 0 ´8 e s N λ pdsq, t 0 pN λ , 0q
˙" ˆwe ´t0 ˆ1`ż p´8,´t 0 q e s`t 0 N λ pdsq ˙, t 0 ˙.

The strong Markov property of N λ gives the desired relation for the representation of the law of pX w , Z w 1 q. Again, with the formula of the Laplace transform of Poisson point processes, we have

E " exp ˆ´ξ ż p´8,´t 0 q e s`t 0 N λ pdsq ˙ "E " exp ˆ´ξ ż 0 ´8 e s N λ pdsq ˙ " exp ˆ´λ ż `8 0 ´1´e ´ξe ´s ¯ds ˙.
The stationary distribution of pZ 2 ptqq is the distribution of the distance of the first point of N β,X at the left of 0 at equilibrium, and hence, for aě0, P pZ w 2 ěaq "P `Nβ,X w 8 pp´a, 0qq"0 ˘"P `Nβ,X w 8 pp0, aqq"0 ˘.

Relation (2.12) gives, for ξě0, 

´ln E " e ´ξN β,

Links with models of physics

In this section, averaging principles for STDP rules of [KGH99] are discussed. We start by characterizing which type of STDP rules are used, in particular, their model takes into account all pairing of pre-and postsynaptic spikes that last less than the interval of the experiment T . It is supposed that T is really large compared to the neuronal dynamics. Accordingly, in the limit of large T , it corresponds to the pair-based all-to-all model of Assumptions PA. After adapting notation, the main equation for the asymptotic behavior of the synaptic weight dynamics (Relation (4) of this reference) is expressed, via a separation of timescale argument, as

d r w dt " w 1 ν 1 ptq `w2 ν 2 ptq `ż `8 ´8 r
Φpsqr µps, tq ds, (2.19)

where S 1 (resp., S 2 ) is the process of presynaptic spikes (resp., postsynaptic spikes),

ν 1 ptq " xS 1 ptqy, the presynaptic spike rate and w 1 the intensity of synaptic plasticity triggered by presynaptic spikes only;

ν 2 ptq " xS 2 ptqy, the postsynaptic spike rate and w 2 the intensity of synaptic plasticity triggered by postsynaptic spikes only;

r Φptq represents the STDP curve; r µps, tq"xS 1 pt`sqS 2 ptqy, the correlation between the spike trains.

The quantity x¨¨¨y ą is defined in terms of temporal and ensemble averages that are not completely clear from a mathematical point of view, x¨¨¨y is the ensemble average and ¨¨¨is the temporal average over the spike trains. The model of [KGH99] is without exponential filtering; see Section 2.A.

In our setting, we choose M pΓ p , Γ d , wq"Γ p ´Γd , n a,0 pzq"0, n a,1 pzq"D a,1 `za,2 and n a,2 pzq"D a,2 `za,1 , where z a,i are defined as in Assumptions PA. Theorem 24 gives the following equation:

dw dt " pD p,1 ´Dd,1 qλ `pD p,2 ´Dd,2 q ż R `β pxqΠ PA wptq pdxq `żR `pλz 2 `βpxqz 1 q Π PA wptq pdx, dz 1 , dz 2 q, (2.20)
where Π PA w is defined in Proposition 14. We then have the following equivalence: [KGH99] Our model Presynaptic plasticity

w 1 D p,1 ´Dd,1 Presynaptic rate ν 1 ptq λ Postsynaptic plasticity w 2 D p,2 ´Dd,2 Postsynaptic rate ν 2 ptq ż R `β pxqΠ PA wptq pdxq STDP ż `8 ´8 r Φpsqr µps, tq ds ż R `pλz 2 `βpxqz 1 q Π PA wptq pdx, dz 1 , dz 2 q
The equivalence of the last row can be explained as follows.

We set Φ a ptq " B a,1 expp´γ a,1 tq1 ttą0u `Ba,2 exppγ a,2 tq1 ttă0u , and µpt, wq "

$ ' ' & ' ' % lim hOE0 E Π PA w pN λ r0, hsN β,X rt, t`hsq h 2 , for tą0; lim hOE0 E Π PA w pN λ r0, hsN β,X rt, t`hsq h 2 , for tă0,
provided that the limits related to second order properties of the point processes N λ and N β,X exist. In Section 2.B, a heuristic argument shows that ż R `pλz 2 `βpxqz 1 q Π PA wptq pdx, dz 1 , dz 2 q " ż `8

´8 pΦ p psq´Φ d psqqµps, wptqq ds, leading to the equivalence between both models.

Calcium-based rules

We investigate scaled models of calcium-based rules introduced in Section 3.1.1 of [RV21b]. In this section, we show that the asymptotic equation (2.10) has a unique solution. Some regularity properties of the invariant distribution of the operator B F w , with respect to the variable w, have to be obtained. Assumptions C In this case, the vector pZptqq is a nonnegative one-dimensional process pCptqq. For wPK W , the fast process associated to the operator B F w of Relation (2.8) can be expressed as pX w ptq, C w ptqq, where, as before, pX w ptqq is the solution of Relation (2.11) and the SDE for pC w ptqq is

dC w " ´γC w ptq dt `C1 N λ pdtq `C2 N β,X w pdtq, (2.21) 
where C 1 and C 2 ě0, γą0. For aPtp, du, the process pΩ a ptqq is such that dΩ a ptq " p´αΩ a ptq`h a pCptqqq dt, i.e., n a,0 pcq"h a pcq, n a,1 pcq"0, and n a,2 pcq"0 for cPR `. The functions h p and h d are assumed to be L-Lipschitz. They represent, respectively, the influence of the calcium concentration C on potentiation and depression.

Proposition 18. For wPK W , the Markov process pX w ptq, C w ptqq has a unique invariant distribution Π C w , and its Laplace transform is given by, for a and bě0,

´ln ż R 2 `e´ax´bc Π C w pdx, dcq " ν ż 0 ´8 `1´e ´bC 2 e γu ˘du
`λ ż 0 ´8 ˆ1´exp ˆ´awe u ´bC 1 e γu ´βw ż u 0 ´1´e ´bC 2 e γpu´sq ¯es ds ˙˙du.

Proof. The existence and uniqueness of Π C w is a direct consequence of Theorem 12 since Assumptions B hold in this case and Proposition 4 of Section 5 of [RV21a] can be used.

With Proposition 13 and Lemma 2.1 of [RV21b], a stationary version pX w 8 ptq, C w 8 ptqq of the fast process pX w ptq, C w ptqq can be represented as

ˆw ż t ´8 e ´pt´sq N λ pdsq, C 1 ż t ´8 e ´γpt´sq N λ pdsq`C 2 ż t ´8 e ´γpt´sq N β,X w 8 pdsq ˙.
( "

ˇˇˇˇż t 0 e ´αpt´sq « ż R 2 `ha pcqΠ C wpsq pdx, dcq´ż R 2 `ha pcqΠ C w 1 psq pdx, dcq ff ds ˇˇˇď ż t 0 ˇˇE " h a pC wpsq 8 p0qq ‰ ´E " h a pC w 1 psq 8 p0qq ıˇˇˇd s ď C 2 L β γ ż t 0 |wpsq´w 1 psq| ds.
With Relation (2.23) and the Lipschitz property of M , we get, for tďT ,

}w´w 1 } t def. " sup sďt |wpsq´w 1 psq| ď L M ż t 0 e ´µpt´sq p∆ p psq`∆ d psqq ds ď 2T L M C 2 L β γ ż t 0 }w´w 1 } s ds.
This implies that p}w´w 1 } t q is identically 0. The theorem is proved.

The Lipschitz assumptions for the functions ph p , h d q of Assumptions C do not apply to the classical threshold functions pS p , S d q from [GB12] defined by S a pxq " 1 txěθau , xě0.

(2.24) Additionally, even in the case of Lipschitz functions, the quantities ż RˆR `ha pcqΠ C w pdx, dcq, aPtp, du, of the ODE (2.23) do not have a closed form expression in general.

Theorem 19 highlights the importance of the calcium concentration on the dynamics of the synaptic weight. Interestingly, calcium has been the subject of a wide array of experimental studies, and biologists have developed several means to follow its concentration both locally and globally during experiments. In particular, it is now possible to monitor calcium concentration in dendrites of postsynaptic neurons during stimulations with calcium fluorescence indicators, such as GCaMP for example [NOI01], See [HS08]. It may be therefore possible to infer these cumulative functions from such experiments and study the dynamics of Theorem 19 for those realistic calcium concentrations.

From the point of view of numerical analysis, it is quite difficult to obtain some simple numerical results to express solutions of the ODE (2.23). It could be done, by simulations, to estimate the quantities E Π C w ph a pCqq, aPtp, du for a large number of values for w. A recent article (see [GWO16]) has derived some approximations for specific cases.

For this reason, the next section investigates a class of discrete calcium-based models for which the invariant distributions have an explicit expression which can be used in practice.

Discrete models of calcium-based rules

In this section, we study a simple model of plasticity where the membrane potential X, the calcium concentration C, and the synaptic weight W are integer-valued variables. It amounts to representing these three quantities X, C, and W as multiples of a "quantum" instead of a continuous variable. A general class of such discrete models has been introduced in Section 4 of [RV21b].

This amounts to describing the model of plasticity as a chemical reaction network of interacting chemical species: C (calcium), W synaptic quanta, X ions. The associated chemical reactions could be described as

# H λ á W X `C1 C, X β á C 2 C, # B d W á H á B p W, W µ á H, # X 1 á H, C γ á H.
In this setting, the state variable is the vector of the number of copies of the different chemical species. See [Fei19] for a general introduction to chemical reaction networks and also Chapter 2 of [AK15]. It should be noted that our model is not strictly speaking a chemical reaction network since some reactions rates are defined by the processes pΩ a ptqq, aPtp, du. 

dX ε ptq " ´Xεpt´q ÿ i"1 N 1{ε,i pdtq `Wε pt´qN λ{ε pdtq ´Xεpt´q ÿ i"1
N β{ε,i pdtq,

dC ε ptq " ´Cεpt´q ÿ i"1 N γ{ε,i pdtq `C1 N λ{ε pdtq `C2 Xεpt´q ÿ i"1
N β{ε,i pdtq, dΩ ε,a ptq " ´αΩ ε,a ptq dt`h a pC ε ptqq dt, aPtp, du,

dW ε ptq " Ẃεpt´q ÿ i"1 N µ,i pdtq`B p N Ωε,pptq pdtq´B d 1 tWεpt´qěB d u N Ω ε,d ptq pdtq, (2.25) 
Definition 20 (Fast processes). For a fixed W "w, the fast variables of the SDEs (2.25) are associated to a Markov process pX w ptq, C w ptqq on N 2 whose transition rates are given by, for px,

cqPN 2 , px, cq ÝÑ # px`w, c`C 1 q λ, px´1, cq x, ÝÑ # px, c´1q γc, px´1, c`C 2 q βx.
The next result is the equivalent of Theorem 19 in a discrete setting. The threshold functions pS p , S d q defined by Relations (2.24) and used in classical models of calcium-based STDP [GB12] satisfy the conditions of the theorem. For the proof, see the appendix of [RV21a].

The theorem shows that the limiting process pwptqq is a jump process on N driven by two nonhomogeneous Poisson processes whose intensity functions pω a ptqq, aPtp, du are continuous.

The explicit expression of the invariant distribution of pC w ptqq is given in Proposition 4.3 of [RV21b]. Only the distribution of the calcium variable C w is considered due to its role in the expression of pω a ptqq, aPtp, du in Theorem 21. We present in Figure 2.2 simulations for different values of θ p and θ d of the continuous model (Section 2.4) with step functions S a (left) and of the discrete model (right). In particular, we simulate the scaled system for different values of ε and we also estimate the solution of (2.23) and (2.26), w MC , using Monte Carlo estimations to compute Π C{CQ w pCěθ a q. Moreover, for the discrete case, we are able to compute Π CQ w pCěnq for n"0, 1, 2; see Section 2.C. Based on these analytical results, we are able to obtain the numerical values of the parameters of the dynamic of the asymptotic process pw AR ptqq. Simulations of the expected values of pw AR ptqq are represented in green in Figure 2.2.

These simulations illustrate Theorems 19 and 21, with the convergence of the scaled processes W ε towards our asymptotic process. For the continuous case, we observe that even if the step function S a does not verify the conditions of 19, convergence seems to hold anyway. This is also illustrated by the decrease in standard deviations (inset) as ε goes to 0. For the discrete case, we note the same phenomenon for the expected value and the standard deviation. Recall that the limiting process is stochastic in this context. Finally, it also shows that, qualitatively, the two classes of models continuous/discrete behave quite similarly.

Appendix 2.A Averaging principles for models without exponential filtering

In Section SM2 of [RV21b] more "direct" dynamics for the time evolution of synaptic weight have been presented. For aPtp, du, the update at time t depends only on the instantaneous synaptic plastic processes Γ a pN λ , N β,X qpdtq " n a,0 pZpt´qq dt`n a,1 pZpt´qqN λ pdtq`n a,2 pZpt´qqN β,X pdtq at time t. The corresponding synaptic weight process pW ptqq satisfies the relation

dW ptq " M `Γp pN λ , N β,X q, Γ d pN λ , N β,X q, W pt´q ˘pdtq,
for some functional M .

Recall that for our model, the dynamic of the synaptic weight pW ptqq is defined by,

dW ptq " M pΩ p ptq, Ω d ptq, W ptqq dt,
where pΩ a ptqq, aPtp, du, is a filtered/smoothed version of Γ a pN λ , N β,X q, dΩ a ptq " ´αΩ a ptq dt`n a,0 pZptqq dt `Γa pN λ , N β,X qpdtq

It turns out that a stochastic averaging principles also holds for the model without an exponential filtering. We first introduced the scaled version of this system.

Definition 23 (Scaled dynamical system for instantaneous plasticity). We define the stochastic process pXptq, W ptqq with initial state px 0 , w 0 q, satisfying the evolution equations, for tą0,

$ ' ' ' ' ' ' & ' ' ' ' ' ' % dX ε ptq " ´1 ε X ε ptq dt `Wε pt´qN λ{ε pdtq ´gpX ε pt´qqN β{ε,Xε pdtq, dZ ε ptq " 1 ε ´´γ d Z ε ptq`k 0 ¯dt `k1 pZ ε pt´qqN λ{ε pdtq`k 2 pZ ε pt´qqN β{ε,Xε pdtq, dW ε ptq " εM `Γp pN λ , N β,X q, Γ d pN λ , N β,X q, W ptq ˘pdtq, (2.28) 
where Γ p and Γ d are plasticity kernels. The functional M is defined by An analogue of Theorem 12 in this context is the following result.

M : M `pR `q2 ˆR Þ Ñ M `pR `q (2.29) pΓ p , Γ d , wq Ñ M pΓ p , Γ d , wq.
Theorem 24 (Averaging principle for instantaneous plasticity). Under Assumptions A and B* and for initial conditions satisfying Relation (2.6), there exists S 0 Pp0, `8s, such that the family of processes pW ε ptq, tăS 0 q associated to Relations (2.28) and (2.29), is tight for the convergence in distribution as ε goes to 0. Almost surely, any limiting point pwptq, tăS 0 q satisfies the relation dwptq "

ż RˆR M ´rpn a,0 pzq`λn a,1 pzq`βpxqn a,2 pzqq dts aPtp,du , wptq ¯Πwptq pdx, dzq. (2.30) where, for wPK W , Π w is the invariant measure Π w of the operator B F w of Relation (2.8). Proof. Due to the specific expression of M , the arguments follow the ones used in [RV21a]. The proof is skipped.

Comparison with Theorem 12

Both theorems show that the dynamics of the synaptic weight w in the decoupled stochastic system depend on an integral over the stationary distribution of the fast process. However, in Theorem 12, the averaging property occurs at the level of the synaptic plasticity processes ω a , dω a ptq dt " ´αω a ptq `żRˆR `"n a,0 pzq`λn a,1 pzq`βpxqn a,2 pzq ı dΠ wptq px, zq, and, the function M is applied afterwards to have the update of the synaptic weight w, dwptq dt " M pω p ptq, ω d ptq, wptqq.

In Theorem 24, with no exponential filtering, the averaging is applied directly at the level of the synaptic update, dwptq " ż RˆR M ´rpn a,0 pzq`λn a,1 pzq`βpxqn a,2 pzqq dts aPtp,du , wptq ¯Πwptq pdx, dzq.

In particular, with a linear function M , both models are equivalent except for the exponential filtering of the plasticity kernels.

2.B Links with models of physics: a heuristic approach

In this section we give a, non-rigorous, derivation of Relation (2.19) of [KGH99] to establish a connection with our main results in this specific case. For wPK W , from the definition of Φ a , aPtp, du,

ż 0 ´8Φ a psqE Π PA w ˆNβ,X r0, hs h N λ rs, s`hs h ˙ds " B a,1 E Π PA w ˆż 0 ´8 exppγ a,1 sqE Π PA w " N β,X r0, hs h N λ rs, s `hs h ˇˇˇF 0  ds " B a,1 E Π PA w ˆEΠ PA w " N β,X r0, hs h ˇˇˇF 0  ż ´h ´8 exppγ a,1 sq N λ rs, s `hs h ds ˙ " B a,1 E Π PA w ˆβpXp0qq ż ´h ´8 exppγ a,1 sq N λ rs, s `hs h ds ȧnd, if N λ "pt n , nPZq, with t 0 ď0ăt 1 , " B a,1 E Π PA w ˜βpXp0qq ÿ tnď´h 1 h ż tn`h tn exppγ a,1 sq ds " B a,1 E Π PA w ˜βpXp0qq ÿ nď0 exppγ a,1 t n q " E Π PA w pβpXp0qqZ a,1 p0qq " ż R 5 `β pxqz a,1 Π PA w pdx, dzq
by using a representation of Z a,1 p0q similar to that of X w 8 p0q with Relation (2.13). Similarly,

ż `8 0 Φ a psqE Π PA w ˆNβ,X r0, hs h N λ rs, s`hs h ˙ds " ż R 5
`λz a,2 Π PA w pdx, dzq.

Extensions

The interest of Relation (2.19) is that it may be formulated for a general plasticity curve Φ a for all-to-all pair-based models. Recall that the corresponding plasticity kernels are of class M only for exponential functions. We conjecture that under the conditions, for aPtp, du, the convergence of the scaled process to the ODE (2.19) with a convenient r µ should hold. For Markovian plasticity kernels, this is done by using Markov properties of the fast processes pX ε ptq, Z ε ptqq. See [RV21a]. We do not have this tool in the case of a general plasticity curve. The proof of such an extension should require an additional analysis.

2.C Computation of Π

CQ w for C 1 "C 2 "1
Proposition 25 (Equilibrium of fast process). For C 1 "C 2 "1 and wPN, the Markov process on N 2 of Definition 20 has a unique invariant distribution Π w , and if the distribution of pX w , C w q is Π w , the generating function of C w is given by, for uPr0, 1s, CHAPTER 3
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AVERAGING PRINCIPLES FOR MARKOVIAN MODELS OF PLASTICITY

In this paper we consider a stochastic system with two connected nodes, whose unidirectional connection is variable and depends on point processes associated to each node. The input node is represented by an homogeneous Poisson process, whereas the output node jumps with an intensity that depends on the jumps of the input node and the connection intensity. We study a scaling regime when the rate of both point processes is large compared to the dynamics of the connection. In neuroscience, this system corresponds to a neural network composed by two neurons, connected by a single synapse. The strength of this synapse depends on the past activity of both neurons, the notion of synaptic plasticity refers to the associated mechanism. A general class of such stochastic models has been introduced in [RV20] to describe most of the models of long-term synaptic plasticity investigated in the literature. The scaling regime corresponds to a classical assumption in computational neuroscience that cellular processes evolve much more rapidly than the synaptic strength.

The central result of the paper is an averaging principle for the time evolution of the connection intensity. Mathematically, the key variable is the point process, associated to the output node, whose intensity depends on the past activity of the system. The proof of the result involves a detailed analysis of several of its unbounded additive functionals in the slow-fast limit, and technical results on interacting shot-noise processes.

Introduction

Neurons exchange electrical and chemical signals at specific spots, called synapses. The synaptic transmission between neural cells is unidirectional, in the sense that, the signal goes from the pre-synaptic neuron towards the post-synaptic neuron. This interaction is modulated over time, and particularly by the concomitant activity of both neurons. In [RV20] we have introduced a general class of mathematical models to represent and study synaptic plasticity mechanisms.

A basic model to investigate such phenomenon consists of a pre-synaptic neuron connected through a synapse to a post-synaptic neuron. The associated stochastic process is described by two random variables pX, W q and the spiking activity of each neuron is represented by a point process. a. Point process for pre-synaptic spikes: N λ .

This point process is associated to the instants when the pre-synaptic neuron is spiking, i.e. when it transmits a chemical/electrical signal to the post-synaptic neuron via the synapse. We assume that N λ is an homogeneous Poisson process with rate λ.

b. Synaptic weight: W . It describes the strength of the connection from the pre-synaptic neuron to the post-synaptic neuron.

c. Post-synaptic membrane potential: X. This variable is for the current activity of the post-synaptic neuron. At a jump of N λ , the membrane potential X is incremented by W , where W is the current synaptic weight.

d. Point process for post-synaptic spikes: N β,X .

In state X"x, the post-synaptic neuron emits a spike at rate βpxq, where β is the activation function of the neural cell. The point process associated to these instants is an inhomogeneous Poisson process denoted by N β,X . This is a key variable of the stochastic model. See Relation (3.6) for a formal definition.

As explained in [RV20], for some synaptic mechanisms, the time evolution of W may depend, in a complex way, on past spiking times of both adjacent neurons. In our model it is a functional of the point processes N λ and N β,X . The model relies on two clearly stated hypotheses: the effect of plasticity only depends on the relative timing of the activity of both neuronal cells and is seen over the synaptic strength on long timescales.

Accordingly, the purpose of the current paper is to prove limit theorems for a scaled version of the corresponding stochastic processes pXptq, W ptqq.

A simple model

We begin by the description of a simplified model to highlight the role of the different components in these stochastic models. We consider the following set of Stochastic Differential Equations (SDEs),

$ ' & ' % dXptq " ´Xptq dt `W pt´qN λ pdtq, dZptq " ´γZptq dt `B1 N λ pdtq `B2 N β,X pdtq, dW ptq " Zpt´qN β,X pdtq, (3.1)
where hpt´q is the left-limit of the function h at tą0 and, for i"t1, 2u, B i PR `.

In this model, the time evolution of pW ptqq is overly simplified, plasticity processes are modeled by an increase of the synaptic weight W at each jump of N β,X by the value of pZptqq.

The process pZptqq encodes the past spiking activity of both neurons through an additive functional of N λ and N β,X with an exponential decay factor γą0. The process pZptqq is associated to a cellular process, in the general model this is a multi-dimensional process.

The main process of interest is the strength of the synaptic connection pW ptqq. It has been extensively studied both in experimental neuroscience and in physics, there are nevertheless few rigorous mathematical results on the dynamical evolution of W .

From a mathematical perspective, the variables pXptq, Zptq, W ptqq, solutions of SDE (3.1) are central to the model. The point process N β,X is nevertheless the key component of the system since it drives the time evolution of pZptqq and pW ptqq and, consequently, of pXptqq. Most of the mathematical difficulties of our paper are related to asymptotic estimates of linear functionals of N β,X .

The scaling approach of this paper follows from the fact that the model can be expressed as a slow-fast system. An important property of this system is that neuronal processes, associated to the point processes N λ and N β,X , occur on a timescale which is much faster than the timescale of the evolution of pW ptqq. See Sections 1 and 4.1 of [RV20] and the references therein for a discussion on this topic.

Using this scaling for the simple model, SDE (3.1) becomes, for εą0,

$ ' & ' %
dX ε ptq " ´Xε ptq dt{ε `Wε pt´qN λ{ε pdtq, dZ ε ptq " ´γZ ε ptq dt{ε `B1 N λ{ε pdtq `B2 N β{ε,Xε pdtq, dW ε ptq " Z ε pt´qεN β{ε,Xε pdtq.

(3.2)

Pre-synaptic spikes occur at rate λ{ε and when the membrane potential of the postsynaptic cell is x, a post-synaptic spike occurs at rate βpxq{ε. The variables pX ε ptqq and pZ ε ptqq evolve on the timescale tÞ Ñt{ε, with ε small, they are fast variables.

Conversely, the increments of the variable W are scaled with the parameter ε, the integration of the differential element εN β{ε,Xε pdsq on a bounded time-interval is Op1q. For this reason, pW ε ptqq is described as a slow process. This is a classical assumption in the corresponding models of statistical physics. Approximations of pW ε ptqq when ε is small are discussed and investigated with ad hoc methods, see [KGH99] for example.

Averaging principles

The main goal of the present paper is to establish a limit result, or averaging principle, for pW ε ptqq when ε goes to 0 for a general class of synaptic plasticity models.

We denote by pX w , Z w q the solution pXptq, Zptqq of Relation (3.2) when the process pW ptqq is constant and equal to w. Under appropriate conditions, it has a unique equilibrium distribution Π w . The averaging principle for the simple model can be expressed as follows.

There exists S 0 Pp0, `8s, such that the processes pW ε ptq, 0ďtăS 0 q is tight for the convergence in distribution when ε goes to 0, and any limiting point pwptq, 0ďtăS 0 q satisfies the following integral equation,

wptq " wp0q`ż t 0 ż R 2
`zβ pxqΠ wpsq pdx, dzq ds, tPr0, S 0 q.

(3.3) See Section 5 of Chapter 1 of [Bil99] for general results on tightness properties and convergence in distribution.

We discuss now some of the technical difficulty to derive such results for our model. The integration of SDE (3.2) gives the relation

W ε ptq " W ε p0q`ż t 0 Z ε ps´qεN β{ε,Xε pdsq.
The tightness of the family of processes pW ε ptqq is equivalent to the tightness of

ˆż t 0 Z ε psqεN β{ε,Xε pdsq ˙(3.4)
A general approach to prove averaging principles is presented in [Kur92] for jump processes. See Chapter 7 of [FW98] and especially [PSV77] for an introduction to averaging principles. If we had an expression of the type

ˆż t 0 F pX ε psq, Z ε psqq ds ˙,
where sÑF pX ε psq, Z ε psqq is a bounded continuous function on R `, a direct use of the results of [Kur92], Lemma 1.3 and 1.5, would give the desired tightness. This is the case of [Hel18] for the time-elapsed model of plasticity for which this representation holds, one of the few rigorous results in this domain.

It does not seem to be possible to handle functionals of the form (3.4) in this way. The process pZ ε psqq is clearly not bounded and neither is the intensity of the point process N β{ε,Xε , since pβpX ε psqq is also not bounded. Remember that fast processes are on a rapid time scale so visit their state space "quickly", the values of the integrals of (3.4) can be large and therefore must be controlled in an appropriate way.

Two other interesting properties emerge from the stochastic averaging result from Section 3.4. a. U . If Relation (3.3) has a unique solution for a given initial state, a result for the convergence in distribution of pW ε ptqq when ε goes to 0 is therefore obtained. Uniqueness holds if the integrand, with respect to s, of the right-hand side of Relation (3.3) is locally Lipschitz as a function of wpsq. Regularity properties of the invariant distribution Π w as a function of w need to be verified and this is not a concern in the case of our simple model. We will consider in fact much more general models for pX w , Z w q, when Z w a multi-dimensional process in particular. We did not try to state a set of conditions that can ensure the desired regularity properties of the corresponding Π w . The proof of the Harris ergodicity of pX w , Z w q for a fixed w of Section 3.C of Appendix, though not really difficult, is already cumbersome.

The proof of Proposition 45 for the simple model gives an example of how this property can be established. In a general context, this kind of result is generally proved via the use of a common Lyapounov function for pX w , Z w q for all w is in the neighborhood of some w 0 ą0. See [Has80], for example. Uniqueness results have already been obtained in Sections 5 and 6 of [RV20] for several important practical cases. In Section 3.8 we investigate these questions for our simple model. b. B -. The convergence properties are stated on a fixed time interval r0, S 0 q. For some models, the variable S 0 cannot be taken as `8, see the example of Section 3.4 and Proposition 47. More specifically, the limit in distribution of pW ε ptqq as ε goes to 0 blows-up, i.e. hits infinity in finite time. An analogue property holds for some mathematical models of large populations of neural cells with fixed synaptic strengths. See [CCP11] for example, where the blow-up phenomenon is the result of mutually exciting dynamics of populations of neural cells. In our case, the strengthening of the connection may grow without bounds when the activation function β has a linear growth. See Proposition 47 of Section 3.8.

A brief description of the general model of synaptic plasticity

We shortly describe the general setting of the models investigated in this paper. See Section 3.2 for a detailed presentation. a. The process pXptqq.

The output neuron follows leaky-integrate dynamics as in Equation (3.1). In addition, the influence of a post-synaptic spike N β,X at time tą0 is represented as a drop ´gpXpt´qq of the post-synaptic potential after the spike.

b. The process pZptqq"pZ i ptqq is a multi-dimensional process satisfying the same type of ODE as in our simple case but with the constants B 1 and B 2 being replaced by functions k 1 and k 2 of Zptq. A constant drift term k 0 is also added to the dynamics.

The ith component pZ i ptqq satisfies an SDE of the type

dZ i ptq " p´γ i Z i ptq`k 0,i q dt`k 1,i pZpt´qqN λ pdtq`k 2,i pZpt´qqN β,X pdtq.
c. Evolution of pW ptqq.

The dependence is more sophisticated since it involves two additional processes pΩ p , Ω d q. The first one, pΩ p ptqq integrates, with an exponential decay α a linear combination of the processes leading to potentiation, i.e. to increase the synaptic weight. The process pΩ d ptqq has a similar role for depression, i.e. to decrease the synaptic weight. They are expressed as, for aPtp, du, Ω a ptq" ż t 0 e ´αpt´sq rn 0,a pZpsqq ds`n 1,a pZps´qqN λ pdsq`n 2,a pZps´qqN β,X pdsqs .

The changes of pZptqq are thus integrated "smoothly" in the evolution of pW ptqq in agreement with measurements of the biological literature. See Appendix A of [RV20]. Finally, pW ptqqPK W verifies dW ptq " M pΩ p ptq, Ω d ptq, W ptqq dt,

where K W Ă R represents the synaptic weight domain, and the functional M is such that W ptq stays in K W for all tě0.

It has been shown in Section 3 of [RV20] that these models encompass most classical STDP models from statistical physics. The multiple coordinates of pZptqq can be interpreted as the concentrations of chemical components implicated in plasticity, that are created/suppressed by spiking mechanisms

Links to non-linear Hawkes point processes

The spiking instants of a neuron can also be seen as a self-exciting point process since its instantaneous jump rate depends on past instants of its jumps. This corresponds to the class of Hawkes point process M on R `associated to a function φ and exponential decay γ. More precisely, it is a non-homogeneous Poisson point process M whose intensity function pλptqq is given by pλptqq " ˆφ ˆż t 0 e ´γpt´sq Mpdsq ˙˙.

These processes have received of lot of attention from the mathematical literature, for some time now. They are mainly used in models of mathematical finance, but also in neurosciences. See the pioneering works of [HO74] and [Ker64].

A special case of the first equation of Relation (3.1) is, for wě0, dXptq " ´Xptq dt`wN λ pdtq´N β,X pdtq, if Xp0q"0, Lemma 30 below gives the representation

Xptq " w ż t 0 e ´pt´sq N λ pdsq´ż t 0 e ´pt´sq N β,X pdsq, @tě0.
Hence, N β,X can be seen as an extended Hawkes process with activation function β and exponential decay 1.

In the system of equations (3.1), pXptqq and pZptqq can also be represented as a multidimensional Hawkes processes. See [Haw71]. However in our model, an important feature not present in studies of Hawkes processes has been added: the synaptic weight process pW ptqq is not constant.

Extensions

The stochastic model with plastic connections presented in this paper may also be used in other contexts than neuroscience. Auto-exciting processes, Hawkes process, used in finance [ELL11], genomics [GS05; RS10], sociology [CS08] suppose, in general, that the influence of each point process on the others is constant over time. For example in [CS08], a Hawkes process is defined to describe the cascade of influences that exist in a social network, taking the example of Youtube videos views. The coefficients that model interactions between different individuals are constant. One could extend this model by taking into account the fact that individuals who watch repeatedly videos at the same time, may develop a stronger interaction. It should be therefore possible to extend these classes of models by adding a dependence of the connections on the past activity of the Hawkes process as for our models. Using classical results on stationary distributions of Hawkes processes with fixed connectivity, a slow-fast analysis similar to the one developed here should then be possible for these models.

Organization of the paper

In Section 3.2, the main processes and definitions are introduced as well as assumptions to prove an averaging principle. The scaling is presented in Section 3.3 and the averaging principle in Section 3.4. In this section the general strategy for the proof of the main theorem is detailed. Section 3.5 investigates monotonicity properties and a coupling result, crucial in the proof of tightness, is proved. Section 3.6 is devoted to the proof of tightness results when the process pW ε ptqq is assumed to be bounded. Finally, the proof of the main theorem is completed in Section 3.7. In Section 3.B of Appendix, several useful tightness results are proved for interacting shot-noise processes. The ergodicity properties of fast processes are analyzed in Section 3.C of Appendix. Section 3.D of the Appendix discusses averaging principles for related discrete models of synaptic plasticity.

A stochastic model for plasticity

We define the stochastic model associated to Markovian plasticity kernels introduced in [RV20]. The probabilistic setting of these models along with formal definitions are detailed in the following section.

Definitions and notations

The space of Borelian subsets of a topological space H, is denoted as BpHq. Let pΩ, F, pF t q, Pq be a filtered probability space. We assume that two independent Poisson processes, P 1 and P 2 on R 2 `, with intensity dxˆdy are defined on pΩ, F, pF t q, Pq. See [Kin92] for example. For PPtP 1 , P 2 u and A, BPBpR `q and a Borelian function f on R `,

P pAˆBq def. " ż AˆB Ppdx, dyq, ż R `f pyqPpA, dyq def. " ż AˆR `f pyqPpdx, dyq.
For tě0, the σ-field F t of the filtration pF t q tě0 is assumed to contain all events before time t for both point processes, i.e. σ ´P1 pAˆps, tsq , P 2 pAˆps, tsq , APB pR `q , sďt ¯Ă F t .

(3.5)

A stochastic process pHptqq is adapted if, for all tě0, Hptq is F t -measurable. It is a càdlàg process if, almost surely, it is right continuous and has a left limit at every point tą0, Hpt´q denotes the left limit of pHptqq at t. The Skorohod space of càdlàg functions from r0, T s to S is denoted as Dpr0, T s, Sq. See [Bil99] and [EK09]. The mention of adapted stochastic processes, or of martingale, will be implicitly associated to the filtration pF t q tě0 . The set of real continuous bounded functions on the metric space SĂR d is denoted by C b pSq. C k b pSqĂC b pSq is the set of bounded, k-differentiable functions on S with respect to each coordinate, with all derivatives bounded and continuous. The multidimensional extensions to S are denoted by C k b pS, Sq.

I P P O N .
We introduce an important point process N φ,H , that represents the jumps of a node whose activity process is pHptqq, with activation function φ. φ is a non-negative càdlàg function on R, it is defined by

ż R `f puqN φ,H pduq def. " ż R `f puqP 2 ´p0, φpHpu´qqs , du ¯, (3.6)
for any Borelian function f on R `.

The plasticity process

In the rest of the paper, we will consider a more generic connected system with plasticity, inspired from the neuronal example given in the Introduction. An input node will be represented by an homogeneous Poisson process with intensity λ, taking up the role of the pre-synaptic neuron. This input node will interact with an output node, whose activity X (i.e. membrane potential) integrates over time the jumps of the input node, with an amplitude W and an exponential decay taken with time constant 1. The output node jumps with an inhomogeneous rate βpXq that depends on the output node activity X. The connection intensity W is plastic and depends on previous interactions between both nodes, through a Markovian multi-dimensional variable Z, in the same way that the synaptic weight undergoes synaptic plasticity in the neuronal model. with the notation adb"pa k b k q for the Hadamard product, for a"pa k q, b"pb k qPR `.

Recall that, see Section 3.1, K W is an interval of R which contains the range of values for the connection intensity.

We now state the assumptions used for the proof of Theorem 29.

Inputs jumps

The jumps of the input node are given by a Poisson process with rate λą0, N λ pdtq def.

" P 1 pp0, λs, dtq , (

where P 1 is the Poisson point process introduced in Section 3.2.

Output jumps

When the output node activity is x, a jump of the output node occurs at rate βpxq and leads to a decrease of output activity x´gpxq:

-It is assumed that β is a non-negative, continuous function on R and that βpxq"0 for xď´c β ď0. Additionally, there exists a constant C β ě0 such that βpxqďC β p1`|x|q, @xPR.

(3.9)

-The function g is continuous on R and 0ďgpxqď maxpc g , xq holds for all xPR, for some c g ě0.

The jumps of the output node are represented by the point process N β,X . Recall that N β,X pdtq"P 2 ´p0, βpXpt´qqs , dt ¯.

The process pZptqq

The process pZptqq is a multi-dimensional process, with values in R `, it is driven by the general spiking activity of the system, and therefore, depends only on the point processes N λ and N β,X . For some models it describes the time evolution of chemical components within the synapse. pZptqq is a càdlàg function with values in R `, solution of the stochastic differential equation dZptq " p´γ d Zptq`k 0 q dt `k1 pZpt´qqN λ pdtq `k2 pZpt´qqN β,X , (3.10)

where, as before, d is for the Hadamard product, k 0 PR `is a constant and k 1 and k 2 are measurable functions from R `to R . Furthermore, the pk i q are chosen such that pzptqq has values in R `whenever zp0qPR `.

It is assumed that a. all coordinates of the vector γ are positive;

b. the non-negative functions k i , i"t0, 1, 2u, are C 1 b pR `, R `q and bounded by C k ě0.

The process pΩ p ptq, Ω d ptqq These variables, in R 2 `encode, with an exponential decay, the total memory of instantaneous plasticity processes represented by the process pZptqq. The process pΩ p ptqq is driving potentiation of the connection, i.e. the derivative of the connection intensity is an increasing function of this variable. In an analogous way, pΩ d ptqq is associated to depression, i.e. the derivative of the connection intensity is a decreasing function of this variable. The system of equations for pΩ p ptq, Ω d ptqq is a set of two one-dimensional SDEs, for aPtp, du, dΩ a ptq " ´αΩ a ptq dt`n a,0 pZptqq dt `na,1 pZpt´qqN λ pdtq`n a,2 pZpt´qqN β,X pdtq.

We suppose that there exists a constant C n such that, for jPt0, 1, 2u, aPtp, du, n a,j verifies, n a,j pzqďC n p1`}z}q, (3.11)

where, for zPR `, }z}"z 1 `¨¨¨`z . For any wPK W and aPtp, du, the discontinuity points of px, zqÞ Ñpn a,0 pzq, n a,1 pzq, βpxqn a,2 pzqq are negligible for the invariant probability distribution Π w of pXptq, Zptqq when pW ptqq is constant equal to w. See Section 3.C. When pW ptqq is constant, the process pXptq, Zptqq can be seen as generalized shotnoise processes, see Section 3.B. It is well-known that the invariant distribution of the classical, one-dimensional, shot-noise process is absolutely continuous w.r.t Lebesgue's measure. See examples of Sections 5 and 6 of [RV20] and the reference [BCR19] for criteria in this domain.

Dynamics of the connection intensity

The functional M drives the dynamics of the connection intensity, the corresponding equation is given by Relation (3.7). In particular, for any wPK W and any càdlàg piecewise-continuous functions h 1 and h 2 on R `, the ODE dw dt ptq"M ph 1 ptq, h 2 ptq, wptqq with wp0q"w, (3.12) for all points of continuity of h 1 and h 2 , has a unique continuous solution denoted by pSrh 1 , h 2 spw, tqq in K W . We assume that M can be decomposed as 

M

Discrete models of plasticity

A model of plasticity with discrete state space has been introduced in [RV20]. The proof of the associated averaging principles for the continuous case can be adapted to such systems. Relevant parts of the proof are briefly presented in Section 3.D of the Appendix.

The scaled process

The SDEs of Definition 26 are difficult to study without any additional hypothesis.

Existence and uniqueness of solutions to this system are guaranteed by Proposition 1 of [RV20]. It can be seen as an intricate fixed point equation for the processes pXptq, W ptqq involving functionals of these processes like N β,X defined by Relation (3.6).

As explained in Section 4 of [RV20], pXptq, Zptqq are associated to fast dynamics at the cellular level while the process pW ptqq evolves on a much longer timescale. For this reason, a scaling parameter εą0 is introduced so that pXptq, Zptqq evolves on the timescale tÞ Ñt{ε. More precisely:

-Fast Processes: pXptqq and pZptqq.

The point processes associated to input and output jumps driving the time evolution of pXptqq and pZptqq are sped-up by a factor 1{ε: N λ ÑN λ{ε and N β,X ÑN β{ε,X . The deterministic part of the evolution is changed accordingly dtÑ dt{ε.

-Slow Processes: pW ptqq and pΩ p ptq, Ω d ptqq.

Update of pΩ p ptqq and pΩ d ptqq due to fast jump processes have a small amplitude, N λ ÑεN λ{ε and N β,X ÑεN β{ε,X .

Formally, we define the scaled process pU ε ptqq"pX ε ptq, Z ε ptq, Ω ε,p ptq, Ω ε,d ptq, W ε ptqq, the evolution equations of Definition 26 become dX ε ptq " ´Xε ptq dt{ε`W ε ptqN λ{ε pdtq´g pX ε pt´qq N β{ε,Xε pdtq , (3.13) dZ ε ptq " p´γdZ ε ptq`k 0 q dt{ε`k 1 pZ ε pt´qqN λ{ε pdtq (3.14)

`k2 pZ ε pt´qqN β{ε,Xε pdtq, dΩ ε,a ptq " ´αΩ ε,a ptq dt`n a,0 pZ ε ptqq dt (3.15) ``n a,1 pZ ε pt´qqεN λ{ε pdtq`n a,2 pZ ε pt´qqεN β{ε,Xε pdtq ˘, aPtp, du dW ε ptq " M pΩ ε,p ptq, Ω ε,d ptq, W ptqq dt.

(3.16)

For simplicity, the initial condition of pU ε ptqq is assumed to be constant, U ε p0q " U 0 " px 0 , z 0 , ω p,0 , ω d,0 , w 0 q.

(3.17) Some simplifications of this (heavy) mathematical framework can be expected when ε goes to 0. We first introduce the notion of fast variables which correspond to the processes pXptq, Zptqq with the connection intensity process pW ptqq taken as constant.

Fast processes

Definition 27. For wPK W , pX w ptq, Z w ptqq is the Markov process in RˆR `defined by the SDEs $ ' & ' % dX w ptq " ´Xw ptq dt`wN λ pdtq´g pX w pt´qq N β,X w pdtq , dZ w ptq " p´γdZ w ptq`k 0 q dt `k1 pZ w pt´qqN λ pdtq`k 2 pZ w pt´qqN β,X w pdtq.

Let f PC 1 b pRˆR `q, then, with Equations (3.13) and (3.14), we have that

pM F f,ε ptqq def.
" ˆf pX ε ptq, Z ε ptqq´f px 0 , z 0 q´1 ε In Proposition 50 of Appendix 3.C, we establish that, under the conditions of Sections 3.2 and 3.2, the fast process pX w ptq, Z w ptqq has a unique invariant distribution Π w .

ż t 0 B F Wεpsq pf qpX ε psq, Z ε psqq

Functionals of the occupation measure

We start with a rough, non-rigorous, picture of results that are usually established for slow-fast systems. In our case, there are important examples where G has a linear growth with respect to the coordinates x or z"pz j q. The all-to-all models of pair-based rules for example, which are widely used in computational neuroscience lead to unbounded functionals of the occupation measure. See Section 3.3 of [RV20]. Additionally, convergence results in distribution of the jump processes such as, 3.20) as it is usually the case for bounded G. See [Kur92] for example. These technical difficulties have to be overcome to establish the tightness of the processes pΩ ε ptqq, and consequently of pW ε ptqq. As a result, additional limit results have to be established at this point, see Section 3.6. Furthermore, as ε goes to 0, the process pΩ ε,p ptq, Ω ε,d ptq, W ε ptqq should converge to a process pω p ptq, ω d ptq, wptqq satisfying the relation, 

Averaging principles results

We fix T ą0, throughout the paper the convergence in distribution of processes is considered on the bounded interval r0, T s.

Main result

We start by reviewing the assumptions detailed in Section 3.2 on the different parameters of the stochastic model.

Assumptions.

a. It is assumed that β is a non-negative, continuous function on R and that βpxq"0 for xď´c β ď0. Additionally, there exist a constant C β ě0 such that βpxqďC β p1`|x|q, @xPR.

b. g is continuous function on R and 0ďgpxqď maxpc g , xq holds for all xPR, for some c g ě0.

c. All coordinates of the vector γ are positive.

d. There exists a constant C k ě0 such that 0ďk 0 ďC k and functions k i , i"1, 2, in C 1 b pR `, R `q, are upper-bounded by C k ě0.

e. There exists a constant C n such that, for jPt0, 1, 2u, aPtp, du, n a,j verifies, n a,j pzqďC n p1`}z}q,

where, for zPR `, }z}"z 1 `¨¨¨`z . Moreover, for any wPK W , the discontinuity points of px, zqÞ Ñpn a,0 pzq, n a,1 pzq, βpxqn a,2 pzqq for aPtp, du, are negligible for the probability distribution Π w of Section 3.C.

f. M can be decomposed as,

M pω p , ω d , wq"M p pω p , wq´M d pω d , wq ´µw,
where M a pω a , wq is non-negative continuous function, non-decreasing on the first coordinate for a fixed wPK w , and, M a pω a , wq ď C M p1`ω a q, for all wPK W , for aPtp, du.

The main result of the paper is the following theorem.

Theorem 29 (Asymptotic time evolution of plasticity). Under the conditions of Section 3.2 and for initial conditions satisfying Relation (3.17), there exists S 0 Pp0, `8s, such that the family of processes pΩ ε,p ptq, Ω ε,d ptq, W ε ptq, tăS 0 q, εPp0, 1q, of the system of Section 3. 

C

. As already mentioned, most of the efforts in this paper are devoted to the proof of the tightness property of pΩ ε,p ptq, Ω ε,d ptq, W ε ptqq. We note that our result identifies the limiting points, but it does not state any weak convergence results for the scaled processes. Regularity properties are actually required on pΠ w q to have such results. For example, it would be sufficient to have that the mapping,

Ψ a : w Þ Ñ ż RˆR `pn
a,0 pzq`λn a,1 pzq`βpxqn a,2 pzqq Π w pdx, dzq, locally Lipschitz for w, for aPtp, du, so that Relation (3.21) has a unique solution.

Due to the generality of our model, we did not try to state a set of conditions that can ensure the desired regularity properties of the corresponding Π w . Uniqueness results are obtained in Sections 5 and 6 of [RV20] for several important cases. The same properties for the simple model are worked out in Section 3.8. However at this stage, a case by case analysis seems mandatory.

A -. As it can be seen, when S 0 ă`8 the convergence is only proved on a bounded time interval. In the proof, the variable S 0 results from the domain definition of the solution to a deterministic differential equation. This is not an artifact of our methods, see Proposition 47 in Section 3.8 for an example.

Steps of the proof

The proof of the theorem is organized as follows. See also Figure 3.1 of Appendix. a. Section 3.5. A stochastic upper-bound U of the original process is introduced and a coupling argument is used to control pW ε ptqq. This is an important ingredient in the proof of tightness results for pΩ ε,p ptq, Ω ε,d ptq, W ε ptqq.

b. Section 3.6. Under the temporary assumption that the process pW ptqq is bounded by K, we establish tightness results for the truncated process U K , when ε goes to 0, of variables associated to fast processes pX

K ε ptq, Z K ε ptqq of the type ˆżr0,Ts G ´s, X K ε psq, Z K ε psq ¯ds ˙
where G is a continuous Borelian function with a linear growth with respect to the coordinates xPR and zPR `. An averaging principle is shown for this truncated process.

c. In Theorem 43 of Section 3.7, using monotonicity arguments, we are able to obtain a deterministic, analytical bound, uniform in K, for the limiting points of the truncated process. From there, we prove an averaging principle for the dominating process U (without truncation) in Proposition 44 where the explicit form of the ODE verified by the limiting points is known. As a direct consequence, we are able to prove that this limit is unique and that the scaled dominating process converges to the solution. Using the fact that the process W ptq is bounded by W ptq and the previous convergence, we establish the desired results for the process U ε ptq of Theorem 29.

Technical results on shot-noise processes

The processes pXptqq and pZptqq are closely related to shot-noise processes and their generalizations. See for example [Sch18], [Ric44] and [GP60] for an introduction. We give a quick overview of their use in our proofs. In Appendix 3.B, the results below and several technical lemmas for these processes are detailed and proved.

The following lemma gives an elementary representation result for general shotnoise process associated to a positive Radon measure. See Lemma 1 of [RV20]. with the initial condition R ε p0q"0.

Lemma
It turns out that tightness properties of three families of linear functionals of such processes

ˆż t 0 R ε psq ds ˙, ˆż t 0 R ε psqεN λ{ε pdsq ˙, ˆż t 0 R ε psqεN I{ε,Sε pdsq ˙,
are central to establish Theorem 29. The motivation comes from the three terms in the expression of pΩ ε,a ptqq, aPtp, du of Relation (3.15) and the fact that, with the condition of Relation (3.11), for jPt0, 1, 2u, n j pzqďC 0 n `Cn z for zPR `.

The necessary results are stated in Proposition 33 which is used in Section 3.7.

Proposition 33. For H ε PtS ε , R ε u, the families of processes Kolmogorov-Čentsov's Criterion can then also be applied to the two other families of processes of the proposition. The proposition is proved.

ˆż t 0 H ε puq du ˙, ˆż t 0 H ε puq 2 du ˙and ˆż t 0 R ε puqS ε puq du ˙,

A coupling property

In this section a process pU ptqq"pXptq, Zptq, Ωptq, W ptqq in D `r0, T s, R 4 `˘is introduced. It has similarities with the process pU ptqq of Definition 26 but fewer coordinates and simpler parameters. More importantly, all its coordinates are non-negative. We first prove, via a coupling, that the sample paths of the processes pU ptqq and pU ptqq can be compared in a sense to be made precise. Secondly, we derive several technical estimates for pU ptqq which are important to prove the tightness of the scaled processes ppΩ ε ptq, W ε ptqqq defined in Section 3.3.

The process pU ptqq is the solution of the SDEs

$ ' ' ' ' ' ' & ' ' ' ' ' ' % dXptq " ´Xptq dt `W ptqN λ pdtq, dZptq " `´γZptq `Ck ˘dt `Ck N λ pdtq`C k N β,X pdtq, dΩptq "´αΩptq dt`C n `1` Zptq ˘dt`C n `1` Zpt´q ˘Nλ pdtq `Cn `1` Zpt´q ˘Nβ,X pdsq dW ptq " C M `1`Ωptq ˘dt, (3.25)
with βpxq"C β p1`xq and with initial condition U p0q given by px 0 , z 0 , ω 0 , W 0 q"pmaxpx 0 , 0q, max " minpγ i : i"1, . . . , q. Throughout this section, for tě0, if pU ptqq is a solution of Relations (3.7), the inequality U ptqďU ptq will stand for the four relations, XptqďXptq, max iPt1,..., u tZ i ptqu ďZptq, max aPtp,du tΩ a ptqu ďΩptq, and |W ptq|ďW ptq.

A coupling property

We start by proving a monotonicity property of the behavior of both systems "between" jumps.

Define In the same way, we can prove that, wptq ě ´wptq.

The lemma is proved.

Proposition 35 (Coupling). Under the conditions of Section 3.2, there exists a coupling of pU ptqq and pU ptqq such that, almost surely, for all tą0, pU ptqqďpU ptqq, in particular |W ptq| ď W ptq, @tě0.

Asymptotic results for the truncated process

In this section we study the scaling properties of fast processes of pU ptqq defined by Relation (3.26). In this section, we fix Ką0 and consider an analogue process for which the impact of the connection intensity is truncated at K. In Section 3.6 an averaging principle will be established for this process as a first step in the proof of the main result of the paper.

Definition of the truncated process

We define pU K ptqq as the solution of the SDEs,

$ ' ' ' ' ' ' ' ' & ' ' ' ' ' ' ' ' % dX K ε ptq " ´XK ε ptq dt{ε `K^W K ε ptqN λ{ε pdtq, dZ K ε ptq " ´´γZ K ε ptq `Ck ¯dt{ε`C k N λ{ε pdtq`C k N β{ε,X K ε pdtq, dΩ K ε ptq " ´αΩ K ε ptq dt`C n ´1` Z K ε ptq ¯dt `Cn ´1` Z K ε pt´q ¯´εN λ{ε pdtq`εN β{ε,X K ε pdtq dW K ε ptq " C M ´1 `ΩK ε ptq ¯dt, (3.28) 
and with U K ε p0q"U p0q"px 0 , z 0 , ω 0 , w 0 q. We begin with a lemma giving a stochastic upper bound of pX K ε ptqq in terms of a standard shot-noise process.

Lemma 36. There exists a constant C X ą0 independent of ε such that the relation

X K ε ptq ď C X `KS ε ptq
(3.29) holds for tě0, where pS ε ptqq is the shot-noise process of Definition 31.

For any ηą0, there exists a compact subset K of R 2 `such that,

sup 0ăεă1 0ďtďT P ´´X K ε ptq, Z K ε ptq ¯RK ¯ď η.
Proof. With Relation (3.22), we have, for tě0,

X K ε ptq " x 0 e ´t`ż t 0 e ´pt´uq{ε K^W ε pu´qN λ{ε pduq.
Which gives, for sďtďT ,

X K ε ptq ď x 0 e ´t{ε `K ż t 0 e ´pt´uq{ε N λ{ε pduq ď x 0 `KS ε ptq,
and therefore

E " X K ε ptq ı ď C X `KE rS ε ptqs ď C X `λKT.

Relation (3.22) gives the inequality

E " Z K ε ptq ı ď z 0 `Ck ż t 0 expp´γpt ´sqq ´1`λ`C β p1`E " X K ε psq ı q ¯ds which leads to, sup 0ăεă1 0ďtďT E " Z K ε ptq ı ă `8.
We conclude by using Markov's inequality.

Tightness of the truncated process

The next important lemma is used to prove tightness properties of the processes pΩ ε ptqq.

Lemma 37 (Tightness of linear functionals of the fast processes). The family of processes

ˆż t 0 X K ε puq du ˙, ˆż t 0 Z K ε puq du ˙, ˆż t 0 X K ε puqZ K ε puq du ˙, εPp0, 1q,
are tight for the convergence in distribution. The processes

pM K ε,1 ptqq def.
"

ˆż t 0 Z K ε pu´q " εN λ{ε pduq´λ du ‰ ṗM K ε,2 ptqq def.
"

ˆż t 0 Z K ε pu´q " εN β{ε,X K ε pduq´β ´XK ε puq ¯du ı ċonverge
in distribution to 0 as ε goes to 0.

Proof. Relation (3.29) gives for 0ďsďt,

ż t s X K ε puq du ď C X pt´sq `K ż t s S ε puq du,
The tightness of the three processes results from this relation and Proposition 33. Indeed, Relation (3.22) shows that, for tě0,

Z K ε ptq´z 0 " C k ż t 0 e ´γpt´sq{ε ds `Ck ż t 0 e ´γpt´sq{ε N λ{ε pdsq `Ck ż t 0 e ´γpt´sq{ε P 2 ˜˜0, C β 1`X K ε psq ε ff , ds ḑ C k γ `Ck ż t 0 e ´γpt´sq{ε N λ{ε pdsq `Ck ż t 0 e ´γpt´sq{ε P 2 ˆˆ0, C β 1`C X ε  , ds Ċk ż t 0 e ´γpt´sq{ε P 2 ˆˆC β 1`C X ε , C β 1`C X ε `Cβ K S ε psq ε  , ds ˙.
The first two terms of the right-hand side of last relation are, up to the constants γ instead of 1 and C β p1`C X q instead of λ, equal to S ε ptq. Similarly, up to the constant C β K of S ε ptq instead of 1, the last term is equal to R ε ptq.

The two processes pM K ε,i ptqq, i"t1, 2u are martingales with predictable increasing processes

ˆελ ż t 0 Z K ε puq 2 du ˙and ˆε ż t 0 Z K ε puq 2 C β ´1`X K ε puq ¯du ˙.
For tě0, we have

E " M K ε,1 ptq 2 ı ď ż t 0 E " Z K ε puq 2 ı du,
and,

E " M K ε,2 ptq 2 ı "εC β ˆE " M K ε,1 ptq 2 ı `ż t 0 E " Z K ε puq 2 X K ε puq ı du ď εC β ż t 0 ˆE " Z K ε puq 2 ı `cE " Z K ε puq 4 ı c E " X K ε puq 2 ı ˙du,
with Cauchy-Schwartz' inequality.

Using the upper-bounds for pX converges to 0 as ε goes to 0. The last statement of the lemma follows from Doob's inequality.

We now define the associated occupation measure ν K ε in the same way as in Section 28. Let G be a non-negative Borelian function on r0, T sˆR 2 `, define ν K ε the non-negative measure on r0, T sˆR 2 "

ˆż t 0 G ´u, X K ε puq, Z K ε puq ¯du, 0ďtďT
is tight for the convergence in distribution.

Proof. For aą0, εPp0, 1q, and K a Borelian subset of R 2 `, we have

P ´νK ε pr0, T sˆK c qąa ¯ď 1 a E " ν K ε pr0, T sˆK c q ‰ ď T a sup 0ăεă1 0ďtďT P ´´X K ε ptq, Z K ε ptq ¯RK Lemma 36
shows the existence of a compact set KĂR 2 `such that the last term of the right-hand side of this inequality can be made arbitrarily small. Lemma 1.3 of [Kur92] gives that the family of random measures pν K ε , 0ăεă1q is tight. for the last part of the proposition, we use the criterion of modulus of continuity, see [Bil99]. This is a simple consequence of the inequality, for 0ďs, tďT , |I G ptq´I G psq|ď}G} 8 |t´s|. The lemma is proved.

Proposition 39. The family of random variables pΩ

K ε ptq, W K ε ptq, ν K ε q, εPp0, 1q, is tight.
Proof. Tightness properties of pν K ε q have been proved in Lemma 38. Relation (3.22) gives the relation, for tě0,

Ω K ε ptq´ω 0 e ´αt " ż t 0 e ´αpt´sq C n ´1` Z K ε psq ¯´1`λ`C β p1`X K ε psqq ¯ds `ż t 0 e ´αpt´sq C n ´1` Z K ε ps´q ¯"εN λ{ε pdsq´λ ds`εN β{ε,X K ε pdsq´β ´XK ε psq ¯ds ı . (3.30)
Lemma 37 shows that the family of processes associated to the first term of the righthand side of this identity is tight, and that the process of the second term is vanishing in distribution as ε goes to 0. The family of processes pΩ K ε ptqq is therefore tight and the tightness of pW K ε ptqq follows from its representation with pΩ K ε ptqq. The proposition is proved.

Averaging principle for the truncated process pU K ptqq

The goal of this section is to prove the following averaging principles for the truncated process. We start by stating the two following lemmas that are proved in Appendix 3.A and that are essential to the proof of averaging principle. We fix a sequence pε n q such that pν K εn q is converging in distribution to ν K . The first result focus on identifying the limiting linear functional of ν K . The second lemma shows that ν K can be expressed as the product of the invariant measure Π w and the Lebesgue measure. This is Lemma (1.4) of [Kur92]. 

Lemma 41. For any non-negative

' ' ' ' ' ' & ' ' ' ' ' ' % ω K ptq " ω 0 ´α ż t 0 ω K psq ds `ż t 0 ż R 2 C n p1` zqp1`λ`C β p1`xqqΠ w K psq^K pdx, dzq ds w K ptq " w 0 `ż t 0 C M `1 `ωK psq ˘ds,
holds, where Π w is the unique invariant distribution of the Markov process associated to the infinitesimal generator B F w defined by Relation (3.27).

Proof. Relation (3.30) gives the identity, for tě0,

Ω K ε ptq " ω 0 e ´αt `e´αt M K ε ptq`e ´αt ż t 0 e αs C n p1` Z ε psqq ´1`λ`C β p1`X K ε psqq ¯ds, with M K ε ptq def. " ż t 0 e αs C n ´1` Z K ε psq ¯"εN λ{ε pdsq`εN β{ε,X K ε pdsq´pλ`βpX K ε psqqq ds ı .
Lemma 37 shows that pM K ε ptqq is converging in distribution to 0 when ε goes to 0. We now use Lemmas 40 and 41 and we get that pω K ptq, w K ptqq satisfies the desired relation.

Proof of an averaging principle

Finally, this section gathers all the results from the previous sections to prove Theorem 29. The proof is done in two steps: a. Using an analytical result, an averaging principle for pU ptqq is proved.

b. The coupling of Section 3.5 is then used to show that a stochastic averaging result also holds in the general case.

Averaging principle for the coupled process pU ptqq

We now turn to an analytical result by considering the dynamical system of Proposition 42 when K"`8 and by showing an existence and uniqueness results which will be crucial in the proof of the general theorem. For wě0, Π w is the invariant distribution of the Markov process pX 

ptq`C k ˘dt`C k N λ pdtq`C k N β,X w pdtq.
Its existence is a consequence of Proposition 50.

Theorem 43. Under conditions of Section 3.2, there exists S 0 Pp0, `8s and a unique continuous function pωptq, wptqq on r0, S 0 q, solution of the ODE, for 0ďtăS 0 , 

γE " Z w ‰ " C k `1`λ`C β `1`E " X w ‰˘˘" C k p1`λ`C β p1`λwqq .
The SDEs for pX w ptqq and pZ w ptqq give

dX w Z w ptq " `´pγ`1qX w ptqZ w ptq`C k X w ptq ˘dt `pwZ w pt´q`C k X w pt´q`C k wqN λ pdtq`C k X w pt´qN β,X w pdtq,
and thus, at equilibrium, we obtain the relation

E " X w Z w ‰ " C k 1 γ`1 ´λw `1`E " Z w ‰˘`p 1`λ`C β qE " X w ‰ `Cβ E " `Xw ˘2ı¯.
We have therefore that the function

w Þ Ñ C n ż R 2 `p1` zqp1`λ`C β p1`xqqΠ w pdx, dzq
is a non-decreasing and locally Lipschitz function. The existence and uniqueness follows from standard results for ODEs. There exists some S 0 ą0, such that, on the time interval r0, S 0 q, the solution pωptq, wptqq of the ODE is the limit of a Picard's scheme pω n ptq, w n ptqq associated to Relation (3.31) with pω 0 ptq, w 0 ptqq"pω K ptq, w K ptqq, for all KPR `. See Section 3 of Chapter 8 of [HS74] for example. We now prove by induction that pω K ptq, w K ptqqďpω n ptq, w n ptqq holds on r0, S 0 q for all ně1. If this is true for n, then

ω n`1 ptq " ω 0 e ´αt `ż t 0 e ´αpt´sq ż R 2 C n p1` zqp1`λ`C β p1`xqqΠ wnpsq pdx, dzq ds ě ω 0 e ´αt `ż t 0 e ´αpt´sq ż R 2 C n p1` zqp1`λ`C β p1`xqqΠ w K psq^K pdx, dzq ds " ω K ptq,
and the relation w n`1 ptqěw K ptq follows directly. The proof by induction is completed. We just have to let n go to infinity to obtain the last statement of our proposition.

Proposition 44. Under conditions of Section 3.2, for the convergence in distribution, lim εÑ0 ppΩ ε ptq, W ε ptqq, tăS 0 q " ppωptq, wptqq, tăS 0 q, where pΩ ε ptq, W ε ptqq is the process defined by SDEs (3.26) and ppωptq, wptqq, tăS 0 q by ODE (3.31).

Proof. From Proposition 42, let pω K ptq, w K ptqq be a limiting point, there exists a sequence

pε n q such that the sequence of processes pΩ K εn ptq, W K εn ptqq is converging to a continuous process pω K ptq, w K ptqq.

With the same notations as in Proposition 43, for any T ăS 0 , by continuity of pωptq, wptqq on r0, T s, the quantity

K 0 def.
" 1`sup tďT wptq is finite. Since w K ptqďwptq holds for all tě0, the uniqueness result of Proposition 43 gives the identity ppω K ptq, w K ptqq, tďT q"ppωptq, wptqq, tďT q for all KěK 0 . Consequently, for any ηą0, there exists n 0 ą0 such that for něn 0 ,

P ˆsup sďT W K 0 εn psq ě K 0 ˙ď P ˆsup sďT W K 0 εn psq ě 1`sup tďT w K 0 ptq ˙ď η,
since the process pω K 0 ptq, w K 0 ptqq is upper-bounded, coordinate by coordinate on the time interval r0, S 0 q, by pωptq, wptqq, defined by Relation (3.31). Note that S 0 is independent of the sequence pε n q. Hence, for něn 0 , Relation (3.28) gives

P ˜Xεn psq"X K 0 εn psq, Z εn psq"Z K 0 εn psq, Ω εn psq"Ω K 0 εn psq, W εn psq"W K 0 εn psq, @sďT ¸ě P ˆsup sďT W K 0 εn psqďK 0 ˙ě 1´η. (3.33)
This shows that the sequence of processes ppΩ εn ptq, W εn ptqq, tďT q is converging in distribution to ppωptq, wptqq, tďT q. The proposition is proved.

Averaging principle for the process pU ε ptqq

We now conclude this section with the proof of Theorem 29. We fix T ăS 0 .

The coupling property of Proposition 35 and Relation (3.33) give the existence of K 0 and n 0 such that for něn 0 , the inequality P ˆsup tďT |W εn ptq| ďK 0 ˙ě 1´η holds.

We get that the results of Lemma 37 hold with X By taking a subsequence, we can assume it is converging in distribution to some process pω p ptq, ω d ptq, wptq, νq.

We now identify the measure ν. Lemma (1.4) of [Kur92] shows that, for any bounded Borelian function G on R `ˆRˆR `, ż T 0 Gps, x, zqνpds, dx, dzq "

ż T 0 ż RˆR `Gps, x, zqγpsqpdx, dzq ds,
where pγpsqq is a predictable measure-valued process.

The continuity of the different functions gp¨q and k i p¨q give that, for f PC 1 b pRˆR `q, px, z, wqÞ ÑB F w pf qpx, zq is continuous, where B F w is the operator defined by Relation (3.18). Moreover, using -condition of Section 3.2 for the growth of the function β; -the boundedness of k i , iPt1, 2u of Condition of Section 3.2, we have that, for f PC 1 b pRˆR `q, there exists a constant C 0 such that, for px, zqPRˆR

`, |B F w pf qpx, zq| ď C 0 p1`|x|`}z}q p}f } 8 `}∇f } 8 q .
We apply the equivalent of Lemma 40 to pX εn ptqq and pZ εn ptqq to get the relation, for T ą0, where pM f εn ptqq is the associated martingale. In the same way as in the proof of Lemma 41, we show that pε n M f εn ptqq is converging in distribution to 0 which leads to the identity, almost surely for any tďT ,

ż t 0 ż RˆR `B F
wpsq pf qpx, zqνpds, dx, dzq"0, for f in a countable dense subset S of the functions of C 1 b pRˆR `q with compact support. Consequently,

ż t 0 ż RˆR `B F
wpsq pf qpx, zqγpsqpdx, dzq ds " 0, which gives that for almost all tPr0, T s ż

RˆR `B F
wptq pf qpx, zqγptqpdx, dzq " 0, @f PS.

Proposition 50 of the Appendix gives therefore that, γptq"Π wptq , for almost all tPr0, T s (for Lebesgue's measure), so that To establish the first identity of Relation (3.31), we need the convergence in distribution This is consequence of the fact that pwptqq is almost surely continuous and that, with the conditions of Section 3.2, for any wPK W , px, zqÞ Ñpn 0 pzq, n 1 pzq, βpxqn 2 pzqq, is Π w almost everywhere continuous.

The theorem is therefore proved.

The simple model

In this section we consider the simple model defined in Section 3.1. Recall that the associated SDEs are

$ ' & ' %
dXptq " ´Xptq dt `W pt´qN λ pdtq, dZptq " ´γZptq dt `B1 N λ pdtq `B2 N β,X pdtq, dW ptq " Zpt´qN β,X pdtq, with γą0, B 1 , B 2 PR `, and β is assumed to be a Lipschitz function on R `. This is not, strictly speaking, a special case of the processes defined by Relations (3.7), but the tightness results of Section 3.A of Appendix concerning occupation times of fast processes can obviously be used.

Let, for wě0, pX w ptq, Z w ptqq be the fast processes associated to the model of Definition 27. Proposition 50 shows that pX w ptq, Z w ptqq has a unique invariant distribution Π w . We denote by pX w 8 , Z w 8 q a random variable with distribution Π w . Proposition 45. The function

w Þ Ñ E rZ w 8 βpX w 8 qs " ż R 2 `zβ pxqΠ w pdx, dzq is locally Lipschitz on R `.
Proof. Assuming X w p0q"Z w p0q"0, Lemma 30 and Definition 3.6 give the relations

$ ' ' & ' ' % X w ptq " w ż t 0 e ´pt´sq N λ pdsq " wX 1 ptq Z w ptq " B 1 ż t 0 e ´γpt´sq N λ pdsq`B 2 ż t 0 e ´γpt´sq P 2 pp0, βpwX 1 ps´qq, dsq.
the random variable pX w ptq, Z w ptqq is converging in distribution to pX w 8 , Z w 8 q as well as any of its moments. Define holds for all tě0 and y such that |y´x|ď1. We conclude the proof of the proposition by letting t go to infinity.

Ψ
The averaging principle for the simple model, announced in Section 3.1 of the introduction can now be stated.

Theorem 46. If the function β is Lipschitz, there exists some S 0 pw 0 qą0, such that the family of processes pW ε ptq, tăS 0 pw 0 qq defined by Relation (3.2) converges in distribution to pwptq, tăS 0 pw 0 qq, the unique solution of the ODE

dw dt ptq " ż R 2
`zβ pxqΠ wptq pdx, dzq with wp0q"w 0 .

Proof. For tě0,

W ε ptq " w 0 `ż t 0 Z ε ps´qεN β{ε,Xε pdsq,
we then proceed as in Section 3.7 by using in particular the analogue of Lemma 37 and 40.

An explicit representation of the limiting connection intensity process can be obtained when linear activation functions. Proposition 47. If the activation function β is such that βpxq"ν`β 0 x and

Λ 2 "λβ 2 0 B 2 ˆλ γ `1 2pγ`1q ˙, Λ 1 "λβ 0 ˆB1 γ`1 `λB 1 `2νB 2 γ ˙, Λ 0 " ν γ pλB 1 `νB 2 q,
then if Λ 2 ą0, the asymptotic weight process pwptq, 0ďtăS 0 pw 0 qq of Theorem 46 with initial point w 0 ě0 can be expressed as:

a. If ∆ def. " Λ 2 1 ´4Λ 2 Λ 0 ą0, then
wptq " s 2 pw 0 `s1 qe ? ∆t ´s1 pw 0 `s2 q pw 0 `s2 q´pw 0 `s1 qe ? ∆t , S 0 pw 0 q"

1 ? ∆ ln ˆw0 `s2 w 0 `s1 ˙, with s 1 def. " Λ 1 ´?∆ 2Λ 2 and s 2 def. " Λ 1 `?∆ 2Λ 2 . b. If ∆"0, then wptq " 2w 0 Λ 2 `Λ1 Λ 2 p2´p2Λ 2 w 0 `Λ1 qtq ´Λ1 2Λ 2 , S 0 pw 0 q" 2 2w 0 Λ 2 `Λ1 . c. If ∆ă0, then wptq " ? ´∆ 2Λ 2 ˆtan ˆ1 2 ? ´∆ ¨t`arctan pz 0 q ˙`Z z 0 π `1 2 ^π˙´Λ 1 2Λ 2 , with S 0 pw 0 q" 2 ?
´∆ ´π 2 ´arctan pz 0 q ¯and z 0 def.

" 2w 0 Λ 2 `Λ1 ? ´∆ .
It should be noted that under the conditions of this proposition, this model always exhibits a blow-up phenomenon.

Proof. The SDEs give the relation dX w Z w ptq " ´pγ`1qX w Z w ptq dt `pwZ w pt´q`B 1 w`B 1 X w pt´qqN λ pdtq `B2 X w pt´qN β,X w pdtq.

If the initial point has the same distribution as pX w 8 , Z w 8 q, by integrating and by taking the expected valued of this SDE, we obtain the identity pγ`1qE rX w 8 Z w 8 s " λwB 1 `pλB 1 `νB 2 qE rX w 8 s `β0 B 2 E " pX w 8 q 2 ‰ `λwErZ w 8 s.

With Relations (3.32), we have

E rX w 8 s " λw, E " pX w 8 q 2 ‰ " ˆλ2 `λ 2 ˙w2 ,
and, similarly, γErZ w 8 s " λB 1 `B2 pν`β 0 ErX w 8 sq " λB 1 `B2 pν`β 0 λwq.

By using Theorem 46, with these identities, we obtain that pwptqq satisfies the ODE dw dt ptq " E rZ w 8 pν`β 0 X w 8 qs " Λ 2 w 2 `Λ1 w`Λ 0 , (3.37) on its domain of definition. We conclude the proof with trite calculations. 

3.A Proofs of technical results for occupation times

Proof of Lemma 40

Denote, for tě0, a, b, cPR `, and εą0, L ε ptq def.

" aX

K ε ptq`bZ K ε ptq`cX K ε ptqZ K ε ptq.
Let G be a continuous bounded Borelian function. From Proposition 37, we can extract a sub-sequence pε n q such that, for the convergence in distribution where pLptqq is a continuous càdlàg process.

We will now prove that the process pLptqq is such that, pLptqq " 

ˆż t 0 ż R 2 pax`bz`cxzqGpx, zqν K pds,
C L def. " sup 0ăεă1 0ďtďT E " L ε psq 2 ‰ ă `8,
hence, for ηą0,

P ˆż T 0 pL ε psq´Aq `dsěη ˙ď 1 η ż T 0 E " pL ε psq´Aq `‰ ds ď 1 ηA ż T 0 E " L ε psq 2 ‰ ds ď C L T ηA .
Since 

Proof of Lemma 41

Following [PSV77] and [Kur92], we first show that there exists an optional process pΓ K s q, with values in the set of probability distributions on R 2 `such that, almost surely, for any bounded Borelian function

G on R `ˆR 2 `, ż R `ˆR 2 `Gps, x, zqν K pds, dx, dzq " ż R `ˆR 2 `Gps, x, zqΓ K s pdx, dzq ds.
(3.40)

Recall that the optional σ-algebra is the smallest σ-algebra containing adapted càdlàg processes. See Section VI.4 of [RW00] for example. This is a simple consequence of Lemma 1.4 of [Kur92] and the fact that, due to Relation (3.19), the measure ν K pds, R 2 q is the Lebesgue measure on r0, T s.

Let f PC 1 b pR 2 `q be a bounded C 1 -function on R 2 `with bounded partial derivatives, we have the relation

εf ´XK ε ptq, Z K ε ptq ¯" εf px 0 , z 0 q`εM f ε ptq `ż t 0 B F K^W K ε psq pf q ´XK ε psq, Z K ε psq ¯ds, (3.41)
where, for tě0, if pV

K ε psqq def. " pX K ε psq, Z K ε psqq, M f ε ptq def. " ż t 0 ´f ´V K ε ps´q`´K^W K ε psq, 1 ¯¯´f ´V K ε ps´q ¯¯" N λ{ε pdsq´λ ε ds  `ż t 0 ´f ´V K ε ps´q`p0, 1q ¯´f ´V K ε ps´q ¯¯» -N β{ε,X K ε pdsq´β ´XK ε psq ε ds fi fl ,
Proposition 37 shows that the martingale pεM f ε ptqq is converging in distribution to 0 as ε goes to 0.

Relation (3.41) gives therefore the convergence in distribution

lim εÑ0 ˆż t 0 B F K^W K ε psq pf q ´XK ε psq, Z K ε psq ¯ds ˙"0.
The convergence in distribution of pΩ (3.42) holds with probability 1.

Let pf n q be a dense countable sequence in C 1 b pR 2 `q and E 1 be the event, where Relation (3.42) holds for all f "f n , ně1. Note that that P pE 1 q "1. On E 1 , there exists a (random) subset S 1 of r0, T s with Lebesgue measure T such that ż R 2 `B F K^w K psq pf n qpx, zqΓ K s pdx, dzq " 0, @sPS 1 and @ně1, and, consequently,

ż R 2 `B F K^w K psq pf qpx, zqΓ K s pdx, dzq " 0, @sPS 1 and @f PC 1 b pR 2 `q.
By Proposition 50, for sPS 1 , the probability distribution Γ K s is the invariant distribution Π K^w K psq . Lemma 41 is proved.

3.B Shot-noise processes

This section presents several technical results on shot-noise processes which are crucial for the proof of Theorem 29. See [Sch18], [Ric44] and [GP60] for an introduction.

A scaled shot-noise process

Recall that pS x ε ptqq, with initial point xě0, has been introduced by Definition 31. We will have the following conventions, pS ε ptqq def.

" `S0

ε ptq ˘, pS x ptqq def.

" pS x 1 ptqq and pSptqq def.

" `S0 1 ptq ˘.

The process pSptqq is in fact the standard shot-noise process of Lemma 30 associated to the Poisson process N λ , for tě0, Sptq "

ż t 0 e ´pt´sq N λ pdsq dist. " ż t 0 e ´sN λ pdsq.
(3.43)

In particular pSptqq is a stochastically non-decreasing process, i.e. for yě0 and sďt, Hence, due to the tightness property, the convergence also holds in distribution for the processes

P
lim εÑ0 ˆż t 0 e ξSεpuq du ˙" `E " e ξSp8q ‰ t ˘.
The last part is a direct consequence of the identity pS x ε ptqq dist. The proposition is proved.

Interacting shot-noise processes

Recall that pR ε ptqq defined by Relation (3.24) is a shot-noise process with intensity equal to the shot-noise process pS ε ptqq.

We start with a simple result on moments of functionals of Poisson processes.

Lemma 48. If Q is a Poisson point process on R `with a positive Radon intensity measure µ and f is a Borelian function such that

I k pf q def. " ż f puq k µpduq ă `8, 1ďkď4, then E « ˆż f puqQpduq ˙4ff " ´I4 `6I 2 1 I 2 `4I 1 I 3 `3I 2 2 `I4 1 ¯pf q.
Proof. It is enough to prove the inequality for non-negative bounded Borelian functions f with compact support on R `.

The formula for the Laplace transform of Poisson point processes, see Proposition 1.5 of [Rob03], gives for ξě0,

E " exp ˆξ ż `8 0 f puqQpduq ˙ " exp ˆż `8 0 `eξfpuq ´1˘µ pduq ˙.
The proof is done in a straightforward way by differentiating the last identity with respect to ξ four times and then set ξ"0. 

ż t 0 e ´γpt´uq{ε P 2 ˆˆ0, S ε pu´q ε  , du ˙.
The quantity S ε puq is a functional of the point process P 1 and is therefore independent of the Poisson point process P 2 . Lemma 48 gives therefore that

E " R ε ptq 4 | P 1 ‰ " J 4,ε ptq`6J 1,ε ptq 2 J 2,ε ptq`4J 1,ε ptqJ 3,ε ptq`3J 2,ε ptq 2 `J1,ε ptq 4 , hence, E " R ε ptq 4 ‰ ď E « J 4 |4γ´1| `6J 2 1 J 2 |γ´1| 2 |2γ´1| `4J 1 J 3 |γ´1||3γ´1| `3J 2 2 |2γ´1| 2 `J4 1 |γ´1| 4 ff .
Again with Proposition 32 we obtain that, for kě1, the variable J k has finite moments of all orders, therefore by Cauchy-Shwartz' Inequality, the right-hand side of the last inequality is finite. The proposition is proved.

3.C Equilibrium of fast processes

For wPK W , recall that the Markov process pX w ptq, Z w ptqq of Definition 27 is such that dX w ptq " ´Xw ptq dt`wN λ pdtq´g pX w pt´qq N β,X w pdtq (3.47) dZ w ptq " p´γdZ w ptq`k 0 q dt`k 1 pZ w pt´qqN λ pdtq`k 2 pZ w pt´qqN β,X w pdtq.

( for any f PC 1 b pRˆR `q, where B F w is the operator defined by Relation (3.18). Proof. We denote by pX w n , Z w n q the embedded Markov chain of the Markov process pX w ptq, Z w ptqq, i.e. the sequence of states visited by pX w ptq, Z w ptqq after each jump, of either N λ or N β,X .

The proof of the proposition is done in three steps. We first show that the return time of pX w ptq, Z w ptqq to a compact set of RˆR `is integrable. Then we prove that the Markov chain pX w n , Z w n q is Harris ergodic, and consequently that it has a unique invariant measure. For a general introduction on Harris Markov chains, see [Num04;MT93]. Finally, the proof of the proposition uses the classical framework of stationary point processes.

Integrability of return times to a compact subset

Suppose that wě0. The conditions of Section 3.2 on the functions β and g, and Relation (3.47) show that X w ptqě´c 0 , for all tě0, if X w p0qě´c 0 , with c 0 "c β `cg . The state space of the Markov process pX w ptq, Z w ptqq can be taken as S "

ÿ i"1 z i , we get that B F w pHqpx, zq " ´x `˜´a ÿ i"1 γ i z i `k0,i ¸`λ ˜w`a ÿ i"1 k 1,i pzq βpxq ˜´gpxq`a ÿ i"1 k 2,i pzq ḩence,
with the assumptions of Section 3.2 and 3.2 on the function k . and β, and a ď 1,

B F w pHqpx, zq ď ´x´aγ}z} ` C k `λpw` aC k q`C β p1 `xq aC k ď p aC β C k ´1qx ´aγ}z} `p C k `λw`λ C k ` C β C k q ď p aC β C k ´1qx´aγ}z}`C,
where γą0 is the minimum of the coordinates of γ and C is a constant independent of x, z and a. We fix 0ăaď1 sufficiently small so that aC β C k ă1 and Kąc 0 such that CăγK{2´1 and Căp1´ aC β C k qK{2´1.

If Hpx, zqąK then maxpx, a}z}qąK{2 and therefore B F w pHqpx, zqď´1, H is therefore a Lyapounov function for B F w . One deduces that the same result holds for the return time of Markov chain, pX w n , Z w n q in the set I K " tpx, zq : Hpx, zqďKu.

Harris ergodicity of pX w n , Z w n q

Proposition 5.10 of [Num04] is used to show that I K is a recurrent set. A regeneration property would be sufficient to conclude. In particular, we can prove that I K is a small set, that is, there exists some positive, non-trivial, Radon measure ν on S such that,

P px 0 ,z 0 q ´pX w 1 , Z w 1 qPS ¯ě νpSq, (3.50)
for any Borelian subset S of S and all px 0 , z 0 qPI K . We denote by s 1 , resp. t 1 , the first instant of N λ , resp. of N β,X w , then, for pX w 0 , Z w 0 q"px 0 , z 0 qPI K , by using the deterministic differential equations between jumps, we get

P px 0 ,z 0 q ps 1 ăt 1 q "E " exp ˆż s 1 0 βpx 0 expp´sq ˙ds  ě E " expp´c 1 β s 1 q ‰ "p 0 def. " λ λ`c 1 β ,
since β is bounded by some constant c 1 β on the interval r´c 0 , Ks. In the following argument, we restrict X to be non-negative, the extension to r´c 0 , `8s is straightforward. For A"r0, AsPBpR `q and B"r0, BsPBpR `q, from Equations (3.47) and (3.48), we obtain the relation P px 0 ,z 0 q ´pX w 1 , Z w 1 qPAˆB ¯ě p 0 P ´pX w 1 , Z w 1 qPAˆB | s 1 ăt 1 " p 0 P ˆx0 e ´s1 `wPA, pz 0 ´k0 qde ´γi s 1 `k0 `k1 `pz 0 ´k0 qde ´γi s 1 `k0 ˘PB ˇˇˇs 1 ăt 1 ˙ ě P ˆx0 e ´s1 `wPA, H `pz 0 ´k0 qde ´γi s 1 `k0 ˘PB ˇˇˇs 1 ăt 1 " p 0 P ˆx0 e ´s 1 `wPA, H `pz 0 ´k0 qde ´γi s1 `k0 ˘PB ˙,

where Hpzq"z`k 1 pzq, s1

dist.

" ps 1 |s 1 ďt 1 q. By using the fact that k 1 is in C 1 b pR `, R `q by the conditions of Section 3.2 and in the same way as Example of Section 4.3.3 page 98 of [MT93], we can prove that the random variable `x0 e ´s 1 `w, H `pz 0 ´k0 qde ´γi s1 `k0 ˘has a density, uniformly bounded below by a positive function h on R `ˆR `, so that

P px 0 ,z 0 q ´pX w 1 , Z w 1 qPAˆB ¯ě ż AˆB hpx, zq dx dz, @APBpR `q, BPBpR `q,
for all px 0 , z 0 qPI K q. This relation is then extended to all Borelian subsets S of S, so that Relation (3.50) holds. Proposition 5.10 of [Num04] gives therefore that pX w n , Z w n q is Harris ergodic.

If wă0, the last two steps can be done in a similar way. In this case, the process p´X w ptqq satisfies an analogous equation with the difference that the process N β,X w does not jump when ´Xw ptqąc β since βpxq"0 for xď´c β .

Characterization of Π w

Let p

Π w be the invariant probability distribution of pX w n , Z w n q. With the above notations,

E p Πw rminps 1 , t 1 qs ď E p Πw rs 1 s " 1 λ ă `8,
the probability defined by the classical cycle formula,

1 E p Πw rminps 1 , t 1 qs E p Πw « ż minps 1 ,t 1 q 0 f pX w puq, Z w puqq du ff ,
for any bounded Borelian function on RˆR `is an invariant distribution for the process pX w ptq, Z w ptqq. Proposition 9.2 of [EK09] shows that any distribution is invariant for pX w ptq, Z w ptqq if and only if it satisfies Relation (3.49). It remains to prove the uniqueness of the invariant distribution, using the fact that the embedded Markov chain has a unique invariant distribution.

Although this is a natural result, we have not been able to find a reference in the literature. Most results are stated for discrete time, the continuous time is usually treated by looking at the process on a "discrete skeleton", i.e. at instants multiple of some positive constant. See Proposition 3.8 of [Asm03] for example. As this technique is not adapted to our system, we derive a different proof using the Palm measure of the associated stationary point process.

If µ is some invariant distribution of the Markov process pX w ptq, Z w ptqq, we build a stationary version ppX w ptq, Z w ptqq, tPRq of it on the whole real line. In particular, we have that pX w ptq, Z w ptqq dist.

" µ, for all tPR.

We denote by pS n , nPZq the non-decreasing sequence of the jumps (due to N λ and N β,X w ), with the convention S 0 ď0ăS 1 The sequence ppX w pS n q, Z w pS n qq, ně0q has the same distribution as the process ppX w n , Z w n q, ně0q, the Markov chain with initial state pX w pS 0 q, Z w pS 0 qq. Since, for any tPR, ´pX w ps`tq, Z w ps`tqq, sPR ¯dist.

" ´pX w psq, Z w psqq, sPR ¯, the marked point process T def.

" ´Sn , pX w pS n q, Z w pS n q ¯, nPZq is a stationary point process, i.e.

ppS n , X w pS n q, Z w pS n q, nPZq dist.

" ppS n ´t, X w pS n q, Z w pS n q, nPZq, @tPR.

The Palm measure of T is a probability distribution p Q such that the sequence ppS n ´Sn´1 , X w pS n q, Z w pS n q, nPZq is stationary. See Chapter 11 of [Rob03] for a quick presentation of stationary point processes and Palm measures.

Under p Q, the Markov chain ppX w pS n q, Z w pS n qq, ně0q is at equilibrium. Using Harris ergodicity, we have proved in the previous section that the Markov chain ppX w n , Z w n q, ně0q has a unique invariant measure. Considering that both sequences ppX w n , Z w n q, ně0q and ppX w pS n q, Z w pS n qq, ně0q have the same distribution, we have that p Q `RZ `, ¨˘is uniquely determined. Moreover, remembering that,

p Q pS n ´Sn´1 ątq " E p Q " exp ˆ´ż t 0 β `Xw pS n´1 qe ´s˘d s ˙
We have that p Q is entirely determined by the ergodic distribution of the embedded Markov chain and consequently that the Palm measure p Q is unique. By Proposition 11.5 of [Rob03], the distribution of T is expressed with p Q. We have, for every bounded function f , E µ rf pX w p0q, Z w p0qqs " E T " f pX w pS 0 qe S 0 , Z w pS 0 qde γS 0 q ‰ , which uniquely determines the invariant distribution µ.

The proposition is proved.

3.D Averaging principles for discrete models of plasticity

In this section, we present a general discrete model of plasticity, state the associated averaging principle theorem and give a sketch of its proof. We will only point out the differences with the proof of the main result of this paper, Theorem 29. For this model of plasticity, the membrane potential X, the plasticity processes Z and the synaptic weight W are integer-valued variables. This system is illustrated in Section 7 of [RV20] for calcium-based models. It amounts to represent these three quantities X, Z and W as multiple of a "quantum" instead of a continuous variable. The leaking mechanism in particular, the term corresponding to ´γY ptq dt in the continuous model, Y PtX, Z, W u and γą0, in the SDEs, is represented by the fact that each quantum leaves the system at a fixed rate γ.

The main advantage of this model is that simple analytical expressions of the invariant distribution are available. Proof. Again, we have to show that, on a fixed finite interval, the process pW ptqq is bounded with high probability. A coupled process that stochastically bounds from above the discrete process is also defined. Definition 54. The process pXptq, Zptq, Ωptq, W ptqq satisfies the following SDEs It is not difficult to prove that this process is indeed a coupling that verifies the relation W ptqďW ptq, for all tě0 and that the process pW ptqq is non-decreasing.

From the SDEs governing the scaled version of the coupled system, we obtain 

E " W ε ptq´w 0 ‰ ď A p E "ż t 0 N I,
"ż t 0 W ε puq du ˙ď D`D ż t 0 E " W ε puq ‰ du,
for all tďT , for some constant Dě0. Gronwall's Lemma gives a uniform bound, with respect to ε,

E " sup tďT W ε ptq  " E " W ε pT q ‰ q ď pD`w 0 qe DT .
Using Markov inequality, we have then that, for any ηą0, the existence of K 0 and n 0 such that něn 0 , the inequality P ˆsup tďT W εn ptqďK 0 ˙ě 1´η holds. We can then finish the proof in the same way as in Section 3.7. The tightness property of the family of càdlàg processes pW ε ptqq, εPp0, 1q are proved with Aldous' criterion, see Theorem VI.4.5 of [JS87].

We have to prove the uniqueness of the solution of Relation (3.52) and the convergence in distribution of the scaled process to the process wptq. For this, we need to have some Lipschitz property on the limiting system, and finite first moments for the invariant distribution of pX w ptq, Z w ptqq. This is proved in Section 7 of [RV20] for the case where Z is a one-dimensional process, the extension to multi-dimensional Z is straightforward.

CHAPTER 4 ON THE SPONTANEOUS DYNAMICS OF SYNAPTIC WEIGHTS IN STOCHASTIC MODELS WITH PAIR-BASED STDP

We investigate spike-timing dependent plasticity (STPD) in the case of a synapse connecting two neuronal cells. We develop a theoretical analysis of several STDP rules using Markovian theory. In this context there are two different timescales, fast neuronal activity and slower synaptic weight updates. Exploiting this timescale separation, we derive the long-time limits of a single synaptic weight subject to STDP. We show that the pairing model of presynaptic and postsynaptic spikes controls the synaptic weight dynamics for small external input, on an excitatory synapse. This result implies in particular that mean-field analysis of plasticity may miss some important properties of STDP. Anti-Hebbian STDP favors the emergence of a stable synaptic weight. In the case of an inhibitory synapse the pairing schemes matter less, and we observe convergence of the synaptic weight to a non-null value only for Hebbian STDP. We extensively study different asymptotic regimes for STDP rules, raising interesting questions for future works on adaptative neuronal networks and, more generally, on adaptative systems.

Introduction

Neuronal networks, through the dynamics of their connections, are able to store complex patterns over long periods of time, and as such are good candidates for the establishment of memory. In particular, the intensity W of the connection between two neurons, the synaptic weight, is seen as an essential building block to explain learning and memory formation [TDM14].

Synaptic plasticity (processes that can modify the synaptic weight) is a complex mechanism [CM08], but general principles have been inferred from experimental data and used for a long time in computational models. Spike-timing dependent plasticity (STDP) refers to plasticity processes that depend on the timing of presynaptic and postsynaptic spiking activity [Fel12].

Experiments show that long-term synaptic plasticity is characterized by the coexistence of two different timescales. Membrane potential and pre/postsynaptic interspike intervals evolve on the order of several milliseconds, see [GK02b]. Synaptic weights W change on a slower timescale ranging from seconds to minutes before observing an effect of STDP protocols on the synaptic weights. The analysis of slow-fast limits for a general class of STDP models is detailed in [RV21b; RV21c; RV21a]. Computational models of synaptic plasticity have also used similar scaling principles, see [KGH99; Rob99; KH00; RBT00a].

In pair-based models, the synaptic weight updates depend only on ∆t"t post ´tpre for a subset of instants of pre/postsynaptic spikes t pre {t post .

Hebbian STDP plasticity occurs when -a pre-post pairing, t pre ăt post leads to an increase of the synaptic weight value (potentiation), which translates into ∆W ą0;

-a post-pre pairing, t post ăt pre , leads to a smaller synaptic weight (depression), and therefore ∆W ă0.

Hebbian STDP has been observed at many different synapses [BP98;Fel12] and is extensively studied in computational models [KGH99; Rob99; KH00; RBT00a; KGH01; RLS01; GK02a; BMG04; RA04; SJT07; GMH11].

Other types of polarity have been observed experimentally, they are often neglected in theoretical studies of STDP. For example, Anti-Hebbian STDP follows the opposite principles and has been observed experimentally in the striatum, see [FGV05;RL10]. Different types of STDP rules were analyzed in [Rob00; CF03; RA04; ZD07; RL10; BK12].

In theoretical works, the system, in general, is reduced to a single neuron receiving a large number of excitatory inputs subject to STDP, leading to a Fokker-Plank approach [RBT00a; RLS01; BMG04].

The pre-/postsynaptic spike correlation function [KGH99; KGH01; GK02a] is used to study the influence of STDP with high correlated inputs. However, this method relies on the assumption that all pairs of pre-and postsynaptic spikes impact the synaptic weight update. Several studies have questioned this hypothesis [ID03; MAD07; MDG08], and its influence on the synaptic weight dynamics has not been discussed in theoretical works, except in [BMG04].

Finally, most studies focus on excitatory inputs, whereas inhibitory synapses also exhibit STDP [HNA06;Fel12], but few theoretical works exist [LS14].

Here we develop a theoretical study of a large class of rules, for a system with two neurons and a single synapse. This simple setting is used to test the influence of STDP on an excitatory and an inhibitory synapse, for three different classes of pairing interactions leading to an extensive categorization of the different dynamics. We question in particular if several interesting properties of the synaptic weight dynamics are lost when using classical models with numerous excitatory inputs, leading to an underestimation of the role of STDP in learning systems.

Theoretical analysis

Spiking neurons and Poisson processes

The spike train of the presynaptic neuron is represented by an homogeneous Poisson process N λ "pt pre,n q 1ďn , where pt pre,n`1 ´tpre,n q 1ďn is a sequence of i.i.d. exponential random variables with parameter λ. The quantity N λ pa, bq denotes the number of pt pre,n q in the interval ra, bs, in particular, P ´Nλ pt, t`dtq‰0 ¯"λ dt`opdtq.

We define a stochastic process pXptqq following leaky-integrate dynamics: The firing mechanism of the postsynaptic neuron is driven by an activation function β, when X is x, the output neuron fires at rate βpxq. The sequence of instants of postsynaptic spikes pt post,n q is a point process N β,X on R `such that P ´Nβ,X pt, t`dtq‰0 ˇˇXpt´q"x ¯"βpxq dt`opdtq.

The notation f pt´q is the left-limit of f at t.

For simplicity, we chose to differentiate between excitatory and inhibitory synapses at the level of the activation function, instead of allowing for negative W . Indeed, for an excitatory synapse, the activation function βpxq"ν`βx is used, ν is the rate of the external input to the postsynaptic neuron, it models external noise. For inhibitory synapses, we consider βpxq" maxpν´βx, 0q. A linear activation function has been used, mainly to enable explicit analytical computations, and for comparison with other computational studies with similar hypotheses, see [KGH99].

Pair-based STDP rules

PNS

Post

PA PNR

Pre ∆t = tposttpre We study an important implementation of STDP referred to as pair-based rules. For a pair pt pre , t post q of instants of pre-and postsynaptic spikes, the synaptic weight update ∆W depends only on ∆t"t post ´tpre , as illustrated in Figure 4.1.

1/γ 1 1/γ 2 B 1 B 2
An important choice for the model is to decide which pairings to take into account in the plasticity update. A large choice of different schemes have been analyzed in the literature [MDG08]. We have chosen to focus on three versions, that are summarized in Figure 4.1:

-All-to-all pair-based model (PA): all pairs of spikes are taken into account in the synaptic plasticity rule.

-Nearest neighbor symmetric model (PNS): whenever one neuron spikes, the synaptic weight is updated by only taking into account the last spike of the other neuron.

-Nearest neighbor symmetric reduced model (PNR): only consecutive pairs of spikes are used to update the synaptic weight.

The synaptic weight update is therefore composed of the sum over relevant spikes, of a kernel Φp∆tq known as the plasticity curve, here we chose an exponential kernel, given by,

Φp∆tq " # B 2 exppγ 2 ∆tq ∆tă0, B 1 expp´γ 1 ∆tq ∆tą0.
where B 1 , B 2 PR represents the amplitude of the STDP and γ 1 , γ 2 ą 0 the characteristic time of interaction, see Figure 4.1 (top left).

All-to-all model (PA)

The all-to-all pair-based model supposes that all pairs of spikes are taken into account in the synaptic plasticity rule. The synaptic weight is updated at each postsynaptic spike occurring at time t post , by taking into account all presynaptic spikes before time t post :

∆W pt post q " B 1 ÿ tpre,nătpost e ´γ1 ptpost´tpre,nq " Z PA 1 pt post q and conversely, ∆W pt pre q " B 2 ÿ tpost,nătpre e ´γ2 ptpre´tpost,nq " Z PA 2 pt pre q

The processes pZ PA i ptqq, i"1, 2 can be expressed as solutions of the stochastic differential equations, # dZ PA 1 ptq " ´γ1 Z PA 1 ptq dt `B1 N λ pdtq, dZ PA 2 ptq " ´γ2 Z PA 2 ptq dt `B2 N β,X pdtq, they are two shot-noise processes, see [GP60;RV21b].

The synaptic weight updates correspond to the evaluation of pZ PA 1 ptqq at jumps of the point process N β,X for postsynaptic activity, and similarly for pZ PA 2 ptqq with N λ ,

dW PA ptq " ÿ tpre,nďt Z PA 2 pt pre,n ´qδ tpre,n `ÿ tpost,nďt Z PA 1 pt post,n ´qδ tpost,n ,
where δ a is the Dirac mass at a. Equivalently,

dW PA ptq " Z PA 2 pt´qN λ pdtq `ZPA 1 pt´qN β,X pdtq.
For the three pair-based STDP rules detailed, we have,

K PA " ˆ0 0 0 0 ˙, K PNS " ˆ1 0 0 1 ˙, K PNR " ˆ1 1 1 1 ˙.
See Supplemental Material for Figure 4.5 at [URL will be inserted by publisher] for an example of dynamics for each pairing scheme.

A slow-fast system

We consider that the processes pXptqq and pZ 1 ptq, Z 2 ptqq evolve on a fast time scale tÞ Ñt{ε for some small εą0. The increments of the variable W are scaled with the parameter ε, pW ε ptqq is described as the slow process.

For ε small, on a short time interval, the slow process pW ε ptqq is almost constant, and, due to its faster dynamics, the process pX ε ptq, Z 1,ε ptq, Z 2,ε ptqq is "almost" at its equilibrium distribution associated to the current value of W ε ptq«w. This corresponds to the equilibrium of the process pX w ptq, Z w 1 ptq, Z w 2 ptqq, where W ptq"w is at a constant value. Classical results on Markov systems imply that there is unique stationary distribution Π K w on R `ˆR 2 , for simplicity we will denote Π PX w "Π K PX w , see [RV21b] Using averaging principle arguments, the asymptotic dynamic of pW ε ptqq is given by the ordinary differential equation,

dw dt ptq " ż R `ˆR 2 pλz 2 `βpxqz 1 qΠ K wptq pdx, dzq " E Π K wptq rλZ 2 `βpXqZ 1 s " f K pwptqq. (4.2)
A more rigorous development of this result is given in Supplemental Material 4.B at [URL will be inserted by publisher], as is a comparison with computational models in Supplemental Material 4.C. Five different asymptotic behaviors for w, solution of (4.2) are defined using analytical asymptotic properties in Table 4.1. We define numerical approximates of these possible behaviors, depending on the values of p `8"P pW ε ptq" `8q, p 0 "P pW ε ptq"0q and p stable "1´p `8´p 0 , and a fixed parameters p bif , see Appendix 4.A.

Results

In the following section, we study the dynamics of the synaptic weight, using analytical computations and numerical simulations. We investigate the influence of B 1 and B 2 because they represent biologically relevant parameters. Indeed most experimental studies only focus on the polarity of STDP, i.e the signs of B 1 and B 2 in the present model. In particular, we will focus on four different types of STDP classified as follow, Hebbian STDP (B 1 ą0, B 2 ă0), anti-Hebbian STDP (B 1 ă0, B 2 ą0), symmetric LTD (S-LTD, B 1 ă0, B 2 ă0) and symmetric LTP (S-LTP, B 1 ą0, B 2 ą0), which have all been shown to exist experimentally [Fel12]. We also choose to study the relative importance of the external firing rate ν, compared to other rate-related variables λ, β. Accordingly, analytical expressions are given for general parameters, while simulations are always realized with γ 1 "γ 2 "β"λ"1. See Supplemental Material 4.D at [URL will be inserted by publisher] for proofs and lengthy analytical expressions. In this framework, we study the asymptotic behavior of the dynamical system (4.2) for the three pair-based rules.

We will show that the synaptic weight wptq usually exhibits one of three different asymptotic behaviors, which all have a biological interpretation:

-Convergence of wptq towards 0, which corresponds the disconnection (or pruning) of the synapse: the presynaptic neuron loses its ability to influence the postsynaptic neuron.

-Divergence of wptq to infinity, leading to a perfect coupling between the pre-and postsynaptic neurons, through an unstable system which, in a biological system, will be stopped by saturation mechanisms.

-Convergence to a non null value w eq , resulting in self-sustained activity, i.e., preand postsynaptic activities coupled with STDP are sufficient to have a bounded stable synaptic weight.

Stability and divergence depends on the polarity of STDP

Starting with the all-to-all scheme for an excitatory synapse, i.e. βpxq"ν`βx, we have, (γ 1 "γ 2 "β"λ"1)

dw dt ptq " f PA pwq " A PA 0 `APA 1 w " A PA 1 `w´w PA ˘. -1 B 1 1 -1 B 2 1 A B Bifurcation -1 B 1 1 -1 B 2 1 A B Bifurcation 0 
with

A PA 0 def. " νλ ˆB1 γ 1 `B2 γ 2 ˙,A PA 1 def. " βλ 2 ˆB1 γ 1 `B2 γ 2 `B1 λp1`γ 1 q ˙and w PA def. " ´APA 0 {A PA 1 .
The signs of A PA 0 and A PA 1 determine the asymptotic behavior of w. We study the impact of B 1 and B 2 with, or without, external input rate ν on the dynamics in Figure 4.2.

If ν"0, then w PA "0. Without external input ν, the synaptic weights cannot converge to a positive stable solution.

-If A PA 1 ă0, pwptqq converges to 0, as shown by the blue region of Figure 4.2 (a), with some examples of dynamics at point A.

-If A PA 1 ą0, pwptqq diverges to `8, the red region of Figure 4.2 (a) and example B.

If νą0, w PA is a non-null fixed point. This gives two new behaviors in the bifurcation map, see Figure 4.2 (b).

-If A PA 1 ă0 and A PA 0 ą0, the fixed point is stable (green region) and all simulations converge to w PA independently of the initial point. See example A.

-If A PA 1 ą0 and A PA 0 ă0, the fixed point is unstable (orange region), example B shows that in that case, the dynamics depends on the initial value of synaptic weight. It diverges to `8 if starting above w PA , and converges to 0 otherwise.

Influence of pairing scheme

Nearest neighbor symmetric STDP

For nearest neighbor symmetric STDP with βpxq"ν`βx, the associated dynamical system is given by,

dw dt ptq " f PNS pwq def. " A PNS 0 `APNS 1 w`A PNS 2 h PNS pwq, with, A PNS 0 def. " νλ λ`γ 1 B 1 `νλ ν`γ 2 B 2 , A PNS 1 def. " λβ 1`λ 1`λ`γ 1 B 1 , A PNS 2 "λB 2 ,
and

h PNS pwq def. " γ 2 ż R `e´γ 2 τ ´1 ´exp ´´ντ ´λ ż τ 0 `1´exp `´βw `1´e s´τ ˘˘˘d s ´λ ż 0 ´8 `1´exp `´βw `1´e ´τ ˘es ˘˘ds ˙˙dτ ´ν ν`γ 2 .
The asymptotic behavior of pwptqq can be analyzed rigorously in this case.

If ν"0, let A PNS 3 def. " f PNS 1 p0q"λβ ˆ1 `λ 1 `λ `γ1 B 1 `λ γ 2 B 2 - If A PNS 1 ă0
and A PNS 3 ă0, pwptqq converges to 0 in finite time (blue).

-If A PNS 1 ą0 and A PNS 3 ą0, The system diverges to infinity when both parameters are positive (red).

-If A PNS 1 ă0 and A PNS 3 ą0, a stable fixed point w PNS exists (green), see example A.

-1 (γ 1 "γ 2 "β"λ"1)

B 1 1 -1 B 2 1 A B Bifurcation -1 B 1 1 -1 B 2 1 A B Bifurcation -1 B 1 1 -1 B 2 1 A B Bifurcation w PNS
-If A PNS 1 ą0 and A PNS 3 ă0, an unstable fixed point w PNS exists (orange), example B.

We prove the existence of the fixed point w PNS , provide a numerical estimation, and compute an approximation of w PNS when w«0, Figure 4.3(a) shows a comparison with numerical experiments.

The picture is similar for the case νą0, with slightly different conditions, where the same dynamics are verified except that A PNS 3 ă0 is replaced by A PNS 0 ă0 (see Figure 4.6 Supplemental Material at [URL will be inserted by publisher] for a comparison). Discussion. Nearest neighbor symmetric STDP has significant differences with the all-to-all scheme. First, a positive stable fixed point may exist in the absence of external noise. The condition on A PNS 1 is a condition on B 1 only: if B 1 ă0 the system either converges to 0 or to a positive fixed point. The all-to-all case does not exhibit such a simple behavior, because A PA 0 and A PA 1 both depend on B 1 and B 2 .

Nearest neighbor symmetric reduced STDP

A theoretical study of pwptqq solution of (4.2) with βpxq"ν`βx is possible, but more involved than for PA and PNS. Computer simulations were done using this scheme, and the results are illustrated in Discussion. There are several differences of interest with the two other STDP pair-based rules for an excitatory synapse. First, for all-to-all and nearest neighbor symmetric pairings at an excitatory synapse, the stable fixed point only appears for anti-Hebbian parameters, whereas an unstable one exists for Hebbian STDP. With nearest neighbor symmetric reduced STDP, we have numerically shown that a more complex behavior with several fixed points may occur. Second, the nearest neighbor symmetric reduced STDP needs an almost exact balance of the parameters to enable convergence of the system toward a fixed point.

Table 4.2 gathers all results for an excitatory synapse as a function of the different types of biologically-relevant STDPs.

All-to-all STDP with an inhibitory synapse

We now study the dynamics (4.2) of the synaptic weight for an inhibitory synapse, i.e. when βpxq"pν´βxq `. (S-LTD: symmetric LTD, S-LTP: symmetric LTP, * with simulations and γ 1 "γ 2 "β"λ"1).

ν Symmetric LTD Symmetric LTP Hebbian Anti-Hebbian PA " 0 LTD LTP LTD if A PA 0 ă0 LTD if A PA 0 ă0 LTP if A PA 0 ą0 LTP if A PA 0 ą0 ą 0 LTD LTP LTD if A PA 0 ă0 LTD if A PA 1 ă0 LTP if A PA 1 ą0 LTP if A PA 0 ą0 UFP if not SFP if not PNS " 0 LTD LTP LTP if A PNS 3 ą0 LTD if A PNS 3 ă0 UFP if not SFP if not ą 0 LTD LTP LTP if A PNS 0 ą0 LTD if A PNS 0 ă0 UFP if
We restrict our study to two cases.

For small w,

dw dt ptq " f PA pwq " A PA 0 ´APA 1 w`opwq " ´APA 1 `w`w PA ˘`opwq.
with A PA 0{1 defined before. When w ě ν{β, we have

dw dt ptq " A PAI wptq λ`γ 1 ˆ1`η PAI " wptq w PAI  γ 1 ẇith A PAI def. " " ν β  λ`γ 1 cpλqB 1 ν pλ `γ1 q pλ`γ 1 `1q , w PAI def. " β ν ˆˇˇˇB 2 B 1 ˇˇˇp λ`γ 1 q pλ `γ1 `1q γ 2 pλ `1q ˙1{γ 1 , η PAI def. " ˇˇˇB 2 B 1 ˇˇˇB 1 B 2 .
Using arguments on the monotony of the functionals, it should be possible to prove the stability properties, only using the two extreme cases defined above. In particular, the two relevant parameters are A PA 0 and B 2 .

-1 (S-LTD: symmetric LTD, S-LTP: symmetric LTP, * with simulations and γ 1 "γ 2 "β"λ"1).

B 1 1 -1 B 2 1 A B Bifurcation -1 B 1 1 -1 B 2 1 A B Bifurcation -1 B 1 1 -1 B 2 1 A B Bifurcation -w PA
-For B 2 ą0 and A PA 0 ą0, the synaptic weight diverges to infinity (in red).

-For B 2 ă0 and A PA 0 ă0, it converges to 0 in finite time (in blue).

-For B 2 ą0 and A PA 0 ă0, there is an unstable fixed point (orange, example A).

-For B 2 ă0 and A PA 0 ą0, the system exhibits a stable equilibrium (green, example B).

We note here an inversion with the properties observed for the excitatory synapse, where only anti-Hebbian STDP led to a stable fixed point, compared to the inhibitory case where only Hebbian STDP elicits this type of behavior.

This analysis is completed with the other schemes in Figure 4.4(b) for PNS and Figure 4.4(c) for PNR. The dynamics are similar to the all-to-all case for this range of parameters, only the values of the fixed points seems to change (compare B for the three cases).

All these behaviors are gathered in Table 4.3. It is striking that the pairing scheme does not seem to have a decisive impact on the dynamics for an inhibitory synapse, considering the important impact displayed for an excitatory synapse.

Conclusion

We have developed a simple and rigorous analysis of synaptic weight dynamics via a slow-fast approximation and numerical simulations. For an excitatory synapse, anti-Hebbian STDP can lead to a stable fixed point, with some slight variations depending on the pairing scheme used. For an inhibitory synapse, numerical arguments showed that all schemes were similar, with the existence of a stable fixed point for Hebbian STDP.

This study investigates rigorously the synaptic weight dynamics for several pairing schemes, for all polarities of STDP, and for excitatory/inhibitory inputs. As such, it extends and complete previous results that only focus on all-to-all Hebbian STDP at excitatory synapses.

The nervous system is characterized by its diversity, and in particular, by the existence of many types of neurons which display different properties. Several models in theoretical neuroscience consider neurons that integrate a large quantity of random inputs approximated by a Brownian diffusion and the postsynaptic spikes result mainly from noise and not from correlated presynaptic inputs [RLS01;RBT00b]. When the impact of the presynaptic spikes is lost in the external noise (consistent with a large number of external uncorrelated inputs), pairing schemes do not influence the type of dynamics observed see [BMG04] for example. These assumptions often lead to a mean-field formulation where the synaptic weight dynamics is essentially driven by the mean global synaptic weight, see [BMG04;BA16].

However, neurons, in the striatum [MDC01;Pid+11] or in the cortex [AG00], need short bursts of presynaptic concentrated activity for their membrane potential to be depolarized enough to trigger spikes. In particular, pattern learning tasks, where a set of highly correlated inputs is repeated and learn to trigger/or not trigger a postsynaptic spike, are a good example of systems where presynaptic inputs cannot be reduced to a diffusive process. In this article, we have focused on similar network dynamics, where the postsynaptic spike train is determined by the presynaptic spike train, and not just a diffusive process. When considering such dynamics, as we have seen, the different STDP schemes have an important impact. A potential mean-field approximation in this context seems therefore to be unlikely.

It is not a surprise that this regime of activity leads to diverse interesting behaviors for the synaptic weight dynamics, where the asymptotic behavior strongly depends on the polarity of the STDP curve and the pairing scheme. We have shown, using analytical and numerical arguments, that several key parameters need to be taken into account while implementing STDP in networks with correlated dynamics, and in particular in recurrent networks [BGH07;GBV10;TAG18]. This conclusion should also apply to more complex pairing schemes such as triplets rules [PG06b;BA16].

Theoretical studies of plasticity in networks are quite scarce. Recently, [Löc17] studies short-term plasticity in a large network, and [Luc+16] the noise-enhanced coupling of two excitatory neurons subject to STDP, which can be extended to the formation of multiclusters in adaptive networks [BSY19]. The need for a general theory is great and this work is a first step in developing a rigorous framework to investigate the role of STDP in network dynamics

The quantity ¨¨¨ is defined in terms of temporal and ensemble averages, ¨¨¨ is the ensemble average and ¨¨¨the temporal average over the spike trains.

In our setting, Theorem 56 gives the following equation,

dw dt ptq " E Π PA wptq rλZ 2 `βpXqZ 1 s , with Φptq def.
" B 1 expp´γ 1 tq1 ttą0u `B2 exppγ 2 tq1 ttă0u .

We have, using simple calculus,

λE Π PA wptq rZ 2 s " ż 0 ´8 B 2 exppγ 2 τ qλE Π PA wptq rβpxqs dτ
We denote by Π PA 2Þ Ñ1,t pτ q the rate of having a post-pre pairing with delay τ at time t. For the post-pre pairing, we can consider that Π PA 2Þ Ñ1,t pτ q does not depend on τ and that it is just equal to the product of both rates, i.e there is no causality, and

Π PA 2Þ Ñ1,t pτ q " λE Π PA wptq rβpxqs .
We easily conclude that,

λE Π PA wptq rZ 2 s " ż 0 ´8 Φpτ qΠ PA 2Þ 
Ñ1,t pτ q dτ, with Π PA 2Þ Ñ1,t pτ q « ăS 1 pt`τ qS 2 ptqą. Similarly, we have

E Π PA wptq rβpXqZ 1 s " E Π PA wptq « ÿ tpreăt post B 1 expp´γ 1 pt post ´tpre qqβpXq ff
We denote by Π PA 1Þ Ñ2,t pτ q the rate of having a pre-post pairing with delay τ at time t. For the pre-post pairing, this quantity depends on τ because spikes of the presynaptic neuron influence the spiking of the postsynaptic one, so we have, by using the fact that Π PA is the invariant distribution,

E Π PA wptq « ÿ tpreăt post B 1 expp´γ 1 pt post ´tpre qqβpXq ff " ż `8 0 B 1 expp´γ 1 τ qΠ PA 1Þ Ñ2,t pτ q dτ.
See SM2 of [RV21c], hence

E Π PA wptq rβpXqZ 1 s " ż `8 0 Φpτ qΠ PA 1Þ 
Ñ2,t pτ q dτ, with Π PA 1Þ Ñ2,t pτ q « ăS 1 ptqS 2 pt`τ qą. This shows the equivalence between [KGH99] and our result for the all-to-all pair-based STDP rules.

4.D Proofs

All-to-all STDP at an excitatory synapse

We prove that,

E Π PA wptq rλZ 2 `βpXqZ 1 s " A PA 0 `APA 1 w " A PA 1 `w´w PA ˘.
where,

A PA 0 " νλ ˆB1 γ 1 `B2 γ 2 ˙, A PA 1 " βλ 2 ˆB1 γ 1 `B2 γ 2 `B1 λp1`γ 1 q Ṗroof.
First, it is easy to show that,

E " Z PA,w 1 ı " λ B 1 γ 1 , and E " Z PA,w 2 ı " ν B 2 γ 2 `βλ B 2 γ 2 w
Moreover, denoting pY w ptqq"pX w ptqZ PA,w 1 ptqq, we get dY w ptq " ´p1`γ 1 qY w ptq dt `´wZ PA,w 1 pt´q`B 1 X w pt´q `wB 1 ¯Nλ pdtq, by integrating this ODE on r0, ts and taking the expected value, we obtain

E " X w Z PA,w 1 ı " λwE " Z PA,w 1 ı `λB 1 E rX w s `λwB 1 1`γ 1 " ˆλ2 γ 1 `λ 1`γ 1 ˙B1 w.

Nearest neighbor symmetric STDP at an excitatory synapse

Estimation of f PNS E Π PNS wptq rλZ 2 `βpXqZ 1 s " A PNS 0 `APNS 1 w`A PNS 2 h PNS pwq with, A PNS 0 " νλ λ`γ 1 B 1 `νλ ν`γ 2 B 2 , A PNS 1 "λβ 1`λ 1`λ`γ 1 B 1 , A PNS 2 "λB 2 ,
and, For the proof, see Section 3.2 [RV21c].

h PNS pwq " γ 2 ż R `e´γ 2 τ ˆ1 ´exp ˆ´ντ

Dynamics of w

We start with some calculations for h PNS of Section 4.3.

Lemma 57. h PNS is a convex function, and,

h PNS p0q " 0, h PNS p`8q " 1´ν ν`γ 2 , h PNS 1 p0q " λβγ 2 pν`γ 2 q 2
Proof. We compute, `1´exp `´βw `1´e ´τ ˘es ˘˘ds ˙dτ.

h PNS 1 pwq " λβγ 2 ż R `e´pν`γ
We have h 1 pwq is an increasing function in w, so hpwq is convex.

The system

dw dt ptq " A PNS 0 `APNS 1 w`A PNS 2 h PNS pwq
has the following dynamics.

ν LTD LTP STABLE FP UNSTABLE FP 0 A PNS 3 ă0 A PNS 3 ą0 A PNS 3 ă0 A PNS 3 ą0 A PNS 1 ă0 A PNS 1 ą0 A PNS 1 ą0 A PNS 1 ă0 ą 0 A PNS 0 ă0 A PNS 0 ą0 A PNS 0 ă0 A PNS 0 ą0 A PNS 1 ă0 A PNS 1 ą0 A PNS 1 ą0 A PNS 1 ă0
Table 4.4: Bifurcations parameters for the nearest neighbor symmetric scheme.

where

A PNS 3 " λβ ˆ1`λ 1`λ`γ 1 B 1 `λ γ 2 B 2 ˙" f PNS 1 p0q ν"0 .
Proof. Case ν " 0 We have f PNS p0q " 0 and lim wÑ`8 f PNS pwq " signpA PNS 1 qˆ8. We need to look then at the sign of f PNS 1 p0q " A PNS 3 .

If are not of the same sign, f PNS 1 has a unique positive root w PNS , following the convexity of f PNS . Then, if A PNS 0 ą0 and A PNS 1 ă0, w PNS is a stable fixed point and A PNS 0 ă0 and A PNS 1 ą0, it is an unstable fixed point. It is slightly more complex for the other cases. We will focus on the case, A PNS 0 ą0 and A PNS 1 ą0. We have that f PNS p0q ą 0 and that lim wÑ`8 f PNS pwq " `8. As f PNS is convex, two cases are possible. Either f PNS has no positive root, and in that case, it is easy to see that lim tÑ`8 wptq " `8. However, it is also possible that f PNS has two positive roots and in that case it would lead to more complex dynamics. we just need to look at f PNS 1 p0q and show that it is positive to prove that this case does not happen. A PNS 0 ą0 leads to a first inequality,

B 1 ě ´B2 λ`γ 1 ν`γ 2 ě 0.
We can then say that,

f PNS 1 p0q " A PNS 1 `APNS 2 λβγ 2 pν`γ 2 q 2 " B 1 λβ 1`λ 1`λ`γ 1 `B2 λ 2 βγ 2 pν`γ 2 q 2 ě ´B2 λβ pλ`γ 1 q 1`λ 1`λ`γ 1 ´λγ 2 ν`γ 2 ν`γ 2 " ´B2 λβ λν`λ 2 ν`γ 1 ν`γ 1 γ 2 `λνγ 1 pν`γ 2 q 2 p1`λ`γ 1 q ě 0
The same arguments are true for the other case.

Approximation for w small

We have the following expansion for w small,

f PNS pwq " νB 1 λ λ`γ 1 `λβwB 1 1`λ 1`λ`γ 1 `λB 2 ν`λβw γ 2 `ν`λβw `opwq.
Leading to the following differential system, dw dt ptq " a PNS wptq 2 `bPNS wptq `cPNS wptq ´wPNS approx `opwptqq, where,

a PNS " B 1 λ 2 β 2 p1`λq 1`λ`γ 1 , b PNS " B 1 νλ 2 β λ`γ 1 `B1 λβp1`λqpγ 2 `νq 1`λ`γ 1 `B2 λ, c PNS " B 1 νλpγ 2 `νq λ`γ 1 `B2 ν β and w PNS approx " ´γ2 `ν λβ .
Proof.

f PNS pwq " νB 1 λ λ`γ 1 `λβwB 1 1`λ 1`λ`γ 1 `λB 2 ´λγ 2 B 2 ż R `exp ´´τ pγ 2 `ν`λβwq ¯dτ `opwq. Therefore, if ∆ PNS " b PNS 2 ´4a PNS c PNS ą 0,
we have an analytical expression for the fixed points of the dynamics w PNS w«0 ,

w PNS w«0 " ´bPNS `{ ´?∆ PNS 2a PNS .

Nearest neighbor symmetric reduced STDP at an excitatory synapse

To study the invariant distribution, we need to use a different formulation of the nearest reduced symmetric rule. For wě0, we can define pX w ptq, T PNR,w 

dw dt ptq " f PNR pwq " E Π PNR wptq rλZ 2 `βpXqZ 1 s " E Π PNR wptq " 1 tT 1 ăT 2 u B 1 βpXq expp´γ 1 T 1 q `1tT 2 ăT 1 u B 2 λ expp´γ 2 T 2 q ‰
All-to-all STDP at an inhibitory synapse Definition 58. We define the density of probability Qpyq of the exponential Shot-Noise process Y associated to N λ , according to Gilbert and Pollack (1960). A general expression of Qpyq can be found in Gilbert and Pollack (1960). In our case, we will use,

# Qpyq " cpλqy λ´1 , 0 ď y ď 1, lim yÑ`8
Qpyq " 0, with, cpλq " e ´γeλ Γpλq where, γ e Euler constant and Γ Euler function.

We have the two following limits, for small w,

dw dt ptq " f PA pwq " A PA 0 ´APA 1 w " ´APA 1 `w `wPA ˘.
where,

A PA 0 " νλ ˆB1 γ 1 `B2 γ 2 ˙and A PA 1 " βλ 2 ˆB1 γ 1 `B2 γ 2 `B1 λp1`γ 1 q ˙.
We can compute, when wěν{β,

dw dt ptq " A PAI wptq λ`γ 1 ˆ1`η PAI " wptq w PAI
 γ 1 ẇhere,

A PAI " " ν β  λ`γ 1 cpλqB 1 ν pλ`γ 1 q pλ`γ 1 `1q , w PAI " β ν ˆˇˇˇB 2 B 1 ˇˇˇp λ`γ 1 q pλ`γ 1 `1q γ 2 pλ`1q ˙1{γ 1 ,
and,

η PAI " ˇˇˇB 2 B 1 ˇˇˇB 1 B 2 .
Proof. For wě0, we have to calculate,

I 1 def. " ż pν ´βxq `z1 Π PA w pdx, dzq, and I 2 def. " λ ż z 2 Π PA w pdx, dzq.
We have,

I 2 " λB 2 γ 2 ż pν ´βxq `ΠPA w pdx, dzq " λB 2 γ 2 ż ν βw 0 pν ´βwyq Qpyq dy
We have two cases, if w!ν{β, then,

I 2 " λB 2 γ 2 pν´βwλq .
And, if wěν{β,

I 2 " cpλq λB 2 γ 2 ż ν βw 0 pν ´βwyq y λ´1 dy " cpλq λB 2 γ 2 ν " ν βw  λ ˆν λ ´1 λ`1 ˙" cpλq B 2 γ 2 ν λ`1 " ν βw  λ
Then,

I 1 " ż maxp0, ν ´βxqz 1 Π PA w pdx, dzq " ż ν βw 0 pν ´βwyq B 1 y γ 1 Qpyq dy
We have two cases again, if w ! ν{β, then, 

I 1 " λB 1 γ 1 pν´βwλq ´λB 1 γ 1 `λ`1 βw Again, if w ě ν{β, I 1 " ż maxp0, ν ´βxqz 1 Π PA w pdx, dzq " cpλq ż ν βw 0 pν´βwyq B 1 y γ 1 y λ´1 dy " cpλqB 1 ν pλ`γ 1 qpλ`γ 1 `1q " ν βw  λ`γ 1 ( 

Iterations Iterations

Post-pre -1 (γ 1 "γ 2 "β"λ"1)

Z 2 N λ Pre-post Z 1 N β,X Output N β,X tpost Input N λ tpre
B 1 1 -1 B 2 1 A B Bifurcation -1 B 1 1 -1 B 2 1 A B Bifurcation w PNS
CHAPTER 5

A MARKOVIAN APPROACH TO HAWKES PROCESSES

In this paper, stationary non-linear Hawkes processes are revisited by formulating the Hawkes dependence as a Markovian property on the space of non-negative sequences. A characterization of the associated point process is obtained in terms of the solution of stochastic differential equations. When the influence of past jumps decreases exponentially over time, the Palm measure of the associated stationary point process is expressed with the distribution of the stationary version of a onedimensional Harris ergodic Markov chain. Finally a scaling result for some Hawkes processes exhibiting a blow-up phenomenon is derived.

Introduction

The references [RV21b; RV21c; RV21a; RV22b] have introduced a class of general stochastic models describing the influence synaptic plasticity in stochastic neuronal networks. In such models, the firing rate of the postsynaptic neuron depends on the postsynaptic potential membrane, which is driven by the spiking activity of the presynaptic neuron, N λ , and also by its own spiking activity, N β,X .

An important class of mathematical models, Hawkes processes, has a similar feature: given the past instants t n , ně1 of a Hawkes process up to time t, the rate at which a new jump occurs in the time interval pt, t`dtq is given by

Φ ˜ÿ n:tnďt hpt´t n q ¸.
The function h, the memory function, expresses the impact at time t of a jump which has occurred at time săt with the quantity hpt´sq. The function h is assumed to be non-increasing converging to 0, the influence of a jump in the distant past vanishes. The activation function Φ modulates the global impact of past jumps. This class of models has been used in various situations such as, mathematical finance, [BH09], population dynamics, [Bou16], biology, [RS10], queueing systems, [DP18], learning theory, [Ete+16], or neurosciences, [GDT17], . . . From a mathematical point of view, these processes have generated, and still generates, a considerable interest. The pioneering works are:

- [HO74] which shows that when the activation function is linear, these processes can be represented by an age-dependent branching process, a special class of the so-called Crump-Mode-Jagers models.

- [Ker64] shows in a more general context, that the functional relation defining stationary Hawkes processes can be expressed as a fixed point equation which can be solved through a Picard scheme, thereby proving the existence and uniqueness of such processes. [BM96] has considerably developed this approach in a stochastic calculus context.

Up to now, these are in fact the two main approaches to investigate Hawkes processes. Appendix 5.B tries to present some aspects of the overwhelming literature of this domain.

In this work, we reformulate the Hawkes property using the jumps times of the point process. For a stationary Hawkes process, this amounts to investigate the properties of its Palm measure. See Appendix 5.A for a quick introduction and references. This is a preliminary work to investigate Hawkes processes in a multi-dimensional framework where the literature is quite scarce due to the fact that the Picard scheme give only rough conditions for the existence of stationary Hawkes processes.An advantage of this approach is that the Hawkes property can be described in terms of a Markov chain in an infinite dimensional state space for which some tools are available. In the following the term stability will refer to the existence and uniqueness of a stationary Hawkes process.

This paper is organized as follows. Section 5.2 presents some basic definitions, Section 5.3 introduces the Hawkes property in terms of a stochastic differential equation and Section 5.4 gives a characterization of the Palm measure of a stationary Hawkes process as an invariant measure of a Markov chain in the state space of non-negative sequences. Section 5.5 uses this approach to investigate Hawkes process with an exponential memory function. A new, weaker, stability condition is derived and a representation of the Palm measure is obtained in this case. The transient behavior is also analyzed, i.e. when the Hawkes process starting from the null measure blowsup in finite time almost surely. A scaling result for the points of the point process is obtained, it described the accumulation of the points in terms of a Poisson process. Appendix 5.A presents the main definitions and results concerning point processes and the stationarity property.

We conclude this section with a formulation of some conditions for the functions h and Φ that will be used in the rest of the paper. A-3 The constants α and β are such that αβă1.

Assumptions A.

A-1. The memory function. The non-negative function

Definitions

Probability space

It is assumed that on the probability space pΩ, Pq is defined a Poisson point process on R `ˆR with intensity measure dxb dy and that pF t q is a filtration such that, for tPR, F t is the σ-field generated by the random variables PpAˆps, tsq, where A is a Borelian set of R `and sďt. If λ and f are non-negative Borelian functions f on R, we define ż

R f psqPpp0, λpsqs, dsq def. " ż R `ˆR f psq1 tvďλpsqu Ppdv, dsq.
Without any indication on the filtration, the martingale properties in the paper are understood with respect to this filtration.

State space of non-negative sequences

We refer to Appendix 5.A for general definitions concerning point processes. We denote by S the space of sequences of non-negative real numbers

S def. " x"px k qPpR `Yt`8uq Nzt0u : x k 0 "`8ñx k "`8, @kěk 0 ( . ( 5.1) 
A functional from S to the space of positive measures with a mass at 0 is introduced as follows, if x"px k qPS, the positive measure m x on R ´is defined by

m x " δ 0 ``8 ÿ k"1 δ t k , with t k "´k ÿ i"1 x i , kě1, (5.2) 
with the convention that δ ´8"0.

The measure m x is a positive measure carried by points associated to xPS. It should be stressed that m x is not necessarily a point measure, i.e it may not have Radon property, since we do not exclude the fact that the sequence px k q converges to 0 sufficiently fast so that the measure m x may have a finite accumulation point.

Let x"px k q ką0 be an element of S. Note that 0 is always a point of m x and that the coordinates of x are the inter-arrivals times of m x , in particular x 1 is the distance to the first point of m x on the left of 0. The point measures with a finite number of points correspond to sequences px k q which are constant and equal to `8 after some finite index. In this case, if k 0 is the first index where x k 0 " `8, with a slight abuse of notation we write it as a finite vector x"px 1 , x 2 , . . . , x k 0 ´1, `8q.

On S, the distance, for x"px k q, y"py k qPS, dpx, yq "

`8 ÿ 1 1 2 k minp|x k ´yk |, 1q, (5.3) 
with the convention, for uPR `, |u´8|"|8´u| " `8 and |8´8|"0. It easily checked that S is a separable Polish space, i.e. a complete separable metric space. An important subset of S is

S h def. " # x"px k qPS : hp0q ``8 ÿ k"1 h ˜k ÿ i"1 x i ¸" ż `8 0 hpuq q m x pduqă`8 + , ( 5.4) 
with Definition (5.30) of q m of the Appendix, we have xPS h if hPL 1 p q m x q.

Definition 59. For xPS and aě0, we set hpt´uqm x pdxq " 0.

T px, aq def. " inf tě0 # ż t 0 Φ ˜hp0q `ÿ kě1 h ˜s`k ÿ i"1 x i ¸¸ds ě a + (5.5) " inf tě0 "ż t 0 Φ ˆż h ps´uq m x pduq
(5.6)

Our lemma is proved since Φ is continuous with Φp0qą0.

Hawkes SDEs

We first recall the classical definition of an Hawkes process, see [HO74].

Definition 61. A Hawkes process is a point process N on R such that, for any sPR, the process ˆN pps, tsq´ż t s Φ ˆżp´8,uq hpu´xqN pdxq ˙du, těs is a local martingale with respect to the filtration pF t , těsq, where, for tPR, F t is the σ-field containing the σ-field associated to the random variables N ppu, vsq, uďvďt.

If N is a Hawkes process, for any sPR the dual predictable projection of the process of pN pps, tsq, těsq is almost surely, We now introduce a dynamical system extending a Radon measure on R ´into a measure on R exhibiting a Hawkes property on R `. The Markovian approach used in this paper relies heavily on this construction.

Proposition 62 (Hawkes SDE). If mPM p pR ´q verifies hPL 1 p q mq, then there exists a unique positive random measure N m on R such that N m "m on R ´, the counting measure pN m pp0, tsq, tě0q satisfies the stochastic differential equation dN m pp0, tsq " P ˆˆ0, Φ ˆżp´8,tq hpt´xqN m pdxq ˙˙, dt ˙, (5.7) for all tą0. Under Assumptions A-1 and A-2-(a), the points of N m on R `form a non-decreasing sequence of stopping times pT n q, such that if

E 1 def. " ż T 1 0 Φ ˆżp´8,sq h ps´xq N m pdxq ˙ds and E n`1 def. " ż T n`1
Tn Φ ˆżp´8,sq h ps´xq N m pdxq ˙ds, ně1, (5.8) then pE n , ně1q is an i.i.d. sequence of exponential random variables with parameter 1 and E 1 is independent of F 0 and, for ně1, the sequence pE k , kąnq is independent of F Tn .

Proof. The proof is done by constructing by induction the sequence of points pT n q of N m .

T 1 def. " inf " tě0 : ż p0,ts P ˆˆ0, Φ ˆżp´8,0s hps´xqmpdxq ˙˙, ds ˙‰0 * ,
Two cases are then possible, either T 1 "`8, and, in this case N m "m, or T 1 ă`8 and we can go on to the next iteration. By induction, for ně1, if T 1 ďT 2 ď ¨¨¨ďT n ă`8, it is possible to define

T n`1 def. " inf " těT n : ż pTn,ts P ˜Φ ˆżp´8,0s hps´xqmpdxq 
˙`n ÿ k"1 h ps´T k q , ds ¸‰0 + , (5.9) 
Again, if T n`1 "`8, we have,

N m " m `n ÿ k"1 δ T k ,
if not, we can build T n`2 . The first part of the proposition is proved, as N m has been build verifying (5.7) directly proving existence and uniqueness. For tě0, the independence properties of the Poisson process P give PpT 1 ětq " 0, so that the variable T 1 is almost surely finite and it clearly has the stopping time property. Define E 1 def.

PpT 1 ět | F 0 q " exp
"

ż T 1 0 ż p´8,0s
hps´xqmpdxq ds, from Relation (5.10), we get

PpE 1 ět | F 0 q " P ˆż T 1 0 Φ ˆżp´8,0s hps´xqmpdxq ˙ds ě t ˙" e ´t,
hence E 1 is exponentially distributed with parameter 1 and independent of F 0 . Using Definition (5.5), the random variable T 1 has the same distribution as the random variable T px, E 1 q where x is the unique element of S such that m"m x .

If by induction, for ně1, the n stopping times T 1 ďT 2 ď ¨¨¨ďT n are defined almost surely, T n`1 as defined by (5.9) is clearly a stopping time, it is almost surely finite with the same argument as for T 1 , and, with the strong Markov property of P for the stopping time T n ,

PpT n`1 ´Tn ět | F Tn q " exp ˜´ż Tn`t Tn Φ ˜żp´8,0s hps´xqmpdxq`n ÿ k"1 hps´T k q ¸ds ¸, hence, PpE n`1 ět | F Tn q " P ˆż T n`1 Tn Φ ˆżp´8,0s hps´xqN m pdxq ˙ds ě t ˇˇˇF Tn ˙" e ´t.
proving that E n`1 is an exponential random variable.

The strong Markov property of the Poisson process P gives that E n`1 is independent of F Tn . The second part of the proposition is proved.

In the proof we have seen that the condition Φp0qą0 in Lemma 60 guarantees that there is almost surely an infinite number of points in R `for SDE (5.7).

Note that it cannot be excluded that this non-decreasing sequence of points may have a finite limit with positive probability and therefore that N m is not necessarily a point process. As it will be seen, it can blow-up in finite time, i.e. the limit of its sequence pT n q of points in R `may be finite with positive probability. Proposition 68 gives a condition for which the sequence pT n q converges almost surely to infinity when m is the null measure. Proposition 77 considers a case when there is such a blow-up and derives a limiting result for the accumulation of points.

However, when the sequence pT n q is converging almost surely to infinity, N m is a point process, and it is not difficult to see that the dual predictable projection of the process of pN m pp0, tsq, tě0q is Proposition 62 extends a point measure m on R ´to a point process on R, it can be also seen as a dynamical system on point processes on R ´in the following way.

A dynamical system

If mPM p pR ´q is such that hPL 1 p q mq and N m defined by Relation (5.7) is a point process, for tě0, we introduce a (random) dynamical system pT t pmqq in M p pR ´q as, ż p´8,0s

f pxqT t pmqpdxq " ż f pxqθ t ˝Nm pdxq " ż p´8,ts f px´tqN m pdxq, (5.11) 
for any non-negative Borelian function on R ´, T t pmq is the point process N m seen from the point t.

A stationary Hawkes point process is in particular associated to a distribution Q on M p pR ´q which is invariant distribution for the group of transformations pθ t q on M p pRq. See Definition 78 in Section 5.A.

When Φp0q"0, the null measure is clearly a solution of Relation (5.7). The next proposition shows that, under some mild condition, the null point process is the unique stationary Hawkes process in such a case. Proposition 63. Under Assumptions A-1 and ż R `thptq dt ă `8, if for some Kě0, the non-negative function Φ satisfies the relation ΦpxqďKx, for all xě0, then there does not exist a stationary Hawkes process N which is non-trivial, i.e. such that PpN ı0qą0.

Under the additional condition that the function Φ is Lipschitz with constant K such that αKă1, this result is given by Theorem 1 of [BM96; BM01].

Proof. Fix λą0. Since the set of the distributions of stationary Hawkes processes whose intensity is less than λą0 is a convex and closed subset of the unit ball of PpM p pRqq, it is therefore compact by the Banach-Alaoglu theorem. See [Rud73]. If there is a non-trivial stationary Hawkes processes, by Choquet's Theorem, there exists a non-trivial ergodic distribution with respect to the flow pθ t q. See Proposition 12.4 and Choquet's Theorem of [Phe01]. The Birkhoff-Khinchin ergodic theorem, see [CFS82], gives the almost sure convergence

lim tÑ`8 N pp0, tsq t " EpN pp0, 1sqą0,
since N is non-trivial, we obtain therefore that PpN pR `q"`8q"1. If T 1 is the first positive point of N , the variable T 1 is in particular finite with probability 1.

As in the proof of Proposition 62, we have The stationary property of the point process N shows that there exists some λą0 such that EpN pr´s, 0sqq"λs, for all sě0. The integrability of pthptqq gives that V is an integrable random variable, and therefore, is almost surely finite. As a consequence we have that, almost surely, PpT 1 "`8|F 0 qą0. This is a contradiction. The proposition is proved.

PpT 1 ět | F 0 q " exp

A Markov chain formulation

A different formulation of the stationary Hawkes process

In this section, we give an alternative version of Proposition 62 in terms of a Markovian dependence on the state space of sequences. We begin by a characterization of the Palm measure of a stationary Hawkes process.

Proposition 64. If Conditions A-1 and A-2 a) hold and if Q is the distribution on M p pRq of a stationary Hawkes process N "pt n , nPZq associated to Φ and h then, the sequence of interarrivals pτ n , nPZq def.

" pt n ´tn´1 , nPZq is a stationary sequence under its associated Palm measure p Q. Moreover, the sequence of random variables

˜ż τ n`1 0 Φ ˜ÿ kďn h ˜s`n ÿ i"k`1 τ i ¸¸ds, nPZ ¸, (5.12) 
is i.i.d. with a common exponential distribution with parameter 1.

If there exists a stationary sequence pτ n , nPZq satisfying Relation (5.12), then there exists a stationary Hawkes process associated to Φ and h.

Proof. From the point of view of Proposition 62 this proposition is quite intuitive, one has nevertheless to be careful, as always in this setting since Proposition 62 is stated under the distribution Q.

The stationary property of the sequence pτ n , nPZq def.

" pT n ´Tn´1 q under p Q is clear, by definition of p Q. To prove the second part of the proposition, we use Proposition 11.8, page 315 of [Rob03] which gives that

lim tOE0 E Q pf | N pr´t, 0sq "0q " E p Q pf q,
where E R denotes the expectation with respect to the distribution R on M p pRq and f is a bounded Borelian function on M p pRq such that tÞ Ñf pθ t pmqq is Q-almost surely right continuous at t"0.

For nPZ and mPM p pRq, define

Ψ n pmq def.
"

ż t n`1 pmq tnpmq Φ ˆżp´8,0s hps´xqmpdxq ˙ds,
then, since , Q-almost surely, we have t 0 pmqă0ăt 1 pmq and t n pmqăt n`1 pmq, for tě0 sufficiently small, Ψ n pθ t pmqq "

ż t n`1 pmq´t tnpmq´t Φ ˆżp´8,´ts hps´x`tqmpdxq ˙ds.
By continuity of Φ and h, we get that

lim tOE0 Ψ n pθ t pmqq " Ψ n pmq, Q-almost surely. Let F be a continuous bounded Borelian function on R n `then lim tOE0 E Q " F ´Ψi pN q , 1ďiďn ¯| N pr´t, 0sq‰0 ı " E p Q " F ´Ψi pN q , 1ďiďn ¯ı .
Since the event tN pr´x, 0sq "0u is F 0 -measurable and that for any 1ďkďn, the variable

ż t k`1 t k Φ ˆżp´8,ss h ps´xq N pdxq ˙ds
is independent of F t k , we get with Proposition 62 again, by induction on k for example, that lim

tOE0 E Q " F ´Ψi pN q , 1ďiďn ¯| N pr´t, 0sq‰0 ı " E " F ´Ei , 1ďiďn ¯ı ,
where pE i , 1ďiďnq are n independent random variables with a common exponential distribution with parameter 1. By gathering these results we obtain that

E p Q " F ´Ψi pN q , 1ďiďn ¯ı " E " F ´Ei , 1ďiďn ¯ı .
Under the probability distribution p Q, the random variables Ψ i p¨q, 1ďiďn, are i.i.d. with a common exponential distribution with parameter 1 Relation (5.12) is a consequence of the relation

Ψ n pN q " ż t n`1 tn Φ ˜ÿ kďn h ps´t k q ¸ds " ż τ n`1 0 Φ ˜ÿ kďn h ˜s`n ÿ i"k`1 τ i ¸¸ds,
by invariance of p Q with respect to p θ, the sequence pΨ n p¨qq ně1 is stationary under p Q and, therefore, is i.i.d. with a common exponential distribution with parameter 1. Now we assume that there exists a stationary sequence τ "pτ n , nPZq of integrable random variables satisfying Relation (5.12). Recall that m τ is the point process defined by Relation (5.2). Using a similar proof as in Proposition 62, we can show that m τ satisfies an Hawkes SDE (5.7) on R. For uPR, the same property clearly holds for θ u pm τ q, the point process m τ translated at u, see Definition (5.32). For Ką0, let U K be an independent uniform random variable on r´K, Ks, the point process θ U K pm τ q satisfies the Hawkes property. With the same method used for the proof of Proposition 11.2 of [Rob03], we obtain that, as K goes to infinity, θ U K pm τ q converges in distribution to a stationary point process whose Palm measure is given by the distribution τ . It is not difficult to show that the Hawkes property is preserved in the limit. The proposition is proved.

We can now state the main result concerning the relation between the Hawkes SDE and the Markov transition kernel K.

Proposition 65. The Markov chain associated to transition kernel K of Definition (5.14) has an invariant distribution with integrable coordinates if and only if there exists a stationary Hawkes process.

Proof. If there exists a stationary Hawkes point process pt n q, Proposition 64 shows that the distribution of pt n`1 ´tn q under its Palm distribution is an invariant distribution of the Markov chain pX n q. Conversely, if the Markov chain associated to transition kernel K has an invariant distribution, then one can construct a stationary version of the Markov chain X def.

" pX n q, in particular X satisfies Relation (5.12). Proposition 64 shows then that there exists a stationary Hawkes point process in this case.

A Markov chain on S

The previous proposition has highlighted the importance of the Palm space, and therefore led us to develop a second formulation of the Hawkes process, conditioned to jumping at t"0, using Markovian kernels.

Definition 66. The sequence of random variables pX x n q with initial point X x 0 "xPS is defined by induction, for ně0,

X x n`1 "pX n`1 , X x n q"pT pX x n , E n`1 q, X x n q, (5.13)
where pE n q is an i.i.d. sequence of exponentially distributed random variables with parameter 1 and T is defined by Relation (5.5).

The associated Markovian kernel is denoted by

K ż S f pyqKpx, dyq " E x pf pX x 1 qq, (5.14) 
for a non-negative Borelian function f on S.

The element X x n`1 is obtained by shifting X x n and adding X n`1 "T pX x n , E n`1 q at the beginning of the sequence. The sequence pX x n q clearly has the Markov property. Proposition 67 (The Markov chain pX x n q and Hawkes SDEs). If Conditions A-1 and A-2 a) hold and mPM p pR ´q is such that mpt0uqą0, then the distribution of N m , the solution of Relation (5.7) can be expressed as

N m dist. " m `ÿ ně1 δ Tn
with, T 0 "0 and, for ně1, T n`1 ´Tn "X n`1 where the sequence pX n q is defined by induction by

ż Tn T n´1 Φ ˜żR ´hps´uqmpduq`n ´1 ÿ k"1 h ps´T k q ¸ds " ż Xn 0 Φ ˜żR ´hpT n´1 `s´uqmpduq`n ´1 ÿ k"1 h ˜s`n ´1 ÿ i"k`1 X i ¸¸ds " E n , (5.15)
where pE n q is an i.i.d. sequence of exponentially distributed random variable with parameter 1. The process pX x n q"ppX n , . . . , X 1 , X x 0 qq is the Markov chain with transition kernel Kp¨, ¨q of Relation (5.14) and initial point X x 0 "ps n`1 ´sn q, if m"ps n , ně0q, ¨¨¨ďs n ďs n´1 ď ¨¨¨ďs 1 ďs 0 "0. Proof. This is a straightforward consequence that Relation (5.15) is a rewriting of Relation (5.8) of Proposition 62.

`β0

ż X 0 n´2 `X0 n´1 `X0 n X 0 n´2 n´3 ÿ k"0 h ˜s `n´3 ÿ i"k`1 X 0 i ¸ds.
By proceeding by induction, we finally get the relation

n ÿ k"1 pE k ´αβ 0 q ď ν n ÿ k"1 X 0 k ´β0 n ÿ k"1 HpX 0 n `X0 n´1 `¨¨¨`X 0 k q.
In particular the sequence pT 0 n q is almost surely converging to infinity. The proposition shows that when the initial state is the empty state, there is no blow up phenomenon, the sequence of points does not converge to some finite value.

To prove the second part of the propostion, i.e that N is indeed a point process, we need that the sequence pT 0 n q is going to infinity almost surely. This is a direct consequence of Proposition 68 and the law of large numbers.

Exponential memory

In this section we assume that the function h associated to the memory of previous jumps is exponentially decreasing.

hpuq" expp´u{αq, for some αą0. In this case, the past activity of the Hawkes process can be encoded by a one-dimensional Markov process. One of the early analyses is [Oak75]. [DLO19] considers a more general model for which h is the density of the sum of exponential random variables with different parameters. The trick is to use the method of the stages so that a multi-dimensional Markov process can encode the past activity of the Hawkes process.

In this section, we give a existence and uniqueness result of the stationary Hawkes chain with a weaker condition than the classical relation αLă1, where L is the Lipschitz constant associated to Φ. The result is obtained by using the Markov process of Section 5.4. At the same time an explicit representation of the distribution of the corresponding Palm measure in terms of the invariant distribution of a one-dimensional Markov chain is obtained. We conclude this section with non-Lipschitz activation functions Φ for which the solution of the Hawkes SDE blows-up in finite time. A limit result gives a scaling description of how the accumulation of the points of Hawkes process occurs.

Proposition 69. Let xPS h , m x defined by Relation (5.2) and N mx "pT n q of Proposition 62, then e s{α m x pdsq, and Z n`1 "1`e ´Xn`1 {α Z n , (5.18)

pZ n q def.
where X n`1 "T n`1 ´Tn is the unique solution of the equation

ż X n`1 0 Φ `e´s{α Z n ˘ds " E n`1 , (5.19)
where pE n q are i.i.d. random variables with an exponential distribution with parameter 1.

Proof.

Z n`1 " ż p´8,T n`1 s expp´pT n`1 ´sq{αqN mx pdsq " 1`expp´pT n`1 ´Tn q{αq ż p´8,Tns expp´pT n ´sq{αqN mx pdsq " 1`expp´X n`1 {αqZ n ,
and Relation (5.15) gives that

E n`1 " ż T n`1 Tn Φ ˜żR ´hps´uqmpduq`n ÿ k"1 h ps´T k q ¸ds " ż T n`1 ´Tn 0 Φ ˜e´s{α ˜żR ´hpT n ´uqm x pduq`n ÿ k"1 h pT n ´Tk q ¸¸ds " ż X n`1 0 Φ `e´s{α Z n ˘ds
is an exponentially distributed random variable with parameter 1 and that the sequence pE n q is i.i. then the sequence pZ n q is a Harris Markov chain on r1, `8q.

For a general introduction on Harris Markov chains, see [Num04].

Proof. The proof will be in two steps. We will first prove, via a Lyapunov function, that the set r1, Ks is recurrent, for some Ką0. Then, we will show that the subset r1, 2s is also recurrent and small, see [Num04] for example. Proposition 5.10 of [Num04] gives then that the Markov chain pZ n q is Harris ergodic. We first exhibit a Lyapunov function for this Markov chain. Equation (5.19) can be rewritten as, if Z 0 "z 0 ,

E 1 " ż X 1 0 φ `e´s{α z 0 ˘ds " α ż z 0 z 0 e ´X1 {α Φ puq u du " α ż z 0 Z 1 ´1 Φ puq u du.
(5.21)

Let, for yě1, F pyq "

ż y´1 1 Φ puq u du,
we thus have E z 0 pF pZ 1 qq ´EpF pz 0 qq "

ż z 0 z 0 ´1 Φ puq u du ´1 α ,
hence there exist ηą0 and Ką0 such that if z 0 ěK then E z 0 pF pZ 1 qq ´EpF pz 0 qq ď ˆβe `η´1 α ˙ă 0.

The function F is a Lyapunov function for the Markov chain pZ n q. The interval r1, Ks is a recurrent set for the Markov chain. See Theorem 8.6 of [Rob03]. By using Relation (5.21), we obtain, for z 0 Pr1, Ks,

P z 0 pZ 1 ă 2q " P ˆE1 α ą ż z 0 1 Φpuq u du ˙" exp ˆ´α ż z 0 1 Φpuq u du ě exp ˆ´α ż K 1 Φpuq u du ˙ą 0,
the interval r1, 2s is a recurrent set for the Markov chain pZ n q. For 0ătďz 0 , the relation

PpZ 1 ´1ďtq " exp ˆ´α ż z 0 t Φ puq u du
ġives that the density of Z 1 is given by, for z 0 ďK,

α Φ ptq t exp ˆ´α ż z 0 t Φ puq u du ˙ěα Φ ptq t exp ˆ´α ż K t Φ puq u du ˙.
There is a positive lower bound independent of z 0 ďK. We can now use the same argument as in example of Section 4.3.3 page 98 of [MT93] to prove that r1, 2s is a small set. The proposition is proved.

Definition 71. For zą1 and yą0, under Assumption A-2, we define G Φ pz, yq by the relation

ż G Φ pz,yq 0 Φ `e´s{α z ˘ds " y. (5.22)
Theorem 72. [Invariant distribution of pX n q] Under Assumption A-2, and if αβ e ă1, then for any xPS h , the Markov chain pX n q of Definition 66 converges in distribution to the law of

˜GΦ ˜Z˚n , α ż Z ˚n Z ˚n`1 ´1 Φpuq u du ¸, ně1
where G Φ is defined by Relation (5.22) and pZ n , nPZq is the stationary version of the Harris Markov chain pZ n q of Proposition 69.

Proof. For ně1, with the above notation, by definition X n`1 "G Φ pZ n , E n`1 q, i.e.

E n`1 " α ż Zn Z n`1 ´1 Φ puq u du.
For někě1, pX n , X n´1 , . . . , X n´k`1 q are the k-first coordinates of X n , they can be expressed as

pG Φ pZ n´1 , E n q, G Φ pZ n´2 , E n´1 q, . . . , G Φ pZ n´k , E n´k`1 qq " ˜GΦ ˆZn´1 , α ż Z n´1 Zn´1 Φpuq u du ˙, . . . G Φ ˜Zn´k´1 , α ż Z n´k´1 Z n´k ´1 Φpuq u du ¸¸.
The Harris ergodicity of pZ n q implies that the random variable pZ n , Z n´1 , . . . , Z n´k q is converging in distribution to pZ 0 , Z ˚1, . . . , Z ˚kq. Due to Assumption A-2, the mapping pz, yqÞ ÑG Φ pz, yq is continuous, the continuous mapping theorem concludes the proof of our result.

Theorem 72 shows that in the case of exponential memory, the invariant distribution of pX n q can be expressed in terms of a one-dimensional stationary Markov chain. The following corollary rephrases this result in terms of Hawkes processes. This is a direct application of Proposition 65.

Corollary 73. If Φ is a continuous function such that Φp0qą0 and αβ e ă1, where β e is defined by Relation (5.20), then there exists a unique stationary Hawkes process.

Note that the condition αβ e ă1 is weaker than the classical conditions of the literature: Φ Lipschitz with Lipschitz constant β such that αβă1.

Transient Hawkes processes

From now on, we assume a polynomial behavior for Φ so that, for xą0, Φpxq"pν`βxq γ , where ν, β and γ are positive real numbers.

Theorem 72 shows that pX n q is converging in distribution for all α, ν and β when γă1, and, when γ"1, the convergence occurs if αβă1. Proposition 74. If Φpuq"pν`βuq γ and if γą1 with β, νą0, then the Markov process pZ n q is transient.

Proof. From Relation (5.21), we have

E 1 " α ż z 0 Z 1 ´1 Φ puq u du,
where E 1 is an exponentially distributed random variable with parameter 1. Let, for uě0, Φ p puq def.

" pβuq γ and, on the event tγE 1 ăαβ γ z γ 0 u, we define the variable Z 1,p such that E 1 " α

ż z 0 Z 1,p ´1 Φ p puq u du " αβ γ γ pz γ 0 ´pZ 1,p ´1q γ q ,
then, since Φ p ďΦ, we have z 0 ´Z1,p `1ěz 0 ´Z1 `1ě0 and E 2 def.

" γE 1 {pαβ γ q, then

z 0 ´Z1,p `1 " z 0 ˜1´ˆ1´E 2 z γ 0 ˙1{γ ¸.
The elementary inequality

1´p1 ´hq 1{γ ď 2 γ h, 0ďhď1{2,
gives the relation, for aě1

E z 0 ppz 0 ´Z1 `1q a q ď z a 0 Pp2γE 1 ěαβ γ z γ 0 q `E ´pz 0 ´Z1,p `1q a 1 t2γE1ďαβ γ z γ 0 u ď z a 0 exp ˆ´αβ γ 2γ z γ 0 ˙`2 a α a β aγ E pE a 1 q z apγ´1q 0 .
Since γą1, we deduce that lim z 0 Ñ`8 E z 0 pZ 1 ´z0 q " 1 and sup z 0 ě1 E z 0 `pZ 1 ´z0 q 2 ˘ă `8.

(5.23) Theorem 8.10 of [Rob03] shows that the Markov chain is transient. Strictly speaking Theorem 8.10 is for a Markov chain with a countable state space, nevertheless a glance at the proof of this result shows that it is also valid in our setting. The proposition is proved.

Relation (5.19) of Proposition 69 gives that the Hawkes Point Process pT n q of Proposition 62 is such that

E n`1 ěβ γ Z γ n ż T n`1 ´Tn 0 e ´sγ{α ds " α γ β γ Z γ n `1´e ´γpT n`1 ´Tnq{α ˘, (5.24) 
where pE n q is an i.i.d. sequence of exponential random variables with parameter 1.

Under the assumptions of Proposition 74 the sequence pZ n q is converging in distribution to infinity and, with the last relation, the relation

lim nÑ`8
T n`1 ´Tn " 0 holds for the convergence in law. This result suggests that the points pT n q are closer and closer asymptotically. We investigate this aspect in the rest of the section. We now study of the asymptotic behavior of pZ n q in the transient case. We start with a technical lemma.

Lemma 75. If γě2 then, for any δą0,

sup z 0 ą1 E z 0 `eδ|Z 1 ´z0 | ˘ă `8.
(5.25)

Proof. From Relation (5.21), we get, for z 0 ě1 and 1ďtďz 0 , " αβ γ {γ. Note that, by Definition (5.18) of Z 1 , z´Z 1 `1ě0, hence, for δą0,

P z 0 pz 0 ´Z1 `1ětq " P ˆE1 ěα ż z 0 z 0 ´t Φpuq u ˙ď exp ˆ´bz γ 0 ˆ1´ˆ1´t z 0 ˙γ˙˙, ( 5 
E z 0 `eδ|Z 1 ´z0 ´1| ˘´1 " δ ż z 0 0 e δt P z 0 pz 0 ´Z1 `1ětq dt ď δ ż z 0 0 exp ˆδt´bz γ 0 ˆ1´ˆ1´t z 0 ˙γ˙˙d t " δz 0 ż 1 0 exp pδuz 0 ´bz γ 0 p1´p1´uq γ qq du.
When z 0 is sufficiently large, we split the integral into two terms,

z 0 ż 1 1´p1´2δ{pbz γ´1 0 qq 1{γ
exp pδuz 0 ´bz γ 0 p1´p1´uq γ qq du ď z 0 exp p´δz 0 q , and z 0

ż 1´p1´2δ{pbz γ´1 0 qq 1{γ 0 exp pδuz 0 ´bz γ 0 p1´p1´uq γ qq du ď z 0 ˜1 ´ˆ1 ´2 δ bz γ´1 0 ˙1{γ ¸exp `δz 0 `1 ´p1 ´2δ{pbz γ´1 0 qq 1{γ ˘˘.
The lemma is proved.

Proposition 76. If γě2, then, almost surely,

lim nÑ`8 Z n n " 1.
Proof. This is a consequence of Relations (5.23) and (5.25). Theorem 8.11 of [Rob03] shows that, almost surely, the relation

lim inf nÑ`8 Z n n ě 1
holds. Condition b) of Proposition 8.11 follows from Lemma 75 and Condition c) of this proposition is replaced in this context by the fact that if z 0 ăK 0 , then there exists n 0 ě1 such that P z 0 pZ n 0 ěK 0 qą0. Notice that Z n ďn`z 0 holds for all ně1, we get therefore that almost surely

lim nÑ`8 Z n n " 1.
The proposition is proved.

For xPS h and m x defined by Relation (5.2), if N mx "pT n q the point process of Proposition 62, we know that the sequence pT n`1 ´Tn q is converging in distribution to 0. The following proposition gives a much more detailed description of the accumulation of points:

for ně1, the point process seen from the nth point, i.e. the point process pT n ´Tk , 1ďkďnq scaled by the factor n γ converges in distribution to a Poisson point process.

Proposition 77 (Asymptotic behavior of points of a transient Hawkes process). Assume that Φpuq"pν`βuq γ , and that γě2 with β, νą0, if xPS h , m x defined by Relation (5.2) and N mx "pT n q the point process of Proposition 62, then the point process pn γ pT n ´Tk q, 1ďkănq converges in distribution to a Poisson process with rate β γ . Proof. Define P n "pn γ pT n ´Tk q, 1ďkănq. The representation of pT n q in terms of the Markov chain pZ n q of Proposition 69 and Relation (5.19) give

E n`1 " ż X n`1 0 `ν`βZ n e ´s{α ˘γ ds, (5.27) 
where pE n q is an i.i.d. sequence of exponential random variables with parameter 1 and, as before, X n`1 "T n`1 ´Tn . For any δą0 and ně1, Relation (5.27) gives the inequality

P pX n`1 ěδq ď P ˆα γ β γ `1´e ´δγ{α ˘Zγ n ď E n`1 ˙.
(5.28)

On the event E n,δ ,

E n,δ def.
"

" X n`1 ď δ, ν β e δ{α ďZ n * , Relation (5.27) shows that β γ e ´δγ{α Z γ n X n`1 ď E n`1 ,
and therefore that the sequence of random variables pZ γ n X n`1 q is therefore tight. The elementary relation

p1`hq γ ´1 ď C 1 h, 0ďhď1,
with C 1 "γ2 γ´1 and Relation (5.27) give the following inequality on the event E n,δ .

0 ď E n`1 ´βγ Z γ n ż X n`1 0 e ´sγ{α ds ď C 1 ν pβZ n q γ´1 ż X n`1 0 e ´pγ´1qs{α ds ď C 1 νβ γ´1 X n`1 Z γ´1 n .
Using the fact that pZ γ n X n`1 q is tight and the almost sure convergence of pZ n {nq to 1 of Proposition 76 shows that the random variables pX n`1 Z γ´1 n q is converging in distribution to 0. For a sufficiently large n, Relation (5.28) shows that the probability of the event E n,δ is arbitrarily close to 1, we obtain that the sequence of random variables

pY n q def. " ˆβγ Z γ n ż X n`1 0 e ´sγ{α ds is
converging in law to an exponential distribution with parameter 1.

On the event E n,δ we have

Y n ď β γ Z γ n X n`1 ď e δγ{α Y n , hence, for xě0, Ppβ γ Z γ n X n`1 ě xq ď P `eδγ{α Y n ě x ˘`P `Ec n,δ ˘, hence lim sup nÑ`8 P pβ γ Z γ n X n`1 ě xq ď exp `´xe ´δγ{α ˘,
and, by letting δ go to 0, we obtain lim sup nÑ`8

P pβ γ Z γ n X n`1 ě xq ď e ´x.
An analogue lower bound holds for the lim inf, hence pβ γ Z γ n X n`1 q is converging in distribution to an exponential distribution with parameter 1. By using the almost sure convergence of pZ n {nq to 1, the same property holds for pβ γ n γ X n`1 q.

For pě1, the same argument may be used to prove that the sequence of random variables pβ γ n γ X n´k , 0ďkďp´1q is converging in distribution to the product of p exponential distributions with parameter 1. The key argument is again the almost sure convergence of pZ n {nq to 1.

Final step. Let f be a continuous function on R `with compact support included in r0, K 0 s for some K 0 ą0. The relations Z n ďn`z 0 and (5.27) give the inequality, for all ně1,

E n`1 ď pν`βpn`z 0 qq γ X n`1 ď C 0 pn`1q γ X n`1 ,
for some constant C 0 independent of n.

For pďn, we thus have

Ppn γ pT n ´Tn´p q ď K 0 q ď P ˜n ÿ k"n´p`1 k γ X k ď K 0 ¸ď P ˜1 C 0 p ÿ k"1 E k ď K 0 ¸.
We denote N β γ a Poisson process with rate β γ , with associated exponential random variables pE β γ n q. The last inequality gives that P n is stochastically dominated by N C 0 `βγ , a Poisson process with rate C 0 `βγ , in the sense that PpP n pp0, K 0 sq ě pq ď PpN C 0 `βγ pp0, K 0 sq ě pq, for pďn.

(5.29)

Clearly N β γ is also stochastically dominated by N C 0 `βγ . For pě1 and něp, ˇˇˇE ˆexp ˆ´ż

f puqP n puq ˙˙´E ˆexp ˆ´ż f puqN β γ puq ˙˙ˇˇˇď ˇˇˇˇE ˆexp ˆ´ż f puqP n puq ˙˙´E ˜exp ˜´n ÿ k"n´p`1 f pn γ pT n ´Tn´k qq ¸¸ˇˇˇˇĚ ˜exp ˜´n ÿ k"n´p`1 f pn γ pT n ´Tn´k qq ¸¸´E ˜exp ˜´n ÿ k"n´p`1 f `nγ E β γ n ˘¸¸ˇˇˇˇĚ ˜exp ˜´n ÿ k"n´p`1 f `nγ E β γ n ˘¸¸´E ˆexp ˆ´ż f puqN β γ puq ˙˙ˇˇˇˇˇ.
The first and third terms of the right hand side of the last inequality are respectively bounded by the quantity PpP n pp0, K 0 sqěpq and PpN β γ pp0, K 0 sqěpq. With Relation (5.29) we can fix p (not depending on n) sufficiently large such that it is arbitrarily small. The second term can also be made arbitrarily small for n sufficiently large in a similar way.

We have thus proved that

lim nÑ`8 E ˆexp ˆ´ż R `f puqP n puq ˙˙" E ˆexp ˆ´ż R `f puqN β γ puq
˙ḣolds for all continuous function with compact support. We can use Theorem 3.2.6 of [Daw93] to finish the proof of the proposition.

Palm space of point processes

The set M 0 p pR ´q is a subset of elements m of M p pR ´q such that mp0q‰0. If mPM 0 p pR ´q then m can be represented either by the non-decreasing sequence pt k , kě0q of its points, or by the sequence x"px k q"pt ´k´t ´k´1 , kě0q of increments between them.

An operator p θ on M 0 p pRq is defined by, p θpmq def.

" θ t 1 pmq pmq1 tt 1 pmqă`8u , (5.33) for mPM 0 p pRq, where t 1 pmq and pθ t q by defined respectively by Relations (5.31) and (5.32). A simple point process of M 0 p pRq can be identified to its sequence of inter-arrival times and it is easily seen that the relation

´pt k`1 ´tk qp p θpmqq, kPZ ¯" ´pt k`2 ´tk`1 qpmq, kPZ ¯, holds.
The mapping p θ is the classical shift operator on sequences. If m"pt n , nPZq is in M 0 p pRq and x"px n q"pt n ´tn´1 , nPZq, then m"m x and p θpmq"m x, with x"px n`1 q if mpR ´q"mpR `q"`8.

Equivalence between stationary point processes and Palm measure

We now recall some classical results on stationary point processes on R. A stationary simple point process with intensity λą0 can be equivalently defined by either by a. a distribution Q on M p pRq which is invariant for the continuous flow of translations pθ t q;

b. a distribution p Q on M 0 p pRq called the Palm measure of Q which is invariant for the operator p θ.

When a) is given, a distribution p Q on M 0 p pRq is constructed via Mecke's Formula so that property b) holds. See Chapter II of [Nev77] or Proposition 11.6 of [Rob03]. The special case where ν"0 was investigated in [BM01], where a particular interest was dedicated to the critical Hawkes process,

5.B Hawkes processes: a quick review

β ż `8 0 hpsq ds " 1.
The same critical Hawkes process, with general immigration rate ν is investigated in [Kir17]. A more precise study of the cumulant statistics of stationary Hawkes processes is developed in [Jov15] using a Poisson cluster process representation. The addition of an external jump process to the linearized Hawkes process, in view of applications in neuroscience example, has been considered in [Bou16].

Hawkes processes with exponential functions hpxq" expp´x{αq have attracted a particular interest because the associated counting process has the Markovian property, see [Oak75].

Having a linear activation function Φ is very helpful because of the corresponding branching process representation, However, when studying auto-inhibiting point processes, non-linear activation functions Φ are natural candidates to use. In this setting the investigation of sufficient conditions for the existence of stationary versions is more delicate. Most proofs in this domain are based on the functional relation defining stationary Hawkes processes that can be expressed as a fixed point equation which can be solved through a Picard scheme, see [Ker64] for one of the pioneering papers on this subject. . [BM96] has developed this approach when Φ is supposed to be β-Lipschitz, with the following condition, the state of càdlàg functions [Kar12]. Coupling methods [Lin02] and general Markov theory [Num04;Hai10] are natural tools in this setting.

CHAPTER 1 A SYNAPTIC THEORY FOR SEQUENCE LEARNING IN THE STRIATUM

Spatio-temporal patterns have been observed in a variety of brain areas in response to stimuli, prior or during action, or even in spontaneous activity. However, the biological mechanisms endowing neurons with the ability to distinguish between different sequences remain largely unknown. In fact, learning sequences of spikes raises multiple challenges, such as maintaining in memory spike history and discriminating partially overlapping sequences. Medium spiny neurons (MSN) in the striatum, expressing intense plasticity with cortex, have been reported to play a critical role in integrating context elements and develop sensorimotor associations. We theoretically explore the capacity of anti-Hebbian spike-timing dependent plasticity (STDP), observed at cortico-striatal synapses of MSNs, to drive the learning of sequences. To this purpose, we design a spiking model of the MSN receiving spike patterns defined as sequential input from a fixed set of cortical cells. We use a simple three-factor synaptic plasticity rule that combines anti-Hebbian STDP and non-associative potentiation associated to a subset of the presented patterns called rewarded patterns. We study, in various situations, the ability of the MSN to discriminate rewarded from non-rewarded patterns by firing only after presentation of a rewarded pattern. In particular, we show that two well-known biological properties of striatal networks, spiking latency and collateral inhibition, contribute to a significant increase in accuracy, by allowing a better discrimination of partially overlapping sequences. Altogether, these results argue that the anti-Hebbian STDP observed at cortico-striatal synapses may serve as a biological substrate for learning sequences of spikes.

Introduction

Nerve cells generate spatio-temporal patterns of action potentials, generally construed to convey information in the central nervous system. While spiking sequences have indeed been observed on a variety of timescales and in vastly distinct brain areas, the biological mechanisms employed to encode, store a sequence or distinguish between different sequences are still largely unknown. At behavioral timescales (seconds), episodic experiences are by nature a sequence of events [Xie+22]. In brain, these result in the generation of spatio-temporal spike sequences, as for instance with hippocampal place cells activating following the animal's movement [MKM08], parietal cortex sequences emerging in a virtual navigation-decision tasks [HCT12]. Generating dynamical output also require the formation of sequential cortical activity, as observed for instance in bird's ability to repeat spatio-temporal sequences over tens of seconds and with temporal structure maintaining millisecond accuracy within synfire chains [Ike+04], or more generally the generation of sequential activation of neural assemblies [Buz10]. Shorter timescale cortical spike sequences lasting tens of milliseconds were also reported in the relative timing of spikes between sequences in oscillating neural assemblies [WL96], or in sequential activation after an up state transition [Luc+07], in response to a single spike [Hem+19], or even in spontaneous patterns of activity [LBH09]. Theoretically, Hebbian plasticity was reported to naturally generate sequential activity (see e.g. [PB20] for a recent work in an unsupervised learning setting).

The ubiquity of sequences in brain activity suggests that the nervous system shall have developed the ability to identify and distinguish sequences and spike in response to a given set of sequences (and remain silent for other types of input). Theoretically, this is a complex task. Firstly, identifying a sequence requires the ability to integrate signals on a timescale of several spikes. Moreover, difficulties arise for sequences that share a significant amount of input, overlap except for their last spikes, or even could be seen as incompatible. Interestingly, despite ample work in computational neuroscience and machine learning related to the learning of temporal sequences [Güt14], we did not identify any work dealing with the specific task of identifying specific sequences by firing or not depending on the full pattern of input (and differentially learn sub-or super-patterns)

An ample part of the literature related to learning sequences found solutions to the problem of replicating a target output spike train; algorithms based on error backpropagation [BKL02], high-threshold projection [Mem+14], Remote Supervision Methods (ReSuMe) [PK10], or the Chronotron [Flo12] which uses a modification of the Victor & Purpura distance for spike trains to compute error terms, were shown to be successful in performing those tasks. Closer to the problem at hand, some algorithms were designed to decode statistical information from spike trains, or even to simply spike in response to particular sequences of input spikes. Those techniques, that include the Tempotron [GS06; US09], and its extensions [Güt+13; Güt14], differ from the problem at hand in that the neuron is not required to take a decision at the end of the task but may fire at any point during the presentation of the stimulus. In the context of motor decision making for instance, this would be problematic in that it may trigger movement in response to a part of a stimulus that should, when completed, not give rise to a spike.

Here, we explore whether biological learning rules observed in the striatum allow the acquisition of the ability to discriminate between different sequences. The dorsal striatum, a subcortical nucleus and the main input structure of the basal ganglia, has indeed been shown to play a major role for action selection [YK06; GG15; JC15] and a prominent site for memory formation and procedural learning [PV19; Ath+18; Pet+21]. In this variety of tasks, one may expect that the striatum needs to use information from sequences of evidences to take a decision. In contrast with associative recurrent cortices that are efficient to recollect missing information when presented with partial patterns, the striatum is a largely feedforward network, that combines a variety of cortical input to produce an output. Corticostriatal synapses were shown to be highly plastic. They display anti-Hebbian Spike Timing Dependent Plasticity (STDP) [FGV05; Fin+10; Men+20], whereby a cortical spike followed by a striatal medium spiny neuron (MSN) spike leads to a depression of the associated synaptic weight. While many computational studies have investigated the impact of Hebbian STDP, only a few studies have investigated anti-Hebbian STDP. Those concentrated on the question of stability of synaptic weights [Rob00; CF03; BK12], compensation of dendritic attenuation [RA04], cancellation of correlated signals and novelty detection [ZD07; RL10], in particular in the electrosensory system of the mormyrid electric fish.

As shown in all these works, when presented with correlated activity, anti-Hebbian STDP will generally lead to depression of the associated synapses ; this mechanism could naturally endow the system with the patience necessary to listen to full sequences and identify specific ones. We will show here that the combination of anti-Hebbian STDP with a simple, non-associative LTP is sufficient for a single MSN neuron to learn and distinguish sequences. We will note that while the simplest model of neuron with instantaneous firing will be able to learn sequences, they will however have a tendency to spike too early, in situations where partial sequences and longer sequences are presented. Going back to biology, we will observe that incorporating two key biological observations from the striatal network, spike latency and collateral inhibition, participate to the remarkable ability to identify and learn sequences of spikes.

Results

Sequence learning in the striatum

Given a spatio-temporal sequence of cortical spikes, we will say that a MSN has learnt a specific subset of sequences if it acquires the ability to spike in response to a specific subset of sequences, after the end of the correlated activity and not to spike in response to the others.

While basic, this notion of sequence learning is quite distinct from the literature. Indeed, as precisely reviewed in [Güt14], sequence learning has been classically divided into two different types of tasks: (i) reproducing a target spike train or (ii) classify a pattern by spiking, at any time, during the presentation of specific input sequences. The second task relates to the role of the striatal neurons which integrate cortical correlated patterns and then spike to trigger further downstream pathways leading to motor processing and eventually, an action. As such, it is similar to the task we set out to study here.

Since the latter task is not designed to wait until the end of a pattern to fire, when the network classifies a spike pattern B and fires during its presentation (at the end of subpattern A), it will also fire for any pattern that starts by (or just contains) A, and thus the specificity of pattern B and the extra information it contains compared to A is never taken into account. Assuming that the striatum needs to distinguish such patterns in some situations and to possibly respond differently to each of them, we have developed a new task where the striatal network, represented by one or two MSNs, integrates sequences of cortical spikes and naturally learns to spike at the end of the patterns.

This task, is different from the two previously defined in the sense that (i) a target spike train is not defined and used in the learning rule, and (ii) because the MSN needs to spike at the end of the pattern presentation and not earlier to produce a correct classification.

This novel tasks raises two main challenges: (i) the neuron shall keep the memory of past spikes for the whole duration of the pattern before firing, and (ii) some combinations of sequences may be harder to learn, for instance when the tasks include a rewarded pattern A that is a sub-pattern of another rewarded or non-rewarded patterns B Ą A, since in both cases the neuron will have a tendency to fire in response to the subpattern.

Simple models of striatal dynamics

Our scientific approach will consist in exploring the ability of striatal networks to achieve this task using simple, yet increasingly realistic, mathematical models. The striatum is a complex nucleus, composed primarily of MSNs that are the only cells that project outside of the striatum to other structures. These neurons integrate numerous cortical and thalamic inputs, and have been often described as coincidence detectors, since their high threshold requires the concomitant arrival of many spikes to induce a spike, which are often fired after a period of latency. Those neurons have been described in depth, both biologically and computationally, and several mathematical models were proposed to describe their behavior [Izh07; Hum+09; HWG09; YAK11; GHR15]. Within the striatum, MSNs have been also described to produce sparse inhibitory collateral connections among themselves, which reportedly plays a major role in the regulation of MSN firings or their overall activity [WAS07].

Our approach will consist in starting from the most simple setting of a single MSN receiving many cortical input and expressing the type of cortico-striatal plasticity observed experimentally, and build our way towards more complex models of twoneuron networks with non-linearities and adaptation, and assess in each case the performance of the system.

MSNs as linear leaky-integrate-and-fire neurons

Leaky-integrate-and-fire dynamics. We started by modeling the MSN as a linear leaky integrate-and-fire neuron [YAK11;Bur06;Ger+14], where the MSN integrates cortical and external inputs and fires when hitting a threshold. In detail, between two spikes, the membrane potential V of the neuron satisfies a linear differential equation: τ dV dt " ´pV ptq ´Veq q `RIptq `?τ V noise ptq Spikes are emitted when the voltage exceeds a threshold V th , at which time the neuron's voltage is instantaneously reset to V r and resumes input integration after a delay τ refractory "10 ms. V noise ptq represents Gaussian white noise, with a standard deviation of η noise "0.5 mV .

Inference of the parameters from experimental data. In order to fit the model, we used electrophysiological data from MSNs recordings in the mouse dorsolateral striatum in response to steps of input current with increasing amplitude. An example of electrophysiological data is depicted in Figure 1.1a1. These protocols are standard to characterize the neuron spiking properties and are helpful to characterize the neuron type.

In particular, it is possible to extract from these protocols the resting membrane V eq , the threshold V th and the reset V r potentials. Moreover, the R-I curve of the neuron is presented in Figure 1.1a2 (in blue). It represents the change in membrane potential as a function of input current intensity, and is used to compute R after fitting a linear curve to the experimental data (Figure 1.1a2, in green). τ can then be fitted directly on the electrophysiological traces. Once all these parameters are fixed, the model is completely constrained, and we can reproduce the action potential protocol using simulations (Figure 1 electrophysiological data, considering the restricted numbers of parameters in the model. However, this type of model does not scale properly for high input currents, as can be seen when looking at the F-I curve (firing rate as a function of input intensity, Figure 1.1a4, blue data and green simulations). Using experimental data from several MSNs, we fitted V eq , V th , V r , R and τ for each neuron and also computed C"τ {R. All these parameters are represented in Figure 1.1b, along with their averaged value (green circles) and values from previous studies (red triangles for [YAK11] and brown triangles for a non-linear version by [Izh07]). In particular, we notice that the values inferred from experimental data are consistent with canonical models, except for the reset potential V r which is sometimes taken as equal to the rest potential V eq , notably in [Izh07]. We have chosen to use a different value when modeling the MSN, because MSNs reset to values close to their threshold potential leading to a greater excitability immediately after a spike compared to when they are at their resting potential. In the following sections, MSNs will be modeled either using the linear integrate-and-fire model (M1) with parameters inferred using experimental data (the averages over all experiments, green circles), or the non-linear model (M2) from [Izh07]. Parameters are provided in Table 1.1.

Cortical inputs.

In the cortical input received by the MSN (term Iptq in equation 1.2), we explicitly distinguish the spikes received from P cortical neurons, noted I stim ptq (and with which plasticity will be modeled, see below) and an additional input I ext ptq modeled as a Poisson process with rate λ ext :

Iptq " I stim ptq `Iext ptq.
Each spike induces instantaneous jumps in the MSN membrane potential, with a constant amplitude W ext "1 nA (high enough to be able to evoke spiking activity in the MSN) for external spikes and synaptic weights W ptq " pW i ptqq 1ďiďP for each of the P cortical neuron considered, that vary through plasticity mechanisms.

I stim ptq " τ ÿ 1ďiďP ÿ t k i ďt W i pt k i ´qδpt ´tk i q, I ext ptq " τ W ext ÿ t k ext ďt δpt ´tk ext q,
where we noted, for a function f being potentially discontinuous at time t, f pt´q the value reached immediately before the jump, pt k i q kě0 is the sequence of spikes of neuron i and pt k ext q kě0 the sequence of external spike times, that have exponentially distributed inter-spike intervals. The factor τ allows appropriate scaling of weights for direct comparison with experimentally measured EPSCs (excitory post-synaptic currents).

Synaptic plasticity at cortico-striatal synapses

Spike-timing dependent plasticity. Synaptic weights from the P cortical neurons to the MSN are subject to pair-based STDP, which is modeled as synaptic weight updates arising after each spike according to the spike timing relative to all previous spikes of the other neuron (all-to-all implementation in the parlance of [MDG08]). In detail:

-If the MSN spikes at time t post (postsynaptic spike), then all weights are updated.

Noting t pre,i the previous spikes of cortical neuron i, the synaptic weight W i is updated according to:

W i pt post q " W i pt post ´q `ε ÿ t pre,i ăt post Φpt post ´tpre,i q
where ε denotes the plasticity rate, chosen in our simulations as ε"0.02.

-If presynaptic cortical neuron i P t1, ¨¨¨, P u spikes at time t pre,i , noting t post the times of the MSN spikes, then the synaptic weight W i is updated as:

W i pt pre,i q " W i pt pre,i ´q `ε ÿ t post ăt pre,i
Φpt post ´tpre,i q.

Denoting ∆t"t post ´tpre the timing between the presynaptic (cortical) spike and the postsynaptic (MSN) spike, we use an exponential STDP kernel [MDG08]:

Φp∆tq " $ & % A post-pre exp ´∆t
τs ¯if ∆t ă 0 A pre-post exp ´´∆t τs ¯if ∆t ą 0 with τ s "20 ms. An example of this STDP curve and of the impact of each parameter is given in Figure 1.1c.

Non-associative reward-LTP. Anti-Hebbian plasticity and the prominence of depression associated was often combined with non-associative LTP to prevent neurons from becoming silent altogether [RB00; WRL03; RA04]. Indeed, synaptic weights involved in the firing of a postsynaptic neuron are reduced by anti-Hebbian STDP, leading to their decrease, a process that may persist until no postsynaptic spike is produced; in other words, in the absence of an additional LTP, the synaptic weights subject to anti-Hebbian learning decrease until the network becomes silent.

We chose to use non-associative LTP to model rewards signals, leading to the following synaptic update rule, where at each presynaptic spike of cortical neuron i, the associated synaptic weight W i was updated by,

∆W i " ε A reward .
where A reward is either null (corresponding to the absence of any LTP) or positive (corresponding to non-associative potentiation of active presynaptic neurons).

This model offers an approximation of more detailed models proposed in the literature, in particular three-factor learning rules [KIT17; Fon+18; Ger+18], by just considering a simple reward signal consisting in the potentiation of the synaptic weight at each presynaptic spike.

Eventually, synaptic weights are clipped within a realist range rw min , w max s"r0., 2.s nA. An example of simple synaptic weight dynamics with P "2 cortical neurons, with and without reward is presented in Figure 1.1d.

Pattern recognition in the striatum

Patterns of correlated cortical activity. Learning at the level of the striatum is based on the detection of correlated sequences of cortical inputs. We emulated learning through a simple task, where N p patterns of cortical activity are presented to the MSN, whose spiking models the output of the network. A pattern represents a sequence of cortical activity with duration t duration "50 ms, and is composed by two different processes (i) correlated activity from a subset of cortical neurons (always present at each presentation of the pattern) (ii) random spiking activity from all cortical neurons.

In Figure 1.2a, a simple learning task is detailed with two patterns: pattern A which corresponds to a spike from cortical neuron 4 happening at time t offset ; pattern B where cortical neuron 1 spikes at t offset , followed after a delay t delay by a spike of cortical neuron 3, see Figure 1.2a (top right).

During learning, the network is presented with patterns, chosen randomly from the set of N p patterns. Among the patterns, a fixed subset was chosen to be rewarded with a probability 1{2. Accordingly, the rest of the patterns were defined as nonrewarded patterns. In the example of Figure 1.2a, pattern A was chosen to not be rewarded p´q and pattern B rewarded p`q. During training, rewarded patterns are subject to a positive potentiation signal (A reward ą0) while non-rewarded patterns do not pA reward "0q. For all patterns, STDP rules are also applied at the synaptic weight matrix W depending on pre-and postsynaptic spikes.

Accuracy, a measure of the network performance in the classification task. A rewarded pattern was deemed learnt if the MSN fired after the presentation of the whole sequence of correlated cortical activity, while non-rewarded patterns should not elicit any spike. For example, in Figure 1.2a, both patterns were tested, before and after learning. Before learning, patterns A and B did not trigger any spikes of the MSN, leading to a correct classification for A (as a non-rewarded pattern) and a misclassification for B. After learning, pattern A still did not elicit any spike while the MSN emited a spike after the presentation of all cortical spikes of pattern B, leading to a correct classification.

The accuracy of the learning process was estimated through the averaged numbers of correct responses:

Accuracy "

1 N p ÿ 1ďkďNp r k σ k `p1 ´rk qp1 ´νk q, (1.1)
where r k "1 if k is a rewarded pattern and 0 otherwise, σ k "1 if the MSN spiked after the correlated cortical activity and 0 otherwise, and ν k "1 if the neuron spikes, and 0 otherwise.

We stress here that to correctly classify a rewarded pattern, the MSN cannot spike during the cortical pattern, the spike has to be elicited at the end of the sequence. We made this choice to model the capacity of the striatum to take decision based on whole sequences of cortical activity, and not only on the first spikes.

The accuracy (and other network properties) is computed on a frozen network, where all sources of noise have been shut-off. All patterns are presented, and evaluated on this test network, with the MSN membrane potential reset to its resting value between each pattern.

Impact of STDP and reward-LTP on two simple tasks

In order to test whether simple models of cortico-striatal learning perform in learning sequences, we designed two simple tasks. We compared the evolution of different properties as a function of pattern iterations (Figure 1.2b and c), using four different types of STDP:

-Symmetric LTD: A post´pre "A pre´post "´1, which represents STDP where correlated spiking only leads to depression of the synaptic weight.

-Asymmetric Hebbian STDP: A post´pre "´1 and A pre´post "1, which emulates the classical Hebbian STDP rules where pre-post pairings lead to potentiation, while post-pre pairings lead to depression.

-Asymmetric anti-Hebbian STDP: A post´pre "1 and A pre´post "´1, which is the reverse of the asymmetric Hebbian STDP.

-Symmetric LTP: A post´pre "A pre´post "1, which represents STDP where correlated spiking only lead to potentiation of the synaptic weight.

We distinguish Hebbian learning rules (asymmetric Hebbian STDP and symmetric LTP), characterized by A pre´post "1, from anti-Hebbian learning rules (asymmetric anti-Hebbian STDP and symmetric LTD) with A pre´post "´1. Finally, we also tested the tasks with or without reward LTP (right or left respectively), and either starting from low or high synaptic weights (solid or dashed lines).

Task A, random inputs. In the first task, we presented the MSN with random activity from the cortical neurons (100 Hz for each cortical neuron) and studied the norm of the synaptic weight matrix W (Figure 1.2b). We observe in Figure 1.2b (left) that without reward-LTP, symmetric LTD leads to a decrease of the synaptic weight norms (blue line), regardless of the initial values. Conversely, symmetric LTP (red lines) leads to the general potentiation of the synaptic weight, again for both low and high initial synaptic weights. The picture is more complex for asymmetric Hebbian and anti-Hebbian STDP, whose dynamics change depending on the initial values. Asymmetric Hebbian STDP (in green) converges to a stable regime, while asymmetric anti-Hebbian STDP (in brown) either leads to complete depression when starting too low, or to complete potentiation when starting too high.

When adding reward-LTP Figure 1.2b (right), all rules lead to the potentiation of the synaptic weights, except symmetric LTD where depression still dominates.

Task B, learning to respond to one pattern. We next turned to investigate the dynamics of the system in response to a single pattern, obtained as a Poisson process with intensity λ poisson "1 kHz on a time interval of duration t poisson "5 ms, conditioned with having at least two spikes. We computed the probability that the MSN remains silent (top), the relative timing of the first spike of the MSN (middle) and the resulting accuracy (bottom), for both a non-rewarded pattern (left) and a rewarded one (right).

Starting with the non-rewarded patterns, the simulations show several important features. First, when starting from low synaptic weights (not sufficient to trigger spiking), and in the absence of non-associative reward-LTP, the synaptic weights are not updated (indeed the postsynaptic neuron never spikes), and therefore the probability to remain silent is equal to 1 throughout learning, leading to an accuracy of 1 for each type of STDP. The picture is more complex when the network starts with initial synaptic weights high enough to trigger spikes of the postsynaptic neurons (dashed lines). In that case, symmetric LTD is able to reduce the synaptic weight enough to silent them, which translates in an increase in accuracy during learning, reaching maximal accuracy quickly. Asymmetric anti-Hebbian STDP is also able to reduce synaptic weights, also leading to an increase of accuracy. However, this is not as efficient as symmetric LTD, mainly because the network is unstable if the synaptic weights are too high initially, as was observed in Task A. Conversely, when the postsynaptic neuron spikes, symmetric LTP and asymmetric Hebbian STDP only lead to an increase of the synaptic weights involved in spiking, making it impossible for these Hebbian rules to silence the neuron when presented with a non-rewarded pattern. In particular, the accuracy stays equal to zero during all the task, as the MSN always spikes in response to the pattern.

We now present results for Task B with a rewarded pattern, in Figure 1.2c (right). When the network starts with small synaptic weights, the pattern does not trigger any MSN spike, as seen previously for the unrewarded pattern. However, thanks to the reward-LTP mechanism, the presence of presynaptic spikes results in the potentiation of the associated synaptic weight, and therefore leads to the triggering of MSN spikes. When looking at Hebbian rules, numerical experiments show that the MSN starts to spike after a short training (see the decrease in the probability to remain silent, top panel), and once the MSN spikes, the synaptic weights are still potentiated (even more, due to the fact that A pre´post ą0), forcing the first postsynaptic spike to be triggered at the beginning of the pattern (the relative timing of the first spike goes to 0, middle (a) Classification task using the striatal network. Schematic representation of the striatal network (right) with P "4 cortical neurons (in green), a random input neuron with rate λ ext (in yellow) and one MSN, represented by its membrane potential V (in brown). Two mechanisms of synaptic plasticity are considered in the dynamics of the synaptic weight W (in blue): STDP (in purple) and LTP related to the reward signal (reward-LTP) (in red). Example of the learning task (left), with test sessions and the training protocol (middle). N p "2 patterns A and B are presented to the network, with A being non-rewarded p´q and B rewarded p`q. Each pattern represent sequential activity (top right), A with a single cortical spike and B with two spikes separated by a delay t delay . All pattern have a duration of t duration , and correlated cortical spikes are presented at t offset . Spiking activity of the cortical neurons (in green for pattern spikes and grey for random spikes) and the random input neuron (in yellow) are represented along with the membrane potential V of the output neuron (MSN, M1, in brown). In the test sessions, below the MSN potential, are represented accuracy results (correct classification in green, wrong classification in red). Low synaptic weights "r0., 0.05s nA / high synaptic weights "r0.05, 0.5s nA / A reward "0.5 / N "500 independent networks / Membrane potential X and plasticity reset between each pattern. panel). In particular, this response (spiking before the end of the pattern) is not the correct behavior, and leads to an accuracy of 0 (bottom panel).

For anti-Hebbian rules, another type of dynamics emerges. At first, only A reward acts on the synaptic weight, leading to the potentiation of W . Once a spike is elicited at the MSN, the associated synaptic weight undergo a combination of potentiation (from A reward ) and depression (from A pre´post ă0), with A reward `Apre´post ă0. After each postsynaptic spike, synaptic weights are therefore decreased. Several iterations are needed for this resulting depression to decrease the synaptic weight enough to stop triggering spikes at the postsynaptic neuron. When this event arrives, the synaptic weights are again only subject to potentiation, which leads to spiking of the postsynaptic neuron in the following presentation. The MSN therefore alternates between answering correctly to the pattern (by spiking) or not (by remaining silent). Anti-Hebbian rules lead to an equilibrium where the MSN oscillates between those two states. This can be seen by the fact, that the probability to remain silent converges to 0.5 in both cases, resulting in an accuracy of 0.5. Asymmetric anti-Hebbian STDP is particularly stable in this regime, while symmetric LTD loses efficacy after extended training.

When starting from higher synaptic weights, symmetric LTD and asymmetric anti-Hebbian STDP are able to displace the postsynaptic spikes to the end of sequence of cortical activity (see blue dotted lines, in middle panel), resulting in a non-zero accuracy.

As a conclusion, only symmetric LTD and asymmetric anti-Hebbian STDP correctly learn to classify both types (rewarded and non-rewarded) of patterns, whereas Hebbian rules perform poorly. It is particularly interesting to notice that anti-Hebbian rules have been shown to be present at corticostriatal synapses [FGV05], and therefore enable the correct classification of patterns of sequential cortical activity. This conclusion results of course from our definition of accuracy, where rewarded patterns are only classified correctly when they spike after the pattern.

These simple experiments have however pointed out that the anti-Hebbian rules, coupled with non-associative reward-LTP lead to an equilibrium where the neuron oscillates between sub-and supra-threshold states. In particular, the accuracy, measured as defined above, suffers from this dynamics and does not render the fact that the network has indeed learned the correct combination of weights to elicit a spike at the end of the pattern. In order to compare with systems where a stable equilibrium is reached, we define a new metric that we call MaxAccuracy as, MaxAccuracyptq " max rt´T 1 ,t`T 1 s tAccuracyptqu where Accuracyptq represents the value of accuracy computed at time t, following Eq. 1.1, and rt´T 1 , t`T 1 s represents an interval of pattern iterations (T 1 will be taken as 10 test iterations in the rest of the paper). In particular, when using this measure, the oscillatory behavior described before is "hidden" thanks to the max, which will be useful when comparing with more stable learning rules. We stress that this equilibrium results from the simple hypotheses of the model, in particular the absence of rewardprediction errors, and other mechanisms that would lead to the convergence of the synaptic weights to stable values.

Sequence learning using anti-Hebbian rules with a single output cell

Now that the setting has been detailed, and after testing the direct influence of both STDP rules and reward signaling, we aim at testing the previous conclusions on more complex tasks.

Task 1, learning sequences of cortical associations

We now focus our attention on the ability of the network to learn to discriminate N p patterns composed of sequences of cortical spikes.

More practically, the N p are chosen as follows:

a. Each pattern is assigned to a number n of cortical spikes uniformly (between 1 and N stim inputs). 

Parameters (M1) (M2) [Izh07] [YAK11]

V eq pmV q -76.72 -80 -80

V th pmV q -39.51 -20 -45

V r pmV q -41. b. The pattern is associated to a different ordered subset of n neurons from t1, P u.

c. The temporal sequence is defined with the first spike at time t offset , and the following ones presented with a fixed delay t delay "1 ms.

d. Finally, each pattern is chosen to be rewarded or not, with probability 1{2.

Patterns A and B from Figure 1.2a where build following this method. For pattern A, we have n"1 spikes of cortical neuron p4q at time pt offset q. For pattern B, we have n"2 spikes of cortical neuron p1, 3q at time pt offset , t offset `tdelay q.

During the task, we measure at test protocols (frozen network), the accuracy and MaxAccuracy as defined before. Moreover, for each set of parameters we realize the simulations either with, -A reward "0.9 for rewarded patterns, and A reward "0 for non-rewarded ones, to emulate supervised learning using the rewarding signal;

-A reward "0 for all patterns, as a control task, where no supervision is given to the network.

In order to compare with more classical algorithms, we have defined an equivalent optimization problem, where the correct classification is learned using logistic regression, implemented with the lmfit package. We trained the network taking as inputs a binary version of the P ˆNp matrix pM p,n q, with m p,n "1 if cortical neurons n was spiking during pattern p, and m p,n "0 if neuron n does not spike during pattern p. The linear matrix in the logistic regression W is constrained to only have positive coefficients, as would happen for excitatory synapses. (below) (H0): networks without supervision (A reward "0), compared with networks with supervision (A reward "0.9). (above) (H0): networks with asymmetric Hebbian STDP, compared to other STDP rules.

Anti-Hebbian rules enable learning of cortical sequences with fixed delay

The results for Task 1, with P "10, N p "5 and N stim "3 are presented in Figure 1.3a (left). The temporal evolution of the accuracy (dashed lines) and MaxAccuracy (solid lines) are represented for the four different types of STDP presented before. We observe that both anti-Hebbian rules learn to classify correctly the patterns. As explained in the previous section, the synaptic weights converge to an equilibrium, and then alternate a few correct responses with one wrong response that initializes a new sequence of correct responses. Using the MaxAccuracy quantification, we observe higher levels of performance and more truthfully represent the fact that the network discriminate patterns correctly. Hebbian rules do not perform well in this task, leading to low accuracies. It is interesting to note that MaxAccuracy and accuracy converge to the same values for Hebbian rules, highlighting the fact that MaxAccuracy does not always improve the accuracy value.

Similar results are obtained for various numbers of patterns N p Figure 1.3a (right). In particular, for all the different tasks presented here, only anti-Hebbian rules perform significantly better than the control without supervision (comparison with black solid lines, significativity at the bottom of each bar plot). More interestingly, Hebbian rules perform significantly worse than without supervision. When comparing with results from the logistic regression, we see that anti-Hebbian rules perform slightly worse than the classical machine learning algorithm. As a conclusion, anti-Hebbian rules enable efficient learning in Task A, while Hebbian rules perform worse than a non-supervised network.

To further investigate the equilibrium reached by anti-Hebbian rules while learning Task A, we have tested the response of the network to randomly selected "subpatterns" of the rewarded patterns. For example, if during the task, the pattern p1, 3q was rewarded, we tested the response of the MSN to the patterns p1, ∅q, p∅, 3q, where ∅ means that no spike were presented. We computed the accuracy on these subpatterns, a correct classification was defined when the subpattern did not elicit any MSN spike. The results are gathered in Figure 1.3b, and show that anti-Hebbian rules perform significantly better than Hebbian ones, in a task where classical logistic regression produce fewer correct classifications.

To appreciate the robustness of these findings, we changed the number of neurons P , of stimulations by pattern N stim , and found similar results (see Figure 1.7a-b), except for asymmetric anti-Hebbian STDP which performs worse for higher number of stimulations, again due to its unstable behavior. Moreover, we have also tested if changes in A post´pre values leads to different dynamics in Figure 1.7c. We showed that learning really depends on A pre´post (Hebbian or anti-Hebbian rules) while A post´pre influence is less notable. Finally, we tried different values for A reward in Figure 1.7d, two main conclusions can be drawn from these experiments. In order to elicit learning, we need to have A reward `Apre´post ă0, which is verified when A pre´post " ´1, for A reward ă1. Moreover, maximal learning is achieved when A reward `Apre´post is small compared to A reward . With this observation in mind, we will choose in the sequel A reward "0.9 which verifies both of these properties.

Anti-Hebbian rules do not only learn to correctly classify rewarded patterns, but they also converge to an equilibrium where subpatterns of cortical activity are not sufficient to trigger spiking at the MSN. In conclusion, MSNs subject to anti-Hebbian STDP, learn to spike only if the whole pattern is presented.

Robustness to different types of noise

In order to test the robustness of learning to spontaneous activity, we introduced three types of noise in the neuronal network dynamics, a. random cortical spikes at rate of λ stim ; b. random MSN spikes at rate λ ext , implemented thanks to I ext spikes defined in Section 1.2; c. random jitter in the spike timings during pattern presentation, with standard deviation τ pattern .

MaxAccuracy for P "10, N p "5 and N stim "3, with different noise values are presented in Figure 1.3c-e. In all three cases, we start without noise, and test with increasing values of the noise parameter. It is quite interesting to see that learning is robust in the presence of random cortical spikes (Figure 1.3c), up to 1 Hz, and that symmetric LTD performs well even with higher noise values. Again this confirms the fact that asymmetric anti-Hebbian STDP leads to more unstable dynamics, and start failing for lower noise intensities than symmetric LTD. We emphasize here that the random presynaptic spikes also leads to potentiation of the associated synaptic weights, through the non-associative reward LTP. The same conclusions can be drawn with random MSN spikes (Figure 1.3d). In both cases, adding noise with higher frequency (100 Hz) quite expectedly makes the network unable to learn. Finally, adding jitter in the timings (below) (H0): networks without supervision (A reward "0), compared with networks with supervision (A reward "0.9). (b, above) (H0): networks with asymmetric Hebbian STDP, compared to other STDP rules. (c, above) (H0): (M1) compared to (M2) neurons models, for asymmetric Hebbian STDP (green) and asymmetric anti-Hebbian STDP (brown). of cortical spikes in the pattern presentation does not stop anti-Hebbian rules from reaching high accuracy. Jitter leads to more realistic patterns of cortical activity, with a random timing between each cortical stimulation (but with fixed average). As shown in this section, the network is robust to noise, and accordingly in the following experiments, we will suppress all noise processes, to concentrate on the higher bounds of th network's capacity.

Spiking latency enhances the network's performance

Using the previous network, anti-Hebbian rules were able to approach classical machine learning accuracy, but they did not perform as well.

Heuristically, integrate-and-fire models have the drawback to fire instantaneously after the depolarization of the membrane potential. This implies that when presented with overlapping patterns, e.g. patterns A"p1q and pattern B"p1, 2q, the neuron will not be able to learn to spike after the end of both patterns, because it will either be able to spike in response to pattern A only, and therefore fire before the end of pattern B, or it will spike after pattern B, and thus not spike after pattern A. This 'impatience' of the MSN described by integrate-and-fire models is in fact an artifact of the simplicity of the integrate-and-fire model. In reality, biological MSNs have been shown to display spike latency: once a spike is triggered, the neuron spikes only after a delay.

In order to test whether the spike latency property in MSN neurons improves their ability to learn sequences, we modified our neuron model to include a nonlinearity and adaptation, following [Izh07]. This neuron model (noted M2) was shown to display spike latency akin to electrophysiological measurements. The equation of the voltage V and adaptation U are given by: # C dV dt " kpV ptq ´Vc qpV ptq ´Veq q ´U ptq `Iptq dU dt " apbpV ptq ´Veq q ´U ptqq.

with spike emitted when the voltage exceeds a threshold V th , at which time the neuron's voltage is instantaneously reset to V r . In these models, spike emission is due to a runaway build up of cell membrane potential (or, mathematically, a blow-up of the solutions [Tou08; TB09]) associated with the quadratic nonlinearity in the voltage equation. At the time of a spike, the adaptation variable is updated to U pt´q Ñ U pt´q `d. These models are known to be very versatile depending on the parameter set [Tou08; Rub+17], and we use here the parameters provided in [Izh07] (see Table 1.1). The parameters are compared to the integrate-and-fire model (M1) ones in Figure 1.1b. In order to appropriately scale the input, currents I stim and I ext defined above are scaled by RC, with R a scaling factor set as R"100 M Ω We present in Figure 1.4a, the MSN membrane potential using the non-linear model (M2), either for step (a1) or pulse (a2) currents. Nonlinear dynamics, and spike latency lead to dynamics of the membrane potentials closer to electrophysiological data (compare Figure 1.1a1 and Figure 1.4a1). The latency property is more clearly visible in the neuron's response to cortical pulses (Figure 1.4a2), where it can be seen that when the current pulse is just sufficient to trigger a spike (black line), initiation of a spike takes several milliseconds.

In Figure 1.4b, we present the resulting MaxAccuracy for Task 1, using neuron model (M2). We show that asymmetric anti-Hebbian STDP performs as well as the logistic regression, which confirms the fact that the lack of latency was responsible for the gap observed with (M1). We more precisely compare both models in Figure 1.4c, and show that with asymmetric anti-Hebbian STDP, (M2) always reaches significantly higher accuracies than (M1).

We have showed in this section, that anti-Hebbian STDP rules coupled with a latency mechanism for spiking make a simple striatal network as efficient as logistic regression to learn a classification task using biological learning rules.

Inhibition in striatal networks improves learning

While taking into account non-linearities and adaptation produce latencies that may allow the appropriate learning of nested rewarded patterns, the excitatory nature of the cortico-striatal input prevents the system from learning rewarded pattern A and a non-rewarded pattern B that contains A (Figure 1.5a). Indeed, either the MSN spikes for pattern A, and it has to spike for pattern B (case of Figure 1.5a, 3rd line), or it does not spike for any of them. We note that a similar issue arises with the logistic regression when we constrain the weights W to be positive. Biologically, as exposed above, the striatum is a complex network made of a large number of MSNs, sharing part of their input, receiving distinct neuromodulation, and interacting together through collateral inhibition. Heuristically, this collateral inhibition could, in nature, provide a mechanism to learn such nested patterns. We explore this hypothesis here in a simple model. (below) (H0): networks without supervision (A reward "0), compared with networks with supervision (A reward "0.9).

(above) (H0): (M2) neurons without collateral inhibition (J"0) for asymmetric Hebbian STDP (green) and asymmetric anti-Hebbian STDP (brown).

A striatal network with two MSNs, connected through collateral inhibition

We considered a simple two-neuron network model (neurons labeled MSN 1 and MSN 2 ), where each MSN is a non-linear integrate-and-fire neuron (model M2 of section 1.2), which integrates the same cortical activity through two different weight matrices W 1 and W 2 (Figure 1.5a), and MSN 1 may be inhibited by MSN 2 through an additional current:

I 2 ptq " RCJ ÿ t k MSN 2 ďt δpt ´tk MSN 2 q,
where pt k MSN 2 q are the spike times of MSN 2 , and J" ´0.5 nA. The absence of inhibition corresponds to J " 0. MSN 1 and MSN 2 also differ in their rewards. Here, we assumed for simplicity that MSN 1 and MSN 2 learn opposite tasks (i.e., MSN 2 is rewarded for non-rewarded patterns of MSN 1 , see Figure 1.5a (right)), and the accuracy is read out on MSN 1 only. Figure 1.5a illustrates the fact that, in the absence of collateral inhibition (fourth line), MSN 1 learns to respond to pattern A, and as a consequence also spike for pattern B Ą A, while MSN 2 spikes after pattern B. Therefore, inhibition from MSN 2 (fifth line) can now induce a strong enough depolarization of MSN 1 potential to prevent it from spiking, leading to the correct classification of both patterns. Beyond this specific case, we investigated in detail how, statistically, collateral inhibition impacted accuracies.

Collateral inhibition enhance the network perfomance above logistic regression

In order to study more extensively this new network property, we consider a second task, Task 2, where patterns are forced to be nested one into another, leading to the misclassifications detailed in the previous section.

In particular, we test for P neurons, how the network is able to correctly discriminate the following P patterns, p1q, p1, 2q, ..., p1, 2, ..., P q, when considering all possible combinations of rewarded/non-rewarded patterns. We have tested on all these combinations (so 2 P situations) how the network performs in the discrimination task. For example, for P "2, the network is tested on 4 different sets of 2 patterns, p1q and p1, 2q, with each pattern being either rewarded p`q or non-rewarded p´q. For this task only, we have chosen a delay between spikes of t delay "0.5 ms. The results are presented in Figure 1.5b, for several values of P . As could be expected from the example of Figure 1.5a, the network with collateral inhibition is able to correctly classify all sequences of patterns for P "2, and stay close to the optimal performance for higher values of P . In particular, this network completely outperforms either the network without inhibition, or logistic regression.

It is interesting to question our choice of rewards for MSN 2 , who rewards patterns that are not rewarded by MSN 1 , and conversely, do not reward patterns that are rewarded by MSN 1 . Considering the fact that the collateral inhibition is unilateral from MSN 2 to MSN 1 , two rewards strategies were possible for MSN 2 , either it rewarded as MSN 1 ('same' rewards) or did the reverse ('differential' reward, the one used here). We checked using Task 2, both strategies in Figure 1.8, and found that only the 'differential' strategy led to significant changes when adding collateral inhibition. As a consequence, the 'differential' reward strategy was used in the rest of the paper.

We also tested this network on Task 1 in Figure 1.5c. Collateral inhibition leads to a significantly higher performance for all parameters tested. These results have been confirmed for different sets of P neurons (Figure 1 Overall, it is quite notable to observe that in all cases, asymmetric Hebbian STDP (in green), for Task 1 or 2, still leads to poor performances, while asymmetric anti-Hebbian STDP reaches high accuracy. The two biologically relevant properties that have been added, spiking latency and collateral inhibition, both lead to a significant increase in accuracy.

Classification of more complex patterns

We have finally tested our different neuronal networks against more complex inputs, with two different tasks. First, we define Task 3, where we consider Task 1 patterns, with jittered spikes (the cortical spike times are chosen from uniforms distributions around the delay t delay , kept constant during the whole simulations). Then, we also consider Task 4 where patterns of cortical activity were defined through Poisson processes of intensity λ poisson "1 kHz, on a duration t poisson "2 ms, conditioned to have at least 2 spikes.

We present below the classification results for Task 3 (Figure 1.6a) and Task 4 (Figure 1.6b), for different values of patterns N p . Global performances are consistent with what was observed for Task 1, in particular with collateral inhibition leading to higher accuracies than logistic regression.

Discussion

A simple striatal neuronal network, composed of one or two MSNs, integrating spikes from a population of cortical neurons, is presented and trained in a task, specifically defined to emulate the striatum role in procedural learning. The MSNs learn to correctly classify patterns, built on precisely timed sequences of cortical spikes, by spiking at the end of the pattern. We show that this simple striatal network endowed with two types of synaptic plasticity, anti-Hebbian learning rules (either symmetric LTD or asymmetric anti-Hebbian STDP) and non-associative reward-LTP, performs well in this task. When adding spike latency, a prominent characteristic of MSNs, we found that the network was able to achieve similar performance as logistic regression. A second MSN, that learns the reverse associations of patterns, and that inhibits the first MSN through lateral inhibition is incorporated in the striatal network, to model collateral inhibition between MSNs. We show that thanks to this addition, the striatal network outperforms classical algorithms. We prove that several key properties exhibited by MSNs, (anti-Hebbian STDP, latency and collateral inhibition) enable the classification of precisely timed sequences of cortical activity, and more importantly that thanks to the present learning rules, the MSN learns to take into account the complete cortical pattern before taking a decision.

The reward signaling used in the present model was restricted to simple supervision through the potentiation of synaptic weights associated to presynaptic spikes during rewarded patterns. Detailed models, in particular three-factor learning rules [KIT17; Fon+18; Ger+18], can also been used in this context, and in particular by detailing how the reward can be implemented using dopaminergic signaling. A framework for corticostriatal plasticity was developed along with the use of dopaminedependent STDP curves [GHR15]. It only focused on Hebbian STDP, while here we show that anti-Hebbian STDP plays a significant role during learning. It would be interesting to model the fact that dopaminergic neurons are not only modulated by the value of rewards (or of the reward-prediction error). Indeed, dopaminergic neurons of the SNc (substantia nigra pars-compacta), which are responsible for dopamine in the striatum, are known to be also directly stimulated by MSNs originating from striosomes. The integration of the dopaminergic circuit could therefore lead to more realistic study of the influence of reward on learning in the striatum.

We have considered here that MSNs activity was the relevant quantity to study the impact of striatal dynamics on procedural learning. This restrictive vue can be expanded by integrating downstream pathways, and the rest of the basal ganglia nuclei. In particular, direct and indirect-pathway neurons have different electrophysiological properties, and also exhibit different types of STDP [Per+22]. Building a general model of the striatum, with both pathways, can lead to a better understanding of the striatum participation in learning. Incorporating these two pathways can also be interesting when considering the influence of striatal plasticity in the process of action selection, that heavily rely on the distinctive dynamics specific to each pathway [Dun+19]. A similar dichotomy exists when comparing the dorsomedial (DMS) and dorsolateral (DLS) parts of the striatum. Both regions are involved in different types of learning, specifically goal-directed behavior and habits. Differences in corticostriatal STDP have been shown to exist experimentally, and a similar striatal network is developed in [Per+22] to study the influence of the different types of anti-Hebbian STDP on the flexibility and maintenance of learning. (below) (H0): networks without supervision (A reward "0), compared with networks with supervision (A reward "0.9). (above) (H0): (M2) neurons without collateral inhibition (J"0) for asymmetric Hebbian STDP (green) and asymmetric anti-Hebbian STDP (brown). The striatum mediates two learning modalities: goal-directed behavior in dorsomedial (DMS) and habits in dorsolateral (DLS) striatum. The synaptic bases of these learnings are still elusive. Indeed, while ample research has described DLS plasticity, little is known about DMS plasticity and its involvement in procedural learning.

Experimental results, only summarized in this section, but developed in the corresponding article [Per+22], show that symmetric and asymmetric anti-Hebbian spiketiming-dependent plasticity (STDP) exist in DMS and DLS respectively, with opposite plasticity dominance upon increasing corticostriatal activity. Moreover, behavioral experiments coupled with STDP occlusion protocols show that during motor skill learning, plasticity was engaged in DMS and striatonigral DLS neurons only during early learning stages, whereas striatopallidal DLS neurons were mobilized only during late phases.

In the following report, we developed a mathematical model to study the computational properties of these rules in learning; we found that symmetric anti-Hebbian STDP favored memory flexibility by allowing a rapid forgetting of patterns, while asymmetric anti-Hebbian STDP contributed to memory maintenance, consistent with memory processes at play in procedural learning.

Introduction

The dorsal striatum is critical for action selection and initiation [YK06; GG15; JC15] and represents a major site for memory formation encoding for procedural learning [PV19]. The dorsal striatum is composed of two main anatomico-functional regions, the dorsolateral striatum (DLS) and dorsomedial striatum (DMS) based on topographic cortical glutamatergic afferents. DLS mainly receives cortical inputs from the premotor and sensorimotor cortices, whereas DMS receives cortical afferents from prefrontal and associative cortices [Hun+16]. Moreover, DLS and DMS appear to engage at different learning phases: the classical view posits that during reward-guided instrumental learning DMS supports goal-directed behavior, while DLS is gradually involved in later learning phases associated with habit formation and performance [YK06; BO10; CJ10; Tho+10; GC13; BNR15; Van+19; CCN04]. Similarly, during motor skill learning DMS appears to play a crucial role during initial phases of fast improvements, while DLS is determinant for slower learning phases as experience accumulates [GG15; JC15; CCN04; Yin+09; XZZ15]. Nevertheless, there is evidence that DLS does not only activate at late learning phases, but is engaged, together with DMS, from early training phases [Tho+10; GC13; Kim+09; Sta+10; Kup+17; Ber+18]. Acquisition and maintenance of motor skills and habits involve corticostriatal long-term synaptic efficacy changes [PV19]. Indeed, in vivo proxies for plasticity, such as changes in firing activity [CCN04; Yin+09; TG14; Bar+11; Kor+12; OHa+16; Ath+18; Pet+21] or in evoked-LFP [XZZ15], were detected in the corticostriatal pathway throughout procedural learning. Conversely, triggering corticostriatal synaptic plasticity was shown to modify habitual behavior [XZZ15;Ma+18]. Although these findings clearly highlight a causal and/or correlative link between corticostriatal plasticity and procedural learning, the nature and contribution of DLS and DMS long-term plasticity remain to be fully determined. To investigate plasticity properties at corticostriatal synapses and their potential implication in memory storage and relearning in DMS and DLS, we characterized the spike-timing-dependent plasticity (STDP) [Fel12], in both dorsal striatal compartments, in order to characterize the experience-dependent changes in neuronal networks they subtend. Using brain slice preparations preserving afferents from the somatosensory or the cingulate cortex and the corresponding striatal projection domains [Fin+18], we investigated the DMS and DLS corticostriatal STDP in striatal medium-sized spiny neurons (MSNs).

We observed that similar STDP paradigms trigger anti-Hebbian STDP in both DMS and DLS, but the specific profiles of STDP are vastly distinct: symmetric anti-Hebbian STDP arises in DMS (yielding LTD only), contrasting with asymmetric anti-Hebbian STDP in DLS (yielding LTD or LTP depending on spike timings). Moreover, when corticostriatal activity was scaled up, we found that a long-term depression (LTD) prevailed in DMS, while long-term potentiation (LTP) prevailed in DLS. In fact, we further found that MSNs from the DMS exhibited opposite plasticity, in a specific activity regime, depending on whether they belonged to the direct and indirect pathway. During motor skill learning (Rotarod task), we found that during early learning phases, plasticity was engaged for all recorded MSNs in DMS, both belonging to the direct and indirect pathway, and only direct pathway MSNs in DLS. In contrast, during late learning phases, we found that only the indirect pathway MSNs in DLS were mobilized. To appreciate how these distinct plasticity rules may support the different phases of procedural learning, we developed a mathematical model to quantify the capacity of those plasticity rules for memory formation and storage. Our model predicted that asymmetric anti-Hebbian STDP facilitated the maintenance of memory, whereas symmetric LTD allowed rewarddependent learning with a swift turnover of memories, potentially enhancing memory flexibility. These findings therefore reveal how distinct corticostriatal plasticity maps in DLS and DMS, having opposite polarities, could endow the striatum with complementary capacities for procedural learning allowing flexibility in memory acquisition and stabilization of memories potentially allowing the development of habits.

Summary of experimental results

I reproduce in this section parts of the experimental conclusions from [Per+22]. In particular, I focus on the results pertinent to the computational study that I have devised and studied.

Distinct anti-Hebbian STDP profiles in sensorimotor and associative striatum

We investigated STDP rules at corticostriatal synapses in MSNs located either in DLS or DMS. For this purpose, we used two brain slice preparations that preserved connections between the sensorimotor cortex (S2) and DLS, or between the associative cortex (CG2) and DMS, and allowed to stimulate within cortical layer 5 while recording MSNs ( In DMS (Figure 2.1c), post-pre and pre-post pairings induced a symmetric (i.e similar plasticity polarity, here LTD, on both sides of ∆t"0) anti-Hebbian STDP (Figure 2.1c2 and c3). Indeed, spike-timing-dependent long-term depression (LTD) was observed following post-pre pairings (pă0.0001, n"11) as well as following pre-post pairings (pă0.0001, n"16).

In conclusion, corticostriatal STDP in DMS and DLS displayed both anti-Hebbian plasticity, and differed significantly in that they displayed symmetric or asymmetric profiles in DMS and DLS respectively.

We also characterized in the associated paper, which pathways were involved in the different STDP rules observed. In particular, after blocking the different pathways specifically, it was shown that post-pre DLS-LTP and DMS-LTD are NMDAR-mediated, whereas pre-post DLS-and DMS-LTD are CB1R-mediated.

Dominance of opposite forms of plasticity in DMS and DLS with increasing corticostriatal activity

Expression map of STDP is not only shaped by spike timing (∆t) but also by the frequency at which pairings are presented (F pairings ) [Fel12; Mar+97; STN01]. We further characterized the induction rules of corticostriatal STDP in DLS (N total "130 DLS-MSNs) and DMS (N total "125 DMS-MSNs) by varying together ∆t (´100ď∆tď `100 ms) and F pairings (1ďF pairings ď5 Hz).

When F pairings "1 Hz, DLS-MSNs elicit asymmetric anti-Hebbian STDP, as explained in the previous section, characterized by LTD for pre-post pairings (∆tą0, Figure 2.1d1), and LTP for post-pre pairings (∆tă0, Figure 2.1d1). Conversely, DMS-MSNs develop symmetric anti-Hebbian STDP, defined by the dominance of LTD, for both pre-post and post-pre pairings (Figure 2.1d2).

When raising the frequency F pairings to 2.5 Hz, the STDP profiles changed for both type of neurons. First, DLS-MSNs still exhibit asymmetric anti-Hebbian STDP, but the temporal window of STDP has widened up to ˘100 ms (Figure 2.1e1). Second, pre-post pairings in DMS-MSNs are still characterized by LTD at their corticostriatal synapse (Figure 2.1e2) but their behavior for post-pre pairing is less clear with neurons exhibiting LTP or LTD.

In the associated article, a more systematic study is developped on the influence of F pairings , which lead to the following conclusions, a. the STDP expression domain (∆t) is narrower in DLS than in DMS for low F pairings and is widening with increasing firing activity; b. the existence of an opposite dominance of LTP and LTD in DLS and DMS, respectively.

The diversity of behaviors observed in DMS-MSNs for post-pre pairings justified further studies on this particular protocol. We analyzed more finely which types of neurons were recorded and postulated that appartenance of the MSN to different pathways could be a possible explanation to the different types of STDP observed.

Two populations of MSNs exist in both DMS and DLS, and are characterized by the structure they are projecting to. On the one hand, dMSNs that project to the GPi (internal globus pallidus) and the SNr (substantia nigra pars reticulata) are part of the direct pathway of the cortico-basal-ganglia network. On the other hand, iMSNs that project to the GPe (external globus pallidus) are part of the indirect pathway. Both types of neurons have been shown to act differently on the processus of action selection and motor control, and they also respond differently to dopamine. The two MSN subtypes express different dopaminergic receptors, D1R-and D2R-like for the direct and indirect pathways, respectively [Cal+14;Bon+19].

We proved that the observed dichotomy regarding LTP/LTD expression in DMS-MSNs for F pairings "2.5 Hz overlapped that of MSNs belonging in the same proportion to the direct (striatonigral) and the indirect (striatopallidal) pathways using transgenic mice. Indeed, DMS-dMSNs exhibit LTD for post-pre pairings, while DMS-iMSNs display LTP.

Region-specific involvement of STDP during procedural learning

We next investigated the engagement of LTP and LTD in DLS and DMS during motor skill learning, using behavioral experiments (rotarod task).

In order to see if these STDP rules were implicated in learning, we used ex vivo saturation/occlusion experiments: STDP protocols in ex vivo brain slices were realized, at different stages of learning. It is expected that if STDP related process is active during a certain stage of learning, the associated pathways tend to be saturated. When an STDP protocol is subsequently applied in an ex-vivo experiment, it should lead to changes in observed STDP. In particular, synaptic processes active in learning should lead to an absence of plasticity in response to subsequent STDP protocols.

This paradigm was used to test the pathways associated to post-pre pairings for F pairings "2.5 Hz. DLS-MSNs belonging to the direct or indirect pathways are selectively engaged, in terms of STDP, depending on the stages of motor skill learning: only DLS-dMSNs are involved at early stages, and during the late stages only DLS-iMSNs are engaged. DMS-MSN plasticity is mobilized in both MSN populations during early stages and then showed a disengagement during late stages. Interestingly, DLS-dMSNs show the same plasticity profiles, and occlusion, as DMS-iMSNs. All results and methods can be found in the full paper [Per+22].

Results

Reduced mathematical model of the striatal network.

The observation that corticostriatal synapses to the DMS are subject to symmetric anti-Hebbian STDP distinct from the asymmetric anti-Hebbian STDP at the DLS synapse (at 1 Hz, see Figure 2.1) raises the question of the respective contribution of DMS and DLS plasticity in striatal learning. To investigate whether these two STDP modalities subtend different learning properties, we considered a simplified model of the corticostriatal system, composed of one MSN and a fixed number of cortical neurons. We quantified the capacity of this system to retain memory as a function of the form of corticostriatal STDP, all parameters equal otherwise.

We considered the response of one MSN (Figure 2.2, with MSN activity illustrated in brown), modeled as an integrate-and-fire neuron, receiving inputs from P cortical neurons (Figure 2.2, with their activities in green) and an additional Poisson process modeling input from other cells than the P cortical neurons (Figure 2.2, with its spiking activity in yellow). anti-Hebbian STDP (in purple) and LTP related to the reward signal (reward-LTP) (in red). Anti-Hebbian STDP is modeled using exponential kernels (inset on the top right), with different values for A post-pre and A pre-post "´1. Example of the learning task (left), separated in four phases with four iterations in each phase. Each learning phase has specific parameters (see Table 2.1). N p "2 patterns A and B are presented to the network, with A being non-rewarded p´q and B rewarded p`q. An iteration with no pattern presentation is represented by ∅. Spiking activity of the cortical neurons (in green for pattern spikes and grey for random spikes) and the random input neuron (in yellow) are represented along with the membrane potential V of the output neuron (MSN).

The synaptic weight between cortical neuron i P t1, ¨¨¨, P u and the MSN, noted W i , is subject to plasticity. We used an all-to-all pair-based learning rule corresponding to an instantaneous update of the synaptic weight W i by an amount ∆W i given by with ∆t"t post ´tpre,i .

By convention, we fixed A pre-post "´1, and varied the parameter A post-pre ; A post-pre ă0 corresponds to symmetric anti-Hebbian STDP, while A post-pre ą0 corresponds to asymmetric anti-Hebbian learning rules (Figure 2.2, top right panel).

The MSN was presented with patterns of cortical activity, built on two different components: (i) a combination of spikes from selected cortical patterns (a set of N stim neurons), which were always triggered synchronously at each pattern iteration according to a normal distribution with standard deviation τ p (ii) random spikes from all cortical neurons with rate λ r {P . Examples of such patterns are presented in Figure 2.2: pattern A, whereby cortical neurons 1, 3 and 4 fired and pattern B corresponding to the coordinated spiking of cortical neurons 2, 3 and 4 (spikes in green), with superimposed random spikes (in grey). N p patterns were built according to these principles and separated into two classes, rewarded and non-rewarded ones, with equal chances (in Figure 2.2, A is a non-reward pattern p´q and B is a rewarded pattern p`q).

Because of the prominent role of depression in anti-Hebbian learning, particularly in the symmetric case, potentiation mechanisms are needed in order for the system to maintain some spiking activity [RB00]. We modeled potentiation through a reward signal representing neuromodulation (including, but not limited to, dopaminergic signaling) see [KIT17; Fon+18; Ger+18; BMP19] and Methods for a discussion. Reward-LTP was delivered during rewarded cortical activity patterns (Figure 2.2), and affected the weights corresponding to all presynaptic cells that spiked during the pattern presentation (even if they were noise), (see red region in Figure 2.2).

At each iteration, the system was presented with a prescribed probability η by a pattern composed of synchronous cortical activity and random noise, or with probability 1´η only with random cortical spikes (see iterations labeled ∅ in Figure 2.2). We considered that a rewarded cortical pattern is learnt when the MSN spiked in response to the synchronous cortical activity. Conversely, a non-rewarded pattern was learnt if the MSN did not fire during pattern presentation. The accuracy of striatal learning was estimated during test protocols conducted throughout the task on a network devoid of any plasticity and noise, with a metric combining the fraction of rewarded patterns correctly eliciting spikes from the MSN and of non-rewarded ones that did not trigger any spike.

To avoid transient effects associated with the initialization of synaptic variables, we simulated an initial phase of spontaneous activity of the cortical network, defined by the presentation of patterns with probability η"η m in the absence of reward-LTP. During the learning phase, patterns are presented at each iteration and rewards were provided for rewarded patterns. It emulates learning, as the output neuron learns to discriminate patterns by spiking in response to rewarded patterns and not spiking in response to non-reward patterns, in the presence of cortical random activity. The capacity of the network to keep patterns in memory was then estimated during a maintenance phase where stimuli were presented again with probability η"η m in the absence of reward-LTP (same setup as the initial phase). Finally, the capacity to relearn previously learned patterns was then tested in a protocol where stimuli and reward-LTP were presented just like in the learning phase (see Table 2.1 for detailed parameters for each phase, and Table 2.2 for model parameters).

Random input activity was parametrized by λ r , which was set up to λ MSN "5 Hz for the learning and relearning phases (similar to MSN firing rate in non-anesthetized animals [Mah+06]). It was chosen to be higher, λ r "4λ MSN "20 Hz in the initial and maintenance, for technical reasons (see Methods) that do not influence our results.

Asymmetric anti-Hebbian STDP favors memory maintenance, whereas symmetric LTD allows accrued flexibility.

Numerical experiments showed significant differences between the learning capability with symmetric or asymmetric anti-Hebbian STDP, particularly during the maintenance and relearning phases (Figure 2.3a).

In Figure 2.3a, learning accuracy is plotted as a function of iterations during the four different phases. We present the results for different values of A post-pre (solid lines), and some controls with A pre-post "0 (dotted lines). We observe that accuracy essentially remains at random levels during the initial phase, as could be expected in the absence of reward. As soon as rewards are provided during the learning phase, we observe a rapid increase and stabilization of learning accuracy. When rewards are no more provided in the maintenance phase, the accuracy drops, with different dynamics depending on A post-pre , as quantified in the next section. Finally, during the relearning phase, the system learns again previously memorized patterns when reward-LTP is applied anew. The kinetics of this relearning are analyzed below. In Figure 2.3b, accuracies at the end of each phase as a function of A post-pre are presented.

Initial phase

In the initial phase, the network is not able to detect patterns, as could be expected from the fact that it does not receive any supervision, and the computed accuracy remains around chance levels (accuracy of 0.5).

Learning phase

The learning phase led, in all cases, to a rapid rise of the accuracy, highlighting the ability of all tested networks to store patterns. We have previously shown [VTV20] that the combination of anti-Hebbian STDP and reward-LTP allowed a striatal network to correctly classifies rewarded and non-rewarded sequential patterns of cortical inputs. Heuristically, potentiation of the synaptic weights through the reward-LTP causes the MSN to spike in response to the associated pattern. This effect is counterbalanced by the presence of pre-post LTD, which leads to depression of the synaptic weights, and therefore favors an equilibrium where the synaptic weights are high enough to trigger the spike, but still remain bounded. Similarly, if the MSN spikes for non-rewarded patterns, the pre-post LTD in the absence of reward induces a decrease in synaptic weights that results in an absence of MSN firing. The combined action of both types of plasticity, i.e., anti-Hebbian STDP and reward-LTP, enables learning of the rewarded pattern in the learning phase (Figure 2.3a, plain lines). Learning with reward signals relied on the pre-post LTD, since no learning occurred when A pre-post "0 (Figure 2.3a, dotted lines). In fact, the absence of the pre-post LTD leads to a continual growth of the synaptic weights, which results in the MSN spiking for non-rewarded patterns, therefore reducing the accuracy.

Moreover, we note that the final accuracy at the end of the learning phase depends on A post-pre . This is a consequence of the fact that as the system learns a rewarded pattern, we do not reach a fixed equilibrium but a stationary regime: synaptic weights associated with the pattern decrease progressively for each accurate answer (due to the combination of reward LTP and pre-post LTD) until the MSN stops firing, leading to a jump in synaptic weights (only reward LTP). Larger potentiations will thus allow for a larger number of accurate responses, in turn increasing accuracy. On the other side, having too much potentiation leads to unstable synaptic weights that diverge, also reducing accuracy. Accordingly, their exist a value of A post-pre where the accuracy is maximal after learning (in Figure 2.3b, A post-pre «0.5), but all values lead to higher accuracy than in the initial phase.

In conclusion, pre-post LTD and reward LTP enable discrimination of rewarded and non-rewarded patterns, for all values of A post-pre .

Maintenance phase

The drop in accuracy during the maintenance phase was found to be faster for symmetric anti-Hebbian learning than for asymmetric anti-Hebbian learning, with a significant impact of the value of A post-pre on the accuracy at the end of the maintenance phase (Figure 2.3b). To quantify this difference, we computed the characteristic decay time T maintenance of accuracy (see Figure 2.3c1). Figure 2.3c2 shows that asymmetric STDP allows for a longer and more precise maintenance of learning even in the absence of rewards. Phenomenologically, symmetric LTD tends to induce a global depression of all synaptic weights in response to random stimuli, which therefore can lead the MSN to stop firing to the patterns rapidly, while the presence of LTP in asymmetric anti-Hebbian STDP limits this phenomenon, allowing for a more durable conservation of the relative magnitudes of the synaptic weight W . In order to show the correlations with synaptic weight dynamics, we computed the deviation from the synaptic weight values at the end of the learning phase in terms of amplitude and change in orientation (Methods, Figure 2.3c3). These measures show that positive A post-pre leads to a smaller deviation of the synaptic weights than for negative values.

Relearning phase

We next compared the relearning capacity associated with each of the learning modalities. First, after the relearning phase, the system reaches the same accuracies that were obtained at the end of the first learning paradigm. The network is therefore able to learn again patterns that were previously learned. We evaluated the speed at which the network recalled such previously learned association through the characteristic time of relearning T relearning (see Methods for its definition, Figure 2.3c4). As could be expected, T relearning is smaller for positive A post-pre , meaning that relearning is faster for asymmetric anti-Hebbian STDP. These findings are only logical consequence of the fact that asymmetric anti-Hebbian STDP keeps in memory learned patterns for longer times. If A post-pre is increased too much, this property disappears because the network becomes unstable with too much potentiation.

Influence of the pattern presentation rate

If learnt patterns are presented during the maintenance phase in the absence of reward (when η m ą0), we expect to unlearn those patterns in the long run, i.e., both symmetric and asymmetric anti-Hebbian STDP will be associated to a drop in learning accuracy due the absence of reward-LTP. This decay is expected to be faster with larger values of η m . This phenomenon was confirmed in our numerical experiments, showing a drop in accuracy in the maintenance phase (Figure 2.3d1), and the characteristic time T maintenance (Figure 2.3d2), found generally more dramatic for symmetric anti-Hebbian STDP, and occurring faster for larger η m . The presentation rate η m of learnt patterns during the maintenance phase was also found to play a significant role in the relearning phase, with higher rates of presentations leading to a slower relearning, potentially indicating a more dramatic deviation of the synaptic weights W from their after-learning values, see Figure 2.3d3. However, we noticed that relearning is still effective, even for higher rate of presentation η m , when comparing asymmetric and symmetric anti-Hebbian STDP: even if the network loses its capacity to recall correctly the patterns, it stays close (in the synaptic weight parameter space) to the optimal matrix, and therefore relearning is efficient.

Influence of noise

Noise is an important parameter in the model presented here, in particular for its role in the maintenance phase. We have seen that learning occurs in the presence of noise. However, we do expect a strong dependence of final accuracies and learning efficiency on noise levels. To test the influence of noise during the learning phase, we systematically varied the noise frequency λ MSN and replicated our analysis for each value tested (see Figure 2.5). In the absence of noise λ MSN "0, the system reaches high accuracies in the learning phase, and the maximal value does not depend on A post-pre . Moreover, we observe that the network conserves similar levels of accuracy throughout the maintenance phase when assuming a complete absence of noise. Increasing noise levels impair learning ability, and for high values of noise λ MSN ą10 Hz, the network shows poor learning and maintenance abilities. Realistic noise levels on the same order as typical MSN firing rate is between these two regimes and allow both learning and maintenance, with different capacities for symmetric and asymmetric anti-Hebbian STDP as discussed above.

Beyond noise levels, we further confirmed that all observations reported were robust to variations in the number of cortical neurons, patterns presented and number of stimulations (Figure 2.4), with pP, N p , N stim q equals to p10, 10, 3q, p10, 15, 5q and p20, 30, 3q.

Conclusions of the model on the impact of different STDP in DMS and DLS.

Our experimental results show the existence of different types of plasticity as a function of the region and pairing frequency, see Figure 2.1. The model therefore suggests that at low frequency, the asymmetric anti-Hebbian STDP observed in DLS at 1 Hz could allow maintaining stimulus associations for longer durations and relearning almost immediately previously learned associations. In contrast, the symmetric LTD observed in DMS at that frequency leads to a faster erasure of associations, making the system available to learn new patterns. At higher frequency, experiments done at 2.5 Hz showed that STDP elicited at iMSN neurons in the DMS switched from a symmetric LTD to an asymmetric anti-Hebbian STDP. We could postulate from our model that in a regime with more frequent stimulations, iMSN neurons adapt their behavior so as to store patterns for longer times than dMSN neurons.

Overall, when presenting patterns at a slow rate, DMS with symmetric LTD, is able to forget quickly, whereas asymmetric anti-Hebbian STDP maintains memory in DLS. This observation on a vastly simplified model agrees with DMS and DLS differential involvement in motor skill learning reported in the literature [YK06; GG15; JC15; BO10; BNR15]: both learn the task during the first trials, and then DMS disengages when habit learning mediated by the DLS takes over initial phases of motor training or goal-directed learning.

Discussion

To explore how the striatum is able to achieve distinct learning modalities, from goaldirected learning to maintaining habits, we explored long-term plasticity using similar STDP paradigm in both DMS and DLS. DLS had been the focus of most of the plasticity characterization, and in light of the distinct roles of dorsal striatal compartments in procedural learning [YK06; GG15; JC15; BO10; BNR15], we characterized here the STDP at both DMS-and DLS-MSN corticostriatal synapses using specific brain slices [Fin+18] allowing to stimulate in the somatosensory or CG2 layer 5 cortical area. In DMS and DLS, we found distinct anti-Hebbian STDP: symmetric in DMS and asymmetric in DLS. Hebbian and anti-Hebbian STDP have been reported in the dorsal striatum depending on whether GABAergic transmission inhibitor [Pai+13;Val+17] were applied (Hebbian STDP [PK08; She+08]) or not (anti-Hebbian STDP [FGV05; Fin+10; Men+20]). These studies targeted DLS-MSNs, except [She+08] where MSNs were recorded indifferently in DLS and DMS. In vivo recordings in adult rats confirmed the anti-Hebbian polarity of striatal STDP [SRR10; Fis+17; Mor+19]. Interestingly, we found that with increasing cortical activity, plasticity followed opposite polarity in DMS and DLS, with LTD and LTP dominance, respectively. Another difference between DMS-and DLS-STDP upon increasing the frequency of stimulus presentations F pairings , is that plasticity expression domain (∆t) remained wide in DMS whereas it was broadened in DLS.

We designed a simplified model in order to investigate the potential impact of the different forms of STDP rules on maintenance and relearning in a basic classification task. To specifically analyze the role of learning rules, we have chosen to keep all model parameters identical otherwise. The significant differences found between therefore establish the role of STDP form in learning abilities. Our experiments show that different types of plasticities are expressed in different regions of the striatum and may depend on the connectivity pathway they belong to, where MSNs are known to display distinct electrophysiological properties [Wil+19;Ale+21]. The specific properties of dMSNs and iMSNs or of MSNs in DMS and DLS may also contribute to the variety of learning abilities. Future work will be needed to finely characterize and integrate such differences in models and study how the network combines direct and indirect pathways endowed with distinct plasticity rules for global procedural learning in the striatum.

Anti-Hebbian STDP has been the focus of several experimental and a few computational studies mostly in cerebellum-like structures in fish or mammals [RS11] or other central areas [Fel12]. Different possible roles of anti-Hebbian STDP in adaptive sensory processing have been hypothesized taking the mormyrid electric fish electrosensory system as a central example [RL10]. According to models, Purkinje-like cells in the fish electrosensory lobe can store and retrieve a temporally structured negative image of prior sensory stimuli, through STDP mechanisms [RB00]. Our results possibly shed new light on those findings. Indeed, in [RB00], the ability of the neuronal network to store patterns of cortical activity was tested for different pair-based rules of STDP (see their Figure 7), along with its capacity to forget the negative image after some time without stimulus. The authors conclude that the anti-Hebbian STDP with no plasticity for post-pre pairings, established in vitro in the fish Purkinje-like cells [Bel+97], leads to an efficient cancellation of the stimulus, with rapid adaptation when the pattern is not presented anymore (see Figure 8 [RB00]). The anti-Hebbian symmetric learning rule performs similarly, whereas the asymmetric anti-Hebbian STDP does not perform as well [RB00]. The authors explain the drop in performance of the asymmetric anti-Hebbian STDP because of oscillations in the dynamics, produced by the alternation between potentiation and depression (see their Figure 9 [RB00]). In particular, the authors state that "the system with [asymmetric anti-Hebbian STDP] does not converge onto an accurate negative image". It is however interesting to note that with asymmetric anti-Hebbian STDP, the system is still able to clone partially the stimulus. More importantly, they show that the cloned image is kept in memory for a longer time than with symmetric LTD (compare curves A/B and C in their Figure 8 [RB00]). In our study, the model allows a precise analysis of the role of symmetric versus asymmetric anti-Hebbian STDP in the maintenance of learned patterns. We show that asymmetric anti-Hebbian STDP leads to the maintenance of learned patterns, whereas symmetric LTD causes a rapid decrease in memory performance in the absence of reward. Similar to [RB00], we show that the alternation of potentiation and depression in the asymmetric anti-Hebbian STDP, if correctly tuned, forces the synaptic weights to retain some information on previously learned patterns. On the contrary, with symmetric anti-Hebbian LTD, the synaptic weights indistinctly converge to zero because they are only subject to depression, leaving the system fresh to construct new associations and identify novel stimuli.

Our present experimental work shows that DLS-MSNs exhibit asymmetric anti-Hebbian STDP, consistent with DLS role in habit behavior, where rewards are no longer presented. Conversely, we could hypothesize that thanks to symmetric anti-Hebbian STDP in DMS-MSNs, DMS should be able to adapt quickly between different actionoutcome associations and therefore forget rapidly previous information. Our model shows that this role is consistent with anti-Hebbian symmetric STDP. This is in line with the role of DMS which is essential for behavioral flexibility such as strategy-shifting or reversal learning [Bon+19; Rag+02; Rag07].

Mathematical models

Neuronal network model

To simulate the impact of plasticity on learning, we built a simple neuronal network model that includes P cortical neurons serving as input neurons to one output MSN. The MSN integrated cortical and external input (see section below) and fired when hitting a threshold, according to the classical leaky integrate-and-fire model [Bur06;Ger+14]. In detail, between two spikes, the membrane potential V of the neuron satisfies a linear differential equation: τ dV dt " ´pV ptq ´Veq q `RIptq.

Spikes were emitted when the voltage exceeded a threshold V th , at which time the neuron's voltage was instantaneously reset to V eq and resumed input integration. We set τ "16 ms, V eq " ´80 mV and R"80 M Ω, V th " ´45 mV , and the reset potential was chosen equal to the resting potential V eq [YAK11]. In equation 2.5, Iptq represents the synaptic input, which was generated as described below.

Connectivity and input to the MSN

The input Iptq received by the MSN is the superposition of the input received from P cortical neurons, noted I stim ptq, and an external (to the network) input I ext ptq modeled as a Poisson process with rate λ r :

Iptq " I stim ptq `Iext ptq.

Spikes from cortical neurons and the external source induce instantaneous jumps in the MSN membrane potential. Jumps associated with cortical sources have amplitudes that vary through plasticity mechanisms described in the next section. These amplitudes are modeled through the collection of synaptic weights W ptq " pW i ptqq 1ďiďP . Denoting t k i the k-th spike time of input neuron i and δ the Dirac mass, we have

I stim ptq " τ ÿ 1ďiďP ÿ t k i ďt W i pt k i ´qδpt ´tk i q
where we noted, for a function f being potentially discontinuous at time t, f pt´q the value reached immediately before the jump. Contrasting with the network input described above whose synaptic weights are allowed to vary in time according to plasticity rules described in the next section, the external input is assumed to induce jumps of fixed amplitude W ext "1 nA (high enough to evoke spiking activity in the MSN):

I ext ptq " τ W ext ÿ t k ext ďt δpt ´tk ext q,
where pt k ext q kě0 denotes the sequence of external spike times, which have exponentially distributed inter-spike intervals.

The factor τ needs to be added in both currents expressions because we chose to use a simple model of synaptic inputs, where spikes induce a Dirac of activity. Therefore, in order to relate synaptic weight W to EPSC amplitudes measured in experiments, we need this scaling. In particular, the membrane potential has the following expression, between spikes of the postsynaptic neuron, 
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Cortico-striatal plasticity

We implemented a pair-based model of STDP, where synaptic weights W were updated after each spike (all-to-all implementation [MDG08]), according to the spike timing relative to all previous spikes of the other neuron. In detail:

-If the MSN spikes at time t post (postsynaptic spike), then all weights are updated. Noting t pre,i the previous spikes of cortical neuron i, the synaptic weight W i is updated according to:

W i pt post q " W i pt post ´q `ε ÿ t pre,i ďt post Φpt post ´tpre,i q

where ε denotes the plasticity rate, chosen in our simulations as ε"0.02.

-If presynaptic cortical neuron i P t1, ¨¨¨, P u spikes at time t pre,i , noting t post the times of the MSN spikes, then the synaptic weight W i is updated as: W i pt pre,i q " W i pt pre,i ´q `ε ÿ t post ďt pre,i

Φpt post ´tpre,i q.

Denoting ∆t"t post ´tpre the timing between the presynaptic (cortical) spike and the postsynaptic (MSN) spike, we use an exponential STDP kernel [MDG08]: Val+17]. The sign of A post-pre allows distinguishing between symmetric anti-Hebbian STDP (A post-pre ď0) reported at DMS corticostriatal synapses from asymmetric anti-Hebbian STDP (A post-pre ě0) reported at DLS corticostriatal synapses. Here, we focused on the influence of A post-pre on learning and relearning.

During a learning task (see next section), the system is presented with a succession of cortical patterns. Each pattern corresponds to a temporal window of a fixed duration (100 ms), where a subset of N stim cortical neurons spike at time t offset "50 ms. Two types of noise are modeled at the level of a single cortical neuron. First, each neuron involved in the pattern spikes at a time normally distributed with mean t offset and standard deviation τ p "0.2 ms, modeling variability of the spike times. Second, cortical spikes unrelated to the pattern are added through Poisson spikes with rate λ r {P , representing the random firing of the cortical neuron. Moreover, the influence of external inputs is modeled at the level of the postsynaptic neuron, directly with the spikes of the random input presented above.

In the model presented here, a pattern can either be rewarded or not through a simple additive mechanism. If a pattern is rewarded, then each time a presynaptic neuron i fires during the pattern (even if it is noise), its associated synaptic weight gets potentiated, following, ∆W i " ε A reward ą 0.

If the pattern is not rewarded, the synaptic weight is not modified. Detailed models, in particular three-factor learning rules [KIT17; Fon+18; Ger+18], are thus approximated here by the presence of a simple reward signal consisting in the potentiation of the synaptic weight of all presynaptic neurons that spiked during the pattern (both those involved in the pattern and those associated with noisy inputs).

A framework for corticostriatal plasticity was developed along with the use of dopamine-dependent STDP curves [GHR15], but only focused on Hebbian STDP. Following the same principles about the role of dopamine in the reward system, we chose to fix the STDP curves and modeled the reward influence through an additive potentiation as used in most existing models of anti-Hebbian STDP [RB00; WRL03; RA04].

Eventually, synaptic weights are clipped within a realist range rw min , w max s " r0., 2.s nA. The initial synaptic weights are drawn from a uniform distribution on r0., 0.05s nA.

Learning with anti-Hebbian STDP rules

To characterize the capacity of learning associated with each STDP forms, we defined a fixed set of N p cortical patterns. The system was presented either with a randomly chosen pattern of correlated cortical activity (from the set N p patterns) with probability η, or with probability 1´η only with noise. Among the set of N p patterns, a fixed subset was chosen to be rewarded (rewarded patterns were randomly chosen among all patterns, each pattern having a probability 1{2 to be rewarded). A rewarded pattern was deemed learnt if the MSN fired in response to the presentation of the pattern. Moreover, non-rewarded patterns should not elicit any spike.

The accuracy of the learning process was estimated through the averaged numbers of correct responses: (2.1)

where r k "1 if k is a rewarded pattern and 0 otherwise, σ k "1 if the MSN spiked and 0 otherwise. Each simulation emulated learning throughout four phases (see parameters in Table 2.1), all of which including STDP and differing in the frequency of pattern presentation and presence of rewards: a. The initial phase of spontaneous activity, where patterns are presented randomly (η"η m ) and in the presence of noise. This phase is useful to avoid transient effects due to the initialization by reaching a realistic synaptic weight regime based on the plasticity rule. Noise was set to λ r "4λ MSN "20 Hz.

b. The learning phase during which neurons display spontaneous random activity with pattern presented at each iteration (η"1), and Poisson noise with intensity λ r "λ MSN "5 Hz consistent with firing of the MSNs in the rat striatum [Mah+06].

The reward signal was present and potentiated all synapses of presynaptic neurons active during a rewarded pattern. This phase emulates learning, as the output neuron learns to discriminate patterns by spiking in response to rewarded patterns and not spiking in response to non-rewarded patterns.

c. The maintenance phase models spontaneous activity with λ r "4λ MSN "20 Hz and random presentations of patterns (η"η m ) in the absence of rewards, allowing to evaluate the system's ability to sustain a discrimination between learnt patterns. We chose to take λ r "4λ MSN in order to shorten our simulations and speed up the decrease of memory. All results are still true for λ r "λ MSN , except that memory is maintained for longer times than our simulations permitted.

d. The relearning phase, with the same parameters as the learning phase (a), is used to measure the system ability to learn again patterns, after a period of spontaneous activity. 

Phase

Model simulations

Simulations were performed on Python 3.X, using the Anaconda suite (Anaconda Software Distribution, Computer software Version 2-2.4.0. Anaconda, Nov. 2016. Web. https ://anaconda.com.). The Python libraries of numeric calculus numpy and plotting matplotlib were used. Our custom code is freely accessible on https://github.com/gvignoud/striatalLearning. Simulations were run on the INRIA CLEPS cluster and HPC resources from GENCI-IDRIS (Grant 2022-A0100612385), using GNU parallel (Tange, O. (2020, May 22). GNU Parallel 20200522 ('Kraftwerk'). Zenodo. https ://doi.org/10.5281/zenodo.3841377). We used a Euler scheme to simulate our network and Poisson processes, with dt"0.2 ms.

In order to study the evolution of the network during the different phases and compute learning accuracy, we evaluated some properties of the network every 50 pattern iterations (except at the beginning of each phase, where we recorded every 5 pattern iterations). During these test sessions, we froze the network structure by considering that -both types of plasticity are turned off; -the three noise components described above were suppressed (λ r "0, τ p " 0); -all patterns were successively presented to the network, and the accuracy was computed using the responses of the MSN, as described in Eq. (2.1);

-between each pattern, the MSN potential was reset to its equilibrium value, in order to avoid influence of one pattern to another.

For each set of parameters, we ran 200 different simulations. Statistics were computed on a random split of the simulations into 10 sets of 20 simulations, in order to compare statistics of performance of the network across multiple conditions. We use statistical t-test from scipy.stats Python library (* pă0.05, ** pă0.005, *** pă0.0005).

We started by collecting the mean accuracy at the end of each phase A j for j"1, 2, 3, 4.

To characterize the kinetics of learning in the maintenance phase, we fitted a sigmoidal function to the curve of accuracy as a function of time. This generic sigmoid with 5 parameters, was given by: SrA init , t init , A end , d, gsptq " A end `pA init ´Aend q ˆˆ1 `ˆt ´tinit g ˙˙´d where A init is the initial value of the sigmoid, t init the starting time of the second phase (in terms of pattern iterations), A end is the final value, g is a timescale parameter, while d is a shape parameter of the sigmoid. Fitting the sigmoid allows comparing the dynamics in the maintenance phase for various conditions, and in particular the performance of symmetric and asymmetric anti-Hebbian STDP. The initial value was set at A init "A 2 and the ending value at A end "A 1 The fits were realized by estimating the best values of d and g to reproduce the accuracy dynamics and were performed using the scipy.optimize.curvefit function of the scipy Python library. We compared maintenance of the learning task through the characteristic time of decay to represent the speed of decrease, T maintenance " min ´max ´0, g d ¯, 1000 ¯.

Finally, in order to measure the relearning characteristic time, i.e., the time necessary for the system to relearn patterns after the maintenance phase, we define T relearning as follows. Remembering that A 1 (resp., A 2 ) is the accuracy after the initial phase (resp., learning phase), we define T relearning as the time needed in the relearning phase to learn again at least 60% of the previously learned accuracy, T relearning " inf tt ą 0|Accuracyptq´A 1 ą 0.6ˆpA 2 ´A1 qu .

We investigated how synaptic weight during the maintenance phase deviate from those at the end of the learning phase. To this end, we defined W ref the synaptic weights at the end of the learning phase, and used various metrics to analyze the divergence of the weights from this value during maintenance:

-The divergence of the L 2 norm,

d 2 pW q " 1 1 `?ř i pW i ´Wref,i q 2 ? ř i W 2 ref,i
which is equal to 1 when W " W ref and decays to 0 as the Euclidean distance between the two weight vectors increases. A large d 2 pW q (i.e., close to 1) means that weights remained similar to the reference, and a decay of that quantity estimates how quickly the weight vector deviates from reference.

-One may consider that relative values of weights, rather than their absolute amplitude, contain a particularly important information in learning. In that sense, W ref provides a direction in the space of weights, and we estimated the alignment of the weight vector at a given time with W ref through the cosine similarity of the centered synaptic weight: sppW q " ř i pW i ´Wi q ˆpW ref,i ´Wref,i q b ř i pW i ´Wi q 2 b ř i pW ref,i ´Wref,i q 2

where x for x P R P denotes the average of the vector's component. We discuss three possible directions for future works, based on the present report.

Beyond spike-timing dependent plasticity STDP is a synaptic plasticity rule based on the relative pre-and postsynaptic spike timings. As developed in the Introduction, numerous experimental works have shown that STDP can be elicited at different types of synapses. STDP has also been investigated from a computational point of view, in different types of models, and implemented in complex neuronal networks. Considering its simplicity, STDP has also attracted some criticisms almost since its discovery.

Questioning the importance of STDP

Most experimental data on STDP have been obtained using in vitro protocols, where pairs of spikes from the pre-and postsynaptic neurons are triggered using electric stimulations. Several authors have pointed out that these protocols do not reproduce realistic conditions of neuronal activity, and have therefore questioned the general definition of STDP [LS10; Suv19]. At first, STDP is defined as a process where local depolarizations of the membrane potential, caused by a backpropagating action potential, could interact with EPSPs (excitatory post-synaptic potentials) resulting from presynaptic spikes, and induce changes in synaptic transmission.

A first crucial issue about in vitro experimental protocols concerns the mechanisms used to trigger a postsynaptic spike. Indeed, in most studies, a brief depolarizing current is presented to the postsynaptic neuron soma, which leads to the triggering of a spike. In particular, the spike is not induced through natural processes, resulting from the integration of dendritic currents. This raises the question of which particular mechanism induces the local depolarization needed for plasticity induction, is it Na + spikes, calcium Ca 2+ spikes? Is it possible to have STDP, without having a postsynaptic spike, but simply thanks to local depolarizations?

A second recurrent concern stresses that STDP protocols are not "realistic" when looking at brain activity. In vivo recordings do not support the idea that two single neurons repeatedly fire one after the other, with the same delay, at a fixed frequency. For example, bursts of spiking activity, up and down states, oscillations are more characteristic of brain dynamics than protocols of STDP. Even if some studies have succeeded in eliciting STDP in in vivo recordings [Mor+19], the results are less clear and more often stress that other paradigms than STDP are needed to fully understand synaptic plasticity.

A third issue, that is already extensively addressed in the current report, is that Hebbian STDP, has been considered, for a long time, as the only version of STDP, while several experiments have since then shown that a great diversity of plasticity curves exists, such as anti-Hebbian STDP at corticostriatal synapses [FGV05;Fel12]. Moreover, with in vitro protocols, networks effects are modified, if not deleted, while the influence of local neuromodulators depends highly on the brain slices preparation. In more realistic situations, the synaptic weights are maybe affected as much by those processes, than by STDP, questioning its actual relevance.

Towards biologically-plausible synaptic plasticity

Even if early STDP protocols were not realistic in term of naturalistic activity-pattern at central synapses, experimentalists have been prone to develop more biologicallyplausible schemes to trigger synaptic plasticity. As stated in the previous section, the main critics about STDP refer to the induction of the postsynaptic spike directly by an electrical stimulation at the level of the soma. Several studies have tried using presynaptic inputs to trigger the postsynaptic spikes, leading to more realistic spike triggering. These experiments are gathered under the acronym ITDP, for input-timing dependent plasticity (ITDP) [START_REF] Cho | Coactivation of thalamic and cortical pathways induces input timing-dependent plasticity in amygdala[END_REF][START_REF] Leroy | Input-Timing-Dependent Plasticity in the Hippocampal CA2 Region and Its Potential Role in Social Memory[END_REF].

The necessity of having a postsynaptic action potential to induce synaptic plasticity was also recurrently questioned and has been proven false since then. Indeed, in [START_REF] Fino | Brief subthreshold events can act as Hebbian signals for long-term plasticity[END_REF], it is shown that brief subthreshold events can act as causal signals for longterm plasticity. Even if the observed plasticity is not as "acute" as the one observed using STDP protocols, subthreshold events are sufficient to trigger long-term synaptic changes. The influence of the postsynaptic membrane potential, and not only of spike trains, has also been considered in a class of computational models of STDP [CG10].

More recently, it was shown in place fields in hippocampal area CA [Bit+17] that it was possible to induce synaptic potentiation different from STDP, considering that its temporal window was wider than in STDP experiments (seconds instead of milliseconds), that a "plateau" of postsynaptic activity replaced the postsynaptic spike, and that the order of the association did not change the polarity of the observed synaptic plasticity. This synaptic learning rule evolves on behavioral timescales, and may be a good surrogate of STDP when looking at in vivo activity.

Do we really need STDP to be biologically-plausible?

STDP has been used in a wide range of computational models, and several theoretical studies have used its simple and elegant formulation to investigate the role of synaptic plasticity in learning. Considering the fact that STDP is currently questioned as a relevant mechanism for learning in experimental studies, it seems logical to also interrogate its use in computational models.

First, STDP can be seen as a "building block" of synaptic plasticity, and as such I think that its use is justified when looking at complex models. Indeed, STDP protocols results from pre-and postsynaptic pairings, and gives a real insight on the dynamics of a single synapse, as a function of the pre-and postsynaptic spiking activity. When building complex neuronal networks, where neurons are only represented by their spike trains, neuroscientists need simple learning rules like STDP, and they have been using them for long times. Prior to STDP, many computational models used "Hebbian" synaptic plasticity in their models, where synaptic weight changes depend on the preand postsynaptic firing rates, that also has its limits from a biological point of view. This does not mean that all conclusions from computational models with rate-based plasticity, or STDP, are useless just because the synaptic learning rules did not fulfill a never ending (and always growing) list of biological properties. It just needs to be considered when drawing conclusions on large scales systems and learning in general. It is particularly interesting to notice that STDP was first formulated in computational studies [Ger+96] and not from experiments.

Second, I also would like to stress that STDP, even if not fully biologically-based, is still a powerful rule when learning, and as such justifies the amount of theoretical works that have been published on its properties. For example, it has been recently used in deep learning [START_REF] Bengio | STDP as presynaptic activity times rate of change of postsynaptic activity[END_REF][START_REF] Bengio | STDP-Compatible Approximation of Backpropagation in an Energy-Based Model[END_REF] in spiking neural networks (SNN), and it could have tremendous applications for the implementations of machine learning algorithms in neuromorphic processors.

Finally, more complex synaptic plasticity rules related to STDP have been developed over the years, and still need theoretical studies to investigate their impact on neuronal networks dynamics. It would be a shame to limit efforts in this direction because STDP may not be the principal synaptic plasticity mechanisms in the brain. I think that computational and theoretical models can be a mean to understand the interactions between the various synaptic plasticity observed in experiments, starting with STDP but also integrating more biological and naturalistic synaptic plasticity rules.

Stochastic neuronal networks with STDP

Theoretical models developed in this report are limited to a simple system, with one presynaptic neuron and one postsynaptic neuron, connected by a single synapse. This framework was useful when studying the direct effects of pre-and postsynaptic spikes on the synaptic weights, and such elementary results are necessary when considering to study larger neuronal networks with synaptic plasticity. In future works, we aim at extending our formalism to recurrent neuronal networks, and prove similar theorems for multidimensional systems.

Nonlinear Hawkes processes

When studying STDP in the slow-fast approximation, we have proven that the invariant distribution of the neuronal dynamics with fixed weights were crucial in determining the system's dynamics. Following this idea, we have developed a new formalism for Hawkes processes, which represent a good model for neuronal activity. However, we restricted ourselves to auto-exciting processes, while neurons are more likely to be auto-inhibiting processes. Indeed, a postsynaptic spike leads to a decrease of the membrane potential value, and consequently, to a decrease of the firing rate.

To reproduce this behavior using Hawkes process, the stochastic intensity λ Hawkes needs to depend on negative functionals of previous jumps, i.e where h is a negative function, and β the activation function. Nevertheless, the stochastic intensity needs, by definition, to be non-negative, and it would not be possible to use linear Hawkes process where βpxq"ν`βx. A large literature on linear Hawkes processes exists, usually in the framework of cluster branching processes [Haw71;HO74]. When looking at nonlinear activation functions β, other proofs need to be developed to study the existence of stationary Hawkes processes. Several articles have been dedicated to nonlinear Hawkes processes, usually using Picard iterations and analysis to prove the existence and unicity of a stationary solution [Ker64;BM96]. Recent works have also discussed the possible role of inhibition in Hawkes processes, but focus on simpler kernels h with finite memory in order to use renewal theory [Cos+20]. A global theory of general Hawkes processes, with negative function h is still lacking even if it would be of great interests for neuroscience, epidemiology or population dynamics theory.

Adaptative neuronal networks

Multidimensional Hawkes processes are interesting models to study neuronal dynamics, they can be used to infer the connectivity matrix from the spike trains and as such are of particular interest for neuroscientists [START_REF] Reynaud-Bouret | Goodnessof-Fit Tests and Nonparametric Adaptive Estimation for Spike Train Analysis[END_REF]. It is indeed possible to formulate the dynamics of spiking neuronal network as a multidimensional Hawkes the function H"ptÞ Ñh i,j ptqq 1ďi,jďN represents the connectivity matrix of the neuronal network. Multidimensional Hawkes processes have been studied, with fixed connectivity H, in the linear case [Haw71] or the nonlinear case [BM96]. Again, as explained in the previous section, most studies do not consider any inhibitory mechanism, and it could be expected that adding inhibition leads to less restrictive conditions for the existence of a stationary solution: it has a stabilizing effect on the point processes dynamics. The importance of the excitation/inhibition balance has been known to be central when studying neuronal dynamics for a long time [START_REF] Brunel | Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons[END_REF].

In the present report, we have studied the influence of STDP on neuronal dynamics. We claim that an even more general class of Hawkes, where the connectivity matrix H depend on time, through some plasticity mechanisms, can be defined. This would open the door for theoretical studies of adaptative Hawkes processes, which modify their interactions as a function of previous activity. Adaptative cluster processes have recently been introduced, when considering phase-dependent plasticity and are linked to this idea [BSY19].

The influence of STDP on recurrent neuronal networks has been the focus of numerous studies [GBV10], mainly in computational neuroscience. Their approach would benefit from the development of a theoretical framework for adaptative multidimensional processes.

Mean-field analysis of STDP in neuronal networks

When looking at large neuronal networks, it is always tempting to take the limit when the number of neurons goes to infinity, and usually end up with mean-field dynamics. This limit has been largely studied for neuronal networks with fixed connectivity [RT16], and leads to interesting analytical results on the network dynamics. A similar approximation can be envisioned while looking at adaptative neuronal networks with synaptic plasticity. For short-term synaptic plasticity, a recent study looks at the mean-field approximations of the associated dynamics [Löc17].

What would happen when examining long-term synaptic plasticity? Is it possible to couple the mean-field analysis with slow-fast arguments? If yes, in which order should we take the limits? And is this order determinant for the limit's dynamics? All of these questions are still pending, and future works on such processes will be important, not only for neuroscience, but to other adaptative systems, with applications in finance, epidemiology or evolution. A recent article [ARJ20] uses both approximations, but does not consider all the possible problems that can emerge from taking this double limit.

Goal-directed behavior versus habits in the striatum

Computational models developed in the present report have highlighted the crucial role of STDP when learning to recognize patterns of correlated cortical activity. However, as pointed out in this discussion, STDP should not be considered as the only synaptic plasticity mechanism at play when looking at complex tasks, and more importantly network dynamics should also be taken into account. Future works could be devoted to a more realistic model of the striatum, integrating direct-and indirect pathways neurons for example, or inhibitory interneurons. Several striatal models already study those influences separately, without considering anti-Hebbian STDP. A global model of the striatum would be a terrific tool to study the differential influence of each of these processes, and to more clearly understand its role in procedural learning.

DMS and DLS, more differences than just STDP

DMS and DLS differential role in procedural learning could be investigated using such a general striatal system. In the present reports, we only considered disparity in STDP at corticostriatal synapses [Per+22], however the difference between those two regions are not limited to synaptic plasticity. The following properties should be inserted in any striatal network, aiming at studying why DMS and DLS subtend specific types of learning and behaviors, respectively goal-directed behavior and habits:

-Both regions receive inputs from different cortical regions (somato-sensory versus associative areas), and some correlated activity patters may be specific to DMS or DLS.

-MSNs exhibit different electrophysiological properties when located in either of those regions.

-Feedforward inhibition, through the action of fast-spiking or low-threshold spiking interneurons also depends on DMS or DLS [Fin+18].

-STDP at corticostriatal synapses is specific to these regions, as was shown in [Per+22].

Moreover, the dopaminergic signaling pathways should also be modeled, as it is critical in goal-directed behavior [SDM97]. Similarly, in order to model the whole action selection process, MSNs belonging to direct-or indirect pathways, and the subsequent circuits, should be investigated following previous studies [Dun+19].

A global model of the basal ganglia, incorporating those properties, will be needed to directly relate to behavioral experiments, and to predict animal behavior in procedural learning.

Switch between goal-directed behavior and habits

Even if this global model is able to reproduce goal-directed and habitual behavior, thanks to different properties present either in the DMS or the DLS, it may not explain how both regions influence each other. Indeed, the striatum is differentially involved during procedural learning, and studying how the switch between goal-directed behavior and habits occur will be a great advance in our comprehension of the establishment of procedural memory. A recent article has shown that this question is of interest, both for neuroscientists and experimentalists [START_REF] Patrick | Graded striatal learning factors enable switches between goal-directed and habitual modes, by reassigning behavior control to the fastest-computed representation that predicts reward[END_REF]. How is this switch implemented, why and when? are several questions that need to be answered. Computational models are of great help in the study of such topics, because they can emulate dynamics not easily tested in experiments. 

  mouse brain with cortex (C) and striatum (S). [C. Piette].
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 11 Figure 1.1: A simple neural network with two neurons.
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 12 Figure 1.2: Spike-timing dependent plasticity, from experiments to pair-based rules. (a) Hebbian STDP, taken from [BP98] (b) Anti-Hebbian STDP, taken from [FGV05] (c) Pair-based STDP rules, models based on the choice of two parameters, the STDP curve (top left) and the pairing scheme. EPSC [excitatory post-synaptic current]

Figure 3 . 1 :

 31 Figure 3.1: Schematic representation of the striatal heterogeneity and the anatomofunctional compartments of the dorsal striatum, adapted from [PV19]. Schematic representation of the direct and indirect trans-striatal pathways of the basal ganglia. Striosomes are shown with black dots distributed between the dorsolateral striatum (blue) and the dorsomedial striatum (orange). Grouped black dots represent striosomes surrounded by the annular compartment (red line, [BC15]), whereas isolated black dots illustrate the exo-patch [Smi+16]. Striosomal SPNs mainly project to SNc whereas SPNs from the matrix belong to the direct or indirect pathway. The direct and indirect pathways are represented, respectively, in green and purple. GPe, external segment of the globus pallidus; EP, entopeduncular nucleus; STN: subthalamic nucleus; SNr, substantia nigra pars reticulata; SNc, substantia nigra pars compacta.

  instants of pre-synaptic spikes are represented by the Poisson process N λ , the firing instants of the output neuron t post,n are expressed as the jumps of the point process N β,X on R `defined by ż R `f puqN β,X pduq def. tsPp0,βpXpu´qqsu Ppds, duq, (1.5) for any non-negative Borelian function f on R `.

  A simple stochastic model for a synaptic connection.
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 11 Figure 1.1: Stochastic models of STDP.

  3 and calcium-based in Figure 1.4. Assumptions A a. F . β is a non-negative, continuous function on R and βpxq"0 for xď´c β ď0. b. D . g is continuous on R and 0ďgpxqď maxpc g , xq holds for all xPR, for c g ě0. c. D . The function M is such that, for any wPK W and any càdlàg piecewise-continuous functions h 1 and h 2 on R `, the ODE dwptq dt "M ph 1 ptq, h 2 ptq, wptqq with wp0q"w, (1.21)

  Figure 1.3-(b) for the nearest neighbor symmetric STDP and Figure 1.3-(c) for the nearest neighbor reduced symmetric STDP.

Proposition 8 .

 8 Under the Assumptions A-a and A-b and if the functions k 1 and k 2 are bounded and all coordinates of γ are positive then the Markov process pX w ptq, Z w ptqq has a unique invariant distribution Π w .
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 121 Figure 1.2: Stochastic queue for the associated fast process of the discrete calciumbased model.

  tq e ´γd,2 pt´sq Xpt ´sq ds´θ d ˙`ff N λ pdtq, and for potentiation, Γ p pdtq " B p ˆżp0,tq e ´γp,0 pt´sq Xpt´sq ds´θ p ˙ż p0,tq e ´γp,2 pt´sq Xpt´sq ds´θ d ˙ż p0,tq e ´γp,1 pt´sq N λ pdsq ˙dt.

  2 in Figure 1.3, a. all-to-all model; b. nearest neighbor symmetric model; c. nearest neighbor reduced symmetric model. The different interactions are represented by grey arrows (first row).
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 13 Figure 1.3: Synaptic plasticity kernels for pair-based rules.

#

  dΩ p ptq " ´αΩ p ptq dt `Zp,1 pt´qN β,X pdtq dΩ d ptq " ´αΩ d ptq dt `Zd,2 pt´qN λ pdtq, We choose in this example a linear function M , leading to the following time evolution of the synaptic weight (sixth row), dW ptq " pΩ p ptq ´Ωd ptqq dt.
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 14 Figure 1.4: Synaptic plasticity kernels for calcium-based rules.
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 21 Figure 2.1: Applications of Theorem 12 to the simple model of Section 2.1.
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 22 Figure 2.2: Comparison between continuous and discrete calcium-based models. λ"0.1, γ"2, C 1 "C 2 "1, B p "2, B d "1, βpxq"p0.01xq `, α"0.01 and δ"0. For the continuous model, we took M pω p , ω d , wq"ω p ´ωd . Inset, standard deviations, sd, of W ε and w at the end of the simulations. The expected value of w MC is computed with Monte Carlo estimations of Π CQ w . The expected value of w AR is computed with estimated Π CQ w with the expressions of Section 2.C.

Theorem 21 (h

 21 Averaging principle for discrete calcium-based model). If h p and h d are functions on N with a finite range of values, as ε goes to 0, the family of processes pΩ ε,p ptq, Ω ε,d ptq, W ε ptqq defined by Relations (2.25) converges in distribution to the unique solution pω p ptq, ω d ptq, wptqq of the relations a pcqΠ CQ wpsq pdx, dcq ds, aPtp, du, dwptq " ´wpt´q ÿ i"1 N µ,i pdtq`B p N ωpptq pdtq´B d 1 twpt´qěB d u N ω d ptq pdtq, (2.26) where Π CQ w is the invariant distribution of the Markov process of Definition 20.

  We have to modify Assumptions B-(d) by Assumptions B*-(d), in the following way, M can be decomposed as, M pΓ p , Γ d , wq"M p pwqΓ p ´M d pwqΓ d ´µw, where M a pwq is non-negative continuous function, and, M a pwq ď C M , for all wPK W , for aPtp, du.

- ż ` 8 ´8

 8 |Φ a psq| ds ă `8;

lim εÑ0 ˆż t 0 0

 0 GpX ε psq, Z ε psqqεN λ{ε pdsq ˙" ˜λ ż t 0 ż RˆR `Gpx, zqΠ wpsq pdx, dzq ds GpX ε psq, Z ε psqqεN β{ε,Xε pdsq ˙" ˜ż t 0 ż RˆR Gpx, zqβpxqΠ wpsq pdx, dzq ds are also required. They are not straightforward consequences of Relation (

  a ptq " ω a,0 ´α ż t 0 ωpsq ds`ż t 0 ż R `na,0 pzqΠ wpsq pR `, dzq ds `λ ż t 0 ż R `na,1 pzqΠ wpsq pR `, dzq ds`ż t 0 ż RˆR `β pxqn a,2 pzqΠ wpsq pdx, dzq ds. dw dt ptq " M pω p ptq, ω d ptq, wptqq

  iPt1,..., u tz 0,i u, max aPta,pu tω 0,a u, |w 0 |q. C β , C n , C k and C M are non-negative constants associated to the conditions of Section 3.2, and γ def.

K ε ptqq and pZ K ε

 K ptqq and Relation (3.23) for S ε and Proposition 49 of the Appendix for R ε , we obtain that the quantity E " M K ε,2 ptq 2

  ı

  The family of random Radon measures ν K ε , εPp0, 1q, is tight for the convergence in distribution and for any bounded Borelian function on r0, T sˆR 2 `, the set of processes pI G ptqq def.

Lemma 40 .

 40 For any continuous bounded Borelian function G and a, b, cPR `, the sequence of processes `cxzqGpx, zqν K pds, dx, dzq ˙.

  ptq dt `wN λ pdtq, dZ w ptq " `´γZ w

`t 0 C

 0 Cn p1` zqp1`λ`C β p1`xqqΠ wpsq pdx, dzq ds, wptq " w 0 `ż M p1 `ωp psqq ds, (3.31) with pω 0 , w 0 qPR 2 Àny limiting point pω K ptq, w K ptqqq of the family of processes pΩ K ε ptq, W K ε ptqq, when ε goes to 0 is such that, for all 0ďtăS 0 , ω K ptq ď ωptq and w K ptq ď wptq.

K

  εn and Z K εn replaced by X εn and }Z εn }, and β by β. With the same arguments as in the proof of Lemma 38, the family

  n psq pf q pX εn psq, Z εn psqq ds "ż T 0 ż RˆR `B Fwpsq pf qpx, zqνpds, dx, dzq.From the SDEs (3.14) and (3.14) we have f pX εn psq, Z εn psqq " f px 0 , z 0 q`M f εn ptq n psq pf q pX εn psq, Z εn psqq ds, (3.34)

ż T 0

 0 Gps, x, zqνpds, dx, dzq " ż T 0 ż RˆR `Gps, x, zqΠ wpsq pdx, dzq ds, holds almost surely for all bounded continuous functions on R `ˆRˆR `.

  pZ εn puqq n 1 pZ εn puqq β pX εn puqq n 2 pZ εn puqq β pxq n 2 pzq 'Π wpuq pdx, dzq du '.
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 31 Figure 3.1: Graphical representation of the steps of the proof of averaging principles.

lim nÑ`8 ˆż t 0 L

 0 εn puqG ´XK εn puq, Z K εn puq ¯du ˙" pLptqq,

K

  εn ptq, W K εn ptq, ν K εn q, Proposition 40 and Relation (3.40) give that, for any f in C 1 b pR 2 `q, the relation ˜ż t 0 ż R 2 `B F K^w K psq pf qpx, zqΓ K s pdx, dzq ds, 0ďtďT ¸" p0, 0ďtďT q.

" 0 `

 0 pS x pt{εqq, and of Relation (3.45), which gives E " e ξSεptq ‰ " exp ˜´λ ż t{ε

  def." r´c 0 , `8qˆR `.Define, for px, zqPS and 0ăaď1, Hpx, zq def." x`a}z}, with }z} def.

  ,X pdtq `W pt´qN λ pdtq´N I,βX pdtq, dZptq " ´NI,γZ pdtq `B1 N λ pdtq `B2 N I,βX pdtq, dΩptq " ´αΩptq dt`C n dt`C n N λ pdtq`C n N I,βX pdtq, dW ptq " A p N I,Ω pdtq, (3.53) where B 1 , B 2 PN and, for aPtp, du, A p PN.

  a. It decays exponentially to 0 with a fixed exponential decay, set to 1. b. It is incremented by the synaptic weight W ą0 at each presynaptic spike, i.e. at each jump of N λ .
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 41 Figure 4.1: Synaptic plasticity kernels for pair-based rules. Example of an exponential plasticity curve as a function of ∆t, with different parameters (top left). Examples of pre-and postsynaptic pairings for all-to-all (PA, bottom left), nearest neighbor symmetric (PNS, top right) and nearest neighbor symmetric reduced (PNR, bottom right) STDPs.
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 42 Figure 4.2: All-to-all pair-based STDP for an excitatory synapse. (a) Dynamics of the synaptic weight as a function of B 1 and B 2 for ν"0. (left) Classification based on numerical simulations for different asymptotic dynamics of the synaptic weights (see different colors). Theoretical boundaries are also drawn (see legend for their expressions). (right) Two examples of temporal evolutions of the synaptic weights, for different values of ε. (b) Same as (a) for ν"1.(γ 1 "γ 2 "β"λ"1)

  Excitatory synapse, PNS, ν = 0 (b) Excitatory synapse, PNR, ν = 0 (c) Excitatory synapse, PNR, ν = 1
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 43 Figure 4.3: Different pairing schemes leads to diverse dynamics.

( a )

 a Dynamics of the synaptic weight as a function of B 1 and B 2 for nearest neighbor symmetric STDP and ν"0. (left) Classification based on numerical simulations for different asymptotic dynamics of the synaptic weights (see different colors). Theoretical boundaries are also drawn (see legend for their expressions). (right) Two examples of temporal evolutions of the synaptic weights, for different values of ε. (b) Same as (a) for nearest neighbor symmetric reduced STDP and ν"0. (c) Same as (a) for nearest neighbor symmetric reduced STDP and ν"0.2.

  Figure 4.3(b) and (c). For ν"0, there exists a (narrow) range of parameters in the Hebbian region (bottom right) where a stable fixed point occurs, see example B in Figure 4.3(b). Symmetrically, an unstable fixed point seems to exist in the anti-Hebbian region (top left) and example A. For νą0, a second fixed point appears leading to more complex behaviors characterized by the presence of a stable and an unstable fixed point at the same time Figure 4.3(c). If the stable fixed point is lower than the unstable one, see example A and (top left) in Figure 4.3(c), the synaptic weight either converges to a non null value or diverges to infinity. For Hebbian parameters (bottom right), the situation is reversed, see example B in Figure 4.3(c). The spectrum of values with this complex behavior narrows when ν is increasing. In particular, for large values of ν, only a perfect balance in the parameters may lead to other behaviors than whole depression or potentiation. See Figure 4.7 in Supplemental Material at [URL will be inserted by publisher] for examples of the influence of ν on the dynamics.

  Inhibitory synapse, PA, ν = 1 (b) Inhibitory synapse, PNS, ν = 1 (c) Inhibitory synapse, PNR, ν = 1
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 44 Figure 4.4: Pair-based STDP for an inhibitory synapse.

( a )

 a Dynamics of the synaptic weight as a function of B 1 and B 2 for all-to-all STDP and ν"1. (left) Classification based on numerical simulations for different asymptotic dynamics of the synaptic weights (see different colors). Theoretical boundaries are also drawn (see legend for their expressions). (right) Two examples of temporal evolutions of the synaptic weights, for different values of ε. (b) Same as (a) for nearest neighbor symmetric STDP and ν"1. (c) Same as (a) for nearest neighbor symmetric reduced STDP and ν"1.(γ 1 "γ 2 "β"λ"1)

´λż τ 0 `

 0 1´exp `´βw `1´e s´τ ˘˘˘d s ´λ ż 0 ´8 `1´exp `´βw `1´e ´τ ˘es ˘˘ds ˙˙dτ ´ν ν`γ 2 .

  w ptq " ´Xw ptq dt `wN λ pdtq, dT PNR,w 1 ptq " dt´T PNR,w 1 pt´q N λ pdtq, dT PNR,w 2 ptq " dt´T PNR,w 2 pt´q N β,X w pdtq.
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 45 Figure 4.5: Markovian formulation of pair-based models. (a) Temporal dynamics of pX, Z 1 , Z 2 , W q with a specific pre-and postsynaptic spike trains for all-to-all STDP. (first line) Pre-and postsynaptic spike trains, with associated pairings. (second line) Presynaptic plasticity variable Z 1 (in brown) with value at jumps of the postsynaptic neuron (in red). (third line) Postsynaptic plasticity variable Z 2 (in brown) with value at jumps of the presynaptic neuron (in blue). (fourth line) Resulting dynamics of the synaptic weight W . (b) Same as (a) for nearest neighbor symmetric STDP. (c) Same as (a) for nearest neighbor symmetric reduced STDP.

Figure 4 . 6 :

 46 Figure 4.6: Nearest neighbor symmetric pair-based STDP for an excitatory synapse. (a) Dynamics of the synaptic weight as a function of B 1 and B 2 for ν"0. (left) Classification based on numerical simulations for different asymptotic dynamics of the synaptic weights (see different colors). Theoretical boundaries are also drawn (see legend for their expressions). (right) Two examples of temporal evolutions of the synaptic weights, for different values of ε. (b) Same as (a) for ν"1.(γ 1 "γ 2 "β"λ"1)
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 47 Figure 4.7: Influence of ν on dynamics with the pair-based nearest-neighbor reduced symmetric scheme.

( a )

 a Dynamics of the synaptic weight for different values of (change of color) and values of external input ν (different plots, increasing from left to right, top to down) for anti-Hebbian STDP. (b) Same as (a) for Hebbian STDP.

  h is continuous on R `, non-increasing, converging to 0 at infinity and α The activation function. The non-negative function Φ is continuous and such that, a) Φp0qą0; b) the quantity β def. " lim sup yÑ`8 Φpyq y is finite.

  hpu´xqN pdxq ˙du, těs ˙, see Theorem VI (21.7) of [RW00] for example. In the terminology of random measures, see [Jac79], the stochastic intensity of N is ˆΦ ˆżp´8,uq hpu´xqN pdxq ˙, uPR ˙.

ˆ´ż t 0 Φ

 0 ˆżp´8,0shps´xqmpdxq ˙ds ˙.(5.10)From Lemma 60, we obtain lim tÑ`8

ˆż t 0 Φ

 0 ˆżp´8,sq hps´xqN m pdxq ˙ds, tě0 ˙. see Theorem VI (27.1) of [RW00]. Consequently, the stochastic intensity function of N m on R `is indeed ˆΦ ˆżp´8,sq hps´xqN m pdxq ˙˙.

N

  pr´s, 0sqhpsq ds.

"

  exp p´pT n ´uq{αq m x pduq`n ÿ k"1 exp p´pT n ´Tk q{αq is a Markov chain on p1, `8q such that, for ně0,

  d. Proposition 70 (Harris ergodicity). If Φ satisfies Condition A-2, and if αβ e ă1, where

  .26) with b def.

MppRqF pmq Qpdmq " λ ż M 0 p pRq ż t 1 pmq 0 F

 0 If b) holds, i.e. if p Q is given, then the construction of Q is done with a fundamental construction of ergodic theory, it is the special flow associated to the operator p θ and the function mÞ Ñt 1 pmq on M 0 p . See Chapter 11 of [CFS82], and Chapter 10 of [Rob03]. The distribution Q is expressed as ż pθ s pmqq ds p Qpdmq, (5.34) for any non-negative Borelian function on M p pRq. The probability distribution p Q is simply determined by a distribution of the sequence of inter-arrival times which is invariant by the shift operator. The space pM 0 p pRq, p θ, p Qq can be seen as a probability space whose elements are positive sequences. It is sometimes called the Palm space of Q.

β ż ` 8 0

 8 |hpsq| ds ă 1. Thinning techniques have been applied to the case of a bounded Lipschitz function Φ in the same reference, where the condition ż `8 0 s|hpsq| ds ă `8
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 11 Figure 1.1: MSNs as integrated-and-fire neurons with two types of synaptic plasticity at corticostriatal synapses.
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 12 Figure 1.2: Learning sequences in the striatum, using anti-Hebbian rules and nonassociative reward-LTP.
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 12 Figure 1.2: Learning sequences in the striatum, using anti-Hebbian rules and nonassociative reward-LTP.

  (b) Dynamics of learning with random noise (Task A). Evolution of the norm of the synaptic weights, during the presentation of cortical random spikes, with P "10 cortical neurons, without (left) or with (right) non-associative reward-LTP, for different types of STDP rules (color) and different values of initial synaptic weights (low in solid lines, high in dashed lines). (c) Dynamics of learning with a Poisson sequence (Task B). Different learning properties, during the presentation of a Poisson sequence, with P "10 cortical neurons, without (left) or with (right) non-associative reward-LTP, for different types of STDP rules (color) and different values of initial synaptic weights (low in solid lines, high in dashed lines). (top) Probability to observe no spike during pattern presentation, (middle) relative timing of the first postsynaptic spike, (bottom) accuracy. (Note: the traces from symmetric LTP and asymmetric Hebbian STDP are superimposed.)

Figure 1

 1 Figure 1.3: Anti-Hebbian rules and non-associative LTP enable learning with a single linear integrate-and-fire MSN (M1).
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 13 Figure 1.3: Anti-Hebbian rules and non-associative LTP enable efficient learning with a single linear integrate-and-fire MSN (M1). (a) Only anti-Hebbian rules lead to learning when presenting patterns composed by sequences of cortical inputs [Task 1] (left) Accuracy (dashed lines) and MaxAccuracy (solid lines) as a function of learning iterations, for different STDP rules, for N p "5 patterns. (right) MaxAccuracy as a function of the number of presented patterns N p , for different STDP rules. (b) Anti-Hebbian rules lead to a specific equilibrium where smaller subsets of rewarded patterns do not lead to spike of the MSN. (left) [Task 1] Accuracy (dashed lines) and MaxAccuracy (solid lines) as a function of learning iterations, for different STDP rules, when testing subpattern of N p "5 learned patterns. (right) MaxAccuracy when testing subpattern of N p learned patterns, for different STDP rules. (c-e) Influence of different types of noise on learning and performance [Task 1] MaxAccuracy as a function of noise in cortical inputs λ stim (c), of external noise injected directed in the MSN potential λ ext (d) and jitter in spike times during pattern presentation τ pattern (e), for different STDP rules.
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 14 Figure 1.4: Latency in MSNs enhance the network performance.
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 14 Figure 1.4: Latency in MSNs enhance the network performance.
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 15 Figure 1.5: Lateral inhibition facilitates learning of complex pattern sequences.
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 15 Figure 1.5: Lateral inhibition facilitates learning of complex pattern sequences.(a) Lateral inhibition in the striatal network. Schematic representation of the striatal network (right) with P "2 cortical neurons (in green), and three different models for MSN activity: (i) one striatal neuron (MSN) modeled as a non-linear IAF neuron (M2, in brown), (ii) two striatal neurons (MSN 1 in brown, and MSN 2 in purple) without collateral inhibition, (iii) two striatal neurons with collateral inhibition from MSN 2 to MSN 1 . Two mechanisms of synaptic plasticity are considered in the dynamics of the synaptic weight W (in blue): the STDP (in purple) and LTP related to the reward signal (reward-LTP) (in red). Reward-LTP is presented for rewarded patterns at MSN 1 and for non-rewarded patterns at MSN 2 . Example of the learning task (left), with test sessions and the training protocol (middle). N p "2 patterns A and B are presented to the network, with A being rewarded p`q and B non-rewarded p´q (for MSN 1 ). In the test sessions, below the MSN potential, are represented accuracy results (correct classification in green, wrong classification in red). Spiking activity of the cortical neurons (in green) are represented along with the membrane potential V of for the output neuron(s) (MSN). (b) Advantages of lateral inhibition in learning all possible patterns for a small number of neurons. [Task 2] MaxAccuracy when learning all possible sequences for P neurons, for asymmetric Hebbian and anti-Hebbian STDP, comparing linear IAF (M1) and nonlinear Izhikevich (M2) models, in the absence (J"0) or presence (J"´0.5) of lateral inhibition. (c) Consequence of lateral inhibition when learning sequences of cortical inputs [Task 1] MaxAccuracy as a function of the number of presented patterns N p , for asymmetric Hebbian and anti-Hebbian STDP, comparing linear IAF (M1) and non-linear Izhikevich (M2) models, in the absence (J"0) or presence (J"´0.5) of lateral inhibition.

  .9a), various N stim (Figure 1.9b) or different values of collateral inhibition (Figure 1.9c).
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 16 Figure 1.6: Striatal learning also perform well on more realistic patterns.
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 16 Figure 1.6: Striatal learning also performs well on more realistic patterns. (a) Learning patterns with jiterred inputs [Task 3] MaxAccuracy as a function of the number of presented patterns N p , for asymmetric Hebbian and anti-Hebbian STDP, comparing linear IAF (M1) and non-linear Izhikevich (M2) models, in the absence (J"0) or presence (J"´0.5) of lateral inhibition. (b) Learning patterns of Poisson spike trains [Task 4] MaxAccuracy as a function of the number of presented patterns N p , for asymmetric Hebbian and anti-Hebbian STDP, comparing linear IAF (M1) and nonlinear Izhikevich (M2) models, in the absence (J"0) or presence (J"´0.5) of lateral inhibition.
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 1719 Figure 1.7: Influence of parameters on learning with linear IAF model (M1). [Task 1] (a) MaxAccuracy for different number of cortical neurons P , with N p "P . Training done for [500, 1000, 2000, 2000] patterns iterations for P "r10, 20, 40, 50s, with test sessions every N p "P iterations. (b) MaxAccuracy for different number of cortical stimulations N stim . (c) MaxAccuracy for different values of post-pre amplitude A post´pre . (d) MaxAccuracy for different values of reward-LTP A reward . (same as in Figure 1.3)
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 2121 Figure 2.1: Distinct anti-Hebbian STDP profiles in DLS and DMS

Figure 2

 2 Figure 2.2: A pattern recognition task to test learning, maintenance and relearning in a computational model of the striatal network. Schematic representation of the striatal network (right) with P "4 cortical neurons (in green), a random input neuron with rate λ r (in yellow) and one striatal neuron (MSN), represented by its membrane potential V (in brown). Two mechanisms of synaptic plasticity are considered in the dynamics of the synaptic weight W (in blue):anti-Hebbian STDP (in purple) and LTP related to the reward signal (reward-LTP) (in red). Anti-Hebbian STDP is modeled using exponential kernels (inset on the top right), with different values for A post-pre and A pre-post "´1. Example of the learning task (left), separated in four phases with four iterations in each phase. Each learning phase has specific parameters (see Table2.1). N p "2 patterns A and B are presented to the network, with A being non-rewarded p´q and B rewarded p`q. An iteration with no pattern presentation is represented by ∅. Spiking activity of the cortical neurons (in green for pattern spikes and grey for random spikes) and the random input neuron (in yellow) are represented along with the membrane potential V of the output neuron (MSN).
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  pre-post ř t pre,i ătpost exp ´´∆t τs ¯for a pre-post pairing, A post-pre ř tpostăt pre,i exp ´∆t τs ¯for a post-pre pairing.
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 23 Figure 2.3: Influence of symmetric and asymmetric anti-Hebbian STDP rules on learning, maintenance and relearning of patterns in a striatal neuronal network.
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 23 Figure 2.3: Influence of symmetric and asymmetric anti-Hebbian STDP rules on learning, maintenance and relearning of patterns in a striatal neuronal network.(a) Learning dynamics for P "10 input neurons, N stim "3 stimulations by pattern, N p "15 patterns and the proportion of pattern presentation in the initial/maintenance phases η m "0. Time-evolution of the learning accuracy through an initialization, learning, maintenance and relearning phases, for different anti-Hebbian plasticities (blue: symmetric, brown: no post-pre learning, orange: asymmetric). Averaged simulations results are presented (plain lines) and controls with A pre-post "0 (dotted lines). (b) Accuracy at the end of each phase as a function of the type of plasticity (where A post-pre parametrizes the plasticity). (c1) Examples of fits obtained from a set of 20 simulations for the accuracy during the maintenance phase. Averaged simulations (for 20 simulations, open circles), associated fit (plain lines), tangent at origin (dashed) and fitted final accuracy (dotted). We represented below the sets of values for T maintenance obtained with this method for A post-pre "0. (c2) Characteristic time of maintenance T maintenance as a function of A post-pre . (c3) Weight similarity measures d 2 pW q and sppW q as a function of A post-pre . (c4) Characteristic time of relearning T relearning as a function of A post-pre . (d) Dependency of characteristic time of maintenance T maintenance (d1), accuracy at the end of the maintenance phase (d2) and characteristic time of relearning T relearning (d3) on the type of plasticity A post-pre and stimulus presentation frequency η m . (a) Mean results computed over 200 simulations. (b-d) Mean of results over 10 sets of 20 simulations with errors bars representing ˘SD{2. Statistical t-test from scipy.stats Python library; *: pă0.05, **: pă0.005, ***: pă0.0005.

A

  post-pre exp ´∆t τs ¯if ∆t ă 0 A pre-post exp ´´∆t τs ¯if ∆t ą 0 with τ s "20 ms. Consistent with the anti-Hebbian form of the corticostriatal STDP [FGV05; Men+20], we consider A pre-post " ´1 (see e.g. [Fel12]), corresponding to synaptic depression subsequent to a pre-post paired stimulation. The observation of corticostriatal Hebbian and anti-Hebbian STDP results mainly from the use of GABAergic transmission inhibitors [She+08] or not [FGV05; Men+20], as demonstrated thereafter [Pai+13;
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 24 Figure 2.4: Learning task using various setups pP, N stim andN p q (related to Figure 2.3). Influence of η m on the learning parameters for (a) P "10 input neurons, N stim "3 stimulations by pattern, N p "10 patterns, (b) P "10 input neurons, N stim "5 stimulations by pattern, N p "15 patterns and (c) P "20 input neurons, N stim "3 stimulations by pattern, N p "30 patterns. (x) Dependance of characteristic time of maintenance T maintenance (x1), accuracy at the end of the maintenance phase (x2) and characteristic time of relearning T relearning (x3) on the type of plasticity A post´pre and stimulus presentation frequency η m . Mean of results over 10 sets of 20 simulations with errors bars representing ˘SD{2. Statistical t-test from scipy.stats Python library; *: pă0.05, **: pă0.005, ***: pă0.0005.
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 25 Figure 2.5: Learning task with different noise values λ MSN . Accuracy at the end of each phase as a function of the type of plasticity (where A post´pre parameterizes the plasticity). Several values of noise λ MSN are tested (see different colors). Mean of results over 10 sets of 20 simulations with errors bars representing ˘SD{2. Statistical t-test from scipy.stats Python library; *: pă0.05, **: pă0.005, ***: pă0.0005.
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  b. The output neuron is without reset; i.e., the function g is null. The SDE associated to the membrane potential is dX w ptq " ´Xw ptq dt `w N λ pdtq.We conclude the proof by using again the formula for the Laplace transform of N λ

		E	" exp	ˆ´ż `8 ´8 gpsqN λ pduq ˙ " E	" exp ˆ´λ	´8`1 ż `8 ´e´gpuq ˘du ˙ .
	where the function g is defined by
						gpuq	def.
						(2.11)
	"		ˆ´ż `8	˙
	´ln E	exp			´8 f psqN β,X w 8 pdsq
	" ν	ż `8	´e´fpsq ˘ds`λ	ż `8	´exp ˆ´βw ż `8
				´8`1	´8ˆ1
	Proof. Setting	
						pX w 8 ptqq	def. "	ˆw ż t ´8 e ´pt´sq N λ pdsq ˙,	(2.13)
	it is easily seen that this process is almost surely defined and that it satisfies Rela-
	tion (2.11). The stationarity property of pX w 8 ptqq and, consequently of N β,X w 8 , comes
	from the invariance by translation of the distribution of N λ .
	The independence of P and N λ , and the formula for the Laplace transform of
	Poisson point processes (see Proposition 1.5 of [Rob03]) give the relation
	"		ˆ´ż `8
	E	exp		

c. There are only excitatory inputs, i.e., 0ĂK W ĂR `.

d. M verifies Assumptions A-c and B-d and is L

M -Lipschitz.

e. The activation function is linear, βpxq"ν`βx, xě0 for νě0 and βą0.

In that case, X stays in R `and we can have an explicit expression of the stationary distribution of the important point process N β,X w . Proposition 13. Under Assumptions L, if pX w 8 ptq, ´8ďtď`8q is a stationary version of SDE (2.11), then the point process N β,X w 8 of Relation (2.3) extended on the real line is stationary, and if f is a bounded Borelian function with compact support on R, then 0 `1´e ´f ps`tq ˘e´t dt ˙˙ds. (2.12) ´8 f psqN β,X w 8 pdsq ˙ " E " exp ˆ´ż `8 ´8`1 ´e´fpsq ˘βpX w 8 psqq ds ˙ . If F is a nonnegative bounded Borelian function with compact support on R, with Relation (2.13) and Fubini's theorem, we get ż `8 ´8 F psqX w 8 psq ds " ż `8 ´8 ˆw ż `8 0 F pu`sqe ´s ds ˙Nλ pduq. (2.14)

  Under Assumptions L and PNS, as ε goes to 0, the family of processes pΩ ε,p ptq, Ω ε,d ptq, W ε ptqq of Relation (2.7) converges in distribution to pω p ptq, ω d ptq, wptqq, the unique solution of the ODE

	$			ż t		ż
	' ' & ω a ptq "	0	e ´αpt´sq	R 5 `pβ pxqΦ a,1 pz 1 q`λΦ a,2 pz 2 qq Π PS wpsq pdx, dzq ds, aPtp, du,
	' ' %	dwptq dt	" M pω p ptq, ω d ptq, wptqq ,
	where Π PS w is defined in Proposition 16.
	Proof. For wě0, let pX w 8 , Z w 8,1 , Z w 8,2 q be random variables with distribution Π w , and, for
	aPtp, du, let				
							"	ı	"	ı
						Ψ a pwq	def. " E	βpX w 8 qΦ a,1 pZ w 8,1 q	`λE	Φ a,2 pZ w 8,2 q	.
	The ODE can be rewritten as
	ˆż t 0 e Finally, the identity dwptq dt " M
						E	" Φ a,2 pZ w 8,2 q ı	"	´ż `8	9 Φ a,2 puqPpZ w 8,2 ďuq du,
							0
				X w 8	pp0,aqq	ı	"νa `1´e	ż a ´ξ˘`λ `1´exp `´βw `1´e
							0

´ξ ˘`1´e s´a ˘˘˘d s `λ ż 0 ´8 `1´exp `´βw `1´e ´ξ ˘`1´e ´a˘e s ˘˘ds.

By letting ξ go to infinity, we have obtained the desired expression. The proposition is proved.

Theorem 17 (Averaging principle). ´αpt´sq Ψ p pwpsqq ds,

ż t 0 e ´αpt´sq Ψ d pwpsqq ds, wptq ˙.

With Theorem 12, all we have to prove is that this ODE has a unique solution. This is a simple consequence of the Lipschitz property of Ψ a . Indeed, first, the distribution of Z w 8,1 does not depend on w and βp¨q is an affine function of X w 8 given by Relation (2.13).

Proposition 16, and simple estimations give that the function Ψ a has the Lipschitz property. The theorem is proved.

  ´8 pawe s `bC 1 e γs q N λ pdsq´bC 2We proceed as in the proof of Proposition 13. By the independence of P and N λ , Theorem 19. Under Assumptions L and C, if the functions h p and h d are Lipschitz then, as ε goes to 0, the family of processes pΩ ε,p ptq, Ω ε,d ptq, W ε ptqq converges in distribution to the unique solution pω p ptq, ω d ptq, wptqq of the relations almost surely, where, for wPK W , Π C w is the probability distribution defined in Proposition 18. Proof. The application of Theorem 12 is straightforward. All we have have to prove now is that ODE (2.23) has a unique solution.From the representation (2.22), for any 0ďwďw 1 , the random variables C w 8 p0q and C w 1 8 p0q can be constructed on the same probability space. The Lipschitz property of h a , with the constant L, gives d a pw, w 1 q

	$			ż t			ż	
	' ' & ω a ptq "	0	e ´αpt´sq	R 2 `ha pcqΠ C wpsq pdx, dcq ds, aPtp, du,	(2.23)
	' ' %	dwptq dt	" M pω p ptq, ω d ptq, wptqq ,
			def. " ˇˇE rh a pC w 8 p0qqs	´E " h a pC w 1 8 p0qq	ıˇˇˇď	LE	" |C w 8 p0q´C w 1 8 p0q| ı
									"ˇˇˇˇż 0
									" C 2 LE
	C 2 L d a pw, w 1 q	ď E	´8 e γs P "ż 0	"`β	pwX 1 8 psqq, βpw 1 X 1 8 psqq	‰	, ds	‰ 
									" βpw 1 ´wqE	"ż 0 ´8 e γs X 1 8 psq ds		"	β γ	pw 1 ´wq
									2.22)
	Hence, we have to calculate E rexpp´aX w 8 p0q´bC w 8 p0qqs, that is,
		Ψpa, bq	def. " E	" exp	ˆ´ż 0	ż 0 ´8 e γs N β,X w 8 pdsq ˙ .

E " exp ˆ´bC 2 ż 0 ´8 e γs N β,X w 8 pdsq ˙ˇˇˇN λ  " exp ˆ´ż 0 ´8 `1´e ´bC 2 e γs ˘βpX w 8 psqq ds ȧnd, with the help of Relation (2.14), we follow the same methods to obtain the desired result. ´8 e γs N β,X w 8 pdsq´ż 0 ´8 e γs N β,X w 1 8 pdsq ˇˇˇ . with (2.13), we have X w 8 ptq"wX 1 8 ptq for all t and, therefore, Let pwptqq, pw 1 ptqq be two solutions of ODE (2.23) with the same initial point; then ∆ a ptq def.

  Proposition 22 (Equilibrium of fast process). For wPN, the Markov process on N 2 of Definition 20 has a unique invariant distribution Π CQ w , and the generating function of C w is given by, for uPr0, 1s,

	E `uC w ˘" exp ˆ´λ	ż `8	p1´∆pu, s, wqq ds ˙(2.27)
			0		
	with			˜1`C	¸w
	∆pu, s, wq " ´1`pu´1qp 1 psq ¯C1		2 ÿ	pu´1q k p 2 ps, kq
					i"1
	p 1 psq " e ´γs and p 2 ps, kq "	β β`1´γk	ˆC2 k	˙`e ´γks ´e´pβ`1qs	˘.

  Definition 26 (Time evolution). The càdlàg process pU ptqq"pXptq, Zptq, Ω p ptq, Ω d ptq, W ptqq P RˆR `ˆR 2 `ˆK W , is solution of the following Stochastic Differential Equations (SDE), starting from some initial state U p0q"U 0 "px 0 , z 0 , ω 0,p , ω 0,d , w 0 q.dXptq " ´Xptq dt`W ptqN λ pdtq´g pXpt´qq N β,X pdtq , dZptq " p´γdZptq`k 0 q dt`k 1 pZpt´qqN λ pdtq`k 2 pZpt´qqN β,X pdtq, dΩ a ptq " ´αΩ a ptq dt`n a,0 pZptqq dt `na,1 pZpt´qqN λ pdtq`n a,2 pZpt´qqN β,X pdtq, aPtp, du, dW ptq " M pΩ p ptq, Ω d ptq, W ptqq dt,

	$
	'
	'
	'
	'
	'
	'
	&
	(3.7)
	'
	'
	'
	'
	'
	'
	%

  pω p , ω d , wq"M p pω p , wq´M d pω d , wq ´µw, where M a pω a , wq is non-negative continuous function, non-decreasing on the first coordinate for a fixed wPK w , and, M a pω a , wq ď C M p1 `ωa q, for all wPK W , for aPtp, du.

  y is the usual scalar product of z and z 1 PR `. The operator B F w is called the infinitesimal generator of the fast processes pX w ptq, Z w ptqq.

	B F w pf qpvq	def. "	´xBf Bx	px, zq`B´γdz `k0 ,	Bf Bz	px, zq
	with					
				Bz Bf	px, zq"	Bz i ˆBf	px, zq, iPt1, . . . , u ȧnd
	xz, z 1					

ds is a local martingale, where, for v"px, zqPRˆR `and, F `λ ´f px`w, z`k 1 pzqq´f puq ¯`βpxq ´f px´gpxq, z`k 2 pzqq´f puq ¯, (3.18)

  Definition 28 (Occupation measure). The occupation measure is the non-negative measure ν ε on r0, T sˆRˆR `such that Gps, x, zqν ε pds, dx, dzq Gps, X ε psq, Z ε psqq ds. Usually, it is enough to prove the weak convergence of the occupation measure for bounded Borelian functions G.

			ż			ż
	ν ε pGq	def. "				def. "	(3.19)
			r0,T sˆRˆR		r0,T s
	for any non-negative Borelian function G on r0, T sˆRˆR	`.
	The integration of Relation (3.15) gives the identity, for a"tp, du
	Ω ε,a ptq " ω 0,a	´α ż t	Ω ε,a psq ds`ż	t	n a,0 pZ ε psqq ds
			0		0
				`ż t	n a,1 pZ ε ps´qqεN λ{ε pdsq`ż	t	n a,2 pZ ε ps´qqεN β{ε,Xε pdsq.
				0		0
	An averaging principle is said to hold when the convergence in distribution
	ˆż t				
	lim εÑ0				

0 GpX ε psq, Z ε psqq ds ˙" lim εÑ0 ˜żRˆR `Gpx, zqν ε pds, dx, dzq " ˜ż t 0 ż RˆR `Gpx, zqΠ wpsq pdx, dzq ds ¸, (3.20) holds for a sufficiently rich class of Borelian functions G.

  3, is tight for the convergence in distribution. As ε goes to 0, any limiting point pω p ptq, ω d ptq, wptq, tăS 0 q, satisfies the ODEs, for aPtp, du, where, for wPK W , Π w is the unique invariant distribution Π w on RˆR `of the Markovian operator B F w . If K W is bounded, then S 0 "`8 almost-surely.

	$ ' ' & ' ' %	dω a dt dt ptq "M pω p ptq, ω d ptq, wptqq, ptq "´αω a ptq`ż RˆR dw `na,0 pzq`λn a,1 pzq`βpxqn a,2 pzq ¯Πwptq pdx, dzq,	(3.21)

  We now introduce another shot-noise process pR ε ptqq associated to the point process N I{ε,Sε defined by Relation (3.6) where Ipxq"x, xPR `. It is in fact a shot-noise process whose intensity function is pS ε ptqq, dR ε ptq " ´γR ε ptq dt{ε`N I{ε,Sε pdtq, (3.24)

					x ε ptqq,
	solution of the SDE				
	dS x ε ptq " ´Sx ε ptq dt{ε `Nλ{ε pdtq,
	where the initial point is xě0.				
	Proposition 32. For ξPR and xě0, the convergence in distribution of the processes
	lim εOE0	0 ˆż t	e ξS x ε puq du ˙" `E "	e ξSp8q ‰	t holds,
	and				
		sup		
		0ăεă1 0ďtďT		

30. If µ is a positive Radon measure on R `and γą0, the unique càdlàg solution of the ODE dZptq " ´γZptq`µpdtq, with initial point z 0 PR `is given by Zptq " z 0 e ´γt `żp0,ts e ´γpt´sq µpdsq. (3.22) In view of SDEs (3.2) it is natural to introduce a scaled version of these processes. Definition 31 (Scaled shot-noise process). For εą0, we define the shot-noise process pS E " e ξSεptq ‰ ă`8. (3.23) Proof. See Section 3.B of Appendix.

  uptq " pxptq, zptq, ω p ptq, ω d ptq, wptqq that follows, ptq " p´γ i z i ptq`k 0 q dt, iPt1, . . . , u, dω a ptq " ´αω a ptq dt`n 0,a pzptqq dt, aPtp, du, dwptq " M pω p ptq, ω d ptq, wptqq dt.

	$ ' dxptq " ´xptq dt,
	'
	' & ' ' ' % dz i and uptq " pxptq, zptq, ωptq, wptqq with,
	$ ' dxptq " ´xptq dt,
	' ' & dzptq " `´γzptq`C
	'
	'
	'
	%

k ˘dt, dωptq " ´αωptq dt`C n p1 ` zptqq dt, dwptq " C M p1 `ωptqq dt.

Lemma 34. Under the conditions of Sections 3.2, 3.2, and 3.2 and if the initial conditions are such that up0qďup0q, then for all tě0, uptqďuptq.

Proof. The result is clear for the function pxptqq and also for the functions pz i ptqq. For pω a ptqq, with aPtp, du, we have d pωptq´ω a ptqq " ´α pωptq´ω a ptqqq dt`pC n p1` zptqq´n 0,a pzptqqq dt, by Condition (3.11), we obtain C n p1` zptqq´n 0,a pzptqq ě C n p1`}zptq}q´n 0,a pzptqq ě 0.

Lemma 30 gives the relation e αt pωptq´ω a ptqq " pωp0q´ω a p0qq `ż t 0 e ´αs C n p1` zpsq´n 0,a pzpsqqq dsě0.

Finally, again with Lemma 30, Condition 3.2 and the last inequality, we have, for tě0, dpwptq ´wptqq " ´µpwpsq ´wpsqq dt `pC M p1 `ωpsqq ´Mp pω p psq, wpsqqq dt This leads to, wptq ď wptq.

  Any limiting point pω K ptq, w K ptqq of the family of processes pΩ

	With these two lemmas, Proposition 42 can be established.	
	Proposition 42. K ε ptq, W	K ε ptqq,
	when ε goes to 0, verifies, almost surely for all tě0, the ODE	
	$	

Borelian function F on R `ˆR 2 `, almost surely, ż T 0 F ps, x, zqν K pds, dx, dzq " ż T 0 F ps, x, zqΠ K^w K psq pdx, dzq ds,

where, for wPR `, Π w is the unique invariant distribution of the Markov process associated to the infinitesimal generator B F w defined by Relation (3.27).

  Proof. The existence of limiting points of the processes pΩ

	sition 42. If pX	w , Z								K ε ptq, W	K ε ptqq is due to Propo-
					w dist. " w	ż `8	e ´sN λ pdsq,
								0	
	and, with standard calculations, we obtain the relations
		E	" X	w ‰	"λw,	E	" `Xw ˘2ı	" ˆλ2 `λ 2	˙w2 ,	(3.32)
	and, consequently,							

w q is a random variable with distribution Π w , we have X

  of random measures pν εn q defined by Relation (3.19) is tight and Lemma 40 holds for pX εn ptqq and p}Z εn }ptqq.Relation (3.11) of the assumptions of Section 3.2 gives that n a,j pzqďC n p1`}z}q for zPR , aPtp, du and jPt0, 1, 2u. Lemma 37 applied to pX εn ptqq and p}Z εn }ptqq shows that the family of processes pΩ ε,a ptqq is tight, consequently that the same property hold for pW

	With Relations (3.15) and (3.16), we get, for aPtp, du and tě0,
	Ω ε,a ptq " ω 0,a	`ż t	e ´αpt´sq n a,0 pZ ε psqq ds
		0	
	`ż t	e ´αpt´sq n a,1 pZ ε ps´qqεN λ{ε pdsq`ż	t	e ´αpt´sq n a,2 pZ ε ps´qqεN β{ε,Xε pdsq,
		0			0
	and			
				t
				W ε ptq " W ε p0q`ż	M pΩ ε,p psq, Ω ε,d psq, W ptqq ds.
				0

ε ptqq due to the relation satisfied by M of Section 3.2. We have thus obtained the tightness of the sequence of processes pΩ εn,p ptq, Ω εn,d ptq, W εn ptq, ν εn q.

  We note that pX 1 ptqq is a functional of N λ and is therefore independent of the Poisson process P 2 . We now take care of the two terms of the right-hand side of the last expression.For the first term, if L β is the Lipschitz constant of the function β, we obtain and the convergence in distribution of the Markov process pX 1 ptqq implies the convergence of pE rX 1 ptqβpxX 1 pt´sqqsq to a finite limit when t goes to infinity. With Relations (3.35) and (3.36) and the expressions of pX w ptqq and pZ w ptqq, we deduce that for xě0, there exists a constant F x independent of t such that |E rZ x ptqβ pX x ptqqs ´E rZ y ptqβ pX y ptqqs| ď F x |x´y|

	ˇˇˇE	" β `yX 1 ptq ˘ż t	e ´γpt´sq P 2 ppβpxX 1 psqq, βpyX 1 psqq, dsq	ˇˇˇď
				0				
				E	" β `yX 1 ptq	˘ż t	e ´γpt´sq ˇˇβpxX 1 psqq´βpyX 1 psqq ˇˇds	
									0
						ď L β |x´y|E	" `βp0q`L β p1`xqX 1 ptq	˘ż t	e ´γpt´sq X 1 psqq ds		. (3.36)
									0
	Fubini's Theorem gives the relation,
			"	ż t					ż t
		E	X 1 ptq		e ´γpt´sq βpxX 1 psqq ds	"	e ´γs E	"	X 1 ptqβpxX 1 pt´sqq ‰	ds,
					0				0
					def. " E	" β `wX 1 ptq	˘ż t	 e ´γpt´sq P 2 pp0, βpwX 1 ps´qq, dsq	,
									0
	for x,yě0,						
	|Ψ t pxq´Ψ t pyq|					
			"					t	
			ď E	ˇˇβ `xX 1 ptq ˘´β `yX 1 ptq ˘ˇż	e ´γpt´sq P 2 pp0, βpxX 1 ps´qq, dsq
									0
	`ˇˇˇE e E " β `yX 1 ptq ˘ż t 0 " ˇˇβ `xX 1 ptq ˘´β `yX 1 ptq ˘ˇż

t pwq ´γpt´sq P 2 ppβpxX 1 ps´qq, βpyX 1 ps´qq, dsq ˇˇˇˇ. t 0 e ´γpt´sq P 2 pp0, βpxX 1 psqq, dsq  " E " ˇˇβ `xX 1 ptq ˘´β `yX 1 ptq ˘ˇż t 0 e ´γpt´sq βpxX 1 psqq ds  ď L β |x´y|E " X 1 ptq ż t 0 e ´γpt´sq βpxX 1 psqq ds  , (3.35) and, for the second term, if |y´x|ď1,

  For Aą0, the convergence of pν K εn q to ν K gives the convergence in distribution,

	lim nÑ`8	0 ˆż t	A^L εn psqG	´XK εn psq, Z	K ε kn psq ¯ds	"
				˜ż t 0	ż R 2 `A^pax`bz`cxzqGpx, zqν K pds, dx, dzq ¸. (3.38)
	Using again the upper-bound, Relation (3.29), for pX	K ε ptqq with Relation (3.23), and
	Proposition 49 for R ε , we obtain that

dx, dzq ˙ holds almost-surely for tPr0, T s.

  With Relation (3.39) and the integrability properties proven just above, we obtain that, for εą0, there exists n 0 such that if něn 0 , then the relation

	P ˆsup 0ďtďT	0 ˇˇˇż t	L εn puqG	´XK εn puq, Z	K εn puq ¯du
								´ż T 0	ż R 2 `pax`bz`cxzqGpx, zqν K pds, dx, dzq ˇˇˇˇě η ¸ď ε
	holds. Lemma 40 is proved.
	P ˆsup 0ďtďT	0 ˇˇˇż t	L εn puqG	´XK εn puq, Z	K εn puq ¯du
							´ż t 0	A^L εn puqG	´XK εn puq, Z	K εn puq ¯du ˇˇˇě η	˙ď C L T ηA	}G} 8 . (3.39)
	For any Aą0 and ně1, Cauchy-Schwartz's inequality gives the relation
				E	"ż T	A^L εn puqG	´XK εn puq, Z	 εn puq ¯du K	ď	a C L T }G} 8 .
					0		
	With Relation (3.38) and the fact that the left-hand side of (3.38) has a bounded second
	moment, by letting n go to infinity, we get the inequality
			« ż T	ż			ff
			E	0	R 2 `A^pax`bz`cxzqGpx, zqν K pds, dx, dzq	ď	a C L T }G} 8 .
	By letting A go to infinity, the monotone convergence theorem shows that
		« ż T	ż			
	lim AÑ`8	E	0	R 2		

G is bounded, with the elementary relation x"x^A`px´Aq `, xě0, then, for ně1, `A^pax`bz`cxzqGpx, zqν K pds, dx, dzq ff " E « ż T 0 ż R 2 `pax`bz`cxzqGpx, zqν K pds, dx, dzq ff ď a C L T }G} 8 . ă `8.

  Proof of Proposition 32. Let T 1 and T 2 be two stopping times bounded by N , θą0, and verifying 0ďT 2 ´T1 ďθ. Using Relation (3.46) and the strong Markov property of Poisson processes, we have that

		It is easily seen that pS x ε ptqq	dist. " pS x pt{εqqand thus with Relation (3.22), pS x ε ptqq can be
	represented as, for tě0,
					S x ε ptq	def. " xe ´t{ε `ż t	e ´pt´sq{ε N λ{ε pdsq " xe ´t{ε `Sε ptq.	(3.46)
								0
		We remind here the results of Proposition 32, that will be proved in the following
	paragraph. For ξPR and xě0, the convergence in distribution of the processes
								lim εOE0	0 ˆż t	e ξS x ε puq du	˙" `E "	e ξSp8q ‰	t holds,
			and			
								sup	E	"	e ξSεptq ‰	ă`8.
								0ăεă1 0ďtďT
	E	"ż T 2	e ξS x ε puq du		" εE	« ż T 2 {ε	e ξS x puq du ff
			T 1					T 1 {ε
					« ż pT 2 ´T1 q{ε	«	ż θ{ε	ffff
					" εE			e ξSpuq du
								0
								ď θe ξx E	" e ξSpN {εq ‰	E	"	e ξSp8q ‰	ď θe ξx E	" e ξSp8q ‰ 2 ,
	holds, by stochastic monotonicity of pSptqq of Relation (3.44).
		Aldous' Criterion, see Theorem VI.4.5 of [JS87] gives that the family of processes
								ˆż t	˙,
								e ξSεpuq du
								0
	is tight when ε goes to 0. For pě1 and a fixed vector pt i qPR p `, the ergodic theorem for
	the Markov process pSptqq gives the almost-sure convergence of
	lim εÑ0	ˆż t i 0	εÑ0 e ξSεpuq du, i " 1, . . . , p ˙" lim	0 ˜ε ż t i {ε	e ξSpuq du, i " 1, . . . , p	"
								`E "	e ξSp8q ‰	t
								pSpsqěyq ď P pSptqěyq .	(3.44)
	A classical formula for Poisson processes, see Proposition 1.5 of [Rob03] for example,
	gives the relation, for ξPR,
							E	" e ξSptq ‰	" exp ˆ´λ	ż t	`1´exp `ξe	´s˘˘d s ˙,	(3.45)
								0

in particular E rS x ptqs "x expp´tq`λ p1´expp´tqq. It also shows that pS x ptqq is converging in distribution to Sp8q such that, E " e ξSp8q ‰ " exp ˆ´λ ż `8 0 `1´exp `ξe ´s˘˘d s ˙ă`8. 0 e ξS S x pT 1 {εq puq du ff ď εE « e ξS x pT 1 {εq E i , i " 1, . . . , p ˘.

  dXptq " ´NI,X pdtq `W pt´qN λ pdtq´N I,βX pdtq, dZptq " ´NI,γZ pdtq `B1 N λ pdtq `B2 N I,βX pdtq, dΩ a ptq " ´αΩ a ptq dt`n a,0 pZptqq dt `na,1 pZpt´qqN λ pdtq`n a,2 pZpt´qqN I,βX pdtq, aPtp, du, dW ptq " ´NI,µW pdtq`A p N I,Ωp pdtq ´Ad 1 tW pt´qěA d u N I,Ω d pdtq,(3.51)where β, γ, µ are non-negative real numbers, B 1 , B 2 PN and, for aPtp, du, A a PN. The functions n a,i are assumed to be bounded by C n .For aPtp, du, the function I of N I,G for GPtX, βX, γZ, µW, Ω p , Ω d u, defined by relation (3.6), is the identity function Ipxq"x, xPR and N λ is a Poisson process on R `with rate λ. All associated Poisson processes are assumed to be independent. For a fixed w, the process of the fast variables pX w ptq, Z w ptqq on NˆN of the SDEs is the Markov process whose transition rates are given by, for px, zqPNˆN ,

	Definition 51. The SDEs for the discrete model are			
	$						
	'						
	'						
	'						
	'						
	'						
	'						
	&						
	'						
	'						
	'						
	'						
	'						
	'						
	%						
	Definition 52. px, zq ÝÑ	#	px`w, z`B 1 q λ, px´1, zq x,	ÝÑ	#	px, z´1q	γz,
								(3.52)
	and, for aPtp, du,					
	dω a dt	ptq " ´αω a ptq`ż			

px´1, z`B 2 q βx. Theorem 53 (Averaging Principle for a Discrete Model). If the assumptions of Definition 51 are verified, the family of scaled processes pW ε ptqq associated to Relations (3.51) is converging in distribution, as ε goes to 0, to the càdlàg integer-valued process pwptqq satisfying the ODE dwptq " ´NI,γw pdtq`A p N I,ωp pdtq´A d 1 twpt´qěA d u N I,ω d pdtq, NˆN pn a,0 pzq`λn a,1 pzq`βpxqn a,2 pzqq Π wptq pdx, dzq, where Π w is the invariant distribution of the Markov process of Definition 52.

Table 4

 4 Dw eq , @w 0 ăw eq , lim

	LTD (long-term depression)	@w 0 , lim tÑ`8	wptq " 0	p `8 ă p bif p 0 ě p bif p stable ă p bif
	LTP (long-term potentiation)	@w 0 , lim tÑ`8	wptq " `8	p `8 ě p bif p 0 ă p bif p stable ă p bif
	UFP (unstable fixed point	wptq " 0 wptq " tÑ`8 and @w 0 ąw eq , lim tÑ`8 `8	p `8 ě p bif p 0 ě p bif p stable ă p bif
	SFP (stable fixed point)	Dw eq , @w 0 , lim tÑ`8	wptq " w eq	p `8 ă p bif p 0 ă p bif
					p stable ě p bif
	MFP (multiple fixed points)	Other behaviors	Complementary set

.1: Different behaviors, theoretical definitions and numerical estimations.

Table 4

 4 

	not	SFP if not

.2: Different pairing schemes lead to diverse dynamics for an excitatory synapse.

pairing schemes lead to diverse dynamics for an inhibitory synapse.

  

	Symmetric LTD Symmetric LTP	Hebbian	Anti-Hebbian
	PA*	LTD	LTP	LTD if A PA 0 ă0 LTP if A PA 0 ą0
				SFP if not	UFP if not
	PNS/PNR*	LTD	LTP	LTD/SFP	LTP/UFP
	Table 4.3: Different				

  PNS 3 ą0, we have lim tÑ`8 wptq " `8. Reciprocally, if A PNS 1 ą0 and A PNS 3 ă0, we have lim tÑ`8 wptq " 0.

	A PNS 1	and A PNS 3	are of the same sign, f PNS 1	has no positive roots. Therefore, if
	A PNS 1 ą0 and A If A PNS 1 and A PNS 3	are not of the same sign, f PNS 1	has a unique positive root w PNS .
	Then, if A PNS 1 ă0 and A PNS 3 ą0, w PNS is a stable fixed point and A PNS 1 ą0 and A PNS 3 ă0, it is
	an unstable fixed point.	
	Case ν ą 0			
	We have f PNS p0q " A PNS 0	and lim wÑ`8 f PNS pwq " signpA PNS 1 qˆ8
	Similarly as for ν"0, if A PNS 0	and A PNS 1

  In particular, for xPS h and aě0, the variable T px, aq is finite.Proof. Note that, for any tě0, the monotonicity property of h gives the relation

				* ˙ds ě a	,
	if xPS h and T px, aq def. " 0 if xPSzS h , with the convention hp`8q"0.
	Lemma 60. Under Assumptions A-1 and A-2-a, if xPS h , then
	lim tÑ`8	0 ż t	Φ ˆż h ps´uq ˙mpduq ds " `8.
	ż			ż
	hpt´uqm x pduq ď	hp´uqm x pduq ă `8,
	p´8,0q			p´8,0q
	and with Lebesgue's Theorem we obtain the identity
				ż
	lim tÑ`8	p´8,0q

  Hawkes processes have been introduced by Hawkes in 1974 in[Haw71] as a class of inhomogeneous Poisson processes N , whose stochastic intensity pλptqq depends on previous jumps, i.e through,

	pλptqq "	ˆΦ ˆżp´8,tq	hpt ´sqN pdsq ˙˙.
	The first Hawkes processes investigated were restricted to affine activation function Φ
	of the form,		
		Φpxq " ν `βx,
	which have a nice representation in terms of age-dependent branching processes, see
	[Lew64; Ver70; DV03]. The condition of existence and uniqueness of stationary Hawkes
	process in this case is		
		ż `8	
		β	hpsq ds ă 1,
		0	
	see [HO74].		

MSNs as integrated-and-fire neurons with two types of synaptic plasticity at corticostriatal synapses.

  STDP applied at corticostriatal synapses. Synaptic weight update ∆W as a function of ∆t, using an exponential function, parametrized by A post´pre , for the change after a post-pre pairing (in orange) and A pre´post for pre-post pairings (in purple), with exponential decay τ s . Two examples of STDP are presented, asymmetric Hebbian STDP (dashed line) and anti-Hebbian STDP (solid line).

	Figure 1.1: (a) Integrate-and-fire model (M1) for the MSN. (a1) Electrophysiological data (unpublished)
	from a MSN, recorded during an AP protocol (presentation of current steps with in-
	creasing intensity). Membrane potential in mV, first spiking event (in black). (a2) R-I
	curve from the same MSN, mean membrane potential value as a function of current
	intensity (in blue). Linear regression to determine R (in green). (a3) Response of an
	integrate-and-fire model, using values fitted on experimental data, to an AP protocol
	(presentation of current steps with increasing intensity). Membrane potential in mV,
	first spiking event (in black). (a4) Firing rates as a function of current intensity, ex-
	perimental data (in blue), simulations with an integrate-and-fire neuron (green circle),
	exact FI curve for the integrate-and-fire model (green line).
	(b) Integrate-and-fire parameters, from experiments and previous models. Values for the
	integrate-and-fire model parameters, fitted to each electrophysiological experiment
	(black crosses). Mean values over all experiments (green circles, M1). Values from
	the integrate-and-fire parameters from [YAK11] (red triangles) and from Izhikevich
	models [Izh07] (brown triangles, M2).
	(c) (d) Non-associative potentiation to represent reward signals. Simple example of synaptic
	updates resulting from spike train from two input neurons (top, neuron 1 in green,
	neuron 2 in blue) and one output neuron (second line, in brown). Synaptic update
	resulting from asymmetric anti-Hebbian STDP only (third line) or with non-associative
	reward-LTP (in red, bottom line).

Parameters of different models for MSNs.

  

		70	-55	-80
	R pM Ωq	118.50	100	80
	τ pmsq	11.85		16
	C pnF q	0.098	0.05	0.2
	a pms ´1q		0.01	
	b pnF ms ´1q		-0.02	
	d pnF ms ´1 mV q		0.15	
	Table 1.1:			

  Two mechanisms of synaptic plasticity are considered in the dynamics of the synaptic weight W (in blue): the STDP (in purple) and LTP related to the reward signal (reward-LTP) (in red). Reward-LTP is presented for rewarded patterns at MSN 1 and for non-rewarded patterns at MSN 2 . Example of the learning task (left), with test sessions and the training protocol (middle). N p "2 patterns A and B are presented to the network, with A being rewarded p`q and B non-rewarded p´q (for MSN 1 ). In the test sessions, below the MSN potential, are represented accuracy results (correct classification in green, wrong classification in red). Spiking activity of the cortical neurons (in green) are represented along with the membrane potential V of for the output neuron(s) (MSN).

	Schematic representation of the striatal
	network (right) with P "2 cortical neurons (in green), and three different models for
	MSN activity: (i) one striatal neuron (MSN) modeled as a non-linear IAF neuron (M2,
	in brown), (ii) two striatal neurons (MSN 1 in brown, and MSN 2 in purple) without
	collateral inhibition, (iii) two striatal neurons with collateral inhibition from MSN 2 to
	MSN 1 .
	5) of lateral
	inhibition.
	(c) Consequence of lateral inhibition when learning sequences of cortical inputs [Task 1] MaxAc-
	curacy as a function of the number of presented patterns N p , for asymmetric Hebbian
	and anti-Hebbian STDP, comparing linear IAF (M1) and non-linear Izhikevich (M2)
	models, in the absence (J"0) or presence (J"´0.5) of lateral inhibition.

(b) Advantages of lateral inhibition in learning all possible patterns for a small number of neurons. [Task 2] MaxAccuracy when learning all possible sequences for P neurons, for asymmetric Hebbian and anti-Hebbian STDP, comparing linear IAF (M1) and nonlinear Izhikevich (M2) models, in the absence (J"0) or presence (J"´0.[Task 2] Training done for 2000 patterns iterations, with test sessions every 5 iterations. [Task 1] Training done for 500 patterns iterations, with test sessions every N p iterations. Mean results computed over N "250 simulations with errors bars representing ˘SD{2. Statistical t-test from scipy.stats Python library; *: pă0.05, **: pă0.005, ***: pă0.0005.

  ptq " V eq `R ÿ

		ÿ	W i pt k i ´qe ´pt´t k i q{τ `RW ext	ÿ	e ´pt´t k ext q{τ .
	1ďiďP	t k i ďt		t k ext ďt

Parameters for the different phases of the learning task used in the math- ematical model.

  Hz λ MSN "5 Hz 4λ MSN "20 Hz λ MSN "5 Hz Table2.1: Anti-Hebbian STDP is present in all phases and each phase lasts for 500 iterations.

		Initial	Learning	Maintenance Relearning
	Reward	No	Yes	No	Yes
	Random Noise λ r 4λ MSN "20 Rate of Pattern Presentation η η m	1	η m	1

a function f is said to be càdlàg if, it is right continuous and has a left limit at every point t, f pt´q denotes the left limit of f at t.

On the spontaneous dynamics of synaptic weights in stochastic models with pair-based STDP

A Markovian approach to Hawkes processes

The following document will be decomposed as follows: a general introduction, a general presentation of my contributions, wo parts gathering a total of seven different chapters, each chapter corresponding to a publication, and a discussion. Each chapter will contain its own appendix and a local bibliography.1 A synaptic theory for sequence learning in the striatum

Region-specific anti-Hebbian plasticity subtend distinct learning strategies in the striatum
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N µ,i pdtq `Bp N Ωppt´q pdtq ´Bd 1 tW pt´qěB d u N Ω d pt´q pdtq,

where C 1 , C 2 PN and, for aPtp, du, B a PN and h a is a nonnegative function. For ξą0, N ξ (resp., pN ξ,i q) is a Poisson process on R `with rate ξ (resp., an i.i.d. sequence of such point processes). For aPtp, du, as before, the notation N Ωapt´q pdtq stands for P rp0, Ω a pt´qq, dts, where P is a Poisson process in R 2 `with rate 1. All Poisson processes are assumed to be independent.

Outside the leaking mechanism, the time evolution of the discrete random variable pW ptqq is driven by two inhomogeneous Poisson processes, one for potentiation and the other for depression with respective intensity functions pΩ p ptqq and pΩ d ptqq.

The scaling is done in an analogous way as in Section 2.2. Proof. All we have to prove is that if U p0qďU p0q and if τ is the first jump of either pU ptqq or pU ptqq, then U ptqďU ptq for tďτ . Our statement is then easily proved by induction on the sequence of jumps of both processes. Since pU ptqq and pU ptqq are governed by the deterministic ODEs of Lemma 34, the relation U ptqďU ptq holds for 0ďtăτ . The processes pW ptqq and pW ptqq being continuous, |W pτ q|"|W pτ ´q|ďW pτ ´q"W pτ q.

The instant of jump τ is the minimum of τ 1 , τ 2 and τ 2 , with

Since, for xďx, βpxqďβpxqďβpxq is a non-decreasing function and that XďX holds until the first jump, the inequality τ 2 ďτ 2 holds almost surely.

If τ 1 ăτ 2 , then Xpτ q"Xpτ ´q`W pτ ´qďXpτ ´q`W pτ ´q"Xpτ q.

For iPt1, . . . , u, Z i pτ q"Z i pτ ´q`k i pZpτ ´qq ď Zpτ ´q`C k "Zpτ q and Ω a pτ q " Ω a pτ ´q`n a,1 pZpτ ´qq ď Ω a pτ ´q`C n p1`}Zpτ q}q ď Ωpτ ´q`C n `1` Zpτ q ˘" Ωpτ q.

Thus we have U pτ qďU pτ q. The same arguments work in a similar way when τ 2 "τ 2 ăτ 1 .

In this case, we have Xpτ q"Xpτ ´q´gpXpτ ´qq ď Xpτ ´q"Xpτ q.

The last case τ 2 ă minpτ 2 , τ 1 q is not more difficult, since the components of pU ptqq do not experience jumps and those of pU ptqq have positive jumps due to N β,X . The proposition is proved.

The process pU ε ptqq is defined by the SDEs,

and with U ε p0q"U p0q"px 0 , z 0 , ω 0 , w 0 q. The infinitesimal generator B where e 1 "p1, 0q and e 2 "p0, 1q. Nearest-neighbor symmetric model (PNS)

In the nearest neighbor symmetric model, whenever one neuron spikes, the synaptic weight is updated by only taking into account the last spike of the other neuron, as can be seen in Figure 4.1 (top right). If the presynaptic neuron fires at time t pre , the contribution to the plasticity kernel is Φpt pre ´tpost q , where t post is the last postsynaptic spike before t pre and similarly for postsynaptic spikes.

The nearest neighbor symmetric rule leads to,

Nearest-neighbor symmetric reduced model (PNR)

Finally, for the nearest neighbor symmetric reduced scheme, only consecutive pairs of spikes are used to update the synaptic weight. The synaptic weight is updated at presynaptic spike time t pre only if there are no presynaptic spikes since the last postsynaptic spike. And similarly for postsynaptic spike times. See Figure 4.1 (bottom right). This rule leads to

A general formulation for pair-based rules with exponential kernels

All these pair-based rules can be represented by a system of the form

Appendix 4.A Computer methods

For each set of parameters, we have run several simulations, with different initial weight values uniformly taken in r0, w max s. We have tested the dynamics of the synaptic weight for the different pairing schemes defined before for a wide range of parameters. Simulations have been done using Python 3.X for the simple network of a presynaptic and a postsynaptic neuron. We used a discrete Euler scheme for the dynamics of the membrane potential X and the plasticity variables Z 1 and Z 2 . Whenever the synaptic weight was either 0 or reached the maximal value w max the dynamics was stopped, and the synaptic weight state recorded.

To compare different dynamics, synapses and pairing schemes, we perform, for each set of parameters, independent simulations and from this array of dynamics we compute several variables:

-The probability of diverging to infinity, p `8"P pW ε ptq" `8q, approximated by the proportion of simulations where the synaptic weight goes above w max .

-The probability of converging to 0, p 0 "P pW ε ptq"0q, approximated by the proportion of simulations whose synaptic weight goes below 0.

-The probability to have a stable fixed point defined by the complementary probability p stable "1´p `8´p 0 .

While varying B 1 and B 2 , we simulated P "500 neuronal networks for each condition with dt"0.0005. We also plot the temporal dynamics for specific values of B 1 and B 2 , typically used P "50 simulations for each scaling ε with dt"0.0002. The following parameters are fixed in the simulations γ 1 "γ 2 "β"λ"1.

Simulations were run on the INRIA CLEPS cluster and HPC resources from GENCI-IDRIS (Grant 2022-A0100612385), using GNU parallel (Tange, O. (2020, May 22).

GNU Parallel 20200522 ('Kraftwerk'). Zenodo. https ://doi.org/10.5281/zenodo.3841377).

4.B Slow-fast approximations, averaging principles

We have the scaled system, for εą0,

Approximations of pW ε ptqq when ε is small are discussed and investigated with ad hoc methods. The corresponding scaling results, known as separation of timescales, are routinely used in approximations in mathematical models of computational neuroscience, for example [KGH99].

We first need to define the processes pX w ptq, Z w 1 ptq, Z w 2 ptqq which follow the fast processes dynamics with a constant synaptic weight w and prove that a unique invariant distribution exists for the associated dynamics. This corresponds to the equilibrium of the process pX w ptq, Z w 1 ptq, Z w 2 ptqq such that

This is the purpose of Proposition 55.

Proposition 55 (Equilibrium of fast processes). For K"pK ij , i, jPt1, 2uqPt0, 1u 2ˆ2 , γ 1 , γ 2 ą0, B 1 , B 2 PR, and each wě0, the Markov process pX w ptq, Z w 1 ptq, Z w 2 ptqq solution of (4.4) has a unique stationary distribution Π K w on R `ˆR 2 .

Proof. See Proposition 25 of [RV21a].

Theorem 56 (Averaging principle).

There exists S 0 Pp0, `8s such that, when ε goes to 0, the process pW ε ptq, tăS 0 q is converging in distribution to pwptq, tăS 0 q, solution of the equation

where Π K w is defined in Proposition 55.

Proof. See [RV21c] and [RV21a].

4.C Comparison to classical computational models

In this section, we compare averaging principles for STDP rules leading to Relation (4.5) with the results of [KGH99] in the all-to-all pair-based scheme.

The asymptotic behavior of the synaptic weight dynamics, Relation (4) of [KGH99], is a consequence of a similar slow-fast argument,

Φpsqr µps, tq ds, (4.6)

where, r Φpsq represents the STDP curve; r µps, tq"ăS 1 pt`sqS 2 ptqą, the correlation between the spike trains.

The chain starting from the empty state

We now study the Markov chain pX 0 n q with transition kernel K defined by Relation (5.14) when the initial state empty, i.e. it is the constant sequence equal to `8, i.e. X 0 0 "p`8q. This initial state corresponds to the case of an isolated point at time 0 without any point before that, i.e. on the time interval p´8, 0q.

This Markov chain has the same distribution as the sequence pX 0 n q defined by, for ně1, X 0 n "pX 0 n , X 0 n´1 , X 0 n´2 , . . . , X 0 2 , X 0 1 , `8q, (5.16)

where the sequence pX 0 n q is defined Relation (5.15). We denote by pT 0 n q is the corresponding non-decreasing sequence of points defined by T 0 0 "0 and, for ně1,

Proposition 68. Under Conditions A-1, A-2 and A-3, there exists νą0 and β 0 ą0 such that, αβ 0 ă1 and almost surely for all ně1,

and consequently, the process

This proposition shows in particular that the sequence of points of the solution N m of Relation (5.7) with m"δ 0 is a point process on R, the sequence pT 0 n q converges almost surely to `8.

Proof. Conditions A-2 and A-3 gives the existence νą0 and β 0 such that αβ 0 ă1 and the relation Φpxqďν`β 0 x holds for all xě0. Equation (5.15) gives, for ně1,

with the notation, for xě0, Hpxq"

ż `8

x hpsq ds and α"Hp0q.

By using Inequality (5.17) for the index n´1 and by adding these relations, we get

5.A General results and definitions on point processes

Point Processes

We recall the notations on point measures and the associated random variables, the point processes used throughout this paper. See [Nev77], Chapter 1 and 11 of [Rob03], and [Daw93] for a general introduction on random measures.

If HPtR, R ´u, we denote by C c pHq the space of continuous functions on H with compact support and M p pHq, the set of Radon point measures on H, that is positive Radon measures carried by points, for mPM p pHq then m"

where δ x is the Dirac measure at xPH and S is a countable subset of H with no limiting points in H. We may also represent N as the sequence px, xPSq of its points. If A is a subset of H, we denote by mpAq "

the number of points of m in A. A point measure m is simple if mptxuqPt0, 1u, for all xPH. The space M p pHq is endowed with the topology of weak convergence.

If mPM p pR ´q, the point process q m on R `defined by ż `8

for any non-negative function f on R `.

Stationary point processes

If m is a simple point measure on R, the points of m are enumerated by an increasing sequence pt k pmq, kPZq, numbered so that the relations t ´1pmq ă t 0 pmq ď 0 ă t 1 pmq ă ¨¨¨(5.31) hold, with the convention that t k pmq"`8 if there are less than kě1 points of m in R `, and similarly on R ´. The flow of translation operators pθ t q on M p pRq is defined by, for tPR and mPM p pRq, ż

for any non-negative Borelian function f on R.

A distribution on M p pHq, an element of the set PpM p pHqq, is defined as a point process on H.

Definition 78 (Stationarity).

A point process N on R is stationary with intensity λą0, if the random variable N pr0, 1sq is integrable and EpN pr0, 1sqq"λ, and if its distribution is invariant by translation, i.e. for tPR, θ t pN q dist.

" N , where θ t is the translation operator defined by Relation (5.32). b. hpxq " expp´x{αq.

Branching Processes

[DLO19]

Table 5.1: Overview of works on the existence of stationary Hawkes processes.

is sufficient to prove the existence and uniqueness of the stationary version of the Hawkes process. Proofs based on contraction arguments are problematic when looking at inhibitory connections. Other techniques have been developed to circumvent these problems, but always need some additional (sometimes strong) assumptions.

In [BM96], renewal theory is used to investigate Hawkes processes, with finite memory. This approach has been extended in [Gra19;Raa19;Cos+20]. It is also possible to limit the influence of intensity rate to the last jump of the Hawkes process as done in [HL17].A recent study [RDL20] has added a refractory effect to prevent explosion in the study of non-linear Hawkes processes.

To go further, it is interesting to see Hawkes processes, as Markov process in general state spaces, either using counting processes [DLO19] or Markov theory in