
HAL Id: tel-03640545
https://theses.hal.science/tel-03640545v1

Submitted on 13 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modal approach to the dynamics of optical frequency
combs and applications

Matthieu Ansquer

To cite this version:
Matthieu Ansquer. Modal approach to the dynamics of optical frequency combs and applications.
Optics [physics.optics]. Sorbonne Université, 2022. English. �NNT : 2022SORUS033�. �tel-03640545�

https://theses.hal.science/tel-03640545v1
https://hal.archives-ouvertes.fr


Thèse de Doctorat de
Sorbonne Université

présentée par

Matthieu ANSQUER

le 02/02/2022

pour obtenir le grade de Docteur de Sorbonne Université
sur le sujet:

Approche modale de la dynamique des peignes
de fréquences et applications

Modal approach to the dynamics of optical frequency
combs and applications

Membres du jury :

Alfredo De Rossi Rapporteur
Daniele Fausti Rapporteur
Agnès Maitre Membre du jury
Simon Pigeon Membre du jury
Valentina PARIGI Membre invité
Fabien Bretenaker Membre invité
Nicolas TREPS Directeur de thèse





A mon père avec qui, parmi tant d’autres, j’aurais aimé partager cette aventure.





Abstract

The main focus of this manuscript is the investigation of the dynamics of optical
frequency combs. Based on a spectral modal decomposition of the electric field, a
full characterization of the laser dynamics is achieved by measuring the fluctuations
on the four main laser parameters: the intensity, the carrier-envelope offset (CEO),
the central frequency and the repetition rate. Two different experimental schemes are
investigated and compared in terms of sensitivity. The intensity related dynamics is
also studied. Based on a simple model, we demonstrate that the main source of noise
is the pump laser via its intensity fluctuations. This noise induces phase noise, and
especially CEO noise, via the fluctuations of the center of the spectrum. The coupling
parameter between both quantities is the residual group velocity dispersion of the laser
which has been evaluated experimentally. In a second time a machine learning protocol,
called reservoir computing, is investigated. Such protocol is used as a tool for studying
the laser dynamics. In addition, the optical frequency comb, studied in the first parts,
is used as a hardware for the implementation of a photonic reservoir computing. The
long term objective of the experiment is to go toward quantum reservoir computing.
Consequently, a source of quantum states is developed. Based on a PPKTP waveguide,
multimode squeezed states are produced at the scale of the laser pulses. Such states
can be implemented in the reservoir computing protocol to test the capacity of such
configuration compared to the classical approach.

L’objectif principal de ce manuscrit est l’étude de la dynamique des peignes de fréquence
optiques. Sur la base d’une décomposition modale spectrale du champ électrique, une
caractérisation complète de la dynamique du laser est réalisée en mesurant les fluc-
tuations des quatre principaux paramètres du laser : l’intensité, le décalage porteuse-
enveloppe (CEO), la fréquence centrale et le taux de répétition. Deux schémas ex-
périmentaux sont étudiés et comparés en termes de sensibilité. La dynamique liée à
l’intensité est également étudiée. Sur la base d’un modèle simple, nous démontrons que
la principale source de bruit est le laser de pompe via ses fluctuations d’intensité. Ce
bruit induit un bruit de phase, et surtout un bruit CEO, via les fluctuations du cen-
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tre du spectre. Le paramètre de couplage entre ces deux quantités est la dispersion de
la vitesse de groupe résiduelle du laser qui a été évaluée expérimentalement. Dans un
deuxième temps, un protocole d’apprentissage automatique, appelé "reservoir comput-
ing", est étudié. Ce protocole est utilisé comme outil pour étudier la dynamique du
laser. En outre, le peigne de fréquence optique, étudié dans les premières parties, est
utilisé comme support pour la mise en œuvre d’un réservoir photonique. L’objectif à
long terme de l’expérience est d’aller vers un réservoir quantique. Par conséquent, une
source d’états quantiques est développée. Sur la base d’un guide d’ondes PPKTP, des
états comprimés multimodes sont produits à l’échelle des impulsions du laser. Ces états
peuvent être utilisés dans le protocole de réservoir computing afin de tester la capacité
d’une telle configuration par rapport à l’approche classique.
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Introduction

Light is a widely spread and powerful tool in experimental physics. It has been recently
confirmed with the Nobel prize in optics in 2017, for the observation of gravitational
waves with the gravitational interferometers LIGO and VIRGO [1], as well as in 20181,
for the development of optical tweezers [2]. One field of predilection of light is metrology.
Light is particularly adapted for the measurement of lengths or distances as illustrated
by the precise measurement of the distance earth-moon down to a millimeter [3]. Many
of the milestones in metrology have been achieved thanks to the development of one
particular light source: the laser [4]. In metrology, lasers are used in many different
ways. For example, the coherence of this source of light can be used to perform inter-
ferometric measurements, such as in the gravitational interferometers. Lasers can also
serve as frequency reference in spectroscopy experiments [5]. Additionally, pulsed lasers
can be used to perform time-of-flight measurements in ranging experiments, as it is the
case with the measurement of the distance between the earth and the moon.
Various laser architectures, including pulsed lasers, have been developed depending on
the applications. In particular, among other pulsed laser sources, mode-locked femtosec-
ond lasers, or optical frequency combs (OFCs), illustrated themselves as an ubiquitous
tool in metrology for the past 20 years. Those lasers are composed of many equally
spaced individual frequency lines, forming the teeth of the comb. In the temporal do-
main, this particular structure leads to the production of ultra-short pulses of the order
of a few femtoseconds [6]. They were originally used to transfer the excellent spectral
properties of the optical atomic clocks to the microwave frequency domain [7, 8]. Since
then, they have found applications in numerous fields, such as tests of fundamental
physics [9, 10, 11, 12], atomic and molecular spectroscopy [13, 14], time or frequency
transfer [15, 16, 17], ranging measurements [18, 19] or astrophysics [20].
Since frequency combs are widely employed as tools in experiments, understanding their
dynamics, i.e. the noises affecting their properties, is essential. It contributes to the
development of ultra-stable sources which are necessary to prevent the laser stability
from limiting the precision of the measurements. To fully characterize the laser dynam-
ics, the investigation of the noise sources as well as the coupling mechanisms between

1By coincidence, I am writing those lines the precise day of the announcement of the Nobel prize
in physics 2021. Too bad its not for quantum optics, another time.
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those sources and the different laser parameters is critical. Such investigation allows for
the understanding of the noise path through the laser and thus the identification of the
physical knobs to act on in order to improve the light source. However, this study can
be cumbersome as, most of the time, a specific setup must be employed to character-
ize each laser parameter individually, leading to bulky and complicated experimental
setups.

In this thesis, an analysis technique to characterize the dynamics of optical frequency
combs with a single setup is presented. By the mean of tools borrowed from the field of
quantum optics, interferometric measurements are developed to fully characterize the
fluctuations of the laser parameters. In a detection scheme, the ultimate precision on
the measurement of those laser parameters is limited by the quantum nature of light.
Such limit is called standard quantum limit. In this work, two different interferometer
configurations are considered, based either on a homodyne or on a heterodyne detec-
tion. Both configurations are compared in terms of sensitivity. As will be demonstrated,
under certain conditions, the ultimate sensitivity can be reached.
The analysis technique is applied to two different lasers, a Titanium-Sapphire based
femtosecond oscillator and a fiber-based optical frequency comb. The aim is to demon-
strate the versatility of our technique which can be applied to various sources of light
pulses.
Furthermore, the correlations between the Titanium-Sapphire laser noises are studied,
in particular the amplitude and phase ones. This experiment permits the understand-
ing of the intensity related dynamics, one of the fundamental mechanisms that governs
mode-locking.

Investigating the intensity related dynamics allows to understand how the pump laser
noise affects the laser parameters. Consequently, the knowledge gathered in the previ-
ous experiment is put into practice in an attempt to predict the laser dynamics from
the pump laser fluctuations. This prediction relies on a machine learning protocol, sim-
ulated on a computer, known as reservoir computing [21]. This protocol is particularly
well suited for the processing of time series [22] and has many advantages. In particu-
lar, the simplicity of its design makes it a good candidate for hardware implementation
and especially in photonics [23, 24]. Therefore, in this work is also presented an exper-
imental implementation of an optical reservoir computing protocol using a frequency
comb as a hardware. This architecture is based on the same tools as the ones used for
investigating the laser dynamics and borrowed from quantum optics. Its performances
are evaluated via the information processing capacity [25].
The long term perspective of this experiment is to implement quantum resources in
the machine learning protocol. As a matter of fact, optical frequency combs can also
be used in quantum optics to produce, for example, highly multimode entangled states

2
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[26]. Using such quantum resources in a reservoir computing protocol allows to move
toward quantum machine learning [27] and explore the capability of such architecture.
To this aim, a source of quantum states based on a parametric process is presented.
The objective is to produce squeezed-states of light in a single pass configuration to
exploit quantum correlations at the level of the laser pulses. It is worth mentioning that
the investigation of the stability of the laser is also critical for this type of applications.
Indeed, the production of quantum states can be deteriorated by classical noise, hence
the need to characterize the laser source.

Outline of the manuscript

The first part of this thesis introduces the notations, the mathematical tools and the
basic concepts needed along this work.
The first chapter is dedicated to the definitions of the notations needed to conduct our
investigation. In particular, the modal description of the field, a fundamental concept
in this study, is presented. Noises and fundamental limits in parameter estimation are
also discussed.
The second chapter focuses on the description of the physics behind optical frequency
combs. The master equation, describing the evolution of the pulses inside the laser
cavity, is derived. It aims at identifying the different processes at stake in the mode-
locking mechanism, at the origin of optical frequency combs. In addition, the effects of
ultrashort pulses propagation in materials are discussed.
The third chapter concentrates on the experimental techniques allowing to measure the
electric field of an optical frequency comb. Particularly, two techniques are considered
and their sensitivity compared.

The second part of this manuscript presents some experimental results obtained dur-
ing this thesis. Some of those results have been published in [28].
The fourth chapter presents the modal decomposition of the laser dynamics. Each
parameter of the laser is associated to a particular spectral mode. Using a spectrally
resolved detection, those detection modes are addressed and the laser dynamics re-
trieved with a single setup.
The fifth chapter analyzes the results found in the previous chapter. It exploits the
correlations between the laser parameters, as well as the noise sources, in order to
understand the coupling mechanisms in the laser cavity. A simple model allows to un-
derstand how the noise propagates from the sources to the laser parameters.
In the sixth chapter is presented an application of the analysis previously described
to a different laser source and a different experimental setup. The results presented
are preliminary and were obtained during a collaboration with Thales Research and
Technology.
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Finally, the last part of this thesis is dedicated to an application of optical frequency
combs for a machine learning protocol.
Chapter seven introduces the machine learning protocol, called reservoir computing,
and its experimental implementation. Preliminary results are presented and compared
to simulations.
The last chapter focuses on the experimental development of a source of quantum
states. The aim is to produce quantum correlations at the level of the laser pulses
in order to implement such source in the machine learning protocol presented in the
previous chapter.
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Chapter 1

Multimode description of the state of
light
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1.3.3 Continuous operators . . . . . . . . . . . . . . . . . . . . . . . 15
1.3.4 Wigner function . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.4 Noise and fundamental limits . . . . . . . . . . . . . . . . . . 17
1.4.1 Power spectral density . . . . . . . . . . . . . . . . . . . . . . 17
1.4.2 Fundamental limits in parameter estimation . . . . . . . . . . 20

This chapter aims at introducing the basic mathematical tools to describe the elec-
tromagnetic field and to characterize the fluctuations affecting its parameters, such as
its amplitude or its phase. We start by giving the mathematical expression of the elec-
tromagnetic field and its representations in terms of field quadratures, a notation that
will be used throughout this manuscript. We then present the modal description of the
electromagnetic field. This description is the cornerstone of this work as those modes
are used to conduct investigations all along this thesis. The quantum description of
the electromagnetic field is also presented. This description will be useful to compare
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1.1. THE CLASSICAL ELECTROMAGNETIC FIELD

the sensitivity of our measurements to the fundamental limits fixed by the quantum
properties of the light. Finally, we present the mathematical tools used to describe
the noise of the electromagnetic field. This work is based on the measurement and the
manipulation of the noise. Hence, mathematical tools are needed to characterize and
quantify it.

1.1 The classical electromagnetic field

1.1.1 Wave equation and plane-wave solution

The propagation of light in vacuum can be described by Maxwell’s equations from which
the wave equation can be derived. For an electric field E(r, t) it is given by

∆E(r, t)− 1

c2

∂2E(r, t)

∂t2
= 0, (1.1)

where ∆ stands for the three dimensional Laplacian operator. Note that all along this
thesis, the vectors will be represented by bold letters.
A typical solution of this equation is the so-called plane-wave solution

E(r, t) = E0e
i(k·r−ω0t+φ) + cc, (1.2)

where E0 is a constant vector, k is the propagation vector, ω0 is the pulsation of the
field, φ an arbitrary phase and cc stands for complex conjugate.

1.1.2 Fourier transform

At many occasions, it will be useful to describe the electric field in the frequency domain
rather than in the time domain. Both are related by the Fourier transform (FT)

Ẽ(r, ω) =
1√
2π

∫ +∞

−∞
eiωtE(r, t) dt. (1.3)

It can be noted that E(r, t) is a real quantity, thus[
Ẽ(r, ω)

]?
= Ẽ(r,−ω). (1.4)

Therefore, it is possible to describe the electric field only by its positive frequency
component, the analytic electric field defined by

E(+)(r, t) =
1√
2π

∫ +∞

0

e−iωtẼ(r, ω) dω. (1.5)

8



CHAPTER 1. MULTIMODE DESCRIPTION OF THE STATE OF LIGHT

The analytic signal is a complex quantity and is related to the real electric field by

E(r, t) = E(+)(r, t) + E(−)(r, t), (1.6)

where
[
E(+)(r, t)

]?
= E(−)(r, t). Finally, the analytic signal in the frequency domain is

defined by taking the Fourier transform of the analytic signal in the time domain

Ẽ(+)(r, ω) =
1√
2π

∫ +∞

−∞
eiωtE(+)(r, t) dt. (1.7)

1.2 Modal description of the electric field
In this section, we introduce the modal representation of the electric field. The light is
composed of many properties such as the polarization of the electric field, its frequency
or its spatial distribution. Each of those degrees of freedom can be associated to a mode
of the electric field.

1.2.1 Definition of a mode of light

A mode can be defined as a normalized solution of Maxwell equations. Because the
wave equation is linear, any linear superposition of solutions is also solution of the
wave equation. Hence, orthonormal basis can be formed using a set of optical modes
{fl(r, t)}. Those modes must satisfy the orthonormality and completeness relations at
any time t

1

V

∫
V

fl
?(r, t) · fl′(r, t) dr = δll′ , and

1

V

∫
V

fl
?(r′, t) · fl(r, t) dr = δ(3)(r− r′), (1.8)

V being the large volume containing the physical system, δll′ being the Kronecker delta
function, and δ(3)(r − r′) the delta function in a three dimensional space. With this
decomposition, any analytic field can be written

E(+)(r, t) =
∑
l

Fl fl(r, t), (1.9)

with Fl the complex amplitude of each mode fl(r, t).

1.2.2 Envelope modes

In this study, we wish to describe the propagation of optical fields corresponding to the
light emitted by a laser. In such systems, the field propagates in only one direction,
has a narrow spectrum around a central frequency ω0, and is slowly diverging in space.
Consequently, we model the field by a superposition of plane waves, as defined in

9



1.2. MODAL DESCRIPTION OF THE ELECTRIC FIELD

equation (1.2), and use the paraxial and narrow-band approximations. The paraxial
approximation implies that the wavevector is the same for all the individual waves,
noted k0. We set the direction of propagation along the z axis so that k0 = k0uz.
The narrow-band approximation implies that all the frequencies are close to a central
frequency ω0. Besides, we consider a single polarization component, and thus a linear
polarization, so that all the fields are scalar quantities. With those approximations, and
by factorizing the field (1.9) by a carrier plane wave, the electric field can be decomposed
on a new set of modes fl(r, t), called the envelope modes [29], according to

E(+)(r, t) = E0 e
i(k0z−ω0t)

∑
l

al fl(r, t), (1.10)

with ei(k0z−ω0t) the carrier plane wave. The envelope modes fl(r, t) are slowly varying
functions of time at the scale of the optical period 2π/ω0, and space at the scale of the
wavelength λ = 2π/k0. E0 is a normalization constant. It is defined such as al, the
amplitude of the field in the mode fl(r, t), has the dimension of the square-root of a
photon number. This will be relevant later for the quantum description of the electric
field. Thus, E0 is defined as

E0 =

√
~ω0

2ncε0V
. (1.11)

To further simplify, we restrict ourselves to a family of modes that can be factorized
in transverse and longitudinal modes. Thus, the mode basis is decomposed as follow

fl(r, t) = gl(r)× ul(z, t), (1.12)

where the gl(r) are the transverse (or spatial) modes and ul(z, t) the longitudinal (or
temporal) ones.

The light emitted by a solid state laser has a Gaussian spatial distribution. Hence, the
family of transverse electromagnetic mode (TEM) can be used to describe the spatial
profile of the laser beam. In this work, as we are not interested in spatial effects, we only
use the first transverse electromagnetic mode (TEM00) to describe the spatial profile of
the beam. Its expression is given by

g0(r = (ρρρ, z)) =
w0

w(z)
e−ρρρ

2/w2(z)e−ik0ρρρ
2/2R(z)eiφ(z), (1.13)

10
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where R(z) is the radius of curvature of the beam, φ(z) the Gouy phase, w0 its waist
and w(z) its width at a position z. They are given by

R(z) = z +
z2
R

z
, (1.14a)

w(z) = w0

√
1 +

z2

z2
R

, (1.14b)

φ(z) = arctan

(
z

zR

)
, (1.14c)

where zR is the Rayleigh length defined as

zR = π
w2

0

λ
. (1.15)

On the other hand, the temporal modes, which are slowly varying envelope, can
be written ul(z, t) = ul(τ = t − z/c), describing the propagation of the undistorded
envelope at the speed of light in the direction z. For simplicity we set z = 0, which
corresponds, for instance, to the position of a detector, so that τ = t. Consequently,
the electric field writes

E(+)(r, t) = E0g0(r)e−iω0t
∑
l

al ul(t). (1.16)

From this expression the longitudinal electric field, representing only the propagation
in time, can be written

E
(+)
L (t) = E0e

−iω0t
∑
l

al ul(t) = E0e
−iω0taL(t), (1.17)

where we defined aL(t) =
∑

l al ul(t). The temporal modes ul(t) are suitable for the
description of pulses of light as it will be the case later in the manuscript. The Fourier
transform of this field is given by

Ẽ
(+)
L (Ω) = E0

∑
l

al ũl(Ω) = E0ãL(Ω), (1.18)

where Ω = ω − ω0. In the rest of the manuscript, we will mainly consider this longi-
tudinal field and not the transverse one. Thus, we will drop the index L and refer to
it as E(+)(t). Note that if the variable r is present we refer to the total field E(+)(r, t)
given by equation (1.16).
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1.2.3 Quadratures of the field

Because E(+)(t) is a complex quantity, it can be separated in a real part and an imag-
inary one. Those quantities are called the quadratures of the electric field and are
defined by

E(+)(t) = E0e
−iω0ta(t) =

E0

2
[x(t) + ip(t)] e−iω0t, (1.19)

with
x(t) = a(t) + a∗(t), and p(t) = i(a∗(t)− a(t)). (1.20)

Thus the total electric field can be re-written

E(t) = E0e
−iω0ta(t) + cc = E0 [x(t) cos(ω0t) + p(t) sin(ω0t)] (1.21)

From the expression above it is clear that the two quantities x(t) and p(t) are in quadra-
ture hence the name quadratures of the electric field.

1.2.4 Energy, intensity and optical power

We conclude this section by presenting the expressions of the energy as well as the
optical intensity and the optical power. Those quantities are of prime interest as they
are easily accessible experimentally.
The optical intensity in W/m2 is related to the field amplitude by

I(r, t) = 2ε0nc|E(+)(r, t)|2, (1.22)

with n the optical index and ε0 the vacuum permittivity. The optical power in W is
found by integrating the intensity over a surface S. We remind that we are considering
a field propagating along the z axis. Hence the integration over the detector surface is
made on the coordinates ρρρ = (x, y) so that

P (z, t) =

∫
S

I(r, t) dρρρ. (1.23)

Finally, the energy, in J, contained in the electric field is obtained by integrating
the optical power over a detection time T

U(z) =

∫
T

P (z, t) dt. (1.24)

We will use those quantities all along this manuscript to describe the result of
measurements performed on the electric field.
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1.3 Quantum counterpart of the electric field
So far, all the quantities defined are classical quantities. However, in this manuscript, it
will be necessary to compare the sensitivity of our measurements to the ultimate bound
given by the quantum description of the electric field. Because of the normalization
(1.11) defined in the previous section, a straightforward way to do so is to replace the
quantities previously defined by quantum operators.

1.3.1 Quantization of the electric field

We start by replacing the quantities al and their conjugates a?l , introduced in the previ-
ous section, by the annihilation âl and creation â†l operators. Due to the normalization
(1.11), those operators obey the commutation relations [30][

âl, â
†
k

]
= δlk, and [âl, âk] = 0. (1.25)

It follows that the quantum electric field can be written as

Ê(+)(r, t) = E0e
−iω0t

∑
l

âl ul(t). (1.26)

It can be noted that the classical description given by equation (1.17) can be retrieved
by taking the average value of the electric field above.

In the quantum framework, light is best describe by an assembly of harmonic oscil-
lators. The excitations of these oscillators are the photons. Within this framework,
the total energy of the field is given by the Hamiltonian composed of the sum of the
contribution of each mode [30]

Ĥ =
∑
l

Ĥl =
∑
l

~ωl
(
N̂l +

1

2

)
, (1.27)

with N̂l = â†l âl the photon-number operator of the mode l. The eigenstates of this
photon number operator are the so called Fock states |Nl〉 so that N̂l|Nl〉 = Nl|Nl〉 with
Nl the number of photons in the mode l. Hence, the eigenstates of the Hamiltonian
(1.27) are the multimode Fock states |N1, . . . , Nl, . . .〉.
The annihilation âl and creation â†l operators are so called as they remove or create a
photon in the mode l. Thus, the action of those operators on the multimode Fock state
is

âl|N1, . . . , Nl, . . .〉 =
√
Nl|N1, . . . , Nl − 1, . . .〉,

â†l |N1, . . . , Nl, . . .〉 =
√
Nl + 1|N1, . . . , Nl + 1, . . .〉.
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1.3. QUANTUM COUNTERPART OF THE ELECTRIC FIELD

The quadratures operators x̂ and p̂ can also be defined similarly to (1.20). Those
operators are hermitian operators, thus correspond to observables. They are given by

x̂l = âl + â†l , and p̂l = i(â†l − âl). (1.28)

The quadrature operators satisfy the commutation relation [x̂l, p̂l] = 2i. The nor-
malization has been chosen so their variances, defined by Var [q̂l] = 〈q̂2

l 〉 − 〈q̂l〉2, (q̂ = x̂
or p̂), follow the Heisenberg inequality

Var [x̂l] Var [p̂l] ≥ 1. (1.29)

This inequality can be saturated for some specific quantum states. In the next
section we present a family of such states, the coherent states, used in this work.

1.3.2 The coherent, or quasi-classical, state

The coherent states are the quantum states that best represent the state of light emitted
by a laser well above threshold. They are also called quasi-classical states for that
particular reason. They can be obtained by applying the displacement operator D̂(αl)
on a vacuum state [31] so that

|αl〉 = D̂(αl)|0〉 = eαlâl
†−α?l âl |0〉. (1.30)

The coherent states are eigenvectors of the annihilation operator:

âl|αl〉 = αl|αl〉, (1.31)

with 〈N̂l〉 = Nl = |αl|2, the average photon number of the coherent state. From
equations (1.28) and (1.31) it follows that

Var [x̂l] = Var [p̂l] = 1. (1.32)

Consequently, the coherent states saturate the inequality (1.29).

Another property we wish to present is the photon number distribution of a coherent
state. We saw earlier that the average photon number of a coherent state is given by
〈N̂l〉 = |αl|2. On the other hand, its variance is given by

Var
[
N̂l

]
= 〈N̂2

l 〉 − 〈N̂l〉2 = 〈N̂l〉 = |αl|2. (1.33)

We see that the variance of the photon-number operator is equal to its mean value.
This property is characteristic of a Poisson distribution.
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CHAPTER 1. MULTIMODE DESCRIPTION OF THE STATE OF LIGHT

Figure 1.1 – Phasor represen-
tation of a coherent state. A
coherent state can be represented
in a 2D space. Its coordinates
in this basis are the quadratures
x̂ and p̂. For a coherent state
Var [x] = Var [x] = 1

A more general coherent state can be obtained by considering a coherent superposi-
tion of coherent states |αl〉

|ψ〉 = |α1〉 ⊗ · · · ⊗ |αl〉 ⊗ · · · . (1.34)

It can be shown that this state is intrinsically single mode [32]. It implies that there
always exist a basis in which the coherent state |ψ〉 can be written as a coherent state
|α〉 in one mode and vacuum in all the others:

|ψ〉 = |α〉 ⊗ |0, . . . , 0, . . .〉. (1.35)

From the definition above, the total photon number in the electric field N is given
by

N = |α|2 =
∑
l

|αl|2 =
∑
l

Nl (1.36)

For convenience, the coherent states can be represented on a two dimensional space
called a phasor as represented in Figure 1.1. This representation corresponds to a
coherent state of mean photon number |α|2 obtained from the vacuum state |0〉 by
applying the displacement D(α).

1.3.3 Continuous operators

Another notation that needs to be introduced is the representation in terms of contin-
uous operators [33]. They are defined by

â(t) =
∑
l

âl ul(t). (1.37)
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Those operators are, down to a constant, equal to the electric field (1.26). Hence,
from equations (1.25) and (1.37), the commutation relation between the continuous
annihilation and creation operators is given by[

â(t), â†(t′)
]

= δ(t− t′) (1.38)

We can use the same time and frequency decomposition as introduced in the classical
case so that

â(t) =
1√
2π

∫
dωâ(ω)e−iωt. (1.39)

With this notation, the commutation relation in the frequency domain is given by[
â(ω), â†(ω′)

]
= δ(ω − ω′). (1.40)

Finally, the continuous quadrature operators can be defined according to

x̂(t) = â(t) + â†(t), and p̂(t) = i(â†(t)− â(t)). (1.41)

1.3.4 Wigner function

The electric field can also be represented in terms of quadratures using the Wigner
function W (x,p) [34]. In the classical framework, the Wigner function would give
the probability to measure a set of quadratures x and p. However, in the quantum
framework, the quadratures operators do not commute. Thus, the Wigner function is
a quasi-probability distribution. The projection of W (x,p) on all quadratures except
one leads to the probability to measure it. This function is normalized such that the
integral over all quadratures is equal to 1:∫

dnx dnp W (x,p) = 1. (1.42)

Another important property of the Wigner function is that it can be negative [35]
which, even though not necessary, is a signature of the quantum nature of a state.

Gaussian states: In this thesis, we will only work with the so-called Gaussian states.
They correspond to states whose Wigner function is Gaussian. Coherent states intro-
duced in section 1.3.2 are part of the Gaussian states.
For a set of quadratures, their Wigner function is given by1 [36]

Wp

(
Q̂
)

=
1

(2π)M
exp

[
1

2

(
Q̂− 〈Q̂〉

)T
Γ−1

(
Q̂− 〈Q̂〉

)]
, (1.43)

where Q̂ = (x̂1, . . . , x̂M , p̂1, . . . , p̂M) is the vector of 2M quadratures, and Γ is the real

2M × 2M covariance matrix such that Γ = 1
2
〈Q̂Q̂T +

(
Q̂Q̂T

)T
〉.

1This definition is valid for a pure state.
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Covariance matrix: The covariance matrix can be expressed in terms of operators
fluctuations δq̂i = q̂i−〈q̂i〉. We define the x covariance matrix Γ̂x, and the p covariance
matrix Γ̂p as [

Γ̂x

]
ij

= 〈δx̂iδx̂j〉
[
Γ̂p

]
ij

= 〈δp̂iδp̂j〉 (1.44)

The diagonal elements correspond to the variance of each individual quadrature. The
off-diagonal elements correspond to the correlations between the different quadratures.
The total matrix Γ̂, is given by the x and p covariance matrices as well as their corre-
lation matrix [

Ĉ
]
ij

= 〈δx̂iδp̂j〉. (1.45)

Thus we have

Γ̂ =

(
Γ̂x Ĉ

ĈT Γ̂p

)
(1.46)

The covariance matrix contains all the second moments of the quadrature operators.
Consequently, for gaussian states, this matrix contains all the information about the
state. This tool will be very useful in this work as it allows to characterize simultane-
ously the fluctuations of each quadrature from a given basis as well as their correlations.

1.4 Noise and fundamental limits
Now that the notations to describe the electric field have been presented, we introduce
the mathematical tools to describe the noise affecting its parameters. The most common
way to characterize the fluctuations of a given quantity is to measure its power spectral
density. It corresponds to the distribution of the signal power over the frequencies
composing this signal. Then, we have a closer look at the fundamental limits imposed
by the presence of noise, i.e the smallest quantities that can be measured experimentally.

1.4.1 Power spectral density

Let us consider a signal i(t), of zero mean for simplicity, observed during a time T .
This signal can be, for example, a fluctuating parameter of the electric field we wish to
characterize. The total average power of the signal over all time is given by the time
average

P = lim
T→+∞

1

T

∫ T/2

−T/2
|i(t)|2 dt (1.47)

To pursue the derivation, we introduce the windowed signal iT (t) according to

iT (t) =

{
i(t) if t ∈ [−T/2 : T/2] ,
0 otherwise.

(1.48)

17



1.4. NOISE AND FUNDAMENTAL LIMITS

With this notation, equation (1.47) can be written

P = lim
T→+∞

1

T

∫ +∞

−∞
|iT (t)|2 dt. (1.49)

According to the Parseval-Plancherel theorem, the same definition can be written
in the frequency domain:

P = lim
T→+∞

1

T

∫ +∞

−∞
|iT (t)|2 dt = lim

T→+∞

1

T

∫ +∞

−∞
|̃iT (f)|2 df. (1.50)

The power spectral density (PSD) Wi(f) is defined as the integrand of the right
part of the expression above, so that

Wi(f) = lim
T→+∞

1

T
|̃iT (f)|2 (1.51)

This definition is not practical to use experimentally for data processing. Conse-
quently, we derive another expression relating the PSD to the variance of the signal,
which is easier to compute.
The first step is to rewrite |̃iT (f)|2 in terms of the Fourier transform of a time convo-
lution. Hence, equation (1.51) can be rewritten

lim
T→+∞

1

T
|̃iT (f)|2 = lim

T→+∞

1

T
FT {i?T (t) ∗ iT (t)}

=

∫ +∞

−∞

{
lim

T→+∞

1

T

∫ ∞
−∞

i?T (t− τ)iT (t) dt

}
e2iπfτ dτ. (1.52)

To go further, the ergodic hypothesis needs to be used. It implies that the time
evolution of a random signal observed for a sufficiently long time carry the same in-
formation as many realization of this signal. Hence, the statistical properties of this
signal can be derived from its time evolution. The consequence is that the time average,
as presented in equation (1.47), can be identified to the statistical average, noted 〈·〉.
Thus, the time average in equation (1.52) can be replaced by the statistical average.
The PSD is then written

Wi(f) =

∫ +∞

−∞
〈i?(t− τ)i(t)〉e2iπfτ dτ

=

∫ +∞

−∞
Ri(τ)e2iπfτ dτ

= R̃i(f), (1.53)

where Ri(τ) = 〈i?(t − τ)i(τ)〉 is the auto-correlation function of i(t). This relation,
known as the Wiener-Khinchin theorem, states that the PSD is the Fourier transform
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of the auto-correlation function.
Still, the auto-correlation is not always easy to compute experimentally. To go further,
we take the inverse Fourier transform of both sides which leads to

Ri(τ) =

∫ +∞

−∞
Wi(f)e−2iπfτ df. (1.54)

Finally, using the fact that the auto-correlation is equal to the variance for τ = 0
we have

Ri(τ = 0) = 〈|i(t)|2〉 =

∫ +∞

−∞
Wi(f) df. (1.55)

This expression shows how the PSD is related to the variance of a signal. To really be
practical in an experiment, a spectral link between the variance and the PSD is needed.
To this aim, the variance is calculated for a fixed frequency interval [f : f + ∆f ]. This
can be achieved by different means but the most common is to use a swept radio-
frequency signal mixed with the signal measured and to filter the resulting signal with
a bandwidth ∆f . It corresponds to the measurement of a spectrum analyzer. A different
implementation of this procedure will also be detailed in Chapter 4.
Using equation (1.55), the variance over the frequency interval ∆f is related to the
PSD according to

〈|i(t)|2〉[f :f+∆f ] =

∫ f+∆f

f

Wi(f) df. (1.56)

For a sufficiently small interval ∆f , the PSD can be considered constant over the
detection bandwidth. Consequently, the PSD can be directly related to the variance
calculated over a frequency range according to

Wi(f) =
〈|i(t)|2〉[f :f+∆f ]

∆f
(1.57)

Note thatWi(f) is defined for both positive and negative frequency values. However,
in practice, the signal measured are real. Thus, the negative frequencies do not contain
additional information. Hence, we define the single-sided PSD, Si(f) = 2Wi(f). This
quantity is defined for positive frequencies only and contains the same power as the
double-sided PSD Wi(f).

White Gaussian noise : We take a moment here to discuss a particular class of
noises called white Gaussian noises. Up to now, the equations have been derived with-
out specifying anything about the signal i(t). However, we will encounter in this thesis
noises that can be classified as white Gaussian noises. Gaussian means that the prob-
ability density function describing the noise statistic is a normal distribution of mean
µ and variance σ2. White means that there is no correlations between realizations of
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the signal taken at different times . A well known example of white Gaussian noise is
the shot noise of a field containing many photons2, due to the random time of arrival
of the photons on a detector. We will see that the definitions above allow to calculate
the PSD associated to that particular class of noises.

We keep the assumption that i(t) is a signal with zero mean. As seen in equation
(1.53), the PSD is given by the Fourier transform of the auto-correlation function. We
remind that the auto-correlation function is given by

Ri(τ) = 〈i?(t− τ)i(τ)〉. (1.58)

If i(t) is a white Gaussian noise, there is no correlations between realization of the
signal at two different times, thus the auto-correlation is given by

Ri(τ) = 〈|i(t)|2〉δ(τ) = σ2δ(τ), (1.59)

where δ(τ) is the Dirac function. Inserting this result in equation (1.53) leads to

Wi(f) =

∫ +∞

−∞
σ2δ(τ)e2iπfτ dτ = σ2, (1.60)

where we used the fact that the Fourier transform of a Dirac function is equal to one.
We find the well-known result that the PSD of a white noise is constant and equal to
the variance of the signal in case of a Gaussian noise. This expression will be useful
later in the manuscript.

1.4.2 Fundamental limits in parameter estimation

The previous section presents the tools to characterize noises. The question that can
now be asked is: what is the smallest quantity that can be theoretically measured in the
presence of noise? In this section we first present a simplified approach to determine
the lower bound for the estimation of the phase and the amplitude of the electric field.
Secondly, we introduce the Fisher information which allows to properly quantify the
smallest accessible value of a parameter measured with a given experimental setup.
Finally, we apply the calculation of the Fisher information to the determination of a
phase shift. We will see that, in the case of Gaussian states, the same result as the first
derivation can be found.

2In the low photon regime, the statistic is given by the Poisson distribution.
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CHAPTER 1. MULTIMODE DESCRIPTION OF THE STATE OF LIGHT

1.4.2.1 Amplitude and phase fundamental limits

In order to estimate the smallest phase and amplitude variation measurable, let us start
by writing the expression of the electric field whose amplitude and phase are slightly
deviated from their average values:

Ê(+)(t) = E0e
−iω0tâ(t)(1 + δε(t))eiδϕ(t), (1.61)

where δε(t) stands for the amplitude deviation and δϕ(t) the phase one. In this ex-
pression, a(t) is taken to be real. In section 1.2.3 we introduced the quadratures of
the electric field which are observables. Consequently, we assume that the electric field
(1.61) is measured via its quadratures. This can be achieved using, e.g a homodyne
detection as will be explained in section 3.3.
As the deviations are small, expression (1.61) can be expanded at first order. Taking
only the deviation from the mean value, i.e δÊ(+)(t) = Ê(+)(t) −

〈
Ê(+)(t)

〉
and using

equation (1.19) we have

δÊ(+)(t) = E0e
−iω0tâ(t)(δε(t) + iδϕ(t)) =

E0

2
[δx̂(t) + iδp̂(t)] e−iω0t, (1.62)

with δx̂(t) = x̂(t) − 〈x̂(t)〉 and the same for δp̂(t). Thus the amplitude and phase
deviations induce deviations of the quadratures according to

δx̂(t) = 2â(t)δε(t), and δp̂(t) = 2â(t)δϕ(t). (1.63)

In order to determine the minimal measurable deviation, the signal to noise ratio
(SNR) needs to be calculated. Experimentally, the quadratures x̂(t) and p̂(t) are af-
fected by noise coming from various sources. This noise is characterized by the variance
of the quadratures. Hence, the SNR, e.g for a measurement of the quadrature x̂(t), is
given by

SNR =
〈δx̂(t)〉√
Var [x̂(t)]

. (1.64)

The smallest measurable quantity corresponds to a SNR equals to one, that is when
the noise is as strong as the signal. Hence, using equations (1.63) and (1.64), we have

δεmin =

√
Var [x̂(t)]

2〈â(t)〉 , and δϕmin =

√
Var [p̂(t)]

2〈â(t)〉 , (1.65)

where δεmin and δϕmin are the smallest amplitude a phase deviations measurable in the
presence of noise

√
Var [q̂(t)].
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1.4. NOISE AND FUNDAMENTAL LIMITS

We are interested in determining the smallest phase and amplitude deviations mea-
surable. As can be seen from the expressions above, the limit is fixed by the noise
of the electric field via its quadratures. Consequently, the fundamental limit is set by
the quantum noise of the field. Therefore, to find this limit, we calculate the noise for
a coherent state of same power as the laser studied. The properties of the coherent
states introduced in section 1.3.2 combined to the definition of the continuous modes
(1.37) leads to Var [q̂(t)] = 1 and 〈â(t)〉 = |α| =

√
N . Hence, from (1.63) the minimal

measurable amplitude and phase deviations are given by

δεmin =
1

2
√
N
, and δϕmin =

1

2
√
N
. (1.66)

Note that some states of light allow to go beyond this limit. This is the case for the so
called squeezed states. As they are not used to perform any measurement in this work
we do not wish to go into more details.

1.4.2.2 Fisher information

The previous derivation has been made for a specific scenario. More generally ,the
Fisher information can be used to quantify the amount of information that can be
extracted from an observable, called estimator, about a parameter p. Knowing the
probability Pp(X) to get a given measurement result X when measuring the estimator
depending on p, the Fisher information is given by

IFisher = −
∫
∂2log(Pp(X))

∂p2
Pp(X)dX. (1.67)

The lower bound on the estimation of the parameter p for an unbiased3 estimator
is given by

pCRB =
1√

IFisher
. (1.68)

This bound is called the Cramèr-Rao bound (CRB) [37]. An estimator allowing to
reach that bound is called optimal. In Chapter 3, we will investigate two measurement
strategies and compare them with the mean of this optimal bound.

1.4.2.3 Parameter estimation

In this section we apply the Fisher information to the estimation of a parameter encoded
in the electromagnetic field. We will see that, in the case of Gaussian states, it allows
to find the same result for the estimation of a phase deviation as in section 1.4.2.1.

3Meaning that its expectation value is equal to the parameter p.
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CHAPTER 1. MULTIMODE DESCRIPTION OF THE STATE OF LIGHT

We start by making the assumption that the most general scenario is the measurement
of the quadratures of the electric field. As stated previously, the Wigner function (1.43)
can be used to describe such measurement. Hence, we apply the Fisher information
formula (1.67) to this quasi-probability distribution:

IFisher = −
∫ ∂2log

[
Wp

(
Q̂
)]

∂p2
Wp

(
Q̂
)
dQ̂, (1.69)

where p is the parameter we want to estimate, Q̂ is the vector of 2M measured quadra-
tures. After calculation, and under some assumptions, it can be shown [38] that equa-
tion (1.69) can be simplified into

IFisher =

(
∂〈Q̂〉
∂p

∣∣∣∣∣
0

)T

Γ−1

(
∂〈Q̂〉
∂p

∣∣∣∣∣
0

)
. (1.70)

We remind that the annihilation operator can be written as â(t) =
∑

l âl ul(t) where
the ul(t) form an othonormal basis. In this basis, the quadratures are written ql = âl+â

†
l

and ql+M = i(â†l − âl). In order to simplify the expression (1.70), we introduce a new
basis whose first element w1(t) is given by

w1(t) =
∂ap(t)

∂p

∣∣∣∣
0

∣∣∣∣∣∣∣∣ ∂ap(t)∂p

∣∣∣∣
0

∣∣∣∣∣∣∣∣−1

, (1.71)

where ap(t) = 〈ψp|a(t)|ψp〉 is the mean field, with |ψp〉 the state of the electric field in
which the parameter p is encoded.

∣∣∣∣∣∣ ∂ap(t)

∂p

∣∣∣
0

∣∣∣∣∣∣ is the L2 norm:∣∣∣∣∣∣∣∣ ∂ap(t)∂p

∣∣∣∣
0

∣∣∣∣∣∣∣∣2 =

∫
R

dt

∣∣∣∣ ∂ap(t)∂p

∣∣∣∣
0

∣∣∣∣2 . (1.72)

The mode w1(t) is called detection mode. The basis is completed with modes wj>1(t)
orthonormal to w1(t). In this basis the annihilation operators writes

â(t) =
∑
j

b̂jwj(t) with b̂j =

∫
R

dt w?j (t)â(t). (1.73)

Using this new basis to write the quadrature operators, it can be shown [39] that
the Fisher information of a Gaussian state is given by

IFisher = 4
[
Γ−1
]

1,1

∣∣∣∣∣∣∣∣ ∂ap(t)∂p

∣∣∣∣
0

∣∣∣∣∣∣∣∣2 , (1.74)

where [Γ−1]1,1 is the first diagonal element of the inverse covariance matrix in the basis
{wj(t)}.
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We can now apply this treatment to the determination of phase a shift δϕ. As in
section 1.4.2.1 we assimilate the field to a coherent state |α〉. We apply a phase shift
δϕ on this field such that the perturbed field is given by

|αδϕ〉 = D̂(αδϕ)|0〉 = exp
[
αeiδϕâ†(t)− α?e−iδϕâ(t)

]
|0〉. (1.75)

Thus, the mean field is given by

aδϕ(t) = 〈αδϕ|a(t)|αδϕ〉 = α(t)eiδϕ, (1.76)

with α(t) =
∑

l αlul(t). Because a coherent state is intrinsically single mode, it can
also be written α(t) = αu0(t), where u0(t) is the mean field temporal mode. Applying
equation (1.74), taking into account the fact that for a coherent state Γ = Id, where Id
is the identity matrix, we find IFisher = 4N , where N = |α|2 is the number of photons
in the incident field. Thus the smallest phase shift that can be measured is

δϕSQL =
1√

IFisher
=

1

2
√
N
. (1.77)

This bound corresponds the ultimate limit for phase measurement and corresponds
to the result found in section 1.4.2.1. It is usually referred as standard quantum limit
(SQL) [40, 41]
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Chapter 2

Optical frequency comb

Contents
2.1 Description of an optical frequency comb . . . . . . . . . . . 25

2.1.1 Naive description of a frequency comb . . . . . . . . . . . . . 26
2.1.2 Mathematical description of the comb electric field . . . . . . 28

2.2 Kerr-lens mode-locking . . . . . . . . . . . . . . . . . . . . . . 32
2.2.1 Kerr-lens effect . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.2.2 Master equation for Kerr-lens mode-locking . . . . . . . . . . 33
2.2.3 Resolution of the master equation and intracavity dispersion . 36

2.3 Dispersion of an optical pulse . . . . . . . . . . . . . . . . . . 37
2.3.1 Fourier transform pulses . . . . . . . . . . . . . . . . . . . . . 38
2.3.2 Propagation through a dispersive medium . . . . . . . . . . . 39
2.3.3 Numerical application . . . . . . . . . . . . . . . . . . . . . . 40

In the previous chapter we presented the mathematical tools to describe the electric
field. It was expressed in terms of envelope modes. In this chapter we will see how those
modes can be used to model optical pulses. This description is applied to the specific
case of optical frequency combs (OFCs). This particular class of lasers produces train
of ultra-short pulses. In the frequency domain, a succession of such pulses is composed
of numerous individual frequency lines which represent the teeth of the comb. We
present the physical process behind the generation of such ultrashort pulses. We restrict
ourselves to the so called Kerr-lens mode-locking corresponding to the laser used in this
work. Finally, we present some effects related to the propagation of pulses in materials.

2.1 Description of an optical frequency comb

In this section we first present a simplified description of the optical frequency comb.
The aim is to understand the physical process of mode-locking responsible for the
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2.1. DESCRIPTION OF AN OPTICAL FREQUENCY COMB

generation of ultrashort pulses in OFCs. We then derive the mathematical expression
of the electric field describing the light emitted by an OFC.

2.1.1 Naive description of a frequency comb

2.1.1.1 Continuous wave laser

A laser is essentially composed of two elements: a cavity, or resonator, and a gain
medium. The gain medium coherently amplifies the light passing through it. The
cavity allows the light to go back and forth along the same path every time. One of the
mirrors from the cavity is slightly transmissive, allowing light to escape it. This mirror
is called the output-coupler (OC). Steady state lasing is obtained when the gain per
round trip in the resonator is equal to the losses (introduced e.g by the OC). Besides,
steady state can only be achieved for certain frequency ωm of the electric field. Those
particular frequencies correspond to the electric field forming a standing wave inside
the resonator. Boundary conditions at the mirror interfaces impose that the resonating
frequencies are of the form

ωm = m
2πc

L
, (2.1)

where L is the cavity round-trip optical path length1. The laser can thus oscillate only
at those frequencies called optical modes of the cavity. The separation between two
frequencies ∆f = 1

2π
(ωm − ωm−1) = c

L
is called the free spectral range (FSR).

Finally, the frequency at which the laser actually operates is given by the loss and gain
spectral profiles. For example, if the spectral region for which the gain overtakes the
losses is really narrow compared to the FSR, only one frequency will be emitted leading
to a monochromatic wave as illustrated in Figure 2.1.

2.1.1.2 Optical frequency comb

On the other hand, if the gain and loss profiles are such that many modes can oscillate in
the cavity at the same time, pulsed operation can be achieved under a certain condition.
This condition is called mode-locking. We present here a textbook explanation of
this process and how it leads to the production of ultrashort pulses. Note that other
processes allow to produce (usually longer) pulses of light, such as Q-switching, but are
not studied in this thesis.

If we consider that N optical modes, of equal amplitude E0, separated by the FSR
of the cavity, oscillate inside the laser, the total electric field at the laser output can be

1We consider a ring cavity for the calculations in this chapter. Note that we specified optical path
because the length depends on the optical index of the cavity elements.
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CHAPTER 2. OPTICAL FREQUENCY COMB

Figure 2.1 – Spectra of two different laser losses and gain conditions. The
optical modes of the cavity (in dashed grey) are separated by the FSR, ∆ωFSR =
2πc
L
. The gain profile of the active medium is represented in red. The loss profile

is represented as a black line. The configuration on the left corresponds to a single
frequency operation. The region for which the losses are lower than the gain is really
narrow. Thus only one mode can oscillate. The configuration on the right has a broader
loss profile. Hence many modes can oscillate at the same time in the laser cavity.

written

E(+)(t) = E0

(N−1)/2∑
m=−(N−1)/2

eiφme−i(ω0+ωm)t, (2.2)

were φm is the phase of each optical mode and ω0 is an offset frequency, also called
carrier frequency (this designation will be justified later). If no assumption is made on
the phases φm, it can be shown [42] that the intensity I(t) randomly fluctuates around
the average intensity I(t) ∝ N |E0|2. On the other hand, if all the phases of the modes
are fixed so that φm = φ, the intensity is given by

I(t) ∝ |E0|2
sin2 (Nπt∆f)

sin2 (πt∆f)
. (2.3)

With this simple but explicit picture, it is possible to understand how ultrashort
pulses can be produced. By taking a discrete superposition of frequency modes, a
periodic train of pulses can be formed as illustrated by equation (2.3). This is true
provided that a constant phase relation exists between the modes. It is the mode-
locking condition. We will later present one of those mode-locking process, based on
the Kerr effect. The discrete frequency modes form the teeth of the optical frequency
comb. In the time domain, individual pulses of approximate duration ∆t = 1/(N∆f)
are evenly separated in time by Tr = 1/∆f = L/c. This period corresponds to the
repetition rate of the laser and is sometimes given in frequency according to fr = 1/Tr.
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The intensity at the top of each pulse is of the order of N2|E0|2 which corresponds to
an enhancement of a factor N of the average intensity. It can be noted that the more
modes oscillate in phase, the shorter and more intense the pulses produced.

2.1.2 Mathematical description of the comb electric field

The previous section introduced a simplified description of the optical frequency comb.
In this section, we derive the equations to properly characterize the OFC. We start
by the expression of the spectral modes forming the teeth of the comb. Then, based
on equation (2.2), we derive the field associated to the OFC. Finally, we discuss the
representation of a single pulse.

2.1.2.1 Spectral modes of the optical frequency comb

As seen previously, if the gain and losses conditions are suitable, many spectral modes
(or spectral lines) can oscillate in the cavity at the same time. Each of those modes ωm
will acquire a phase shift φ(ωm) due to the round trip in the laser cavity. The condition
for the modes to oscillate, is that their phase shift must be a multiple of 2π i.e

φ(ωm) = 2πm, m ∈ Z. (2.4)

This resonating condition is identical to equation (2.1). However, to describe a real
comb, the chromatic dispersion inside the cavity must be taken into account.

Dispersion: Dispersion comes from the frequency dependent refractive index n(ω) of
some of the cavity components2. To witness the effect of this dispersion, the round trip
phase, written

φ(ω) = Lk(ω) = L
ω

c
n(ω), (2.5)

with L the cavity length and k(ω) the wavenumber, can be Taylor expanded around
the carrier frequency ω0, according to

φ(ω) ' φ(ω0) + (ω − ω0)
∂φ(ω)

∂ω

∣∣∣∣
ω0

+ (ω − ω0)2 ∂
2φ(ω)

∂ω2

∣∣∣∣
ω0

= φ(0) + (ω − ω0)φ(1) + (ω − ω0)2φ(2), (2.6)

At first, only the two first terms will be considered as they are the most important
contributions. The quadratic term will be investigated later in section 2.3.

2This can be the case of the mirror, the crystal or other passive elements used for dispersion
compensation. Sometimes, even the dispersion of the air must be taken into account.
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Repetition rate and carrier-envelope offset: In equation (2.6), we have defined
a constant phase term φ(0) and a linear one φ(1). They are given by

φ(0) = φ(ω0) =
ω0

c
n(ω0)L =

ω0L

vφ
, (2.7a)

φ(1) =
L

c

(
n(ω0) + ω0

∂n(ω)

∂ω

∣∣∣∣
ω0

)
=
L

vg
, (2.7b)

were vg and vφ are respectively the group and phase velocity at the carrier frequency
ω0

3. The group velocity corresponds to the velocity at which the envelope of the pulse
propagates in a medium. On the other hand, the phase velocity corresponds to the
velocity of the carrier phase front at the frequency ω0. With those notations, the two
first terms of equation (2.6) can be rewritten

φ(ω) ' −ω0L

(
1

vg
− 1

vφ

)
+
ωL

vg
= −∆φCEO +

ωL

vg
, (2.8)

were ∆φCEO corresponds to a phase shift induced by the difference between group and
phase velocity due to chromatic dispersion. We will see in the next section, that this
term is responsible for a phase shift between the envelope and the carrier from pulse to
pulse, hence the name carrier-envelope offset (CEO).
Using equations (2.7) and (2.8), the resonating condition (2.4) can be written

−∆φCEO +
ωmL

vg
= 2πm ⇒ ωm =

vg
L

(2πm+ ∆φCEO)

= mωr + ωCEO, (2.9)

were ωm is the frequency of each spectral line, ωr = 2π vg
L
corresponds to the FSR of the

laser and ωCEO = vg
L

∆φCEO is the CEO frequency. This frequency is sometimes called
f0 as it corresponds to the frequency of the first tooth of the comb.

2.1.2.2 Electric field of the optical frequency comb

To write the electric field of the optical frequency comb, the expression of the spectral
modes ωm, given by equation (2.9), can be injected in equation (2.2). However, in
equation (2.2), we assumed that all the modes have the same amplitude. In principle
this is not true. Each mode ωm has a given spectral amplitude E(+)(ωm). In addition,
we assume that the mode-locking condition is satisfied, that is φm = φ. For simplicity
we take φ = 0. Thus the electric field of the comb is given by

E
(+)
comb(t) =

(N−1)/2∑
m=−(N−1)/2

E(+)(ωm)e−i(ω0+ωm)t, (2.10)

3Note that this is valid in the narrow-band approximation so that all the frequencies are close to
the central one ω0.
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The spectrum of the laser field is given by the Fourier transform of the expression
above. Hence, the electric field of the comb in the spectral domain can be written

Ẽ
(+)
comb(ω) = Ẽ(+)(Ω)

∑
m

δ(Ω− (mωr + ωCEO)), (2.11)

with Ω = ω − ω0 and were
∑

m δ(Ω − (mωr + ωCEO)) is the Dirac comb. This field
corresponds to a set of evenly separated spectral lines, modulated by a spectral am-
plitude centered around the frequency ω0, as represented in Figure 2.2. Note that, in
this expression, the spectral amplitude, Ẽ(+)(Ω) is a continuous function, while it was
discrete in equation (2.10). However, because the Dirac function is null except at the
frequencies ωm, this notation is equivalent.
We recover the field of the comb in the time domain by taking the inverse Fourier
transform of the expression above. It can be shown that

E
(+)
comb(t) ∝ E(+)(t) ∗

∑
k

δ(t− kTr)e−ik∆φCEO

∝ E0

∑
k

a(t− kTr)e−iω0(t−kTr)e−ik∆φCEO , (2.12)

with Tr = 2π/ωr and ∆φCEO = 2π
ωr
ωCEO. The symbol ∗ represent the convolution

product. In addition, we wrote the amplitude as E(+)(t) = E0a(t)e−iω0t to be consistent
with the notations introduced in the first Chapter. Equation (2.12) indicates that the
field of the comb can be expressed as a field E(+)(t), representing the field of an isolated
pulse, convolved with a Dirac comb

∑
k δ(t−kTr). It implies that this pulse is replicated

many times separated by Tr which is the repetition rate of the laser. In the rest of this
thesis, the field associated to a single pulse will be noted E(+)

pulse(t).

In conclusion, the same result as in section 2.1.1 is found. The superposition of
discrete frequency lines at the frequencies ωm = mωr + ωCEO, corresponding to the
teeth of the comb, allows to generate pulses if the mode-locking condition is satisfied.
In the time domain, the laser emits a train of pulses separated in time by Tr = 2π/ωr,
the repetition rate of the laser. Due to dispersion, the phase velocity, vφ is different
from the group one, vg. Hence, each pulse accumulates a phase shift ∆φCEO. This is
illustrated in Figure 2.2.

2.1.2.3 Pulse shape

In the previous section, we saw that the field of the OFC can be describe as the con-
volution of a single pulse E(+)

pulse(t), with a Dirac comb. Each pulse is composed of an
envelope a(t) and a carrier oscillating at the frequency ω0. Their expression is given by

E
(+)
pulse(t) = E0a(t)e−iω0t. (2.13)
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Figure 2.2 – Representation of the optical frequency comb in the frequency
domain and the train of pulses in the time domain. In the frequency domain
(left) the comb is composed of many individual frequency lines separated by the FSR
of the laser ωr. Due to chromatic dispersion, the lasing frequencies (in blue) are shifted
from the resonating modes of the cavity (in dashed grey) by the CEO frequency ωCEO.
In the time domain (right), the field is composed of a succession of individual pulses
separated by the repetition rate of the laser Tr = 2π/ωr. The carrier oscillation (in
blue) is shifted from pulse to pulse by ∆φCEO = ωr

2π
ωCEO.

This expression is similar to equation (1.17). Consequently, the description of the
electric field in terms of envelope modes is particularly well suited for the description
of optical pulses. In this framework, a(t) is the envelope mode, slowly varying in time
compared to the carrier frequency ω0. In principle, this mode can have any shapes.
The most commons are the Gaussian or the hyperbolic secant, which approximate the
best the shape of the pulses emitted by a mode-locked laser.
The Fourier Transform of this pulse is given by

E
(+)
pulse(Ω) = E0ã(Ω), (2.14)

this envelope mode in the frequency domain is the optical spectrum of the laser.

This decomposition in single pulses periodically repeated will be important in the
second part of this manuscript. Indeed, because the field of the comb is related to the
field of a single pulse according to equation (2.11) (or equation (2.12) ), characterizing
one impulsion is enough to fully characterize the optical frequency comb. By making
this assumption, and looking only at E(+)

pulse(t) and E
(+)
pulse(Ω), we restrict our investigation

to the effects affecting all the pulses in a same way.

2.1.2.4 Peak power

We use the opportunity of the definition of the laser pulse parameters to introduce a
new quantity, the peak optical power Ppeak. This quantity corresponds to the power at
the top of the pulse. It is related to average optical power Pavg defined in equation 1.23
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according to

Ppeak =
0.88

fr∆t
Pavg, (2.15)

where fr = 1/Tr is the repetition rate of the laser, ∆t is the full width at half maximum
(FWHM) duration of the pulse. This power depends on the shape of the pulses. The
factor 0.88 is valid for pulses with a temporal shape close to a sech2. For Gaussian
shaped pulses, this factor is 0.94.

2.2 Kerr-lens mode-locking
Now that the mathematical description of the electric field of an OFC has been intro-
duced, we take a deeper look into the mode-locking process allowing to create ultrashort
pulses. We restrict ourselves to a specific type of mode-locking. Our study concerns
passive mode-locking for which the locking between the modes is ensured by a sat-
urable absorber. Saturable absorber are passive nonlinear optical components whose
absorption decreases as the optical intensity increases. Thus, when an ultrashort pulse
circulates inside the laser cavity, the intracavity losses are modulated synchronously
with this pulse. Such modulation of losses synchronized with the pulses allows the
optical modes to be locked [42]. Interestingly, some optical components can behave like
saturable absorber, even though no real absorption occurs. This is the case in some
nonlinear medium subject to the Kerr effect. In this section, we first present the Kerr
effect and how it can behave as a saturable absorber. This physical process, known as
Kerr-lens effect, is at the origin of mode-locking in the laser studied in the second part
of this manuscript. Secondly, the equation describing the propagation of a pulse in the
laser cavity is introduced. This equation is called the master equation and has been
derived in [43].

2.2.1 Kerr-lens effect

Kerr effect: The optical Kerr effect is a third order nonlinear effect. It can be
described by a change of the nonlinear refractive index of a medium depending on the
laser pulse intensity. In a laser, this effect usually occurs in the active medium, the
laser crystal, used for the amplification. Formally, it can be written

n(r, t) = n0 + n2I(r, t), (2.16)

where I(r, t) is the intensity as defined in equation (1.22). In most cases, n2 < 0, there-
fore an increase in optical intensity induces an increase of refractive index proportional
to the instantaneous intensity. Due to this change of refractive index, the field acquires
a phase shift ∆φ(t) after propagation in a medium of length La, given by

∆φ(t) =
ω

c
n2I(t)La, (2.17)
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where we made the assumption that the medium is small enough so that the intensity
does not change when propagating through it. In solid-states lasers, such as the tita-
nium:sapphire (Ti:Sa), this effect is used to achieve mode-locking. The Kerr effect can
be used as artificial saturable absorber via the Kerr-lens effect.

Kerr-lens effect: As explained previously, mode-locking occurs when a periodic mod-
ulation of the laser losses is synchronized with the laser pulses. In frequency combs based
on the Kerr effect, this amplitude modulation can be achieved via a lensing effect known
as Kerr-lens mode-locking (KLM)4. As seen in equation (2.16), the Kerr effect locally
(in time and space) changes the refractive index of the medium. Hence, the medium
acts as a lens and leads to self-focusing in the laser cavity. To mitigate the losses,
different strategies can be applied. Among others, a slit can be used to introduce losses
for the un-focalized beam. This technique is called hard aperture KLM. The spatial
overlap between the lasing mode and the pump spatial profile can also be used. This
configuration is called soft-aperture KLM and corresponds to the laser investigated in
this work. The combination of the self-focusing and the mitigation of the losses leads
to intensity dependent losses. This process is called self-amplitude modulation and is
similar to the effect of a saturable absorber.

It can be noted that the Kerr effect leads to other effects such as self-phase modulation
(SPM) which, associated to group velocity dispersion (GVD), plays an important role
in the mode-locking process as will be seen later.

2.2.2 Master equation for Kerr-lens mode-locking

In this section, we introduce the equation describing the evolution of a pulse inside
the laser cavity, known as master equation. To keep it as concise as possible, we will
proceed by reviewing the different effects modifying the pulse during its propagation in
the laser cavity. All those effects will then be added up to write the master equation as
introduced in [42, 43]. Such perturbation approach can be understood as follows: we
start by rewriting the expression of the electric field

E(t) = E(+)(t) + cc = A(t)e−iω0t + cc, (2.18)

where the constant E0, from equation (1.11), has been integrated in A(t), the envelope.
Only the longitudinal field is considered to simplify the expressions.
Each component from the cavity is described by a transfer operator Tj so that the

4Other process can be used such as additive pulse mode-locking (APM) or nonlinear polarization
rotation (NPR)
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envelope after one round trip of duration Tr can be written

A(t+ Tr) =

(∏
j

Tj
)
A(t). (2.19)

Assuming that the action of each element is an infinitesimal perturbation, we can
write Tj ' 1 + dTj. Besides, if we assume that the evolution over one round trip is
small, expression (2.19) can be developed, leading to

A(t+ Tr) = A(t) + Tr
dA(t)

dt
'
(∏

j

(1 + dTj)
)
A(t) ⇒ Tr

dA(t)

dt
' A(t)

∑
j

dTj.

(2.20)
With the above expression, the master equation can be determine from the infinites-

imal operators dTj of each element of the laser cavity which we derive now.

2.2.2.1 Laser amplification

The first element that needs to be taken into account is the gain from the laser amplifier
of length La. This amplifier can have many forms. In our study, the gain medium is a
crystal of titanium:sapphire, optically pumped by a continuous laser at 532 nm. This
gain, G(ω), depends on the frequency and can be modeled by [42]

G(ω) =
g

1− iω−ω0

δωa

, (2.21)

where δωa is the gain bandwidth, and g the maximum gain reached at the frequency
ω0. The effect of the gain is to amplify the field as it propagates in the amplifier so
that the In and Out relation is

A

(
t+

La
c
n

)
= A(t)eG(ω)La , (2.22)

with n the index of the optical medium. Consequently, after one trip across the ampli-
fier, assuming a small gain, we can write

eG(ω)La ' 1 + g0

(
1 + i

ω − ω0

δωa
−
(
ω − ω0

δωa

)2
)
, (2.23)

were g0 = gLa. Thus, the infinitesimal operator, in the time domain5, associated to the
amplification is given by

dTamp = g0

(
1− 1

δωa

d

dt
+
Dg

g0

d2

dt2

)
, (2.24)

where we defined Dg = g0/(δωa)
2.

5From the definition of the Fourier transform of the field (1.5) we have the relation −i(ω−ω0) = d/dt

34



CHAPTER 2. OPTICAL FREQUENCY COMB

2.2.2.2 Intracavity dispersion

As already discussed in section 2.1.2.1, the dispersion introduced by the elements in
the cavity can be taken into account by Taylor expansion of the round trip phase φ(ω)
according to

eiφ(ω) ' eiφ
(0)+i(ω−ω0)φ(1)+ i

2
(ω−ω0)2φ(2) . (2.25)

The first term is a constant term, it can be taken equal to one assuming that ω0

is a cavity resonance frequency. Consequently, the infinitesimal operator associated to
dispersion is given by

dTdisp = −φ(1) d

dt
− iD d2

dt2
, (2.26)

where φ(1) = L/vg is the group delay experienced by the pulse due to dispersion.
D = φ(2)/2 = 1

2
∂
∂ω

(
L
vg

)
is called group delay dispersion (GDD). Note that this quantity

is related to group velocity dispersion (GVD) according to GVD = β2 = 2D/L. The
effect of this dispersion on the pulse will be investigated in details in the section 2.3.

2.2.2.3 Self-amplitude modulation

In the laser used in this work, the Kerr-lens effect is responsible for the mode-locking.
As explained before, this effect can be assimilate to a fast6 saturable absorber. Such
modulation of the losses depending on the laser intensity is called self-amplitude mod-
ulation. The absorption due to the propagation inside the saturable absorber of length
Labs can be modeled by

e
−l

(
1+

I(t)
Isat

)−1
Labs ' 1− l

(
1− I(t)

Isat

)
Labs, (2.27)

where I(t) is the intensity proportional to |A(t)|2 and Isat the saturation intensity. l
corresponds to the losses when the intensity inside the medium is null. When the
intensity increases, the losses drop to l/2 at the saturation intensity Isat. The In and
Out relation of the losses due to self-amplitude modulation is similar to the gain one.
Hence, the transfer operator accounting for self-amplitude modulation can be written

dTSAM = −l0 + γ|A(t)|2 (2.28)

where l0 = lLabs is a linear loss term, and γ is the self-amplitude modulation coefficient
which depends on the laser geometry. Note that in addition to the linear losses induced
by the saturable absorption, we also include all the other losses from the cavity, such
as the one introduced by the output coupler, inside l0.

6Fast means that the recovery time of the saturable absorber is smaller than the duration of the
pulse.
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2.2.2.4 Self-phase modulation

As seen in equation (2.17), the Kerr effect also induces a time varying nonlinear phase
shift. This phase shift is known as self-phase modulation. The effect of this phase shift
is given by

ei∆φ(t) ' 1 + i∆φ(t). (2.29)

Hence, the operator accounting for the Self-phase modulation effect can be written

dTSPM = iδ|A(t)|2, (2.30)

where δ is the Self-phase modulation coefficient which depends on the laser geometry.

2.2.2.5 Master equation

The master equation can finally be obtained by summing the contributions from the am-
plification, the dispersion, the self-amplitude modulation and the self-phase modulation
in equation (2.20). If the laser operates in a stationary regime, we have A(t+Tr) = A(t).
Consequently, all the first derivatives of the field are null, leading to[

(Dg − iD)
d2

dt2
+ (g0 − l0) + (γ + iδ)|A(t)|2

]
A(t) = 0, (2.31)

where Dg = g0/(δωa)
2, with g0 the linear gain and δωa the gain bandwidth. D =

φ(2)/2 = 1
2
∂
∂ω

(
L
vg

)
is the group delay dispersion. l0 represents the linear losses. γ is the

self-amplitude coefficient and δ the self-phase modulation coefficient.

This equation allows to describe the propagation of a pulse in the laser cavity for a
Kerr-lens mode-locked laser. We will present a solution of this equation in the next sec-
tion. From that solution, the effects of intra-cavity dispersion on the pulse propagating
inside the cavity will be investigated.

2.2.3 Resolution of the master equation and intracavity disper-
sion

The effects of the dispersion have already been studied in section 2.1.2.1 for the two
first order of the development of the round trip phase φ(ω). We now concentrate our
study on how the quadratic term, the group delay dispersion, D, affects the pulse while
propagating in the cavity. To proceed, we introduce into equation (2.31) the ansatz

A(t) = a0

[
sech

(
t

tp

)]1+iβ0

= a0sech

(
t

tp

)
eiβ0ln(sech(t/tp)), (2.32)
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where tp is the duration of the pulse. This solution corresponds to a chirped hyper-
bolic secant of chirp parameter β0. The term chirp becomes explicit by computing the
frequency of the pulse ω(t) = ω0 −∆ω(t), where ∆ω(t) is the instantaneous frequency
shift induced by the phase term φ(t) = β0ln (sech(t/tp)). It is given by

∆ω(t) =
∂φ(t)

∂t
= −β0

tp
tanh

(
t

tp

)
. (2.33)

Thus, if β0 > 0, the frequency increase along the pulse, it is up-chirped. On the
contrary, if β0 < 0 the pulse is down-chirped.
By injecting (2.32) into (2.31), the following relation can be found:

(Dg − iD)
2 + 3iβ0 − β2

0

t2p
= (γ + iδ) a2

0. (2.34)

For simplicity we introduced the normalized quantities Dn = D
Dg

, tpn =
a20t

2
p

Dg
. By

multiplying equation (2.34) by t2p/Dg and identifying the real and imaginary part, we
find {

2− β2
0 + 3β0Dn = γtpn

−3β0 + 2Dn − β2
0Dn = −δtpn (2.35)

Using the above expressions, we can find influence of the cavity GDD, D = Dn×Dg,
on the chirp parameter β0 and the duration of the pulse tp. The variation of those two
parameters as a function of the GDD are reproduced in Figure 2.3. We calculated
those quantities using self-phase modulation (δ) and self-amplitude modulation (γ)
coefficients close to the experimental conditions of the second part of the manuscript.
In both cases it can be seen that the chirp and the pulse duration strongly depend on the
intracavity dispersion. Interestingly, it can be noted that both curves are asymmetric.
The evolution of the chirp and pulse duration is steeper for positive GDD. Thus it is
often advantageous to design cavity with negative residual GDD by using anomalous
dispersion to limit the effect of the GDD. To give an example, we will calculate in
Chapter 5 the value of the intracavity dispersion of the laser studied. The GDD is
found to be D = −280 fs2.

2.3 Dispersion of an optical pulse

To conclude this chapter, we study the evolution of an initially chirped pulse through
a dispersive medium. Up to now, we only focused our investigations on the effects
arising inside the laser cavity. In particular, we saw that the group velocity dispersion
(GVD), due to the frequency dependent refractive index of some of the cavity elements,
has a significant impact on the duration and the chirp of the pulse. Because those
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Figure 2.3 – Chirp parameter and pulse duration as a function of the GDD.
The chirp parameter β0 and the pulse duration are calculated from equations (2.35) as
a function of the intracavity dispersion D in fs2. The pulse duration is given as FWHM
in intensity. We used δ = 3 × 10−6 rad/W, for the self-phase modulation coefficient,
γ = 2×10−6 W−1 for the self-amplitude modulation coefficient, 2a2

0tp = 23 nJ the pulse
energy and Dg = 2.4×10−30 s2 related to the gain bandwidth. Those values correspond
to the laser investigated in the second part of the manuscript.

dispersive elements are distributed along the cavity, the duration and the chirp of
the pulse continuously evolve during the round-trip. Cavities are usually designed
such that the pulse is the shortest inside the active medium to increase the nonlinear
effect. Consequently, the pulse exiting the laser cavity can be chirped. In experimental
conditions, chirped pulses are often not desired. To remediate to that issue, dispersive
elements can be used after the laser to remove the chirp.

2.3.1 Fourier transform pulses

In section 2.2.3, we saw that a pulse produced by a laser can present a chirp β0. This
chirp creates a frequency shift along the pulse, which in the case of an hyperbolic secant
pulse, is given by equation (2.33). In this section, we will see that this chirp plays a
role in the pulse duration and its spectral width.

For convenience the following calculations are performed assuming a Gaussian profile
for the pulse. This shape is very close to the hyperbolic secant used in section 2.2.3,
but the Gaussian profile facilitates the calculations [44]. Hence, the electric field of the
chirped pulse at the output of the cavity is written

E(+)(t) = A(t)e−iω0t = a0 exp

(
−(1 + iβ0)

t2

2∆t20

)
exp (−iω0t) , (2.36)
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which gives, in the frequency domain,

E(+)(ω) = Ã(ω) = ã0 exp

(
− ∆t20

2(1 + iβ0)
(ω − ω0)2

)
. (2.37)

Both fields are relate by the Fourier transform. Hence, the pulse duration7, given
by ∆t0 and its spectral width (also called bandwidth), given by ∆ω =

√
1 + β2

0/∆t0
are related by the time-bandwidth product

∆t0 ×∆ω =
√

1 + β2
0 . (2.38)

This product is minimal when the pulse is not chirped, meaning that β0 = 0. In this
condition, the time-bandwidth product, ∆t0 × ∆ω = 1, corresponds to the so-called
Fourier transform limited pulse [45], which corresponds to a pulse of minimal duration
given a fixed spectrum ∆ω.

2.3.2 Propagation through a dispersive medium

In the previous section we saw that a chirped pulse has a spectral width ∆ω =√
1 + β2

0/∆t0 and a duration ∆t0. In this section, we will see that this pulse dura-
tion is not the shortest given the spectral width ∆ω. Indeed, when a chirped pulse
propagates in a dispersive medium, under certain conditions, the pulse initial chirp can
be suppressed, leading to a pulse of minimal duration. This effect is known as pulse
compression.

Dispersive elements have a non-zero GVD β2. We saw in section 2.1.2.1 that the
dispersion can be taken into account by developing the spectral phase according to

eiφ(ω) ' eiφ
(0)+i(ω−ω0)φ(1)+ i

2
(ω−ω0)2φ(2) = e

iφ(ω0)+i(ω−ω0) z
vg

+ i
2

(ω−ω0)2β2z, (2.39)

where z is the length of the dispersive medium. We remind that the GVD is related
to the GDD according to β2 = 2D/z. The two first terms in the development can be
ignored, as they only represent a constant phase and a delay. Hence, the evolution of
E(+)(ω) from equation (2.37), when propagating in a dispersive medium of length z
and GVD β2 is given by

E(+)(z, ω) ∝ E(+)(ω)× exp

(
i

2
(ω − ω0)2β2z

)
∝ ã0 exp

(
−
(

∆t20
2(1 + iβ0)

− i

2
β2z

)
(ω − ω0)2

)
. (2.40)

7Here the duration is given as the σ of the Gaussian which for the field is related to the FWHM by
∆tFWHM = 2∆t0

√
2 ln 2.
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The field in the time domain is found by taking the inverse Fourier transform of the
expression above. It can be shown that the field writes

E(+)(z, t) ∝ a0 exp

−
(
t− z

vg

)2

4

(
∆t20

2(1 + iβ0)
− i

2
β2z

)−1

 . (2.41)

Consequently, the evolution of the duration and chirp of a chirped pulse going
through z mm of a dispersive medium of dispersion β2 is given by

∆t(z) = ∆t0

√(
1 +

β2zβ0

∆t20

)2

+

(
β2z

∆t20

)2

, (2.42)

β(z) = β0 +
β2zβ

2
0

∆t20
+
β2z

∆t20
. (2.43)

From equations (2.42) and (2.43) it can be seen that a pulse propagating through
a dispersive medium will experience a change of duration and chirp parameter. Inter-
estingly, if β0β2 < 0, a minimal value of pulse duration can be found for z > 0. The
minimal duration of the pulse is reached for

zmin = − β0

1 + β2
0

∆t20
β2

. (2.44)

Using this expression in equation (2.42), we find a minimal pulse duration of

∆tmin =
∆t√
1 + β2

0

. (2.45)

We see that for a given spectral width ∆ω =
√

1 + β2
0/∆t0, the minimal temporal

width is ∆tmin = ∆t0√
1+β2

0

. Consequently, the time-bandwidth product is ∆tmin×∆ω = 1

which corresponds to a Fourier transform limited pulse. Consequently, if the GVD β2,
has the opposite sign of the chirp of the pulse β0, the pulse can be compressed to its
Fourier transform limit by propagating through a dispersive medium of length zmin.
For long z, the pulse duration as well as the chirp parameter increase. It can be noted
that even if the pulse is initially not chirped, i.e β0 = 0, it still acquires a chirp during
its propagation.

2.3.3 Numerical application

To illustrate this section, we consider the experimental conditions corresponding to the
laser studied in the second part of the manuscript. As mentioned in section 2.2.3, the
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Figure 2.4 – Evolution of the
duration of a chirped pulse in
a dispersive medium. The du-
ration of an initially chirped pulse
of chirp parameter β0 = 1.3 and
initial duration ∆t0 = 36 fs is
affected by the propagation in a
dispersive medium. If the GVD
in fs2/mm is negative, the pulse
can be compressed (red curve) to
reach the Fourier transform limit
of ∆tmin = 22 fs.

laser cavity presents a residual GDD of -280 fs2. Hence, the pulse leaving the laser
cavity is chirped. The chirp parameter β0 can be determined from the duration of the
pulse measured at the output of the cavity and its Fourier transform limited duration
given by its spectral width. Our laser has a spectrum of approximately 40 nm FWHM.
Thus, the corresponding Fourier transform duration is ∆tmin = 22 fs FWHM. Using
an auto-correlation measurement [46], the duration of the pulse at the output of the
cavity was found to be ∆t0 = 36 fs FWHM. Using equation (2.45) the chirp parameter
is given by

|β0| =
√(

36

22

)
− 1 ' 1.3. (2.46)

Note that the equation above does not give information on the sign of the chirp. To
determine this sign, it is common to add positive chirp in the path of the laser beam,
using a piece of glass for example. If the duration of the pulse increases, it implies that
more dispersion has been introduced which means that the pulse was already positively
chirped. On the contrary, if the pulse duration is reduced, dispersion has been removed,
the pulse was negatively chirped.

The evolution of the pulse duration depending on the propagation length z through
two media of different dispersions β2 is represented in Figure 2.4. It can be seen that,
if negative dispersion is introduced in the optical path of the laser, its duration can
be compressed to reach the Fourier transform limited duration of ∆tmin = 22 fs. In
the experiment, negatively chirped mirror are placed after the laser to achieve this
configuration.
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Chapter 3

Measuring quadratures of light
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In the previous chapters, we introduced the formal description of the electric field,
and in particular the field of an optical frequency comb. Measuring this electric field
is a crucial step in this thesis. The objective is to access the information encoded
either in the amplitude or the phase of this electric field. Hence, detection schemes
are needed to access those quantities. The detection of the amplitude of the electric
field is an easy task as a simple photodiode is sufficient. However, as it is an intensity
measurement, no phase information can be extracted from this detection. Consequently,
more sophisticated methods must be employed to measure the phase of an electric field.
It usually consists in interferometric measurements. As most of the time those measures
give also access to a measure of the intensity, we concentrate our investigations on the
measurement of the phase only. In this chapter, we present two of those detection
techniques. The first one, the heterodyne detection, is based on the interference between
two laser fields at two different frequencies. We will see that this technique can also
be refined into a self-heterodyne detection scheme. Then, the homodyne detection
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is presented. This scheme is commonly used in quantum optics. It is based on the
interference of two laser fields at the same frequency, usually coming from the same
source. It allows to access directly to the amplitude and the phase of the electric field
by measuring the field quadratures introduced in section 1.2.3. Finally, we compare
both techniques in terms of sensitivity. The aim is to determine the smallest quantity
measurable with each scheme.

3.1 Heterodyne detection
A heterodyne detection is an interferometric measurement where two beams interfere
on a beam-splitter (BS). A scheme of such detection is represented in Figure 3.1. One
of the field, called local oscillator (LO), is stronger than the other one, called signal.
Those two fields have different frequencies. They can either come from different laser
sources or from the same laser source but one field is shifted in frequency compared to
the other. Each field is given by

E
(+)
LO (t) = E0aLO(t)e−iωLOt,

E(+)
s (t) = E0as(t)e

−iωst. (3.1)

After mixing on the BS, the fields E(+)
± at each output can be expressed as

E
(+)
± (t) =

E
(+)
LO (t)± E(+)

s (t)√
2

. (3.2)

In the above expression we assumed that the BS perfectly splits the intensity in two.
The optical power at each output port, P±, given according to1 Pj(t) = 2ε0nc|E(+)

j (t)|2
in (W), is

P±(t) =
PLO(t)

2
+
Ps(t)

2
± ncε0{E(+)

LO (t)E(−)
s (t) + E

(−)
LO (t)E(+)

s (t)} (3.3)

This field is detected by a square-law detector, usually a photodiode. The physical
quantity measured by a photodiode is the integral of the optical power during an in-
tegration time T . Those devices are characterized by their optical responsivity, R, in
(A/W). This quantity corresponds to the efficiency of the conversion of photons hitting
the detector into electrons. Assuming that the beam size is smaller than the detector
size and that both beams have the same spatial mode, the photo-current I±(t) is given
by

I±(t) = R
∫ t+T

t

P±(t′) dt′, (3.4)

1Here, the integral on the detector surface is not included in the definition as we are considering
longitudinal electric fields only. We assume that all the light is measured by the detector so that this
integral over the transverse field is equal to one.
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Thus, the total photo-current, in Ampère, can be rewritten

I±(t) =
ILO(t)

2
+
Is(t)

2
±Rncε0

∫ t+T

t

{E(+)
LO (t′)E(−)

s (t′) + E
(−)
LO (t′)E(+)

s (t′)} dt′,

=
ILO(t)

2
+
Is(t)

2
±Rncε0E2

0

∫ t+T

t

{aLO(t′)a?s(t
′)e−i(ωLO−ωs)t

′
+ cc} dt′. (3.5)

The two first terms are proportional to the LO and signal optical power respectively.
Those components can be considered as constant and represent the DC part of the sig-
nal. In principle this DC component can still fluctuates if the optical power fluctuates.
However, those variations are slow compared to the integration time T . The last term is
oscillating at the difference frequency ωbeat = ωLO−ωs, between the LO and the signal.
The amplitude of this signal is proportional to the product of the electric field of the two
beams. Such signal is commonly known as a beat-note. The interest of this method is
to bring the information, encoded e.g in the signal field, from the optical domain (at the
frequency ωs), to the radio-frequency (RF) one (at the frequency ωbeat). Off the shelf
electronics can then be used to detect this signal. It can be isolated using electronic
filtering and post-processing methods to recover information. A typical application of
such detection scheme is coherent Doppler LIDAR [47, 48]. In this technique, a signal
field is sent to a target, which can be a moving vehicle or air particles in movement
due to the wind. Part of this signal will be reflected and detected via a heterodyne
detection by mixing with a strong LO beam. Thanks to the LO, the signal reflected is
amplified. Information such as the speed of the target is encoded in the Doppler shift
of the reflected signal and can thus be read from the beat note.

3.2 Self-heterodyne detection

Even though heterodyne detection has found many applications, this detection is not
the most convenient for the characterization of light sources. For example, to measure
the frequency noise of a laser using a heterodyne detection, the standard method is
to use another laser, usually stabilized. Its noise must be perfectly known and lower
than the noise of the laser investigated [49, 50]. This is not always possible, especially
for the design of ultra-stable sources. Alternatively, two identical lasers can be built
and compared. The noise measured corresponds to twice the noise of a single laser.
Nevertheless, this is only feasible to characterize the light source and cannot be used
to measure the absolute phase of one of the lasers. To circumvent this limitation a
different scheme can be used, known as self-heterodyne [51].

The idea of self-heterodyne, is to use a single light source as a self reference to mea-
sure its phase. To achieve this measure, the light is split in two paths and a long time
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Figure 3.1 – Experimental detection schemes: a) Experimental scheme of a hetero-
dyne or a homodyne detection. A strong field interfere on a 50-50 BS and is measured
by photodetectors. For a heterodyne detection, both fields have different frequencies.
For a homodyne detection, the fields have the same frequency. b) Experimental scheme
of a self-heterodyne detection. After being split in two, one arm of the interferome-
ter is delayed and the other one is shifted in frequency by an acousto-optic modulator
(AOM). The beams are recombined on a 50-50 BS to form the UMZI.

delay is introduced on one of the arms using, for instance, a long optical fiber. At first
glance, one would expect that the delay introduced must be long enough to decouple
the phase fluctuations of both arms. It can be achieved with a delay longer than the
coherence length of the laser. However, for low noise lasers, this length can be very
important and thus kilometers of fibers would be needed. Fortunately, we will see in
this section that the delay does not need to be longer than the coherence length of the
laser. Modulo a transfer function, the phase fluctuations of the laser can be retrieved
from the measurement of the relative phase fluctuations between both arms.
To perform the measure, the arm not delayed of the interferometer is shifted in fre-
quency using an acousto-optic modulator (AOM). The purpose is, as in the heterodyne
configuration, to bring the information in the RF domain to detect it with simple pho-
todiodes. The interferometer is closed by a 50-50 BS which combines the two arms. A
typical experimental setup is represented in Figure 3.1b. This interferometer is similar
to a Mach-Zehnder interferometer. However, as one arm is delayed, it is commonly re-
ferred as unbalanced Mach-Zehnder interferometer (UMZI). In this section, we present
how such experimental scheme allows to access the phase and hence the instantaneous
frequency of a laser.
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3.2.1 Self-heterodyne beat signal

We start by considering the electric field

E(+)
s (t) = E0as(t)e

−i(ωst+ϕs(t)), (3.6)

where ωs, is the optical frequency and ϕs(t) is the phase of the field. Due to the presence
of phase noise, ϕs(t) fluctuates in time (with zero mean value for simplicity). Those
fluctuations can be related to frequency fluctuations, ∆ωs(t), using the relation

∆ωs(t) =
dϕs(t)

dt
, (3.7)

so that the instantaneous frequency is ω(t) = ωs + ∆ωs(t).
After separation by a first 50-50 BS, the delay τ is introduced in one arm. A frequency
shift ωRF is applied on the other arm. Hence, the fields at the input ports of the
recombining BS are given by

E
(+)
0 (t) =

E0√
2
as(t− τ) exp [−i (ωs(t− τ) + ϕ(t− τ))] , (3.8a)

E
(+)
1 (t) =

E0√
2
as(t) exp [−i ((ωs − ωRF )t+ ϕ(t))] . (3.8b)

The two beams are recombined at the output of the interferometer. The optical
powers after the BS P±(t) are given by

P±(t) =
Ps(t− τ)

4
+
Ps(t)

4
± 1

2
ncε0E2

0

[
as(t)a

?
s(t− τ)ei(ωsτ−ωRF t+ϕ(t)−ϕ(t−τ)) + cc

]
(3.9)

Those optical powers are detected by photodiodes. The photo-current is similar to
the one derived in equation (3.5) for the heterodyne detection. It reads

I±(t) =
Is(t− τ)

4
+
Is(t)

4
±Rncε0E2

0

∫ t+T

t

|as(t′)|2 cos [ωsτ − ωRF t′ + ϕ(t′)− ϕ(t′ − τ)] dt′

=
Is(t)

2
± Is(t)

2

∫ t+T

t

cos [ωsτ − ωRF t′ + ∆ϕ(t′, τ)] dt′, (3.10)

where we assumed that the amplitude of the field is constant during the delay time τ so
that as(t− τ) = as(t). We also made the assumption that the amplitude varies slowly
compared to the integration time T . In addition we introduced the notation

∆ϕ(t, τ) = ϕ(t)− ϕ(t− τ). (3.11)
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It can be seen that the self-heterodyne detection allows to access to information
on the phase (and the amplitude) of the laser using a single laser, which can then be
related to the field quadratures as seen in section 1.4.2.1. The treatment to extract this
information will be presented in Chapter 6.
It should be noted that this scheme gives access to the phase difference ∆ϕ(t, τ) and
not directly to ϕ(t). Thus, to go from one to the other, the transfer function of the
interferometer must be applied.

3.2.2 Transfer function

The transfer function of the interferometer, hUMZI , can be obtained by taking the
Fourier transform of equation (3.11). It leads to

∆ϕ(f, τ) =
(
1− e−2iπτf

)
ϕ(f) =

1

hUMZI(f)
ϕ(f), (3.12)

with hUMZI(f) = 1/
(
1− e−2iπτf

)
and where f is the measurement frequency. This

transfer function depends on the the delay τ introduced in the interferometer. An
example of this function is represented in Figure 3.2 for two different values of delay.
It can be noted that the gain and the bandwidth of the detection critically depend on
τ . Indeed, for short delays, i.e τ � 1/f , the transfer function can be approximated by

hUMZI(f) ' 1

2iπτf
. (3.13)

Thus, the gain, corresponding to the absolute value of the inverse transfer function,
is given by 1/|hUMZI(f)| ' 2πτf . Therefore, the longer the delay the higher the gain.
This gain amplifies the phase noise and allows to rise its level above other technical
noises such as the one associated to the photo-detection. On the other hand, the transfer
function presents blind spots. Those blind spots, corresponding to the peaks in Figure
3.2, are frequencies for which the phase cannot be measured. The frequency of the first
one, f = 1/τ , gives the bandwidth of the detection. After this frequency, the phase
cannot be accurately determined due to all the blind spots. Hence, the longer the delay
the smaller the bandwidth. As a consequence, a trade-off between gain and bandwidth
needs to be found for each measurement. To characterize a source displaying very low
phase noise, a long delay needs to be used. On the other hand, to characterize the noise
at very high frequencies (a few gigahertz typically) short delays should be preferred at
the expanse of the gain.

Additionally, a transfer function to relate phase noise to frequency noise can be
derived in a similar way. Indeed, the Fourier transform of equation (3.7) gives

∆νs(f) = 2π∆ωs(f) = ifϕ(f). (3.14)
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Figure 3.2 – Transfer function
as a function of the fre-
quency. Transfer function ac-
cording to equation (3.12) for two
different delays τ = 200 m and
τ = 1 km. The smaller delay
leads to a higher bandwidth but
to a smaller gain for the phase
given by the inverse of transfer
function.

Thus, the transfer function of the UMZI defined by HUMZI(f) = ∆ν(f)/∆ϕ(f, τ)
reads

HUMZI(f) =
if

1− e−2iπτf
. (3.15)

3.3 Homodyne detection

The previous method is widely spread for the characterization of lasers phase and fre-
quency noise [52, 53]. In this work, we will also use a scheme were both beams in the
interferometer come from the same source and have exactly the same frequency. This
scheme is called homodyne detection [54]. It is widely used in quantum optics and
allows to measure the quadratures x(t) and p(t) of the electric field. The main differ-
ence between self-heterodyne and homodyne detection is that the homodyne detection
performs a lossless measurement which is not the case of the self-heterodyne detection.
As will be seen later in this chapter, the first beam-splitter of the UMZI introduces
losses which reduces the sensitivity of the measurement.

3.3.1 Temporal representation

We begin, similarly to the heterodyne case, with a strong field, the LO, combined on
a 50-50 BS with a weaker one, the signal. In the homodyne detection, both fields have
the same frequency ω0. Thus the photo-currents detected at both outputs of the BS
read

I±(t) =
ILO(t)

2
+
Is(t)

2
±Rncε0E2

0

∫ t+T

t

{aLO(t′)a?s(t
′) + a?LO(t′)as(t

′)} dt′. (3.16)

49



3.3. HOMODYNE DETECTION

Taking the difference of the photo-currents leads to the standard homodyne signal

i−(t) = I+(t)− I−(t) ∝
∫ t+T

t

{aLO(t′)a?s(t
′) + a?LO(t′)as(t

′)} dt′. (3.17)

3.3.2 Spectral representation

In this work we will essentially work in the spectral domain rather than in the temporal
domain. We are mainly interested in resolving the spectrum of the OFC and not
resolving temporally the pulses. Hence, we derive a spectral representation of the
homodyne. Starting from equation (3.16), with the definition of the FT given by
equation (1.3), the intensity at each output can be written

I± =
ILO

2
+
Is
2
± Rncε0E

2
0

2π

∫ t+T

t

dt′
∫
R

∫
R
{ãLO(Ω′)ã?s(Ω)ei(Ω−Ω′)t′ + cc } dΩdΩ′, (3.18)

were Ω = ω − ω0 (and Ω′ = ω′ − ω0). The temporal integration is made over a time
T , corresponding to the bandwidth of the detector, BW = 1/T . In this thesis we
will mainly deal with detectors whose bandwidth is low and thus with long integration
time. In particular, this integration time is a lot longer than the duration of the pulses.
Thus we can make the approximation that the boundaries of the time integration tend to
infinity. This assumption allows to approximate the temporal integral of the exponential
ei(Ω−Ω′)t′ , by a Dirac function δ(Ω− Ω′). Hence, equation (3.18) can be rewritten

I± =
ILO

2
+
Is
2
±Rncε0E2

0

∫
R
{ãLO(Ω)ã?s(Ω) + ã?LO(Ω)ãs(Ω)} dΩ. (3.19)

To further simplify this expression, we write each field as a single spectral mode
according to

ãLO(Ω) = aLOũLO(Ω) = αLOe
iϕLO ũLO(Ω), (3.20a)

ãs(Ω) = asũs(Ω), (3.20b)

where αLO = |aLO| =
√
NLO, with NLO the mean photon number of the LO, by analogy

with the quantum treatment. as is the complex amplitude of the signal field. ũj(Ω) is
the spectral mode of the LO (or signal) and corresponds to its optical spectrum. With
those definitions, equation (3.19) reads

I± =
ILO

2
+
Is
2
±Rncε0E2

0

[
αLOa

?
se
iϕLOOLO,s + cc

]
, (3.21)

where we introduced the spectral overlap between the LO and the signal: OLO,s =∫
R{ũLO(Ω)ũ?s(Ω)} dΩ. Due to this overlap, the homodyne detection is a projective
measurement as will be seen in section 3.4.1.1. This quantity is maximal when both
spectrum perfectly overlap so that OLO,s = 1 which we assume to be the case in this
derivation.
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Similarly to equation (3.17), taking the difference of the photo-currents (3.21) leads
to the standard homodyne signal

i− ∝ αLO
(
a?se

iϕLO + ase
−iϕLO

)
, (3.22)

i− ∝
√
NLO xϕLOs (3.23)

where we defined

xϕLOs = a?se
iϕLO + ase

−iϕLO = xs cosϕLO + ps sinϕLO, (3.24)

with xs and ps the quadratures of the signal field defined according to equations (1.20).
Hence, the homodyne detection allows to measure the quadrature of a signal beam in
phase with the LO. Changing the phase of the LO allows to go from one quadrature to
the other.

3.3.3 Variation of the homodyne detection

The self-heterodyne detection gives access to a measurement of the amplitude and
the phase of the field simultaneously. The procedure to retrieve those quantities will be
described in chapter 6. On the other hand, the homodyne detection gives access to only
one quadrature at the time, depending on the LO phase. Consequently the phase and
the amplitude of the field are not measured simultaneously. As one of the aims of this
study is to investigate the amplitude and phase correlations from the laser fluctuations,
a slightly different approach is used. Our aim here is to demonstrate that, using a
different configuration of the homodyne detection, it is possible to measure the phase
fluctuations of the fields as well as the amplitude fluctuations of the LO simultaneously.
This configuration corresponds to the one used in the second part of this manuscript.

The first step is to assume, similarly to section 1.4.2.1, that the signal and LO fields,
from equation (3.22), undergo amplitude and phase fluctuations according to

aj(tn) = αj(1 + δεj(tn))ei(ϕj+δϕj(tn)). (3.25)

To differentiate the different time scales, we introduced the notation tn for the
laser parameters fluctuations, while the notation t stands for the fluctuations at the
scale of the laser pulse, thus much faster. We define the fluctuations of the fields as
δaj(tn) = aj(tn)−〈aj(tn)〉tn , where 〈〉tn stands for the time average. Assuming that the
phase and amplitude fluctuations are small, we have

δaj(tn) = αje
iϕj(δε(tn) + iδϕj(tn)). (3.26)
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The phase fluctuations can be retrieved from the differential photo-current (3.22)2,
that is i−(tn) = aLO(tn)a?s(tn) + as(tn)a?LO(tn). Because the signal and LO are fluctu-
ating, the photo-current is also affected by fluctuations. We define the fluctuations of
the differential photo-current as δi−(tn) = i−(tn) − 〈i−(tn)〉tn . Using the expressions
of the signal and the LO, given by equation (3.25), the fluctuations of the differential
photo-current can be written

δi−(tn) = 〈aLO(tn)〉tnδa?s(tn) + 〈as(tn)〉tnδa?LO(tn) + cc

= αLOe
iϕLOαse

−iϕs(δεs(tn)− iδϕs(tn)) + αLOe
−iϕLOαse

iϕs(δεLO(tn)− iδϕLO(tn)) + cc

= 2αLOαs(δεLO(tn) + δεs(tn)) cos(ϕLO − ϕs) + 2αLOαs(δϕLO(tn)− δϕs(tn)) sin(ϕLO − ϕs).
(3.27)

It can be seen that, if the relative phase between the LO and the signal, ϕLO − ϕs
is set to ±π

2
, the differential photo-current leads to a measurement of the difference of

the phase fluctuations

δi−(tn) = 2αLOαs(δϕLO(tn)− δϕs(tn)) (3.28)

On the other hand, in order to access to information on the amplitude of the field,
the sum of the photo-currents (3.21), i+ = I+ + I− , is calculated. This signal reads

i+(tn) = ILO(tn) + Is(tn)

∝ |aLO(tn)|2 + |as(tn)|2. (3.29)

As the LO is stronger than the signal, i.e |αs|2 � |αLO|2, this photo-current mainly
measures the LO intensity so that3

i+(tn) = |aLO(tn)|2. (3.30)

Computing the fluctuations of this photo-current leads to

δi+(tn) ' 2α2
LOδεLO(tn), (3.31a)

' αLOδxLO(tn), (3.31b)

where we used the result derived in section 1.4.2.1, the amplitude fluctuations are
proportional to the x quadrature fluctuations.

2Note that i− is renormalized to get rid of the proportional sign
3with renormalization to get rid of the proportional sign.
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In this section we demonstrated that, using a modified homodyne detection, it is
possible to measure simultaneously phase and amplitude fluctuations. This is achieved
by measuring both I+ and I− at the same time and taking their sum and difference.
It is important to note that the amplitude fluctuations, measured via equations (3.31),
correspond to the fluctuations of the LO. However, the phase fluctuations, given by
equation (3.28), correspond to a relative measure between the fluctuations of the LO
and the signal phases. This nuance and its consequences will be discussed in more
details in section 4.3.2 in the next chapter.

3.4 Sensitivity of the measurements
In this chapter, we presented two experimental schemes to measure the phase of an
electric field. As we will use both schemes in this thesis, it is interesting to compare
the self-heterodyne and the homodyne detections in terms of sensitivity. The idea
is to determine the smallest phase variation that can be measured with each setup.
Note that, up to now, all the calculations have been made in the classical framework.
However, all the equations are compatible with the quantum description by replacing,
as before, all the quantities by operators. Hence, we use a semi-classical description
in order to compare the sensitivity to the limit fixed by the quantum properties of the
light, derived in section 1.4.2.1.
As previously mentioned, the main difference between the two detection schemes comes
from losses. As a matter of fact, the homodyne detection allows a lossless measure
of the quadratures of the field. Consequently, using the same approach as the one
developed in section 1.4.2.3, we will see that, because the homodyne measurement is a
projective measurement, it allows to reach the standard quantum limit. On the other
hand, the heterodyne detection introduces losses due to the first beam-splitter of the
interferometer. This first beam-splitter allows vacuum to enter the system, adding noise
onto the measurement. In the semi-classical framework, the intensity measurement
performed at the output of the interferometer, assuming that the signal is a coherent
state, follows a Poissonian statistic. Using this probability distribution, the Fischer
information (FI), as defined in equation (1.67), can be calculated and the bound on
the sensitivity determined. Then, we will look at the experimental sensitivity of the
self-heterodyne scheme. Indeed, we will see that, because the optimal estimator is not
accessible, an experimental sensitivity needs to be derived.

3.4.1 Fisher information of the detection schemes

3.4.1.1 Homodyne sensitivity

To begin with, we assume that a phase shifted δϕs is encoded in the signal field, such
that E(+)

s (t) = E0as(t)e
−iωste−iδϕs , with as(t) = αsus(t), where us(t) is the envelope
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mode of the field4. This phase shift can be coming from a dephasing element on the
signal path. It can also be the classical phase noise of the laser. Both configurations
are similar, the point is to measure phase variations from an initial state. To compute
the sensitivity, we make the assumption that the signal field is a coherent state. Thus,
we are trying to determine what is the smallest measurable phase shift encoded in a
coherent state, in the presence of the intrinsic noise of the coherent state5. If this phase
shift is small, the field E(+)

s (t) can be developed at first order:

E(+)
s (t) ' E0e

−iωst (as(t)− ias(t)δϕs) = E0αse
−iωst (us(t)− δϕs w(t)) , (3.32)

where we introduced the normalized mode w(t) = ius(t). Using equation (3.17), taking
(3.32) for the signal field, the differential photocurrent reads6

i− ∝ 2αLOαs Re

[∫
R

dt uLO(t)(us(t)− δϕs w(t))?
]
, (3.33)

where the LO is written as a single temporal mode E(+)
LO (t) = E0αLOuLO(t)e−iωst. It is

clear that if the LO is set in the mode w(t), the signal can be reduced to

i− ∝ 2αLOαsδϕs = 2
√
NLONs δϕs. (3.34)

It can be seen that, because homodyne detection is a projective measurement, it
allows to retrieve information encoded in the mode defined by the temporal (or spectral)
mode of the LO. A technique to control this mode will be presented in section 4.2.2.

To determine the sensitivity of the measurement, similarly to section 1.4.2.1, we need
to compute the signal to noise ratio (SNR) of the measurement. To do so, the variance of
the homodyne signal must be calculated. We saw in equation (3.24) that the homodyne
signal, when no phase shift is applied on the signal field, is proportional to the signal
quadrature in the direction of the LO xϕLOs (t) multiplied by the square-root of the the
number of photons in the LO field αLO. We stated that the signal field without any
phase shift is a coherent state. Knowing that the variance of the quadratures of such
states is given by Var [xϕLOs ] = 1 as seen in section 1.3.2, the detection noise is given by

Var [i−] = NLO. (3.35)

4We also took ϕs = 0 for simplicity
5Note that we are using here the semi-classical approach where we introduce by hand the noise

coming from the vacuum fluctuations.
6Here also we made the approximation that the integration time is slow compared to the time scale

of the pulses shape, so that the boundaries of the integral are extended to infinity.
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The sensitivity, that is the smallest phase variation measurable with a homodyne
detection ϕmin,hom, is achieved for a SNR equals to one:

SNR =
〈i−〉√
Var [i−]

=
2
√
NLONs ϕmin,hom√

NLO

= 1 ⇒ ϕmin,hom =
1

2
√
Ns

. (3.36)

As expected, this calculation gives the same sensitivity as the one derived in section
1.4.2.3 which corresponds to the standard quantum limit (SQL). It can be concluded
that the homodyne detection is an optimal measurement. Note that we derived all the
expressions in the particular case where the parameter under investigation is a phase.
This treatment can be generalized to any parameter.

3.4.1.2 Self-heterodyne sensitivity

In the self heterodyne scheme, bucket detectors are used to measure the intensity of
the fields at the outputs of the BS. In addition, the interferometer measures the phase
difference ∆ϕ(t, τ) given by

∆ϕ(t, τ) = ϕ(t)− ϕ(t− τ), (3.37)

and not directly the phase ϕ(t). Hence, we need first to determine the sensitivity on the
measurement of ∆ϕ(t, τ) before determining the one on ϕ(t) via the transfer function
defined in equation (3.12). To that end, as explained in section 1.4.2.2, the Fisher
information associated to the experimental conditions needs to be calculated.

To calculate the Fisher information associated to the self-heterodyne detection, the
probability distribution associated to the measurement needs to be determined. In the
semi-classical framework, the intensity measurement of the outputs of the BS, î1,2(t),
can be modeled by a Poissonian distribution. As the two outputs are uncorrelated, the
probability to measure n1 photons from one measurement at output 1 and n2 at output
2 is given by

P (n1, n1) = P1(n1)P2(n2)

=

(〈i1(t)〉n1

n1!
e−〈i1(t)〉n1

)(〈i2(t)〉n2

n!
e−〈i2(t)〉n2

)
. (3.38)

Thus, to explicit this probability law, we need to determine the average photo-
current, 〈̂i1,2(t)〉, for each output.
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Photo-currents: For a complete treatment, the vacuum entering the system must
be considered. Indeed, as shown in Figure 3.1, one of the input of the first BS is fed
with the signal state Ê(+)

s (t), while the other one is fed with vacuum Ê
(+)
v (t). However,

the vacuum terms do not play any role in the mean values. Hence, the calculation can
be done using classical fields. The noise coming from the vacuum is added by hand by
considering that the probability distribution associated to the intensity measurement
is a Poissonian distribution, as stated in equation (3.38). Nonetheless, we chose to
introduce the expressions using both the signal and the vacuum fields before calculating
the mean values. The final result in the semi-classical approach could be retrieved by
using equations (3.39) to determine the variance of the signal assuming a Gaussian
distribution for the noise on the measurement.

The signal and vacuum fields are given by

Ê(+)
s (t) = E0e

−i(ωst+ϕs(t))âs(t) (3.39a)
Ê(+)
v (t) = E0e

−iωstâv(t). (3.39b)

The input state of the interferometer can be written as |ψ〉 = (D(α)|0〉s)⊗|0〉v with
D(α) = eαâ

†(t0)−α?â(t0). After the first BS, the fields in both arms read

Ê1,2(t) =
1√
2

[
Ês(t)± Êv(t)

]
. (3.40)

Similarly to the treatment of section 3.2.1, the upper arm experiences a delay τ
before being recombined with the lower arm at the second BS, forming two outputs
whose electrical fields are given by

Êout1,2(t) =
1√
2

[
Ê1(t− τd)± Ê2(t)

]
. (3.41)

Note that, as a first step, the frequency shift ωRF is not included in the description
as in equation (3.10). It allows to keep the expressions as simple as possible. The effect
of this frequency shift will be discussed later.
From equation (3.41), the field at the output 1 of the BS is given by

Êout1(t) =
1

2

[
âs(t− τ)e−i(ωs(t−τ)+ϕs(t−τ)) + âs(t)e

−i(ωst+ϕs(t))

+ âv(t− τ)e−iωs(t−τ) − âv(t)e−iωst
]
. (3.42)

The photo-current is proportional to îj = Ê†outjÊoutj. The average photo-current
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can be thus written as

〈̂i1(t)〉 = 〈Ê†out1(t)Êout1(t)〉
=

1

4

[
〈â†s(t− τ)âs(t− τ)〉+ 〈â†s(t)âs(t)〉

+〈â†s(t− τ)âs(t)〉ei(ωsτ+∆ϕs(t,τ))

+〈â†s(t)âs(t− τ)〉e−i(ωsτ+∆ϕs(t,τ))
]
. (3.43)

It can be seen that the vacuum does not contribute to the photo-current mean value.
However, its contribution needs to be taken into account if one wants to calculate the
variance of this photo-current.
Given that 〈ψ|âs(t)|ψ〉 = 〈ψ|âs(t− τ)|ψ〉 = αs with |αs|2 = Ns the photon number, the
average photo-current is given by

〈̂i1(t)〉 =
Ns

2
[1 + cos (ωsτ + ∆ϕs(t, τ))] . (3.44)

A similar calculation using Êout2 gives the average photo-current at the second
output of the interferometer:

〈̂i2(t)〉 =
Ns

2
[1− cos (ωsτ + ∆ϕs(t, τ))] . (3.45)

Sensitivity: The maximum information that can be extracted by measuring the in-
tensity at the output 1 is calculated by injecting equation (3.44) in P1(n1) from equation
(3.38) and using it in the Fisher information formula given by equation (1.67). Thus,
the Fisher information FI1 is given by

FI1 =
Ns

2
[1− cos (ωsτ + ∆ϕs(t, τ))] . (3.46)

A similar calculation gives the Fisher information for the measurement of the photo-
current at the output 2:

FI2 =
Ns

2
[1 + cos (ωsτ + ∆ϕs(t, τ))] . (3.47)

As both measurements are independent, the total information can be written as

FItot = FI1 + FI2 = Ns. (3.48)

Therefore, the minimal phase difference that can be measured using the information
from both outputs of the UMZI is

∆ϕmin,het =
1√
Ns

. (3.49)
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It should be noted that, if only one output is measured as it is often the case, the
Fisher information depends on the delay τ .
This sensitivity represents the smallest phase difference ∆ϕ(t, τ) that can be measured
experimentally. It can be seen that, due to the vacuum noise introduced via the first
beam-splitter, this phase sensitivity is twice the one of the homodyne detection given by
equation (3.36). Nevertheless, as explained previously, it does not correspond yet to the
sensitivity on the measurement of the phase ϕ(t, τ). It will be obtained by applying the
transfer function (3.12) in section 3.4.2.2 and compared to the bound found in section
3.4.1.1.

3.4.2 Experimental sensitivity of the self-heterodyne

3.4.2.1 Optimal estimator

Equation (3.49) corresponds to the maximal information that can be extracted from
the intensity measurement at the output of the UMZI. However, maximal information
on the phase difference ∆ϕ(t, τ), from equation (3.37), can only be extracted from an
optimal estimator. We remind that the estimator is a physical quantity, in our case it
can be a photo-current, from which a value of the parameter can be estimated. Not all
estimator are optimal. It is thus interesting to determine the optimal estimator and to
see whether it is experimentally reachable. To find the optimal estimator, the method
of moments can be used [55].

Let iest(t) be our estimator for the phase difference ∆ϕ(t, τ). Its variance is given by
Var [iest] = 〈iest(t)2〉 − 〈iest(t)〉2. The sensitivity achieved via this estimator is defined
as

∆ϕ2
est =

Var [iest(t)]

| ∂
∂∆ϕ
〈iest(t)〉|2

(3.50)

This estimator can be based on several observables. In the present case we have two:
the intensities measured at both outputs of the interferometer i1(t) and i2(t). Thus we
write iest(t) as a linear combination of those observables

iest(t) = −→m ·
(
i1(t)
i2(t)

)
, (3.51)

where−→m is the vector containing the weights for each observable. The optimal estimator
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can be found by solving

∆ϕ2
opt = min−→m

[
Var [iest(t)]

| ∂
∂∆ϕ
〈iest(t)〉|2

]

= min−→m

−→mT · Γ · −→m(−→mT · −→D
)2

 , (3.52)

where Γ is the covariance matrix defined by

Γij = 〈ii(t)ij(t)〉 − 〈ii(t)〉〈ij(t)〉, (3.53)

and
−→
D is the vector of the derivative of the average values

Di =
∂

∂∆ϕ
〈ii(t)〉. (3.54)

It can be shown [55] that the weights to achieve the minimal phase sensitivity are
given by

−→mmin = c Γ−1 · −→D, (3.55)

where c is a constant. Inserting this expression in equation (3.52) leads to the expression
of the sensitivity as a function of the covariance matrix Γ and the vector

−→
D :

∆ϕ2
opt =

[−→
DT · Γ−1 · −→D

]−1

. (3.56)

Using equations (3.44) and (3.45), it is straightforward to show that

−→
D =

Ns

2
sin (ωsτ + ∆ϕs(t, τ))

(
−1
1

)
. (3.57)

The calculation of the covariance matrix, although tedious, is predictable. The
intensity measurements are described by a Poissonian distribution. Consequently, the
variance of each photo-current ij(t) is equal to its average value 〈ij(t)〉. In addition,
it can be shown that the off-diagonal elements of the covariance matrix are null. This
is consistent with the fact that the two outputs of the interferometer are independent.
Thus, the covariance matrix is given by

Γ =

(
Var(i1(t)) 0

0 Var(i2(t))

)
. (3.58)

Using equations (3.57) and (3.58) into equations (3.55) and (3.56), the optimal
weights and the phase sensitivity are given by

−→mmin =
Ns

2Var(i1)Var(i2)
sin (ωsτ + ∆ϕs(t, τ))

(
−Var(i2)

Var(i1)

)
, (3.59)
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and
∆ϕopt =

1√
Ns

(3.60)

Note that the constant in front of the vector in equation (3.59) are not needed to
define the optimal estimator as it is common to both i1(t) and i2(t). However, we keep
them in order to simplify equation (3.63). One can see that the optimal estimator is
independent of ωsτ and, as expected, reaches the minimal bound ∆ϕmin,het, estimated
from the Fischer information in the self-heterodyne configuration given by equation
(3.49).
From equations (3.51) and (3.59), the optimal estimator can be written as

iopt(t) =
Ns

2
sin (ωsτ + ∆ϕs(t, τ))

[
i1(t)

〈i1(t)〉 −
i2(t)

〈i2(t)〉

]
. (3.61)

In equation (3.61), i1(t) and i2(t) have weights that depend on their average values
given by equations (3.44) and (3.45), and thus on the total phase ωsτ + ∆ϕs(t, τ).
However, in practice, the weights for each photo-current are determined before starting
the experiment. Thus, we separate the phase in two components:

ωsτ + ∆ϕs(t, τ) = θ + δθ(t), (3.62)

where θ is the mean phase, also called working point of the interferometer, given by
θ = ωsτ + ∆ϕs(0, τ). It corresponds to the initial value of the phase at the beginning
of the experiment from which the weights are calculated. δθ(t) is the phase variation
around that working point and is the quantity we wish to measure. Thus the average
of the optimal estimator (3.61) can be written as

〈iopt(t)〉 =
Ns

2
sin (θ)

[
1 + cos (θ + δθ(t))

1 + cos (θ)
− 1− cos (θ + δθ(t))

1− cos (θ)

]
. (3.63)

After calculation, with the approximation that δθ(t) is a relatively small deviation
from the working point, one can find

〈iopt(t)〉 = Nsδθ(t). (3.64)

It is clear that, for small deviations, the optimal estimator is directly proportional
to the phase shift δθ(t).

3.4.2.2 Experimental sensitivity

The optimal estimator (3.61) relies on a particular linear combination of the photo-
currents i1(t) and i2(t). This combination requires an a priori knowledge of the working
point of the interferometer θ. A characterization of the phase sensitivity of an UMZI
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based on different estimators depending on the working point can be found in [56].
However such investigation necessitates a calibration procedure to determine the work-
ing point depending on the data measured. In addition, up to now, we did not take into
account the frequency shift ωRF introduced by the AOM as seen in section 3.2.1. This
frequency shift, even though very convenient to shift the beat signal in the RF domain,
adds a difficulty to the experiment. Due to the frequency shift, the working point is
given by ωRF t + θ, which is time dependent. Consequently, the working point of the
interferometer depends on the time at which each measurement is realized. It can easily
be understood that the optimal estimator is not reachable in this condition. Therefore,
in this section, we consider a different, easily measurable estimator and calculate the
corresponding effective sensitivity.

As an estimator of the phase difference ∆ϕ(t, τ), we choose the differential photo-
current i−(t) = i1(t)− i2(t). Other estimators such as in [56] could be investigated but
the treatment is the same for all of them. Using the same treatment as in section 3.2.1
as well as equations (3.44) and (3.45), the average differential photo-current reads

〈i−(t)〉 = Ns cos [ωsτ − ωRF t+ ∆ϕ(t, τ)] (3.65)
= Ns cos [ωRF t− θ − δθ(t)] , (3.66)

where, this time, we included the term ωRF t.
To derive the sensitivity associated to this estimator, equation (3.50) is applied to the
photo-current 〈i−(t)〉 [57]. To this end, the variance of the differential photo-current
needs to be calculated. After calculation, it can be shown that Var(i−(t)) = Ns. Thus
the sensitivity is given by

∆ϕest =
1

|√Ns sin (ωRF t− θ − δθ(t)) |
. (3.67)

According to the expression above, the sensitivity depends on θ as well as on ωRF t.
This sensitivity is thus constantly changing. The minimal bound, ∆ϕmin,het = 1/

√
Ns

given by equation (3.49), can be reached for certain times but the sensitivity can also
diverge. Experimentally this divergence has no physical meaning as, whatever the
sensitivity, the measurement still gives a finite photo-current value. Hence, a different
approach needs to be employed to determine the effective sensitivity of the experiment.

Determining the smallest measurable phase shift, δθmin, implies to find the smallest
phase shift inducing a change in the measured signal, bigger than the noise of the
measurement. This idea is illustrated in Figure 3.3. To characterize the change in the
signal due to a phase shift δθ(t), we consider the difference between the signal with no
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Figure 3.3 – Noisy photo-
current. Photo-current i−(t) as
a function of ωRF t. In the semi-
classical approach the photo-
current is defined by its mean
value (3.66) plus its variance
given by

√
Var(i−(t)) =

√
Ns. In

black the signal without phase
shift and in blue the signal
shifted by a phase δθ. Our aim is
to determine the smallest phase
shift δθmin as a function of ωRF t
for which the two curves are
distinguishable.

shift and the one shifted in phase due to δθ(t). For simplicity and without any loss of
generality, we take θ = 0. The difference between the signals is thus given by

s(t) = Ns| cos [ωRF t− δθ(t)]− cos [ωRF t] |. (3.68)

The smallest phase shift, δθmin, is measured when the difference s(t) starts to be
bigger than the detection noise. This noise is given by the variance of the differential
photo-current

√
Var(i−(t)) =

√
Ns. Hence, the smallest phase shift δθmin is measured

for s(t) =
√
Ns. As the signal is constantly changing in time, we decided to use a

graphical resolution. The difference s(t) is calculated for different values of the time
varying phase ωRF t. The minimal phase shift is found when the curve representing s(t)
crosses the detection noise level given by

√
Ns. An example of such graphical resolution

for different values of ωRF t is represented in Figure 3.4.

This resolution is applied for different values of the time varying phase ωRF t from
which the corresponding minimal phase δθmin is extracted. Figure 3.5 shows δθmin as
a function of ωRF t for ωRF t ∈ [0, 2π]. It can clearly be seen that the sensitivity reaches
the optimal bound, in black, for some values of ωRF t but changes rapidly with it. In an
experiment, measurements are taken at different times. As the sensitivity is periodic
with the time, averaging over ωRF t ∈ [0, 2π] allows to determine the effective sensitivity
associated to this experiment. Thus, averaging the sensitivity represented in Figure 3.5
over one period of ωRF t leads to an effective sensitivity given by

∆ϕeff = 〈δθmin〉ωRF t '
8√
Ns

. (3.69)

We see that ∆ϕeff ' 8∆ϕmin,het so the effective sensitivity is height times worse
than the optimal one, thus the optimal bound cannot be reached. The same analysis
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Figure 3.4 – Graphical resolu-
tion of the sensitivity. The sig-
nal s(t) from equation (3.68) as a
function of δθ(t). Each plain col-
ored curve is a function s(t) for a
different value of ωRF t. It corre-
sponds to realizations of the ex-
periment at different times. In
dashed black, the noise of the
photo-detection

√
Var(i−(t)) =√

Ns. The signals are normalized
by
√
Ns for visibility. The mini-

mal phase shift δθmin for a given
value of ωRF t is given by the in-
tersection of the plain curves with
the noise.

can be conducted using a single output of the interferometer instead of the differential
photo-current. The sensitivity as a function of ωRF t is reproduced for this photo-current
in Figure 3.5. Interestingly, even though the differential configuration is often preferred,
the single output leads to the same effective sensitivity. Indeed, the curves in Figure
3.5 are different but the average sensitivity is roughly the same, leading to similar
sensitivities.
The sensitivity calculated is not yet the one on the phase measurement. We derive it
in the following section.

0 1 2 3 4 5 6
ωRF t

1

10

20

30

40

50

δθ
m
in
×
√
N
s

Figure 3.5 – Determination of
the experimental sensitivity.
Minimum phase fluctuation δθmin
as a function of ωRF t for N '
1015. In black the optimal es-
timator bound 1/

√
Ns. In blue

the sensitivity for the differential
photo-current. In red the sensi-
tivity for the single photo-current
measurement.
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3.4.3 Phase sensitivity as a function of the analysis frequency

As said previously, the sensitivity on the phase ϕ can be retrieved by applying the
transfer function of the UMZI (3.12) to the sensitivity on the phase difference ∆ϕ(f, τ).
This transfer function depends on the frequency analysis f at which the frequency shift
is characterized. It implies that the phase sensitivity depends on the analysis frequency.
If we consider the configuration where the phase shift is induced by the laser phase noise,
applying the transfer function to the phase sensitivity leads to the minimal measurable
phase fluctuations as a function of the analysis frequency, which can be assimilated to
the minimal measurable power spectral density Smin(f). Consequenlty, we will express
this sensitivity in terms of power spectral density. From the definition of the PSD given
by equation (1.51) and using the transfer function defined in equation (3.12), the PSD
of the phase Sϕ(f) is related to the one of the phase difference S∆ϕ(f) according to

Sϕ(f) = |hUMZI(f)|2S∆ϕ(f). (3.70)

We are interested in the limit in sensitivity for a phase measurement. In an ex-
periment, this ultimate sensitivity is set by the shot noise which is a white Gaussian
noise. Hence, we assume that the noise on the phase difference ∆ϕ, when looking at the
limit in sensitivity, is a white Gaussian noise, which leads to Smin∆ϕest

(f) = ∆ϕ2
est, where

∆ϕ2
est is the minimal phase variation that can be measured with a given estimator.

Consequently, the power spectral density associated to the minimal phase is given by

Sminϕest(f) =

∣∣∣∣ 1

1− e−2iπτf

∣∣∣∣2 ∆ϕ2
est. (3.71)

The minimal phase PSD as a function of the frequency is reproduced in Figure
3.6. It is represented for the optimal estimator given by equation (3.60) as well as the
effective one given by (3.69). It can be seen that the optimal estimator reaches the SQL
bound around 500 kHz for a delay of 200 m. On the other hand, because the effective
sensitivity is eight times bigger than the optimal one, the minimal sensitivity that can
be achieved experimentally is approximately 19 dB above the SQL.

A last interesting point to look at is the delay allowing to reach the best phase
sensitivity (the standard quantum limit in the case of the optimal estimator) at a given
frequency. In the case of the optimal estimator, the frequency at which the SQL is
reached, is given as a function of the delay τ by

fSQL =
1

2τ
. (3.72)

Figure 3.7 represents the variation of fSQL as a function of the delay in meter
introduced in the interferometer. It can be seen that if one wants to achieve the best
sensitivity at a high frequency, small delays must be employed. On the other hand, to
achieve the best sensitivity at low frequency, very long delays must be used.
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Figure 3.6 – Minimal phase
noise power spectral density.
Minimal phase noise PSD from
(3.71) for the optimal estimator
of the phase difference in dashed
red as well as the effective one
in plain blue, given by equations
(3.60) and (3.69). The standard
quantum limit (SQL), reached by
the homodyne detection and de-
fined in section 1.4.2.3 is also rep-
resented in black. Those limits
are calculated with P = 1 mW,
the optical power and T = 0.1
µs the integration time for each
point.
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Figure 3.7 – Delay allowing to
reach the best sensitivity. In
order to achieve the best sensi-
tivity given by equation (3.72) at
the frequency fSQL different de-
lays must be employed. The de-
lay is given by d = τ × v where
v = c/1.45 is the speed of light in
a silica optical fiber.
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Summary
In this chapter, we presented two techniques to measure the quadratures of an elec-
tric field. Since intensity measurements are easy to implement, we focused on phase
measurements. The first technique, the self-heterodyne detection, is based on an unbal-
anced Mach-Zehnder interferometer. It allows to retrieve the information on the phase
of an electric field from the beat signal with a delayed replica of this field. The second
one, the homodyne detection, uses a strong field, the local oscillator, to measure the
fluctuations of a weaker one at the same frequency, the signal. Both schemes will be
used later to characterize the dynamics of an optical frequency comb. Consequently,
we compared their sensitivity. The homodyne detection is a lossless measurement and
allows to reach the standard quantum limit derived in chapter 1. On the other hand,
the self-heterodyne configuration allows vacuum to enter the interferometer, degrading
the sensitivity of the measurement. Even though the SQL can still be reached at certain
analysis frequency using an optimal estimator, the later is not reachable experimentally.
Therefore, we derived an effective bound on the phase sensitivity for an experimentally
accessible observable, using a graphical resolution. This sensitivity was found to be
height times higher than the SQL.
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Part II

Characterization of the dynamics
of optical frequency combs
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Introduction

In the previous part we introduced the mathematical tools used to describe the elec-
tric field generated by an optical frequency comb (OFC) as well as the experimental
techniques to measure it. The aim of this part is to use those tools and techniques to
investigate the dynamics of OFCs. Laser dynamics refers to the temporal evolution of
the laser parameters such as its mean power or its central frequency. Regarding contin-
uous wave lasers, characterizing this dynamics is straightforward since, to some extend,
it can be reduced to the study of its mean power and its frequency. However, for an
optical frequency comb (OFC) the task has proven to be cumbersome due to the 105

individual spectral lines composing its spectrum. Yet, Haus et. al. demonstrated that
the main dynamics of the OFC can be reduced to four distinct parameters: the pulse
energy, the carrier envelope offset (CEO), the repetition rate and the central wavelength
[58, 59]. As a consequence, the dynamics of OFCs and thus the noise affecting those
main parameters, has been extensively studied in the literature. Various models have
been developed to describe the noise in passively mode-locked lasers [59, 60, 61, 62].
The noise on the parameters has also been measured in the literature as in [49]. In
addition, the intensity related dynamics of OFCs has drawn a lot of attention as in
[63, 64, 65] where the pump laser is presented as the main source of noise. However,
in those studies, a specific setup is required to measure each parameter separately. For
example, a single photodiode is sufficient to measure the intensity noise of the laser.
The CEO noise is usually characterized via a f-2f interferometer which will be presented
later in section 4.2.1.1. The timing-jitter, meaning the noise on the repetition rate, can
be measured by heterodyne beat with a stable laser. Thus, the full characterization of
the dynamics requires bulky setups which are not always easy to put into practice.
In this work, a different approach to noise measurement is investigated. As introduced
in [58], each noise can be associated to a specific time/frequency mode of the electric
field. Thus, an experiment enabling the simultaneous measurement of the four modes
of the electric field allows a characterization of the laser dynamics with a single setup.
In this part, we pursue the work presented in [66, 67]. Building on the idea that each
parameter can be associated to a frequency mode, an experiment to access those modes
has been built. It relies on a multipixel detection allowing the measurement of separated
frequency bands. Combined to an homodyne detection, the modes can be accessed and

69



the noise extracted. The noise spectra of the parameters of a Titanium-Sapphire based
femtosecond oscillator have already been measured thanks to this setup. However, in
this work we go one step further. We translate our measurements in units that can be
compared to other studies. In addition, we harness the correlations between noises to
gain insight on the noise sources and develop a simple model to explain our measure-
ments. Finally, we apply our analysis technique to a new source of light: the dynamics
of a fiber-based frequency comb at telecom wavelength is investigated. The aim is to
demonstrate that the analysis technique developed can be applied to various sources of
pulses of light. Furthermore, this experiment relies on a different experimental setup
from the previous one. This new setup, based on off-the-shelf optical components, is
more compact and thus easier to implement.
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Chapter 4

Modal investigation of the dynamics
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In this chapter, the decomposition of the electric field in noise spectral modes is
presented. The basic idea is to study a single pulse from the frequency comb undergoing
intensity and phase noises. The perturbed electric field can be decomposed into noise
modes each associated to a specific parameter of the laser. The fluctuations of those
parameters are imprinted in the amplitude and phase covariance matrices which are
measured experimentally. We describe the setup needed to achieve this measure and
present the noise spectra for each parameter extracted from the measurements. This
experiment allows for a complete characterization of the laser dynamics with a single
setup.
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4.1 Modal description of the dynamics
In this section, the mathematical tools presented in the first part of the manuscript are
used to characterize the laser dynamics. In particular, the decomposition of the electric
field in envelope modes is at the center of this work. We will see that a noisy laser field
can be decomposed in spectral modes, each associated to a parameter of the laser.

4.1.1 Single pulse fluctuations

The starting point of the analysis is the expression of the electric field of a single pulse
from the frequency comb. As seen in section 2.1.2, the complex electric field of a single
pulse can be written in terms of slowly-varying envelope mode u(t) according to

E
(+)
pulse(t) = E0a(t)e−iω0t = E0α0u(t)e−iω0t, (4.1)

where E0 is the single photon field amplitude [30], ω0 is the carrier frequency, and α0 is
the (real) field amplitude so that α0 =

√
N0 with N0 the mean photon number. This

expression can be related to the full train of pulses according to

E
(+)
comb(t) = E0

∑
m

α0u(t−mτr)e−iω0(t−mτr)e−im∆φceo (4.2)

where τr is the repetition rate of the laser and ∆φceo is the carrier envelope offset (CEO)
phase.
Due to various noise sources, such as pump laser intensity fluctuations, vibrations or
temperatures fluctuations, the laser experience intensity and phase noise. The result-
ing dynamics can be reduced to the study of the four main parameters of the lasers
regrouped in a single vector −→p = (δε, δω0, δτceo, δτr) where δε stands for amplitude
fluctuations, δω0 for carrier frequency fluctuations, δφceo = ω0δτceo for CEO phase fluc-
tuations and δτr for timing jitter. Note that δφceo represents the fluctuations of the
carrier envelope offset phase and should formally be noted δ∆φceo. For simplicity we
will keep the notation δφceo in the rest of the manuscript.

As discussed in section 2.1.2, we assume that the study of a single pulse is sufficient
to fully characterize the optical frequency comb. In doing so, we limit our study to
effects affecting all pulses in the same way. Consequently, if we apply the perturbation
−→p on the single pulse (4.1), we have

E
(+)
pulse(t,

−→p ) = E0α0 (1 + δε)u (t− δτr) e−i(ω0−δω0)(t−δτceo). (4.3)

From expression (4.3), temporal modes can be associated to each parameter. How-
ever, experimentally we chose to use a spectrally resolved detection. Hence, the repre-
sentation in the spectral domain is more suitable. The Fourier transform of (4.3) leads
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to
Ẽ

(+)
pulse(Ω,

−→p ) = E0α0 (1 + δε) ũ (Ω− δω0) ei(ω0δτceo+Ωδτr), (4.4)

where Ω = ω − ω0. In expression (4.4), we used the notation ũ(Ω) which corresponds
the spectrum of the laser and can be found by taking the Fourier transform of (4.1) so
that

Ẽ
(+)
pulse(Ω) = E0α0ũ(Ω) = E0α0|ũ(Ω)|eiϕ(Ω), (4.5)

where ũ(Ω) is the mean field mode normalized as
∫

dΩ|ũ(Ω)|2 = 1 and ϕ(Ω) the spectral
phase. This phase is assumed to be constant over Ω. This condition is necessary to
properly perform the experiment as discussed in section 4.2.2. In addition, for simplicity,
we choose to work with real spectral modes by taking the phase equal to zero, i.e.
eiϕ(Ω) = eiϕ = 1.

As the perturbations are small, the expression (4.4) can be expanded at first or-
der. The fluctuations of the electric field δẼ

(+)
pulse(Ω) are retrieved by subtracting the

unperturbed single pulse field

δẼ
(+)
pulse(Ω) = Ẽ

(+)
pulse(Ω,

−→p )− Ẽ(+)
pulse(Ω)

' E0α0

[
δεũ(Ω)− δω0

∂ũ(Ω)

∂Ω
+ iω0δτceoũ(Ω) + iΩδτrũ(Ω)

]
. (4.6)

Note that the notation δ as in δẼ(+)
pulse(Ω) implies the dependency in −→p , i.e. δẼ(+)

pulse(Ω) =

δẼ
(+)
pulse(Ω,

−→p ).
Using equation (4.6), we will show that the perturbed field can be decomposed in four
noise modes. Thus, measuring the electric field in a given spectral mode allows to
measure the noise on the corresponding parameter.

4.1.2 Field quadrature fluctuations

In the rest of the study the representation in terms of quadratures of the electric field
x̃(Ω) and p̃(Ω) is used. Those quantities correspond to physical properties of the electric
field accessible in an experiment, using for example a homodyne detection as described
in section 3.3.
As introduced in section 1.2.3, the quadratures are related to the electric field according
to

Ẽ
(+)
pulse(Ω) =

E0

2
[x̃(Ω) + ip̃(Ω)] , (4.7)

where x̃(Ω) is proportional to the real part of the field and p̃(Ω) to its imaginary part.
As seen in section 1.4.2.1, using this representation, the fluctuating electric field can be
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written
2δẼ

(+)
pulse(Ω) = E0 [δx̃(Ω) + iδp̃(Ω)] , (4.8)

with δx̃(Ω) = 2δα0ũ(Ω), proportional to the amplitude fluctuations, and δp̃(Ω) =
2α0δϕũ(Ω), proportional to the phase fluctuations. By identification with equation
(4.6) we find

δx̃(Ω) = 2α0

[
δεũ(Ω)− δω0

∂ũ(Ω)

∂Ω

]
, (4.9)

δp̃(Ω) = 2α0 [ω0δτceoũ(Ω) + Ωδτrũ(Ω)] . (4.10)

In the expressions above, each of the four parameters is associated to a particular
spectral mode related to the mean field one ũ(Ω). To normalize those modes, the mean
field spectral mode can be approximated by a Gaussian centered on ω0 according to

ũ(Ω) =
1

4
√

2π∆2ω
exp

(
− Ω2

4∆2ω

)
, (4.11)

where ∆ω =
√

∆2ω is the spectral width of the field given by ∆2ω =
∫

Ω2|ũ(Ω)|2 dΩ.
Using this definition, we have

δx̃(Ω) = 2α0

[
δεũamp(Ω)− δω0

2∆ω
ũcent−freq(Ω)

]
, (4.12)

δp̃(Ω) = 2α0 [ω0δτceoũceo(Ω) + ∆ωδτrũrep−rate(Ω)] , (4.13)

The normalized modes defined in expressions (4.12) and (4.13) are called detection
modes and are given by

ũamp(Ω) ≡ ũceo(Ω) = ũ(Ω)

ũcent−freq(Ω) = −2∆ω
∂ũ(Ω)

∂Ω

ũrep−rate(Ω) =
Ωũ(Ω)

∆ω

The dynamics of the laser can be characterized by measuring the electric field in
the spectral modes associated to each parameter of the laser. It can be achieved by a
spectrally resolved detection. The setup used to perform this measurement is described
in the next section.

4.2 Measuring the multimode field
In order to characterize the laser dynamics, the experimental setup presented in Figure
4.1 is used. The beam under study is first split in two: an intense beam, and a weak
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RF LO

Ti:Sa laser

CEO lock

PDH lock

High Finesse Cavity

Pulse Shaper

Multimode homodyne detection

Reference filtering

Spectral phase compensation

BS 50-50
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a)

b)

c)

DAQ

Figure 4.1 – Experimental setup: The experiment is composed of three parts. a)
Reference filtering, to generate the reference beam via a high finesse cavity on which the
repetition rate of the laser is locked. The CEO is also locked thanks to a f-2f interfer-
ometer to ensure maximum transmission through the cavity. The laser is free running
above the locking bandwidth of a few kHz. b) Spectral phase compensation with a
pulse shaper to ensure a flat phase for all spectral bands. That way, the homodyne
is locked on the phase quadrature for all the spectral bands. c) Multipixel homodyne
detection to measure the amplitude and phase noise in 8 different spectral bands. A
demodulation stage is used to acquire noise at a given offset frequency selected by the
radio-frequency local oscillator (RF LO) whose frequency can be swept. All the data
are acquired by an acquisition card (DAQ) and are post processed on a computer to
recover the covariance matrices.

one. The aim of this experiment is to perform a spectrally resolved measurement on
the intense beam. Hence, we call this beam the signal. The setup can be decomposed
in three different parts. The first one is the reference beam preparation. As a matter of
fact, a phase measurement requires a phase reference to compare the field under study
to. This is achieved by filtering the phase fluctuations of one of the beams, in this case
the weak one, with a high finesse cavity. We call this beam the reference. The second
part of the experiment, involving a pulse shaper, is used to properly control the relative
phase between the beams across the spectrum for the homodyne detection. Finally,
a multipixel homodyne detection is implemented to perform the spectrally resolved
detection of the quadratures of the field. In the following we present each part in more
details.

4.2.1 Reference beam

The first building block of the experiment is the preparation of the reference beam.
Indeed, the phase measurement in the experiment relies on a homodyne detection.
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More precisely, the variation of the homodyne detection described in section 3.3.3 is
used to characterize the noise of the most intense of the two beams, the signal. We
saw that this scheme gives access to a measurement of the amplitude noise of the
signal and to a measurement of the relative phase noise between the signal and the
reference. To retrieve the phase noise of the signal beam only, the reference beam needs
to have lower phase noise than the signal beam. This is achieved by filtering the phase
fluctuations of the reference. In principle other techniques can also be used such as
an unbalanced Mach-Zehnder interferometer as seen in section 3.2. However, this is
not the approach used in this experiment. Instead, a high finesse cavity (F ' 1200)
has been designed to filter the phase noise. The technical description of this cavity
can be found in [66] and a picture can be seen in Figure 4.3. This cavity acts as a
low pass filter for the phase fluctuations with a bandwidth of approximately 125 kHz.
This cavity is synchronized with the laser cavity [68]. Indeed, to ensure maximum
transmission through this filtering cavity, a pulse circulating inside the cavity must
overlap, after one round-trip, with the next pulse, from the train of pulses, injected. In
the frequency domain, a frequency comb can be associated to the high finesse cavity.
The separation between spectral lines is given by the length of the cavity. It defines the
repetition rate of the cavity. Its CEO frequency is set by the intra-cavity dispersion.
Hence, the laser spectrum is entirely transmitted, and thus the cavity are synchronized,
if both repetition rates and CEO frequencies of the laser and the cavity are identical.
Consequently, those quantities need to be locked. In principle, we lock the repetition
rate and the CEO of the laser as the cavity is designed to be more stable. In the
following parts we briefly discuss the technical aspects of those locking.

4.2.1.1 CEO locking

The first parameter that needs to be locked is the carrier-envelope offset (CEO) of
the laser. As previously explained, this offset is due to the intra-cavity dispersion.
Controlling the dispersion allows to control this parameter. This is usually ensured by
a control of the pump laser intensity [69]. To lock the CEO, its value has to be measured
first. This is achieved using a f-2f interferometer. A scheme of this interferometer is
reproduced in Figure 4.2. Its principle is to use a photonic crystal fibre (PCF) to expand
the pulse spectrum. This spectrum must be expanded enough to reach 532 nm and 1064
nm. Once done, a dichroic mirror separates the spectrum into two components. We
write the frequencies of the two components as

f1064 = f0 + n1064fr and f532 = f0 + n532fr, (4.14)

where f0 is the CEO frequency, fr the repetition rate and nλ the index of the spectral
line corresponding to the wavelength λ. The 1064 nm component is frequency doubled
in a nonlinear crystal to reach 532 nm according to

f ′′532 = 2f0 + 2n1064fr (4.15)

76



CHAPTER 4. MODAL INVESTIGATION OF THE DYNAMICS
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f-2f Interferometer
Figure 4.2 – Drawing of the f-2f
interferometer. The initial spec-
trum is expanded thanks to a pho-
tonic crystal fibre to have a span of
an octave. The signal at 532 nm is
mixed with the one at 1064 nm but
frequency doubled to measure the
CEO of the laser.

Both beams at 532 nm are then recombined on a beam-splitter. Because n532 =
2n1064, the beat signal between the two beams, measured with a photodiode, gives
access to the CEO according to

fbeat = |f ′′532 − f532| = f0. (4.16)

This value is then locked by mixing the beat signal with a stable radio-frequency
(RF) reference which value is chosen in order to maximize the transmission of the
filtering cavity. The error signal is sent, via a commercial PI servo controller from New
Focus, with a bandwidth of 3 kHz, to the pump laser to act on its current. It results in
a modulation of the pump laser intensity which modulates the intra-cavity dispersion
of the laser and thus the CEO.

4.2.1.2 Repetition rate locking

Once the CEO is locked, the repetition rate of the laser, i.e. the length of the cavity,
can also be locked to match the filtering cavity one. To this end, a Pound-Drever-Hall
(PDH) method is used. To implement this locking, a counter-propagating beam is sent
to the filtering cavity as illustrated in Figure 4.3. The phase of this field is modulated
via a mirror mounted on a piezoelectric. The PDH signal is derived from the reflected
beam at the output of the cavity. This scheme is used to avoid any modulation on the
reference beam, in transmission, sent to the homodyne detection. The error signal is fed
to another mirror mounted on a piezoelectric actuator in the laser cavity via another
PI servo controller with a bandwidth of 1 kHz. A detailed description of this locking
scheme can be found in [66].

4.2.2 Spectral phase compensation

The second building block of the experiment is the spectral phase compensation. It is
based on a pulse shaper and is used to ensure a flat spectral phase across the spectrum of
the signal beam with respect to the reference. This compensation is needed to satisfy the
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Error signal
to laser

PhotodiodeSignal generator

Figure 4.3 – Drawing of the filtering cavity and the repetition rate locking.
The locking is realized with the reflection of a counter-propagating beam at the output
of the cavity. The beam is modulated by a mirror mounted on a piezo and the reflected
signal detected by a photodiode. This signal is mixed with a stable reference which
creates the error signal. It is then send to another mirror mounted on a piezo in the
laser cavity to stabilize the cavity length.

assumption made in section 4.1.1, namely that ϕ(Ω) is constant over Ω. This condition
is important as with a non-flat phase the nature of the measured quadratures would
evolve throughout the optical spectrum. In this section, the spectral interferometry
technique used to measure the relative phase between the signal and reference beams
is presented. Then, the working principle of a pulse shaper used to correct the spectral
phase is briefly introduced.

4.2.2.1 Spectral phase measurement

The spectral interferometry technique is used to measure the spectral phase between
the signal and reference beams. To this end, a delay τ is introduced on one of the arm
of the homodyne detection. The signal and the reference beams are then combined on
the homodyne BS. A spectrometer is placed at one of the outputs so that the spectrally
resolved intensity is detected. Using the definitions of the electric field in the spectral
domain 1.18: Ẽ(+)

j = E0αj|ũj(Ω)|eiϕj(Ω), the intensity reads

I(Ω) ∝ |Ẽ(+)
s (Ω) + Ẽ

(+)
ref (Ω)eiΩτ |2

∝ Is(Ω) + Iref (Ω) + 2E2
0αsαref |ũs(Ω)||ũref (Ω)| cos (Ωτ + ϕs(Ω)− ϕref (Ω)) ,

(4.17)
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FT -1

a) b) c)

FT 

Figure 4.4 – Representation of the spectral phase measurement. A spectrum
is first acquired (a) when a constant delay is introduced between the signal and the
reference. The inverse Fourier transform of this spectrum is calculated (b). This signal
is composed of a central peak and two sidebands at ±τ due to the delay. The Fourier
transform of one sideband is taken and the phase of the signal is plotted (c) to retrieve
the spectral phase.

where Ω = ω − ω0. We write ϕ(Ω) = ϕs(Ω) − ϕref (Ω) the spectral phase we aim
to measure. It can be seen that the spectrum is composed of an oscillating term as a
function of Ω due to the delay τ . This term is responsible for the fringes in the spectrum
reproduced in Figure 4.4a. Those fringes are modulated across the spectrum by the
spectral phase ϕ(Ω) changing locally their period. For simplicity, only the interference
part is considered in what follows. The spectral phase can be determined by first taking
the inverse Fourier Transform of the intensity (4.17). The signal reads

TF−1{I(Ω)} ∝
∫
R
αsαref |ũs(Ω)||ũref (Ω)|eiΩ(t+τ)eiϕ(Ω)dΩ

+

∫
R
αsαref |ũs(Ω)||ũref (Ω)|eiΩ(t−τ)eiϕ(Ω)dΩ. (4.18)

The signal corresponding to the expression above is represented in Figure 4.4b. It is
composed of a central peak (due to the DC term Is(Ω) + Iref (Ω) not written in (4.18))
and two sidebands at delays −τ and +τ from the central peak.
A time window is applied to keep only the positive sideband at +τ which is then shifted
back to τ = 0. The Fourier transform of this filtered signal is then taken. The retrieved
signal is:

s(Ω) ∝ αsαref |ũs(Ω)||ũref (Ω)|eiϕ(Ω) (4.19)

Therefore, taking the argument of the signal above gives the spectral phase ϕ(Ω).
An example of measured spectral phase is represented in Figure 4.4c. This spectral
phase can be controlled using a pulse shaper as described in the next section.
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Figure 4.5 – Working principle of a pulse shaper. A pulse shaper is composed of a
zero-dispersion line and a spatial-light modulator. The input beam is spectrally spread
with a grating. The spectral phase of the input beam is shaped by applying different
voltage values on the SLM. The output shaped beam is then recombined in frequency
with another grating.

4.2.2.2 Pulse shaper

A pulse shaper can be used to shape the amplitude or the phase of the spectrum of a
laser beam. A very detailed review of pulse shaping techniques can be found in [70]. In
our experiment, the pulse shaper is mainly used as a phase modulator and is composed
of a 4f line, also called zero-dispersion line, and a Spatial Light Modulator (SLM) placed
in the Fourier plane as displayed in Figure 4.5.

Zero-dispersion line: It is composed of a first grating to angularly disperse the
spectral components of the pulse. Each component is then focalized on a different
spot in space by a first lens placed at a distance f from the grating, f being its focal
distance. The second lens is placed at 2f from the first one. The SLM is placed in
between the lenses. A second grating, at a distance f from the second lens, recombines
all the spectral components in a single beam at the output of the pulse shaper. In the
experiment this line is implemented in a folded configuration meaning that the SLM
acts as a mirror and thus only one lens and one grating are used. A small vertical angle
is set on the SLM so that the input and output beams can be separated.

Spatial Light Modulator: The SLM used in the experiment is based on liquid
crystals (Hamamastsu LCOS-SLM X10468). It is placed between the two lenses at
equal distance from each one. It is composed of a screen of 792 × 600 pixels acting as
independent programmable waveplates depending on the voltage applied to each one of
them [71]. As the spectrum is spread across the screen of the SLM, the spectral phase
can be tuned by applying different voltage values to different pixels.
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4.2.2.3 Compensation

For our analysis we use the pulse shaper combined with the spectral interferometry
technique to ensure a flat relative phase across the spectrum. The spectral phase is
first measured using the spectral interferometry. It can then be inverted and sent to
the pulse shaper, placed on the signal path, to flatten the relative phase between the
two beams. In practice only the quadratic phase is corrected in the experiment as it
is the dominant contribution. Typically, a quadratic phase of - 2200 fs2 is applied on
the pulse shaper. In addition to ensure a flat spectral phase across the spectrum, this
procedure enables to rise the homodyne contrast for the entire signal as it improves
the overlap between the two fields. Before spectral phase compensation the contrast is
about 35 %. Once corrected, almost 90 % contrast can be reached.

4.2.3 Multipixel homodyne detection

Finally, the most important building block of the experiment is the multipixel detec-
tion. After the homodyne beam-splitter (BS), the laser spectrum is spatially spread
with a diffractive element, a grating in our case. This spectrum is sliced in spectral
bands thanks to an array of microlenses. Each part of the spectrum is then detected
by a photodiode from an array of 16 photodiodes from which only 8 are used. The
reason for this choice will be explained later. As a homodyne detection is a projective
measurement, this configuration is equivalent to performing 8 homodyne detections in
the different spectral bands. In this section, the technical implementation of such mea-
surement is discussed. Then, a new basis is introduced to model this measurement: the
pixel basis.

4.2.3.1 Detectors alignement and calibration

As said previously, each detector (respectively called Harmony and Chaos) is composed
of 16 photodiodes from which 8 only are used. The detectors have two outputs for
each pixel: a low frequency one (DC signal), mainly used for alignment, and a high
frequency one (AC signal), used for the acquisition. The cutting frequency between the
two outputs is 200 kHz.
Each channel must be properly aligned and calibrated. In this section, the alignment as
well as the calibration procedures are exposed. Note that all the procedures are realized
using only the signal beam (the reference being blocked), as it is the most intense of
the two beams and the one we wish to characterize.

Space wavelength mapping The first calibration step is the space-wavelength map-
ping. It consists in associating a wavelength to each pixel of the detectors. To realize
this calibration, a spectral filter is used to select a very narrow spectral band (' 1 nm).
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This spectral filtering is performed by the pulse shaper presented in section 4.2.2. By
shutting down all the pixels from the SLM screen expect a very narrow line, only a
small portion of the signal optical spectrum is reflected and sent to the detection. The
central wavelength of the filter is shifted from 760 nm to 830 nm by shifting the position
of the switched-on pixels on the screen. At each step, the wavelength corresponding to
the light going through the spectral filter is measured with a spectrometer. Then, an
acquisition of the DC signal of every pixels from each detector is taken during 100 ms.
This signal is averaged over the acquisition time to retrieve the mean power seen by
each pixel depending on the wavelength of the spectral filter. The experimental data
are reproduced in Figure 4.6.
To find the correspondence between pixel and wavelength, the data of each pixel are
fitted by a Gaussian and the central wavelength of each fit is plotted as a function of
the pixel number as shown in Figure 4.7. Those data are then also fitted, using a linear
fit. This linear curve allows to map each pixel to a wavelength1.

Detector alignment The second step in the calibration is to ensure a good alignment
of the two detectors, i.e. that a pixel of one detector receive the same power as the same
one of the other detector. Because the space wavelength mapping has been done before,
this is equivalent to making sure that both detectors see the same optical spectrum.
To this end, the optical spectrum as seen by each detector is monitored by taking
the average photo-current measured at the low frequency output of each photodiode.
A real time measurement of the spectra allows to properly align the detectors. This
alignment is done by tuning the longitudinal translation stages on which the detectors
are mounted, the ones of the lens arrays as well as the position of the mirrors before
and after the grating used to expand the spectrum. A good alignment is obtained when
both detectors see the same average power (given by the sum of the power seen by each
pixel) and when the two spectra perfectly overlap as can be seen in Figure 4.8. By
doing so, we ensure that the homodyne detection is balanced for all the pixels.

Gain calibration Once the same optical spectrum is sent to each detector, the de-
tectors high frequency outputs can be calibrated. Each high frequency output has a
variable gain that can be modified. It is important to set the same gain for all pixels
from one detector. Indeed, if the same modulated signal is sent to each pixel individu-
ally, the same modulation amplitude needs to be measured by each pixel. Furthermore,
it is critical to set the same gain for the pixels detecting the same wavelength in both
detectors. Indeed, if the gain is different, the situation is equivalent to an unbalanced
homodyne measurement. To calibrate this gain, a stable reference is needed. This

1Note that in Figure 4.7, the pixels are numbered from 1 to 16 but only 8 are detected as explained
before.
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Figure 4.6 – Experimental data and Gaussian fit of the light seen by each
pixel depending on the incident wavelength. Each point corresponds to a value
of central wavelength of the spectral filter. Each color represents the signal measured
by one pixel from 1 to 8. The mapping is done for the two detectors (called Harmony
and Chaos). The Gaussian fit allows to determine the wavelength corresponding to the
maximum detected signal for each pixel. In addition, each Gaussian corresponds to a
pixel mode ṽj(Ω)

.

y = -4.3 x + 833

y = 4.32 x + 760.3

Figure 4.7 – Mapping of the
pixel number to the wave-
length of the incident beam.
Each point corresponds to the
maximum of the Gaussian from
Figure 4.6 for each pixel. The two
detectors have an opposite slope
because of the mirror symmetry
of the setup. Note that here the
pixels are numbered from 1 to 16
but one pixel is left undetected
between each pixel except in the
wings.
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reference is provided by an acousto-optic modulator (AOM) placed in the signal path.
The full procedure can be summarized as follow:

• The position of the AOM on the signal path is adjusted. In particular, the angle
between the incident field and the AOM surface is tuned to put maximum power
in the diffracted order while keeping the detected optical spectra identical, to stay
in a balanced configuration.

• The radio-frequency (RF) signal sent to the AOM is modulated in amplitude at
500 kHz resulting in a modulation of the optical power in the diffracted order.

• The laser field is measured by the detectors so that the modulation power seen
by each detector can be plotted in real time.

• The gain of all the pixels of a single detectors is adjusted. It is achieved by
illuminating one pixel at a time using once again the pulse shaper as a spectral
filter. For this procedure, the wavelength of the filter is kept fixed and each pixel
is successively placed in the beam by using the translation of the detector. The
gain is adjusted by setting the same modulation power for every pixel.

• Finally, with the first detector calibrated, the gains of the second one can be be
adjusted by setting the difference of the signals from both detectors to zero, pixel
by pixel.

Gain verification, shot noise measurement: Once this calibration is done, it can
be tested by removing the AOM and acquiring data from the high frequency channels
of the detectors. Taking the difference of the photo-currents pixel by pixel leads to a
measurement of the optical spectrum as seen by the AC outputs. Indeed, the homodyne
detection, if only the signal beam is sent to the detectors, leads to a measurement of the
shot noise, as all the correlated noises are subtracted. Because the shot noise depends
on the number of photons and thus the optical power in each pixel, it allows to measure
the optical spectrum as seen by the high frequency outputs of the detectors. This
spectrum can be compared with the one acquired using the low frequency outputs. If
the calibration is perfectly completed, both DC and AC spectra must overlap as can
be seen in Figure 4.8.

Clearance: The last step is to ensure that any noise at any frequency of the noise
spectrum (from a hundred kilohertz to a few megahertz) can be detected. As previously
mentioned, the shot noise is the fundamental limit in an experiment, set aside the noise
coming from the detection electronic, called electronic noise (or dark noise). To be
certain to detect noises down to the shot noise level, the gain of the detectors must
be high enough so that this fundamental noise is higher than the electronic noise. To
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Figure 4.8 – DC and AC opti-
cal spectra. Left axis, blue dots
and red squares: spectra acquired
with the low frequency outputs of
both detectors. Right axis, black
diamond: variance of the differ-
ence of the signal acquired by the
high frequency outputs of the de-
tectors leading to a measurement
of the shot noise. The three spec-
tra overlap indicating a correct
alignment and calibration.

quantify how different the shot noise is, compared to the electronic noise, the clearance
is often used. The clearance is defined as the ratio between the shot noise, measured
by the differential photo-current when only the signal illuminates the detectors, as
explained in the previous paragraph, and the electronic noise, obtained when no light
is going into the detectors. To recover those quantities, the noise spectra pixel by pixel,
with and without light, are measured. The procedure to recover those noise spectra will
be presented in section 4.3. Note that this technique is very convenient as it allows to
characterize all the acquisition chain. The experimental data are reproduced in Figure
4.9. Each pixel has a clearance of at least a few dB, which is high enough to perform
the measurements, even on the side-pixels for which the optical power is low due to the
Gaussian shape of the spectrum, as can be seen in Figure 4.8.

4.2.3.2 The pixel basis

In the previous section, the technical implementation of the multipixel detection has
been discussed. To pursue our investigations, a new basis needs to be introduced to
properly describe the multipixel measurements. The decomposition in noise modes
from equations (4.12) and (4.13) is given in a basis composed of continuous modes
u(Ω), which are the detection modes. However, in the experiment, the spectrum is
sliced in 8 spectral bands, using arrays of microlenses and photodiodes. Consequently,
the acquisition must be expressed in a discrete basis composed of the 8 spectral bands.
We consider an array of 8 pixels slicing the Gaussian mean field mode ũ(Ω) given by
equation (4.11). We define the pixel basis {ṽj(Ω)}, j ∈ {1 : 8} where each mode from
the basis corresponds to a pixel. The particular shape of those pixel modes as a function
of Ω is set by the geometry of the experiment [72]. Experimentally, the shape of those
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Figure 4.9 – Clearance of each pixel. Electronic (or dark) noise (black) and shot
noise (blue) calculated by taking the variance of the difference of the AC outputs of the
detectors for each pixel. The electronic noise is measured when no light is sent to the
detectors. The shot noise is measured by sending the signal beam only to the homodyne
detection. A good clearance is achieved even for the side-pixels which receive less light.

pixels can be determined via the space-wavelength mapping presented in the previous
section. Each mode associated to a pixel j is given by the corresponding Gaussian
function represented in Figure 4.6, as it defines the optical spectrum measured by each
pixel. The fact that only 8 pixels from the 16 are used becomes clear by looking at
the modes represented. To ensure that the pixel modes are orthogonal, their overlap
should be minimized. This is made possible by leaving one pixel undetected between
each pixel, hence the gap between each pixel mode. However, this procedure cannot be
used for the side pixels. Indeed, the optical power is too low in the wings of the optical
spectrum. Thus, two pixels side by side are taken, making those modes not perfectly
orthogonal.

In this basis, each continuous mode ũ(Ω) can be redefined by a vector −→u = (u1, . . . u8)
with

uj =

∫
R
ṽj(Ω)ũ(Ω)dΩ. (4.20)

In the remaining of this chapter we will express all the quantities is this discrete
basis. Experimentally, the components uj from, e.g. the amplitude mode (or the CEO
one) ũamp(Ω) = ũ(Ω), defined in section 4.1.2, are determined by measuring the DC
level from the pixels when the signal beam is sent to the detectors. This measure

86



CHAPTER 4. MODAL INVESTIGATION OF THE DYNAMICS

directly gives access to the overlap between the laser spectrum and the pixel modes
ṽj(Ω). Hence, the pixelized amplitude mode coefficients ũamp,j, correspond to the data
in red (or in blue) represented in Figure 4.8. Additionally, the other detection modes
(ũcent−freq(Ω) and ũrep−rate(Ω)) are determined by fitting the pixelised mode ũamp(Ω)
and calculating its derivative.

4.2.3.3 Quadrature detection

Once the detectors aligned and calibrated, the field quadratures can be measured pixel
by pixel in the new basis previously introduced. As seen in section 3.3, phase and
amplitude fluctuations of an electric field lead to quadrature fluctuations, which can be
retrieved via a measurement of the fluctuations of the homodyne signal. Indeed, as seen
in equation (3.30), the sum of the photo-currents of the two outputs of the homodyne
leads to a measurement of the quadrature xs,j of the intense beam for the jth pixel,
according to

δi+,j ∝ αs,jδxs,j, (4.21)

where the index j represents the pixel number ranging from 1 to 8. αs,j =
√
Ns,j is the

number of photons in the signal arm for the pixel number j.

On the other hand, a measurement of the difference of the photo-currents, provided
that the relative phase between the two arms of the homodyne is set to π/2, leads to a
measurement of the difference between the reference phase fluctuations and the signal
ones as seen in equation 3.28:

δi−,j = 2αs,jαref,j(δϕs − δϕref ). (4.22)

As previously explained in section 4.2.1, the phase fluctuations of the reference
beam are filtered as we are interested in the fluctuations of the signal beam. Thus, the
differential photo-current reads

δi−,j = 2αs,jαref,jδϕs. (4.23)

We saw in section 1.4.2.1 that δps = αsδϕs. Consequently, measuring δi−,j is equiv-
alent to measuring δps,j but for a reduced number of photons due to the presence
of the term αref,j in equation (4.23). The procedure to properly extract δps,j and its
consequences on the sensitivity of the phase measurement are discussed in section 4.3.2.

In this section we reviewed the most critical parts of the experimental setup. The
three building blocks are a multimode homodyne detection, a reference beam and a
pulse shaper. In the next sections the results obtained thanks to this experimental
setup to characterize the dynamics of a Titanium Sapphire based frequency comb are
presented.
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4.3 Extracting the noise spectra
In the previous sections we introduced the decomposition in noise modes of a noisy
electric field from an optical frequency comb and the experimental setup used to ac-
cess those modes. From this measurement, it is possible to measure the fluctuations
of the different parameters of the laser (δε, δω0, δτceo, δτr). To characterize the dy-
namics of the laser, the noise spectrum of each laser parameter needs to be measured.
Experimentally, a spectrum analyzer is usually used to calculate the power spectral
density to characterize the noise on a given quantity. However, in this experiment this
measurement is not possible since too many signals need to be acquired at the same
time. Consequently, we present the technique used to recover the spectrum of all the
laser parameters simultaneously. It is based on the previously mentioned mode decom-
position and the spectrally resolved detection associated to a demodulation procedure
introduced in this section. Because the acquisition is composed of many electronic
components, relating the signal measured to physical quantities is not straightforward.
Hence, we also present a normalization procedure to compare the noise to the shot
noise as it is directly accessible by the homodyne detection. This normalization allows
to remove the influence of the electronic acquisition chain from our measurements.

4.3.1 Measuring the noise spectrum: the sideband picture

In this work we are interested in noises affecting the frequency range from a hun-
dred kilohertz to a few megahertz. As a matter of fact, the dynamics at frequencies
lower than a hundred kilohertz, dominated by the environmental perturbations, such
as temperature or air fluctuations, is not accessible with the current setup due to the
bandwidth of the detectors and the filtering cavity. We focus our investigation on noises
intrinsic to the laser, arising e.g. from the pump laser. Moreover we want to access
the lowest noise level, the shot noise. From previous measurements [66], the laser is
expected to reach it above a few MHz. In this configuration the light emitted by the
laser is close to be a coherent state which is crucial for precision measurements.

As said previously, a spectrum analyzer cannot be used in this experiment as we wish
to measure the signals from the 16 photodiodes of the two detectors simultaneously.
Consequently, those signals are collected on a computer via acquisition cards. For
many technical reasons, a demodulation stage is used in the experiment to investigate
the noise in the frequency range of interest. The first reason is the limited sampling
rate of the acquisition card used, which is 1 MHz. In addition, the laser is expected to
be very noisy at low frequencies due to technical noises. Thus, acquiring all the noise
spectrum in a single measurement would degrade the resolution of the spectrum at
high frequencies where the noise is much lower. Consequently, before the acquisition,
the noise measured is mixed with a radio frequency (RF) reference signal, delivered
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by a frequency generator, whose frequency is swept. The resulting signal is then low
pass filtered. From a formal point a view this procedure is equivalent to measuring
noises in the sidebands of the optical carrier at a given offset frequency. In what
follows we present the concept of noise sidebands. Then, the general principle of the
demodulation procedure and how it is used to retrieve the power spectral density of the
laser parameters is described.

4.3.1.1 Noise sidebands

To begin, let us consider two modulating signals: amplitude modulation m(t), and
phase modulation p(t), assumed to be sinusoidal at a given frequency fRF :

m(t) = m cos(2πfRF t), p(t) = p cos(2πfRF t), (4.24)

where m and p are the amplitude of the modulations, which are usually the quantities
that need to be extracted. In the case of the experiment, they correspond to the strength
of the amplitude and the phase noise at the frequency fRF .
Those modulations are applied to the electric field leading to an amplitude modulated
field, E(+)

AM(t), and a phase modulated one, E(+)
PM(t). Hence, the modulated fields can

be written:

E
(+)
AM(t) = E0a(t)(1 +m(t))e−iω0t, (4.25)

E
(+)
PM(t) = E0a(t)eip(t)e−iω0t, (4.26)

By taking the Fourier transform of the expression (4.25), the amplitude modulation is
given in the frequency domain by

E
(+)
AM(Ω) = E0

[
ã(Ω) +

m

2
ã(Ω + fRF ) +

m

2
ã(Ω− fRF )

]
. (4.27)

The same treatment can be done for the phase fluctuations. Assuming small fluc-
tuations we can write: E

(+)
PM(t) ' E0a(t)(1 + ip(t))e−iω0t. Consequently, the phase

modulation is given in the frequency domain by

E
(+)
PM(Ω) = E0

[
ã(Ω) +

p

2
ã(Ω + fRF ) +

p

2
ã(Ω− fRF )

]
(4.28)

It can be seen that the modulations create two sidebands Ω ± fRF at offset fre-
quencies ±fRF from the central frequency. Those sideband amplitudes are driven by
the modulation amplitudes m and p. In the framework of this experiment, as those
modulations are assumed to be noise, those sidebands are called noise sidebands.
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4.3.1.2 Demodulation procedure

In the previous section, we saw that amplitude and phase fluctuations create sidebands
in the electric field. Ultimately, those fluctuations lead to fluctuations of the field
quadratures, as described in section 3.3. Those quadratures are retrieved from the ho-
modyne signal according to (4.21) and (4.23). Consequently, to access those sidebands,
and thus the modulation amplitudes, a demodulation is applied to the homodyne sig-
nal. In this section, we briefly describe this procedure.

To illustrate the demodulation, we consider the signal corresponding to the sum of
the photo-currents in the pixel basis, i+,j for the pixel j of the multipixel detection.
The fluctuating photo-current can be written

i+,j(tn) = i+,j + δi+,j(tn), (4.29)

where, i+,j is the mean value of the photo-current and δi+,j(tn) its fluctuations coming,
e.g. from amplitude or phase modulations as defined in equations (4.25) and (4.26).
tn represents the fluctuations of the quadratures at the time scale of the noises under
study, thus much slower than the timescale of the pulse duration. For clarity, only the
fluctuating part of the signal is kept, which according to equation (4.21) is given by
δi+,j(tn) = αs,jδxs,j(tn), where αs,j =

√
Ns,j is the number of photons in the signal arm

for the pixel number j.

In order to retrieve the amplitude of the fluctuations at a frequency fRF , the signal
δi+,j(tn) is mixed with a reference signal s(tn) = cos (2πfRF tn), delivered by a frequency
generator, so that

δI+,j(tn) = δi+,j(tn)s(tn) = αs,jδxs,j(tn) cos (2πfRF tn)

∝ αs,j

[∫
R
δxs,j(f)e−2πi(f−fRF )tn df +

∫
R
δxs,j(f)e−2πi(f+fRF )tn df

]
∝ αs,j

[∫
R
δxs,j(f + fRF )e−2πiftn df +

∫
R
δxs,j(f − fRF )e−2πiftn df

]
.

(4.30)

This signal is low pass filtered using a filter whose transfer function is h(f). This
transfer function is defined such that it is null for frequencies above the bandwidth of
the filter ∆f . Hence, the demodulated and filtered signal δILP+,j (tn) can be written

δILP+,j (tn) ∝ αs,j

[∫ +∆f

−∆f

h(f)δxs,j(f + fRF )e−2πiftn df +

∫ +∆f

−∆f

h(f)δxs,j(f − fRF )e−2πiftn df

]
.

(4.31)
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If the filter is narrow enough compared to the acquisition rate, δxs,j(f) can be
considered constant over its frequency band ∆f . Hence, the signal (4.31) allows to
retrieve the component of δxs,j(f) at the frequency fRF according to

δILP+,j (tn) ' αs,j

[
δxs,j(fRF )

∫ +∆f

−∆f

h(f)e−2πiftn df + δxs,j(−fRF )

∫ +∆f

−∆f

h(f)e−2πiftn df

]
.

(4.32)
The same procedure can be applied to the differential photo-current fluctuations

given by equation (4.23). This demodulation recovers the strength of a quadrature at
an offset frequency set by the signal generator in a bandwidth fixed by the low pass filter
of the demodulation stage. Thus, it can be used to measure the sidebands introduced in
the previous paragraph. Note that the integral terms in equation (4.32) depend on the
shape of the filter. To simplify the calculations, in the experiment the filter is assumed
to be a step function of width ∆f .

4.3.1.3 Demodulated covariance matrices and noise spectrum

Demodulated covariance matrices: To characterize each frequency channel, the
16 signals from the two detectors AC channels are demodulated and measured simulta-
neously via acquisition cards connected to a computer. Such simultaneous measurement
allows the investigation of the noise in each spectral band as well as their correlations at
a given frequency fRF fixed by the frequency generator in the demodulation stage. To
this end, the covariance matrix, as introduced in section 1.3.4, at the offset frequency
fRF , noted Γx,p(fRF ), is calculated. We first restrict our analysis to the amplitude
and phase covariance matrices. The correlations between amplitude and phase will be
studied in the next chapter. From the demodulated quadratures in the pixel basis, we
define the spectral covariance matrices in amplitude and in phase according to

[Γx(fRF )]j,k = 〈δxj(tn)δxk(tn)〉[fRF :fRF+∆f ], (4.33a)
[Γp(fRF )]j,k = 〈δpj(tn)δpk(tn)〉[fRF :fRF+∆f ], (4.33b)

where 〈·〉[fRF :fRF+∆f ] corresponds to the average over the measurements of the demod-
ulated quadratures at the offset frequency fRF in the frequency band ∆f described in
the previous section.
The diagonal elements of those covariance matrices are the spectrally-resolved variances,
meaning the noise in amplitude and in phase in each spectral band. The off-diagonal
elements give the correlations between the spectral bands.

Laser parameters noise spectra: The noise on each mode will later be extracted
from those matrices by projection on the detection modes introduced in section 4.1.2.
Consequently, the variance of the laser parameters, e.g. the one of the repetition rate
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Var [τr(tn)] = 〈|δτr(tn)|2〉[fRF :fRF+∆f ], at the frequency fRf in the spectral band ∆f , can
be retrieved from the covariance matrices (4.33). Using the relation derived in section
1.4.1, the PSD can be related to the variance of a signal in a spectral bandwidth ∆f
according to

Sτr(fRF ) =
〈|δτr(tn)|2〉[fRF :fRF+∆f ]

∆f
. (4.34)

Therefore, sweeping the frequency of the RF signal allows to retrieve the PSD of the
fluctuating parameters of the laser. This procedure is implemented in this experiment
to measure the dynamics of the laser between 200 kHz and 4 MHz. Note that we
make the assumption that measuring the covariance matrix is enough to recover all the
information on the dynamics. This is true when the noises under study are Gaussian,
which is a reasonable assumption in our experiment.

4.3.2 Normalization of the measurements

As seen in the previous parts, the acquisition channel is composed of many electronic
components. They are used for the amplification as well as the demodulation. Thus,
relating the signal measured to a physical quantity is not straightforward. To circum-
vent this issue, we normalize all our measurements to the shot noise. All the quantities
are then given in units of shot noise (noise relative to shot noise, NRSN), which is the
standard quantum limit in sensitivity for amplitude and phase noise as seen in section
1.4.2. The shot noise is a white and uncorrelated noise corresponding to the level of
noise associated to a coherent state. Therefore, the level of noise displayed must be
understood as an excess of noise compared to a coherent state of same mean power.

Amplitude normalization: According to equation (4.21) and taking into account
the dark noise coming from the electronics, as well as a pixel dependent gain, the sum
of the photo-currents from the pixels j of both detectors can be expressed as

δi+,j = gjδxs,j + dj (4.35)

Where gj is a variable gain, dj the dark noise. Taking the covariance of the measured
photo-current, assuming no correlations between the signal and the dark noise, leads to

Cov [δi+]j,k = gjgkcov [δxs]j,k + cov [d]j,k (4.36)

To determine the gain factor, a shot noise measurement is taken, using the procedure
described in section 4.2.3.1, and the variance of the signal is calculated. In this config-
uration, the variance of the quadrature is equal to one, i.e Var [δxs]

shot
j = 1. Thus, gj is

given by
gj =

√
Var [δi+]shotj − Var [d]j (4.37)
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Finally, the amplitude quadrature is given by

Cov [δxs]j,k =
Cov [δi+]j,k − Cov [d]j,k

gjgk
(4.38)

With this normalization, all the quantities are expressed in units of shot noise. We
expect the covariance matrices to display only diagonal elements equal to one when the
laser is shot noise limited.

Phase normalization: The normalization is slightly more complicated for the phase
quadrature. As seen in equation (4.23), the phase fluctuations are measured via the
difference of the photo-currents from pixel j of both detectors: δi−,j ∝ αs,jαref,jδϕs,j.
This signal is proportional to the number of photons in the reference field, which is
weaker than the signal ( α2

s

α2
ref
' 50). Consequently, the phase fluctuations measured

δpmes,j, are the signal fluctuations for a reduced number of photons which can be mod-
eled by adding losses. Those losses can easily be modeled by a beam-splitter where one
input is the signal and the other one the vacuum. This BS would have a reflectivity

rj =
αref,j
αs,j

and a transmission tj =

√
1− α2

ref,j

α2
s,j

. Thus, the measured phase fluctuations

and signal ones are related by

δpmes,j =
αref,j
αs,j

δps,j +

√
1−

α2
ref,j

α2
s,j

δpv,j = rjδps,j + tjδpv,j (4.39)

Where δpv are the vacuum fluctuations.
As previously, the photo-current fluctuations are related to the phase ones by

δi−,j = gjδpmes,j + dj (4.40)

Where here again, gj is a variable gain and dj the dark noise. They are not necessarily
the same as the ones of the amplitude fluctuations but the same notation is used for
simplicity.
Using the expression (4.39) for δpmes, the photo-current fluctuations can be written as

δi−,j = gjrjδps,j + gjtjδpv,j + dj (4.41)

As none of those contributions are correlated, the covariance is given by

Cov [δi−]j,k = gjgkrjrkCov [δps]j,k + gjgktjtkCov [δpv]j,k + Cov [d]j,k (4.42)

Once again, to determine the gain factor, the variance of the signal is measured for
the shot noise so that var[δps]

shot
j = 1. Furthermore, Var[δpv]j = 1, as there is no
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correlations in vacuum. Finally, knowing that r2
j + t2j = 1, the same equation as (4.37)

is found for the gain:

gj =
√

Var [δi−]shotj − Var [d]j (4.43)

Eventually, the covariance matrix for the signal phase fluctuations is given according
to

Cov [δps]j,k =
Cov [δi−]j,k − Cov [d]j,k

gjgkrjrk
− tjtk
rjrk

Id (4.44)

Where Id is the identity matrix. As a matter of fact, the covariance of the vacuum
fluctuations is the identity matrix because no correlations exist between the different
spectral bands.
The consequence of the losses is a slightly reduced sensitivity of the phase measurement.
Nonetheless, this normalization will still be convenient in the next section to relate our
measurements to physical quantities.

4.4 Results

We present now the results obtained by investigating the dynamics of a Titanium-
Sapphire based femtosecond oscillator from Femtolasers company. This laser delivers
22 fs FWHM pulses at a repetition rate of 156 MHz, resulting in a 40 nm FWHM wide
spectrum centered at 795 nm. The average power is of the order of 1 W. This laser is
pumped by a 5W Finesse Pure CEP pump laser at 532 nm from Laser Quantum.

4.4.1 Covariance matrices

As discussed along this chapter, the reconstruction of the covariance matrices from the
data is done on a computer from the 16 photo-current signals (8 for each detector). The
amplitude fluctuations are retrieved by taking the sum of the photo-currents pixel by
pixel and the phase fluctuations by taking the difference pixel by pixel. The covariance
matrices are measured at offset frequencies from 200 kHz to 4 MHz by sweeping the
frequency of the demodulating signal. We note Γx,p(f) the amplitude and phase covari-
ance matrices calculated at the offset frequency f . An example of matrices acquired is
shown in Figure 4.10. Figures 4.10a and 4.10b display the covariance matrices for the
amplitude and phase fluctuations, respectively, for an offset frequency of 500 kHz. The
insets display the same matrices for an offset of 4 MHz. As expected, the amplitude
covariance matrix is purely diagonal at 4 MHz, with elements equals to one. It implies
that the laser is indeed shot noise limited at this frequency. On the other hand, the
amplitude and phase covariance matrices at 500 kHz display correlations. This is a sig-
nature of the classical noise affecting the laser dynamics. Note that the phase matrix
at 4 MHz is not purely diagonal as it is the case for the amplitude one. This is the
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a) b) c)

Figure 4.10 – Experimental covariance matrices. a) Amplitude and b): phase
covariance matrices. The matrices are measured at 500 kHz. The noise is expressed
as Noise Relative to the Shot Noise (NRSN) on a linear scale. Correlations can be
seen between the different spectral bands. In inset, matrices for noises at 4 MHz. At
that frequency, the laser is only affected by the shot noise. c): noise on the physical
parameters relative to the shot noise. Projection of the covariance matrices on the
modes corresponding to the noise on the CEO, central and repetition rate frequencies
as well as the mean power. The noises are expressed in dB relative to the shot noise.
The shot noise is measured by blocking the reference beam and taking the difference of
the photocurrents.

consequence of the limited sensitivity of the detection for the phase noise due to the
losses, as discussed in section 4.3.2.

4.4.2 Noise spectra

Once the covariance matrices measured, the noise on each parameter can be extracted by
mathematically projecting those matrices on the corresponding spectral mode defined
in section 4.1.2, after pixelisation using the procedure described in section 4.2.3.2. The
resulting noise spectra are given by

δε(f) =
[−→u T

amp · Γx(f) · −→u amp

]1/2
,

δω0(f) =
[−→u T

cent−freq · Γx(f) · −→u cent−freq
]1/2

,

δφceo(f) =
[−→u T

ceo · Γp(f) · −→u ceo

]1/2
,

δτr(f) =
[−→u T

rep−rate · Γp(f) · −→u rep−rate
]1/2

,

(4.45)

where −→u mode are the pixelised detection modes.
Figure 4.10c represents those fluctuations in dB relative to the shot noise as a function of
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the offset frequency, thus corresponding to the spectrum of the noise of each parameter.
It can be seen that the dominant noises in this frequency range are the phase ones and
mainly the noise on the CEO phase. The laser reaches the shot noise level around 3 MHz
meaning that technical noises are no longer affecting the laser. The peak around 1 MHz
corresponds to the relaxation oscillations of the laser. One can notice a discrepancy
with respect to the shot noise at high frequency for the phase noises even though the
phase noise is expected to reach the shot noise level at high frequencies. It is again the
consequence of the limited sensitivity of the measurement, as explained before.

To further investigate the dynamics of the laser, the noise spectra represented in
Figure 4.10c can be converted into physical units. From equations (4.12, 4.13) and
from the expressions of the noise relative to the shot noise (4.45), using the expression
of the PSD (4.34), we obtain the following expressions for the power spectral densities
of the Relative Intensity Noise (RIN(f)), the central frequency noise (Sω0(f)), the
CEO frequency noise (SfCEO(f)) and the timing phase noise (Sφt(f)), with φt(f) =
2πfrδτr(f), together with their units:

RIN(f) =

(
δε(f)√
N0

)2

Tm
[
Hz−1

]
,

Sω0(f) =

(
∆ω√
N0

δω0(f)

)2

Tm
[
rad2.s−2/Hz

]
,

SfCEO(f) =

(
fr

4π
√
N0

δφceo(f)

)2

Tm
[
Hz2/Hz

]
,

Sφt(f) =

(
πfr

∆ω
√
N0

δτr(f)

)2

Tm
[
rad2/Hz

]
,

(4.46)

where N0 corresponds to the number of photons hitting the detector during the acquisi-
tion duration. It is given by N0 = PTm/~ω0 where P is the optical power before the BS
of the homodyne detection. Experimentally, the power sent to the detectors is P = 11
mW. However, to include the losses, mainly due to the pixels left undetected between
each detected one, we take half of this power so that P = 5.5 mW. Tm = 1/BW is the
acquisition time with BW the bandwidth of the low-pass filter used in the detection
chain after the demodulation (BW = 10 kHz). The spectra obtained are reproduced
in Figure 4.11. As a comparison, the timing phase noise and the RIN of a mode-locked
laser have been determined theoretically in [61] where similar noise levels have been
found. Those spectra offer a quantitative measurement of the noise affecting the OFC,
derived from a single measurement.
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a) b)

c) d)

Figure 4.11 – Noise in physical units a) CEO frequency noise, b) timing jitter
noise, c) mean power noise and d) spectrum center frequency noise. The spectral mode
corresponding to each quantity is reproduced in each plot. The shot noise is plotted as
a dashed black line.

4.4.3 RIN of the laser

To certify that our measurements allow to properly capture the dynamics of the laser,
the RIN of the laser can be measured with a different setup. Indeed, the RIN is the
easiest quantity to measure as a simple photodiode is sufficient. The other noises and
specifically the CEO phase noise will be investigated in details in the next chapter.

The optical power of the laser can be described by its mean value P and its fluctua-
tions δP (tn) according to P (tn) = P + δP (tn). The power spectral density of the RIN
of the laser is defined by

RIN(f) =
2

P
2

∫ +∞

−∞
〈δP (tn)δP (tn − τ)〉e2iπfτdτ

[
Hz−1

]
. (4.47)

To measure the RIN, a photodiode is connected to a spectrum analyzer. This
photodiode is illuminated with 6 mW from the laser beam. The spectrum analyzer
measurement, Snoise(f), is expressed in dBm, corresponding to the level of electric
power related to 1 mW. In order to translate this measurement into the RIN of the
laser, we first express the noise in W/Hz by applying the transformation

Pnoise(f) =
1

RBW

[
10(Snoise(f)−30)/10 − 10(Sdark(f)−30)/10

]
[W/Hz] , (4.48)

where RBW is the resolution bandwidth of the spectrum analyzer. Sdark(f) corresponds
to the electronic noise of the spectrum analyzer and the photodiode, measured when no
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light is sent to the detector. The expression above corresponds to the electric2 power
spectrum. This quantity is converted in optical power according to

Popt(f) =

√
Pnoise(f)Rres

RG
[
W/
√

Hz
]
, (4.49)

where Rres is the impedance of the spectrum analyzer (usually 50 Ω), G is the gain in
V/A of the photodiode and R its responsivity in A/W. Finally, the RIN is given by

RIN(f) = 20 log

(
Popt(f)

P

)
[dB/Hz] , (4.50)

where P is the mean optical power of the laser beam. The RIN of the laser measured
using this procedure with 6 mW of optical power is reproduced in Figure 4.12. As a
reference, it can be compared to the theoretical RIN corresponding to the shot noise
given by

RINSN =
2~ω
P

[
Hz−1

]
. (4.51)

This RIN of an optical field limited by the shot noise is represented in Figure 4.12
in dashed black. It can be seen that the RIN of the laser reaches the shot noise around
3 MHz as identified in the previous section.
To compare this result to the measurement realized using the multipixel detection,
we reproduce the RIN from Figure 4.11c in Figure 4.12, together with the shot noise
measured experimentally. It can be seen that the level of noise measured with the
multipixel is consistent with the one measured with the simple photodiode. This is a
proof of the accuracy of our experimental setup. Still, it can be noted that the two
RINs are not perfectly overlapping and that a small discrepancy is present between the
two shot noises. The main reason is that the measurements were taken at two different
times (in fact several years apart). Therefore, the optical powers were not exactly the
same. Furthermore, the RIN measured with the photodiode corresponds to a period
when our laser was working quite poorly, which explains the huge peak of relaxation
oscillations.

Summary
We characterized the dynamics of an OFC using a modal approach. Each parameter of
the laser can be associated to a spectral detection mode. The noise on each parameter
can be recovered by projecting the covariance matrices, measured with a spectrally
resolved homodyne detection, on the detection modes. To test the accuracy of the
measurement, we measured the RIN of the laser with an independent experimental
setup. Both measurements are in agreement.

2By electric we mean voltage measured by the spectrum analyzer.
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Figure 4.12 – Comparison
of the RIN. In blue the RIN
measured with a single pho-
todiode. In red the one mea-
sured with the multipixel de-
tection. In dashed black the
theoretical RIN correspond-
ing to the shot noise and in
dotted black the one mea-
sured with the multipixel de-
tection.
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In the previous chapter we saw how with a single setup it is possible to fully char-
acterize the dynamics of a frequency comb. It is made possible by the measurement of
the amplitude and phase covariance matrices and by projecting them on the spectral
noise modes defined in section 4.1. One advantage of the simultaneous measurement
of the noise on the four main parameters of the laser is the possibility to investigate
their correlations. In this chapter we harness those correlations to gain insight on the
dynamics of the laser and on the noise sources.

5.1 Amplitude-phases correlation matrices

As seen in section 4.2, the signals of the 16 photodiodes (8 for each detector) are
collected on a computer to process the amplitude and phase covariance matrices si-
multaneously by taking the sum and difference of the photocurrents pixel by pixel.
As a consequence, the correlations between amplitude and phase can also be investi-
gated. Indeed in addition to Γx and Γp, the amplitude-phase correlation matrix can be
calculated. It is given by

[Γxp(f)]ij = 〈δxi(tn)δpj(tn)〉[f :f+∆f ], (5.1)
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Figure 5.1 – Phase and am-
plitude correlations: Correla-
tion matrix between amplitude and
phase at an offset frequency of 500
kHz. A sign reversal indicates the
presence of anti-correlations in the
spectrum. In inset the same corre-
lation matrix but at 4 MHz where
the correlations vanish.

where f corresponds to the offset frequency and ∆f the width of the filter given by the
demodulation stage as explained in section 4.3.1.2.
An example of an amplitude-phase correlation matrix is represented in Figure 5.1 for
an offset frequency of 500 kHz. As previously, the inset represents the same matrix
but for an offset frequency of 4 MHz. It can be seen that no clear correlations are
displayed at 4 MHz. This is indeed expected. We saw previously that the laser is shot
noise limited beyond 3 MHz. Therefore, there is no correlations between the spectral
components nor between amplitude and phase above that frequency. On the other hand,
the matrix at 500 kHz displays a distinct structure. Along the phase axis the variation
of the correlations is close to a Gaussian shape centered on the central wavelength of
the laser. In contrast, the correlations along the amplitude axis present a sign reversal
close to the center of the spectrum. It suggests that there are anti-correlations between
the shorter-wavelength and the longer-wavelength part of the spectrum.

The possibility to access correlations, and especially amplitude-phase correlations, is a
powerful tool to investigate the dynamics of optical frequency combs. Indeed, intensity
related dynamics is one of the fundamental mechanisms that governs mode-locking.
Consequently, those correlations can be exploited to find the noise sources and the
coupling mechanisms. Thus, in the next sections we try to understand the amplitude-
phase correlations and their origins, starting by the sign reversal in the middle of the
correlation matrix.

5.2 Fixed point model
The first idea that came to our mind looking at the sign reversal is the presence of
a fixed point close to the center of the spectrum. The idea is that there is a single
frequency (or wavelength) in the spectrum which is not affected by the noise. More
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Figure 5.2 – Fixed point model: Illustration of the fixed point model. In the spectrum
one frequency is fixed and does not fluctuate under a given perturbation. All the
other lines will breath around that frequency with increasing strength. Left is the
representation for a fixed point close to the zero frequency which is the case for cavity
length fluctuations for example. Right is the representation for a fixed point close to
the center of the spectrum. This is the case for fluctuations of pump power.

precisely, the different noise contributions cancel out for that particular frequency. All
the other frequency lines will breath away from this point with increasing strength as
we go farther from it [73, 74, 49]. This general concept is schematized in Figure 5.2. In
the following sections we briefly review the model associated to this phenomenon and
present the measurements performed to determine the fixed point for our laser.

5.2.1 General idea of the model

The fixed point model, or elastic tape model, is a phenomenological model describing
how a noise source affects each frequency line of the comb. Starting from the frequency
of one tooth of the comb

ωn = ωCEO + nωr, (5.2)

where ωCEO is the CEO frequency and ωr is the repetition rate, we assume that a noise
source s, which can be pump intensity or cavity length fluctuations for example, induces
CEO and repetition rate fluctuations. Thus, the resulting dynamics of the nth tooth
reads

∂ωn
∂s

=
∂ωCEO
∂s

+ n
∂ωr
∂s

. (5.3)

We call fixed point the frequency line for which the fluctuations vanish i.e.

∂ωnfix
∂s

=
∂ωCEO
∂s

+ nfix
∂ωr
∂s

= 0 ⇒ nfix = −
∂ωCEO
∂s
∂ωr
∂s

. (5.4)

Consequently, by measuring the CEO frequency and the repetition rate fluctuations
subjected to a perturbation, it is possible to find the line in the spectrum for which
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they both cancel out. It is then possible to extrapolate from this point to get the power
spectral density of a given spectral line Sω(f) according to [49]

Sω(f) '
(
ω − ωnfix

)2
Sωr(f), (5.5)

where Sωr(f) is the power spectral density of the noise on the repetition rate induced
by the noise sources.

The fixed points for various noise sources can be found in the literature. For example,
the fixed points under cavity length fluctuations and pump power fluctuations have been
measured in [49, 75]. The fixed point for cavity length fluctuations was found to be a
few THz, i.e. close to the zero frequency of the spectrum. This can easily be explained
by the fact that the cavity fluctuations have almost no impact on the CEO frequency,
therefore the fixed point is close to this frequency. On the other hand, the fixed point
for pump fluctuations was found to be close to the center of the spectrum of the laser,
around 200 THz [49, 76, 75]. In the next section, an experiment to measure the fixed
point is presented. This fixed point will be calculated for pump power fluctuations only.
The reason for this choice will be explained in the next section. If the fixed point is
found to be close to the center of the spectrum it would explain the sign reversal in the
correlation matrix displayed in Figure 5.1.

5.2.2 Fixed point for laser pump noise

To determine the fixed point induced by the pump laser noise, the most straightforward
approach is to apply a modulation at a given frequency fmod to the pump laser inten-
sity. This is usually achieved by modulating the pump laser current with a frequency
generator. The fixed point is then determined by recovering the fluctuations of the
CEO frequency and the repetition rate induced by this modulation, and applying the
formula (5.4).
This technique was used in the aforementioned studies, and in particular in [66]. In
this work, the fixed point for pump fluctuations for the Titanium Sapphire laser under
study has been measured. It was found to be at 233 THz i.e. on the IR side of the
spectrum. To perform this measurement, a slow modulation, typically 0.1 to 1 Hz was
applied to the pump laser. The resulting fluctuations of the CEO and repetition rate
frequencies were subsequently measured with frequency counters to determine the fixed
point. Slow modulations were used to make the measurements with affordable fre-
quency counters. However, the amplitude-phase correlation matrices in section 5.1 are
measured at frequencies ranging from 200 kHz to 4 MHz. There is no a priori reason to
believe that the fixed point is frequency independent. Consequently, to explain the sign
reversal in the correlation matrix represented in Figure 5.1, we need to measure it for
faster modulations, around a few hundred kilohertz. Note that, at those frequencies,

104



CHAPTER 5. HARNESSING NOISES CORRELATIONS

the only noise source is expected to be the pump laser. The thermal or mechanical
fluctuations are much slower (a few hundred Hertz). It explains why we only consider
the fixed point induced by pump laser fluctuations.

Measuring the CEO frequency for fast pump power modulations is not an issue.
However, one technical problem arises for the repetition rate. Indeed, the repetition
rate, centered at 156 MHz, varies by only a few Hz when subjected to a modulation.
It is then impossible to measure this deviation of a few Hz with modulations of the
order of the kilohertz. To circumvent this issue, we can try to measure a multiple of the
repetition rate. However, measuring the tenth or higher harmonic is still not enough
and no electronics work for even higher harmonics. Consequently, the only solution is
to measure the repetition rate in the optical domain by measuring one tooth of the
laser spectrum. In this configuration, according to equation (5.2), the repetition rate
will be multiplied by the number of the tooth under study n. For a frequency line close
to the center of the spectrum n is roughly 106. Thus we are brought back to measuring
a deviation of a few megahertz for modulations of a hundred kilohertz which is feasible.
In this section, we describe the experimental setup to measure the repetition rate in
the optical domain. This technique is then used to determine the fixed point.

5.2.2.1 Repetition rate measurement in the optical domain

To measure the repetition rate in the optical domain, we use a continuous wave (CW)
stabilized laser at 780 nm brought in via a fiber optical link from Saïda Guellati-Khélifa
and Pierre Cladé metrology laboratory next door. This laser is mixed on a BS with the
frequency comb. It is then detected with a fast photodiode to produce a beat signal
between the CW laser and the closest tooth to the CW laser frequency. This setup
corresponds to a heterodyne detection as presented in section 3.1. The resulting beat
signal is given by

fbeat = |fCEO + n780fr − f780|, (5.6)

where f780 is the frequency of the CW laser and n780 is the number of the tooth closest
to the frequency of the CW laser. It is given by

n780 =

⌊
1

fr

( c

780 · 10−9
− fCEO

)⌋
, (5.7)

where b·c stands for the integer part. As can be seen in equation (5.6) the beat signal still
depends on the CEO frequency and the repetition rate. To decouple those quantities,
the CEO frequency is first measured with the f-2f interferometer presented in section
4.2.1.1. After proper amplification and filtering, we mix the measured CEO frequency
with the beat signal. The result of this mixing can be sent to a spectrum analyzer to
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Figure 5.3 – Spectrum of the
beat signal: Beat signal between
the CW laser and the frequency
comb measured at the spectrum
analyzer. This signal is mixed
with a RF signal at fCEO to re-
cover the components f1,2,3. In
order to identify the peaks, the
CEO frequency is shifted (black
curve). The unchanged peak cor-
responds to f3 = n780fr − f780.

recover the spectrum of the beat signal. A typical signal can be seen in Figure 5.3.
Three peaks are present corresponding to oscillations at

f1 = 2fCEO + n780fr − f780; f2 = fCEO; f3 = n780fr − f780. (5.8)

The component f2 can be used to measure the CEO frequency. On the other hand,
the repetition rate of the comb can be recovered from f3 since the wavelength of the
CW is perfectly known. Nonetheless, it is not obvious to attribute a peak from the
spectrum, to each component fi. Hence, to identify each peak, we slightly shift the
CEO frequency, as illustrated in Figure 5.3, by changing the pump power. The peak
corresponding to f3 should not be affected by the shift and can thus be identified. In
Figure 5.3, f3 corresponds to the peak on the right. Once each component identified,
we have access to a measure of the CEO and the repetition rate of the laser. The fixed
point can then be measured by applying a modulation on the pump laser and recording
fCEO and n780fr − f780.

5.2.2.2 Fixed point measurement

To measure the fixed point, a sinusoidal modulation, of amplitude 1 Vpp and at the
frequency fmod, is applied directly to the pump laser current to modulate its intensity.
The beat signal composed of the frequencies f1,2,3 is recorded with an oscilloscope. Note
that because the CW laser is a lot more stable than the frequency comb, measuring
the fluctuations of f3 really leads to a measurement of the fluctuations of fr. The spec-
trogram of the signal is then computed using a short time Fourier transform (STFT).
The STFT is calculated by computing the Fourier transform on a time window. The
definition of this time window is important as it defines the resolution of the resulting
spectrogram. If the time window is too small, the resolution in frequency is too coarse
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Figure 5.4 – Averaged spectrograms of the modulated beat signal: Left (right),
averaged spectrogram of the beat signal for a modulation of the pump current at 50 kHz
(200 kHz). The three components corresponding to f1,2,3 deviates from their central
frequency due to the modulation. The amplitude of the deviation allows to calculate
the fixed point.

to resolve the modulation amplitude which is of the order of the megahertz. On the
other hand, if the time window is too large, resolving fast oscillations, e.g. of a few
hundred kilohertz, is not possible. As always, there is a trade-off between spectral and
temporal resolution. To improve the signal to noise ratio, we average the spectrogram
in time and keep only a restricted number of modulation periods. An example of two
averaged spectrograms are shown in Figure 5.4 for modulation frequencies of 50 kHz
and 200 kHz. We can clearly see the modulation of the three frequency components.
This Figure illustrates the difficulties due to the trade-off for high frequency modula-
tions. Indeed, for a modulation at 200 kHz, in order to have enough resolution in time,
the spectral resolution is set to 800 kHz. On the other hand, the spectral resolution for
the modulation at 50 kHz can be lowered to 500 kHz. Thus the signal is cleaner and
the extraction of the information will be more accurate.

To retrieve the modulation amplitude of the repetition rate and CEO frequency,
the most precise technique was found to be a 2D fit of the spectrogram around each
component, assuming a Lorentzian peak with a time-varying central frequency, fpeak(t),
according to

spectrogram(f, t) =
A

1 +
(
f−fpeak(t)

σ

)2 (5.9)
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where A is the amplitude of the peak, σ is the full width at half maximum of the
peak. In this experiment fpeak(t) depends on time due to the modulation of the pump
intensity. As the modulation is a sine function at the frequency fmod, the expression of
fpeak(t) is given by

fpeak(t) = fc + Amod sin (2πfmodt) , (5.10)

where fc is the frequency of the peak when no modulation is applied e.g. fc = fCEO =
47MHz for the central peak; Amod is the amplitude of the modulation of the peak that
we want to measure.

This procedure allows to measure the response of the CEO frequency ∆fCEO(f) and
the repetition rate ∆n780fr(f) to the modulation of the pump laser current. A set of
data for modulation frequencies going from 1 kHz to 500 kHz is reproduced in Figure
5.5. It can be noted that the variations are stronger for low frequency modulations
than for higher frequencies. Two explanations can be considered. First, the laser cavity
acts as a low pass filter for the modulation and thus tends to reduce its impact as its
frequency increases. Another explanation may be related to thermal effects. When the
pump laser intensity is changed, it changes the temperature of the crystal, which slightly
modifies the lasing conditions. Since thermal effects occur on short time scales, those
effects should be less significant at high modulation frequencies because the temperature
change does not have time to take place. In any case, we can see that the modulation
frequency has an impact on the dynamics of the parameter, hence the need to measure
the fixed point around 500 kHz.

From the data reproduced in Figure 5.5, the fixed point can be computed according
to

λfix(f) = c

[
fCEO +

∆fCEO(f)

∆n780fr(f)

( c

780 · 10−9
− fCEO

)]−1

. (5.11)

Many data are taken to average over multiple runs. The resulting fixed point as a
function of the modulation frequency is represented in Figure 5.6. One can see that
the fixed point depends on the modulation frequency. This variation is stronger at low
frequencies due to the variations of fCEO and fr which are diverging one away from the
other as seen in Figure 5.5. The fixed point seems to stabilize after 50 kHz around 660
nm corresponding to 454 THz.

The fixed point measured at 660 nm is not in the spectrum and hence cannot explain
the sign reversal seen in the correlation matrix represented in Figure 5.1. Although
another explanation must be found for this sign reversal, this measurement still allowed
us to accurately determine the fixed point due to pump fluctuations. In particular, we
were able to study the frequency dependence of this fixed point by measuring it for
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Figure 5.5 – Frequency re-
sponse of the CEO frequency
∆fCEO and the repetition rate
∆n780fr as a function of the
modulation frequency. The
fluctuations are less important at
high frequencies due to the filter-
ing of the cavity or due to thermal
effects.

Figure 5.6 – Fixed point as
a function of the modula-
tion frequency. The fixed point
slightly changes with the modu-
lation frequency. Around a few
hundred kHz the fixed point is
found to be at 660 nm which is
not in the optical spectrum.

different modulation frequencies, from 100 Hz to 500 kHz. This study shows that the
fixed point is frequency dependent, which could be caused by filtering or thermal effects.

5.3 Unveiling the dynamics from XP correlations

As the fixed point model does not seem to explain the structure of the correlations, we
decided to take a deeper look into their particular structure. To analyze this matrix, a
singular value decomposition (SVD) is performed. The idea is to find spectral modes
associated to the correlations, to connect them to a physical process.
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5.3.1 Singular value decomposition of the correlation matrix

The singular value decomposition is a factorisation of a matrix, (real or complex) which
generalize the eigendecomposition, to apply it to any matrix. More precisely it factorizes
a matrixM , of dimension m×n, intoM = UΣV ?, where U and V are complex unitary
matrices of dimension m × m and n × n. Σ is a m × n rectangular diagonal matrix
whose diagonal elements Σii = λi are the singular values. This decomposition is needed
as the correlation matrix is the composition of two different spaces, the amplitude and
the phase one. With this decomposition, the Schmidt number of the matrix can be
calculated. This parameter provides information on the number of significant modes
involved in the process. It is given by [77]

K =

(∑
n

λ2
n

)2

/
∑
n

λ4
n. (5.12)

This decomposition is applied to the correlation matrices for offset frequencies from
200 kHz to 4 MHz. The Schmidt number is represented in Figure 5.7a as a function of
the offset frequency. It is equal to one up to 1 MHz indicating that only one pair of
modes, one in phase and one in amplitude, is necessary to reconstruct the correlations.
Those two modes, represented on the same Figure, are the singular modes. Before
looking at those modes in details, it is interesting to note that this first quantity, the
Schmidt number, already gives us information about the noise sources. As a matter of
fact, because only one pair of modes is involved, we can assume that only one noise
source is responsible for those correlations. As it has been shown in various papers
[63, 65] it is expected to come from the fluctuations of the pump laser intensity. As
said previously, the other noise sources such as thermal noise or vibrations are expected
to affect the laser at lower frequencies (a few hundred Hertz). In the next section we will
start from that hypothesis to derive a simple model to explain the correlations. Before
doing so, let us have a closer look at the singular modes to try to extract physical
meaning out of it.

A qualitative understanding of the underlying processes can be obtained through the
projection of the singular modes on the detection modes introduced earlier in section
4.1.2. The projection of the amplitude singular mode on the mean power and spectrum
center frequency detection modes and the projection of the phase singular mode on
the CEO and repetition rate detection modes are represented in Figure 5.7b. It can
be seen that mainly three modes are coupled. In phase, only the CEO detection mode
is coupled to the amplitude ones. Indeed, this was expected as it is well-known that
intensity fluctuations, induced by pump power fluctuations, have a huge impact on the
CEO of the laser and are even used to control it [69] as it is the case in this study. In
amplitude, the singular mode is a linear combination of the mean power and spectrum
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a) b)

Figure 5.7 – Phase and amplitude correlations: a) Schmidt decomposition of the
correlations matrices. The Schmidt number as a function of the offset frequency is
plotted together with the amplitude and phase singular modes for the frequencies where
it is equal to one. b) Projection of the amplitude and phase singular modes on the
detection modes.

center frequency modes. The dominant contribution comes from the fluctuations of
spectrum center frequency. Despite the fact that there is a strong coupling between the
CEO and the mean power fluctuations due to the Kerr effect, this contribution seemed
to be exceeded by the fluctuations of the spectrum center frequency. In the next section
we investigate those correlations with a simple model describing the intensity related
dynamics of the CEO fluctuations. We will see that the spectrum center frequency is
indeed the bridge between pump laser fluctuations and CEO fluctuations when there is
a non negligible residual group velocity dispersion inside the laser cavity [63].

5.3.2 Intensity related dynamics: Model from J. Ye

Our measurements from section 4.4 have shown that the dominant noise is the CEO
frequency fluctuations. Moreover only one noise source is expected to induce correla-
tions between amplitude and phase, as suggested by the SVD applied in the previous
section. Finally, by projecting the singular modes on the detection modes, we saw that
only the CEO is correlated to the amplitude fluctuations. As a consequence, following
the idea developed in [63], we decided to investigate the intensity related dynamics of
the CEO to explain the correlations and model the CEO noise.
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5.3.2.1 Derivation of the model

In this section, only the intrinsic dynamics of the laser is considered. Consequently, all
the effects described bellow take place inside the laser cavity. We start by reminding
the definition of the CEO frequency. It is defined as

fCEO =
fr
2π

∆φCEO =
ωc
2π

(
1− vg

vφ

)
, (5.13)

where ωc is the carrier frequency and vg and vφ the average group and phase velocities
in the cavity defined by

c

vg
= n+ ωc

dn

dω
, (5.14)

c

vφ
= n . (5.15)

As there are many optics in the cavity, these velocities are averaged over the cavity
length using the averaged refractive index over the cavity n = n0 + n2I, which also
includes the Kerr effect via the non-linear refractive index n2 (n0 is the refractive index
without the Kerr effect).
From equation (5.13), the intensity dependence of the CEO frequency is given by

dfCEO
dI

=
1

2π

[
∂ωc
∂I

(
1− vg

vφ

)
+ ωc

vg
vφ

(
1

vφ

dvφ
dI
− 1

vg

dvg
dI

)]
=

1

2π

[
∂ωc
∂I

(
1− vg

vφ

)
+ ωc

vg
vφ

(
vg

d

dI

(
1

vg

)
− vφ

d

dI

(
1

vφ

))]
. (5.16)

Before going any further, it is important to note that n depends on the intracavity
intensity I, due to the Kerr effect, and on ωc, due to the dispersion. In addition, ωc
itself also depends on I. Indeed, the central frequency can be affected by intensity
fluctuations when an asymmetry between the gain and the loss profiles exists [59, 64].
In that configuration a change in the gain results in a frequency pulling effect due to a
shift of the equilibrium frequency. Taking this into account, the derivative of the inverse
of the group and phase velocities from equations (5.14) and (5.15) can be written

d

dI

(
1

vg

)
=

∂ωc
∂I
· ∂
∂ω

(
1

vg

)
+

1

c

∂

∂I

(
n0 + n2I + ωc

d

dω
(n0 + n2I)

)
=

∂ωc
∂I
· ∂
∂ω

(
1

vg

)
+

1

c

(
n2 + ωc

dn2

dω

)
, (5.17)

d

dI

(
1

vφ

)
=

∂ωc
∂I
· ∂
∂ω

(
1

vφ

)
+

1

c

∂

∂I
(n0 + n2I)

=
1

c

∂ωc
∂I
· ∂n
∂ω

+
n2

c
. (5.18)
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Injecting equations (5.17) and (5.18) into equation (5.16) leads to

dfCEO
dI

= 1
2π

[
∂ωc
∂I

[(
1− vg

vφ

)
+ ωc

v2g
vφ

GVD− ωc
c
vg

∂n
∂ω

]
+ ωcvg

c

(
ωc

vg
vφ

dn2

dω
− n2

(
1− vg

vφ

))]
, (5.19)

where GVD is the average Group Velocity Dispersion inside the cavity given by GVD =
∂
∂ω

(
1
vg

)
.

The model is derived with respect to the intra-cavity peak intensity I in the crystal,
which we calculate for a Fourier transformed limited pulse (the effect of dispersion is
included later). However, in practice, we measure the fluctuations of the parameters
with respect to the laser mean output power P . The conversion from I to P is given
by

dI

dP
=

2× 0.88

frTcoupler∆tpulseπw2
. (5.20)

This quantity is determined from the parameters of the laser: fr = 156 MHz,
Tcoupler = 0.28 the transmission of the output coupler, ∆tpulse = 22 fs the pulse dura-
tion and w = 10 µm the waist in the crystal. The factor 0.88 comes from the hyperbolic
secant shape of the pulse. Given those data we find dI/dP ' 5.8× 10−15 m−2.
Using dI/dP to get rid of the intensity in equation (5.19), the CEO frequency fluctua-
tions can be written as

δfCEO =
1

2π

[
δωc

((
1− vg

vφ

)
+ ωc

v2g
vφ

GVD− ωc vgc ∂n
∂ω

)
+ δP dI

dP

ωcvg
c

(
vg
vφ
ωc

dn2

dω
− n2

(
1− vg

vφ

))]
, (5.21)

From this expression, it is clear that the noise on the CEO frequency arises from
the noise on the central frequency δωc and from the mean power fluctuations δP . The
factor coupling the CEO frequency and the central frequency is composed of three
terms. The first one comes from the dispersion in the laser,

(
1− vg

vφ

)
, the second one

from the group velocity dispersion, GVD, and the last one is due to the dispersion ∂n
∂ω
.

On the other hand, the term coupling the CEO frequency to the intensity is mainly
due to the Kerr effect, as expected, via n2 and its dispersion. We can now apply the
formula (5.21) to our measurements to see if this simple model is sufficient to explain
the main features of the noise and the correlations.

5.3.2.2 Laser parameters

To apply the model to our experiment, a few quantities need to be taken from the
literature. We have n = 1.00116, n2 = 1.8×10−23 m2W−1, dn0

dω
= 3.5×10−21 s and dn2

dω
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= 3×10−39 sm2W−1 [63]. The last quantity needed to apply the formula is the GVD
inside the cavity.

Estimation of the GVD: As constructor specifications are not available, we need
to estimate the GVD from the geometry of the cavity and the properties of the laser
directly at the output of the cavity. In section 2.3, we saw the effect of GVD on a pulse.
In the presence of GVD, because the frequencies travel at different speeds, the pulse
will be chirped. We remind that the electric field of a chirped pulse is given by

E(+)(t) = E0exp

(
−1 + iβ0

2

t2

∆t20

)
exp (−iωct) , (5.22)

where β0 is the chirp parameter of the pulse and ∆t0 is the pulse duration. In addition,
in section 2.2, we saw how the GVD inside a mode-locked laser cavity is related to the
duration of the pulse emitted and its chirp. This relation is derived from equations
(2.35) and is given by

GVD = Dg
(3β0 − δtpn)

2− β2
0

, (5.23)

where tpn is the normalized pulse duration, δ the self phase modulation coefficient and
Dg the gain normalized by the gain width. The parameters δ = 3 × 10−6 rad/W and
Dg = 2.4×10−30 s2, are found in the literature [63]. Consequently, to estimate the GVD,
the duration and the chirp of the pulse inside the laser cavity need to be determined.

The first step to determine the GVD is to determine the chirp of the pulse at the
output of the laser. We use an auto-correlation technique to measure the duration of
the pulse. Just after the output-coupler, the duration of the pulse is 36 fs FWHM.
The spectrum is also measured with a spectrometer and found to be 40 nm FWHM,
showing that the pulse is chirped. Indeed, a Fourier transform pulse whose spectrum
has a FWHM of 40 nm has a duration of 22 fs. Thus, the chirp parameter at the output
of the cavity is

β0 =
√

(36/22)2 − 1 = 1.3. (5.24)

Naturally, the chirp at the output of the laser is different from the chirp inside
the laser cavity. First, the passage through the output-coupler needs to be taken into
account. Note that in the following we go backward in propagation meaning that we
remove dispersive elements from the optical path. To take into account the output-
coupler, we estimate the chirp introduced by 4 mm of silica of dispersion β2 = 36
fs2/mm using equations (2.42) and (2.43). Before the output-coupler the pulse duration
is found to be 24 fs and the chirp parameter 0.47. Then, the passage through the crystal
also needs to be taken into account. Because the cavity is linear, each pulse before the
output-coupler propagated twice in the crystal. This crystal is made of sapphire of
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dispersion β2 = 58 fs2/mm and is roughly 2.5 mm long. In this configuration, if the
dispersion from one trip through the crystal is removed, it leads to a pulse duration
of 25 fs and a chirp parameter of -0.36. For two trips removed, we find a duration of
31 fs and a chirp parameter of - 1.2. Note that in both cases the chirp parameter is
negative. A plot of the duration of the pulse and the chirp parameter as a function
of the (negative) length of crystal crossed can be seen in Figure 5.8. Using equation
(5.23) it is possible to determine the GVD inside the cavity as a function of the length
of crystal crossed by the pulse. It is reproduced in Figure 5.9.
This calculation does not take into account the negatively chirped mirrors in the cavity.
The main reason is that we do not have access to their characteristics as previously
explained. Consequently, the GVD determined using this method is an upper bound
on the intra-cavity dispersion. In addition, since we derived the expression (5.21) as
the fluctuations averaged over the cavity, using the dispersion at a given point in the
cavity is not entirely accurate. Indeed because the dispersion varies in the cavity, the
noise level depends on where it arises in the cavity. Thus an uncertainty needs to be
associated to the estimation of the dispersion. Therefore, we consider the dispersion
for one trip in the crystal and calculate the uncertainty associated to a pulse which has
not yet traveled through the crystal or which has done a double pass. Consequently, to
have the dispersion and the uncertainty, we draw from a normal distribution centered
at - 2.5 mm (one trip in the crystal) and with a variance of 2.5 mm (two trips or no
trip) a set of path lengths. For each path length the duration of the pulse and the chirp
parameter are calculated. From each set of data the GVD is determined according to
(5.23). We then take the average of all the GVD values found and the variance to
estimate the GVD and its uncertainty. The resulting calculated GVD is -280 fs2 and
the uncertainty is ± 50 fs2.

5.3.2.3 Model applied to the experiment

The model can now be applied to our measurements. We use the fluctuations of the
mean power, δP , and of the central frequency, δωc, measured experimentally thanks to
our setup, together with the GVD previously determined, to calculate the model (5.21).
For each offset frequency f from 200 kHz to 4 MHz, the expected CEO frequency fluc-
tuation δfCEO is calculated. This gives a spectrum for the CEO frequency fluctuations,
which can be compared to the one measured with the setup. The resulting trace is
reproduced in Figure 5.10 alongside of the measured CEO frequency fluctuations given
by δfCEO =

√
SfCEO . A very good agreement is found between the model and the mea-

sured CEO fluctuations. The experimental data almost entirely fall in the uncertainty
area up to 1 MHz. This agreement proves that the CEO dynamics is indeed related
to the intensity fluctuations of the laser and that this feature is sufficient to explain
it almost entirely. It confirms what was found with the SVD: the Schmidt number is
equal to one as one noise source is responsible for the main dynamics. It also explains
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Figure 5.8 – Evolution of the duration and the chirp through the crystal From
left to right, evolution of the duration of the pulse, evolution of the chirp parameter,
and finally evolution of the chirp parameter as a function of the duration of the pulse.
As we are removing optical path, -5 mm corresponds to the beam which has not yet
crossed the crystal, -2.5 mm corresponds to one round-trip and 0 mm corresponds to
two round-trips through the crystal. It can be noted that the duration of the pulse is
the smallest between -1 and -2 mm of crystal. It roughly corresponds to the center of
the crystal. This is consistent with the fact that the center of the crystal is the position
in the cavity where the maximum non-linearity is desirable.

Figure 5.9 – GVD as function
of the crystal length. The dis-
persion changes inside the cavity.
Here again the minimum disper-
sion is found close to the center of
the crystal around -1.5 mm.
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the coupling between the CEO and the central frequency fluctuations which was found
by the projection of the singular modes. Nonetheless, the model does not seem accurate
above 1 MHz. One explanation is that the model does not take into account the shot
noise and describes only the correlations between the CEO and the amplitude modes.
However, the amplitude noises are really close to the shot noise above 2 MHz. This is
particularly true for the noise of the center spectrum which turns out to be the main
contribution to the CEO fluctuations as discussed later. Hence, the model is no longer
relevant above 2 MHz. This could also be due to some additional filtering coming from
the laser cavity or the detection scheme not taken into account in the model.

To further explore the model, the ratio of the contributions of the center frequency
and mean power fluctuations, calculated from the model, to the measured CEO fluc-
tuations are reported in Table 5.1. It can be seen that the dominant contribution is
the one coming from the spectrum center frequency. More precisely it is the spectrum
center frequency via the GVD which seems to be the dominant contribution. This is in
agreement with the results found in Section 5.3.1. The center spectrum detection mode
has a higher contribution to the amplitude singular mode as it is directly coupled to the
CEO frequency fluctuations via the GVD. This decomposition indicates that the mean
power fluctuations has a really small direct effect on the CEO frequency. Note that in
Figure 5.7b there is still a significant contribution to the amplitude singular mode from
the mean power because the fluctuations of center frequency are also coupled to the
intensity fluctuations due to the frequency pulling effect, as explained before.
With this study, it is possible to assert that the intensity has a significant impact on
the CEO frequency only when there is a residual group velocity dispersion inside the
laser cavity. This has also been identified in [63, 62]. The knowledge of this processes
can help improving the performances of frequency combs. To achieve a lower CEO
noise, the noise of the pump laser can be reduced or the GVD of the laser cavity can
be reduced so that this intensity noise has a lower effect. In practice the first option
is probably the easiest to implement. Alternately, a better lock of the CEO frequency
can be achieved by using a laser cavity with an appreciable amount of group velocity
dispersion.

Summary

In this chapter, we used a singular value decomposition to analyze the amplitude and
phase correlations. We show that those correlations are mainly induced by a single noise
source, the pump laser intensity fluctuations. Our analysis permits the identification of
the coupling mechanisms. We determined that the fluctuations of the spectrum center
frequency induced by the pump noise via frequency pulling is the main driving force
of the CEO frequency noise. This is due to the group velocity dispersion of the laser
cavity which was found to be -280 fs2.
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Figure 5.10 – Experimental versus model for the CEO noise: In dashed blue
the model from (5.21), the shaded zone corresponds to the uncertainty on the GVD
determined in the laser. Plain line: measured CEO frequency fluctuation given by
δfCEO =

√
SfCEO from (4.46).

Contribution Expression ratio |cj/δfCEO,exp|

Group Velocity Dispersion c1 = 1
2π
δωc

(
ωc

v2g
vφ

GVD
)

9× 10−1

Kerr Effect Dispersion c2 = 1
2π
δωc

(
ωc

vg
c
∂n
∂ω

)
4× 10−2

Dispersion c3 = 1
2π
δωc

(
1− vg

vφ

)
5× 10−3

Kerr Effect c4 = 1
2π
δP dI

dP

ωcvg
c

(
vg
vφ
ωc

dn2

dω
− n2

(
1− vg

vφ

))
2× 10−6

Table 5.1 – Expression and value of the ratio of the contributions of the model
to the measured CEO fluctuations. This ratio is averaged over the frequency range
where the model is the most accurate, from 200 kHz to 500 kHz. The first three lines are
the contributions from the spectrum center frequency and the last one the contribution
from the power fluctuations.
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Menlo noise analysis
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In this chapter the same approach as developed in section 4.1 is applied to a different
laser source and a different experimental setup. This study was conducted at Thales
Research & Technology (TRT) in Palaiseau. The laser investigated is a commercial
fiber laser from MenloSystems. This laser emits at telecom wavelength and is expected
to exhibit very different features from the previous one, as the mode-locking process is
different. Contrary to the previous chapter, the noise measurement is performed with an
optical bench developed at TRT, based on an unbalanced Mach-Zehnder interferometer
(UMZI) similar to what was described in section 3.2.1. Our motivation is to show that
our analysis can be applied to various sources of light pulses in different ranges of
wavelength. In addition, the measurement bench developed by TRT is a lot more
compact and thus versatile. In what follows, we present in details the experiment
conducted to investigate the dynamics of the telecom laser and present the experimental
results obtained.
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6.1 Unbalanced Mach-Zehnder for amplitude and phase
measurement

The experiment presented in this chapter relies on an unbalanced Mach-Zehnder in-
terferometer (UMZI) to measure the amplitude and the phase of the laser. With this
setup, the technique to extract the quadratures of the field is different from the ho-
modyne detection. Consequently, in this section, we start by reminding the equations
describing the field in the interferometer for a field undergoing amplitude and phase
fluctuations. Secondly, the procedure to extract those fluctuations is presented. Finally,
the covariance matrices are recovered from the amplitude and phase fluctuations.

6.1.1 Reminder on self-heterodyne detection

We first start by recalling the expression of the electric field

E(+)(t) = E0a(t)e−i(ω0t+ϕ), (6.1)

with ω0 the carrier frequency, ϕ the phase of the field and a(t) the slowly varying
envelope. In this experiment, a spectrally resolved detection will be used similarly to
the previous experiment. Hence, for simplicity, we directly write the field in the pixel
basis introduced in section 4.2.3.2. The field detected by the pixel j reads

E
(+)
j = E0αje

−iϕj , (6.2)

with αj =
√
Nj the amplitude of the field in the pixel mode uj, and Nj the number of

photons in this mode.
As usual, we are interested in measuring the amplitude and phase fluctuations of the
electric field. Thus we introduce the amplitude fluctuations δεj(tn) and the phase ones
δϕj(tn), where tn stands for the slow fluctuations compared to the time scale of the
pulse duration t. For simplicity we set ϕj = 0. The noisy electric field is written

E
(+)
j (tn) = E0αj(1 + δεj(tn))e−iδϕj(tn), (6.3)

As illustrated in Figure 6.1, this electric field is split into two components, a zeroth
order and a diffracted one, thanks to an acousto-optic modulator (AOM). Each order
is connected to an arm of the interferometer. We assume that half of the total optical
power goes in each arm. The electric field diffracted acquires a frequency shift fRF
corresponding to the driving frequency of the AOM. The other arm is delayed by intro-
ducing an optical fiber whose length is equivalent to a delay τ . Thus the two electric
fields can be written

E
(+)
j,0 (tn) = E0

αj
2

(1 + δεj(tn − τ)) exp [−i (ω0τ + δϕj(tn − τ))] , (6.4a)

E
(+)
j,1 (tn) = E0

αj
2

(1 + δεj(tn)) exp [−i (−ωRF tn + δϕj(tn))] , (6.4b)
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Figure 6.1 – Experimental setup. The laser is first split in two using an AOM to
form the two arms of the interferometer. One of the arm is delayed using a long optical
fiber (including dispersion compensated fiber). The two beams are recombined and sent
to a WDM which separates the spectrum in six spectral bands. Each spectrum slice is
then detected using a photodiode and the data are recorded by an oscilloscope.

where ωRF = 2πfRF , E
(+)
j,0 is the field of the pixel j in the order 0 of the AOM and E(+)

j,1

in the first order.

The two beams are recombined at the output of the interferometer and are detected
by a photodiode whose photo-current reads

iout,j(tn) ∝ |E(+)
j,0 (tn) + E

(+)
j,1 (tn)|2

∝ |E(+)
j,0 (tn)|2 + |E(+)

j,1 (tn)|2 + E
(−)
j,0 (tn)E

(+)
j,1 (tn) + E

(+)
j,0 (tn)E

(−)
j,1 (tn),(6.5)

with E(−)(tn) =
(
E(+)(tn)

)∗. Keeping only the two last terms corresponding to an
oscillating signal at fRF leads to

iout,j(tn) = Aα2
j [1 + δεj(tn)] [1 + δεj(tn − τ)] cos [ω0τ − ωRF tn + δϕj(tn)− δϕj(tn − τ)]

' Aα2
j [1 + ∆εj(tn, τ)] cos [ω0τ − ωRF tn + ∆ϕj(tn, τ)] , (6.6)

where A includes all constant terms, including the normalization constant E0 as well as
the responsivity of the photodiodes R in A/W. In addition, the amplitude fluctuations
have been developed at first order, and the relations

∆ϕj(tn, τ) = δϕj(tn)− δϕj(tn − τ),

∆εj(tn, τ) = δεj(tn) + δεj(tn − τ),

are introduced to simplify the expression.

After detection, the photo-current (6.6) is recorded on a oscilloscope. In the next
section the procedure to extract the amplitude and the phase from this signal is pre-
sented.
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Figure 6.2 – Numerical demodulation. Scheme of the principle of the numerical
demodulation. The laser noise is centered around the frequency fRF . It is retrieved
by applying a band-pass filter around this frequency, and shifting back the noise to
the zero frequency. This procedure allows to get rid of the low frequency noise of the
detection. This noise, called Flicker noise, occurs in electronic devices due to various
effects such as impurities in transistors. It has a frequency dependence in f−1 and is
often the dominant noise source at low frequency.

6.1.2 Amplitude and phase extraction

The AOM, used as the input port of the UMZI, also plays a role in the extraction of
the amplitude and the phase. Because the field from one arm of the interferometer
is shifted by fRF with respect to the other, the beat signal between the two arms is
centered around this frequency as can be seen from equation (6.6). It implies that the
low frequency noise of the laser is translated around fRF . This is schematized in Figure
6.2. This procedure allows to extract the signal of interest from the, generally high, low
frequency detection noise coming from the detectors and the acquisition devices. To
recover the amplitude and the phase separately from the signal, the following procedure
is used [78].

We start from the measured photo-current described by equation (6.6). This signal
can be rewritten

iout,j(tn) = Aα2
j [1 + ∆εj(tn, τ)] [cos (ω0τ + ∆ϕj(tn, τ)) cos (ωRF tn)

+ sin (ω0τ + ∆ϕj(tn, τ)) sin (ωRF tn)] . (6.7)

The Fourier transform of the signal is then calculated and is given by

FT{iout,j(tn)} = Aα2
j × FT{1 + ∆εj(tn, τ)} ∗

[
δ(f − fRF ) ∗ FT{e−i(ω0τ+∆ϕj(tn,τ))}

+δ(f + fRF ) ∗ FT{ei(ω0τ+∆ϕj(tn,τ))}
]
,(6.8)

where ∗ is the convolution product and δ(f) the Dirac function. To recover the ampli-
tude and the phase, only the positive frequencies of the signal (6.8) are kept by applying
a band-pass filter around fRF . The width of the filter defines the analysis bandwidth in
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which the dynamics can be characterized. The filtered signal is shifted back to the zero
frequency. This procedure is schematized in Figure 6.2. The resulting complex signal
after inverse Fourier transform is given by

iout,j(tn) = Aα2
j [1 + ∆εj(tn, τ)] ei(ω0τ+∆ϕj(tn,τ)). (6.9)

Phase extraction: The phase difference ∆ϕj(tn, τ) is retrieved by unwrapping the
argument of the signal. Mathematically it consists in taking the arc-tangent of the ratio
between the imaginary part and the real part of the signal. Thus we have

ω0τ + ∆ϕj(tn, τ) = Arctan

(
Im [iout,j(tn)]

Re [iout,j(tn)]

)
(6.10)

Here, we assume that ω0τ does not change during the measurement time. Thus,
it corresponds only to a constant phase shift. Note that if the phase fluctuations
are two high, i.e fluctuations are bigger than 2π between two measurement points,
the unwrapping will introduce errors in the calculation as there will be ambiguity in
unwrapping the phase.

The phase fluctuations can be retrieved by first computing its spectrum and applying
the transfer function defined in section 3.2.2

hUMZI(f, τ) =
1

1− e−2iπτf
. (6.11)

Consequently, the spectrum of the phase fluctuations is given by

δϕ̃j(f) = hUMZI(f, τ)∆ϕ̃j(f, τ), (6.12)

where ∆ϕ̃j(f, τ) is the Fourier transform of ∆ϕj(tn, τ), and δϕ̃j(f) the one of δϕj(tn)
so that the phase fluctuations are given by δϕj(tn) = FT−1{δϕ̃j(f)}

Amplitude extraction: On the other hand, the amplitude fluctuations can be re-
trieved by first taking the modulus of the signal and removing the mean field according
to

∆εj(tn, τ) =
|iout,j(tn)| − 〈|iout,j(tn)|〉tn

〈|iout,j(tn)|〉tn
, (6.13)

where 〈·〉tn represents the time average value. The amplitude fluctuations δεj(tn) are
recovered by applying a transfer function in amplitude hAmpUMZI(f, τ) according to

δεj(tn) = FT−1{hAmpUMZI(f, τ)∆ε̃j(f, τ)}, (6.14)

where ∆ε̃j(f, τ) is the Fourier transform of ∆εj(tn, τ) and hAmpUMZI(f, τ), is given by

hAmpUMZI(f, τ) =
1

1 + e−2iπτf
. (6.15)
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This procedure to extract the amplitude and the phase is applied to all the pixels
from the spectrally resolved detection represented in Figure 6.1. For each one, the
amplitude fluctuations δεj(tn) and the phase ones δϕj(tn) are retrieved. They are then
used to compute the quadratures of the field for each pixel and as well as the covariance
matrices as detailed in the next section.

6.1.3 Recovering the noise on the parameters

Once the amplitude and the phase retrieved, they can be related to the quadratures of
the field. For the pixel j, we have

δxj(tn) = 2αjδεj(tn), (6.16)
δpj(tn) = 2αjδϕj(tn), (6.17)

with αj =
√
Nj, where Nj is the number of photons for the pixel j.

Finally, we use the decomposition in noise modes, introduced in section 4.1.2, to relate
the quadrature fluctuations to the fluctuations of the parameters of the laser in the
pixel basis according to

δ−→x (tn) = (δx1(tn), . . . , δxj(tn), . . . ) = 2α0

[
δε(tn)−→u amp −

δω0(tn)

2∆ω
−→u cent−freq

]
,

δ−→p (tn) = (δp1(tn), . . . , δpj(tn), . . . ) = 2α0 [ω0δτceo(tn)−→u ceo + ∆ωδτr(tn)−→u rep−rate] ,

where −→u mode are the detection modes in the pixel basis introduced in section 4.1.2, and
with |α0|2 =

∑
j |αj|2 = N0 the total photon number detected. We remind that δε(tn)

stands for the laser amplitude fluctuations, δω0(tn) for carrier frequency fluctuations,
δφCEO(tn) = ω0δτceo(tn) for CEO phase fluctuations and δτr(tn) for timing jitter.

As in chapter 4, the noise on the laser parameters are recovered by projecting the
covariance matrices on the associated modes. We remind that the covariance matrices
in amplitude and phase are given in the pixel basis by

[Γx]j,k = 〈δxj(tn)δxk(tn)〉, (6.18)
[Γp]j,k = 〈δpj(tn)δpk(tn)〉. (6.19)

Finally, to retrieve the noise spectra of each parameter, a demodulation procedure is
employed similarly to the one described in section 4.3.1. Note that, in this experiment,
the demodulation is performed numerically.
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6.2 Experimental setup
The experimental setup is represented in Figure 6.1. The laser under study is a commer-
cial fibered laser from MenloSystems (FC1500-250-ULN). It emits femtosecond pulses
at 1550 nm at a repetition rate of 250 MHz resulting in a spectrum of approximately 100
nm. The field is first split in two paths thanks to an AOM driven at fRF = 110 MHz,
introducing at the same time a frequency shift fRF in the diffracted beam. A fiber delay
of roughly 60 m is introduced in the second arm. Both arms are finally recombined
using a fiber-beam-splitter (BS). The recombined beams are sent into a commercial
wavelength division multiplexer (WDM) from Edge Optical Solutions (DCMD-8H).
This device splits the spectrum in 6 channels, each covering approximately 20 nm,
whose central frequencies are [1510, 1530, 1550, 1560, 1590, 1610] nm. Each channel is
sent to a commercial fiber-coupled detector (Thorlabs DET01CFC). Finally, the detec-
tors are connected to an 8 channels oscilloscope (Teledyne Lecroy HDO8038A) whose
bandwidth is 300 MHz.

It can be noted that the setup is a lot more simple than the one used in the previous
chapters. Because all the components are fibered, the experiment is more compact. No
filtering cavity is used and thus no active locking of the repetition rate nor of the CEO
is needed. In addition, all the elements are off-the-shelf components. Nonetheless, the
construction of the delay is complicated by the wide spectrum of the laser. The delay
needs to be properly set so that the pulses arrive at the same time on the recombining
BS of the interferometer. To this end, a fiber-delay-line is used. When the delay is
properly set, the contrast of the beat signal at fRF , is maximal. The delay can also
be adjusted by monitoring the spectrum of the beat signal and maximizing the height
of the beat peak signal at fRF . Similar to what was explained in section 4.2.2, the
relative phase between the two arms needs to be flat across the spectrum to maximize
the contrast in all the channels simultaneously. However, the delayed arm accumulates
more dispersion than the other one. Hence, when the contrast of one frequency channel
is maximized, the other ones are not due to the spectral phase variation across the
spectrum. A lower contrast leads to a smaller signal to noise ratio of the beat signal
which can be detrimental. Consequently, the relative dispersion between the two arms
must be compensated. This is achieved using dispersion compensated fibers. Those
fibers have negative dispersion, which at 1550 nm gives a positive GVD of the order of
5 fs2/mm, while a normal fiber has a GVD of -25 fs2/mm at 1550 nm. Nonetheless, as
we need to find a configuration where the pulses from both arms arrive at the same time
on the recombining BS, the path difference must be a multiple of the length separating
two pulses which is approximately 1 m. Thus, finding the right configuration is a
bit tricky and we did not manage to have a perfectly flat phase. The residual phase,
measured with a spectral interferometry as described in section 4.2.2, is 3000 fs2. The
delay is then chosen in order get the maximum contrast as possible in all the channels
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at the same time.

6.3 Results

In this section we present the results obtained using the setup described above. First,
the results of the phase measurement are presented, leading to the characterization of
the CEO noise and timing jitter. Secondly, experimental limitations are discussed. As
a matter of fact, for technical reasons that will be introduced, the amplitude cannot be
accurately measured with the actual setup. Thus the RIN as well as the noise on the
central frequency cannot be measured simultaneously to the phase noises.

6.3.1 Phase measurement

The amplitude and phase covariance matrices are calculated as described in section
6.1.3. An example of phase covariance matrices can be seen in Figure 6.3. Their shapes
are similar to the ones measured with the titanium-sapphire laser. Correlations between
spectral bands are present at low frequencies, indicating the presence of classical noise,
and disappear at higher frequencies. Note that in this experiment, the matrices are
not normalized with respect to the shot noise as the setup does not allow to measure
it. Nevertheless, the procedure to extract the amplitude and the phase in section 6.1.2
directly gives the fluctuations in physical units, so that no additional normalization is
needed1.

From those matrices, the noise spectra of the CEO frequency fCEO and the phase
timing jitter φt can be recovered. They are reproduced in Figure 6.4. As a comparison,
the timing jitter measured by the laser manufacturer using a different method can be
seen in Figure 6.5. Note that this PSD is expressed in dBc/Hz which is 3 dB lower
that the dBrad2/Hz in Figure 6.4. Both curves display roughly the same level of noise,
showing the ability of our technique to accurately characterize the phase noise of the
laser. Comparing those curves with the ones represented in Figure 4.11, it appears
that the phase noise of the menlo laser is a bit higher than the one of the Titanium-
Sapphire. Nevertheless, the menlo laser does not present any relaxation oscillations
peak as opposed to the Titanium-Sapphire.

We tried to apply the same analysis to the amplitude noise. However, we encountered
an issue. Indeed, when looking at the amplitude covariance matrices as represented in
Figure 6.6, only the diagonal elements are different from zero, even at low frequencies.

1However, if amplitude and phase correlations are analyzed using the correlation matrix, having
the noises expressed in different units might be an issue.
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Figure 6.3 – Phase covariance matrices. The matrices are taken at three different
analysis frequencies: 1 kHz, 500 kHz and 2500 kHz. As previously, the matrices display
spectral correlations at low frequencies indicating the presence of classical noise. At
higher frequencies, only the diagonal terms are present proving that the laser is shot
noise limited.

Figure 6.4 – Phase noises. Left: CEO frequency noise in physical units obtained
by projecting the phase covariance matrix on the CEO mode represented on the same
graph. Right: timing jitter obtained via projection of the corresponding spectral mode
represented on the same graph.
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Figure 6.5 – Timing jitter phase noise. Figure taken from the laser datasheet.
Noise of the repetition rate measured using two different measurement setups. The
high frequency spectrum (>2 kHz) was measured by cross-correlating the optical pulses
with a reference laser (Menlo M-Com, Serial Number FSER/0670). The low frequency
spectrum (<1kHz) was measured using a Signal Source Analyzer at the 40th harmonic
of the laser. The timing phase noise is expressed in dBc/Hz which is 3 dB lower that
the dBrad2/Hz in Figure 6.4.
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Figure 6.6 – Amplitude covariance matrices. The matrices are taken at three
different analysis frequencies: 10 kHz, 50 kHz and 200 kHz. Those matrices do not
display any spectral correlations even at low frequency. It suggests that the detection
reaches a noise floor higher than the classical noises.

We saw that, in the presence of classical noises, spectral correlations appear in the
covariance matrices. As we do not expect the laser to be free of classical noise at 10
kHz, it indicates that a detection noise floor higher than the classical noises is reached.
To explain this effect, in the next section we briefly review the different sources of noise
in the detection process and estimate their strengths.

6.3.2 Noise floors

The two important noises in a photodetection are the thermal noise and the shot noise.
In this section we give the expression of those noises and evaluate their contributions.

Thermal noise: The thermal noise comes from the thermal agitation of the electrons
in the detection circuit. It is a white noise whose power spectral density is given by [79]

Sth(f) =
4kBT

Ri2
[
Hz−1

]
, (6.20)

where, R is the resistance of the detectors (usually 50 Ω), i is the photo-current, kB is
the Boltzmann constant and T the temperature of the system.

Shot noise: The shot noise, as discussed previously, is also a white noise, which
depends on the incident power. It is caused by the discrete nature of the photons. In a
photodetection, this noise is translated in an electronic shot noise which corresponds to
the discrete nature of the current composed of electrons. In principle both shot noises
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are related by the responsivity of the photodiode R. If this responsivity is 1, it means
that each photon creates one electron and thus both noises are identical. In terms of
current, the shot noise power spectral density is given by [80]

Ssn(f) =
2e

i

[
Hz−1

]
, (6.21)

where i is the photo-current and e the elementary charge of an electron.

Detection floor: To try to understand the origin of the noise floor in the detection,
the values of the thermal noise and the shot noise for each frequency channel of the
experiment are calculated. The optical power measured at each output of the WDM is
reproduced in Table 6.1. The photo-current generated by the detection of each optical
channel is also given using the relation i = RPopt with R = 0.85, the responsivity of
the photodiode. This photo-current allows to compute the value of the thermal and the
shot noise using equations (6.20) and (6.21). The resulting noise power in dB/Hz are
reproduced in Table 6.1.

C1 C2 C3 C4 C5 C6

Optical power, Popt (mW) 0.071 0.3 0.81 0.86 0.291 0.141

Photo-current, i (mA) 0.06 0.255 0.689 0.731 0.247 0.12

Thermal noise, Sth(f) (dB/Hz) -130 -143 -152 -152 -143 -136

Shot noise, Ssn(f) (dB/Hz) -143 -149 -153 -154 -149 -146

Table 6.1 – Comparison of the optical power, photo-current and noise power
for each frequency channel. The photo-current is calculated according to i = RPopt
with R = 0.85, the responsivity of the photodiode.

From Table 6.1 a first conclusion can be drawn. Because the optical power is low
in all the frequency channels, the thermal noise is above the shot noise. Indeed, the
thermal noise power varies as 1/i2 with respect to the photo-current while the shot noise
varies as 1/i. Hence, for low optical power, and thus low photo-current, the thermal
noise can overcome the shot noise. This configuration is obviously not optimal as the
detection is limited by noise independent from the properties of the source of light we
wish to characterize.

To better understand the shape of the amplitude covariance matrices, the strength
of the shot and thermal noises can be compared to the amplitude noise of the laser.
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Figure 6.7 – Relative In-
tensity Noise. In blue the
RIN of the menlo measured
for an optical power of 3 mW.
In dashed black the theoreti-
cal RIN of the shot noise for
3 mW. In dotted black the
thermal noise for channels 3
and 4.

To this end, the relative intensity noise (RIN) of the laser is measured using a single
photodiode as explained in section 4.4.3. It is reproduced in Figure 6.7. It can be seen
that, even the lowest thermal noise power at -152 dB/Hz, corresponding to the two
central frequency bands, is higher than the RIN above 100 kHz. It explains why the
amplitude covariance matrices are diagonal even at low frequencies as the measurement
is limited by the thermal noise of the detection which is uncorrelated.

To try to circumvent this issue, it would be necessary to put more power in the
interferometer. However, this is not possible. Indeed, if the power at the beginning
of the interferometer is increased, nonlinear effects start to occur. In particular, we
noticed that, by increasing the power, self-phase modulation arises in the fibers. It
results in a deformation of the optical spectrum of the laser, creating holes in it. Hence
some channels receive no signal. Note that approximately 20mW are injected in the
fiber before the interferometer. The power at the outputs is really low as losses are
introduced due to the different components of the interferometer. Another way around
would be to reduce those losses. However, we did not have the equipment nor the
time to try doing so. In a last attempt to solve the issue, we decided to unplug the
interferometer. By keeping only one arm with all the power in it, more power per
channel is achievable at the expanse of the phase measurement. However, even with
this configuration no significant results were found. Without the shift in frequency
due to the AOM, the signal of interest lies in the low frequency part of the spectrum.
Hence, the signal is drown into the electronic noise coming from the various detection
components. As we did not have any low frequency amplifier, we where not able to
extract any information from the signal.

Summary: The analysis technique developed in chapter 4 can be applied to different
sources of light. As an improvement from the previous experiment, a different optical
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bench has been used. This setup, mainly based on commercial fiber components, is
more compact and easy to handle than the one described in section 4.2. We managed
to characterize the phase noise of the laser. However, due to the low optical power at
the output of the interferometer, the amplitude measurement failed to give meaningful
results. Many improvements can be maid to improve this experiment to apply the same
investigation of the amplitude and phase correlations similarly to chapter 5.
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Part III

Pulsed approach to reservoir
computing
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Introduction

In this part is presented a project started during the last year of my PhD. The idea is
to take advantage of the tools presented along this manuscript for the implementation
of a photonic machine learning protocol. Photonic computing is a recent development
in the field of machine learning. It uses optical components to implement operations
which are usually time and energy consuming on computers. By doing so, very efficient
and fast information processing can be achieved [81, 82].
In this manuscript, we will concentrate on one particular type of machine learning
protocol known as Reservoir Computing (RC). At the origin of RC are the recurrent
neural networks [83]. Those networks are inspired from the brain mechanisms. They
are composed of many interconnected artificial neurons. Because of the recurrent con-
nections between the neurons, those networks possess a memory, making them suitable
for processing time series such as speech recognition [84, 22]. Although very powerful,
recurrent neural networks have proven to be hard to train. As a matter of fact, all
the weights of the networks need to be trained using backpropagation in time [85], a
time consuming and not always converging procedure [86]. To remediate to this draw-
back, new architectures of neural networks have been developed, classified under the
common denomination of reservoir computing (RC). Those recurrent neural networks
are composed of three elements: an input layer to inject the data into the system, a
reservoir composed of a large amount of neurons (or nodes) randomly connected, and
an output (or reading) layer to extract the information from the reservoir. The prop-
erty that makes RC appealing is the possibility to only train the weights of the output
layer to process information [21, 87]. Indeed, under certain conditions on the wiring of
the reservoir, training the output layer with a simple linear regression can be sufficient.
As an example of application of reservoir computing, using the knowledge on the laser
intensity dynamics gathered in the previous part of the manuscript, we implement a
simulation to predict the evolution of the laser parameters from the pump power fluc-
tuations.
The main challenge in reservoir computing is the design of the reservoir. However, once
the reservoir set, its topology is left unchanged during all the processing. This feature
makes reservoir computing a good candidate for hardware implementation, in particular
in photonics. Many experimental realizations of reservoir can be found in the literature.
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As an example, spatially distributed reservoir have been studied in [88, 89, 90]. In this
work, a different approach is used, the delay-based reservoir. The general idea is to
demultiplex in time the nodes of the reservoir so that one node is accessed at each time
step. The nodes from the reservoir are connected in time via a feedback loop, conferring
memory to the reservoir at the same time. The first experimental implementation of
such reservoir was demonstrated in [23, 91] using opto-electronics. Reservoir have then
be fully implemented optically using long delays in optical fibers as a distributed reser-
voir [92, 93]. This all-optical implementation makes the data processing faster than the
opto-electronic one.
Consequently, in the following chapters, we present the design of a reservoir computing
protocol using a single non-linear node as in [23]. In our setup, the idea is to use pulses
from the OFC to perform time delayed-based reservoir computing. The information
is encoded in the phase of each pulse and read using homodyne detection. The laser
source used is the frequency comb studied in the previous chapters which emits fem-
tosecond pulses at a repetition rate of 156 MHz.
The long-term objective is to go toward quantum reservoir computing. Quantum reser-
voir computing started to draw a lot of attention in the literature [94, 95, 96, 27]. The
motivation to implement such quantum architecture is manifold. Among other, advan-
tage can be taken from the high number of degrees of freedom associated to quantum
systems. In addition, those platforms are naturally suited for quantum tasks. Hence,
there is a real interest in exploring this particular topic. To that end, quantum resources
need to be introduced in the protocol. One way to do so is to encode the information in
a particular type of quantum states known as squeezed states. In this part, we present
an experiment to produce such states. They are produced via spontaneous parametric
down conversion in a PPKTP waveguide. It allows the creation of squeezing at the
level of the laser’s pulses, enabling their manipulation for the computation task.
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Time series processing with neural
networks
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In this chapter we are interested in studying a machine learning protocol called
reservoir computing (RC). We start by introducing the general concept of reservoir
computing. This protocol is then simulated on a computer in an attempt to predict
the dynamics of the optical frequency comb investigated in the previous chapters. In
a second time, the experimental implementation of an optical delay-based reservoir
computing protocol is presented. It relies on an optical frequency comb and a homodyne
detection. Using a quantity known as information processing capacity, we assess the
ability of this architecture to reconstruct complex functions. We then compare the
results to simulations.

7.1 Reservoir computing

As for many other machine learning protocols, the objective of reservoir computing
is to process data in order to classify input data or recognize sequences of data. As
reservoir computing is part of the recurrent neural networks, it is particularly suited for
the processing of time series. In the following, we concentrate on this particular task.
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Figure 7.1 – General scheme of a reservoir computing architecture. It is com-
posed of three parts: an input layer, a reservoir and an output layer. The input layer
feeds the input data uk into the reservoir at each time step. The reservoir is made of
recurrent connections, providing memory to the protocol. The output layer is a linear
combination of the values of the reservoir nodes. Only the weights Wout of this output
layer are trained using a target function ŷ(tn).

The aim is, given an input signal, to recover a different signal which depends on the
input. It can be, for example, a speech recognition task. In this case, a recording of
spoken language is fed to the reservoir. The information to be retrieved is the written
transcript of what was said.
To execute those tasks, a training procedure is first needed. A set of data, called
training set, is used as input data. Those data are processed by the neuron network
(the reservoir) and the output is compared to a target signal that we aim to recover.
The parameters of the reservoir are tuned in order to get as close as possible to the
target. After the training, a validation set of data is used to evaluate the performance
of the training procedure. Once those steps achieved, the protocol is able to predict the
output signal from any other input signal. In this section, the properties of the reservoir
and the training procedure are first presented. Then, we introduce an application of
such protocol. Our goal is to predict the laser dynamics studied in chapters 4 and 5
from a simulated reservoir on a computer.

7.1.1 General principle

A general reservoir computing architecture is represented in Figure 7.1. It is composed
three main parts:

• An input layer: The data are injected in the network via this layer. It connects
the input data u to the next layer via a vector Win containing the weights of each
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connections.

• A reservoir: This reservoir layer is the recurrent layer. It is made of a large
number N of neurons randomly connected in a graph. This graph is described by
the adjacency matrix A.

• An output layer: This layer reads the state of the reservoir nodes to decode
the information. It is connected to the reservoir via the vector Wout.

To process a time sequence u(tn)1, the signal is first sampled according to uk =
u(tn = kTs) where Ts is the sampling time and k ∈ [1 : L] with L the length of the
input sequence. The aim of the protocol is to transform the input data uk into an
output yk. This is achieved by first injecting uk into the reservoir, using the input
connectivity vector Win of length N . Those data are then processed in the reservoir,
described by the adjacency matrix A of dimension (N ×N). Finally, the data are read
from the reservoir via the output connectivity vector Wout of length N . The advantage
of RC is the simplicity of the training procedure, as it exploits fixed input weights and
fixed recurrent connections. Win and A are in fact randomly distributed and do not
evolve during all the procedure. Hence, the training of the network is performed by only
training Wout using a target value ŷk for each processed value yk. The accuracy of the
training is assessed by computing the normalized root mean squared error (NRMSE)
defined by

NRMSE =

√
〈(ŷk − yk)2〉k
〈(yt − 〈yt〉)2〉k

, (7.1)

where 〈〉k is the average over the L data points.

A well-trained reservoir allows to reconstruct complex functions, which usually are
non-linear combination of the input data. Nonetheless, this requires the reservoir to
possess two key features [23]:

• It must be able to non-linearly transform the input signal into a high-dimensional
state space. This can be achieved by using a reservoir composed of a large number
of non-linear nodes.

• It must possess a fading memory (or short-term memory). It ensures that the
current state of the reservoir depends on the recent past inputs and is not affected
by inputs far in the past, and in particular is independent of initial conditions.
This condition can be achieved by re-scaling the adjancy matrix, which defines
the wiring of the reservoir, so that its spectral radius (its largest eigenvalue), ρA
is smaller than one [87].

1Note that here we used the notation tn for the time dependency. As in the previous chapters, it
refers to slow variations in time, corresponding to the scale of the noise of the laser.
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For a reservoir satisfying the previous conditions, the state of itsN nodes is described
by a vector rk at the time step k given by

rk = fNL [Winuk + Ark−1] , (7.2)

where fNL is a non-linear function which depends on the implementation of the reser-
voir. In the case of simulations, the hyperbolic tangent function is the most commonly
used to introduce the non-linearity in the reservoir. Win, the input connectivity vector,
is taken from a normal distribution centered at 0 and of variance σ2. This variance as
well as the spectral radius of the adjacency matrix are free parameters that can be
tuned to improve the efficiency of the protocol depending on the task.
The output yk is given by a simple linear combination of the reservoir neuron values:

yk = WT
outrk, (7.3)

where T stands for the transposition of the vector column.

As said previously, in RC, only the output weights from Wout need to be trained if
the reservoir is designed to fulfill the two previously mentioned conditions. To perform
this training, a full set of training data of length Ltrain is taken. The reservoir states
rk and the target data ŷk for the full set of training data are regrouped in the vectors

R =
(
r1 · · · rLtrain

)
, Ŷ =

 ŷ1
...

ŷLtrain

 . (7.4)

The training procedure is performed using the so called ridge regression [97]. It
allows to determine the output weights, as a function of the quantities defined above,
according to

W?
out = ŶRT

(
RRT + εI

)−1
, (7.5)

where W?
out is the trained set of output weights so that the output data Y (vector of

the output data) approximates the best the target data Ŷ. The ridge coefficient ε is a
free parameter, and I is the identity matrix of dimension (N ×N).
After the training, a new set of data, called validation set, is taken. Those data are
injected in the network, and the output vector Y is calculated using the trained weights
W?

out. As previously stated, the NRMSE given by equation (7.1) is used to determine
how close to the target the output signal is. The error, associated to this validation set,
quantifies how well the protocol predicts a signal y(tn) given an input signal u(tn). The
training procedure and the validation are repeated for different values of free parame-
ters: σ the input scaling of the matrix Win, ρA the adjacency matrix spectral radius
and ε the ridge coefficient. Once the best parameters (the ones achieving the lowest
error) are found, the protocol can be used for predictions.
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7.1.2 Application of RC to noise analysis

To give an example of application of such machine learning protocol, following the idea
of [98, 99], we decided to take advantage of the knowledge gathered on the optical
frequency comb studied in chapters 4 and 5, to try to predict its dynamics. In those
chapters, we saw that the amplitude and phase noises are mainly induced by the pump
laser intensity noise. Consequently, in this section, we try to predict the noise on the
laser parameters, more precisely on the intensity, the center spectrum and the CEO
frequency2, from the intensity noise of the pump laser.

To perform this task, a simulation of a reservoir is designed on a computer by applying
the equations derived in the previous section. As we aim to predict the intensity
related dynamics, the intensity fluctuations of the pump power are used as input data.
They are measured with a photodiode from a leak in the laser cavity. The output
data, used as target, are the fluctuations of each laser parameter, measured using
the experimental scheme described in chapter 4. In order to record the pump laser
fluctuations simultaneously with the laser fluctuations, we unplug one pixel (one of the
lowest on the side of the spectrum) from the acquisition card. We remind that, in
chapter 4, a demodulation procedure is employed to measure the noise at a given offset
frequency f . Hence, for each analysis frequency, a set of data is available, corresponding
to the fluctuations in time of the parameters at the given sideband frequency. Each
acquisition is composed of 10000 data points. We take 9000 data points to train the
reservoir. The 1000 remaining points are used as a validation set to see how well the
algorithm performs. The NRMSEs between the validation set and the target data for
the three previously mentioned parameters as a function of the analysis frequency are
reproduced in Figure 7.2 a, c, e. It can be seen that the performances depend on the
frequency.

The dependency of the NRMSE as a function of the analysis frequency can be un-
derstood by determining the degree of correlation between pump intensity fluctuations
and the laser parameters fluctuations as a function of the analysis frequency. To this
aim, we first compute the cross-correlation, for every offset frequency f , between the
measurements:

C(τ)|f =

∫
R
δIpump(tn + τ)|f × δparam(tn)|f dtn, (7.6)

where δIpump(tn)|f represents the pump intensity fluctuations at the offset frequency f
and δparam(tn)|f the fluctuations of the laser parameters (which can be the intensity

2The noise on the repetition rate is lower than the other noises and is not expected to be highly
correlated to the pump intensity noise. Thus we do not investigate it in this section.
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δε(tn)|f , the spectrum center frequency δωc(tn)|f or the CEO frequency δfCEO(tn)|f ).
Those quantities are taken to be real. The expression above allows to calculate the
correlations as a function of the delay between the two quantities. To characterize the
correlations between pump intensity fluctuations and the laser parameters fluctuations
as a function of the analysis frequency, the maximum of the cross-correlation, from
(7.6), as a function of the analysis frequency is calculated according to

Corr(f) = maxτ [C(τ)|f ] . (7.7)

This quantity is calculated for the three laser parameters. The results are reproduced
in Figure 7.2 b, d, f.
It can be seen that the frequencies for which the protocol performs the best, correspond
to the ones where the quantities are highly correlated, which is understandable. It is
worth mentioning that, this maximum happens close to the frequency of the relaxation
oscillations, around 1.1 MHz. Again, this is not surprising as those oscillations are
directly caused by the pump power fluctuations.

To visualize how well the protocol performs, we plot the mean power noise, the center
spectrum and the CEO frequency, predicted after training from the pump laser fluctu-
ations, together with the actual fluctuations of each quantity. We choose the frequency
leading to the best prediction according to Figure 7.2. Those data are reproduced in
Figure 7.3. It can be seen that, each time the predicted signal is close to the real noise
measured experimentally.

As a conclusion, this protocol allows to predict the noise of at least three of the laser
parameters, from the fluctuations of the pump laser. Even if this scheme is not perfect
and needs refinement to improve the error, we could think of an active stabilization of
the laser parameters using this technique. The optical bench, described in the previous
chapters, would be used once to characterize all the noises simultaneously. Once the
reservoir trained, only the pump intensity fluctuations need to be recorded using a
simple photodiode. A feedback loop can then be used to stabilize each parameter.

7.2 Delayed-feedback reservoir computing

In the previous section we presented a numerical approach to the reservoir computing
protocol. The aim of this second section is to implement a reservoir computing protocol
on a photonic platform. The idea is to use photonic resources to speed up the protocol
and make it energy-saving. This is of course the holy grail in this kind of experiment.
In this work, we do not aim to be competitive with the state-of-the art protocols but
to test the feasibility of an architecture and its possible advantages. Indeed, different
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Figure 7.2 –NRMSE and cross-correlations between pump noise and intensity,
CEO frequency and center frequency noise. Given the intensity noise of the
pump laser as input data, we aim to teach the protocol to recover the noise on the
laser parameters. a, c and e represent the NRMSE on the prediction of the noise
on the intensity, CEO frequency and center spectrum of the laser depending on the
analysis frequency. b, d and f represent the maximum of the cross-correlation from
equation (7.7) as a function of the analysis frequency. The lowest error corresponds to
the maximum correlation (or anti-correlation) which is achieved around the frequency
of relaxation oscillations. The frequency at which this maximum is achieved is marked
by the dashed black line.
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Figure 7.3 – Prediction of the noise on the laser parameters from the pump
intensity noise. On top is represented the intensity fluctuations of the pump laser
as a function of the time. Above are represented, from top to bottom, the intensity
fluctuations δε(tn), the CEO frequency fluctuations δfCEO(tn), and the center spectrum
ones δωc(tn). In dashed is represented the prediction of the noise of each parameter
obtained from the pump intensity fluctuations after training of the reservoir. Each
signal is normalized before processing (hence the line above) to be given as a z-score,
i.e. we subtracted the mean value and divided by the variance of the signal. This
procedure is used to increase the performances of the protocol. Each prediction is
made for the frequency at which the lowest error is reached. For the intensity f = 1.6
MHz and NRMSE = 0.4, for the CEO frequency f = 1.1 MHz and NRMSE = 0.5, and
for the center spectrum f = 1.2 MHz and NRMSE = 0.5.
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photonic implementations of RC can be found in the literature [23, 91, 92, 93, 24]. We
chose the approach known as delayed-feedback reservoir computing, similar to the one
introduced in [23]. We implement the protocol via the tools used along this manuscript:
the optical frequency comb and the homodyne detection. In particular, the pulses of
the laser are used as nodes for the reservoir in which the input data are injected. The
information is encoded in the phase of each pulse and decoded from their quadrature
using a homodyne detection. In this section, we present the general idea of the delayed-
feedback reservoir computing architecture. Then, the experimental implementation is
detailed. Finally, the ability of the protocol to reconstruct complex functions is assessed
using the information processing capacity.

7.2.1 General description: memory and links

We start by a general description of the delayed feedback reservoir computing archi-
tecture as well as the techniques used to create the reservoir and wire it. The scheme
illustrating the principle of the protocol is represented in Figure 7.4. Contrary to the
previous architecture, the reservoir is composed of virtual neurons distributed in time.
It means that at a given time, only one neuron is accessible for encoding the informa-
tion. Identically, only one neuron at a time is accessible for decoding the information.
The reservoir is formed by using a delayed train of pulses corresponding to N neurons.
Each neuron is separated from the others by a delay θ. In the following, the neurons
are numerated from 1 to N and noted with the index j. The data points u are numer-
ated by the index k, as previously. They are separated in time from the others by the
time-span of the reservoir, τ , equivalent to its size, given by τ = Nθ. Hence, the node
rj,k corresponds to the time tn = kτ + jθ.
In order to inject the data in the reservoir, each data point uk must be distributed
in time on every neuron in the delay-line. This is achieved by applying a mask func-
tion m(tn) to uk. This mask is composed of N individual steps of duration θ so that
mj = m(tn = jθ). The values of those steps are randomly taken from a normal distri-
bution. This mask is similar to the input connectivity matrix Win but distributed in
time. Once the data injected, the reservoir can be built. More precisely, we need to
provide memory to the reservoir and to wire it.

7.2.1.1 Memory

In order to provide memory to the reservoir, recurrent connections need to be made
between the nodes. In the delayed-feedback architecture, this memory is implemented
via a feedback. This feedback consists in injecting the data back into the reservoir after
on delay round trip τ as illustrated in Figure 7.4. In these conditions, the state of the
node j of the reservoir for the step k is described by the vector rj,k given by

rj,k = fNL [βmjuk + αrj,k−1] , (7.8)
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Figure 7.4 – General scheme of a delay-based reservoir computing architec-
ture. In this configuration, the reservoir is demultiplexed in time so that at a given
time, only one node is accessible (the other nodes, from the past, are drawn in trans-
parency). This reservoir is composed of N nodes separated in time by θ. The injection
of the data uk is made possible by the application of a mask function m(tn) which plays
the role of the input vector Win. The nodes are linked together (green arrows) in time
using either a system with a finite bandwidth or using a shift between the delay and
and injection of the data. The memory of the system is provided by the feedback of
delay τ which plays the role of the recurrent connection. The training procedure is
similar to the general configuration described in section 7.1.1.
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where α and β are gain parameters that can be used to optimize the protocol; mj is
the value of the jth step of the mask; fNL is a non-linear function. In the simulation
from the previous section, this function was a hyperbolic tangent. In this architecture,
we will see that the non-linearity is introduced by the homodyne detection and thus is
given by a sine function. The term αrj,k−1 corresponds to the data re-injected after the
feedback. It connects two nodes j from two different time steps k and k − 1. We can
clearly see here that it provides memory to the system by re-injecting in the reservoir
information depending on the input signal in the past.

7.2.1.2 Links

To create the network constituting the reservoir, links need to be created between the
different nodes. Two approaches can be applied by either using the feedback loop or
the system dynamics. The first approach consists in desynchronizing the injection of
the data from the feedback [23, 92]. The other approach consists in using a system with
a given response time, using for example a filter in the detection [91]. In this case, the
network shape depends on the delay between two nodes and the characteristic time of
the system. We briefly review the two approaches and the expressions describing the
state of the reservoir in each case.

Unsynchronized regime: In this configuration, the time at which the data are
injected back into the reservoir is shifted from the duration of the feedback delay τ .
Thus, the delay after which the data are reinjected is τ ′ = N

N+1
τ . This shift connects the

node j at time tn = kτ+jθ (with τ = Nθ) to the node j+1 at time tn = (k+1)τ+(j+1)θ
as illustrated in figure 7.5. Using the same principle as equation (7.8), the state of the
jth node at the step k is given by

rj,k =


fNL [βmjuk + αrj−1,k−1] for 2 ≤ j ≤ N

fNL [βmjuk + αrN,k−2] for j = 1.
(7.9)

It can be seen that, in this configuration, the recurrent connections are created by
the delay and the shift in time. At each time step k, one node j receive information
from the node j − 1 from time step k − 1.

Non instantaneous system: In this configuration, the system is supposed to have
a given response time to the injection of the data. To describe how connections can be
made, let us assume a system with a characteristic time TBW , given for example by the
bandwidth of a filter at the detection. Because of the limited response time, the state
of the jth node of the reservoir can depend on the state of the previous node. Indeed,
this system tends to reach its equilibrium after an exponential decay of the previous
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Figure 7.5 – Graph
representation of the
unsynchronized con-
figuration. By shifting
the time at which the
data are re-injected with
respect to the delayed
feedback τ , connections
are made between differ-
ent nodes of successive
time steps.

value and an exponential growth of the new one. The rate of the exponential is given
by the ratio between the time separating the nodes θ and the characteristic time of the
system TBW . Consequently, the state of the jth node for the time step k is given by

rj,k = rj−1,ke
−θ/TBW +

(
1− e−θ/TBW

)
fNL [βmjuk + αrj,k−1] . (7.10)

It can clearly be seen that the state of the node rj,k depends on the state of the
previous node rj−1,k due to the response time of the system. In addition it depends,
as in equation (7.8), on the input data uk, as well as the state of the node rj,k−1

from the previous time step due to the feedback. The graph created by this procedure
is represented in Figure 7.6. Each node is connected to a few previous nodes with
different strengths. Those connections depend on the ratio θ/TBW . Changing this
ratio modifies the influence of a given node on the future ones. Consequently, this
parameter can be tuned to change the shape of the graph and optimize the protocol.
In an experiment, this parameter is changed by either changing the delay between the
nodes or by changing the response time of the system. In the next section we will see
how, using this configuration, we can implement a reservoir computing protocol on our
photonic platform. Note that both approaches can also be combined.

7.2.2 Experimental implementation

As previously mentioned, the implementation of this photonic reservoir computing relies
on the use of an optical frequency comb and a homodyne detection. Note that a
frequency comb is not required for the implementation of the pulsed approach of the
reservoir computing. At no point of the experiment the pulses are temporally resolved.
Therefore, lasers emitting longer pulses, with possibly higher repetition rates (to speed-
up the process), could in principle be used. However, for this experiment we use the
laser available in the lab, which happens to be a frequency comb. In addition, we will
see in the next chapter that the spectral degree of freedom provided by the frequency
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Figure 7.6 – Graph representa-
tion of the system with a fi-
nite bandwidth. Due to the fi-
nite response time of the system,
each node from the reservoir is con-
nected to the previous ones. The
number of previous nodes influenc-
ing the current one depends on the
ratio between the time separating
two nodes, θ, and the bandwidth
of the system TBW .

comb could be exploited in a quantum version of the protocol.
In this experiment, each pulse from the laser is used as a neuron from the reservoir.
Thus, the separation time θ is set by the separation in time between two successive
pulses which is θ = Tr = 1/fr ' 6.4 ns, where fr = 156 MHz is the repetition rate
of the laser. The data are recovered by measuring each pulse individually. Each pulse
counts as one data point corresponding to the state rj,k of the neuron which, multiplied
by the output weight matrix Wout, gives yk. In order to introduce the non-linearity
in the system, we choose to use a homodyne detection as a reading element of the
nodes state. As we will see, by encoding the information in the phase of the pulses,
the homodyne, which gives access to the quadratures of the electric field as seen in
section 1.2.3, leads to a signal proportional to the sine (or cosine) of the injected data,
introducing the non-linearity needed. In the following we describe the encoding of the
data, the decoding and the wiring of the reservoir. The detailed experimental setup
is then presented. Finally we test the architecture using a benchmark task known as
NARMA5.

7.2.2.1 Encoding of the data

To describe the experiment, let us remind the expression of the electric field of one
pulse given by equation (2.13): E(+)

pulse(t) = E0a(t)e−iω0t. Even though a high bandwidth
detector is used to measure the field pulse by pulse, this detector is not fast enough to
resolve the pulse shape. In addition, one data point is taken for each pulse. Thus, we
consider that each pulse has a constant amplitude a. The information, i.e the input
data, can be encoded in the two degrees of freedom of the pulses, their amplitude or
their phase. In [95], Nokkala et. al. investigated several RC protocol architectures with
different encoding for the input data. In particular, the encoding into the amplitude or
the phase of a coherent state was studied. They demonstrated that the phase encoding
leads to better performances. Therefore, using the fact that under certain conditions the
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laser field can be assimilated to a coherent state, we choose to encode the information in
the phase of the pulses. Hence, the field of the jth pulse at the time step k, is multiplied
by a phase term containing the injected data according to

E
(+)
j,k = E0a exp [2iπ (βmjuk + αrj,k−1)] , 3 (7.11)

where E(+)
j,k corresponds to the pulse at time tn = kτ + jθ.

7.2.2.2 Extracting the information

In order to read the information encoded in the phase, the quadratures of each pulse
are measured with a high bandwidth homodyne detection. If the homodyne is set
to measure the p quadrature, the signal measured is proportional to the argument of
expression (7.11). Consequently, we define the state of one node rj,k of the reservoir as
the p quadrature of the pulse E(+)

j,k given by equation (7.11) i.e

rj,k = a sin [2π (βmjuk + αrj,k−1)] . (7.12)

It is now clear why a phase encoding has been chosen. This encoding provides non-
linearity to the protocol via the homodyne detection, which would not have been the
case with an amplitude encoding.

7.2.2.3 Wiring the reservoir

Concerning the wiring of the reservoir, the most natural configuration is the non-
instantaneous one. Indeed, the homodyne detector has a finite bandwidth of a few
hundred MHz, which is a bit slower than the pulse repetition rate corresponding to
the node separation (θ = Tr). This bandwidth corresponds to the parameter TBW of
the protocol. In addition, low-pass filters can be added after the detector to reduce
even more the bandwidth and tune the parameter θ/TBW to change the graph shape.
Consequently, the state of the node j at time step k is given by

rj,k = rj−1,ke
−Tr/TBW +

(
1− e−Tr/TBW

)
a sin [2π (βmjuk + αrj,k−1)] . (7.13)

7.2.2.4 Experimental setup

The scheme of the experimental setup is represented in Figure 7.7. As in a classical
homodyne detection, the field from the laser is separated in two, a weak beam, the
signal and a strong one, the local oscillator (LO). The phase encoding is achieved using
an electro-optic modulator (EOM, iXblue NIR-800-LN-0.1) on the signal arm. By

3We omitted the term e−iω0t as it does not appear in the quadrature definition next (see section
1.2.3).
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applying a voltage to this modulator, the phase of each pulse can be modified to encode
the information. This EOM is driven from a computer using an arbitrary waveform
generator (AWG, Teledyne SDR14). Regarding the delay, for simplicity, we decided to
implement the feedback electronically as in [23] and not optically as in [93]. In fact, an
optical feedback is hard to implement in this experiment as it requires an optical loop.
These loops are usually built using fiber elements, which is not recommended with
femtosecond pulses mainly due to chromatic dispersion. As long delays are difficult
to handle in free space, we have chosen the electronic feedback. This is achieved by
first, detecting the electric field after the encoding, with a homodyne detection, which
is equivalent to measuring the nodes of the reservoir. The detection is assured by a
home made high bandwidth balanced detector. Its bandwidth is approximately 100
MHz, details about this detector can be found in [71]. To create the links between the
nodes, a low pass filter is introduced after the detection. The cutoff frequency can be
changed to optimize the protocol. After detection, the signal measured by the detector
is then split in two. A small part is gathered for processing and the other part is sent
in a long coaxial cable to create the reservoir. It is finally mixed with the input signal
from the AWG to be sent to the EOM, creating the feedback loop. At the time of the
experiment, the longer cable in the lab was approximately 40 m, corresponding to only
35 nodes in the reservoir which is not a lot. As a comparison, the predictions in section
7.1 have been made with a reservoir made of 700 nodes.

7.2.2.5 Test of the architecture

Even though the experiment is not perfect, due to the limited number of nodes in the
reservoir, we tested it using a benchmark task known as NARMA5 (derived from the
NARMA10 introduced in [100]). The task consist in drawing the input data uk from a
uniform distribution in the interval [0, 0.5] and use as a target the function

ŷk = 0.3ŷk−1 + 0.05ŷk−1

(
5∑
j=1

ŷk−j

)
+ 1.5uk−1uk−5 + 0.1. (7.14)

This function is non-linear and depends on the five previous data points. Hence it
allows to test the memory and the non-linearity of the protocol. A set of reconstructed
data can be seen in Figure 7.8. The best error achieved with this experiment is a
NRMSE of 0.44 for a system bandwidth of 22 MHz. The error is far from the best
experimental realizations found in the literature where the NRMSE can reach at least
0.1. Many different elements can be improved to try to reach a lower error. For example,
a longer cable can be used for the delay to create a larger reservoir. Another direction
to explore is the implementation of the delay between the injection of the data and the
feedback, as presented previously. As we will see in the next section, this configuration
may lead to better performances.
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Ti:Sa laser
Pulse Shaper Homodyne detection

Phase encoding

Dispersion compensation

BS 50-50

LO

Signal
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b) c)
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OUT

Delay line

EOM

Off-line training

Figure 7.7 – Experimental scheme of the delay-based reservoir computing
architecture. The field of the same Ti:Sa laser from the previous chapters is separated
in two. The weak beam, the signal, is sent into an electro-optic modulator (EOM)
controlled by an arbitrary waveform generator (AWG). Information is encoded in the
phase of each pulse by applying a voltage to the EOM. The strong beam, the local
oscillator, is sent into a pulse shaper to match the dispersion introduced by the EOM
on the other arm. Both beams are combined on a 50-50 beam-splitter and detected by
a high bandwidth balanced detector. After low pass filtering, to control the parameter
TBW , the signal is sent into a long coaxial cable to create a delay. A part of this signal
is then mixed with the input data to create the feedback. The other part of the signal
is acquired by the AWG to proceed to the off-line training of the output weights.
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Figure 7.8 – Narma 5
benchmark task. In
plain red, the target
function given by equa-
tion (7.14). In dashed
black, the predicted
function after a learning
procedure over 2500
data points. The band-
width of the system is
set to 22 MHz by using
a low pass filter.

7.2.3 Capacity

Other tasks can be used to benchmark the protocol as well. Alternatively, a quantity
known as information processing capacity (or capacity for short) can be used to charac-
terize the protocol, task independently. Initially introduced by Dambre et. al. [25], the
capacity quantifies the ability of a system to retain past input samples, generally given
by the linear capacity, and to perform non-linear transformation of the data, given by
the non-linear capacity. Those two quantities will be presented later. Many studies
have been conducted in the literature using the capacity as a quantifier of the perfor-
mances of the protocol. In [101], different input encoding, non-linearity and output
decoding are compared by calculating the capacity of each scheme. In this section, we
present the procedure to calculate the capacity. Then, the capacity of the experimental
architecture is calculated and finally compared to simulations.

7.2.3.1 Calculation of the capacity

To compute the information processing capacity of a protocol, the input data uk are
taken from a random uniform distribution between -1 and 1. In order to properly
calculate this capacity, a set of orthogonal functions must be chosen as targets functions
ŷ [25]. For this reason, as in other studies, we chose the Legendre polynomials as target
functions so that

ŷk = Pdeg(uk), (7.15)
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where deg is the degree of the polynomial. As an example, the four first polynomials
are given by

P1(uk) = uk P3(uk) =
1

2
(5u3

k − 3uk)

P2(uk) =
1

2
(3u2

k − 1) P4(uk) =
1

8
(3u4

k − 30u2
k + 3)

After training, the reservoir is fed with another set, the validation set, of input data
uk. The capacity is derived from the NMSE when trying to predict the corresponding
polynomials of different degrees. Mathematically, the capacity is given by

c = 1− 〈(ŷk − yk)
2〉k

〈(ŷk − 〈yk〉)2〉k
= 1− NMSE2. (7.16)

It is important to note that the capacity is an additive quantity. Because it is
calculated using orthogonal functions, the capacity of each degree brings independent
information about the system. In particular, the capacity is usually separated into
two contributions, the linear and non-linear contributions. The total capacity of the
system is then the sum of both contributions. In what follows we define each of these
contributions and briefly introduce the method to calculate it.

Linear capacity: The linear capacity allows to characterize the memory of the proto-
col. Its aim is to characterize how many past inputs the reservoir can retain. The more
inputs the reservoir retains, the higher the memory. This linear capacity is computed
by taking as a target function the delayed Legendre polynomial of first degree. More
precisely, if the input data is uk, the target function is ŷk = P1(uk−Td) = uk−Td where
Td ∈ [0 : L] with L the length of the input sequence. The total linear capacity is given
by the sum of the capacities given by equation (7.16) over all the delays Td possible i.e

Clin =
∑
Td

(
1− 〈(P1(uk−Td)− yk)2〉k
〈(P1(uk−Td)− 〈yk〉)2〉k

)
. (7.17)

Non-linear capacity: The non-linear capacity informs on the ability of the protocol
to reconstruct highly non-linear functions. Similarly to the linear capacity, it is calcu-
lated by using as a target function ŷk = Pdeg(uk−Td) with deg > 1, and summing over all
possible delays Td. The total non-linear capacity is the sum over all degrees deg. It is
important to note that products of polynomials must also be considered when comput-
ing the capacity. As an example, the capacity for the degree 2 is given by calculating
first the sum of the individual capacities over the delays

C ′NL2 =
∑
Td

(
1− 〈(P2(uk−Td)− yk)2〉k
〈(P2(uk−Td)− 〈yk〉)2〉k

)
. (7.18)
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To this contribution must be added the contributions of the product of polynomial of
first degree

C ′′NL2 =
∑
Td1

∑
Td2>Td1

(
1− 〈(P1(uk−Td1)P1(uk−Td2)− yk)2〉k
〈(P1(uk−Td1)P1(uk−Td2)− 〈yk〉)2〉k

)
. (7.19)

The total capacity of degree 2 is given by the sum of the two contributions CNL2 =
C ′NL2 + C ′′NL2. Note that the higher the degree, the more complicated the calculation
of the contributions. In fact, the calculation would be infinitely long if no conditions
were applied on the values of the capacity, since all the delays and degrees possible
would need to be computed. Consequently, as in [25, 95], we apply a threshold to the
contributions of the capacity. This threshold is set for a NRMSE of 0.3. Above this
value, the capacity is set to 0. This threshold allows to reduce the time needed for the
calculation and prevent any over-estimation of the capacity.

The total information processing capacity is given by the sum of the linear and non-
linear capacities. It has been demonstrated that this capacity is bounded by the total
number of linearly independent variables of the system [25] which is usually given by
the number of neurons of the reservoir. If a protocol reaches this bound, it implies
that the dynamical system has fading memory [25], fulfilling the condition introduced
in section 7.1.1. Note that because the capacity is bounded by the total number of
neurons of the system considered, it can be normalized by this number so as to compare
different protocols. In the following sections, we calculate the capacity of the protocol
presented in section 7.2.2. At first we use a simulation of the experiment. It allows us
to compare the two approaches developed in section 7.2.1, the unsynchronized and the
non instantaneous system. In a second time, the experimental capacity is calculated.

7.2.3.2 Simulated capacity

In this section, we simulate the experiment by using the expressions (7.12) and (7.10) to
mimic the evolution of the state of the reservoir for a system with a finite response time
for a phase encoding and a decoding ensured by a homodyne detection with a bandwidth
given by TBW . The aim is to compare two wiring configurations of the reservoir. First,
only the bandwidth of the system is used to create links in the reservoir. Secondly, we
consider the configuration where a time shift is introduced between the feedback and
the injection of the data (the unsynchronized configuration), in addition to the limited
bandwidth. As a matter of fact, Ortin and Pesquera demonstrated that the capacity
depends on the system response given by the ratio θ/TBW = Tr/TBW . Furthermore,
they demonstrated that combining this approach to a desynchronization of the injection
of the data can lead to better performances [102]. Finally, we calculate the full capacity
of the protocol.
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Capacity vs bandwidth: As seen in section 7.2.2, the experimental implementa-
tion of the reservoir corresponds to the non-instantaneous configuration. The time
response is given by the ratio between the nodes separation and the detection band-
width: Tr/TBW . In order to determine the best parameter to use in the experiment, we
simulate the protocol for various values of this ratio. In Figure 7.9 a and b in black,
are represented the linear capacity, and non-linear capacity of degree 3, respectively,
as a function of the ratio Tr/TBW . The same result as in [102] is found. Increasing
the detection bandwidth changes the capacity, which ultimately leads to its deteriora-
tion. This is due to a decrease of the links strength as the bandwidth increases. In
our simulations, performed with 200 nodes, the best performances are achieved for a
ratio Tr/TBW ' 0.1. Since the only free parameter in the experiment is the detection
bandwidth TBW (the separation between pulses cannot be changed), it corresponds to
a detection bandwidth of 0.1Tr. Thus, in order to achieve the best performances, a
low-pass filter with a cut-off frequency of 15 MHz seems to be the most appropriate.
Alternatively, as in [102], the desynchronization of the input and the output data can
be combined to the limited bandwidth detection. The capacities of this hybrid config-
uration are also represented in Figure 7.9 a and b in blue, for the linear capacity, and
non-linear one of degree three. It can be seen that, if the delay τ is longer than the
data injection time τ ′, the capacity can be improved, even when the full bandwidth of
the system is used. Consequently, it seems that the wiring of the reservoir based on
the hybrid configuration provides more memory than the one based on the bandwidth
of the system only.

Full capacity of the protocol: The full capacity is calculated using the same prin-
ciple as described in equations (7.17), (7.18) and (7.19) for all the degrees of the polyno-
mial. We apply it for the two previously mentioned configurations. The total capacities
are represented in Figure 7.10. These capacities are normalized to the number of neu-
rons used (200 for the simulations). It can be noted that, as expected from Figure
7.9, the hybrid configuration leads to a higher capacity and even seems to saturate the
bound.

7.2.3.3 Experimental capacity

To test our experimental implementation of reservoir computing, we calculate the ex-
perimental capacity. To this aim, the input data are drawn from a uniform distribution
and sent to the EOM via the AWG. The data, once encoded in the phase of the pulses,
are extracted using the homodyne detection. The protocol is trained to reconstruct
the polynomials of various degrees for different delays between the input data and the
target data. As said previously, at the time, the delay introduced to form the reservoir
was really short. It implies that the reservoir is composed of only 35 neurons. Con-
sequently a lower capacity is expected compared to the simulations. In addition, the
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Figure 7.9 – Linear capacity and non-linear capacity of degree 3 vs bandwidth.
a) Linear capacity as a function of the response time of the system Tr/TBW . b) Non-
linear capacity for a polynomial of degree 3. In black the configuration where the links
between the nodes are created by the bandwidth of the system. In blue the hybrid
configuration where a shift is introduced between the data injection time and the delay.
The hybrid configuration leads to higher capacities. The simulations are done using
200 nodes for the reservoir.

hybrid configuration has not been implemented, so only the dependency of the capac-
ity on the detection bandwidth is investigated. Low-pass filters are placed after the
detectors to change the response time of the system. The capacity is calculated for
TBW = [10 MHz, 22 MHz, 48 MHz, 98 MHz]. The capacity values are reproduced in
Figure 7.10. It can be noted that the capacity depends on the bandwidth of the detec-
tion, as expected from the simulations. The higher capacity is achieved for a bandwidth
of 48 MHz (so ' 0.3Tr), which is a bit different from the value of 15 MHz found using
the simulations. This can be explained by the fact that the number of neurons between
the simulations and the experiment is really different (200 vs 35). In addition, not all
the parameters can yet be tuned experimentally. This is the case, for example, of the
feedback strength α which requires a variable electronic attenuator.

Summary

In this chapter we introduced a machine learning protocol called reservoir computing.
This protocol can be used to process time series. Consequently, using a simulation
of a reservoir, we predicted the intensity related dynamics of a frequency comb. Fur-
thermore, this protocol is well suited for photonic implementations. We proposed an
architecture based on a pulsed laser and a homodyne detection. This scheme seems to
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Figure 7.10 – Simulated and experimental capacity. On the left are represented
the capacity of the simulated protocol without and with a time shift between feedback
and data injection. On the right, the capacity calculated experimentally for different
detection bandwidths. To each color corresponds a degree of capacity from 1 to 7.
Experimentally, the highest total capacity is achieved for a system bandwidth of 48
MHz which is different from the 15 MHz found using the simulations. This is mainly
due to the difference between the parameters of the protocols, and particularly the
number of neurons (200 vs 35).
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be able to process non-linear functions. However, the number of nodes in the reservoir
is small which limits the capacity of the protocol. As an improvement, a longer cable
in the feedback can be used in order to increase the size of the reservoir. In addition,
the hybrid configuration should be implemented as it seems to lead to an important
increase of the capacity, as demonstrated by our simulations.
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Chapter 8

Toward quantum reservoir computing
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In the previous chapter we introduced a reservoir computing protocol based on
photonic resources. As mentioned in the introduction, the long term objective of the
project is to implement a quantum version of this protocol. To this end, a source of
quantum states is needed to be used as a platform for the reservoir. In this chapter we
present such a source based on a non-linear process, the parametric down conversion.
Using a particular configuration of this process, the so called squeezed states of light
can be produced. We will see that, combining two sources of squeezed states allows to
create quantum correlations between laser pulses. Those quantum links can be used
in the reservoir to replace the classical links created by the bandwidth of the detector.
Note that this project was the main project of another PhD student and I mainly took
part in the design of the experiment and the measurements. Consequently, this chapter
is kept as succinct as possible.

8.1 Single mode squeezing

In section 1.3.2, we introduced the coherent states. We saw that those states saturate
the Heisenberg inequality, i.e Var [x̂] Var [p̂] ≥ 1. In this section, we present another
family of states that saturates this inequality, the squeezed states.
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8.1.1 Parametric down conversion

Squeezed states of light can be created using parametric down conversion (PDC), a non-
linear process occurring when light with a high intensity propagates in a birefringent
medium with a non-zero second order susceptibility χ2. In the visible1, this process is
commonly achieved using, for example, BBO (β-Barium Borate) non-linear crystals or
KTP (Potassium Titanyl Phosphate) waveguides. In this process, one photon from an
incident field, called pump, at frequency ωp and wavevector kp, is converted into two
photons of lower frequencies, the signal, at frequency ωs and wavevector ks, and the
idler, at ωi and ki. This process is governed by the energy conservation, ωp = ωs + ωi,
as well as the phase-matching condition kp = ks + ki. In this study, we consider the
degenerate case where the signal and the idler have the same frequency, i.e. ωs = ωi, and
same wavevector, i.e. ks = ki. In addition, we consider the so called type 0 PDC, where
all the fields have the same polarization. The single mode degenerate PDC process can
be described by the Hamiltonian2 [30]

ĤPDC = ig
(
â†2s − â2

s

)
, (8.1)

where g is the gain of the non-linear process, and âs the creation operator of the signal
(identical to the idler one in the degenerate configuration). The unitary evolution
operator associated to this Hamiltonian is given by

Û = exp

[
− i
~
ĤPDC tint

]
= exp

[g
~
(
â†2s − â2

s

)
tint

]
, (8.2)

where tint is the interaction time with the non-linear crystal. This operator is called
squeezing operator. This name becomes clear by considering the evolution of the
quadratures of the electric field under this operator. Assuming that the signal field
of frequency ωs propagates inside a non-linear crystal, it can be shown that its quadra-
tures x̂0 and p̂0 are transformed according to [30]

x̂s = e−rx̂0,

p̂s = erp̂0,

where r = 2gtint/~ is the squeezing parameter. It can be seen that, depending on the
sign of r, one quadrature is amplified while the other is deamplified. As a consequence,
the variance of the quadratures after the crystal are given by

Var [x̂s] = e−2rVar [x̂0] ,

Var [p̂s] = e2rVar [p̂0] .

1Our laser sources operate at 800 nm.
2The pump is considered as a classical field.
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Figure 8.1 – Phasor representation of a vacuum and a single mode squeezed
vacuum state. a) vacuum state and b) squeezed state. The variance of the quadratures
of the single mode squeezed state (SMSV) are squeezed in one direction and spread in
the other.

Here again, depending on the sign of the squeezing parameter r, the variance of
one quadrature is increased while the other one is reduced, hence the name squeezing.
From the expressions above, it is also clear that the Heisenberg inequality is indeed
saturated by the squeezed quadratures. Their phasor representation is reproduced in
Figure 8.1 alongside the one of a vacuum state as a comparison. Those squeezed states
are of great interest in metrology, for example in gravitational interferometer [103], as
they allow to perform measurements bellow the standard quantum limit.

8.1.2 Quantum correlations

The process described above allows to create a single-mode squeezed state. In order
to create quantum correlations, namely entanglement, a second identical source can be
used.
We consider two single-mode squeezed states, squeezed along opposite directions. Their
quadratures are given by

x̂in,1 = erx̂0 x̂in,2 = e−rx̂0

p̂in,1 = e−rp̂0 p̂in,2 = erp̂0

Assuming that those states are mixed on a 50-50 beam-splitter, the quadratures at
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...

...

...

Figure 8.2 – Experimental setup for the production of entangled states. Two
sources of pulsed squeezed states allow to produce quantum correlated pulses by mixing
two squeezed pulses on a 50-50 BS. Those correlated pulses can be used as nodes for a
quantum reservoir computing architecture.

the output ports are given by

x̂out,1 =
1√
2
x̂0

(
er + e−r

)
x̂out,2 =

1√
2
x̂0

(
er − e−r

)
p̂out,1 =

1√
2
p̂0

(
e−r + er

)
p̂out,2 =

1√
2
p̂0

(
e−r − er

)
By taking the variance of the difference or the sum of the quadratures, it can be

seen that the output fields described by the quadratures above are entangled. Indeed,
we have

Var [x̂out,1 − x̂out,2] = 2e−2rVar [x̂0] (8.3)
Var [p̂out,1 + p̂out,2] = 2e−2rVar [p̂0] (8.4)

Assuming that the initial state is either the vacuum or a coherent state, we have
Var [x̂0] = Var [p̂0] = 1. It can be seen that if r tends to infinity, which implies that the
states are infinitely squeezed, we obtain perfect correlations between the quadratures
xout,1 and xout,2, and anti-correlations between pout,1 and pout,2. These states are often
referred as EPR states [104]. Those correlations can be used in the reservoir to replace
the classical links in order to implement a quantum version of the reservoir computing
protocol3. A scheme of the system that can be used to produce those correlations is
represented in Figure 8.2.

3Of course more complex graph should be constructed in this case, see for example the dual-rail
cluster state [105].
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8.2 Multimode squeezing
The description above is valid for a single-mode squeezed state. However, in this work,
the experiment is performed with an optical frequency comb. The advantage of such
laser is that very high intensities can be achieved in the non-linear medium due to
the ultra-short pulses produced by the laser. In addition, as we saw previously, the
frequency comb is composed of many individual spectral lines whose frequencies are
given by ωm = ωCEO + mωr, with ωCEO the CEO frequency and ωr the repetition
rate. Hence, when the light from an OFC propagates in a non-linear medium, each
individual tooth can undergo parametric down conversion. Thus, the pump photons
at ωp,m = 2ωCEO + mωr

4 can be converted into signal ωs and idler at ωi so that
ωs + ωi = ωp,m. Consequently, this process is highly multimode. Those additional
degrees of freedom can be used to increase the performances of the reservoir computing
protocol.

To describe this multimode process, the Hamiltonian (8.1) must be rewritten, so that
the multimode PDC Hamiltonian is given by [106, 107, 108]

ĤPDC = ig
∑
n,k

Φn,kâ
†
s,nâ

†
i,k + hc, (8.5)

where Φn,k, the joint spectral distribution, governs the process and depends on the
parameters of the system: the phase matching condition in the crystal and the pump
field. It can be shown that this Hamiltonian can be simplified by diagonalizing the
joint spectral distribution using a Bloch-Messiah decomposition [109]. It can then be
written as

ĤPDC = ig
∑
j

ΛjŜ
†2
j + hc, (8.6)

where Ŝ†2j represents the creation operators associated to the eigenmodes sj of Φn,k,
and Λj the eigenvalues associated to those modes.
This Hamiltonian represents an assembly of independent single-mode squeezing opera-
tors, as described in section 8.1, acting on the modes sj. Those modes are called the
supermodes of the system [110]. Assuming that the pump spectrum has a Gaussian
shape and that the phase matching is also approximated by a Gaussian, it can be shown
that those squeezed eigenmodes can be approximated by Hermite-Gauss modes in the
spectral domain [106], given by

HGm(ω) =
1√

π2m+1m!
Hm

(
ω − ω0

σω

)
e
− (ω−ω0)

2

2σ2ω , (8.7)

4The factor 2 here is used because the spectrum of the laser is frequency doubles to obtain the
pump at 397.5 nm.
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where ω0 is the carrier frequency, and σ2
ω the spectral width of the modes. Hm(x)

is the Hermite polynomial of degree m given by Hm(x) = (−1)mex
2 dme−x

2

dxm
. The first

mode, leading to the highest value of squeezing, is the Hermite-Gauss of order 0 (HG0),
which corresponds to a Gaussian spectrum, centered at ω0, and whose spectral width,
σ2
ω, is given by the parameters of the process (typically around 15 nm FWHM in our

experiment).

8.3 Single pass squeezing

Such multimode process usually occurs in a cavity. Indeed, higly multimode squeezed
states can be obtained using, for example, a synchronously pumped optical parametric
oscillator (SPOPO) [111, 72]. In such systems, a non-linear crystal is placed in a
cavity designed to be resonant at the wavelength of the signal. Hence, the photons
created by the PDC undergo many round-trips, increasing the gain of the process. In
such experimental setup, the bandwidth of the squeezed states produced is limited
by the bandwidth of the cavity (usually around a few MHz, depending on the finesse
of the cavity). However, in our experiment, we wish to create correlations, and thus
squeezing, between laser pulses (i.e. at a rate of 156 MHz), to harness those correlations
in a reservoir computing architecture. Hence no cavity can be used to enhance the
efficiency of the non-linear process. Alternatively, we decided to use a periodically
poled KTP waveguide instead of bulk crystal to produce the squeezed states. The
benefit of waveguides is their ability to confine the light in a very small cross section
(typically 4 µm) for a long propagation distance, increasing the gain of the non-linear
process [71, 108].

8.3.1 Experimental scheme

To produce squeezed pulses, the laser at 795 nm, is first frequency doubled with a non-
linear crystal to obtain the pump field at 397.5 nm. This pump field is sent to a PPKTP
type 0 waveguide, manufactured by AdvR, using the injection setup represented in
Figure 8.3. Two lenses, with very short focal lengths, focus the light inside the waveguide
mounted on a 6-axis stage (3 translations and 3 rotations) for fine alignment. The
alignment is first done with a seed beam at 795 nm. This procedure is quite complex and
many parameters must be taken into account. Among others, the numerical aperture
of the lenses5, the size of the beam at the input of the waveguide, as well as the overall
alignment, are critical parameters that need attention for proper injection. The field at
the output of the waveguide is detected using a homodyne detection, similarly to almost
all experiments in this thesis. The field is mixed on a 50-50 BS with a strong beam, the

5and their orientation...
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local oscillator (LO). Here again, precise alignment is needed. This alignment is also
performed using the seed beam, injected in the waveguide. In order to limit the losses,
the spatial and spectral overlap of the seed and the LO must be carefully optimized.
The spatial overlap is tuned by using telescopes on the LO path in order to match the
LO spatial mode to the spatial mode of the waveguide. The spectral overlap can be
tuned using a pulse-shaper on the LO path, as presented in section 4.2.2. In addition,
the pulse shaper is used to shape the LO spectral mode into Hermite-Gauss modes of
various order, to measure the squeezing in the eigenmodes defined in equation (8.6). At
first, the LO is shaped into a HG0 mode as it is the mode with the highest squeezing
value. The quality of the total overlap is assessed by computing the contrast between
the LO and the seed. The temporal overlap, between the seed and the LO as well as
the seed and the pump, is also a critical parameter as we are working with ultra-short
pulses. Note that all the optimization procedure is realized with the seed, which is
not exactly identical to the signal we want to measure. In particular, the signal is
usually multimode while the seed is single mode. Nevertheless, it allows to be as close
as possible to the measurement conditions and thus gives an estimation of the real
contrast.
Once the waveguide aligned, the seed is blocked. Therefore only the pump is injected
in the waveguide. At the output, a dichroic mirror is used to remove the pump light
to keep only the signal field produced via the parametric down conversion. When no
seed light is sent at the input of the waveguide along with the pump, the parametric
process is called spontaneous (SPDC). It means that the signal field at the input of the
waveguide is in a vacuum state. Consequently, the signal at the output of the waveguide
is a squeezed vacuum state.
The light at the output of the homodyne BS is measured with the same high-bandwidth
balanced detector as in chapter 7. A ramp is applied on a piezo on which a mirror is
mounted on the LO path, to scan the relative phase of the LO and the signal. This
detection measures the quadratures of the signal beam and allows to characterize the
signal state produced after propagation in the waveguide. Since we are using a high-
bandwidth detector, a quadrature measurement of each pulse can be taken using the
procedure described in the next section. Note that the alignment of the high bandwidth
detector is another critical point of the experiment. Since the detector has a high-
bandwidth, it detects a strong component at 156 MHz, corresponding to the repetition
rate of the laser. To prevent any saturation of the detector, the two arms of the
detection must be carefully balanced in power. In addition, the response in time of
both photodiodes must be matched by changing their bias current. A good alignment
is obtained when the repetition rate peak is minimized. Temporally it corresponds to
having a homodyne signal as flat as possible.
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Oven

Lens Lens

Figure 8.3 – Experimental setup of the injection of the waveguide. The PPKTP
waveguide is placed on a 6 axis stage (3 rotations and 3 translations) and on an oven, to
control its temperature. The light is injected and collected using two lenses with very
short focal lengths. The seed, at 795 nm, is injected in the waveguide for alignment.
The pump, at 397.5 nm, is separated from the signal using a dichroic mirror after the
waveguide.

8.3.2 Results

In this section are presented the preliminary results obtained during my PhD. The
setup described in the previous section is used to record the signal measured by the
high-bandwidth balanced detector. In order to reveal the squeezing, two measurement
devices can be used. The first one is a spectrum analyzer. This device allows to
measure the variance of a signal. Using proper settings, it is possible to measure the
time evolution of this variance in a given bandwidth around a central frequency. This
measurement leads to traces similar to the one reproduced in Figure 8.5a. It represents
the evolution of the variance of the quadrature measurements as a function of time.
In black is represented the shot noise. It is measured by blocking the signal beam
and measuring the variance of the LO. In red is represented the variance measured
when the signal beam (and thus squeezed states) is sent with the LO, on the detector.
Oscillations of the variance appear due to the ramp applied on the piezo on the LO
path. This ramp changes the relative phase between the signal and the LO and allows
to explore the different field quadratures. It can be seen that the variance goes below
the shot noise, corresponding to the squeezed quadrature, and above it, corresponding
to the anti-squeezed quadrature. Even though convenient to witness squeezing and
measure its value, this device is not the most practical to demonstrate that squeezing
is created at the level of each pulse. As a matter of fact, each point corresponds to
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the variance calculated over the resolution bandwidth of the instrument (usually a few
kHz) and thus over many pulses. Hence, an oscilloscope can be used to measure the
evolution of the homodyne signal from pulse to pulse, and to determine the evolution of
the quadratures of the signal beam. The aim is to recover the value of the quadrature
q̂pulses of each pulse detected. To this end, a particular treatment must be applied to
the data.

Defining the time window: The first step is to define the time window, of duration
Twindow, corresponding to the detection of one laser pulse. As previously explained,
once the balanced detector are properly aligned, because the signal corresponds to the
difference of the two photodiodes, it is hard to identify the pulses on the recorded trace,
as can be seen in red in Figure 8.4. In order to identify the portion corresponding to
one pulse, an acquisition is taken by blocking one photodiode. The resulting trace is
reproduced in blue in Figure 8.4. This signal allows to define the time window, centered
on each peak of the single photodiode signal6. Once the time windows defined, we apply
them on the homodyne signal. For each window, the integral of the signal is taken.
Indeed, we remind that the homodyne signal in the temporal domain, derived in section
3.3.1 can be written as

q̂pulses (ti) ∝
∫ ti+Twindow

ti

{αLO(t′)â†s(t
′) + α?LO(t′)âs(t

′)} dt′, (8.8)

where q̂pulses (ti) is the quadrature of one pulse from the signal field, αLO is the LO
field7, and âs is the annihilation operator for the signal field. Using this procedure, one
quadrature value is recovered for each pulse. Many pulses are measured in order to
recover the statistic of their quadratures. Two techniques can then be used to reveal
the squeezing at the level of the laser pulses from those measurements.

Long acquisition: The first technique is to acquire data from the homodyne sig-
nal on the oscilloscope during a relatively long time (20 ms). At the same time, the
ramp applied on the piezo, to scan the LO phase relative to the signal, is set to 10 Hz.
Hence, during one acquisition, the homodyne will scan the different quadrature values
of the signal beam. In addition, because the ramp is a lot slower than the repetition
rate of the laser, several pulses are measured for the same relative phase between the
signal and the LO. The quadrature values, corresponding to each pulse detected during
this acquisition, are calculated using the previously defined time windows. By plotting
those values as a function of time, it is possible to visualize their statistics and how it
evolves while scanning the relative phase, as represented in Figure 8.5b. In this Figure,

6Note that we take the positive peak as a central reference as we are looking at the photodiode
producing a positive photo-current while the other one produced a negative photo-current.

7As the LO is a lot stronger than the signal, it is considered classical.
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Figure 8.4 – Definition of a time win-
dow. The signal from one photodiode in
blue is used to determine the window dur-
ing which a pulse is detected. A value of
quadrature is found by integrating the ho-
modyne signal, in red, over each window.

each point represents a quadrature measurement from one pulse. As a comparison, the
shot noise, measured using the same technique, is represented in Figure 8.5c. A trace
is taken simultaneously using the spectrum analyzer. It is reproduced in Figure 8.5a.
It can be seen that, contrary to the shot noise, the spreading (and thus the variance)
of the quadrature values of the signal oscillates. They are sometimes less spread, cor-
responding to the squeezed quadrature, and sometimes more spread, corresponding to
the anti-squeezed quadrature.

Single-shot measurement: Although this technique allows to visualize the squeez-
ing, it is not the most practical to quantify it. In addition, long acquisitions are sensitive
to the drifts of the experiment, which sometimes masks the squeezing. Consequently,
another method has also been employed. Data are acquired from the oscilloscope during
50 µs to prevent any drift of the experiment. The ramp on the relative phase is set to
300 mHz, so that one acquisition corresponds to one phase value and thus one quadra-
ture. The aim is to recover the statistic of the quadrature when the homodyne measures
either the squeezed or the anti-squeezed quadrature. To determine which quadrature
is being measured, this acquisition is triggered simultaneously with an acquisition from
the spectrum analyzer. The acquisition from the spectrum analyzer spans one second.
Thus, the data acquired from the oscilloscope correspond to the first few points of the
acquisition from the spectrum analyzer. It allows us to distinguish data corresponding
to the squeezed quadrature, when the variance is bellow the shot noise (Figure 8.6a),
from the data corresponding to the anti-squeezed quadrature (Figure 8.6b). Many sets
of data are taken for both squeezing and anti-squeezing from the oscilloscope. Once
acquired, the same procedure as previously described allows to retrieve the values of
the quadrature in both configurations. All the squeezing data are staked together on
one side and all the anti-squeezing ones on the other side. The resulting distributions of
the squeezed and anti-squeezed quadrature values are represented in Figure 8.6c, with
the shot noise as a reference. Because the squeezing is low, it is not easy to see, but the
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Figure 8.5 – Long acquisition of the quadratures. a) in red, measurement of the
variance of the signal from a spectrum analyzer. In black, the shot noise variance. The
measurements are performed with a LO shaped as a HG0 mode. The acquisition is
done around a central frequency of 10 MHz using a resolution bandwidth of 240 Hz and
a video bandwidth of 30 Hz. b) Distribution of the quadrature values while the relative
phase between LO and signal is scanned. Each point corresponds to the quadrature
value of one pulse. The variance is reduced when the squeezed quadrature is measured
and increased for the anti-squeezed quadrature. c) Distribution of the quadrature values
of the shot noise.
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Figure 8.6 – Single-shot acquisition. a) and b) traces from the spectrum analyzer
measured around 10 MHz using a resolution bandwidth of 240 kHz and a video band-
width of 15 Hz. In red, the first few points correspond to the squeezed quadrature and
in blue the anti-squeezed one. c) distribution of the squeezed (red) and anti-squeezed
(blue) quadrature values. In black the fit of the distribution of the shot noise. It can
be seen that the squeezing distribution is narrower and leads to a value of -0.3 dB.

distribution corresponding the the squeezed quadrature is narrower than the one cor-
responding to the anti-squeezing and the shot noise. The variance of each distribution
leads to the squeezing value of -0.3 dB and anti-squeezing value of 0.5 dB with respect
to the shot noise.

Multimode structure: This experiment does not allow to produce highly squeezed
states. Many elements need to be optimized in order to increase the squeezing value
such as the coupling of the pump in the waveguide. Nevertheless, as explained in
section 8.2, this process is multimode. Hence, squeezing can be measured in the different
eigenmodes of the joint spectral amplitude. As previously mentionned, the pulse-shaper
is used to shape the LO spectral mode into Hermite-Gauss modes. Hence, by shaping
it into modes of higher order, the multimode aspect of the process can be revealed.
Similarly to the previous measurements, the distribution of the squeezed and anti-
squeezed quadratures are measured for the Hermite-Gauss mode 1 and 2. It leads to a
value of -0.27 dB of squeezing and 0.46 dB of anti-squeezing in the Hermite-Gauss mode
of first order (HG1), and a value of -0.18 dB of squeezing and 0.3 dB of anti-squeezing
in the second Hermite-Gauss mode (HG2). The data measured with the spectrum
analyzer for those two spectral modes are represented in Figure 8.7.

Summary
The experiment presented in this chapter allows to produce squeezed states at the
level of the laser pulses i.e. with a bandwidth corresponding to the repetition rate of
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Figure 8.7 – Variance of the spectral modes HG1 and HG2. a) In red, variance
of the signal with a LO shaped into a HG1 mode and b) into a HG2 mode. In black,
the shot noise variance. The acquisition is done around a central frequency of 10 MHz
using a resolution bandwidth of 240 kHz and a video bandwidth of 15 Hz. The level of
squeezing in the HG1 mode is found to be -0.27 dB and -0.18 dB in the HG2 mode.
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the laser. Such source of single pulse squeezed states can be duplicated to produce
entanglement. Our aim is to use the entanglement as link between nodes in a reservoir
computing architecture. Even though the level of squeezing is low, it is still interesting
to implement it, and study whether any advantage can be gained over the classical
architecture. Furthermore, the states produced are highly multimodes. Those spectral
modes bring an additional degree of freedom to the protocol, which can be an advantage
in terms of capacity.
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Conclusion

The main focus of this manuscript was the investigation of optical frequency combs
dynamics. Based on a spectral modal decomposition of the electric field, a full char-
acterization of the laser dynamics was achieved by measuring the fluctuations of the
four main laser parameters: the intensity, the carrier-envelope offset (CEO), the cen-
tral frequency and the repetition rate. This characterization was performed using two
different setups.
The first experimental setup, based on a multipixel homodyne detection, allowed the
simultaneous measurement of the four laser parameters. Consequently, their correla-
tions were exploited to gain insight on the mode-locking mechanism at the origin of
the production of frequency combs. Particularly, the intensity related dynamics was
investigated. Based on a simple model, we demonstrated that, in the frequency range
studied, the main source of noise is the pump laser via its intensity fluctuations. This
noise induces phase noise, and especially CEO noise, via the fluctuations of the center
of the spectrum. The coupling parameter between both quantities is the residual group
velocity dispersion of the laser which was evaluated experimentally.
The second experimental setup was developed in collaboration with Thales Research
and Technology. This optical bench, built from off-the-shelf components, is based on
an unbalanced Mach-Zehnder interferometer (UMZI). It is more compact and easier
to handle than the previous one. With this setup, the same spectrally resolved anal-
ysis was applied to a fiber-based frequency comb. This analysis seemed, to a certain
limit, to be able to accurately capture the laser dynamics, proving the versatility of
our technique which can be applied to different sources of laser pulses in various ranges
of wavelengths. Nonetheless, this experiment did not lead to results as successful as
the previous ones. This was mainly due to technical limitations, and in particular the
limited amount of optical power in the interferometer.
To complete our investigation, both setups were compared in terms of sensitivity. Using
the Fisher information, we demonstrated that the first experiment leads to an optimal
measurement. The sensitivity is limited only by the standard quantum limit. On the
other hand, the study of the UMZI sensitivity lead to a different result. In the case
of an optimal estimator, the standard quantum limit can be reached under certain cir-
cumstances. However, experimentally, this optimal estimator is not accessible. Hence,
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the actual sensitivity of the measurement is decreased.

After studying the laser dynamics, we used the experimental techniques and the
knowledge acquired so far to investigate the use and the implementation of a machine
learning protocol called reservoir computing (RC). Reservoir computing is a powerful
protocol for the processing of time series due to the simplicity of the training procedure.
As an application example, a simulated RC algorithm was designed to predict the in-
tensity related dynamics of the laser investigated in the previous part. The fluctuations
of three of the laser parameters were predicted from the pump laser fluctuations.
Experimentally, a delayed-feedback-based photonic reservoir computing protocol was
implemented. A frequency comb, and more precisely a train of pulses, was used as a
hardware to implement the RC protocol. It relied on the encoding of the information
in the phase of the laser pulses, and the extraction was ensured by a homodyne detec-
tion. This experiment, although still preliminary, seemed to be able to process data, as
demonstrated by the calculation of the information processing capacity.
The long term objective of this experiment is to go toward quantum reservoir comput-
ing. Consequently, a source of quantum states was developed. Based on a PPKTP
waveguide, multimode squeezed states were produced at the scale of the laser pulses.

This work opens some (more or less long-term) perspectives. First, the optical bench
developed in collaboration with Thales can be improved by reducing the losses and
properly compensating the dispersion in the interferometer. Combined with an appro-
priate work on the design of the experiment, it should provide an efficient and compact
way to characterize the dynamics of various sources of light pulses.
Second, combining the laser characterization with an improved version of the reservoir
computing algorithm could lead to active stabilization of the laser.
Finally, as already mentioned, using the quantum resource in the reservoir computing
protocol would allow us to investigate experimentally whether this architecture brings
any advantage over its classical counterpart.

176



Bibliography

[1] Benjamin P Abbott, Richard Abbott, TD Abbott, MR Abernathy, Fausto Acer-
nese, Kendall Ackley, Carl Adams, Thomas Adams, Paolo Addesso, RX Adhikari,
et al. Observation of gravitational waves from a binary black hole merger. Physical
review letters, 116(6):061102, 2016. (Cited on page 1.)

[2] Arthur Ashkin, James M Dziedzic, and T Yamane. Optical trapping and ma-
nipulation of single cells using infrared laser beams. Nature, 330(6150):769–771,
1987. (Cited on page 1.)

[3] TW Murphy Jr, Eric G Adelberger, JBR Battat, LN Carey, Charles D Hoyle,
P LeBlanc, EL Michelsen, K Nordtvedt, AE Orin, Jana D Strasburg, et al.
The apache point observatory lunar laser-ranging operation: instrument descrip-
tion and first detections. Publications of the Astronomical Society of the Pacific,
120(863):20, 2008. (Cited on page 1.)

[4] Theodore H Maiman et al. Stimulated optical radiation in ruby. 1960. (Cited on
page 1.)

[5] Th W Hänsch, MD Levenson, and AL Schawlow. Complete hyperfine structure
of a molecular iodine line. Physical Review Letters, 26(16):946, 1971. (Cited on
page 1.)

[6] David E Spence, P Np Kean, and Wilson Sibbett. 60-fsec pulse generation from
a self-mode-locked ti: sapphire laser. Optics letters, 16(1):42–44, 1991. (Cited on
page 1.)

[7] Scott A Diddams, David J Jones, Jun Ye, Steven T Cundiff, John L Hall, Ji-
nendra K Ranka, Robert S Windeler, Ronald Holzwarth, Thomas Udem, and
Theodor W Hänsch. Direct link between microwave and optical frequencies with
a 300 thz femtosecond laser comb. Physical review letters, 84(22):5102, 2000.
(Cited on page 1.)

[8] Th Udem, R Holzwarth, and T W Hänsch. Optical frequency metrology. 416:5,
2002. (Cited on page 1.)

177



BIBLIOGRAPHY

[9] Th. Udem, S. A. Diddams, K. R. Vogel, C. W. Oates, E. A. Curtis, W. D.
Lee, W. M. Itano, R. E. Drullinger, J. C. Bergquist, and L. Hollberg. Abso-
lute frequency measurements of the hg+ and ca optical clock transitions with a
femtosecond laser. Phys. Rev. Lett., 86:4996–4999, May 2001. (Cited on page 1.)

[10] A. Shelkovnikov, R. J. Butcher, C. Chardonnet, and A. Amy-Klein. Stability of
the proton-to-electron mass ratio. Phys. Rev. Lett., 100:150801, Apr 2008. (Cited
on page 1.)

[11] Hélène Fleurbaey, Sandrine Galtier, Simon Thomas, Marie Bonnaud, Lucile
Julien, Fran çois Biraben, Fran çois Nez, Michel Abgrall, and Jocelyne Guéna.
New measurement of the 1s− 3s transition frequency of hydrogen: Contribution
to the proton charge radius puzzle. Phys. Rev. Lett., 120:183001, May 2018. (Cited
on page 1.)

[12] Alexey Grinin, Arthur Matveev, Dylan C. Yost, Lothar Maisenbacher, Vitaly
Wirthl, Randolf Pohl, Theodor W. Hänsch, and Thomas Udem. Two-photon
frequency comb spectroscopy of atomic hydrogen. Science, 370(6520):1061–1066,
2020. (Cited on page 1.)

[13] Scott A. Diddams, Leo Hollberg, and Vela Mbele. Molecular fingerprinting with
the resolved modes of a femtosecond laser frequency comb. Nature, 445(7128):627–
630, Feb 2007. (Cited on page 1.)

[14] Nathalie Picqué and Theodor W. Hänsch. Frequency comb spectroscopy. Nature
Photonics, 13(3):146–157, Mar 2019. (Cited on page 1.)

[15] Fabrizio R. Giorgetta, William C. Swann, Laura C. Sinclair, Esther Baumann,
Ian Coddington, and Nathan R. Newbury. Optical two-way time and frequency
transfer over free space. 7(6):434–438, 2013. (Cited on page 1.)

[16] J Guéna, S Weyers, M Abgrall, C Grebing, V Gerginov, P Rosenbusch, S Bize,
B Lipphardt, H Denker, N Quintin, S M F Raupach, D Nicolodi, F Stefani,
N Chiodo, S Koke, A Kuhl, F Wiotte, F Meynadier, E Camisard, C Chardonnet,
Y Le Coq, M Lours, G Santarelli, A Amy-Klein, R Le Targat, O Lopez, P E Pottie,
and G Grosche. First international comparison of fountain primary frequency
standards via a long distance optical fiber link. Metrologia, 54(3):348–354, may
2017. (Cited on page 1.)

[17] K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, Th.
Legero, T. W. Hänsch, Th. Udem, R. Holzwarth, and H. Schnatz. A 920-kilometer
optical fiber link for frequency metrology at the 19th decimal place. Science,
336(6080):441–444, 2012. (Cited on page 1.)

178



BIBLIOGRAPHY

[18] I Coddington, William C Swann, Ljerka Nenadovic, and Nathan R Newbury.
Rapid and precise absolute distance measurements at long range. Nature photon-
ics, 3(6):351–356, 2009. (Cited on page 1.)

[19] Pu Jian, Olivier Pinel, Claude Fabre, Brahim Lamine, and Nicolas Treps. Real-
time displacement measurement immune from atmospheric parameters using op-
tical frequency combs. Optics Express, 20(24):27133–27146, 2012. (Cited on page 1.)

[20] Richard A. McCracken, Jake M. Charsley, and Derryck T. Reid. A decade of
astrocombs: recent advances in frequency combs for astronomy. Opt. Express,
25(13):15058–15078, Jun 2017. (Cited on page 1.)

[21] H. Jaeger. Harnessing Nonlinearity: Predicting Chaotic Systems and Saving
Energy in Wireless Communication. Science, 304(5667):78–80, April 2004. (Cited
on pages 2 and 135.)

[22] Laurent Larger, Antonio Baylón-Fuentes, Romain Martinenghi, Vladimir S.
Udaltsov, Yanne K. Chembo, and Maxime Jacquot. High-Speed Photonic Reser-
voir Computing Using a Time-Delay-Based Architecture: Million Words per Sec-
ond Classification. Physical Review X, 7(1):011015, February 2017. (Cited on pages
2 and 135.)

[23] L. Appeltant, M.C. Soriano, G. Van der Sande, J. Danckaert, S. Massar,
J. Dambre, B. Schrauwen, C.R. Mirasso, and I. Fischer. Information process-
ing using a single dynamical node as complex system. Nature Communications,
2(1):468, September 2011. (Cited on pages 2, 136, 139, 145, 147, and 151.)

[24] Guy Van der Sande, Daniel Brunner, and Miguel C. Soriano. Advances in photonic
reservoir computing. Nanophotonics, 6(3), January 2017. (Cited on pages 2 and 145.)

[25] Joni Dambre, David Verstraeten, Benjamin Schrauwen, and Serge Massar. Infor-
mation Processing Capacity of Dynamical Systems. Scientific Reports, 2(1):514,
December 2012. (Cited on pages 2, 153, and 155.)

[26] Jonathan Roslund, Renné Medeiros De Araujo, Shifeng Jiang, Claude Fabre,
and Nicolas Treps. Wavelength-multiplexed quantum networks with ultrafast
frequency combs. Nature Photonics, 8(2):109–112, 2014. (Cited on page 3.)

[27] P. Mujal, R. Martínez-Peña, J. Nokkala, J. García-Beni, G. L. Giorgi, M. C.
Soriano, and R Zambrini. Opportunities in quantum reservoir computing and
extreme learning machines. arXiv 2102.11831, 2021. (Cited on pages 3 and 136.)

[28] Matthieu Ansquer, Valérian Thiel, Syamsundar De, Bérengère Argence, Gregory
Gredat, Fabien Bretenaker, and Nicolas Treps. Unveiling the dynamics of optical

179



BIBLIOGRAPHY

frequency combs from phase-amplitude correlations. Physical Review Research,
3(3):033092, 2021. (Cited on page 3.)

[29] Claude Fabre and Nicolas Treps. Modes and states in quantum optics. Reviews
of Modern Physics, 92(3):035005, 2020. (Cited on page 10.)

[30] Gilbert Grynberg, Alain Aspect, and Claude Fabre. Introduction to quantum
optics: from the semi-classical approach to quantized light. Cambridge university
press, Cambridge, CB2 8BS, UK, 2010. (Cited on pages 13, 72, and 162.)

[31] Roy J Glauber. Coherent and incoherent states of the radiation field. Physical
Review, 131(6):2766, 1963. (Cited on page 14.)

[32] Nicolas Treps, Vincent Delaubert, Agnès Maître, Jean-Michel Courty, and Claude
Fabre. Quantum noise in multipixel image processing. Physical Review A,
71(1):013820, 2005. (Cited on page 15.)

[33] Rodney Loudon. The quantum theory of light. OUP Oxford, 2000. (Cited on
page 15.)

[34] Ulf Leonhardt and H Paul. Measuring the quantum state of light. Progress in
Quantum Electronics, 19(2):89–130, 1995. (Cited on page 16.)

[35] Anatole Kenfack and Karol Życzkowski. Negativity of the wigner function as an
indicator of non-classicality. Journal of Optics B: Quantum and Semiclassical
Optics, 6(10):396, 2004. (Cited on page 16.)

[36] Alessandro Ferraro, Stefano Olivares, and Matteo GA Paris. Gaussian states
in continuous variable quantum information. arXiv preprint quant-ph/0503237,
2005. (Cited on page 16.)

[37] C Radhakrishna Rao. Information and the accuracy attainable in the estimation
of statistical parameters. Reson. J. Sci. Educ, 20:78–90, 1945. (Cited on page 22.)

[38] Olivier Pinel. Optique quantique multimode avec des peignes de fréquence. PhD
thesis, 2010. Thèse de doctorat dirigée par Nicolas Treps, Paris 6 2010. (Cited on
page 23.)

[39] Pu Jian. Limites quantiques dans les mesures de distance à l’aide de peignes de
fréquences. PhD thesis, 2014. Thèse de doctorat dirigée par Nicolas Treps, Paris
6 2014. (Cited on page 23.)

[40] Carlton M Caves. Quantum-mechanical noise in an interferometer. Physical
Review D, 23(8):1693, 1981. (Cited on page 24.)

180



BIBLIOGRAPHY

[41] Marc Thierry Jaekel and Serge Reynaud. Quantum limits in interferometric mea-
surements. EPL (Europhysics Letters), 13(4):301, 1990. (Cited on page 24.)

[42] Andrew Weiner. Ultrafast optics, volume 72. John Wiley & Sons, Hoboken, New
Jersey, USA, 2011. (Cited on pages 27, 32, 33, and 34.)

[43] H. A. Haus, J. G. Fujimoto, and E. P. Ippen. Structures for additive pulse mode
locking. 8(10):2068, 1991. (Cited on pages 32 and 33.)

[44] Fabien Bretenaker. Laser Physics Lecture. 2015. (Cited on page 38.)

[45] Evgeni Sorokin, Gabriel Tempea, and Thomas Brabec. Measurement of the root-
mean-square width and the root-mean-square chirp in ultrafast optics. J. Opt.
Soc. Am. B, 17(1):146–150, Jan 2000. (Cited on page 39.)

[46] JA Armstrong. Measurement of picosecond laser pulse widths. Applied Physics
Letters, 10(1):16–18, 1967. (Cited on page 41.)

[47] S. Kameyama, T. Ando, K. Asaka, Y. Hirano, and S. Wadaka. Compact all-fiber
pulsed coherent doppler lidar system for wind sensing. Appl. Opt., 46(11):1953–
1962, Apr 2007. (Cited on page 45.)

[48] Christopher V. Poulton, Ami Yaacobi, David B. Cole, Matthew J. Byrd, Manan
Raval, Diedrik Vermeulen, and Michael R. Watts. Coherent solid-state lidar with
silicon photonic optical phased arrays. Opt. Lett., 42(20):4091–4094, Oct 2017.
(Cited on page 45.)

[49] Nathan R. Newbury and William C. Swann. Low-noise fiber-laser frequency
combs (invited). 24(8):1756, 2007. (Cited on pages 45, 69, 103, and 104.)

[50] D. Hou, C.-C. Lee, Z. Yang, and T. R. Schibli. Timing jitter characterization of
mode-locked lasers with 1 zs/

√
hz resolution using a simple optical heterodyne

technique. 40(13):2985, 2015. (Cited on page 45.)

[51] Takanori Okoshi, Kazuro Kikuchi, and Akira Nakayama. Novel method for high
resolution measurement of laser output spectrum. Electronics letters, 16(16):630–
631, 1980. (Cited on page 45.)

[52] Olivier Llopis, Pierre-Henri Merrer, Houda Brahimi, Khaldoun Saleh, and Pierre
Lacroix. Phase noise measurement of a narrow linewidth cw laser using delay line
approaches. Optics letters, 36(14):2713–2715, 2011. (Cited on page 49.)

[53] Haochen Tian, Wenkai Yang, Dohyeon Kwon, Runmin Li, Yuwei Zhao, Jung-
won Kim, Youjian Song, and Minglie Hu. Optical frequency comb noise spec-
tra analysis using an asymmetric fiber delay line interferometer. Optics express,
28(7):9232–9243, 2020. (Cited on page 49.)

181



BIBLIOGRAPHY

[54] Horace P Yuen and Vincent WS Chan. Noise in homodyne and heterodyne
detection. Optics letters, 8(3):177–179, 1983. (Cited on page 49.)

[55] Giacomo Sorelli, Manuel Gessner, Mattia Walschaers, and Nicolas Treps.
Moment-based superresolution: Formalism and applications. arXiv:2105.12396
[quant-ph], 2021. (Cited on pages 58 and 59.)

[56] Vincent Michaud-Belleau, Jérôme Genest, and Jean-Daniel Deschênes. Optimal
detection scheme for shot-noise-limited phase estimation in passive classical-light
interferometry. Physical Review Applied, 10(2):024025, 2018. (Cited on page 61.)

[57] Stefan Ataman, Anca Preda, and Radu Ionicioiu. Phase sensitivity of a mach-
zehnder interferometer with single-intensity and difference-intensity detection.
Physical Review A, 98(4):043856, 2018. (Cited on page 61.)

[58] H. A. Haus and Y. Lai. Quantum theory of soliton squeezing: a linearized ap-
proach. 7(3):386–392, 1990. (Cited on page 69.)

[59] H. A. Haus and A. Mecozzi. Noise of mode-locked lasers. 29(3):983–996, 1993.
(Cited on pages 69 and 112.)

[60] R. Paschotta. Noise of mode-locked lasers (part II): timing jitter and other fluc-
tuations. 79(2):163–173, 2004. (Cited on page 69.)

[61] R. Paschotta. Noise of mode-locked lasers (part i): numerical model. 79(2):153–
162, 2004. (Cited on pages 69 and 96.)

[62] N. R. Newbury and B. R. Washburn. Theory of the frequency comb output from
a femtosecond fiber laser. 41(11):1388–1402, 2005. (Cited on pages 69 and 117.)

[63] K.W. Holman, R.J. Jones, A. Marian, S.T. Cundiff, and Jun Ye. Detailed studies
and control of intensity-related dynamics of femtosecond frequency combs from
mode-locked ti:sapphire lasers. 9(4):1018–1024, 2003. (Cited on pages 69, 110, 111,
114, and 117.)

[64] Curtis R. Menyuk, Jared K. Wahlstrand, John Willits, Ryan P. Smith, Thomas R.
Schibli, and Steven T. Cundiff. Pulse dynamics in mode-locked lasers: relaxation
oscillations and frequency pulling. 15(11):6677, 2007. (Cited on pages 69 and 112.)

[65] J. K. Wahlstrand, J. T. Willits, T. R. Schibli, C. R. Menyuk, and S. T. Cundiff.
Quantitative measurement of timing and phase dynamics in a mode-locked laser.
32(23):3426, 2007. (Cited on pages 69 and 110.)

[66] Roman Schmeissner. Frequency combs at the quantum limit. page 187, 2014.
(Cited on pages 69, 76, 77, 88, and 104.)

182



BIBLIOGRAPHY

[67] Valerian Thiel. Modal analysis of an ultrafast frequency comb : from classical to
quantum spectral correlations. page 256, 2017. (Cited on page 69.)

[68] Renné Medeiros De Araujo. Génération et manipulation de peignes de fréquences
quantiques multimodes. November 2012. (Cited on page 76.)

[69] L. Xu, T. W. Hänsch, Ch. Spielmann, A. Poppe, T. Brabec, and F. Krausz. Route
to phase control of ultrashort light pulses. 21(24):2008, 1996. (Cited on pages 76
and 110.)

[70] Antoine Monmayrant, Sébastien Weber, and Béatrice Chatel. A newcomer’s guide
to ultrashort pulse shaping and characterization. 43(10):103001, 2010. (Cited on
page 80.)

[71] Tiphaine Kouadou. Single-pass generation and detection of ultrafast multimode
squeezed light. page 187, 2021. (Cited on pages 80, 151, and 166.)

[72] Thibault Michel. Optimisation of the pump spectral shape in a parametric down
conversion process to generate multimode entangled states. 2021. (Cited on pages
85 and 166.)

[73] H.R. Telle, B. Lipphardt, and J. Stenger. Kerr-lens, mode-locked lasers as transfer
oscillators for optical frequency measurements. 74(1):1–6, 2002. (Cited on page 103.)

[74] Erik Benkler, Harald R. Telle, Armin Zach, and Florian Tauser. Circumvention
of noise contributions in fiber laser based frequency combs. 13(15):5662, 2005.
(Cited on page 103.)

[75] D.V. Sutyrin, N. Poli, N. Beverini, S.V. Chepurov, M. Prevedelli, M. Schioppo,
F. Sorrentino, M.G. Tarallo, and G.M. Tino. Frequency noise performances of a
ti:sapphire optical frequency comb stabilized to an optical reference. 291:291–298,
2013. (Cited on page 104.)

[76] D.R. Walker, Th. Udem, Ch. Gohle, B. Stein, and T.W. Hänsch. Frequency
dependence of the fixed point in a fluctuating frequency comb. 89(4):535–538,
2007. (Cited on page 104.)

[77] Andreas Christ, Kaisa Laiho, Andreas Eckstein, Katiúscia N Cassemiro, and
Christine Silberhorn. Probing multimode squeezing with correlation functions.
New Journal of Physics, 13(3):033027, 2011. (Cited on page 110.)

[78] Max Schiemangk, Stefan Spießberger, Andreas Wicht, Götz Erbert, Günther
Tränkle, and Achim Peters. Accurate frequency noise measurement of free-running
lasers. Applied optics, 53(30):7138–7143, 2014. (Cited on page 122.)

183



BIBLIOGRAPHY

[79] H. Nyquist. Thermal agitation of electric charge in conductors. Phys. Rev.,
32:110–113, Jul 1928. (Cited on page 129.)

[80] Ya M. Blanter and M. Büttiker. Shot noise in mesoscopic conductors. 336(1):1–
166, 2000. (Cited on page 130.)

[81] H.J. Caulfield, J. Kinser, and S.K. Rogers. Optical neural networks. Proceedings
of the IEEE, 77(10):1573–1583, 1989. (Cited on page 135.)

[82] Ying Zuo, Bohan Li, Yujun Zhao, Yue Jiang, You-Chiuan Chen, Peng Chen, Gyu-
Boong Jo, Junwei Liu, and Shengwang Du. All-optical neural network with non-
linear activation functions. Optica, 6(9):1132–1137, Sep 2019. (Cited on page 135.)

[83] Mantas Lukoševicˇius and Herbert Jaeger. Reservoir computing approaches to
recurrent neural network training. COMPUTER SCIENCE REVIEW, page 23,
2009. (Cited on page 135.)

[84] David Verstraeten, Benjamin Schrauwen, and Dirk Stroobandt. Reservoir-based
techniques for speech recognition. pages 1050–1053, 2006. (Cited on page 135.)

[85] Paul J Werbos. Backpropagation through time: what it does and how to do it.
Proceedings of the IEEE, 78(10):1550–1560, 1990. (Cited on page 135.)

[86] Kenji Doya et al. Bifurcations in the learning of recurrent neural networks 3.
learning (RTRL), 3:17, 1992. (Cited on page 135.)

[87] Herbert Jaeger. The “echo state” approach to analysing and training recurrent
neural networks – with an Erratum note. page 48. 2010. (Cited on pages 135 and 139.)

[88] Jonathan Dong, Mushegh Rafayelyan, Florent Krzakala, and Sylvain Gigan. Op-
tical Reservoir Computing using multiple light scattering for chaotic systems pre-
diction. IEEE Journal of Selected Topics in Quantum Electronics, 26(1):1–12,
January 2020. arXiv: 1907.00657. (Cited on page 136.)

[89] Jonathan Dong, Ruben Ohana, Mushegh Rafayelyan, and Florent Krzakala.
Reservoir Computing meets Recurrent Kernels and Structured Transforms.
arXiv:2006.07310 [cs, eess, stat], October 2020. arXiv: 2006.07310. (Cited on
page 136.)

[90] Mushegh Rafayelyan, Jonathan Dong, Yongqi Tan, Florent Krzakala, and Sylvain
Gigan. Large-Scale Optical Reservoir Computing for Spatiotemporal Chaotic Sys-
tems Prediction. arXiv:2001.09131 [physics], January 2020. arXiv: 2001.09131.
(Cited on page 136.)

184



BIBLIOGRAPHY

[91] Y. Paquot, F. Duport, A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman,
and S. Massar. Optoelectronic Reservoir Computing. Scientific Reports, 2(1):287,
December 2012. (Cited on pages 136, 145, and 147.)

[92] François Duport, Bendix Schneider, Anteo Smerieri, Marc Haelterman, and Serge
Massar. All-optical reservoir computing. Optics Express, 20(20):22783, September
2012. (Cited on pages 136, 145, and 147.)

[93] Daniel Brunner, Miguel C. Soriano, Claudio R. Mirasso, and Ingo Fischer. Parallel
photonic information processing at gigabyte per second data rates using transient
states. Nature Communications, 4(1):1364, June 2013. (Cited on pages 136, 145,
and 151.)

[94] Jiayin Chen, Hendra I. Nurdin, and Naoki Yamamoto. Temporal Information
Processing on Noisy Quantum Computers. arXiv:2001.09498 [quant-ph, stat],
July 2020. arXiv: 2001.09498. (Cited on page 136.)

[95] Johannes Nokkala, Rodrigo Martínez-Peña, Gian Luca Giorgi, Valentina Parigi,
Miguel C. Soriano, and Roberta Zambrini. Gaussian states provide universal and
versatile quantum reservoir computing. arXiv:2006.04821 [quant-ph], June 2020.
arXiv: 2006.04821. (Cited on pages 136, 149, and 155.)

[96] L. C. G. Govia, G. J. Ribeill, G. E. Rowlands, H. K. Krovi, and T. A. Ohki.
Quantum reservoir computing with a single nonlinear oscillator. Physical Review
Research, 3(1):013077, January 2021. (Cited on page 136.)

[97] Arthur E Hoerl and Robert W Kennard. Ridge regression: applications to
nonorthogonal problems. Technometrics, 12(1):69–82, 1970. (Cited on page 140.)

[98] Pablo Amil, Miguel C. Soriano, and Cristina Masoller. Machine learning algo-
rithms for predicting the amplitude of chaotic laser pulses. Chaos: An Interdis-
ciplinary Journal of Nonlinear Science, 29(11):113111, November 2019. arXiv:
1911.04815. (Cited on page 141.)

[99] A. Cunillera, M. C. Soriano, and I. Fischer. Cross-predicting the dynamics of
an optically injected single-mode semiconductor laser using reservoir comput-
ing. Chaos: An Interdisciplinary Journal of Nonlinear Science, 29(11):113113,
November 2019. (Cited on page 141.)

[100] Herbert Jaeger. Adaptive nonlinear system identification with echo state net-
works. Advances in neural information processing systems, 15:609–616, 2002.
(Cited on page 151.)

185



BIBLIOGRAPHY

[101] Jaël Pauwels, Guy Verschaffelt, Serge Massar, and Guy Van der Sande. Dis-
tributed Kerr Non-linearity in a Coherent All-Optical Fiber-Ring Reservoir Com-
puter. Frontiers in Physics, 7:138, October 2019. (Cited on page 153.)

[102] Silvia Ortín and Luis Pesquera. Tackling the Trade-Off Between Information
Processing Capacity and Rate in Delay-Based Reservoir Computers. Frontiers in
Physics, 7:210, December 2019. (Cited on pages 155 and 156.)

[103] Junaid Aasi, J Abadie, BP Abbott, Richard Abbott, TD Abbott, MR Abernathy,
Carl Adams, Thomas Adams, Paolo Addesso, RX Adhikari, et al. Enhanced
sensitivity of the ligo gravitational wave detector by using squeezed states of
light. Nature Photonics, 7(8):613–619, 2013. (Cited on page 163.)

[104] A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical description
of physical reality be considered complete? Phys. Rev., 47:777–780, May 1935.
(Cited on page 164.)

[105] Shota Yokoyama, Ryuji Ukai, Seiji C. Armstrong, Chanond Sornphiphatphong,
Toshiyuki Kaji, Shigenari Suzuki, Jun-ichi Yoshikawa, Hidehiro Yonezawa, Nico-
las C. Menicucci, and Akira Furusawa. Ultra-large-scale continuous-variable clus-
ter states multiplexed in the time domain. 7(12):982–986, 2013. (Cited on page 164.)

[106] Giuseppe Patera. Quantum properties of ultra-short pulses generated by SPOPOs:
multi-mode squeezing and entanglement. PhD thesis, Université Pierre et Marie
Curie-Paris VI, 2008. (Cited on page 165.)

[107] Shifeng Jiang, Nicolas Treps, and Claude Fabre. A time/frequency quantum
analysis of the light generated by synchronously pumped optical parametric os-
cillators. New Journal of Physics, 14(4):043006, apr 2012. (Cited on page 165.)

[108] V Roman-Rodriguez, B Brecht, Srinivasan K, C Silberhorn, N Treps, E Diamanti,
and V Parigi. Continuous variable multimode quantum states via symmetric
group velocity matching. New Journal of Physics, 23(4):043012, apr 2021. (Cited
on pages 165 and 166.)

[109] Samuel L. Braunstein. Squeezing as an irreducible resource. Phys. Rev. A,
71:055801, May 2005. (Cited on page 165.)

[110] Giuseppe Patera, Nicolas Treps, Claude Fabre, and German J De Valcarcel.
Quantum theory of synchronously pumped type i optical parametric oscillators:
characterization of the squeezed supermodes. The European Physical Journal D,
56(1):123–140, 2010. (Cited on page 165.)

186



BIBLIOGRAPHY

[111] Renné Medeiros De Araujo. Génération et manipulation de peignes de fréquences
quantiques multimodes. PhD thesis, Université Pierre et Marie Curie-Paris VI,
2012. (Cited on page 166.)

187


	Introduction
	I Characterizing, producing and measuring light pulses from an Optical Frequency Comb
	1 Multimode description of the state of light
	1.1 The classical electromagnetic field
	1.1.1 Wave equation and plane-wave solution
	1.1.2 Fourier transform

	1.2 Modal description of the electric field
	1.2.1 Definition of a mode of light
	1.2.2 Envelope modes
	1.2.3 Quadratures of the field
	1.2.4 Energy, intensity and optical power

	1.3 Quantum counterpart of the electric field
	1.3.1 Quantization of the electric field
	1.3.2 The coherent, or quasi-classical, state
	1.3.3 Continuous operators
	1.3.4 Wigner function

	1.4 Noise and fundamental limits
	1.4.1 Power spectral density
	1.4.2 Fundamental limits in parameter estimation
	1.4.2.1 Amplitude and phase fundamental limits
	1.4.2.2 Fisher information
	1.4.2.3 Parameter estimation



	2 Optical frequency comb
	2.1 Description of an optical frequency comb
	2.1.1 Naive description of a frequency comb
	2.1.1.1 Continuous wave laser
	2.1.1.2 Optical frequency comb

	2.1.2 Mathematical description of the comb electric field
	2.1.2.1 Spectral modes of the optical frequency comb
	2.1.2.2 Electric field of the optical frequency comb
	2.1.2.3 Pulse shape
	2.1.2.4 Peak power


	2.2 Kerr-lens mode-locking
	2.2.1 Kerr-lens effect
	2.2.2 Master equation for Kerr-lens mode-locking
	2.2.2.1 Laser amplification
	2.2.2.2 Intracavity dispersion
	2.2.2.3 Self-amplitude modulation
	2.2.2.4 Self-phase modulation
	2.2.2.5 Master equation

	2.2.3 Resolution of the master equation and intracavity dispersion

	2.3 Dispersion of an optical pulse
	2.3.1 Fourier transform pulses
	2.3.2 Propagation through a dispersive medium
	2.3.3 Numerical application


	3 Measuring quadratures of light
	3.1 Heterodyne detection
	3.2 Self-heterodyne detection
	3.2.1 Self-heterodyne beat signal
	3.2.2 Transfer function

	3.3 Homodyne detection
	3.3.1 Temporal representation
	3.3.2 Spectral representation
	3.3.3 Variation of the homodyne detection

	3.4 Sensitivity of the measurements
	3.4.1 Fisher information of the detection schemes
	3.4.1.1 Homodyne sensitivity
	3.4.1.2 Self-heterodyne sensitivity

	3.4.2 Experimental sensitivity of the self-heterodyne
	3.4.2.1 Optimal estimator
	3.4.2.2 Experimental sensitivity

	3.4.3 Phase sensitivity as a function of the analysis frequency



	II Characterization of the dynamics of optical frequency combs
	4 Modal investigation of the dynamics
	4.1 Modal description of the dynamics
	4.1.1 Single pulse fluctuations
	4.1.2 Field quadrature fluctuations

	4.2 Measuring the multimode field
	4.2.1 Reference beam
	4.2.1.1 CEO locking
	4.2.1.2 Repetition rate locking

	4.2.2 Spectral phase compensation
	4.2.2.1 Spectral phase measurement
	4.2.2.2 Pulse shaper
	4.2.2.3 Compensation

	4.2.3 Multipixel homodyne detection
	4.2.3.1 Detectors alignement and calibration
	4.2.3.2 The pixel basis
	4.2.3.3 Quadrature detection


	4.3 Extracting the noise spectra
	4.3.1 Measuring the noise spectrum: the sideband picture
	4.3.1.1 Noise sidebands
	4.3.1.2 Demodulation procedure
	4.3.1.3 Demodulated covariance matrices and noise spectrum

	4.3.2 Normalization of the measurements

	4.4 Results
	4.4.1 Covariance matrices
	4.4.2 Noise spectra
	4.4.3 RIN of the laser


	5 Harnessing noises correlations
	5.1 Amplitude-phases correlation matrices
	5.2 Fixed point model
	5.2.1 General idea of the model
	5.2.2 Fixed point for laser pump noise
	5.2.2.1 Repetition rate measurement in the optical domain
	5.2.2.2 Fixed point measurement


	5.3 Unveiling the dynamics from XP correlations
	5.3.1 Singular value decomposition of the correlation matrix
	5.3.2 Intensity related dynamics: Model from J. Ye
	5.3.2.1 Derivation of the model
	5.3.2.2 Laser parameters
	5.3.2.3 Model applied to the experiment



	6 Menlo noise analysis
	6.1 Unbalanced Mach-Zehnder for amplitude and phase measurement 
	6.1.1 Reminder on self-heterodyne detection
	6.1.2 Amplitude and phase extraction
	6.1.3 Recovering the noise on the parameters

	6.2 Experimental setup
	6.3 Results
	6.3.1 Phase measurement
	6.3.2 Noise floors



	III Pulsed approach to reservoir computing
	7 Time series processing with neural networks
	7.1 Reservoir computing
	7.1.1 General principle
	7.1.2 Application of RC to noise analysis

	7.2 Delayed-feedback reservoir computing
	7.2.1 General description: memory and links
	7.2.1.1 Memory
	7.2.1.2 Links

	7.2.2 Experimental implementation
	7.2.2.1 Encoding of the data
	7.2.2.2 Extracting the information
	7.2.2.3 Wiring the reservoir
	7.2.2.4 Experimental setup
	7.2.2.5 Test of the architecture

	7.2.3 Capacity
	7.2.3.1 Calculation of the capacity
	7.2.3.2 Simulated capacity
	7.2.3.3 Experimental capacity



	8 Toward quantum reservoir computing
	8.1 Single mode squeezing
	8.1.1 Parametric down conversion
	8.1.2 Quantum correlations

	8.2 Multimode squeezing
	8.3 Single pass squeezing
	8.3.1 Experimental scheme
	8.3.2 Results



	Conclusion
	References

