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Abstract

Speaker verification systems are a key technology in many devices and services

like smartphones, intelligent digital assistants, and banking applications. More-

over, during the COVID-19 pandemic, access control systems based on fingerprint

scanners or keypads increase the risk of virus propagation. Therefore, companies

are now rethinking their employee access control systems and considering touchless

authorization technologies, such as speaker verification systems.

However, speaker verification systems require that the access system stores

the speakers’ models and has access to the recordings or features derived from

the speakers’ voices during the authentication. This process raises some concerns

regarding the privacy of the user and the protection of such sensitive biometric

data. An adversary can steal speakers’ models, features, or recordings from the

access system and use this biometric information to impersonate the genuine user

and gain unauthorized access. Moreover, when dealing with speech data, we are

in front of additional privacy concerns. In case the speech data are stolen, several

personal information related to the speaker’s identity, gender, age, or health status

could be extracted. Therefore, speaker verification systems should be improved

in a way that preserves speaker privacy and ensures the protection of biometric

information stored (i.e.biometric reference) or provided during the authentication.

In this context, the present PhD Thesis addresses the privacy and security is-

sues for speaker verification systems based on Gaussian mixture models (GMM),

i-vector, and x-vector as speaker modeling. The objective is the development of

speaker verification systems that perform biometric verification while preserving

the privacy and the security of the user. To that end, we have proposed bio-

metric protection schemes for speaker verification systems to achieve the privacy

requirements (revocability, unlinkability, and irreversibility) described in the stan-
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dard ISO/IEC IS 24745 on biometric information protection and to improve the

robustness of the systems against different attack scenarios.

In this thesis, we first presented the existing biometric information protection

schemes that address the privacy-preserving for speaker recognition systems. We

classified the schemes into three categories (i) cryptography-based schemes; (ii)

cancelable based schemes; and (iii) hybrid based schemes. For this thesis, we are

focusing on cancelable biometrics where intentional and systematically repeatable

distortion is applied to biometric features or references in order to protect sensitive

user data.

In order to improve the privacy and security for speaker verification systems

based on GMM and i-vectors, we proposed a cancelable privacy-preserving based

on two steps: (i) the extraction of a binary representation of the speaker derived

from his/her biometric reference and (ii) the protection of the binary representation

using a shuffling scheme that randomizes the binary representation with the help

of a shuffling key.

The transformation of the speaker’s binary representation with the shuffling

scheme makes it possible to generate from the same biometric sample different

versions of protected biometric references (revocability) that cannot be linked to

the user (Unlinkability). These properties ensure the privacy of the user when he is

enrolled in different applications using the same biometric sample (prevents cross-

matching), and in case the user’s protected biometric reference is compromised,

it will be revoked and renewed. Furthermore, the cancelable scheme makes it

possible to simultaneously achieve the privacy requirements while maintaining the

biometric verification performance. Due to the shuffling scheme, the biometric per-

formance of the privacy-preserving speaker verification systems outperforms that

of the baseline (unprotected) systems. Regarding security, the cancelable scheme

makes the systems robust against different attack scenarios. As an example, in

case the user’s biometric data are compromised, the systems are robust with a

false acceptance rate equal to zero. However, in case the user’s shuffling key is

compromised, a degradation in terms of false acceptance rate was observed. This

degradation is related to the loss of biometric performance when transforming the

speaker’s model into binary representation before applying the shuffling scheme.

Therefore, the cancelable privacy-preserving scheme was improved by propos-

ii



ing a binarization approach of the speaker biometric reference based on deep neural

nets autoencoder. This approach transforms the speaker’s biometric reference into

binary representation while maintaining the biometric performance and makes it

possible to control the dimension of the binary representation. In addition, we

have proposed to apply secure sketch error correction code (EEC) to the binary

representation protected with the shuffling scheme. The goal was to take advan-

tage of the shuffling transformation and error correction to improve the security

and the biometric performance.

The improved cancelable scheme was used to develop a privacy-preserving

speaker verification system based on x-vectors extracted from a Time Delay Neural

Network (TDNN). Protection of the x-vector is performed by first transforming it

into binary representations using the binarization approach based on the autoen-

coder on top of the TDNN. Then, cancelable x-vector is generated by transforming

the binary x-vector with the shuffling scheme. This transformation allows achiev-

ing privacy requirements. Next, secure sketch error correction is applied to the

cancelable x-vector in order to manage the biometric variability, which allows im-

proving the security and the biometric performance of the system.

The protection of x-vectors with the described cancelable scheme allows the

processing of speaker verification in a protected domain without revealing personal

information about the user. The speaker verification system based on cancelable

x-vectors achieves the privacy requirements and outperforms the biometric perfor-

mance of the unprotected x-vector system. An EER=0.1% was reported compared

to EER=3.12% for the baseline x-vectors. Moreover, the system is robust against

stolen biometric, stolen token, and brute force attacks with a FAR=0. In addi-

tion, due to the binarization approach that maintains the biometric performance

and the combination of shuffling with the error correction code, the system is ro-

bust to the stolen shuffling key scenario. For the unprotected x-vectors system,

the biometric performance in terms of EER=3.12% (FAR=FRR=3.12%). For the

proposed privacy-preserving x-vector system based on four enrollment utterances,

at FRR=3.12%, the FAR=0 in the legitimate scenario and the FAR=1.94% for

the stolen shuffling key scenario. For the privacy-preserving system based on one

enrollment utterance, the system outperforms the baseline system in the legiti-

mate scenario with EER=0.1%. However, a slight degradation in terms of FAR
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was observed for the stolen key scenario. A FAR=4.1% was reported compared to

3.12% for the baseline system.

Compared to the majority of research on voice biometric protection based on

cancelable schemes, the proposed privacy-preserving scheme makes it possible to

simultaneously achieve privacy requirements and maintains the performance of the

unprotected system in legitimate and stolen key scenarios.

Finally, during this thesis, we evaluate the proposed privacy-preserving bio-

metric systems on common and standardized assessments using public databases

to contribute reproducible research. The evaluation of privacy-preserving systems

starts by reporting the biometric performance of the unprotected systems for a

fair comparison with the performance of the proposed protected systems. Then,

the privacy is evaluated according to the requirements described on the ISO/IEC

24745 for biometric information protection. Besides, the security of the systems is

evaluated against different attack scenarios dedicated for biometric systems based

on biometric protection schemes.

Keywords:
Speaker Verification system, Privacy-Preserving, Security, Biometric Information

Protection.
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Résumé

Les systèmes de vérification du locuteur sont une technologie clé dans de nombreux

appareils et services tels que les smartphones, les assistants numériques intelligents

et les applications bancaires. Pendant la pandémie de COVID-19, les systèmes

de contrôle d’accès basés sur des lecteurs d’empreintes digitales ou des claviers

augmentent le risque de propagation du virus. Par conséquent, les entreprises

repensent maintenant leurs systèmes de contrôle d’accès des employés et envisagent

des technologies d’autorisation sans contact, telles que les systèmes de vérification

des locuteurs.

Cependant, les systèmes de vérification du locuteur exigent que le système

d’accès sauvegarde les modèles des locuteurs et ait accès aux enregistrements ou

aux caractéristiques dérivées des voix des locuteurs lors de l’authentification. Ce

processus soulève certaines préoccupations concernant le respect de la vie privée de

l’utilisateur et la protection de ces données biométriques sensibles. Un adversaire

peut voler les informations biométriques et imiter l’identité de vrai utilisateur

pour obtenir un accès non autorisé. De plus, lorsqu’il s’agit de données vocales,

nous sommes confrontés à des problèmes supplémentaires de confidentialité et de

respect de vie privée. À partir des enregistrements vocaux, plusieurs informations

personnelles liées à l’identité, au sexe, à l’âge ou à l’état de santé du locuteur

peuvent être extraites. Par conséquent, les systèmes de vérification du locuteur

devraient être améliorés de manière à respecter la vie privée du locuteur et à

assurer la protection des informations biométriques stockées ou fournies lors de

l’authentification.

Dans ce contexte, la présente thèse de doctorat aborde les problèmes de pro-

tection des données biométriques, le respect de vie privée et la sécurité pour les

systèmes de vérification du locuteur basés sur les modèles de mélange gaussien
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(GMM), i-vecteur et x-vecteur comme modélisation du locuteur. L’objectif est le

développement de systèmes de vérification du locuteur qui effectuent une vérification

biométrique tout en respectant la vie privée et la protection des données biométriques

de l’utilisateur. Pour cela, nous avons proposé des schémas de protection biométrique

afin de répondre aux exigences de protection des données biométriques (révocabilité,

diversité, et irréversibilité) décrites dans la norme ISO/IEC IS 24745 et pour

améliorer la robustesse des systèmes contre différents scénarios d’attaques.

Dans cette thèse, nous avons d’abord présenté les schémas de protection des

informations biométriques existants pour les systèmes de reconnaissance du locu-

teur. Nous avons classé les schémas en trois catégories, (i) les schémas basés sur la

cryptographie ; (ii) les schémas basés sur les transformations révocables ; et (iii)

les schémas hybrides . Pour cette thèse, nous nous concentrons sur la biométrie

révocable où une transformation intentionnelle et systématiquement reproductible

est appliquée sur les caractéristiques ou les références biométriques afin de protéger

les données sensibles des utilisateurs.

Pour les systèmes de vérification du locuteur basés sur le GMM et i-vecteur,

nous avons proposé un schéma révocable de protection des données biométriques

basé sur deux étapes : (i) extraction d’une représentation binaire du locuteur

dérivée de sa référence biométrique et (ii) protection de la représentation binaire

en utilisant un schéma de permutation qui randomise la représentation binaire en

utilisant une clé spécifique pour chaque utilisateur.

La transformation de la représentation binaire du locuteur avec le schéma

de permutation permet de générer à partir d’un même échantillon biométrique

différentes versions de références biométriques protégées et révocables qui ne peu-

vent pas être liées à l’utilisateur. Ces propriétés garantissent la protection de la vie

privée de l’utilisateur lorsqu’il est inscrit dans différentes applications en utilisant le

même échantillon biométrique. Aussi en cas ou la référence biométrique protégée

de l’utilisateur est compromise, elle sera possible de la remplacer. En outre, le

schéma proposé permet de répondre simultanément aux exigences de protection

de vie privée tout en maintenant les performances de vérification biométrique.

Aussi, l’évaluation de la sécurité montre que le schéma de protection des données

biométriques proposé rend les systèmes robustes contre différents scénarios d’attaque.

Par exemple, si les données biométriques de l’utilisateur sont compromises, les
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systèmes sont robustes avec un taux de fausse acceptation égal à 0. Cependant,

au cas où la clé de permutation de l’utilisateur serait compromise, une dégradation

en termes de taux de fausse acceptation a été observée. Cette dégradation est liée

à la perte de performances biométriques lors de la transformation du modèle du

locuteur en représentation binaire avant d’appliquer le schéma de permutation.

Pour améliorer le schéma de protection, nous avons proposé une approche de

binarisation de la référence biométrique du locuteur basée sur le réseau de neurones

auto-encodeur. Cette approche transforme la référence biométrique du locuteur

en une représentation binaire sans perte de performances biométriques et donne

la possibilité de contrôler la dimension de la représentation binaire. De plus,

nous avons proposé d’appliquer un code de correction d’erreur à la représentation

binaire protégée par le schéma de permutation afin d’améliorer la sécurité et la

performance biométrique.

Le schéma de protection amélioré a été appliqué pour la protection du système

de vérification de locuteur basé sur les x-vecteurs extraits de réseaux à décalage

temporel (Time Delay Neural Network TDNN). La protection du x-vecteur est

réalisée en le transformant en représentation binaire à l’aide de l’approche basée

sur l’auto-encodeur. Ensuite, le x-vecteur binaire est protégé à l’aide du schéma

de permutation et passé à travers le code de correction d’erreur afin de gérer la

variabilité biométrique, ce qui permet d’améliorer la sécurité du système.

La protection des x-vecteurs permet d’effectuer la vérification du locuteur dans

un domaine protégé sans révéler les informations personnelles. L’évaluation par

rapport aux exigences de protection des informations biométriques montre que

le système de vérification du locuteur basé sue les x-vecteurs protégés répond

aux exigences de protection de la vie privée. De plus, en utilisant les x-vecteurs

protégés, la performance biométrique est améliorée en terme de taux d’égal erreur

(EER) et passe de 3 .12% (avec x-vecteurs non-protégés) à 0.1%. En outre, grâce

à l’approche de binarisation qui maintient les performances biométriques et la

combinaison du schéma permutation avec le code de correction d’erreur, le système

est robuste en cas où la clé de permutation est volé. Pour le système de x-vecteurs

de base (non-protégé), la performance biométrique en termes de taux d’égal erreur

est 3.12%. Pour le système basé sur les x-vecteurs protégés, pour un taux de

faux rejet (FRR) égale à 3.12%, le taux de fausse acceptation (FAR) est 0 pour le
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scénario classique et FAR=1.94% pour le scénario de clé de permutation volé.

Pour finir, au cours de cette thèse, nous avons aussi fait un pas en avant vers

l’évaluation des systèmes biométriques préservant la vie privée sur des évaluations

communes et standardisées utilisant des bases de données publiques pour con-

tribuer à une recherche reproductible. L’évaluation des systèmes de protection de

la vie privée commence par rapporter les performances biométriques des systèmes

non protégés pour une comparaison équitable avec les performances des systèmes

protégés. Ensuite, la protection de vie privée est évaluée selon les exigences décrites

dans la norme ISO/IEC 24745 pour la protection des informations biométriques.

En outre, la sécurité des systèmes est évaluée par rapport à différents scénarios

d’attaque dédiés aux systèmes biométriques basés sur des schémas de protection

biométrique.

Mots clés:
Système de Vérification de Locuteur, La Protection de la Vie Privée, Sécurité,

Protection des Informations Biométriques.
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Maintaining security and privacy is a priority for people who safeguard their

personal information. Traditional authentication methods such as passwords and

PINs are no longer reliable and efficient since the user needs to remember multiple

passwords and maintain multiple authentication tokens. Biometric systems have

been established as new technology to mitigate the limitations and weaknesses of

these traditional access methods. Biometric systems enable the authentication of

individuals based on physiological characteristics “who you are” (iris, face, finger-

print) or based on behavioral characteristics “what you produce” (voice, signature)

which cannot be forgotten or lost [Jain et al., 2004].

In advanced devices such as laptops, smartphones, and smartwatches, micro-

phones are the most commonly found sensor. This allows biometric systems based

on voice modality to gain prominence in the market and to be deployed more

widely. Among voice-based biometric systems, speaker verification systems are

increasingly ubiquitous and have become a popular technology for authenticating

individuals and controlling access to different applications. Authentication of the

user based on his/her voice is more convenient than entering passwords. It consists

of automatically verifying who is speaking using the voice characteristics captured

by a recording device.

The process of speaker verification system consists of two phases as shown in

Figure 1.1. During the enrollment, the system collects voice samples from the

speaker to create the enrollment biometric reference Br. The model is then stored

in a centralized database. During the verification, the probe biometric reference

Bp extracted from the probe biometric sample is compared to the model associated

with the claimed identity, generating a score. This score is compared to a prede-

fined verification threshold to determine if the probe voice sample corresponds to

a client or impostor user.

Such verification systems provide greater security and convenience than tradi-

tional methods of authentication. However, they are not designed to preserve the

privacy of the speaker. The speaker’s biometric data are transmitted and stored

without protection in external databases and servers that may be compromised.

2



1.1. PRIVACY ISSUES RELATED TO SPEAKER VERIFICATION
SYSTEMS

Figure 1.1: Architecture of the classical biometric system.

1.1 Privacy Issues Related to Speaker Verifica-

tion Systems

Usually, we consider the unauthorized recording of our conversation through eaves-

dropping as a critical issue for our privacy. The current process of speaker ver-

ification system requires that the access system stores the speakers’ models and

has access to the recordings or features derived from the speakers’ voices during

the authentication. This process poses several threats to privacy and security.

Speakers’ models, features, or recordings can be stolen from the access system by

an adversary who can use this information to create genuine recordings and gain

unauthorized access. Moreover, in the case of speaker verification systems, we

are in front of additional privacy concerns. Using stolen speech data, several per-

sonal information related to the speaker’s identity, gender [Harb and Chen, 2005],

age [Gómez Garćıa et al., 2015] or health status [Jeancolas et al., 2019] could be

extracted.

In addition, unlike authentication systems based on passwords, biometric char-

acteristics are not renewable or revocable. When using voice characteristics to

authenticate, in case the target model is stolen, it becomes useless because it can-

not be replaced. In a text-independent speaker verification system, where no prior

constraints are considered for the spoken sentences by the speaker, once a non-

target user succeeds to pre-record or synthesize the voice of the target speaker, the

target voice sample is rendered useless in terms of security because the new speaker

model generated from this voice sample will be the same as the compromised. For

the text-dependent system, where a predefined pass-phrase is employed for ver-

ification, one possible solution is to replace the passphrase. However, in some

3



1.1. PRIVACY ISSUES RELATED TO SPEAKER VERIFICATION
SYSTEMS

services and applications based on speaker verification, we are confronted with a

limited choice of passphrases. For example with Google assistant, we have the

choice between only ok Google or hey Google.

Another privacy issue for speaker verification systems is the cross-matching of

biometric models. With the frequent use of biometrics as a form of authentica-

tion in many applications, the user could be enrolled using the same biometric

instance in different access systems. For speaker verification systems, the speaker

uses his/her voice to generate the enrollment models stored in different databases.

Since the models are extracted from the same biometric instance, an adversary

who gets access to these models could do some profiling or tracking and knows if

these models correspond to the same user or not. Therefore, cross-matching be-

tween models should be prevented. In addition, if the models reveal information

about the original biometric features, the adversary will be able to reconstruct

synthetic features close to the original ones. As a consequence, we must ensure

the irreversibility of the models.

In order to address these privacy issues, the EU General Data Protection Reg-

ulation (GDPR or Regulation 2016/679) [European Parliament and Council, 2016]

classified biometric data as personal data:

”biometric data means personal data resulting from specific technical

processing relating to the physical, physiological or behavioural charac-

teristics of a natural person, which allow or confirm the unique identi-

fication of that natural person, such as facial images or dactyloscopic

data” 1.

Moreover, the GDPR considered biometric data as sensitive data:

”Processing of personal data revealing racial or ethnic origin, political

opinions, religious or philosophical beliefs, or trade union membership,

and the processing of genetic data, biometric data for the purpose of

uniquely identifying a natural person, data concerning health or data

concerning a natural person’s sex life or sexual orientation shall be

prohibited”. 2

1Article 4,(14) GDPR
2Article 9 GDPR
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1.2. BIOMETRIC INFORMATION PROTECTION

”Personal data which are, by their nature, particularly sensitive in re-

lation to fundamental rights and freedoms merit specific protection as

the context of their processing could create significant risks to the fun-

damental rights and freedoms. 3”

These definitions mean that the processing of biometric data should take into

consideration the right of privacy preservation. As a result, the traditional speaker

verification system should be enhanced by new approaches that ensure the pro-

tection of sensitive personal data stored in the databases or provided during the

verification process to guarantee the user’s privacy.

Therefore, this thesis addresses the security and privacy issues for speaker ver-

ification systems. The objective is the development of speaker verification systems

that perform biometric verification while preserving the privacy and the security

of the user. More specifically, we will propose biometric protection schemes that

improve the security and privacy of the systems and allow the processing of speaker

verification in a protected domain without revealing personal information about

the user.

1.2 Biometric Information Protection

The privacy concerns related to traditional biometric systems presented in the

previous section have led to the development of the standard ISO/IEC IS 24745

on biometric information protection [ISO/IEC JTC1 SC27 Security Techniques,

2011]. This standard provides guidance for the protection of biometric informa-

tion and presents an architecture of biometric systems based on the protection

of biometric information. This architecture permits the generation of revocable

biometric references (RBR). Revocability involves the generation of unlinkable

biometric references from the same biometric characteristics.

An overview of the architectural aspects of biometric systems based on bio-

metric information protection is presented in Figure 1.2. During the enrollment

phase, a module known as pseudonymous identifier encoder (PIE) takes the en-

rollment features as an input and generates the revocable or renewable biometric

3Recital 51 GDPR
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1.2. BIOMETRIC INFORMATION PROTECTION

Figure 1.2: Architecture of biometric system based on the biometric information
protection [ISO/IEC JTC1 SC27 Security Techniques, 2011].

reference (RBR) consisting of two elements: the pseudonymous identifier (PI) and

the auxiliary data (AD). PI represents the protected biometric reference. It is

the equivalent of Br on classical biometric architecture but in a protected domain.

AD is subject-dependent data that is part of the revocable biometric reference and

may be required to generate the pseudonymous identifier during the verification.

When the RBR is generated, the captured biometric sample and the extracted

features can be securely disposed of. Then the RBR is stored, the PI and AD may

be separated and stored in different databases.

During the verification phase, a module called pseudonymous identifier recorder

(PIR) takes as input the probe biometric features and the stored AD to generate

a protected probe biometric reference (PI*). Subsequently, a pseudonymous iden-

tifier comparator (PIC) compares the protected biometric reference PI generated

during the enrollment and the probe protected biometric reference PI* and returns

a similarity score. This score is then compared to a verification threshold.

Based on this new architecture, unprotected (original) biometric references are

neither stored in the database nor provided in raw during the verification process.

Using the modules PIE and PIR, revocable and protected biometric references are

extracted and the biometric comparison is performed on the protected domain

without revealing biometric information about the user.

According to the standard ISO/IEC 24745 [ISO/IEC JTC1 SC27 Security

Techniques, 2011] for biometric information protection, biometric system is con-
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sidering privacy-preserving when the following requirements are achieved:

Revocability: from the same biometric sample, it must be possible to generate

different versions of protected biometric references. In case the subject’s protected

biometric reference is compromised, it will be revoked and renewed.

Unlinkability: given the same biometric sample, it must be feasible to generate

different protected biometric references in a way that they cannot be linked to

each other or to the subject from which they were derived.

Non-invertibility: original biometric cannot be recovered if the protected biometric

reference is compromised.

Biometric performance: the protection of biometric reference should not degrade

the biometric performance compared to the unprotected system.

1.3 Motivation and Objectives of The Thesis

The research carried out in this thesis has been mainly motivated by the following

observations from the state-of-the-art.

Motivation 1 : The development of privacy-preserving biometric systems accord-

ing to the requirements established by the ISO/IEC IS 24745 standard on biometric

information protection is currently a research challenge. In this direction, different

biometric protection schemes have been designed for biometric systems based on

face, iris, and fingerprint modalities [Kumar et al., 2020], [Rathgeb and Uhl, 2011].

However, there is a lack of protection schemes that can be adapted and applied

for speaker verification systems where the biometric reference is represented with

a model rather than a template. As a consequence, the first objective of this thesis

was:

Objective 1: Developing methodologies to protect speaker verification systems

in order to achieve privacy requirements. We provide a protection schemes for

privacy-preserving speaker verification, where the system is able to perform verifi-

cation without revealing personal information about the user. This thesis addresses

privacy issues for speaker verification systems based on Gaussian Mixtures Mod-

els [Reynolds et al., 2000], i-vectors [Dehak et al., 2010] and x-vectors [Snyder

7
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et al., 2017] as speaker representations.

Motivation 2: Although various privacy-preserving biometric systems have been

proposed in the literature, most of the biometric protection schemes applied as

countermeasures to improve the privacy and security issues degrade the biometric

performance in terms of verification accuracy compared to the unprotected system.

Therefore, there is a need for protection schemes that achieve privacy requirements

while maintaining the biometric performance.

Objective 2: Providing biometric protection schemes that preserve the user’s

privacy while maintaining the biometric performance of the unprotected system in

terms of verification accuracy.

Motivation 3: The evaluation of protection schemes proposed for different

privacy-preserving biometric systems lacks a common and standardized assessment

of privacy, security, and biometric performance. Most publications aren’t taking

into account all necessary aspects of a rigorous privacy and security evaluation.

Objective 3: Making a step forward towards the evaluation of privacy-preserving

biometric systems on common and standardized assessments using public databases.

The privacy will be evaluated according to the requirements described on the

ISO/IEC 24745 for biometric information protection [ISO/IEC JTC1 SC27 Secu-

rity Techniques, 2011]. Security will be analyzed according to the methodology

proposed in [Rosenberger, 2018], where different attack scenarios are proposed to

evaluate the robustness of biometric systems based on protection schemes. Related

to objective 2, for a fair comparison, the biometric performance of the unprotected

(baseline) and protected systems will be reported using common protocols and

databases.

1.4 Outline of The Thesis

This dissertation is composed of seven chapters structured as follows:

– Chapter 1 introduces the privacy and security issues related to speaker veri-

fication systems and presents the motivation, objectives outline, and contri-

butions of this thesis.
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– Chapter 2 summarizes previous work related to the thesis topic.

– Chapter 3 presents the evaluation of the audio-visual recognition system de-

veloped during the H2020 European project SpeechXRays 4 against spoofing

attacks based on a 3D talking head. We will demonstrate that the fusion of

voice and face modalities can be a solution to improve the biometric perfor-

mance but it is not sufficient to guarantee the security and privacy aspects

of the user. This evaluation served as a motivation to develop privacy-

preserving speaker verification systems.

– Chapter 4 describes the proposed biometric protection scheme for privacy-

preserving speaker verification system based on Gaussian Mixture Models.

The protection scheme includes two steps: first, the extraction of binary

representation for the speaker derived from his/her GMM model and then

the protection of the binary representation using a cancelable scheme named

shuffling.

– Chapter 5 presents the proposed biometric protection scheme for privacy-

preserving speaker verification system based on i-vectors. The protection

scheme is also based on the binarization of the speaker’s i-vector using a

thresholding method and then its protection with the shuffling scheme.

– Chapter 6 presents the proposed biometric protection scheme for privacy-

preserving speaker verification system based on x-vectors. For this scheme,

we propose a novel binarization approach. This approach transforms the

speaker’s x-vector into a binary vector without a loss in biometric perfor-

mance and makes it possible to control the dimension of the binary vector.

Then, for the protection of the binary x-vector, we propose to combine the

shuffling scheme with error correction code (ECC).

Chapters 4,5 and 6 are structured as follows. We start by introducing the

baseline (unprotected) speaker verification system. Then, we present the

protection method proposed to develop the privacy-preserving speaker ver-

ification system. We describe the novel architecture and the steps required

4http://www.speechxrays.eu/
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to ensure the user’s privacy. The proposed system is then evaluated accord-

ing to the requirements of biometric information protection [ISO/IEC JTC1

SC27 Security Techniques, 2011] in terms of biometric performance, revoca-

bility, irreversibility, and unlinkability. Also, the robustness against different

attack scenarios is analyzed.

– Chapter 7 concludes ans summarizes the main results obtained in this thesis

and outlining future work.

1.5 Research Contributions

The research contributions of this PhD thesis are the following:

1. Privacy-preserving speaker verification system based on Gaussian Mixtures

models.

MTIBAA, Aymen, PETROVSKA-DELACRÉTAZ, Dijana, et

HAMIDA, Ahmed Ben. Cancelable speaker verification system

based on binary Gaussian mixtures. In : 2018 4th International

Conference on Advanced Technologies for Signal and Image Processing

(ATSIP). IEEE, 2018. p. 1-6.

2. Privacy-preserving speaker verification system based on i-vectors.

MTIBAA, Aymen, PETROVSKA-DELACRÉTAZ, Dijana, BOUDY,

Jérôme, et al. Privacy-preserving speaker verification system based on

binary I-vectors. IET Biometrics, 2021, vol. 10, no 3, p. 233-245.

3. Privacy-preserving speaker verification system based on x vectors. This con-

tribution is described in chapter 6 but has not yet been published.

4. Participation in writing a survey about preserving privacy in speaker and

speech characterisation.

NAUTSCH, Andreas, JIMÉNEZ, Abelino, TREIBER, Amos, et al. Pre-

serving privacy in speaker and speech characterisation. Computer Speech

Language, 2019, vol. 58, p. 441-480.
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5. Participation in the 2019 NIST Speaker Recognition Evaluation. The partic-

ipation was described in chapter 9 of the IET book titled Voice Biometrics:

Technology, trust, and security.

HMANI, Mohamed Amine, MTIBAA, Aymen, PETROVSKA-

DELACRTAZ, Dijana. Joining Forces of Voice and Facial Biometrics:

a Case Study in the Scope of NIST SRE’19. In Voice Biometrics:

Technology, trust and security (chapter 9). IET

6. This thesis is carried out in the context of two H2020 European projects,

SpeechXRays 4 and EMPATHIC 5. For the SpeechXRays project, I partici-

pated in the organisation of the SpeechXRays spoofing challenge 6. Also, I

contributed to the biometric evaluation of the audio-visual system that was

developed and tested on three use-cases with 2000 users. This contribution

is described in the following papers.

MTIBAA, Aymen, HMANI, Mohamed Amine, PETROVSKA-

DELACRÉTAZ, Dijana, et al. Methodologies of Audio-Visual Biometric

Performance Evaluation for the H2020 SpeechXRays Project. In : 2020

5th International Conference on Advanced Technologies for Signal and

Image Processing (ATSIP). IEEE, 2020. p. 1-6.

HMANI, Mohamed Amine, MTIBAA, Aymen, PETROVSKA-

DELACRTAZ, Dijana, et al. Evaluation of the H2020 SpeechXRays

project Cancelable Face System Under the Framework of ISO/IEC

24745: 2011. In : 2020 5th International Conference on Advanced

Technologies for Signal and Image Processing (ATSIP). IEEE, 2020. p.

1-6.

SPANAKIS, Emmanouil G., PETROVSKA-DELACRÉTAZ, Dijana,

BAUZOU, Claude, et al. Multi-Channel Biometrics for eHealth Com-

bining Acoustic and Machine Vision Analysis of Speech, Lip Movement

and Face: a Case Study. In : 2019 IEEE International Conference on

Imaging Systems and Techniques (IST). IEEE, 2019. p. 1-6.

5http://www.empathic-project.eu/
6http://www.speechxrays.nipne.ro/spoofing-challenge
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For the EMPATHIC project, I created the 3D-virtual coach designed to

improve the independent Years of the Elderly. This work is described in the

following paper.

TORRES, Maŕıa Inés, OLASO, Javier Mikel, MONTENEGRO, César,

et al. The empathic project: mid-term achievements. In : Proceedings

of the 12th ACM International Conference on Pervasive Technologies

Related to Assistive Environments. 2019. p. 629-638.
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2.1. BRIEF STATE OF THE ART OF SPEAKER VERIFICATION SYSTEMS

This chapter summarizes previous works related to this thesis. First, we present

a brief review of existing speaker verification systems in Section 2.1. In Section 2.2,

we present the vulnerabilities of speaker verification systems. Then, in Section 2.3,

we review the state-of-the-art of existing works that address the privacy and se-

curity issues based on biometric information protection techniques. Finally, the

summary and conclusion of this chapter are presented in Section 2.4.

2.1 Brief State of The Art of Speaker Verifica-

tion Systems

Speaker verification (SV) is the process of accepting or rejecting the claimed

identity of a speaker, based on his/her voice characteristics (features) extracted

from recorded samples. The features could be extracted using mel-frequency cep-

stral coefficients (MFCC), filter bank (FBANK), linear predictive cepstral coeffi-

cients (LPCC), perceptual linear prediction (PLP) [Lawson et al., 2011], or directly

from the raw waveforms using neural network [Palaz et al., 2015], [Jung et al.,

2018]. SV can operate on two scenarios: text-dependent and text-independent.

The text-dependent scenario requires that the probe spoken text be the same as

the enrollment. In contrast to that, in the text-independent scenario, no prior

constraints are considered for the spoken phrases by the speaker during the veri-

fication.

One of the first successful approaches for speaker verification is the Gaussian

Mixture Model (GMM) [Reynolds et al., 2000]. In this approach, the features

are modeled using a GMM by adapting the enrollment voice samples to a uni-

versal background model (UBM) that represents the distribution of the acoustic

features of a large population of speakers. In verification, the likelihood ratio of

the probe features given the enrollment GMM and the UBM is computed to take

the verification decision.

Dehak et al. [Dehak et al., 2010] introduced SV based i-vector, where fea-

tures are represented by a low-dimensional fixed-length vector. From a sequence

of feature vectors, e.g. MFCC, sufficient statistics are collected and represented

by Baum-Welch statistics obtained with respect to a UBM. Then, these statistics
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are converted into a low-dimensional representation know as i-vector. For verifi-

cation, the similarity between i-vectors is measured by simple cosine similarity or

using a more elaborate Bayesian model such as Probabilistic Linear Discriminant

Analysis (PLDA) [Kenny, 2010], [Garcia-Romero and Espy-Wilson, 2011].

Lei et al. [Lei et al., 2014] proposed a framework in which the sufficient statistics

for the i-vector are driven by a deep neural network (DNN) trained for automatic

speech recognition (ASR). The DNN is used to enhance phonetic modeling in the

i-vector: either posteriors from the DNN replace those from a Gaussian mixture

model (GMM) [Kenny et al., 2014], or bottleneck features are extracted from the

DNN and concatenated with acoustic features [McLaren et al., 2015].

Recent approaches proposed to replace the GMM-UBM and i-vector models by

speaker representation based only on deep networks. Variani et al. [Variani et al.,

2014] propose a DNN based speaker verification for text-dependent task. The

DNN was first trained to classify the speakers at the frame-level on the sentence

”Ok Google”. Then, it is used to extract a novel representation of features from

the last hidden layer. The average of these novel speaker features is taken as the

speaker representation known as d-vector. Based on this approach, in [Heigold

et al., 2016] an end-to-end speaker verification system was presented. This system

maps the enrollment and probe utterances directly to a single score for verification.

Snyder et al. [Snyder et al., 2016] propose an end-to-end text-independent

speaker verification system. The system is based on DNN trained to discriminate

between same speaker and different speaker. It takes as input a variable-length

utterance and maps it to a speaker embedding by aggregating the frame-level

representations using a pooling layer. In [Snyder et al., 2017], instead of training

the system to separate same-speaker and different speaker pairs, the DNN learns

to classify a set of training speakers using categorical cross-entropy loss. The

DNN consists of layers that operate on speech frames, a statistics pooling layer

that aggregates over the frame-level representations, additional layers that operate

at the segment level, and finally a softmax output layer. Speaker representation

known as x-vector embedding is then extracted from any layer after the statistics

pooling layer. The performance of this system was improved in [Snyder et al.,

2018] by augmenting the x-vector training data with additive and convolutional

noise. Reported results show that x-vector embeddings outperformed i-vectors in
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terms of biometric performance.

For this thesis, we address speaker verification systems based on GMM, i-vector,

and x-vector. More description of these approaches will be provided in Chapter 4,

5 and 6 respectively.

2.2 Vulnerabilities of Speaker Verification Sys-

tems

In recent years, speaker verification systems have shown an improvement in both

accuracy performance and their practical use. Public acceptance, availability, and

the low prices of microphones have promoted the integration of such technologies

into our daily lives. However, this evolution has led to critical issues related to the

security and the privacy of the user.

The process of speaker verification system requires that the access system stores

the speakers’ representations and has access to the recordings or features derived

from the speakers’ voices during the test. This process poses threats to privacy and

security. Moreover, there are various vulnerabilities through which a non-target

user can attack the biometric systems as shown in Figure 2.1. Regarding speaker

verification systems, the most vulnerable points in such systems are at levels 1

and 2 correspondings to presentation attacks at sensor level and at acquisition

level before the signal processing. The voice samples of a given user can be easily

collected through face-to-face recording, telephone conversation, or compromised

databases and then used to spoof the system or to extract personal information.

Also, with advanced technologies in speech synthesis or voice conversion, we can

generate the voice of the target user and manipulate it to gain unauthorized ac-

cess. Various methods are proposed in the literature for the voice impersonation

attacks [Sahidullah et al., 2019] which are classified as human-based voice im-

personation, replay-based attacks, speech synthesis, and voice conversion attacks.
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Figure 2.1: Presentation attacks on biometric systems [ISO/IEC 30107, 2017].

2.2.1 Impersonation attack

In this attack, the non-target user modifies his/her voice to imitate the target

user’s voice and tries to spoof the system.

In [Lau et al., 2005], the authors studied the voice mimicry with the GMM-

based speaker verification system. Professional and non-professional imitators were

asked to imitate a selected speaker from the YOHO database. Experiments on 138

speakers in the YOHO database and six participant who played a role as imitators

showed a fact that professional imitators could successfully attack the system and

that non-professional users could have a good chance if they know their closest

speaker in the database. At the threshold correspond to FAR=0 for the baseline

system, a FAR=60% was reported with the professional imitators and FAR=20%

with the non-professional imitators.

Farrus et al. [Farrús Cabeceran et al., 2010] conducted experiments with profes-

sional imitators to perform impersonation attacks on speaker identification systems

based on prosodic features. Two male professional imitators attempt to mimic the

voice characteristics of five well-known male politicians. Experiments show that an

increase from an identification error rate of 5% for target speakers against the im-

personator’s natural voice to an identification error rate of 22% for target speakers
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against the impersonator’s modified voice.

Panjwani et al. [Panjwani and Prakash, 2014] involve crowdsourcing method

to find impersonators that are used to perform impersonation attacks on text-

independent GMM-based speaker verification. The experiments are conducted

using a database collected with 53 male Indian voices. Results showed that crowd-

sourcing method can identify non-professional impersonators with a high accep-

tance rate. From a pool of 176 candidates, they identified six impersonators with

an overall false acceptance rate of 44% compared to 2.31% for the baseline sys-

tem. This demonstrates that naive, untrained users have the potential to carry

out impersonation attacks against voice-based systems.

The GMM-UBM, i-vector with cosine scoring, and i-vector with PLDA scoring

based speaker verification systems were evaluated against impersonation attacks

in [Hautamäki et al., 2015]. A speech database containing the voice of eight well-

known Finnish public figures was used for this evaluation. Results show that the

impersonation attack decreased the EER for GMM-UBM from 10.83% to 10.31%,

while for i-vector systems the EER increased from 6.80% to 13.76% and from

4.36% to 7.38%.

Mandalapu et al. [Mandalapu et al., 2021] analyzed the vulnerabilities of i-

vector and x-vector speaker verification systems using a database collected for voice

impersonation attack. The speakers in the database include politicians and actors.

The bona fide speeches are taken from the interview videos of the target speakers.

The impersonation speeches are collected from YouTube videos of television shows

and performances by mimicry artists ranging from amateurs to professionals. The

evaluations show that for the speaker verification system based on i-vector, the

EER increased from 5.3% (baseline) to 12.9% (impersonation attack) and for the

x-vector system the EER increased from 3.8% (baseline) to 11.10% (impersonation

attack).

2.2.2 Replay attack

This attack consists of a non-target user trying to use a pre-recorded voice of a

target user to spoof the system. This attack presents one of the main weaknesses

of the SV systems, especially in the text-independent scenario. The voice samples

18



2.2. VULNERABILITIES OF SPEAKER VERIFICATION SYSTEMS

of a given user can be easily collected through face-to-face recording, telephone

conversation, or public video which poses privacy and security threats.

Villalba et al. [Villalba and Lleida, 2010], [Villalba and Lleida, 2011] studied the

vulnerabilities of speaker verification system-based joint factor analysis in the case

of the text-independent scenario. The system was evaluated using voice samples

recorded through a far-field microphone and then replayed using a mobile phone

(the studies involved five speakers). Experimental results show that EER of 0.71%

is obtained using the non spoofing trials and if the EER operating point is taken

as the decision threshold, the system accepts 68% of the spoofing trials.

Ergunay et al. [Ergünay et al., 2015] present an audio-visual spoofing database

for replay attacks collected using a low and high-quality microphone from phones

and laptops. Using this database, the vulnerability of speaker verification-based i-

vector was evaluated against replay attacks. Biometric performance of the baseline

i-vector was reported with an EER equal to 6.9% for males and 17.5% for females.

When applied the replayed attack, at the EER operating point, the FAR increased

to 77.4% and 69.4% for males and females, respectively.

2.2.3 Speech synthesis attack

Speech synthesis, also known as text-to-speech (TTS), is a method for producing

a speech signal from a given text. Due to different methods as unit selection [Hunt

and Black, 1996], [Senior and Fructuoso, 2016], statistical parametric [Zen et al.,

2009], and Deep neural speech generation [Kaneko et al., 2017], [Mehri et al.,

2016], [Shen et al., 2018], it was possible that a non-target user synthesizes a

natural voice similar to a target user and gains unauthorized access to the system.

In [Ergünay et al., 2015] the vulnerability of speaker verification-based i-vector

was evaluated against speech synthesis attacks using the AVspoof database1. The

speech synthesis attacks were based on statistical parametric speech synthesis

(SPSS) [Zen et al., 2009]. Hidden Markov model-based speech synthesis tech-

nique [Yoshimura et al., 1999] was used to produce high-quality synthetic speech.

Using the synthetic speech, at the EER operating point, a FAR equal to 94.1%

was reported compared to 4.9% for the baseline system.

1https://www.idiap.ch/en/dataset/avspoof
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In [De Leon et al., 2012], the vulnerability of speaker verification systems based

on GMM-UBM and SVM using GMM supervectors against synthetic speech was

evaluated. HMM-based text to speech synthesizer was used to generate synthesize

voice of target users. Using the Wall Street Journal (WSJ) corpus, they have

shown that over 81% of synthetic speech signals compared to a target user are

accepted which poses a potential security issue.

Cai et al. [Cai et al., 2018] investigate the ability of generative adversarial

network (GAN) to synthesize spoofing attacks on speaker identification systems

based on Mel-Spectrogram and convolution neural networks. They show that

adversarial samples generated with GAN networks are successful in performing

targeted and untargeted adversarial attacks.

2.2.4 Voice conversation attack

Voice conversion (VC) has become one of the most easily accessible techniques

with the available applications to carry out spoofing attacks. It aims to modify

the attacker’s voice to sound like it was pronounced by the target speaker [Wu

and Li, 2013]. It presents a threat to both text-dependent and text-independent

speaker verification systems.

In [Matrouf et al., 2006], the vulnerability to voice conversion attack was eval-

uated for speaker verification system based on GMM-UBM. The voice conversion

was performed by mapping the attacker’s vocal tract information towards that

of the target user using the frequency warping technique. Experimental results

reported on NIST SRE 2005 database show that the EER degrades from 10% to

60% when attacker voice samples are compared to the target users.

In [Alegre et al., 2012], the vulnerability of text-independent speaker verifica-

tion systems based on GMM-UBM and JFA were evaluated against voice conver-

sion attacks. Experimental results on the male test set of NIST SRE 2005 show

that the EER is increased from 8.5% and 4.8% to 32.6% and 24.8% for GMM-UBM

and JFA systems, respectively.

Kinnunen et al. [Kinnunen et al., 2012] studied the vulnerability of text-

independent speaker verification systems (GMM, JFA) against voice conversion

attacks using telephone speech. A voice conversion system was implemented with
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two types of features and nonparallel frame alignment methods. Experiment re-

sults on a subset of NIST SRE 2006 corpus indicate that the FAR of the most

robust JFA system increased from 3% to over 17%.

In order to avoid the vulnerabilities related to spoofing attacks, four edi-

tions of automatic speaker verification and spoofing countermeasures challenges

ASVspoof 2 have been organized. While the first edition in 2013 [Evans et al.,

2013] was targeted mainly at increasing awareness of the spoofing problem, the

2015 edition [Wu et al., 2015] included the first challenge on the topic, accompa-

nied by commonly defined evaluation data, metrics, and protocols. The task in

ASVspoof 2015 was to design countermeasure solutions capable of discriminating

between genuine speech and spoofed speech produced using either text-to-speech

or voice conversion systems. The ASVspoof 2017 challenge [Kinnunen et al., 2017]

focused on the design of countermeasures aimed at detecting replay spoofing at-

tacks and the 2019 edition [Todisco et al., 2019] focused on countermeasures for

three attack types, namely those stemming from TTS, VC, and replay spoofing

attacks. The ASVspoof 2021 [Yamagishi et al., 2021] was the 4th edition where

the goal was to develop countermeasures capable of discriminating between bona

fide and spoofed or deepfake speech.

In addition, biometric information protection schemes were also proposed as a

countermeasure to prevent the success of the spoofing attacks and thereby enhance

the privacy provided by SV biometric systems. In the following section, we present

the existing works related to the development of biometric information protection

schemes for speaker verification systems

2.3 Biometric Information Protection Schemes

for Speaker Verification Systems

Various researches have contributed to the development of privacy-preserving bio-

metric systems [Kumar et al., 2020], [Rathgeb and Uhl, 2011] and proposed bio-

2https://www.asvspoof.org/
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Figure 2.2: Classification of privacy-preserving schemes for speaker recognition
systems. The categories to which the schemes proposed in the thesis belong are
highlighted in green.

metric protection schemes devoted to preserving the privacy of biometric systems

based on face, iris, and fingerprint modalities where biometric references are repre-

sented with templates. However, such schemes can not be applied for some speaker

verification systems where the user is represented with models rather than tem-

plates. As example, for speaker verification system based on Gaussian mixture

models, we need to develop a protection schemes to protect the GMM models.

A recent survey of existing biometric information protection schemes that ad-

dress the privacy-preserving in the context of speaker recognition systems was

presented in [Nautsch et al., 2019]. In Figure 2.2, we present a classification of

these systems based on the schemes used to achieve the privacy requirements. We

classified the schemes into three categories, (i) cryptography-based schemes; (ii)

cancelable based schemes; and (iii) hybrid based schemes. In the following subsec-

tions, summaries of related works related to the three categories are presented.

2.3.1 Cryptography based schemes

For cryptography based schemes, techniques such as Homomorphic Encryption

(HE) and Secure Two-Party Computation (STPC) are used to protect the bio-

metric data by encrypting the biometric reference and the biometric comparison
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is carried out in the encrypted domain.

2.3.1.1 Privacy-preserving based on homomorphic encryption

Homomorphic Encryption schemes make it possible to perform computations on

ciphertexts and generate encrypted results without requiring any decryption. The

decryption of these results to plaintext 3 corresponds to the results of the opera-

tions carried out on the original plaintext. The structure of the plaintext space is

preserved in the ciphertext space for additions and/or multiplications of plaintext

data under encryption [Acar et al., 2018]. Therefore, combining such encryption

techniques with biometric verification systems allows achieving privacy require-

ments while maintaining the biometric performance. Figure 2.3 presents a general

pipeline of privacy-preserving biometric systems based on HE.

HE is divided into three types, Fully Homomorphic Encryption (FHE) that

allows unlimited additions and multiplications at the cost of an increased com-

putational load [Gentry, 2009], Somewhat Homomorphic Encryption (SHE) that

has a fixed limit of multiplications to speed up their execution, and Partially Ho-

3This usually refers to data that is transmitted or stored unencrypted (”in clear”).

Figure 2.3: Privacy-preserving based on Homomorphic encrytion. The user’s bio-
metric reference is encrypted during the enrollment. During the verification, the
probe features or biometric references are encrypted and the comparison is per-
formed in the encrypted domain using Homomorphic operations.
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momorphic Encryption (PHE) that supports either additions or multiplications,

hence, they are only partially homomorphic.

Partially homomorphic schemes such as Pallier encryption [Paillier, 1999] was

adapted to preserve privacy for speaker verification system based on GMM-UBM

and i-vector. Pathak et al. [Pathak and Raj, 2011], [Pathak and Raj, 2012a] devel-

oped a privacy-preserving protocol for speaker verification systems based on GMM

using Pallier encryption and STPC protocols [Yao, 1982]. During the enrollment

phase, the user has the enrollment samples and both encryption and decryption

keys. On the other side, the system has the UBM and the encryption key. To

start, the system sends the UBM to the user in plaintext to derive his/her GMM

model. Then, the user encrypts the GMM model with his/her key and sends it to

the system. In the end, the system has only the encrypted GMM models. During

the verification phase, the user encrypts the features of the probe voice sample and

sends it to the system that computes the log-likelihoods for encrypted frames and

encrypted mixture components of the GMM model in the encrypted domain using

homomorphic operations. The comparison score is obtained from the encrypted

log-likelihoods score using logsum protocol, which requires additional communica-

tion between the system and the user. Based on this protocol, the verification is

performed without that the system observes the features provided by the user and

the user does not observe the models stored in the system. This approach achieves

privacy requirements while maintaining the biometric performance of the baseline

system. However, the limitation of this approach is the huge computational over-

head compared to the baseline speaker verification system based on GMM-UBM

due to the large amount of time required to perform operations in the encrypted

domain.

In [Nautsch et al., 2018], homomorphic encryption based on Pallier cryptosys-

tem was also used as a privacy-preserving solution for speaker verification based

on i-vector using cosine or PLDA as back-end scoring. The solution is based on

two-colluding servers named DBcontroller and ASoperator. During the enrollment

phase, the user’s i-vector is encrypted using the public key of the authentication

server ASoperator and stored in the database server DBcontroller. During the ver-

ification phase, the user extracts probe i-vector, and the enrollment encrypted

i-vector is sent to the user device for the process of verification. The comparison
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score is computed in the encrypted domain using homomorphic operations. Then,

the encrypted score is sent to ASoperator, which decrypts the score and takes the

verification decision. Experimental results show that this solution preserves the

verification performance and achieves privacy requirements. However, the use of

HE results in a high communication and computation overhead that makes this so-

lution impractical when considering computationally limited devices. For i-vectors

of dimension 600, the computations require 203 milliseconds per comparison when

only subject data is encrypted using cosine as a back-end scoring, 423 ms using un-

protected PLDA model, and 2171 seconds per comparison when both subject data

and PLDA model parameters are encrypted. Moreover, this solution is vulnerable

in terms of security to authentication by a malicious user that can compromise the

system by just sending the encryption of an accepting score to the ASoperator.

2.3.1.2 Privacy-preserving based on secure two-party computation

Secure two-party computation allows two parties to interactively compute any

function in a secure manner without revealing the plaintext. Therefore, it was

exploited as a solution to develop privacy-preserving speaker verification systems.

Yao’s Garbled Circuit (GC) [Yao, 1982] has been employed to preserve the

privacy of GMM-UBM speaker verification system. Portélo et al. [Portêlo et al.,

2014a] reformulated the GMM-based speaker verification by performing the re-

quired operations like the scalar product and logsum operations using the Garbled

Circuit. The proposed protocol assumes that the user is responsible for gener-

ating the GCs and the system is responsible of evaluating them and deciding on

whether or not to authenticate the user. Experimental results show that the pro-

posed system achieves a biometric performance close to the unprotected system

and guarantees that each of the participants in the protocol does not reveal his/her

private information to others. Also, in terms of execution time, this solution is

faster than HE-based schemes, but it scales linearly with the number of GMM

components. A drawback of this scheme is the fact that the verification system

has the user-specific GMM model in plaintext which represents a privacy leak be-

cause the system is in possession of a characterization of the user’s voice given by
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the parameters of the GMM.

Privacy-preserving of Hidden Markov model (HMM) was also treated in [Alias-

gari et al., 2017] by storing secret shares among multiple servers using a technique

known as outsourced secure multi-party computation (SMPC). The solution uses

floating-point arithmetic, which allows to achieve privacy and security guarantees

while maintaining reasonable performance. Also, SMPC significantly decreases

workload compared to HE.

Similar to the previous scheme, Treiber et al. [Treiber et al., 2019] proposed a

privacy-preserving i-vector speaker verification system based on a mix of different

STPC protocols. This solution achieves biometric information protection require-

ments while maintaining biometric performance. Also, in contrast to the solution

based on HE in [Nautsch et al., 2018], the verification using PLDA as back-end

scoring is computed in about half a second, and a few milliseconds using cosine as

back-end. However, it involves multiple rounds of interaction and communications

between parties involved in the secure computation.

Recently, Nautsch et al. [Nautsch et al., 2019] addressed the issue of compu-

tational overhead. They proposed a solution that enables privacy-preserving of

i-vector speaker verification system with cohort score normalisation using proba-

bilistic linear discriminant analysis comparisons. The solution proposes a cohort

pruning scheme based on secure multi-party computation that operates with binary

voice representations to reduce the computation time for biometric comparisons

in the encrypted domain.

2.3.1.3 Summary of cryptography based schemes

The use of HE encryption allows to preserve privacy while maintaining the bio-

metric performance obtained with the unprotected system. However, the size of

the encrypted data and the huge number of operations required in the encrypted

domain, result in overheads of computation and communication, which slows down

the verification process. HE-based solutions rely on noise to hide the plaintext.

This noise grows during processing speech data in the encrypted domain due to

the homomorphic operations (addition, multiplication) required. As a result, the

calculation will be performed with larger data than the actual plaintext and the
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noise will eventually overflow. Hence, an expensive operation named bootstrap-

ping [Gentry, 2009] is introduced to reduce it, making the computational overhead

too heavy. Thus, the integration of these schemes while keeping verification time

low enough for real-time applications is very challenging, especially when consid-

ering computationally limited devices such as mobile phones.

STPC and SMPC protocols were also applied to the privacy preservation of

speaker verification systems. These protocols show an improvement in the verifica-

tion execution time compared to HE-based solution. However, it involves multiple

rounds of interaction and communications between parties involved in the secure

computation, and privacy is achieved when assuming that the different parties do

not collude.

2.3.2 Cancelable biometrics based schemes

Figure 2.4: Privacy-preserving based on cancelable biometrics. The user’s model
or template is distorted with transformation parameters during the enrollment and
stored in the database. During the verification, the probe biometric reference is
transformed with the same transformation parameters used during the enrollment,
and the comparison is performed in a transformed domain. For cancelable biomet-
ric, the transformation could be applied either to biometric references (template
/model) or to the features.

As an alternative to the aforementioned biometric information protection schemes

based on homomorphic encryption and secure two-party computation, cancelable
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biometric was proposed as a solution to develop privacy-preserving speaker ver-

ification systems. As shown in Figure 2.4, for cancelable biometrics, the user

transforms the biometric reference before sending it to the access server. The

server receives only a protected format of the original biometric reference and

during the verification, the biometric comparison is performed in the transformed

domain using the protected biometric references. Regarding the existing works on

cancelable speaker verification systems, we classified the cancelable schemes into

three categories:

(i) Based on biometric salting schemes: where privacy-preserving is achieved by

combining an Auxiliary Data (AD) with biometric features or reference to derive

a protected version of the biometric reference.

(ii) Based hashing schemes: where privacy-preserving is achieved using hashing

techniques.

(iii) Based on binary speaker representation: where privacy-preserving is first

achieved by transforming the speaker model into a binary representation, then

cancelable schemes (i) or (ii) are applied to transform the binary representation.

In the following paragraphs, we present a description of the existing cancelable

schemes for each category.

2.3.2.1 Privacy-preserving based on biometric salting schemes

Chee et al. [Chee et al., 2018] proposed a cancelable scheme, named Random

Binary Orthogonal Matrices Projection (RBOMP), to protect speaker verification

system based on i-vector. The RBOMP scheme projects the i-vector using random

binary orthogonal matrices from linear space to ordinal space and records the

discrete values. In order to achieve the irreversibility requirement, a non-invertible

function (prime factorization) is used to protect the projected i-vector with the help

of a user-specific token. The protected system was evaluated using NIST SRE 2010

extended condition 5 (tel-to-tel) female part. The cancelable scheme shows good

resistance against irreversibility and attack-via-record multiplicity. However, the

biometric performance of the cancelable system (EER=3.43%) degrades compared

to the baseline i-vector system (EER=1.67%).
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Teoh and Chong [Teoh and Chong, 2010] provided a cancelable GMM speaker

verification system based on probabilistic random projections [Teoh and Yuang,

2007]. This scheme protects the speaker’s model by hiding the features through

a random subspace projection process and its parameters are stored in a subject-

specific key. This method achieves the revocability and unlinkability requirements

and it is shown that the cancelable system maintains the biometric performance.

2.3.2.2 Privacy-preserving based hashing schemes

Hashing techniques were also used to protect speaker verification systems in [Pathak

and Raj, 2012b]. The idea was to transform the speaker verification task into

string comparison. For this, the voice samples provided by the user are repre-

sented using supervectors features [Campbell et al., 2006] and passed through a

Locality Sensitive Hashing (LSH) to transform them into bit strings. Then, the

bit strings are converted into obfuscated strings by applying a cryptographic hash

function. The biometric comparisons are then performed by matching the hashed

bit strings derived from the enrollment and the probe samples. This approach

performs speaker verification without revealing the voice samples provided by the

user to the system. Moreover, cryptographic hash functions are faster to com-

pute adding a small overhead compared to the overhead of the secure multiparty

computation approaches using homomorphic encryption proposed in [Pathak and

Raj, 2012a]. However, while HE preserves the biomectric performance of the

unprotected system, the LSH transformation shows a degradation in biometric

performance with an EER=11.86% on the YOHO database.

Jimenez and Raj [Jiménez and Raj, 2017] proposed a two-factors transforma-

tion to perform speaker verification based on GMM supervectors without reveal-

ing user’s biometric information to the system. This transformation is based on

distance-preserving hashing. By combining a user-specific key with the voice fea-

tures, the transformation allows to detect if the distance between the transformed

features is smaller than a verification threshold without revealing the original fea-

tures. Experimental results show that the proposed transformation improves the

biometric performance. However, in case the user specific-key is compromised a

degradation in performance was reported.
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Portélo et al. [Portêlo et al., 2014b] proposed a cancelable i-vector system that

performs speaker verification without exposing voice samples or models to the sys-

tem. The cancelable scheme is based on the transformation of the speaker’s i-vector

(float) to bit sequences using the Secure Binary Embeddings (SBE) [Boufounos

and Rane, 2011]. Then a support vector machine (SVM) classifier is modified to

work with the Hamming distance between the SBE hashes of i-vectors. During the

enrollment, the user computes the SBE hashes from his/her enrollment i-vector

and transmits it to the system. The parameters used by the SBE are considered

as the user’s private keys. Also, the system trains an SVM with the obtained SBE

hashes. During the verification phase, the user computes the SBE hash for the

probe i-vector and transmits it to the system, which classifies it using the trained

SVM. Based on this protocol, the system does not observe the user’s i-vector in

plain-text. Results reported with hashed i-vectors show that the speaker verifica-

tion performance depends on parameters fixed for the SBE, including the number

of bits in the hashed i-vector and the amount of data leakage from the speaker

representation. With the best configuration of these parameters to achieve high

privacy, the proposed cancelable system does not maintain biometric performance

compared with the unprotected i-vector system. Besides, this scheme was not

evaluated according to the biometric information protection requirements such as

irreversibility and unlinkability. There is no guarantee that a non-target user is

not able to infer information about the non-protected i-vectors when he succeeds

to obtain the secrets parameters of the SBE.

2.3.2.3 Privacy-preserving based on binary speaker representation

Regarding the biometric information protection schemes used for the protection

of facial, iris and fingerprint biometric recognition systems, most of these schemes

require a binary representation of features or templates. In order to exploit these

protection schemes to protect speaker verification systems, binary representations

developed originally for biometric speaker verification or diarization were used for

privacy-preserving.

Paulini et al. [Paulini et al., 2016] proposed a binarization method for voice

biometric features known as multi-bit allocation. It is designed to extract discrim-
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inative compact binary feature vectors to be applied in a voice biometric template

protection scheme. The binarization acts over GMM super-vectors estimated over

MFCC features. The feature space is divided into intervals, which are encoded

with multiple bits using a Gray code. Experimental results show that the binary

representation of voice features causes a negligible decrease in biometric perfor-

mance compared to the baseline system.

Billeb et al. [Billeb et al., 2015] proposed a binarization method based on GMM-

UBM, that is used to extract high-entropy binary voice template from speaker

models. Speaker binary templates are then protected with a fuzzy commitment

scheme [Juels and Wattenberg, 1999], which combines techniques from the area of

error correcting codes and cryptography. Experimental evaluation has shown that

the system achieves privacy requirements. However, the biometric performance

degrades due to the binarization process.

Another binarization technique refereed as binary key speaker modeling was

also proposei.n [Anguera and Bonastre, 2010]. This technique is designed to repre-

sent a sequence of acoustic features (MFCC) by a novel vector composed of binary

values. The binarization process is based on three main blocks. The first block

corresponds to the training of a generator model of N Gaussian components that

are optimized to highlight speaker discriminant aspects. N represents the dimen-

sion of the binary vector. The second block corresponds to the extraction of the

binary representation given a voice utterance as input. It is generally done in

two steps. First, an accumulative vector Vc with dimension N is initialized to 0,

and the likelihoods for each acoustic frame in the utterance are computed given

each of the generator model Gaussian components. Then, the top Gaussians with

the highest likelihood values are selected. An initial feature-level binarization is

obtained by setting to 1 the bits in Vc corresponding to the positions of the top-

scoring Gaussians. This process projects acoustic frame from the feature space

into the space of the generator model Gaussians and keeps components with the

highest impact. When all frames have been processed, each bit in Vc contains the

relative importance of each Gaussian component in modeling the voice utterance

given as input. In the second step, the final binary representation is obtained by

setting to 1 in the binary vector, the bits corresponding to the top positions in

the accumulative vector. Finally, a third block defines the distance between two
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Table 2.1: Summary of cancelable biometric schemes for speaker verification sys-
tems.

Cancelable
schemes

Database
Speaker
model

Baseline
EER%
before
protection

Best
EER%
after
protection

Probabilistic
Random Projection
[Teoh and Chong, 2010]

Text-independent
YOHO

GMM-UBM 5.37 0.27

Random binary
Orthogonal Projection
[Chee et al., 2018]

Chinese Mandarin
digit corpus i-vector

3.81 7.01

Text-independent
NIST SRE-2010

1.67 3.43

Secure Binary Embedding
[Portêlo et al., 2014b]

Text-independent
YOHO

GMM
supervector

0.25 1.32

i-vector 0.11 5.55
Locality Sensitive
Hashing
[Pathak and Raj, 2012b]

Text-independent
YOHO

GMM
supervector

- 11.8

Mullti-bit
allocation
[Paulini et al., 2016]

Text-independent
digit corpus

GMM-UBM 3.4 3.56

Binarization
+
Fuzzy
Commitment
[Billeb et al., 2015]

Text-independent
digit corpus

GMM-UBM 3.4 5.42

utterances by comparing the binary representations using similarity scores. This

binarization technique was used for speaker recognition task in [Bonastre et al.,

2011] and for speaker diarization in [Anguera and Bonastre, 2011] and [Delgado

et al., 2015]. This technique will be also used in this thesis, to develop a privacy-

preserving speaker verification system based on GMM.

Li et al. [Li et al., 2016] investigated the use of binary embeddings for speaker

recognition. They studied two binarization approaches, one is based on LSH and

the other is based on Hamming distance learning to transform i-vectors to binary

vectors. Evaluations show that binary speaker embeddings deliver competitive
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results on speaker recognition and reduce the computation cost.

2.3.2.4 Summary of cancelable biometrics

From the above-cited research, it is difficult to establish a fair comparison between

the described schemes. Schemes were evaluated using different databases under

different scenarios since a common and standardized evaluation of cancelable bio-

metric is missed.

Regarding privacy requirements, revocability is preserved by combining the

biometric information with a user-specific key, and different cancelable biometric

references can be generated from the same biometric sample using different keys.

As shown in Table 2.1, the limitation of some cancelable schemes is the degra-

dation of biometric performance due to the modification or the loss of biometric

information caused by the transformation schemes.

Cancelable biometric is based on two-factors, the biometric data, and the user-

specific key. Therefore, the biometric performance of the cancelable system in

case these factors are compromised should be reported. However, the majority

of the described cancelable schemes do not evaluate the system in such scenarios.

Moreover, unlinkability and irreversibility were not evaluated for most cancelable

schemes. Compared to cryptography-based schemes, cancelable biometric pre-

serves the execution time close to the unprotected system which makes it practical

for real-time applications.

2.3.3 Hybrid schemes

Hybrid schemes consist of combining two or more schemes to generate protected

speaker verification system as the combination of cryptography and cancelable

schemes. Zhu et al. [Zhu et al., 2012] proposed a hybrid scheme based on the com-

bination of random projection transformation with fuzzy Vault [Juels and Sudan,

2006] to generate protected speaker model. Experimental results show that this

scheme preserves the biometric performance. However, privacy requirements such

as unlinkability and irreversibility are not analyzed.

Inthavisas and Lopresti [Inthavisas and Lopresti, 2012] proposed a secure au-

thentication system based on the combination of protected voice biometric tem-
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plate and password using fuzzy commitment scheme [Juels and Wattenberg, 1999].

The system consists of three steps. In the first step, dynamic time warping tem-

plate extracted from voice features is transformed using a password. Then the

transformed template is mapped into a binary string. In the second step, the bi-

nary string is permuted using a password to avoid that an attacker predicts the

correct password if the biometrics data are compromised. In the third step, the

protected binary string and a cryptographic key are hidden using a fuzzy commit-

ment framework. Experimental results show that the proposed system maintains

the verification performance if the biometrics and passwords are not compromised

simultaneously.

2.4 Chapter Summary and Conclusions

In this chapter, we have summarised the main works related to this thesis. First,

we have started with a brief description of state-of-the-art speaker verification

systems. Then, we have presented the main vulnerabilities of SV systems in terms

of privacy and security. Next, we have summarized the existing works on the

development of privacy-preserving speaker verification systems.

We have observed that systems based on cryptography schemes achieve privacy

requirements while maintaining biometric performance. However, these schemes

result in huge computational overhead. For cancelable biometrics, we have ob-

served that most of the existing schemes degrade the biometric performance com-

pared to the unprotected system. Besides, the complete set of privacy requirements

to be validated according to the ISO/IEC 24745 are not evaluated for most of the

proposed schemes.

For this thesis, we are focusing on cancelable biometrics. The objective is

to propose privacy-preserving speaker verification systems based on cancelable

schemes that achieve the privacy requirements of ISO/IEC 24745 while maintaining

the biometric performance of the unprotected system.

34



Chapter 3

3D Talking Head Generation for

Spoofing an Audio-Visual

Biometric Recognition System

Contents

3.1 Generation of 3D Talking Head . . . . . . . . . . . . . . 36

3.1.1 Creation of the 3D facial model from 2D image . . . . . 36

3.1.2 Animation of the 3D facial head . . . . . . . . . . . . . 38

3.2 Evaluation of SpeechXrays Audio-Visual Biometric

System Against 3D Talking Head . . . . . . . . . . . . . 39

3.3 Chapter Conclusions . . . . . . . . . . . . . . . . . . . . 41

35



3.1. GENERATION OF 3D TALKING HEAD

Multi-modal biometric as audio-visual biometric systems are used as a solution

to ensure secure authentication. However, such systems threaten users’ privacy,

who are asked to provide an increased amount of sensible information. In this

chapter, we show that the fusion of voice and face are not sufficient to guarantee

security and privacy. We present the evaluation of the audio-visual recognition sys-

tem developed during the H2020 European project SpeechXRays 1 against spoofing

attacks based on a 3D talking head. This system proposes the fusion of voice and

face as a solution to improve the robustness of the system. However, we will show

that an adversary could use a voice recording and a 2D image of a target user to

create an animated 3D facial model able to spoof the recognition system. There-

fore, privacy-preserving schemes could be a solution to improve the privacy and

the security.

3.1 Generation of 3D Talking Head

In this section, by exploiting a 2D image of the target user, we present how to create

a 3D talking head. For that, we use facial animation tools that give the possibility

of producing a 3D facial model that could be animated with voice recordings.

3.1.1 Creation of the 3D facial model from 2D image

CrazyTalk2 facial animation software was used to generate a 3D head from the 2D

facial image. The creation of the 3D face model is based on the adaptation of a

generic 3D head mesh with the target 2D face image. As shown in Figure 3.1, we

started by loading a frontal face image of the target user in CrazyTalk. Then, we

manually identified 13 facial fitting points of the user’s face. These points capture

the pose, shape, and expressions of the user. Setting the fitting points to the

correct positions on the face is required in order to have a better resemblance of

the final 3D head to the original 2D image. Once the face landmarks points are

fixed, we choose a head shape and generate the 3D facial model. Finally, some

manual adjustments are required to have the correct appearance. These adjust-

1http://www.speechxrays.eu/
2https://www.reallusion.com/crazytalk/
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ments include specifications such as cleaning the eyes, correcting the eyebrows,

and shaping the mouth. Figure 3.2 presents an example of 3D facial heads created

from 2D images.

Figure 3.1: Steps for generating a 3D facial head from a 2D image using CrazyTalk.

Figure 3.2: Examples of 3D facial heads generated from 2D images.
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3.1.2 Animation of the 3D facial head

Facial recognition systems use anti-spoofing detectors that ask the user to per-

form specific movements (animations or expressions) in order to be authorized to

access. Therefore, after generating the 3D head, we use iClone 3 tool to mimic

these movements and produce a 3D head animated with facial expressions and

movements, so that the 3D face models a real human face. This 3D head could

also be animated and synchronized with voice samples to generate a 3D talking

head. Figure 3.3 shows examples of facial expressions and animations that could

be used to bypass liveness detectors.

Figure 3.3: Examples of facial expressions and movements (smile, blinking, raising
eyebrows, rotating head) that could be animated with the 3D head to spoof the
liveness detectors.

3https://www.reallusion.com/iclone/
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3.2 Evaluation of SpeechXrays Audio-Visual Bio-

metric System Against 3D Talking Head

Using the methodologies described above for the creation of the 3D facial head, we

evaluated the vulnerability of the audio-visual recognition system proposed during

the H2020 SpeechXRays project against presentation attacks based on 3D talking

head. For the SpeechXRays system, the user is asked to present his face and read

a prompted sequence of digits to be authenticated.

We started the evaluation by analyzing the anti-spoofing strategies integrated

into this audio-visual recognition system. This system incorporates certain live-

ness detectors into its authentication process. For face modality, it detects the

physical presence of the target user by interpreting the movement of the lips and

eyebrows, and by interpreting the colors and brightness of the image. For voice

modality, the user is required to read the sequences of digits that appear during

verification. Knowing this information, we get an idea of facial animations that

we need to produce using the 3D facial head in order to bypass the anti-spoofing

detectors. We focus our evaluation on bypassing the anti-spoofing detectors of

the face recognition module using the 3D facial model. For the voice module, it

is easier to reproduce the real target voice using impersonation, replay, speech

synthesis, or voice conversion spoofing attacks. During our evaluation, we use the

voice recordings of the target user to animate the 3D head.

For the evaluation, we started by enrolling a user in this audio-visual system.

As a control, we first verified that the system can correctly authenticate the target

user (Figure 3.4a). Next, before testing the system against 3D facial model attack,

we evaluated its vulnerability against a fixed image of the target user. As shown

in Figure 3.4b, the system resists such attacks and responds that no eyebrows

movements are detected. Then, using an image of the target user, we created his

3D facial model animated with lips and eyebrows movements to bypass the liveness

detectors. Finally, we recorded a video containing the animated 3D facial model

and we play it to spoof the system. As shown in Figure 3.4c, the animated 3D

facial model succeeds to bypass the liveness detectors and get a face verification

score equal to 0.49 which is close to the score of a real user which is 0.59.

From this evaluation, we demonstrated the ability of an adversary to perform
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a 3D facial reconstruction able to bypass the anti-spoofing detectors by using a 2D

image of the target user. We have outlined that the fusion of speaker verification

system with face modality is not enough to achieve secure authentication. In

(a) (b)

(c)

Figure 3.4: Authentication to the SpeechXRays audio-visual system; (a) target
user authentication; (b) Impostor trial with fixed image of target user. (c) Spoofing
of the audio-visual system using the animated 3D facial model of the target user
created from his 2D image.
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fact, there are several methods of 3D facial model reconstruction [Xu et al., 2016]

and lip-synchronized facial animation generation [Taylor et al., 2017] that make it

feasible to create a realistic 3D face model animated and synchronized with input

audio. We believe that such methods pose a threat to the security and privacy

of biometric systems and that one possible solution is the protection of speaker

verification systems with privacy-preserving schemes.

3.3 Chapter Conclusions

In this chapter, we have presented a presentation attack based on 3D facial model

created from a 2D image of the target user. This type of attack presents a real

threat to audio-visual biometric systems. The fusion of the speaker verification

system with facial recognition can be a solution to improve the biometric perfor-

mance but it is not sufficient to guarantee the security and privacy aspects of the

user biometric information. Therefore, in the next chapters, we propose as a so-

lution, privacy-preserving schemes to improve the privacy and security of speaker

verification systems.
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4.1. BASELINE SPEAKER VERIFICATION SYSTEM BASED-GMM
MODELS

This chapter presents a privacy-preserving speaker verification system based

on Gaussian mixture model. This system includes two main stages: (i) transfor-

mation of speaker model into a binary representation (ii) the protection of the

binary representation with a cancelable scheme named shuffling. The proposed

system is evaluated according to the requirements of biometric information pro-

tection [ISO/IEC JTC1 SC27 Security Techniques, 2011] in terms of biometric

performance, revocability, irreversibility, and unlinkability. Also, the robustness

against different attack scenarios was analyzed.

The chapter is structured as follows. Section 4.1 gives a general description

of the baseline speaker verification system based on GMM models. Section 4.2

presents the proposed cancelable GMM-based speaker verification system. A de-

scription of the architecture and the steps required to generate the cancelable

biometric reference is provided. Evaluation of the proposed system is presented

in Section 4.3. Finally, the chapter summary and conclusions are presented in

section 4.4.

4.1 Baseline Speaker Verification System Based-

GMM Models

One of the first successful approaches for speaker verification is the Gaussian mix-

ture modeling [Reynolds et al., 2000]. Given the speech samples characterized by

T-dimensional feature vectors X of Mel frequency cepstral coefficients (MFCC)

[x1,x2...xT ], the user’s features are presented by a GMM λs as follows:

P (xt|λs) =
∑
j

wjN (xt|µj ,Σj) (4.1)

N (xt|µj ,Σj) =
1

(2π)D/2

1

|Σj|1/2
exp{−1

2
(xt − µj)

′Σj
−1(xt − µj)} (4.2)

where wj are the mixture weights and N (xt|µj ,Σj) is the jth multivariate

Gaussian distribution with mean µj and covariance Σj . These parameters are

trained using the enrollment voice samples using the expectation-minimization (EM)

algorithm.
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Although the speaker model can be extracted directly from the speaker en-

rollment data, it can also be generated from maximum a posteriori (MAP) adap-

tation using the universal background model (UBM) λU = (wU
i ,µ

U
i ,Σ

U
i ) where

i = 1, ...,M and M is the total number of Gaussian mixture components. The idea

is to derive the speaker’s model by updating the well-trained parameters in the

UBM via adaptation. Given a UBM model λU and the enrollment features of the

speaker [x1,x2...xT ], we first determine the probabilistic alignment of the features

into the UBM mixture components by computing the posterior probabilities of the

individual Gaussians in the UBM. For the ith mixture component of the UBM, we

compute:

P (i|xt) =
wU

i N (xt|µU
i ,Σ

U
i )∑

jwj
UN (xt|µU

j ,Σ
U
j )

(4.3)

Then, we use the a posteriori probabilities P (i|xt) to compute the new mean,

weights and variance parameters:

w‘
i =

1

T

∑
t

P (i|xt) (4.4)

µ‘
i =

∑
t P (i|xt)xt∑
t P (i|xt)

(4.5)

Σ‘
i =

∑
t P (i|xt)xtx

T
t∑

t P (i|xt)
(4.6)

Finally, we obtain the parameters of the adapted speaker model λs from the

combination of the above parameters and the UBM parameters as follows:

ŵs
i = αiw

‘
i + (1− αi)w

U
i (4.7)

µ̂s
i = αiµ

‘
i + (1− αi)µ

U
i (4.8)

Σ̂s
i = αiΣi‘ + (1− αi)[Σ

U
i + µU

i µ
U
i

T ]− µ̂s
i µ̂

s
i
T (4.9)

The adaptation coefficients αi control the amount of contribution of the enroll-

ment data relative to the UBM. During the verification phase, given the features

of the probe sample Y , we compute the likelihood ratio using the speaker model
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λs and the UBM λU :

score =
p(Y |λs)
p(Y |λU)

(4.10)

4.2 Cancelable GMM-Based Speaker Verification

System

In this section, we present the proposed cancelable speaker verification system

based on GMM. The idea was to combine binary representations of speakers’ mod-

els that were originally developed for speaker modeling with cancelable schemes

to achieve the privacy requirements. Therefore, the system is based on two steps:

(i) transformation of the speaker’s model into a binary representation, and (ii) the

protection of the binary representation using a cancelable shuffling scheme.

4.2.1 Binary speaker representation

In [Anguera and Bonastre, 2010], a binarization approach to model the acoustic

features with a binary vector was presented. This approach was exploited for

speaker recognition task in [Bonastre et al., 2011] and for speaker diarization

in [Anguera and Bonastre, 2011] and [Delgado et al., 2015]. For our system, we will

use this binarization approach to develop a privacy-preserving speaker verification

system.

The binarization method described in [Anguera and Bonastre, 2010] was based

on Key background model to convert speaker utterances into binary vectors. In

our work, a specific GMM for each speaker was used to extract the binary rep-

resentation. Given a large set of speech data, first, a UBM is trained. Then,

the speaker’s GMM model is derived by adapting the enrollment utterances to

the UBM. Next, a speaker’s binary representation is defined as an N -dimensional

binary vector, where N is the number of Gaussian Mixtures in the GMM model.

Also, an accumulator vector initialized to 0 with the same length as the binary

vector is defined. Each position in the binary vector will represent a Gaussian

Mixture λ from the GMM model.

Given a speaker’s utterance, the binary representation is extracted as shown
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in step 1 of Figure 4.1. For each acoustic frame in the utterance, we compute

the likelihood lkld given each of the Gaussians λ in the speaker’s GMM model.

Then, we select a percentage θ1 of Gaussians with the highest likelihood values.

For the selected Gaussian, we increase by 1 the corresponding accumulator vector

positions. When all frames have been processed, each position in the cumulative

vector contains the relative importance of each Gaussian in modeling the utterance

we have processed. The conversion of the accumulator vector into the binary rep-

resentation is performed by setting the top θ2 percent positions in the accumulator

vector with the highest values to one, and others to zero. θ1 and θ2 parameters

should be set and optimized according to the biometric performance.

4.2.2 Cancelable speaker template

As shown in step 2 of Figure 4.1, after the binarization step, the speaker’s binary

representation is transformed using a shuffling scheme to generate the cancelable

speaker template. The concept of shuffling scheme was introduced in [Kanade

et al., 2012]. For each user, we associate a binary key Ksh of length Lsh. Then, the

speaker’s binary representation is divided into Lsh blocks each of the same length.

To start the shuffling, these Lsh blocks are aligned with the Lsh bits of the shuffling

key Ksh. In the next step, two distinct parts are created: the first part comprises

all positions’ blocks where the shuffling key bit value is one, and all the remaining

blocks are taken in the second part. These two parts are concatenated to form the

shuffled binary representation which is treated as the cancelable speaker template.

The pseudo-code of the shuffling scheme is shown in Algorithm 1.

Based on this transformation, when two binary representations are transformed

using the same shuffling key, the absolute positions of the blocks change but this

change occurs in the same way for both of the representations. As a result, the

distance between them keeps being the same. On the other hand, if they are

shuffled using two different keys (impostor scenario), the result is a randomization

of the representations, and the distance increases. In addition, this transformation

makes it possible to generate different cancelable templates from the same binary

representation by changing the shuffling key.

Figure 4.1 illustrates the steps required to generate the cancelable speaker
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Figure 4.1: Steps required to generate the cancelable speaker template. Step1:
binarization of the speaker’s utterance. Step2: Transformation of the binary rep-
resentation with the shuffling scheme.

template. First, we start by converting the provided utterance to a binary repre-

sentation with the method described in subsection 4.2.1. Then, the binary rep-

resentation is transformed with the user-specific shuffling key. The efficiency of

this scheme is shown by its ability to affect only the alignment not the values of

the binary vector-bits. This is important because each bit-value in the binary rep-

resentation is the projection of the acoustic location of each acoustic frame from
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Algorithm 1: Shuffling scheme pseudo-code

shuffling (data,Ksh);
Input: data: Binary speaker representation, Ksh: shuffling key
Output: cancelable template
Initialization
part 1 = [ ] Define empty vector
part 2 = [ ] Define empty vector
Lsh = Length of the shuffling key (Ksh)
Ldata = Length of the binary representation (data)
blocksize= Ldata / Lsh

j ← 1
for i = 1 : Lsh do

if Ksh(i) = 1 then
part 1 ← [part1, data( j ; j + blocksize − 1)]

else
part 2 ← [part2, data( j ; j + blocksize − 1)]

end
j ← j + blocksize

end
cancelable template ← concatenate [part1 ; part2]

the feature space into the space of GMM Gaussian. Besides, the shuffled binary

vector, which is treated as the cancelable template, is the result of combining the

biometric sample and the shuffling key. Therefore, once it is leaked, it can be

revoked and a new template can be generated by changing the shuffling key.

4.2.3 System architecture and protocol of the cancelable

speaker verification system based on GMM

Figure 4.2 illustrates the architecture of the proposed cancelable speaker verifica-

tion system based on GMM. As input, we assume that the access server already

has the UBM trained on publicly available data and that the shuffling key of the

user is stored in his token. A unique shuffling key is assigned to each user dur-

ing enrolment and he/she has to provide that same key during each subsequent

verification.

During the enrollment phase, the system sends the UBM to the client-side
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Figure 4.2: Architecture of the privacy-preserving speaker verification system
based on cancelable GMM.

that performs the adaptation with the enrollment features to generate the adapted

model GMM. Using the user’s GMM, the client-side converts the samples of en-

rollment into a binary vector representation. Then, the binary representation is

transformed using the user’s shuffling key received from the token to generate the

enrollment cancelable template named pseudonymous identifier PI. In the end,

the client-side sends the cancelable template and the user’s GMM to the server.

After execution of the enrollment phase with all users, the access server has the

protected templates, along with the GMMs.

During the verification phase, the server sends the GMM of the claimed identity

to the client-side to extract the binary representation from the probe samples.

Then, the token sends the shuffling key to the client-side that transforms the

binary representation and generates the probe cancelable template PI*. The PI*

is transferred to the server that measures the Hamming distance between the

stored PI and the PI* to decide based on a predefined threshold the outcome

of the verification. To compare between two cancelable templates PI and PI*, a

dissimilarity score s is obtained by computing their Hamming distance as follows:

s(PI, PI∗) = 1−

N∑
i=1

(PI[i] ∧ PI∗[i])

N
(4.11)
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where ∧ is the operator of AND logic between any two bits.

Based on this protocol, during the enrollment and verification, the server never

has access to the voice samples provided by the user. The client-side sends only the

protected templates to the server sides, and the biometric comparison is performed

with the cancelable templates on the transformed domain. A shortcoming of the

above protocol is that the server has the GMMs in plaintext. One possible solution

is to store the speaker’s GMM on the client-side or to encrypt the GMM before

sending it to the server.

4.3 Experimental Evaluation and Results

In this section, the proposed privacy-preserving speaker verification system based

on GMM is evaluated according to the privacy requirements described in the stan-

dard for biometric information protection [ISO/IEC JTC1 SC27 Security Tech-

niques, 2011]. First, biometric performance evaluation of speaker verification sys-

tems based on the baseline (unprotected) GMM and the cancelable templates will

be reported. Then, the evaluations of the revocability, unlinkability, and irre-

versibility are provided. Furthermore, a security analysis of the cancelable speaker

verification system based against different attack scenarios is reported.

4.3.1 Databases

The experiments are conducted using TIMIT database [Keating et al., 1994] for

tuning and parameterizing the speaker binary representation, and the RSR2015

text-dependent database [Larcher et al., 2014] to evaluate the cancelable system.

TIMIT database contains a total of 6300 sentences, ten sentences spoken by

each of the 630 speakers (438 males and 192 females) of eight major dialects of

American English. This database was used to tune the speaker binary representa-

tion.

The RSR2015 database comprises speech recorded from 300 speakers, including

143 females and 157 males. For our evaluation, part1 of RSR2015 is used. This

part focuses on a text-dependent speaker verification task where each speaker

pronounces 30 fixed sentences in nine sessions. The duration of each sentence
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varies between 2 and 3 seconds. The comparison protocol described in [Larcher

et al., 2014] is followed. From the nine sessions of each speaker, three sessions are

used for the enrollment while the rest of the sessions are used for the test.

RSR2015 database provides four types of trials depending on whether the test

utterance is spoken by the target user or not and that the spoken utterance is the

correct passphrase or not:

Target-correct (tar-c): where the target speaker pronounces the expected pass-

phrase.

Target-wrong (tar-w): where the target speaker pronounces a wrong pass-phrase

(a phrase that is different from the enrollment one).

Impostor-correct (imp-c): where a non-target speaker pronounces the expected

pass-phrase.

Impostor-wrong (imp-w): where a non-target speaker pronounces a wrong pass-

phrase (a phrase that is different from the enrollment one).

Target correct trials are considered as target trials, while the others are considered

as non-target trials. The impostor-correct trials are more challenging, as the non-

target user pronounces the expected passphrase that is used to enroll the target

speaker.

4.3.2 Experimental setting

The feature extraction component is common for the baseline GMM-UBM system

and the proposed cancelable system. The feature vector is composed of 20 MFCC

coefficients with their first and second derivative coefficients and the log energy

leading to a 63-dimensional feature vector. The MSR Identity Toolbox [Sadjadi

et al., 2013] was used to extract the features.

As described in section 4.2, for both the baseline GMM-UBM and the cance-

lable system, we need to train a GMM model for each speaker. For this, UBM

gender-dependent models are trained with 1024 Gaussians using the background

partition of RSR2015 database. Then, the speaker GMM model is trained by

adapting the enrollment utterances to the UBM using the MAP criterion. As de-

scribed in the protocol of RSR2015 part1, three utterances enrollspeechg selected

from the nine sessions are used to train the speaker’s GMM model during the
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enrollment.

For the cancelable system, during the enrollment phase, the selected enroll-

ment utterances enrollspeechg used to train the specific speaker GMMg model

are employed to extract three binary vectors using the steps described in Fig-

ure 4.1. Then, from the three binary vectors, the speaker binary representation

of length 1024 bits is extracted by considering the significant bits (bits in the bi-

nary vectors which are less likely to change). The transformation of the speaker

binary representation with the user shuffling key keyg generates the enrollment

cancelable template. For our evaluation, we use shuffling keys with length equal

to the speaker binary representation Ldata = Lsh = 1024.

During the verification phase, the user presents the probe voice samples and

the shuffling key. The key could be the same as the enrollment key in the case of

a genuine probe or it could be a random key in the case of an impostor probe. For

genuine comparison, the probe cancelable template of the target user is extracted

from his/her GMMg by providing the target probe voice samples and the target

user shuffling key keyg. For impostor trials, a non-target user I will try to extract a

probe cancelable template from the target user GMMg model by providing his/her

probe voice samples probe− speechI , and his/her shuffling key keyI .

4.3.3 Binary speaker representation analysis

In order to extract speaker binary representations that discriminate between speak-

ers’ characteristics, the parameters θ1 and θ2 need to be tuned according to the

biometric performance. In this evaluation, we search the optimum parameters θ1

and θ2 that minimizes the equal error rate (EER). Using TIMIT database, for

each speaker, we extract the different possibilities of binary vectors according to

parameters θ1 and θ2. Figure 4.3 shows the EER distribution on TIMIT database

for SV system based on binary speaker vectors according to θ2 for a fixed value of

θ1 equal to 2%. As shown, for θ2 < 20% binary vectors cannot discriminate be-

tween speakers, because the most selected positions coincide with Gaussians that

model noisy acoustic frames. Also, for θ2 > 40% the discriminability power of the

speaker binary vector degrades. We observe that the optimum value for θ2 is 30%.

Running a similar experiment for θ1, we observe that θ1 = 2% minimize the EER.
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Figure 4.3: EER distribution for speaker verification system based on binary rep-
resentation for the speaker according to parameter θ2 on the development TIMIT
database. The θ2 parameter tuned on TIMIT database will be used during the
evaluation on the RSR2015 database.

For the rest of the work, we use θ1 equal to 2% and θ2 equal to 30% for the

extraction of the binary representations on the RSR2015 database.

4.3.4 Biometric performance evaluation of the cancelable

GMM system

One of the main requirements for cancelable biometrics is the fact that the pro-

tection of biometric information should not degrade the biometric performance

compared to the baseline system (unprotected system). Therefore, for objective

comparison, the biometric performance of the baseline GMM-UBM and the pro-

posed cancelable system are reported.

In this evaluation, we report the performance of the cancelable system in the

legitimate scenario. In this scenario, the target user employs his probe biometric

sample with his shuffling key to be authenticated, and the non-target user will use

his probe biometric sample with a random shuffling key to impersonate the target

user. The system performance is reported in terms of Equal Error Rate (EER).

The EER is the rate at which the False Acceptance Rate (FAR) and the False Re-

jection Rate (FRR) are equal. We have also used the targets and no-targets score
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Table 4.1: Biometric performance of the speaker verification systems based on
the baseline GMM, binary templates, and cancelable templates on the RSR2015
female evaluation subset for the impostor correct and impostor wrong trials in
terms of EER (%).

Performance
EER%

Baseline
GMM

Binary
template

Cancelable
GMM

tar-c/imp-c 1.98 10.25 0.01
tar-c/imp-w 0.43 2.62 0.01

Table 4.2: Biometric performance of the speaker verification systems based on the
baseline GMM, binary templates, and cancelable templates on the RSR2015 male
evaluation subset for the impostor correct and impostor wrong trials in terms of
EER (%).

Performance
EER%

Baseline
GMM

Binary
template

Cancelable
GMM

tar-c/imp-c 3.5 16.05 1.32
tar-c/imp-w 0.9 7.31 2.18

distributions along with the ROC curves to evaluate the matching performance.

Regarding the biometric performance of the baseline GMM speaker verification

system reported in Tables 4.1 and 4.2, we observe that better biometric perfor-

mance is obtained with target-correct/impostor-wrong trials than with the target-

correct/impostor-correct trials. This was expected since the impostor-correct trials

are more challenging, as the non-target user pronounces the expected passphrase

used by the target user to authenticate.

For the speaker verification system based on binary representations, the EER

degrades compared to the baseline system due to the loss of biometric information.

For example, on the female subset, for target-correct/impostor wrong trails, the

EER increases from 0.43% using baseline GMM to 2.62% using binary templates.

For the cancelable GMM system, the biometric performance obtained in the fe-

male and male evaluation subset of RSR2015 are respectively reported in Tables 4.1

and 4.2. The proposed system improves the biometric performance compared to

the baseline system. A clear improvement in terms of EER for both trials impos-

tor correct and impostor wrong is reported. As an example, on the female subset,

for target-correct/impostor-correct trails, the EER of the baseline system is 1.98%
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which reduces to 0.01% when shuffling scheme is applied to the binary templates.

The biometric performance improvement is related to the overlap between the

target and non-target distributions. The smaller the overlap between the two

distributions, the better the system performs. Through the distributions in Fig-

ure 4.4, it can be shown that the shuffling scheme preserves the target Hamming

distances and increases the non-target Hamming distances. When applying the

shuffling scheme, the mean of the target distribution is preserved exactly just like

in the binary templates level before performing the shuffling transformation. Con-

trarily, the mean of the non-target distribution is augmented when the shuffling

scheme is applied and the distribution is right-shifted. This reduces the overlap

between target and non-target distributions which improves the discrimination

capacity of the system and thereby leads to a better verification performance.

We report in Figure 4.5 the ROC curves obtained for speaker verification sys-

tems based on the baseline GMM, binary templates, and the cancelable templates

on the female evaluation subset of RSR2015 for the target-correct/impostor-wrong

Figure 4.4: Distribution of speaker verification systems scores based on the binary
templates (before applying the shuffling) and cancelable templates (after applying
the shuffling). The distributions are reported for target-correct and impostor-
correct trials on the female evaluation subset of part1 RSR2015 database in the
legitimate scenario.
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Figure 4.5: ROC curves for speaker verification systems based on the baseline
GMM, binary speaker representation and the proposed cancelable templates on
the female evaluation subset of part1 RSR2015 database.

trials. The cancelable system reaches better results with an EER = 0.01% com-

pared to the baseline GMM system with EER = 0.43%

4.3.5 Revocability analysis

For the cancelable biometric system, the protected biometric template should be

able to be revoked and renewed in case it is compromised. Revocability is eval-

uated by calculating the pseudo-impostor scores. The pseudo-impostor score is

the comparison of a cancelable template of a particular user with other cance-

lable templates of the same user generated from the same biometric sample and

transformed with different shuffling keys. For this, we transformed a speaker’s

binary template with 300 000 randomly generated shuffling keys. Then, the first

shuffled template is compared with the remaining cancelable templates to com-

pute the pseudo-impostor scores. This process is repeated with 30 different users.

As shown in Figure 4.6, the distribution of the pseudo-impostor scores resembles

the non-target distribution which means that the generated shuffling templates

are indistinguishable from each other, although they are generated from the same
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speaker’s binary template. As a result, in case of compromise, a cancellation is

possible and a new cancelable template can be generated by changing the shuffling

key.

For the protection of the binary representations using the shuffling scheme

transformation, the maximum number of the cancelable templates or Pseudony-

mous Identifier PI that can be generated from the same biometric sample is given

by the number of possible permutations. Moreover, because the decision in the

proposed system is based on a threshold comparison, we should not account for

templates falling in the same neighborhood. We estimate the maximum number

of templates using the Hamming-packing bound [MacWilliams and Sloane, 1977].

We assume that the target speaker template is the center of a sphere with

a radius of r, known as a Hamming sphere. r represents the maximum number

of non-matching bits obtained when comparing two templates belonging to the

same speaker. r is equal to (t× l) where t is the EER threshold of the cancelable

system and l is the length of cancelable template. Then, the possible templates,

that their distance compared to the speaker template are less than the radius r

(meaning they are within the sphere) are not taken into account. Using the EER

threshold t = 0.37 of the cancelable system, for speaker template of length l = 1024

and shuffling key of Lsh = 1024, we get almost 250 possible cancelable template PI

for each user as given in Eq. 4.12.

PI =
Number of possible permutation

V olume of Hamming spheres
=

1024!

(512!)(512!)
∑(t×512)/2

k=0

(
512
2k

) ≈ 250

(4.12)

4.3.6 Unlinkability analysis

As defined in [ISO/IEC JTC1 SC27 Security Techniques, 2011] the unlinkability

is ”a propriety of two or more biometric references that they cannot be linked to

each other or to the subject(s) from which they were derived”. The goal of this

evaluation is to determine if there exists some methods to decide if two protected

templates T1 and T2 enrolled in different applications are generated from the

59



4.3. EXPERIMENTAL EVALUATION AND RESULTS

Figure 4.6: Revocability analysis: Distribution of target, non-target, and pseudo-
impostor scores for cancelable GMM system on the female evaluation subset of
part1 RSR2015 database.

same biometric sample or not. For this, we use the framework defined in [Gomez-

Barrero et al., 2017] to evaluate the unlikability of the proposed cancelable speaker

verification system. Two types of score distributions will be analyzed for the

assessment of the unlinkability provided by the protected templates:

Mated instances Hm: scores computed from cancelable templates extracted from

different samples of the same subject using different shuffling keys. It represents

the probabilities p(s|Hm), where s is the score between two templates.

Non-mated instances Hnm: scores computed from cancelable templates generated

from samples of different subjects using different shuffling keys. It represents the

probabilities p(s|Hnm).

Dsys
↔ ∈[0,1] was defined in [Gomez-Barrero et al., 2017] to have an estimation

of the global linkability of the system:

Dsys
↔ =

∫ Smax

Smin

D↔(s)p(s|Hm) ds (4.13)

where D↔(s) ∈ [0, 1] gives an estimation of the linkability of a system for a specific

score and [Smin, Smax] is the whole score range. If a system has Dsys
↔ = 1, where
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both score distributions (mated and non-mated) have no overlap, it means that the

system is fully linkable. If a system has Dsys
↔ = 0, where both score distributions

(mated and non-mated) are overlapped, it means that the system is fully unlink-

able. As shown in Figure 4.7, the distribution of mated and non-mated scores

for the cancelable GMM system overlap with Dsys
↔ equal to 0.1, which makes the

system fully unlinkable.

Figure 4.7: Unlinkability analysis: Distribution of Mated and Non-Mated scores
for the cancelable GMM system on the female evaluation subset of part1 RSR2015
database.

4.3.7 Irreversibility analysis

The irreversibility refers to the security of the biometric feature from which the

cancelable template was generated [ISO/IEC JTC1 SC27 Security Techniques,

2011]. For the proposed system, the reversibility analysis depends on whether the

attacker has information about the shuffling key or not.

Given only the shuffling key, the attacker could not reconstruct the original

binary representation, since the shuffling key does not provide information about

the values of the binary vector. Without having information about the shuffling

key and prior knowledge about the distribution of the non-shuffled binary vectors,
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it is computationally not feasible to revert to the original binary representation

as the number of permutations to be tested is too big. In the proposed system, if

the adversary wants to guess the correct value of binary vector with a length of

1024 and knowing that the number of bits equal to 1 is 30% of bits, the guessing

complexity is equal to 2395 the number of possible permutation, given by Eq. 4.14

as follows:

Number of possible permutation =
1024!

(1024× 0.3)!(1024× 0.7)!
≈ 21018 (4.14)

In case the attacker has stolen the shuffling key and the cancelable template,

the reconstruction of the original binary representation is feasible. However, due

to the binarization process, it is difficult to recover the original features.

4.3.8 Security analysis

The proposed system involves two factors: biometric and shuffling key. In real-

world applications, it is mandatory to evaluate the system in the following scenar-

ios:

Stolen biometric scenario: In this scenario, an attacker uses the biometric sample

of the target user and transforms it with a random shuffling key to pretend as a

target user.

Stolen shuffling key scenario: In this scenario, the attacker has the shuffling key

of the target user and tries to access the system by presenting his/her biometric

sample and the shuffling key of the target user.

4.3.8.1 Stolen biometric attack

To evaluate the proposed cancelable system against stolen biometric attacks, we

compute the false acceptance rate (FAR), when the EER threshold of the cance-

lable system is considered as the decision threshold. We suppose that the biomet-

rics data for all the speakers in the RSR2015 database are compromised. In such

a case, an adversary provides the stolen biometric with a random shuffling key to

gain access as the target user. In Figure 4.8, we report the FAR curve obtained in

such an attack scenario. As shown, at the EER threshold=0.37, the FAR is equal
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to 0. Thus, the system is robust to stolen biometric attacks.

Figure 4.8: Stolen biometric analysis: FAR curve of the cancelable GMM system
in the stolen biometric attack scenario.

4.3.8.2 Stolen shuffling key attack

Table 4.3: FAR of stolen key attacks according to the the cancelable system per-
formance in terms of FAR and FRR in the legitimate scenario.

Legitimate
scenario

FAR % 0 0 0 0 0 0 0
FRR % 0.32 0.79 1 1.54 2 2.6 3

FAR stolen key scenario% 21.4 14.4 10.9 6.48 3.55 2.6 1.79

In this scenario, the attacker uses his/her biometric sample and the target

user’s shuffling key to gain unauthorized access. In Table 4.3, we report the false

acceptance rate obtained for this attack according to the biometric performance

of the cancelable system in terms of FAR and FRR in the legitimate scenario.

The FAR in the stolen-key scenario depends on the FRR fixed for the cancelable

system in the legitimate scenario. In fact, by increasing the FRR of the cancelable

system in the legitimate scenario, we improve the FAR for the stolen key scenario.

As shown in Figure 4.9, when we reduce the threshold of the verification decision,
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for the legitimate scenario, we still get FAR=0 but the FRR increases. However,

for stolen key scenario, the system becomes more robust since the FAR for stolen

key attack decreases. As reported in Table 4.3, at the threshold corresponding

to FRR=1.54% and FAR=0 in the legitimate scenario, the FAR=6.48% in the

stolen key scenario. When we choose the threshold corresponding to FRR=3%

and FAR=0 in the legitimate scenario, we improve the robustness of the cancelable

system to stolen key attack and a FAR=1.79% is obtained.

Figure 4.9: Stolen shuffling key analysis: FAR and FRR curves of the cancelable
GMM system in the legitimate and the stolen key scenarios.

4.3.8.3 Brute force attack

A brute force attack consists of an adversary trying to guess the correct cancelable

template to access as the target user. In the proposed system, the verification

decision is based on Hamming distance comparison. The dissimilarity score is

computed based on the number of matches between the enrollment and probe

cancelable templates. If the dissimilarity score is less than the threshold, the test

will be deemed as a legitimate user. For the proposed system, the dimension of

the cancelable template is 1024-bits, and the threshold at EER=0.01% is 0.37.

Therefore, if the adversary wants to guess the correct value of the cancelable
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Figure 4.10: Brute force attack: FAR curve of the cancelable GMM system in the
brute force attack scenario. FAR=0 at the EER threshold.

template, the guessing complexity is 21024∗(1−0.37) attempts.

For the evaluation of the brute force attack, we attacked the cancelable tem-

plates of 30 user of part1 RSR2015 with 200,000 synthesized templates. As shown

in Figure 4.10 the FAR = 0 for this attack at the EER threshold.
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4.4 Chapter Summary and Conclusions

In this chapter, we have proposed a privacy-preserving speaker verification system

based on GMM. Cancelable templates are generated by first modeling the speaker

with a binary template. Then, the binary template is protected with the shuffling

scheme. Experimental results show that the speaker verification system based on

cancelable templates improves the biometric performance compared to the baseline

GMM system. The system achieves the privacy requirements while maintaining

the biometric performance and an EER = 0.01% was reported. In addition, the

proposed system satisfies the requirements of biometric information protection

described in the ISO/IEC 24 745. The transformation of the speaker’s binary

template with the shuffling scheme makes it possible to generate from the same

biometric sample different versions of cancelable templates that cannot be linked

to the user. These properties ensure the privacy of the user when he is enrolled in

different applications using the same biometric sample (prevents cross-matching),

and in case the user’s cancelable template is compromised, it will be revoked and

renewed.
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5.1. BASELINE SPEAKER VERIFICATION BASED ON NON-PROTECTED
I-VECTORS

This chapter presents a privacy-preserving speaker verification system based

on a cancelable i-vector. The cancelable scheme includes two steps, (i) i-vector bi-

narization, and (ii) the protection of the binary i-vector with the shuffling scheme.

The proposed system performs speaker verification without revealing the speaker’s

voice information to the access server, either during enrollment or during the ver-

ification phase. Unlike the cancelable GMM system proposed in chapter 4, the

system based on cancelable i-vector doesn’t require storing the speaker’s GMM in

plaintext. Privacy evaluation of this system according to the standard of biomet-

ric information protection (ISO/IEC 24745) shows that the proposed cancelable

i-vector system achieves the revocability, unlinkability, irreversibility requirements,

and improves biometric performance compared to the unprotected system. More-

over, security analysis was performed based on the evaluation methodology de-

scribed in [Rosenberger, 2018]. Additionally, we demonstrate that the proposed

cancelable scheme can also operate to protect deep neural network speaker em-

beddings such as x-vectors.

This chapter is structured as follows. Section 5.1 gives a general description

of the baseline speaker verification system based on i-vectors. In Section 5.2, we

present the proposed speaker verification system based on cancelable i-vector. A

description of the architecture and the steps required to generate the cancelable

template is provided. Evaluation of the proposed system is presented in Section 5.3.

Finally, the chapter summary and conclusions are presented in section 5.4.

5.1 Baseline Speaker Verification Based on non-

Protected i-Vectors

The i-vector system proposed by [Dehak et al., 2010] provides a way to generate

a low dimensional fixed-length representation of a speech utterance that preserves

speaker-specific information. This technique was inspired by the Joint Factor

Analysis framework presented in [Kenny et al., 2008]. The i-vector system maps a

sequence of features such as MFCC obtained from a speech utterance to a fixed-

length low dimensional vector. A Universal Background Model is used to collect

Baum-Welch statistics from the speech utterance. Then, the speaker-and channel-
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dependent GMM-supervector M is constructed by appending together the first-

order statistics for each mixture component that can be represented via a single

total variability subspace as follows:

M = m+ Tw (5.1)

where m is the speaker- and channel-independent supervector extracted from the

UBM, T is a low-rank matrix named total variability matrix spanning the sub-

space with speaker-specific information variability, and w is a standard normal

distributed vector. The posterior mean of w is the corresponding i-vector.

The i-vector comprises both speaker and channel variability. Therefore, channel

compensation or channel modeling techniques usually follow the i-vector extraction

process as the Linear Discriminant Analysis (LDA) or Within-Class Covariance

Normalization (WCCN) [Kanagasundaram et al., 2011]. For the biometric com-

parison, the cosine scoring is used to compare the target speaker i-vector w target

and the probe i-vector wtest:

score(wtarget,w test) =
〈w target,w test〉
‖w target‖ ‖w test‖

(5.2)

Also, the probabilistic linear discriminant analysis (PLDA) [Kenny, 2010], [Garcia-

Romero and Espy-Wilson, 2011] was introduced as back-end scoring. PLDA has

the advantage of producing well-calibrated likelihood ratios without requiring score

normalization when training and evaluation data are drawn from the same domain.

For the proposed cancelable i-vector, we address the protection of i-vector system

using cosine distance as back-end scoring.

5.2 Cancelable Speaker Verification System Based

on i-Vectors

In this section, we describe the cancelable speaker verification system based on the

binarization of i-vector and its transformation with the shuffling scheme.
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5.2.1 Binary i-vector representation

The goal behind the binarization step is to hide the original i-vector. In order to

extract a binary representation from the speaker’s i-vector, thresholding method

was applied. The use of the mean or median of the i-vectors as threshold gives

close results on binary i-vectors since i-vectors distribution is close to the normal

distribution. For the proposed system, the median is used to be sure that inde-

pendently of the speaker, each binary i-vector contains an equal number of ones

and zeros. This is useful in the revocability and irreversibility analysis. Given a

speaker’s i-vector, the elements having a higher value than the median are con-

verted to one, while the remaining are converted to zero. From an i-vector X of

dimension N , X = (x1, ..., xN), we obtain a binary vector Xbin = (b1, ..., bN) by

comparing each component to the median value of the i-vector.

bi =

0, if xi ≤ median(X )

1, otherwise
for i in (1, ..., N) (5.3)

5.2.2 Cancelable i-vector

After i-vector binarization, the binary i-vector is transformed with the shuffling

scheme [Kanade et al., 2012] described in Chapter 4, section 4.2.2, subsection 4.2.2,

to generate the cancelable i-vector. The cancelable i-vector template is the result of

combining the biometric sample (binary i-vector) and the shuffling key. Therefore,

once the protected i-vector is leaked, it can be revoked and a new template can be

generated by changing the shuffling key.

Figure 5.1 illustrates the architecture of the proposed cancelable i-vector. Ac-

cording to the ISO/IEC 24745, the system falls under the category Model G. This

model employs data separation through distributed storage of data elements. We

propose the following protocol for the proposed cancelable system. As input, we

assume that the server already has the total variability matrix T with the UBM

and the shuffling key of the user is stored in the token.

During the enrollment phase, the user provides the enrollment voice samples to

the client-side that extracts the MFCC features and generates the binary i-vector

using the total variability matrix T and UBM received from the server. Then,
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Figure 5.1: Architecture of the privacy-preserving speaker verification system
based on cancelable i-vectors.

the client-side transforms the binary i-vector using the user’s shuffling key received

from the token and sends it to the server. As an output, the server receives the

protected i-vector (cancelable i-vector) called the pseudonymous identifier PI.

During the verification phase, as an input, the user provides the probe voice

samples to extract the MFCC features and the server has the total variability

matrix T with the UBM and the pseudonymous identifier PI. The server sends

the T and the UBM to the client-side to extract the test binary i-vector. Then

the token sends the shuffling key to the client-side that transforms the binary

i-vector with the shuffling key and generates the probe cancelable i-vector PI∗.
Finally, the probe cancelable i-vector is transferred to the server that measures the

Hamming distance between the stored PI and the PI∗ to decide the outcome of

the verification.

Based on this protocol, the server never has access to the voice recorded by the

user, and it does not possess a speaker’s model in plaintext that could be misused.

The server stores only the cancelable i-vector generated during enrollment and the

total variability matrix T , that it does not reveal personal sensitive information.

72



5.3. EXPERIMENTAL EVALUATION AND RESULTS

5.3 Experimental Evaluation and Results

In this section, we evaluate the cancelable i-vector system according to the re-

quirements described in the standard for the biometric information protection.

Also, we demonstrate the feasibility of the proposed cancelable scheme to pro-

tect DNN speaker embeddings such as x-vectors. Furthermore, a security analysis

of the cancelable i-vector system based on the evaluation methodology described

in [Rosenberger, 2018] is reported.

5.3.1 Databases

For the evaluation of speaker verification system based on cancelable i-vectors,

text-dependent and text-independent databases are used to study the feasibility

of applying the cancelable scheme for both scenarios.

For text-dependent scenario, we report the biometric performance using the

RSR2015 [Larcher et al., 2014] text-dependent database described in Chapter 4,

section 4.3.1. For text-dependent scenario, we will show that due to the revoca-

bility property of the cancelable system, in case the passphrase of the target user

is compromised, instead of selecting a new one, we can generate a new speaker

biometric reference from the same compromised passphrase.

For text-independent scenario, we report the biometric performance using NIST

2016 Speaker Recognition Evaluation data [Sadjadi et al., 2017]. The dataset

comprises utterances in two languages, Tagalog and Cantonese. Enrollment files

have nominal durations of 60 s of speech whereas the duration of test files ranges

from 10 to 60 s. The test set is composed of 37062 targets and 194 966 non targets

trials for the pooled (female + male) condition.

In addition, we demonstrate that the proposed cancelable scheme could op-

erate on DNN x-vecotors embeddings [Snyder et al., 2018] using VoxCeleb [Na-

grani et al., 2017] text-independent database. VoxCeleb includes two datasets.

VoxCeleb1 contains over 100,000 utterances for 1251 celebrities, while VoxCeleb2

contains over 1 million utterances for over 6112 celebrities extracted from videos

uploaded to YouTube. The datasets are fairly gender-balanced, (VoxCeleb1 55%

male, VoxCeleb2 61% male) and the speakers span a wide range of different eth-
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nicities, accents, professions, and ages.

5.3.2 Experimental setups

For the evaluation of cancelable i-vector in text-dependent scenario on RSR2015

database, the MSR Identity toolbox [Sadjadi et al., 2013] was used. For speech fea-

tures, 20-dimensional MFCCs are extracted with their first and second derivative

and the log energy, leading to a 63-dimensional feature vector. Then, gender-

independent UBM containing 1024 Gaussian is trained by using all male and fe-

male data of background partition of RSR2015 database. The UBM training data

are reused for the training of the total variability matrix T of rank 400 by using

10 iterations of the expectation-maximization algorithm. After training the UBM

and T , 400-dimension i-vectors are extracted. The i-vectors are passed through a

linear discriminant analysis reducing their dimension from 400 to 200. The LDA is

trained using the RSR2015 training data. Sentences having the same pass-phrase

of a particular speaker are treated as belonging to the individual speaker class.

This gives a total of (50male+ 47female) ∗ 30 = 2910 speaker-passphrase classes.

To generate the cancelable i-vectors, the extracted i-vectors are binarized and

transformed with the shuffling scheme. The cancelable speaker verification system

is evaluated using the i-vectors without LDA and i-vectors passed through the

LDA. Therefore, shuffling keys of lengths 400 and 200 are used to transform the

binary i-vectors of dimensions 400 and 200 respectively.

For the evaluation of cancelable i-vector in text-independent scenario on SRE16

database, we use the the recipe available on Kaldi1. For speech features, 24-

dimensional MFCCs are extracted with a frame length of 25 ms every 10 ms. These

feature vectors are mean-normalized over a sliding window of up to 3 seconds.

Then, energy-based voice activity detection (VAD) is applied to estimate frame-

by-frame speech activity, and filter out non-speech frames. A UBM with 2048

mixture components is trained with the development SRE16 data. Then, i-vector

extractor is trained with NIST SRE 2004-2010 and Switchboard databases. The i-

vectors of dimension 600 are extracted for the test set of SRE16 and processed with

mean subtraction, length normalization and LDA reducing their dimension from

1,https://github.com/kaldi-asr/kaldi/tree/master/egs/sre16/v1
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600 to 200. The i-vectors are then binarized and transformed with the shuffling

scheme to generate the cancelable templates.

For speaker verification based on x-vector system, we use the recipe available on

Kaldi2, where 512-dimensional x-vector speaker embeddings are extracted using a

Time Delay Neural Network [Snyder et al., 2018] trained on Voxceleb2 [Chung

et al., 2018] (dev and test portions) and the training portion (Dev) of Vox-

Celeb1 [Nagrani et al., 2017]. The x-vectors are binarized and transformed with the

shuffling scheme to generate the cancelable x-vectors. The test set of VoxCeleb1

is used for the evaluation.

5.3.3 Biometric performance evaluation

The goal behind the biometric performance evaluation of speaker verification sys-

tem based on cancelable i-vectors is to validate that the proposed protection

scheme allows the protection of i-vectors without degradation in terms of bio-

metric performance compared to the baseline system (without protection). Our

goal is not to develop a cancelable system that outperforms the performance of

the state of the art.

5.3.3.1 Biometric performance evaluation of the cancelable i-vector

system on RSR2015 text-dependent database

Biometric performance of speaker verification systems based on the baseline, bi-

nary, and cancelable i-vectors in terms of EER are reported in Tables 5.1 and 5.2

on the female and male evaluation subset of part1 RSR2015. The evaluation was

conducted under the legitimate scenario for target-correct, impostor-correct, and

impostor-wrong trials of the RSR2015 database.

For the baseline system evaluation, the performance obtained was consistent

with the results reported in [Larcher et al., 2014]. The speaker verification systems

perform better with the impostor-wrong trials than impostor correct trials in terms

of EER%. In fact, the impostor-correct trials are more challenging, as the non-

target user pronounces the expected passphrase that is used to enroll the target

2https://github.com/kaldi-asr/kaldi/tree/master/egs/voxceleb/v2
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Table 5.1: Biometric performance of the speaker verification systems based on the
baseline, binary, and cancelable i-vectors. The performance is reported on the
RSR2015 female evaluation subset for the impostor correct and impostor wrong
trials in terms of EER (%).

System
Baseline
i-vector

Binary
i-vector

Cancelable
i-vector

i-vector without LDA
tar-c/imp-c 2.55 7.27 1.12
tar-c/imp-w 0.37 2.48 1.01

i-vector with LDA
tar-c/imp-c 3.39 9.43 0.08
tar-c/imp-w 0.2 1.45 0.07

Table 5.2: Biometric performance of the speaker verification systems based on
the baseline, binary, and cancelable i-vectors. The performance is reported on
the RSR2015 male evaluation subset for the impostor correct and impostor wrong
trials in terms of EER (%).

System
Baseline
i-vector

Binary
i-vector

Cancelable
i-vector

i-vector without LDA
tar-c/imp-c 6.22 10.35 2.35
tar-c/imp-w 2 4.84 2.5

i-vector with LDA
tar-c/imp-c 5 10.15 0.22
tar-c/imp-w 0.4 0.92 1.04

speaker. As example, on the female subset, for target-correct / impostor-wrong tri-

als, the EER=0.37% that increases to 2.55 % for target-correct / impostor-correct

trials. Moreover, for the baseline i-vectors, we observe that the LDA performs bet-

ter when applied to the i-vectors extracted from male speakers than from females.

This could be explained by the fact that the number of speech utterances for males

used to train the LDA was higher than the female ones. In addition compared to

the performance reported in Chapter 4, Table 4.1, we observe that the system

based on GMM performs better than the system based on i-vector since the GMM

is more dedicated to text-dependent scenario.

For the speaker verification system based on cancelable i-vectors, the biomet-

ric performance outperforms that of the baseline (unprotected) i-vectors system.

For example, for target-correct/impostor-correct trials on the female subset, the

EER goes from 2.55% using the baseline i-vectors without LDA to 1.12% using

the cancelable i-vectors. The proposed cancelable scheme improves the biometric
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Figure 5.2: DET Curves for speaker verification systems based on the baseline
i-vectors (with LDA) and the cancelable i-vectors using target-correct/impostor-
correct trials on the female evaluation subset of RSR2015.

performance. As shown in Figure 5.2, the EER for speaker verification system

based on the i-vectors with LDA is 3.39%, which improved to 0.08% using the

cancelable i-vectors. For target-correct/impostor-wrong trials, the performance of

cancelable i-vectors is close to that of the baseline i-vectors.

In addition, from the reported results we observed that the best performance of

the cancelable system was obtained using the cancelable i-vectors extracted from

the i-vectors passed through the LDA. This could be explained through Figure 5.3,

where it is shown that the overlap between the target and non-target scores distri-

butions of cancelable i-vectors with LDA is smaller than the one obtained without

LDA. In fact, before applying the shuffling, the mean of the distribution of the

non-target scores using the binary i-vectors is 0.35 with i-vectors passed through
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Figure 5.3: Distribution scores of target correct/impostor-correct trials on the
female evaluation subset of RSR2015.

the LDA and 0.45 using i-vectors without LDA. When applying the shuffling to

transform the binary i-vectors with LDA, the mean is shifted by 0.14 and moves

from 0.35 to 0.49, resulting in a separation between the target and no-target dis-

tributions. However, for binary i-vectors without LDA, the mean is only shifted

by 0.04 from 0.45 to 0.49 which does not allow a good separation between target

and no-target scores.

5.3.3.2 Biometric performance evaluation of the cancelable i-vector

system on SRE16 text-independent database

Table 5.3 reports the biometric performance of the speaker verification systems

based on the baseline, binary, and cancelable i-vectors in terms of EER on the

evaluation SRE16 database. As a baseline system, we use the recipe available on

Kaldi 1, where 600-dimensional i-vector are extracted and processed with mean

subtraction, length normalization, and LDA reducing their dimension from 600 to

200. For the cancelable system, the 200-dimensional i-vector is binarized using the

median and transformed with a shuffling key of dimension 200.

As shown in Figure 5.4 and Table 5.3, the protection of the i-vector with the
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shuffling scheme does not degrade the biometric performance compared to the

baseline (unprotected) system. Speaker verification system based on cancelable

i-vectors maintains the performance with EER=12.57% compared to the baseline

i-vectors with cosine scoring as back-end (EER=16.74%).

In Table 5.3, we report the biometric performance of the speaker verification

Figure 5.4: DET Curves for speaker verification systems based on the baseline
(non-protected) i-vectors, binary, and the cancelable i-vectors on the evaluation
set of SRE16 database.

Table 5.3: Biometric performance of the speaker verification systems based on the
baseline, binary, and cancelable i-vectors on the text-independent SRE16 evalua-
tion database.

Systems Back-end scoring EER%
Baseline i-vectors Cosine 16.74
Baseline i-vectors + Shuffling Cosine 5.88
Binary i-vectors Hamming 21.97
Cancelable i-vectors Hamming 12.57
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system based on i-vectors transformed directly with the shuffling scheme with-

out passing by the binarization step (baseline+shuffling). As reported, the EER

obtained equal to 5.88% is better than the performance reported with shuffled

binary i-vectors (cancelable i-vectors). However, without binarization, in case the

shuffling key is compromised, the original i-vector will be recovered since the shuf-

fling scheme is reversible. The goal behind the binarization is to hide the original

i-vector.

Based on the above evaluation, we can conclude that the protection of i-vectors

passed through the LDA or not with the cancelable scheme (binarization + shuf-

fling) maintains the biometric performance compared to the unprotected (baseline)

i-vectors in terms of verification accuracy.

5.3.3.3 Biometric performance evaluation of the cancelable x-vector

system on the VoxCeleb text-independent database

The proposed cancelable scheme shows its effectiveness on the speaker verification

based on i-vector. In order to demonstrate its feasibility on the state-of-the-art

speaker verification systems, we used this cancelable scheme to protect x-vectors

speaker embeddings. As a baseline x-vector system, we adopt the recipe available

on Kaldi1 where 512-dimensional x-vector speaker embeddings are extracted using

a Time Delay Neural Network [Snyder et al., 2018] trained on VoxCeleb1,2 [Na-

grani et al., 2017]. For the back-end scoring, we use simple cosine scoring without

normalization and dimensionality reduction. For the cancelable system, the 512-

dimensional speaker’s x-vector is binarized using the median as described in sub-

section 5.2.1 and then it is transformed with the shuffling scheme. The comparison

is performed with Hamming distance.

Results in Table 5.4 validate that the shuffling scheme allows the protection

of the x-vectors without a degradation in terms of EER. As shown, cancelable

x-vectors perform better with EER=0.05% than the baseline x-vectors with cosine

scoring as back-end (EER=8.18%) and even better than x-vectors results reported

in Kaldi recipe with PLDA as back-end scoring (EER=3.12%) [Snyder et al.,

2018]. However, the proposed cancelable scheme is not dedicated to protect speaker

verification system based on log-likelihood scores because it does not take into

80



5.3. EXPERIMENTAL EVALUATION AND RESULTS

Table 5.4: Biometric performance of the cancelable and the baseline x-vector sys-
tems on the test set of VoxCeleb text-independent database in terms of EER (%).

System
Back-end scoring
for the baseline

Baseline
x-vector

Binary
x-vector

Cancelable
x-vector

x-vector
Cosine 8.18

9.68 0.05
PLDA [Snyder et al., 2018] 3.12

consideration the protection of PLDA model parameters. Otherwise, during the

latest NIST SRE’19 speaker recognition evaluation, the x-vectors extracted from

residual networks using cosine distance scoring performed the best on the VAST

database avoiding the need for PLDA [Villalba et al., 2020]. We believe that

the proposed cancelable scheme could be applied to protect such state-of-the-art

systems.

5.3.4 Revocability analysis of the cancelable i-vector sys-

tem

As described in the revocability analysis of cancelable GMM system in Chap-

ter 4, subsection 4.3.5, revocability is evaluated by calculating the pseudo-impostor

scores. For this, we shuffled one speaker’s binary i-vector with 480000 randomly

generated shuffling keys. The first shuffled binary i-vector is compared with the

remaining shuffled templates to compute the pseudo-impostor scores. This process

is repeated with 30 different users.

From Figure 5.5, we can notice that the distribution of the pseudo-impostor

scores overlaps with the distribution of the non-target scores. This indicates that

the newly generated cancelable i-vectors are indistinguishable, although they are

generated from the same binary i-vector. Since the newly generated cancelable

templates are uncorrelated, this justifies that the system achieves the revocability

requirements. Therefore, when the passphrase is compromised in a text-dependent

speaker verification system, instead of selecting a new one, we can generate a new

speaker reference from the compromised passphrase.

We estimate the maximum number of possible cancelable i-vectors that can be gen-

erated from the same binary i-vector using the Hamming bound [MacWilliams and
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Sloane, 1977] as described in Chapter 4, section 4.3.5. Using the EER threshold

t = 0.4 of the cancelable system, for i-vector and shuffling key of length 400-bits,

we get almost 212 possible cancelable i-vectors PI for each user as given in Eq. 5.4.

PI =
Number of possible permutation

V olume of Hamming spheres
(5.4)

=
400!

(200!)(200!)
∑(t×400)

k=0

(
400
k

) ≈ 212
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Figure 5.5: Revocability analysis of the cancelable i-vector system: Distribution of
Target, Non-Target and Pseudo-impostor scores on the female evaluation subset
(target-correct/imposor-wrong trials) of RSR2015.

5.3.5 Unlinkability analysis of the cancelable i-vector sys-

tem

The unlinkability of cancelable i-vectors is evaluated based on the framework de-

scribed in [Gomez-Barrero et al., 2017]. Therefore, two types of scores are com-

puted. Mated instances: scores computed by comparing cancelable i-vectors ex-

tracted from different samples of the same subject using different shuffling keys.

Non-mated instances: scores computed by comparing cancelable i-vectors gener-
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Figure 5.6: Unlinkability analysis of the cancelable i-vector system: distribution
of Mated and Non-mated scores using the female subset of RSR2015 database.

ated from samples of different subjects using different shuffling keys.

As we explained in chapter 4, subsection 4.3.6, the global metric Dsys
↔ gives an

estimation of the global linkability of the system. As observed in Figure. 5.6, the

distribution of mated and non-mated scores are overlapped with global linkability

Dsys
↔ equal to 0 rendering the system fully unlinkable.

5.3.6 Irreversibility analysis of the cancelable i-vector sys-

tem

The irreversibility analysis of cancelable i-vector based on shuffling scheme is the

same as that of the cancelable GMM proposed in Chapter 4. Using the shuffling

key and the cancelable i-vector, the reconstruction of binary i-vector representation

is possible. However, due to the binarization step, it is not possible to recover the

original i-vector.

In case the attacker has only the cancelable template without the shuffling key,

if the adversary wants to guess the correct values of the binary i-vector of length

400-bits, it is computationally not feasible. In fact, the guessing complexity is
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huge and equal to 2395 the number of possible permutation, given by Eq. 5.5.

Number of possible permutation =
400!

(200!)2
≈ 2395 (5.5)

5.3.7 Security analysis of the cancelable i-vector system

The proposed cancelable i-vector is based on two factors, the biometric sample

and the shuffling key. Herein, we report the robustness of this cancelable system

in case these factors are compromised. For this, we follow the methodology pro-

posed in [Rosenberger, 2018], proposing different attacks to evaluate the security

of cancelable systems:

Zero effort attack A1: Non-target user provides his/her biometric samples and a

random shuffling key to impersonate the target user.

Brute force attack A2: Non-target user tries to be verified by trying different

random values of cancelable i-vectors.

Stolen token attack A3: Non-target user has stolen the shuffling key of the target

user and tries random binary vectors to generate the target’s cancelable i-vector.

Stolen biometric data attack A4: Non-target user has stolen the biometric samples

of the target user and tries with random shuffling keys to generate the target

cancelable i-vector.

Worst case attack A5: Non-target user has stolen the target user’s shuffling key

and provides its own biometric samples to generate the cancelable i-vector.

Very worst case attack A6: Non-target user has stolen the target shuffling key and

has a wrong pass-phrase spoken by the target user. This attack is specified for

text-dependent scenario.

For these attack scenarios, we compute the false acceptance rate for each attack

scenario Ai, when the EER threshold of the cancelable i-vector system εEER in the

legitimate scenario is taken as the decision threshold. A high value of Ai implies

that the system is not robust to this attack scenario. Table 5.5 presents the values

of Ai obtained when the cancelable i-vector system is attacked with scenarios A1,

A2, A3, and A4. Also, in Figure 5.7, we present the evolution of the FAR curve for
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Table 5.5: Security evaluation in terms of FAR reported at the EER threshold
εEER of the cancelable i-vector system.

Attack scenario FAR (εEER)
Zero effort attack A1 0
Brute force attack A2 0
Stolen token attack A3 0
Stolen biometric data attack A4 0

each attack scenario related to the EER threshold of the cancelable i-vector in the

legitimate scenario. As shown, the cancelable system is robust for all presented

attack scenarios with FAR=0 at the EER threshold.

Figure 5.7: Evolution of the FAR curves for the cancelable i-vector system against
the attack scenarios A1, A2, A3, and A4 using the female evaluation subset of
RSR2015 database.

For the worst-case scenario A5, we evaluate the robustness of the system in two

scenarios:

Worst-case scenario 1: the attacker provides the target user’s shuffling key and

pronounces the wrong pass-phrase.

Worst-case scenario 2: the attacker provides the target user’s shuffling key and

pronounces the correct pass-phrase.
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Table 5.6: FAR of the worst case scenario 1 in case the attacker pronounces the
wrong pass-phrase. The FAR is reported according to the performance of cance-
lable i-vector system in terms of FAR and FFR in the legitimate scenario

Legitimate
scenario

FAR % 1.01 0.7 0.4 0.2 0.1
FRR % 1.01 1.4 1.9 2.88 3.9

FAR-worst case %
Scenario 1

7.12 4.88 3.2 2.08 1.3

Table 5.7: FAR of the worst case scenario 2 in case the attacker pronounces the cor-
rect pass-phrase. The FAR is reported according to the performance of cancelable
i-vector system in terms of FAR and FFR in the legitimate scenario

Legitimate
scenario

FAR % 1.12 0.63 0.35 0.18 0.02
FRR % 1.12 1.4 1.9 2.88 7.27

FAR-worst case %
Scenario 2

27.55 22 17.21 13.82 7.27

Tables 5.6 and 5.7 report the FAR obtained for the two worst-case scenarios.

Also, in Figure 5.8 we present the FAR curves for the legitimate and the worst-

case scenarios. Results show that an acceptable FAR is obtained for the worst-

case scenario 1. At the threshold corresponding to FAR=0.4% and FRR=1.9%

in the legitimate scenario, the FAR=3.2% for the worst-case attack. However,

in case the attacker pronounces the correct pass-phrase (worst-case scenario 2) a

degradation in FAR is observed. For FAR=0.35% and FRR=1.9% in the legitimate

scenario, the FAR=17.21% for the worst-case attack. In fact, in this scenario, the

same shuffling key is used to transform the binary i-vector representations of the

target and non-target users. Therefore, the biometric performance of cancelable

i-vectors will be the same as obtained using the unprotected binary i-vectors.

Regarding results reported in Table 5.1, for target-correct/impostor-correct trials,

the performance at binary level degrades further comparing to impostor wrong

trials which explain the degradation in the FAR for the worst-case scenario 2.

For the very worst case attack A6, where the attacker provides a wrong-pass-

phrase spoken by the target user and the target shuffling key, the FAR=10.4% at

the EER threshold of legitimate scenario.

Based on this security analysis, we can conclude that the proposed cancelable
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i-vector system, as well as the cancelable GMM, are robust to A1, A2, A3, and

A4 attack scenarios. However, for the worst-case attack, a degradation in terms

of false acceptance rate was observed. This degradation is related to the loss of

biometric performance when transforming the speaker’s i-vector or GMM into a

binary vector. The security of the shuffling key for the proposed system is very

important. We believe that in real use cases such security can be guaranteed with

the novel technologies as the Embedded Secure Element [Tremlet, 2016] or the

secure chip which provides a secure space to store and manage personal data.

Figure 5.8: Evolution of the FAR curves for the cancelable i-vector system for the
legitimate scenarios and the worst-case scenarios A5 using the female evaluation
subset of RSR2015.
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5.4 Chapter Summary and Conclusions

In this chapter, we proposed a cancelable scheme for privacy-preserving speaker

verification systems based on i-vectors. This is achieved by first binarizing the i-

vector and then its transformation with the shuffling scheme. We also demonstrate

that this cancelable scheme could operate to protect speaker verification systems

based on deep neural network speaker embeddings such as x-vectors.

In order to make our research reproducible, the cancelable scheme was eval-

uated using public databases following a clear protocol. The RSR2015 text-

dependent database was used to evaluate the system based on i-vectors and the

VoxCeleb text-independent database for the system based on x-vectors. The main

findings of this chapter can be summarized in the followings points:

• We propose a cancelable speaker verification system to mitigate privacy and

security issues based on two steps; the i-vector binarization by thresholding

the i-vector with its median value, and then the transformation of the binary

i-vector with the shuffling scheme.

• The speaker verification system based on the cancelable i-vectors reaches

better biometric performance than the baseline i-vector system contrary to

existing privacy protection methods.

• The cancelable i-vectors system achieves the biometric information protec-

tion requirements [ISO/IEC JTC1 SC27 Security Techniques, 2011], and

shows a good level of security against different attack scenarios.

• We also demonstrate that this cancelable scheme could operate on the state-

of-the-art speaker verification systems based on Deep Neural Network (DNN)

speaker embeddings.

However, the main weakness of the cancelable i-vector system is its low resis-

tance to the worst-case attack (stolen key scenario), which is related to the degra-

dation of biometric performance caused by the transformation of the speaker’s

i-vector into a binary representation. In chapter 6, a novel approach for the bi-

narization of speaker representation while maintaining the biometric performance

will be presented.
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In this chapter, we have improved the privacy-preserving scheme presented in

Chapter 5 in order to resolve the shortcomings regarding the degradation of bio-

metric performance during the binarization and its impact on the robustness of the

system against stolen key attacks. We present a new privacy-preserving scheme

where we propose a binarization approach of speaker biometric reference that main-

tains the biometric performance. Also, we propose to combine the shuffling scheme

with secure sketch error correction. We will show that applying secure sketch er-

ror correction to cancelable biometrics improves the biometric performance and

the robustness against stolen key attacks. The proposed protection scheme could

be applied for speaker verification systems based on i-vector or x-vector. In this

chapter, the recent speaker verification system based on x-vector embeddings is

taken as the baseline (unprotected) system and we will use the proposed protec-

tion scheme to develop a privacy-preserving speaker verification system based on

cancelable x-vectors.

The proposed system includes three main stages: (i) x-vector extraction and

binarization, (ii) extraction of cancelable x-vector by transforming the binary x-

vector with the shuffling scheme, and (iii) applying the secure sketch to the can-

celable x-vector by passing it through an error-correcting code. The proposed

system is evaluated according to the requirements of biometric information pro-

tection [ISO/IEC JTC1 SC27 Security Techniques, 2011] in terms of biometric

performance, revocability, irreversibility, and unlinkability. Also, the robustness

against different attack scenarios was analyzed.

The chapter is structured as follows. Section 6.1 gives a general presenta-

tion of the proposed system including a description of enrollment and verification

phases. Section 6.2 presents the baseline (unprotected) x-vectors speaker verifi-

cation systems and its biometric evaluation. Section 6.3 describes the proposed

binarization approach of the x-vectors embeddings and presents the biometric per-

formance evaluation of the speaker verification system based on binary x-vectors.

Section 6.4 presents the description and the evaluation of the cancelable x-vector

which is the output of the transformation of the binary x-vector with the shuffling

scheme. In section 6.5, we describe the application of secure sketch error correction

to cancelable x-vectors and we present the evaluation of biometric performance,

privacy requirements, and security analysis. The chapter summary and conclusion
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are presented in section 6.7.

6.1 Privacy-Preserving Speaker Verification Sys-

tem Based on x-Vectors

The main weakness of the privacy-preserving system presented in chapter 5 is

the low resistance to stolen key attacks, which is related to the degradation of

biometric performance caused by the binarization of the speaker model. Therefore,

we propose for the new privacy-preserving scheme:

1. A Binarization approach of the speaker model that maintains the biometric

performance of the baseline system.

2. Applying secure sketch error correction code (ECC) to the binary x-vectors

transformed with the shuffling scheme. The idea is to pass the cancelable x-

vector through an error-correcting code to manage the biometric variability

which allows to improve the false acceptance rate in the stolen key scenario.

In this section, we present an overview of the proposed privacy-preserving

speaker verification system based on x-vectors, including descriptions of the en-

rollment and verification phases.

6.1.1 Enrollment phase

The enrollment phase includes two steps, i) extraction of the secure sketch er-

ror correction corresponding to each speaker and ii) extraction of the speaker’s

cancelable x-vector for the enrollment.

Step 1 of enrollment: Secure sketch extraction

The sketch scheme defined by Dodis et al. [Dodis et al., 2004] consists of two

algorithms: a sketch generation algorithm Gen, and a reconstruction algorithm

Rec. Given some data X the output PX = Gen(X) is called a sketch of X. Given

a sketch PX and another Y that is sufficiently similar to X according to some

measure, Rec(PX , Y ) would reconstruct the original X. For biometric system,
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Figure 6.1: Pipeline for Step 1 of enrollment: Extraction of secure sketch.

secure sketch consists on the reconstruction of a biometric input X with the help

of the secure sketch of X, PX and a noisy biometric input Y closer to X.

During step 1 of enrollment of the proposed system, the Gen algorithm will be

used to generate for each user a secure sketch. For that, as shown in Figure 6.1,

the user provides voice samples from which the system first extracts the MFCC

features and then the corresponding x-vectors embeddings for each sample using a

trained Time Delay Neural Network (TDNN) model. The TDNN used to extract

the x-vectors is described in section 6.2. Next, the x-vectors are transformed into

binary embeddings B using a binarization method based on an autoencoder model.

This binarization method is described in section 6.3.

Then, a consistent vector C representing the user is extracted by considering

the significant bits in his/her binary embeddings. Consistent bits are those bits

in the binary embeddings which are less likely to change. Consistent vector bits

are derived after aligning and summing up the binary embeddings to examine the

occurrence of bits. Then, a bit is set to one in C if the probability of occurrences

is greater or equal to a specific threshold pth across the binary x-vectors, if not it

takes 0 as defined in Eq 6.1 and Eq 6.2:

C(i) =

{
1 for p(i) ≥ pth

0 elsewhere
(6.1)

p(i) =

∑R
r=1Br(i)

R
(6.2)

93



6.1. PRIVACY-PRESERVING SPEAKER VERIFICATION SYSTEM BASED
ON X-VECTORS

where R is total number of samples or binary embeddings B and p(i) is the prob-

ability of ith bit in the binary embedding. In our work, we have chosen empirically

the value of R=3 and the threshold pth= 0.66.

The consistent binary x-vector is then transformed with the user specific shuf-

fling key to generate his/her cancelable consistent template Tc and passed through

the Gen algorithm to generate the secure sketch. The secure sketch is generated

from the cancelable Tc. Therefore, in case it is compromised, a new one can be

generated by transforming Tc with a new shuffling key.

The Reed-Solomon (RS) error correction code [MacWilliams and Sloane, 1977]

has been implemented to extract the secure sketch. The goal was to combine the

security of both shuffling scheme and EEC and take advantage of shuffling trans-

formation and error correction to improve the biometric performance. For this,

the cancelable consistent template Tc is passed through the RS code to generate

a user specific-secure sketch which corresponds to the parity symbols P extracted

from the RS encoding of Tc. At the end of this first step of enrollment, we store

only the secure sketch P on the access control system and we delete the rest. A

detailed description about the implementation of the Reed-Solomon code will be

provided in section 6.5.

The goal behind this first step is to generate for each user a secure sketch which

is the RS parity symbols from RS encoding of his/her cancelable consistent binary

x-vector Tc. The process is summarized as follows:

i) The user provides three voice samples.

ii) Extraction of x-vectors corresponding to the three voices samples.

iii) Binarization of the x-vectors.

iv) Extraction of the consistent x-vector C from the three binary x-vectors.

v) Generation of the cancelable consistent x-vector Tc by transforming C with

the user specific shuffling key.

vi) Generation of the secure sketch P by passing the cancelable Tc through the

RS encoder.
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vii) Store the secure sketch P and delete the rest.

Figure 6.2: Pipeline for step 2 of enrollment: Extraction of the enrollment cance-
lable x-vectors.

Step 2 of enrollment: Extraction of enrollment cancelable x-vectors

During this step, the reconstruction algorithmRec is used to extract the enrollment

cancelable x-vector. As shown in Figure 6.2, the user provides its enrollment voice

sample to the x-vector embedding extractor and binarization modules. The output

is a binary x-vector representation. Then, the binary x-vector is transformed using

the user-specific shuffling key Ke to generate the enrollment cancelable x-vector Te.

The binarization and the shuffling scheme allow to hide and protect the original

x-vector and help in achieving revocability because if the cancelable x-vector or

the shuffling key are compromised, a new cancelable template can be generated by

the transformation of the binary representation with a new shuffling key.

Next, the cancelable x-vector Te is passed through the Reed Solomon decoder.

The RS decoder assumes that Te is a noisy version of the cancelable consistent

binary x-vector Tc, and takes Te and the user secure sketch P received from the

access system and performs the decoding. The RS decoding of Te using P extracted

during step 1 of enrollment allows to generate an enrollment cancelable x-vector

close to the cancelable consistent template Tc representing this user. The result

of decoding represents the corrected cancelable x-vector which represents the user

enrollment template PI. After the enrollment phase, the access system has only

the enrollment template PI and the secure sketch P . The process of enrollment

step 2 is summarized as follows:
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i) The user provides the enrollment voice sample.

ii) Extraction of the enrollment x-vector embedding.

iii) Binarization of the enrollment x-vector.

iv) Generation of the cancelable x-vector Te by transforming the binary x-vector

with the shuffling scheme.

v) Generation of the corrected cancelable x-vector PI by applying the RS de-

coding (Rec algorithm) to Te using the secure sketch P of the claimed user.

vi) Store the enrollment template PI in the server-side.

6.1.2 Verification phase

During the verification, the user presents the probe voice sample and the shuffling

key. The key could be the same as the enrollment key in the case of genuine access

or it could be a random key in the case of impostor access. The probe sample

is passed through the x-vector embedding extractor and binarization modules to

obtain the probe binary x-vector. Using the shuffling key provided by the user,

the probe cancelable x-vector Tp is generated. Then, the RS decoder assumes

that Tp is an error-prone version of Tc, it combines the secure sketch P of the

claimed identity with Tp, and performs the decoding process to reconstruct T ′p

which represents the user’s probe template PI∗.

The probe cancelable x-vector Tp could correspond to a genuine or impostor

user. The error correction capability should be chosen so that the EEC can reduce

the intra-variability while preserving the inter-variability. Thus in case Tp corre-

sponds to a genuine user, the RS decoder will be able to reduce the variability of

Tp and reconstruct T ′p closest to the enrollment cancelable template Tc. However,

in case Tp corresponds to the impostor user, the RS decoder will not be able to

reconstruct T ′p closest to the genuine enrollment template Tc. In fact, due to the

application of the shuffling scheme that separates genuine and impostor score dis-

tributions, the distance between Tp and Tc exceeds the error correction capacity.

The process of verification is summarized as follows:
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Figure 6.3: Pipeline for the verification phase of the proposed privacy-preserving
speaker verification system based on cancelable x-vectors.

i) The user provides the probe voice sample.

ii) Extraction of the probe x-vector embedding.

iii) Binarization of the probe x-vector.

iv) Generation of the probe cancelable x-vector Tp by transforming the probe

binary x-vector with the shuffling scheme.

v) Generation of the probe corrected cancelable x-vector PI∗ by passing Tp

combined with the secure sketch P of the claimed identity through the RS

decoding.

vi) Compute the Hamming distance between the probe template PI∗ and the

enrollment template PI and compare it to the verification threshold.

In the following sections, detailed descriptions and evaluations of each module

of the proposed privacy-preserving speaker verification system based on cancelable

x-vectors are presented.
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6.2 Baseline Speaker Verification System Based

on x-Vector Embeddings

6.2.1 Description of the baseline speaker verification sys-

tem based on x-vectors

Recently, researchers proposed end-to-end speaker recognition systems based on

x-vectors embeddings [Snyder et al., 2016], [Snyder et al., 2017], and [Snyder et al.,

2018]. In the end-to-end x-vector approach, deep neural networks are fed with a

variable-length utterance and map it to speaker embedding. Figure 6.4 presents

the basic structure of the DNN in the x-vector based system. The network is

composed of three parts. First, an encoder network extracts frame-level repre-

sentations from acoustic features such as the Mel-Frequency Cepstral Coefficients

(MFCC). Then, a statistics pooling layer aggregates the frame-level representa-

tions into a single vector per utterance. Next, at segment-level a feed-forward

classification network processes this single vector to calculate speaker class poste-

riors with softmax output layer [Goodfellow et al., 2016]. The x-vector embedding

is extracted from the affine transform after the pooling layer.

Different x-vector systems are proposed in the literature characterized by dif-

ferent encoder architectures, pooling methods, and training objectives. For our

work, we use the DNN embedding illustrated in Table 6.1 based on Time Delay

Neural Network described in [Snyder et al., 2018].

The network consists of five layers that operate on speech frames, a statistics

pooling layer that aggregates over the frame-level representations, two layers that

operate at the segment level, and finally a softmax output layer. The first 5 layers

of the network work at the frame level, with a time-delay architecture [Peddinti

et al., 2015]. Each feature frame from a given utterance is captured by a sequence

of time-delay layers. Suppose an input utterance has T frames, the time delay

layers operate on speech frames with a small temporal context centered at the

current frame t. For example, the input to layer frame3 is the spliced output

of frame2, at frames t - 3, t and t + 3. The frame-level representation at each

layer aggregates information from the context of previous layer, so that frame3

sees a total context of 15 frames. Then, the statistics pooling layer aggregates
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all T frame-level outputs from layer frame5 and computes its mean and standard

deviation that are aggregated and propagated through the segment-level layers

and the softmax output layer.

The DNN is trained to classify the N speakers in the training data. After train-

ing, segment 7 and the softmax layer are removed and the x-vector embedding is

extracted from the affine component of layer segment6. The x-vector is considered

as the speaker biometric reference that will be used for the verification task.

Figure 6.4: Structure of the DNN in the x-vector-based system. Frame-level op-
erates on speech frames to extract frame-level representation. Statistics pooling
layer aggregates all the frame-level outputs into a single vector and propagates it
through the segment-level layers and the classification output layer [Snyder et al.,
2017].
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Table 6.1: Architecture of the DNN used for the extraction of x-vectors. The
x-vectors are extracted at segment-level 6. T represents the number of frames in
the input utterances and K is the number of parameters per frame. The N in the
softmax layer corresponds to the number of training speakers.

Layer Layer context Total context Input x output
frame-level1 [t - 2, t + 2] 5 Kx512
frame-level2 {t - 2, t ,t + 2} 9 1536x512
frame-level3 {t - 3, t ,t + 3} 15 1536x512
frame-level4 {t} 15 512x512
frame-level5 {t} 15 512x1500
stats pooling [0, T) T 1500Tx3000

segment-level6 {0} T 3000x512
segment-level7 {0} T 512x512

softmax {0} T 512xN

6.2.2 Experimental evaluation and results of the baseline

x-vector speaker verification system

6.2.2.1 Experimental settings

For the baseline x-vector system, we use the recipe available on Kaldi speech recog-

nition toolkit1 [Povey et al., 2011]. For speech features, 24-dimensional MFCCs

are extracted with a frame length of 25 ms every 10 ms. These feature vectors are

mean-normalized over a sliding window of up to 3 seconds. Then, energy-based

voice activity detection (VAD) is used to estimate frame-by-frame speech activity,

and filter out nonspeech frames.

The TDNN is trained using 1 276 888 utterances from 7 323 speakers of the

text-independent databases Voxceleb2 [Chung et al., 2018] (dev and test portions)

and the training portion (Dev) of VoxCeleb1 [Nagrani et al., 2017] collected from

celebrities videos uploaded to YouTube. Besides, as suggested in [Snyder et al.,

2018], data augmentation was performed to increase the amount and diversity

of the available training data. The augmentation strategy was used to add four

corrupted copies of the original recordings to the training list. The recordings

are corrupted by employing additive noises (babble, general noise, music) from

1https://github.com/kaldi-asr/kaldi/tree/master/egs/voxceleb/v2
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MUSAN [Snyder et al., 2015] database, and reverberation that involves convolving

room impulse responses (RIR) with audio. Both MUSAN and the RIR datasets

are freely available2. After data augmentation, utterances under four seconds

and speakers with less than eight utterances are removed from the training set.

The TDNN is trained to discriminate between speakers. Then, 512-dimensional

x-vector speaker embeddings are extracted from layer segment6.

6.2.2.2 Biometric performance evaluation

In table 6.2, we report the biometric performance of the baseline (unprotected)

x-vector speaker verification system on the test set of the text-independent Vox-

Celeb1 database in terms of Equal Error Rate. We report the performance using

different back-end scoring and normalization approaches:

System1: As back-end scoring, a classifier based on Probabilistic Linear Dis-

criminant Analysis (PLDA) was trained for the speaker embeddings comparison.

Linear discriminant analysis (LDA) was first applied to the speaker’s x-vectors ex-

tracted from the training set, reducing their dimension from 512 to 200, followed

by length normalization and centering using the mean of the training x-vectors.

The speakers’ x-vectors extracted from VoxCeleb2 (dev and test) and VoxCeleb1

(dev) were used to train the PLDA.

System2: As back-end scoring the cosine distance was used for the speaker em-

beddings comparison. The x-vectors extracted from the TDNN are passed through

the LDA reducing their dimension from 512 to 200 followed by length normaliza-

tion and centering using the mean of the training x-vectors.

System3: As back-end scoring, the cosine distance was used without applying

the LDA and the normalization process to the x-vectors.

As reported in Table 6.2 and Figure 6.5, the biometric performance in terms

of EER is equal to 3.12%, 5.5% and 8.18% for system 1, 2 and 3 respectively. For

the x-vector-based system trained with softmax loss, the PLDA back-end tends

to outperform the cosine since the softmax loss is not discriminative enough to

2The data can be download from http://www.openslr.org
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Table 6.2: Biometric performance of the the baseline x-vector systems on the test
set of VoxCeleb1 text-independent database in terms of EER (%). We report the
impact of normalisation and back-end scoring in biometric performance.

Baseline systems Normalisation
Back-end
scoring

EER%

System 1
Mean-centering

Length normalisation
LDA+ PLDA 3.12

System 2
Mean-centering

length normalisation
LDA + Cosine 5.5

System 3 No normalization Cosine 8.18

Figure 6.5: DET curves of the baseline x-vectors speaker verification systems, 1,
2, and 3 described in Table 6.2 on the test set of VoxCeleb1 text-independent
database.

optimize the embedding similarity. Also, x-vectors contain the lexical content

information in the softmax-trained model [Raj et al., 2019]. Thus, the back-end

is crucial to deal with the phoneme-invariant problem. For our work, we used the

x-vectors extracted using system 3 as a baseline to avoid protecting more biometric
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information such as that contained in the PLDA. However, our goal is to develop

a privacy-preserving x-vectors system that maintains the biometric performance

of the best baseline x-vectors system 1 (PLDA as back-end).

6.3 Binary Representation of x-Vectors Embed-

dings

Speaker verification systems based on x-vectors use deep neural embedding to

represent the speaker. In this section, we present an approach based on deep

neural nets autoencoders to extract binary biometric representation from x-vector

embedding. This idea was inspired from the binarization of face template [Hmani

et al., ] and words vectors [Tissier et al., 2019] where autoencoder architecture

was used for transforming real-valued vectors into binary vectors.

6.3.1 Binarization of x-vector based on thresholding method

Before introducing the proposed binarization approach, we first implemented a

baseline binarization method based on thresholding. As a baseline x-vector system,

we adopt system 3 described in the previous section where 512-dimensional x-

vector embeddings are extracted using the TDNN. Then, the speaker’s x-vector is

binarized using its median by comparing each component to the median value. For

the comparison of binary representations, we use the Hamming distance. Table 6.3

reports the biometric performance of the baseline x-vectors system and the binary

x-vector system in terms of Equal Error Rate on the test part of text-independent

VoxCeleb1 database.

Table 6.3 shows that the method of binarization based on thresholding degrades

the biometric performance compared to the baseline x-vectors systems. The EER

increases from 8.18% (system 3) to 9.68% with the binary x-vectors. Besides, the

dimension of the binary embedding is limited by the dimension of the original

x-vector.
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Table 6.3: Biometric performance of the speaker verification systems based on the
baseline and the binary x-vectors on the test set of VoxCeleb1 text-independent
database in terms of EER (%). Binarization is performed with thresholding-
method.

Speaker verification systems EER%
Baseline x-vector systems

1/2/3
3.12/5.5/8.18

Binary x-vector
with thresholding

9.68

6.3.2 Binarization of x-vectors using deep neural nets au-

toencoder

In this part, we describe the proposed approach used to transform the real-valued

x-vectors embeddings into binary representations based on autoencoder architec-

ture. This approach is based on an autoencoder on top of the TDNN to transform

the x-vector embeddings into binary embeddings.

Let X = (x1, ..., xm) be a m-dimensional real-valued vector representing the

speaker’s x-vector embedding. Our objective is to transform X into a binary

embedding B = (b1, ..., bn) of dimension n independent of the dimension of the

original x-vector embedding. For that, the idea was to train an autoencoder model

composed of two parts: an encoder that binarizes the x-vector embedding X to B

and a decoder that reconstructs the x-vector from the binary embedding B.

Encoding to binary embeddings:

In our work, the encoder takes as input the x-vector X = (x1, ..., xm) of a

particular speaker extracted using the TDNN model and maps it to a vector

Y = (y1, ..., yn) with a dimension equal to the desired binary representation .

Then, a binarization layer B is applied to generate the binary representation

B = (b1, ..., bn). The output of the binarization layer is provided by:

B(yi) =

0 if yi ≤ threshold

1 otherwise
(6.3)
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Decoding to x-vector embedding

For the decoder, two methods are tested for the training:

• Method1: the decoder is trained to reconstruct from the binary embedding,

the speaker’s x-vector of a given utterance provided as input to the encoder.

• Method2: The encoder takes as input the speaker’s x-vector of given utter-

ance and the decoder is trained to reconstruct from the binary embedding,

the average of all the speaker’s x-vectors.

For both methods, the autoencoder is trained to minimize the distance between

the x-vector embedding reconstructed from the binary embedding and the output

given to the decoder.

Figure 6.6 summarizes the binarization approach based on autoencoder model.

First, the utterance is fed to the TDNN model to extract a 512-dimensional x-

vector speaker embedding. This x-vector is then taken as input to the encoder

that maps it to n component real-vector and transforms it to n dimensional binary

embedding using the binarization layer. In the end, the decoder reconstructs the

x-vector embedding using the binary embedding as a latent representation. This

process described in Figure 6.6 (left side) is only used during the training phase.

After training, we remove the decoder part, thus an architecture that outputs a

binary speaker embedding given a speaker’s utterance.

6.3.3 Experimental evaluation and results of binary x-vectors

extracted using the autoencoder model

Different configurations are tested in order to find the hyper-parameters (activation

function, number of hidden layers, number of neurons, etc.) of the autoencoder

that results in the least degradation in biometric performance compared to the

baseline x-vector system described in section 6.2.1. The architecture that led to

the least degradation was as follows. The encoder consisted of four linear layers

with 600, 1000, 1400, and 1000 units respectively using hyperbolic tangent as an

activation function. The decoder consisted of two linear layers with 1400 and 1000

units using hyperbolic tangent as an activation function, a linear layer with 600
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Figure 6.6: Autoencoder architecture used to binarize the x-vector embeddings
extracted from the TDNN model. On the left, we show the training phase of the
autoencoder. At the right, we remove the decoder part, and as output, we get the
binary x-vector representation.

units using ReLU activation function and an output layer with dimension equal to

the dimension of the input x-vector with linear activation. The binarization layer

is introduced between the encoder and the decoder. The autoencoder training is

carried out for 100 epochs in a conventional way by minimizing the Smooth L1

loss between the speaker x-vector reconstructed from the binary embedding and

the input x-vector or the average x-vector (method 1 or 2) using Adam optimizer.

The learning rate was set to 0.001 with a decay of 0.00001 and the batch size was

set to 8000.

The autoencoder was trained using the 512-dimensional x-vectors extracted

using the TDNN model of 1 276 888 utterances from 7 323 speakers of the text-
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Table 6.4: Biometric performance on the test set of VoxCeleb1 text-independent
database of speaker verification system based on binary x-vectors extracted using
the autoencoder model. Method 1: decoder trained to reconstruct the x-vector
extracted from a given utterance taken as input to the encoder. Method 2: decoder
trained to reconstruct the average of speaker’s x-vectors.

Binary x-vector dimension
EER%

Decoder trained
with method 1

Decoder trained
with method 2

800 6.82 3.94

1000 6.64
with binary layer

3.66
without binary layer

3.87
2000 6.63 4.04
3000 7.45 7.33

independent databases Voxceleb2 [Chung et al., 2018] (dev and test portions) with

the training portion (Dev) of VoxCeleb1 [Nagrani et al., 2017]. After training the

autoencoder, we remove the decoder part and we obtain as final architecture an

encoder at the top of the TDNN that outputs a binary x-vector representation

given a speaker’s utterance.

Table 6.4 reports the biometric performance of speaker verification system

based on binary embeddings. We report the EER on the test set of VoxCeleb1 text-

independent database. As shown, the best performance was obtained by using the

autoencoder trained to minimize the distance between the x-vector embedding re-

constructed from the binary representation and the average x-vector embedding for

this speaker. With the autoencoder trained to minimize the distance between the

x-vector embedding reconstructed from the binary representation and the x-vector

embedding taken as input to the encoder, we notice a degradation in biometric

performance.

As shown in Figure 6.7, using method 2 for the training of the autoencoder, the

best performance was obtained with a binary embedding of dimension 1000-bits

with an EER equal to 3.66%. With the binary embedding of dimensions 800, 2000,

and 3000 bits, the performance in terms of EER is equal to 3.94%, 4.04%, and

7.33% respectively. The degradation with 3000-bits could be explained by the lack
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Figure 6.7: DET curves of the speaker verification systems based on binary x-
vectors extracted with autoencoder-based method on the test set of VoxCeleb1
text-independent database. We report the DET curves of binary representations
(BR) with lengths 800, 1000, 2000, and 3000-bits.

and the loss of information propagated to optimize the parameters of the auto-

encoder during the training phase. In fact, by increasing the binary embedding

dimension, the number of parameters in the auto-encoder to be optimized becomes

bigger.

As shown in Figure 6.8, the performance reported with binary x-vectors is

better than the baseline x-vectors systems. Using the x-vectors extracted from

system 3 with EER=8.18%, the EER obtained with the binary x-vectors is 3.66%.

The performance outperforms that of baseline system 2 based on normalized x-

vectors with cosine scoring as back-end (EER=5.5%) and close to the performance

of baseline x-vectors system 3 using PLDA as back-end scoring (EER=3.12%).

We have also trained the autoencoder using method 2 without the binariza-

tion layer. As reported in Table 6.4, the performance in terms of EER with the

x-vectors of dimension 1000 extracted from the last layer of the encoder is 3.87%.

108



6.3. BINARY REPRESENTATION OF X-VECTORS EMBEDDINGS

The performance moves from 8.18% using the baseline 512-dimensional x-vectors

to 3.87% with the 1000-dimensional x-vectors extracted from the encoder. In fact,

by training the auto-encoder to reconstruct the average speaker’s x-vectors, we

recover the not use of LDA and normalization for the baseline x-vectors.

Using the binarization approach based on the autoencoder model on top of the

TDNN, the speaker’s x-vector embedding is transformed into binary representation

while maintaining the biometric performance. In contrast to the threshold-based

binarization method that degrades the biometric performance, binarization of x-

vectors using the autoencoder maintains approximately the same performance ob-

tained with the best baseline x-vectors system. In addition, we get control over the

length of binary representation by modifying the last hidden layer of the encoder.

Figure 6.8: Det curves of the baseline and the binary x-vectors speaker verification
systems on the test set of VoxCeleb1 text-independent database
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6.4 Cancelable x-Vectors

This section analyzes the cancelable x-vectors, which is the output of transforming

the binary x-vectors with the shuffling scheme. This transformation allows achiev-

ing biometric template protection and privacy requirements. We analyze the distri-

bution of targets and no-targets scores of speaker verification system based on the

cancelable x-vectors. This analysis will help us gain insight into the requirements

of the error-correcting code and get an idea about the error-correcting capability

required to distinguish between intra-domain and inter-domain comparisons.

6.4.1 Experimental evaluation and results of the cance-

lable x-vectors

After the binarization of x-vector using the autoencoder model described in sec-

tion 6.3.2, the binary x-vectors (dimension-1000) are transformed with shuffling

keys of dimension 1000-bits to generate the cancelable x-vectors. For the eval-

uation, two scenarios have been considered. Legitimate scenario and stolen key

scenarios. For the Legitimate scenario, the impostor (non-target user) does not

have information about the shuffling key of the genuine user. The impostor will

use his/her biometric data with a random key and tries to access the system. For

the stolen key scenario, the impostor has the genuine shuffling key and tries to

access the system by presenting the genuine key and his/her impostor’s biometric

samples.

Cancelable x-vectors are evaluated using the test set of the text-independent

VoxCeleb1 database. The target (genuine) and non-target (impostor) scores dis-

tributions using the binary and cancelable x-vectors in the legitimate scenario are

reported in Figure 6.9. As shown, for the binary x-vectors distributions, there is

an overlap between target and no-target distributions. When applying the shuf-

fling scheme, there is a separation of target and non-target scores distributions.

In fact, the mean of the target distribution is preserved exactly just like in the

binary x-vector level before performing the shuffling transformation. Contrarily,

the mean of the non-target scores distribution is augmented when the shuffling

scheme is applied and the distribution is right-shifted. As reported in Figure 6.9,
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Figure 6.9: Impact of the cancelable shuffling scheme to the binary x vectors:
distribution of target and non-target scores for speaker verification systems based
on the binary x-vectors and the cancelable x-vectors in the legitimate scenario.

the minimum no-targets score was 0.19 using binary x-vectors and moves to 0.43

when applying the shuffling. Also, the mean of no-targets scores moves from 0.46

to 0.49, which results in no overlapping between target and no-targets distribution

using cancelable x-vectors. This leads to an improvement of the biometric per-

formance as shown in the DET curves Figure 6.10. Cancelable x-vector improves

the biometric performance with an EER = 0.1% compared to the baseline (PLDA

EER=3.12%, cosine EER=5.5%) and the binary x-vectors systems (EER=3.66%).

Regarding the stolen key scenario, we observe in Figure 6.11 that there is an

overlap between the stolen key and the target scores distribution. For this sce-

nario, we report in Table 6.5 the False Acceptance Rate obtained according to the

FAR and FRR selected in the legitimate scenario.

For the best baseline x-vectors (system1), the EER=3.12%. With the cance-

lable x-vectors, at the threshold corresponds to FRR=3.12%, the FAR=0 in the

legitimate scenario, and the FAR=4.39% in the stolen key scenario (Figure 6.12).

The FAR of the stolen key scenario could be improved by decreasing the thresh-

old taken as a decision for the verification in the legitimate scenario. In fact, as

shown in Figure 6.12, by taking the threshold equal to 0.3, the FAR=1.96% in

the stolen key scenario. However, by reducing the threshold, even if the FAR in
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Figure 6.10: DET curves for the speaker verification systems based on the base-
line, binary and cancelable x-vectors on test part of VoxCeleb1 text-independent
database.

stolen key scenario is improved, the FRR in the legitimate scenario degrades. As

an example, for FAR=1.96% in the stolen key scenario, the FRR in legitimate

scenario is equal to 7%.

To resolve this issue, the idea was to pass the cancelable x-vector through an

error-correcting code to manage the intra-variability which allows to improve the

FAR in the stolen key scenario while maintaining the performance in terms of FRR

in the legitimate scenario.

Table 6.5: False acceptance rate (FAR) in the stolen key scenario according to
the FAR and FRR of the cancelable x-vectors speaker verification system in the
legitimate scenario.

FAR-Legitimate scenario 0 0 0 0 0 0
FRR-Legitimate scenario 0.5 1 2 3.04 4 7
FAR-Stolen key scenario 16.15 10.83 6.28 4.39 3.42 1.95
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Figure 6.11: Distribution of target, non-target, and stolen key scores for speaker
verification system based on cancelable x-vectors.

Figure 6.12: FAR and FRR curves of the speaker verification system based on
cancelable x-vectors in the legitimate and stolen key scenarios. FRR curve is the
same for legitimate and stolen key scenarios since the shuffling transformation
preserves the target scores distribution.
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6.5 Applying Secure Sketch Error Correction Code

to Cancelable x-Vectors

As described in section 6.1, the cancelable x-vectors (output of the transformation

of the binary x-vector with the shuffling scheme) is an intermediate template and is

not stored in the access system server or the database. The cancelable x-vector is

passed through the secure sketch module based on error correcting code to generate

a corrected cancelable x-vector which represents the user’s template.

6.5.1 Secure sketch error correction code module

For the proposed system, Reed-Solomon (RS) error correction codes [MacWilliams

and Sloane, 1977], [Clarke, 2002] was used to extract the secure sketches. It is a

linear and cyclic code that belongs to the family of Bose-Chaudhuri-Hocquenghem

(BCH) codes. The choice of RS error correction codes was to exploit its maximum

distance separable (MDS) property in order to manage the biometric variability.

The RS code is described as an RS(n, k) code with m bit-symbols, where n is

the block length in symbols and k is the number of information symbols in the

message k.

k < n ≤ 2m − 1 (6.4)

When n < 2m − 1, this is referred to as a shortened form of the RS code.

The shortening of the RS code is achieved by making a number of data symbols

zero at the encoder, not transmitting them, and then re-inserting them at the

decoder. A shortened (n, k) RS code uses (n′, k′) encoder, where n′ = 2m − 1 and

k′ = k + (n′ − n).

By adding n− k parity symbols to the encoded message, RS code can correct

t symbol errors, where t is defined as follow:

2t = n− k. (6.5)

The Reed-Solomon code is also a systematic code, which means that the encod-

ing process does not modify the message symbols k. The codeword n is composed

of the original message k appended with the 2t parity symbols.
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For biometric system, secure sketch [Dodis et al., 2004] consists on the recon-

struction of a biometric input w with the help of the secure sketch of w, P and a

noisy biometric input w′ closer to w. For the proposed system, Reed-Solomon code

is used to generate the secure sketch P that corresponds to the 2t parity symbols

generated by RS encoding of the biometric input w.

Let assume that the binary x-vectors templates are in metric space M with

distance function dis, f is the shuffling transformation and w is the binary x-vector.

We propose to use RS error correction secure sketch with functions generation Gen

and reconstruction Rec and error-correcting capability t as follows. The enrollment

function Enrol takes f(w) as input, and outputs the sketch P that corresponds

to 2t parity symbols:

Enrol(w; f) = Gen(f(w)) = P (6.6)

For the verification, verif function takes as input the secure sketch P , a probe

binary x-vector w′ ∈M , the shuffling transformation f and outputs:

verif(w′, f, P ) = Rec(f(w′), P ) (6.7)

The correctness property of secure sketches guarantees that if dis(f(w), f(w′))≤t,
then Rec(f(w′), P ) = f(w). If dis(f(w), f(w′)) > t, then the reconstruction (de-

coding) fails and Rec(f(w′), P ) = f(w′).

For the proposed privacy-preserving x-vectors system, shortened RS code was

used. The cancelable x-vector generated by the transformation of the binary em-

bedding with the shuffling scheme is considered as k, the message to be encoded.

During step 1 of the enrollment, the cancelable consistent binary x-vector Tc is

encoded to extract the n− k parity symbols P which represents the secure sketch.

Then during step 2 of enrollment or during authentication, the cancelable x-vector

combined with the parity symbols is considered as the noisy codeword, and the

RS decoding is performed to reconstruct the corrected cancelable x-vector that

corresponds to the template closest to Tc.
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6.5.2 Experimental evaluation and results of applying the

secure sketch to the cancelable x-vectors

In this section, the output of the whole system is evaluated according to the

ISO/IEC 24745 [ISO/IEC JTC1 SC27 Security Techniques, 2011] privacy require-

ments including biometric performance evaluation, revocability, irreversibility and

unlinkability analysis. Moreover, the robustness against different attacks was an-

alyzed.

For the evaluation of the whole system, as a baseline x-vectors system, sys-

tem3 described in subsection 6.2.2.2 was used where 512-dimensional x-vectors

are extracted from the TDNN model. Then, using the binarization method based

on autoencoder model integrated on the top of the TDNN, the 512-dimensional

x-vectors are transformed into binary embeddings of dimension 1000-bits. Next,

the binary embeddings are transformed with shuffling keys of length 1000-bits and

passed through the RS error correction code to generate the corrected cancelable

x-vectors.

For the proposed system, during step 1 of the enrollment, the consistent can-

celable template Tc is segmented into 5× 200-dimensional blocks each presenting

the message kc. These blocks are passed through the RS encoder to generate the

codewords n, (n = kc + 2t). At the end of this phase, we store the parity symbols

P = 2t corresponding to each block and we delete the rest. The parity symbols

present the secure sketch P of this user.

During step 2 of enrollment, the enrollment Te cancelable x-vector is also seg-

mented into 5 blocks each presenting the message ke. Then, for each block ke, the

corresponding parity symbols 2t (secure sketches) received from the access system

are added. The RS decoder takes the couple (ke, 2t) and performs the decoding

process. The result of decoding all the blocks represents the enrollment corrected

cancelable x-vector closest to Tc.

During the verification phase, for each block kp of the probe cancelable x-vector

Tp, the secure sketch P = 2t of the claimed identity received from the access

system is appended. The RS decoder takes the couple (kp, P ) and assumes that

it represents a noisy version of the enrollment template. If dis(kc, kp) ≤ t, then

Rec(kp, P ) = kc. If dis(kc, kp)> t, then the decoding is failing and Rec(kp, P ) = kp.
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The result of decoding all the kp blocks represents the probe corrected cancelable

x-vector.

The proposed system was evaluated according to the error-correcting capability

of the Reed-Solomon code t. t is the number of errors that the RS code can correct.

It is given by n−k
2

. The error correction capability should be chosen so it is able

to distinguish between intra-domain comparisons and inter-domain comparisons.

As reported in Figure 6.9 and Figure 6.12 (section 6.4), the verification threshold

using only the cancelable x-vectors is 0.44 and the minimum non-target distance is

0.43. Therefore, with cancelable x-vectors of dimension 1000, the error correction

capability must be lower than 1000*0.4=400 errors to reduce the intra-variability

while preserving the inter variability.

6.5.2.1 Biometric performance evaluation of the cancelable x-vectors

after applying the error correction secure sketch

Two scenarios have been considered for the biometric performance evaluation of

the proposed system. For the legitimate scenario, the impostor (non-target) will

try to impersonate a genuine (target) user by presenting his/her biometrics, a ran-

dom shuffling key, and the genuine secure sketch received from the access system.

For the stolen key scenario, the impostor has the shuffling key of the genuine user

and tries to access by presenting his/her biometrics, the genuine shuffling key, and

the genuine secure sketch received from the access system.

For step 1 of enrollment, the secure sketch of each speaker is extracted from three

random utterances corresponding to this speaker selected from the enrollment ut-

terances on the test set of the VoxCeleb1 database. For the enrollment step 2 and

verification phases, we follow the protocol of the VoxCeleb1 test set composed of

18860 target and 18860 nontarget trials.

Legitimate scenario evaluation:

As we mentioned at the end of section 6.4, the idea behind applying the error

correction code to the cancelable x-vector was to manage the intra-variability in

order to improve the FRR in the legitimate scenario which implies an improvement
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in the false acceptance rate for the stolen key scenario.

In table 6.6, we report the biometric performance of the proposed system for

the legitimate scenario on the text-independent VoxCeleb1 database test part in

terms of FRR and FAR according to different error correction capability t of RS

codes. To analyze the impact of t on the biometric performance, the FRR and

FAR curves with different error correcting capability t for the legitimate scenario

are given in Figure 6.13.

We observe from the reported results that as the error correcting capability t

increases, the FRR of the proposed system improves. As reported in Table 6.6,

for FAR=0.5% the FRR for t = 30, 40, 50, 60 and 70 is equal to 0.079%, 0.074%,

0.058%, 0.047% and 0.047% respectively. This is validated in Figure 6.13, where

the FRR is improved by increasing t. As example, at threshold=0.32, the FRR

for t = 30, 40, 50, 60, and 70 is equal to 3.28%, 2.12%, 1.31%, 0.83%, and 0.31%,

respectively. Also, due to the shuffling scheme that separates target and non-

target scores distributions, the FAR is close to 0.1% at the EER threshold for the

different error correction capability.

Figure 6.13: FRR curves of the speaker verification system based on the corrected
cancelable x-vectors in the legitimate scenario for different error-correcting capa-
bility t.
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Table 6.6: Biometric performance of the proposed privacy-preserving speaker ver-
ification system based on corrected cancelable x-vectors in the legitimate scenario
according to the error correction capability of the Reed-Solomon codes. The eval-
uation is performed on the VoxCeleb1 test part database in terms of FRR and
FAR. The cancelable x-vectors is divided into 5 blocks and passed through the RS
code, k=200.

RS codes
parameters

Performance in terms
of FAR% and FRR%
Legitimate scenario

n t=(n-k)/2 FRR FAR

260 30

0.063 2.8
0.063 1.18
0.079 0.57
0.1 0.1
0.12 0

280 40

0.058 2.78
0.068 1.15
0.074 0.51
0.09 0.09
0.11 0

300 50

0.053 2.73
0.058 1.11
0.058 0.53
0.11 0.11
0.13 0

320 60

0.047 2.67
0.047 1.17
0.047 0.56
0.08 0.08
0.1 0

340 70

0.047 2.7
0.047 1.19
0.047 0.58
0.09 0.09
0.23 0

Figure 6.14 shows the distribution of targets and non-targets scores in the

legitimate scenario of the cancelable x-vectors before and after passing through

the RS code with t=50. Using these RS parameters, the decoder is able to correct
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up to 50 errors for each 200-dimensional block of the cancelable x-vector.

From the distributions of the target scores, we observe that the RS correcting

code minimizes the intra-variability. The mean of the target scores distribution

moves from 0.22 using only the cancelable x-vector to 0.05 when applying the

RS code which explains the improvement in the false rejected rate. However, the

mean of non-target scores distribution when applying the RS code is preserved as

in the distribution of the cancelable x-vector without RS code. In fact, the RS

code cannot correct the inter-variation since the distance between target and non-

target cancelable x-vectors is greater than the capability error correction. This

leads to the separation of target and non-target distributions, which implies an

improvement of the biometric performance. The proposed system outperforms the

biometric performance of the baseline x-vectors systems as shown in Figure 6.15.

The EER for the proposed system with t = 30, 40, 50, 60 and 70 is equal to 0.1%,

0.09%, 0.11%, 0.08% and 0.09%, respectively.

Based on this evaluation, we conclude that the proposed privacy-preserving

speaker verification system improves the biometric performance compared to the

baseline (unprotected) x-vectors systems based on PLDA or cosine as back-end

Figure 6.14: Distribution of target and non target scores of the cancelable x-vectors
before and after passing through the the Reed-Solomon error correcting code for
t=50.
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scoring. In addition, as shown in Table 6.7, the proposed system maintains the

biometric performance compared to the winners’ systems during the VoxCeleb

Speaker Recognition Challenge 2019.

Figure 6.15: DET curves of the speaker verification systems based on the baseline
x-vectors, binary x-vectors, cancelable x-vectors and corrected cancelable x-vectors
(t=60) on test part of VoxCeleb1 text-independent database.

Table 6.7: Evaluation results on VoxCeleb1 test set for the systems submitted
during the VoxCeleb Speaker Recognition Challenge 2019.

System
BUT

[Zeinali et al., 2019]
JHU-HLTCOE

[Garcia et al., 2020]
[Zhou et al., 2019] Proposed

cancelable
x-vectors

Single
system

Fusion
4 systems

Single
system

Fusion
4 systems

Single
system

EER% 1.22 0.96 1.74 1.54 1.85 0.1
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Stolen key scenario evaluation:

For the stolen key scenario, we report in Table 6.8 the FAR according to the

FAR and FRR of the proposed system in the legitimate scenario. For the best

unprotected x-vector system based on PLDA as back-end scoring the EER=3.12%

(FAR=FRR=3.12%). For the proposed system, using RS code with t=50, at the

decision threshold corresponding to FRR= 1.01%, 2.08%, 3.01%, and 3.38%, the

FAR=0 in the legitimate scenario and the FAR on the stolen key scenario is 7.2%,

2.79%, 2.06% and 1.8% respectively. A clear improvement is shown in terms of

FAR when comparing these results with that reported in Table 6.5, where we

reported the FAR of the stolen key scenario using the cancelable x-vector without

applying the Reed-Solomon error correction code. For example, at the threshold

corresponding to FRR=%2 and FAR=0 in the legitimate scenario, we get for stolen

key scenario a FAR=6.28% using only the cancelable x-vectors and FAR=2.79%

using the corrected cancelable x-vectors.

For the analysis of the impact of error correction capability t on the FAR in

the stolen key scenario, we reported in Table 6.9 the FAR obtained considering

FRR=2% and FAR=0 in the legitimate scenario according to t. We can observe

that for t = 30 up to t = 50, as t increases, the FAR of the stolen key improves

and the best value is obtained for t = 50 with FAR = 2.79%. Then for t = 60

and t = 70, we observe that the FAR degrades compared to the FAR obtained at

t = 50.

In fact, for the stolen key scenario, the same shuffling key is used to transform

the binary x-vectors of the target and non-target users. In this case, the distribu-

tion obtained for the cancelable x-vectors will be the same as the distribution of

the binary x-vectors before the transformation. For this, the RS code with error

correction capability tuned according to the target and non-target score distribu-

tions of cancelable x-vectors in the legitimate scenario will now be applied to the

score distributions of binary x-vectors.

For the score distributions of cancelable x-vectors in the legitimate scenario

(Figure 6.9, section 6.4), there is no overlap between target and non-target dis-

tributions. In this scenario, the RS code will reduce the intra-variability, but

it cannot correct the inter-variability since the distance between the target and
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non-target templates is greater than the capability error correction. However, the

distribution of the cancelable x-vectors in the stolen key scenario is the same distri-

bution obtained with the binary x-vectors, applying a slight overlap between target

Table 6.8: Biometric performance in terms of FAR for the proposed privacy-
preserving speaker verification system based on corrected cancelable x-vectors in
the stolen key scenario. The evaluation is performed on the VoxCeleb1 test part
according to different Reed-Solomon codes. The cancelable x-vectors is divided
into 5 blocks and passed through the RS code, k=200.

RS codes parameters
Biometric performance of the

proposed system at the stolen key scenario
in terms of FAR%

n t=(n-k)/2
Legitimate scenario Stolen key scenario

FRR FAR
FAR (@ FAR and FRR
of legitimate sceario)

260 30
1.03 0 10.49
2.06 0 5.67
3.02 0 3.96

280 40
1 0 9.21
2 0 4.17
3 0 2.4

300 50

1.01 0 7.2
2.08 0 2.79
3.01 0 2.06
3.12 0 1.94

320 60
1 0 6.6

2.06 0 3
3.04 0 2.2

340 70
1.03 0 7.9
2.01 0 4.45
2.24 0 3.9

Table 6.9: FAR in the stolen key scenario according to the error correction capa-
bility t for speaker verification system based on the corrected cancelable x-vectors.
The FAR is reported at FRR=2% and FAR=0 in the legitimate scenario.

Error correcting capability
t (bits)

30 40 50 60 70

FAR-stolen key % 5.67 4.17 2.79 3 4.45
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and stolen key distributions. Therefore, when applying the RS code to reduce the

intra-variability, it will also correct the inter-variability and a clear correction will

be observed when we take an RS code with a high error-correcting capability t.

The distributions of target and stolen key scores of cancelable x-vectors before

passing through the RS code and after applying the RS code using different t are

given in Figure 6.16.

For t=30, the distribution of cancelable x-vectors after applying the secure sketch

is close to the distribution of cancelable x-vectors without secure sketch and the

FAR in the stolen key scenario is equal to 5.67% (at FRR=2% for legitimate).

For t=50, the intra-variability is reduced, the mean of target scores moves from

0.22 to 0.05 while preserving the mean of the distribution of stolen-key scores.

In fact, the EER threshold between target and stolen key distributions is 0.32

meaning 320 mismatch bits with cancelable x-vectors of 1000-bits. When t = 50,

the RS code can correct up to 250 errors which are in the range of target scores.

Therefore, only the mean of target scores is reduced. As result, the overlapping

between target and stolen key distributions is decreased which improves the FAR

Figure 6.16: Distribution of target and stolen key scores for the privacy-preserving
speaker verification system based on corrected cancelable x-vectors according to
different error correcting capability.
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Figure 6.17: FRR and FAR curves of the speaker verification system based on the
corrected cancelable x-vectors in the legitimate and the stolen key scenarios using
t = 50.

at stolen key scenario to 2.79% (at FRR=2% for legitimate).

For t=70, the intra-variability is reduced and the mean of target scores moves

from 0.22 to 0. However, the mean of stolen key distribution is also reduced

and moves from 0.46 to 0.42 because with t=70, the RS code can correct up to

350 errors which are in the range of stolen key distances. This implies overlapping

between targets and stolen key distribution which explains the increase of the FAR

with t=70 to 4.45% compared to FAR=2.79% with t=50 as reported in Table 6.9.

For the baseline x-vectors system, the best biometric performance using PLDA

as back-end scoring in terms of EER is 3.12% (FAR=FRR=3.12%). For the pro-

posed privacy-preserving speaker verification system based on corrected cancelable

x-vectors, as shown in Figure 6.17, at the threshold corresponds to FRR=3.12%,

the FAR = 0 in the legitimate scenario, and the FAR=1.94% in the stolen key

scenario. The system outperforms the performance of the baseline system even in

the stolen key scenario.

As shown in Figure 6.18, by first applying the shuffling scheme, we separate

the target and non-target distributions, which allows to improve the performance

in terms of false acceptance rate. Then, due to the extraction of the secure sketch
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Figure 6.18: Distribution of target and non target scores of the binary, cancelable
and corrected cancelable x-vectors.

from the three enrollment utterances (consistent x-vector), we can correct the

cancelable enrollment and probe x-vectors to be close or equal to the cancelable

consistent x-vector. This allows to reduce the intra-variability which improves the

performance in terms of false rejection rate.

For the proposed system, the enrollment phase requires four utterances for

each speaker. During step1, three utterances are used to extract the secure sketch.

Then during step 2 of enrollment, the corrected cancelable enrollment template is

generated using the fourth utterance and the secure sketch extracted during step1.

This process makes it possible to correct the cancelable enrollment template and

to extract a secure sketch per speaker and not per utterance.

The proposed system can be adapted to perform with one utterance instead

of four during the enrollment phase as shown in Figure 6.19. In this case, during

the enrollment phase, the user provides its enrollment voice sample to extract the

binary x-vector using the TDNN and the auto-encoder models. Then, the binary

x-vector is transformed using the user-specific shuffling key Ke to generate the

enrollment cancelable x-vector Te. Next, Te is passed through the RS encoder to

extract the secure sketch P which corresponds to the parity symbols extracted

from the RS encoding of Te. At the end of enrollment phase, we store the secure

sketch P and the enrollment cancelable x-vector Te which represents the user’s
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Figure 6.19: Pipeline of enrollment and verification phases for the privacy-
preserving speaker verification system based on one utterance during the enroll-
ment phase.

enrollment template PI on the access control system and we delete the rest.

During the verification phase, the user presents the probe voice sample and the

probe shuffling key. The probe sample is passed through the x-vector embedding

extractor and binarization modules to obtain the probe binary x-vector. Using the

shuffling key provided by the user, the probe cancelable x-vector Tp is generated.

Then, the RS decoder assumes that Tp is an error-prone version of Te, it combines

the secure sketch P of the claimed identity with Tp, and performs the decoding

process to generate PI∗ which represents the user’s probe corrected cancelable

template.

In contrast to the system based on four utterances for the enrollment, with this

process, the enrollment cancelable x-vector Te is stored without applying the error

correction. Only the probe cancelable x-vector Tp is corrected to be close to Te.

In Table 6.10, we report the biometric performance of the adapted system for

the legitimate scenario on the test set of VoxCeleb1 database. Even with one

utterance for the enrollment phase, the speaker verification system based on cor-

rected cancelable x-vectors improves the performance in the legitimate scenario
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Table 6.10: Biometric performance in the legitimate scenario for the system based
on corrected cancelable x-vectors using one utterance for the enrollment phase.
The evaluation is performed on the VoxCeleb1 test set with error correction capa-
bility t=50.

Performance in

terms of EER%

Baseline
x-vectors

Binary
x-vectors

Corrected
cancelable
x-vectors

LDA
+

PLDA

LDA
+

Cosine
Cosine

EER% 3.12 5.5 8.18 3.66 0.1

Table 6.11: Biometric performance in terms of FAR for the privacy-preserving
speaker verification system based on corrected cancelable x-vectors in the stolen
key scenario.

Systems Scenario
FAR%

@ FRR=3.12%
Baseline x-vectors Legitimate 3.12

Corrected cancelable
x-vectors

Legitimate 0

Stolen key
Four enrollment

utterances
1.94

One enrollment
utterance

4.1

with EER=0.1% compared to the baseline x-vectors with PLDA scoring as back-

end (EER=3.12%). For the stolen key scenario, as reported in Table 6.11, at the

threshold corresponds to FRR=3.12%, a FAR=4.1% was reported. We observe

degradation in terms of false acceptance rate for the stolen key scenario compared

to the system based on four utterances for the enrollment phase. The FAR moves

from 1.94% for the system based on four enrollment utterances to 4.1% for the sys-

tem based on one utterance. Therefore, in case a robust privacy-preserving speaker

verification system is required, the proposed system based on four utterances of

enrollment could be a solution since it maintains the biometric performance in the

legitimate and the stolen key scenarios. On the other hand, in the case where the

robustness against the stolen key scenario is not a priority or in the case of the

unavailability of several enrollment utterances, the system based on one utterance

during the enrollment could be used.
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Figure 6.20: Revocability analysis: Distribution of Non-target and pseudo-
impostor scores using VoxCeleb1 test set.

6.5.2.2 Revocability analysis

The proposed privacy-preserving x-vector speaker verification system achieves the

revocability requirements. In case the corrected cancelable x-vector is compro-

mised, a new one can be generated using the same biometric sample by changing

the shuffling key. For the proposed system, the secure sketch is extracted from the

RS encoding of the cancelable x-vector. Therefore, by changing the shuffling key,

we can generate a new cancelable template which results in a new secure sketch

and a new corrected cancelable x-vector.

Revocability is evaluated by computing the pseudo-impostor scores. The pseudo-

impostor is the comparison of a corrected cancelable x-vector of a particular user

generated from a biometric sample X with new templates generated using the

same X and different shuffling keys. We have performed 100,000 comparisons for

each user in the test part of Voxceleb1 (40 users). As shown in Figure 6.20, the dis-

tribution of the pseudo-impostor scores overlaps with the non-target distribution

which means that the new generated cancelable templates are indistinguishable

from each other, although they are generated from the same voice sample. As a

result, in case of compromise, a cancellation is possible, and a new template can
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be generated from the same voice sample by changing the shuffling key.

We estimate the number of possible new templates using the Hamming bound

[MacWilliams and Sloane, 1977] as described in the evaluation of revocability of

protected i-vector (Chapter 5, section 5.3.4). For the proposed privacy-preserving

x-vector system using Reed-Solomon code with error capacity equal to 60, the

threshold at EER = 0.08% is th = 0.44 and the probability of bits equal to 1 is

0.45 for cancelable x-vectors of dimension 1000-bits. Therefore, we get almost 228

possible new cancelable templates PI for each user as given by Eq 6.8.

PI =
Number of possible permutation

V olume of Hamming spheres
(6.8)

=
1000!

(450!)(550!)
∑(th×1000)

k=0

(
1000
k

) ≈ 228

6.5.2.3 Unlinkability analysis

As defined in [ISO/IEC JTC1 SC27 Security Techniques, 2011], the cancelable

x-vectors generated from the same biometric samples should not be linkable across

databases and applications. The goal of this evaluation is to determine if from two

corrected cancelable x-vectors T1 and T2 enrolled in different applications, we can

know whether they are generated from the same user or not.

For the unlinkability analysis, we use the framework defined in [Gomez-Barrero

et al., 2017]. This protocol is based on Mated and Non-Mated distributions. Mated

instances: scores computed by comparing corrected cancelable x-vectors extracted

from different samples of the same subject using different shuffling keys. Non-

mated instances: scores computed by comparing corrected cancelable x-vectors

generated from samples of different subjects using different shuffling keys. For an

unlinkable system, we should have an overlap between the mated and non-mated

distributions.

As described in [Gomez-Barrero et al., 2017], the global metric Dsys
↔ gives an

estimation of the global linkability of the system. If a system has Dsys
↔ = 1, where

both score distributions (mated and non-mated) have no overlap means that the

system is fully linkable. If a system has Dsys
↔ = 0, where both score distributions
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Figure 6.21: Unlinkability analysis: Distribution of Mated and Non-Mated scores
using VoxCeleb1 test set.

are totally overlapped means that the system is fully unlinkable for the whole

score range. As observed in Figure. 6.21, the distribution of mated and non-mated

scores are overlapped with global linkability Dsys
↔ close to 0 (Dsys

↔ = 0.02 ). Based

on this evaluation, the proposed system is considered unlinkable.

6.5.2.4 Irreversibility analysis

This subsection analyzes the privacy leakage of the user’s biometric information for

the proposed privacy-preserving x-vectors system. We will suppose that privacy is

compromised if the attacker succeeds to reconstruct the user’s binary embedding

B. The information leaked can be presented as mutual information:

I(B,E) = H(B)−H(B|E) (6.9)

where B represents the user’s binary embedding and E represents the information

that an attacker can compromise. For our system, E could be the user shuffling

key k and/or the user’s corrected cancelable x-vector PI. H(B) represents the

entropy of B and computes the number of bits required to specify B. H(B|E) is

the entropy of B given E.
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Table 6.12 reports the entropy [Shannon, 1948] of the binary embeddings ac-

cording to their length. The entropy is measured on 4874 samples of the test

part of VoxCeleb1. Binary embeddings with lengths 800 and 1000-bits provide the

highest entropy with 756 and 936 respectively. Binary embedding with a length of

3000 bits gives the lowest entropy value, which is correlated with their biometric

performance.

Table 6.12: Entropy of the binary embeddings extracted using a decoder trained
to reconstruct the average of speaker’s x-vectors. The entropy was measured using
4874 samples of the test set of VoxCeleb1 database.

Binary embedding length EER% Entropy
800 3.94 756
1000 3.66 936
2000 4.04 1788
3000 7.33 1809

The irreversibility of the proposed system is evaluated under different attack

scenarios:

1) Shuffling key k is compromised: In this scenario, we suppose that the at-

tacker gain access to the user’s shuffling key. In this case, E = k and the mutual

information is given by:

I(B, k) = H(B)−H(B|k) = 0 (6.10)

I(B, k) = 0 because H(B) = H(B|k) as the user’s shuffling key does not provide

any information about the user’s binary embedding. The shuffling key k only pro-

vides the positions of bits after the transformation of B but does not gives the

values of bits in the binary embeddings.

2) Corrected cancelable x-vector PI is compromised: In this scenario, the at-

tacker gain access to the user’s corrected cancelable x-vector and the secure sketch

stored on the server-side. We consider the worst-case scenario and we assume that

the attacker succeeds to recover the user’s cancelable x-vector T . In this case,
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E = T and the mutual information is given by:

I(B, T ) = H(B)−H(B|T ) (6.11)

where H(B|T ) measure the unpredictability of B given T . Without having infor-

mation about the user shuffling key, the attacker does not know the exact locations

of the bits in the binary embeddings. In fact, without knowing the shuffling key

and prior knowledge about the distribution of the binary embeddings, it is compu-

tationally not feasible to revert to the original binary embeddings B as the number

of permutations to be tested is too big. For the proposed system, if the attacker

wants to guess the correct positions of the binary embedding of length 1000-bits

and knowing the probability of bits equal to 1 is 0.45, the guessing complexity is

equal to 2994 the number of possible permutations, given by Eq. 6.12 as follows:

Number of possible permutations =
1000!

(450!)(550!)
≈ 2994 (6.12)

Also, as reported in the unlikability analysis, the protected cancelable x-vectors are

unlinkable, which means that the cancelable x-vector T and the binary embedding

are independent. Therefore, the reconstruction of B given T is not possible.

As explained above, it is difficult to recover the binary x-vector when the

Figure 6.22: Pipeline for the verification phase when the secure sketch is stored
on the client-side.
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corrected cancelable x-vector and the secure sketch stored on the server-side are

compromised. However, storing the secure sketches on the server side could impact

the privacy of the users. In case the server is attacked, the secure sketches of all

the users will be compromised and become public. Therefore, to improve the

proposed system, it’s better to store the secure sketch on the client-side as shown

in Figure 6.22. When a client’s token is compromised, it will contain only his

secure sketch.

3) Corrected cancelable x-vector PI and shuffling key are compromised: In the

case the attacker gain access to both cancelable x-vector T and the shuffling key

k, the attacker can reconstruct the original binary embedding because knowing T

and k provide the information about the values and the positions of bits in the

binary embedding.

6.5.2.5 Security analysis

In this section, we evaluate the security of the proposed privacy-preserving speaker

verification system based on x-vectors against different scenarios of attacks. We

compute the false acceptance rate for each attack scenario when the EER thresh-

old of the proposed system εEER is taken as the decision threshold. A high value

of FAR implies that the system is not robust to this attack scenario.

Stolen biometric attack:

In this scenario, we suppose that the attacker gain access to the target user bio-

metric sample. Then, he/she tries to impersonate the target user by presenting

the stolen biometric sample, a random shuffling key and the target secure sketch

received from the access system.

The corrected cancelable x-vector is the output of the RS decoding of the

cancelable x-vector combined with the target user secure sketch. Moreover, the

cancelable x-vector is generated by the transformation of the binary embedding

(extracted from the biometric sample) with the user-specific shuffling key. For

our system, even if the attacker presents the biometric sample of the target user,

the transformation with random shuffling key results in a separation between the

distribution of the scores corresponding to the cancelable x-vectors of the attacker
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Figure 6.23: FAR curve of the proposed privacy-preserving speaker verification
system in the stolen biometric attack scenario using VoxCeleb1 test set. FAR=0.14
at the EER threshold of the legitimate scenario.

and that of the target user. This implies that the RS decoding can not correct

the attacker’s cancelable x-vector since the distance is greater than the capability

error correction.

As shown in Figure 6.23, the FAR obtained when the attacker gains access to the

target biometric sample is equal to 0.14% at the EER threshold of the legitimate

scenario. Based on this evaluation, we conclude that the proposed system is robust

to stolen biometric attacks.

Brute force attack

The decision on the proposed speaker verification system is based on comparing

the Hamming distance between the enrollment and the probe corrected cancelable

x-vectors to a specific threshold. If the distance is less than this threshold, the

user is considered a legitimate user. The brute force attack consists of an attacker

trying to guess the target-enrollment template’s values to gain access. However,

this is infeasible in our system because the possible combinations are huge. For

the proposed system, the dimension of the template is 1000 bits and using a Reed

Solomon with t= 60, the access threshold for verification is 0.4 making the guess-
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Figure 6.24: FAR curve of the proposed privacy-preserving speaker verification
system in the brute force attack scenario using VoxCeleb1 test set. FAR=0 at the
EER threshold.

ing complexity equal to 21000∗(1−0.4) attempts.

For the evaluation of the brute force attack, we attacked the corrected cancelable

x-vector of each user in the test part of Voxceleb1 (40 users) with 100,000 synthe-

sized templates. As shown in Figure 6.24 the FAR=0 for this attack at the EER

threshold.

Stolen token attack

In this scenario, the attacker has stolen the shuffling key of the target user and tries

using random binary vectors to generate the taregt’s cancelable x-vector. For the

evaluation of this attack scenario, we attacked the corrected cancelable x-vector of

each user in the test part of Voxceleb1 (40 users) with 100,000 cancelable x-vectors

generated from 100,000 random binary vectors transformed with the target user

shuffling key. As shown in Figure 6.25 the FAR=0 for this attack at the EER

threshold of the final system.

Worst case scenario:

The worst-case scenario corresponds to the stolen key scenario evaluated in sec-
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tion 6.5.2.1. The attacker has the shuffling key of the user and tries to access the

system by presenting his/her biometrics, the target shuffling key, and the target

secure sketch received from the access system. One of the main requirements in the

standard ISO/IEC 24745 for biometric information protection is that the protec-

tion of biometric systems should not degrade the biometric performance compared

to the baseline system. In our case, if we consider the best baseline x-vectors

system based on PLDA as back-end scoring, the biometric performance in terms

of EER=3.12% (FAR=FRR=3.12%). As shown in Figure 6.26, for the proposed

privacy-preserving speaker verification system based on cancelable x-vectors, at

FRR=3.12%, the FAR=0 in the legitimate scenario and the FAR=1.94% for worst

case attack (stolen key). The proposed system outperforms the performance of

baseline system in legitimate and stolen key scenarios. Therefore, we conclude

that the proposed system is robust against stolen shuffling key scenario.

Figure 6.25: FAR curve of the proposed privacy-preserving speaker verification
system for the stolen token attack using VoxCeleb1 test set. FAR=0 at the EER
threshold.
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(a) FRR and FAR curves in the legitimate scenario.

(b) FAR curve in the worst case attack

Figure 6.26: FAR and FRR curves of the privacy-preserving speaker verification
system based on corrected cancelable x-vectors in the legitimate and the worst
case scenarios using VoxCeleb1 test set.

138



6.6. SUMMARY OF THE RESULTS

6.6 Summary of The Results

In this chapter, experimental results were presented for each module in the pro-

posed system: baseline x-vectors (without protection), binary x-vectors, cancelable

x-vectors, and cancelable x-vectors with error correction code.

The biometric performance of speaker verification systems based on unpro-

tected (baseline) x-vectors extracted using a TDNN was reported using different

back-end scoring. For the baseline systems 1 and 2 where the x-vectors were pro-

cessed with mean centering, length normalization, and LDA, the EER obtained

was 3.12% using PLDA and 5.5% using cosine as back-end scoring. For the baseline

system 3 where the cosine distance was used as back-end scoring without applying

the LDA and the normalization process, the EER obtained was 8.18%. For our

work, we used the x-vectors extracted using system 3 as a baseline to avoid pro-

tecting more biometric information such as that contained in the PLDA. However,

our goal was to develop a privacy-preserving speaker verification system based on

cancelable x-vectors system that maintains the biometric performance of the best

baseline x-vectors system 1 (PLDA as back-end).

Therefore, we proposed an approach based on deep neural nets autoencoder

trained to transform the x-vector embeddings into binary representations. The

autoencoder was composed of an encoder trained to binarize the x-vector embed-

ding and a decoder trained to reconstruct the x-vector from the binary represen-

tation. The EER of speaker verification system based on binary x-vectors ex-

tracted using the autoencoder was 3.66% compared to the baseline systems with

EER = 3.12%,5.5%, and 8.8%. The binarization of speaker embedding using the

autoencoder model maintains the performance compared to the baseline systems.

Then, cancelable x-vectors are generated by transforming the binary x-vectors

with the shuffling scheme. This transformation allows achieving the privacy re-

quirements and maintaining the biometric performance in the legitimate scenario

compared to the baseline systems. For speaker verification based on cancelable

x-vectors, the EER obtained was 0.1%. However, degradation was reported in

terms of FAR for the stolen key scenario. Compared to the best baseline x-vectors

system 3 where the EER=3.12%, using the cancelable x-vectors, at the threshold

corresponds to FRR=3.12%, the FAR=4.39% in the stolen key scenario.
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To improve the robustness of the system against the stolen key attacks, the

idea was to pass the cancelable x-vector through an error-correcting code to man-

age the biometric variability.

For the proposed system using four enrollment utterances, results show that the

speaker verification system based on corrected cancelable x-vectors system achieves

the privacy requirements and outperforms the biometric performance of the base-

line (without protection) x-vector systems. An EER=0.08% was obtained com-

pared to EER=3.12% for the baseline x-vectors. Also, the system is robust against

stolen biometric, stolen token, and brute force attacks with a FAR=0. In addi-

tion, due to the combination of shuffling scheme and the error correction code, the

proposed system is robust to the stolen shuffling key scenario. For the baseline x-

vectors system based on PLDA as back-end scoring, the biometric performance in

terms of EER=3.12% (FAR=FRR=3.12%). For the proposed privacy-preserving

x-vector system, at FRR=3.12%, the FAR=0 in the legitimate scenario and the

FAR=1.94% for the stolen shuffling key scenario. The proposed system outper-

forms the performance of the baseline system in the legitimate and the stolen key

scenarios.

For the system based on one utterance during the enrollment, the system out-

performs the baseline system in the legitimate scenario with EER=0.1%. However,

a slight degradation in terms of FAR was observed for the stolen key scenario.

FAR=4.1% was reported compared to 3.12% for the baseline system.
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6.7 Chapter Summary and Conclusions

In this chapter, we have proposed a speaker verification system based on cancelable

x-vectors that performs the biometric verification while preserving user privacy.

Biometric template protection was performed by first transforming the x-vectors

into binary representations using an autoencoder on top of the TDNN. Then, a

cancelable x-vector was generated by protecting the binary representation with

the shuffling scheme. Next, the Reed-Solomon error-correction code was applied

to the cancelable x-vectors to improve the biometric performance and the security

of the system.

The proposed system was evaluated according to the requirements of ISO/IEC

IS 24745 on biometric information protection; biometric performance, revocability,

unlinkability, and irreversibility. Furthermore, the robustness to different attack

scenarios has been analyzed. In order to make our research reproducible, the evalu-

ations were performed using public VoxCeleb databases following a clear protocol.

The main findings of this chapter can be summarized in the followings points:

• The autoencoder-based binarization approach transforms the x-vector into

a binary representation without a loss in biometric performance. The EER

of speaker verification system based on the binary x-vectors was 3.66% com-

pared to the baseline x-vectors systems with EER equal to 3.12%, 5.5%, and

8.18%.

• The proposed cancelable x-vectors speaker verification system outperforms

the biometric performance of the baseline x-vectors systems. An EER equal

or lower to 0.1% is achieved, showing a 97% relative improvement compared

to the best baseline x-vectors system (EER=3.12%).

• The proposed system performs speaker verification without revealing the

user’s biometric information. Only protected x-vectors are stored in the

server or handled during the verification phase.

• Revocability is achieved with the use of the shuffling scheme. A new cance-

lable x-vector can be generated by changing the shuffling key of the user.
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• Unlinkability is also achieved. Cancelable x-vectors are unlinkable which

avoids cross-matching attacks.

• The proposed system is robust against stolen biometric, stolen token, and

brute force attacks with a FAR=0.

• Unlike the systems proposed in chapter 4 and 5, the cancelable x-vectors

system based on four utterances for the enrollment is robust to the stolen

shuffling key scenario. This was achieved through the binarization approach

that maintains the biometric performance and the combination of the can-

celable scheme with the error-correcting code.
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Conclusions and Future Research
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7.1 Summary

In this thesis, we addressed the problem of privacy-preserving and security for

speaker verification systems. We developed biometric protection schemes for per-

forming speaker verification in a protected domain that preserves the privacy of

user’s biometric information and improves the robustness of the biometric system.

We considered the issue of privacy preservation in the context of three speaker

verification systems based on: Gaussian mixture models (GMM), i-vector, and x-

vector for speaker modeling. We proposed biometric protection schemes based on

the binarization of the speaker representation and its protection using a cancelable

scheme to create privacy-preserving biometric systems. Regarding state of the art,

most cancelable schemes applied in order to preserve privacy introduce degrada-

tion in terms of biometric performance compared to the non-protected system. The

proposed privacy-preserving speaker verification systems achieve the privacy and

security requirements while maintaining the biometric performance. In addition,

to contribute reproducible research and allow comparisons with other approaches,
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common and standardized protocols with public and available databases have been

used in the experimental evaluations. We summarize the chapters below.

Chapter 1 introduced the privacy issues related to speaker verification systems,

the standard ISO/IEC IS 24745 on biometric information protection, the motiva-

tion and objectives of the thesis, and the research contributions originated from

this thesis.

Chapter 2 summarized the most relevant works related to the research devel-

oped in the thesis. We presented the existing approaches for speaker verification

systems and the vulnerabilities of these systems in terms of privacy and secu-

rity. Then, we reviewed the state-of-the-art of researches that address biometric

information protection for speaker verification systems.

Chapter 3 described the evaluation of an audio-visual biometric system against

presentation attack-based on 3D talking head created from the 2D image and the

voice recording of the target user. The evaluation outlined that the fusion of

speaker verification system with face modality is not sufficient to achieve secure

authentication. With the advancement in the generation of 3D talking head, an

attacker can use a 2D image of the target user and perform a 3D facial recon-

struction able to bypass the anti-spoofing detectors. This evaluation served as

motivation for developing privacy-preserving speaker verification systems.

Chapter 4 presented a biometric protection scheme to develop a privacy-preserving

speaker verification system based on Gaussian mixture model. The proposed

scheme includes two steps: the representation of acoustic features with a binary

representation and then the protection of the binary template with the shuffling

scheme. The privacy-preserving system was evaluated according to the require-

ments of biometric information protection described in ISO/IEC IS 24745 using

a text-dependent RSR2015 database. Results show that the proposed system

achieves the privacy requirements (revocability, unlinkability, and irreversibility)

while maintaining the biometric performance. An improvement in biometric per-

formance in terms of EER compared to the baseline GMM system was reported.

As example using the female subset, for target-correct/impostor correct trials of

RSR2015 databases, the EER for the baseline system was 1.98% which improved

to 0.01% using the protected system. Moreover, the proposed privacy-preserving

GMM system is robust against different attack scenarios. For stolen biometric
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attack, a false acceptance rate equal to 0 was reported.

Chapter 5 presented a biometric protection scheme for a privacy-preserving

speaker verification system based on i-vectors. The scheme includes two steps:

i-vector binarization using the thresholding method and the protection of the bi-

nary i-vector with the shuffling scheme. The proposed system performs speaker

verification without revealing the speaker’s voice information to the access server,

either during enrollment or during the verification phase. We also demonstrate

that this protection scheme could operate to achieve privacy for speaker verifica-

tion systems based on x-vectors. The proposed systems were evaluated using the

RSR2015 text-dependent database and SRE16 text-independent database for the

system based on i-vectors and using the VoxCeleb text-independent database for

the system based on x-vectors. Compared to the majority of research on voice

biometric protection, the proposed privacy-preserving system made it possible

to simultaneously achieve privacy requirements and preserve the biometric ver-

ification performance. The proposed system improves the biometric performance

compared to the unprotected system. Moreover, due to the shuffling scheme, the

protected i-vectors are revocable. In case the biometric data or the shuffling key is

stolen, different protected i-vectors could be generated from the same voice sample

without the possibility to be linked. In addition, the protected system has a good

level of security against different attack scenarios. FAR=0 has been reported for

brute force attacks, stolen tokens, and stolen biometric attacks.

The main weakness of the privacy-preserving schemes used to protected speaker

verification systems based on GMM and i-vectors presented in chapter 4 and 5

respectively is the low resistance to the worst-case attack (stolen shuffling key

scenario). In case the shuffling key is stolen, the performance of privacy-preserving

systems degrades compared to the baseline systems. This degradation is linked to

the loss of biometric performance caused by transforming the speaker biometric

reference into a binary representation before applying the shuffling scheme.

In chapter 6, a novel approach for binarizing speaker representation while main-

taining the biometric performance was presented. This approach is based on deep

neural nets autoencoder trained to transform the x-vector embeddings into binary

representations. The autoencoder is composed of an encoder trained to bina-

rize the x-vector embedding and a decoder trained to reconstruct the x-vector
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from the binary representation. In contrast to the threshold-based binarization

method used in chapter 5 which degrades the biometric performance, binarization

of speaker embedding using the autoencoder model maintains the performance

obtained with the baseline system. The EER of speaker verification system using

the binary representation extracted using the autoencoder was 3.66% compared

to the baseline system with EER = 3.12% and 5.5% using PLDA and cosine as

back-end scoring respectively. In addition, binarization based on the autoencoder

method makes it possible to control the dimension of the binary representation.

This binarization approach was then used to develop a privacy-preserving sys-

tem based on x-vectors. Protection of x-vector was first performed by transforming

it into binary representations using an autoencoder on top of the TDNN. Then,

a cancelable x-vector is generated by transforming the binary representation with

the shuffling scheme. This transformation allows achieving revocability in case the

shuffling key or the cancelable template is compromised. Next, the idea was to pass

the cancelable x-vector through a Reed-Solomon error-correction code to manage

the intra-variability which allows improving the FAR in the stolen key scenario

while maintaining the performance in terms of FRR in the legitimate scenario.

The privacy-preserving speaker verification system based on protected x-vectors

system was evaluated using the text-independent VoxCeleb database. The can-

celable x-vectors system achieves the privacy requirements and outperforms the

biometric performance of the baseline x-vector system. An EER=0.1% was ob-

tained compared to EER=3.12% for the baseline x-vectors. The proposed system

is robust against stolen biometric, stolen token, and brute force attacks with a

FAR=0. In addition, due to the binarization method and the combination of shuf-

fling scheme and the RS error correction code, the cancelable x-vectors system is

robust to the stolen shuffling key scenario. For the baseline x-vectors system based

on PLDA as back-end scoring, the biometric performance in terms of EER=3.12%

(FAR=FRR=3.12%). For the proposed privacy-preserving x-vector system based

on four enrollment utterances, at FRR=3.12%, the FAR=0 in the legitimate sce-

nario and the FAR=1.94% for the stolen shuffling key scenario. The proposed

system outperforms the performance of the baseline system in the legitimate and

the stolen key scenarios.
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7.2 Future Research Directions

Suggested future research work resulting from this thesis can be summarized as

follows:

• Exploitation of the speaker model binarization approach based on autoen-

coder proposed in chapter 6 to develop a privacy-preserving speaker veri-

fication system based on homomorphic encryption schemes. Homomorphic

encryption is successfully applied to preserve privacy for speaker verifica-

tion while maintaining biometric performance. However, the computational

overhead incurred by processing speech data in the encrypted domain is

substantial. To reduce the computational overhead, [Nautsch et al., 2019]

propose to operate with binary speaker representation. They demonstrate

that using binary representations decreases the computation time required

for biometric comparisons in the encrypted domain. Therefore, we believe

that the binarization method described in chapter 6 could be used to improve

such systems. The autoencoder-based binarization transforms the speaker

biometric reference into a binary representation without a loss in biomet-

ric performance. Also, it makes possible to control the dimension of binary

representation.

• Development of privacy-preserving audio-visual biometric recognition sys-

tem. Using the autoencoder on top of the TDNN, the voice characteristics

could be represented by a binary vector with a dimension chosen according to

the dimension of the face representation. This allows to map both modalities

into a single representation space and apply biometric protection schemes.

• The proposed cancelable schemes in this thesis address the protection of

speaker verification systems based on x-vectors or i-vectors using cosine dis-

tance as back-end scoring. Future research could be the development of

cancelable scheme dedicated to the protection of speaker verification sys-

tems using log-likelihood ratio scores from probabilistic linear discriminant

analysis (PLDA).
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[Portêlo et al., 2014a] Portêlo, J., Raj, B., Abad, A., and Trancoso, I. (2014a).

Privacy-preserving speaker verification using garbled gmms. In 2014 22nd Eu-

ropean Signal Processing Conference (EUSIPCO), pages 2070–2074. IEEE.

157



BIBLIOGRAPHY
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Titre : VERS DES SYSTÈMES DE VÉRIFICATION DE LOCUTEUR ROBUSTES ET PRÉSERVANT LA VIE
PRIVÉE

Mots clés : Système de Vérification de Locuteur, Protection de la Vie Privée, Sécurité, Protection des Infor-
mations Biométriques.

Résumé : Les systèmes de vérification du locuteur
sont une technologie clé dans de nombreux appa-
reils et services tels que les smartphones, les as-
sistants numériques intelligents et les applications
bancaires. Pendant la pandémie de COVID-19, les
systèmes de contrôle d’accès basés sur des lecteurs
d’empreintes digitales ou des claviers augmentent
le risque de propagation du virus. Par conséquent,
les entreprises repensent maintenant leurs systèmes
de contrôle d’accès des employés et envisagent des
technologies d’autorisation sans contact, telles que
les systèmes de vérification des locuteurs.
Cependant, les systèmes de vérification des locuteurs
exigent que le système d’accès stocke les modèles
des locuteurs et ait accès aux enregistrements ou
aux caractéristiques dérivées des voix des locuteurs
lors de l’authentification. Ce processus soulève cer-
taines préoccupations concernant le respect de la vie
privée de l’utilisateur et la protection de ces données
biométriques sensibles. Un adversaire peut voler les
informations biométriques des locuteurs pour usur-
per l’identité de l’utilisateur authentique et obtenir
un accès non autorisé. De plus, lorsqu’il s’agit de

données vocales, nous sommes confrontés à des
problèmes supplémentaires de confidentialité et de
respect de vie privée parce que à partir des données
vocales plusieurs informations personnelles liées à
l’identité, au sexe, à l’âge ou à l’état de santé du locu-
teur peuvent être extraites.
Dans ce contexte, la présente thèse de doctorat
aborde les problèmes de protection des données
biométriques, le respect de vie privée et la sécurité
pour les systèmes de vérification du locuteur basés
sur les modèles de mélange gaussien, i-vecteur et
x-vecteur comme modélisation du locuteur. L’objec-
tif est le développement de systèmes de vérification
du locuteur qui effectuent une vérification biométrique
tout en respectant la vie privée et la protection
des données biométriques de l’utilisateur. Pour cela,
nous avons proposé des schémas de protection
biométrique afin de répondre aux exigences de pro-
tection des données biométriques (révocabilité, di-
versité, et irréversibilité) décrites dans la norme
ISO/IEC IS 24745 et pour améliorer la robustesse des
systèmes contre différentes scénarios d’attaques.

Title : TOWARDS ROBUST AND PRIVACY-PRESERVING SPEAKER VERIFICATION SYSTEMS

Keywords : Speaker Verification, Privacy, Security, Biometric Information Protection

Abstract : Speaker verification systems are a key
technology in many devices and services like smart-
phones, intelligent digital assistants, healthcare, and
banking applications. Additionally, with the COVID
pandemic, access control systems based on fin-
gerprint scanners or keypads increase the risk of
virus propagation. Therefore, companies are now
rethinking their employee access control systems
and considering touchless authorization technologies,
such as speaker verification systems. However, spea-
ker verification system requires users to transmit their
recordings, features, or models derived from their
voice samples without any obfuscation over untrus-
ted public networks which stored and processed them
on a cloud-based infrastructure. If the system is com-
promised, an adversary can use this biometric infor-
mation to impersonate the genuine user and extract

personal information. The voice samples may contain
information about the user’s gender, accent, ethnicity,
and health status which raises several privacy issues.
In this context, the present PhD Thesis address the
privacy and security issues for speaker verification
systems based on Gaussian mixture models (GMM),
i-vector, and x-vector as speaker modeling. The ob-
jective is the development of speaker verification sys-
tems that perform biometric verification while preser-
ving the privacy and the security of the user. To that
end, we proposed biometric protection schemes for
speaker verification systems to achieve the privacy
requirements (revocability, unlinkability, irreversibility)
described in the standard ISO/IEC IS 24745 on bio-
metric information protection and to improve the ro-
bustness of the systems against different attack sce-
narios.
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