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Abstract

Audio synthesizers are electronic musical instruments that generate artificial
sounds under some parametric control. While synthesizers have evolved since
they were popularized in the 70s, two fundamental challenges are still unresolved:
1) the development of synthesis systems responding to semantically intuitive pa-
rameters; 2) the design of "universal," source-agnostic synthesis techniques. This
thesis researches the use of Generative Adversarial Networks (GAN) towards
building such systems. The main goal is to research and develop novel tools
for music production that afford intuitive and expressive means of sound manip-
ulation, e.g., by controlling parameters that respond to perceptual properties of
the sound and other high-level features.

Our first work studies the performance of GANs when trained on various
common audio signal representations (e.g., waveform, time-frequency representa-
tions). These experiments compare different forms of audio data in the context
of tonal sound synthesis. Results show that the Magnitude and Instantaneous
Frequency of the phase and the complex-valued Short-Time Fourier Transform
achieve the best results.

Building on this, our following work presents DrumGAN, a controllable ad-
versarial audio synthesizer of percussive sounds. We demonstrate that intuitive
control can be gained over the generation process by conditioning the model on
perceptual features describing high-level timbre properties. This work results in
developing a VST plugin generating full-resolution audio and compatible with any
Digital Audio Workstation (DAW). We show extensive musical material produced
by professional artists from Sony ATV using DrumGAN.

The scarcity of annotations in musical audio datasets challenges the appli-
cation of supervised methods to conditional generation settings. Our third con-
tribution employs a knowledge distillation approach to extract such annotations
from a pre-trained audio tagging system. DarkGAN is an adversarial synthe-
sizer of tonal sounds that employs the output probabilities of such a system (so-
called “soft labels”) as conditional information. Results show that DarkGAN can
respond moderately to many intuitive attributes, even with out-of-distribution
input conditioning.

Applications of GANs to audio synthesis typically learn from fixed-size two-
dimensional spectrogram data analogously to the "image data" in computer vi-
sion; thus, they cannot generate sounds with variable duration. Our fourth paper
addresses this limitation by exploiting a self-supervised method for learning dis-
crete features from sequential data. Such features are used as conditional input to
provide step-wise time-dependent information to the model. Global consistency
is ensured by fixing the input noise z (characteristic in adversarial settings). Re-
sults show that, while models trained on a fixed-size scheme obtain better audio
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quality and diversity, ours can competently generate audio of any duration.
One interesting direction for research is the generation of audio conditioned

on preexisting musical material, e.g., the generation of some drum pattern given
the recording of a bass line. Our fifth paper explores a simple pretext task
tailored at learning such types of complex musical relationships. Concretely, we
study whether a GAN generator, conditioned on highly compressed MP3 musical
audio signals, can generate outputs resembling the original uncompressed audio.
Results show that the GAN can improve the quality of the audio signals over the
MP3 versions for very high compression rates (16 and 32 kbit/s).

As a direct consequence of applying artificial intelligence techniques in mu-
sical contexts, we ask how AI-based technology can foster innovation in musical
practice. Therefore, we conclude this thesis by providing a broad perspective
on the development of AI tools for music production, informed by theoretical
considerations and reports from real-world AI tool usage by professional artists.

6



Résumé

Les synthétiseurs audio sont des instruments de musique électroniques qui génèrent
des sons artificiels sous un certain contrôle paramétrique. Alors que les synthé-
tiseurs ont évolué depuis leur popularisation dans les années 70, deux défis fonda-
mentaux restent encore non résolus: 1) le développement de systèmes de synthèse
répondant à des paramètres sémantiquement intuitifs; 2) la conception de tech-
niques de synthèse «universelles», indépendantes de la source à modéliser. Cette
thèse étudie l’utilisation des réseaux adversariaux génératifs (ou GAN) pour con-
struire de tels systèmes. L’objectif principal est de rechercher et de développer
de nouveaux outils pour la production musicale, qui offrent des moyens intuitifs
et expressifs de manipulation du son, par exemple en contrôlant des paramètres
qui répondent aux propriétés perceptives du son et à d’autres caractéristiques.

Notre premier travail étudie les performances des GAN lorsqu’ils sont en-
traînés sur diverses représentations de signaux audio (par exemple, forme d’onde,
représentations temps-fréquence). Ces expériences comparent différentes formes
de données audio dans le contexte de la synthèse sonore tonale. Les résultats mon-
trent que la représentation magnitude-fréquence instantanée et la transformée de
Fourier à valeur complexe obtiennent les meilleurs résultats.

En s’appuyant sur ce résultat, notre travail suivant présente DrumGAN, un
synthétiseur audio de sons percussifs. En conditionnant le modèle sur des car-
actéristiques perceptives décrivant des propriétés timbrales de haut niveau, nous
démontrons qu’un contrôle intuitif peut être obtenu sur le processus de génération.
Ce travail aboutit au développement d’un plugin VST générant de l’audio haute
résolution et compatible avec les Stations de Travail Audio Numériques (STAN).
Nous montrons un vaste matériel musical produit par des artistes professionnels
de Sony ATV à l’aide de DrumGAN.

La rareté des annotations dans les ensembles de données audio musicales remet
en cause l’application de méthodes supervisées pour la génération conditionnelle.
Notre troisième contribution utilise une approche de distillation des connaissances
pour extraire de telles annotations à partir d’un système d’étiquetage audio pré-
entraîné. DarkGAN est un synthétiseur de sons tonaux qui utilise les probabilités
de sortie d’un tel système (appelées « étiquettes souples ») comme informations
conditionnelles. Les résultats montrent que DarkGAN peut répondre modérément
à de nombreux attributs intuitifs, même avec un conditionnement d’entrée hors
distribution.

Les applications des GAN à la synthèse audio apprennent généralement à par-
tir de données de spectrogramme de taille fixe, de manière analogue aux «données
d’image» en vision par ordinateur; ainsi, ils ne peuvent pas générer de sons de
durée variable. Dans notre quatrième article, nous abordons cette limitation en
exploitant une méthode auto-supervisée pour l’apprentissage de caractéristiques
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discrètes à partir de données séquentielles. De telles caractéristiques sont utilisées
comme entrée conditionnelle pour fournir au modèle des informations dépendant
du temps par étapes. La cohérence globale est assurée en fixant le bruit d’entrée
z (caractéristique en GANs). Les résultats montrent que, tandis que les modèles
entraînés sur un schéma de taille fixe obtiennent une meilleure qualité et diver-
sité audio, les nôtres peuvent générer avec compétence un son de n’importe quelle
durée.

Une direction de recherche intéressante est la génération d’audio conditionnée
par du matériel musical préexistant, par exemple, la génération d’un motif de
batterie compte tenu de l’enregistrement d’une ligne de basse. Notre cinquième
article explore une tâche prétexte simple adaptée à l’apprentissage de tels types
de relations musicales complexes. Concrètement, nous étudions si un générateur
GAN, conditionné sur des signaux audio musicaux hautement compressés, peut
générer des sorties ressemblant à l’audio non compressé d’origine. Les résultats
montrent que le GAN peut améliorer la qualité des signaux audio par rapport
aux versions MP3 pour des taux de compression très élevés (16 et 32 kbit/s).

En conséquence directe de l’application de techniques d’intelligence artificielle
dans des contextes musicaux, nous nous demandons comment la technologie basée
sur l’IA peut favoriser l’innovation dans la pratique musicale. Par conséquent,
nous concluons cette thèse en offrant une large perspective sur le développe-
ment d’outils d’IA pour la production musicale, éclairée par des considérations
théoriques et des rapports d’utilisation d’outils d’IA dans le monde réel par des
artistes professionnels.
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Notation

We generally use bold symbols to indicate vectors (lowercase) and matrices (up-
percase). Uppercase symbols may be also used to indicate constants. When
theory is applicable to either scalars, vectors or n-dimensional algebraic objects
(tensors), we employ lowercase symbols. We indicate probability distribution by
p(·). We often add a subscript to probability densities, e.g. pθ(x), to indicate the
distribution of random variables x with distributional parameters θ. The symbol
E(·) represents the expected value operator. Finally, we represent the sampling
or simulation of variates x from a distribution p(x) using the notation x ∼ p(x).
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Chapter 1

Introduction

“I dream of instruments obedient to my thought and which with their
contribution of a whole new world of unsuspected sounds, will lend
themselves to the exigencies of my inner rhythm”

— Edgard Varèse, 1917

Audio synthesizers are electronic musical instruments that generate artificial
sounds under some parametric control. Popularized during the 70s, these devices,
now ubiquitous in most of the music we listen to, have since reshaped music
production, giving birth to new music genres and novel paradigms for musical
interaction and expression.

While synthesizers have evolved since they first appeared, two fundamental
challenges are still faced. One is the development of genuinely accessible and
user-driven synthesis systems, responding to semantically intuitive parameters.
Fig. 1.1 shows the interface of Sonicbits’ Exakt Lite, an “intuitive and user-friendly
FM synthesizer plugin.”1 Waveform, filter, frequency modulation, etc.: the vast
and complex parameter space that synthesizers afford is an unquestioned source
of inspiration for a few, yet, for the many, they pose an obstacle that slows down
the creative process. This process may seem analogous to any other musical
instrument: one must train hard to fully unveil its sonic possibilities, e.g., per-
forming vibrato or finger-tapping in a guitar to achieve different timbres requires
expertise. However, anyone can understand the guitar’s interaction protocol, i.e.,
the set of mechanic rules to obtain a specific sound. Synthesizers, on the contrary,
require strong signal processing knowledge to guide the system towards a specific
sound purposely. The main barrier resides in the semantic gap between the syn-
thesis parameters and the musician’s cognitive factors driving creative thoughts.
The synthesizer’s language is signal processing, whereas the artist’s language con-
cerns abstract properties such as emotions, perception, experiences, or musical
aesthetics, to name a few. Under current systems, it is the user’s responsibility
to translate this unstructured context into the synthesizer’s parameter space and
not the opposite; this is the synth incorporating parameters that can respond
to the musician’s language. An overview of this process is further illustrated in
Fig. 1.2.

The second challenge is designing “universal,” source-agnostic synthesis tech-
niques that can approximate any timbre and offer generic workflows. As we

1https://www.sonicbits.com/exakt-lite.html
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Figure 1.1 – Graphical User Interface (GUI) of SONICBITS Exakt Lite FM syn-
thesizer.

will see in Chapter 3, many different techniques exist for audio synthesis. Each
technique understands sound differently, conferring specific characteristics to the
generated sound and providing specific means of control. Therefore, some syn-
thesizers may be better suited than others for generating specific sounds or for
specific musical purposes.

From the above-described context we can identify four main challenges and
limitations that music producers may face when working with synthesizers: 1) the
need for dedicated software or hardware for specific musical purposes; 2) master-
ing of different synthesis techniques and workflows; 3) the need for sample libraries
due to the unavailability of technology for modeling specific sound sources; 4) the
creative barrier that current synthesizers impose through their obscure termi-
nology and workflows. The question arises as to how we can design synthesis
techniques exposing intuitive parameters that respond to acoustic (e.g., source,
space), musical (e.g., harmony, genre), or perceptual (e.g., pitch, timbre) proper-
ties of the sound and with rich timbral capabilities.

1.1 Deep Learning Meets Audio Synthesis
The field of Deep Learning (DL) offers new approaches to synthesizing audio that
may pave the way towards building such systems. Generative Neural Networks
(GNNs) are biologically-inspired computer algorithms that utilize statistical rules
to learn models from some training data (a more formal introduction is given in
Chapter 2). A neural audio synthesizer refers to a GNN trained on a sound
dataset. Once trained, GNNs can generate new data without being explicitly
programmed to do so. They can also be conditioned on preexisting information
to gain control over specific features, or, they can even learn by themselves to
find meaningful features in the data. This is in contrast to expert models —such
as synthesizers— which rely on static and explicitly stated models of sound built
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Figure 1.2 – Problem overview.* The user starts by devising a musical idea that
can integrate various information, including mood, emotional state, a melody,
preexisting musical content (e.g., a pre-recorded bass line), and more. We call
these high-level features because of their high degree of abstraction. The user
must then adjust the parameters of the synthesizer to obtain a specific sound.
If no clear sound is targeted, one can wander around through the parameter
space. The sound produced by the synth is perceived back by the user, who may
incorporate this information to make new adjustments.

* Icon acknowledgements can be found in Appendix A.

upon prior knowledge of the domain. As we will mention in Sec. 3.2, devising
controls responding to abstract sound properties in expert systems requires an in-
depth study of such specific properties an their relationship with low-level features
observed in the signal [Ystad, 1998]. Further, in many cases the relationship of
such attributes with the audio signal is an ill-defined problem with no unique
solution. Music is a design task where no single algorithm exists to transform
some abstract initial state into an underdefined goal state, e.g., there is no single
way of composing a bassline for some pre-recorded content or given some abstract
description. Following this paradigm, in Fig. 1.3, we illustrate how interaction
with a synthesizer could look like under the lens of deep learning. Even though
complete adaptation to the user will still require fundamental developments in,
e.g., active learning, representation learning, machine listening, or adaptive user
interfaces, to name but a few fields, the work contained in this thesis contributes
to building such systems.

DL has led to remarkable breakthroughs in Computer Vision (CV) due to fun-
damental developments such as Generative Adversarial Networks (GAN). GANs
are powerful generative neural networks capable of synthesizing photo-realistic
face images [Karras et al., 2018] or rendering high-definition images from a sketched
landscape [Park et al., 2019]. In the field of audio, most of the work has been
oriented towards speech synthesis for human-machine translation tasks [Sotelo
et al., 2017, Ping et al., 2017, Shen et al., 2018]. Research on musical audio
is scarce mainly due to the high-quality standards of musical applications cou-
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Figure 1.3 – Diagram of a DL-driven synthesizer.* The workflow is not any more
linear as in Fig. 1.2. The synthesizer can be directly operated based on high-level
controls and, additionally, it can be controlled based on preexisting audio content.
Once the synthesizer is configured and sound is produced, the generated sound
could be fed back to the synthesizer for its automated fine-tuning.

* Icon acknowledgements can be found in Appendix A.

pled with the complexity of music when rendered in its raw form. Music relies
heavily on repetition to build structure and meaning at very different scales. Self-
reference occurs not only on multiple timescales but frequency scales, from motifs
to phrases to entire sections of a music piece, or even harmonic structure in the
frequency domain across the different instruments. Thus, generative models of
audio require large representational capacity distributed in time [Dieleman et al.,
2018]. Most of the work applying neural networks to music generation has been
devoted to symbolic representations such as MIDI or scores as these capture mu-
sical information in a more concise way [Briot et al., 2017, Pachet, 2002, Huang
et al., 2019a, Hadjeres et al., 2017, Simon and Oore, 2017]. These representations,
though, limit considerably the extent to which models can learn musically rele-
vant nuances. For example, information about micro-timing variations, timbre,
and precise dynamics (expressiveness) is harmed when music is represented as a
score or a MIDI sequence, while audio waveforms retain all these relevant aspects.
Models trained on such raw representations are also more general and can be ap-
plied to recordings of any set of instruments and non-musical audio signals such
as speech. Previous work on music modeling in the raw audio domain [Donahue
et al., 2019, Ai et al., 2018, van den Oord et al., 2016a] has shown that capturing
local structure (such as timbre) is feasible. Recent work showed that capturing
longer term structure (e.g., form, style) is also possible at the expense of model
size, training data and generation time [Dhariwal et al., 2020].
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1.2 Scope and Contributions
This thesis researches a broad set of applications of GANs to musical sound
synthesis tasks. The main goal is to study and develop novel tools for music
production that can offer the user intuitive and, simultaneously, inspiring means
of sound manipulation, e.g., by controlling parameters that respond to percep-
tual properties of the sound or other high-level features. Further motivated in
Chapter 2, an adversarial scheme is preferred over other generative modeling
strategies (e.g., autoregressive, variational) as GANs evidence a good compromise
between generation time, sample quality, and diversity. These considerations are
of great importance in building commercially viable solutions that can run on a
conventional computer while meeting the audio quality standards and real-time
performance required in music production.

In order to steer the synthesis process, we are interested in conditioning the
GAN on information describing musical or perceptual properties of the sound,
namely features describing timbre (e.g., brightness, boominess), instrument cat-
egories (e.g., violin, piano), or sound event categories (e.g., sonar, mantra).
Such annotations are obtained from 1) pre-existing hand-labeled information,
2) human-engineered feature extractors, or 3) representations learned using pre-
trained automatic audio tagging systems. A sound synthesizer built upon such a
model would have many applications and speed the music production workflow
tremendously while making it more intuitive and user-driven.

The contributions of this thesis can be summarized in the following points:

1. We provide insights on the performance of several audio signal represen-
tations (e.g., raw waveform, spectrogram) for musical audio synthesis with
GANs.

2. We study a variety of conditional generation tasks with GANs, exploring
different sources of conditional information in order to provide to the user
creative means of sound manipulation.

3. We demonstrate the capability of a single GAN architecture to model a
wide variety of sound sources, from percussive and pitched instruments to
chainsaw sounds and music.

4. A framework for generating audio with variable duration is proposed by
conditioning the GAN on sequential features learned through self-supervised
methods.

5. As a result of our research, we build two VST plugins for synthesizing high
resolution (i.e., 44.1 kHz sample-rate) sounds such as drums in DrumGAN,
or chainsaw sounds, in ChainsawGAN.

6. We perform a user study with professional musicians who created music
with various in-house ML-driven tools for music production. We report
their feedback and conclude thereby.
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1.3 Ethical Considerations
Automation is increasingly becoming part of standard technological solutions and
services (e.g., smartphones, cars, social networks), providing these with intelli-
gence to plan and initiate actions autonomously. It is vital to raise awareness
about the implications that such solutions have in creative activities like music.
Deep learning-based generative models fall into one of two control principles: one
where the user directly controls all aspects of the synthesis, akin to playing an
instrument, and another whereby the system takes complete control. The de-
ployment of fully automated audio generation systems can severely obscure and
conceal the artist’s role in the music creation process. While such systems are
interesting from a scientific perspective to establish limits on technology, we be-
lieve that they do not add any value from a music innovation point of view. The
author of this thesis is sensitive to the music community. This work does not
hereby seek or claim to replace musicians in any way. On the contrary, we ought
to develop tools that can democratize music production and help artists focus on
creative aspects of music rather than technical ones.

Another critical aspect to be considered is the carbon footprint of training
large-scale deep learning systems. We estimate to have emitted an average of 18
kg CO2 per model, assuming a standard carbon efficiency of the grid. This is
equivalent to 63 Km driven by an average car or to 7.8 Kgs of coal burned. One
of our aims for future work is to train efficient, compact models that require less
amount of training time and that can run on a personal computer.

1.4 Document Organisation
The first three chapters of this thesis are dedicated to presenting the background
and related work. Chapters 5 to 10 comprise a collection of six articles listed
at the beginning of this document. The first four of these (chapters 5 to 8)
constitute the main contribution of the thesis and cover several audio synthesis
tasks with GANs. Chapters 9 and 10 are collaboration journal articles focusing
respectively on: (i) audio enhancement of MP3-music using GANs and (ii) a
critical perspective on AI-centered musical research in the context of musical
innovation in contemporary popular music. More in detail, the rest of this thesis
is organized as follows:

Chapter 2: Background. In this chapter we provide some basics on
different deep learning strategies and various audio signal representations
that are required for the proper understanding of this thesis.

Chapter 3: Related work. This chapter overviews all the relevant litera-
ture on neural audio synthesis as well as techniques prior the deep learning
era.

Chapter 4: Methodology. This chapter describes the common method-
ologies followed throughout the experiments, describing in detail the GAN
architecture, the datasets and the evaluation metrics.
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Chapter 5: Comparing Representations for Audio Synthesis Us-
ing GANs. This chapter presents the results of our first work comparing
representations for adversarial audio synthesis of tonal instrument sounds.

Chapter 6: DrumGAN: Synthesis of Drum Sounds with Timbral
Feature Conditioning Using GANs. In this chapter we present Drum-
GAN, a GAN synthesizer of drum sounds that can be controlled based on
perceptual features describing timbre. We also introduce a VST plugin im-
plementation of DrumGAN capable of generating audio that meets music
production standards in terms of quality.

Chapter 7: DarkGAN: Exploiting Knowledge Distillation for Com-
prehensible Audio Synthesis with GANs. In this chapter we present
DarkGAN, a framework for learning high-level feature controls in a GAN
synthesizer by distilling knowledge from a pre-trained audio-tagging system.

Chapter 8: VQCPC-GAN: Variable-length Adversarial Audio Syn-
thesis using Vector-Quantized Contrastive Predictive Coding. This
chapter presents VQCPC-GAN, an adversarial framework for synthesiz-
ing variable-length audio by exploiting a self-supervised learning technique
called Vector-Quantized Contrastive Predictive Coding (VQCPC).

Chapter 9: Stochastic Restoration of Heavily Compressed Musical
Audio using GANs. In this chapter we describe a GAN that restores
heavily compressed MP3 music to its high-quality, uncompressed form.

Chapter 10: On the Development and Practice of AI Technology
for Contemporary Popular Music Production. This chapter formu-
lates Sony CSL music team’s vision on how to conduct music technology
research in practice, involving the artist in the process and by releasing
commercially viable music as a means for implicit validation. To this end,
we report on our collaborations with professional musicians, in which we
harmonize the use of AI-based tools with their music production workflow.

Chapter 11: General Conclusion. Finally, in this chapter some general
conclusions are drawn, and, ultimately, we suggest directions for future
research.
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Chapter 2

Background

This thesis explores the generation of musical sounds using Generative Adver-
sarial Networks (GANs) [Goodfellow et al., 2014] by exploiting different sources
of conditional information. Our goal is to provide insights into musically con-
trollable adversarial audio synthesis and, ultimately, implement tools that can
help professional artists in music production settings to enhance creativity while
optimizing their workflows.

This chapter provides some ground knowledge on the various topics upon
which this thesis builds. First, Section 2.1 briefly describes the main approaches
to generative modeling (autoregressive, variational autoencoders, adversarial, and
flow-based), paying special attention to GANs and some standard techniques such
as progressive growing [Karras et al., 2017] or the Wasserstein objective [Arjovsky
et al., 2017] (see Sec. 2.1.4). Section 2.2 introduces Knowledge Distillation (KD)
[Hinton et al., 2015] and Dark Knowledge [Hinton et al., 2014] (KD is employed
in Chapter 7 to perform data-free learning of semantically meaningful parameters
in DarkGAN [Nistal et al., 2021b]). Next, Section 2.3 provides some background
on self-supervised learning of sequences and introduces Vector-Quantized Con-
trastive Predictive Coding (VQCPC), which is used in Chapter 8 to address the
problem of variable-length audio generation in GANs. Finally, in Section 2.4, we
give an overview of some common representations of audio that will be compared
in the context of audio synthesis with GANs (see Chapter 5).

2.1 Generative Neural Networks
Generative Neural Networks are a family of generative modeling strategies that
employ neural networks to model the distribution pX (x) of some random process
producing observations from a dataset X with samples x ∈ X . Specifically, we
focus our attention on likelihood-based models that learn via the principle of
Maximum Likelihood Estimation (MLE): learning the model’s parameters θ so
that the likelihood of observing the data x ∈ X is maximized. This process is
formulated as

θ := arg max
θ

∑
x∈X

log pθ(x), (2.1)

where pθ(x) is the likelihood or, in other words, the probability of x ∈ X
under the model with parameters θ. Note that this is done in the log space for
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Figure 2.1 – Taxonomy of Generative Neural Networks [Goodfellow, 2017]. Meth-
ods differ in how they represent or approximate the likelihood. Explicit density
estimation methods provide means to directly maximize the likelihood pθ(x).
Among these, the density may be computationally tractable, as in Autoregres-
sive or Flow-based models, or it may be intractable, as in VAEs, meaning that
it is necessary to make some approximations to maximize the likelihood. In con-
trast, implicit models do not explicitly represent a probability distribution over
the data space. Instead, the model provides some way of interacting less directly
with this probability distribution, typically by learning to draw samples from it.
For example GANs can generate a sample x ∼ pθ(x) but cannot directly compute
pθ(x).

computational simplicity (i.e., products become additions) and numerical stabil-
ity. This can also be thought as minimizing the KL-Divergence between the data
distribution pX(x) and the model distribution pθ(x) [Goodfellow, 2017]. Once
trained, generative models can be used to draw new samples x̂ ∼ pθ(x) as if
they came from the training distribution pX (x) (i.e., pθ(x) ≈ pX (x)). In order to
gain control over the samples we draw from the generative model, we can feed a
conditioning signal c, containing side information about the kind of samples we
want to generate. The model is then trained to fit the conditional likelihood dis-
tribution pθ(x|c) instead of pθ(x). For simplicity, we refer to the unconditional
distribution in the theoretical descriptions that follow this section.

Generative modeling strategies differ in the way they represent or approximate
the likelihood (see Fig. 2.1). Two main approaches exist:

• Explicit density estimation models provide means of computing pθ(x)
and can explicitly maximize the likelihood as formulated in (2.1). Among
these, two different strategies exist to define a tractable expression. By
carefully designing the neural network architecture, exact methods can de-
fine pθ(x) so that it is computationally tractable. Popular examples of
these are Neural Autoregressive Models (see 2.1.1) or Normalizing Flows
(see 2.1.2). Other methods approximate the likelihood by e.g., maximizing
a lower-bound as in Variational Autoencoders (see 2.1.3).

• Implicit density estimationmodels do not explicitly define the likelihood
and, instead, offer indirect ways of interacting with pθ(x). For example,
Generative Adversarial Networks [Goodfellow et al., 2014] can be used to
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x0 x1 xt

Figure 2.2 – Schematic of an autoregressive model. Each sample xt depends on
all the past samples x<t

produce new samples imitating the dataset but cannot be used directly to
infer the likelihood of an example.

These approaches exhibit specific run-time, diversity, and architectural trade-
offs. For example, explicit models can be highly effective at capturing the diversity
in the data since they directly optimize the log-likelihood, i.e., they have a mode-
covering behavior [Dieleman, 2020]. However, they can be very slow to sample
from, as in Autoregressive models, or produce blurred samples like in VAEs.
In contrast, GANs can produce precise samples —potentially— at the expense
of diversity, i.e., they have a mode-seeking behaviour [Dieleman, 2020]. In the
following sections, we will deepen into these trade-offs as we briefly overview each
generative strategy. It is not in the scope of this thesis to do an exhaustive review
of generative methods. We recommend the following sources for a more in-depth
overview: [Goodfellow, 2017, Briot et al., 2017, Dieleman, 2020, Bond-Taylor
et al., 2021, Ji et al., 2020, Huzaifah and Wyse, 2020].

2.1.1 Neural Autoregressive Models

One of the challenges in explicit generative modeling is building expressive mod-
els that are also computationally tractable [van den Oord et al., 2016c]. Au-
toregressive approaches address this problem by treating x ∈ X as a sequence
x = (x0, ..., xt) (see Fig. 2.2). Then, the joint distribution pθ(x) can be decom-
posed into a product of conditional distributions using the probabilistic chain-rule
as

pθ(x) =
∏

pθ(xt|x0, ..., xt−1), (2.2)

where xt is the tth variable of x and θ are the parameters of the neural
autoregressive model. The conditional distributions are usually modelled with a
neural network that receives x<t as input and outputs a distribution over possible
xt.

This approach seems to be a natural choice for time-series data such as audio
signals, where each item xt in the sequence corresponds to a specific amplitude
value that the waveform takes at that specific (discrete) time step. Some popular
neural networks employing this type of generative strategy on audio are WaveNet
[van den Oord et al., 2016a], by using causal dilated convolutions, or SampleRNN
[Mehri et al., 2017], which, instead, uses RNNs. Other approaches apply the
autoregressive principle on other forms of data that are not naturally sequential

31



such as images [van den Oord et al., 2016c,b]. In Chapter 3 we review these and
other approaches in detail.

Autoregressive models are very precise methods and can accurately capture
correlations between the elements xt in the sequential data. They also allow for
fast inference (i.e. computing pθ(xt|x<t)). However, due to the sequential scheme,
autoregressive models can only generate one sample at a time, becoming very
slow to sample from (e.g., WaveNet [van den Oord et al., 2016a] can take minutes
to generate just one second of audio). Also, autoregressive models can suffer
from the exposure bias problem, i.e., the discrepancy between the conditional
samples x<t used at training time, which come from the dataset, and those used
for inference, which are generated by the model [Bengio et al.]. As a result, at
generation time the error increases over time as the generated samples are fed
back into the model.

2.1.2 Normalizing Flows

Other approaches for explicit density estimation that also provide an exact defini-
tion of the likelihood are Normalizing Flows (NF) [Rezende and Mohamed, 2015].
NFs are a family of procedures for learning flexible posterior distributions through
an iterative procedure. The general idea is to start from an initial random variable
z0 following a simple base distribution with known and computationally cheap
probability density function, typically a standard Gaussian distribution. Then, a
cascade of invertible and differentiable transformations g : fT ◦ fT−1 ◦ ... ◦ f1 ◦ f0
is applied using the change of variables formula to produce a sample from the
dataset as x = g(z0) (see Fig. 2.3). The log-likelihood can then be expressed as

log pθ(x) = log pz0(z)−
T∑
t=1

log
∣∣∣ det

∂ft
∂ft−1

∣∣∣ = log pz0(z)− log
∣∣∣ det Jg(z0)

∣∣∣, (2.3)

where the Jacobian Jg(z0) is a matrix of all partial derivatives of g w.r.t. z0.
The density pθ is tractable if the density pz and the determinant of the Jacobian
of g are tractable. We can think of this process as follows: the density of the base
distribution z0 gets molded by each transformation in g in order to produce an
increasingly richer output distribution from which to sample x.

Many types of NFs exist satisfying the invertibility and tractability require-
ments for g and Jg respectevely, e.g., Planar Flows (PFs), Masked Autoregressive
Flows (MAFs), Inverse Autoregressive Flows (IAFs). Each formulation exhibits
different inference-sampling time trade-offs, e.g., IAFs can generate samples fast
although computing the likelihood of new data points is slow [Bond-Taylor et al.,
2021]. Also, the invertibility requirement for g enforces the variables z0 to have
the same dimensionality as x, constraining the model’s architecture and parame-
ter efficiency. As a result, flow-based models require rather deep architectures to
be effective.

2.1.3 Variational Autoencoders

To overcome some of the disadvantages imposed by the design requirements of
models with tractable density functions (e.g., slow sampling time in NAMs, pa-
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Figure 2.3 – Schematic depiction of Normalizing Flows. The term ‘flow’ refers to
the stream followed by samples z0 ∼ N (0, I) as they are molded by the sequence
of transformations f1, ..., fT . The term ‘normalizing’ refers to the fact that the
probability mass is preserved throughout the transformations. Note that the last
iterate in g results in a more flexible distributions of zT−1 over the values of the
data x (being zT = x and zt = ft(zt−1)).

rameter inefficiency in NFs) and still not run into intractability issues, some
models use some approximations to maximize the likelihood pθ(x). Variational
methods define a lower bound Lθ(x) ≤ log pθ(x) and provide an analytical ap-
proximation of the posterior distribution pθ(z|x) to perform inference.

Variational Autoencoders [Kingma and Welling, 2014] learn two neural net-
works jointly: an inference model or encoder and a generative neural network
or decoder. The encoder qφ(z|x) is a neural network with parameters φ that
maps x into a compressed representation z and approximates the true posterior
distribution pθ(z|x). The decoder pθ(x|z) is a neural network with parameters θ
that regenerates an approximation x̂ from the encoding. In plain Autoencoders
(AEs), the latent variable z follows an unknown probability distribution and,
the computation of the generative models’ true posterior density pθ(z|x) is in-
tractable as a result of the combinatorially wide z space. VAEs simplify this by
restricting z to follow some prior distribution z ∼ p(z) with a known density
function. The Evidenced Lower Bound (ELBO) to be maximized is formulated
as

log pθ(x) ≥ L(φ,θ,x)

= −DKL(qφ(z|x)‖pθ(z)) + Eqφ(z|x)
(

log pθ(x|z)
)
.

(2.4)

Here, L(φ,θ,x) is the variational lower bound to optimize and DKL stands for
the Kullback–Leibler divergence (KLD). The prior over the latent variables pθ(z)
is usually set to be the centred isotropic multivariate Gaussian pθ(z) = N (0, I),
where I is the identity matrix. The usual choice of qφ(z|x) isN (z;µ(x), σ2(x) ∗ I),
so that DKL(qφ(z|x)|‖pθ(z)) can be calculated in closed form. In practice, µ(x)
and σ2(x) are learned from the observed data via the encoder neural networks.
The expectation term accounts for the reconstruction loss in (2.4), where the role
of the decoder is to transform latent variables z to reconstruct x̂.

The main drawback of VAEs is that the gap between the ELBO and the true
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qΦ(z|x) pθ(x|z)z ~ N(μx, σx) 

x ~ pX(x) x̂ ~ pθ(x)
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σx

Figure 2.4 – Schematic depiction of Variational Autoencoders (VAEs).

likelihood can result in poor quality samples if the posterior or prior distributions
are too simple. Also, if the decoder network is too powerful, VAEs can suffer
from mode failure, where the decoder may ignore the latent codes z and gener-
ate outputs arbitrarily. In general, VAEs often obtain good likelihood and can
perform inference precisely, yet, in practice, they produce lower-quality samples
than other methods.

2.1.4 Generative Adversarial Networks

In this section, we present the standard adversarial formulation of Generative Ad-
versarial Networks (GANs) and some important subsequent versions: the Wasser-
stein GAN and the Progressive Growing GAN. Additionally, we review some
standard techniques for training GANs such as mini-batch standard deviation,
equalized learning, and pixel-wise feature normalization.

The basic GAN framework

Generative Adversarial Networks (GAN) are a family of training procedures in-
spired by game theory that circumvent the difficulty of having to approximate in-
tractable probabilistic computations aroused in maximum likelihood methods. In
the adversarial framework, a generative model competes against a discriminative
adversary that learns to distinguish whether a sample is real or fake [Goodfellow
et al., 2014]. The generative network, or Generator (G), implicitly models a dis-
tribution pX over some real data x ∈ X , which we will refer to as pr, by learning
the push-forward mapping of an input noise pz to data space as Gθ(z), where Gθ
is a neural network implementing a differentiable function with parameters θ. In-
versely, the discriminator Dβ(x), with parameters β is trained to output a single
scalar indicating whether the input comes from the real distribution pr or from
the generated distribution Gθ(z) ∼ pg. Simultaneously, Gθ is trained to produce
samples that are identified as real by the discriminator. Competition drives both
networks until an equilibrium point is reached and the generated examples are
indistinguishable from the original data. In other words, Dβ and Gθ play the
following two-player minimax game with value function V (Gθ, Dβ) [Goodfellow
et al., 2014]:

min
Gθ

max
Dβ

V (Dβ, Gθ) = Ex∼pr [logDβ(x)] + Ex∼pg [1− logDβ(Gθ(z))], (2.5)
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Figure 2.5 – GAN framework

where minGθ
maxDβ

V (Dβ, Gθ) indicates that the parameters of Gθ are opti-
mized to minimize this loss, and the parameters of Dβ are optimized to maximize
it. Note that the optimization of Gθ only affects the second term in (2.5), result-
ing in a maximization of Dβ(Gθ(z)).

Wasserstein GANs

One of the main drawbacks of the original GAN setting, where the objective of
Dβ is a binary classification problem, is that the cost function is potentially not
continuous with respect to the generator’s parameters, leading to training diffi-
culty. Instead, Arjovsky et al. [2017] propose the Earth-Mover or Wasserstein-1
distanceW (pg, pr), which is informally defined as the minimum cost of transport-
ing mass in order to transform the distribution pg into the distribution pr, where
the cost is mass times transport distance. Under mild assumptions, W (pg, pr)
is continuous everywhere and differentiable almost everywhere. The Wasserstein
GAN (WGAN) value function is constructed using the Kantorovich-Rubinstein
duality [Villani, 2008] to obtain

min
Gθ

max
Dβ

Γ(Dβ, Gθ) = Ex∼pr [Dβ(x)]− Ex∼pg [Dβ(Gθ(z))], (2.6)

where Dβ is the set of 1-Lipschitz functions and pg is once again the model
distribution implicitly defined by x̂ = Gθ(z), with z ∼ p(z). In that case, under
an optimal discriminator or critic1 [Arjovsky et al., 2017], minimizing the value
function with respect to the generator parameters minimizes W (pr, pg). The
WGAN value function results in a critic function whose gradient with respect to
its input is better behaved than its GAN counterpart, making optimization of the
generator easier. Empirically, it was also observed that the WGAN value function
appears to correlate with sample quality, which is not the case for traditional
GANs [Goodfellow et al., 2014]. Enforcing the Lipschitz constraint on the critic

1Dβ is not trained anymore in a binary classification task (i.e., real/fake) but to assign high
and low Wasserstein distances to generated and real data, respectively. Therefore, the Discrim-
inator is sometimes referred to as a Critic. For simplification, we still use the Discriminator
term.
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was originally accomplished by clipping the weights of the critic to lie within a
compact space [−c, c] [Arjovsky et al., 2017]. The set of functions satisfying this
constraint is a subset of the k-Lipschitz functions for some k, which depends on c
and the critic architecture. An alternative way to enforce the Lipschitz constraint
is to constrain the gradient norm of the critic’s output with respect to its input by
means of Gradient Penalty (GP). GP introduces a penalty on D’s gradient norm
for random samples x̂ ∼ pg to circumvent tractability issues [Gulrajani et al.,
2017]. Then, the GP-WGAN’s objective is defined as

L = Ex∼pg [Dβ(Gθ(z))]− Ex∼pr [Dβ(x)] + λEx∼pg [(‖∇x̂Dβ(Gθ(z)‖2 − 1)2],
(2.7)

where λ is the penalty coefficient and it is typically set to 10, which was found to
work well across a variety of architectures and datasets [Gulrajani et al., 2017].
Following the original GP-WGAN implementation, normalization methods that
introduce correlations between the examples in the batch (e.g. batch normaliza-
tion) are avoided in favour of layer-wise feature normalization as explained later
in this section.

Progressive Growing of GANs

Progressive growing [Karras et al., 2017] is a training methodology for GANs
where low-resolution data (e.g., down-sampled images or spectrograms) is used
at the beginning of training and then progressively scaled up by adding convo-
lutional and up-sampling layers to the networks (see Fig. 2.6). This incremental
procedure allows the network to first discover large-scale structure in the data and
then progressively shift attention towards finer-grain detail instead of having to
learn the full resolution data directly. Generator and discriminator networks are
commonly mirrored versions of each other and always grow synchronously. All
existing layers in both networks remain trainable throughout the training pro-
cess. When new layers are added to the networks, they are faded in smoothly, as
illustrated in Figure 2.7. This reduces any possible perturbations to the already
well-trained, smaller-resolution layers. Progressive training has many benefits, in-
cluding improved training stability, generation diversity, and a reduced training
time.

Mini-Batch Standard Deviation

GANs are prone to cover only a part of the training data variance. Mini-batch
discrimination [Salimans et al., 2016] is a way of alleviating such a mode failure
by providing D with additional information, namely statistics of the respective
minibatch to simplify the discrimination of real and fake batches. To that end,
on the last layers of D, we compute feature statistics across the batch dimension.
First, the standard deviation for each feature map in each spatial location (i.e.,
the height and width dimensions of the convolutional tensor) is estimated over
the minibatch and averaged over all the features and spatial locations to arrive
at a single value. Then, this value is replicated and concatenated to all spatial
locations and over the minibatch, yielding one additional (constant) feature map.
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Figure 2.6 – Progressive Growing of GANs as illustrated in [Karras et al., 2017].
Training starts with both G and D having a low spatial resolution of 4×4 pixels
and, as training progresses, new layers containing up-sampling blocks are added
to G and D, increasing the spatial resolution of the generated images.

Figure 2.7 – Layer fading as illustrated by Karras et al. [2017]. The output
of every new layer in G and D is interpolated by a factor α with the previous
layer’s output. This transition from low-resolution data, e.g., 16×16 pixel images
(a), to high-resolution data, e.g., 32 × 32 pixel images (c), is illustrated in the
transition (b), where the layers that operate on the new resolution are treated as
a residual block with α increasing linearly from 0 to 1. Here 2× and 0.5× refer
to doubling and halving the resolution using nearest neighbor up-sampling and
average pooling, respectively, for G and D. toRGB is a 1× 1 convolutional layer
that projects feature maps to the data space (e.g., RGB channels of an image
or magnitude, and phase components of a spectrogram) and fromRGB does the
reverse. When training the discriminator on a real batch, the data is down-scaled
to match the current resolution of the network.
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The discriminator can use these feature statistics internally, encouraging G to
generate image batches with the same statistics as the real data batches.

Equalized Learning-Rate

GANs are sensible to instabilities in the signal magnitudes as a result of unhealthy
competition between G andD. In order to alleviate this problem, dynamic weight
initialization was proposed in [Karras et al., 2017]. First, weights are initialized
to N (0, 1) and then explicitly scaled at run-time as wi = wi/c, where wi are
the weights and c is the per-layer normalization constant from He’s initializer [He
et al., 2015]. The benefit of doing this dynamically instead of during initialization
relates to the scale-invariance in adaptive stochastic gradient descent methods
such as RMSProp and Adam. These methods normalize the gradient update by
the estimated standard deviation, thus making the update independent of the
scale of the parameter. As a result, those parameters exhibiting large dynamic
range will take longer to adjust than others. Using an equalized learning-rate
ensures that the dynamic range, and thus the learning speed, is the same for all
weights.

Pixel-wise Feature Normalization

To further constrain the magnitudes inG andD and prevent signals from spiraling
out of control, feature vectors are normalized in each location to unit length after
each convolutional layer in G as

x = xncwh/

√
C−1

∑
C

x2ncwh, (2.8)

where n, c, w and h are the batch, channel, width and height respectively and C
is the total number of channels.

2.1.5 Discussion

As we introduced in Chapter 1, we find Generative Adversarial Networks (GANs)
better suited than other generative strategies for the task under consideration.
We highlighted some important prerequisites that a potential ML-driven audio
synthesizer should meet: fast generation time and high audio quality. Some
important points influencing the choice of GANs over other generative models
are:

• Neural Autoregressive Models (NAMs) and Normalizing Flows (NFs) can
produce very expressive and precise samples and provide an exact estimate
of the likelihood of a sample. However, NAMs are slow at sampling time
and NFs require very large models to capture rich dependencies in the data.

• Variational Autoencoders (VAEs) provide a more efficient and yet precise
way to perform inference. However, due to the variational approximation,
they produce blurred samples with lower quality than other approaches.
Also, if the generative network is too powerful, VAEs can suffer from pos-
terior collapse.
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• GANs can be sampled in parallel, and they disregard the inference model.
Therefore, they can be sampled faster and more efficiently than NAMs or
NFs and generate samples with considerably higher quality than VAEs.

• GANs design of the generator function has very few restrictions as opposed
to NAMs, which require autoregressive computations or NFs, which require
the invertibility of the generator as well as require a latent code z with the
same dimension as the data x.

An important drawback of GANs is that they require large amounts of data
to approximate the data distribution accurately. Also, they fail to capture rich
variance given the mode-seeking behavior of the adversarial objective. Morever,
GANs can be extremely difficult to train due to unhealthy competition between
G and D. Nonetheless, we believe that the adversarial scheme is a promising
approach to develop novel audio synthesizers complying with the generation time
and audio quality standards in music production contexts. We hope to justify
further this decision in Chapter 3, where we provide a broad review of generative
neural networks applied to audio and music specifically.

2.2 Knowledge Distillation
High-performing models are often built upon classifier ensembles that aggregate
their predictions to improve the overall accuracy. Despite having excellent per-
formance, these models tend to be large and slow, impeding their use in memory-
limited and real-time environments. Different methods exist for optimizing mem-
ory consumption and reducing the size of large models or ensembles, e.g., pruning,
transfer learning, or quantization. Model compression allows to transfer the func-
tion learned by a teacher ensemble or a single large discriminative model into a
compact, faster student model exhibiting comparable performance [Bucila et al.,
2006]. Instead of training the student model directly on a hand-labeled categorical
dataset, this method employs a pre-trained teacher model to re-label the dataset
and then train the compact neural network on this teacher-labeled dataset, using
the raw predictions as the target. This training framework was shown to yield
efficient models which perform better than if they had been trained on the hand-
labeled dataset in a variety of discriminative tasks [Bucila et al., 2006, Ba and
Caruana, 2014, Li et al., 2014]. Model compression was further extended and for-
malized into the general Knowledge Distillation (KD) framework [Hinton et al.,
2015]. This section provides a brief introduction to the knowledge distillation
framework and the concept of dark knowledge that we employ in Chapter 7 as a
means to learn interpretable controls in a GAN-driven synthesizer.

2.2.1 Multi-Label KD

Multi-label classifiers typically produce a probability distribution over a set of
classes by using a sigmoid output layer that converts the so-called logit (the
NN output before the activation function), zi, computed for the ith class into a
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probability qi as

qi =
1

1 + e−
zi
T

, (2.9)

where T is a temperature that is typically set to 1. In Knowledge Distilla-
tion (KD), knowledge is transferred to the distilled model by training it on the
teacher-labeled data, using a higher temperature. By that, the distribution gets
“compressed," emphasizing lower probability values. The same (higher) temper-
ature is used while training the distilled model, but the temperature is set back
to 1 after training. As for cost function, the binary cross-entropy is used as

Hs(q) = − 1

N

N∑
i=1

pi log (qi) + (1− pi) log (1− qi), (2.10)

where N is the number of attributes, pi are the soft-labels predicted by the
teacher, and qi is the probability predicted by the student model for the i − th
class.

2.2.2 Dark Knowledge

In the seminal work on Knowledge Distillation (KD) [Hinton et al., 2015], the
authors demonstrate that the improved performance of smaller models is due to
the implicit information existent in the teacher’s output probabilities (i.e., soft
labels). As opposed to hard labels, soft labels contain probability values for all of
the output classes. The relative probability values that a specific data instance
takes for each class contain information about how the teacher generalized the
discriminative task. This hidden information existent in the relative probability
values was termed dark knowledge [Hinton et al., 2014]. An interesting observa-
tion by Hinton et al. [2015] is that the student model was able to gather infor-
mation about categories that were not explicitly present in the transfer learning
set.

Further on in this thesis, we employ this principle to transfer knowledge from
a pre-trained audio neural network [Kong et al., 2020b] to a GAN synthesizer
trained on tonal sounds from the NSynth dataset (see Chapter 7). This way,
semantically meaningful controls can be learned on the GAN without the need
for manual annotations. We also show in this work that the Dark Knowledge
implicit in the teacher-labeled features indeed helps the GAN to learn consistent
feature controls over abstract attributes that are not necessarily represented in
the training data.

2.3 Self-Supervised Learning of Sequences
Representation learning is a framework for extracting general-purpose, useful in-
formation that explains the underlying factors of variation of data and can help
improve in downstream tasks such as classification [Bengio et al., 2013]. Among
unsupervised training schemes, in self-supervised learning, training is done via
a proxy task, so-called pretext task, formulated directly on the learned repre-
sentations and without requiring manually annotated labels. A prevalent self-
supervised task is contrastive learning. This task relies on contrasting multiple,
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slightly different versions of an example by using different sampling strategies.
Recently, contrastive approaches have been used in audio-related tasks to learn
transformations that map augmented versions of a given audio signal (e.g., reverb,
additive noise) to the same latent space while pushing them away from different
augmented audio signals [Verma and III, 2020, Spijkervet and Burgoyne, 2021].
Augmentation strategies can be circumvented by, instead, relying on similar sig-
nal pairs extracted from the same audio clip [Saeed et al., 2020]. Some works
have employed this technique for learning representations that capture informa-
tion from multiple audio formats [Wang and van den Oord, 2021].

In this thesis, we employ Vector-Quantized Contrastive Predictive Coding
(VQCPC), a contrastive approach for learning discrete feature representations
of sequences. VQCPC is employed in Chapter 8 to condition the GAN on such
discrete features, enabling the generation of sounds with variable duration as well
as the manipulation of local features. In what follows, we describe the building
blocks that compose this technique.

2.3.1 Contrastive Predictive Coding

Contrastive Predictive Coding (CPC) is a self-supervised representation learning
technique for extracting compact, low-dimensional sequences of latent codes from
high-dimensional signals [van den Oord et al., 2018b]. Given an input sequence
x = [x1, ..., xL] with length L, an encoder fenc maps each element xi into a real-
valued embedding vector zi = fenc(xi) ∈ Rdz . Next, an autoregressive model far
summarizes past and present context of the embeddings z≤t into a single context
vector ht = far(z≤t) ∈ Rdh .

The encoder and autoregressive model are trained to minimize the Informa-
tion Noise Contrastive Estimation (InfoNCE) loss. Minimizing the InfoNCE loss
is equivalent to maximizing the mutual information between the context vector
ht and future encodings zt+k = fenc(xt+k),∀k ∈ [1, K], where K is the number of
future predictions [van den Oord et al., 2018b]. Formally, given an entry of the
dataset x, the model has to identify the encoding obtained from the true xt+k,
so-called positive example, from those obtained from a set of so-called negative
examples, drawn from the dataset by following a specific negative sampling strat-
egy. Defining S as the set containing N − 1 negative examples, as well as the
single positive example, the InfoNCE loss is defined as

LNCE(xt) = −
K∑
k=1

E
S

[
log

fk(xt+k,ht)∑
s∈S fk(s,ht)

]
, (2.11)

where E[·] denotes expectation and fk(a, b) := exp(fenc(a)ᵀWkb) is a simple
log-bilinear model with the Wk being k trainable d x d matrices.

2.3.2 Vector Quantization

Vector Quantization (VQ) [van den Oord et al., 2017] consists in approximating
the elements of a continuous vector space Rdc by the closest element in a finite
set of vectors or centroids C = {c1, ..., cC} lying in the same space Rdc . Here,
given a trainable set of codes C, the quantization of an input vector z is given by
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Figure 2.8 – Schematic of the VQCPC training framework applied to audio in
analogy to that described by Hadjeres and Crestel [2020] for symbolic music.

its closest centroid
c(z) := argminc∈C||z − c||2. (2.12)

This layer is not differentiable due to the argmin operator so the stop gradient
operator sg is used to enable back-propagation [van den Oord et al., 2017]. Given
an input vector z, the VQ layer is then defined as

zq(z) := sg[c(z)− z] + z. (2.13)

The centroid positions and the non-quantized values z are updated incrementally
by minimizing

LVQ(z, C) =
∑
c∈C

δczq(z)((||sg[z]− c||2)2 + β(||z − sg[c]||2)2), (2.14)

where δab = 1 ⇐⇒ a = b and zero otherwise, and β is a parameter to control the
trade-off between the two terms. In a nutshell, this loss encourages non-quantized
values z to be close to their assigned centroid.

2.3.3 Vector Quantized Contrastive Predictive Coding

In Fig. 2.8 we depict the VQCPC framework combining the VQ and CPC blocks.
The VQ [van den Oord et al., 2017] bottleneck is introduced on top of the encoder
fenc and before the context encoder far. At test time, we remove far, and encode
new elements xi as

VQCPC(xi) := zq(fenc(xi)) ∈ C, (2.15)

where the codebook C is a set with C centroids partitioning the embedding
space Rdc .
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2.4 Audio Representations
Audio signals consist of large amounts of data in which relevant information for
a specific task is often hidden and spread over large time spans [Dieleman et al.,
2018]. Neural Networks can benefit from feeding in specific representations of
the audio data where information is structured in a suitable way for the specific
architecture, or where few coefficients compress the information of interest. Dif-
ferent representations may yield different trade-offs between training/sampling
times, architecture size, and generation quality. In the following, we review some
common audio representations that we will compare in the context of audio syn-
thesis with GANs (see Chapter 5), highlighting their strengths and weaknesses for
the specific task. Except stated otherwise, we compute the audio representations
using Librosa [McFee et al., 2020].

2.4.1 Waveform

The raw audio waveform consists of a sequence of numerical samples x =
[x1, ..., xt] that specify the amplitude values of the signal at time steps t. Using this
representation as input is challenging for generative modeling, particularly in the
case of music signals [Dieleman et al., 2018]. On the other hand, it enables neural
networks to build the representation that better suits a specific task without any
prior assumptions.

2.4.2 Short-Time Fourier Transform

The Short-Time Fourier Transform (STFT) decomposes a signal as a weighted
sum of complex sinusoidal basis vectors φk,t with linearly spaced center frequen-
cies as

φk,t =
1

T
exp

(
2πkj

T
t

)
, (2.16)

where j is the imaginary unit, k is the bin number, t is time, and T is the window
size in samples. The STFT unveils the time-frequency structure of an audio
signal under the assumption that it is stationary within one frame (typically of
length 512-2048 samples), which is often a good approximation for natural sounds,
such as speech or music. The complex STFT coefficients are typically further
decomposed into magnitude and phase components. The latter are typically
noisy, which makes them difficult for neural networks to model. This problem is
mitigated by using the Instantaneous Frequency (IF), which provides a measure
of the rate of change of the phase information over time [Boashash, 1992]. The
IF, however, only works well for quite tonal sounds, as they are not capable of
modeling steep transients in the signal (the phases may not align well, as they are
considered independent). The STFT transform is cheap to compute and perfectly
invertible, which makes it popular for audio synthesis of tonal sounds [Engel et al.,
2019, Marafioti et al., 2019]. The complex STFT has also been used for sound
texture synthesis with CNNs by Caracalla and Roebel [2020].
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2.4.3 Constant-Q Transform

The Constant-Q Transform (CQT) decomposes a signal as a weighted sum of
tonal-spaced filters, where each filter is equivalent to a subdivision of an octave
[Brown, 1991]. As opposed to the STFT where the central frequencies of the basis
vectors are linearly spaced, in the CQT the filters are geometrically spaced as
fk = (2

1
b )kfmin, where fk denotes the frequency of the k− th spectral component,

b is the number of filters per octave, and fmin is the central frequency of filter
k = 0. The Q value is the ratio of center frequency to bandwidth and is meant
to be constant

Q =
fk

∆fk
=

fk
fk+1 − fk

= (2
1
b − 1)−1. (2.17)

Similarly to the Fourier Transform, the CQT has a basis matrix given by

φk,t =
1

Tk
exp

(
j

2πQ

Tk
t
)
, (2.18)

where the sequence length or window size Tk is now a function of the component
k.

This musically motivated spacing of frequencies enables representing pitch
transpositions as simple shifts along the frequency axis, which is well-aligned with
the equivariance property of the convolution operation. The CQT transform has
been used as a representation for Music Information Retrieval [Lidy, 2016] and
some works have exploited it for audio synthesis [Esling et al., 2018b]. The main
disadvantage of CQT over STFT is the loss of perceptual reconstruction quality
due to the frequency scaling in lower frequencies [Barry and Kim, 2018].

2.4.4 Mel Spectrogram

The Mel spectrogram compresses the STFT in frequency axis by projecting it
into a perceptually inspired frequency scale, called the Mel-scale [Stevens et al.,
1937] as

M(f) = 1125 ln (1 +
f

700
). (2.19)

Mel discards the phase information, so we use the iterative method from Grif-
fin and Lim [1983] to recover the phase for synthesis. We refer to this represen-
tation as mel throughout our experiments. The mapping can be used to create
a filter bank for projecting the magnitude STFT onto a perceptually optimal
smaller number of channels. Because the Mel spectrogram represents spectral
content of the STFT in a perceptually uniform manner, it has been a popular
choice for state-of-the-art neural networks trained on large corpora of musical
audio [Barry and Kim, 2018].

2.4.5 Mel Frequency Cepstral Coefficients

TheMel Frequency Cepstral Coefficients (MFCC) [Davis and Mermelstein,
1980] provide a compact representation of the spectral envelope of an audio signal.
Originally developed for speech recognition, they are now widely used in musical
applications, as they capture perceptually meaningful musical timbre features
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[Ravelli et al., 2010]. For synthesis, we invert MFCC to the Mel scale and use
Griffin-Lim algorithm to recover the phase.
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Chapter 3

Related Work

Many works have applied deep generative methods to address general audio syn-
thesis. In Chapter 2, we provided a theoretical introduction to each of these
methods, categorised into exact, approximate, and implicit, depending on the
way they estimate the probability distribution of a given training dataset. From
the exact family, we highlighted Neural Autoregressive Models (NAMs) and Nor-
malizing Flows (NFs), from the approximate methods, we reviewed Variational
Autoencoders (VAEs), and, from the implicit strategies, we described Generative
Adversarial Networks (GANs). This chapter provides a broad overview of the
state-of-the-art works applying such generative strategies to various audio syn-
thesis tasks (see Section 3.1). Special attention is paid to those works focused on
musical audio and the control they offer over the generated sound. We also review
other audio modeling techniques based on Digital Signal Processing (DSP) and
that, while not relying on deep learning, have been used to study intuitive and
controllable audio synthesis (see Section 3.2). In Section 3.3, we conclude with
some discussion thereof.

3.1 Neural Audio Synthesizers
Neural Audio Synthesizers are generative models that learn from audio data.
In this section, we provide an extensive review of the literature on neural audio
synthesis, organized based on the generative principles seen in Chapter 2 (NAMs,
NFs, VAEs, and GANs). While there exist many direct applications of these
methods to audio [van den Oord et al., 2016a, Aouameur et al., 2019, Engel
et al., 2019], we will see that many works advocate for distributed solutions
combining various of these techniques, e.g., VAEs and NFs [Kingma et al., 2016],
AEs and NAMs [Engel et al., 2017]. Special attention is drawn towards the
controllability of generative models of audio. Also, we highlight the type of audio
sources modeled by each work, the conditional information (if applicable), and
the form of the audio representation.

3.1.1 Controllable Neural Audio Synthesis

One important aspect that we stressed in the introduction of this thesis is that of
intuitive control over the audio synthesis process. Two common strategies exist
for achieving controllable generative models: supervised and unsupervised. Su-

47



pervised methods explicitly condition the model on auxiliary information during
training. Conditional information is said to be sparse or dense depending on its
amount of information or, in other words, how much of the variance it captures
[Dieleman, 2020]. Also, each generative approach supports conditioning differ-
ently. Autoregressive models, which operate on a sample-by-sample basis, may
be more inefficient when conditioned on global aspects of the data as information
has to be repeated at each step in the sequence. GANs, on the contrary, can deal
easily with global properties as they generate the whole piece of data in one pass.

An obvious example of a conditional generative model can be seen in text-to-
speech synthesis, where the task of generating realistic speech is conditioned on
some input text information [Shen et al., 2018]. Similarly, singing voice synthe-
sizers are generally conditioned on pitch and lyric information [Nishimura et al.,
2016, Blaauw and Bonada, 2017]. Neural audio synthesizers of instrument sounds
condition on the instrument category and pitch [Engel et al., 2019, 2017, Roche
et al., 2018]. Conditioning is not restricted to symbolic or sparse information
(e.g., pitch, words, instrument). Other works use rather dense information and
condition the models on preexisting audio content to drive the generative process.
For example, in style transfer tasks, the goal is to take some piece of music in a
specific style (e.g., rock, pop) and transform it into another style while preserv-
ing some fundamental content [Huang et al., 2019b, Mor et al., 2018, Cífka et al.,
2021]. Other tasks conditioning on dense information are audio enhancement
[Michelsanti and Tan, 2017, Biswas and Jia, 2020] or spectrogram inversion [Ku-
mar et al., 2019]. While supervised methods rely on preexisting information to
condition the model, unsupervised methods employ feature learning mechanisms
to discover important factors of variations of the data autonomously. At test
time, such learned features can potentially be used to guide the generation pro-
cess. Some of the most successful applications of unsupervised feature learning for
controllable generation can be found in face image synthesis tasks, where GANs
can autonomously learn high-level attributes (e.g., pose, identity) separately from
stochastic variation (e.g., hair) [Karras et al., 2018].

3.1.2 Neural Autoregressive Models

Neural Autoregressive Models (NAMs) are probably the most popular approach
for building generative neural networks of audio. In the following sections we
review some of the most important works applying NAMs to audio. First we
focus on WaveNet and other popular works down the line which are based on
causal convolutions. Next, we revise some other approaches that use different
operations (e.g., recurrent, attention). Last, we mention some hybrid approaches
that introduce autoregressive models as part of larger distributed systems. This
enables, for example, to combine the robustness of autoregressive modeling with
the latent space control that autoencoders offer.

WaveNet-like Architectures

The recently-developed WaveNet architecture [van den Oord et al., 2016a] is one
of the most important architectures used for realistic speech synthesis and the
most influential work in autoregressive models for audio generation in general.
Inspired by other works in image [van den Oord et al., 2016c], it operates directly
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Arch. Name Audio
representation Data Conditioning

waveNet [van den Oord et al., 2016a] waveform speech,
piano

speaker ID,
text

Universal
music Translation [Mor et al., 2018] waveform classical

music -

NAM

Hierarchical
waveNet [Dieleman et al., 2018] waveform piano

music -

SampleRNN [Mehri et al., 2017] waveform speech,
piano music -

MelNet [Vasquez and Lewis, 2019] mag.
spec.

speech,
piano music

speaker ID
text

wavenetAE [Engel et al., 2017] waveform tonal sounds pitch
sparse

Transformer [Child et al., 2019] waveform piano
music -

Parallel waveNet [van den Oord et al., 2018a] waveform speech text
pitch

ClariNet [Ping et al., 2018] waveform speech text

FlowaveNet [Kim et al., 2018] waveform speech text
Mel spec.

NFs waveGlow [Prenger et al., 2018] waveform speech text
Mel spec.

waveFlow [Ping et al., 2020] waveform speech text
Mel spec.

Blow [Serrà et al., 2019] waveform speech speaker ID

Planet Drums [Aouameur et al., 2019] Mel-scaled
mag. spec. drums instrument ID

Jukebox [Dhariwal et al., 2020] waveform music artist & genre ID
lyrics

VAEs NOTONO [Bazin et al., 2020] mag. & IF tonal
instruments pitch

FlowSynth [Esling et al., 2019] mag. synth. sounds semantic tags

Neural Granular
Sound Synth. [Bitton et al., 2020] waveform

orchestral
drums
animals

pitch
instrument ID

WaveGAN [Donahue et al., 2019] waveform

speech
drums
piano
birds

-

GANs
GANSynth [Engel et al., 2019] mag. & IF tonal

instruments pitch ID

MelGAN [Kumar et al., 2019] mag.
spec.

speech
music

Mel-scaled spec.
text

GAN-TTS [Binkowski et al., 2020] waveform speech pitch, text,
speaker ID

Table 3.1 – Summary of the most important neural audio synthesis approaches
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on the raw audio by modelling the probability of a waveform xxx = [x1, ..., xT , fac-
torised as a product of conditional probabilities (see Sec. 2.1.1). The architecture
is built as a stack of Dilated Causal Convolutional layers. The filters in each con-
volutional layer are applied over an area larger than its length by skipping input
values with a certain step or dilation. At each layer in the network, the dilation
factor is doubled, allowing the network to grow its receptive field (i.e., the region
of the sensory space that the network observes) exponentially with depth while
preserving the number of computations. This dilation enables the model to oper-
ate on a coarser scale, capturing longer-term audio dependencies while preserving
the information’s resolution throughout the network. The output layer consists of
a Softmax activation unit that models a categorical distribution over 256 possible
amplitude values. Given an additional conditioning input, the authors can guide
the generation of audio with certain characteristics and at different scales. For
example, when applying WaveNet in speech generation, they can impose global
characteristics on the speaker, such as its identity, or local characteristics, such as
the phoneme to be synthesized, by conditioning the network on text information.
During training, every causal convolutional layer can process its input in par-
allel, making these architectures faster than RNNs, which can only be updated
sequentially. At generation time, however, the waveform has to be synthesized
sequentially as xt must be sampled first to obtain xi>t. Due to this fact, real-time
synthesis is challenging, in particular for music applications [van den Oord et al.,
2018a].

Many efforts have been made to improve WaveNet’s time and computation
efficiency. Fast WaveNet [Paine et al., 2016] reduces the complexity of the al-
gorithm from O(2L) to O(L) time (being L the network’s number of layers) by
storing previous convolution calculations in order to remove redundant opera-
tions. This approach requires the use of smaller networks, impacting the quality
of the synthesized audio severely. In Sec. 3.1.4 we review a more recent approach,
based on NFs, that introduces Probability Density Distillation [van den Oord
et al., 2018a], a method for transferring knowledge from pre-trained WaveNet to
a smaller NF with no significant degradation in quality. The resulting system is
capable of generating high-quality speech and in real-time.

The use of WaveNet in speech, singing voice, and music synthesis has been
predominant. As we will see later in this section, most of these works apply
WaveNet as a waveform synthesizing building block, part of a larger distributed
parametric system [Gibiansky et al., 2017, Ping et al., 2017, Shen et al., 2018,
Roebel and Bous, 2021] or following an encoder-decoder architecture to provide
means of control through the latent space [Engel et al., 2017].

Non-Convolutional Approaches

Neural autoregressive models may employ operations other than dilated con-
volutions such as recurrent connections or attention mechanisms. SampleRNN
[Mehri et al., 2017] uses multiple RNNs stacked on top of each other, where each
block in the stack operates at a different rate. Higher-level RNNs update less
frequently, which means they can more easily capture long-range data dependen-
cies and learn high-level features. Conversely, lower layers in the stack running
at a faster rate capture local, fast-varying dependencies of the data (e.g., pitch,
timbre, envelope).
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We mentioned in Section 2.1.1 that autoregressive models, while naturally
fitting the sequential scheme of the audio waveform, can be used on other audio
representations. Using spectrograms, for example, one can easily increase the
receptive field of a model (i.e., spectrograms condense the time information of
a whole analysis frame in each frequency bin), simplifying the task of capturing
global structure in comparison to other autoregressive approaches that work with
audio in the time domain. MelNet [Vasquez and Lewis, 2019] is an RNN-based
autoregressive model that operates on high-resolution time-frequency magnitude
spectrograms, capturing long-range dependencies of the data. It combines a fine-
grained autoregressive model and a multi-scale generation procedure to capture
structure in a coarse-to-fine-grain manner jointly. The autoregressive model fac-
torizes the distribution over both the time and frequency dimensions. Thanks to
the time-condensed representation of magnitude spectrograms, coupled with the
power of autoregressive models, MelNet achieves highly expressive and end-to-end
unconditional audio generation for speech and music data.

Plain recurrent blocks tend to be slow during training and have difficulty
learning dependencies between distant elements from the sequence. Introducing
attention mechanisms allows an autoregressive model to access any part of the
previously generated output at every step of generation [Vaswani et al., 2017].
Works on audio have used attention as part of an encoder-decoder architecture
to pass relevant information from a latent space to a decoder generating, e.g.,
vocoder parameters [Sotelo et al., 2017], magnitude spectrograms [Wang et al.,
2017] or Mel-scaled spectrogram representations [Shen et al., 2018]. Continua-
tions of these works were able to generate prosodic speech by conditioning the
attention layers on emotion labels [Lee et al., 2017b] as well as to synthesize
speech for multiple speakers [Ping et al., 2017]. Other approaches such as the
Transformer [Vaswani et al., 2017, Shaw et al., 2018], abandoned the traditional
encoder-decoder configuration and adopted architectures based solely on atten-
tion mechanisms. These architectures have been successfully applied to symbolic
music [Huang et al., 2019a] and, with the introduction of sparsity, to audio [Child
et al., 2019], making it possible to generate minute-long music with rich structure
at multiple scales.

Hybrid approaches

A downside of purely autoregressive models is that they do not explicitly produce
latent representations of the data, limiting the extent to which they can be con-
trolled at generation time. However, it is possible to combine an autoregressive
sequence generation model with an encoder-decoder architecture [Engel et al.,
2017, Mor et al., 2018, Chorowski et al., 2019]. In these works, an encoder reads
a sequence of raw audio samples or feature vectors and extracts a sequence of
latent representations. The decoder reconstructs the utterance by conditioning a
WaveNet network on these latent representations and on additional features (e.g.,
pitch [Engel et al., 2017], speaker embedding [Chorowski et al., 2019]) to make
the models invariant to specific feature-dependent information. The WaveNet
Autoencoder [Engel et al., 2017] yields a pitch-independent timbre latent space
where instruments can be morphed together through interpolation, and new types
of sounds can be created that are realistic and expressive. Another work focused
on musical audio style transfer uses WaveNet-like autoencoders to transform the
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timbre of some input audio to target a specific style [Mor et al., 2018]. The ar-
chitecture follows a single-encoder multi-decoder framework with a shared latent
space, enforcing the network to learn a style-invariant latent representation, and
each decoder is therefore responsible for conferring sound style-specific character-
istics.

Most of the work in speech [Arik et al., 2017, Gibiansky et al., 2017, Ping
et al., 2017, Shen et al., 2018] incorporated an optimized version of WaveNet as
a vocoder model for reconstructing speech audio from linguistic features and f0
[Arik et al., 2017], linear-scaled log-magnitude spectrograms [Gibiansky et al.,
2017] or Mel-scaled spectrograms [Ping et al., 2017], being this last version the
one that yields the best performance and a more compact representation of the
conditioning audio. Tacotron 2 [Shen et al., 2018] follows the same approach and
introduces a WaveNet vocoder as an improvement of the Griffin-Lim reconstruc-
tion module used in Tacotron [Wang et al., 2017]. Tacotron 2 yields some of the
most human natural-sounding reconstructions. Similar techniques use WaveNet
as part of a distributed system for singing voice synthesis [Blaauw and Bonada,
2017]. These works train WaveNet on features produced by a parametric vocoder
that separates the influence of pitch and timbre. This separation allows to mod-
ify pitch to match any target melody conveniently, facilitates training on reduced
dataset sizes, and significantly improves training and generation times.

3.1.3 Variational Autoencoders

Variational Autoencoders (VAE) [Kingma and Welling, 2014] are one of the most
popular strategies for generative modeling. One of the main attractive proper-
ties behind VAEs is their capability to map data into a structured latent space
that captures fundamental features. The possibility of controlling the generative
process through such a latent space makes them an interesting asset in music
modeling. Various successful works employ VAEs in symbolic representations
[Roberts et al., 2017, Brunner et al., 2018a]. In audio, most initial works were
tailored towards synthesis and transformation of speech [Blaauw and Bonada,
2016, Hsu et al., 2017]. Even though the latent space of VAEs tends to self-
organize according to fundamental dependencies in the data, these can still be
difficult to interpret. Some works in music data focused on regularizing the latent
space of VAEs to accommodate perceptual distances collected from timbre studies
[Esling et al., 2018a, Roche, 2020], and synthesize from such latent space audio
that matches a semantically meaningful target descriptor [Esling et al., 2018b].
The original VAE formulation, where the inference network is used to parametrize
a normal distribution (see Sec. 2.1.3), yields blurred generations [Huang et al.,
2018]. Some works use Maximum Mean Discrepancy (MMD) distance instead of
DKL(qφ(z|x)||pθ(z)) 2.4 to alleviate this problem. This approach has been suc-
cessfully applied to synthesize percussive sounds, enabling to interpolate between
a wide variety of instruments [Aouameur et al., 2019]. As we will see further on
in this section, some other work implicitly imposes the prior distribution by using
an adversarial loss in the latent space [Bitton et al., 2019]. Other works used two
VAEs to implement a granular synthesizer [Bitton et al., 2020]: one that encodes
grain series into compressed codes and a second VAE learning combinations of
codes to define paths in the latent space of the first VAE. Some other interesting
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applications of VAEs can encode pre-existing multi-track music material into an
intuitive two-dimensional latent space and, from this, generate bass lines fitting
the provided music content [Grachten et al., 2020]. A novel application of VAEs
in combination with Normalizing Flows (NFs) can map the learned latent space
of the VAE to parameters of a synthesizer [Esling et al., 2019]. This formulation
enables a single model to perform high-fidelity audio synthesis and automatic
parameter inference, macro-control learning, and audio-based preset exploration.

Another problem when generating high-quality audio with VAEs is the poste-
rior collapse, by which robust decoding architectures such as WaveNet, may end
up ignoring the latent codes. Some techniques discretize the latent space through
parametrization of the posterior distribution using Vector Quantization (VQ),
enabling the prior to be learned instead of imposed [van den Oord et al., 2017].
This architecture has shown remarkable results in tasks such as speech genera-
tion and speaker translation [Chorowski et al., 2019]. Following this line, Jukebox
[Dhariwal et al., 2020] is a multi-scale VQ-VAE combined with Transformers that
generates minute-long music with a singing voice in the raw audio domain. It
allows conditioning on the artist, genre, and lyric information to steer the musical
and vocal style of the generated content. This work sets a milestone in modeling
long-term structure from large-scale music audio datasets and demonstrates the
power of deep learning to model creative tasks. Other applications of VQ-VAEs
include in-painting-based synthesis of tonal instruments [Bazin et al., 2020] or
one-shot timbre style transfer [Cífka et al., 2021].

3.1.4 Normalizing Flows

Normalizing Flows (NFs) have recently become popular in the speech synthe-
sis community. In Section 2.1.2 we studied how Normalizing Flows (NF) can
be used to learn rich and flexible posteriors in DL-based variational inference
by using neural networks implementing invertible transformations. One of the
main shortcomings of NFs is their requirement to have the same input and la-
tent dimensions, challenging the modeling of high-dimensional data as is the case
in audio signals. A specific type of NF known as Inverse Autoregressive Flow
(IAF) [Kingma et al., 2016] scales well to high-dimensional data by implementing
the invertible transformation as an autoregressive neural network. The increased
efficiency of IAFs has been used in audio to accelerate WaveNet-based speech
synthesis to 20x faster than real-time [van den Oord et al., 2018a]. This work
introduces a new method coined Probability Density Distillation, which allows
training an IAF from a pre-trained teacher WaveNet with no significant differ-
ence in quality and enabling parallel sampling. However, this two-stage training
pipeline is cumbersome and requires highly regularized training to avoid mode
failure in the student. Subsequent works combine insights from Glow [Kingma and
Dhariwal, 2018], and WaveNet [van den Oord et al., 2016a] to design flow-based
models that provide fast, efficient, and high-quality speech generation without
the need of two-stage training schemes nor additional auxiliary loss terms [Kim
et al., 2018, Prenger et al., 2018, Ping et al., 2020]. Some works down this line
employed similar flow-based architectures for non-parallel voice conversion [Serrà
et al., 2019]. Applications of NFs to musical audio synthesis are scarce. As we
have seen, some works have used flows in combination with VAEs to learn in-
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vertible mappings between the VAE’s latent space and a synthesizer’s parameter
space [Esling et al., 2019].

3.1.5 Generative Adversarial Networks

Generative Adversarial Networks (GANs) [Goodfellow et al., 2014] have been
shown successful in various computer vision tasks such as image inpainting [Den-
ton et al., 2016], domain translation and style transfer [Zhu et al., 2017, Choi et al.,
2018, Liu and Tuzel] or high-fidelity image generation [Gulrajani et al., 2017, Chen
et al., 2016b, Karras et al., 2018]. Taking inspiration from these works, applica-
tions of GANs to audio synthesis have mainly focused on speech tasks [Saito et al.,
2018, Kaneko and Kameoka, 2017, Huang et al., 2019b, Binkowski et al., 2020,
Kong et al., 2020a, Kumar et al., 2019, Yamamoto et al., 2020]. Initial works
demonstrated that adversarial training could convert one speaker into another
while preserving the linguistic content [Kaneko and Kameoka, 2017] or synthesiz-
ing realistic speech from text [Saito et al., 2018]. Novel cross-modal applications
use conditional GANs to generate sound from image information and vice-versa
[Chen et al., 2017, Iashin and Rahtu, 2021]. GANs have been used for symbolic
music generation using a Recurrent Neural Network generator [Lee et al., 2017a]
or in music genre transfer using cycle-consistent architectures [Brunner et al.,
2018b]. The first application to musical audio synthesis was WaveGAN [Donahue
et al., 2019]. Although it did not match autoregressive baselines such as WaveNet
[van den Oord et al., 2016a] in terms of audio quality, it could generate piano
and drum sounds in a short amount of time and in an entirely unconditional
way. Recent work along the line of WaveGAN has achieved some promising re-
sults in footstep sound synthesis [Comunità et al., 2021]. General improvements
in the stabilization and training of GANs [Karras et al., 2017, Gulrajani et al.,
2017, Salimans et al., 2016] enabled GANSynth [Engel et al., 2019] to outperform
WaveNet baselines on the task of audio synthesis of musical notes using sparse
pitch conditioning labels. GANSynth follows the principle of Progressive Growing
of GANs (PGAN) [Karras et al., 2017], where a generative network, composed
of convolutional and up-sampling blocks, is built on the fly while training (see
Section 2.1.4). Follow-up works building on GANSynth applied similar architec-
tures to conditional drum sound synthesis using different metadata [Nistal et al.,
2020, Drysdale et al., 2020]. DrumGAN [Nistal et al., 2020] synthesizes a variety
of drum sounds based on high-level input features describing timbre (e.g., boomi-
ness, roughness, sharpness). Given their mode-seeking behaviour (see Sec. 2.1.4),
GANs have been popular in densely conditioned tasks such as Mel-spectrogram
inversion for speech [Kumar et al., 2019] or singing voice synthesis [Chen et al.,
2021], audio domain adaptation [Hosseini-Asl et al., 2018, Michelsanti and Tan,
2017] or audio enhancement [Biswas and Jia, 2020]. Some works introduce adver-
sarial objectives into the VAE training scheme to synthesize Mel-spectrograms of
orchestral instruments given a note class and some latent vector capturing style
parameters [Bitton et al., 2019]. While GANs often require large amounts of data
to learn some specific task, recently, patch-based GANs were shown capable of
learning from one single image example, capturing its internal distribution, and
enabling to generate variations from it [Shaham et al., 2019]. This approach has
been successfully translated to the audio domain for sound effect, speech, or mu-
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sic generation [Barahona-Ríos and Collins, 2021, Greshler et al., 2021]. A recent
work proposes a combination of the autoregressive and adversarial schemes by
sampling large chunks of the waveform during each autoregressive forward pass,
bringing together the fast generation capabilities of GANs with the benefits of
the autoregressive inductive bias [Morrison et al., 2021].

3.2 Audio Synthesis Prior the Deep Learning Era
The interest of humans in crafting machines that can generate sounds and music
dates back to at least the 19th century when Ada Lovelace anticipated the era of
computer music [Fuegi and Francis, 2015] and the first generation of Electronic
Musical Instruments (EMI) appeared [Crab, 2016]. A wide variety of sound mod-
els have been proposed since then. These can be categorized into abstract, spec-
tral, physical, or based on processed recordings, depending on how they model
sound [Smith, 1991]. Essentially, most of these methods start from some fun-
damental waveforms, which are combined and transformed in various ways to
produce different sounds. Techniques differ in the shape of such fundamental
waveforms and the way these are processed to form richer sounds. Also, each
method exhibits characteristics that could make it preferable over others depend-
ing on the specific musical purposes. In this section, we briefly overview some of
these modeling strategies and research aimed at devising semantically intuitive
interfaces for their control. For an in-depth review of these works we refer the
reader to Roads et al. [1997], Smith [a], Miranda [2002].

3.2.1 Abstract Models

Abstract methods such as Frequency Modulation (FM) [Chowning, 1973], imple-
mented in the famous Yamaha DX7, use algorithmic procedures or conceptual
mathematical formulations to model sound [Roads et al., 1997]. As a result,
the parameters offered by these types of synthesis techniques do not have a direct
physical or perceptual meaning and fail to precisely model existing natural sounds
[Miranda, 2002]. However, they have been highly appreciated due to their low
computational and memory requirements as well as their rich timbre capabilities,
with just a few parameters, that allow synthesizing sounds that would otherwise
be impossible to generate through physical means [Kleimola, 2013]. Today, while
abstract methods have lost some of their original prominence and are considered
obsolete from a research perspective [Serra, 2007], we can find them as a building
block of many commercial applications based on other modeling principles (e.g.,
subtractive1, wavetable2).

3.2.2 Spectral Models

Spectral models synthesize sound by characterizing its spectral content following
Fourier theory. The earliest and simplest form of spectral modeling is additive
synthesis, which forms sound as a sum of discrete sinusoidal components mod-
ulated by time-varying amplitude and frequency envelopes [Smith, b]. While

1https://www.waves.com/plugins/flow-motion-fm-synth
2https://www.reasonstudios.com/shop/rack-extension/wtfm-wavetable-fm-synthesizer/
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their parameters are closer to human perception than other strategies [Serra
et al., 2007], these require many components to properly model rich sounds,
which makes them computationally expensive [Miranda, 2002]. Alternative tech-
niques introduce a time-varying filtered noise to model stochastic components in
the sound and also allow for analysis of existing audio signals [Serra and Smith,
1990].

Another spectral modeling strategy, and one of the most popular techniques
implemented in commercial synthesizers (e.g., Minimoog Model D, Roland TR-
808), is subtractive synthesis. Loosely categorized as a source-filter modeling
technique, subtractive synthesis can be seen as the inverse process to additive
synthesis, where rich broadband signals such as square, saw-tooth, pulses, or
noise are filtered to remove undesired frequency components [Roads et al., 1997].
While their controls are much less numerous than for additive synthesis and are
computationally cheap, they are less flexible and fail to capture faithfully many
acoustic instruments [Miranda, 2002].

3.2.3 Physical Models

Physical models can emulate acoustic instruments by mathematically reproducing
in a computer their mechanical behavior and solving their associated differential
equations to produce sound [Miranda, 2002]. These techniques can synthesize
realistic sounding instruments and have the benefit of providing intuitive con-
trols responding to physical properties of the acoustic source (e.g., the stiffness,
tension) or the excitation signal (e.g., strength, friction) [Roads et al., 1997].
However, they are computationally expensive and, analogously to their acoustic
counterparts, they can only generate a limited variety of timbre. Today, efforts
are focused on providing more flexible approaches based on a combination of el-
ementary model blocks, physical modeling based on data analysis, or its use in
combination with spectral methods [Serra et al., 2007, Smith, a].

3.2.4 Processed Recording

Early examples of sound creation from processed recordings were based on trans-
forming and looping short snippets of sounds recorded in tapes to create novel
sound compositions. This technique was pioneered in music by many technolo-
gists, and music futurists such as Edgard Varèse and Pierre Schaeffer in Musique
Concrète [Miranda, 2002]. With the increasing storage and computing capabili-
ties of computers, these sample-based techniques evolved into more sophisticated
ones such as granular synthesis, producing sounds based on short, time-varying
portions of sampled sounds, so-called grains [Roads et al., 1997]. From a more
general perspective, wavetable techniques allowed to repeatedly playback arbi-
trary wave shapes stored in a lookup table [Smith, 1991]. More recently, and
with the ever-growing availability of audio datasets, concatenative synthesis in-
troduced the notion of analysis to assemble the desired sound according to some
predefined sound descriptors or by analysis of an existing sound [Schwarz, 2007].
A prominent example of these is Vocaloid,3 a real-time singing voice synthesizer

3https://www.vocaloid.com/en/
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that can be controlled with some input text and timbre features. Today, many ad-
vanced synthesizers are based on samplers such as Native Instruments’ Kontakt4
and Steinberg’s HALion,5 achieving some of the most detailed and accurate em-
ulations of acoustic instruments, where no other synthesis technique is capable of
the same levels of realism. Nevertheless, these techniques generally do not allow
for a rich manipulation or require large amounts of data to generate expressive
sounds [Smith, 2004].

3.2.5 Knowledge-driven Controllable Audio Synthesis

Audio synthesizers have given birth to a new paradigm for producing sounds
where no a-priory limitation exists on the kind of sounds that can be produced or
how we can interact with them. In contrast, acoustic instruments are limited by
their specific physical characteristics constraining the sounds they can produce
and the means of interaction. However, acoustic instruments offer a very intu-
itive interface where the interaction mechanics are directly related to high-level
properties of the sound, i.e., the pressure of the bow in a violin is directly related
to the intensity of the produced sound. A question in synthesizers, therefore, is
how to devise means of control that are suitable for the synthesis algorithm in
such a way for actions and expectations to be consistent [Roads et al., 1997].

As computing capabilities became more powerful during the 90s and early
2000s, new research directions appeared related to intuitive control of synthe-
sizers where perceptual and cognitive aspects are taken into account in order to
steer the sound synthesis process [Ystad et al., 2019]. In other words, these works
studied how to map a specific control signal (e.g., gestures [Camurri et al., 2000],
perceptual attributes [Aramaki et al., 2011a]) into the synthesizer’s parameters.
To this end, perceptual and cognitive studies were carried out to understand the
principles of how a sound is perceived and its relationship to specific acoustic fea-
tures present in the signal, so-called invariants, that can be identified from anal-
ysis. Identifying such signal invariants makes it possible to propose perceptual
control over the sound synthesis processes that enable direct, evocative control of
such perceptual properties. Along this line, some works have attempted to drive
the physical synthesis of environmental sounds such as rain, waves, wind, and fire
based on semantic labels, gestures, or drawings [Aramaki et al., 2011b]. Other
works can derive intuitive perceptual controls on synthesizers of impact sounds
by careful study of their acoustic features in consonance with human-annotated
categories of materials [Aramaki et al., 2006, 2011a]. By considering such re-
lationships, a synthesizer can then be designed to control the acoustic features
found to correlate with the annotated categories. This process is shown to offer
manipulation of intuitive parameters responding to the material label (i.e., Wood,
Metal, or Glass). Physical and spectral models have been combined to synthesize
flute sounds based on simulation of the wave propagation in the medium and by
using deterministic plus stochastic decomposition to control independent compo-
nents [Ystad, 1998]. The authors can obtain a gesture-driven interface to control
the proposed model by equipping a flute with sensors. Acoustic invariants related
to the evocation of continuous interacting solids such as rubbing, scratching, and

4https://www.native-instruments.com/en/products/komplete/samplers/kontakt-6/
5https://www.steinberg.net/vst-instruments/halion/
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rolling were also identified and used for sound synthesis purposes [Conan et al.,
2014]. A synthesizer was developed where the actions (e.g., from rolling to slip-
ping) and the properties of the acoustic source (shape, size, and material) could
be controlled continuously over time [Pruvost et al., 2015]. Extensions of these
works propose a cross-synthesis approach to modify the intrinsic properties of a
given sound texture to evoke a particular interaction (rolling or rubbing) in a way
to create sonic metaphors [Conan, 2014]. A broad perspective of this research is
further described by Ystad et al. [2019].

3.3 Discussion
This chapter reviewed works for synthesizing audio using deep learning and, less
extensively, techniques based on traditional signal processing methods, which are
driven by expert knowledge. Here we extend the discussion in Chapter 2, on the
benefits of each deep generative modeling technique, by taking into consideration
the specific advancements in neural audio synthesis and by contrasting them with
those methods employing expert knowledge. Following, we highlight some of the
most relevant aspects of the works reviewed in this chapter.

• Expert vs. DL-driven audio synthesis. Many expert-driven synthe-
sis methods have been proposed, each offering specific manipulation and
sound capabilities [Smith, 1991]. While these can generate a wide variety
of timbres, many complex natural sounds are still not faithfully modeled
by these techniques, imposing the need for heavy physical models or data-
hungry corpus-based synthesis techniques [Roads et al., 1997]. Neural audio
synthesizers, on the contrary, and Generative Adversarial Networks (GANs)
specifically, have been shown to model a great variety of sound sources rang-
ing from sound effects to music and speech and using general formulations
[Barahona-Ríos and Collins, 2021, Engel et al., 2019, Morrison et al., 2021].
Also, as opposed to expert systems [Ystad, 1998], GANs can be controlled
based on abstract descriptors without requiring a principled understanding
of the perceptual or timbral properties of the sound and their correspon-
dence to feature invariants [Engel et al., 2019]. However, a consequence of
this is that DL models tend to behave as black boxes whose parameters are
difficult to interpret, whereas expert systems are built upon well-established
rules and understanding.

• Conditioning & Control. Many works have successfully implemented
conditional models of audio to allow some degree of control over the gen-
erative process [Engel et al., 2019, 2017, Aouameur et al., 2019]. Models
can be conditioned on sparse, categorical data, for example, to choose a
speaker identity in speech synthesis [van den Oord et al., 2016a, Vasquez
and Lewis, 2019] or an instrument in sound synthesis [Aouameur et al.,
2019]. Other works have conditioned the model on rather dense informa-
tion, such as spectral information, to constrain some target domain features
in style transfer [Mor et al., 2018] or in Mel-spectrogram inversion [Kumar
et al., 2019]. Autoregressive models of audio, such as WaveNet [van den
Oord et al., 2016a], do not directly offer a latent space that can be ma-
nipulated, and their hidden layers are not regularized to follow any prior
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distribution, which makes them difficult to control without external condi-
tioning. Therefore, many works have made use of WaveNet-like blocks in
an encoder-decoder fashion to allow encoding and manipulation of sounds
in a latent space [Engel et al., 2017]. Variational Autoencoders (VAEs) and
Normalizing Flows (NFs) naturally provide encoders that capture funda-
mental aspects of the data and that allow encoder sounds, although these
can often be hard to effectively condition due to their specific inductive bias
[Esling et al., 2019]. GANs have no encoder at all, yet they can be easily
conditioned by just concatenating arbitrary external information to their
latent noise vectors [Engel et al., 2019].

• Inference and synthesis efficiency. One of the main shortcomings of
Neural Autoregressive Models (NAMs) is their slow generation time due to
their inherent sequential generation scheme [van den Oord et al., 2016a].
While methods have been proposed to speed up audio generation in au-
toregressive models, these are generally based on cumbersome two-stage
training schemes or careful architecture designs using flows [van den Oord
et al., 2018a, Kim et al., 2018]. GANs, however, can generate full audio
samples in a single forward pass much faster than NAMs. While NFs and
VAEs can also be fast, the former tend to require rather deep and inefficient
networks due to the invertibility constraint, or, in the latter, they tend to
produce blurred, lower-quality samples than other generative strategies.

• Sample quality and diversity. NAMs and GANs have the advantage
of generating high-quality audio fidelity with relatively simple networks.
While VAEs have traditionally produced worse quality than other genera-
tive models, recent works introduce vector-quantization and autoregressive
blocks, achieving impressive audio quality and diversity at the expense of
generation time [Dhariwal et al., 2020]. Although GANs lack the same de-
gree of diversity as other models due to their mode-seeking nature, they
can generate audio much faster and obtain extremely good sample quality.
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Chapter 4

Methodology

In this chapter we describe the global methodology followed throughout our ex-
periments, unless specified otherwise in each chapter. In Section 4.1 we describe
the general GAN architecture and its training procedure. Section 4.2 presents
the main datasets: the NSynth dataset, CSL-Drums, and MP3-to-WAV. Finally,
in Section 4.3 we mention some of the evaluation metrics used to assess the per-
formance of our models.

4.1 Architecture
Our reference architecture is a Progressive Growing GAN (PGAN), described in
Section 2.1.4 and which is inspired by previous work on image generation [Kar-
ras et al., 2017]. As we have seen in Chapter 3, this architecture was firstly
employed to generate audio in GANSynth [Engel et al., 2019], comfortably sur-
passing WaveNet baselines in the tasks of tonal sound synthesis, according to
human evaluation tests and quantitative metrics.

The architecture is depicted in Figure 4.1. The generator G samples a random
vector zzz ∈ Rnz from a standard normal distribution zzz ∼ Nnz(µ = 0, σ2 = I) and
feeds it together with some conditional information ccc ∈ Rnc through an input
block and a stack of N scale blocks.1 The input block turns the 1D input vector
cat(zzz, ccc), with size nz + nc, into a 4D convolutional input by first zero-padding
in the time and frequency-dimension (i.e., placing the input vector in the middle
of the convolutional input tensor with nz + nc convolutional maps) and then
passing it through two convolutional layers with Leaky ReLU activation. The
resulting tensor has shape (b, nch0, w0, t0), where b indicates the batch dimension,
nch0 are the number of convolutional channels in the input block, and (w0, t0)
are the number of bins (w0 = 1 if the audio representation is the raw audio
waveform) and the number of frames/samples, respectively, for the first scale.2
Following the input block, each scale block is composed of a nearest-neighbour
up-sampling step at the input followed by two convolutional layers with filters
of size (3, 3) and Leaky ReLU as activation function. As depicted in Fig. 4.1,

1Generally we employ N = 6, although in our initial work, presented in Chapter 5, we
employ N = 5 for simplification.

2May the reader be reminded from Chapter 2 that, in PGANs, the architecture is built
on the fly while training and therefore (w0, t0) refers to the shape of the corresponding audio
representation (e.g., spectrograms, waveform) generated by G on the earliest stages of training.
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the discriminator D is composed of convolutional and down-sampling blocks,
mirroring the configuration of the generator. However, D, has an output block
which is composed of one convolutional layer followed by two fully-connected
layers, all with Leaky ReLU activation. As explained early on in Section 2.1.4, D
estimates the Wasserstein distance between the real and generated distributions
[Gulrajani et al., 2017] using the gradient penalty method, with λ = 10.0 in
(2.7), to enforce the Lipschitz constraint. As depicted in Fig. 4.2, in order to
encourage G to use the conditional information c, D predicts ĉ and an auxiliary
loss term is added to the Wasserstein objective following previous approaches
in conditional GANs [Odena et al., 2017]. The specific loss will depend on the
task under consideration and the nature of the conditional data, e.g., continuous
features, multi/single-class attribute labels, probabilities.

Figure 4.1 – On the left: the architecture of the generator G; on the right: the
architecture of D mirroring G’s configuration.

Following the process explained in Section 2.1.4, pixel normalization is applied
after each convolutional layer, i.e., normalizing the norm over the output maps at
each spatial location or, in the case of audio, time-frequency position. We initial-
ize weights to zero and apply He’s constant [He et al., 2015] for normalizing each
layer at run-time in order to ensure an equalized learning rate (see Section 2.1.4).
Such normalization ensures a balanced training between G and D by keeping the
weights in the network at a similar scale. Also, we use a mini-batch standard
deviation before the last layer of D in the output block [Salimans et al., 2016]
(see Section 2.1.4) in order to encourage G to generate more variety and reduce
mode collapse.

Training follows the procedure of Progressive Growing GANs [Karras et al.,
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Figure 4.2 – Conditional GAN training scheme.

2017] explained in Section 2.1.4. We have seen that in a PGAN, the architecture
is built dynamically during training. The training process is divided into stages
wherein each stage a new corresponding scale block is introduced to both G and
D. While training, a blending parameter α progressively fades in the gradient
derived from the new blocks, minimizing possible perturbation effects. We train
each scale block for 200k training iterations except for the first and last blocks
which are trained for 128k and 300k iterations respectively. As for the batch size,
we employ a different one for each scale block. For early stages we use higher
batch sizes (e.g., 30 and 20) and for the last stages we generally use 12 samples.
We employ Adam as the optimization method and a learning rate of 0.001 for
both networks.

4.2 Datasets
Three main datasets are used in our experiments. First, the NSynth dataset
[Engel et al., 2017] is used in Chapters 5, 7 and 8 in the task of audio synthesis
of tonal sounds. CSL-Drums is used in Chapter 6 for synthesis of percussion
sounds. Finally, in Chapter 9 we employ the MP3-to-WAV dataset for the task
of restoring heavily compressed musical audio.

• NSynth [Engel et al., 2017]. This dataset3 contains over 300k single-note
audios played by more than 1k different instruments from 10 different fam-
ilies (e.g. bass, flute, guitar). The samples are aligned, meaning that each
sample’s onset occurs at time 0. The dataset contains various labels (e.g.,
pitch, velocity, instrument type), but, unless stated otherwise, we only make
use (i.e., condition the model on) pitch information. As we will see later
in this chapter, we consider the instrument class labels in order to train
an Inception network for evaluation purposes. Each sample is four seconds
long, with a 16kHz sample rate. For computational simplicity, we trim
down the audio samples from 4 to 1 seconds and only consider samples
with a MIDI pitch range from 44 to 70 (103.83 - 466.16 Hz). For the initial
experiments described in Chapter 5 we only consider acoustic instruments

3https://magenta.tensorflow.org/datasets/nsynth
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from the brass, flutes, guitars, keyboards, and mallets families. For the
evaluation, we perform an 90/10% split of the data.

• CSL-Drums. In Chapter 6 we describe experiments on synthesis of per-
cussive sounds. To this end we make use of an internal, non-publicly avail-
able dataset of approximately 300k one-shot audio samples aligned and
distributed across a balanced set of kick, snare, and cymbal sounds. The
samples originally have a sample rate of 44.1kHz and variable duration. For
simplification, each sample is correspondingly shortened or zero-padded to
a duration of one second. Unless stated otherwise, we carry out experiments
using audio with a 16 kHz sample-rate. We perform a 90% / 10% split of
the dataset for validation purposes.

• MP3-to-WAV. This dataset is composed of audio data pairs, where one
part is an MP3 audio signal and the other is an uncompressed, high-quality
(44.1 kHz) version. We use a dataset of approximately 64 hours of Nr 1
hits of the US charts between 1950 and 2020. The high-quality data is then
compressed to 16kbit/s, 32kbit/s and 64kbit/s mono MP3 using the LAME
MP3 codec, version 3.100.4 The total number of songs is first divided into
train, eval, and test sub-sets with a ratio of 80%, 10%, 10%, respectively. We
then split each of the songs into 4-second-long segments with 50% overlap
for training and validation.

4.3 Evaluation
Evaluating generative models is not straight-forward. Particularly in the case of
GANs which, as we saw in Chapter 2, are an implicit density estimation method
and therefore they do not provide direct means to evaluate the likelihood of each
element in the training set. Additionally challenging is the task of synthesizing
audio per se, where the goal of generating realistic audio is hard to formalize from
a perceptual point of view. A common practice is to compare models by listening
to samples or to measure their performance in some surrogate classification task
[Engel et al., 2019]. Similarly, we evaluate our models against a diverse set of
metrics, each capturing a distinct aspect of the model’s performance.

4.3.1 Inception Score

The Inception Score (IS) [Salimans et al., 2016] is defined as the mean KL di-
vergence between the conditional class probabilities p(y|x), and the marginal
distribution p(y) using the predictions of a pre-trained Inception classifier (see
Fig. 4.3), as

exp
(
E
x

[KL(p(y|x)||p(y))]
)
. (4.1)

IS penalizes models whose examples cannot be classified into a single class with
high confidence, as well as models whose examples belong to only a few of all
the possible classes. Spectrograms that contain meaningful objects should have
a conditional label distribution p(y|x) with low entropy. At the same time, we

4https://lame.sourceforge.io/ (accessed on 31 May 2021)
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Figure 4.3 – Architecture of the Inception Model for image classification as de-
scribed by Szegedy et al. [2016]. We adapt this architecture to audio and train
our own inception model on instrument, and/or pitch classification.

expect the model to generate varied sounds, so the marginal
∫
p(y|x = G(z)) dz

should have high entropy. This metric is found to be useful for the evaluation of
image models, correlating well with human judgment, although it is not sensible
to over-fitting [Barratt and Sharma, 2018].

Following previous work [Engel et al., 2019], we adapt this metric to audio
and train our own Inception network5 to classify the attributes accompanying
the corresponding dataset, e.g, the instrument and pitch classes in the case of
those experiments involving the NSynth dataset, or, the instrument class and
perceptual features (see Chapter 6) in the case of the CSL-Drums dataset. The
Inception model is trained on 1-second long Mel-scaled magnitude STFT spec-
trograms with 128 bins. We use a train/validation split of 90% / 10%.

4.3.2 Kernel Inception Distance

The Kernel Inception Distance (KID) [Binkowski et al., 2018] measures the dis-
similarity between samples drawn independently from a real pr and generated pg
distributions. It is defined as the squared Maximum Mean Discrepancy (MMD)
between representations of the last layer of the same Inception model mentioned
in the previous section. A lower MMD means that the generated pg and real pr
distributions are close to each other. We employ the unbiased estimator of the
squared MMD [Gretton et al., 2012] between m samples x ∼ pr and n samples
y ∼ pg, for some fixed characteristic kernel function k, defined as

MMD2(X, Y ) =
1

m(m− 1)

m∑
i 6=j

k(xi, xj)

+
1

n(n− 1)

n∑
i 6=j

k(yi, yj)

− 2

mn

m∑
i=1

n∑
j=1

k(xi, yj).

(4.2)

5www.github.com/pytorch/vision/blob/master/torchvision/models/inception.py
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Here, we use an inverse multi-quadratic kernel (IMQ) k(x, y) = 1/(1 + ||x −
y||2/2γ2) with γ2 = 8 [Rustamov, 2019], which has a heavy tail and, hence, it is
sensitive to outliers.

4.3.3 Fréchet Audio Distance

The Fréchet Audio Distance (FAD) [Kilgour et al., 2018] compares the statistics
of real and generated data computed from an embedding layer of a pre-trained
VGG-like model.6 Viewing the embedding layer as a continuous multivariate
Gaussian, the mean and co-variance are estimated for real and fake data, and the
FAD between these is calculated as

FAD = ||µr − µg||2 + tr(Σr + Σg − 2
√

ΣrΣg), (4.3)

where (µr,Σr) and (µg,Σg) are the mean and co-variances of the embedding of real
and generated data respectively. Lower FAD means smaller distances between
synthetic and real data distributions. FAD performs well in terms of robustness
against noise, computational efficiency, consistency with human judgments and
sensitivity to intra-class mode dropping.

6https://github.com/google-research/google-research/tree/master/frechet_
audio_distance
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Chapter 5

Comparing Representations for
Audio Synthesis Using GANs

In recent years, deep learning for audio has shifted from using hand-crafted fea-
tures requiring prior knowledge, to features learned from raw audio data or mid-
level representations such as the Short-Time Fourier Transform (STFT) [Diele-
man and Schrauwen, 2014]. Indeed, this has allowed us to build models requiring
less prior knowledge, yet at the expense of data, computational power, and train-
ing time [Zhu et al., 2016]. For example, deep autoregressive techniques working
directly on raw audio [van den Oord et al., 2016a], as well as on Mel-scaled spec-
trograms [Vasquez and Lewis, 2019], currently yield state-of-the-art results in
terms of quality. However, these models can take up to several weeks to train in
a conventional GPU, and also, their generation procedure is too slow for typical
production environments. On the other hand, GANs [Goodfellow et al., 2014],
have achieved comparable audio synthesis quality and faster generation time [En-
gel et al., 2019], although they still require long training times and large-scale
datasets when modeling low or mid-level feature representations [Marafioti et al.,
2019, Donahue et al., 2019].

It is still subject to debate what the best audio representations are in ma-
chine learning in general, and the best choice may also depend on the respective
application and the models employed. In audio synthesis with GANs, different
representations may result in different training and generation times, and may
also influence the quality of the resulting output. For example, operating on
representations that compress the information with respect to perceptual princi-
ples, or are structured to better support a specific model architecture, may yield
faster training and generation times, but may result in worse audio quality. In
this chapter we compare different audio signal representations, including the raw
audio waveform and a variety of time-frequency representations, for the task of
adversarial audio synthesis with GANs. To this end, we evaluate our models using
the evaluation metrics described in Sec. 4.3 and report on the respective train-
ing, generation, and inversion times. Furthermore, we investigate whether global
attribute conditioning may improve the quality and coherence of the generated
audio. For that, we perform extensive experimental evaluation when conditioning
our models on the pitch information, as well as in a fully unconditional setting.
We use the Progressive Growing Wasserstein GAN described in Sec. 4.1.

The content of this chapter is extracted from our paper:
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Nistal, J., Lattner, S., and Richard, G. “Comparing Representa-
tions for Audio Synthesis Using Generative Adversarial Networks.” In
Proceedings of the 28th European Signal Processing Conference (EU-
SIPCO), 2020.

The rest of the chapter is organized as follows: In Section 5.1, we describe
the experiment setup: the dataset, architecture design, training procedure, and
the evaluation metrics. Results are discussed in Section 5.2, and we conclude in
Section 5.3.

5.1 Experiment Setup
Architecture. The architecture follows the design described in Sec. 4.1. The
generator G implements a latent space with dimension nz = 128 which is con-
catenated with a one-hot encoding of the conditional pitch class cp with nc = 27,
resulting in a 1D input vector cat(z, cp) with size nz + nc = 155. We employ
N = 5 scale block wherein each block, the CNNs have {128, 64, 64, 64, 32}
feature maps, from low to high resolution, respectively.

Dataset. For this work, we employ the NSynth dataset [Engel et al., 2017]
described early on in Sec. 4.2. As mentioned there, the subset of NSynth that we
use only contains acoustic instruments from the brass, flutes, guitars, keyboards,
and mallets families. This yields a subset of approximately 22k sounds with
balanced instrument class distribution.

Audio representation. In this work we compare the audio representations
described in Section 2.4: the raw audio waveform (referred to as waveform), the
complex-valued STFT (complex ), the magnitude and instantaneous frequency of
the STFT (mag-if ), the CQT transform (cqt) and it’s invertible implementation
using the Non-Stationary Gabor Transform1 [Velasco et al., 2011] (cq-nsgt), the
Mel-scaled magnitude of the STFT (mel) and, finally, the MFCCs (mfcc). All
time-frequency representations, except cqt and cq-nsgt, are computed using an
FFT size of 1024 and 75% overlapping. In the case of mel and mfcc, we employ
a filter-bank of 128 Mel bins. For mfcc, we do not compress the Mel frequency
information so as to preserve pitch information. cqt is computed using 12 bins per
octave with a total of 84 bins. cq-nsgt is computed using 193 bins and assuming
a complex signal. This leads to a non-symmetric spectrogram in which correlated
frequency information is mirrored around the DC component. In order to make
the information more local, we fold the magnitude and phase components and
discard the DC, yielding a representation with 4 channels (corresponding to the
upper and lower spectrogram replicas of the magnitude and phase components).
The resulting tensor sizes for each representation are summarized in Table 5.1.

Evaluation. We evaluate our models in terms of informal listening tests and
quantitative metrics computed on the generated content. For each audio rep-
resentation, models are compared in conditional and unconditional settings and
are also assessed in terms of complexity (e.g., generation time). As quantitative
metrics, we employ those described in Section 4.3: the Inception Score (IS), the
Kernel Inception Distance (KID), and the Fréchet Audio Distance (FAD). For

1https://github.com/grrrr/nsgt
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Audio
rep. channels freq. bins time frames/samples

waveform 1 - 16000
complex 2 512 64
mag-if 2 512 64
cq-nsgt 4 97 948
cqt 2 84 256
mel 1 128 64
mfcc 1 128 64

Table 5.1 – Audio representation configuration

Models PIS IIS PKID IKID FAD

real data 12.5 4.0 0.000 0.000 0.01

waveform 3.7 1.8 0.083 0.291 6.46
complex 9.5 2.8 0.007 0.124 3.17
mag-if 7.3 2.7 0.015 0.149 2.71
cq-nsgt 8.1 3.4 0.012 0.041 2.11
cqt 7.8 2.6 0.013 0.112 2.55
mel 2.3 1.1 0.147 0.300 5.20
mfcc 8.9 3.0 0.008 0.080 2.92

Table 5.2 – Unconditional models (i.e., trained without pitch conditioning).
Higher is better for PIS and IIS, lower is better for PKID, IKID and FAD.

the inception-based metrics, we train an Inception model on pitch and instru-
ment classification and report the IS on each task. We refer to these as Pitch IS
(PIS) and Instrument IS (IIS). In the case of FAD, a publicly available pre-trained
model is used.2

5.2 Results
In the following sections, we present the results of the quantitative and complexity
studies for each model. We also provide some qualitative analysis by means of
informal listening tests.

5.2.1 Evaluation Metrics

The quantitative results for samples generated by the unconditional and condi-
tional models are shown in Tables 5.2 and 5.3, respectively. We observe a trend
that the figures get worse from complex and mag-if to mel and waveform. In

2https://github.com/google-research/google-research/tree/master/frechet_
audio_distance
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Models PIS IIS PKID IKID FAD

real data 12.5 4.0 0.000 0.000 0.01

waveform 3.4 2.1 0.222 0.108 1.87
complex 12.0 2.7 0.005 0.159 0.11
mag-if 12.6 3.9 0.002 0.020 0.12
cq-nsgt 7.6 3.3 0.014 0.049 0.12
cqt 12.3 3.9 0.008 0.107 2.03
mel 12.3 3.8 0.165 0.371 4.79
mfcc 9.7 3.7 0.006 0.074 2.62

Table 5.3 – Conditional models. Higher is better for PIS and IIS, lower is better
for PKID, IKID and FAD.

Models PIS IIS PKID IKID FAD

cqt 10.5 3.1 0.001 0.001 0.66
mel 12.5 3.7 0.001 0.001 0.31
mfcc 12.8 3.4 0.001 0.001 1.29

Table 5.4 – Metrics of post-processed real data for lossy transformations. Higher
is better for PIS and IIS, lower is better for PKID, IKID and FAD.

some metrics, the highest quality models (complex, mag-if, and cqt) obtain re-
sults close to the real data. Furthermore, the results are generally better in the
conditional setting. This is probably because the pitch-conditioning signal guides
the generator in covering the variance over pitches, making it easier for the gen-
erator / discriminator pair to learn the remaining variances. Informal listening
tests suggest that PKID, IKID and FAD are better aligned with perceived sound
quality than PIS and IIS. In PKID, IKID and FAD (in both, the conditional
and unconditional setting), the models of all representations seem to perform
similarly, except mel and waveform, which both yield considerably worse results.

PIS and IIS seem to correspond better with perceived quality in the uncon-
ditional setting (with waveform and mel having low PIS and IIS) than in the
conditional setting. In the latter, PIS and IIS fail to reflect the incapability of
the model trained on mel to produce clear pitches, and to faithfully reproduce the
timbral characteristics of the training data. Despite this, we note that both PIS
and IIS are high for that model. Conversely, for data generated in the waveform
domain, the PIS and IIS are low, even though pitch and instrument types can
be clearly perceived in informal listening tests. This suggests that the inception
models are not robust to the particular artefacts of these representations and
therefore not very reliable in measuring the overall generation quality.

For lossy representations (i.e., cqt, mel and mfcc), the quantitative evaluation
may suffer from a bias introduced by the lossy compression itself. Therefore,
we compute the lower bounds of each representation by encoding/decoding the
dataset used for our experiments in the respective transformations, and treating
that as “generated data” in the evaluation. Table 5.4 shows the results of this
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Models training (days) sampling (s) inversion (s)

waveform 6.1 1.31 0.00
complex 3.5 0.20 0.01
mag-if 4.5 0.24 0.02
cq-nsgt 5.3 0.46 0.03
cqt 2.1 0.09 0.03
mel 1.5 0.04 3.69
mfcc 2.0 0.07 10.80

Table 5.5 – Training, sampling and inversion times for each model

experiment. While cqt seems to have slightly worse lower bounds in general,
the FAD of mfcc is worse than that of mel, even though there are no audible
differences in the audio. Apparently the cosine-transform used to compute mfcc
from mel introduces non-audible artifacts, which have considerable effect on the
latent representations of the Inception model.

Table 5.5 shows the training, sampling, and inversion times associated with
each model and representation. Note that training times are just rough measures,
as they might be affected by variations in performance and resource availability in
the training infrastructure. We can observe that, in general, representations with
higher compression yield faster training and sampling times, but at the expense
of slower inversion. cqt produces the best training, sampling, and inversion times
trade-off, followed by the complex and mag-if representations.

5.2.2 Informal listening

We encourage the reader to listen to the audio examples provided in the accom-
paniment website.3 mag-if and complex seem to have the best-perceived quality,
and are comparable to state-of-the-art works on adversarial audio synthesis (e.g.,
[Engel et al., 2019, Donahue et al., 2019]). We note that every representation has
specific artifacts. While waveform seems to suffer from general broad-band noise,
in nsgt problems in reproducing plausible phase information sometimes lead to
percussive artifacts (and frequency sweeps) at the beginning and end of a sample.
The samples in other representations suffer from ringing (e.g., complex ) or from
pitch distortion (e.g., cqt).

Interpolation between random points in the latent space seems to produce
particularly smooth transitions in complex, followed by mag-if, cqt, and cq-nsgt.
The model trained on mel fails to faithfully reproduce the timbral characteristics
of the training data, and also does not generate the required pitches in the pitch-
conditional setting (it always produces the same pitch for a given z). As the
training setup is the same for every representation, the reason for that is not
clear.

3https://sites.google.com/view/audio-synthesis-with-gans
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5.3 Conclusion
The work described in this chapter compares a variety of audio representations for
the task of adversarial audio synthesis of tonal sounds. We performed quantitative
and qualitative evaluation, and reported on training, generation, and inversion
times. We found that complex and mag-if yield the best quantitative metrics,
which is also aligned with informal listening of the generated samples. Previous
work by Caracalla and Roebel [2020] demonstrated the suitability of the complex
spectrogram for sound texture synthesis with CNNs. It is interesting to see that
this extends to audio generation with GANs. We also found that evaluation
metrics are generally aligned with perceived quality, but in some cases they can
be sensitive to non-audible representation-specific artifacts (e.g., FAD), or yield
figures which seem over-optimistic when listening to the examples (e.g., PIS and
IIS). In the following chapters, we extend this work to explore other types of sound
sources such as percussive sounds or music, and experiment with rich conditional
information such as perceptual features (see Chapter 6) or semantically intuitive
attributes (see Chapter 7).
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Chapter 6

DrumGAN: Synthesis of Drum
Sounds with Timbral Feature
Conditioning Using GANs

Drum machines are electronic musical instruments that create percussion sounds
and allow to arrange them in patterns over time. The sounds produced by some
of these machines are often created synthetically using analog or digital signal
processing. For example, a simple snare drum can be synthesized by generating
noise and shaping its amplitude envelope [Gordon, 2002b] or, a bass drum, by
combining low-frequency harmonic sine waves with dense mid-frequency compo-
nents [Gordon, 2002a]. Generally, drums have been modeled following spectral
models (see Chapter 3) using subtractive synthesis, or sample-based techniques
(e.g., Roland TR-series). The characteristic sound of this synthesis process con-
tributed to the cult status of electronic drum machines in the ’80s.

As we have seen throughout Chapters 1 to 3, deep generative neural networks
are a viable alternative to traditional signal processing methods for audio synthe-
sis. This new paradigm allows us to steer the synthesis process by manipulating
learned higher-level latent variables or by conditioning the model on preexisting
descriptive information. By doing so, more intuitive controls can be devised for
audio synthesis compared to those systems based on conventional, expert-driven
mechanisms. In addition, as deep learning models can be trained on arbitrary
data, comprehensive control over the generation process can be enabled without
limiting the sound characteristic to that of a particular synthesis technique.

We have seen in Chapter 3 that GANs allow to control drum synthesis through
their latent input noise [Donahue et al., 2019] and Variational Autoencoders
(VAE) can be used to create variations of existing sounds by manipulating their
position in a learned timbral space [Aouameur et al., 2019]. However, an essential
issue when learning latent spaces in an unsupervised manner is the missing inter-
pretability of the learned latent dimensions. This can be a disadvantage in music
applications, where comprehensible interaction lies at the core of the creative
process. Therefore, it is desirable to develop a system which offers expressive and
musically meaningful control over its generated output. A way to achieve this,
provided that suitable annotations are available, is to feed higher-level condition-
ing information to the model. The user can then manipulate this conditioning
information in the generation process. Along this line, in previous chapters we
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studied works on neural audio synthesis that incorporate pitch-conditioning [En-
gel et al., 2017, 2019], or categorical semantic tags [Esling et al., 2019], capturing
rather abstract sound characteristics. In the case of drum pattern generation,
there are approaches that can create full drum tracks conditioned on existing
musical material [Lattner and Grachten, 2019].

In a recent study [Ramires et al., 2020], a U-Net is applied to neural drum
sound synthesis, conditioned on continuous perceptual features describing tim-
bre (e.g., boominess, brightness, depth). These features are computed using the
Audio Commons timbre models.1 Compared to prior work, this continuous fea-
ture conditioning (instead of using categorical labels) for audio synthesis provides
more fine-grained control to a musician. However, this U-Net approach learns a
deterministic mapping of the conditioning input information to the synthesized
audio. This limits the model’s capacity to capture the variance in the data, re-
sulting in a sound quality that does not seem acceptable in a professional music
production scenario.

The work described in this chapter builds upon the same idea of conditional
generation using continuous perceptual features, but instead of a U-Net, we em-
ploy the Progressive Growing Wasserstein GAN (PGAN) [Karras et al., 2017]
described in Chapter 4. Our contribution is two-fold. First, we employ a PGAN
on the task of conditional drum sound synthesis. Second, we use an auxiliary
regression loss term in the discriminator as a means to control audio generation
based on the conditional features. We are not aware of previous work attempting
continuous sparse conditioning of GANs for musical audio generation. We con-
duct our experiments on a dataset of a large variety of kick, snare, and cymbal
sounds comprising approximately 300k samples (see Sec. 4.2). Also, we investi-
gate whether the feature conditioning improves the quality and coherence of the
generated audio. For that, we perform an extensive experimental evaluation of
our model, both in conditional and unconditional settings. Following the method-
ology described in Sec.4.3, we evaluate our models by comparing the Inception
Score (IS), the Fréchet Audio Distance (FAD), and the Kernel Inception Distance
(KID). Additionally, we evaluate the perceptual feature conditioning by testing
if changing the value of a specific input feature yields the expected change of the
corresponding feature in the generated output. Audio samples of DrumGAN can
be found on the accompaniment website.2

The content of this chapter is extracted from our paper:

Nistal, J., Lattner, S., and Richard, G.. “DrumGAN: Synthesis
of Drum Sounds with Perceptual Feature Conditioning using GANs.”
In Proceedings of the 28th International Society for Music Information
Retrieval (ISMIR), 2020.

The rest of the chapter is organized as follows: Section 6.1 presents the Audio
Set ontology and the pre-trained teacher model; in Section 6.2 we describe the
experiment setup; results are presented in Section 6.3; in Section 6.4 we describe
the implementation of DrumGAN as VST plugin and, in Section 6.5, we present
the AI Drum-Kit; we conclude in Section 6.6.

1https://github.com/AudioCommons/ac-audio-extractor
2https://sites.google.com/view/drumgan
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6.1 Audio-Commons Timbre Models
In this work we explore perceptually-driven adversarial audio synthesis of percus-
sion sounds. To that end, we condition a GAN on perceptually inspired features
obtained from the Audio Commons project,3 which offers a publicly available
collection of perceptual models of features that describe high-level timbral prop-
erties of the sound. These features are designed from the study of popular timbre
ratings given to a collection of sounds obtained from Freesound.4 The models are
built by combining existing low-level features found in the literature (e.g., spec-
tral centroid, dynamic-range, spectral energy ratios, etc), which correlate with
the target properties enumerated below. All features are defined in the range
[0-100] although we normalize them to [0-1]. We employ these features as condi-
tioning to the generative model. For more information, we direct the reader to
the project deliverable.3

• brightness: refers to the clarity and amount of high-pitched content in the
analyzed sound. It is computed from the spectral centroid and the spectral
energy ratio.

• hardness: refers to the stiffness or solid nature of the acoustic source that
could have produced a sound. It is estimated using a linear regression model
on spectral and temporal features extracted from the attack segment of a
sound event.

• depth: refers to the sensation of perceiving a sound coming from an acous-
tic source beneath the surface. A linear regression model estimates depth
from the spectral centroid of the lower frequencies, the proportion of low
frequency energy and the low-frequency limit of the audio excerpt.

• roughness: refers to the irregular and uneven sonic texture of a sound. It
is estimated from the interaction of peaks and nearby bins within frequency
spectral frames. When neighboring frequency components have peaks with
similar amplitude, the sound is said to produce a ‘rough’ sensation.

• boominess: refers to a sound with deep and loud resonant components.5

• warmth: refers to sounds that induce a sensation analogous to that caused
by the physical temperature. 5

• sharpness: refers to a sound that might cut if it were to take on physical
form. 5

6.2 Experiment Setup
In this section details are given about the conducted experiments, including the
data used, the model architecture and training details, as well as the metrics
employed for evaluation.

3https://www.audiocommons.org/2018/07/15/audio-commons-audio-extractor.html
4https://freesound.org/
5Description of the calculation method for this feature is not available to the authors at

current time.
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Dataset. For the experiments described here we use the CSL-Drums dataset,
described in Section 4.2. As for the conditional features, for each audio sample
in the dataset, we extract the corresponding perceptual features with the Audio
Commons timbre model described in Section 6.1.

Data Representation. The model is trained on the real and imaginary
components of the Short-Time Fourier Transform (STFT), which we have shown
to work well in audio synthesis of tonal sounds [Nistal et al., 2021c, Gupta et al.,
2021], and which we observed to perform better in percussive sounds. We com-
pute the STFT using a window size of 2048 samples and 75% overlapping. The
generated spectrograms are then simply inverted back to the signal domain using
the inverse STFT.

Architecture. The proposed architecture follows the configuration described
in Sec. 4.1. The input to G is a concatenation of the nc = 7 audio commons
features cAC , described in Section 6.1, and a random vector sampled from an
independent Gaussian distribution z ∼ Nnz=128(µ = 0,σ2 = I) with nz = 128
latent dimensions. The resulting vector with size nz + nAC = 135 is fed to G to
generate the output signal x = G(z, cAC) as illustrated in Fig. 6.1. We use N = 6
scale blocks in this architecture, where the number of feature maps in each block
decreases from low to high resolution scales as {256, 128, 128, 128, 64, 32}. Also,
differently from our first experiment in Chapter 5, we perform up/down-sampling
(respectively for G and D) of the temporal dimension just up to the 3rd scale
block (i.e., just in the 0th, 1st, and 2nd scales).6 Given a batch of either real
or generated STFT audio (i.e. using the real and imaginary components of the
STFT as separate channels in the input tensor), D estimates the Wasserstein
distance (2.7) between the real and generated distributions [Gulrajani et al.,
2017], and predicts the perceptual features accompanying the input audio in the
case of a real batch, or those used for conditioning in the case of generated audio.
In order to promote the usage of the conditioning information by G, we add an
auxiliary Mean Squared Error (MSE) loss term to the objective function, following
a similar approach as in [Odena et al., 2017], as explained in Section 4.1. This
process is illustrated in Fig. 6.1.

Baseline. As mentioned in the introduction, we compare DrumGAN against
a previous work tackling the exact same task (i.e., neural synthesis of drums
sounds, conditioned on the same perceptual features described in Section 6.1),
but using a U-Net architecture operating in the time domain [Ramires et al.,
2020]. The U-Net model is trained to deterministically map the conditioning
features (and an envelope of the same size as the output) to the output. The
dataset used thereby consists of 11k drum samples obtained from Freesound,7
which includes kicks, snares, cymbals, and other percussion sounds (referred to
as Freesound drum subset in the following).

Evaluation. In addition to the evaluation metrics described in Sec. 4.3 (IS,
KID, and FAD), we carry out informal listening tests and assess the model’s re-
sponsiveness to the conditional input features by performing a feature coherence
test and compare against the above-described baseline. We follow the methodol-

6Given that we are interested on generating only 1-second-long audio, we observed that the
model performed better when only performing progressive growing of the temporal dimension
in the early stages of training, while maintaining full-temporal resolution in the last scales.

7www.freesound.org
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Figure 6.1 – Conditional GAN training scheme.

ogy proposed by [Ramires et al., 2020] for evaluating the feature control coher-
ence. The goal is to assess whether increasing or decreasing a specific feature
value of the conditioning input yields the corresponding change of that feature
in the synthesized audio. To this end, a specific feature i is set to 0.2 (low),
0.5 (mid), and 0.8 (high), keeping the other features and the input noise fixed.
The resulting outputs xilow, ximid, xihigh are then evaluated with the Audio Com-
mons Timbre Models (yielding features fxi). Then, it is assessed if the feature
of interest changed as expected (i.e., fxilow < fximid < fxihigh). More precisely,
three conditions are evaluated: E1: fxilow < fxihigh, E2: fximid < fxihigh, and
E3: fxilow < fximid. We perform these three tests 1000 times for each feature,
always with different random input noise and different configurations of the other
features (sampled from the evaluation set). The resulting accuracies are reported.

6.3 Results
In this section, we discuss on the quantitative analysis, including the comparison
with the baseline U-Net architecture. Also, we briefly describe our subjective
impression when listening to generated content.

6.3.1 Evaluation Metrics

Scores and Distances

Table 6.1 shows the DrumGAN results for the Inception Score (IS), the Kernel
Inception Distance (KID), and the Fréchet Audio Distance (FAD), as described in
Section 4.3. These metrics are calculated on the synthesized drum sounds of the
model, based on different conditioning settings. Besides the unconditional setting
of DrumGAN (unconditional), we use feature configurations from the train set
(train feats), the valid set (valid feats), and features randomly sampled from a
uniform distribution (rand feats). The IS of DrumGAN samples is close to that
of the real data in most settings. This means that the model outputs are clearly
assignable to either of the respective percussion-type classes (i.e., low entropy for
kick, snare, and cymbal posteriors), and that it doesn’t omit any of them (i.e.,
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high entropy for the marginal over all classes). The IS is slightly reduced for
random conditioning features, indicating that using uncommon conditioning con-
figurations makes the outputs more ambiguous with respect to specific percussion
types. While FAD is a measure for the perceived quality of the individual sounds
(measuring co-variances within data instances), the KID reflects if the generated
data overall follows the distribution of the real data. Therefore, it is interesting
to see that rand feats cause outputs which overall do not follow the distribution
of the real data (i.e., high KID), but the individual outputs are still plausible
percussion samples (i.e., low FAD). This quantitative result is in-line with the
perceived quality of the generated samples (see Section 6.3.2). In the uncondi-
tional setting, both KID and FAD are worse, indicating that feature conditioning
helps the model to both generate data following the true distribution, overall, as
well as in individual samples.

Table 6.2 shows the evaluation results for the U-Net architecture (see Section
6.2). As the train / valid split for the Freesound drum subset (on which the U-
Net was trained) is not available to the authors, the U-Net model is tested using
the features of the full Freesound drum subset (real feats), as well as random
features. Also, we do not report the IS for the U-Net architecture, as it was
trained on data without percussion-type labels, making it impossible to train the
inception model on such targets. As a baseline, all metrics are also evaluated
on the real data on which the respective models were trained. While evaluation
on the real data is straight-forward for the IS (i.e., just using the original data
instead of the generated data to obtain the statistics), both KID and FAD are
measures usually comparing the statistics between features of real and generated
data. Therefore, for the real data baseline, we split the real data into two equal
parts and compare those with each other in order to obtain KID and FAD. The
performance of the U-Net approach on both, KID and FAD is considerably worse
than that of DrumGAN. While the KID for real feats is still comparable to that
of DrumGAN (indicating a distribution similar to that of the real data), the high
FAD indicates that the generated samples are not perceptually similar to the
real samples. When using random feature combinations this trend is accentuated
moderately in the case of FAD, and particularly in the case of the KID, reaching
a maximum of almost 14. This is, however, understandable, as the output of
the U-Net depends only on the input features in a deterministic way. Therefore,
it is expected that the distribution over output samples greatly changes when
perturbating the distribution of the inputs.

Feature Coherence

Table 6.3 shows the accuracy of the three feature coherence tests explained in
Section 6.2. Note that, as both models were trained on different data, the figures
of the two models are not directly comparable. However, also reporting the figures
of the U-Net approach should provide some context on the performance of our
proposed model. In addition, as both works use the same feature extractors and
claim that the conditional features are used to shape the same characteristics of
the output, we consider the figures from the U-Net approach a useful reference.
We can see that for about half the features, the U-Net approach reaches close to
100% accuracy. Referring to the descriptions on how the features are computed it
seems that the U-Net approach reaches particularly high accuracies for features
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↑ IS ↓ KID ↓ FAD

real data 2.26 0.05 0.00
train feats 2.19 0.39 0.77
val feats 2.18 0.35 0.76
rand feats 2.09 1.36 0.70
unconditional 2.19 1.07 1.00

Table 6.1 – Results of Inception Score (IS, higher is better), Kernel Inception Dis-
tance (KID, lower is better) and Fréchet Audio Distance (FAD, lower is better),
scored by DrumGAN under different conditioning settings, against real data and
the unconditional baseline. The metrics are computed over 50k samples, except
for val feats, where 30k samples are used (i.e., the validation set size).

↓KID ↓FAD

real data 0.04 0.00
real feats 1.45 3.09
rand feats 13.94 3.17

Table 6.2 – Results of Kernel Inception Distance (KID) and Fréchet Audio Dis-
tance (FAD), scored by the U-Net baseline [Ramires et al., 2020] when condi-
tioning the model on feature configurations from the real data and on randomly
sampled features. The metrics are computed over 11k samples (i.e., the Freesound
drum subset size).

U-Net DrumGAN

Feature E1 E2 E3 E1 E2 E3

brightness 0.99 0.99 1.00 0.74 0.71 0.70
hardness 0.64 0.65 0.59 0.64 0.64 0.62
depth 0.94 0.65 0.94 0.79 0.72 0.74
roughness 0.63 0.59 0.57 0.72 0.68 0.67
boominess 0.98 0.82 0.98 0.80 0.74 0.77
warmth 0.92 0.79 0.91 0.76 0.71 0.71
sharpness 0.63 0.77 0.45 0.84 0.82 0.82

average 0.83 0.76 0.78 0.76 0.72 0.72

Table 6.3 – Mean accuracy for the feature coherence tests on samples generated
with the baseline U-Net [Ramires et al., 2020] and DrumGAN.
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which are computed by looking at the global frequency distribution of the audio
sample, taking into account spectral centroid and relations between high and
low frequencies (e.g., brightness and depth). U-Net performs considerably worse
for features which take into account the temporal evolution of the sound (e.g.,
hardness) or more complex relationships between frequencies (e.g., roughness).
While DrumGAN performs worse on average on these tests, the results seem to
be more consistent, with less very high, but also less rather low accuracy values
(note that the random-guessing baseline is 0.5 for all the tests). The reason for
not performing better on average may lie in the fact that DrumGAN is trained in
an adversarial fashion, where the dataset distribution is enforced, in addition to
obeying the conditioned characteristics. In contrast, in the U-Net approach the
model is trained deterministically to map the conditioning features to the output,
which makes it easier to satisfy the simpler characteristics, like generating a lot
of low- or high-frequency content. However, this deterministic mapping results
in a lower audio quality and a worse approximation to the true data distribution,
as it can be seen in the KID and FAD figures, described above.

6.3.2 Informal Listening

The results of the qualitative experiments discussed in this section can be found
on the accompaniment website.8 In general, conditional DrumGAN seems to have
better quality than its unconditional counterpart and substantially better than
the U-Net baseline (see Section 6.2). In the absence of more reliable baselines, we
argue that the perceived quality of DrumGAN is comparable to that of previous
state-of-the-art work on adversarial audio synthesis of drums [Donahue et al.,
2019].

We also perform radial and spherical interpolation experiments (with respect
to the Gaussian prior) between random points selected in the latent space of
DrumGAN. Both interpolations yield smooth and perceptually linear transitions
in the audio domain. We notice that radial interpolation tend to change the per-
cussion type (i.e., kick, snare, cymbal) of the output, while spherical interpolation
affects other properties (like within-class timbral characteristics and envelope) of
the synthesized audio. This gives a hint on how the latent manifold is structured.

6.4 DrumGAN Plug-in
The work described in this chapter is materialized into an audio synthesis plug-
in software integrating DrumGAN. The model used for this plug-in is a slightly
modified version of the one presented in the previous sections. First, we scale
DrumGAN to operate on high-resolution audio (i.e., 44.1 kHz sample-rate) and
increase the latent space dimension from nz = 128 to nz = 256 to allow for a richer
variety of sounds. We also remove the perceptual feature controls which, while
being responsive as demonstrated in our experiments, we find them difficult to
interpret in practice in order to purposely guide the synthesis towards a desired
drum sound. Instead, we condition the model on soft instrument labels, i.e.,
continuous instrument class probabilities instead of one-hot class vectors. This

8https://sites.google.com/view/drumgan
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way one can continuously and independently control at run-time the specific
amount of each instrument class to be synthesized (i.e., some sort of "kickness",
"snareness" or "cymbalness" control), enabling instrument interpolation. Finally,
we also trained an encoder that enables to map any preexisting sound into the
latent space of DrumGAN for its re-synthesis, enabling to generate variations of
it. The interface of this plug-in is illustrated in Fig. 6.2.

Figure 6.2 – DrumGAN’s Graphical User Interface (GUI) developed by Cyran
Aouameur.

The resulting software was showcased at the Sony Technology Exchange Fair
2020 (STEF), an internal event for transferring technology across all Sony divi-
sions. At STEF, DrumGAN was chosen among 10 projects from more than 300
to be demoed in front of some of Sony’s executive officers, including the Vice-
President. Also, the visibility in STEF helped foster collaboration around audio
GAN research between Sony CSL and other departments such as Sony Interactive
Entertainment (SIE), Sony R&D India, or Sony Music Japan (SMJ).9 Further-
more, as part of an ongoing collaboration between Sony CSL and Steinberg,10 a
post-doc project is being planned aimed at further extending DrumGAN for its
deployment and commercialization.

9As a result of the collaboration with SMJ, we created ChainsawGAN, an adaptation of
DrumGAN to chainsaw sound synthesis to be used in the production of a soundtrack for the
anime series The Chainsaw Man.

10https://steinberg.net
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6.5 The A.I. Drum-Kit
«The A.I. Drum Kit»11 is a collection of drums generated using DrumGAN and
other DL-driven tools built at Sony CSL. It consists of 18 808-like samples, 20
kicks, 29 snares, 15 claps, 8 rimshots, 15 hi-hats, 8 open hats, and 12 percs. The
collection was carefully curated by Sony ATV artist Twenty9 who is a platinum
Hip-Hop producer collaborating with Sony CSL’s music team. This collection
melts Twenty9’s know-how experience and lofi trap-like musical style with the
characteristic sounds of DL-generated drums. The collection was publicly released
together with a teaser (see Fig. 6.3) and can be downloaded for free.12

Figure 6.3 – A frame-shot from the teaser

6.6 Conclusion
In this work, we presented DrumGAN, an adversarial audio synthesizer of drum
sounds. DrumGAN’s generation process can be steered using perceptually mo-
tivated controls. To this end, we collected the CSL-Drums dataset, described in
Section 4.2, and consisting of approximately 300k audio samples containing kicks,
snares, and cymbals. We extracted a set of timbral features describing high-level
semantics of the sound, and used these as conditional input to our model. We
encouraged the generator to use the conditioning information by performing an
auxiliary feature regression task in the discriminator and adding the correspond-
ing MSE loss term to the objective function. In order to assess whether the
feature conditioning improves the generative process, we trained a model in a
completely unsupervised manner for comparison. We evaluated the models by
comparing various metrics, each reflecting different characteristics of the gener-
ation process. Additionally, we compared the coherence of the feature control
against previous work. Results showed that DrumGAN generates high-quality

11https://csl.sony.fr/the-a-i-drum-kit-by-twenty9-and-sony-csl/
12https://twenty9.beatstars.com/
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drum samples and provides meaningful control over the audio generation. The
conditioning information was proven to help the network to better approximate
the real distribution of the data. Further, DrumGAN was extended and scaled
to operate on high-resolution audio standards (e.g., 44.1kHz sample rate), and it
was implemented in a commercially viable plug-in compatible with any Digital
Audio Workstation (DAW).
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Chapter 7

DarkGAN: Exploiting Knowledge
Distillation for Comprehensible
Audio Synthesis with GANs

In Chapters 2 and 3, we reviewed some of the most outstanding works on audio
and image generation using Generative Adversarial Networks (GANs) [Karras
et al., 2020, Brock et al., 2019, Park et al., 2019, Engel et al., 2019, Nistal et al.,
2020]. An open challenge in GANs is to learn comprehensible features that cap-
ture semantically meaningful properties of the data. This has been addressed to
some extent in image generation tasks, where semantic control is achieved us-
ing semantic layouts [Park et al., 2019] or high-level attributes learned through
unsupervised methods [Karras et al., 2020]. Other works achieve disentangle-
ment of features in the data through regularization terms [Peebles et al., 2020]
or by exploring the latent space of the GAN after being trained, in the search for
human-interpretable factors of variation [Voynov and Babenko, 2020, Shen et al.,
2020]. However, the great success of some of these approaches is partly enabled
by the availability of large-scale image datasets containing rich semantic annota-
tions [Deng et al., 2009, Caesar et al., 2018, Xiao et al., 2017]. Unfortunately, the
situation is different in the musical audio domain, where datasets are scarce and
often limited in size and availability of annotations.

Therefore, the work presented in this chapter studies whether limited annota-
tions in audio datasets can be circumvented by taking a Knowledge Distillation
(KD) approach (see Section 2.2). To that end, we utilize the soft labels gener-
ated by a pre-trained audio-tagging system for conditioning a GAN in an audio
generation task. More precisely, we train the GAN on a subset of the NSynth
dataset [Engel et al., 2017], which contains a wide range of instruments from
acoustic, electronic, and synthetic sources. For that dataset we generate soft
labels with a publicly available audio-tagging model [Kong et al., 2020b], pre-
trained with attributes of the AudioSet ontology [Gemmeke et al., 2017]. This
ontology contains a structured collection of sound events from many different
sources and descriptions of around 600 attributes obtained from YouTube videos
(e.g., "singing bowl", "sonar", "car", "siren", or "bird").

The soft labels produced by such audio tagging system indicate how much of
the different characteristics are contained in a specific sound (e.g., a synthesizer
sound may have some similarity with a singing bowl or a sonar pulse). There-
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fore, it is theoretically possible that attributes that do not explicitly exist in the
training data (e.g., "sonar", "singing bowl"), can still be somehow sparsely en-
coded across many examples. We hope that the generative model can distill such
characteristics (e.g., the "essence" of a singing bowl sound) by looking at the soft
labels to then be able to emphasize them at generation. The slight similarities
to specific categories in data that can be distilled using soft labels were coined
"Dark Knowledge" [Hinton et al., 2015]. Therefore, we call the proposed model
DarkGAN.

The work contained in this chapter introduces a generic audio cross-task KD
framework for transferring semantically meaningful features into a neural audio
synthesizer. We implement this framework in DarkGAN, an adversarial audio
synthesizer for comprehensible and controllable audio synthesis. We perform an
experimental evaluation on the quality of the generated material and the seman-
tic consistency of the learned attribute controls. Numerous audio examples are
provided in the accompanying web page,1 and the code is released for repro-
ducibility.2

The content of this chapter is extracted from our paper:

Nistal, J., Lattner, S., and Richard, G.. “DarkGAN: Exploit-
ing Knoweldge Distillation for Comprehensible Audio Synthesis With
GANs.” In Proceedings of the 29th International Society for Music In-
formation Retrieval (ISMIR), 2021.

In what follows, we first mention relevant state-of-the-art works in knowledge
distillation, giving special attention to those works focused on audio (see Section
7.1). Next, in Section 7.2 we describe the AudioSet ontology and the pre-trained
audio tagging system that we use as teacher model. We then present the exper-
imental framework of DarkGAN (see Section 7.3). In Section 7.4 we provide a
discussion of the results, and conclude in Section 7.5.

7.1 Previous Work
The Knowledge Distillation (KD) framework was briefly described in Section 2.2.
As mentioned there, KD has been generally used as a model compression tech-
nique, although a few works employ it for different purposes [Papernot et al.,
2017, Anil et al., 2018, Yuan and Peng, 2020]. For example, some works explore
KD as a means to secure privacy of medical history training data, by releasing to
the public models that are not explicitly trained on the sensible dataset, but on
aggregated predictions of teacher ensembles [Papernot et al., 2017]. Other works
employ KD on-the-fly as a distributed training framework to train very large
models, and scale beyond the limits of distributed stochastic gradient descent
[Anil et al., 2018]. An interesting line of research that is closely related to ours
proposes cross-task knowledge distillation from image captioning and classifica-
tion systems into an image synthesis generative neural-network [Yuan and Peng,
2018, 2020]. In audio, KD was extensively used on Automatic Speech Recogni-
tion (ASR) tasks in order to exploit large unlabelled datasets [Li et al., 2014],

1https://an-1673.github.io/DarkGAN.io/
2https://github.com/SonyCSLParis/DarkGAN
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distill the knowledge from deep Recurrent Neural Networks (RNN) [Chan et al.,
2015] or, inversely, to improve the performance of deep RNN models by distilling
knowledge from simple models as a regularization technique [Tang et al., 2016].
Works related to ours use KD as a means to adapt a model to a different audio
domain task [Asami et al., 2017] or even data modality (by distilling knowledge
from a video classifier) [Aytar et al., 2016], where labeled datasets are scarce,
and large models would easily overfit. Some works employ KD to fuse knowl-
edge from different audio representations into a single compact model [Gao et al.,
2020]. Finally, some works employed probability density distillation to reduce the
computational complexity of WaveNet and allow parallel generation using stan-
dard feed-forward neural-networks [van den Oord et al., 2018a]. Here we employ
knowledge distillation as a means to learn semantically meaningful controls in an
adversarial audio synthesizer. To the best of our knowledge, this is the first time
that such a task has been attempted in audio generation with GANs.

7.2 The AudioSet Ontology
AudioSet [Gemmeke et al., 2017] is a large-scale dataset containing audio data
and an ontology of sound events that seeks to describe real-world sounds. It
was created to set a benchmark in the development of automatic audio event
recognition systems, similar to those in computer-vision, such as ImageNet [Deng
et al., 2009]. The dataset consists of a structured vocabulary of 632 audio event
classes and a collection of approximately 2M human-labeled 10-second sound
clips drawn from YouTube videos. The ontology is specified as a hierarchy of
categories with a maximum depth of 6 levels, covering a wide range of human and
animal sounds, musical genres and instruments, and environmental sounds. We
encourage the reader to visit the corresponding website for a complete description
of the ontology.3

In this work, we do not employ all of the AudioSet attributes, as many of them
refer to properties that are too vague for musical sounds or describe broader time-
scale aspects of the sound (e.g., music, chatter, sound effect). Instead, we rank
the attributes based on the geometric mean of their 90th percentile (calculated
on the predicted class probabilities for each attribute across the dataset), and
the teacher’s reported accuracy as

√
pi90th × acci. Then, we take the first 128

attributes according to this ranking.

7.2.1 Pre-trained AudioSet Classifier

In this work, we distill the knowledge from a pre-trained audio-tagging neural
network (PANN) trained on raw audio recordings from the AudioSet collection
[Kong et al., 2020b]. PANNs were originally proposed for transferring knowledge
to other discriminative tasks. However, we use them to transfer the knowledge
to a generative model and enable steering the generation process through a com-
prehensible vocabulary of attributes.

We employ the CNN-14 model from the PANNs [Kong et al., 2020b]. CNN-14
is built upon a stack of 6 convolution-based blocks containing 2 CNN layers with a

3research.google.com/audioset/ontology/
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kernel size of 3x3. Batch Normalization is applied after every convolutional layer,
and a ReLU non-linearity is used as activation function. After each convolutional
block, they apply an average-pooling layer of size 2x2 for down-sampling. Global
pooling is applied after the last convolutional layer to summarize the feature maps
into a fixed-length vector. An extra fully-connected layer is added to extract
embedding features before the output Sigmoid activation function. For more
details on the architecture, please refer to Kong et al. [2020b].

7.3 Experiment Setup
In this section, details are given about the conducted experiments. We describe
the AudioSet ontology, provide details about the teacher and student architec-
tures, the metrics employed for evaluation, and the baselines used for comparison.

Dataset. For this work, we employ the NSynth dataset [Engel et al., 2017],
described early on in Section 4.2. We employ all of the instrument classes (not
only from the acoustic family) yielding to a subset of approximately 90k sounds
with balanced instrument class distribution.

Audio representation. Following our previous work comparing represen-
tations for audio synthesis [Nistal et al., 2021c] we employ the Magnitude and
Instantaneous Frequency of the STFT (mag-if ) as it was shown to work well as
a representation for tonal sounds. We use an FFT size of 2048 bins, an overlap
of 75%, and a sample-rate of 16kHz.

Architecture. DarkGAN’s architecture, illustrated in Fig. 4.1, follows the
architecture of DrumGAN [Nistal et al., 2020] (see Chapter 6). The input to G is
a concatenation of nAS = 128 teacher-labeled AudioSet attributes cAS ∈ [0, 1]128

(see Sec. 7.2), a one-hot vector cp ∈ {0, 1}26 containing np = 26 pitch classes, and
a random vector z ∼ N32(0, 1) with nz = 32 components. The resulting vector is
placed as a column in the middle of a 4D tensor with nC = nz + np + nAS = 186
convolutional maps. Then, it is fed through a stack of convolutional and box up-
sampling blocks to generate the output signal x = G(z, cp, cAS). We use N = 6
scale blocks, wherein each block the number of feature maps decreases from low
to high resolution as {256, 128, 128, 128, 128, 64}. The discriminator D mirrors
G’s configuration and estimates the Wasserstein distance Wd between the real
and generated distributions [Gulrajani et al., 2017], and predicts the AudioSet
features accompanying the input audio in the case of a real batch, or those used for
conditioning in the case of generated audio (see Fig. 7.1). In order to promote the
usage of the conditioning information by G, we add to the objective function an
auxiliary binary cross-entropy loss term for the distillation task and a categorical
cross-entropy for the pitch classification task [Odena et al., 2017].

Evaluation. This work aims to learn semantically meaningful controls with
DarkGAN by distilling knowledge from an audio-tagging system trained on at-
tributes from the AudioSet ontology. Therefore, in addition to the evaluation
metrics presented in Sec 4.3, we evaluate if changing an input attribute is reflected
in the corresponding output of DarkGAN. To that end, we examine the change
in the prediction of the teacher model (w.r.t. the output of DarkGAN) when
changing a particular DarkGAN input attribute. A second property to assess is
whether the dark knowledge helps DarkGAN learn well-formed representations of
specific attributes and generalize to out-of-distribution input combinations. We
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Figure 7.1 – Training diagram for DarkGAN. Note that the temperature value T
is parametrizing a Sigmoid activation function in both the techer PANN and the
student D, as explained in Section 2.2

.

compute these metrics for DarkGAN when trained under different temperature
values in the distillation process (see Sec. 2.2), as well as for various baselines.
To assess these two aspects, we perform the following tests:

1. Attribute correlation: we generate 10k samples using attribute vectors from
the validation set as input to DarkGAN. The generated samples are fed to
the teacher model to predict the attributes again. Then, for each attribute
i, we compute the correlation across the 10k samples between the input
vector α4 and the predictions α̂ as

ρi(α̂,α) = ρ(F i(G(z,p,α)),αi),

where F i is the classifier’s prediction for the ith attribute, p is the pitch,
and z is the random noise.

2. Out-of-distribution Attribute Correlation: for each attribute i exhibiting a
positive correlation, i.e., S = {ρi : ρi > 0}, test (1) is repeated 50 times,
but using 1k samples instead of 10k. In each repetition, a specific attribute
is progressively incremented by an amount δl := 10−3+l

3.6
50 , l = 0, 1, ..., 50*

and we calculate
ρδl =

1

| S |
∑
S

ρi(α̂,α+ δl).

3. Increment consistency : being A the set containing the 50 attributes with
the highest correlation, we compute

∆Fδk =
∑
i∈|A|

100∑
j=1

F i(G(zj ,pj ,αj + δk))− F i(G(zj ,pj ,αj))

50× 100× std(F i(G(z,p,α)))
,

4In practice α = cAS . We employ α in these explanations to remain as general as possible.
*The step of δl is defined to obtain more density of points in the range of variation of the

attributes (i.e., [0, 1]) as well as δl > 1.
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where αj is the jth original feature vector from a set of 100 samples ran-
domly picked from the validation set, and δk := k

5
, k = 0, 1, ..., 25. Intu-

itively, it is defined as the average difference of the predicted attributes
of the generated audios (i.e., the difference before and after the attribute
increment) as a function of the increment δk. We express the result in
terms of standard deviations of the non-incremented generated examples as
std(G(z,p,α)).

Baselines. We compare the evaluation metrics described above with real
data to obtain a baseline for each metric. Also, GANSynth [Engel et al., 2019],
the state-of-the-art on audio synthesis with GANs, is used for comparison.6 As
GANSynth generates 4-second long sounds, the waveform is trimmed down to 1
second for comparison with our models. Additionally, we examine the effect that
KD has on these metrics by comparing against a model analogous to DarkGAN,
but without using the AudioSet feature conditioning (baseline). Experiment re-
sults for DarkGAN are shown for different temperature values T ∈ {1, 1.5, 2, 3, 5}
(2.9) as part of the KD process (see Sec. 2.2.1), and we report separate results
for conditional attributes obtained from the training (tr) and validation (val) set.

7.4 Results
In this section, we present the results from the evaluation procedure described in
Sec. 7.3. We validate the quantitative results based on an informal assessment of
the generated content.

7.4.1 Evaluation Metrics

Scores and Distances

Table 7.1 presents the metrics scored by DarkGANT , where T ∈ {1, 1.5, 2, 3, 5}
is the temperature value, and the baseline models, as described in Sec. 7.3. Note
that we condition DarkGAN on attribute vectors randomly sampled from the val-
idation set. Overall, DarkGANT∈{1.5,2} obtains better results than the baselines
and is close to real data in most metrics. All models score higher PIS than real
data, with GANSynth in the first place, suggesting that the generated examples
have a clear pitch and that the distribution of pitch classes follows that of the
training data. This is not surprising, as all the models have explicit pitch condi-
tioning. In contrast, we do not provide conditioning attributes for the instrument
class. Therefore, we observe a slight drop in IIS for all models compared to real
data. DarkGANT∈{1.5,2} achieves the highest IIS, suggesting that the model cap-
tured the timbre diversity of the dataset and, also, that the generated sounds
can be reliably classified into one of all possible instruments. In terms of KID,
DarkGANT∈{1.5,2} and baseline are on a par with real data. A KID equal to
real data indicates that the Inception embeddings are similarly distributed for
real and generated data. As our Inception classifier is trained on pitch and in-
strument classification and predicting AudioSet features, similarities in such an
embedding space indicate common timbral and tonal characteristics between the

6https://github.com/magenta/magenta/tree/master/magenta/models/gansynth
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Model PIS IIS KIDa FAD
real data 17.7 5.7 6.7 0.1
GANSynth

[Engel et al., 2019] 19.6 4.0 7.1 4.5

baseline 18.5 4.3 6.7 0.8

DarkGANT tr val tr val tr val tr val

T = 1 18.4 18.3 4.0 4.0 6.8 6.8 0.7 0.7
T = 1.5 19.0 19.0 4.5 4.5 6.7 6.7 0.7 0.7
T = 2 19.1 19.0 4.2 4.1 6.7 6.8 0.6 0.6
T = 3 19.1 19.1 4.2 4.1 6.8 6.8 0.8 0.8
T = 5 19.2 19.1 4.0 4.0 6.8 6.8 0.8 0.8

a×10−4

Table 7.1 – PIS, IIS, KID and FAD (see Sec. 4.3)

generated and the real audio data distribution. This trend is maintained in the
case of the FAD, where DarkGANT=2 obtains the best scores followed closely by
DarkGANT∈{1,1.5}.

From the results discussed above, we can conclude that distilling knowledge
from the AudioSet classifier helps DarkGAN learning the real data distribution.
Furthermore, using slightly higher temperatures in the distillation process yields
an improvement over the baseline without feature conditioning. We speculate
that the additional supervised information that the teacher model provides to
DarkGAN’s discriminator results in a more meaningful gradient for the generator.
Also, attribute conditioning (i.e., attribute vectors sampled from the validation
set) may help the generator synthesize diverse samples closer to the training data
distribution.

Attribute Coherence

Note that the metrics discussed in this section are not guaranteed to relate directly
to human perception, but we consider them suitable indicators of whether the
model responds coherently to the input conditioning. There exists the threat of
the generator producing adversarial examples, but we argue that this is prevented
by the discriminator having to satisfy the Wasserstein criterion (as adversarial
examples would exhibit out-of-distribution artifacts). This assumption is also
supported by informal listening tests where we find that the metrics correlate
with our perception (see Sec. 7.4.2).

Table 7.2 shows some of the results for the attribute correlation ρi(α̂,α) for
conditional feature vectors α = cAS sampled from the dataset (see Sec. 7.3). The
complete table can be found in Appendix B. At the top of the table, we show a
few attributes corresponding to classes represented in the NSynth dataset (e.g.,
"guitar", "trumpet"). In the middle, we show attributes that, while not being
present in the dataset (e.g., "siren", "tuning fork"), still exhibit (relatively) high
correlation. At the bottom, attributes that obtain low correlations are presented
(e.g., "cat", "insect"). We can observe that models trained with T ∈ {1.5, 2, 3}
generally obtain better results than T ∈ {1, 5} in most attributes. Specifically,
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Attribute T=1 T=1.5 T=2 T=3 T=5

Accordion 0.1 0.25 0.31 0.32 0.10
Acoustic guitar 0.20 0.36 0.39 0.23 0.10
Bass guitar 0.30 0.38 0.46 0.38 0.19

Brass Instrument 0.28 0.49 0.38 0.26 0.00
Cello 0.24 0.29 0.26 0.17 0.00
Chime 0.15 0.33 0.39 0.31 0.03
Clarinet 0.12 0.29 0.37 0.39 -
Guitar 0.28 0.37 0.42 0.34 0.13
Harp 0.11 0.37 0.41 0.17 -

Inside, small room 0.24 0.30 0.30 0.19 -
Orchestra 0.30 0.53 0.47 -

Plucked string 0.27 0.37 0.42 0.32 0.11
Saxophone 0.25 0.41 0.41 0.41 0.03
Trombone 0.18 0.41 0.29 0.16 0.00
Trumpet 0.16 0.46 0.36 0.25 0.00

Wind instrument 0.21 0.36 0.40 0.39 0.10
... ...

Bicycle bell 0.11 0.16 0.08 0.23 0.01
Civil defense siren 0.10 0.16 0.23 0.09 0.06

Didgeridoo 0.06 0.16 0.21 0.20 0.08
Drum 0.05 0.21 0.24 0.12 0.01

Electronic tuner 0.35 0.44 0.50 0.29 0.13
Percussion 0.04 0.19 0.30 0.14 0.08
Sine wave 0.28 0.32 0.27 0.17 0.10

Singing bowl 0.08 0.20 0.24 0.21 0.03
Siren 0.13 0.19 0.24 0.10 0.08

Tuning fork 0.22 0.29 0.35 0.29 0.10
Zither 0.03 0.18 0.19 0.07 -0.01
... ...
Cat -0.01 -0.01 -0.01 -0.01 0.00

Chicken, rooster 0.00 -0.06 -0.02 -0.01 -0.01
Domestic animals, pets -0.01 -0.02 -0.02 0.00 0.00

Fowl -0.01 -0.07 -0.02 -0.02 -0.01
Frog 0.00 0.03 0.07 0.06 -0.03
Insect 0.00 -0.02 -0.02 -0.02 -0.01
Speech -0.04 -0.10 -0.07 -0.05 0.01

Table 7.2 – A few examples of attribute correlation coefficients ρi(α̂,α) (see
Sec. 7.3). The whole table can be found in Appendix B.
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DarkGANT=2 yields the highest correlations, followed by DarkGANT=1.5. Note
that temperatures higher than 1 also improve the correlation for attributes that
do not have corresponding classes in the dataset (e.g., "didgeridoo", "percussion",
"singing bowl"). This suggests that DarkGAN can extract dark knowledge (which
is emphasized by increasing T ) from the soft labels. The soft labels indicating the
presence of (potentially just slight) timbral characteristics in various sounds are
helping the model to learn linearly dependent feature controls for those attributes.

A more in-depth analysis of feature errors and the distribution of features in
the dataset would be required to further characterize the results for each attribute.
However, it is reasonable that those classes obtaining higher correlations share
some timbral features with the training data (e.g., clearly, "violins" are contained
in the data set, and a "tuning fork" is similar to a "mallet"). In contrast, those
attributes obtaining low correlations may be related to underrepresented features
in the training set or features that the model failed to capture.

Fig. 7.2 shows the correlation coefficient when increasing each attribute by a
value δl in the input conditioning. The plot reveals that the trend of Table 7.2
is maintained throughout an ample range of variation of the attributes. Interest-
ingly, while the correlation of DarkGANT=1 considerably declines after an increase
δl > 10−0.8, using a temperature T ∈ {1.5, 2, 3} the decline is more moderate, and
we observe some correlation even for a δl > 1, which is outside the range of the
attributes.

As the correlation coefficient provides normalized results (regarding scale and
offsets), we evaluate the attribute control using the increment consistency metric
∆F δk (see Fig. 7.3). We observe that for low increments of the features (δk < 1)
temperatures T ∈ {1, 1.5, 2} yield comparable input-output relationships of the
features. A temperature T = 1.5, however, yields more consistent feature dif-
ferences for increments δk > 1 of the conditional input features. In conclusion,
while DarkGANT=2 yields better correlation over all the data (i.e., conditional
and predicted attributes are more strongly dependent), for attributes with partic-
ularly high correlation, DarkGANT=1.5 performs best in over-emphasizing dark
knowledge contained in the data (i.e., the degree of change is higher, especially
for δk > 1).

7.4.2 Informal Listening

In the accompanying website,7 we show sounds generated under various condition-
ing settings, including generations with feature combinations randomly sampled
from the validation set, generations where we fix α and p while changing z, tim-
bre transfer, scales, and more. Overall, we find the results of PIS, IIS, KID, and
FAD, discussed in Sec. 7.4.1, to align well with our perception. The quality of the
generated audio is acceptable for all models. Also, we find the generated exam-
ples to be diverse in terms of timbre, and the tonal content is coherent with the
pitch conditioning. Moreover, we perceive that most of the attributes exhibiting
high correlations (see Table 7.2) are audible in the generated output, particu-
larly in the case of DarkGANT∈{1,1.5,2}. For higher temperatures T ∈ {3, 5}, the
model’s responsiveness to the attribute conditioning drops substantially. We find
the model to be particularly responsive to attributes such as "drum", "tuning

7https://an-1673.github.io/DarkGAN.io/

95



10 3 10 2 10 1 100

0.00

0.05

0.10

0.15

0.20

0.25

F t
(G

(z
,p

,
+

))
F t

(G
(z

,p
,

))
st

d

temperature
1.0
1.5
2.0
3.0
5.0

δ

ρ
δ

Figure 7.2 – Out-of-distribution average attribute correlation ρδ (see Sec. 7.3)

fork", "theremin", "choir", or "cowbell". To other attributes (e.g., "accordion",
"piano", or "organ"), even though the analysis yields moderate correlations, the
model does not seem to produce perceptually satisfactory outputs.

7.5 Conclusion
In this work, we distilled knowledge from a large-scale audio tagging system into
DarkGAN, an adversarial synthesizer of tonal sounds. The goal was to enable
steering the synthesis process using attributes from the AudioSet ontology. A
subset of the NSynth dataset was fed to a pre-trained audio tagging system to
obtain AudioSet predictions. These predictions were then used to condition Dark-
GAN. The proposed Knowledge Distillation (KD) framework was evaluated by
comparing different temperature settings and employing a diverse set of metrics.
Results showed that DarkGAN can generate audio resembling the true dataset
and enables moderate control over a comprehensible vocabulary of attributes. By
slightly increasing the temperature during the distillation process, we can further
improve the responsiveness of the attribute controls. It is also notable that KD
can be performed even when the original dataset (i.e., the AudioSet collection)
is not involved.
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Chapter 8

VQCPC-GAN: Variable-Length
Adversarial Audio Synthesis Using
Vector-Quantized Contrastive
Predictive Coding

In recent years, Generative Adversarial Networks (GANs) [Goodfellow et al.,
2014] have shown outstanding results in image and audio synthesis tasks [Karras
et al., 2017, 2020, Engel et al., 2019, Nistal et al., 2020, Binkowski et al., 2020].
As most (initial) studies on GANs focused on generating images, the resulting
architectures are now often adopted for the musical audio domain, using fixed-size
two-dimensional spectrogram representations as the “image data”. However, while
it is a natural choice to use data of fixed dimensionality in the visual domain,
fixing the length of musical audio content in generation tasks poses a significant
limitation. As a result, GANs are currently mainly used to generate short audio
content in the musical audio domain, like single notes of a tonal instrument or
single percussion samples [Engel et al., 2019, Nistal et al., 2020].

We have seen in Chapter 3 that when dealing with variable-length sequence
generation, commonly utilized models are Transformer architectures [Hadjeres
and Crestel, 2020], causal convolutional architectures (causal CNNs) [van den
Oord et al., 2016a], and recurrent neural networks (RNNs) [Fan et al., 2014].
However, those models suffer various problems like high computational cost (au-
toregressive), missing look-back capabilities (recurrent), and, typically, they can-
not be parallelized at test time. In contrast, GANs are relatively efficient in
generating high-dimensional data, as the conditioning on a single noise vector
determines the values of all output dimensions at once. Therefore, it seems rea-
sonable to also adopt the GAN paradigm for generating variable-length musical
audio content. It has been shown in text-to-speech translation [Binkowski et al.,
2020] that GANs can be successful in generating coherent variable-length audio
when conditioned on meaningful sequences of symbols (i.e., linguistic and pitch
features), while the input noise z accounts for the remaining variability.

We adopt a similar strategy by first learning sequences of symbolic audio
descriptors, serving as conditional inputs to a GAN architecture. These descrip-
tors are discrete tokens learned through self-supervised training, using Vector-
Quantized Contrastive Predictive Coding (VQCPC) [Hadjeres and Crestel, 2020]
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as explained in Section 2.3. In VQCPC, discrete representations are learned
through contrastive learning, by confronting positive and negative examples. In
contrast to reconstruction-based VQ-VAEs, introduced by van den Oord et al.
[2017], VQCPC allows to control to some extent which aspects of the (sequential)
data are captured in the tokens, by carefully designing a negative sampling strat-
egy, thus defining the so-called “pretext” task. In this work, the tokens are trained
to represent time-varying features (i.e., something close to the envelope) of single,
pitched audios of different instruments. The proposed model is conditioned on
such envelope feature sequences, on the noise vector zzz (static, representing the
“instrument”), and on pitch information (static). This approach of sequence gen-
eration with GANs using discrete tokens is promising for future, more elaborate
applications. While in this work, we are simply up-sampling token sequences to
generate longer sounds, one could also generate plausible token sequences. Such
a system could then be used to hold sounds for an arbitrary time in real-time
performance with a MIDI input device. Also, token sequences could be gener-
ated conditioned on MIDI information, to represent the dynamics of a target
instrument. The resulting system could then be used for naturalistic rendering
of MIDI files. Furthermore, training tokens to also represent pitch information
would result in a more general variable-length audio generation framework. To
the best of our knowledge, this is the first work implementing a variable-length
GAN for musical audio synthesis.

The content of this chapter is extracted from our paper:

Nistal, J., Auoameur, C., Lattner, S., and Richard, G. “VQCPC-
GAN: Variable-Length Adversarial Audio Synthesis using Vector-
Quantized Contrastive Predictive Coding.” In Workshop on Applications
of Signal Processing for Audio and Acoustics (WASPAA), 2021.

The rest of this chapter is organized as follows. First, in Section 8.1, we sum-
marize previous works on time-series GANs and Contrastive Predictive Coding.
In Section 8.2 we describe in detail the proposed framework. Section 8.3 describes
the experiment setup. Next, in Section 8.4, we evaluate the proposed method and
compare results with previous work and other baselines. Finally, in Section 8.5,
we draw some conclusions and discuss future directions.

8.1 Previous Work
In addition to the works presented in Chapter 3, in the following, we review some
of the most important works on variable-length time-series generation using GANs
and contrastive learning of sequences. We pay special attention to those works
focused on audio data.

8.1.1 Time-Series GAN

Several studies have adopted the GAN framework within the sequential setting.
Early approaches used recurrent neural networks (RNN) for both the generator
and discriminator’s architecture. The first work modeled discrete sequential mu-
sical data [Yu et al., 2017] and applied a policy gradient method to cope with the
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discrete nature of the symbolic representation, using the discriminator to com-
pute a reward judged over complete sequences. In contrast to this, C-RNN-GAN
[Mogren, 2016] uses a continuous-valued representation, enabling standard back-
propagation, to train the whole model end-to-end. Data is generated recurrently
using an LSTM-based architecture, taking as inputs a noise vector and the previ-
ous step’s generated data. Follow-up work improves C-RNN-GAN by eliminating
the recursive conditional input from previous time-steps and generating a time
series with just a random input vector [Esteban et al., 2017]. Most of these ap-
proaches rely only on the binary adversarial feedback for learning, which by itself
may not be sufficient for the network to capture the temporal dynamics in the
training data efficiently. TimeGAN [Yoon et al., 2019] is a recent work for contin-
uous time series generation that combines the unsupervised learning framework
of a GAN with an autoregressive supervised loss. The supervised objective allows
for better capturing the temporal behavior of the generated time series training
data. Similarly to our approach, in TimeGAN the generator is conditioned on
static and dynamic sequential random vectors to account for global and temporal
features. Similarly, GAN-TTS [Binkowski et al., 2020] synthesizes variable-length
speech by conditioning the generator on sequential linguistic and pitch features,
as well as a global random vector and a speaker ID. Taking inspiration from
previous approaches, in this work, we perform variable-length audio synthesis by
conditioning the generator on static and dynamic prior information. The static
information is represented by a random vector and a pitch class, whereas the dy-
namic information is captured by a sequence of discrete tokens learned through
self-supervised techniques.

8.1.2 Contrastive Predictive Coding

Contrastive Predictive Coding (CPC) [van den Oord et al., 2018b] is a self-
supervised framework used to learn general features from an unlabeled dataset
of sequences by contrasting positive and negative examples in a so-called pre-
text task. CPC has been actively studied for speech tasks [van den Oord et al.,
2018b, Schneider et al., 2019, Baevski et al., 2020], where it was shown to im-
prove the performance of ASR systems when used as front-end in replacement of
spectrograms [Schneider et al., 2019]. Introducing a VQ bottleneck to the CPC
improved the system’s performance by discarding irrelevant information [Baevski
et al., 2020, van Niekerk et al., 2020]. In contrast to previous works exploiting
VQCPC for discriminative downstream tasks [van den Oord et al., 2018b, Schnei-
der et al., 2019, Baevski et al., 2020], recent approaches explore small codebook
sizes to learn compact, discrete representations of symbolic music from which to
generate variations of any music piece [Hadjeres and Crestel, 2020]. We follow
a similar strategy in this work and use VQCPC to condition a GAN on such
discrete codes for synthesizing variable-length audio.

8.2 VQCPC-GAN
In Sec. 2.3 we briefly reviewed the theory of Contrastive Predictive Coding (CPC)
and it’s Vector-Quantized (VQ) variant. In what follows we describe the im-
plementation details of the two building blocks of VQCPC-GAN, the VQCPC
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encoder and the GAN.

8.2.1 VQCPC Encoder

The VQCPC schematic, depicted in Fig. 8.1, is similar to that presented in Sec-
tion 2.3 but with an initial Constant-Q Transform at the input. The encoder
fenc is a stack of 4 convolutional blocks operating frame-by-frame. Each block is
composed of a 1D CNN (in time) with a kernel size of 1 and number of channels
(512, 512, 256, dz) respectively for each block in the stack. Each CNN, except
the last one, is followed by a ReLU activation function. As opposed to [Chen
et al., 2020], there is no projection head. VQ is trained with a squared L2 loss
with a commitment component [van den Oord et al., 2017]. We choose a code-
book C containing C = 16 centroids, and where dc = dz = 32. The codebook
size is chosen relatively small, enforcing an information bottleneck that only lets
through the most salient information needed to discriminate between positive and
negative examples [Hadjeres and Crestel, 2020]. The autoregressive model far is
a 2-layer GRU with a hidden size of 256 and an output size of 512, and we use
its output at timestep t as the context vector ht to predict K = 5 timesteps into
the future. The overall training objective is the VQ and the InfoNCE loss (2.11).

As mentioned earlier, an important choice in contrastive learning is the design
of the negative sampling strategy, as this controls what features are represented
by the encoding. Usually, the proposal distribution for the negative samples is
chosen to be uniform over the training set [Hadjeres and Crestel, 2020, van den
Oord et al., 2018b, Hénaff et al., 2019]. However, in this work, we sample 16
negative examples in an intra-sequence fashion: given an audio excerpt xxx, the
negative examples are all drawn from a uniform distribution over xxx (i.e., the same
audio excerpt). This intra-sequence sampling forces the network to encode only
information which varies within a sample (i.e., dynamic information such as onset,
offset, loudness change, vibrato, tremolo, etc.), while ignoring static information
like instrument type and pitch. This shows that VQCPC provides a convenient
way to control what should be represented by the discrete representations. In
this work, the remaining information (instrument type and pitch) is represented
by the GAN’s input noise and the explicit pitch conditioning.

8.2.2 GAN Architecture

The proposed WGAN is inherited from DrumGAN [Nistal et al., 2020] although
it slightly differs from that presented in Section 4.1. We adapt the architecture
to a sequential scheme by conducting two major changes. First, the input tensor
to the generator G is a sequence containing static and dynamic information. The
static information refers to the global context and accounts for the pitch class, a
one-hot vector ppp ∈ {0, 1}26 with 26 possible pitch values, as well as a noise vector
zzz ∼ N (0, I) ∈ R128 sampled from a standard normal distribution with zero mean
and unit variance N (0, I). The dynamic information provides local frame-level
context and is composed of a sequence of discrete, one-hot vectors ccc = [c1, ..., cL]
where cl ∈ {0, 1}16 and L is the number of frames in the sequence. The tensor
ccc identifies a sequence of spectrogram clusters obtained by encoding real audio
using VQCPC (see Sec. 2.3). At training time, L is set to 32 frames, which cor-
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Figure 8.1 – Updated schematic of VQCPC incorporating the Constant-Q Trans-
form (CQT).

responds to approximately 1 second of audio given the pre-processing parameters
(see Sec. 8.3). The static vectors ppp and zzz are repeated across the sequence di-
mension L of the dynamic information ccc, resulting in a tensor vvv ∈ RL×160. This
tensor is unsqueezed, reshaped to (160×1×L) and fed through a stack of convo-
lutional and nearest-neighbour up-sampling blocks to generate the output signal
xxx = G(zzz, ccc, ppp). In order to turn the input tensor into a spectrogram-like convo-
lutional input, it is first zero-padded in the frequency dimension. As depicted in
Fig. 8.2, the generator’s input block performs this zero-padding followed by two
convolutional layers with ReLU non-linearity. Each scale block is composed of
one nearest-neighbour up-sampling step at the input and two convolutional layers
with filters of size (3, 3). The number of feature maps decreases from low to high
resolution as {512, 256, 256, 256, 256, 128}. We use Leaky ReLUs as activation
functions and apply pixel normalization.

The second major change is the use of two discriminators (see Fig. 8.2). A
local discriminator Dl, implemented in a fully convolutional manner, estimates
WlocalWlocalWlocal which is the Wasserstein distance [Gulrajani et al., 2017] between real
and generated distributions at a frame-level (i.e. using batches of frames instead
of batches of full spectrograms). Additionally, to encourage G to consider the
conditional sequence of VQCPC tokens, Dl performs an auxiliary classification
task where each input spectrogram frame is assigned to a VQCPC token cl. As
illustrated in Fig. 8.3, we add an additional cross-entropy loss term for Dl’s
objective [Odena et al., 2017]. A global discriminator Dg with two dense layers in
its output block estimatesWglobal over complete sequences of L = 32 spectrogram
frames and predicts the pitch class. As in Dl, we add an auxiliary cross-entropy
loss term to Dg’s objective function for the pitch classification task [Odena et al.,
2017].
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Figure 8.2 – Proposed architecture for VQCPC-GAN (see Sec. 8.2.2).

8.3 Experiment Setup
In this work, we employ a VQCPC encoder (see Sec. 2.3) to learn discrete se-
quences of high-level features from a dataset of tonal sounds (see Sec. 4.2). As
described in Sec. 4.1, we condition a GAN on such discrete sequential represen-
tations in order to perform audio synthesis. Variable-length audio is achieved
by up/down-sampling, respectively for longer or shorter sounds, of the condi-
tional VQCPC sequence. In the following, we present the training dataset, the
evaluation metrics and the baselines.

Dataset. As explained in Section 4.2, we employ subset of audio excerpts
obtained from the NSynth dataset [Engel et al., 2017].

Audio representation. As in DarkGAN, we preprocess the data to obtain
magnitude and IF spectrograms. We employ an FFT size of 2048 bins and an
overlap of 75%. For the VQCPC encoder (see 8.2.1), we rely on the Constant-
Q Transform (CQT) spanning 6 octaves with 24 bins per octave. We use a
hop-length of 512 samples for the output token sequence to match the temporal
resolution of the data used to train the GAN.

Evaluation. We compare the metrics described in Sec. 4.3 with a few base-
lines and include results scored by real data to delimit the range of each met-
ric. Specifically, we compare with GANSynth [Engel et al., 2019], obtained from
Google Magenta’s github,1 and two baselines that we train using the same ar-
chitecture of VQCPC-GAN but removing the sequence generation scheme, i.e.,

1https://github.com/magenta/magenta/tree/master/magenta/models/gansynth
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Figure 8.3 – Proposed architecture for VQCPC-GAN (see Sec. 8.2.2).

without VQCPC conditioning nor the local D. We train the two baseline models,
WGAN1s and WGAN4s, on 1s and 4s-long audio excerpts, respectively, whereas
GANSynth is originally trained on 4s audio excerpts. As mentioned early on
in this section, we condition VQCPC-GAN on varying-length VQCPC sequences
in order to generate audio with different duration. To do so, we just up/down-
sample the VQCPC sequence accordingly to obtain the desired number of output
frames. In particular for these experiments, we take the original VQCPC se-
quences of length 32 (i.e., 1s-long) and perform nearest-neighbour up-sampling
by a factor of 4 to obtain 128 tokens (i.e., 4s-long).

8.4 Results
In this section, we present the results from the evaluation metrics described in
Sec. 4.3. We informally validate these quantitative results by listening to the
generated content and sharing our assessment.

8.4.1 Evaluation Metrics

Table 8.1 presents the metrics scored by our proposed VQCPC-GAN and the
baselines. Overall, our WGANs score closest to those of real data in most metrics,
or even better in the case of the PIS. GANSynth follows closely and VQCPC-GAN
obtains slightly worse results. VQCPC-GAN performs particularly good in terms
of PIS, which suggests that the generated examples have an identifiable pitch
content and that the distribution of pitch classes follows that of the training data.
This is not surprising given that the model has explicit pitch conditioning, making
it trivial to learn the specific mapping between the pitch class and the respective
tonal content. Conversely, results are worse in the case of IIS, suggesting that
the model failed to capture the timbre diversity existent in the dataset and that
generated sounds cannot be reliably classified into one of all possible instrument
types (i.e. mode failure). Turning now our attention to the KID, VQCPC-GAN
scores results very similar to GANSynth and slightly worse than WGAN1s. A low
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IIS PIS KIDa FAD
duration (s) 1 4 1 4 1 4 1 4

real data 6.3 4.5 17.9 18.0 6.7 6.6 0.0 0.0

GANSynth
[Engel et al., 2019] - 4.1 - 19.7 - 7.0 - 2.1

WGAN1s 4.5 - 19.0 - 6.8 - 0.8 -
WGAN4s - 4.5 - 20.1 - 6.9 - 1.0

VQCPC-GAN 3.0 2.9 18.5 17.2 7.3 7.1 5.6 5.4
a×10−4

Table 8.1 – IIS, PIS, KID, and FAD (Sec. 4.3), scored by VQCPC-GAN and
baselines. The metrics are computed over 25k samples.

KID indicates that the Inception embeddings are similarly distributed for real
and generated data. Our Inception classifier is trained on several discriminative
tasks of specific timbral attributes, including pitch and instrument classification.
Therefore, we can infer that similarities in such embedding space indicate shared
timbral and tonal characteristics, from a statistical point of view, between real and
generated audio data. This trend is not as evident in the case of the FAD, where
VQCPC-GAN obtains considerably worse results than the baselines, particularly
in the case of WGAN1s. This could indicate the existence of artefacts as FAD
was found to correlate well with several artificial distortions [Kilgour et al., 2018].

To wrap up: despite the architectural changes introduced for sequential gener-
ation, VQCPC-GAN exhibits results comparable to GANSynth, the SOTA on ad-
versarial audio synthesis of tonal sounds, as well as two strong baselines WGAN1,4s

trained on 1 and 4-second long audio respectively. Notably, our WGAN4s base-
line scores better results than GANSynth in all metrics. In the following section,
we informally validate these quantitative results by sharing our assessment when
listening to generated audio material.

8.4.2 Informal Listening

The accompanying website contains audio examples generated under different
settings (e.g. latent interpolations, pitch scales, generation from MIDI files) and
different duration (0.5, 1, 2 and 4 seconds). Synthesis of variable-length audio
is achieved by up/down-sampling of the conditional VQCPC sequence. Overall,
we find the results discussed in Sec. 8.4.1 to align well with our perception. The
range of instruments is narrow, and only a few from the most homogeneous and
populated classes in the dataset can be identified (e.g., mallet, guitar, violin),
hence the low IIS. In the pitch scale examples, we can perceive that the pitch
content responds nicely to the conditional signal, and it is consistent across the
generation time span, which explains the higher PIS. Although we eventually ob-
tain some artifacts when using certain VQCPC token combinations as conditional
input, the overall quality is acceptable. This is aligned with having a low FAD
but a KID comparable to the baselines.
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8.5 Conclusion
In this work, we presented VQCPC-GAN, an adversarial model capable of per-
forming variable-length sound synthesis of tonal sounds. We adapted the WGAN
architecture found in previous works [Engel et al., 2019, Nistal et al., 2020] to a
sequential setting by conducting two major architectural changes. First, we con-
dition G on dynamic and static information captured, respectively, by a sequence
of discrete tokens learned through VQCPC, and a global noise zzz. Additionally, we
introduce a secondary fully-convolutional D that discriminates between real and
fake data distributions at a frame level and predicts the VQCPC token associated
with each frame. Results showed that VQCPC-GAN can generate variable-length
sounds with controllable pitch content while still exhibiting results comparable
to previous works generating audio with fixed-duration. We provide audio ex-
amples in the accompanying website. As future work, we plan on investigating
hierarchical VQCPC tokens to condition the GAN on longer-term, compact rep-
resentations of audio signals.
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Chapter 9

Stochastic Restoration of Heavily
Compressed Musical Audio using
GANs

An exciting direction for future research is using GANs to learn rather complex
musical relationships between input-output audio pairs, e.g., generating a drum
loop given some preexisting recording of a bass-line as musical context. This task
can be framed as a domain translation problem. However, to train a GAN on such
a task, large amounts of multi-track musical audio data would be required, i.e., a
dataset where each of the individual audio tracks that compose a music piece is
available as separate audio files. Gathering a large-scale dataset with such char-
acteristics is challenging. Therefore, in this chapter, we address a pretext task
that is simpler and for which we can create the audio data pairs artificially: audio
enhancement of compressed musical audio. Initially, the audio enhancement field
aimed to bridge legacy technologies for music storage, processing, and transmis-
sion with current audio quality standards. Here we present a first attempt at
learning musical audio transformations with GANs by performing musical audio
restoration of heavily compressed MP3 music excerpts. We believe such a task is
a feasible first step towards modeling more complex musical audio relationships
in the future. An important reason is that we can artificially create the dataset
by gathering high-quality musical audio and compressing it. Also, the task is
considerably more straightforward than the end goal as the network is provided
with a denser context (the compressed audio data) while still exhibiting some
of the fundamental challenges: generating some missing time-frequency content
that is musically coherent with the conditional audio data.

The introduction of MP3 (i.e., MPEG-1 layer 3 [Brandenburg and Stoll, 1994])
was transformative in how music was stored, transmitted, and shared in digital
devices and on the internet. MP3 players, sharing platforms, and streaming
resulted directly from the possibility to compress audio data without noticeable
perceptual compromises. Compared to lossless audio coding formats, which allow
for a perfect reconstruction of the original PCM audio signal, lossy formats (like
MP3) typically lead to better compression by ignoring the parts of the signal
to which humans are less sensitive. This process is also called perceptual coding
which takes into account the physio- and psychological abilities of the human
auditory perception, resulting in so-called psychoacoustic models [Brandenburg,
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1999].
While several different lossy audio codecs (e.g., AAC, Opus, Vorbis, AMR)

exist, MP3 is undoubtedly the most commonly used. It is built upon an analy-
sis filter bank and the modified discrete cosine transform (MDCT). In parallel,
the signal is analyzed based on a perceptual model that exploits the psychoa-
coustic phenomena of auditory masking to determine sound events in the audio
signal that are considered to be beyond human hearing capabilities. Based on
this information, the spectral components are quantized with specific resolution
and coded with variable bit allocation while keeping the noise introduced in this
process below the masking thresholds [Musmann, 2006]. This process may in-
troduce a variety of deficiencies when configured with incorrect or very extreme
parameters. For example, under large compression rates, high-frequency con-
tent is susceptible to being removed, resulting in a bandwidth loss. Pre-echoes
can occur when decoding very sudden sound events for which the quantization
noise spreads out over the synthesis window and consequently precede the event
causing the noise. Other common artifacts are so-called swirlies [Corbett, 2012],
characterized by fast energy fluctuations in the low-level frequency content of the
sound. Furthermore, there are other problems related to MP3 compression such
as double-speak as well as a general loss of transient definition, transparency, loss
of detail clarity, and more [Corbett, 2012].

Many works exist which tackle the problem of audio enhancement, including
the removal of compression artifacts. The most common recent methods used
for these types of problems are based on deep learning. Typically, they focus
on specific types of impairments present in the audio signals (e.g., reverberation
[Williamson and Wang, 2017], bandwidth loss [Kumar et al., 2020], or audio codec
artifacts [Zhao et al., 2019, Fisher and Scherlis, 2016, Skoglund and Valin, 2020,
Biswas and Jia, 2020, Porov et al., 2018]). Also, different types of neural network
architectures have been studied for these tasks. For example, Convolutional Neu-
ral Networks (CNNs) [Park and Lee, 2017], WaveNet-like architectures [Fisher
and Scherlis, 2016, Gupta et al., 2019], and UNets [Isik et al., 2020, Hu et al.,
2020]. However, most of the works in this line of research tackle the enhancement
of speech signals [Zhao et al., 2019, Skoglund and Valin, 2020, Gupta et al., 2019,
Biswas and Jia, 2020, Fisher and Scherlis, 2016, Park and Lee, 2017, Kontio et al.,
2007, Isik et al., 2020, Hu et al., 2020, Li and Lee, 2015, Xu et al., 2015], and
only a few publications exist for musical audio restoration [Lagrange and Gon-
tier, 2020, Miron and Davies, 2018, Porov et al., 2018, Deng et al., 2020]. Given
the wide range of speech enhancement techniques in telephony, automatic speech
recognition, and hearing aids, this focus on speech is understandable. Also, com-
pared to musical audio signals, speech signals are easier to study, as they are more
homogeneous, narrow-band, and usually monophonic. In contrast, musical audio
signals, particularly in the popular music genre, are highly varied. It typically
consists of multiple superimposed sources, which can be of any type, including
(polyphonic) tonal instruments, percussion, (singing) voice, and various sound ef-
fects. In addition, music is typically broad-band, containing frequencies spanning
over the entire human hearing range.

Given that studies on deep learning-driven audio codec artifact removal for
musical audio data are underrepresented in audio enhancement research, in this
work, we attempt to provide some more insights into this task. We investigate the
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limits of a generative neural network model when dealing with a general popular
music corpus comprising music released in the last seven decades. In particu-
lar, we are interested in the ability of the model to regenerate lost information
of heavily compressed musical audio signals using a stochastic generator (which
is not very common in audio enhancement, with [Biswas and Jia, 2020, Maiti
and Mandel, 2019] being some exceptions). This work is not only relevant for
the restoration of MP3 data in existing (older) music collections. In the light of
current developments in musical audio generation, where full songs can already
be generated from scratch [Dhariwal et al., 2020], musical audio enhancement
may soon possess a much more generative aspect. It has already been shown that
strong generative models can enhance heavily corrupted speech through resynthe-
sis with neural vocoders [Maiti and Mandel, 2019]. Along these lines, examining
a generative (i.e., stochastic) decoder for heavily compressed audio signals may
contribute to insights about more efficient musical data storage and transmission.
Today, music streaming is increasingly common, which poses issues regarding en-
ergy consumption and environmental sustainability. When accepting deviations
from the original recording, higher compression rates could be reached with a
generative decoder without perceptual compromises in the listening experience.
Moreover, there is no single best solution for heavily compressed audio signals to
recover the original version. Therefore, it may be interesting for users to generate
multiple recoveries and pick the one they like most.

We introduce a Generative Adversarial Network (GAN) [Goodfellow et al.,
2014] architecture for the restoration of MP3-encoded musical audio signals. We
train different stochastic (with z ∼ N (µ = 0, σ2 = I) input) and deterministic
generators on MP3s with different compression rates. Using these models, we in-
vestigate if 1) restorations of the models considerably improve the MP3 versions,
2) if we can systematically pick samples among the outputs of the stochastic
generators which are closer to the original in comparison to samples drawn from
the deterministic generators, and 3) if the stochastic generators generally output
higher-quality restorations than the deterministic generators. To that end, we
perform an extensive evaluation of the different experiment setups utilizing ob-
jective metrics and listening tests. We find that the models are successful in points
1 and 2, but the random outputs of the stochastic generators are approximately
on par (i.e., do not improve) the overall quality compared to the deterministic
models (point 3).

The content of this chapter is extracted from our paper:

Lattner, S., and Nistal, J. “Stochastic Restoration of Heavily Com-
pressed Musical Audio Using Generative Adversarial Networks.” MDPI,
Electronics 10, no. 11: 1349, 2021.

The rest of this chapter is organized as follows. In Section 9.1 we revise pre-
vious works in bandwidth extension and audio enhancement. In Section 9.2 we
provide a brief description of the proposed GAN architecture and the experimen-
tal setup. Finally, in Section 9.3 we present and discuss the results and conclude
with suggestions for future work in Section 9.4. Audio examples of the work are
provided in the accompanying website.1

1https://sonycslparis.github.io/restoration_mdpi_suppl_mat/
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9.1 Related Work
This work employs Generative Adversarial Networks (GANs) to restore MP3-
compressed musical audio signals to their original high-quality versions. This
task falls into the intersection of audio enhancement and bandwidth extension.
Therefore, we review works on both these domains.

9.1.1 Bandwidth Extension

Low-resolution audio data (i.e., audio signals with a sample rate lower than
44.1kHz) is generally preferable for storage or transmission over band-limited
channels, like streaming music over the internet. Also, lossy audio encoders can
significantly reduce the amount of information by removing high-frequency con-
tent, but at the expense of potentially hampering the perceived audio quality.
In order to restore the quality of such truncated audio signals, bandwidth exten-
sion (BWE) methods aim to reconstruct the missing high-frequency content of
an audio signal given its low-frequency content as input [Larsen and Aarts, 2005].
BWE is alternatively referred to as audio re-sampling or sample-rate conversion
in the field of Digital Signal Processing (DSP), or as audio super-resolution in
the Machine Learning (ML) literature. Methods for BWE have been extensively
studied in areas like audio streaming and restoration, mainly for legacy speech
telephony communication systems [Bansal et al., 2005, Gupta et al., 2019, Kontio
et al., 2007, Li and Lee, 2015] or, less commonly, for degraded musical material
[Lagrange and Gontier, 2020, Miron and Davies, 2018].

Pioneering works to speech BWE were originally algorithmic and operated
based on a source-filter model. In such approaches, the problem of regenerat-
ing a wide-band signal is divided into finding an upper-band source and the
corresponding spectral envelope, or filter, for that upper band. While methods
for source generation were based on simple modulation techniques such as spec-
tral folding and translation of a so-called low-resolution baseband [Makhoul and
Berouti, 1979], the efforts focused on estimating the filter or spectral envelope
[Dietz et al., 2002]. These works introduced the so-called spectral band replica-
tion (SBR) method, where the lower frequencies of the magnitude spectra are
duplicated, transposed, and adjusted to fit the high-frequency content. Because
in most use-cases for speech BWE the full transmission stack is controlled, most of
these algorithmic methods rely on side information about the spectral envelope,
obtained at the encoder from the full wide-band signal, and then transmitted
within the bitstream for subsequent reconstruction at the decoder.

Learning-based approaches to speech BWE rely on large models to learn de-
pendencies across the lower and higher end of the frequency spectrum, reducing
the need for side information in the transmitted bitstream (i.e., blind BWE).
Methods based on Non-negative Matrix Factorization (NMF) treat the spectro-
gram as a fixed set of non-negative bases learned from wide-band signals [Bansal
et al., 2005]. These bases are fixed at test time and used to estimate the ac-
tivation coefficients that best explain the narrow-band signal. The wide-band
signal is then reconstructed by a linear combination of the base vectors weighted
by the activations. These methods efficiently up-sample speech audio signals up
to 22.05kHz but are sensitive to non-linear distortions due to the linear-mixing
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assumption. Dictionary-based methods can significantly improve the speech qual-
ity over the NMF approach by reconstructing the high-resolution audio signals
as a non-linear combination of units from a pre-defined clean dictionary [Mandel
and Cho, 2015], or by casting the problem as an l1-optimization of an analysis
dictionary learned from wide-band data [Dong et al., 2015].

Early works on speech BWE using neural networks inherited the source-filter
methodology found in previous works. By employing spectral folding to regen-
erate the wide-band signal, a simple NN is used to adjust the spectral envelope
of the generated upper-band [Kontio et al., 2007]. Direct estimation of the miss-
ing high-frequency spectrum was not extensively studied until the introduction
of deeper architectures [Li and Lee, 2015]. Advances in computer vision [Dong
et al., 2016, Isola et al., 2017] inspired the usage of highly expressive models to
audio BWE, leading to significant improvements in the up-sampling ratio and
quality of the reconstructed audio signal. Different approaches followed: by gen-
erating the missing time-domain samples in a process analogous to image super-
resolution [Kuleshov et al., 2017], by inpainting the missing content in a time-
frequency representation [Miron and Davies, 2018], or by combining information
from both domains, preserving the phase information [Lim et al., 2018]. Pow-
erful auto-regressive methods for raw audio signals based on SampleRNN [Ling
et al., 2018], or WaveNet [Gupta et al., 2019] are able to increase the maximum
resolution to 16 kHz and 24 kHz sample-rate, respectively, without neglecting
phase information, as it is the case in most works operating in the frequency do-
main [Miron and Davies, 2018, Lagrange and Gontier, 2020, Bansal et al., 2005,
Li and Lee, 2015, Kumar et al., 2020]. Most recent techniques using sophisticated
transformer-based GANs can up-sample speech to full resolution audio at 44.1
kHz sample-rate [Kumar et al., 2020].

9.1.2 Audio Enhancement

Audio signals may suffer from a wide variety of environmental adversities: e.g.,
sound recordings using low-fidelity devices or in noisy and reverberant spaces;
degraded speech in mobile or legacy telephone communications systems; musical
material from old recordings, or heavily compressed audio signals for streaming
services. Audio enhancement improves the quality of corrupted audio signals by
removing noisy additive components and restoring distorted or missing content
to recover the original audio signal. The field was first introduced for applica-
tions in noisy communication systems to improve the quality and intelligibility
of speech signals [Loizou, 2007]. Many studies have been carried out on speech
audio enhancement, e.g., for speech recognition, speaker identification and verifi-
cation [Ortega-Garcia and Gonzalez-Rodriguez, 1996, Seltzer et al., 2013, Kolbæk
et al., 2016], hearing assistance devices [Yang and Fu, 2005, Chen et al., 2016a],
de-reverberation [Williamson and Wang, 2017], and so on. In the specific case
of audio codec restoration, many different techniques exist for improvement of
speech signals [Zhao et al., 2019, Fisher and Scherlis, 2016, Skoglund and Valin,
2020, Biswas and Jia, 2020], yet only few works attempt the restoration of heavily
compressed musical audio signals [Porov et al., 2018, Deng et al., 2020].

Classic speech enhancement methods follow multiple approaches, primarily
based on analysis, modification, and synthesis of the noisy signal’s magnitude
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spectrum and often omitting phase information. Popular strategies are catego-
rized into spectral subtraction methods [Boll, 1979], Wiener-type filtering [Jae
Lim and Oppenheim, 1978], statistical model-based [Ephraim, 1992] and sub-
space methods [Dendrinos et al., 1991]. These approaches have proven successful
when the additive noise is stationary. However, they introduce artificial residual
noise under highly non-stationary noise or reduced signal-to-noise ratios (SNR).

Recent deep learning approaches to speech enhancement outperform previous
methods in terms of perceived audio quality, effectively reducing both stationary
and non-stationary noise components. Popular methods learn non-linear mapping
functions of noisy-to-clean spectrogram signals [Xu et al., 2015] or learn masks
in a time-frequency domain representation [Williamson and Wang, 2017, Isik
et al., 2020, Williamson et al., 2016]. Many architectures have been proposed:
basic feed-forward DNNs [Xu et al., 2015], CNN-based [Park and Lee, 2017],
RNN-based [Erdogan et al., 2015], and more sophisticated architectures based on
WaveNet [Fisher and Scherlis, 2016] or U-Net [Isik et al., 2020]. GANs are also
increasingly popular in speech enhancement [Pascual et al., 2017, 2019, Li et al.,
2018, Donahue et al., 2018]. Pioneering works using GANs operated either on the
waveform domain [Pascual et al., 2017] or on the magnitude STFT [Michelsanti
and Tan, 2017]. Subsequent works mainly focused on the latter representation
due to the reduced complexity compared to time-domain audio signals [Li et al.,
2018, Donahue et al., 2018, Fu et al., 2019]. Recent works operating directly
on the raw waveform were able to consider a broader type of signal distortions
[Pascual et al., 2019] and to improve the reduction of artifacts over previous works
[Phan et al., 2020]. Successive efforts were made to further reduce artefacts by,
for example, taking into consideration human perception. Some works directly
optimize over differentiable approximations of objective metrics such as PESQ
[Fu et al., 2019]. However, these metrics correlate poorly with human perception,
and some works defined the objective metric in embedding spaces from related
tasks [Germain et al., 2019] or by matching deep features of real and fake batches
in the discriminator’s embedding space [Su et al., 2020].

The vast majority of the speech audio enhancement approaches mentioned
above operate on the magnitude spectrum and ignore the phase information [Li
et al., 2018, Deng et al., 2020, Miron and Davies, 2018, Donahue et al., 2018].
Researchers often reuse the phase spectrum from the noisy signal at synthesis,
introducing audible artifacts that would be particularly annoying in musical au-
dio signals. To address this, phase-aware models for speech enhancement use a
complex ratio mask [Williamson et al., 2016], or, as we have seen, operate directly
in the waveform domain [Pascual et al., 2019, Phan et al., 2020]. Inspired by a
recent work demonstrating that DNNs implementing complex operators [Trabelsi
et al., 2018] may outperform previous architectures in many audio-related tasks,
new state-of-the-art performances were achieved on speech enhancement using
complex representations of audio data [Isik et al., 2020, Hu et al., 2020]. Recent
work was able to further improve these approaches by introducing a complex con-
volutional block attention module (CCBAM), and a mixed loss function [Zhao
et al., 2021].
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Figure 9.1 – Schematic depiction of the architecture and training procedure.

9.2 Experiment Setup
Following, we describe the experiment setup, including the model architecture,
training procedure, data, and objective and subjective evaluation methods.

Dataset. The model is trained on the dataset described in Section 4.2, which
contains pairs of audio data, where one part is the MP3 version, the other part is
a high-quality (44.1 kHz) version of the signal. We use a dataset of approximately
64 hours of Nr 1 songs of the US charts between 1950 and 2020. The high-quality
data is then compressed to 16kbit/s, 32kbit/s and 64kbit/s mono MP3 using the
LAME MP3 codec, version 3.100.2 The total number of songs is first divided into
train, eval, and test sub-sets with a ratio of 80%, 10%, 10%, respectively. We
then split each song into 4-second-long segments with 50% overlap for training
and validation. For the subjective evaluation described below in this section, we
split the songs into segments of 8 seconds.

Audio representation. The main representation used in the proposed
method are the complex STFT components of the audio data hj,k ∈ CJK , as
it has been shown that this representation works well for audio generation with
GANs in [Nistal et al., 2021c]. The STFT is computed with window size 2048,
and a hop size of 512. In addition, we perform non-linear scaling to all complex
components, in order to obtain a scaling which is closer to human perception than
when using the STFT components directly. This is, we transform each complex
STFT coefficient hj,k = aj,k + i bj,k by taking the signed square-root of each of its
components hσj,k = σ(aj,k) + i σ(bj,k), where the signed square-root is defined as

σ(r) = sign(r)
√
|r|. (9.1)

Architecture. The model employed in this work follows the training frame-
work described in Sec. 4.1 although the specific architecture implementation de-
viates from the one described there. Concretely, G receives as input an excerpt
of an MP3-compressed musical audio signal in spectrogram representation y (i.e.,
non-linearly scaled complex STFT components described above) and learns to
output a restored version x̂ of that excerpt (i.e., the fake data), approximating
the original, high-quality signal x (see Figure 9.1 for an overview on architecture

2https://lame.sourceforge.io/ (accessed on 31 May 2021)
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and training). D learns to distinguish between such restorations x̂ and origi-
nal high-quality versions of the signal x (i.e., the true data). In addition to the
true/fake data, D also receives the MP3 versions of the respective excerpts. That
way, it is ensured that the information present in the MP3 data is faithfully pre-
served in the output of G. We test stochastic and deterministic generators in
our experiments. For the stochastic models, we also provide some noise input
z ∼ N (0, I), resulting in different restorations for a given MP3 input, whereas for
the deterministic models we only provide the compressed audio. As the training
criterion, we use the WGAN loss [Arjovsky et al., 2017] described in Sec. 2.1.4.
The full architecture is described in Table 9.1. Both G and D are based on di-
lated convolutions with skip connections, combined with a novel concept which we
call Frequency Aggregation Filters. These are convolutional filters spanning the
whole frequency range, which contribute to the stability of the training and con-
stitute a consequent take on the problem of non-local correlations in the frequency
spectrum. We also find that using so-called self-gating considerably reduces the
memory requirement of the architecture by halving the number of input maps to
each convolutional layer without degradation of the results. In order to prevent
mode collapse, we propose a regularization that enforces a correlation between
differences in the noise input and differences in the model output. As opposed
to most other works (but in line with our previous work [Nistal et al., 2021c]
and other U-Net-based architectures [Isik et al., 2020, Hu et al., 2020]), we in-
put (and output) directly the (non-linearly scaled) complex-valued spectrum to
the generator, eliminating the need to deal with phase information separately.
For further details about the architecture, we encourage the reader to revise our
original paper [Lattner and Nistal, 2021].

Training. Each model is trained for 40k iterations and a batch size of 12,
which takes about 2 days on two NVIDIA Titan RTX with 24GB memory each.
We use the ADAM optimizer [Kingma and Ba, 2015] with a learning rate of 1e-3
and gradient penalty loss, to restrict the gradients of D to 1 Lipschitz [Gulrajani
et al., 2017]. We also use a loss term that penalizes the magnitudes of the output
of D for real input data, preventing the loss from drifting.

Evaluation. For this specific work, we deviate from the evaluation method-
ology presented in Sec. 4.3. The main goal here is to assess the similarity between
the reference signals (i.e., the high-quality signals) and the signal approximations
(i.e., MP3 versions of the audio excerpts or outputs of the proposed model). The
employed objective metrics are standard in the audio enhancement literature:
Log-Spectral Distance (LSD), Mean Squared Error (MSE), Signal-to-Noise Ratio
(SNR), Objective Difference Grade (ODG), and Distortion Index (DI). We also
perform a subjective evaluation in the form of the Mean Opinion Score (MOS).

• Objective Difference Grade and Distortion Index. The Objective
Difference Grade (ODG) is a computational approximation to subjective
evaluations (i.e., the subjective difference grade) of users when comparing
two signals. It ranges from 0 to −4, where lower values denote worse sim-
ilarities between the signals. The Distortion Index (DI) is a metric that
is differently scaled but correlated to the ODG and can be seen as the
amount of distortion between two signals. Both the ODG and DI are based
on a highly non-linear psychoacoustic model, including filtering and mask-
ing to approximate the human auditory perception. They are part of the
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Layer In Maps Out Maps Kernel Size Dilation Padding Non-linearity Output Size

Input - - - - - - 2× 1024× (336)[212]
Conv1 2 18 3× 3 1 1, 1 PReLU 18× 1024× (336)[212]
Conv2 18 38 3× 3 2 2, 2 PReLU 38× 1024× (336)[212]
Conv3 38 38 3× 3 4 4, 4 PReLU 38× 1024× (336)[212]

Conv4 38 4096 1024× 1 1 0, 0 PReLU 4096× 1× (336)[212]
Reshape1 - - - - - 128× 32× (336)[212]
ReMap 128 256 1× 1 1 0, 0 PReLU 256× 32× (336)[212]

Conv5 256 256 3× 3 1 1, (0)[1] PReLU 256× 32× (334)[212]
(Noise
Concat) - - - - - - 320× 32× 334

Conv6 (320)[256] 256 3× 3 2 2, (0)[2] PReLU 256× 32× (330)[212]
SelfGating - - - - - - 128× 32× (330)[212]
Conv7 128 256 3× 3 4 4, (0)[4] PReLU 256× 32× (322)[212]
SelfGating - - - - - - 128× 32× (322)[212]
Conv8 128 256 3× 3 8 8, (0)[8] PReLU 256× 32× (306)[212]
SelfGating - - - - - - 128× 32× (306)[212]
Conv9 128 256 3× 3 16 16, (0)[16] PReLU 256× 32× (274)[212]
SelfGating - - - - - - 128× 32× (274)[212]
Conv10 128 256 3× 3 1 1, (0)[1] PReLU 256× 32× (272)[212]
SelfGating - - - - - - 128× 32× (272)[212]
Conv11 128 256 3× 3 2 2, (0)[2] PReLU 256× 32× (268)[212]
SelfGating - - - - - - 128× 32× (268)[212]
Conv12 128 256 3× 3 4 4, (0)[4] PReLU 256× 32× (260)[212]
SelfGating - - - - - - 128× 32× (260)[212]
Conv13 128 256 3× 3 8 8, (0)[8] PReLU 256× 32× (244)[212]
SelfGating - - - - - - 128× 32× (244)[212]
Conv14 128 256 3× 3 16 16, (0)[16] PReLU 256× 32× (212)[212]
SelfGating - - - - - - 128× 32× 212

(Reshape2) - - - - - 4096× 1× 212
(DeConv4) 38 4096 1024× 1 1 0, 0 PReLU 38× 1024× 212

(DeConv3) 38 38 3× 3 4 4, 4 PReLU 38× 1024× 212
(DeConv2) 18 38 3× 3 2 2, 2 PReLU 18× 1024× 212
(DeConv1) 2 18 3× 3 1 1, 1 PReLU 2× 1024× 212
(Output) - - - - - 2× 1024× 212

[Conv15] 128 256 3× 3 1 1, 1 PReLU 256× 32× 212
[Conv16] 256 1 32× 1 1 0, 0 - 1× 1× 212

Table 9.1 – Architecture details of generator G and discriminator D for 4-second-
long excerpts (i.e., 336 spectrogram frames), where (·)-brackets mark information
applying only to G, and information in [·]-brackets applies only to D. During
training, no padding is used in the time dimension for G resulting in a shrinking
of its output to 212 time steps.
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Perceptual Evaluation of Audio Quality (PEAQ) ITU-R recommendation
(BS.1387-1, last updated 2001) [Thiede et al., 2000]. We use an openly
available implementation of the basic version (as defined in the ITU rec-
ommendation) of PEAQ3, including ODG and Distortion Index (DI). Even
though PEAQ was initially designed for evaluating audio codecs with min-
imal coding artifacts, we found that the results correlate well with our
perception.

• Log-Spectral Distance. The log-spectral distance (LSD) is the Euclidean
distance between the log-spectra of two signals and is invariant to phase
information. Here, we calculate the LSD between the spectrogram of the
reference signal and that of the signal approximation. This results in the
equation

LSD =
1

L

L−1∑
l=0

√√√√ 1

W

W−1∑
f=0

[
10 log10

P (l, f)

P̂ (l, f)

]2
, (9.2)

where P and P̂ are the power spectra of x and x̂, respectively, L is the total
number of frames, and W is the total number of frequency bins.

• Mean Squared Error. The LSD described above is particularly high
when comparing MP3 data with high-quality audio data. This is because
it is a standard practice in many MP3 encoders (including the one we
use) to perform a high-cut, removing most frequencies above a specific cut-
off frequency. For values close to zero, a log-scaling introduces negative
numbers with very high magnitudes. Therefore, when comparing log-scaled
power spectra of MP3 and PCM, we obtain particularly high distances.
This generally favors algorithms that add frequencies in the upper range
(like the proposed method). In this regard, a fairer comparison is the Mean
Squared Error (MSE) between the square-root of the power spectra P of
the two signals:

MSE =
1

L

L−1∑
l=0

1

W

W−1∑
f=0

[√
P (l, f)−

√
P̂ (l, f)

]2
. (9.3)

• Signal-to-Noise Ratio. The signal-to-noise ratio (SNR) measures the
ratio between a reference signal and the approximation residuals. As it is
computed in the time domain, it is highly sensitive to phase information.
The SNR is calculated as

SNR = 10 log10

‖s‖2
2

‖s− ŝ‖2
2

, (9.4)

where s is the reference signal, and ŝ is the signal approximation.

• Mean Opinion Score. We ask 15 participants (mostly expert listeners)
to provide absolute ratings (i.e., no reference audio excerpts) of the percep-
tual quality of isolated musical excerpts. At the beginning of the test, the

3https://github.com/akinori-ito/peaqb-fast (accessed on 31 May 2021)
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(a) (b) (c) (d) (e)

Figure 9.2 – Spectrograms of (a) original audio excerpts, (b) corresponding
32kbit/s MP3 versions, and (c), (d), (e) restorations with different noise z ran-
domly sampled from N (0, I).

participants had a training phase where high-quality, MP3 and generated
audio examples are presented. The listening test is performed with random,
8 second-long audio excerpts of the test set that could be listened as many
times the listener wished. We present to the listeners 5 high-quality audio
excerpts, 15 MP3s (5 × 16kbit/s, 5 × 32kbit/s and 5 × 64kbit/s) and 50
restored versions (using 25 stochastic restorations with random noise z and
25 deterministic restorations). Among these 25 restorations per model we
restored 10× 16kbit/s, 10× 32kbit/s and 5× 64kbit/s MP3s. All together
this results in 70 ratings per user. The participants were asked to give
an overall quality score and instructed to consider both the extent of the
audible frequency range and noticeable, annoying artifacts. They provided
their rating using a Likert-scale slider with 5 quality levels (1) very bad,
2) poor, 3) fair, 4) good and 5) excellent). From these results, we com-
pute the Mean Opinion Score (MOS) [International Telecommunications
Union–Radiocommunication (ITU-T)].

Baselines. As mentioned in the introduction of this chapter, we compare
stochastic and deterministic generators. Additionally, we use as reference quality
the corresponding MP3 versions for each compression rate.

9.3 Results
In the following, we present the results of the performed evaluations. In Section
9.3.1 we discuss the results of the objective metrics and in Section 9.3.2 we discuss
the subjective evaluation. Figure 9.2 provides a visual impression of the model
output by comparing the spectrograms of some high-quality audio segments, the
corresponding MP3 versions, and some restorations.
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Figure 9.3 – Violin plots of objective metrics for stochastic (sto), deterministic
(det) models and MP3 baselines (mp3), for different compression rates (16 kbit/s,
32kbit/s, 64kbit/s). Higher values are better for ODG, DI and SNR; lower values
are better for LSD and MSE.
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ODG DI LSD MSE SNR

mp3_16k -3.08 -1.67 10.98 0.40 13.69
det_16k -3.12 -1.77 4.15 0.30 8.95
sto_16k -2.80 -1.19 3.72 0.26 9.51

mp3_32k -3.04 -1.56 9.75 0.31 13.67
det_32k -2.99 -1.48 3.83 0.32 7.66
sto_32k -2.74 -1.07 3.75 0.26 9.57

mp3_64k -2.64 -0.86 4.89 0.07 17.85
det_64k -2.95 -1.40 3.54 0.16 12.13
sto_64k -2.74 -1.02 3.59 0.17 11.51

Table 9.2 – Results of objective metrics for stochastic (sto), deterministic (det)
models and MP3 baselines (mp3), for different compression rates (16kbit/s,
32kbit/s, 64kbit/s). Higher values are better for ODG, DI and SNR; lower values
are better for LSD and MSE.

9.3.1 Objective Evaluation

We test the method for three different MP3 compression rates (16kbit/s, 32kbit/s
and 64kbit/s) as input to the generator. Moreover, as stated above, we assume
multiple valid solutions for an MP3 to be restored with very high compression
rates. This would also mean that when using a stochastic generator, some of
all possible samples should be closer to the original than when only using a
deterministic generator. In order to test this hypothesis, for each compression
rate, we train a stochastic generator (with noise input z) and a deterministic
generator (without noise input). Then, for any input y taken from the test set,
we sample 20 times with the corresponding generator using zi ∼ N (0, I), and for
each objective metric, we take the best value of that set. Note that all objective
metrics are computed by comparing the restored data with the original versions.
Therefore, when picking samples to optimize a specific metric, we do not pick the
sample with the best “quality”, but rather the restoration that best approximates
the original.

Table 9.2 and Figure 9.3 show the results (i.e., the comparison to the high-
quality data) for the stochastic and the deterministic models, and the respective
MP3 baselines. For high compression rates (i.e., 16kbit/s and 32kbit/s), the
best reconstructions of the stochastic models generally perform better than the
baseline MP3s in most metrics and improve over the outputs of the deterministic
models. This indicates that the facilitation of a stochastic generator is actually
useful for restoration tasks. For some metrics (except LSD), the deterministic
models perform on par with the MP3 baselines. That is reasonable, as there
are many different ways to restore the original version, and it is unlikely that
a deterministic model outputs a close approximation. In Figure 9.3 the strong
violin-shaped forms in the figures indicate that the restorations form two groups
in the ODG and DI metrics. From visual inspection of the respective data, it
becomes clear that those excerpts in the lower (worse) groups are such without
percussion instruments, indicating that the models cannot add meaningful high-
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frequency content for, e.g., singing voice or tonal instruments. The SNR is always
worse for the restorations (compared to the MP3 baselines), which shows that the
phase information is not faithfully regenerated. Given the wide variety of possible
phase information in the high-frequency range, particularly for percussive sounds,
this is not surprising but also does not hamper the perceived audio quality.

For the 64kbit/s MP3s, we see that the reconstructions are worse than the
MP3 itself, except in the LSD metric. Note that 64kbit/s mono MP3s are already
close to the original. The fact that the generator performs worse on these data
indicates that in addition to adding high frequency content (which is mostly ad-
vantageous, as can be seen in the LSD results), it also introduces some undesirable
artifacts in the reconstruction of the MP3 information.

Frequency Profiles

In order to test the influence of the input noise z onto the generator output,
we input random MP3 examples and restore them while keeping the noise input
fixed. Then, we calculate the frequency profiles of the resulting outputs by taking
the mean over the time dimension. Figure 9.4 shows examples of this experiment,
which makes it clear that a specific z causes a characteristic frequency profile con-
sistently over different examples. This is advantageous when z is chosen manually
to control the restoration of an entire song, where a consistent characteristic is
desired throughout the whole song.

9.3.2 Subjective Evaluation

In this section, we describe our own assessment when listening to the restored
audio excerpts (Section 9.3.2), and then we provide results of the Mean Opinion
Score (MOS) where we evaluate the restorations in a listening test with expert
listeners.

Informal Listening

For sound examples of the proposed method, please refer to the accompanying
website.4 When listening to the restored audio excerpts compared to the MP3
versions, the overall impression is a richer, higher bandwidth sound that could be
described as “opening up”. Also, we notice that the model can remove some MP3
artifacts, particularly swirlies, as described in the introduction (see also [Corbett,
2012]). It is clearly audible that the model adds frequency content which got lost
in the MP3 compression. When comparing the restorations directly to the high-
quality versions, it is noticeable that the level of detail in the high frequencies is
considerably lower in the restorations. When inspecting the restorations closer,
we can hear that for specific sound events, the model performs particularly well
(i.e., adds convincing high-frequency content and removes specific compression
artifacts), other sources do not undergo a considerable improvement, and some
events tend to cause undesired, audible artifacts.

Among the sound events which are generally improved very well are percus-
sive elements like snare, crash, hi-hat, and cymbal sounds, but also other onsets

4https://sonycslparis.github.io/restoration_mdpi_suppl_mat/
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mean std

original 2.81 0.94

mp3_16k 0.74 0.79
det_16k 1.33 0.82
sto_16k 1.40 0.89

mp3_32k 0.80 0.71
det_32k 1.43 0.84
sto_32k 1.28 0.82

mp3_64k 2.92 0.95
det_64k 2.49 0.86
sto_64k 2.65 0.74

Table 9.3 – Mean Opinion Score (MOS) of absolute ratings for different compres-
sion rates. We compare the stochastic (sto) versions against the deterministic
baselines (det), the MP3-encoded lower anchors (mp3 ) and the original high-
quality audio excerpts.

with steep transients and non-harmonic high-frequency content, like the strum-
ming of acoustic guitars or sibilants or plosives (‘s’ and ‘t’) in a singing voice.
Also, sustained electric guitars undergo considerable improvement. Note that
all these sound types do not possess harmonics but instead require the addition
of high-frequency noise in the restoration process. Considering the nature of
percussive sounds and the wide variety of sources in the training data, this is a
reasonable outcome. Conversely, percussive sounds dominate other sources in the
higher frequency range, which constitutes the main difference between MP3 and
high-quality versions of the audio excerpts. On the other hand, harmonic sources
are highly varied, and their harmonics are of different characteristics. In addi-
tion, harmonics are rarely found above 10kHz, which is the range in which the
discriminator can best determine the difference between MP3 and high-quality
audio signals.

Sometimes, the generator adds undesired, sustained noise, mainly when the
audio input is very compressed or when there are rather loud, single tonal in-
struments or singing voice. Other undesired artifacts added by the generator are
mainly “phantom percussions”, like hi-hats that do not have meaningful rhythmic
positions, triggered by events in the MP3 input that get confused with percus-
sive sources. Also, the generator sometimes overemphasizes ‘s’ or ‘t’ phonemes
of a singing voice. However, in some cases, percussive sounds not present in the
original audio signals are added, which are rhythmically meaningful. In general,
the overall characteristics of the percussion instruments are often different in the
restorations compared to the high-quality versions. This is reasonable, as the
lower frequencies present in the MP3 do not provide information about their
characteristics in the higher frequency range, wherefore, the characteristic needs
to be regenerated by the model (dependent on the input noise z).

123



Formal Listening

Table 9.3 shows the results of the listening test (i.e., MOS ratings). Overall,
the original and the 64kbit/s MP3s (mp3_64k) obtain the highest ratings and
the restored 64kbit/s MP3s (det_64k and sto_64k) perform slightly worse. The
ratings for the restored 16kbit/s and 32kbit/s (det_16k, sto_16k, det_32k and
sto_32k) are considerably better than the MP3 versions (mp3_16k and mp3_-
32k). This shows that the proposed restoration process indeed results in better
perceived audio quality. However, the random samples from the stochastic gen-
erators are not assessed better than the outputs of the deterministic generators
(the differences are not significant, as detailed below). We note that for the high
compression rates, we reach only about half the average rating of the high-quality
versions (but about double the rating of the MP3 versions). While overall, a re-
stored MP3 version possesses a broader frequency range, weak ratings may result
from off-putting artifacts, like the above-mentioned “phantom percussions”. In 8-
second-long excerpts, only one irritating artifact can already lead to a relatively
weak rating for the whole example.

As the variance of the ratings is rather high, we also compute t-tests for statis-
tical significance comparing responses to the different stimuli. We obtain p-values
< 0.05 (< 10−5) when comparing det and sto to mp3 for compression rates below
64kbit/s. Conversely, we observe no statistically significant differences between
ratings of det and sto for all compression rates (p-values > 0.15). Responses
to original and mp3_64k also show no statistically significant differences (p-value
= 0.49). We also observe no statistical significance between responses to mp3_64k
and det_64k (p-value = 0.06), whereas there is a significant difference between
ratings of sto_64k and mp3_64k (p-value = 0.04).

9.4 Conclusion
This chapter presented a GAN architecture for the stochastic restoration of high-
quality musical audio signals from highly compressed MP3 versions. We tested
1) if the output of the proposed model improves the quality of the MP3 inputs,
2) if a stochastic generator improves (i.e., can generate samples closer to the
original) over a deterministic generator, and 3) if the outputs of the stochastic
variants are generally of higher quality than deterministic baseline models.

Results show that the restorations of the highly compressed MP3 versions
(16kbit/s and 32kbit/s) are generally better than the MP3 versions themselves,
which is reflected in a thorough objective evaluation, and confirmed in percep-
tual tests by human experts. We also tested weaker compression rates (64kbit/s
mono), where we found that the proposed architecture results in slightly worse
results than the MP3 baseline. We could also show in the objective metrics
that a stochastic generator can indeed output samples closer to the original than
when using a deterministic generator. However, the perceptual tests indicate that
when drawing random samples from the stochastic generator, the results are not
assessed significantly better than the results of the deterministic generator.

Due to the wide variety of popular music, the task of generating missing
content is very challenging. However, the proposed models succeeded in adding
high-frequency content for particular sources resulting in an overall improved
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Figure 9.4 – Frequency profiles of 50 random 4-second-long excerpts from the test
set (in 32kbit/s) for different random input noise vectors z. The blue lines show
the profiles of the individual samples, the green line shows the mean profile of
the excerpts, the dotted red line shows the mean of the high-quality excerpts for
comparison. It becomes clear that z is strongly correlated with the energy in the
upper bands and that a specific z yields a consistent overall characteristic.
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perceived quality of the music. Examples for sources where the model clearly
learned to generate meaningful high-frequency content are percussive elements
(i.e., snare, crash, hi-hat and cymbal sounds), sibilants or plosives ( ‘s’ and ‘t’) in
singing voice, strummed acoustic guitars and (sustained) electric guitars. In this
regard, we believe that the results presented in this work show that GANs can be
a promising avenue towards learning intricate relationships between input-output
musical audio pairs.

We expect future improvements when limiting the style of the training data
to particular genres or time periods of production. Also, as we use the complex
spectrum directly, the adaption to Complex Networks [Trabelsi et al., 2018] could
improve the results further. In order to tackle the problem of “phantom percus-
sions” (as described in Section 9.3.2), a beat detection algorithm could provide
additional information to the generator so that it is better informed about the
rhythmic structure of the input. For improvement in learning to restore the har-
monics of tonal sources, other representations (e.g., Magnitude and Instantaneous
Frequencies (Mag-IF) [Engel et al., 2019]) or a different scaling (e.g., Mel-scaled
spectrograms) could be tested for the input and output of the generator.
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Chapter 10

On the Development and Practice
of AI Technology for Contemporary
Popular Music Production

The practice of music creation has since long involved instruments and, more gen-
erally, technology. Breakthroughs and paradigm shifts resulting from the devel-
opment of technology may significantly influence music-making practice (which
we refer to as music production in this chapter). An example of this can be
witnessed in the early use of electronic equipment for musical purposes in the
recording studios during the 1950s or the popularization of synthesizers in the
1970s, allowing for artistic experimentation and enabling new ways to produce
music.

Introducing novel technologies into the music creation workflow is often a
complex process that initially requires specialists to take care of the technical
aspects. In the case of early recording studio technology, an example of this is the
collaboration between engineer Pierre Schaeffer and musician Pierre Henry, who
in the ’50s collaborated closely to find new musical applications of technology
[Palombini, 1993]. Another example is the collaboration of analog synthesizer
pioneer Robert Moog with several musicians [Pinch and Trocco, 2002]. Over time,
the practice of music creation evolved to integrate new technologies, blurring the
distinction between engineer, musician, and music producer [Moorefield, 2005].
In contemporary genres such as rap, dance, and, more generally, electronic music,
technology has become such an integral part of the music that there is typically
no meaningful distinction between the composition, recording, and production of
music.

Today, as shown in Chapters 2 and 3, advances in artificial intelligence (AI),
and in particular machine learning, promise to have a profound transformative
effect in music practice in general. However, AI-based technology appears to
be at the same stage as the recording studio was in the 1960s: the technology
exists, but making it available as a tool for music production generally requires
specialists (AI engineers) operating the technology and assisting musicians in its
usage.

The process of technology becoming part of a new music practice does not
solely rely on engineering, nor is it a matter of taking inventory of artists’ needs as
“user requirements" and fulfilling these requirements. The term musical research

128



has been proposed to denote this “co-adaptation" of technology and musical prac-
tice [Cont, 2013]. Several research institutes are explicitly dedicated to this type of
research, such as the Institute for Research and Coordination in Acoustics/Music
(IRCAM, Paris, France) or the Center for New Music and Audio Technologies
(CNMAT, Berkeley, California). The Magenta Project at Google Brain, with its
focus on AI-based music technology, contributes to musical research by making
the technology widely available in the form of open-source software, and in some
cases, sharing hardware prototypes of the technology with musicians [Engel et al.,
2017].1

Sony CSL’s music team is a musical research lab developing AI-based tools for
innovation in music practice. At CSL, we believe that musicians and engineers
working in unison is a vital part of the innovation process for two main reasons.
On the one hand, engineers may gain knowledge of what musicians look for artis-
tically, and, on the other hand, musicians may become aware of the opportunities
the technology offers for novel music practices. In this chapter, we report on
the collaborations with professional musicians, in which they experiment with
different AI-based music tools developed at Sony CSL.

The content of this chapter is extracted from our paper:

Deruty, E., Grachteen, M., Lattner, S., Nistal, J., and
Aouameur, C.. “On the development and practice of AI technol-
ogy for contemporary popular music production.” Transactions of the
International Society for Music Information Retrieval (TISMIR), 2022.

The chapter is organized as follows. In Section 10.1 we describe the procedure
under which we collaborate with artists and provide a brief overview of the tools
used. In Section 10.2 we give an account of the artists’ feedback, categorizing how
they interact with the tools. Section 10.3 lists observations and lessons learned
throughout such process, pointing out specific forms that the validation process
of AI tools for music production may assume. Finally, in Section 10.4 we present
the overall conclusions.

10.1 Experiment Setup
At the core of musical research is the interaction between artists and technology.
At CSL, this interaction occurs in long-term collaborations with professional mu-
sicians working in various musical genres, with a strong focus on recent popular
trends. Over the past years, we tested our AI-driven music production prototypes
(at different stages of development) with them.

The musicians we worked with include, in no particular order: songwrit-
ers/producers Yann Macé and Luc Leroy, from company Hyper Music2; beat-
maker/producer Twenty9, currently affiliated with Sony Music Publishing France;
composer and conductor Uèle Lamore, currently affiliated with XXXIM / Sony
Masterworks Berlin; Donn Healy, independent electronic music producer.

1https://nsynthsuper.withgoogle.com/
2https://www.hyper-music.com/
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10.1.1 Procedure

At the start of the collaboration, we give the artists an overview of AI and machine
learning applied to music and explain our vision of music AI as tools to enrich
the creative workflow in music production. We give them a demonstration of the
available tool prototypes in the lab where they can try out the software. When
the artists are familiar with the ways the tools work, they use them in their own
working environment, typically for several weeks or months, experimenting with
the tools in their music production process. Typically there are follow-up sessions
where the artists talk of their experience, what they like about the tools, what
they dislike, and what changes they would like to see. We gather such feedback in
the form of oral or written interviews, email exchanges, or presentations. Given
the artist’s feedback, the tools are modified accordingly as long as changes can
be realized within a reasonable effort. Proposals that imply more fundamental
changes to the tools are used to guide future development. When the artists
have finalized their work, they send us the outcomes and a description of their
workflow, which typically includes the AI tools, along with several other music
production tools they work with.

10.1.2 Tools

The AI tools provided to the artists have been recently developed at our lab and
are generally prototypes in the form of either standalone applications, VST plug-
ins for digital audio workstations (DAW), or servers accessible through a web
interface. They cover different aspects of the music production process, ranging
from sound design to mixing/equalization and melodic and rhythmic material
generation. The tools have been presented in more detail in prior publications,
so here we provide only a brief introduction:

• Notono. An interactive tool for generating instrumental one-shots [Bazin
et al., 2020]. It uses VAE architecture that operates on spectrograms and
is conditioned on instrument labels. You can start from a sound you like
and interactively modify it by inpainting the spectrogram.

• Planet Drums, DrumGAN, Impact Drums. Three drum sound syn-
thesizers. Planet Drums is based on a VAE architecture that allows the
user to explore different drum sounds by traversing a low-dimensional em-
bedding of the latent space [Aouameur et al., 2019]. DrumGAN and Impact
Drums are based on GANs [Goodfellow et al., 2014]. DrumGAN is con-
ditioned on perceptual features that can be used as controls [Nistal et al.,
2020].

• DrumNet. A tool for creating drum tracks conditioned on existing audio
tracks like guitar, bass, or keyboard tracks [Lattner and Grachten, 2019].
The output adapts to the tempo and rhythm of the existing tracks, and
users can explore different rhythmic variations by traversing a latent space.

• BassNet/LeadNet. A tool for creating bass tracks (BassNet) or lead
tracks (LeadNet), conditioned on one or more existing audio tracks [Grachten
et al., 2020]. The output adapts to the tonality of the existing tracks (if
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the input is tonal), and users can explore different rhythmic and melodic
variations of the output by traversing a latent space. The model outputs
both MIDI and audio and conveys articulation, dynamics, timbre, and into-
nation. In terms of model architecture, BassNet and LeadNet are identical.
They differ in that BassNet was trained on bass guitar tracks, and LeadNet
was trained on vocal and lead guitar tracks.

• ResonanceEQ, ProfileEQ. Adaptive equalizers for audio mixing and
mastering tasks [Grachten et al., 2019]. They consist of hand-designed
processing pipelines to adjust the spectral characteristics of the sound adap-
tively and other feed-forward convolutional neural networks to estimate op-
timal control parameters for the equalizer process conditional on the input
audio.

10.2 Results
Having introduced the artists we work with and the AI-driven prototypes they
use, we will share some of their insights when producing music. We give them the
freedom to use the tools where and how they wish, without particular guidelines
or constraints. We identify and discuss some typical interaction patterns with
the tools. We then use the observations to critically assess current paradigms
and suggest improvements to the current state-of-the-art for interaction with AI-
driven music production tools.

10.2.1 Push & Pull Interactions

In the field of creative text writing, two approaches to trigger the machine’s
output are described [Clark E. et al., 2018]: Push (automatically initiated) and
Pull (person-initiated). Artists often use push interactions when starting a music
piece. Musician Twenty9 testifies:

“Flow Machines3 (FM) is a true source of inspiration at the start
of the composition process, when I face a blank page. I let myself
being guided by what FM does. It allows me to spend less time
on the symbolic composition, more time on the sample design, and
to have fresh ideas for the drums and the bass, to have fun on the
programming without being tired by the symbolic composition."

This initial push suggestion triggers a sequence of pull interactions, where
the artist refines the initial idea by feeding it back to the system and stitching
together new suggestions. Still according to Twenty9:

“I really liked the chord sequence generated by FM and mostly the
melody too, with a few details ready [...] I interacted with FM to
recompose parts of this 16 bars melody, until I could extract 4 bars
that I really liked. It was done very quickly!"

3https://www.flow-machines.com/
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One particular case of pull is known as priming [Huang et al., 2020]: the
artist designs an input to drive the generation process. This amounts to what
is referred to as dense conditioning [Grachten et al., 2020], where the output of
a model is controlled by providing a rich source of information (e.g. an audio
or MIDI track) instead of sparser types of information that are provided by the
typical UI elements of a control panel (sliders, buttons, presets...). One example
of the priming process used in production from Yann Macé:

“Made an 8-bar bounce with kick, snare plus a very simple legato bass
part (not used thereafter). Fed this bounce to LeadNet. Tweaked
around until I hear something inspiring : it plays a cool part with a
4-note hook that sounds good at the end of the chord cycle."

Note that BassNet, LeadNet, and DrumNet are designed to be conditioned
on audio input, which has multiple advantages. First, it better integrates into
music production workflows, as audio is more general than MIDI (one can always
render MIDI to audio, but not the other way around). Second, audio is richer,
as it combines both tonal information, expressivity, and timbral characteristics
(including higher pitch resolution, without MIDI quantization). Third, it has
a higher potential to result in unexpected (but valuable) outputs, as audio can
carry much more variety than symbolic music representation. Donn Healy states:

“DrumNet handled this quirky input very well, it followed the expres-
sion to a T [very precisely]",

which summarizes the points made above, namely expressivity, richness of the
audio input, and surprise when using "quirky" material.

10.2.2 On Machine Interference With the Creative Process

It has been noted before that AI-driven music tools can interfere with musical
goals [Huang et al., 2020]. We have experienced that, even at early stages, proto-
types require format compatibility (e.g., implementation as DAW plug-ins) and
compatibility with the artist’s method to actually be used.

Even then, artists may be reluctant to use technology proposing musical con-
tent. However, doing so may be beneficial in terms of results. Twenty9 testifies:

“[...]. Since I was a fan of this loop [...] I went straight to drums.
Honestly, in the euphoria, I wanted to jump on my usual sampler and
set a rhythm in 5 min. I forced myself to confront DrumNet [...]. To
my surprise, [...] I ended up with a pattern that worked well [even
though] on my own I would not have placed my kicks like that."

“[Working with LeadNet], I am confronted with melodies that I would
probably never have thought of."

AI-based approaches interfere with creative goals because they disturb the
preconceived vision of the artist, and it is mostly a desirable design feature (as
opposed to interference with the artist’s workflow). From artists’ feedback or
figures such as Moog and Schaeffer, we witness creativity emerging from the ma-
chine’s interference. It remains the artist’s prerogative to set the right conditions
and remain attentive for interesting musical combinations.

132



10.2.3 Exploration and Higher-level Control

As witnessed by [Huang et al., 2020], many musicians adopted the generate-
then-curate strategy when working with specific AI-driven prototypes; they first
generate many samples and then select those they deem valuable for further usage.
Artist Uèle Lamore adopted such strategy when working with the prototypes:

“The goal was to generate a selection of percussion/drum samples that
I could see fit to use in any given setting. [...] generating percussion
sounds with DrumGAN and Planet Drums. I’m not interested in
generating sounds that sound like a "real" or "classic" kit. I want
sounds that are very abstract [...] I now had this selection of sounds
available."

However, note that 1) such strategies are also common outside AI-based ap-
proaches and that 2) AI appears to make such strategies more efficient. From our
observations, a misconception seems to be that AI tools are doomed to spit out
a lot of useless material, which then needs to be curated.

AI can potentially free artists from cumbersome workflows involving skip-
ping through sample libraries or fiddling with numerous controls of a complex
synthesizer to realize an idea. In particular, when AI model engineering and
human-computer interaction is developed further in unison, we expect to see a
shift from the generate-then-curate strategy to a more efficient and creatively
enriching exploration and higher-level control paradigm. A prominent example
of exploration in generative models is the navigation of latent spaces, where po-
sitions and directions have intuitive meaning so that the desired solution can be
found in a more controlled way [Nistal et al., 2020, Aouameur et al., 2019, En-
gel et al., 2019]. Such higher-level control was also studied for the generation of
minute-long material [Lattner and Grachten, 2019, Grachten et al., 2020]. Note
that in these works, considerations about the user interaction was an integral
part of the model design process. Keeping the artist in mind in the early stages
of model engineering will increase user empowerment, efficiency, and satisfaction.

10.2.4 AI, the New Analog?

Musicians regularly take advantage of particular prototype behaviors that would
not be deemed acceptable in the context of scientific validation. Specifically,
behaviors that (1) would be validated as incorrect (i.e., not complying with the
training data set’s characteristic – “glitches"), or (2) stem from an abnormal usage
of the model in which validation is not possible (e.g., out-of-domain input).

Glitches

Musicians sometimes point out that particular artifacts are great, that they have
a distinct identity. Twenty9 speaks about the Impact Drums and Planet Drums’
prototype:

“[...] I love [the artefacts’] color, it changes from what I hear in the
currently available packs that do a lot of recycling. [...] Artistically,
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Figure 10.1 – Example of BassNet’s behavior when confronted to out-of-domain
input. BassNet(bottom-most track) adjusts its output’s spectral envelope to the
kick’s attacks, and reacts to the percussion’s “tonality”.

this grain is interesting [...], it is the fact of not being able to accen-
tuate it, modify it or even play with it, which is slowing down and
which limits the possibilities of sound palettes."

Uèle Lamore speaks similarly about the Notono prototype:

“The biggest weakness of Notono at [this] moment [in development],
was its extreme treatment of sound. This resulted in the creation of
very "phasy", filtered, samples with a very peculiar acoustic quality.
However this was absolutely perfect to represent the Corruption of
the Forest [song title], an unnatural, evil substance slowly spreading
like a disease."

Such a music process is reminiscent of the analog synth’s “grain" that is so
much sought after by popular music musicians.

Out-of-Domain Input

In AI-driven music production, the output of a model reflects the “personality" of
the training dataset, for example, the genre (EDM, rap, rock...) or a musician’s
style. A natural consequence is that prototypes based on conditional input will
behave unexpectedly when confronted with types of data on which they have
not been trained. We call this particular type of priming “out-of-domain input".
Figure 10.1 shows a transcription of the input and output of BassNet used
with out-of-domain input. This version of BassNet was trained on complete
multi-tracks of classic rock songs. However, the input to the example consists
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of the audio of death metal solo drums. BassNet (bottom-most track) adjusts
its output’s spectral envelope to the kick’s attacks and reacts to the percussion’s
“tonality," the toms, and the snare.

Uèle Lamore describes her experience with out-of-domain use of a version of
BassNet that was trained on mostly 4/4 beat rock, hip-hop, and EDM multi-
tracks, always including a drum section:

“[...] none of my music on this EP is in 4/4, it’s as far as you can get
from pop or hip-hop and this track had zero percussion at this point.
As a result of this, BassNet did not behave the way you would expect
it to. However, I had the pleasant surprise to see the generations were
perfect melodies that worked really well in this ambient setting."

Out-of-domain input is reminiscent of the exploratory use of the Moog syn-
thesizer [Pinch and Trocco, 2002]. The model is considered a complex and un-
predictable music generator whose output can be explored using proper triggers.
Working with these tools becomes “a journey of discovery."

Out-of-Domain Output

We denote “out-of-domain output" when an artist uses the output of a tool for a
different purpose than intended. For example, Donn Healy states:

“I took a new snare pattern that DrumNet suggested and I brought
it into a melodic Omnisphere sound, and I spread the notes in a way
that they told a musically cohesive story [..] I really enjoyed that."

Also, as illustrated by the Uèle Lamore’s quote above, some artists took out-
puts of BassNet and pitched it to obtain melodies instead of bass lines. Similarly,
we discovered that ResonanceEQ, a tool designed to remove resonances, is usually
inverted by artists to add resonances to audio.

10.3 Guides
Finally, we want to communicate some of the lessons we learned throughout our
work in AI-based musical research. They are meant to constitute some practical
guides to pushing research towards creating output that is useful in music produc-
tion. AI-based musical research involves more than model design. It is strongly
multi-disciplinary, comprising, among other fields, user experience, and human-
computer interaction, music and sound perception, musicology, studio production,
and machine learning. With this in mind, we enumerate some “learned lessons,"
which may guide the practical work in AI-based musical research (see Section
10.3.1). Also, we provide some suggestions for validation in AI-based musical
research, which goes beyond typical model evaluation (see Section 10.3.2).

10.3.1 Lessons Learned on AI-based Musical Research

Considering musical research as the simultaneous practice of innovation in music
technology and music production, the integration of AI and the focus on con-
temporary popular music are two novelties in this field. From past innovations
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in musical research [Palombini, 1993, Pinch and Trocco, 2002] and our activity,
we formulate some learned lessons as guidelines for further research in AI-driven
music production tools.

Work alongside musicians. The researcher is only part of the story. A
perfectly well-trained model may be irrelevant in music production. Conversely,
it is not always a problem in music production if the model does not work per-
fectly. Some recognizable problems may even be a mark of style, as was the
case with analog synthesizers. Go beyond the proof of concept to create exciting
instruments.

Foster chance / serendipity. Like Schaeffer, like the Beatles, and like
musicians using a Moog, create situations with rich potential: using different
prototypes together or along with third-party tools, modifying models in an un-
orthodox way, or using models for applications they were not conceived for. In
the most extreme case, AI models do not even need to be trained in order to emit
musically valuable output [Steinmetz and Reiss, 2020].

Include varied music genres. Bob Moog worked with many kinds of musi-
cians, from experimental psychedelic musicians to the traditional-sounding Simon
& Garfunkel duo [Pinch and Trocco, 2002, p. 66]. On the other hand, most of
Schaeffer’s followers focused on the marginal musique concrète, while the rest of
the world went on applying Schaeffer’s method to many genres of music.

AI does not need to entail autonomy. In a recent interview,4 Uèle Lam-
ore states, “The computer wants to play everything perfectly, but the music I
make isn’t perfect. The human will always add something of their own". When
developing AI-driven music production tools, one is tempted to think fully au-
tonomous musical agents. However, AI can be used to drive novel instruments,
which are still “played" by humans. Ultimately, humans want to remain under
control.

Develop better metrics. In the same interview, Lamore asks: “Rather
than trying to replace human input, why don’t we push [the AI] to do something
that is new, something different? That would be far more interesting!" When
only pushing the traditional self-supervised sequence learning (and probabilistic
sampling) approach using precision and log-likelihood, we will always need to add
(uncontrollable) disturbances to AI models in order to provoke results beyond the
data distribution, and even the most sophisticated models [Dhariwal et al., 2020]
will continue suffering from missing long-term structure. What does it take for an
AI to emit original (and appealing) musical material, notably different from that
of the training data? We need to investigate additional loss functions that better
reflect human music perception. For example, in [Lattner, 2019, pp. 107-109],
information-theoretic metrics are discussed that have perceptual relevance and
could be used complementary to traditional loss functions in music generation
systems.

Understand contemporary popular music. Popular music uses a differ-
ent language than Western classical music. This language is not well-documented.
Learning from scores is only partially relevant to contemporary popular music.
Beyond the music itself, get acquainted with the workflows. Use standard plug-in
formats. Note that using audio input to AI tools is often more useful for the artist:
it provides a richer, more expressive basis for computation and can potentially

4www.musicradar.com/news/uele-lamore
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produce unexpected results.
Produce music. When Schaeffer worked on musical research in the ’50s,

his director Émile Biasini had one word of advice for him: “produce, and you
will be esteemed" [Jeanneney, 1999]. It is perhaps the most important advice of
all. AI-driven music production has no point if it is not used to actually produce
music.

Set practical validation methods. As discussed in the next section (see
Section 10.3.2), traditional model validation is only of limited practical use and
almost certainly not sufficient to validate musical research. Thus, identify more
relevant goals. How well are the prototypes integrated into workflows? Do the
musicians find the prototypes helpful? Is it possible to determine whether proto-
type inclusion benefits the final result? Are the musicians able to release music
involving AI technology?

10.3.2 On the Validation of AI-driven Music Technology

In machine learning, validation is usually performed by measuring how well a
model can replicate the statistics of some dataset. However, musical research
involves music production, and music production involves creativity. From this
perspective, a model that reliably produces outputs characteristic of a genre may
be only of limited value to artists who aim for stylistically unexpected output.
A common way to obtain unexpected output from adequately trained models
is by introducing some form of disturbance, such as increasing the temperature
parameter in probabilistic models, using style-transfer approaches [Gatys et al.,
2015], or in the case of conditional models, confronting the model with out-of-
domain input (see Section 10.2.4).

Nevertheless, the problem remains that when creativity is involved, validation
is not as straightforward as how well the model can replicate properties of existing
content. There is no definitive answer to this problem. However, let us suggest a
few possible directions for validation in musical research activities.

Workflow integration. Validation may take into account if a tool finds its
place in a production workflow. For that, a tool needs to be useful and should not
interrupt the workflow the artist is accustomed to (for example, artists are often
reluctant to switch from their DAW to an external standalone application). Fig-
ure 10.2 shows an example of a successful workflow, in which Luc Leroy and Yann
Macé use our AI-driven prototypes in conjunction with mainstream technology.

Facilitation of production. Does the prototype simplify a difficult or time-
consuming task? For instance, Yann Macé appreciates latent space navigation in
DrumGAN, as it provides much quicker results than spending hours browsing a
drum sample library. An interesting example is artist Twenty9 appreciating FM
Pro’s ability to generate melodies, as he prefers to focus on different aspects in
music production.

Enhanced creativity. Does the prototype stimulate the artist’s creativity?
Does it provide a good trade-off between quality and novelty (i.e., it does not
frustrate the artist due to too many useless outputs or cumbersome usability)?
For instance, Twenty9 and Uèle Lamore repeatedly mention that BassNet, Lead-
Net, and DrumNet provide solutions they would have never considered, but they
ended up using.

137



Figure 10.2 – Example of the integration of AI-based prototypes in a popular
music production workflow

Identifiable results. Did the technology bring recognizable elements to
the music? For instance, Twenty9 enjoys the grain of our GAN-based drum
generators, and Yann Macé appreciates the characteristic style of DrumNet’s hi-
hat tracks.

Published content. The commercial viability of music content created using
AI technology may also be a criterion according to which the technology can be
evaluated. Three examples: the release, by Twenty9, of a drumkit designed using
Impact Drums, Planet Drums and DrumGAN (December 2020)5; the release,
by Uèle Lamore and her label, of an EP made in collaboration with our lab’s
technology (March 2021); Yann Macé and Luc Leroy using Impact Drums and
DrumGAN in the music track for a worldwide Azzaro advertisement campaign
(April 2021).

A spectacular example of successful validation is Schaeffer’s work. Most con-
temporary popular music uses sampling, looping, and pitch-shifting. Schaeffer’s
musical research output can be identified in the music from an entire era.

10.4 Conclusions
The use of AI-based tools for music production is currently in its infancy. For
the success of this endeavor, much work remains to be done. In this chapter,
we reviewed feedback and observations from our collaborations with professional
musicians, in which the goal is to discover how AI-based technology can enrich
the musician’s creative workflow. Also, we described some lessons learned from

5The AI Drum-Kit
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this joint effort. In particular, for AI-based music innovation to work in practice,
we believe it is essential to make user interaction an integral part of model design
and development from the very start. Also, the characteristics that are relevant
for modeling vary widely from one musical style to another. This implies that
the design of AI-based music technology cannot be style-agnostic. Lastly, we
discussed several ways of measuring the success of AI-based innovation in music.

Besides any technical limitations of AI, a present challenge for AI-based music
innovation is a discrepancy between the expectations and perspectives of musi-
cians on the one hand and engineers on the other. We believe that over time
these discrepancies will diminish and converge on the commodification of AI-
based technology. It is conceivable that in the future, musicians will have an
arsenal of AI techniques at their disposal, training and tweaking machine learn-
ing models as part of their creative process as easily as they use any other audio
software today.
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Chapter 11

General Conclusion

The dream of machines recreating and responding to complex human behavior
promises to radically transform how we produce music. As seen in Chapter 3,
the advent of Deep Learning into the realm of music technology innovation may
pave the way towards such a paradigm shift. This dissertation has studied Gen-
erative Adversarial Networks (GANs), a specific deep learning technique, for the
controllable and intuitive audio synthesis of musical sounds.

The use of GANs —and Deep Learning in general— for musical audio gen-
eration is still in its infancy. Among the existing challenges in modeling musical
audio [Dieleman et al., 2018], one that is fundamental is that of choosing the
best audio representation. We have seen in Chapter 2 that this may depend on
the specific type of acoustic source to be modeled (e.g., tonal, percussive) as well
as the neural network architecture (e.g., CNN, RNN). The choice of represen-
tation may greatly influence how efficiently the neural network learns from the
audio data and the generation time. Therefore, in our first work, presented in
Chapter 5, we compared various common audio representations, including the
raw audio waveform and several time-frequency representations, on the task of
audio synthesis of tonal instrument sounds [Nistal et al., 2021c]. This work pro-
vided some insights on the performance of these representations on a specific
benchmark convolutional Progressive Growing GAN [Karras et al., 2017]. Re-
sults showed that the magnitude and Instantaneous Frequency (IF) of the STFT
and the complex-valued STFT obtained the best quantitative metrics amongst
all the compared representations.

Another essential aspect that we tackled in this thesis is that of conditioning
the GAN in order to learn controls over the generation process. We explored var-
ious sources of conditional information for different means of control. Following
our first work, in Chapter 6, we presented DrumGAN [Nistal et al., 2020], an ad-
versarial synthesizer of percussive sounds that can be controlled based on percep-
tual features describing timbral properties (e.g., boominess, roughness, hardness).
DrumGAN operates on complex-valued STFT audio data, which we observed to
perform better than other representations on percussive sounds. As a result of
this work, we scaled DrumGAN and built a commercially viable plug-in compat-
ible with any Digital Audio Workstation (DAW) that generates high-definition
drum sounds (i.e., 44.1 kHz sample-rate). Additionally, we learned an encoder
that enabled the re-synthesis of preexisting drum samples to generate variations
and, also, we added continuous control over the instrument classes (kick, snare,
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and cymbals). Further described in Chapter 10, the success of DrumGAN was
embodied in the release of musical content by professional musicians affiliated
with Sony ATV.

While DrumGAN demonstrated that given some preexisting conditional in-
formation, we could induce in the GAN some control over high-level features of
sound, in most cases, we do not have access to such information, either because
datasets lack the desired annotations or because we simply do not know how to
extract a specific feature. Our third experiment, presented in Chapter 7, shows
that a pre-trained discriminative teacher model can be used to generate such la-
bels. This work explored the use of Knowledge Distillation (KD) [Hinton et al.,
2015], a framework for transferring knowledge from a teacher to a student neu-
ral network, as a means to learn semantically intuitive controls in a GAN-driven
synthesizer of tonal sounds [Nistal et al., 2021b]. The teacher model [Kong et al.,
2020b], pre-trained on the Audio Set data [Gemmeke et al., 2017], was used to
generate soft labels on the NSynth [Engel et al., 2017] dataset for 128 sound
event categories (e.g., sonar, singing-bowl, mantra, bicycle-bell, etc). Then, a
GAN synthesizer was trained using such soft labels as conditional information.
An interesting outcome of KD is that the student model can learn abstract rep-
resentations of classes that are not explicitly represented in the training data but
are somehow sparsely encoded on the aggregate [Hinton et al., 2015]. For exam-
ple, the NSynth dataset does not contain any sonar sound, yet, a sonar sound
may be extrapolated from other sounds in the dataset. Learning such unrepre-
sented classes is possible thanks to the additional information that exists in the
relative probabilities of the soft labels —compared to hard, one-hot labels. Such
additional information was coined Dark Knowledge [Hinton et al., 2014]; hence
we called our model DarkGAN. Results confirmed that DarkGAN could learn
some degree of control over attributes not directly represented in the training
data.

Most initial works on audio synthesis with GANs inherit the architecture
from the computer vision literature, limiting the generation to fixed-duration au-
dio in analogy to the fixed-sized image data [Donahue et al., 2019, Engel et al.,
2019]. While this may be a natural choice in images, we are generally inter-
ested in synthesizing audio of any duration when modeling sound, particularly
for musical purposes. Along this line, in Chapter 8, we proposed a framework
for conditioning a GAN synthesizer on a sequence of discrete features capturing
step-wise time-dependent information, as well as on static features (a random
noise vector and the pitch class) that ensured the global consistency of the gen-
erated sound [Nistal et al., 2021a]. Such sequential features were learned using
a self-supervised learning technique called Vector-Quantized Contrastive Predic-
tive Coding (VQCPC) [Hadjeres and Crestel, 2020], hence, we called our model
VQCPC-GAN. Compared to other forms of unsupervised representation learn-
ing, a valuable characteristic of CPC is that one can choose to some extent what
information is captured in the learned codes. This is done by carefully designing
a negative sampling strategy for the contrastive objective. In VQCPC-GAN, we
designed the negative sampling in an intra-sequence fashion, forcing the learned
codes to neglect any global aspects of the data (e.g., the pitch and instrument
class). While baselines trained following the fixed-duration scheme scored best,
results showed that VQCPC-GAN achieved comparable performance even when
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generating variable-length audio. Also, we observed that the codes affected only
the envelope of the generated audio and, indeed, did not exert any control over
global aspects.

As we saw in Chapter 3, generative models can be conditioned on preex-
isting audio content, generally, as means to provide dense information to the
network for, e.g., spectrogram inversion [Kumar et al., 2019] or audio enhance-
ment [Michelsanti and Tan, 2017]. The vision of this thesis is to, one day, devise
tools that can respond to rather complex musical dependencies, for example, in
the form of some preexisting sparse, musical audio context, e.g., the generation of
a bass-line given some recorded drums. Learning such intricate musical relation-
ships between conditional-generated music audio pairs is complicated and would
require large amounts of data. With this in mind, in Chapter 9, we designed a
pretext audio enhancement task tailored at learning such kinds of dependencies
in the future. Concretely, we proposed a GAN to restore heavily compressed MP3
music to its uncompressed, high-quality form [Lattner and Nistal, 2021]. Results
showed that the GAN could improve the quality of the audio signals over the
MP3 versions for high compression rates (i.e., 16 kbps, 32 kbps). Also, we noted
that a stochastic generator could generate outputs closer to the original signals
than those generated by a deterministic generator.

As a direct consequence of the application of Artificial Intelligence to musical
production tasks, it is crucial to assess these novel technologies by bringing the
artist in the loop. We believe that AI-driven music research should be carried
out as an interdisciplinary effort involving researchers and artists to effectively
design tools that can help enhance the music production experience by speeding
workflows and inspiring the creative process. This perspective is plotted in our
final work, presented in Chapter 10, where we reported on collaborations with
professional artists, looking at how various in-house AI tools were used in practice
to produce music. We identified usage patterns, issues and challenges that arose
from the practical use of these tools. Based on this, some recommendations and
validation criteria were formulated to develop AI technology for contemporary
popular music.

11.1 Future Work
Following, we enumerate some interesting directions for future work:

• Modelling new acoustic sources. An obvious direction for extending our
research on adversarial audio synthesis is to broaden the variety of acous-
tic sources in the training dataset. In this work, we have mainly focused
on modeling tonal instruments (see Chapters 5, 7, and 8) and percussive
sounds (see Chapter 6). We also used in Chapter 9 music mixtures for
restoring heavily compressed MP3 music. An interesting endeavour for fu-
ture research would be to consider other types of sound sources such as
environmental sounds, sound effects, and other natural sound sources. The
main challenge is the availability of large datasets with such types of sounds
as well as the design of efficient architectures with enough computational
capacity to model all of these sound sources.

• Modeling polyphonic sources. In this project we have mainly focused
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on modeling one-shot, monophonic sound sources. Another way to increase
the amount of training data and learn richer dependencies between instru-
ment sources would be to train the model on multiple instruments playing
simultaneously (polyphonic and multitimbral). Adequate architectures and
data representations need to be found which allow for an efficient and cost-
effective implementation of such methods. In order to achieve that goal,
it is probably necessary for the model to attend to the different sources
separately (or perform any implicit or explicit way of source separation).

• Extending intuitive controls on neural audio synthesizers. In this
thesis, we studied various methods for learning controls in a neural network.
As part of the prototype development for the continuation of this project,
we will further investigate novel sources of conditional information (Attack,
Decay, Sustain, and Release curves, MIDI, MEL, Principal Components,
Captions), as well as unsupervised learning of factors of variation [Peebles
et al., 2020, Karras et al., 2018]. Another possible direction for research is to
design distance measures or trajectory strategies for traversing latent spaces
in a meaningful way or reducing their dimensionality for visualization and
navigation purposes.

• Investigating other audio representations. While we have compared
some important and common audio representations, many other forms of
structuring audio information exist that could help train lighter models that
can learn more efficiently from the audio data (e.g., wavelet transforms [Luo
et al., 2017], Differentiable Digital Signal Processing [Engel et al., 2020]).

• Reducing model size. Reducing models’ size and computational require-
ments becomes crucial when deploying DL models on edge hardware or in
memory-limited settings (e.g., personal computer, a microprocessor). This
project aimed to develop DL-driven audio synthesis tools that musicians
can use as a VST plugin on their personal computers. Hence, a require-
ment for our models is that they can run in —or close to— real-time in
a CPU. Various methods for model compression exist that are worthy of
study: distillation [Hinton et al., 2015], pruning [Zhu and Gupta, 2018], lot-
tery ticket hypothesis [Kalibhat et al., 2021], quantization [Gholami et al.,
2021], and more.

• Adversarial Autoencoders. As opposed to plain GANs [Goodfellow
et al., 2014], we saw that VAEs [Kingma and Welling, 2014] feature the
possibility to encode data back into points in the latent space using an en-
coder. However, VAEs have the added difficulty of imposing the specific
dataset through a reconstruction loss (i.e., explicit density estimation) and,
due to the variational encoding, they are known to produce blurry outputs.
Following existing research, one interesting avenue for research is Gener-
ative Adversarial Autoencoders [Pidhorskyi et al., 2020]. This framework
was shown in computer vision to join the data quality and sharpness of the
GANs with the autoencoding capabilities of VAEs.

• Hierarchical VQCPC: VQCPC-GAN [Nistal et al., 2021a] proposed to
use a sequence of tokens extracted from real audio data as conditional input
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to a GAN architecture. In this work, a token corresponded to a cluster of
time-frequency frames (i.e., one token per frame). A promising research
line, inspired by previous work [Dhariwal et al., 2020], is to use a hierarchy
of VQCPC encoders, where tokens produced by higher VQCPC encoders
in the hierarchy account for longer-term segments of audio (i.e., more than
one frame) in order to learn features capturing structure at broader scales.
By conditioning the GAN on both fine-grain and long-term tokens of the
sequential data, we hope to control the structure of the generated data at
various time scales.
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A. Figure Acknowledgements
• Computer Music Icon from pngrepo.com

• Musicians Icon from Free Icons Library

• Hand icon by technology from shareicon.net

• Icon synth made by Hum from NounProject.com

• Sound Waves icon by Alice Noir from NounProject.com

• Hearing by Marek Polakovic from NounProject.com

• Idea Icon by Memed Nurrohmad from NounProject.com

• Extrasensory Perception by Andrew Forrester from NounProject.com

• Rock N Roll by Daouna Jeong from NounProject.com

• Fist by Cesar Reynoso from NounProject.com

• Note by Aleksandr Vector from NounProject.com

• Heart by Unicons Font from NounProject.com

• Customer Satisfaction by Luis Prado from NounProject.com

• Faders by Ashley van Dyck from NounProject.com
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B. Attribute Correlation Coefficient Table

Attribute T=1 T=1.5 T=2 T=3 T=5

Accordion 0.10 0.25 0.31 0.32 0.10
Acoustic guitar 0.20 0.36 0.39 0.23 0.10

Air horn, truck horn 0.16 0.26 0.31 0.18 0.13
Ambulance - - - - 0.03
Animal 0.00 -0.01 0.05 0.03 0.00
Bagpipes - - - 0.17 0.11
Banjo 0.02 0.21 0.23 0.10 0.02

Bass drum 0.02 0.14 0.14 0.09 0.02
Bass guitar 0.30 0.38 0.46 0.38 0.19
Battle cry - - - - 0.03

Bee, wasp, etc. - - - 0.00 0.01
Beep, bleep 0.11 0.22 0.26 - -
Bicycle bell 0.11 0.16 0.08 0.23 0.01

Bird 0.06 0.00 0.01 0.04 -
Bluegrass - 0.25 - - -
Blues 0.21 - - - -

Boat, Water vehicle 0.06 0.09 0.19 0.06 0.08
Boing 0.06 0.13 0.16 0.08 0.01

Bowed string instrument 0.20 0.30 0.22 0.23 0.04
Brass Instrument 0.28 0.49 0.38 0.26 0.00

Busy signal 0.02 0.05 0.04 0.06 -
Buzzer 0.02 0.08 0.08 - -
Car 0.02 0.01 0.10 0.02 -
Cat -0.01 -0.01 -0.01 -0.01 0.00

Cattle, bovinae 0.05 0.07 0.09 0.10 0.12
Caw - - -0.06 0.00 -0.03
Cello 0.24 0.29 0.26 0.17 0.00

Change ringing (campanology) - - - 0.08 0.02
Chicken, rooster 0.00 -0.06 -0.02 -0.01 -0.01

Chime 0.15 0.33 0.39 0.31 0.03
Chirp tone 0.18 0.28 0.25 - -

Choir 0.00 0.18 0.16 0.08 0.05
Chorus effect 0.11 0.19 0.16 0.24 0.12
Church bell 0.07 0.07 0.10 0.08 0.08

Civil defense siren 0.10 0.16 0.23 0.09 0.06
Clang 0.13 0.17 0.22 - -

Clarinet 0.12 0.29 0.37 0.39 -
Coo - - - 0.09 0.01

Cowbell 0.01 0.13 0.21 0.15 0.10
Cricket - - - - -0.02
Croak - - 0.10 0.08 0.03
Crowd -0.01 0.00 0.01 -0.01 0.03

Crowing, cock-a-doodle-doo - - 0.01 -0.01 -0.01
Cymbal - - - - -0.02
Dial tone 0.12 0.22 0.24 0.20 0.03
Didgeridoo 0.06 0.16 0.21 0.20 0.08

Ding 0.17 0.25 0.29 - -
Ding-dong 0.08 - - - -
Distortion 0.11 0.15 0.20 0.25 0.14

Dog -0.01 -0.01 0.00 0.01 0.01
Domestic animals, pets -0.01 -0.02 0.02 0.00 0.00

Table 1 – A few examples of attribute correlation coefficients ρi(α̂, α) (see
Sec. 7.3).
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Attribute T=1 T=1.5 T=2 T=3 T=5

Doorbell 0.09 0.24 0.26 0.26 -
Double bass 0.24 0.30 0.30 0.22 0.01

Drum 0.05 0.21 0.24 0.12 0.01
Drum kit 0.03 0.18 0.17 0.08 0.02

Drum machine 0.12 0.26 - - -
Echo -0.01 0.03 0.01 - -

Effects unit 0.10 0.15 0.18 0.24 0.12
Electric guitar 0.10 0.23 0.28 0.26 0.08
Electric piano 0.16 0.15 0.25 0.19 -

Electronic organ -0.03 - - - -
Electronic tuner 0.35 0.44 0.50 0.29 0.13

Electronica 0.10 - - - -
Emergency vehicle 0.05 0.09 0.08 0.04 0.04

Engine 0.02 0.09 - - -
Fart - - - -0.03 -0.02

Fire alarm 0.01 0.08 0.06 0.05 0.02
Fire engine, fire truck (siren) - 0.14 0.15 0.04 0.01

Fireworks - - 0.13 0.14 0.01
Flute 0.09 0.20 0.25 - -

Fly, housefly 0.00 -0.01 -0.01 -0.02 0.00
Foghorn 0.08 0.06 0.06 0.03 -
Fowl -0.01 -0.07 -0.02 -0.02 -0.01

French horn 0.12 0.23 0.20 0.05 -0.02
Frog 0.00 0.03 0.07 0.06 -0.03

Glockenspiel 0.02 0.12 0.22 - -
Gobble - - - -0.04 -0.01
Gong 0.04 0.15 0.21 0.17 0.04
Guitar 0.28 0.37 0.42 0.34 0.13

Gunshot, gunfire - - - -0.02 0.01
Hair dryer - - - - 0.01

Hammond organ -0.01 0.03 0.05 0.10 0.04
Harmonic 0.16 0.20 - - -
Harmonica 0.10 0.27 0.22 0.18 0.05

Harp 0.11 0.37 0.41 0.17 0.06
Harpsichord 0.04 0.09 0.15 0.13 0.01

Heart sounds, heartbeat - 0.09 0.03 0.10 0.01
Honk - - - - 0.00
Hoot 0.03 0.02 -0.01 0.00 -0.01
Howl 0.02 0.04 0.04 0.05 0.04
Hum 0.05 0.10 - - -

Humming 0.01 0.03 - - -
Insect 0.00 -0.02 -0.02 -0.02 -0.01

Inside, small room 0.24 0.30 0.30 0.19 -
Jingle bell 0.09 0.20 0.25 0.10 0.08

Keyboard (musical) 0.15 0.10 0.19 0.16 0.04
Livestock, farm animals, working animals 0.03 0.04 0.03 0.05 0.07

Lullaby 0.01 0.09 0.10 - -
Machine gun - - - - 0.01

Marimba, xylophone 0.02 0.10 0.20 0.17 -
Meow 0.01 0.06 0.02 0.01 0.02
Moo 0.05 0.07 0.09 0.08 0.10

Mosquito - - - -0.03 0.02
Neigh, whinny - - - -0.01 -0.02

Opera - - - - 0.04
Orchestra 0.30 0.53 0.47 - -
Organ -0.02 0.02 0.03 0.07 0.01

Outside, urban or manmade 0.12 - - - -
Owl 0.04 0.04 0.00 0.01 -0.01

Table 2 – Attribute correlation coefficients ρi(α̂, α) (see Sec. 7.3).
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Attribute T=1 T=1.5 T=2 T=3 T=5

Percussion 0.04 0.19 0.30 0.14 0.08
Piano 0.16 0.10 0.19 0.16 0.03

Pigeon, dove - - - 0.09 0.02
Ping 0.10 0.22 0.26 - -

Pizzicato 0.05 0.29 0.31 0.15 0.04
Plop 0.03 0.10 0.13 0.10 0.01

Plucked string 0.27 0.37 0.42 0.32 0.11
Police car (siren) 0.02 0.05 0.04 0.01 0.00

Purr - - -0.02 0.09 0.00
Rail transport 0.03 0.03 0.10 0.06 0.04

Railroad car, train wagon 0.04 0.02 0.08 0.04 0.03
Rain - - - - 0.02

Reverberation 0.09 0.15 0.17 - -
Ringtone 0.01 0.02 0.05 0.06 -

Rub - -0.01 0.00 0.00 0.03
Sampler 0.15 0.17 0.21 - -

Saxophone 0.25 0.41 0.41 0.41 0.03
Sanding - - - - 0.00

Scratching (performance technique) - - - - 0.10
Shofar 0.04 0.10 0.09 0.11 0.02

Sine wave 0.28 0.32 0.27 0.17 0.05
Singing 0.02 0.18 0.14 0.07 -

Singing bowl 0.08 0.20 0.24 0.21 0.03
Siren 0.13 0.19 0.24 0.10 0.08
Sizzle - - - 0.02 -

Smoke detector, smoke alarm - 0.05 0.06 0.09 0.00
Snare drum 0.01 0.10 0.11 0.06 0.01

Sonar - 0.06 0.13 0.10 0.01
Speech -0.04 -0.10 -0.07 -0.05 0.01
Static 0.06 0.08 0.08 0.18 -

Steam whistle - - - 0.06 0.03
Steel guitar, slide guitar 0.06 0.20 0.23 - -

Steelpan - - - 0.07 0.04
Stomach rumble - - - - 0.05

Strum 0.12 0.28 0.30 0.21
Synthesizer 0.09 0.05 0.08 0.08

Tapping (guitar technique) 0.13 0.27 0.32 0.23 -
Telephone bell ringing - - - - 0.06

Theremin 0.04 0.06 0.10 0.02 0.00
Thunder - - -0.06 0.03 0.04

Thunderstorm - - - - 0.04
Tick-tock 0.04 0.09 0.14 - -
Timpani 0.04 0.15 0.32 0.12 0.09
Toot 0.17 0.20 0.25 0.13 0.08
Train 0.03 0.04 0.11 0.06 0.05

Train horn - - - 0.07 0.07
Train wheels squealing - - - - -0.05

Trombone 0.18 0.41 0.29 0.16 0.00
Trumpet 0.16 0.46 0.36 0.25 0.00

Tubular bells 0.05 0.17 - - -
Tuning fork 0.22 0.29 0.35 0.29 0.10

Turkey - - - -0.05 -0.02
Ukulele 0.09 0.27 0.31 0.15 0.05
Vehicle 0.08 0.10 0.19 0.05 0.04

Vehicle horn, car horn, honking 0.18 0.26 0.24 0.18 -
Violin, fiddle 0.19 0.26 0.22 0.24 -

Water 0.04 -0.01 0.03 0.05 -0.01
Whistling - - - - 0.01

Wind chime - - 0.30 0.26 0.04
Wind instrument 0.21 0.36 0.40 0.39 0.10

Wood block 0.03 0.15 0.27 0.10 0.05
Zither 0.03 0.18 0.19 0.07 -0.01

Table 3 – A few examples of attribute correlation coefficients ρi(α̂, α) (see
Sec. 7.3).

150



Bibliography

Y. Ai, H.-C. Wu, and Z.-H. Ling. SampleRNN-Based Neural Vocoder
for Statistical Parametric Speech Synthesis. page 91, 2018. URL
http://mirlab.org/conference_papers/International_Conference/
ICASSP2018/pdfs/0005659.pdf.

R. Anil, G. Pereyra, A. Passos, R. Ormándi, G. E. Dahl, and G. E. Hinton.
Large scale distributed neural network training through online distillation. In
6th International Conference on Learning Representations, ICLR, Vancouver,
BC, Canada, May 2018.

C. Aouameur, P. Esling, and G. Hadjeres. Neural drum machine: An interactive
system for real-time synthesis of drum sounds. In Proc. of the 10th International
Conference on Computational Creativity, ICCC, Charlotte, North Carolina,
USA, June 2019.

M. Aramaki, R. Kronland-Martinet, T. Voinier, and S. Ystad. A percussive sound
synthesizer based on physical and perceptual attributes. Comput. Music. J.,
30(2):32–41, 2006. doi: 10.1162/comj.2006.30.2.32. URL https://doi.org/
10.1162/comj.2006.30.2.32.

M. Aramaki, M. Besson, R. Kronland-Martinet, and S. Ystad. Controlling the
Perceived Material in an Impact Sound Synthesizer. IEEE Trans. Speech Audio
Process., 19(2):301–314, 2011a. doi: 10.1109/TASL.2010.2047755. URL https:
//doi.org/10.1109/TASL.2010.2047755.

M. Aramaki, R. Kronland-Martinet, and S. Ystad. Perceptual control of environ-
mental sound synthesis. In Speech, Sound and Music Processing: Embracing
Research in India - 8th International Symposium, CMMR, 20th International
Symposium, FRSM, volume 7172 of Lecture Notes in Computer Science, pages
172–186, Bhubaneswar, India, March 2011b. Springer.

S. Ö. Arik, M. Chrzanowski, A. Coates, G. F. Diamos, A. Gibiansky, Y. Kang,
X. Li, J. Miller, A. Y. Ng, J. Raiman, S. Sengupta, and M. Shoeybi. Deep
Voice: Real-time Neural Text-to-Speech. In Proceedings of the 34th Interna-
tional Conference on Machine Learning, ICML, pages 195–204, Sydney, NSW,
Australia, August 2017.

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein GAN. CoRR,
abs/1701.07875, 2017.

T. Asami, R. Masumura, Y. Yamaguchi, H. Masataki, and Y. Aono. Domain
adaptation of DNN acoustic models using knowledge distillation. In IEEE

151

http://mirlab.org/conference_papers/International_Conference/ICASSP 2018/pdfs/0005659.pdf
http://mirlab.org/conference_papers/International_Conference/ICASSP 2018/pdfs/0005659.pdf
https://doi.org/10.1162/comj.2006.30.2.32
https://doi.org/10.1162/comj.2006.30.2.32
https://doi.org/10.1109/TASL.2010.2047755
https://doi.org/10.1109/TASL.2010.2047755


International Conference on Acoustics, Speech and Signal Processing, ICASSP,
pages 5185–5189, New Orleans, LA, USA, March 2017. IEEE. doi: 10.1109/
ICASSP.2017.7953145.

Y. Aytar, C. Vondrick, and A. Torralba. SoundNet: Learning Sound Repre-
sentations from Unlabeled Video. In Annual Conference on Neural Informa-
tion Processing Systems, NeurIPS, pages 892–900, Barcelona, Spain, December
2016.

J. Ba and R. Caruana. Do Deep Nets Really Need to be Deep? In Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, An-
nual Conference on Neural Information Processing Systems, pages 2654–2662,
Montreal, Quebec, Canada, December 2014.

A. Baevski, S. Schneider, and M. Auli. vq-wav2vec: Self-Supervised Learning of
Discrete Speech Representations. In ICLR, Addis Ababa, Ethiopia, Apr. 2020.

D. Bansal, B. Raj, and P. Smaragdis. Bandwidth expansion of narrowband
speech using non-negative matrix factorization. In 9th European Conference
on Speech Communication and Technology, INTERSPEECH, pages 1505–1508,
Lisbon, Portugal, September 2005. ISCA. URL http://www.isca-speech.
org/archive/interspeech_2005/i05_1505.html.

A. Barahona-Ríos and T. Collins. SpecSinGAN: Sound Effect Variation Synthesis
Using Single-Image GANs. CoRR, abs/2110.07311, 2021.

S. T. Barratt and R. Sharma. A Note on the Inception Score. CoRR,
abs/1801.01973, 2018. URL http://arxiv.org/abs/1801.01973.

S. Barry and Y. Kim. “Style” Transfer for Musical Audio Using Multiple Time-
Frequency Representations, 2018. URL https://openreview.net/forum?id=
BybQ7zWCb.

T. Bazin, G. Hadjeres, P. Esling, and M. Malt. Spectrogram Inpainting for
Interactive Generation of Instrument Sounds. In Joint Conference on AI Music
Creativity, 2020.

S. Bengio, O. Vinyals, N. Jaitly, and N. Shazeer. Scheduled Sampling for Sequence
Prediction with Recurrent Neural Networks. In Advances in Neural Information
Processing Systems 28: Annual Conference on Neural Information Processing
Systems NeurIPS.

Y. Bengio, A. C. Courville, and P. Vincent. Representation Learning: A Review
and New Perspectives. IEEE Trans. Pattern Anal. Mach. Intell., 35(8), 2013.

M. Binkowski, D. J. Sutherland, M. Arbel, and A. Gretton. Demystifying MMD
gans. In ICLR, Vancouver, BC, Canada, Apr. 2018.

M. Binkowski, J. Donahue, S. Dieleman, A. Clark, E. Elsen, N. Casagrande,
L. C. Cobo, and K. Simonyan. High Fidelity Speech Synthesis with Adversarial
Networks. In 8th International Conference on Learning Representations, ICLR,
Addis Ababa, Ethiopia, April 2020.

152

http://www.isca-speech.org/archive/interspeech_2005/i05_1505.html
http://www.isca-speech.org/archive/interspeech_2005/i05_1505.html
http://arxiv.org/abs/1801.01973
https://openreview.net/forum?id=BybQ7zWCb
https://openreview.net/forum?id=BybQ7zWCb


A. Biswas and D. Jia. Audio Codec Enhancement with Generative Adversarial
Networks. In 2020 IEEE International Conference on Acoustics, Speech and
Signal Processing, ICASSP, pages 356–360, Barcelona, Spain, May 2020. IEEE.
doi: 10.1109/ICASSP40776.2020.9053113.

A. Bitton, P. Esling, A. Caillon, and M. Fouilleul. Assisted Sound Sample
Generation with Musical Conditioning in Adversarial Auto-Encoders. CoRR,
abs/1904.06215, 2019.

A. Bitton, P. Esling, and T. Harada. Neural Granular Sound Synthesis. CoRR,
abs/2008.01393, 2020.

M. Blaauw and J. Bonada. Modeling and Transforming Speech Using Variational
Autoencoders. In 17th Annual Conference of the International Speech Commu-
nication Association, INTERSPEECH, pages 1770–1774, San Francisco, CA,
USA, September 2016. ISCA.

M. Blaauw and J. Bonada. A neural parametric singing synthesizer. In 18th
Annual Conference of the International Speech Communication Association,
INTERSPEECH, pages 4001–4005, Stockholm, Sweden, August 2017.

B. Boashash. Estimating and interpreting the instantaneous frequency of a signal.
II. Algorithms and applications. Proc. of the IEEE, 80(4):550–568, Apr. 1992.
ISSN 1558-2256. doi: 10.1109/5.135378.

S. Boll. Suppression of acoustic noise in speech using spectral subtraction. IEEE
Transactions on Acoustics, Speech, and Signal Processing, 27(2):113–120, 1979.
doi: 10.1109/TASSP.1979.1163209.

S. Bond-Taylor, A. Leach, Y. Long, and C. G. Willcocks. Deep Generative Mod-
elling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-
Based and Autoregressive Models. CoRR, abs/2103.04922, 2021.

K. Brandenburg. MP3 and AAC explained. In Audio Engineering Society Con-
ference: 17th International Conference: High-Quality Audio Coding. Audio
Engineering Society, 1999.

K. Brandenburg and G. Stoll. Iso/mpeg-1 audio: A generic standard for coding
of high-quality digital audio. Journal of the Audio Engineering Society, 42(10):
780–792, 1994.

J. Briot, G. Hadjeres, and F. Pachet. Deep Learning Techniques for Music Gen-
eration - A Survey. CoRR, abs/1709.01620, 2017. URL http://arxiv.org/
abs/1709.01620.

A. Brock, J. Donahue, and K. Simonyan. Large Scale GAN Training for High
Fidelity Natural Image Synthesis. In 7th International Conference on Learning
Representations, ICLR, New Orleans, LA, USA, May 2019. OpenReview.net.

J. C. Brown. Calculation of a constant-Q spectral transform. Journal of the
Acoustical Society of America, 89(1):425–434, 1991. ISSN 0001-4966. doi:
10.1121/1.400476.

153

http://arxiv.org/abs/1709.01620
http://arxiv.org/abs/1709.01620


G. Brunner, A. Konrad, Y. Wang, and R. Wattenhofer. MIDI-VAE: Modeling
Dynamics and Instrumentation of Music with Applications to Style Transfer. In
Proceedings of the 19th International Society for Music Information Retrieval
Conference, ISMIR, 2018, pages 747–754, Paris, France, September 2018a.

G. Brunner, Y. Wang, R. Wattenhofer, and S. Zhao. Symbolic Music Genre
Transfer with CycleGAN. In IEEE 30th International Conference on Tools
with Artificial Intelligence, ICTAI, pages 786–793, Volos, Greece, November
2018b.

C. Bucila, R. Caruana, and A. Niculescu-Mizil. Model compression. In T. Eliassi-
Rad, L. H. Ungar, M. Craven, and D. Gunopulos, editors, Proceedings of the
Twelfth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 535–541, Philadelphia, PA, USA, August 2006. ACM.

H. Caesar, J. R. R. Uijlings, and V. Ferrari. COCO-Stuff: Thing and Stuff
Classes in Context. In 2018 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR, pages 1209–1218, Salt Lake City, UT, USA, June 2018.
IEEE Computer Society. doi: 10.1109/CVPR.2018.00132.

A. Camurri, S. Hashimoto, M. Ricchetti, A. Ricci, K. Suzuki, R. Trocca, and
G. Volpe. EyesWeb: Toward Gesture and Affect Recognition in Interactive
Dance and Music Systems. Comput. Music. J., 24(1):57–69, 2000.

H. Caracalla and A. Roebel. Sound Texture Synthesis Using RI Spectrograms.
In 2020 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing, ICASSP, 2020, pages 416–420, Barcelona, Spain, May 2020. IEEE.

W. Chan, N. R. Ke, and I. Lane. Transferring knowledge from a RNN to a DNN.
In 16th Annual Conference of the International Speech Communication Associ-
ation, INTERSPEECH, pages 3264–3268, Dresden, Germany, September 2015.
ISCA.

F. Chen, R. Huang, C. Cui, Y. Ren, J. Liu, Z. Zhao, N. Yuan, and B. Huai.
SingGAN: Generative Adversarial Network For High-Fidelity Singing Voice
Generation. 2021.

J. Chen, Y. Wang, S. Yoho, D. Wang, and E. Healy. Large-scale training to
increase speech intelligibility for hearing-impaired listeners in novel noises. The
Journal of the Acoustical Society of America, 139:2604–2612, 05 2016a. doi:
10.1121/1.4948445.

L. Chen, S. Srivastava, Z. Duan, and C. Xu. Deep Cross-Modal Audio-Visual
Generation. In Proceedings of the on Thematic Workshops of ACM Multimedia,
pages 349–357, Mountain View, CA, USA, October 2017.

T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for
contrastive learning of visual representations. In International conference on
machine learning, pages 1597–1607. PMLR, 2020.

154



X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel.
InfoGAN: Interpretable Representation Learning by Information Maximizing
Generative Adversarial Nets. In Advances in Neural Information Processing
Systems 29: Annual Conference on Neural Information Processing Systems,
NeurIPS, pages 2172–2180, Barcelona, Spain, December 2016b.

R. Child, S. Gray, A. Radford, and I. Sutskever. Generating Long Sequences with
Sparse Transformers. CoRR, abs/1904.10509, 2019.

Y. Choi, M. Choi, M. Kim, J. Ha, S. Kim, and J. Choo. StarGAN: Unified Gener-
ative Adversarial Networks for Multi-Domain Image-to-Image Translation. In
IEEE Conference on Computer Vision and Pattern Recognition, CVPR, pages
8789–8797, Salt Lake City, UT, USA, June 2018.

J. Chorowski, R. J. Weiss, S. Bengio, and A. van den Oord. Unsupervised speech
representation learning using wavenet autoencoders. CoRR, abs/1901.08810,
2019. URL http://arxiv.org/abs/1901.08810.

J. M. Chowning. The synthesis of complex audio spectra by means of frequency
modulation. Journal of the Audio Engineering Society, 21(7):526–534, Septem-
ber 1973.

O. Cífka, A. Ozerov, U. Simsekli, and G. Richard. Self-Supervised VQ-VAE For
One-Shot Music Style Transfer. CoRR, abs/2102.05749, 2021.

Clark E. et al. Creative writing with a machine in the loop: Case studies on
slogans and stories. In IUI, pages 329–340. ACM, March 2018. doi: 10.1145/
3172944.3172983. URL https://doi.org/10.1145/3172944.3172983.

M. Comunità, H. Phan, and J. D. Reiss. Neural synthesis of footsteps sound
effects with generative adversarial networks, 2021.

S. Conan. Intuitive Control of Solid-Interaction Sounds Synthesis: Toward Sonic
Metaphors. 2014.

S. Conan, E. Thoret, M. Aramaki, O. Derrien, C. Gondre, S. Ystad, and
R. Kronland-Martinet. An Intuitive Synthesizer of Continuous-Interaction
Sounds: Rubbing, Scratching, and Rolling. Comput. Music. J., 38(4):24–37,
2014. doi: 10.1162/COMJ\_a\_00266. URL https://doi.org/10.1162/
COMJ_a_00266.

A. Cont. Musical Research at Ircam. Taylor & Francis, Apr 2013. doi: 10.1080/
07494467.2013.774121. URL https://hal.inria.fr/hal-00930937.

I. Corbett. What data compression does to your music,
2012. URL https://www.soundonsound.com/techniques/
what-data-compression-does-your-music. Accessed 31 May 2021.

S. Crab. 120 Years Of Electronic Music - The history of electronic music from
1800 to 2015, 2016. URL http://120years.net/https://120years.net/
category/date/1800-1900/.

155

http://arxiv.org/abs/1901.08810
https://doi.org/10.1145/3172944.3172983
https://doi.org/10.1162/COMJ_a_00266
https://doi.org/10.1162/COMJ_a_00266
https://hal.inria.fr/hal-00930937
https://www.soundonsound.com/techniques/what-data-compression-does-your-music
https://www.soundonsound.com/techniques/what-data-compression-does-your-music
http://120years.net/ https://120years.net/category/date/1800-1900/
http://120years.net/ https://120years.net/category/date/1800-1900/


S. B. Davis and P. Mermelstein. Comparison of parametric representations for
monosyllabic word recognition in continuously spoken sentences. IEEE Trans.
Acoust. Speech, Signal Process., pages 357–366, 1980.

M. Dendrinos, S. Bakamidis, and G. Carayannis. Speech enhancement from noise:
A regenerative approach. Speech Commun., 10(1):45–57, 1991. doi: 10.1016/
0167-6393(91)90027-Q. URL https://doi.org/10.1016/0167-6393(91)
90027-Q.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-
Scale Hierarchical Image Database. In IEEE Conference on Computer Vision
and Pattern Recognition, CVPR, June 2009.

J. Deng, B. W. Schuller, F. Eyben, D. Schuller, Z. Zhang, H. Francois, and
E. Oh. Exploiting time-frequency patterns with LSTM-RNNs for low-bitrate
audio restoration. Neural Comput. Appl., 32(4):1095–1107, 2020. doi: 10.1007/
s00521-019-04158-0. URL https://doi.org/10.1007/s00521-019-04158-0.

E. L. Denton, S. Gross, and R. Fergus. Semi-Supervised Learning with Context-
Conditional Generative Adversarial Networks. volume abs/1611.06430, 2016.

P. Dhariwal, H. Jun, C. Payne, J. W. Kim, A. Radford, and I. Sutskever. Jukebox:
A generative model for music. CoRR, abs/2005.00341, 2020.

S. Dieleman. Generating Music in the Waveform Domain. https://benanne.
github.io/2020/03/24/audio-generation.html, 2020.

S. Dieleman and B. Schrauwen. End-to-end learning for music audio. In ICASSP,
pages 6964–6968, Florence, Italy, May 2014. doi: 10.1109/ICASSP.2014.
6854950.

S. Dieleman, A. van den Oord, and K. Simonyan. The challenge of realistic
music generation: modelling raw audio at scale. In NeurIPS, pages 8000–8010,
Montréal, Canada, Dec. 2018.

M. Dietz, L. Liljeryd, K. Kjorling, and O. Kunz. Spectral Band Replication, a
novel approach in audio coding. In Audio Engineering Society Convention 112.
Audio Engineering Society, 2002.

C. Donahue, B. Li, and R. Prabhavalkar. Exploring Speech Enhancement with
Generative Adversarial Networks for Robust Speech Recognition. In IEEE
International Conference on Acoustics, Speech and Signal Processing, ICASSP,
pages 5024–5028, Calgary, AB, Canada, April 2018. IEEE.

C. Donahue, J. McAuley, and M. Puckette. Adversarial Audio Synthesis. In Proc.
of the 7th International Conference on Learning Representations, ICLR, May
2019.

C. Dong, C. C. Loy, K. He, and X. Tang. Image Super-Resolution Using Deep
Convolutional Networks. IEEE Trans. Pattern Anal. Mach. Intell., 38(2):295–
307, 2016. doi: 10.1109/TPAMI.2015.2439281. URL https://doi.org/10.
1109/TPAMI.2015.2439281.

156

https://doi.org/10.1016/0167-6393(91)90027-Q
https://doi.org/10.1016/0167-6393(91)90027-Q
https://doi.org/10.1007/s00521-019-04158-0
https://benanne.github.io/2020/03/24/audio-generation.html
https://benanne.github.io/2020/03/24/audio-generation.html
https://doi.org/10.1109/TPAMI.2015.2439281
https://doi.org/10.1109/TPAMI.2015.2439281


J. Dong, W. Wang, and J. A. Chambers. Audio super-resolution using anal-
ysis dictionary learning. In 2015 IEEE International Conference on Digital
Signal Processing, DSP, pages 604–608, Singapore, July 2015. IEEE. doi:
10.1109/ICDSP.2015.7251945. URL https://doi.org/10.1109/ICDSP.2015.
7251945.

J. Drysdale, M. Tomczak, and J. Hockman. Adversarial Synthesis of Drum
Sounds. In DAFX, 2020.

J. Engel, C. Resnick, A. Roberts, S. Dieleman, M. Norouzi, D. Eck, and K. Si-
monyan. Neural Audio Synthesis of Musical Notes with WaveNet Autoen-
coders. In Proc. of the 34th International Conference on Machine Learning,
ICML, Sydney, NSW, Australia, Aug. 2017.

J. Engel, K. K. Agrawal, S. Chen, I. Gulrajani, C. Donahue, and A. Roberts.
GANSynth: Adversarial Neural Audio Synthesis. In Proc. of the 7th Interna-
tional Conference on Learning Representations, ICLR, May 2019.

J. H. Engel, L. Hantrakul, C. Gu, and A. Roberts. DDSP: Differentiable Digital
Signal Processing. In Proc. of the 8th International Conference on Learning
Representations, ICLR, Addis Ababa, Ethiopia, Apr. 2020.

Y. Ephraim. Statistical-model-based speech enhancement systems. Proceedings
of the IEEE, 80(10):1526–1555, 1992. doi: 10.1109/5.168664.

H. Erdogan, J. R. Hershey, S. Watanabe, and J. L. Roux. Phase-sensitive and
recognition-boosted speech separation using deep recurrent neural networks.
In IEEE International Conference on Acoustics, Speech and Signal Processing,
ICASSP, pages 708–712, South Brisbane, Queensland, Australia, April 2015.
IEEE.

P. Esling, A. Chemla-Romeu-Santos, and A. Bitton. Bridging Audio Analy-
sis, Perception and Synthesis with Perceptually-regularized Variational Timbre
Spaces. In Proceedings of the 19th International Society for Music Information
Retrieval Conference, ISMIR, pages 175–181, Paris, France, September 2018a.

P. Esling, A. Chemla-Romeu-Santos, and A. Bitton. Generative timbre spaces
with variational audio synthesis. In Proc. of the 21st International Conference
on Digital Audio Effects DAFx-18, Aveiro, Portugal, Sept. 2018b.

P. Esling, N. Masuda, A. Bardet, R. Despres, and A. Chemla-Romeu-Santos.
Universal audio synthesizer control with normalizing flows. Journal of Applied
Sciences, 2019.

C. Esteban, S. L. Hyland, and G. Rätsch. Real-valued (Medical) Time Series
Generation with Recurrent Conditional GANs. CoRR, 2017.

Y. Fan, Y. Qian, F. Xie, and F. K. Soong. TTS synthesis with bidirectional
LSTM based recurrent neural networks. In INTERSPEECH, Sept. 2014.

K. Fisher and A. Scherlis. WaveMedic: Convolutional Neural Networks for Speech
Audio Enhancement. 2016.

157

https://doi.org/10.1109/ICDSP.2015.7251945
https://doi.org/10.1109/ICDSP.2015.7251945


S. Fu, C. Liao, Y. Tsao, and S. Lin. MetricGAN: Generative Adversarial Net-
works based Black-box Metric Scores Optimization for Speech Enhancement.
In K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th Inter-
national Conference on Machine Learning, ICML, volume 97 of Proceedings of
Machine Learning Research, pages 2031–2041, Long Beach, California, USA,
June 2019. PMLR.

J. Fuegi and J. Francis. Lovelace & Babbage and the creation of the 1843 ’notes’.
Inroads, 6(3):78–86, 2015. doi: 10.1145/2810201. URL https://doi.org/10.
1145/2810201.

L. Gao, K. Xu, H. Wang, and Y. Peng. Multi-Representation Knowledge Distil-
lation For Audio Classification. CoRR, abs/2002.09607, 2020.

L. A. Gatys, A. S. Ecker, and M. Bethge. A neural algorithm of artistic style.
arXiv preprint arXiv:1508.06576, 2015.

J. F. Gemmeke, D. P. W. Ellis, D. Freedman, A. Jansen, W. Lawrence, R. C.
Moore, M. Plakal, and M. Ritter. Audio Set: An ontology and human-labeled
dataset for audio events. In Proc. IEEE ICASSP 2017, New Orleans, LA, 2017.

F. G. Germain, Q. Chen, and V. Koltun. Speech Denoising with Deep Feature
Losses. In 20th Annual Conference of the International Speech Communica-
tion Association, INTERSPEECH, pages 2723–2727, Graz, Austria, September
2019. ISCA.

A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer. A
Survey of Quantization Methods for Efficient Neural Network Inference. CoRR,
abs/2103.13630, 2021.

A. Gibiansky, S. Ö. Arik, G. F. Diamos, J. Miller, K. Peng, W. Ping, J. Raiman,
and Y. Zhou. Deep Voice 2: Multi-Speaker Neural Text-to-Speech. In Advances
in Neural Information Processing Systems 30: Annual Conference on NeurIPS,
pages 2966–2974, Long Beach, CA, USA, December 2017.

I. J. Goodfellow. NIPS 2016 Tutorial: Generative Adversarial Networks. CoRR,
abs/1701.00160, 2017. URL http://arxiv.org/abs/1701.00160.

I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. C. Courville, and Y. Bengio. Generative Adversarial Nets. In NeurIPS,
pages 2672–2680, Montreal, Quebec, Canada, Dec. 2014.

R. Gordon. Synthesizing Drums: The Bass Drum. Sound On
Sound, Jan. 2002a. URL https://www.soundonsound.com/techniques/
synthesizing-drums-bass-drum.

R. Gordon. Synthesizing drums: The snare drum. Sound On
Sound, Jan. 2002b. URL https://www.soundonsound.com/techniques/
synthesizing-drums-snare-drum.

M. Grachten, E. Deruty, and A. Tanguy. Auto-adaptive Resonance Equalization
using Dilated Residual Networks. In Proceedings of the 20th ISMIR, Delft, The

158

https://doi.org/10.1145/2810201
https://doi.org/10.1145/2810201
http://arxiv.org/abs/1701.00160
https://www.soundonsound.com/techniques/synthesizing-drums-bass-drum
https://www.soundonsound.com/techniques/synthesizing-drums-bass-drum
https://www.soundonsound.com/techniques/synthesizing-drums-snare-drum
https://www.soundonsound.com/techniques/synthesizing-drums-snare-drum


Netherlands, 2019. URL http://archives.ismir.net/ismir2019/paper/
000048.pdf.

M. Grachten, S. Lattner, and E. Deruty. BassNet: A Variational Gated Autoen-
coder for Conditional Generation of Bass Guitar Tracks with Learned Interac-
tive Control. Applied Sciences, 10(18), 2020. ISSN 2076-3417. doi: 10.3390/
app10186627. URL https://www.mdpi.com/2076-3417/10/18/6627.

G. Greshler, T. R. Shaham, and T. Michaeli. Catch-A-Waveform: Learning to
Generate Audio from a Single Short Example. CoRR, abs/2106.06426, 2021.

A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. J. Smola. A
Kernel Two-Sample Test. J. of Mach. Learn. Res., 13:723–773, 2012.

D. W. Griffin and J. S. Lim. Signal estimation from modified short-time Fourier
transform. In ICASSP, pages 804–807, Boston, Massachusetts, USA, Apr. 1983.
doi: 10.1109/ICASSP.1983.1172092.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. Im-
proved training of Wasserstein GANs. In NeurIPS, pages 5769–5779, Long
Beach, CA, USA, Dec. 2017.

A. Gupta, B. Shillingford, Y. M. Assael, and T. C. Walters. Speech Band-
width Extension with WaveNet. In IEEE Workshop on Applications of Sig-
nal Processing to Audio and Acoustics, WASPAA, pages 205–208, New Paltz,
NY, USA, October 2019. IEEE. doi: 10.1109/WASPAA.2019.8937169. URL
https://doi.org/10.1109/WASPAA.2019.8937169.

C. Gupta, P. Kamath, and L. Wyse. Signal Representations for Synthesizing
Audio Textures with Generative Adversarial Networks. CoRR, abs/2103.07390,
2021.

G. Hadjeres and L. Crestel. Vector Quantized Contrastive Predictive Coding for
Template-based Music Generation. CoRR, 2020.

G. Hadjeres, F. Pachet, and F. Nielsen. Deepbach: a steerable model for bach
chorales generation. In Proceedings of the 34th International Conference on
Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017,
pages 1362–1371, 2017.

K. He, X. Zhang, S. Ren, and J. Sun. Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification. In IEEE International
Conference on Computer Vision, ICCV, Santiago, Chile, Dec. 2015.

O. J. Hénaff, A. Srinivas, J. D. Fauw, A. Razavi, C. Doersch, S. M. A. Eslami, and
A. van den Oord. Data-Efficient Image Recognition with Contrastive Predictive
Coding. CoRR, abs/1905.09272, 2019.

G. Hinton, O. Vinyals, and J. Dean. Dark Knowledge. In Toyota Technological
Institute at Chicago, TTIC, 2014.

G. E. Hinton, O. Vinyals, and J. Dean. Distilling the Knowledge in a Neural
Network. CoRR, abs/1503.02531, 2015.

159

http://archives.ismir.net/ismir2019/paper/000048.pdf
http://archives.ismir.net/ismir2019/paper/000048.pdf
https://www.mdpi.com/2076-3417/10/18/6627
https://doi.org/10.1109/WASPAA.2019.8937169


E. Hosseini-Asl, Y. Zhou, C. Xiong, and R. Socher. A Multi-Discriminator Cy-
cleGAN for Unsupervised Non-Parallel Speech Domain Adaptation. In Proc.
of the 19th Annual Conference of the International Speech Communication As-
sociation, Hyderabad, India, Sept. 2018.

W. Hsu, Y. Zhang, and J. R. Glass. Learning Latent Representations for Speech
Generation and Transformation. In 18th Annual Conference of the Interna-
tional Speech Communication Association, INTERSPEECH, pages 1273–1277,
Stockholm, Sweden, August 2017.

Y. Hu, Y. Liu, S. Lv, M. Xing, S. Zhang, Y. Fu, J. Wu, B. Zhang, and
L. Xie. DCCRN: Deep Complex Convolution Recurrent Network for Phase-
Aware Speech Enhancement. In 21st Annual Conference of the Interna-
tional Speech Communication Association, INTERSPEECH, pages 2472–2476,
Shanghai, China, October 2020. ISCA. doi: 10.21437/Interspeech.2020-2537.
URL https://doi.org/10.21437/Interspeech.2020-2537.

C. A. Huang, A. Vaswani, J. Uszkoreit, I. Simon, C. Hawthorne, N. Shazeer, A. M.
Dai, M. D. Hoffman, M. Dinculescu, and D. Eck. Music Transformer: Gener-
ating Music with Long-Term Structure. In ICLR (Poster). OpenReview.net,
2019a.

C. A. Huang, H. V. Koops, E. Newton-Rex, M. Dinculescu, and C. J. Cai. AI
Song Contest: Human-AI Co-Creation in Songwriting. CoRR, abs/2010.05388,
2020. URL https://arxiv.org/abs/2010.05388.

H. Huang, Z. Li, R. He, Z. Sun, and T. Tan. IntroVAE: Introspective Variational
Autoencoders for Photographic Image Synthesis. In S. Bengio, H. M. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors,
Advances in Neural Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems, NeurIPS, pages 52–63, Montréal,
Canada, December 2018.

S. Huang, Q. Li, C. Anil, X. Bao, S. Oore, and R. B. Grosse. TimbreTron: A
WaveNet(CycleGAN(CQT(Audio))) Pipeline for Musical Timbre Transfer. In
Proc. of the 7th International Conference on Learning Representations, ICLR,
New Orleans, LA, USA, May 2019b.

M. Huzaifah and L. Wyse. Deep generative models for musical audio synthesis.
CoRR, abs/2006.06426, 2020.

V. Iashin and E. Rahtu. Taming visually guided sound generation. 2021.

R. I.-T. P. International Telecommunications Union–Radiocommunication (ITU-
T).

U. Isik, R. Giri, N. Phansalkar, J. Valin, K. Helwani, and A. Krishnaswamy.
PoCoNet: Better Speech Enhancement with Frequency-Positional Embed-
dings, semi-supervised conversational data, and biased loss. In H. Meng,
B. Xu, and T. F. Zheng, editors, Interspeech 2020, 21st Annual Conference of

160

https://doi.org/10.21437/Interspeech.2020-2537
https://arxiv.org/abs/2010.05388


the International Speech Communication Association, pages 2487–2491, Shang-
hai, China, October 2020. ISCA. doi: 10.21437/Interspeech.2020-3027. URL
https://doi.org/10.21437/Interspeech.2020-3027.

P. Isola, J. Zhu, T. Zhou, and A. A. Efros. Image-to-Image Translation with
Conditional Adversarial Networks. In 2017 IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR, pages 5967–5976, Honolulu, HI, USA,
July 2017. IEEE Computer Society. doi: 10.1109/CVPR.2017.632. URL
https://doi.org/10.1109/CVPR.2017.632.

Jae Lim and A. Oppenheim. All-pole modeling of degraded speech. IEEE Trans-
actions on Acoustics, Speech, and Signal Processing, 26(3):197–210, 1978. doi:
10.1109/TASSP.1978.1163086.

J.-N. Jeanneney. L’Écho du siècle, dictionnaire historique de la radio et de la
télévision en France. Hachette Littératures et Arte Éditions, 1999.

S. Ji, J. Luo, and X. Yang. A Comprehensive Survey on Deep Music Gener-
ation: Multi-level Representations, algorithms, evaluations, and future direc-
tions. CoRR, abs/2011.06801, 2020.

N. M. Kalibhat, Y. Balaji, and S. Feizi. Winning Lottery Tickets in Deep Gen-
erative Models. In 35th Conference on Artificial Intelligence, AAAI, pages
8038–8046, Virtual Event, February 2021. AAAI Press.

T. Kaneko and H. Kameoka. Parallel-Data-Free Voice Conversion Using Cycle-
Consistent Adversarial Networks. CoRR, abs/1711.11293, 2017.

T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive growing of GANs for
improved quality, stability, and variation. CoRR, abs/1710.10196, 2017.

T. Karras, S. Laine, and T. Aila. A Style-Based Generator Architecture for
Generative Adversarial Networks. CoRR, abs/1812.04948, 2018.

T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila. Analyzing
and Improving the Image Quality of StyleGAN. In 2020 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, CVPR, pages 8107–8116,
Seattle, WA, USA, June 2020. IEEE.

K. Kilgour, M. Zuluaga, D. Roblek, and M. Sharifi. Fréchet Audio Distance: A
Metric for Evaluating Music Enhancement Algorithms. CoRR, abs/1812.08466,
2018.

S. Kim, S. Lee, J. Song, and S. Yoon. FloWaveNet: A Generative Flow for Raw
Audio. CoRR, abs/1811.02155, 2018.

D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. In
Y. Bengio and Y. LeCun, editors, 3rd International Conference on Learning
Representations, ICLR, San Diego, CA, USA, May 2015.

D. P. Kingma and P. Dhariwal. Glow: Generative Flow with Invertible 1x1
Convolutions. In Advances in Neural Information Processing Systems 31: An-
nual Conference on Neural Information Processing Systems, NeurIPS, pages
10236–10245, Montréal, Canada, December 2018.

161

https://doi.org/10.21437/Interspeech.2020-3027
https://doi.org/10.1109/CVPR.2017.632


D. P. Kingma and M. Welling. Auto-Encoding Variational Bayes. In Proc. of the
2nd International Conference on Learning Representations, ICLR, Banff, AB,
Canada, Apr. 2014.

D. P. Kingma, T. Salimans, and M. Welling. Improving Variational Inference
with Inverse Autoregressive Flow. CoRR, abs/1606.04934, 2016.

J. Kleimola. Nonlinear abstract sound synthesis algorithms. PhD thesis, School
of Electrical Engineering, 2013.

M. Kolbæk, Z. Tan, and J. Jensen. Speech enhancement using Long Short-Term
Memory based recurrent Neural Networks for noise robust Speaker Verification.
In 2016 IEEE Spoken Language Technology Workshop, SLT 2016, , December
13-16, 2016, pages 305–311, San Diego, CA, USA, December 2016. IEEE.

J. Kong, J. Kim, and J. Bae. HiFi-GAN: Generative Adversarial Networks for
Efficient and High Fidelity Speech Synthesis. In Annual Conference on Neu-
ral Information Processing Systems, NeurIPS, Virtual conference, December
2020a.

Q. Kong, Y. Cao, T. Iqbal, Y. Wang, W. Wang, and M. D. Plumbley. PANNs:
Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition.
IEEE ACM Trans. Audio Speech Lang. Process., 28:2880–2894, 2020b.

J. Kontio, L. Laaksonen, and P. Alku. Neural Network-Based Artificial Band-
width Expansion of Speech. IEEE Trans. Speech Audio Process., 15(3):873–
881, 2007. doi: 10.1109/TASL.2006.885934. URL https://doi.org/10.1109/
TASL.2006.885934.

V. Kuleshov, S. Z. Enam, and S. Ermon. Audio Super-Resolution using Neural
Networks. In 5th International Conference on Learning Representations, ICLR,
Toulon, France, April 2017. OpenReview.net. URL https://openreview.net/
forum?id=S1gNakBFx.

K. Kumar, R. Kumar, T. de Boissiere, L. Gestin, W. Z. Teoh, J. Sotelo,
A. de Brébisson, Y. Bengio, and A. C. Courville. MelGAN: Generative Adver-
sarial Networks for Conditional Waveform Synthesis. In Proc. of the Annual
Conference on Neural Information Processing Systems, NIPS, Vancouver, BC,
Canada, Dec. 2019.

R. Kumar, K. Kumar, V. Anand, Y. Bengio, and A. C. Courville. NU-GAN: high
resolution neural upsampling with GAN. CoRR, abs/2010.11362, 2020. URL
https://arxiv.org/abs/2010.11362.

M. Lagrange and F. Gontier. Bandwidth Extension of Musical Audio Signals
With No Side Information Using Dilated Convolutional Neural Networks. In
IEEE International Conference on Acoustics, Speech and Signal Processing,
ICASSP, pages 801–805, Barcelona, Spain, May 2020. IEEE. doi: 10.1109/
ICASSP40776.2020.9054194. URL https://doi.org/10.1109/ICASSP40776.
2020.9054194.

162

https://doi.org/10.1109/TASL.2006.885934
https://doi.org/10.1109/TASL.2006.885934
https://openreview.net/forum?id=S1gNakBFx
https://openreview.net/forum?id=S1gNakBFx
https://arxiv.org/abs/2010.11362
https://doi.org/10.1109/ICASSP40776.2020.9054194
https://doi.org/10.1109/ICASSP40776.2020.9054194


E. Larsen and R. M. Aarts. Audio bandwidth extension: application of psychoa-
coustics, signal processing and loudspeaker design. John Wiley & Sons, 2005.

S. Lattner. Modeling Musical Structure with Artificial Neural Networks. PhD the-
sis, Institute of Computational Perception, Johannes Kepler University, Linz,
2019.

S. Lattner and M. Grachten. High-Level Control of Drum Track Generation Using
Learned Patterns of Rhythmic Interaction. In IEEE Workshop on Applications
of Signal Processing to Audio and Acoustics, WASPAA, New Paltz, NY, USA,
Oct. 2019.

S. Lattner and J. Nistal. Stochastic Restoration of Heavily Compressed Musical
Audio Using Generative Adversarial Networks. Electronics, 10(11), 2021. ISSN
2079-9292. doi: 10.3390/electronics10111349. URL https://www.mdpi.com/
2079-9292/10/11/1349.

S. Lee, U. Hwang, S. Min, and S. Yoon. A SeqGAN for Polyphonic Music Gen-
eration. CoRR, abs/1710.11418, 2017a. URL http://arxiv.org/abs/1710.
11418.

Y. Lee, A. Rabiee, and S. Lee. Emotional End-to-End Neural Speech Synthesizer.
CoRR, abs/1711.05447, 2017b.

J. Li, R. Zhao, J. Huang, and Y. Gong. Learning small-size DNN with output-
distribution-based criteria. In H. Li, H. M. Meng, B. Ma, E. Chng, and L. Xie,
editors, 15th Annual Conference of the International Speech Communication
Association, INTERSPEECH, pages 1910–1914, Singapore, September 2014.
ISCA.

K. Li and C. Lee. A deep neural network approach to speech bandwidth ex-
pansion. In IEEE International Conference on Acoustics, Speech and Sig-
nal Processing, ICASSP, pages 4395–4399, South Brisbane, Queensland, Aus-
tralia, April 2015. IEEE. doi: 10.1109/ICASSP.2015.7178801. URL https:
//doi.org/10.1109/ICASSP.2015.7178801.

Z. Li, L. Dai, Y. Song, and I. V. McLoughlin. A Conditional Generative Model
for Speech Enhancement. Circuits Syst. Signal Process., 37(11):5005–5022,
2018. doi: 10.1007/s00034-018-0798-4. URL https://doi.org/10.1007/
s00034-018-0798-4.

T. Lidy. CQT-based convolutional neural networks for audio scene classification
and domestic audio tagging. In DCASE, Sept. 2016.

T. Lim, R. A. Yeh, Y. Xu, M. N. Do, and M. Hasegawa-Johnson. Time-frequency
networks for audio super-resolution. In 2018 IEEE International Conference
on Acoustics, Speech and Signal Processing, ICASSP, pages 646–650, Calgary,
AB, Canada, April 2018. IEEE.

Z. Ling, Y. Ai, Y. Gu, and L. Dai. Waveform Modeling and Generation Using Hi-
erarchical Recurrent Neural Networks for Speech Bandwidth Extension. IEEE
ACM Trans. Audio Speech Lang. Process., 26(5):883–894, 2018.

163

https://www.mdpi.com/2079-9292/10/11/1349
https://www.mdpi.com/2079-9292/10/11/1349
http://arxiv.org/abs/1710.11418
http://arxiv.org/abs/1710.11418
https://doi.org/10.1109/ICASSP.2015.7178801
https://doi.org/10.1109/ICASSP.2015.7178801
https://doi.org/10.1007/s00034-018-0798-4
https://doi.org/10.1007/s00034-018-0798-4


M. Liu and O. Tuzel. Coupled Generative Adversarial Networks. In Advances
in Neural Information Processing Systems 29: Annual Conference on Neural
Information Processing Systems, NeurIPS.

P. Loizou. Speech Enhancement: Theory and Practice. 01 2007. ISBN
9780429096181. doi: 10.1201/b14529.

Z. Luo, J. Chen, T. Takiguchi, and Y. Ariki. Emotional voice conversion us-
ing neural networks with arbitrary scales F0 based on wavelet transform.
EURASIP J. Audio Speech Music. Process., 2017:18, 2017. doi: 10.1186/
s13636-017-0116-2. URL https://doi.org/10.1186/s13636-017-0116-2.

S. Maiti and M. I. Mandel. Parametric Resynthesis With Neural Vocoders. In
IEEE Workshop on Applications of Signal Processing to Audio and Acoustics,
WASPAA, pages 303–307, New Paltz, NY, USA, October 2019. IEEE. doi:
10.1109/WASPAA.2019.8937165. URL https://doi.org/10.1109/WASPAA.
2019.8937165.

J. Makhoul and M. G. Berouti. High-frequency regeneration in speech coding
systems. In IEEE International Conference on Acoustics, Speech, and Signal
Processing, ICASSP, pages 428–431, Washington, D. C., USA, April 1979.
IEEE. doi: 10.1109/ICASSP.1979.1170672. URL https://doi.org/10.1109/
ICASSP.1979.1170672.

M. I. Mandel and Y. S. Cho. Audio super-resolution using concatenative resyn-
thesis. In IEEE Workshop on Applications of Signal Processing to Audio
and Acoustics, WASPAA, pages 1–5, New Paltz, NY, USA, October 2015.
IEEE. doi: 10.1109/WASPAA.2015.7336890. URL https://doi.org/10.
1109/WASPAA.2015.7336890.

A. Marafioti, N. Perraudin, N. Holighaus, and P. Majdak. Adversarial Generation
of Time-Frequency Features with application in audio synthesis. In K. Chaud-
huri and R. Salakhutdinov, editors, Proc. of the 36th International Conference
on Machine Learning, ICML, volume 97 of Proceedings of Machine Learning
Research, pages 4352–4362, Long Beach, California, USA, June 2019. PMLR.

B. McFee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Battenberg, et al.
librosa/librosa: 0.7.2, Jan. 2020.

S. Mehri, K. Kumar, I. Gulrajani, R. Kumar, S. Jain, J. Sotelo, A. C. Courville,
and Y. Bengio. SampleRNN: An Unconditional End-to-End Neural Audio
Generation Model. In 5th International Conference on Learning Representa-
tions, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Pro-
ceedings. OpenReview.net, 2017. URL https://openreview.net/forum?id=
SkxKPDv5xl.

D. Michelsanti and Z. Tan. Conditional Generative Adversarial Networks for
Speech Enhancement and Noise-Robust Speaker Verification. In Proc. of the
18th Annual Conference of the International Speech Communication Associa-
tion, INTERSPEECH, Stockholm, Sweden, Aug. 2017.

164

https://doi.org/10.1186/s13636-017-0116-2
https://doi.org/10.1109/WASPAA.2019.8937165
https://doi.org/10.1109/WASPAA.2019.8937165
https://doi.org/10.1109/ICASSP.1979.1170672
https://doi.org/10.1109/ICASSP.1979.1170672
https://doi.org/10.1109/WASPAA.2015.7336890
https://doi.org/10.1109/WASPAA.2015.7336890
https://openreview.net/forum?id=SkxKPDv5xl
https://openreview.net/forum?id=SkxKPDv5xl


E. Miranda. Computer Sound Design: Synthesis Techniques and Programming.
01 2002. ISBN 9780080490755. doi: 10.4324/9780080490755.

M. Miron and M. Davies. High frequency magnitude spectrogram reconstruction
for music mixtures using convolutional autoencoders. In Proc. of the 21st Int.
Conference on Digital Audio Effects (DAFx-18), pages 173–180. IEEE, 2018.

O. Mogren. C-RNN-GAN: Continuous recurrent neural networks with adversarial
training. CoRR, 2016.

V. Moorefield. The Producer as Composer: Shaping the Sounds of Popular Music,
volume 4. 03 2005. doi: 10.1017/S1478572207000564.

N. Mor, L. Wolf, A. Polyak, and Y. Taigman. A Universal Music Translation
Network. CoRR, abs/1805.07848, 2018. URL http://arxiv.org/abs/1805.
07848.

M. Morrison, R. Kumar, K. Kumar, P. Seetharaman, A. Courville, and Y. Bengio.
Chunked Autoregressive GAN for Conditional Waveform Synthesis. 2021.

H. G. Musmann. Genesis of the MP3 audio coding standard. IEEE Trans.
Consumer Electron., 52(3):1043–1049, 2006.

M. Nishimura, K. Hashimoto, K. Oura, Y. Nankaku, and K. Tokuda. Singing
Voice Synthesis Based on Deep Neural Networks. In 17th Annual Conference of
the International Speech Communication Association, INTERSPEECH, pages
2478–2482, San Francisco, CA, USA, September 2016.

J. Nistal, S. Lattner, and G. Richard. DrumGAN: Synthesis of Drum Sounds
With Timbral Feature Conditioning Using Generative Adversarial Networks.
In Proc. of the 21st International Society for Music Information Retrieval,
ISMIR, Montréal, Canada, 2020.

J. Nistal, C. Aouameur, S. Lattner, and G. Richard. VQCPC-GAN: Variable-
Length Adversarial Audio Synthesis using Vector-Quantized Contrastive Pre-
dictive Coding. In IEEE Workshop on Applications of Signal Processing to
Audio and Acoustics, WASPAA, New Paltz, NY, USA, November 2021a.

J. Nistal, S. Lattner, and G. Richard. DarkGAN: Exploiting Knowledge Dis-
tillation for Comprehensible Audio Synthesis with GANs. Proc. of ISMIR,
November 2021b.

J. Nistal, S. Lattner, and G. Richard. Comparing Representations for Audio Syn-
thesis Using Generative Adversarial Networks. In Proc. of the 28th European
Signal Processing Conference, EUSIPCO, Amsterdam, NL, Jan. 2021c.

A. Odena, C. Olah, and J. Shlens. Conditional Image Synthesis with Auxiliary
Classifier GANs. In ICML, pages 2642–2651, Sydney, NSW, Australia, Aug.
2017.

J. Ortega-Garcia and J. Gonzalez-Rodriguez. Overview of speech enhancement
techniques for automatic speaker recognition. In The 4th International Con-
ference on Spoken Language Processing, Philadelphia, PA, USA, October 1996.
ISCA.

165

http://arxiv.org/abs/1805.07848
http://arxiv.org/abs/1805.07848


F. Pachet. The Continuator: Musical Interaction with Style. In Proceedings of
the International Computer Music Conference, ICMC, Gothenburg, Sweden,
September 2002.

T. L. Paine, P. Khorrami, S. Chang, Y. Zhang, P. Ramachandran, M. A.
Hasegawa-Johnson, and T. S. Huang. Fast Wavenet Generation Algorithm.
CoRR, abs/1611.09482, 2016. URL http://arxiv.org/abs/1611.09482.

C. Palombini. Pierre Schaeffer, 1953: towards an experimental music. Music &
Letters, 74(4):542–557, 1993.

N. Papernot, M. Abadi, Ú. Erlingsson, I. J. Goodfellow, and K. Talwar. Semi-
supervised Knowledge Transfer for Deep Learning from Private Training Data.
In 5th International Conference on Learning Representations, ICLR, Toulon,
France, April 2017.

S. R. Park and J. Lee. A Fully Convolutional Neural Network for Speech Enhance-
ment. In F. Lacerda, editor, Interspeech 2017, 18th Annual Conference of the
International Speech Communication Association, Stockholm, Sweden, August
20-24, 2017, pages 1993–1997. ISCA, 2017. URL http://www.isca-speech.
org/archive/Interspeech_2017/abstracts/1465.html.

T. Park, M. Liu, T. Wang, and J. Zhu. Semantic Image Synthesis With
Spatially-Adaptive Normalization. In IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2019, Long Beach, CA, USA, June
16-20, 2019, pages 2337–2346. Computer Vision Foundation / IEEE,
2019. doi: 10.1109/CVPR.2019.00244. URL http://openaccess.thecvf.
com/content_CVPR_2019/html/Park_Semantic_Image_Synthesis_With_
Spatially-Adaptive_Normalization_CVPR_2019_paper.html.

S. Pascual, A. Bonafonte, and J. Serrà. SEGAN: Speech Enhancement Gener-
ative Adversarial Network. In F. Lacerda, editor, 18th Annual Conference of
the International Speech Communication Association, INTERSPEECH, pages
3642–3646, Stockholm, Sweden, August 2017. ISCA.

S. Pascual, J. Serrà, and A. Bonafonte. Towards Generalized Speech Enhance-
ment with Generative Adversarial Networks. In G. Kubin and Z. Kacic, edi-
tors, 20th Annual Conference of the International Speech Communication As-
sociation, INTERSPEECH, pages 1791–1795, Graz, Austria, September 2019.
ISCA. doi: 10.21437/Interspeech.2019-2688. URL https://doi.org/10.
21437/Interspeech.2019-2688.

W. S. Peebles, J. Peebles, J. Zhu, A. A. Efros, and A. Torralba. The Hessian
Penalty: A Weak Prior for Unsupervised Disentanglement. In Computer Vi-
sion - ECCV - 16th European Conference, volume 12351 of Lecture Notes in
Computer Science, pages 581–597, Glasgow, UK, August 2020. Springer.

H. Phan, I. V. McLoughlin, L. D. Pham, O. Y. Chén, P. Koch, M. D. Vos, and
A. Mertins. Improving GANs for Speech Enhancement. IEEE Signal Process.
Lett., 27:1700–1704, 2020.

166

http://arxiv.org/abs/1611.09482
http://www.isca-speech.org/archive/Interspeech_2017/abstracts/1465.html
http://www.isca-speech.org/archive/Interspeech_2017/abstracts/1465.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Park_Semantic_Image_Synthesis_With_Spatially-Adaptive_Normalization_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Park_Semantic_Image_Synthesis_With_Spatially-Adaptive_Normalization_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Park_Semantic_Image_Synthesis_With_Spatially-Adaptive_Normalization_CVPR_2019_paper.html
https://doi.org/10.21437/Interspeech.2019-2688
https://doi.org/10.21437/Interspeech.2019-2688


S. Pidhorskyi, D. A. Adjeroh, and G. Doretto. Adversarial Latent Autoen-
coders. In IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, CVPR, pages 14092–14101, Seattle, WA, USA, June 2020. Computer
Vision Foundation / IEEE.

T. Pinch and F. Trocco. Analog Days, the invention and impact of the Moog
synthesizer. Harvard University Press, 2002.

W. Ping, K. Peng, A. Gibiansky, S. Ö. Arik, A. Kannan, S. Narang, J. Raiman,
and J. Miller. Deep Voice 3: 2000-Speaker Neural Text-to-Speech. CoRR,
abs/1710.07654, 2017.

W. Ping, K. Peng, and J. Chen. ClariNet: Parallel Wave Generation in End-to-
End Text-to-Speech. CoRR, abs/1807.07281, 2018.

W. Ping, K. Peng, K. Zhao, and Z. Song. WaveFlow: A Compact Flow-based
Model for Raw Audio. In Proceedings of the 37th International Conference
on Machine Learning, ICML, volume 119 of Proceedings of Machine Learning
Research, pages 7706–7716, Virtual Event, July 2020. PMLR.

A. Porov, E. Oh, K. Choo, H. Sung, J. Jeong, K. Osipov, and H. Francois.
Music enhancement by a novel CNN architecture. In Audio Engineering Society
Convention 145. Audio Engineering Society, 2018.

R. Prenger, R. Valle, and B. Catanzaro. WaveGlow: A Flow-based Generative
Network for Speech Synthesis. CoRR, abs/1811.00002, 2018.

L. Pruvost, B. Scherrer, M. Aramaki, S. Ystad, and R. Kronland-Martinet.
Perception-based interactive sound synthesis of morphing solids’ interactions.
pages 1–4, 11 2015. doi: 10.1145/2820903.2820914.

A. Ramires, P. Chandna, X. Favory, E. Gómez, and X. Serra. Neural Percussive
Synthesis Parameterised by High-Level Timbral Features. In IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing, ICASSP, May
2020.

E. Ravelli, G. Richard, and L. Daudet. Audio Signal Representations for Indexing
in the Transform Domain. IEEE Trans. Audio, Speech, Language Process., 18
(3):434–446, 2010. doi: 10.1109/TASL.2009.2025099.

D. J. Rezende and S. Mohamed. Variational Inference with Normalizing Flows. In
Proceedings of the 32nd International Conference on Machine Learning, ICML,
pages 1530–1538, Lille, France, July 2015.

C. Roads, A. Piccialli, G. D. Poli, and S. T. Pope. Musical Signal Processing.
Swets & Zeitlinger, USA, 1997. ISBN 9026514832.

A. Roberts, J. Engel, and D. Eck. Hierarchical Variational Autoencoders for
Music. In Workshop on Machine Learning for Creativity and Design, NIPS,
2017. URL https://nips2017creativity.github.io/doc/Hierarchical_
Variational_Autoencoders_for_Music.pdf.

167

https://nips2017creativity.github.io/doc/Hierarchical_Variational_Autoencoders_for_Music.pdf
https://nips2017creativity.github.io/doc/Hierarchical_Variational_Autoencoders_for_Music.pdf


F. Roche. Music sound synthesis using machine learning: Towards a perceptually
relevant control space. PhD thesis, 09 2020.

F. Roche, T. Hueber, S. Limier, and L. Girin. Autoencoders for music sound
synthesis: a comparison of linear, shallow, deep and variational models. CoRR,
abs/1806.04096, 2018.

A. Roebel and F. Bous. Towards universal neural vocoding with a multi-band
excited wavenet. CoRR, abs/2110.03329, 2021. URL https://arxiv.org/
abs/2110.03329.

R. M. Rustamov. Closed-form Expressions for Maximum Mean Discrepancy with
Applications to Wasserstein Auto-Encoders. CoRR, abs/1901.03227, 2019.

A. Saeed, D. Grangier, and N. Zeghidour. Contrastive Learning of General-
Purpose Audio Representations. CoRR, 2020.

Y. Saito, S. Takamichi, and H. Saruwatari. Statistical Parametric Speech Synthe-
sis Incorporating Generative Adversarial Networks. IEEE/ACM Trans. Audio
Speech Lang. Process., 26:84–96, 2018.

T. Salimans, I. J. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen.
Improved Techniques for Training GANs. In NeurIPS, pages 2226–2234,
Barcelona, Spain, Dec. 2016.

S. Schneider, A. Baevski, R. Collobert, and M. Auli. wav2vec: Unsupervised
Pre-Training for Speech Recognition. In INTERSPEECH, Graz, Austria, Sept.
2019.

D. Schwarz. Corpus-Based Concatenative Synthesis. IEEE Signal Process. Mag.,
24(2):92–104, 2007.

M. L. Seltzer, D. Yu, and Y. Wang. An investigation of deep neural networks for
noise robust speech recognition. In IEEE International Conference on Acous-
tics, Speech and Signal Processing, ICASSP, pages 7398–7402, Vancouver, BC,
Canada, May 2013. IEEE.

J. Serrà, S. Pascual, and C. Segura. Blow: a single-scale hyperconditioned flow
for non-parallel raw-audio voice conversion. In Advances in Neural Information
Processing Systems 32, NeurIPS, pages 6790–6800, Vancouver, BC, Canada,
December 2019.

X. Serra. State of the Art and Future Directions in Musical Sound Synthesis.
In IEEE 9th Workshop on Multimedia Signal Processing, MMSP, pages 9–12.
IEEE, October 2007.

X. Serra and J. O. Smith. Spectral Modeling Synthesis: A Sound Analy-
sis/Synthesis Based on a Deterministic plus Stochastic Decomposition. Com-
puter Music Journal, 14:12–24, 1990. doi: http://doi.org/10.2307/3680788.
URL http://hdl.handle.net/10230/33796. SMS.

X. Serra, G. Widmer, and M. Leman. A Roadmap for Sound and Music Comput-
ing. The S2S Consortium, 2007. URL http://hdl.handle.net/10230/34060.

168

https://arxiv.org/abs/2110.03329
https://arxiv.org/abs/2110.03329
http://hdl.handle.net/10230/33796
http://hdl.handle.net/10230/34060


T. R. Shaham, T. Dekel, and T. Michaeli. SinGAN: Learning a Generative Model
From a Single Natural Image. In IEEE/CVF International Conference on
Computer Vision, ICCV, pages 4569–4579, Seoul, Korea (South), November
2019. IEEE.

P. Shaw, J. Uszkoreit, and A. Vaswani. Self-Attention with Relative Position
Representations. In Proceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, NAACL-HLT, pages 464–468, New Orleans, Louisiana,
USA, June 2018.

J. Shen, R. Pang, R. J. Weiss, M. Schuster, N. Jaitly, Z. Yang, Z. Chen, Y. Zhang,
Y. Wang, R. Ryan, R. A. Saurous, Y. Agiomyrgiannakis, and Y. Wu. Natural
TTS Synthesis by Conditioning Wavenet on MEL Spectrogram Predictions.
In IEEE International Conference on Acoustics, Speech and Signal Processing,
ICASSP, pages 4779–4783, Calgary, AB, Canada, April 2018.

Y. Shen, J. Gu, X. Tang, and B. Zhou. Interpreting the Latent Space of GANs for
Semantic Face Editing. In 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, CVPR, pages 9240–9249, Seattle, WA, USA, June
2020. IEEE.

I. Simon and S. Oore. Performance RNN: Generating Music with Expressive Tim-
ing and Dynamics. https://magenta.tensorflow.org/performance-rnn,
2017.

J. Skoglund and J. Valin. Improving Opus Low Bit Rate Quality with Neural
Speech Synthesis. In H. Meng, B. Xu, and T. F. Zheng, editors, Interspeech
2020, 21st Annual Conference of the International Speech Communication As-
sociation, Virtual Event, Shanghai, China, 25-29 October 2020, pages 2847–
2851. ISCA, 2020.

J. O. Smith. Physical Audio Signal Processing. http://ccrma.stanford.edu/-
˜jos/pasp/, a. online book, 2010 edition.

J. O. Smith. Spectral Audio Signal Processing. http://ccrma.stanford.edu/-
˜jos/sasp/, b. online book, 2011 edition.

J. O. Smith. Viewpoints on the History of Digital Synthesis. In Proceedings of the
International Computer Music Conference, ICMC, Montreal, Quebec, Canada,
October 1991. Michigan Publishing.

J. O. Smith. Virtual Acoustic Musical Instruments: Review and Update.
Journal of New Music Research, 33:283–304, 09 2004. doi: 10.1080/
0929821042000317859.

J. Sotelo, S. Mehri, K. Kumar, J. F. Santos, K. Kastner, and A. Courville.
Char2Wav: End-to-End Speech Synthesis. In International Conference on
Learning Representations, ICLR 2017, 2017.

J. Spijkervet and J. A. Burgoyne. Contrastive Learning of Musical Representa-
tions. CoRR, 2021.

169

https://magenta.tensorflow.org/performance-rnn
http://ccrma.stanford.edu/~jos/pasp/
http://ccrma.stanford.edu/~jos/sasp/


C. J. Steinmetz and J. D. Reiss. Randomized Overdrive Neural Networks. CoRR,
abs/2010.04237, 2020. URL https://arxiv.org/abs/2010.04237.

S. S. Stevens, J. Volkmann, and E. B. Newman. A scale for the measurement of
the psychological magnitude pitch. J. Acoust. Soc. Am., 8(3):185–190, 1937.
doi: 10.1121/1.1915893.

J. Su, Z. Jin, and A. Finkelstein. HiFi-GAN: High-Fidelity Denoising and Dere-
verberation Based on Speech Deep Features in Adversarial Networks. In In-
terspeech 2020, 21st Annual Conference of the International Speech Commu-
nication Association, Virtual Event, Shanghai, China, 25-29 October 2020,
pages 4506–4510. ISCA, 2020. doi: 10.21437/Interspeech.2020-2143. URL
https://doi.org/10.21437/Interspeech.2020-2143.

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the
Inception Architecture for Computer Vision. In IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR, pages 2818–2826, Las Vegas,
NV, USA, June 2016. IEEE Computer Society. doi: 10.1109/CVPR.2016.308.

Z. Tang, D. Wang, and Z. Zhang. Recurrent neural network training with dark
knowledge transfer. In 2016 IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP, pages 5900–5904, Shanghai, China,
March 2016. IEEE. doi: 10.1109/ICASSP.2016.7472809.

T. Thiede, W. C. Treurniet, R. Bitto, C. Schmidmer, T. Sporer, J. G. Beerends,
and C. Colomes. PEAQ-The ITU standard for objective measurement of per-
ceived audio quality. Journal of the Audio Engineering Society, 48(1/2):3–29,
2000.

C. Trabelsi, O. Bilaniuk, Y. Zhang, D. Serdyuk, S. Subramanian, J. F. Santos,
S. Mehri, N. Rostamzadeh, Y. Bengio, and C. J. Pal. Deep Complex Net-
works. In 6th International Conference on Learning Representations, ICLR,
Vancouver, BC, Canada, April 2018. OpenReview.net.

A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves,
N. Kalchbrenner, A. W. Senior, and K. Kavukcuoglu. WaveNet: A Generative
Model for Raw Audio. In Proc. of the 9th ISCA Speech Synthesis Workshop,
Sunnyvale, CA, USA, Sept. 2016a.

A. van den Oord, N. Kalchbrenner, L. Espeholt, K. Kavukcuoglu, O. Vinyals,
and A. Graves. Conditional Image Generation with PixelCNN Decoders. In
Advances in Neural Information Processing Systems 29: Annual Conference on
Neural Information Processing Systems, pages 4790–4798, Barcelona, Spain,
December 2016b.

A. van den Oord, N. Kalchbrenner, and K. Kavukcuoglu. Pixel Recurrent Neural
Networks. In Proc. of the 33rd International Conference on Machine Learning,
ICML, New York City, NY, USA, June 2016c.

A. van den Oord, O. Vinyals, and K. Kavukcuoglu. Neural Discrete Representa-
tion Learning. In NeurIPS, Long Beach, CA, USA, Dec. 2017.

170

https://arxiv.org/abs/2010.04237
https://doi.org/10.21437/Interspeech.2020-2143


A. van den Oord, Y. Li, I. Babuschkin, K. Simonyan, O. Vinyals, K. Kavukcuoglu,
G. van den Driessche, E. Lockhart, L. C. Cobo, F. Stimberg, N. Casagrande,
D. Grewe, S. Noury, S. Dieleman, E. Elsen, N. Kalchbrenner, H. Zen, A. Graves,
H. King, T. Walters, D. Belov, and D. Hassabis. Parallel WaveNet: Fast High-
Fidelity Speech Synthesis. In Proceedings of the 35th International Conference
on Machine Learning, ICML, pages 3915–3923, Stockholmsmässan, Stockholm,
Sweden, July 2018a.

A. van den Oord, Y. Li, and O. Vinyals. Representation Learning with Contrastive
Predictive Coding. CoRR, 2018b.

B. van Niekerk, L. Nortje, and H. Kamper. Vector-Quantized Neural Networks
for Acoustic Unit Discovery in the ZeroSpeech 2020 Challenge. In INTER-
SPEECH, Shanghai, China, Oct. 2020.

S. Vasquez and M. Lewis. MelNet: A Generative Model for Audio in the Fre-
quency Domain. CoRR, abs/1906.01083, 2019.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin. Attention is All you Need. In Advances in
Neural Information Processing Systems 30: Annual Conference on NeurIPS,
pages 6000–6010, Long Beach, CA, USA, December 2017.

G. A. Velasco, N. Holighaus, M. Doerfler, and T. Grill. Constructing an invertible
constant-Q transform with nonstationary Gabor frames. Proceedings of the 14th
International Conference on Digital Audio Effects, DAFx 2011, 09 2011.

P. Verma and J. O. S. III. A Framework for Contrastive and Generative Learning
of Audio Representations. CoRR, 2020.

C. Villani. Optimal Transport: Old and New. Grundlehren der mathematischen
Wissenschaften. Springer Berlin Heidelberg, 2008. ISBN 9783540710509. URL
https://books.google.es/books?id=hV8o5R7_5tkC.

A. Voynov and A. Babenko. Unsupervised Discovery of Interpretable Directions
in the GAN Latent Space. In Proceedings of the 37th International Conference
on Machine Learning, ICML, volume 119 of Proceedings of Machine Learning
Research, pages 9786–9796, Virtual Event, July 2020. PMLR.

L. Wang and A. van den Oord. Multi-Format Contrastive Learning of Audio
Representations. CoRR, 2021.

Y. Wang, R. J. Skerry-Ryan, D. Stanton, Y. Wu, R. J. Weiss, N. Jaitly, Z. Yang,
Y. Xiao, Z. Chen, S. Bengio, Q. V. Le, Y. Agiomyrgiannakis, R. Clark, and
R. A. Saurous. Tacotron: Towards End-to-End Speech Synthesis. In 18th
Annual Conference of the International Speech Communication Association,
INTERSPEECH, pages 4006–4010, Stockholm, Sweden, August 2017.

D. S. Williamson and D. Wang. Speech dereverberation and denoising using
complex ratio masks. In 2017 IEEE International Conference on Acoustics,
Speech and Signal Processing, ICASSP 2017, New Orleans, LA, USA, March
5-9, 2017, pages 5590–5594. IEEE, 2017.

171

https://books.google.es/books?id=hV8o5R7_5tkC


D. S. Williamson, Y. Wang, and D. Wang. Complex Ratio Masking for Monaural
Speech Separation. IEEE ACM Trans. Audio Speech Lang. Process., 24(3):
483–492, 2016. doi: 10.1109/TASLP.2015.2512042. URL https://doi.org/
10.1109/TASLP.2015.2512042.

H. Xiao, K. Rasul, and R. Vollgraf. Fashion-MNIST: a Novel Image Dataset for
Benchmarking Machine Learning Algorithms. CoRR, abs/1708.07747, 2017.

Y. Xu, J. Du, L. Dai, and C. Lee. A Regression Approach to Speech Enhance-
ment Based on Deep Neural Networks. IEEE ACM Trans. Audio Speech
Lang. Process., 23(1):7–19, 2015. doi: 10.1109/TASLP.2014.2364452. URL
https://doi.org/10.1109/TASLP.2014.2364452.

R. Yamamoto, E. Song, and J. Kim. Parallel Wavegan: A Fast Waveform Gener-
ation Model Based on Generative Adversarial Networks with Multi-Resolution
Spectrogram. In IEEE International Conference on Acoustics, Speech and Sig-
nal Processing, ICASSP, pages 6199–6203, Barcelona, Spain, May 2020. IEEE.

L.-P. Yang and Q.-J. Fu. Spectral subtraction-based speech enhancement for
cochlear implant patients in background noise. The Journal of the Acoustical
Society of America, 117:1001–4, 04 2005. doi: 10.1121/1.1852873.

J. Yoon, D. Jarrett, and M. van der Schaar. Time-series Generative Adversarial
Networks. In NeurIPS, Vancouver, BC, Canada, Dec. 2019.

S. Ystad. Sound Modeling Using a Combination of Physical and Signal Models.
PhD thesis, March 1998.

S. Ystad, M. ARAMAKI, and R. Kronland-Martinet. Timbre from Sound
Synthesis and High-level Control Perspectives. In Timbre: Acoustics, Per-
ception, and Cognition, volume 69 of Springer Handbook of Auditory Re-
search Series (SHAR), pages 361–389. Springer Nature, 2019. URL https:
//hal.archives-ouvertes.fr/hal-01766645.

L. Yu, W. Zhang, J. Wang, and Y. Yu. SeqGAN: Sequence Generative Adversarial
Nets with Policy Gradient. In AAAI Conference on Artificial Intelligence, San
Francisco, California, USA, Feb. 2017.

M. Yuan and Y. Peng. Text-to-image Synthesis via Symmetrical Distillation
Networks. In 2018 ACM Multimedia Conference on Multimedia Conference,
MM, pages 1407–1415, Seoul, Republic of Korea, October 2018. ACM. doi:
10.1145/3240508.3240559.

M. Yuan and Y. Peng. CKD: Cross-Task Knowledge Distillation for Text-to-
Image Synthesis. IEEE Trans. Multim., 22(8):1955–1968, 2020. doi: 10.1109/
TMM.2019.2951463.

S. Zhao, T. H. Nguyen, and B. Ma. Monaural Speech Enhancement with Com-
plex Convolutional Block Attention Module and Joint Time Frequency Losses.
CoRR, abs/2102.01993, 2021.

172

https://doi.org/10.1109/TASLP.2015.2512042
https://doi.org/10.1109/TASLP.2015.2512042
https://doi.org/10.1109/TASLP.2014.2364452
https://hal.archives-ouvertes.fr/hal-01766645
https://hal.archives-ouvertes.fr/hal-01766645


Z. Zhao, H. Liu, and T. Fingscheidt. Convolutional Neural Networks to Enhance
Coded Speech. IEEE ACM Trans. Audio Speech Lang. Process., 27(4):663–678,
2019. doi: 10.1109/TASLP.2018.2887337. URL https://doi.org/10.1109/
TASLP.2018.2887337.

J. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired Image-to-Image Translation
using Cycle-Consistent Adversarial Networks. CoRR, abs/1703.10593, 2017.

M. Zhu and S. Gupta. To Prune, or Not to Prune: Exploring the Efficacy of
Pruning for Model Compression. In 6th International Conference on Learning
Representations, ICLR, Vancouver, BC, Canada, April 2018. OpenReview.net.

Z. Zhu, J. H. Engel, and A. Y. Hannun. Learning Multiscale Features Directly
from Waveforms. In INTERSPEECH, pages 1305–1309, San Francisco, CA,
USA, Sept. 2016. doi: 10.21437/Interspeech.2016-256.

173

https://doi.org/10.1109/TASLP.2018.2887337
https://doi.org/10.1109/TASLP.2018.2887337


Titre : Synthèse Audio Musicale Contrôlable à l’aide de Réseaux Antagonistes Génératifs
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Résumé :
Les synthétiseurs audio sont des instruments de mu-
sique électroniques qui génèrent des sons artificiels
sous un certain contrôle paramétrique. Alors que les
synthétiseurs ont évolué depuis leur popularisation
dans les années 70, deux défis fondamentaux res-
tent encore non résolus : 1) le développement de
systèmes de synthèse répondant à des paramètres
sémantiquement intuitifs ; 2) la conception de tech-
niques de synthèse ≪universelles≫, indépendantes
de la source à modéliser. Cette thèse étudie l’utili-
sation des réseaux adversariaux génératifs (ou GAN)
pour construire de tels systèmes. L’objectif principal
est de rechercher et de développer de nouveaux outils
pour la production musicale, qui offrent des moyens
intuitifs et expressifs de manipulation du son, par
exemple en contrôlant des paramètres qui répondent
aux propriétés perceptives du son et à d’autres ca-
ractéristiques.
Notre premier travail étudie les performances
des GAN lorsqu’ils sont entraı̂nés sur diverses
représentations de signaux audio (par exemple,
forme d’onde, représentations temps-fréquence).
Ces expériences comparent différentes formes de
données audio dans le contexte de la synthèse
sonore tonale. Les résultats montrent que la
représentation magnitude-fréquence instantanée et la
transformée de Fourier à valeur complexe obtiennent
les meilleurs résultats.
En s’appuyant sur ce résultat, notre travail suivant
présente DrumGAN, un synthétiseur audio de sons
percussifs. En conditionnant le modèle sur des ca-
ractéristiques perceptives décrivant des propriétés
timbrales de haut niveau, nous démontrons qu’un
contrôle intuitif peut être obtenu sur le processus
de génération. Ce travail aboutit au développement
d’un plugin VST générant de l’audio haute résolution
et compatible avec les Stations de Travail Au-
dio Numériques (STAN). Nous montrons un vaste
matériel musical produit par des artistes profession-
nels de Sony ATV à l’aide de DrumGAN.
La rareté des annotations dans les ensembles de
données audio musicales remet en cause l’application
de méthodes supervisées pour la génération condi-
tionnelle. Notre troisième contribution utilise une ap-
proche de distillation des connaissances pour ex-
traire de telles annotations à partir d’un système
d’étiquetage audio pré-entraı̂né. DarkGAN est un

synthétiseur de sons tonaux qui utilise les probabi-
lités de sortie d’un tel système (appelées ≪ étiquettes
souples ≫) comme informations conditionnelles. Les
résultats montrent que DarkGAN peut répondre
modérément à de nombreux attributs intuitifs, même
avec un conditionnement d’entrée hors distribution.
Les applications des GAN à la synthèse audio ap-
prennent généralement à partir de données de spec-
trogramme de taille fixe, de manière analogue aux
≪données d’image≫ en vision par ordinateur ; ainsi,
ils ne peuvent pas générer de sons de durée va-
riable. Dans notre quatrième article, nous abordons
cette limitation en exploitant une méthode auto-
supervisée pour l’apprentissage de caractéristiques
discrètes à partir de données séquentielles. De telles
caractéristiques sont utilisées comme entrée condi-
tionnelle pour fournir au modèle des informations
dépendant du temps par étapes. La cohérence glo-
bale est assurée en fixant le bruit d’entrée z (ca-
ractéristique en GANs). Les résultats montrent que,
tandis que les modèles entraı̂nés sur un schéma de
taille fixe obtiennent une meilleure qualité et diversité
audio, les nôtres peuvent générer avec compétence
un son de n’importe quelle durée.
Une direction de recherche intéressante est la
génération d’audio conditionnée par du matériel mu-
sical préexistant, par exemple, la génération d’un
motif de batterie compte tenu de l’enregistrement
d’une ligne de basse. Notre cinquième article ex-
plore une tâche prétexte simple adaptée à l’apprentis-
sage de tels types de relations musicales complexes.
Concrètement, nous étudions si un générateur GAN,
conditionné sur des signaux audio musicaux haute-
ment compressés, peut générer des sorties ressem-
blant à l’audio non compressé d’origine. Les résultats
montrent que le GAN peut améliorer la qualité des si-
gnaux audio par rapport aux versions MP3 pour des
taux de compression très élevés (16 et 32 kbit/s).
En conséquence directe de l’application de tech-
niques d’intelligence artificielle dans des contextes
musicaux, nous nous demandons comment la tech-
nologie basée sur l’IA peut favoriser l’innovation dans
la pratique musicale. Par conséquent, nous concluons
cette thèse en offrant une large perspective sur le
développement d’outils d’IA pour la production mu-
sicale, éclairée par des considérations théoriques et
des rapports d’utilisation d’outils d’IA dans le monde
réel par des artistes professionnels.
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Abstract : Audio synthesizers are electronic musi-
cal instruments that generate artificial sounds un-
der some parametric control. While synthesizers have
evolved since they were popularized in the 70s, two
fundamental challenges are still unresolved : 1) the
development of synthesis systems responding to se-
mantically intuitive parameters ; 2) the design of ”uni-
versal,” source-agnostic synthesis techniques. This
thesis researches the use of Generative Adversarial
Networks (GAN) towards building such systems. The
main goal is to research and develop novel tools for
music production that afford intuitive and expressive
means of sound manipulation, e.g., by controlling pa-
rameters that respond to perceptual properties of the
sound and other high-level features.
Our first work studies the performance of GANs when
trained on various common audio signal represen-
tations (e.g., waveform, time-frequency representa-
tions). These experiments compare different forms of
audio data in the context of tonal sound synthesis. Re-
sults show that the Magnitude and Instantaneous Fre-
quency of the phase and the complex-valued Short-
Time Fourier Transform achieve the best results.
Building on this, our following work presents Drum-
GAN, a controllable adversarial audio synthesizer of
percussive sounds. By conditioning the model on per-
ceptual features describing high-level timbre proper-
ties, we demonstrate that intuitive control can be gai-
ned over the generation process. This work results
in the development of a VST plugin generating full-
resolution audio and compatible with any Digital Audio
Workstation (DAW). We show extensive musical ma-
terial produced by professional artists from Sony ATV
using DrumGAN.
The scarcity of annotations in musical audio datasets
challenges the application of supervised methods to
conditional generation settings. Our third contribution
employs a knowledge distillation approach to extract
such annotations from a pre-trained audio tagging
system. DarkGAN is an adversarial synthesizer of to-

nal sounds that employs the output probabilities of
such a system (so-called “soft labels”) as conditional
information. Results show that DarkGAN can respond
moderately to many intuitive attributes, even with out-
of-distribution input conditioning.
Applications of GANs to audio synthesis typically
learn from fixed-size two-dimensional spectrogram
data analogously to the ”image data” in computer vi-
sion ; thus, they cannot generate sounds with variable
duration. In our fourth paper, we address this limita-
tion by exploiting a self-supervised method for lear-
ning discrete features from sequential data. Such fea-
tures are used as conditional input to provide step-
wise time-dependent information to the model. Glo-
bal consistency is ensured by fixing the input noise z
(characteristic in adversarial settings). Results show
that, while models trained on a fixed-size scheme ob-
tain better audio quality and diversity, ours can com-
petently generate audio of any duration.
One interesting direction for research is the genera-
tion of audio conditioned on preexisting musical ma-
terial, e.g., the generation of some drum pattern gi-
ven the recording of a bass line. Our fifth paper ex-
plores a simple pretext task tailored at learning such
types of complex musical relationships. Concretely,
we study whether a GAN generator, conditioned on
highly compressed MP3 musical audio signals, can
generate outputs resembling the original uncompres-
sed audio. Results show that the GAN can improve
the quality of the audio signals over the MP3 versions
for very high compression rates (16 and 32 kbit/s).
As a direct consequence of applying artificial intelli-
gence techniques in musical contexts, we ask how
AI-based technology can foster innovation in musi-
cal practice. Therefore, we conclude this thesis by
providing a broad perspective on the development of
AI tools for music production, informed by theoreti-
cal considerations and reports from real-world AI tool
usage by professional artists.
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