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Titre : Développement d’une approche de simulation hybride pour les calculs de débits de dose dans les opérations de 

démantèlement de réacteurs nucléaires 

Mots clés : Monte Carlo, Démantèlement, Réduction de variance, Transport de gamma, estimateur e-TLE 

Résumé : Lors du démantèlement d’instal lations 

nucléaires, le niveau du débit de dose doit être estimé à 

l’aide d’outils de calcul vérifiés, validés et qualifiés afin 

d ’ê t re  en  m esure  de  p l an i f i e r  l e  s céna r io  de 

démantè lem ent  l e  p lus  opt imisé  en term e de 

radioprotection. Il existe aujourd’hui deux méthodes 

classiques pour estimer le débit de dose : les méthodes 

Monte-Carlo (MC), précises mais nécessitant un grand 

nombre d’heures de calcul, et la technique du noyau 

ponctuel (ou PKI pour Point Kernel Integration), moins 

précise mais beaucoup plus rapide. Une approche 

intermédiaire est de développer une méthode dite 

« hybride » combinant la précision de la simulation MC à 

la rapidité d’un algorithme déterministe de dépôt de dose. 

Une telle hybridation du parcours des particules peut 

fournir une alternative efficace à une simulation MC 

classique. D’un point de vue algorithmique, cette approche 

est fondée sur la même physique que celle implémentée 

dans les simulations MC et prend donc en compte les 

différentes hétérogénéités rencontrées lors du transport 

des particules. Dans le cadre de cette thèse, une approche 

hybride basée sur l’estimateur « exponential track length » 

(e-TLE) a été implémentée dans le code Monte Carlo du 

CEA, TRIPOLI-4®, et mise en œuvre pour le transport des 

rayonnements gamma dans des configurations typiques 

d’installations nucléaires en phase de démantèlement. 

Les rayonnements gamma contribuent en effet 

majoritairement au débit de dose à l’arrêt de 

l’installation. L’estimateur e-TLE a en premier lieu été 

implémenté dans sa version de base dans le but de 

vérifier la cohérence des résultats avec les autres 

estimateurs déjà disponibles dans TRIPOLI-4®. Dans un 

second temps, afin d’optimiser les gains en performance 

observés pour la version de base de l’estimateur, deux 

versions spécifiques ont été développées : une version 

locale combinée à un algorithme de détection forcée 

permettant un gain en performance de plusieurs ordres 

de grandeur pour des détecteurs dits locaux, et une 

version globale associée à une technique de « splitting » 

permettant l’obtention d’une carte de dose de façon 

plus rapide. Dans chaque cas de figure, des 

configurations-types d’installations en cours de 

démantèlement ont été étudiées et le gain en 

performance de l’estimateur estimé. 
 

 

Title : Development of a hybrid simulation approach for dose rate calculations in nuclear reactor dismantling operations 

Keywords : Monte Carlo, Dismantling, VRT, Gamma transport, e-TLE 

Abstract : When decommissioning nuclear facilities, the 

dose rate level should be estimated using calculation tools 

which are verified, validated and qualified to be able to plan 

the optimal decommissioning scenario in terms of 

radioprotection. At the present time, there are two classic 

methods for estimating dose rate: Monte Carlo methods 

(MC), accurate but requiring long computation times, and 

the point-kernel integration (PKI), less accurate but much 

faster. An intermediate approach is to develop a so-called 

“hybrid” method combining the precision of the MC 

simulation with the speed of a deterministic algorithm for 

dose deposition. Such hybridization of the particle path 

may provide an efficient alternative to the classic MC 

simulation. From an algorithmic point of view, this 

approach is based on the same physics implemented in the 

MC simulations and therefore takes into account the 

different heterogeneities encountered during particle 

transport. As part of this thesis, it is proposed to develop a 

similar hybrid approach for gamma radiation transport in 

configurations that are typically found in nuclear facilities 

during decommissioning, these radiations contributing 

for the larger part to dose rate at the shutdown of the 

facility. The hybridation has been implemented through 

the “exponential track length estimator” (e-TLE), first in its 

basic version in order to analyse the consistency of the 

results with the other estimators already available in 

TRIPOLI-4®. Secondly, in order to optimize the 

performance gains observed for the basic version of the 

estimator, two specific versions have been developed: a 

local version combining the basic e-TLE with a forced 

detection algorithm and allowing a performance gain of 

several orders of magnitude for so-called local detectors 

and a global version combined with a “splitting” 

technique and allowing a faster determination of dose 

meshes. In each case, typical configurations of 

installations being dismantled were studied to assess the 

performance gain of the estimator.  
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Introduction 

In about a year from the writing of this thesis, on the 2 December 2022, the world will celebrate the 80th anniversary 

of the first-ever controlled chain reaction in an artificial fission reactor. That crucial experiment, carried on by 

Enrico Fermi and his team, marked the beginning of the nuclear era of energy production. Nowadays, nuclear 

fission still represents a significant part of the global energy mix, accounting for more than 10% of worldwide 

electricity generation [1] and thus being the second most utilized zero-emission energy source, right after 

hydroelectric. However, 65 years after the first grid-connected nuclear plant began activity, the nuclear industry 

needs to put more and more attention towards an important challenge that will become even more prominent in 

the following years: decommissioning.  

With almost 70% of the reactors worldwide being over 30 years of age, and more than 20% being over 40 years 

old [2], lifetime extensions are surely a great answer to the age problem, but surely not a definitive one. In fact, 

thanks to their solidity and security, most nuclear plants can continue to function well beyond their initial planned 

life span of 35-40 years, and the operations of lifetime extension are becoming a standard in the industry. However, 

in their 2020 annual report [3], the IAEA (International Atomic Energy Agency) estimates that between 47 and 

130 GW of nuclear electrical generating capacity will have to be decommissioned before the year 2030.  

The D&D (decommissioning and dismantling) of a nuclear facility [4] begins as soon as the operational phase of 

the facility ends, and covers all the technical and administrative actions that take place until the facility is either 

removed or completely requalified for other uses. These actions may involve some or all of the activities associated 

with dismantling of plant and equipment, decontamination of structures and components, remediation of 

contaminated ground and disposal of the resulting wastes. It is an extremely long and complex task, involving 

many different technical aspects (such as economics, safety, neutronics, radiation physics), and it is heavily 

regulated. That is why researching new methods that would allow simplifying and speeding up the process is a 

subject of particular interest. 

To offer a complete view of the context of this thesis, the first part aims to offer an exhaustive description of the 

decommissioning framework, with a particular focus on its implementation in France and on the role of simulation 

tools in D&D activities. 
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Nuclear energy in France 

With its 56 operating nuclear reactors producing 379 TWh of electricity in 2019 [5], France is the second country 

in the world for total nuclear energy production. If we consider the nuclear share in the total amount of electricity 

generated, France is the first country in the word, relying on nuclear for a little more than 70% of its electricity 

production. This choice of relying heavily on nuclear fission for the country’s energy needs dates back to 1974, 

when a government program laid the basis for the shift from oil to nuclear energy that took place in the following 

years. Nowadays, France has a cost of electricity well below the European Union’s average as well as one of the 

most decarbonized electricity grids in Europe. 

However, with the majority of French nuclear reactors being built in the 80s, the nuclear authorities now have to 

decide which ones can see their activities prolonged, and which ones are to face decommissioning. In any case, 

most of the country’s nuclear fleet will have to be decommissioned in the next 5 to 10 years. Figure I.1 shows the 

situation in 2019: 35 nuclear facilities (including reactors, reprocessing facilities and research facilities) were either 

under dismantling or waiting to be dismantled. 

 

Figure I.1: French nuclear facilities undergoing dismantling in 2019 (source: ASN website [6]) 

Therefore, it is evident that the challenges posed by the decommissioning of nuclear facilities are of particular 

importance at this moment, in France as in the rest of the world. In the next section, we will offer a more in-depth 

view of the D&D process: first from an administrative point on view, centered on French legislature, then from a 

more technical point of view. 
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Decommissioning and dismantling (D&D) 

As already noted, the D&D of a nuclear installation is an extremely long process, which can take up to 30-40 years 

for the biggest plants. The process effectively starts when the installation is still functioning (two to three years 

before the complete shutdown of operations) and it ends when the installation area is either completely free of 

buildings, or with the remaining buildings fully covered and shielded by radiation, ready to be requalified for other 

uses. Depending on both the workflow and the final state of the installation, three types of dismantling can be 

defined, as highlighted in Table I.1: 

 Immediate dismantling: it begins shortly after the shutdown of operations, sometimes after a brief 

transition period aimed at planning and preparing the dismantling process. This solution is fast and cost-

effective, as there are no added cost arising from the maintenance of the facility after the shutdown. 

Knowledge of the facility is readily available, which simplifies the safety calculations and the planning 

of operations; the aging of buildings and structures is kept to a minimum; the zone is quickly available to 

be used again. 

 Deferred dismantling: between the end of operations and the beginning of dismantling, the installation 

is monitored and put in a safe state, allowing for a natural decrease of radiation. This procedure is slower 

and more expensive than the immediate dismantling, due to the added costs of the monitoring period and 

the slow loss of knowledge of the facility over time. However, it is often safer for the workers, due to the 

fact that radiation levels are allowed to decrease before the start of operations. Moreover, the birth of new 

technologies during the monitoring period could lead to better operations.  

 Entombment: in this limit case, the target installation is just shielded with concrete and possibly buried. 

A very well-known example is Chernobyl’s nuclear plant, which was enclosed in a concrete sarcophagus 

immediately after the famous incident. Of course, in that case, the extraordinarily dangerous conditions 

limited the options available for dismantling. Entombment is generally a cost-effective and extremely fast 

option; however, due to its high unsustainability, it should only be used if absolutely necessary. 

 

Table I.1: Comparison between different dismantling procedures 

Dismantling procedure Time Cost Safety Public impact Sustainability 

Immediate dismantling Fast Low High Good Very good 

Deferred dismantling Slow High Very high Medium Good 

Entombment Very fast Very low High Bad Very bad 

Due to its many advantages, the immediate dismantling option is the preferable one and it is usually adopted in 

France. From the legislative point of view, the procedure is codified in specific laws [7–9] and decrees [10–12]. 

These documents define in a rigorous way the nuclear installations to which they apply (INB, Installation 

Nucléaire de Base), the various constraints to which the D&D operations are subjected (economic constraints, 

safety constraints, time constraints), as well as the requirements on the transport, storage and management of 

radioactive waste. Laws and decrees about nuclear dismantling are enforced by the ASN (Autorité de sûreté 
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nucléaire), which emits guidelines for the contractors to follow and operates as a control organ to ensure that all 

the requirements are met. 

The timeline for the D&D of an INB in France, as defined by the law and the ASN guidelines, is schematized in 

Figure I.2, and can be summarized as follows. 

1. At least two years before the shutdown of operations, the contractor must send to the ASN a declaration 

of final shutdown (déclaration d’arrêt définitif du fonctionnement). Together with this document, the 

contractor must include the proposed date of shutdown, a summary of the preliminary operations to be 

conducted before dismantling, and an updated version of the dismantling plan (plan de démantèlement). 

2. No more than two years after the déclaration d’arrêt, a “dossier” (dossier de décret de démantèlement) 

is examined by the ASN. This document must include an up-to-date version of the dismantling plan, a 

study of the environmental impact, and a risk analysis. 

3. The preliminary operations (OPDEM - Opérations Préparatoires au DÉMantèlement) may begin soon 

after the final shutdown, or even before in some cases. These operations include, for example, the 

radiological characterisation of the installation, the emptying of the pipe system, the evacuation of the 

removable dangerous substances in the installation, the removal of most part of the radiological source 

term (i.e. unloading of the core in the case of a nuclear plant). 

4. The activity of the installation is declared permanently over (arrêt définitif du fonctionnement). 

5. If the dossier de décret de démantèlement is approved by the ASN, the dismantling operations may begin 

after the ASN issues a decree (décret de démantèlement). The ASN keeps monitoring the operations to 

ensure that the initial plan is followed and all requirements are met. Several “stopping points” (points 

Décret de démantèlement 

(ASN) 

Points d’arrêt (ASN & IRSN) 

Figure I.2: Diagram of the most important legislative steps of D&D in France 
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d’arrêt) may be required both by the ASN and by the IRSN (Institut de Radioprotection et de Sûreté 

Nucléaire) between the different phases of dismantling, to facilitate the control operations. 

6. Finally, after the dismantling is completed, if no residual pollution - chemical or radiological - is found 

on the installation ground, the ASN declares the decommissioning of the zone; this is officialised with 

the ratification of a dossier de déclassement conjointly approved with the French Government. 

Besides regulatory constraints, a decommissioning project is also subject to four other curbs: (i) technical, 

(ii) financial, (iii) organisational and (iv) temporal, and to four main objectives: (i) strategy establishment, 

(ii) technical choice and feasibility evaluation, (iii) adaptations and modifications of the installations, 

(iv) definition of a baseline scenario for the security. To answer these different constraints and objectives, a 

scenario study is applied. The structure of the scenario breaks down in three acts: 

 Knowledge of the initial state is essential to develop the scenario and manage the radioactive waste 

stream.  

 In a second step, the elementary operations and the links between them have to be listed under the form 

of a flowchart. 

 Finally, the “best” scenario is selected by a multi-criteria analysis: technical feasibility, waste 

management method, dosimetric balance sheet, safety and security risks, duration of operations, overall 

cost of the scenario. 

Given the complexity of the whole D&D procedure, it is easy to imagine how important it is for decision-makers 

to have reliable numerical tools that can help identifying the risks and the opportunities, and ultimately facilitating 

the choice of the best strategy to pursue.  

Role of simulation tools in dismantling applications 

In the dismantling process, the radiological characterization of components is of utmost importance as the isotopic 

composition will determine the action planning and assign the most appropriate disposal route for nuclear waste. 

In-situ measurement of the radionuclides inventory can be technically difficult because of the high dose rate 

encountered, access limitations and geometry complexity. In such cases, application of computational approaches 

based on neutron transport calculations and radionuclide inventory calculation has been shown to be a powerful 

tool. They allow: 

 the control of the evolution of the source term, 

 the control and the reduction of the uncertainties through specific measurements, 

 the assessment of the classification of waste according to their activities, 

 the estimation of the ambient dose rate for decommissioning operations. 

From the neutronic and radiological point of view, calculation tools dedicated to D&D have to address two main 

problems: the evaluation of the so-called source term, i.e. the spatial and energy distribution of radiation sources 

in the installation coming from neutronic activation and contamination, and the relative expected dose rate for 

operators inside the domain of interest. The source term evaluation due to activation is usually characterized by 



XXIII 

 

two distinct calculation phases, each one with a dedicated simulation tool: core calculation and flux calculations; 

results of this step give access to the activation of structures, which gives information about the gamma source 

distributions; the dose rate evaluation is performed by means of a shielding calculation. Due to the varied nature 

of this calculation phases, involving transport of different particles (neutrons and photons) and a depletion 

calculation phase, the complete process usually involves different codes; since the 90s, several calculation systems 

have been developed by coupling a particle transport code with an isotopic inventory code. Some examples 

include: MCODE [13], combining MCNP [14] and ORIGEN [15]; a coupling [16] between MCNP and FISPACT 

[17]; a coupling [18] between MCNP and ACAB [19]. Moreover, a CEA-developed calculation system called 

DEMAIN (DEMantèlement et Assainissement des Installations Nucléaires) [20] was recently established, based 

on a coupling between TRIPOLI-4® [21] and DARWIN [22] or its successor, MENDEL [23, 24]. 

We will now look more in detail to the four calculation phases cited above and the main calculation tools associated 

with each of them in the CEA DEMAIN package. 

Core calculation (determination of fission sources) 

The first step of a D&D calculation consists in determining the “shape” of the neutron flux inside the core. First 

of all, a deep knowledge of all relevant data for the core under consideration is needed. This includes: the detailed 

geometry of the core; the microscopic cross sections of all isotopes inside; the isotopic compositions of fuel and 

structural elements. Once these factors are known, fission sources can be determined with a full Monte Carlo (MC) 

core model by using the TRIPOLI-4® [21] CEA code or with a deterministic scheme based on codes such as 

APOLLO2 [25].  

If the deterministic option is chosen, core calculation relies on two steps known respectively as lattice and core 

calculations [26]. The lattice calculations are performed with the deterministic neutron transport code APOLLO2, 

281 SHEM energy groups [27] and CEAV5.1.2 cross section library which comes from JEFF3.1.1 evaluation [28]. 

The collapsed and homogenized cross sections obtained with APOLLO2, called SAPHYB libraries, are then 

automatically handled by the CEA 3D deterministic code CRONOS2 [29] for core calculations. 

Conversely, if the stochastic option is chosen, a full-core 3D continuous energy MC criticality simulation is 

performed with TRIPOLI-4® in order to compute the neutron flux distribution. 

Flux calculations 

Core calculation results are then used in the MC based neutron transport step to describe the reactor core and the 

associated sources. For this step, additional knowledge of the plant is needed, namely the geometry and isotopic 

composition of all the structures outside of the core which could be activated. The calculations are performed with 

TRIPOLI-4® version 10.2 and CEAV5.1.2 data library based on JEFF3.1.1 [28] in order to determine the neutron 

flux in the structures of interest. The neutron flux is calculated at the nominal power rating conditions and each 

flux is homogenized in a limited number of energy groups (TRIPOLI-4® 315 groups). The precise knowledge of 

neutron flux distribution in both energy and space is paramount to activation calculation conducted in the next 

step.  
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Once the neutron flux is known with a good level of approximation, this information can be combined with 

operational data relative to the plant usage and fuel burnup to obtain the total neutron fluence distribution, a 

quantity that is directly proportional to the activation of structural materials. 

Activation calculations 

Once the flux is known, the activation of all structural materials must be determined. Activation is a process in 

which a stable material becomes radioactive after exposure to a neutron source. This usually happens after the 

stable nucleus captures the neutron, therefore entering an excited state. It is quite intuitive to note that, in most 

cases, activation is directly proportional both to neutron flux and to the total time of exposure; this is why the 

quantity Φ ∙ t (called neutron fluence) is necessary in this phase. In addition to the previously evaluated neutron 

flux distribution, some more data relative to plant operations are required: notably, a workflow diagram describing 

the plant workload throughout the years and a detailed description of the isotopic composition of structural 

materials, including the impurity levels in steel and concrete. This is particularly important because even elements 

with a very low concentration can greatly contribute to total radioactivity after activation. 

In particular, when only the thermal neutron flux is considered for calculations, the most important reaction is (n,γ) 

and the greatest activities correspond to the following radionuclides: 59Ni, 63Ni, 55Fe and 60Co. If the complete 

spectrum of neutron flux is considered for calculations, nearly all reactions are considered and the radioisotopes 

produced are the following: 3H, 14C, 28Al, 36Cl, 41Ca, 45Ca, 54Mn, 46Sc, 55Fe, 60Co, 59Ni, 63Ni, 65Zn, 94Nb, 93Mo, 

108mAg, 110mAg, 152Eu, 154Eu and 178Hf. As we will see in Chapter 3, 60Co, in particular, has a major role in the 

studies presented in this thesis. This isotope is produced by capture reaction on 59Co. In steels, 59Co is present from 

few hundred of part per million (ppm) in carbon steels (reactor pressure level for example) to thousands of ppm in 

stainless steels. 60Co is a (β,γ) emitter (1173, 1332 keV γ rays) and plays a major role in the external exposition of 

operators, especially during D&D activities. 

If the detailed composition of materials is not available, a maximisation criterion is adopted to over-estimate the 

concentration of activation-sensible materials due to safety reasons.  Depletion codes such as CEA’s DARWIN or 

MENDEL package [22, 23], which solve Bateman’s differential equations, are employed at this stage of the 

calculation. The nuclear data library used for activation calculation is EAF-2001 [30].  

After this step, results are compared with measurements data coming from the plant, the assumptions done in the 

simulation setup (usually the impurity level in structures or the historical data) are re-assessed if necessary, then 

the calculation is updated iteratively until a reasonable accordance between experimental data and simulation 

results is achieved. 

Shielding calculations 

Once all the radiation sources have been identified, and their spatial and energy distribution is known, the final 

part of the radiological analysis can be performed. Shielding calculations allow to retrieve the expected dose rate 

in specific points of the domain considered, knowing the source term distribution and the geometrical and material 

details (attenuation coefficients, compositions) of the installation. This is a crucial step in the planning phase of 

the dismantling process, as it allows taking safety-related decisions on the working personnel. For example, if the 
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dose rate levels in a certain room are too high, remote intervention through teleoperation may be chosen over direct 

human action. 

The simulation methods used to conduct shielding calculations can be divided into two main groups: stochastic 

methods and deterministic methods. These two approaches to the transport problem will be presented in a rigorous 

way in the following chapters. As a general introduction, we can describe them like this: 

 Deterministic methods are based on a set of assumptions and simplifications that greatly reduce the 

complexity of the transport problem, allowing for a computationally fast analytical solution. The 

drawback lies in the fact that, together with the assumptions, we introduce a domain of applicability, 

outside of which the analytical solution becomes wrong. 

 Stochastic/probabilistic methods, or Monte Carlo methods, are extremely accurate and can give a 

result within any level of confidence specified by the user, provided they run for a sufficient amount of 

time. However, particularly in complex geometries, this amount of time can easily become too large to 

be considered feasible, and some additional techniques have to be employed to reduce it. 

The main work of this thesis, which will be introduced in the following chapter, consists precisely in the 

development of one of these techniques for the acceleration of Monte Carlo shielding calculations. 

Thesis objectives and summary 

Having introduced the notions of decommissioning and dismantling, shielding calculations, and MC methods, we 

can now describe the context and objective of this thesis. Working on CEA’s reference Monte Carlo code 

TRIPOLI-4®, the main objective is to develop a new calculation tool with the purpose of reducing computation 

times for shielding calculations in complex geometries. This will provide an alternative solution approach for 

problems that are difficult to treat with deterministic methods, while still retaining an advantage in terms of 

computation time with respect to classic Monte Carlo calculations. 

This new tool, called exponential track-length estimator (e-TLE), is inspired by the one developed in the code 

GEANT4 for medical applications [31]. 

The thesis is organized as follows. 

In Part I, the main theoretical notions required to understand the scope of the thesis are introduced. Chapter 1 is 

devoted to the problem of particle transport, with an in-depth look to how the problem is usually treated in the 

nuclear field and, most notably, a presentation of deterministic and stochastic approaches. Chapter 2 demonstrates 

these approaches by applying them to the solution of a simple mathematical model. 
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Part II focuses on the limits of traditional deterministic and stochastic approaches when dealing with 

particular geometries. In Chapter 3, some of these problematic configurations are presented. Chapter 4 tackles the 

problem of acceleration techniques for Monte Carlo simulations, by giving a broad presentation of the most 

important ones and ultimately focusing on the code used in this work, TRIPOLI-4®. 

Finally, Part III presents the bulk of the work, the development of the e-TLE. In Chapter 5, the estimator is 

described both from a theoretical point of view and from a practical one, with its implementation in TRIPOLI-4®. 

Chapter 6 and Chapter 7 introduce two slightly different versions of the algorithm, optimized respectively for local 

and global dose computations.  

Conclusions and perspectives are resumed in the final section of the document. 



 

  



 

 

PART I 
THEORETICAL CONTEXT 



 

  



 

 

The aim of this first part is to present and describe the theoretical foundation upon which this 

thesis work is built. Of course, it is not meant to be an exhaustive dissertation on particle 

transport physics, a vast and complex topic about which entire books have been written. 

Rather, it aims at providing the reader with tools that can help them to better understand the 

rest of the thesis. The first chapter presents the theory behind particle transport and the two 

main approaches adopted to study it, the deterministic one and the stochastic one. The second 

chapter offers a mathematical description of the problem and a first approach to a simplified 

model solution. 
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. 

Chapter 1 

 

Particle transport 

The study of how uncharged particles move through matter, generally called particle transport, is a field of primary 

importance in nuclear reactor science. Actually, a nuclear reactor can be described in a very elementary way as an 

assembly of fuel elements heated by a swarm of neutrons rapidly moving inside the core and causing fissions. The 

knowledge of the physical laws governing these movements is of course paramount to operating the reactor. On 

the other hand, when dealing not with the active operations, but with the end of life of a nuclear installation, 

neutrons are no longer the important particles that need to be studied and tracked as they move around the facility. 

In this case, we are rather interested in photons, as they are the primary particles emitted from activated materials 

in the buildings (see Introduction). 

Photons and neutrons, however, are both uncharged particles and they are therefore unaffected by electromagnetic 

forces such as Coulomb force. This fundamental common characteristic allows us to study their transport in a 

similar way, by using a powerful mathematical tool called the Boltzmann (or transport) equation. This chapter 

offers an introduction to this important equation and a closer look at the two main approaches for solving it: 

deterministic and probabilistic methods. 

1.1. The Boltzmann equation for particle transport 

To study the transport of uncharged particles through matter, a convenient approach could be to look at the 

microscopic quantities related to each single particle. We start from two main assumptions: 

 the problem is linear, meaning that particles do not interact with one another but only with the 

environment they move in; 

 particles have no dimensions, and they coincide with a point in space. 
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Since we want to write a general equation, we are not interested in the type of particle (neutron, photon) but rather 

in the basic quantities that allow us to univocally identify it and differentiate it from other particles. As such, we 

will define: 

 r as the particle’s position in space, 

 Ω as the particle’s direction of movement, represented by a unit vector, 

 E as the particle’s energy, which is directly related to its velocity v: 𝐸 =  1/2 𝑚𝒗𝟐 (non-relativistic 

hypothesis). 

With these three quantities, consisting of seven unknowns, we can univocally identify a particle’s position in the 

phase space, which represents the universe of all possible states a particle can be in. It should be noted that here 

we also introduce a formalism that will be used throughout the rest of this thesis: all vector quantities are written 

in boldface. If we introduce the concept of particle density 𝑛(𝒓, 𝛀, 𝐸) as the number of particles per unit volume 

in r, per unit energy in E, and per unit solid angle in direction 𝛀, we can introduce one of the most important 

quantities in particle transport, the angular flux 𝚽𝛀(𝒓, 𝛀, 𝐸): 

𝚽𝛀(𝒓, 𝛀, 𝐸) =  𝑛(𝒓, 𝛀, 𝐸)𝒗 (1.1) 

where v is the particles’ velocity. By integrating over all possible directions, we define the scalar flux Φ(𝒓, 𝐸) as: 

Φ(𝒓, 𝐸) = ∬𝚽𝛀(𝒓, 𝛀, 𝐸) 𝑑
2Ω (1.2) 

It is worth mentioning that these quantities would depend, in principle, also on time. However, we are assuming 

of working with a system that has reached equilibrium (which is usually the case for radiation shielding problems), 

so time will not appear in our equations. 

Now that we have defined the angular and scalar particle flux, we can proceed to write a balance equation by 

looking at an elementary volume in phase space centred around 𝑃(𝒓, 𝛀, 𝐸)and considering all the particles entering 

and leaving the volume. We will therefore define: 

 a streaming term, given by the net sum of particles entering and leaving the elementary volume via their 

displacements; it can be written as: 

−𝛀 ∙ ∇𝚽𝛀(𝒓, 𝛀, 𝐸) (1.3) 

 a disappearance term, given by all particles undergoing an interaction inside the elementary volume and 

therefore changing their energy and/or direction thus leaving the volume: it can be written as : 

−Σ𝑡(𝒓, 𝐸)𝚽𝛀(𝒓, 𝛀, 𝐸)                                                                                (1.4) 

where Σ𝑡(𝒓, 𝐸) is the macroscopic total cross-section, representing the probability per unit distance for 

a particle of energy E of undergoing an interaction at point r; 

 an interaction term corresponding, conversely, to a contribution given by particles that had a different 

energy E’ and/or direction 𝛀′; by undergoing an interaction inside the elementary volume, they end up 

having energy E and direction  𝛀. This term can be written as : 
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∭Σ𝑠(𝒓, 𝐸
′)𝑓𝑠(𝒓, 𝛀

′ → 𝛀, 𝐸′ → 𝐸)𝚽𝛀(𝒓, 𝛀′, 𝐸′)𝑑
2𝛀′𝑑𝐸′                                               (1.5) 

with Σ𝑠(𝒓, 𝐸
′)𝑓𝑠(𝒓, 𝛀

′ → 𝛀, 𝐸′ → 𝐸) being the macroscopic differential scattering cross section, defined 

as the product between the macroscopic cross section Σ𝑠(𝒓, 𝐸
′), representing the probability per unit 

distance for a particle of energy E’ of undergoing a scattering at point 𝒓 and 𝑓𝑠(𝒓, 𝛀
′ → 𝛀, 𝐸′ → 𝐸), 

representing the probability density for said particle of changing direction from 𝛀′ to 𝛀 and changing 

energy from 𝐸’ to 𝐸; 

 finally, a source term accounting for any external sources spontaneously generating particles inside the 

elementary volume: it can be written as 𝑆(𝒓, 𝛀, 𝐸). 

By equating arrival and departure terms, we can now write what is called the integro-differential form of the 

Boltzmann transport equation: 

𝛀 ∙ ∇𝚽𝛀(𝒓, 𝛀, 𝐸) + Σ𝑡(𝒓, 𝐸)𝚽𝛀(𝒓, 𝛀, 𝐸) =∭Σ𝑠(𝒓, 𝐸
′)𝑓𝑠(𝒓, 𝛀

′ → 𝛀, 𝐸′ → 𝐸)𝚽𝛀(𝒓, 𝛀
′, 𝐸′)𝑑2𝛀′𝑑𝐸′ + 𝑆(𝒓, 𝛀, 𝐸)(1.6) 

Unfortunately, with the mathematical tools that we know today it is not possible to find an exact solution to an 

equation of this kind, including both a derivative and an integral of the unknown quantity 𝚽𝛀(𝒓, 𝛀, 𝐸). To search 

for an analytical solution, one must introduce some assumptions or simplifications: this approach is the one 

followed by deterministic methods, which will be presented in Section 1.2. On the other hand, stochastic methods, 

presented in Section 1.3, search for an approximation of the solution by directly replicating the physics of the 

problem under consideration. 

1.2. Modelling deterministic approach 

As we said, the Boltzmann equation cannot be solved analytically except in simplified physical configurations. 

Depending on the type of problem studied, one can introduce some assumptions to re-write the equation in a 

simplified form, which allows to search for an approximation of the solution. Any approach following this method 

is generally called a modelling deterministic approach, because solutions found in this way are purely analytical 

and do not depend on probability. 

Of course, different problems require different sets of assumptions, that lead to different solutions. For example, 

in the nuclear field it is common to search for the neutron flux distribution in the core of the reactor, as this 

determines the power distribution and, consequently, the temperature distribution in the reactor. To perform this 

calculation, one needs to solve the transport equation for neutrons in a multiplying medium. This problem is usually 

solved through some kind of discretization of the phase space, turning the integral of Equation (1.6) in a simple 

summation described by a system of linear equations. 

For shielding calculations, however, the problem to be solved is different, notably because there are no fission 

events creating new particles to be transported. This means that interactions can either be absorptions or scatterings 

and, depending on the specific application, particle transport can be reduced to a straight-line attenuation problem. 

The usual method to solve this kind of problems is the Point-Kernel Integration (PKI) method, an approach that 

takes a completely different route to find a solution that, albeit approximated, can be extremely fast to compute. 
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For the purpose of this thesis, we will focus mainly on photon transport for shielding applications: therefore, a 

more in-depth view of the PKI method is offered in this section. 

1.2.1 The Point-Kernel Integration (PKI) method 

The most widely used modelling deterministic method in shielding calculations is the so-called Point-Kernel 

method [32].  It is a macroscopic approach that enhances calculation performance by considering any radiation 

source as an ensemble of independent beam-like point sources. Interaction between radiation and medium is 

modelled with the use of macroscopic coefficients, notably the linear attenuation coefficient 𝜇(𝐸,𝑚), which 

depends on the radiation energy and the medium composition. The direct contribution to the total photon flux at 

point P given by a monokinetic point isotropic photon source with energy E and intensity 𝐴(𝐸) measured in 

[photons ∙ cm-3 ∙ s-1] is: 

𝛷𝛾
𝑢(𝐸) = 𝐴(𝐸)

𝑒−∑ 𝜇(𝐸,𝑚)𝑥𝑚
𝑁
𝑚=1

4𝜋𝑟2
(1.7) 

where 𝑟 is the distance between the source and point P, and 𝑥𝑚 is the distance travelled in each material. The 

uncollided flux 𝛷𝛾
𝑢(𝐸), where the apex u stands for “uncollided”, corresponds to the photons which arrived at 

point r without having suffered any scattering. It can be shown that the 𝛷𝛾
𝑢(𝐸) expression can be rigorously derived 

from the resolution of the Boltzmann transport equation in a purely absorbing medium [see Chapter 2]. 

The dose equivalent rate (DER) for a mono-energetic source of intensity 𝐴(𝐸) in a volume is thus determined as 

[33]: 

𝐷𝐸𝑅(𝐸) = 𝑘(𝐸) ×∭ 𝐵𝑈(𝐸, 𝜇(𝐸) × 𝑥) × 𝛷𝛾
𝑢(𝐸) × 𝑑3𝑽

𝑽

(1.8) 

with k(E) the conversion factor from gamma flux to dose equivalent rate taken from the ICRP (International 

Commission on Radiological Protection) [34], x the shield thickness encountered by γ rays along a straight line 

and BU the build-up factor which models the scattering of photons in the shield. 

1.2.2 Build-up factors 

The build-up factors are used to estimate the scattered radiations in matter. They are defined as the ratio between 

the total flux and the direct (uncollided) flux. In CEA applications [35], they are tabulated for simple elements and 

for 195 energy groups between 15 keV and 15 MeV and up to 40 mean free paths in the ANSI/ANS-6.4.3 [36]. 

The knowledge of the build-up factor for a reference geometry and radiation energy allows to retrieve the total 

dose rate starting from the direct (i.e. uncollided) one.  

The NARMER point-kernel code [37], developed at CEA as the successor of the MERCURE-6 code, includes a 

routine for the calculation of build-up factors in the case of multi-layer shields. The algorithm, initially developed 

by Assad et  al. [38] and improved by Suteau and Chiron [39], essentially applies a procedure that calculates the 

equivalent build-up of two consecutive layers as if they were a single, homogeneous layer. Then, the procedure is 

applied iteratively until all the layers have been homogenized. 

The use of build-up factors, shows its limits in the case of high-scattering environments: for instance, when the 

radiation path has a strong inclination with respect to the shield. For example, the NARMER-based code 
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PANTHERE becomes extremely unreliable in problems with high inclination angles between radiation and shield 

[33], especially with slant angles of more than 73° (as shown in Figure 1.3). Indeed, the usage of NARMER and 

NARMER-based codes is restricted to domains where the assumptions of equations (1.7) and (1.8) are pertinent, 

thus: 

 a minimum distance between source and target, 

 a regular geometry between source and target, 

 only direct contribution is taken into account (reflection on  walls, ceiling and floor can be neglected), 

 the domain of validity of BU factor is limited in energy and in penetration lengths up to 50 MFP [40]. 

 

 

 

 

Vela et al. [41] developed a point-kernel code called CIDEC with greatly improved geometric modeling 

capabilities, able to treat complex geometries. CIDEC allows to evaluate dose rate in realistic reactor environments 

and with a good approximation, but it retains the drawbacks of point-kernel methodology, resulting unreliable in 

some cases where scattering or back-scattering is particularly relevant – for example, near the corners of a thick 

concrete wall.  

1.2.3 Albedo factors 

When dealing with nuclear power plants (reactor pit, primary pumps, steam generators) and with other nuclear 

facilities, such as reprocessing plants (piping systems, gaps between shielding protections, ventilation ducts), we 

can often find configurations characterized by large empty spaces filled with air. These configurations, usually 

called streaming configurations (see Figure 1.4), often constitute a problem from a radioprotection perspective, 

as they present a preferred passageway for photons and decrease the efficiency of radiation shields. As we saw in 

the previous chapter, the build-up approximation is based on the assumption that the main contribution to the dose 

in the detector arises from photons that travel in a straight line from the source and are attenuated throughout. 

However, in the case of streaming, this assumption does not hold, as the dominant contribution to detector dose 

comes instead from photons traveling along weaknesses in the attenuating materials, changing their direction 

multiple times by bouncing on the walls around them.  

 

 

Figure 1.3: Comparison of computation results (TRIPOLI4® vs PANTHEREv2) with measurement results for the «slant 

penetration benchmark» 
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In this type of configurations, a different calculation factor is used, called albedo factor. 

We could therefore say that the straight-line attenuation method with build-up factors is well suited for dense 

environments, while the albedo calculations are to be preferred in the case of partially-void configurations. 

Similarly to the build-up factor, the albedo is defined as the ratio between the particle flux reflected by a surface 

and the particle flux impinging on that surface. Initially, the albedo was conceived to study the reflection of light 

waves on surfaces; this process shares some similarities with the process of gamma photons traveling through 

matter and being scattered, changing direction and energy.  

To define the albedo more rigorously [42] (see Figure 1.5), we start from a monodirectional, monokinetic stream 

of photons emitted from an infinite plane. We then consider a detector D placed in front of the source, and another 

infinite plane parallel to the source. The number of photons arriving to detector D after being reflected by an 

annulus of radius r can be written as:  

𝑑𝑁𝑟𝑒𝑓 = 𝑛0 ∙ 2𝜋𝑟𝑑𝑟
Δ𝜎

𝑟2 + ℎ2
∫ 𝑁(θ, 𝐸)𝑑𝐸
𝐸0

0

(1.9) 

Incident photons 

D: detector 

Material 

Figure 1.4: Photon reflection in streaming configurations 

Figure 1.5: Geometric arrangement for the definition of the albedo 
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where n0 ∙ 2πrdr is the average number of photons in the annulus, Δ𝜎/(𝑟2 + ℎ2) is the solid angle subtended by 

the detector from point A, and 𝑁(θ, 𝐸) is the distribution function of the scattered photons, i.e. the percentage of 

photons reflected with angle θ and energy 𝐸. Integrating over r we get:  

𝑁𝑟𝑒𝑓 = 𝑛0 ∙ 2𝜋 ∙ Δ𝜎∫ ∫ 𝑁(θ, 𝐸)
𝑟

𝑟2 + ℎ2
𝑑𝑟𝑑𝐸

𝐸0

0

∞

0

(1.10) 

In a study by Chucas and Curl [43] it is shown how the domain of application of point-kernel codes (in particular, 

the RANKERN code) can be enlarged by approximating reflection and scattering events. In this case, reflection is 

taken into account through an albedo coefficient; scattering events are treated as immediate events which change 

the energy and direction of the beam, so they divide the beam trajectory in two or more parts which are then treated 

separately by the code. Results show good approximation in the case of a single scattering event being considered, 

but the method rapidly becomes unfeasible from a computational point of view in the case of more than two 

scatterings. 

The NARMER code includes an albedo module which can efficiently model a single reflection of gammas on a 

surface; the albedo coefficient in this case is split into two different contributions, calculated separately, accounting 

respectively for two processes, Compton scattering and pair production. The total albedo coefficient is the sum of 

these two contributions. Recently, a double-differential albedo module has been included in the code; it is defined 

as double-differential as it depends on both reflection angle and energy, as opposed to the simpler albedo 

coefficient which is only dependent on reflection angle. This more refined albedo calculation allows the code to 

deal with multiple reflections in sequence, which would not be possible with the single-differential albedo, as the 

incident energy distribution of gammas at the nth reflection is directly related to the reflected energy distribution 

at the n-1th reflection. 

NARMER also allows the conjoint use of BU and albedo to evaluate cases where photons are attenuated and 

reflected, in any order. However, this can have a heavy impact on the computation time, as well the precision of 

the results. 

1.2.4 Decommissioning and dismantling applications 

Due to the very low computational burden of the point-kernel method, allowing for fast calculations, in recent 

years many researchers have investigated its possible implementation in real time and virtual reality tools. The use 

of VR (Virtual Reality) tools [44, 45] for the training of specialized radioprotection workers, or for the planning 

of dismantling operations, has proven to be quite effective, as it provides an immersive experience allowing the 

user to operate in a realistic, yet completely safe environment. 

Caracena et al. [46] proposed an algorithm for real time VR dose computation, with a mesh utility able to create 

non-regular, optimized meshes. Szoke et al. [47] presented a similar tool, both in VR and as a 3D visualizator. 

More recently, Chao et al. [48, 49] developed a method specialized for decommissioning operations which is able 

to dynamically change the geometry of the model. This is an important asset in decommissioning problems, where 

a large number of cutting and demolition operations can frequently change the geometry of the studied domain 

and produce objects with irregular shapes. 

Another interesting research by Chao et al. [50] presents an algorithm for the calculation of the less-exposed 

walking path for workers in radioactive environments. While this does not directly involve dose rate calculation 
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(in this case, the radiation field is given as an input to the algorithm), it is a good example of how VR technology 

and real time dose calculation could greatly improve the training experience of specialized workers. 

It should be noted that, since the VR implementation is quite recent and still far to be implemented in real D&D 

applications, these real time dose calculations have yet to be fully validated and verified in realistic dismantling-

related work scenarios. Therefore, their limits of applicability still have to be defined in a formal way. 

1.3 Stochastic approach: the Monte Carlo method 

As noted at the beginning of this chapter, to solve the problem of photon transport we need to find a solution to 

Equation (1.3), which is impossible to do in an analytical way without introducing approximations. However, a 

reformulation of the Boltzmann equation leads to another type of numerical solution. 

In fact, we could also see the angular flux 𝚽𝛀(𝒓, 𝛀, 𝐸) as the result of the addition of two terms: 

 The first term consists of particles emitted from a generic source term in 𝒓′ = 𝒓 − 𝑠𝛀 with energy E, 

arriving in r without undergoing any interaction. We will denote them as S(𝒓 − 𝑠𝛀,𝛀, 𝐸). The probability 

of traveling from (𝒓 − 𝑠𝛀,𝛀, 𝐸) to (r,Ω,E) can be written, using macroscopic cross sections, as 

exp(−∫ Σ𝑡(𝒓 − 𝑠′𝛀, 𝐸)𝑑𝑠′
𝑠

0
). By integrating over every possible distance s, we can write the first term 

as: 

∫ exp (−∫ Σ𝑡(𝒓 − 𝑠′𝛀, 𝐸)𝑑𝑠
′

𝑠

0

) S(𝒓 − 𝑠𝛀,𝛀, 𝐸)𝑑𝑠
∞

0

(1.11) 

 The second term consists of particles of energy E’ and direction Ω that underwent an interaction in 𝒓′ =

𝒓 − 𝑠𝛀, exiting the interaction with energy E and direction Ω. We can write these particles down as 

∭Σ𝑠(𝒓 − 𝑠𝛀, 𝐸
′)𝑓𝑠(𝒓 − 𝑠𝛀,𝛀

′ → 𝛀, 𝐸′ → 𝐸)𝚽𝛀(𝒓 − 𝑠𝛀,𝛀′, 𝐸′)𝑑
2𝛀′𝑑𝐸′ (see equation (1.5)). By 

following the same reasoning as before, we multiply by the probability of arriving in (𝒓, 𝛀, 𝐸) without 

undergoing other interactions and integrate over every s. We can therefore write the second term as: 

∫ exp (−∫ Σ𝑡(𝒓 − 𝑠′𝛀, 𝐸)𝑑𝑠
′

𝑠

0

)∭Σ𝑠(𝒓 − 𝑠𝛀, 𝐸
′)𝑓𝑠(𝒓 − 𝑠𝛀,𝛀

′ → 𝛀,𝐸′ → 𝐸)𝚽𝛀(𝒓 − 𝑠𝛀,𝛀
′, 𝐸′)𝑑2𝛀′𝑑𝐸′ 𝑑𝑠

∞

0

(1.12) 

We can now re-write the equation for the angular flux in what is called the integral form of the Boltzmann 

transport equation: 

𝚽𝛀(𝒓, 𝛀, 𝐸) = ∫exp (−∫ Σ𝑡(𝒓 − 𝑠′𝛀, 𝐸)𝑑𝑠
′

𝑠

0

) S(𝒓 − 𝑠𝛀,𝛀, 𝐸)𝑑𝑠

+∫exp (−∫ Σ𝑡(𝒓 − 𝑠′𝛀, 𝐸)𝑑𝑠
′

𝑠

0

)∭Σ𝑠(𝒓 − 𝑠𝛀, 𝐸
′)𝑓𝑠(𝒓 − 𝑠𝛀,𝛀

′ → 𝛀, 𝐸′ → 𝐸)𝚽𝛀(𝒓 − 𝑠𝛀,𝛀
′, 𝐸′)𝑑2𝛀′𝑑𝐸′ 𝑑𝑠 (1.13)

 

Now, just to improve readability, we make a few notation changes: 

 we introduce the collision density 𝝍(𝒓, 𝛀, 𝐸) : 

𝝍(𝒓, 𝛀, 𝐸) = Σ𝑡(𝒓, 𝐸)𝚽Ω(𝒓, 𝛀, 𝐸) (1.14) 

indicating the total number of interactions at point (𝒓, 𝛀, 𝐸) ; 
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 and the  displacement operator 𝕋(𝒓′ → 𝒓,𝛀, 𝐸) [51]: 

𝕋(𝒓′ → 𝒓,𝛀, 𝐸)𝑑𝒓 = Σ𝑡(𝒓, 𝐸) exp (−∫ Σ𝑡(𝒓 − 𝑠′𝛀, 𝐸)𝑑𝑠
′

𝑠

0

)𝑑𝑠 (1.15) 

which can be seen as the product of two probabilities: the probability for a particle to fly without 

interactions from 𝒓’ to 𝒓, represented by exp(−∫ Σ𝑡(𝒓 − 𝑠′𝛀, 𝐸)𝑑𝑠
′𝑠

0
), and the probability density of 

undergoing an interaction in 𝒓, represented by the macroscopic total cross section Σ𝑡(𝒓, 𝐸). In other 

words, it is the probability for a particle colliding in 𝒓’ to experience its next interaction in 𝒓.  

 Next, we define the collision operator ℂ(𝒓, 𝛀′ → 𝛀, 𝐸′ → 𝐸) as: 

ℂ(𝒓, 𝛀′ → 𝛀, 𝐸′ → 𝐸) =
Σ𝑠(𝒓, 𝐸

′)𝑓𝑠(𝒓, 𝛀
′ → 𝛀, 𝐸′ → 𝐸)

Σ𝑡(𝒓, 𝐸
′)

(1.16) 

indicating the probability for a particle colliding in r of changing its direction from 𝛀′ to 𝛀 and its energy 

from E’ to E.  

 Finally, if we define the transport operator 𝕂(𝑃′ → 𝑃) as the product of the displacement and collision 

operators,  

𝕂(𝑃′ → 𝑃) = 𝕋(𝒓′ → 𝒓,𝛀, 𝐸)ℂ(𝒓, 𝛀′ → 𝛀, 𝐸′ → 𝐸) (1.17) 

we can finally re-write Equation (1.13) in a more compact form: 

𝜓(𝑃) = ∫𝕂(𝑃′ → 𝑃)𝜓(𝑃′) 𝑑𝑃′ + ∫𝕋(𝑃′ → 𝑃)𝑆(𝑃′) 𝑑𝑃′ (1.18) 

This final formulation underlines very well that the collision density in a given point P can be deduced by the 

source particles traveling to P without interacting, and by all particles which had undergone one or more 

interactions before arriving in  P. This suggests that by simulating the transport process of large numbers of single 

particles, interaction after interaction, the solution to this equation can be approximated. 

1.3.1 Introduction to Monte Carlo methods 

Monte Carlo methods are a class of numerical statistical methods originally developed in the frame of the 

Manhattan Project to treat the problem of neutron transport. In general, they are based on the law of large numbers, 

which states that the sample average of a certain number n of trials will converge to the expected value when n → 

∞. The essential idea behind Monte Carlo methods is to be able to numerically evaluate arbitrarily complex 

stochastic processes by starting from basic known probability distributions. 

This is also true for Monte Carlo applied to particle transport, more specifically photon transport in our case. As 

we saw in Equation (1.18), we can decompose the solution to the transport equation by considering the 

contributions of single particles to the total flux. In the MC method, the full transport mechanism is “disassembled” 

into its most basic parts – namely a series of straight paths and photon-matter interactions –, which can be 

efficiently modeled as stochastic events. Below, a brief explanation of the procedure is given. 

Photons are simulated one at a time, independently. First, the photon is “created” with some initial properties: a 

spatial position r, a direction of flight Ω, and an energy E. These properties all depend on the source specification, 

which can be a point or a volume source, isotropic or oriented, monokinetic or energy-dependent. Then, the length 
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of the photon’s free path is sampled, determining the distance it will travel before undergoing an interaction of any 

type. It can be shown that the probability for a photon to travel to point x with no interaction and then to have an 

interaction between x and x + dx is given by: 

𝒫(𝑥) = Σ𝑡𝑒
−Σ𝑡𝑥𝑑𝑥 (1.18) 

where Σ𝑡 (expressed in cm-1) is the total macroscopic cross section, or total attenuation coefficient, of the material 

in which the photon is traveling. 

After the free path length has been determined, the interaction undergone by the photon must be sampled. 

Depending on the photon energy and the material with which it is interacting, one out of all the possible interactions 

is randomly selected. For the energy range treated in this thesis, ranging from a few MeV to a few keV, the most 

important interactions are elastic (Rayleigh) scattering, inelastic (Compton) scattering, pair production, and 

photoelectric effect. Once one of these interactions has been sampled, the interaction “happens” meaning that some 

properties of the photon are modified, namely its direction and energy, before sampling a new free path and 

repeating the process. The life of the photon ends when it exits the domain of the simulation, or when it is absorbed. 

This is, in short, the simplest possible implementation of Monte Carlo simulation for particle transport, and it is 

usually called analog Monte Carlo. 

The assumption that a particle’s movement through matter can be modelled by a series of free flights and 

interactions holds particularly well with particles that don’t have an electrical charge, like neutrons and photons. 

However, if charged particles (typically electrons) are to be considered, things can become more problematic. Due 

to the fact that electrons’ interactions with matter are governed by long-range Coulomb forces, these particles tend 

to have an enormous number of interactions, several order of magnitudes higher than that a neutral particle would 

have in the same medium. This means that while 20 to 30 Compton scatterings would be sufficient to reduce a 

photon energy from several MeV to a few keV, the number of interactions that an electron would need to 

experience to have the same deceleration is in the order of 104-105. If we add the consideration that a Monte Carlo 

simulation usually involves several millions of particles, the problem becomes evident. 

In the radioprotection field, electrons resulting from photon-matter interactions are simply discarded. If the 

quantity to be calculated is the dose, the KERMA approximation is usually applied, which considers all the energy 

lost from a photon after an interaction to be deposited in the interaction point. This approach neglects both 

Bremsstrahlung losses and electron transport, but is usually applicable due to the short range of the low-energy 

electrons produced by photon scattering. The KERMA approximation is also frequently applied in the medical 

imaging field, provided the voxel size is large compared to the electron range and the condition of electron 

equilibrium is met (usually true when far from material interfaces). 

1.3.2 The choice of an estimator 

Let us consider a simple case where we want to estimate some quantity (say, for example, the KERMA) in a point, 

using Monte Carlo method. The standard way of doing that would be to consider a small volume around the point, 

to tally all interactions happening inside the volume. Then, by looking at the particle’s energy before and after the 

interaction, it is straightforward to determine the energy deposed in the volume as the difference between the two 

energies. This corresponds to an energy balance between energy entering the volume and energy exiting it. Finally, 

by knowing the mass density of the material, we can calculate the point average, retrieving an estimation of the 
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energy deposed in the point under consideration. Obviously, this can be a very slow-converging method, especially 

if we are dealing with low-density media (such as air), where the probability for an interaction to happen inside a 

small volume is very low.  

We can then estimate the KERMA at point P and at interaction j as: 

𝑘𝑗(𝑃) = {

𝑤𝑗−1𝐸𝑗−1 −𝑤𝑗𝐸𝑗

𝜌𝑉
, 𝑖𝑓 𝑃 𝑖𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝑉 

0,                                      𝑖𝑓 𝑛𝑜𝑡                    

(1.19) 

where j is the interaction number, w is the particle’s weight (see Section 4.2), 𝐸𝑗−1 and 𝐸𝑗 are the particle’s energies 

before and after collision, 𝜌 is the medium density and V is the scoring volume. This is usually called collision 

estimator, as the estimation of a quantity in a volume is related to the collisions (or, more properly, interactions) 

taking place inside the volume. 

However, this kind of estimation can have a very low efficiency when the number of collisions in the detector is 

low, for example in the case of low-scattering media or optically thin detection volumes. In these cases, most MC 

codes use another class of estimators called track-length estimators (TLE). This type of estimator, already 

described by Gelbard et al. [52] in 1966, is based on the equivalence between particle flux and total particle path 

length per unit volume [51, 53], which can be written as: 

Φ =
𝐿

𝑉
(1.20) 

where 𝐿 is the average total distance travelled by particles inside volume V. 

Equation (1.20) tells us that, for a given volume 𝑉, all particle trajectories that cross the scoring volume contribute 

to the flux estimate, regardless if they had an interaction inside V or not. Depending on how this is implemented, 

and how the distance 𝐿 is calculated, several types of estimators exist. In particular, we give here a brief description 

of the linear and exponential track-length estimators, schematized in Figure 1.6, which constitute the basis of the 

new method we want to implement. 

 

Figure 1.6: 2D visual representation of a) linear track-length estimator, and b) exponential track-length estimator 

a) Linear track-length estimator 

This estimator is the mathematical application of what we described above. Referring to Figure 1.6a, we can 

estimate the flux at point P as the average of the path lengths crossing volume V, divided by V. The estimation of 

the KERMA then becomes: 

a) 

 

a) 

b) 

 

a) 
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𝑘𝑗(𝑃) = {
𝑤𝑗𝐸𝑗

𝜇𝑒𝑛
𝜌

𝐿𝑗

𝑉
, 𝑖𝑓 𝐿𝑗 > 0 

0,                           𝑖𝑓 𝑛𝑜𝑡      

(1.21) 

where 𝜇𝑒𝑛/𝜌 is the mass energy absorption coefficient evaluated at energy Ej; wj is the particle’s weight; and 𝐿𝑗 is 

the distance traveled by the particle inside volume 𝑉 between interactions j and 𝑗 +  1. For simplicity, we are 

assuming the medium to be homogeneous inside V. 𝐿𝑗 may be defined in a more rigorous way as: 

𝐿𝑗 = ∫ Π𝑉(𝒓𝑗 + 𝑠 ∙ 𝛀j) 𝑑𝑠
|𝒓𝑗+1−𝒓𝑗|

0

(1.22) 

In this formulation, Π𝑉(𝒓) is a characteristic function associated with the scoring volume 𝑉, equal to 1 if the point 

𝒓 is inside the volume and equal to 0 if not. This estimator would give a non-zero value for collisions 2, 3 and 4 in 

Figure 1.6a, whereas the collision estimator of Equation (1.19) would only register collision 4. 

b) Exponential track-length estimator 

We can derive the exponential track-length estimator (Figure 1.6b) or e-TLE from its linear correspondent by 

extending the definition of quantity Lj, as explained in the following equations: 

𝑘𝑗(𝑃) = {
𝑤𝑗𝐸𝑗

𝜇𝑒𝑛
𝜌
𝑒−Σ𝑡𝑠𝑉

(1 − 𝑒−Σ𝑡𝐿𝑗)

Σ𝑡𝑉
, 𝑖𝑓 𝐿𝑗 > 0 

0,                           𝑖𝑓 𝑛𝑜𝑡      

(1.23) 

𝐿𝑗 = ∫ Π𝑉(𝒓𝑗 + 𝑠 ∙ 𝛀𝑗) 𝑑𝑠
∞

0

(1.24) 

where 𝑠𝑉 is the distance between the interaction and the volume following the particle’s line of flight, and Σ𝑡 is 

the total macroscopic cross section of the medium. For simplicity, we are assuming the medium to be homogeneous 

everywhere. 

From a mathematical point of view, we are simply integrating over |𝒓𝑗+1 − 𝒓𝑗|, thus substituting a random variable 

(𝐿𝑗) with its expected outcome1. Practically, we are virtually extending the particle’s path to infinity after every 

collision, and then considering the particle’s linear attenuation to take into account the fact that we are not really 

simulating the flight. Again, the efficiency of this method can be well observed in Figure 1.6b, where we can see 

that the particle is not even required to cross the scoring volume to contribute to the score. 

 

c) Statistical analysis of dose rate estimation 

We have seen how the MC estimation of KERMA in a volume is affected by the choice of the estimator. Since we 

are dealing with a stochastic approach, every calculated quantity will in fact be a random variable; it will therefore 

have an expected value and a variance associated to it. To continue with the KERMA example, for any given 

estimator ϵ we will have: 

                                                           

1 For a rigorous mathematical derivation of the e-TLE, obtained by averaging the collision estimator or the track 

length estimator over all possible flight lengths, refer to Annex B. 
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𝐾𝜖 =
1

𝑛
∑𝑘𝑖,𝜖

𝑛

𝑖=1

(1.25) 

where 𝐾𝜖 is the estimate of KERMA expected value, n is the number of histories simulated, and 𝑘𝑖,𝜖 is the 

contribution of the single particle history to the KERMA estimate, as expressed in Equations (1.19), (1.21) and 

(1.23). We can also write an estimate for the variance 𝜎2(𝐾𝜖) associated to 𝐾𝜖 as: 

𝜎2(𝐾𝜖) =
𝜎2(𝐾)

𝑛
=

1

𝑛 (𝑛 − 1)
∑(𝑘𝑖,𝜖 − 𝐾𝜖)

2
𝑛

𝑖=1

=
1

𝑛 − 1
(
1

𝑛
∑𝑘𝑖,𝜖

2

𝑛

𝑖=1

− (
1

𝑛
∑𝑘𝑖,𝜖

𝑛

𝑖=1

)

2

) (1.26) 

where we substituted Equation (1.25) to get the final expression [54]. 

Now, if we look back at the definition of 𝑘𝑖,𝜖 given in Equations (1.19), (1.21) and (1.23), we see that they can 

either be zero (if the particle does not contribute to the estimate) or greater than zero. Depending on the estimator 

chosen and on the specifics of the problem, the ratio of zero to non-zero contributions can greatly vary. For 

example, for estimations in low-density media, where collisions are extremely rare, a collision estimator will 

mostly have null contributions, with some rare but very high contributions due to photoelectric effect. In the same 

configuration, a track-length estimator will likely have many more non-zero contributions of much lower value, 

which tends to lower the variance. 

To test this hypothesis we search for an expression for the variance alternative to that of Equation (1.25). If we 

consider only histories with non-zero contributions to our estimate, we can write the two following relations (the 

superscript “𝑛0” standing for “non-zero”): 

𝐾𝜖 = 𝑝𝑛0𝐾𝜖
𝑛0̅̅ ̅̅ ̅     𝑎𝑛𝑑     𝐾𝜖

2̅̅ ̅̅ = 𝑝𝑛0𝐾𝜖
𝑛02̅̅ ̅̅ ̅̅ ̅ (1.26) 

where 𝑝𝑛0 is the probability of having a non-zero contribution and 𝐾𝜖 and 𝐾𝜖
2̅̅ ̅̅  are the first and second order moment 

of the KERMA estimate K. Using the relations in (1.26) and remembering the definition of variance, we can write: 

𝜎2(𝐾𝜖) =
𝜎2(𝐾)

𝑛
=
𝑝𝑛0

𝑛
(𝜎2(𝐾𝑛0) + (1 − 𝑝𝑛0)(𝐾𝜖

𝑛0̅̅ ̅̅ ̅)2) =
𝑛𝑛0

𝑛2
(𝜎2(𝐾𝑛0) + (1 −

𝑛𝑛0

𝑛
) (𝐾𝜖

𝑛0̅̅ ̅̅ ̅)2) (1.27) 

where we estimated the probability 𝑝𝑛0 as the number of non-zero contributions 𝑛𝑛0 divided by the total number 

of histories n. We can use this first simple formulation to compare a priori the variance of different estimators. 

1.3.3 Applications in D&D 

Due to their ability of giving a precise solution of the transport problem, Monte Carlo calculations are usually 

adopted when accuracy is the priority. In the framework of decommissioning and dismantling, this is usually the 

case for criticality and transport studies, which constitute the basis for subsequent activity and shielding 

calculations. However, these are neutron-based calculations, while for the purpose of this work we are mostly 

interested in photons. For shielding calculations with photon transport, PKI methods are often preferred, as they 

provide a much faster answer and the lack of accuracy is usually not a problem, as it allows for a safety margin in 

the radioprotection calculations. However, there are several instances in which MC codes for photon transport are 

chosen over deterministic ones. 
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For example, MC codes are largely used as a numerical validation tool to test the accuracy of PKI codes [33, 37, 

55, 56]. A Monte Carlo simulation is faster and cheaper than a real-life experiment, as well as more reproducible. 

Furthermore, PKI codes are usually designed to give a pessimistic answer [43] when an exact one is not attainable: 

this is in line with the ALARA (As Low As Reasonably Achievable) principle prescribed for radioprotection studies. 

However, MC codes can be used to perform accurate shielding calculations allowing to evaluate more precise and 

less conservative safety margins, which can lead to more cost-effective and organisationally efficient solutions 

from an industrial point of view. 

When dealing with shielding calculations applied to smaller geometries, computation times become more 

manageable and MC codes remain the golden standard for calculating accurate radiation transport. A good example 

of this can be found in [57]. The objective of this study was to verify the shielding capabilities of a storage container 

for VLLW (Very Low Level Waste), measuring about one cubic meter. These kind of containers are used to store 

low-radioactivity nuclear waste and they are subject to regulations fixing the maximum radiation dose that can 

penetrate the container’s walls. In this case, the MC code MCNP was used to evaluate the maximum dose rate at 

the container outer surface and at a distance of 2m from the container’s surface. 

Another example of MC transport applied to shielding calculations over smaller geometries is given by [58]. This 

analysis falls under the modelling efforts surrounding the design and construction of the ITER fusion reactor. In 

particular, the focus of the analysis is one of the remote-handled units of the reactor, the IVT (In-Vessel 

Transporter), a remote-controlled machine that will be used to perform operations in radioactive areas of the plant. 

When the IVT will be subject to maintenance, it will be covered by radioactive dust that could pose a health risk 

for the operating personnel. MC simulations performed with the code MCNP allowed to evaluate the expected 

dose rate in a set of points surrounding the IVT, to establish safety margins for the operators. 

As a last example of MC codes being used in shielding calculations, in a study by Park et al. [59] the MC code 

MCNP was used to accurately calculate a dose rate map in a dismantling facility; this map was then used as the 

basis for a 3D visualization simulation, in which a worker moving inside the environment could see in real time 

the dose coming from the radioactive source. These kind of 3D visualization simulations can be useful for training 

purposes, allowing workers to accurately plan their interventions in radioactive environments.MC transport codes 

are also used in shielding calculations for the qualifications of new radiation shielding materials. In a study by 

Lakshminarayana et al. [60], six types of glasses were analysed with MCNP to assess their shielding capabilities 

for gamma radiation. The attenuation coefficients for the six glasses were tabulated for a range of gamma energies 

going from 105 to 10-3 MeV . A similar analysis, but on concrete instead of glass, was conducted in [61], where 

the MCNPX code was used to evaluate the shielding properties of two special concretes enhanced with the 

insertion of WO3 and Bi2O3 particles. In this case, the concrete attenuation coefficient was evaluated for photon 

energies ranging from 0.142 to 1.33 MeV. The interest of this kind of analyses is double: it allows to qualify 

materials for various applications in radiation shielding, and it evaluates coefficients (like the attenuation 

coefficient, see Section 1.2.1) that can then be used by deterministic radiation transport codes for shielding 

calculations. 

A similar example in the medical field [62] involved a MC simulation to calculate radioprotection quantities for 

human soft tissue. In this case, the  calculated quantity was the build-up factor  (see Section 1.2.2), to be used by 
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PKI codes in specific medical applications. Build-up factors were calculated for incident photon energies of 0.2 

MeV, 0.5 MeV, 1 MeV and 2 MeV. 

We have now seen some examples of applications of both deterministic and stochastic particle transport. In the 

next chapter, both methods are applied to a simple, model case, to give the reader a better idea of how they work, 

albeit in a very elementary way. 
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. 

Chapter 2 

 

Heuristic approach 

We have seen how the problem of photon transport is treated mathematically, and the different approaches that 

exist to solve it in practice. This chapter offers a look at a practical example: a very simple transport problem 

which is solved first analytically, then through a Monte Carlo approach. We will show that the results converge, 

demonstrating the validity of the two approaches. The same simple configuration will be used later, in Chapter 5, 

to show the unbiasedness of the e-TLE estimator. 

2.1. Study configuration 

The configuration is presented in Figure 2.7. All the simplifications are introduced to allow us to get to an exact 

analytical solution to the Boltzmann equation, which would not be possible in the general case, as seen in  

Chapter 1. We consider a monoenergetic, monodirectional, stationary surface source of particles of intensity S 

(particles ∙ cm-2 ∙ s-1), penetrating a homogeneous, non-multiplying, one-dimensional material of thickness L. The 

source is entirely localized on the left margin of the medium; we can write: 

𝑆(𝑥 = 0) ≡ 𝑆𝛿(𝑥 − 0) = 𝑆𝛿(𝑥) (2.1) 

where δ(x) is a Dirac’s delta function. 

For the material we will define a macroscopic scattering cross section Σ𝑠, a macroscopic absorption cross section 

Σ𝑎, and a total macroscopic cross section Σ𝑡. Therefore: 

Σ𝑡 = Σ𝑠 + Σ𝑎 (2.2)  

To further simplify the problem, we suppose that the scatterings never cause any angular displacement. 

Subsequently, all particles fly in the same direction, which is chosen to be left to right in Figure 2.7, with discrete 

flights of variable length. 
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Figure 2.7: 1D transport problem configuration 

We want to compute the mean particle flux, ϕD, in the interval 𝐷 =  [𝑑, 𝐿], which constitutes the “detector” in this 

configuration. In the following, two solutions to this problem are proposed. The first solves the Boltzmann equation 

deterministically, taking advantage of the geometric simplifications; the second method reproduces a Monte Carlo 

calculation by subdividing the problem into its elementary components, i.e. the single particles and their 

displacements. 

2.2. Deterministic solution  

For the configuration under consideration, we start from the integro-differential formulation of the stationary 

Boltzmann equation for the flux (see Equation (1.6) in Chapter 1): 

𝛀 ∙ ∇ΦΩ(𝒓, 𝛀, 𝐸) + Σ𝑡(𝒓, 𝐸)Φ𝛀(𝒓, 𝛀, 𝐸) =∭Σ𝑠(𝒓, 𝐸
′)𝑓𝑠(𝒓, 𝛀

′ → 𝛀, 𝐸′ → 𝐸)ΦΩ(𝒓, 𝛀
′, 𝐸′)𝑑2Ω′𝑑𝐸′ + 𝑆(𝒓, 𝛀, 𝐸) (2.3) 

Due to the isotropy and 1D hypothesis, the first term is reduced to a simple derivative over x, and the other terms 

can be written in a much more compact form. Equation (2.3) is reduced to a second order differential equation: 

𝑑𝜙(𝑥)

𝑑𝑥
+ Σ𝑡𝜙(𝑥) = Σ𝑠𝜙(𝑥) + 𝑆𝛿(𝑥) (2.4) 

The solution is given by: 

𝜙(𝑥) = 𝐾 × 𝑒 −(Σ𝑡−Σ𝑠)𝑥 = 𝐾 × 𝑒 −Σ𝑎𝑥 (2.5) 

where K denotes a constant.  

Due to the source definition, we can write the boundary condition for 𝑥 =  0 as:   

𝜙(𝑥 = 0) = 𝑆 ⟹ 𝐾 = 𝑆 (2.6)    

So, we can rewrite Equation (2.5) as:  

𝜙(𝑥) = 𝑆𝑒 −Σ𝑎𝑥 (2.7) 

It is now straightforward to find the average particle flux ϕD in the detector 𝐷 =  [𝑑, 𝐿]: 

𝜙𝐷 =
1

𝑙
∫ 𝑆𝑒−Σ𝑎𝑥𝑑𝑥
𝐿

𝑑

= 𝑆
[𝑒−Σ𝑎𝑑 − 𝑒−Σ𝑎𝐿]

𝑙Σ𝑎
= 𝑆𝑒−Σ𝑎𝑑

[1 − 𝑒−Σ𝑎(𝐿−𝑑)]

𝑙Σ𝑎
= 𝑆𝑒−Σ𝑎𝑑

[1 − 𝑒−Σ𝑎𝑙]

𝑙Σ𝑎
(2.8) 

where we defined 𝑙 =  𝐿 –  𝑑 as the detector’s dimension.  
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This concludes the analytical solution of the problem. We now turn to the Monte Carlo resolution of the simplified 

1D Boltzmann equation to see if we can get to the same result with a different approach. 

2.3. Stochastic solution 

We now want to solve this problem by following a stochastic procedure. To do this, we recall (see Equation (1.13)) 

that it is convenient to start from the integral formulation of the Boltzmann equation. We will now show that it is 

possible to derive this formulation directly from the integro-differential one of Equation (2.3). 

2.3.1 Derivation of the integral form of the Boltzmann equation 

We follow, for this step, the procedure outlined in [63], applied to our 1D case. We define: 

𝑠 = 𝑥 − 𝑥′ (2.9) 

By taking advantage of the fact that we know the flux will have an exponential shape, we write: 

−
𝑑

𝑑𝑠
[𝜙(𝑥′) exp(−Σ𝑡(𝑥 − 𝑥

′))] ≡ −
𝑑

𝑑𝑠
[𝜙(𝑥′) exp(−Σ𝑡𝑠)] (2.10) 

Developing and using the properties of the derivative we write: 

−
𝑑

𝑑𝑠
[𝜙(𝑥′) exp(−Σ𝑡𝑠)] = exp(−Σ𝑡𝑠) [−

𝑑

𝑑𝑠
𝜙(𝑥′) + Σ𝑡𝜙(𝑥

′)] (2.11) 

Then, taking advantage of (2.10), we can write: 

𝑑

𝑑𝑠
≡ −

𝑑

𝑑𝑥′
(2.12) 

And re-write (2.12) as: 

−
𝑑

𝑑𝑠
[𝜙(𝑥′) exp(−Σ𝑡𝑠)] = exp(−Σ𝑡𝑠) [

𝑑

𝑑𝑥′
𝜙(𝑥′) + Σ𝑡𝜙(𝑥

′)] (2.13) 

Now we can substitute (2.3) in the right-hand side and get: 

−
𝑑

𝑑𝑠
[𝜙(𝑥′) exp(−Σ𝑡𝑠)] = exp(−Σ𝑡𝑠)[Σ𝑠𝜙(𝑥

′) + 𝑆(𝑥′)] (2.14) 

Integrating over s from 0 to infinity: 

∫ −
𝑑

𝑑𝑠
[𝜙(𝑥′) exp(−Σ𝑡𝑠)]𝑑𝑠

∞

0

= ∫ Σ𝑠

∞

0

exp(−Σ𝑡𝑠)𝜙(𝑥
′)𝑑𝑠 + ∫ 𝑆(𝑥′)

∞

0

exp(−Σ𝑡𝑠)𝑑𝑠 (2.15) 

𝜙(𝑥) = ∫ exp[−Σ𝑡𝑠] Σ𝑠𝜙(𝑥′)𝑑𝑠
∞

0

+∫ 𝑆(𝑥′)
∞

0

exp[−Σ𝑡𝑠] 𝑑𝑠 (2.16) 

which, by expanding x' = x – s can be re-written as:   

𝜙(𝑥) = ∫ Σ𝑡 exp[−Σ𝑡𝑠]
Σ𝑠
Σ𝑡
𝜙(𝑥 − 𝑠)𝑑𝑠

∞

0

+∫ 𝑆(𝑥 − 𝑠)
∞

0

exp[−Σ𝑡𝑠]𝑑𝑠 (2.17) 

We find in Equation (2.17) the same formulation found in Section 1.3 for the integral form of the Boltzmann 

equation.  
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Now, we take advantage of the fact that the source is a Dirac’s Delta to rewrite the second integral. 

𝜙(𝑥) = ∫ Σ𝑡 exp[−Σ𝑡𝑠]
Σ𝑠
Σ𝑡
𝜙(𝑥 − 𝑠)𝑑𝑠

∞

0

+ 𝑆 exp[−Σ𝑡𝑥] (2.18) 

Moreover, to find the exact same equation of Section 1.3, we multiply by Σt on both sides of the equation to pass 

from the flux ϕ(x) to the collision density ψ(x): 

𝜓(𝑥) = ∫ Σ𝑡𝑒 
−Σ𝑡(𝑥−𝑥

′)
Σ𝑠
Σ𝑡
𝜓(𝑥′)

𝑥

0

𝑑𝑥′ + 𝑆Σ𝑡 exp[−Σ𝑡𝑥] (2.19) 

where we put: 

𝜓(𝑥) = Σ𝑡𝜙(𝑥) (2.20) 

Finally, if we recall the definitions of collision operator ℂ, displacement operator 𝕋(𝒙′ → 𝒙) and transport 

operator 𝕂(𝒙′ → 𝒙) given in Chapter 1, and rewrite them for this simplified case:  

ℂ ≡
Σ𝑠
Σ𝑡

(2.21) 

𝕋(𝑥′ → 𝑥) ≡ ∫ Σ𝑡𝑒 
−Σ𝑡(𝑥−𝑥

′)
𝑥

0

𝑑𝑥′ (2.22) 

𝕂(𝑥′ → 𝑥) ≡ 𝕋(𝑥′ → 𝑥)ℂ (2.23) 

we can then rewrite (2.20) in compact form  to find the 1D formulation of Equation (1.12) 

𝜓(𝑥) = ∫ 𝕂(𝑥′ → 𝑥)𝜓(𝑥′)𝑑𝑥′
∞

𝑥

+ 𝕋𝑆 (2.24) 

2.3.2 Monte Carlo solution 

We will now show why this formulation is particularly convenient to introduce Monte Carlo solutions to the 

equation. Let us first write the unknown we search, the average flux in the detector’s interval D = [d, L], as:    

𝜙𝐷 = ∫
𝜓(𝑥)

Σ𝑡
𝑑𝑥

𝐿

𝑑

= ∫ 𝜙(𝑥)𝑑𝑥
𝐿

𝑑

(2.25) 

Then, we re-write the collision density ψ(x) as a Neumann series expansion in the form: 

𝜓(𝑥) = ∑𝜓𝑛(𝑥)

∞

𝑛=0

(2.26) 

We now look at the life of a particle as a chain of events, consisting of free flights of variable lengths, divided by 

collisions. By remembering the definition of cross section, we know that we can write the probability for a particle 

to travel a path of length 𝑥𝑛 and then having a collision in 𝑑𝑥𝑛 as: 

 𝑒−Σ𝑡𝑥𝑛Σ𝑡𝑑𝑥𝑛 

Therefore, for a single particle interacting n times, with n > 0, we can write the probability of arriving at point x 

after having collided exactly in 𝑥1, 𝑥2, … 𝑥𝑛 as: 

𝑔𝑛(𝑥1, 𝑥2, … 𝑥𝑛 , 𝑥)𝑑𝑥1𝑑𝑥2…𝑑𝑥𝑛 = 𝑒−Σ𝑡𝑥1Σ𝑡𝑑𝑥1𝑒
−Σ𝑡(𝑥2−𝑥1)Σ𝑡𝑑𝑥2…  𝑑𝑥𝑛𝑒

−Σ𝑡(𝑥−𝑥𝑛) Σ𝑡 (2.27) 
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where we implicitly put x0 = 0 so that x – x0 = x and  x1 – x0 = x1. 

If we introduce implicit capture2, then the weight of the particle after n collisions is: 

𝜛𝑛 = [
Σ𝑠
Σ𝑡
]
𝑛

(2.28) 

We can now define the collision estimator for the collision density as: 

𝜂0(𝑥) = 𝑆𝑒
−Σ𝑡𝑥Σ𝑡  ≡ �̂�𝑒

−Σ𝑡𝑥 (2.29) 

for incident source particles that contribute to collision density; and as: 

  𝜂𝑛(𝑥, 𝑥𝑛) = 𝑆 [
Σ𝑠
Σ𝑡
]
𝑛

𝑒−Σ𝑡(𝑥−𝑥𝑛)Σ𝑡   ≡ �̂�𝜛𝑛𝑒
−Σ𝑡(𝑥−𝑥𝑛), 𝑛 > 0 (2.30) 

which represents the contribution given to collision density by a particle that has collided n times. In  

Equations (2.29) and (2.30) we introduce �̂� = SΣt. 

Now, by recalling the Neumann series decomposition of (2.25) and proceeding by increasing n, we have, for a 

generic point x: 

𝜓0(𝑥) = 𝜂0(𝑥) = �̂�𝑒
−Σ𝑡𝑥 (2.31) 

which represents the contribution of uncollided particles; and 

𝜓1(𝑥) = ∫ 𝑔1(𝑥1)𝜂1(𝑥, 𝑥1)𝑑𝑥1

𝑥

0

= ∫ 𝑒−Σ𝑡𝑥1Σ𝑡𝑆
Σ𝑠
Σ𝑡
𝑒−Σ𝑡(𝑥−𝑥1)Σ𝑡𝑑𝑥1

𝑥

0

= �̂�Σ𝑡𝑥 
Σ𝑠
Σ𝑡
𝑒−Σ𝑡𝑥 (2.32) 

which represents the contribution of particles that have collided exactly one time; and 

𝜓2(𝑥) = ∫ 𝑑𝑥1

𝑋

0

∫ 𝑔2(𝑥1, 𝑥2)𝜂2(𝑥, 𝑥2)
𝑥

𝑥1

𝑑𝑥2 = ∫ 𝑒−Σ𝑡𝑥1Σ𝑡

𝑥

0

𝑑𝑥1∫ 𝑒−Σ𝑡(𝑥2−𝑥1)Σ𝑡𝑆 [
Σ𝑠
Σ𝑡
]
2

𝑒−Σ𝑡(𝑥−𝑥2)Σ𝑡𝑑𝑥2

𝑥

𝑥1

 

𝜓2(𝑥) = �̂�Σ𝑡
2 [
Σ𝑠
Σ𝑡
]
2

𝑒−Σ𝑡𝑥∫ 𝑑𝑥1

𝑥

0

∫ 𝑑𝑥2

𝑥

𝑥1

= �̂�Σ𝑡
2 [
Σ𝑠
Σ𝑡
]
2

𝑒−Σ𝑡𝑥∫ 𝑑𝑥1

𝑥

0

[𝑥2]𝑥1
𝑥     

𝜓2(𝑥) = �̂�Σ𝑡
2 [
Σ𝑠
Σ𝑡
]
2

𝑒−Σ𝑡𝑥∫ [𝑥 − 𝑥1]𝑥1
𝑥 𝑑𝑥1

𝑥

0

= �̂�Σ𝑡
2 𝑥

2

2

[
Σ𝑠
Σ𝑡
]
2

𝑒−Σ𝑡𝑥 [𝑥 ∫ 𝑑𝑥1

𝑥

0

+∫ 𝑥1𝑑𝑥1

𝑥

0

] 

𝜓2(𝑥) = �̂�Σ𝑡
2 𝑥

2

2

[
Σ𝑠
Σ𝑡
]
2

𝑒−Σ𝑡𝑥 [𝑥2 −
𝑥2

2
] = �̂�Σ𝑡

2 𝑥

2

2

[
Σ𝑠
Σ𝑡
]
2

𝑒−Σ𝑡𝑥 (2.33)  

which represents the contribution of particles that have collided exactly two times, etc. 

By induction, for particles having collided n times, we have: 

𝜓𝑛(𝑥) =  �̂�Σ𝑡
𝑛 𝑥

𝑛!

𝑛

[
Σ𝑠
Σ𝑡
]
𝑛

𝑒−Σ𝑡𝑥 (2.34) 

and: 

                                                           

2 Implicit capture is a technique which allows to implicitly simulate a capture interaction by acting on the weight 

of the particle. For an in-depth explanation, see Section 4.3.2 
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𝜓(𝑥) = ∑𝜓𝑛(𝑥)

∞

𝑛=0

= �̂�  ∑
(Σ𝑡

Σ𝑠
Σ𝑡
𝑥)

𝑛

𝑛!

∞

𝑛=0

𝑒−Σ𝑡𝑥 (2.35) 

Now, considering that : 

∑
(Σ𝑡

Σ𝑠
Σ𝑡
𝑥)

𝑛

𝑛!

∞

𝑛=0

=∑
(Σ𝑠𝑥)

𝑛

𝑛!

∞

𝑛=0

= 𝑒−Σ𝑠𝑥 (2.36) 

we can finally write the collision density as :  

𝜓(𝑥) = �̂� 𝑒−Σ𝑠𝑥𝑒−Σ𝑡𝑥 = �̂�𝑒−(Σ𝑡−Σ𝑠)𝑥 = �̂�𝑒−Σ𝑎𝑥 = 𝑆Σ𝑡𝑒
−Σ𝑎𝑥 (2.37) 

and the corresponding particle flux as : 

𝜙(𝑥) =
𝜓(𝑥)

Σ𝑡
=
�̂�𝑒−Σ𝑎𝑥

Σ𝑡
=
Σ𝑡𝑆

Σ𝑡
𝑒−Σ𝑎𝑥 = 𝑆𝑒−Σ𝑎𝑥 (2.38) 

The average flux in the detector, ϕD, is therefore: 

𝜙𝐷 =
1

𝑙
∫ 𝑆𝑒−Σ𝑎𝑥𝑑𝑥
𝐿

𝑑

= 𝑆𝑒−Σ𝑎𝑑
[1 − 𝑒−Σ𝑎𝑙]

𝑙Σ𝑎
(2.39) 

which is exactly the same result obtained in Equation (2.8) with the deterministic approach. 

As a final remark, it is appropriate to note that the particle flux at point x, 𝜙(𝑥) = 𝑆𝑒−Σ𝑎𝑥, should not be confused 

with the uncollided particle flux ϕ0(x), i.e. the flux given only by particles that have not collided before arriving 

in x, which can be written as: 

𝜙0(𝑥) = �̂�𝑒−Σ𝑡𝑥 (2.40) 

This quantity is of particular interest in radioprotection, as it is always possible to calculate it analytically by 

knowing the total macroscopic cross sections of the attenuating material. It is also called primary flux, as opposed 

to the secondary flux, coming from particles that had at least one collision before arriving to the detector. Similarly, 

we can calculate the average uncollided flux in the detector, ϕD,0, as: 

𝜙𝐷,0 =
1

𝑙
∫ �̂�𝑒−Σ𝑡𝑥𝑑𝑥
𝐿

𝑑

= �̂�
[𝑒−Σ𝑡𝑑 − 𝑒−Σ𝑎𝐿]

𝑙Σ𝑡
= �̂�𝑒−Σ𝑡𝑑

[1 − 𝑒−Σ𝑡(𝐿−𝑑)]

𝑙Σ𝑡
= �̂�𝑒−Σ𝑡𝑑

[1 − 𝑒Σ𝑡𝑙]

𝑙Σ𝑡
(2.41) 

This expression for the uncollided flux will be useful to define a new estimator, which will be shown to converge 

to the same result as the collision estimator, in Chapter 5. 

2.4. Practical example: numerical 1D Monte Carlo 

It is easy to test the validity of these calculations by developing a simple 1D Monte Carlo script. In this 

implementation, a particle is generated at 𝑥 = 0 and displaced by a quantity 𝑟 defined as: 

𝑟 = −
log(𝜌)

Σ𝑡
(2.42) 
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where 𝜌 is a pseudo-random number uniformly distributed between 0 and 1 and Σ𝑡 is the macroscopic cross section 

as defined in Equation (2.2). After the displacement, the particle is killed with a probability of Σ𝑎 Σ𝑡⁄ ; if it survives, 

it is displaced again. For a first implementation, we use the collision estimator (see Section 1.3.2): whenever a 

collision happens inside the detector, the code scores a value of 𝜅𝑐𝑜𝑙𝑙
𝑖 = 1 𝑙Σ𝑡⁄ . Finally, if the particle dies or exits 

the 1D slab, its history is terminated and the value of the average flux is calculated as the sample mean: 

𝜙𝐷,𝑐𝑜𝑙𝑙 ≈ 𝜅𝑐𝑜𝑙𝑙̅̅ ̅̅ ̅̅ =
1

𝑁
∑𝜅𝑐𝑜𝑙𝑙

𝑖

𝑁

𝑖=1

(2.43) 

The associated sample variance is calculated as: 

𝜎𝐷,𝑐𝑜𝑙𝑙
2 =

1

𝑁 − 1
∑(𝜅𝑐𝑜𝑙𝑙

𝑖 − 𝜅𝑐𝑜𝑙𝑙̅̅ ̅̅ ̅̅ )
2

𝑁

𝑖=1

(2.44) 

For this test, we chose a scattering cross section Σ𝑠 of 0.7 cm-1, an absorption cross section Σ𝑎 of 0.3 cm-1, a total 

length 𝐿 of 10 cm, and a detector length 𝑙 of 1 cm. With these data, the value for the average particle flux in the 

detector 𝜙𝐷, calculated with Equation (2.8), is: 

𝜙𝐷 = 5.806148 ∙ 10−2  [
𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

𝑐𝑚 ∙ 𝑠
] (2.45) 

And the value for the uncollided flux 𝜙𝐷,0 is: 

𝜙𝐷,0 = 7.800974 ∙ 10−5 [
𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒𝑠

𝑐𝑚 ∙ 𝑠
] (2.46) 

Figure 2.8 shows that, after a sufficient number of particle histories, the estimation given by the Monte Carlo 

solution converges to the analytical one, while the associated variance approaches zero. We can also run the 

simulation searching for the uncollided flux, by only scoring particles that have their first collision inside the 

detector and not counting the others. Even in this case, the calculation is shown to converge to the analytical value 

of Equation (2.46); however, the convergence is much slower, due to the fact that the simulated event (a particle 

not colliding until the detector and then colliding in it) is extremely rare.  

  

Figure 2.8: Average total (left) and uncollided (right) particle flux in the detector calculated through Monte Carlo. 

The red bar shows the value of the analytical solution. Note the difference in the x axis between the pictures, 

highlighting the much slower convergence of the uncollided simulation. 

 

 



 

 

  



 

 

PART II  
STOCHASTIC SIMULATIONS IN 

DECOMMISSIONING AND 

DISMANTLING PROBLEMS 



 

 

  



 

 

 

In this second part, we will give a closer look at how state-of-the-art deterministic and 

stochastic codes are used to solve decommissioning and dismantling problems, and explore 

their current limits. We will then focus on the stochastic Monte Carlo approach and see how 

its efficiency can be improved to better deal with this kind of problems, ultimately describing 

the motive behind this thesis work and identifying its framework. 
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. 

Chapter 3 

 

Limits of modelling deterministic and 

stochastic methods 

We have seen that, when dealing with photon transport for shielding calculations, one of two main approaches can 

be followed to find a solution: PKI method with build-up and/or albedo factors, and MC techniques. We have also 

hinted at the fact that each of the two methods has its strengths and its weaknesses: now, we will focus on the 

shortcomings of each method, to explain the need for new, more efficient calculation tools that can help us 

overcome these shortcomings. 

As a general rule, the PKI method has a strict domain of application outside of which it becomes unreliable. In the 

field of D&D this is usually accepted, as long as the estimations given by the method are conservative: if the 

radiation dose levels predicted by the method are shown to always be equal to or higher than the experimental 

values, then the code can be used for radioprotection purposes. However, there are cases in which this does not 

happen and PKI codes are shown to underestimate dose values.  

On the other hand, the limits of MC simulations are more technical in nature. As already pointed out in Chapter 1, 

the main problem with most MC simulations is the total computation time, which can quickly become prohibitive 

in the case of large, complex geometries and especially with the estimation of rare events. These are circumstances 

that can often be encountered in shielding calculations for dismantling, where the geometries can include the whole 

reactor building and the deep penetration of photons through radiation shields and concrete walls can lead to rare 

event estimations in the farthest points of the domain. 

This chapter presents in a general way some examples of difficult configurations found in D&D, and then focus 

on some specific test configurations, which have been chosen in the scope of this thesis as a benchmark to assess 

the limits of analog MC simulation and test the efficiency of our new estimator, the e-TLE. 
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3.1 Complex configurations encountered in dismantling problems 

As we have seen in Chapter 1, depending on the type of problem to be solved, deterministic codes use some semi-

empiric correction factors to determine a solution: the BU coefficient for attenuation-dominated problems, the 

albedo coefficient for reflection-dominated problems, and sometimes a combination of both of them. Depending 

on the configuration studied, a number of problems can greatly diminish the accuracy of PKI codes. For example, 

this happens when the configuration lies outside the limits imposed by the correction factors, thus, when the 

distance to travel in an attenuating media is too long (BU factors are usually tabulated until a maximum length 

expressed in mean free path units (MFP) or when there are too many reflections in a streaming configuration 

between source and detector. Moreover, PKI codes usually struggle to produce a valid estimate when the two 

approaches, BU and albedo, have to be used together. 

We now look at some actual configurations found in the literature, highlighting the limitation of PKI codes. As a 

first example we consider the geometry of Figure 3.9, first studied in [41]. In this very simple case, a 60Co source 

is placed in an empty concrete room, very close to the ceiling. The detector, is placed right next to a corner of the 

room. This configurations was designed to enhance as much as possible the contribution of scattered radiation 

from walls and ceiling to the detector. It is however a not-so-uncommon configuration, as it can be encountered 

for example when searching for dose rate values inside a reactor building close to the floor/ceiling and walls. In 

this instance, the authors conclude that the errors given by the PKI code CIDEC can be as high as 31%, due to the 

effect of back-scattering which is neglected by the calculation method, leading to an underestimation in the results. 

As another example, we look at Figure 3.10, presenting some configurations studied in [43]. As for the first 

example, we have a somewhat straightforward configuration, in this case composed by a 60Co source, a radiation 

shield, a concrete scattering floor, and a detector. The shield is treated as an ideal black body which absorbs all 

radiation passing through it. 

The position of the shield changes identifying three similar configurations that have to be treated differently, due 

to the different relative contribution of scattered particles in the three cases. In the first case, the use of an albedo 

coefficient is sufficient to correctly evaluate the solution within a 20% accuracy. However, for the second case, 

the calculations conducted with the albedo coefficient led to an underestimation of the result, and another 

calculation algorithm simulating a single scattering point and two ray-tracing computation had to be used. Finally, 

for the third case, an even more complicated multiple-scattering algorithm was employed, but it still led to extreme 

overestimation of the results (between 150% and 400% error) and computation times that were comparable to a 

Figure 3.9: Scattering-intensive configuration from [41] 
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Monte Carlo run on the same geometry, therefore too long for a PKI calculation. This is a good example of how a 

relatively simple configuration can pose serious problems to PKI-based codes. 

  

 

Figure 3.10: Source-shield-detector configuration for the study of multiple-scattering with the RANKERN PKI 

code, from [43] 

Figure 3.11 gives a very good example of the limitations of an analog MC simulation. In this paper by Matijevic 

et al. [64], the authors perform a shielding calculation over a PWR building. Results of an analog MC calculation 

for the dose rate coming from photons emitted by the coolant is shown in Figure 3.11. We report only the statistical 

error on the results, which shows how, when moving far from the source term (identified by the coolant in the steal 

generators and pumps) the code is completely unable to give meaningful results, with statistical errors ranging 

from around 30% up to 100%. In the white parts of the picture, identifying regions outside of the radiation shield 

of the reactor, the code is not able to compute any solution. It is relevant to note that the calculation took 1.64 days 

with 32 Gigabytes of RAM and a Core i5 CPU. 

In the next sections, we present some additional configurations that were chosen for the purpose of this thesis to 

validate the newly proposed e-TLE estimator. All configurations were chosen as they present some specificities 

that make them difficult to treat with classic PKI or MC codes. 

 

 

Figure 3.11: Results for the statistical error on a photon transport shielding MC calculation, from [64] 

3.2 “Odano” benchmarks 

The first group of configurations is based on the Odano Benchmarks [55], a set of experiment-based shielding 

benchmarks devised by Odano et al. to assess the performance and accuracy of the point-kernel code G33-GP2 
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[65], and of the MC code MCNP [14], on classical problems that would be problematic to evaluate with the PKI 

methodology. To this end, the configurations are explicitly designed to highlight the limits of applicability of the 

kernel method, with each configuration representing a specific problem.  

In the original experiment by Odano, these three configurations are reproduced in the lab and the results of the two 

codes are compared with the experimental data. Experimental dose rates are calculated with thermo-luminescent 

dosimeters (TLD) and no information on experimental uncertainty is given in the original report. For the purpose 

of this thesis, the results obtained with TRIPOLI-4® are compared both with the experimental data and with the 

results of MCNP, which is nowadays considered as a well-established reference Monte Carlo code. Results 

obtained with the PKI code NARMER in a VVUQ (Verification, Validation and Uncertainty Quantification) study 

performed in 2021 are also included in this chapter for reference. 

The Odano benchmarks include a back-scattering setup, a slant penetration setup, and a duct streaming setup.  

3.2.1 Back-scattering slab 

The back-scattering configuration (Figure 3.12a) assesses the performance of an estimator concerning the 

phenomenon of photon back-scattering, or reflection, on concrete. As noted before, PKI codes use albedo 

coefficients to mimic the effect of photon reflection, which could lead to errors if the coefficients are not chosen 

correctly by the user. In the original experiment by Odano et al., the deterministic code G33-GP2 showed a 

somewhat important underestimation of the results, between 40% and 50%, therefore failing to evaluate the effect 

of scattering in the simulation. 

The geometric configuration is quite simple. The direct path between the 60Co point-wise source and the detector 

volumes is shielded by a lead slab of 10 x 40 x 5 cm3. A concrete slab measuring 100 x 100 x 20 cm3 is placed at 

a distance of 50 cm from the photon source, allowing photons to scatter towards the detectors bypassing the shield. 

The five detectors are modeled as 1 cm radius spheres spaced 5 cm from each other.  

3.2.2 Slant penetration slab 

The slant penetration configuration (Figure 3.12b) determines the estimator’s response to photons traveling inside 

an attenuating medium with increasing slant angles. With this geometric configuration, the problem for a classical 

PKI code arises from the treatment of multiple photon scattering in the attenuating. The contribution of scattering 

becomes more important as the angle of inclination increases. 

In the original experiment two different approaches were chosen to deal with the problem: a BU-based calculation 

and a single-scattering approximation. However, due to the complex nature of the problem, the deterministic code 

always underestimated the results with errors up to 24% for the detectors further from the source (i.e. the ones 

with the greatest slant angles). This configuration was also used in the validation of the modelling deterministic 

code PANTHERE [66], as briefly seen in Chapter 1. 

As for the back-scattering case, this configuration is also quite simple from a purely geometrical point of view. 

The attenuating medium is a 100 x 200 x 20 cm3 concrete slab placed between photon source and detectors at a 

distance of 1 cm from either side. The first detector is placed vertically above the source; the remaining ten are 

spaced 10 cm from each other, creating increasing slant angles with respect to the source, up to an angle of 78°. 

The detectors are modeled as 1 cm radius spheres.  
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3.2.3 Streaming duct 

The streaming duct configuration (Figure 3.13) tests the performance of the estimator in the case of a streaming 

problem, i.e. an empty tube traversing a scattering medium thus creating a preferential way for particle transport. 

This kind of phenomenon is particularly important in shielding calculations, as it can be found quite often in 

nuclear installations, notably when dealing with air ducts and water pipes [67]. Due to its complex nature, this 

problem needs the application of both albedo and BU coefficients to be efficiently tackled, which can add a certain 

level of complexity to the simulation. Again, in this case, the PKI code G33-GP2 showed important 

underestimations in the results in the original experience, with errors up to almost 50% in the worst case. 

 

 

a) Back-scattering configuration b) Slant penetration configuration 

Figure 3.12: Geometry of the back-scattering (a) and slant penetration (b) benchmark from [55]. Red points 

represent the detector locations, red lines represent some of the possible photon paths. 

Figure 3.13: Geometry of the duct streaming benchmark from [55]. Red points represent the detector locations, red 

lines show some of the possible photon paths. 
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This configuration is also more complex from the geometric point of view. The pointwise isotropic 60Co source is 

placed in a lead collimator which effectively turns it into a conical-emitting source. A concrete structure with an 

empty steel tube traversing it is placed at a distance of two meters from the source with a 45° angle. Eighteen 1 cm 

radius spherical detectors are placed along the duct at six different axial positions. Each axial position has three 

detectors, spaced 7.5 cm from each other. 

3.3 Reactor-specific scenarios 

The next three configurations are designed in order to mimic, albeit in a simplified way, geometries that can be 

found in an actual dismantling scenario when dealing with a nuclear installation. Unlike the Odano benchmarks, 

these are not based on experimental data. Moreover, due to their added complexity, these reactor-specific scenarios 

are designed to highlight the limits of MC codes as well as deterministic ones. Even if they remain quite simple 

from a purely geometric point of view, some of the configurations are too complex to be treated with a normal, 

un-accelerated Monte Carlo calculation in a reasonable time frame. 

3.3.1 Deep penetration slab 

The deep penetration slab configuration (Figure 3.14a) takes inspiration from a hypothetical near-core 

configuration, with photons attenuated by a large mass of water. As the thickness of the water slab increases in 

subsequent simulations, it becomes progressively harder for particles to reach the detector placed at the end of the 

water tank. Therefore, in this situation we deal with the estimation of a rare event, one of the cases in which MC 

calculations struggle to give a solution in reasonable computation times. Due to the presence of multiple scattering, 

the problem would be also difficult to treat with a deterministic code. 

The geometry is fairly simple. It is composed of a water slab with an adaptive thickness varying between 50 cm 

and 300 cm, a fix-length concrete slab (100 cm) placed at the rightmost edge of the tank, and a second concrete 

slab on the right (20 cm) which serves as the detector volume. The 60Co pointwise source is located in the water 

tank, 1 cm from the left border. Reflection conditions are imposed on all surfaces except for the distal surface of 

the detector to the plane, to make this a 1D problem. 

3.3.2 Simple bunker 

The simple bunker configuration (Figure 3.14b) is originally inspired from a paper by Burn [68]. It reproduces a 

classic shielding problem: an empty room with a photon-emitting source, closed by concrete walls, a radiation 

shield made of a highly absorbing material, and a detection volume placed behind the shield and close to a corner 

of the room. In the version proposed here, the dimensions were reduced to simplify the geometry and lower 

simulation times, and the geometric configuration was slightly simplified with respect to the original version. 

Nonetheless, this simple configuration includes all the complexities of photon transport that we have presented 

until now. The radiation shield of variable thickness causes strong attenuation; the concrete walls provide multiple 

scattering and reflection at the interface with air; finally, the position of the detector volume (behind the shield and 

close to a corner) ensures that both these effects have a strong impact on the estimation of the results. Due to these 

features, this configuration presents challenges both for stochastic and deterministic codes. 
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 The detailed geometry is composed of a cubic concrete box of 1 m3 filled with air, a 60Co pointwise source, placed 

inside a 10 cm hole in the wall, a lead shield of variable height and depth, and a 10 cm radius sphere as the detector 

volume. Six cases are studied, with different values for the height and depth of the shield, as reported in  

Table 3.2. 

 

 

 

 

 

 

 

 

3.3.3 Complex bunker3 

This version of the bunker configurations is the exact reproduction of the one used in [68]. It is similar to the 

simplified version of Section 3.3.2, but it presents some key differences that make it more complex to treat with 

an MC simulation. The geometry is larger: the bunker’s external dimensions are 8 m x 8 m x 2 m and the concrete 

walls are 1 m thick. The configuration is studied with photons: the pointwise source of the simplified configuration 

is replaced by a scattering stainless steel (SS) sphere with a 60Co photon beam impinging on it. The shield in this 

case is made of concrete and it presents a horizontal hole right in front of the SS sphere, offering a preferential 

                                                           

3 The analysis on this configuration was performed by Nicolas Guillevic during his Master’s thesis (M2 stage) 

 

 

a) Strong attenuation slab b) Bunker 

Figure 3.14: Geometry of the strong attenuation slab (a) and bunker (b) configurations. 

Table 3.2: Lead shield height (h) and depth (d) variation 

inside the bunker 

Name h (cm) d (cm) 

R1 50 10 

R2 80 10 

R3 100 10 

R4 50 20 

R5 80 20 

R6 100 20 

d 
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way for photons. Finally, the detector is placed right outside the bunker, in front of a small opening constituting 

an exit path for particles. 

The configuration is presented in Figure 3.15. 

The complex bunker configuration is also used in [69] to test a new acceleration technique applied to MC neutron 

transport. The solution with an analog MC simulation took, in this case, almost 19 hours to compute, showing the 

need for some kind of acceleration. 

3.4  The need for accelerating Monte Carlo calculations 

We present in this section the results obtained with the deterministic code NARMER and with the MC code 

TRIPOLI-4® for some of the configurations previously described. The aim of these simulations is to show the 

accuracy limits of deterministic codes as previously detailed, but also the excessively large amount of time that 

are sometimes required by MC simulations to obtain a meaningful result. NARMER’s results for the back-

scattering and slant configuration are taken from the code’s latest VVQI tests4.  

Table 3.3 shows the results obtained for the back-scattering slab presented in 3.2.1. The quantity calculated is the 

DER (Dose Equivalent Rate, see Annex A), as the albedo module of NARMER does not allow to calculate 

KERMA. When using the single-differential albedo, NARMER underestimates the result by about 10% with 

                                                           

4 Visonneau T. (2020) NARMER-1 version 5.1 : Vérification et Validation. CEA Cadarache, communication 

interne 

Figure 3.15: Geometry of the complex bunker configuration, adapted from [68] 
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respect to TRIPOLI-4®; when using double-differential albedo, results are overestimated by a factor ranging form 

5% to 7%. 

Table 3.3: Results for the back-scattering configuration 

Results obtained with double-differential albedo are conservative from a safety point of view, however we can still 

note a certain error with respect to the MC results. Finally, it is worth mentioning that the TRIPOLI-4® simulation 

of such a geometrically simple configuration took almost 20 hours to converge to the desired statistical error of 

0.1%. 

Detector 

number 

TRIPOLI-4® 
NARMER  

(simple albedo) 

NARMER  

(double differential albedo) 

DER 

(µSv/h) 
σ (%) t (s) 

DER 

(µSv/h) 
t (s) 

Deviation 

(%) 

DER 

(µSv/h) 
t (s) 

Deviation 

(%) 

1 1.05E+02 0.85 

70491 

9.430E+01  

Few 

seconds 

-10.19 1.151E+02  

Few 

seconds 

9.62 

2 1.01E+02 0.87 9.009E+01 -10.80 1.090E+02 7.92 

3 9.61E+01 0.91 8.565E+01 -10.87 1.027E+02 6.87 

4 9.12E+01 0.96 8.104E+01 -11.14 9.624E+01 5.53 

5 8.49E+01 0.99 7.633E+01 -10.09 8.980E+01 5.77 

 Table 3.4: Results for the slant penetration configuration 

Detector’s 

horizontal 

distance from 

source (cm) 

Experiment TRIPOLI-4® NARMER  

KERMA 

(µGy/h) 

KERMA 

(µGy/h) 
σ (%) C/E t (s) 

KERMA 

(µGy/h) 
t (s) 

Deviation 

(%) 

0 1.24E+04 1.38E+04 0.06 1.11 

650011 

1.45E+04 

Few 

seconds 

16.94 

10 9.38E+03 9.47E+03 0.08 1.01 1.01E+04 7.68 

20 3.85E+03 3.81E+03 0.12 0.99 4.08E+03 5.97 

30 1.16E+03 1.22E+03 0.21 1.05 1.32E+03 13.79 

40 3.55E+02 3.65E+02 0.39 1.03 3.92E+02 10.42 

50 1.10E+02 1.10E+02 0.70 1.00 1.13E+02 2.73 

60 3.52E+01 3.51E+01 1.22 1.00 3.24E+01 -7.95 

70 1.23E+01 1.21E+01 2.02 0.98 9.20E+00 -25.20 

80 5.40E+00 4.93E+00 3.00 0.91 2.64E+00 -51.11 

90 2.58E+00 2.40E+00 4.18 0.93 7.53E-01 -70.81 

100 1.20E+00 1.50E+00 4.99 1.25 2.17E-01 -81.92 
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Table 3.4 shows the results for the slant penetration slab of Section 3.2.2. In this case, it is possible to calculate 

the KERMA, so a comparison with the original experimental results of Odano et al. is included. Unfortunately, 

the experimental results do not include any information about uncertainty.  

Results obtained with NARMER are conservative with respect to the experimental values on the first six detectors, 

with errors up to 17%; however, they vastly underestimate the values for the furthest detectors, with negative errors 

up to 82%. TRIPOLI-4® values are in agreement with experimental results; however, the simulation took 7.52 

days to converge to the required target statistical error of 5% for the furthermost detector. 

Finally, Table 3.5 lists results obtained for the R1 bunker configuration presented in Section 3.3.2. For this 

preliminary test, the detector is replaced by nine point detectors to increase the statistics obtained with a single 

code run. When using NARMER with BU but without albedo, all results are underestimated, with errors ranging 

from 5% to 15%. We can note that the errors grow for detectors which are closer to the concrete walls: in this case 

the contribution due to wall reflection is higher, so results without albedo are progressively less accurate, as 

expected. 

 

Table 3.5: Results for the bunker configuration 

Detector position relative to 

center of geometry (cm) 
TRIPOLI-4® NARMER 

x y z 
KERMA 

(µGy/h) 
σ (%) t (s) 

KERMA 

(µGy/h) 
t (s) 

Deviation 

(%) 

35 -35 0 1.06E-09 0.42 

 26704 

1.00E-09 

Few 

seconds 

-5.66 

35 -40 0 9.49E-10 0.42 8.62E-10 -9.17 

35 -45 0 8.63E-10 0.54 7.31E-10 -15.30 

40 -35 0 1.04E-09 0.39 9.46E-10 -9.04 

40 -40 0 9.27E-10 0.48 8.27E-10 -10.79 

40 -45 0 8.36E-10 0.59 7.12E-10 -14.83 

45 -35 0 9.83E-10 0.51 8.94E-10 -9.05 

45 -40 0 8.99E-10 0.51 7.91E-10 -12.01 

45 -45 0 8.07E-10 0.82 6.89E-10 -14.62 

 

The examples proposed in this chapter show that, even for some relatively simple and small geometric 

configurations, MC calculations can sometimes struggle to give a solution in an acceptable amount of time. As 

mentioned before, the solution to this problem lies in a class of algorithms and techniques devised to enhance the 

performance of stochastic calculations, generally called acceleration techniques.  
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The concept of acceleration techniques is presented and explained in detail in the next chapter. At first, we will 

give a general overview of the various type of acceleration techniques, by listing the most important and most 

widely used. Then, we will focus on the techniques implemented in the TRIPOLI-4® code, which was used for 

the purpose of this work.
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. 

Chapter 4 

 

Variance reduction techniques for Monte Carlo 

transport  

A “classic” MC simulation, where the physics of the problem under consideration is reproduced in the most exact 

way possible, is called an analog simulation. It is however possible to somewhat “tweak” the laws of physics in 

a way that favours the simulation, paying attention that this manipulation does not bias the result in any significant 

way: in this case, we enter the vast domain of non-analog Monte Carlo techniques. 

Since a MC simulation tries to solve a problem through a probabilistic approach, every result is actually an estimate 

of an exact value, to which a statistical variance is associated. Therefore, to compute a solution by a MC approach 

actually means to achieve a sufficiently accurate estimate, i.e. to reduce the variance to a certain predefined limit. 

Moreover, it can be demonstrated that in an analog simulation, for a sufficiently large number of histories N, the 

variance (see Section 1.3) is inversely proportional to N. In our specific case, a “history” corresponds to the full 

life of a particle, with its interactions, the path that it travels, and all the relevant information that it carries. 

One could assume that, to improve the efficiency of a simulation, it would be sufficient to reduce the variance 

associated to a certain number of histories. In fact, it is also necessary to account for the additional time required 

by the code to implement the variance reduction itself. For example, let us suppose we have devised a method that, 

for a given number of histories, reduces the variance by a factor 2 with respect to the analog simulation. Another 

way of seeing this is that the “improved” simulation will need half as much histories as the analog one to attain 

the same final variance. However, this new method involves some additional calculations to be performed by the 

code at each step of the particle’s history, which increases the computation time so that now every history takes 4 

times longer to be completed. It is easy to see how the new “improved” simulation will actually take double the 

time of the analog one to reach the same result.  

To account for this, we define the Figure Of Merit (FOM) of a Monte Carlo simulation, sometimes also called 

efficiency [70], as follows: 
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𝐹𝑂𝑀 =
1

𝜎2 ∙ 𝑇
(4.1) 

where 𝜎2 is the variance and 𝑇 is the time required for the simulation to reach said variance, which is directly 

proportional to the number of histories. The higher the FOM is, the more efficient the calculation is. Therefore, 

we can categorize acceleration approaches based on which of these two quantities – the time or the variance – they 

aim at reducing. 

Techniques that focus on reducing the time elapsed for a given number of histories are sometimes called Efficiency 

Enhancing Techniques (EET). We can further subdivide them into: 

 hardware approaches, which simply act on the calculator-related part of the code and accelerate it 

typically through CPU (or, more recently, GPU) parallelization,  

 algorithmic approaches, which aim to optimize the code, either perfecting the implemented algorithms 

or introducing new ones that can save calculation time by means of some simplification. 

The other approach, aiming to minimize the variance for a given number of histories, is the most adopted and 

researched, because of the many possibilities it includes. These techniques always follow an algorithmic approach, 

usually introducing biases in the simulation’s physics. They are generally called Variance Reduction Techniques 

or VRT. 

In this Chapter, we briefly detail the most used acceleration techniques in Monte Carlo codes; then, we focus on 

the TRIPOLI-4® code and the VRT implemented in it. Finally, we present a study investigating the efficiency of 

TRIPOLI-4®’s VRT when applied to some test cases relevant to the scope of this thesis (taken from the ones 

presented in Chapter 3). 

4.1 Efficiency Enhancing Techniques 

4.1.1. Hardware approaches 

Concerning hardware approaches, the best example is the universally recognized technique of code parallelization. 

Actually, MC simulations are extremely well suited to this type of implementation, because of the independent 

nature of the simulated histories. For the process to work, each history must be statistically independent from the 

others, therefore it is a good idea to assign different histories to different processors of a calculator. As a matter of 

fact, if we don’t consider initialization time (the time necessary at the begin of the simulation to initialize the 

geometry, the materials etc., which often needs to be treated separately), the gain in efficiency resulting from 

parallelization is directly proportional to the number of processors. Some care should be taken when choosing the 

random seeds used to initialize the random number sequence for each processor, as the same seed would imply the 

non-independence of the generated histories.  

Another technique that has been gaining more and more attention is the use of Graphical Processing Units (GPU) 

for the parallelization of the MC simulation. This approach is based on the recent evolution of GPU from specific 

tools for graphical rendering to powerful computation devices, which increased the interest of researchers in them. 

GPU parallelization algorithms usually assign to the GPU the bulk of the simulation, i.e. the simulation of the 

particles’ random walks, while the CPU usually manages the geometry and other parts of the simulation. In a 
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specific implementation of GPU parallelization to photon transport [71], researchers found acceleration factors 

ranging from 15 to 35 with respect to a CPU simulation. In another implementation [72], the GPU was used for 

deterministic transport in a new estimator for the code MCATK, called VRC (Volumetric Ray Casting) estimator, 

very similar to the e-TLE developed in this work. The VRC showed acceleration factors ranging from 2 to about 

24, depending highly on the problem geometry. 

4.1.2 Algorithmic approaches 

On the algorithmic side, EET usually consist in truncating a part of the phase space that does not contribute 

significantly to the solution. They reduce the computation time for a given number of histories but can introduce 

a bias, because removing a part of the simulation domain always implies an approximation in the results. In the 

field of particle tracking, these approaches are mainly devoted to optimizing the simulation by operating some 

“cuts”, which are numerical values below or above which particles are no longer tracked.  Depending on the code 

and on the problem, we can decide not to follow particles under a certain energy (because they do not contribute 

significantly to the solution). We could also decide that particles that are in an area far enough from the detection 

volume will never reach it, and therefore operate a “geometrical” cut of the domain. Another option is to combine 

energy cuts and geometry cuts, by selecting multiple cut values that depend on the region where the particle is. As 

an example, the code GEANT4 [73] allows the user to define “region-specific cuts”. With this functionality, a user 

could deactivate the electromagnetic shower in an uninteresting region of the geometry, while still retaining the 

maximum accuracy in more important areas, such as areas close to detectors. 

An example in which some “physical” cuts are introduced in the simulation is given by [74], somewhat inspired 

by another technique presented in [75], called range-rejection. In this paper, the authors apply the technique to a 

Monte Carlo simulation of a tungsten Multi-Leaf Collimator (MLC)5. The technique presented by  

Brualla et al. [74] consists in defining some regions of the leaves, called skin regions, and then applying electron 

and positron transport only in said regions. In short, while photons are transported everywhere in the MLC, 

electrons and positrons are only transported in skin regions, and instantly absorbed elsewhere. To do this the 

material “tungsten” is defined twice in the input file with different cuts for electrons and positrons: the tungsten 

used to define the skin regions presents small energy cut for electrons and positrons while the tungsten used for 

the rest of the collimator presents higher energy cuts for electrons and positrons transport. This idea arises due to 

the reduced range of electrons (and positrons) in tungsten, which makes it difficult for such particles to escape the 

collimator if they are not very close to the surface. Since only the particles that exit the collimator and reach the 

target are relevant to the simulation, particles that have a small probability of doing so are simply neglected. This 

method has to be adapted, case by case, to the simulation: specifically, the thickness of skin regions depends on 

the geometry under consideration. However, it shows very good results; the ratio between the efficiency of the 

accelerated simulation and the reference analog simulation ranges from 2.28 to more than 22, in the case of rare 

events.  

As said before, algorithmic EET methods inevitably introduce some bias in the simulation, which have to be 

carefully quantified and considered when assessing the final results. 

                                                           

5 A collimator is an object used in the medical nuclear field to “collimate”, or “shape”, the photon beam coming 

(usually) from a LINAC (LINear ACcelerator). An MLC is a type of collimator that uses several movable pieces 

(the “leaves”) to accurately shape the beam according to the target. 
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4.2 Variance Reduction Techniques (VRT) 

To illustrate the concept of VRT [76, 77], particularly applied to particle transport, in a very broad and intuitive 

sense, we could say that such techniques attempt to follow interesting particles more often than non-interesting 

ones. Interesting particles are defined as those who contribute a large amount to the quantity that needs to be 

estimated by the simulation. To describe this in a more rigorous way, we need to explain in greater detail the 

meaning of a quantity related to the MC particle, briefly introduced in Chapter 1: the weight. 

The weight does not have a direct physical meaning. It is a number carried along with each simulation particle 

representing the particle’s relative contribution to the final tallies. Its magnitude is determined to ensure that 

whenever the Monte Carlo simulation deviates from an exact simulation of the physics, the expected physical 

result is preserved in the sense of statistical averages. It is initialized at 1 and changes during the particle’s life. All 

VRT are based on some kind of algorithm associated to a modification of the weight of the particles.  

Depending on how the algorithm impacts the simulation, we can distinguish three broad groups of VRT: population 

control, modified sampling, and partially deterministic methods. 

4.2.1 Population Control Methods 

VRT of this type aim to control the number of particles based on their position in the phase space. It is preferable 

to have more particles in the high importance regions of the phase space (i.e. particles close to the detector, or with 

an energy close to some target energy) and less particles in low importance regions. The weight of the particles 

has to be adjusted accordingly, to preserve statistics. 

A well-known example is the splitting technique, which can be implemented both in geometry and in energy. Its 

goal is to favour useful events. Suppose we have a region of particularly high importance situated in the proximity 

of a detector. If a particle enters that region, it suddenly becomes “more interesting” from the point of view of the 

simulation, as it has a greater probability to contribute to whichever quantity we are trying to estimate. With 

splitting, the particle is divided into N particles, each one of weight 1/N, when it enters the region. Thus, the size 

of the statistical sample increases, and the variance is reduced. The same thing can be implemented for energy: 

when a particle approaches a certain energy, it is split. 

If splitting aims to increase the number of important particles, a very similar technique called Russian roulette 

does the opposite. It consists in randomly killing, with a given probability, some photons of lesser interest. If the 

weight of a particle drops under a certain limit value w0, the Russian roulette routine is called. Then, the particle 

can either jump up to a weight w1 > w0, with probability w0 / w1, or be killed, with probability 1 -  w0 / w1. This 

prevents the code from having to follow too many particles with too small weights, which could slow down the 

simulation. Splitting and Russian Roulette are often used together, since they are complementary: particles with a 

high weight are split, while particles with a low weight undergo Russian Roulette. Sometimes, the splitting/Russian 

Roulette process also takes under consideration other quantities than weight, like the particles’ position or direction 

of motion, to increase statistics in important areas of the simulation. A well-established example of this process is 

the treatment of Bremsstrahlung photons emitted at the tungsten target of LINAC or X-ray tube [78]; depending 

on the problem studied, secondary Bremsstrahlung photons can be split or killed to improve the convergence of 

the simulation.  
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4.2.2 Modified Sampling Methods 

VRTs of this type act whenever the Monte Carlo code is required to sample a quantity from a certain probability 

distribution, by replacing the physical distribution with another one. This quantity can be, for example, an 

interaction type, a mean free path length, a direction of flight. If the weight of the particle is accordingly adjusted, 

any distribution can be arbitrarily chosen. While population control methods aim to increase the number of 

particles, these methods, instead, try to increase the number of useful tallies per particle. 

Implicit capture acts on the capture event, i.e. when the simulated particle is absorbed by a target atom. In a 

purely analog simulation, this event “kills” the particle and terminates its history. It is easy to see how, especially 

in a highly absorbing medium, this would slow the convergence of the solution. With implicit capture, the 

absorption is never simulated – in fact, it is removed from the list of possible interactions. Instead, at every 

interaction the weight of the particle is multiplied by the quantity 1 - σa; since σa is the absorption cross section of 

the medium, this quantity represents the probability that the particle is not absorbed in the interaction. In this way, 

the calculation is accelerated with no bias on the result.  

Another well-known VRT belonging to the group of modified sampling is the exponential transform, which will 

be better explained in Section 4.4.1. 

4.2.3 Partially Deterministic Methods  

The last type of acceleration methods is somewhat linked to the hybrid methods, presented in the next paragraph. 

In fact, “partially deterministic methods” aim to speed-up the normal random walk process by using deterministic-

like techniques. Some examples are the FLUX_PT option [21] and the DXTRAN method [76] implemented in   

TRIPOLI-4® and  MCNP, respectively.  

The DXTRAN method in MCNP improves sampling near detectors or other tallies by deterministically 

transporting particles on collision to some arbitrary, user-defined sphere in the neighbourhood of a tally and then 

calculating contributions to the tally from these particles. The source, or collision event, is sampled in the usual 

manner except that the particle is killed if it tries to enter the sphere because all particles entering the sphere have 

already been accounted for deterministically. As DXTRAN makes it possible to obtain many particles in a small 

region of interest that would otherwise be difficult to sample, it is widely used in detector design studies [79, 80]. 

The FLUX_PT in TRIPOLI-4® is a next-event estimator to tally quantities in a point or on a surface. The next-

event estimator is included in many MC codes as it is very useful to estimate integral quantities in a point that can 

be anywhere in the geometry, even very far from the source where it would be difficult for the particles to arrive. 

It is implemented in TRIPOLI-4® in the following way: whenever a particle undergoes a collision, the code also 

samples a “fictive” collision with fixed direction towards the point of interest. Then, a fictive particle is 

deterministically transported to the point, and the code calculates the score that the particle would have given if 

the fictive collision had really happened. In other words, the score is calculated by instantly moving the fictive 

particle to the point of interest and changing its weight by considering both material attenuation (related to the 

total cross sections of materials in the geometry) and geometrical attenuation (related to the distance between 

collision and point of interest). 



50 

 

4.3 The TRIPOLI-4® Monte Carlo code 

TRIPOLI-4® [21] is the reference MC and industrial code for CEA (laboratories and reactors), EDF (operating  

58 PWRs), ORANO, FRAMATOME and TechnicAtome. It is also the reference code for several packages 

developed at CEA such as the CRISTAL criticality safety package [81] or the DEMAIN package for dismantling 

[20]. For historical reasons, the main focus of TRIPOLI-4® is on fission energy, with applications in shielding, 

reactor physics with and without depletion, criticality, safety, and nuclear instrumentation.  

4.3.1 Brief overview of TRIPOLI-4® 

TRIPOLI-4® is a 3D, continuous-energy MC code for the transport of charged and uncharged particles, developed 

by the SERMA group at CEA Saclay. It is mainly coded in C++, with a few parts in C and Fortran.  Detailed 

information about the code can be found in [21]. A brief overview is presented here, focused on the features of 

interest for this thesis. 

TRIPOLI-4® is able to track neutrons in the energy range comprised between 20 MeV and 10-5eV, as well as 

photons, electrons and positrons from 20 MeV to 1 keV. Neutron-photon coupling is handled by default, and 

photonuclear reactions may be simulated as well, if requested. The continuous-energy data for cross sections can 

be accessed by TRIPOLI-4® from any file written in ENDF or PENDF format, including JEFF-3.1.1, ENDF/B-

VII.1, JENDL-4.0 and FENDL-2.1. The code can also treat multi-group homogenized cross sections in the GENDF 

format. 

 TRIPOLI-4® has a built-in geometry module allowing for two kinds of geometric representations: a surface-based 

one and a combinatorial one, with predefined shapes and logical Boolean operators. TRIPOLI-4® is also fully 

compatible with ROOT-built geometries [82]. 

The transport simulation is carried on with batches of particles, the dimensions of which can be specified by the 

user. Tallies are stored in memory and after every batch the code calculates the mean and the variance for all the 

quantities requested by the user. TRIPOLI-4® can operate both in criticality mode and in fixed-source mode. 

Criticality mode is used to solve for the keff eigenvalue equation, which means to find the neutron flux shape 

distribution corresponding to criticality for a given geometric configuration. This mode of operations requires 

neutrons as the main particles to transport and it is particularly useful for reactor design studies, for example. 

Fixed-source mode is used for a number of different studies, among which are the shielding calculations performed 

in this thesis. For this mode of operation, a particle source (pointwise, surface-based, or volumetric) is imposed by 

the user, and particles are transported from the source until their disappearance from the spatial or energetic 

domain. Subsequent batches start with the same user-imposed source, and the simulation continues until either a 

predefined number of batches have been simulated or when statistical uncertainties fall below a certain threshold. 

Fixed-source operation can be used to transport any kind of particles: in shielding calculations, it is usually 

photons.  

The code offers two types of estimators for the calculation of quantities over volumes: the collision estimator 

COLL and the track-length estimator TRACK. The volumes over which the estimation is performed can either be 

defined in the geometry, or be part of a mesh structure which is super-imposed to the geometry. 

As mentioned before, TRIPOLI-4® can simulate photons in the range 20 MeV – 1 keV. Differential cross sections 

(DCS) and cross sections (CS) are read from ENDF format evaluation files for all relevant photon-matter 



51 

 

interactions, notably [83]: coherent (Rayleigh) scattering, incoherent (Compton) scattering, photoelectric effect 

with K, LI, LII and LIII shell interaction, and pair effect. A detailed description of photon physics implementation 

in the code is given in [84]. 

The electron and photon physics in TRIPOLI-4® has been tested against other established MC codes (MCNP [14], 

PENELOPE ) and satisfactory accordance was found [84]. For the purpose of this thesis, electron and positron 

transport is disregarded. 

4.3.2 VRT in TRIPOLI-4® 

TRIPOLI-4® supports a varied choice of VRT, some of which are implicit, which means that they are included in 

the simulation by default, while some have to be explicitly requested and put in place by the user. In photon 

calculations, implicit capture (see Section 4.3.2) and implicit pair production are active by default.  

User-requested VRT, on the other hand, are all based on the concept of importance and on the creation of 

importance maps. Hence, it is convenient to first explain how the importance generation is handled by the code, 

before giving a more detailed explanation of the VRT under consideration. 

In TRIPOLI-4®, the importance function is assumed to be factorized in four parts, as detailed in [21, 85]: 

ℐ(𝒓, 𝛀, 𝐸, 𝑡) = ℐ1(𝒓) ∙ ℐ2(𝛀) ∙ ℐ3(𝐸) ∙ ℐ4(𝑡) (4.2)

with 

 ℐ1(𝒓), the spatial contribution. The user has to define the most important sites of the problem either as 

discrete attractors or as an analytical attractor surface; the spatial importance function is determined by 

solving for the shortest optical distance from each point to these attractors. To get an efficient variance 

reduction, the user has to manually adjust the biasing coefficients, which are automatically determined 

by the code by solving Placzek’s equation [86, 87]. 

 ℐ2(𝛀), the directional contribution. It is calculated automatically by the code during the simulation 

based on particle’s direction. 

 ℐ3(𝐸), the energetic contribution. The energetic importance function is defined over a few groups that 

can capture most of the energy dependence of the problem; the user can modify the assumed energy 

dependence within the group by fixing the exponent of a power law of the form Eα; this user modification 

is optional and, by default, α is set to 0. 

 ℐ4(𝑡), the time contribution. The dependence of importance on time takes the form of 1 +  𝜆𝑡, where 𝜆 

can be defined by the user; this is also optional, and by default λ=0. It is relevant to note that for the 

purpose of this thesis, the transport problem was always assumed to be stationary, therefore this 

contribution is included just for the sake of completeness. 

The module in charge of the preliminary computation of the importance map is called INIPOND [85]. It has found 

large applications in shielding calculations along the years and it is still extensively used for neutron transport in 

fission [88] and fusion applications [89]. INIPOND is able to produce approximated solutions of the adjoint 

problem6 on a domain discretized in space and energy with a negligible computational time compared to the 

                                                           

6 The adjoint solution of the transport equation constitutes a measure of the particles’ importance; therefore, it is 

widely used in VRT. For a more detailed explanation see for example [90] or [91].  
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simulation time of a MC code. Detectors defined in INIPOND do not represent actual, physical detectors; rather,  

they act as fictitious particle attractors. They have to be defined in the spatial domain together with a coefficient, 

quantifying their attraction strength. During the first batches of the simulation, TRIPOLI-4® operates by default 

an adjustment of the importance map in order to avoid the particle population explosion due to an excessive 

splitting and an excessive weight discrepancy between the statistical weights of the particles and the reference one.  

Once the importance map has been determined, the user can request one of two VRT to improve the simulation’s 

efficiency: the Exponential Transform (ET), or the Adaptive Multilevel Splitting (AMS). 

Exponential transform 

The so-called exponential transform method [51, 92] is a modified sampling method that modifies the total cross 

section of the materials in which particles are transported, making it “easier” for the particles to travel towards a 

certain direction. The modified macroscopic cross-section is defined by: 

Σ∗ = Σt − 𝑘𝛀 ∙ 𝛀
∗ (4.3) 

where Σt is the true total cross section, 𝛀 is the particle’s direction of travel, 𝛀∗ is the preferred direction (in our 

case, towards the right) and k is a parameter between 0 and 1 which establishes the degree of biasing. Theoretically 

𝑘 and 𝛀∗ depend on the choice of the importance function ℐ. The result of this transformation is that, after every 

collision, any transport step of the particle towards the direction of interest will be stretched, while any step in the 

opposite direction will be made shorter, effectively making it easier for the particle to travel in the direction of 

interest. Of course, the particle’s weight has to be adjusted after every collision to preserve the validity of the 

results. Moreover, since the exponential transform method is known to produce very large fluctuations in the 

weight distribution, other techniques (splitting, Russian roulette) are usually implemented to keep the particles’ 

weight sufficiently close to a reference value. 

The ET in TRIPOLI-4® is based on the importance map calculated by INIPOND. 

Adaptive multilevel splitting 

In the TRIPOLI-4® AMS algorithm applied to shielding study, particle transport between collisions is kept analog 

and splitting operations are performed in an adaptive and iterative way. At a given iteration, particles are sorted 

accordingly to their importance, the best particles (according to the importance ranking, set of size N-k) are split 

and replace those that are ranked worst (keeping the same total number of particles, set of size k). This ensures 

that, in the next iteration, all particles will start in a region of higher importance with respect to the beginning, 

therefore a little bit closer to the target region. Finally, the weight of all the particles is updated by considering the 

probability p of surviving the grouping process: 

𝑝 = 1 −
𝑘

𝑁
 (4.4) 

The splitting level allowing for this operation is adaptively set at each iteration and depends on the percentage of 

particles to split (1% by default). Consequently, particles approach to the target over the iterations.  The iterations 

stop when a given number of particles (depending on the number of particles to be split) reach the target and a 

weighting correction is applied accordingly. 
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Aside from the possibility of using a pre-calculated importance map with INIPOND, the AMS in TRIPOLI-4® 

can also be used with simpler, geometry-based importance maps, where the importance in every point of the 

domain is calculated as the inverse of the distance from some user defined point of interest, usually coinciding 

with the estimation volume. 

4.4 Performance study on dismantling applications 

 In this preliminary study, we test TRIPOLI-4®’s VRT on some of the configurations presented in  

Chapter 3. The aim of this first study is to evaluate TRIPOLI-4® capabilities in dealing with photon shielding 

problems in geometries representative of dismantling configurations. Results of this study are published in [93]. 

4.4.1 Methodology 

The configurations considered in the study are all presented in Chapter 3. Specifically, they are: the three Odano 

benchmarks (back-scattering slab, slant penetration slab, duct streaming configuration); the deep penetration water 

slab, with four increasing water thicknesses; the simple bunker configuration, with six different values of shield 

thickness and height; the complex bunker configuration, with three increasing shield thicknesses. For each of these 

configurations, four distinct simulations are performed: 

 the ANALOG simulation is performed in semi-analog mode, with implicit variance-reduction options 

only (implicit capture and implicit gamma pair production); 

 the ET-INIPOND simulation uses the exponential transform, based on an importance map generated by 

the INIPOND module and manually adjusted by the user, by fine-tuning the importances of different 

compositions in the simulation; 

 the AMS-GEOMETRIC simulation is performed with the AMS technique, with an importance map 

generated by geometric considerations; 

 the AMS-INIPOND simulation is performed with the AMS technique, based on the same manually-

adjusted importance map as the ET-INIPOND simulation. 

For each simulation, the track-length estimator is used. The quantity scored is the KERMA for the Odano 

benchmarks, to allow a comparison with experimental results, and the photon flux for the slab and bunkers 

configurations. A figure of merit (FOM) is calculated for each detector, to be able to compare the different 

simulations. The FOM definition is the one given in Equation (4.1). The “gain” of each simulation is calculated as 

the ratio between its FOM and the FOM of the ANALOG simulation. 

For all the simulations, an average target variance of 5% over the detectors is set as limit. Batches of 5000 particles 

are used for the ANALOG and ET-INIPOND simulations, while the number of particles per batch is reduced to 

500 for the AMS (GEOMETRIC and INIPOND) simulations, as reduced batch sizes have been shown to improve 

performances [88]. For the Odano benchmarks, the results given by TRIPOLI-4® are also compared both to the 

experimental measurements (analysis of C/E values, Calculation/Experiment) and to the MCNP results provided 

by [55].  

4.4.2 Importance maps adjustments 

In Figure 4.16, importance maps obtained for Odano’s configurations are reported.  
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(a) Odano’s backscattering configuration: the particle attractor is placed in the leftmost detector. 

  

 

(b) Odano’s slant penetration configuration: the particle attractor is placed in the rightmost detector. 

   

(c) Duct Odano’s configuration: the particle attractor is placed in the uppermost detector. 

Figure 4.16: Importance maps obtained for Odano’s configurations. Red indicates high importance, whereas blue  

indicates low importance. 
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The importance maps are created by the INIPOND module, with manually adjusted biasing parameters for each 

material. All maps are created by using a single particle attractor, which was placed in the detector farthest from 

the source.  

4.4.3 Comparison with experimental results 

C/E values obtained for Odano’s configurations are reported in Figure 4.17. Statistical uncertainties are those 

obtained for MC simulations as no data about experimental uncertainties are given for Odano’s configurations. As 

MC convergence is about 5%, C/E varying between 0.9 and 1.1 (± 2σ) are considered in good agreement with 

experimental results. 

Figure 4.17a shows results for the duct streaming benchmark. The experiment presents 18 detectors, distributed 

over 6 points along the duct; at each of these 6 points, three detector are placed, with a distance of -7.5, 0 and 

7.5 cm perpendicular to the duct axis. In an effort to improve readability, the averaged response of the three 

detectors at each point is reported in the graph. The C/E plot shows a slight underestimation of the code with 

respect to experimental data; however, this underestimation is consistent with the one already found by  

Odano et al. with the code MCNP, and attributed to ambiguities in the materials’ composition. 

Results for the back-scattering configuration are reported in Figure 4.17b. C/E varies between 0.92 and 1.06 for 

the ANALOG simulations, between 0.85 and 1.04 for ET-INIPOND simulations, between 0.90 and 1.06 for AMS-

GEOMETRIC simulations and between 0.87 and 1.03 for AMS-INIPOND simulations. All results, except the 

ones obtained for detector 1 with ET-INIPOND and AMS-INIPOND simulations, are thus validated. 

Figure 4.17: C/E ratios obtained for Odano’s configurations; red lines correspond to the validity domain comprised 

between ± 2σ. 
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Results for the slant penetration benchmark, reported in Figure 4.17c, show a good agreement between simulations 

and measurements except for the last detector at y = 100 cm.  

Deviations observed for detector 1 in Figure 4.17b could be due to the attractor chosen to determine the INIPOND 

map, as this deviation is observed only for simulations performed with the importance map. Difference between 

simulation and measurement at y = 0 cm in Figure 4.17c is observed for all simulations. 

4.4.4 Comparison with MCNP 

Comparisons between TRIPOLI-4® and MCNP results (T4/MCNP ratio) are reported in Figure 4.18 for Odano’s 

configurations. MCNP version 4.2 with photon cross sections data from [94] and [95] is considered here as the 

reference. Only results obtained for ANALOG simulations are here considered for the comparison. Error bars 

reported in the plots correspond to the combination of MCNP and TRIPOLI-4® statistical uncertainties. As MC 

convergence is about 5% for both codes and for all configurations, ratio of TRIPOLI-4® results on MCNP results 

varying between 0.9 and 1.1 (± 2σ) are considered in good accordance with experimental results. As expected, we 

can note a good agreement between both MC codes. 

4.4.5 Comparison between VRT-accelerated and analog simulations 

Comparisons between analog TRIPOLI-4® and VRT-accelerated TRIPOLI-4® simulations results 

(CVRT/CANALOG ratios) are reported in Figure 4.19. We report here the results of the comparison obtained over the 

Odano configurations. We can observe that in all three configurations, all points fall inside the tolerance margin 

of ±2σ, if we consider the uncertainty of the results showed by the error bars in the plots. This is an important 

result, as it ensures that the VRT-based simulations used in this analysis are not biased and can indeed provide 

Figure 4.18: TRIPOLI-4® /MCNP dose rate ratio obtained for Odano’s configurations; red lines correspond to the 

validity domain comprised between ± 2σ. 
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meaningful results. Therefore, the process of comparing their ability to accelerate the simulations is validated by 

these results. 

 

4.4.6 Estimation of TRIPOLI-4®’s VRT performances 

In Figure 4.20 the gains of FOM for Odano’s configurations are reported. AMS-GEOMETRIC and AMS-

INIPOND simulations show good behaviors (FOM gain greater than 1) in the case of the duct streaming 

configuration in Figure 4.20a as there is a preferred path for the photons to follow. However, AMS fails to 

accelerate the calculation in all the other cases, as can be observed in Figure 4.20 and Figure 4.20. On the contrary, 

ET-INIPOND simulations exhibit good behavior in other configurations, with gains of about 1.5 and more than 

10 for backscattering - Figure 4.20b - and slant penetration configurations - Figure 4.20c - respectively.  

 

Figure 4.19: CVRT/CANALOG ratio obtained for Odano’s configurations; red lines correspond to the validity domain 

comprised between ± 2σ. 
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For the slab configuration, all VRT simulations lead to a faster convergence of the results with respect to the analog 

simulation. For a water thickness of 300 cm, ANALOG simulation results are not available because simulation 

computation time was too long: therefore, since plotting the gain was impossible for this last configuration, Figure 

4.21 shows the FOM for the different simulations. In general, the AMS-INIPOND is the most efficient technique 

as the water thickness increases, with a FOM gain close to 300 for the 200 cm water thickness, as can be seen in 

Figure 4.21. 

 

Figure 4.21: FOM as a function of water thickness for the strong attenuation slab configuration 

Results for the simple bunker and complex bunker configurations are reported in Figure 4.22.. The acceleration 

observed strongly differs depending on the VR methodology used and on the geometric configuration, as shown 

by the gain plot. For the simple bunker case (Figure 4.22a and Figure 4.22b) the ET-INIPOND simulation achieves 

the best performances for all shield heights and thicknesses, with a maximum acceleration ratio of ~20. On the 

Figure 4.20: FOM gain obtained for Odano’s configurations. 
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other hand, AMS shows good behaviour only for the two cases with no gap between wall and ceiling (h=100 cm), 

failing to accelerate the simulation in all other cases. In the complex bunker configuration (Figure 4.22c) we see 

that, for the lowest shield thickness of 20 cm, results are confirmed: AMS fails to accelerate the simulation, while 

INIPOND achieves a gain of about 2. However, as we explore configurations with very large shield thicknesses 

of 50 and 100 cm, the results change: as the thickness increases, the AMS-INIPOND becomes the better 

performing VRT, showing a gain of more than 10. Results of INIPOND and AMS-GEOMETRIC become 

comparable at large thicknesses, with a gain between 2 and 3. 

 

Figure 4.22: FOM gain as a function of shield height (𝒉) and depth (𝒅) for the simple and complex bunker 

configurations. 

 

4.5 Conclusions 

This chapter gives a comprehensive resume of the most important acceleration techniques for MC codes, listing 

some of the precautions that have to be taken when using such techniques in a MC calculation. Some of them 

introduce a bias that needs to be carefully assessed, some others can be useless or even counterproductive (i.e. 

slow down the simulation) if not used in the correct way or in the correct framework. The study presented in the 

last part of the chapter provides an analysis of the performance of the variance-reduction methods implemented in 

TRIPOLI-4® in dealing with some classical shielding problems for photons in dismantling and the associated dose 

management. The exponential transform is a reliable choice to deal with various type of problems; however, it 

requires a good amount of user experience in the creation of the importance map. The implementation of Consistent 

Adjoint Driver Importance Sampling (CADIS) like methods [96] in TRIPOLI-4® could be a precious help for 

TRIPOLI-4® users in a near future to automatically determine efficient importance maps, as it has already been 
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shown for neutron transport in [88]. This study seems to show also that AMS can achieve excellent performances 

in well adapted problems, but it retains the same drawback of exponential transform, as it requires the same 

importance map to achieve the best results.  

In conclusion, both methods (exponential transform and AMS) behave better in deep penetration problems. This 

could be due to the higher number of collisions happening, which make it “easier” for the particles to be redirected 

towards the points of interest. Moreover, the analysis of the complex bunker shows that the AMS can be a very 

efficient acceleration method in problems presenting a preferential path for particles to follow. Nevertheless, to 

help for instance the real time dismantling operations in streaming environments, it is also necessary to develop a 

new type of algorithm capable to tackle configurations characterized simultaneously by both attenuation and 

reflection of radiation in geometries with a high percentage of low-density material (i.e. air) where the lack of 

collisions can limit the efficiency of the current VRT. In the next and final part of this thesis, we will present such 

algorithm and its implementation in TRIPOLI-4®.



 

 

PART III  
A NEW TRACK LENGTH 

ESTIMATOR IN TRIPOLI-4®



 

 

  



 

 

This part presents the core of the thesis work: the development of a new track length estimator 

and its implementation in the Monte Carlo code TRIPOLI-4®. The estimator is defined 

mathematically and applied to a simplified problem, then we present its first implementation 

in the code along with some validation tests. Two improved versions of the estimator are also 

introduced, implemented and validated in the final chapters. 
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. 

Chapter 5 

 

Theoretical basis of the exponential track 

length estimator (e-TLE) 

As discussed until now, the currently adopted calculation standards for shielding and photon transport studies leave 

plenty of space open to innovation. The gap between deterministic codes, providing quick approximate solutions 

to the complex problem of radiation transport, and stochastic MC simulations, granting an indefinitely precise 

solution with calculation times that are often prohibitive, offers an interesting opportunity to develop new 

methodologies. In the third part of this thesis, we present the development and code implementation of the 

exponential track-length estimator (e-TLE), an advanced MC estimator successfully used in the medical field to 

improve the efficiency of MC radiation transport simulations. In this chapter, the estimator is defined 

mathematically and applied to a simplified theoretical configuration already described in Chapter 2. Then, the code 

implementation of the e-TLE in TRIPOLI-4® is introduced. Finally, we present the results of a first validation 

study, where the convergence and the efficiency of the new estimator are tested and evaluated over the 

configurations described in Chapter 3. 

5.1 Heuristic approach: 1D mono-directional transport using e-TLE 

The idea behind the e-TLE is that a particle’s contribution to any estimation in a volume is represented by the 

contribution the particle would have had by traveling without collisions to the volume. It can be derived 

mathematically from the basic expression of the TLE, as shown in Chapter 1. We now recall the simplified 

configuration presented in Chapter 2 (Figure 5.23) to show the unbiasedness of such estimator when applied to a 

simple 1D case. We recall that, for a monokinetic, monodirectional, stationary surface source of intensity S 

(particles ∙ cm-2 ∙ s-1) impinging on a 1D homogeneous slab of length L, we can write the uncollided or primary 

flux as: 

𝜙0(𝑥) = 𝑆𝑒−Σ𝑡𝑥 (5.1) 

which represents the flux of particles that travelled from the source to point x without undergoing any interaction. 
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Figure 5.23: 1D transport problem configuration (from Chapter 2) 

In the same way, if we define as “detector” as a segment of length l placed at a distance d from the source, taking 

into account Equation (2.41) we can write an expression for the average uncollided flux in the detector ϕD,0 (x): 

𝜙𝐷,0 = 𝑆𝑒
−Σ𝑡𝑑

[1 − 𝑒Σ𝑡𝑙]

𝑙Σ𝑡
(5.2) 

Starting from here, we can write a new estimator κn (x) for the average detector flux ϕD defined by the following 

equations: 

𝜅𝑛(𝑥) = 𝑆𝜛𝑛𝑒
−Σ𝑡(𝑑−𝑥)Σ𝑡

Σ𝑠
Σ𝑡

[1 − 𝑒−Σ𝑡𝑙]

𝑙Σ𝑡
     ,    𝑥 ∈  [0, 𝑑] (5.3) 

 

𝜅𝑛(𝑥) = 𝑆𝜛𝑛(𝑥)Σ𝑡
Σ𝑠
Σ𝑡

[1 − 𝑒−Σ𝑡(𝐿−𝑥)]

𝑙Σ𝑡
     ,    𝑥 ∈ [𝑑, 𝐿] (5.4) 

with 𝜛𝑛 = (Σ𝑠 Σ𝑡⁄ )𝑛 being the weight of the particle at collision n. We recall that the cross sections are supposed 

to be constant and independent from energy. We now divide the total contributions to the estimation in three terms: 

one for particles having a collision before the detector, called 𝜗1(𝑥); the other for particles colliding inside the 

detector, called 𝜗2(𝑥); finally, the contribution given by particles coming directly from the source with no 

collisions (primary particles), called 𝜗𝑠
 . 

The expression of the latter is straightforward, as it corresponds to the average uncollided flux of Equation (5.2):   

𝜗𝑠
 = 𝜙𝐷,0 = 𝑆𝑒−Σ𝑡𝑑

[1 − 𝑒−Σ𝑡(𝐿−𝑑)]

𝑙Σ𝑡
(5.5) 

For the other two contributions, 𝜗1(𝑥) and 𝜗2(𝑥), we will start from a Neumann series decomposition (see  

Chapter 2): 

𝜗1(𝑥) = ∑𝜗1,𝑛(𝑥)

∞

𝑛=0

(5.6) 

𝜗2(𝑥) = ∑𝜗2,𝑛(𝑥)

∞

𝑛=0

(5.7) 

The quantity searched, 𝜙𝐷, will then be given by: 

𝜙𝐷 = ∫ 𝜗1(𝑥)𝑑𝑥
𝑑

0

+∫ 𝜗2(𝑥)𝑑𝑥
𝐿

𝑑

+ 𝜗𝑠
 (5.8) 
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5.1.1 Evaluation of the first term, 𝝑𝟏(𝒙) 

Remembering Equation (5.6) we develop the series, writing each term 𝜗1,𝑛(𝑥) starting from 𝑛 = 0 and increasing 

the collision order: 

𝜗1,0(𝑥) = 𝑆𝑒−Σ𝑡𝑥𝑒−Σ𝑡(𝑑−𝑥)Σ𝑡
Σ𝑠
Σ𝑡

[1 − 𝑒−Σ𝑡𝑙]

𝑙Σ𝑡
= 𝑆𝑒−Σ𝑡𝑑Σ𝑠

[1 − 𝑒−Σ𝑡𝑙]

𝑙Σ𝑡
       (5.9) 

𝜗1,1(𝑥) = 𝑆∫ 𝑒−Σ𝑡𝑥1Σ𝑡𝑒
−Σ𝑡(𝑥−𝑥1)

Σ𝑠
Σ𝑡
Σ𝑡
Σ𝑠
Σ𝑡
𝑒−Σ𝑡(𝑑−𝑥)

[1 − 𝑒−Σ𝑡𝑙]

𝑙Σ𝑡
𝑑𝑥1 = 𝑆𝑥 

Σ𝑠
Σ𝑡
 𝑒−Σ𝑡𝑑𝑆Σ𝑠

[1 − 𝑒−Σ𝑡𝑙]

𝑙Σ𝑡

𝑥

0

         (5.10) 

 

𝜗1,2(𝑥) = 𝑆∫ 𝑑𝑥1

𝑥

0

∫ 𝑒−Σ𝑡𝑥1Σ𝑡𝑒
−Σ𝑡(𝑥2−𝑥1)Σ𝑡𝑒

−Σ𝑡(𝑥−𝑥2) 
𝑥

𝑥1

Σ𝑡 [
Σ𝑠
Σ𝑡
]
2 Σ𝑠
Σ𝑡
𝑒−Σ𝑡(𝑑−𝑥)

Σ𝑠
Σ𝑡

[1 − 𝑒−Σ𝑡𝑙]

𝑙Σ𝑡
 𝑑𝑥2 

                                                                          𝜗1,2(𝑥) = 𝑆Σ𝑡
2 𝑥

2

2

[
Σ𝑠
Σ𝑡
]
2

𝑒−Σ𝑡𝑑Σ𝑠
[1 − 𝑒−Σ𝑡𝑙]

𝑙Σ𝑡
                                      (5.11) 

 

By induction, we can write : 

 

𝜗1,𝑛(𝑥) = 𝑆Σ𝑡
𝑛 𝑥

𝑛!

𝑛

[
Σ𝑠
Σ𝑡
]
𝑛

𝑒−Σ𝑡𝑑Σ𝑠
[1 − 𝑒−Σ𝑡𝑙]

𝑙Σ𝑡
(5.12) 

So we can rewrite the Neumann series and solve: 

 

𝜗1(𝑥) = ∑𝜗1,𝑛(𝑥)

∞

𝑛=0

= 𝑆∑
(Σ𝑡

Σ𝑠
Σ𝑡
𝑥)

𝑛

𝑛!

∞

𝑛=0

𝑒−Σ𝑡𝑑
[1 − 𝑒−Σ𝑡𝑙]

𝑙Σ𝑡
 = 𝑆𝑒Σ𝑠𝑥𝑒−Σ𝑡𝑑Σ𝑠

[1 − 𝑒−Σ𝑡𝑙]

𝑙Σ𝑡
(5.13) 

 

5.1.2 Evaluation of the second term, 𝝑𝟐(𝒙) 

Similarly to what we did for 𝜗1(𝑥), we start from the Neumann series of Equation (5.7) and solve for each term: 

𝑧𝜗2,0
 (𝑥) = 𝑆𝑒−Σ𝑡𝑥Σ𝑡

Σ𝑠
Σ𝑡

[1 − 𝑒−Σ𝑡(𝐿−𝑥)]

𝑙Σ𝑡
=  𝑆𝑒−Σ𝑡𝑥Σ𝑠

[1 − 𝑒−Σ𝑡(𝐿−𝑥)]

𝑙Σ𝑡
(5.14) 

 

𝜗2,1(𝑥) = 𝑆∫ 𝑒−Σ𝑡𝑥1Σ𝑡𝑒
−Σ𝑡(𝑥−𝑥1)

Σ𝑠
Σ𝑡
Σ𝑡
Σ𝑠
Σ𝑡

[1 − 𝑒−Σ𝑡𝑥]

𝑙Σ𝑡

𝑥

0

𝑑𝑥1 = 𝑆𝑑𝑥 
Σ𝑠
Σ𝑡
𝑒−Σ𝑡𝑥Σ𝑠

[1 − 𝑒−Σ𝑡(𝐿−𝑥)]

𝑙Σ𝑡
(5.15) 

 

𝜗2,2(𝑥) = 𝑆∫ 𝑑𝑥1

𝑥

0

∫ 𝑒−Σ𝑡𝑥1Σ𝑡𝑒
−Σ𝑡(𝑥2−𝑥1)Σ𝑡  𝑒

−Σ𝑡(𝑥−𝑥2)
𝑥

𝑥1

[
Σ𝑠
Σ𝑡
]
2

Σ𝑡
Σ𝑠
Σ𝑡

[1 − 𝑒−Σ𝑡(𝐿−𝑥)]

𝑙Σ𝑡
 𝑑𝑥2     

𝜗2,2(𝑥) =  𝑆Σ𝑡
2 𝑥

2

2

[
Σ𝑠
Σ𝑡
]
2

𝑒−Σ𝑡𝑥Σ𝑠
[1 − 𝑒−Σ𝑡(𝐿−𝑥)]

𝑙Σ𝑡
(5.16) 

By induction: 

 

𝜗2,𝑛(𝑥) = 𝑆Σ𝑡
𝑛 𝑥

𝑛!

𝑛

[
Σ𝑠
Σ𝑡
]
𝑛

𝑒−Σ𝑡𝑥Σ𝑠
[1 − 𝑒−Σ𝑡(𝐿−𝑥)]

𝑙Σ𝑡
(5.17) 

And finally, solving for the Neumann series: 
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𝜗2(𝑥) = ∑𝜗2,𝑛(𝑥)

∞

𝑛=0

= 𝑆∑
(Σ𝑡

Σ𝑠
Σ𝑡
𝑥)

𝑛

𝑛!
𝑒−Σ𝑡𝑥

∞

𝑛=0

Σ𝑠
[1 − 𝑒−Σ𝑡(𝐿−𝑥)]

𝑙Σ𝑡
= 𝑆𝑒Σ𝑠𝑥𝑒−Σ𝑡𝑥Σ𝑠

[1 − 𝑒−Σ𝑡(𝐿−𝑥)]

𝑙Σ𝑡
(5.18) 

𝜗2(𝑥) = 𝑆𝑒−Σ𝑎𝑥Σ𝑠
[1 − 𝑒−Σ𝑡(𝐿−𝑥)]

𝑙Σ𝑡
(5.19) 

 

5.1.3 Evaluation of the average detector flux 𝝓𝑫 

We now have an expression for each of the terms of Equations (5.5), (5.6) and (5.7). Referring to Equation (5.8), 

we see that it is possible to find 𝜙𝐷 by performing two integrations on 𝜗1(𝑥) and 𝜗2(𝑥), and adding the term 𝜗s(𝑥). 

We can define the two integrals as: 

𝐼1 = ∫ 𝜗1(𝑥)𝑑𝑥
𝑑

0

, 𝐼2 = ∫ 𝜗2(𝑥)𝑑𝑥
𝐿

𝑑

(5.20) 

and finally: 

𝜙𝐷 = 𝐼1 + 𝐼2 + 𝜗𝑠
 (5.21) 

 

Evaluation of the first integral 𝐼1 

Substituting the expression for 𝜗1(𝑥) from equation (5.9) we have: 

𝐼1 = ∫ 𝜗1(𝑥)𝑑𝑥
𝑑

0

= ∫ 𝑆𝑒Σ𝑠𝑥𝑒−Σ𝑡𝑑Σ𝑠
[1 − 𝑒−Σ𝑡𝑙]

𝑙Σ𝑡
 𝑑𝑥

𝑑

0

= 𝑆𝑒−Σ𝑡𝑑Σ𝑠
[1 − 𝑒−Σ𝑡𝑙]

𝑙Σ𝑡
∫ 𝑒Σ𝑠𝑥𝑑𝑥
𝑑

0

(5.22) 

Now, remembering that the detection length is 𝑙 = 𝐿 − 𝑑 we can write: 

𝐼1 = 𝑆𝑒−Σ𝑡𝑑Σ𝑠
[1 − 𝑒−Σ𝑡𝑙]

𝑙Σ𝑡

1

Σ𝑠
[𝑒Σ𝑠𝑑 − 1] = 𝑆𝑒−Σ𝑡𝑑

[1 − 𝑒−Σ𝑡𝑙]

𝑙Σ𝑡
[𝑒Σ𝑠𝑑 − 1] ≡ 𝑆𝑑

[1 − 𝑒−Σ𝑡𝑙]

𝑙Σ𝑡
[𝑒Σ𝑠𝑑 − 1] 

𝐼1 = 𝑆
[𝑒−Σ𝑡𝑑 − 𝑒−Σ𝑡𝐿]

𝑙Σ𝑡
[𝑒Σ𝑠𝑑 − 1] 

𝐼1 =
𝑆

𝑙Σ𝑡
[𝑒−Σ𝑎𝑑 − 𝑒−Σ𝑡𝐿𝑒Σ𝑠𝑑 − 𝑒−Σ𝑡𝑑 + 𝑒−Σ𝑡𝐿] 

𝐼1 =
𝑆

𝑙Σ𝑡
[𝑒−Σ𝑎𝑑 − 𝑒−Σ𝑡𝐿𝑒Σ𝑠𝑑 − 𝑒−Σ𝑡𝑑(1 − 𝑒−Σ𝑡(𝐿−𝑑))] (5.23) 

Evaluation of the second integral 𝐼2 

Similarly to what we did above, we substitute Equation (5.17) in the formula for 𝐼2: 

𝐼2 = ∫ 𝜗2(𝑥)𝑑𝑥
𝐿

𝑑

= ∫ 𝑆𝑑𝑒
−Σ𝑎𝑥Σ𝑠

[1 − 𝑒−Σ𝑡(𝐿−𝑥)]

𝑙Σ𝑡
𝑑𝑥

𝐿

𝑑

=
𝑆Σ𝑠
𝑙Σ𝑡

∫ 𝑒−Σ𝑎𝑥𝑑𝑥
𝐿

𝑑

−
𝑆Σ𝑠
𝑙Σ𝑡

𝑒−Σ𝑡𝐿∫ 𝑒Σ𝑠𝑥𝑑𝑥
𝐿

𝑑

(5.24) 

and: 

𝐼2 =
𝑆𝑑
𝑙Σ𝑡

Σ𝑠
Σ𝑎
[𝑒−Σ𝑎𝑑 − 𝑒−Σ𝑎𝐿] −

𝑆𝑑
𝑙Σ𝑡

Σ𝑠
Σ𝑎
𝑒−Σ𝑡𝐿

1

Σ𝑠
[𝑒Σ𝑠𝐿 − 𝑒Σ𝑠𝑑] 

𝐼2 =
𝑆𝑑
𝑙Σ𝑡

{
Σ𝑠
Σ𝑎
[𝑒−Σ𝑎𝑑 − 𝑒−Σ𝑎𝐿] − 𝑒−Σ𝑎𝐿 + 𝑒−Σ𝑡𝐿𝑒Σ𝑠𝑑} (5.25) 

Finally, we can rewrite Equation (5.21) and solve for the flux 𝜙𝐷: 



69 

 

𝜙𝐷 =
𝑆

𝑙Σ𝑡
[𝑒−Σ𝑎𝑑 − 𝑒−Σ𝑡𝐿𝑒Σ𝑠𝑑 − 𝑒−Σ𝑡𝑑(1 − 𝑒−Σ𝑡(𝐿−𝑑)) +

Σ𝑠
Σ𝑎
[𝑒−Σ𝑎𝑑 − 𝑒−Σ𝑎𝐿] − 𝑒−Σ𝑎𝐿 + 𝑒−Σ𝑡𝐿𝑒Σ𝑠𝑑

+ 𝑒−Σ𝑡𝑑(1 − 𝑒−Σ𝑡(𝐿−𝑑))] 

𝜙𝐷 =
𝑆

𝑙Σ𝑡
[𝑒−Σ𝑎𝑑 +

Σ𝑠
Σ𝑎
[𝑒−Σ𝑎𝑑 − 𝑒−Σ𝑎𝐿] − 𝑒−Σ𝑎𝐿] 

𝜙𝐷 =
𝑆

𝑙Σ𝑡
[
Σ𝑠
Σ𝑎
[𝑒−Σ𝑎𝑑 − 𝑒−Σ𝑎𝐿] + 𝑒−Σ𝑎𝑑 − 𝑒−Σ𝑎𝐿] 

𝜙𝐷 =
𝑆

𝑙Σ𝑡
[
Σ𝑠[𝑒

−Σ𝑎𝑑 − 𝑒−Σ𝑎𝐿] + Σ𝑎[𝑒
−Σ𝑎𝑑 − 𝑒−Σ𝑎𝐿]

Σ𝑎
] 

𝜙𝐷 =
𝑆

𝑙Σ𝑎
[𝑒−Σ𝑎𝑑 − 𝑒−Σ𝑎𝐿] 

𝜙𝐷 = 𝑆𝑒
−Σ𝑎𝑑

[1 − 𝑒−Σ𝑎𝑙]

𝑙Σ𝑎
(5.26) 

which is the same equation as (2.8), obtained by the analytic solution, and (2.39), obtained with the collision 

estimator. This proves that the e-TLE is, in fact, an unbiased estimator of 𝜙𝐷.  

5.1.4 Practical example: numerical 1D Monte Carlo 

As we did in Chapter 2, we can test the good functioning and the efficiency of this new estimator by numerically 

reproducing the 1D slab case of Figure 5.23. We use the same code described in Section 2.4, but to the collision 

estimator already described, we add a TLE and an e-TLE. Using the same quantities defined in Chapter 2, the 

contribution scored by the TLE at the end of the i-th particle history is described by the following algorithm: 

𝜅𝑇𝐿𝐸
𝑖 =

{
 
 

 
 

1 𝑖𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑡𝑟𝑎𝑣𝑒𝑙𝑠 𝑝𝑎𝑠𝑡 𝐿,

𝑥 − 𝑑

𝐿 − 𝑑
𝑖𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 𝑖𝑠 𝑎𝑏𝑠𝑜𝑟𝑏𝑒𝑑 𝑎𝑡 𝑥, 𝑤𝑖𝑡ℎ 𝑑 ≤ 𝑥 ≤ 𝐿,

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(5.27) 

Similarly, the contribution scored by the e-TLE after each collision j at point x is defined as: 

𝜅𝑒−𝑇𝐿𝐸
𝑗

=

{
 
 

 
 𝑒

−Σ𝑡(𝑑−𝑥)(1 − 𝑒−Σ𝑡(𝐿−𝑑))

Σ𝑡(𝐿 − 𝑑)
𝑖𝑓 0 ≤ 𝑥 < 𝑑,

(1 − 𝑒−Σ𝑡(𝐿−𝑥))

Σ𝑡(𝐿 − 𝑑)
𝑖𝑓 𝑑 ≤ 𝑥 ≤ 𝐿,

(5.28) 

 And the contribution at the end of the i-th particle history, after J interactions, is simply: 

𝜅𝑒−𝑇𝐿𝐸
𝑖 =∑𝑘𝑒−𝑇𝐿𝐸

𝑗

𝐽

𝑗=1

(5.29) 

The sample mean and variance are then calculated as detailed in Chapter 2. 

With these new estimators in place, we can now see how they compare with each other in terms of accuracy and 

performance. Figure 5.24 shows results after 1 million particle histories. We can see that the three estimators all 

converge to the analytical value; on the right, we can see that the TLE and e-TLE both perform better than the 

collision estimator, in that their variance is consistently lower after a certain number of histories. The e-TLE has a 

performance comparable to that of the TLE, but it is slightly better. 
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We can further investigate the behavior of the three estimators by changing the value of the absorption cross 

section Σ𝑎. The higher it is, the harder it is for particles to reach the detector: in this case, we expect the performance 

of the e-TLE to get progressively better with respect to the other two estimators. Table 5.6 shows that, for Σ𝑎 ≥

0.3Σ𝑡 , the e-TLE provides the most accurate results, as expected. 

 

Table 5.6: Results for increasingly larger absorption cross-sections. The last two columns show the gain in efficiency 

of the e-TLE with respect to the other two estimators, calculated as a ratio between their variances. The errors with 

respect to the analytical solution 𝚽𝑫,𝒂𝒏𝒂𝒍 are also reported. 

𝚺𝒂 

Collision estimator Track-length estimator Exponential track-length estimator 

𝚽𝑫,𝒄𝒐𝒍𝒍 
𝛔𝒄𝒐𝒍𝒍 
(%) 

Error 

(%) 
𝚽𝑫,𝑻𝑳𝑬 

𝛔𝒄𝒐𝒍𝒍 
(%) 

Error 

(%) 
𝚽𝑫,𝒆−𝑻𝑳𝑬 

𝛔𝒄𝒐𝒍𝒍 
(%) 

Error 

(%) 

Gain/ 

coll 

(𝝈𝒄𝒐𝒍𝒍
𝟐 /

𝝈𝒆−𝑻𝑳𝑬
𝟐 ) 

Gain/ 

TLE 

(𝝈𝑻𝑳𝑬
𝟐 /

𝝈𝒆−𝑻𝑳𝑬
𝟐 ) 

0.1 3.87E-01 0.20 0.00 3.87E-01 0.12 0.03 3.87E-01 0.15 0.03 1.78 0.64 

0.2 1.50E-01 0.33 0.07 1.50E-01 0.23 0.07 1.50E-01 0.24 0.00 1.89 0.92 

0.3 5.79E-02 0.53 0.21 5.79E-02 0.39 0.36 5.80E-02 0.38 0.05 1.95 1.05 

0.4 2.24E-02 0.83 0.40 2.24E-02 0.64 0.36 2.26E-02 0.57 0.27 2.12 1.26 

0.5 8.77E-03 1.28 0.32 8.80E-03 1.02 0.70 8.71E-03 0.81 0.40 2.50 1.59 

0.6 3.33E-03 1.99 1.94 3.41E-03 1.62 0.44 3.38E-03 1.14 0.38 3.05 2.02 

0.7 1.32E-03 3.11 0.08 1.33E-03 2.57 0.98 1.32E-03 1.54 0.38 4.08 2.78 

0.8 5.55E-04 4.62 8.00 5.34E-04 4.03 3.93 5.19E-04 1.98 0.97 5.44 4.14 

0.9 2.04E-04 7.24 1.95 1.87E-04 6.72 6.40 1.97E-04 2.21 1.45 10.73 9.25 

5.2 State of the art: current and past applications of the e-TLE 

As previously noted in Chapter 1, the e-TLE was first proposed by Gelbard et al. [52] in 1966, and the first mention 

of the name “exponential track-length estimator” was by Williamson [97] in 1987. Already in Williamson’s 

publication, the main calculation bottleneck of this technique was identified by the author to be in the straight-line 

transport of the particle. In complex, heterogeneous geometries, the straight-line attenuation of the particle can 

require lots of computation time, decreasing the estimator’s efficiency. That is why the e-TLE was never 

implemented in any MC code until recent years, whereas its linear version (the TLE) is nowadays included in 

virtually every MC code. 

Figure 5.24: Comparison of collision estimator, track-length estimator, and exponential track-length estimator over 

the 1D slab. The red bar on the left represents the analytical value of the flux. 
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In the field of medical imaging, geometries are very often voxelized, which can constitute a partial solution to the 

tracking problem, especially if an adapted ray-casting algorithm is used. In this framework, Freud et al. [98, 99] 

developed a hybrid methodology where a combination of deterministic and MC transport were joined to create 

something similar to the e-TLE. In this approach, the dose calculation is divided in two stages: 

 The first one, purely deterministic, aims at calculating the dose due to direct (i.e. uncollided) radiation, 

by means of a purely deterministic computation based on a ray-tracing algorithm. 

 In the second stage, a hybrid combination of Monte Carlo simulation and deterministic ray tracing gives 

an estimate of the dose due to scattered radiation. First, the Monte Carlo module tracks a group of photons 

and determines a set of interaction points, interaction types, and (in the case of scattering) directions of 

propagation. Then, each of these points is used as a secondary source for the ray-casting algorithm. 

Specifically, in the Freud et al. approach, this last deterministic part of the simulation can be viewed as a 

sort of “forced detection” approach, as the rays are automatically cast towards the voxel of the detector. 

The proposed method, even if just in a very preliminary way, showed good results when compared to the classical 

MC approach with TLE.  Starting from these preliminary developments, Smekens et al. [31, 100] slightly modified 

and improved the initial approach chosen by Freud et al, notably in the last ray-casting part of the algorithm. In 

fact, several disadvantages arose from the forced detection scheme, such as aliasing artifacts or efficiency losses 

due to the direction of the rays being uncorrelated with the physics of the problem. The new method proposed 

assigns the generation of secondary photon to the MC module. After each interaction, a splitting routine is called, 

which generates N different particles with a weight of 1/N each to avoid the introduction of a statistical bias. The 

particles directions are chosen based on the differential cross sections (DCS) of the respective interactions. Thus, 

the physics of the problem is preserved. Finally, these secondary particles are transported in a fully deterministic 

way, with continuous attenuation along their path. This technique, called split-exponential track length 

estimator (se-TLE), showed extremely good results both in its first test applications and in more realistic 

dosimetric frameworks, where it achieved an improvement in efficiency of roughly one order of magnitude with 

respect to MC calculations with classic TLE. 

Moreover, it is interesting to note that by slightly changing the “ray-casting” part of the algorithm that manages 

the sampling of split particles’ directions, we can switch from a “global” estimator to a “local” one. In other words, 

the e-TLE (especially its version with splitting, the se-TLE), can be equally used to estimate quantities distributed 

on the whole simulation domain, as well as to conduct highly localized tallies on detectors. 

A remarkably similar approach to the se-TLE was developed by Sweezy [72] for neutron transport with MonteRay, 

a library to be used with the Monte Carlo code MCATK [101]. In his work, he develops a next-event estimator 

called Volumetric Ray Casting (VRC), which works essentially in the same way as the one implemented by  

Smekens et al.. The main innovation in the approach by Sweezy, besides the application of the estimator to neutron 

transport, was the introduction of GPU calculations. In the VRC implementation, the random walk of the particle 

as well as the creation of deterministic rays is managed by the CPU. However, the rays are then completely 

processed by the GPU, which grants an additional acceleration to the process. This implementation showed to 

achieve good acceleration with respect to a classic MC + TLE simulation, with gains of around one order of 

magnitude. 
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This use of a se-TLE-like estimator to neutron flux calculations also opens the door to a possible interesting 

application in the dismantling field. As seen in the Introduction, a complete computational approach to a 

dismantling study involves several simulation steps including in-core neutron transport, out-of-the-core neutron 

transport, and photon transport. In a long-term perspective, an estimator like the e-TLE or se-TLE could be used 

in all of these instances to improve calculation performances. 

These encouraging results ranging from photons to neutrons and from the medical field to the reactor field show 

the interest of developing a TRIPOLI-4® version of the e-TLE, as well as opening the way to future improvements 

and further developments. 

5.3 e-TLE implementation in TRIPOLI-4® 

To implement any type of track-length estimator in a MC code, it is necessary to act on the transport part of the 

random walk. This is because, for any given TLE, the contribution to the score is not given by the particle 

interacting with the medium (through a scattering or an absorption), but rather by the particle traveling inside the 

detector volume. The e-TLE adds another specific challenge, as it operates not on the actual particle’s path, but on 

a fictive straight-line path that extends, in principle, up to the end of the domain. The way this is implemented in 

our algorithm is through the creation of a fictive particle, which retains the original particle’s direction of motion, 

energy, and simulation weight, and keeps traveling in the particle’s direction until it reaches a boundary.  

5.3.1 Position in the transport chain 

The main steps of TRIPOLI-4®’s algorithm for the random walk of a photon are described below:  

1. The photon is created, by sampling its initial properties (position, direction, and energy) from a given source 

distribution. 

2. The length of the photon’s free travel ℓ is sampled, starting from initial data about the photon itself (position, 

direction, energy) and the medium (material composition and cross section). 

3. The position of the photon is changed by adding ℓ to its original position. 

4. At this stage, any track-length estimator is updated with the information of the photon’s free flight. 

5. Based on the new position of the photon and on the isotopic composition of the material, a nucleus is sampled 

to undergo the interaction. 

6. The interaction is sampled, based on material’s cross section and the energies of both photon and interacting 

nucleus. 

6.a If the interaction is a photoelectric absorption, the photon is killed and its random walk is terminated. 

6.b If the interaction is a scattering, photon quantities are re-sampled (direction in the case of a Rayleigh 

scattering, direction and energy in the case of a Compton scattering). 

7. We go back to point 2 and start again, repeating until the photon is killed or leaves the simulation domain. 

The algorithm for the new estimator takes place immediately before the calculation of the photon’s free flight, i.e. 

just before point 2 in the list above. In fact, at this stage the code has already sampled all the quantities needed for 

the e-TLE to take place: the photon’s direction, energy, position, and statistical weight. The reader should keep in 

mind that in this first, basic implementation of the e-TLE, there is no splitting neither direction sampling to 

implement after the interaction.  
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5.3.2 Detailed implementation of the e-TLE 

The implementation of the basic version of e-TLE is described below and summarized in Figure 5.25: 

1. First, a check in the geometry takes place: the code checks if the straight-line path of the photon will intersect 

any of the volumes defined as detectors. If it does not, there is no point in transporting the photon, so the 

whole process is skipped. 

2. Once we know that the particle is going to cross at least one detector, we start by duplicating it into a “virtual” 

photon, created as an exact double of the original, with the same properties. 

3. We calculate the straight-line distance 𝑑𝑖 between the virtual photon and the closest volume frontier, i.e. the 

distance travelled by the particle inside the i-th volume. 

4. The virtual photon is displaced to its new position on the volume frontier; a value 𝜅𝑖 =
𝑤𝑖∗(1−𝑒

−Σ𝑡𝑑𝑖)

Σ𝑡
 is stored 

in memory for the volume just crossed. Here, 𝑤𝑖  is the weight of the virtual particle at the entrance of the 𝑖-

th volume and Σ𝑡 is the total macroscopic cross section. 

5. The weight of the particle 𝑤𝑖  is updated to take into account material attenuation: 𝑤𝑖+1 = 𝑤𝑖 ∙ 𝑒
−Σ𝑡𝑑𝑖 . 

6. We go back to point 3 and repeat the process until the virtual photon reaches a domain boundary. 

Once the virtual photon leaves the domain, the volumes marked as detectors contribute to the tally of the estimator. 

The tally is then weighted with the appropriate response function to produce the estimate for the quantity that is 

being computed. For example, if the required quantity is the KERMA 𝐾𝑖, the result is (see also Equation (1.23)): 

𝐾𝑖 =
𝜅𝑖
𝑉
𝐸𝑖
𝜇𝑒𝑛
𝜌
= 𝑤𝑖𝐸𝑖

𝜇𝑒𝑛
𝜌

(1 − 𝑒−Σ𝑡𝑑𝑖)

𝑉Σ𝑡
= 𝑤0𝐸𝑖

𝜇𝑒𝑛
𝜌
𝑒−Σ𝑡𝑠𝑉

(1 − 𝑒−Σ𝑡𝑑𝑖)

𝑉Σ𝑡
(5.30) 

where 𝐸𝑖 is the photon’s energy, 𝜇𝑒𝑛 𝜌⁄  is the mass energy absorption coefficient of the material, 𝑉 is the detector’s 

volume, 𝑤0 is the particle’s initial weight and 𝑠𝑉 = 𝑑0 + 𝑑1 +⋯+ 𝑑𝑖−1 is the total distance the particle has to 

travel to get to the i-th volume frontier. 

Finally, the virtual particle is deleted and all transport quantities are reinitialized, before going back to the transport 

of the “real” photon. 
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Figure 5.25: Flowchart of e-TLE implementation for photon transport in TRIPOLI-4®’s transport chain 

5.4 Validation and performance analysis 

A first set of tests aimed at assessing the unbiasedness and the efficiency of the new e-TLE is conducted in this 

section, starting from the results of the VRT study presented in Chapter 4. The configurations considered for the 

study are the Odano backscattering and slant penetration, as well as the simple and complex bunker configurations 

(see Chapter 3). 

For each of the four configurations, several simulations are performed:  

 in semi-analog mode, with implicit variance reduction options only;  

 with the exponential transform method used with a user-generated  importance map; 

 with the AMS method with the same manually-adjusted importance map. 
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In each case, two estimators are tested and compared: the classical TRIPOLI-4® TLE and the newly implemented 

e-TLE. In all simulations, 60Co is used as a photon source, and the calculated quantity is the KERMA. A figure of 

merit (FOM) defined as:  

𝐹𝑂𝑀𝑑𝑒𝑡 =
1

𝑇 ∙ 𝜎𝑑𝑒𝑡
2

 
(5.31) 

where 𝑇 is the total simulation time (including any importance generation time, which was always negligible in 

the cases under consideration) and 𝜎𝑑𝑒𝑡
2  is the estimate of the variance of the detector response (in %), is calculated 

for each detector, to be able to compare the different simulation performances. For the back-scattering and slant 

penetration simulation, an average target variance of 5% over all the detectors is set as limit; for the simple bunker, 

the average target variance is set at 1%. Batches of 10000 particles are used for all simulations except for the AMS 

ones, where the batches size is 1000 particles. 

5.4.1 Analog simulation results 

Results for the validation of e-TLE in the analog simulations are presented in Figure 5.26. The plots show, for 

every detector, the ratio between the KERMA calculated with e-TLE and the one obtained with TRIPOLI-4®’s 

TLE. The red lines mark the error margin of ±2𝜎. We note a perfect accordance between results, thus validating 

results obtained with the e-TLE. 

To assess the performance of the new estimator, we compare the FOM of the simulations with the e-TLE to that 

obtained with the TLE. Therefore, a ratio higher than one means that the new estimator performs better than the 

Figure 5.26: KERMA comparison: a) Odano backscattering configuration; b) Odano slant penetration configuration; 

c) simple bunker configuration, slim wall; d) simple bunker configuration, thick wall; e) complex bunker 

configuration. Error bars of ±𝟐𝝈 are shown. 
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TLE, by reducing total computation time – since the standard deviation is fixed in all these cases. Results of this 

comparison are shown in Figure 5.27. 

As we can see by the plots, the ratio is always greater than 1, meaning the new estimator is able to outperform the 

normal track-length estimator in all simulations and for all detectors. The gain in performance ranges from around 

1.2 in the back-scattering problem to over 2.8 in the R3 bunker configuration (h = 100 cm, d = 10cm). 

5.4.2 VRT-accelerated simulation results 

Figure 5.28 shows the validation of the VRT-accelerated simulations, with both TLE and e-TLE. The plots show, 

for every detector, the ratio between the computed KERMA and the one obtained with TRIPOLI-4®’s TLE in 

analog mode. The red lines mark the error margin of ±2𝜎. We note a perfect accordance between results, thus 

validating all results obtained. 

Since the e-TLE showed good performances in analog simulations (see Figure 5.27), we now want to test its 

capabilities when coupled with variance reduction techniques. Again, we compared the FOM of all simulations to 

the FOM of the analog simulation with classic track-length estimator. Figure 5.29 shows results obtained with 

INIPOND, with and without the new estimator. For the simple bunker, complex bunker and backscattering 

configurations, we can see that the new estimator is consistently able to improve the gain in performance obtained 

by the exponential transform. Simulations performed with e-TLE show a performance gain ranging from a little 

over 1 to more than 2 for the best case (R3 bunker configuration). This leads to critical improvements with respect 

to the analog simulation, with a maximum performance gain of more than 40. 

Figure 5.27: FOM comparison: a) Odano backscattering configuration; b) Odano slant penetration configuration; c) 

simple bunker configuration, slim wall; d) simple bunker configuration, thick wall; e) complex bunker configuration. 

Results above the red line mark an acceleration of the simulation with respect to analog TLE. 
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Figure 5.28: KERMA comparison: a) Odano backscattering configuration; b) Odano slant penetration configuration; 

c) Simple bunker configuration, slim wall;  d) Simple bunker configuration, thick wall; e) Complex bunker 

configuration. All results are compared to the relative TRIPOLI-4® analog simulation with TLE. Error bars of ±𝟐𝝈 

are shown. 

Figure 5.29: FOM comparison for INIPOND: a) Odano backscattering configuration; b) Odano slant penetration 

configuration; c) simple bunker configuration, slim wall; d) simple bunker configuration, thick wall; e) complex 

bunker configuration. Results above the red line mark an acceleration of the simulation with respect to analog TLE. 



78 

 

For the Odano slant penetration benchmark, we see a different behavior. Except for the first three detectors, the 

simple track-length estimator outperforms the new estimator by a factor of more than 2 in the best case. Figure 

5.30 shows results obtained with AMS, with and without the new estimator. 

Notably, for both the Odano benchmarks and the simple bunker configuration, many points fall below the red line 

marking a gain of 1, the value that denotes a performance equal to that of the analog simulation. This means that 

the AMS, in these cases, is not able to accelerate the simulations. This remains mostly true if we apply the new 

estimator, although the performances are often improved, as shown by the two Odano cases and by the thick-wall 

simple bunker configurations. This behaviour could be related to the fact that, for very simple geometries like the 

Odano cases, the acceleration introduced by the AMS algorithm is not enough to outweigh the additional 

computational burden of the algorithm itself. Moreover, the good results (FOM gain up to more than 15) obtained 

in the complex bunker configuration seem to corroborate this hypothesis. The complex bunker simulations also 

seem to suggest that, when the AMS is well-adapted to the problem under consideration, the e-TLE fails to 

introduce any relevant acceleration with respect to the TLE. 

5.5 Conclusions 

We can conclude that the newly implemented e-TLE does not introduce any systemic bias in the simulations, and 

it is therefore validated. Moreover, the estimator shows an improvement in code performance when used in 

situations where the classic TLE would be chosen, notably to compute a tally in a low-density medium such as air. 

In the best cases, the new estimator has been shown to reduce computation time by more than a half. Finally, these 

Figure 5.30: FOM comparison for AMS: a) Odano backscattering configuration; b) Odano slant penetration 

configuration; c) simple bunker configuration, slim wall; d) simple bunker configuration, thick wall; e) complex 

bunker configuration. Results above the red line mark an acceleration of the simulation with respect to analog TLE. 
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first simulations suggest that the exponential track-length estimator can be coupled with importance-based 

variance reduction techniques to furtherly improve code performance. 

These first results show that the e-TLE, even in its most basic implementation, is already able to consistently 

improve the simulation efficiency in a non-voxelized geometry; this proves the interest of developing more refined 

versions of the estimator. The next chapters are devoted to present the additional improvements included in the e-

TLE in the framework of this thesis. Taking inspiration from [99], the capabilities of the exponential track-length 

estimator as a local estimator are enhanced by introducing a forced detection algorithm, to ensure that each particle 

transported by the method contributes to the detector tally. Furthermore, the use of e-TLE as a global estimator, to 

provide dose rate maps in the whole problem geometry instead that only in specific detector areas, is also 

investigated. To this aim, a splitting algorithm is introduced along with the possibility of using the e-TLE for 

estimation on meshes, in an implementation  similar to [100] and [72]. 
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Chapter 6 

 

The e-TLE as a “local” estimator 

We have seen how the implementation of the basic e-TLE in TRIPOLI-4® aimed to extend the free flight of each 

particle, to increase the quantity of scores related to the particle history. However, this method is intuitively much 

less efficient as the number of detectors, or volumes where the tallies are requested, decreases. More generally, 

the efficiency decreases as the ratio between total volume of the detectors and total volume of the whole geometry 

decreases. In other words, if the detectors are small and/or localized in a particular zone, the probability of crossing 

them with a given straight line decreases, which in turn means that the e-TLE will lose more time transporting 

virtual particles that do not cross any detector, as illustrated in Figure 6.31.   

Since the problem of searching for tallies over small, localized volumes is sufficiently common in the nuclear field 

(in-core detectors, experimental configurations with TLDs), the interest of improving this aspect of the estimator 

is straightforward. To this aim, a “local” version of the e-TLE has been developed, through a forced detection (FD) 

algorithm able to send the virtual particle towards the detector after every interaction, in a similar fashion to that 

Figure 6.31: The basic implementation of the e-TLE fails to increase the number of valid tallies when detectors are 

small and localized (shown on the right) 
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described in [98] for a voxelized geometry. This chapter presents the implementation of this local version of the 

e-TLE, called e-TLE-FD, and the validation and performance studies realized to test it. 

6.1 e-TLE with forced detection for local reduction of variance 

We recall (see Equation (1.23)) that, in its basic implementation, the score 𝜅𝑗
𝑒𝑇𝐿𝐸 registered by the e-TLE on a 

volume 𝑉 that is crossed by a virtual particle after interaction j is: 

𝜅𝑗
𝑒𝑇𝐿𝐸 = 𝑤𝑗𝑒

−Σ𝑡𝑠𝑉
(1 − 𝑒−Σ𝑡𝐿𝑗)

Σ𝑡𝑉
(6.1) 

where 𝑤𝑗  is the weight of the real particle at the moment of the interaction, Σ𝑡 is the total macroscopic cross section 

of the material (supposed to be homogeneous for simplicity), 𝑠𝑉 is the distance to the detector and 𝐿𝑗 is the length 

of the intersection between the virtual particle’s straight-line path and 𝑉. In this version, we can say that the e-TLE 

is a flight-based estimator, i.e. it contributes to the tally when the random particle performs a flight. 

We can develop on this formulation by turning the e-TLE into a collision-based estimator: in this way, after each 

free flight we can sample virtual collisions directed towards the detection volume and weight them by their 

probability of occurrence. This ensures that every particle will always contribute to the score at every collision. In 

practice, if we assume that the detection volume 𝑉 is a sphere, we sample a uniformly random direction Ω under 

the constraint that the half line from the collision point 𝒓𝒋 directed along 𝛀 intersects the sphere. We can then write 

the score for the e-TLE-FD as: 

𝜅𝑗
𝑒𝑇𝐿𝐸,𝐹𝐷 = 𝜅𝑗

𝑒𝑇𝐿𝐸𝑝(𝒓𝒋, 𝛀)Δ𝛀 = 𝑤𝑗𝑒
−Σ𝑡𝑠𝑉

(1 − 𝑒−Σ𝑡𝐿𝑗)

Σ𝑡𝑉
𝑝(𝒓𝒋, 𝛀)Δ𝛀 (6.2) 

where 𝑝(𝒓𝒋, 𝛀) represents the probability density, per unit solid angle, of scattering towards direction 𝛀 after an 

interaction in 𝒓𝒋 and Δ𝛀 is the solid angle subtended by the scoring volume 𝑉 seen from the interaction point. If 

the detection volume is not spherical, the solid angle can be hard to calculate; however, the problem is easily solved 

by defining a bounding sphere surrounding the volume and then scoring only the particles that effectively cross 

the volume (Figure 6.32). In this case, the solid angle of the bounding sphere can be easily calculated by knowing 

the sphere radius 𝑅 and the distance D between the interaction point and the center of the sphere: 

Δ𝛀 = 2𝜋 (1 −
√𝐷2 − 𝑅2

𝐷
) (6.3) 

Moreover, we can now choose to re-sample the interaction multiple times and, in the case of more than one 

detection volumes, send a different virtual particle to each one of them. A schematic depiction of the procedure 

can be found in Figure 6.32. The result is a powerful estimator that, in principle, ensures a score contribution for 

every particle, at every interaction, in every detection volume. Depending on the shape of the volume it can happen, 

as shown in Figure 6.32 for the triangular detector, that a virtual particle does not produce a contribution. Therefore, 

the efficiency of the estimator is maximum when detectors coincide with the bounding spheres, as for detector 3 

in Figure 6.32. 
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This process of sending a particle towards a detector to improve the simulation’s efficiency shares some important 

similarities with some other algorithms employed in particle transport; notably, the next-event point estimator 

[102] on one side, and algorithms like DXTRAN [76] or the one developed by Tickner [103] on the other. 

However, the e-TLE-FD is fundamentally different from these approaches. 

The next-event point estimator, also present in TRIPOLI-4® with the name FLUX_PT, is a well known estimator 

in the field of MC simulations. As the name implies, it allows to estimate quantities in a point; it also involves 

deterministic transport and exponential attenuation of the particle’s weight. In practice, it can be viewed as a limit 

version of the e-TLE-FD, where the target detector becomes infinitely small, converging to a single point. 

As explained by Cramer in [102], this change from volume to point leads to the appearance, in the estimator, of a 

1/R² term, where R is the distance between the point of collision and the point of detection. This term causes the 

point estimator’s variance to drastically diverge whenever a collision takes place very close to the point of 

detection, and it is the reason why every MC implementation of next-event point estimation usually includes an 

“exclusion sphere” inside of which any contribution to the estimator is not taken into account. Therefore, the main 

difference between the e-TLE-FD and a point estimator is that the former does not require any exclusion sphere. 

As for DXTRAN [76] and DXTRAN-like transport algorithms [103], the difference is more related to the 

mechanics of the particle. In these algorithms, the particle is split at every interaction, and deterministically 

transported to the surface of some element: a sphere in the case of DXTRAN, any convex volume in Tickner’s 

implementation. Then, the transported particle is left free to continue its simulation, until it is absorbed or leaves 

the simulation domain. Therefore, the transported particle can, in principle, interact many times inside the volume 

of interest before ending its simulation history. This in turn means that the “mother” particle has to be killed if it 

tries to enter the volume of interest, as its interactions have already been simulated by the split particle. 

The fundamental difference between this approach and the e-TLE-FD is that, in the latter, there is no actual particle 

being transported, but rather a “virtual” particle representing a single contribution of the mother particle to the 

score. This “virtual” particle gives one and only one contribution, and then it is killed, as will be better detailed in 

Section 6.2. Moreover, the “real” particle only serves as a mean to simulate collision points, but it never registers 

any score: all the contributions to the e-TLE-FD come from the “virtual” particles. This is also why, in our method, 

there is no need to kill the “real” particle if it tries to enter the detection volume. 

Figure 6.32: e-TLE with FD. The virtual particles p1, p2 and p3 are sent to the bounding spheres and have a much 

higher probability of crossing the detectors 
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Keeping in mind these important clarifications, we can now give a more in-depth look at the code implementation 

of the e-TLE-FD. 

6.2 Code implementation 

As shown in Figure 6.33, the new part of the implementation adds some calculation steps taking part immediately 

after the creation of the virtual photon. The difference with respect to the flowchart described in Chapter 5 is that 

the direction followed by the virtual particle is now sampled from the scattering probability distribution of the 

interaction. This also implies an additional weight and energy adjustment to preserve the unbiasedness of the 

simulation. The resampling of the direction is also what allows to repeat the process when multiple detectors are 

present. 

We can schematize the algorithm of the new e-TLE-FD as follows: 

1. First, before launching the simulation, the user associates a bounding sphere to each detection volume. The 

sphere must fully enclose the detection volume while still being as small as possible for maximum efficiency. 

2. If the simulation has more than one detector, we start a loop over all of them. 

3. We create a “virtual” particle as an exact copy of the original particle. 

4. Based on the bounding radius and the distance between the interaction point and the sphere center, we 

calculate the solid angle subtended by the sphere, Δ𝛀. Then, we sample a random direction uniformly 

distributed within Δ𝛀. 

5. The code samples a “virtual” collision for the fictive particle, adjusting its weight (for implicit capture and 

for the scattering probability distribution) and assigning the direction determined at the previous step, 

effectively directing the particle towards the bounding sphere. The energy of the fictive particle is sampled 

by taking into account the differential cross-section of the collision, according to the direction randomly 

selected at point 4. This ensures that the physics of the simulation remains unbiased. 

6. At this point, the direction of flight is determined and the process of displacing the particle and scoring the 

tallies is equal to the one described in Section 5.3.2, specifically points 3 to 6. 

7. If the particle has crossed the detector volume, we register the score calculated by e-TLE during the virtual 

particle’s displacement. Then, we kill the particle and go back to point 2, selecting the next detector in the 

list. 

8. Finally, the virtual particle is deleted and all transport quantities are reinitialized, before going back to the 

transport of the “real” particle. 
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Figure 6.33: Flowchart of the e-TLE algorithm with FD; 𝒘 is the particle’s weight, 𝑬 is its energy and 𝛀 is its 

direction 
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6.3 Validation and performance analysis 

Once again, the precision and performance of the new estimator are tested on the configurations presented in 

Chapter 3. The configurations chosen are the three Odano benchmarks and the simple bunker configurations. These 

configurations, especially the Odano benchmarks, are particularly well suited for testing the e-TLE-FD algorithm, 

as they present a set of very small, spherical detectors in a low-density medium. Results of this study are also 

published in [104]. 

For each configuration, three simulations are performed: one with TRIPOLI-4®’s TLE, one with the e-TLE 

without FD (cfr. Chapter 5), and one with the e-TLE-FD. This allows us to not only assess the FOM gain of the 

e-TLE-FD with respect to the TLE, but also quantify the acceleration introduced by the FD algorithm, by 

comparing the e-TLE-FD with the e-TLE. Similarly to the study presented in Chapter 5, a FOM is associated to 

each detector (see Equation (5.28)) and then a FOM gain is defined as the ratio between the FOM obtained with 

the exponential estimator and the one obtained with the TLE. Batches of 10000 particles are used with a target 

variance of 5% for the Odano benchmarks and 1% for the bunker. 

Validation results are presented in Figure 6.34. This step serves to ensure that the new estimator converges to the 

same results as the classic TLE already implemented in TRIPOLI-4®. The KERMA rate computed by e-TLE with 

and without the FD algorithm is compared with the KERMA rate obtained with the TLE. Figure 6.34 shows the 

ratio between the two estimates, with tolerance margins of ±2σ highlighted on the plots. Each point on the plots 

shows the dose rate of a single detector, with the exception of the streaming duct case, where results for each triplet 

of detectors occupying the same axial position were averaged to improve legibility. In general, we note a very 

good accordance with the TLE results: all results fall inside the error margin, if we consider their relative 

uncertainty.  

Figure 6.34: Validation of the estimator over all tested configurations (for details on the geometries, see Chapter 3). 

The y-axis shows the ratio between the equivalent dose rate calculated with the e-TLE estimator (with and without 

forced detection) and the one calculated with TRIPOLI-4®’s TLE. 
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The new e-TLE-FD is therefore validated and it shows no systematic bias with respect to either the classic TLE or 

the e-TLE. 

To assess the performance of the new estimator, we compare in Figure 6.35 the FOM gain of the simulations with 

the e-TLE-FD to the FOM gain of the simulations performed with the basic e-TLE. As before, the FOM gain is 

defined as the ratio between the tested estimators and the classic TLE without any VRT.  

In the back-scattering configuration (Figure 6.35c) the e-TLE-FD attains outstanding performances, with 

acceleration factors up to 2 × 104. This is an enormous improvement with respect to the basic e-TLE, which has 

acceleration ratios around 1.2 for this configuration. In the bunker configuration (Figure 6.35d and Figure 6.35e), 

all simulations are accelerated by the e-TLE with and without FD. Specifically, with the FD algorithm we reach 

factors of almost 100, while the basic e-TLE leads to a gain of 2 in the best case. Results are more varied in the 

slant penetration (Figure 6.35a) and streaming configurations (Figure 6.35b). In the slant penetration setup, we see 

that the e-TLE without FD is able to uniformly accelerate the results over all the detectors, with acceleration ratios 

of about 2. With the FD algorithm, the estimator shows increasingly good performances as we move further from 

the source, with acceleration ratios ranging from lower than 1 (which indicates a drop in performance with respect 

to the TLE ) to around 10. 

We can find the same behavior in the streaming configuration, with the estimator failing to accelerate the 

convergence over the first two detectors and progressively increasing its performances as we move to the farthest 

detectors, with ratios close to 30. This is also the only configuration where the e-TLE without FD fails to accelerate 

the convergence. An explanation for this behavior might be found in the fact that having to simulate and transport 

virtual particles adds a certain amount of overhead to the transport algorithm. To generate a single particle history, 

Figure 6.35: Performance of the estimator over all tested configurations (for details on the geometries, see Chapter 3). 

The y axis shows the ratio between the figure of merit of the e-TLE estimator (with and without forced detection) and 

the figure of merit of TRIPOLI-4®’s TLE. 
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the e-TLE-FD requires the largest amount of time (which increases with the total number of detectors), followed 

by the e-TLE and then by the TLE . This of course means that, given a certain amount of computation time, the 

simulation with the TLE will generate a larger amount of particle histories than the one using the  

e-TLE. Therefore, if a detector is close to the source and easily reached by the particles, convergence with the TLE  

will be quicker. As we mentioned before, in the case of multiple detectors, the current implementation of the FD 

algorithm sends one virtual particle to each of the detectors before restarting the original particle transport. 

Intuitively, this implies that the algorithm’s efficiency is inversely proportional to the number of detectors in the 

simulation.  

Therefore, to try and improve the estimator’s performance, we run an additional set of simulations on both the 

slant penetration and the streaming duct configurations. In this case, only one detector is active, which means that 

a total of 22 simulations are run in the slant penetration case (11 with the TLE , 11 with the  

e-TLE-FD) and 12 simulations were run in the streaming case (6 with the TLE , 6 with the  

e-TLE-FD). Results of this “single detector” simulations are reported in Figure 6.36. As we can see from the plots, 

the estimator performance is drastically improved when used with only one detector, with the efficiency 

consistently gaining one order of magnitude with respect to the multiple-detector case. We can still see the same 

behavior related to the detector’s distance from the source: for the farthest detectors, we register acceleration ratios 

of around 500 for the slant penetration case and more than 600 for the streaming duct. 

 

Figure 6.36: Validation and performance of the e-TLE-FD in single-detector simulations. 
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6.4 Conclusions 

The results of these tests are very encouraging. First of all, we can say that the FD algorithm is well implemented 

in that it does not introduce any systemic bias in the results obtained with the e-TLE-FD.  

Secondly, the e-TLE-FD shows excellent accelerating capabilities when dealing with photon transport both in void 

and scattering-intensive environments, with acceleration factors reaching up to 104 in the simplest cases. The  

e-TLE-FD proves to be a valid alternative to the TLE , even when dealing with geometries of medium complexity 

as the streaming one. It can efficiently tackle both reflecting-dominated problems and attenuation-dominated ones, 

suggesting possible applications as an alternative to deterministic codes for geometries that are difficult to treat 

with the PKI method. 

In conclusion, the “local” implementation of the e-TLE is effectively able to optimize performances of MC 

simulations with small detectors and localized tallies. These results are encouraging also for the development of a 

“global” option, which could be complementary to the e-TLE-FD in situations where a score distributed over the 

whole domain is required.  
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. 

Chapter 7 

 

The e-TLE as a “global” estimator 

The problem of calculating global quantities distributions throughout a whole simulation domain is often found in 

nuclear particle transport problems. For neutrons, some examples include core flux calculations, for reactor design 

studies, and neutron fluence distribution in structures of interest, for activation calculations. For photons, dose rate 

maps are required for D&D studies, and other applications can be found in the medical and imaging field. For 

these kind of problems, the TLE is usually the estimator of choice. In this chapter, we consider the option of using 

the e-TLE for such calculations; more specifically, by implementing a new splitting algorithm and introducing the 

possibility of using the estimator on meshes rather than volumes, we present a new version of the estimator 

optimized for global fluence calculations. This “global e-TLE” or se-TLE is inspired by the split-exponential track 

length estimator by Smekens et al. [100] as well as by the volumetric ray casting estimator (VRC) developed by 

Sweezy [72]. 

7.1 e-TLE for global reduction of variance 

It is easy to see how the e-TLE would be well suited for whole-domain estimations, even by looking at its most 

basic implementation. By extending every particle’s trajectory over the whole geometry, the estimator provides a 

score over an area much more extended than the collision estimator or the normal TLE would provide. Of course, 

the increase in computation time relative to the virtual particle’s displacement is always present, and lowers the 

efficiency of the method. 

In an effort to improve both efficiency and usability of the estimator in dealing with global estimations, two 

modifications were added to the e-TLE algorithm: a splitting routine, to increase the statistics recovered from a 

single particle collision, and the possibility of using the estimator on meshes superimposed on the simulation’s 

geometry. 

The concept of the splitting algorithm is fairly straightforward in principle: after a collision of the “real” particle, 

M virtual particles are created instead of only one, each having a weight equal to w0/M, where w0 is the weight of 
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the real particle. Their energies and directions are sampled according to the scattering cross section of the collision. 

These particles are then transported in a straight line according to the e-TLE routine. 

This splitting process may seem similar to the one presented in Chapter 6 with forced detection; however, a big 

difference lies in how the virtual particles’ directions and energies are sampled. In fact, for the global e-TLE, the 

direction of every virtual particle has to be sampled from the same probability distribution, related to the DCS of 

the collision undergone by the real particle. On the other hand, for the FD splitting the virtual particles’ directions 

are pre-determined, then the weight is adjusted by taking into account the probability of undergoing a certain 

collision and exiting with that pre-determined direction. In practice, this means that, when sampling virtual 

particles for the global e-TLE, information related to the type of collision undergone by the real particle (Compton 

or Rayleigh scattering in our case) is needed. This may seem like a small difference, but it leads to a very different 

implementation, due also to how collisions and transport are coded in TRIPOLI-4®. 

The other modification introduced for the global e-TLE was the possibility of using the estimator on meshes. In 

TRIPOLI-4®, a volumetric estimator can be defined either on volumes or on meshes. The estimation on volumes 

was chosen at the beginning of the thesis, as it is easier to implement: each volume, by definition, contains only 

one material, therefore cross sections are uniform inside volumes. Moreover, volumes are embedded in the 

definition of TRIPOLI-4®’s geometry, meaning that some functions that would become useful for the e-TLE 

already existed in the code. 

Meshes, on the other hand, are superimposed on the geometry and are only used for calculating scores. They are 

particularly useful to calculate distributions of quantities over large portions of the simulation domain. Therefore, 

a mesh-oriented implementation is paramount to really exploit the capabilities of the global se-TLE. 

7.2 Splitting multiplicity study 

Any VRT involving some sort of splitting introduces the parameter of splitting multiplicity, which can have a 

strong impact on the global efficiency of the simulation. Multiplicity is the amount of particles created at each 

splitting instance, in this case at each collision. In the TRIPOLI-4® implementation of se-TLE, the choice of the 

splitting multiplicity is left to the user. Intuitively, one can say that the more split particles are generated, the more 

statistics are recovered from each simulated “mother” photon; on the other hand, more time is consumed to track 

and transport the split particles. Therefore, we can expect the splitting multiplicity M to have an optimum value, 

after which the simulation efficiency decreases.  

To verify this and to find the optimal value for M, a set of se-TLE simulations are performed by gradually varying 

the multiplicity. The procedure chosen is the same used by Smekens et al. in [31]. The configuration chosen for 

the study is the Bunker configuration R3, with a 10 cm lead wall extending from floor to ceiling. A cubic mesh of 

14x14x14 cells is superimposed to the geometry for scoring. 

A high-precision reference simulation is performed with TRIPOLI-4®’s TLE with an extremely high number of 

histories (ten million batches of 1000 particles, totalling 1010 particle histories). Then, a total of 14 se-TLE 

simulations are performed, with values of M ranging from 2 to 500. Simulations are stopped at time T=13900 s to 

conduct a constant time analysis. Then, to assess the global efficiency of each simulation, we define a global 

KERMA error K% as: 
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𝐾% =
∑ |𝐾𝑖 − 𝐾𝑟𝑒𝑓

𝑖 |
𝑁𝑚𝑒𝑠ℎ
𝑖=1

∑ 𝐾𝑟𝑒𝑓
𝑖𝑁𝑚𝑒𝑠ℎ

𝑖=1

(7.1) 

where Nmesh is the total number of mesh cells, and Ki and Ki
ref are the KERMA in the i-th mesh cell, calculated 

respectively in the se-TLE simulation and in the reference simulation. 

Results are shown in Figure 7.37. In this analysis, the correlation between the global KERMA error 𝐾% and the 

splitting multiplicity M seems to follow a linear trend: therefore, we cannot identify an optimal value for M which 

would correspond to a minimum error. The fact that 𝐾% increases does not reflect a bias in the estimation, but 

rather is related to the fact that for high splitting multiplicity the convergence is slower. Therefore, since the 

analysis is conducted at constant time, for high splitting multiplicities the final average standard deviation 𝜎 

increases, as shown by the plot in Figure 7.37 (right). These results, showing the lack of an optimum for the 

multiplicity, differ from what was observed in [31], where an optimal M value was indeed found and shown to be 

independent from the simulation time chosen for the analysis.  

  

Figure 7.37: Relative KERMA error (left) and average standard deviation 𝝈 (right) dependence on splitting 

multiplicity 

From the multiplicity analysis, it would seem that the introduction of splitting actually decreases the global 

efficiency of the e-TLE. However, the global KERMA error and the global average 𝜎 do not give us insight about 

the local efficiency of the estimator. To better assess this, we perform a more in-depth analysis on a refined mesh, 

presented in the next section. Based on the curves of Figure 7.37, we choose to investigate results obtained with a 

low multiplicity (M=5) to avoid losing too much efficiency due to a high number of split particles. 

7.3 Validation and performance analysis 

To validate the results obtained with the se-TLE, and  evaluate its performance, we perform another set of 

simulations on the six bunker configurations with a highly refined mesh. In Figure 7.38, we recall the bunker 

configurations with different values for the shield’s depth and height. The superimposed mesh is a 112x112x1 

grid: the refinement in the z direction is dropped to have faster simulations. Therefore, this analysis is effectively 
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a 2D study, even if performed on a 3D geometry. As seen in the previous section, the multiplicity analysis failed 

to find an optimal value for the splitting multiplicity, suggesting that the actual optimal configuration would be 

without any splitting. However, we decided to run two e-TLE simulations for each bunker configuration, one with 

no splitting and one with a value of M set to 5, in the hope of better assessing the differences between the two 

approaches. 

As usual, a reference simulation is performed with TRIPOLI-4®’s TLE, bringing the total number of simulations 

to 18, 3 for each of the six configurations. First of all, to test the estimator’s validity, we compare a KERMA map 

obtained with the se-TLE and one obtained with the global e-TLE without splitting to the map obtained with 

TRIPOLI-4®’s TLE. For brevity, we report here only the results for the R2 configuration.  

   

Figure 7.39: Comparison of KERMA maps for the R2 bunker configuration: TLE (left), global e-TLE without 

splitting (center), se-TLE with M=5 (right) 

   

 

  

Figure 7.38: 2D, xy view of the six bunker configurations studied: R1, top left; R2, top center; R3, top right; R4, 

bottom left; R5, bottom center; R6, bottom right.  
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Figure 7.39 shows a side-by-side comparison of the three maps. The results of the three simulations appear to be 

consistent. To validate the estimator more rigorously, we follow the procedure proposed in [105]. For every mesh 

cell, we define a 𝜁 variable as: 

𝜁𝑖 =
𝐾𝑖
𝑒−𝑇𝐿𝐸 − 𝐾𝑖

𝑇𝐿𝐸

𝐾𝑖
𝑇𝐿𝐸𝜎𝑇𝑂𝑇

(7.2) 

where 𝐾𝑖
𝑒−𝑇𝐿𝐸 and 𝐾𝑖

𝑇𝐿𝐸 are the KERMA values in the 𝑖-th cell calculated respectively by the global e-TLE and 

by the normal TLE, and 𝜎𝑇𝑂𝑇 is the standard deviation of the distribution 𝐾𝑖
𝑒−𝑇𝐿𝐸 − 𝐾𝑖

𝑇𝐿𝐸/𝐾𝑖
𝑇𝐿𝐸. We then compare 

the distribution of 𝜁 over the whole mesh to a standard normal distribution. Moreover, to avoid cells where the 

value of KERMA is very low and its statistical uncertainty very high, for this analysis we only consider cells where 

the KERMA is at least 0.1% of the maximum value registered. 

Figure 7.40 shows the results of the analysis. Both with and without splitting, the statistical distribution of the 𝜁 

values is shown to follow a standard normal distribution with mean 𝜇 close to zero and standard deviation 𝜎 close 

to 1. We can conclude that the global e-TLE does not present any systemic bias. 

  

Figure 7.40: Normalized frequency of 𝜻 values for the R2 bunker configuration, fitted with a standard normal 

distribution: global e-TLE without splitting (shown left, 𝝁 = 𝟎. 𝟎𝟓𝟕, 𝝈 = 𝟎. 𝟖𝟖𝟖) and se-TLE with M=5 (shown right, 

𝝁 = 𝟎. 𝟎𝟎𝟏, 𝝈 = 𝟎. 𝟖𝟗𝟑) 

To assess the efficiency of the e-TLE, a FOM is defined for every mesh cell and compared to the FOM of the 

corresponding TLE simulation. In this way, by looking at the cells where the FOM ratio is greater, one can have 

an idea of the spatial efficiency of the e-TLE as well as noting in which areas of the geometry the estimator 

performs better. 

Results for the six configurations are shown in Figure 7.41 to Figure 7.46. A constant trend can be seen: the FOM 

ratio is greater in those areas of the geometry that are more difficult for particles to reach. For all configurations, 

both with and without splitting, the estimator performs well in the two corners of the room close to the source 

(which are shielded from direct radiation by the concrete). 

When used with splitting, the estimator is also able to consistently improve results for the air behind the shield, 

while the version without splitting shows good results for configuration R6 only. Table 7.7 shows, for all 

configurations, the average FOM ratio value for air cells behind the shield. 

 

𝜁 𝜁 
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Table 7.7: Average FOM ratio for air cells behind the lead shield 

 R1 R2 R3 R4 R5 R6 

Global e-TLE 0.94 0.92 0.95 0.91 0.84 1.02 

Global se-TLE 1.35 1.22 1.16 1.27 1.24 1.06 

 

We can also see a clear trend in the concrete walls, where the FOM ratio is almost always lower than 1 but increases 

closer to the edges of the geometry; this becomes more evident for the portions of wall which are also shielded by 

the lead slab, like the bottom right corner. 

We can conclude that the estimator shows its best performance in deep penetration problems, and that the effect 

would be even clearer with thicker walls. In general, we can say that the estimator manages to improve simulation 

efficiency in “low-statistics areas”, if we design with this term all those areas that are less likely to be traversed by 

photons in a normal MC simulation. 

Concerning the differences in performance between the version with splitting and the version without splitting, we 

can see that in general the version with splitting is both more efficient in low-statistics areas and less efficient in 

the rest of the geometry. 

In low-statistics areas, the additional number of photons generated by the splitting algorithm provides additional 

statistics and lowers the final variance of the result; however, in areas that already have sufficiently high statistics, 

the additional time required by the algorithm greatly lowers the efficiency. This is why, in general, the FOM map 

has more contrast in the simulations with splitting, and is more “smoothed out” in no-split simulations. This is also 

evident by looking at the maximum and minimum values of the FOM in each simulation: if we exclude rare 

outliers, the simulation with splitting always has a higher maximum FOM and a lower minimum FOM than its no-

split counterpart. 

   

Figure 7.41: FOM gain maps for the R1 bunker configuration, M=5 (left) and M=0 (right) 
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Figure 7.42: FOM gain maps for the R2 bunker configuration, M=5 (left) and M=0 (right) 

  

Figure 7.43: FOM gain maps for the R3 bunker configuration, M=5 (left) and M=0 (right) 

  

Figure 7.44: FOM gain maps for the R4 bunker configuration, M=5 (left) and M=0 (right) 



98 

 

  

Figure 7.45: FOM gain maps for the R5 bunker configuration, M=5 (left) and M=0 (right) 

  

Figure 7.46: FOM gain maps for the R6 bunker configuration, M=5 (left) and M=0 (right) 

7.4 Conclusions 

The global version of the e-TLE is validated, in that it does not introduce any systemic bias in the simulation 

results, both with and without splitting.    

The performance of this global version shows somewhat mixed results. Due to the added complexity of 

deterministic transport, the estimator’s performance is inferior to that of the normal TLE in areas which already 

have a sufficient amount of photon statistics. Conversely, the global e-TLE shows good results in all those areas 

that are harder for the particles to reach, such as shielded areas. 

The addition of a splitting algorithm is shown to produce an increase in both these effects. In high-statistics areas, 

split particles only add computation time without any significant improvement in the results’ precision, i.e. with 

no observable variance-lowering effect. In low-statistics areas, this added computation time is balanced by the 

increase in statistics, which effectively improves the estimation efficiency. 
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These results are encouraging and suggest that the global version of the e-TLE could find its application in cases 

where it is important to improve the statistics in large areas of the simulation domain. It could be interesting to 

assess how the estimator compares to VRT techniques like the exponential transform in reducing the variance over 

low-statistics portions of the domain. Moreover, the capability of the estimator to push virtual particles in the 

farthest zones of the domain could be an argument for using it in applications different from dose rate evaluation, 

like the generation of importance maps through the calculation of adjoint fluxes in neutron calculations. 
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Conclusions and perspectives 

 
The objective of this thesis was to implement a new exponential track-length estimator in the code TRIPOLI-4®, 

taking inspiration from the one developed by Smekens et al. [100] for medical imaging applications and extending 

its domain of use to radioprotection studies. 

Since the new estimator was expected to reduce the variance of the simulation, the first study that we performed 

was an analysis of the other Variance Reduction Techniques already implemented in TRIPOLI-4®, in the domain 

of gamma shielding calculations. This first study showed how these already existing VRT often failed to accelerate 

the simulations consistently, or in some cases (i.e. the adjustment of importance maps with INIPOND) required a 

certain amount of user experience to work correctly. This proved the interest of developing a new, fully 

automatized methodology able to consistently accelerate shielding simulations. 

The first approach we followed was to develop a simple exponential track-length estimator, similar to the ones 

described in [52] and [97]. This first version of the e-TLE was defined as a volume-based estimator, due to the 

simpler implementation of this kind of estimators in TRIPOLI-4®. This first implementation was successful, as 

we showed that the new estimator was unbiased, required little to no user experience to be used in a simulation, 

and was consistently able to accelerate computations by a factor ranging from a little above 1 to 2 ~ 3 in the best 

cases. The estimator also showed mostly good performance when coupled with TRIPOLI-4®’s VRT. 

From this first approach, we went on to perfect and refine the estimator by effectively creating two “versions” of 

it. The first one, called e-TLE-FD, was more suited to local variance reduction applications, i.e. the estimation of 

some quantity localized in a specific point of the domain. The second one was a refined version of the e-TLE, able 

to compute scores on meshes as well as volumes and to include a splitting algorithm to improve performances; 

this version was more suited to global variance reduction applications, i.e. the estimation of a quantity in the whole 

simulation domain. 

The e-TLE-FD is a volume-based estimator that introduces a Forced Detection (FD) algorithm to the estimator’s 

routine. At each collision, a virtual particle is created in the collision point and deterministically transported 

towards the detectors, then it is killed after the score. In practice, the estimator computes the score that any particle 

would have given if it collided towards the detector, travelled up to it, and then registered a score. The e-TLE-FD 

showed excellent performance in all the test cases. In its final implementation, this estimator is able to deal with 
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multiple detectors (i.e. estimation volumes), although it achieves its best performance when used in simulations 

with only one detector. The choice of the number of detectors is left to the user as a free parameter. 

The second version of the estimator, the global e-TLE, can be used both for volume tallies and for mesh tallies. It 

is conceived to accelerate simulations whose objective is to calculate a quantity defined over the whole geometric 

domain, or over a large part of it. The user can choose to use the estimator without particle splitting (e-TLE) or 

introduce any number of split virtual particles after every collision (se-TLE) to try and improve the estimator’s 

performance. However, the user should keep in mind that the increased accuracy in low-statistics areas comes at 

the expense of a globally slower simulation. Therefore, an optimum must carefully be found to determine the best 

number of split particles, which changes depending on the simulation on a case-by-case basis. 

A number of future implementations can be envisioned to improve and develop the results obtained with this thesis 

work.  

First of all, the use of e-TLE and e-TLE-FD in conjunction with TRIPOLI-4®’s AMS and INIPOND can be further 

explored. Extensive tests should be done to see in which cases the use of the estimator can improve an already-

accelerated simulation, and in which cases the algorithm complexity does not justify its use. 

In the short/medium-term, the effects related to the activation of electro-magnetic shower could be evaluated. 

Since the estimator can be used with high-energy gammas, these effects should be taken into account. More 

generally, the use of e-TLE with particles other than photons could be explored. Preliminary tests showed that the 

estimator can be used with neutrons, suggesting that applications such as neutron flux estimations in a reactor core 

could be viable, similar to what was proposed by Sweezy et al. in [72]. This also paves the way for a longer-term 

implementation of e-TLE as an adjoint-flux estimator on a mesh, to be used for the generation of importance maps 

for superior variance reduction. With the application of e-TLE to neutron transport, another long-term perspective 

could be identified in coupled neutron-photon calculations for dismantling studies, such as those performed with 

the DEMAIN system. In this case, the neutron version of the e-TLE would be employed in the initial phases of the 

simulation, to calculate the source term for the activation code; then, the photon version of the estimator would be 

used in the final shielding calculation. The porting of the estimator to neutron calculations is currently the object 

of another thesis, conducted at CEA Cadarache by Henri Hutinet. 

Finally, taking inspiration from Sweezy’s VRC, the e-TLE algorithm could also be modified to include GPU-

based acceleration. By porting some parts of the algorithm, like the deterministic transport, to the GPU, better 

acceleration performances could be achieved. 
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ANNEX A: KERMA AND DOSE DEFINITIONS 

 

KERMA [106] is an acronym for Kinetic Energy Released in MAtter. It is a quantity applicable to indirectly ionizing 

radiations such as photons and neutrons. It quantifies the average amount of energy transferred from indirectly ionizing 

radiation to directly ionizing radiation, without concern as to what happens after this transfer. In the discussion that 

follows, we will limit ourselves to photons. 

The energy of photons is imparted to matter in a two-stage process. In the first stage, the photon radiation transfers energy 

to the secondary charged particles (electrons) through various photon interactions (the photoelectric effect, the Compton 

effect, pair production, etc.). In the second stage, the charged particle transfers energy to the medium through atomic 

excitations and ionizations. KERMA is related to the first stage, and it is defined as the mean energy 𝑑�̅�𝑡𝑟 transferred 

from the indirectly ionizing radiation (photons) to charged particles (electrons) in the medium per unit mass 𝑑𝑚: 

𝐾𝐸𝑅𝑀𝐴 =
𝑑�̅�𝑡𝑟
𝑑𝑚

A. 1 

KERMA is measured in Gray (Gy), where 1Gy=1J/kg. 

The absorbed dose, or simply dose, is another quantity related to the energy transfer of ionizing radiation. As said before, 

when a photon beam interacts with matter, the resulting process of energy transfer can be divided in two phases. The dose 

is related to the second one, where the charged particles (electrons) excited by the photons transfer some of their kinetic 

energy to the medium (resulting in absorbed dose) and lose some of their energy in the form of radiative losses 

(bremsstrahlung, annihilation in flight). The absorbed dose 𝐷 is defined as the mean energy 𝑑�̅�𝑖𝑚𝑝 imparted by ionizing 

radiation to the unit mass 𝑑𝑚: 

𝐷 =
𝑑�̅�𝑖𝑚𝑝

𝑑𝑚
A. 2 

Having the same quantities of KERMA, dose is also measured in Gray. 

The first important thing to note is that, because electrons travel in the medium and deposit energy along their tracks, this 

absorption of energy does not take place at the same location as the transfer of energy described by KERMA. Another 

important distinction between the two quantities is that the dose does not take into account radiative losses undergone by 

the charged particle during its travel in the medium, while KERMA does. 

In fact, KERMA can be divided in two parts: 

 The collision KERMA 𝐾𝑐𝑜𝑙  is that part of KERMA that leads to the production of electrons that dissipate 

their energy as ionization in or near the electron tracks in the medium, and is the result of Coulomb force 

interactions with atomic electrons. Thus, the collision KERMA is the expectation value of the net energy 



B 

 

transferred to charged particles per unit mass at the point of interest, excluding both the radiative energy 

loss and energy passed from one charged particle to another.  

 The radiative KERMA 𝐾𝑟𝑎𝑑is that part of KERMA that leads to the production of radiative photons as 

the secondary charged particles slow down and interact in the medium. These interactions most prominently 

are bremsstrahlung as a result of Coulomb field interactions between the charged particle and the atomic 

nuclei, but can also result from annihilation in flight. 

The total KERMA 𝐾 is thus given by the following: 

𝐾 = 𝐾𝑐𝑜𝑙 + 𝐾𝑟𝑎𝑑 A. 3 

Therefore, the dose is directly related only to the collisional part of the KERMA. Specifically, in a condition of ideal 

charged particle equilibrium (attained when the energy emitted per unit mass of material is the same as the energy 

absorbed per unit volume), then the dose is exactly equal to the collision KERMA. 

The DER is an acronym for Dose Equivalent Rate. The dose equivalent is usually measured in Sv (Sievert) and it 

represents a measure of the biological damage to living tissue as a result of radiation exposure. Since it gives an estimate 

of biological damage, it is the quantity usually adopted in radioprotection analysis to evaluate safety limits. Specifically, 

since the total dose is proportional to the time of exposure, the dose equivalent rate (Sv/s or Sv/h) is often used. The dose 

equivalent is related to the dose by the following relation: 

𝐷𝑒𝑞 =∑ ∑ 𝑤𝑅,𝑇𝐷𝑅,𝑇
𝑇𝑅

A. 4 

where DR,T is the dose of radiation R absorbed by tissue T, and wR,T is a weighting factor measuring the vulnerability of 

tissue T to radiation R. 
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ANNEX B: RIGOROUS MATHEMATICAL 

DERIVATION OF THE EXPONENTIAL 

TRACK-LENGTH ESTIMATOR 

 

We show here that the exponential track-length estimator can be rigorously derived from both the collision estimator and 

the classic track-length estimator, by averaging their values over all possible particle flight lengths. We take the simple 

problem described in Figure B.47. A particle is flying from point 𝒓, with direction 𝛀, towards the estimation volume 𝑉. 

We want to calculate the average contribution given by the particle to the flux in volume 𝑉 by using a collision estimator. 

We recall that the collision estimator gives a contribution equal to: 

𝜅𝐶𝑂𝐿𝐿 =
Π𝑉(𝒓)

Σ𝑡𝑉
(B. 1) 

where the characteristic function Π𝑉(𝒓) is defined as: 

Π𝑉(𝒓) = {
   1 𝑖𝑓 𝒓 𝑖𝑠 𝑖𝑛𝑠𝑖𝑑𝑒 𝑉,

   0 𝑖𝑓 𝑛𝑜𝑡.
(B. 2) 

 

Figure B.47: Geometric configuration for the mathematical derivation of e-TLE  

To calculate the average contribution given by the particle in point 𝒓, we integrate 𝜅𝐶𝑂𝐿𝐿  over all possible flight lengths 

𝑠 starting from 𝒓, and multiply it by the displacement operator Σ𝑡𝑒
∫ −Σ𝑡𝑑𝑡
𝑠
0  (see also Equation (1.15)), which can be seen 

as the probability of traveling for a length 𝑠 and then having a collision. For simplicity, we choose a homogeneous 

isotropic material where the total macroscopic cross section is equal to Σ𝑡 everywhere, so the displacement operator 

simplifies to Σ𝑡𝑒
−sΣ𝑡 . We can write: 

𝜅𝐶𝑂𝐿𝐿,𝑎𝑣𝑔 = ∫
Π𝑉(𝒓 + 𝑠𝛀)

Σ𝑡𝑉

∞

0

Σ𝑡𝑒
−sΣ𝑡𝑑𝑠 (B. 3) 
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By referring to Figure B.47, and remembering the definition of Π𝑉(𝒓) given in Equation (B.2), we can see that all 

trajectories for which 𝑠 < 𝑠𝑉 or 𝑠 > 𝑠𝑉 + 𝐿𝑉 will give a null contribution. We can therefore rewrite the integral as: 

𝜅𝐶𝑂𝐿𝐿,𝑎𝑣𝑔 = ∫
1

𝑉

𝑠𝑉+𝐿𝑉

𝑠𝑉

𝑒−𝑠Σ𝑡𝑑𝑠 (B. 4) 

To simplify the notation we operate a variable change by considering 𝑠′ = 𝑠 − 𝑠𝑉: 

𝜅𝐶𝑂𝐿𝐿,𝑎𝑣𝑔 = ∫
1

𝑉

𝐿𝑉

0

𝑒−(𝑠
′+𝑠𝑉)Σ𝑡𝑑𝑠′ =

1

𝑉
𝑒−𝑠𝑉Σ𝑡 ∫ 𝑒−𝑠

′Σ𝑡𝑑𝑠′

𝐿𝑉

0

(B. 5) 

and finally we solve the integral to obtain: 

𝜅𝐶𝑂𝐿𝐿,𝑎𝑣𝑔 = 𝑒−𝑠𝑉Σ𝑡
1 − 𝑒−Σ𝑡𝐿𝑉

𝑉Σ𝑡
(B. 6) 

which is equal to the formulation given for the e-TLE in Section 1.3.2 and in Chapter 5. 

We will now show that, if we start from the track-length estimator instead of the collision estimator, we get to the same 

final result. We recall that, in its basic formulation, the track-length estimator gives a contribution equal to: 

𝜅𝑇𝑅𝐴𝐶𝐾 =
𝐿𝑗

𝑉
(B. 7) 

where the characteristic length 𝐿𝑗 (see also Equation (1.22) in Section 1.3.2) is equal to the length travelled by the particle 

inside volume 𝑉 between two successive interactions: 

𝐿𝑗 = ∫ Π𝑉(𝒓 + 𝑠
′𝛀) 𝑑𝑠′

𝑠

0

(B. 8) 

Therefore, as before, we can write: 

𝜅𝑇𝑅𝐴𝐶𝐾,𝑎𝑣𝑔 = ∫
Π𝑉(𝒓 + 𝑠𝛀)

𝑉

∞

0

Σ𝑡𝑒
−sΣ𝑡𝑑𝑠 (B. 9) 

In this case, we have three distinct situations. First of all, like for the collision estimator, for all 𝑠 < 𝑠𝑉 the estimator gives 

a null contribution. Then, for all 𝑠𝑉 < 𝑠 < 𝑠𝑉 + 𝐿𝑉, the integral of equation (B.9) becomes equal to: 

∫
𝑠 − 𝑠𝑉
𝑉

𝑠𝑉+𝐿𝑉

𝑠𝑉

Σ𝑡𝑒
−sΣ𝑡𝑑𝑠 (B. 10) 

Finally, for all flight lengths 𝑠 > 𝑠𝑉 + 𝐿𝑉, the particle flies past the volume and 𝐿𝑗 = 𝐿𝑉. The integral now becomes: 

∫
𝐿𝑉
𝑉

∞

𝑠𝑉+𝐿𝑉

Σ𝑡𝑒
−sΣ𝑡𝑑𝑠 (B. 11) 

Therefore, to evaluate the integral of Equation (B.9) we have to sum the two contributions of Equations (B.10) and (B.11). 

We now operate the same change of variable as before with 𝑠′ = 𝑠 − 𝑠𝑉, and rewrite the integral as the sum of the two 

contributions: 
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𝜅𝑇𝑅𝐴𝐶𝐾,𝑎𝑣𝑔 = ∫
𝑠′

𝑉

𝐿𝑉

0

Σ𝑡𝑒
−(s′+sV)Σ𝑡𝑑𝑠′ + ∫

𝐿𝑉
𝑉

∞

𝐿𝑉

Σ𝑡𝑒
−(s′+sV)Σ𝑡𝑑𝑠′ (B. 12) 

Taking the constants out of the integrals, we have: 

𝜅𝑇𝑅𝐴𝐶𝐾,𝑎𝑣𝑔 =
Σ𝑡
𝑉
𝑒−𝑠𝑉Σ𝑡 ∫ 𝑠′

𝐿𝑉

0

𝑒−s
′Σ𝑡𝑑𝑠′ +

Σ𝑡𝐿𝑉
𝑉

𝑒−𝑠𝑉Σ𝑡 ∫ 𝑒−s
′Σ𝑡

∞

𝐿𝑉

𝑑𝑠′ (B. 13) 

And finally, solving the integrals: 

𝜅𝑇𝑅𝐴𝐶𝐾,𝑎𝑣𝑔 =
Σ𝑡
𝑉
𝑒−𝑠𝑉Σ𝑡

1 − 𝑒−𝐿𝑉Σ𝑡(𝐿𝑉Σ𝑡 + 1)

Σ𝑡
2  +

Σ𝑡𝐿𝑉
𝑉

𝑒−𝑠𝑉Σ𝑡
𝑒−𝐿𝑉Σ𝑡

Σ𝑡
= 𝑒−𝑠𝑉Σ𝑡

1 − 𝑒−𝐿𝑉Σ𝑡

𝑉Σ𝑡
(B. 14) 

 

which is again the same result as Equation (B.6). 
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ANNEX C: RÉSUMÉ SUBSTANTIEL EN 

FRANÇAIS 

 

Avec ses 56 réacteurs nucléaires en exploitation, produisant 379 TWh d’électricité en 2019, la France est le deuxième 

producteur mondial d’énergie nucléaire. Si l’on regarde le pourcentage d’électricité provenant du nucléaire, la France est 

le premier pays au monde, avec plus de 70%. Le choix de s’appuyer massivement sur l’énergie d’origine nucléaire, et ce 

dès la transition commencée en 1974, a amené la France à avoir, aujourd’hui, un coût de l’électricité bien au-dessous de 

la moyenne européenne et surtout un réseau de production parmi les plus décarbonés au monde. Néanmoins, la majorité 

des réacteurs du parc français ayant été construite dans les années ’80, l’Autorité de sûreté nucléaire se trouve confronter 

aujourd’hui à une situation nouvelle : quels réacteurs maintenir en fonctionnement et lesquels démanteler dans les années 

à venir. Il est probable qu’une partie significative des réacteurs du parc sera engagée dans la phase de démantèlement 

dans le courant des 5 ou 10 prochaines années. En 2019, 36 installations nucléaires de base (INB) étaient en cours de 

démantèlement en France. De manière générale, un nombre croissant de réacteurs voient leur fin de vie se rapprocher. Il 

est donc évident que les enjeux posés par le démantèlement des installations nucléaires sont de plus en plus d’actualité, 

tant en France qu’ailleurs dans le monde. 

Dans une procédure de démantèlement, la caractérisation radiologique des composants et des lieux joue un rôle très 

important, tant dans une logique de sûreté des opérations à mettre en œuvre pour démanteler et nettoyer le site, que dans 

une problématique de gestion des déchets. Les mesures in-situ étant souvent compliquées à mener, en raison du risque 

radiologique associé et de la difficulté d’accès de certaines zones, l’emploi de méthodes numériques, s’appuyant sur des 

calculs de transport de particules et d’inventaire radiologique, s’avère un outil très efficace. Ces calculs sont 

traditionnellement menés en quatre étapes : 

 Un calcul de cœur ayant pour objectif la détermination des sources de fission et du flux neutronique au sein du 

cœur du réacteur : il consiste à résoudre l’équation de Boltzmann encore dénommée ici équation du transport, à 

laquelle obéit le flux des neutrons qui se propagent dans le cœur ; 

 Un calcul de flux neutronique au niveau de toutes les structures internes de la cuve du réacteur (voire de la 

cuve elle-même) radiologiquement activées pendant l’exploitation du réacteur : il consiste à résoudre l’équation 

du transport satisfaite par le flux des neutrons et les gamma qui se propagent dans les structures du réacteur ; 

 Un calcul d’activation visant à calculer l’activité des structures irradiées et les sources de rayonnements qui en 

découlent ; il consiste à résoudre les équations de Bateman généralisées, encore appelées équations d’évolution 

auxquelles satisfont les concentrations des radionucléides formés dans les structures. 
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 Un « calcul de protection » visant l’estimation des débits de dose induits par les rayonnements émis par les 

radionucléides formés dans les structures irradiées et le dimensionnement éventuel d’un blindage pour s’en 

protéger.  

Cette thèse se focalise sur la dernière étape de ce schéma, c’est-à-dire le calcul de transport des photons pour estimer le 

débit de dose qu’ils induisent. Notamment, en partant des deux approches utilisées aujourd’hui pour mener ce type de 

calculs, à savoir l’approche déterministe de traitement de l’équation du transport, rapide mais approximative et donc 

peu précise dans certaines configurations, et l’approche stochastique, précise mais pouvant entraîner des temps de 

calculs très longs, on se propose de développer une approche hybride, combinant les points forts de ces deux approches 

classiques de manière à pallier leurs faiblesses respectives. 

La voie choisie pour le développement de cette approche hybride est basée sur TRIPOLI-4®, un code stochastique Monte- 

Carlo de transport de particules, développé au CEA. En s’inspirant d’une étude menée dans le domaine de l’imagerie 

médicale, on a introduit dans TRIPOLI-4® des éléments du transport déterministe pour améliorer l’efficacité de calcul 

dans des configurations d’intérêt. On a donc développé un nouvel outil, appelé exponential track-length estimator (e-

TLE, « estimateur de longueur de trace (ou de corde) exponentiel » en français. 

Cet estimateur est fondé sur le concept du track-length estimator TLE, « estimateur de longueur de trace (ou de corde) », 

déjà présent dans TRIPOLI-4® et dans la plupart des codes de transport Monte-Carlo. Cet estimateur est défini à partir de 

l’équivalence (C.1) qui existe entre le flux de particules et le parcours total des particules par unité de volume : 

Φ =
𝐿

𝑉
(C. 1) 

où 𝐿 est le parcours total moyen traversé par les particules dans le volume V. 

Suivant l’équation (C.1), toutes les particules qui croisent le volume V dans leurs trajets contribuent à l’estimation du 

flux, même celles qui n’ont pas d’interaction dans V. En revanche, un estimateur de type « collision » est défini à partir 

des interactions subies par une particule pour estimer des grandeurs physiques afférentes comme le flux. On peut ainsi 

décrire plusieurs estimateurs de longueur de trace, en changeant la façon dont la longueur L de l’équation (C.1) est 

calculée. La Figure C.48 présente une visualisation de l’estimateur TLE classique et de l’estimateur e-TLE développé 

dans cette thèse. 

 

Figure C.48 : visualisation 2D de l’estimateur de longueur de trace linéaire (a) et exponentiel (b) 

a) Estimateur de longueur de trace linéaire (TLE) 

Cet estimateur est l’application en logique Monte-Carlo de l’équation (C.1). Par rapport à la Figure C.48a, on peut estimer 

le flux au point P comme une moyenne des parcours des particules traversant V, divisée par V. L’estimation du flux est 

donc :  
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𝜙𝑗(𝑃) = {
𝐿𝑗

𝑉
, 𝑠𝑖 𝐿𝑗 > 0 

0,          𝑠𝑖𝑛𝑜𝑛     

(C. 2) 

où 𝐿𝑗 est la distance parcourue par la particule dans le volume V entre les interactions j et  𝑗 +  1. Pour simplifier, on 

suppose ici que le volume 𝑉 est constitué d’un matériau homogène. On peut définir 𝐿𝑗 de façon plus rigoureuse comme : 

𝐿𝑗 = ∫ Π𝑉(𝒓𝑗 + 𝑠 ∙ 𝛀j) 𝑑𝑠
|𝒓𝑗+1−𝒓𝑗|

0

(C. 3) 

Dans cette formulation, Π𝑉(𝒓) est une fonction caractéristique du volume V, égale à 1 si le point 𝒓 se trouve dans V et 

égale à 0 dans le cas contraire. En se reportant à la Figure C.48a, cet estimateur donne une contribution ou « score » de 

zéro pour les interactions 2, 3 et 4 ; en revanche, un estimateur de type « collision » aurait enregistré seulement 

l’interaction 4, qui est située dans le volume V. 

b) Estimateur de longueur de trace exponentiel (e-TLE) 

L’estimateur de longueur de trace exponentiel (Figure C.48b) ou e-TLE peut être dérivé directement de son correspondant 

linéaire en étendant la définition de la quantité Lj, comme le montrent les équations suivantes : 

𝑘𝑗(𝑃) = {
𝑒−Σ𝑡𝑠𝑉

(1 − 𝑒−Σ𝑡𝐿𝑗)

Σ𝑡𝑉
, 𝑖𝑓 𝐿𝑗 > 0 

                0,                           𝑖𝑓 𝑛𝑜𝑡      

(C. 4) 

𝐿𝑗 = ∫ Π𝑉(𝒓𝑗 + 𝑠 ∙ 𝛀𝑗) 𝑑𝑠
∞

0

(C. 5) 

où 𝑠𝑉 est la distance entre l’interaction et le volume V dans la direction du vol de la particule, et Σ𝑡 est la section efficace 

totale macroscopique du matériau traversé. Pour simplicité, le matériau est supposé homogène. 

La dérivation mathématique de l’équation C.4 est donné dans l’annexe B. Ici, on se limitera à noter que la méthode 

consiste en une prolongation à l’infini du trajet de la particule après chaque interaction (d’où l’intégration de 0 à l’infini 

dans l’équation C.5) et d’une correction apportée du terme 𝑒−Σ𝑡𝑠𝑉 qui prend en compte l’atténuation linéaire de la 

particule, due au fait que le transport en ligne droite n’est pas simulé en Monte Carlo. L’efficacité du processus est bien 

montré dans la Figure C.48b, qui montre que l’estimateur e-TLE apporte une contribution même si la particule ne traverse 

pas le volume d’intérêt. 

On va maintenant expliquer brièvement comment ce processus a été traduit sous une forme algorithmique et implémenté 

dans le code TRIPOLI-4®. Comme l’estimation donnée par le e-TLE a lieu non pas sur le trajet effectif de la particule, 

mais bien sur son prolongement virtuel en ligne droite, un procédé doit être trouvé pour implémenter ce type d’estimateur. 

Pour résoudre ce problème, on crée une particule dite « virtuelle » ou « fictive » à laquelle on attribue les caractéristiques 

de la particule « réelle » (poids, énergie, direction de mouvement) et qui est transportée en ligne droite jusqu’à la fin du 

domaine de simulation. On résume ci-après les étapes principales de l’algorithme du e-TLE dans son implémentation au 

sein du code de transport Monte-Carlo TRIPOLI-4® : 

1. Tout d’abord, un contrôle géométrique vérifie que la prolongation en ligne droite du trajet de la particule croise 

effectivement un des volumes de détection. Si ce n’est pas le cas, le transport déterministe de la particule ne 

donnerait aucune contribution, et de ce fait le processus n’est pas enclenché. 
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2. Si l’on sait que la particule va croiser au moins un détecteur dans la prolongation de son chemin, on commence par 

la création d’une particule « virtuelle » crée comme une copie exacte de la particule originale en toutes ses 

propriétés.  

3. On calcule la distance 𝑑𝑖 entre la particule virtuelle et la frontière du volume plus proche, i.e. la distance parcourue 

par la particule dans le i-ème volume. 

4. La particule virtuelle est déplacée dans sa nouvelle position sur la frontière du volume ; une valeur de l’estimateur 

(ou « score ») 𝜅𝑖 =
𝑤𝑖∗(1−𝑒

−Σ𝑡𝑑𝑖)

Σ𝑡
 est sauvegardée en mémoire pour le volume qui vient d’être parcouru. Ici, 𝑤𝑖  est 

le poids de la particule virtuelle à l’entrée du i-ème volume et Σ𝑡 est la section efficace macroscopique totale du 

milieu traversé. 

5. Le poids de la particule virtuelle 𝑤𝑖  est mis à jour pour tenir compte de l’atténuation : 𝑤𝑖+1 = 𝑤𝑖 ∙ 𝑒
−Σ𝑡𝑑𝑖 . 

6. On retour au point 3 et on répète le processus jusqu’à quand la particule virtuelle n’arrive à la fin du domaine 

simulé. 

Cet algorithme est schématisé sur la Figure C.49. 

 

Figure C.49 : Implémentation de l’algorithme relatif à l’“exponential track-length estimator”, e-TLE, pour le transport des 

photons dans le code de transport Monte-Carlo TRIPOLI-4® 
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Après vérification de cet algorithme, une première version de l’estimateur a été testée et validée sur un ensemble de 

configurations d’étude reflétant des cas d’intérêt dans le contexte du démantèlement. Certaines de ces configurations 

représentent de vraies expériences de laboratoire, d’autres plus complexes sont purement théoriques et ont été conçues à 

la fois pour être représentatives de situations réelles, et pour être particulièrement difficiles à traiter par une approche de 

transport déterministe classique. 

Sur l’ensemble de ces configurations, le e-TLE offre des résultats très satisfaisants. L’écart par rapport à l’estimateur TLE 

est inférieur à l’écart type de la simulation, ce qui montre la validité de l’estimateur. En terme de performances, les calculs 

réalisés avec l’e-TLE montrent une efficacité de 1.5 à 3 fois supérieure à celle des calculs usuels. L’efficacité est mesurée 

par un indicateur dénommé « figure de mérite » (FOM pour “figure of merit”) qui prend en compte conjointement le 

temps de calcul et la variance statistique associés aux résultats de la simulation. 

Ayant donc vérifié la fiabilité et les bonnes performances du nouvel estimateur, la partie restante de ce travail de thèse a 

été dédiée à l’optimisation des performances de l’estimateur, en suivant deux voies principales :  

 d’un côté, en se proposant d’optimiser l’e-TLE pour des évaluations de débits de dose bien localisées dans le 

domaine de simulation, telles qu’une mesure de dose effectuée à l’aide d’un dosimètre thermo-luminescent ; 

 de l’autre, en optimisant l’estimateur pour des mesures de débits de dose distribuées sur tout le domaine de 

simulation, par exemple pour établir une cartographie de valeurs de débit de dose en soutien aux opérations de 

démantèlement. 

Pour répondre aux problématiques de la première voie, on a implémenté un algorithme de « détection forcée » qui dirige 

automatiquement la trajectoire « fictive » de chaque particule vers un, ou plusieurs, volumes définis comme détecteurs. 

Cette modification permet d’augmenter significativement l’efficacité d’une simulation, en assurant que chaque particule 

fournit une contribution à chaque détecteur cible après chacune de ses interactions dans la matière. Le nouvel estimateur, 

appelé e-TLE-FD (FD pour “forced detection”, « détection forcée ») a été validé sur les mêmes configurations utilisées 

précédemment pour le e-TLE, en conduisant toujours un à très bon accord avec le TLE classique. L’estimateur montre 

ainsi des performances qui varient beaucoup en fonction de la configuration étudiée. Dans les meilleurs cas, l’e-TLE-FD 

atteint des performances 10 000 fois supérieures au TLE ; dans les autres configurations le gain en efficacité est compris 

entre 10 et 100. L’estimateur se montre en revanche moins adapté pour traiter des détecteurs qui sont très proches de la 

source de particules. On en conclut que ce type d’estimateur est bien adapté à la détection d’événements rares, avec un 

nombre de détecteurs pas trop élevé. 

La deuxième voie d’implémentation vise à permettre l’estimation sur un large volume maillé, à l’aide d’un algorithme de 

« fractionnement » ou “splitting” après chaque interaction des particules. L’estimateur prend ici le nom de se-TLE (s pour 

“split”). Avec cet algorithme, lors d’une interaction, la particule réelle, d’un poids 𝑝0 donné est remplacée par un nombre 

M de particules fictives, de poids respectif 𝑝0/𝑀, ayant chacune une direction et une énergie différente, échantillonnée 

sur la base de la section efficace différentielle de l’interaction. Les particules fictives sont transportées et atténuées en 

suivant le même algorithme de transport déterministe que les autres versions du e-TLE. À la fin de la boucle de transport 

des particules fictives, le code reprend la simulation de la particule réelle. 

Une première étude sur la multiplicité M a pu montrer qu’il n’est pas aisé d’évaluer l’efficacité générale de la méthode 

pour une multiplicité 𝑀 quelconque. Aussi, une étude de validation et performance avec une multiplicité fixée à 𝑀 = 5 

particules fictives montre que le se-TLE améliore les performances de calcul dans certaines zones du domaine de 

simulation, en la réduisant dans d’autres zones. On en conclut que, similairement au cas du e-TLE-FD, la méthode est 
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bien adaptée pour réduire la variance statistique dans les zones qui sont plus difficiles à atteindre par les particules (zones 

derrière une protection radiologique, zones loin de la source, événements rares) mais la simulation d’un nombre de 

particules additionnelles entraîne un ralentissement de la simulation qui diminue l’efficacité dans des zones proches de la 

source à plus haute statistique. 

Les développements réalisés lors de ce doctorat ont permis de compléter des outils de calcul du code TRIPOLI-4®, et de 

montrer tout leur intérêt dans des configurations complexes d’assainissement-démantèlement. Des pistes de 

développement sont suggérées pour améliorer davantage les performances des nouveaux estimateurs ainsi que d’étendre 

leur domaine d’application, par exemple en traitant d’autres particules que des photons. Plusieurs publications ont résulté 
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