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Bases neurales et cognitives de 1'altération de la mémoire déclarative par
un biais de confirmation.

Le biais de confirmation consiste en un phénomene cognitif bien caractérisé et universel
par lequel de nouvelles informations provenant de l'environnement sont surévaluées
quand elles confirment et sous-évaluées quand elles infirment un contenu cognitif
préalablement consolidé (p.ex., croyances, régles d'association). Les réponses mal-
adaptées que ce phénomeéne peut générer font partie de problémes sociaux tels la
rediffusion des «fake news» et varient selon la complexité du contexte et I’état mental

du sujet.

Malgré ces faits, il existe peu d'études dédiées a I'exploration des mécanismes neuraux
ou a l'évolution de ce phénomeéne. Ainsi, nous avons con¢u un modéle murin des
comportements de type «biais de confirmation» afin de nous permettre d'explorer ses
substrats cognitifs et neuronaux et leur évolution. Nous avons basé notre modele sur
une définition cognitive du phénomeéne; surévaluation de nouveaux éléments
environnementaux quand ils confirment, et sous-évaluation quand ils infirment, un
contenu cognitif préalablement consolidé. Nos résultats jusque-la (employant un
protocole a deux taches et a deux contextes sur le labyrinthe radiaire) révelent un fort
effet de biais qui se manifeste comme une altération dans la performance d'une tache de

mémoire déclarative et dont la persistance varie en fonction de la complexité de I'essai.

Grace a des analyses comportementales détaillées, nous avons su identifier des
composants cognitifs plus basiques qui impactent cet effet de biais, tels I'oubli adaptatif
ou I'équilibre exploration/exploitation. Ces composants sont fortement liés avec des
circuits neuronaux spécifiques dont l'activité est susceptible d'étre enregistrée ou
modifiée in vivo. Ils sont aussi impliqués dans plusieurs troubles mentaux (dépression,
schizophrénie), faisant du modeéle un nouvel outil pour la recherche pré-clinique, dont
nous développons des versions humaine (pour recherche clinique), et computationnel

(pour formuler des prédictions a tester).



Neural and cognitive bases of confirmation bias-induced interference in
declarative memory performance.

Confirmation bias is a well-described and ubiquitous cognitive behavior whereby novel
information from the environment is over-valued when it confirms and under-valued
when it disconfirms previously consolidated cognitive content (e.g. beliefs, learned
associations, etc.). The maladaptive responses this phenomenon can give rise to are
implicated in social problems such as the spread of “fake news” and vary according to

both contextual complexity and the mental state of the subject.

Nevertheless, very little research has been dedicated to understanding the neural
mechanisms or evolution underpinning this spontaneous human cognitive response to
novel information. Thus, we designed a mouse model for confirmation bias-like
behavior, enabling exploration of its cognitive and neurobiological underpinnings and
their evolution. Our model is based on a cognitive level definition of the phenomenon;
over-valuation of novel environmental elements which confirm and under-valuation of
novel environmental elements which disconfirm a previously consolidated cognitive
content. Our results to this point (using a two-task, two-context radial maze protocol)
show a strong bias effect which is observable as a deviation in the performance of a
classical declarative memory task, the persistence of which is trial-complexity

dependent.

Detailed behavioral analysis has enabled us to identify several more basic cognitive
components impacting the bias effect, such as adaptive forgetting and the
exploration/exploitation balance. These cognitive components have been identified with
specific neural circuits whose activity is susceptible to intervention and/or monitoring in
freely moving task-performing animals. They are also implicated in many psychiatric
conditions (depression, schizophrenia, etc.) making of this model a novel tool for pre-
clinical research of which we are developing a human version for clinical research and a

computational version for formulating and testing predictions.
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Présentation en francais de ’objectif de ce projet

Afin de tirer son profit maximal d’un monde qui se situe sur un continu allant de la
stabilité et de la prédictibilité d’un co6té jusqu’a 'imprévisibilité de la nouveauté et du
changement de I’autre, ’organisme doit arriver au meilleur équilibre entre I'exploitation
de ce qui lui parait stable et prédictible et ’exploration de ce qu’il per¢oit comme
incertain ou nouveau. Ainsi, a la rencontre du nouveau, ’organisme doit choisir §’il va
s’y accommoder, ajustant son état interne afin d’appréhender la nouveauté en tant que
telle, ou bien s’il va plutot tenter de I’assimiler, de le subordonner a ses pré-acquis, a son
état interne préétabli. Chez ’humain, ce phénomeéne se trouve non seulement au niveau
de la perception mais aussi au niveau du raisonnement. Dans ce dernier cas, quand on
cherche a assimiler du nouveau a de ’ancien, on parle d’un « biais de confirmation »
car il s’agit de favoriser ces éléments du nouveau qui confirment nos acquis tout en
dévalorisant ceux qui les infirment. Aujourd’hui, on en parle beaucoup dans le contexte
de la diffusion des « fake news », de la crise de la reproductibilité, etc. En effet, plus
nous sommes confrontés a des flux d’information, plus le biais de confirmation devient
un enjeu pour la société. Il est donc de plus en plus important de comprendre les bases
neurobiologiques de ce phénomene, lesquelles sauraient indiquer les meilleures méthodes
cognitives pour le surmonter, surtout chez les populations agées ou atteintes de

dépression, etc., qui en sont plus susceptibles.

L’utilisation de modeéles animaux dans I’exploration des substrats neuraux de diverses
conditions physiopathologiques est I'une des clefs de voite des neurosciences, or
jusqu’ici il n’existe pas de modele animal du biais de confirmation. Ainsi, afin de
répondre a ce manque, dans ce projet nous nous sommes données I’objectif de profiter
des tendances avérées de la souris, d’une part, a ’exploration spontanée et, d’autre part,
a Pexploitation acquise. A partir de ces bases nous avons congu et validé un modele
comportemental qui fait émerger chez la souris une phénotype comparable, a bien des
égards, au biais de confirmation. Ce modeéle, nous avons pu par la suite 'utiliser pour
entamer une investigation des bases neurobiologiques et évolutionnaires de ce biais si
présent dans le monde d’aujourd’hui. Ce sont les résultats présentés dans ce projet de

these.
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Preface

The desire and motivation to dedicate my thesis in neuroscience to the study of
confirmation bias relates directly to a broader research question which has been the
focus of my work since the first year of my master’s degree in philosophy of science and
the mind at La Sorbonne, Université Paris IV. It is the question of scientific education
itself, specifically as this relates to the transition from one theoretical perspective of a
given phenomenon to another: rule revision up to the most abstract levels. The subject
of my master 1 mémoire was the philosophy of cognitive dissonance, a phenomenon the
proximity of which to ‘myside’ confirmation bias is evoked within the present
manuscript. It was while researching my master 2 mémoire on the subject of pluralism
in scientific education, however, that my focus first began to be drawn towards
neuroscience and the evolution of the higher cognitive functions. The work I present
here constitutes a giant leap forward for my research in this direction, as well as a small
step towards a shared deeper understanding of the evolution and neurobiology of our
modes of reasoning and educating. It remains for me, in the future, to reflect upon and
draw out the philosophical implications of the results these last four years of PhD
research have given me the opportunity to produce. But for the present moment, it is

still to its scientific implications my attention is turned.

The findings of my research are presented here in the form of two “expanded” articles
currently in preparation for publication. The first of these is an investigation of how
mice respond to an indoctrination-like protocol of learning, i.e. one which explicitly
discourages their spontaneous drive to explore, their “curiosity,” and which is
specifically the type of learning susceptible, in humans, to later give rise to ‘myside’
confirmation bias. The second then investigates the confirmation bias-like behavior
effectively elicited in mice who have learnt a rule in such an indoctrination-like manner
when they are subsequently brought into a novel environment where this rule must be

revised.
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General Introduction

“Confirmation bias has been used in the psychological literature to refer to a
variety of phenomena. Here I take the term to represent a generic concept that
subsumes several more specific ideas that connote the inappropriate bolstering

of hypotheses or beliefs whose truth is in question.”

Raymond Nickerson, (1998).

The empirical findings from the two studies constituting the present PhD research will
ultimately inspire the interpretation that the object of investigation, confirmation bias, can
be meaningfully theorized as a particular product or artefact of organisms possessing
multiple memory and learning systems having to navigate dynamic environments that
demand revision of previously formed state-action policies. It seems judicious, therefore,
to open proceedings with an introduction briefly outlining the history, development, and
relevance to the present research endeavor of the central technical terms: 1) state-action
policies; 2) multiple memory and learning systems, and; 3) confirmation bias itself. My
hope is that, over the course of this introduction, it will become clear to the reader that the
now uncontroversially admitted presence of 1) and 2) in a vast range of species naturally
gives rise to two key questions regarding 3), i.e. confirmation bias, being a phenomenon
which, by contrast, the literature has thus far admitted of only in humans. Those two

questions are:

1. Do non-human animals whose state-action policies are shaped via multiple memory
and learning systems also, putatively thereby, possess the cognitive capacity to

manifest confirmation bias-like behaviors?
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2. Is the well-characterized phenomenon of confirmation bias in humans a
consequence of our state-action policies being shaped via multiple memory and

learning systems?

The first question neatly sums up the orientation of the research I have undertaken during
my PhD, and my findings in this respect, communicated in the two research articles
constituting Part 1 and Part 2 of this manuscript, represent the first elements of an
empirical response to it to appear in the literature. In turn, I hope my present contributions
will inspire future research to tackle the second question in a similarly direct and empirical

manner.

1. State-action policies

Since I do not actually develop a computational approach in the present work, my
borrowing of and reflections around certain terms and notions from the domain of
computational reinforcement learning is primarily intended as an aid in conceptualizing
the extent to which certain complex cognitive functions displayed by both humans and
non-human animals are eminently comparable and mutually informative. This is not,
however, a purely neutral consideration, since certain philosophical positions, either
implicitly or explicitly but in either case widely held, make many skeptical or dismissive of
the idea that ‘beliefs’ are something animals are capable of possessing. This presents an
unignorable obstacle in the context of presenting an animal model of any human cognitive

process, such as confirmation bias, which is inextricably intertwined with beliefs.

By providing conceptual language and tools for grouping together all cognitive content
that directs action in a context-dependent manner, reinforcement learning isolates and

unifies what beliefs, rules, strategies, stimulus-response behaviors, memory- and learning-
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based decisions, reward-expectation based probabilistic choices, and more all have in
common: prior learning recalled, via perception of current environmental state, as a guide
to action. Indeed, computational reinforcement learning theories have already been
applied to make it easier for us to isolate and analyze the general cognitive conditions
underpinning phenomena otherwise specifically associated with humans, such as
indoctrination and confirmation bias notably (Palminteri, 2021; Palminteri et al., 2017;
Summerfield & Parpart, 2022). This can in turn facilitate the work involved in designing
animal models capable of eliciting behaviors which, if observed, would thereby imply the

presence of comparable cognitive conditions in the species in question.

The following presentation of the concept of state-action policies does not aim to be
exhaustive, nor even comprehensive, as to do this would require delving deep into domains
such as dynamic programming, which are both beyond the expertise of the author and
graciously not necessary for the reader to grasp in order to fully understand the
experimental approach adopted here. Rather, my intention is simply to give the reader a
sense of how mutually beneficial familiarity with concepts from both experimental
psychology and reinforcement learning can be. For similar reasons, I have made the choice
to exclude mathematical annotation from this brief introduction, as I have learnt from
personal experience that it can present a seemingly insuperable psychological obstacle to

the uninitiated.

1.1 An open-ended history.

At its most basic, a state-action policy is a formalism from the language of reinforcement
learning that describes any kind of decision-making rule or strategy consisting in “a
mapping from perceived states of the environment to actions to be taken when in those
states” (Sutton & Barto, 2014). How reinforcement learning conceptualizes this mapping

is historically rooted in experimental animal psychology, notably in the works of Edward
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Thorndike. Thorndike (1911) famously presents the simple but powerful concept of the
Law of Effect, the idea that any action leading to an outcome the agent perceives as positive
will increase the probability of the agent repeating that action, whereas any action leading
to an outcome the agent perceives as negative will decrease the probability of that action
being repeated. These are what are now commonly referred to as, respectively, positive
retnforcers and negative reinforcers, terminology made famous in the early work of the

behaviorist experimentalist and theorist B.F. Skinner (B F Skinner, 1938)".

Since the units reinforcement modulates are initially spontaneous actions, the Law of
Effect relates to what is called znstrumental learning?®. This in turn implies an innate, or
primitive, trial-and-error strategy on the part of the agent with respect to its environment:
execute an action; evaluate its outcome; increase or decrease frequency of action as per
outcome evaluation. As an illustration, in an experimental environment the action might
be pressing a lever (initially as an action produced at random), the outcome a food reward
evaluated as positive, and the consequence of this positive reinforcement an increased
comparative probability of pressing the lever again rather than engaging in some other
non- or negatively reinforced action. What this implies is a learning mechanism that relies

equally on 1) exploration (or searching, i.e. trying out various actions, or more accurately

I'T intentionally side-step the debate between common and technical usages of the terms “positive
reinforcer” and “negative reinforcer.” Skinner himself initially used these terms to refer to reward and
punishment, respectively, only later aligning himself with a more technical use that is now standard in the
psychology literature. There, the label “negative reinforcer” is not applied to punishment but rather to
the absence (“negative”) of an aversive stimuli, such as pressing a lever to avoid mild electric shock. In
other words, in the technical usage, “positive” and “negative” are not to be understood as “good” and
“bad” but rather analogously to how the same terms are used when speaking of, for example, symptoms
of mental disorders: “positive” symptoms are an addition, such as delusions; “negative” symptoms are a
subtraction, such as social withdrawal. Within the domain of computational reinforcement learning, one
generally finds only the earlier and more everyday usage applied: positive reinforcer = higher reward value;
negative reinforcer = lower or minus reward value. This makes sense since computational reinforcement
learning reduces all notion of reward and punishment to relative numerical scalar values.

% Instrumental learning stands in opposition to classical Pavlovian learning, whereby delivery of a
reinforcer (food, punishment, etc.) is cued, independently of the animal’s own actions, by an initially
neutral stimulus (bell, tone, light, etc.). Over time, this stimulus becomes cognitively associatively paired
with the actual reinforcer such that stimulus presentation will begin to provoke a similar
neurophysiological reaction as reinforcer delivery itself: the bell makes the dog salivate, the tone makes
the mouse freeze, etc.
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interactions with the environment), 2) evaluation (of action outcomes), and 3) associative
memory (i.e. storing, for future recall, previous action-outcome-evaluation associations).
Since these three components readily lend themselves to geometric and numeric
abstraction, it is easy to understand why Thorndike’s theorization of trial-and-error
learning went on to inspire the still nascent discipline of artificial intelligence (AI) in the

1950s.

By various accidents of history, Al research became decoupled from and progressed during
several decades without further consideration of animal psychology or cognition
(Gershman et al., 2015). Underlining this separation in his groundbreaking advancement
towards re-bridging that gap, Chris Watkins commented in his PhD thesis in 1989 that he
did not know of “a single paper on animal learning published in the main stream of
literature on ‘artificial intelligence’ (Watkins, 1989). The particular sensitivity to matters
of ecological learning this observation reveals has as a result that Watkins’ work (Watkins,
1989; Watkins & Dayan, 1992) is particularly interesting for those whose background is in
the domain of animal research rather than computation or Al This is because Watkins
takes as his starting point the conviction that deep reflection on how animals learn to
behave efficiently in real environments (ecological or experimental) could (and indeed did)
inspire great progress in the domain of computational reinforcement learning. In turn, in
the domain of neuroscience where the behavioral dimension is regularly accused of being
neglected (Krakauer et al., 2017; Niv, 2021), recent successes of reinforcement learning
might inspire us with respect to the potential returns of deeper reflection on the behaviors
of our own preferred animal models. As an example, in his conceptualization of the
problem of reinforcement learning, Watkins succeeds in cutting through debate over the
nature of the complex, putative relationships between instrumental and classical Pavlovian
learning mechanisms elicited by highly constrained experimental environments by instead

reframing the question in evolutionary terms, asking; by what general learning mechanisms
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might an animal in a given environment modify its behavior in accordance with the
optimization of its present and future reproductive success? As he promptly points out,
however, the question of how to identify and define what is optimal for a given animal
agent is no simple affair, especially when dealing with agents who have evolved in
naturalistic dynamic environments and when furthermore lacking knowledge about
potentially relevant innate and context-dependent behavioral tendencies resulting from
that evolution (Summerfield & Parpart, 2022; Watkins, 1989). This in turn adds a layer of
complexity when it comes to evaluating, in an observational capacity, whether or not, and
at what scale of reference (immediate task? lifetime? evolutionary?), a given state-action
policy can be said to be ‘optimal’. Indeed, this stands as an important open question for
investigation at the crossroads of Al, cognitive science, and neuroscience, one which will

be further discussed in the course of the present manuscript.

1.2 Policies: learned, innate, revised.

Through reinforcement learning, we gain formalisms for accounting not only for how
policies can be formed but also for how they can be revised. In both cases, this is understood
to be the result of the agent evaluating outcomes (which may be fixed or dynamic) from
actions taken when in a given state, associatively storing these state-action-outcome
evaluations, and using them to inform future action when in the same or a similar state.
As such, the term state-action policy allows us to subsume, under one abstract concept, any
plastic (i.e. revisable) cognitive content that is understood to govern an organism’s (i.e.
agent’s) action selection in a context-dependent manner. Cognitive content such as beliefs,

rules, attitudes, stimulus-response associations, etc.

Central to the concept of a state-action policy is the fact that each action taken also brings

the agent into a new state. This has been referred to as SARSA, for state-action-reward-state-
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action, whereby from an initial state s; the agent takes action @1 whereupon it receives
reward » and moves into state s>, from where it can take action 4>, and so on (Sutton &
Barto, 2014). This can be illustrated using a well-known example which, in Part 1 of the
present work, will be referred to as a state-action policy that emerges spontaneously in mice
under specific laboratory conditions, i.e. spatial alternation (Dember & Richman, 1989;

Richman et al., 1986).

Spatial alternation has been classically studied using either T- or Y-maze apparatuses. These
consist in a starting corridor leading to a choice-point, being the physical junction where
a choice must be made to visit either the left or the right arm of the maze. In a free choice
version of the task, an animal placed at the base of the starting corridor will first advance
towards the choice-point. Let state s; be the first arrival of the mouse at the choice-point’.
From this state it can choose as an action either to explore the left arm or the right arm.
Let us suppose it chooses the left arm and let us call this @1. In a reinforced version of the
task, the mouse will receive usually a food reward r at the end of the left arm it has just
explored. Following consumption of the reward, the animal is returned by the
experimenter to the starting corridor. When it arrives again at the choice-point, this now
represents a new state we can call s,, comprised of both the animal’s location at the choice-
point plus the stored memory that its previous relevant state-action a1 was to explore the
left arm. The animal’s innate spatial alternation policy dictates that the most probable state-
action a, that the mouse will take now is to explore the previously unexplored right arm.
If the experimenter is reinforcing spatial alternation, then on this trial choosing the right
arm will be rewarded (positively reinforced) and choosing the left arm not rewarded
(negatively reinforced), and so when moved to s3 (location plus the stored memory that

previous state-action a> was to explore the right arm) the mouse’s next state-action a3 will

3 Note that reinforcement learning algorithms allow for an essentially limitless range in the scale of what counts
as a state or action. For illustrative purposes, here we zoom out to the scale of only the most strictly necessary
task-definition relevant choice actions.
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most likely be to explore the left arm again, and so on. The complete state-action policy for
this spatial alternation reinforcing T- or Y-maze experimental environment can thus be
described something like this; when in a choice-point state s, take that state-action an
which is the complement of the state-action an.1 taken in state sn1, where the set A of all
possible actions the agent can choose from is limited to {‘explore left arm’, ‘explore right

arm’}.

By merit of being a reliable spontaneous behavioral tendency, presumably preserved across
evolution due to some reproductive advantage it brings to the organism, the case of spatial
alternation calls for special consideration, falling under what Watkins refers to as “innate

2

knowledge.” In the context of learning and the evaluation of learning rates, the
fundamental question he asks is this: “What types of innate knowledge do animals have,
and in what ways does this innate knowledge contribute to learning?” (Watkins, 1989).
However, it is furthermore just as important to frame such a notion of “innate knowledge”
as it relates to the behavioral affordances provided by a given environment. For example,
mice will spatially alternate in a T- or Y-maze even if this behavior is not positively
reinforced, meaning this particular state-action policy emerges even in the absence of an
explicit environmental reinforcer to evaluate. In fact, recent work has shown that mice will

spatially alternate in a T-maze even after prior establishment of a preference for a reward

found in only one of the arms (Habedank et al., 2021).

This latter observation supports a theory of animal exploration wherein global information
gain takes primacy over foraging, in the strict sense, as the principal cognitive drive
underpinning exploratory behavior (Inglis et al., 2001). This primacy of pure exploration
can even be related to Jaak Panksepp’s theorization of “seeking” as the most fundamental
affective drive of organisms, “which helps elaborate energetic search and goal-directed
behaviors in behalf of any of a variety of distinct goal objects” (Panksepp, 1998). Foraging

specifically for food, in this theory, becomes just one special case of a global exploratory
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drive, primitive with respect to any particular goal: sometimes exploration may take the
form of foraging, other times mate- or shelter-seeking, etc. Through these interpretative
lenses, it seems more accurate to affirm that what mice do spontaneously is not so much
to spatially alternate as it is just to explore. In this interpretation, it is then the physical
conditions, if not to say constraints, of the T- or Y-maze environments which channel this
exploration to manifest as what experimenters subsequently observe and label as
‘spontaneous spatial alternation’. Indeed, in terms of reinforcement learning, all other
things being equal, spatial alternation can be understood simply as the maximally efficient

or optimal policy for exploring a T- or Y-maze.

Conversely, it is by this same “innate knowledge” policy logic that in Part 1 of the present
work, where the environmental conditions of the tactile discrimination task reinforce
explicitly non-exploratory behavior, we will interpret this learning not as initial formation
of a novel policy but rather as demanding a context-dependent revision of the innate
exploratory policy. As an illustration, let us briefly elaborate how this relates to
experimental conditions employed in the present investigation. In the tactile
discrimination experimental set-up presented in Part 1, the surface area of the radial maze
is divided according to two different surface types, one smooth, one irregular. Since the
experiment is conducted in darkness, in the absence of visual spatial clues, an efficient
strategy for ensuring exploration of the whole environment would therefore be to form
the state-action policy of alternating surface type chosen when deciding, trial by trial,
which to visit between two neighboring arms of the radial maze, each of which has a
different surface type. In this context, we can imagine a state s» (location at choice-point
plus the stored memory that previous state-action @1 was to explore, say, a smooth surfaced
arm) in which the most efficient state-action 4 the mouse can take, if acting according to
the innate exploratory state-action policy, will be to now choose the irregular surfaced arm.

However, as is the actual case in our protocol, if only one of these surfaces is ever rewarded,
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then exploratory behavior will be negatively reinforced whenever a state-action choice
brings the mouse to visit an arm of the unrewarded surface. According to reinforcement
learning theory, this should set in place an incremental revision, via ongoing action-

outcome evaluation, of the exploratory, surface-alternation policy.

However, the crucial point to grasp here is that the behavioral manifestation of the “innate
knowledge” elicited in mice by the radial maze (i.e. prioritize exploration of unexplored or
least recently explored areas) does not so much contribute as it stands in opposition to the
learning our tactile discrimination protocol aims to transmit (i.e. ‘Choose only one
surface’). Not to mention that, behind this opposition, is nothing less than the momentum
of countless millennia of evolution. A stark contrast therefore appears with respect to
behavioral tasks (such as those we present in Part 2) which are designed to explost spatial
alternation: here, exactly the same innate knowledge that opposes non-exploratory learning
becomes essentially sufficient for successful performance. Reflection on the mutual
implications, for animal behavior studies and for reinforcement learning, of this context-
dependent contrast in how innate tendencies manifest poses a particularly interesting
challenge to our understanding of learning and the shaping of optimal state-action policies

on the basis of that learning, as we shall now see.

1.3 Challenges for optimality.

One of the challenges for an optimality approach to reinforcement learning, a challenge
broached by Watkins and further underlined by the results from our own experiments in
Parts 1 and 2 of the present work, is that what is optimally efficient in one environment
may not be optimally efficient across the lifespan of an organism, who may well have to
confront and overcome survival threatening changes to its environment during that time.
Indeed, even though in our tactile discrimination protocol (Part 1) we extensively and

unambiguously discourage mice from exploring, in what we call an “indoctrination-like”
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manner, we nevertheless observe robust evidence that the exploratory drive does not so
much diminish over the course of this training as it becomes progressively actively inhibited.
In this interpretation, it is increased engagement of this active inhibition that in fact
enables the organism to act under, to ‘exploit’ the surface-reward association policy, more
so than an incremental strengthening of this association itself. Indeed, we see increased
exploratory behaviors precisely at moments when we might intuitively expect active
inhibition to be lower, such as upon initial introduction into a familiar environment (i.e.
beginning of session) or, significantly more so, upon initial introduction into a novel one.
Moreover, we identify intra-session time points of significant exploratory behavior
precisely with those trials where the population probability of choosing the unrewarded
surface reaches levels that cannot be accounted for either by previous policy exploitation

performances or by purely random choice distribution patterns.

A cognitive interpretation of this is that, just as exploration in the T- and Y-maze is shaped
to manifest as spatial alternation by the physical constraints of the apparatus, so in our
tactile discrimination protocol in the radial maze, what it means to explore is shaped,
behaviorally speaking, by prior cognitive constraints arising from acquisition of the surface-
based state-action policy: to “explore” in the tactile discrimination task is to pointedly visit
the unrewarded surface. Exploring in this interpretation is not just something which might
occur in states where the animal makes a decision at random instead of exploiting the
optimal reward policy it has nevertheless formed (though this behavior may also
sometimes happen). Rather, once the optimal reward policy has been internalized, this
appears to constitute a cognitive constraint that shapes exploration to manifest actively as a
transgression of the policy in moments when we might expect active inhibition to be
lowest/not yet engaged. Furthermore, if novelty does indeed boost exploratory behavior
(Farahbakhsh & Siciliano, 2021; Lustberg et al., 2020; Park et al., 2021), and if exploration

is, as we have just suggested, actively directed towards transgressing the internalized policy,
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then this could explain why classical rule reversal protocols have been shown to be more
effective when the reversal occurs in a novel environment rather than in the same one
where the initial reward-association rule was acquired (McDonald et al., 2004). Similarly,
the sheer strength of the exploratory drive elicited by the radial maze apparatus (putatively
related to its much larger surface area as compared to a classical T- or Y-maze) gives rise to
extremely slow increases in stimulus-response exploitatory behavior, despite the rewarded
surface being, to borrow terms from the famous Rescorla-Wagner model of learning, both

a reliable and salient predictor (Rescorla & Wagner, 1972).

Precisely what our “indoctrination-like” protocol reveals is that how mice actually revise
their innate exploratory state-action policy confounds a view where repeated positive
reinforcement simply increases the vigor of the target response. Indeed, such robust active
behavioral tendencies make it difficult to see how exploratory behavior could be
satisfactorily accounted for simply by increasing the probability of choosing an action at
random when in certain states. While the animal behavior literature does also provide a
theorization in which reinforcement is taken to be at least as much a case of non-reinforced
spontaneous behaviors becoming extinguished over time (Staddon & Simmelhag, 1971),
if environmentally elicited active exploration requires not extinction but rather ongoing
and active nhibition, then this requires a different conceptualization again. Furthermore,
since the exploratory behavior in our paradigm does appear to be active, as opposed to
random, this complicates interpretation of how the mice themselves will interpret a no-
reward outcome following an exploratory action. As will be shown and discussed, we have
good reason to believe that if there is reward-prediction on exploratory trials, then it is of
a measurably different quality to the reward-prediction on exploitatory trials, and this
makes it difficult to know to what extent it makes sense to speak of a “reward-prediction
error” (terminology again borrowed from the Rescorla-Wagner model of learning) when

the outcome of an exploratory decision is indeed no-reward.
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We might advance that it is fundamental to their evolved nature for opportunistic species,
such as mice, rats, humans, and others, to maintain the capacity for vigorous exploratory
behavior even after extended periods spent in environments the organism has been able to
reliably exploit. And while this is no guarantee that integrating active exploration would
therefore be an optimal strategy for reinforcement learning and artificial intelligence, it is
interesting to note both that the question of efficient exploration is still deemed to be wide
open in several areas of the discipline and that active exploration approaches are one of the
avenues currently being pursued in this regard (Khamassi et al., 2017; Ménard et al., 2020;
Shyam et al., 2019), alongside approaches which make exploration intrinsically (as opposed
to just environmentally) reinforcing for the agent (Oudeyer et al., 2007; Schafer et al., 2022;
Singh et al., 2005). As we shall later see in Part 1, if indoctrination is to have meaning then
it is precisely in the sense of active suppression of innate exploratory drives, of what in lay
terms can be called natural curiosity. So then, it is worth asking, firstly, whether merely
setting the parameters of a state-action policy to “greedy” (i.e. a minimum exploration,
maximal immediate reward seeking policy; see Sutton and Barto, 2014) could ever be a
suitable proxy for an “indoctrinated” agent. And, secondly, whether we stand to learn
something about human behavior by creating learning algorithms which do actually have

the capacity to generate meaningfully “indoctrinated” computational agents.

In light of all these considerations regarding persistent active exploration, perhaps the
greatest curiosity of the present investigation is that when we subsequently bring
“indoctrinated” mice to revise the tactile state-action policy back towards an exploratory
mode, we observe highly significant, persistent, multi-faceted, and trial-complexity
dependent interference. However, in order to arrive at an understanding of why this
interference arises in the way it does when nevertheless reverting to spontaneous
exploratory behavior, we must first pass under review the multiplicity of cognitive and

neural learning and memory systems this process engages.
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2. Multiple learning & memory systems

In the brief presentation of state-action policies above, we traced the origin of the concept
back to Thorndike’s Law of Effect. Now, in considering the development of the idea of
multiple learning and memory systems, the natural starting point happens to reside in one
of the earliest and most conceptually sophisticated opponents of Thorndike’s purely
stimulus-response vision of behavior, namely Edward Chace Tolman (Tolman, 1932).
Tolman dared to imagine that we might actually be able to use nevertheless strictly
behavioral observation to infer things that were happening inside the living “black box”
situated between stimuli and responses, i.e. the mind-brain of the behaving organism.
From this starting point in Tolman, we will then trace some of the major historical
advancements in the idea of multiple learning and memory systems, describing the
research landscape in which the behavioral paradigms of the present study were designed

and their results interpreted.

2.1 Beyond black box behaviorism.

Tolman’s first great innovations in the theory of learning came in his concepts of “latent
learning” and “cognitive maps” (Tolman, 1948). Crucially, neither of these concepts were
anything that could be accounted for by the stimulus-response/reinforcement learning
theories of Tolman’s predecessors and contemporaries, such as Thorndike, Skinner,
Watson, Hull, etc. Very simply, all the while maintaining an observationally-grounded
behaviorist methodology, what Tolman did was demonstrate that learning could occur
even in the absence of reinforcement. Let us take a moment to look at how he approached

this demonstration experimentally.

Tolman conceived of a simple yet elegant experiment in which he ran three groups of rats
in what he called a 6-unit alley T-maze, essentially comprised of three interconnected T-

mazes, with a start-point and an end-point (where a food reward could be optionally
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placed) separated from each other by six choice-points. The first group of rats found a food
reward at the end point starting from day 1. The second group found a food reward there
starting only from day 7, and the third group starting from day 3. In other words, the first
group was reinforced for completing the maze from the outset, the other two groups only
from a delayed timepoint onwards, meaning their initial runs in the maze were not
reinforced. Counting the number of wrong turns each rat made before arriving at the end-
point, Tolman observed that the first group learned gradually and incrementally, session
by session, to make less errors and arrive more directly to the point of reinforcement.
Importantly, this kind of gradually improving performance towards a reinforced goal had
already been provided with explanations using pure stimulus-response/reinforcer type
hypotheses: the food reward is a primary reinforcer, the last maze-turn to be taken before
reaching it a secondary reinforcer, the second-last maze-turn another secondary reinforcer
contingent on the last one, etc. During initial runs, groups 2 and 3 did not show any such
gradual “improvement” in their maze navigation in the non-reinforced sessions, since they
were not motivated to reach any particular point more than any other. However, following
their first reinforcement, in sessions 7 and 3, respectively, they did not subsequently
demonstrate gradual and incremental performance improvement in the way group 1 had.
Instead, their performance improved by a significant leap between the first reinforced
session to the next, and this leap was all the more significant in group 2, first reinforced in
session 7, than in group 3, first reinforced in session 3. These leaps in performance
confounded simple stimulus-response/reinforcer type explanations. What Tolman instead
concluded is that the rats, simply by navigating the maze without any reward objective,
were nevertheless learning something about it. This he called /atent learning, in the sense
that there was learning occurring on the cognitive level which had not yet been provided
with an occasion to be observably manifest. This occasion was then provided by the
introduction at the end point of the maze, during a later session, of a positive reinforcer.

In other words, the non-reinforced rats were forming some kind of cognitive map as they
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navigated the maze, and this fact became observable as soon as the rats were provided with
the environmental motivation to recall that map in order to arrive as directly as possible to
a specific point in the territory. From this explanation, it is clear in what sense “latent

learning” and the notion of “cognitive maps” go hand in hand in Tolman’s learning theory.

In this way, Tolman laid the groundwork not only for consideration of multiple distinct
forms of learning but also for how these may interact during memory-based recall. Indeed,
it was precisely by designing an experiment with the ability to show how classical stimulus-
response reinforcement learning and latent cognitive map learning interact that Tolman
was able to disentangle the presence of both. As we shall see below, this inspired later
researchers to adopt similar approaches and to similar powerful effect. Tolman himself
would also continue to complexify our understanding of how learning occurs, explicitly
pursuing a pluralistic vision throughout his career, with articles such as “There is more
than one kind of learning” (Tolman, 1949). Through this work, he was instrumental in the
emergence of the cognitive sciences, before anything was known about what neural
functions might be responsible for the various kinds of learning he had nevertheless

observed through subtle variation of experimentally elicited behaviors.

2.2 Multiple brain systems for learning and memory.
2.2.1 Cortico-hippocampal episodic memory.

Later research, some of it Nobel prize-winning, employed 7 vivo electrophysiological
recordings in rats to neurophysiologically situate the cognitive maps Tolman had inferred
only from behavior within the hippocampus (O’Keefe, 1976; O’Keefe & Dostrovsky, 1971;
O’Keefe & Nadel, 1978). O’Keefe and Nadel further advanced that the hippocampus
contributed to memory by mapping experiences not only spatially, i.e. according to where
they had happened, but also temporally, i.e. according to when they had happened. This

spatiotemporal interpretation of hippocampal memory function represented a fertile
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proximity with then still recent work in human psychology from Elvin Tulving, who as a
complement to “semantic memory” (i.e. memory of abstract facts, “The earth is 4 billion
years old,” “Gandalf is a wizard,” etc.) had theorized the concept of “episodic memory,”
defined by him as “information about temporally dated episodes or events, and temporal-
spatial relations among these events” (Tulving, 1972). Archetypal examples of episodic
memory can therefore be thought of as (honest) answers to any question of type “Where

were you when X happened?”

Along with the earlier famous case of patient H.M., in whom severe and lasting episodic
amnesia was produced by therapeutic resection of the hippocampus-containing medial
temporal lobe (Scoville & Milner, 1957), these experimental and theoretical advances led
to an explosion of research into hippocampal function which continues to the present.
Since then, beyond its role in the formation of spatiotemporal episodic memories
(Eichenbaum, 2017a; Ranganath, 2019; Sellami et al., 2017), a vast literature has
demonstrated that the hippocampus is also centrally involved in, for example, the
formation of associations and subsequent relational memory (Busquets-Garcia et al., 2018;
Cohen & Eichenbaum, 1993; Eichenbaum, 2010; Konkel & Cohen, 2009), as well as

recollection per se (Hirsh, 1974; Hirsh et al., 1978; Ranganath et al., 2004).

The enormous experimental and theoretical contribution Howard Eichenbaum in
particular made to our understanding of memory function throughout his long career
insisted on the need to complexify our vision, not only of hippocampal function beyond
the strictly spatiotemporal, but also of memory itself beyond only the hippocampal
formation (Byrne, 2008; Eichenbaum, 2010, 2016, 2017b; Eichenbaum & Cohen, 2001).
Interestingly, continuing in the footsteps of Tolman, one of Eichenbaum’s major
motivations was to show that a limit asserted by one of his predecessors was not justified.
In this case, the limit in question was described by Tulving himself, in his claim that

episodic memory was an exclusively human cognitive function. Eichenbaum, driven by the
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conviction that animal models were the most fertile territory available for gaining deep
understanding of general brain function, set out to challenge this claim by experimentally
demonstrating episodic memory function in rats (Ranganath, 2019). In a nutshell, the
global theoretical approach consists in tying cognitive memory function to
neurophysiological brain function to such an extent that where we observe the latter to be
sufficiently comparable across species then we should expect to observe the former,
provided the presence of appropriate environmental conditions for the animal to interact
with. Indeed, Eichenbaum and Cohen (2001) draw a twofold conclusion with respect to
the relationship between general brain function and memory: first, memory is “a
consequence of the fundamental plasticity of the brain” and is thereby “tied to ongoing
information processing in the brain”; secondly, since information processing is organized
across “several functional systems,” thus “there are multiple forms of memory that have
distinct psychological and information processing characteristics, composing multiple,
functionally and anatomically distinct memory systems” (Byrne, 2008). In short, the
hypothesis here is that if memory is indeed based on an essentially ubiquitous neuronal

phenomenon such as brain plasticity then it can on/y be multiple both in neural basis and

cognitive function.

2.2.2 Cortico-striatal procedural memory.

Relative to the above discussions of early behaviorist interpretations of learning, the idea
that different observable forms of learning and memory would be associated with distinct
neural functions also led to experimental demonstrations that procedural or habitual
memory (corresponding most closely to the kind of incremental stimulus-response
learning Thorndike, Skinner, etc., imagined could explain all animal behavior) relied on
cortico-striatal rather than hippocampal function (Balleine & O’Doherty, 2010; Cohen et

al., 1997; Eichenbaum, 2010; Gremel & Costa, 2013; McDonald & White, 1993; M. Packard
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etal., 1989; M. G. Packard & McGaugh, 1996). Anecdotally, the case of patient H.M. is also
instructive in this regard, since he was perfectly capable, through practice, of learning and
improving a new motor skill, even though from lesson to lesson he would have no
recollection of the previous episode of instruction (Corkin, 1968; Eichenbaum, 2013). This
striatum-mediated procedural learning and memory is the primary focus of Part 1 of the
present work, in which we develop the “indoctrination-like” anti-exploratory protocol

described above.

2.2.3 Amygdalar affective/lemotional memory.

It also led to the further dissociation of an affective memory system, distinct from both
cortico-hippocampal declarative memory and cortico-striatal procedural memory, this time
strongly associated with amygdalar function (Aggleton & Mishkin, 1986; Eichenbaum,
2010; LeDoux, 1993; McDonald et al., 2004; McDonald & Hong, 2004; McDonald &
White, 1993; White & McDonald, 2002). It is through the affective memory system that an
emotional dimension is brought to learning and recollection. Huge research efforts over
the last 30 years or so have demonstrated how this emotional dimension contributes (most
often, though not always, beneficially) to behavior and cognition. Examples are the
capacity for rapid behavioral threat response that bypasses slower cortical processing
(LeDoux, 1990, 1992), somatic sensitivity to choice-contingent reward losses too complex
for explicit cortical calculation (Bechara & Damasio, 2005), or the fundamental appetitive

and motivational “seeking” drive to explore the world at all (Panksepp, 1998).

Crucial to all of these discoveries was innovative behavioral experimental design. In the
cited works from Packard, McDonald, White, and Hong, for example, experimental design
capable of demonstrating multiple memory system dissociation relied heavily on the

numerous modular possibilities offered by the 8-arm radial maze apparatus, the same piece
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of experimental equipment chosen by us in the present study in order to investigate

context-based interactions between up to four distinct memory systems.

2.2.4 Working memory and cognitive control.

Which brings us to the last memory system to be discussed here, last but perhaps most well-
known, by name at least; working memory. To begin, we can return to the example of
patient H.M., in whom loss of the medial temporal lobe had given rise to a total incapacity
to store novel facts or events in long-term memory. Despite this extreme functional loss,
(Scoville & Milner, 1957) were able to observe that patient H.M. had nevertheless retained
the ability to, for example, repeat back a string of digits he had just had spoken to him,
indicating that whichever brain function underpinned this particular memory capacity was
not fundamentally reliant upon the hippocampus. The memory system patient H.M. could
rely on to do this is now commonly referred to as “working memory,” after seminal work
notably by Alan Baddeley beginning in the 1970s (Baddeley, 1992; Baddeley & Hitch,
1974). Baddeley insisted on the fact that this mnemonic function was not merely a passive
short-term store but was rather active, context-dependent, and manipulable (hence
working). From his earliest (human) experimental and theoretical texts on the subject, he
linked working memory function directly to retrieval. In fact, his final major publication
prior to shifting to the label “working memory” is entitled “Retrieval rules and semantic
coding in short-term memory” (Baddeley, 1972). Moreover, in the same text, retrieval itself
is linked to the possibility of intrusions, i.e. retrieved cognitive content which is either not
relevant to the task at hand, such as retrieving a letter in a digit-based task, or which is
relevant but mistaken, such as retrieving the wrong digit. It was also Baddeley who began
employing the now familiar term “executive” to describe certain functions of working

memory, including retrieval and allocation of attention.
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Given that the label “working memory” applies to such a wide range of cognitive functions
which may be engaged in various combinations as an organism interacts with its
environment, it follows, from the words of Eichenbaum and Cohen quoted above, that
these functions certainly also correspond to distinct neural circuits. The first work in this
direction actually predates Baddeley’s theorization of working memory as such and was
carried out in monkeys by C. Jacobsen. He observed that monkeys with prefrontal cortex
(PFC) ablation displayed a deficit in a delayed-response task (Jacobsen, 1936) of the type
that would later be recognized as a working memory task. As mentioned, from the earliest
theoretical discussions of working memory in humans, it has been associated with
cognitive control, retrieval, and intrusions. In this latter respect, the last decade has seen a
significant increase in research into memory retrieval-related active or adaptive forgetting of
interfering or intrusive cognitive content, which underpins precise memory recall
(Anderson & Hulbert, 2021; Bekinschtein et al., 2018, 2018; Wimber et al., 2015). This
research explicitly ties this active forgetting function to working memory and its central
neural mechanism has been identified with top-down PFC-mediated inhibitory control of

hippocampal activity (Anderson & Floresco, 2021).

In laboratory rodents, working memory tasks come in several varieties (Dudchenko, 2004),
including the classical radial maze working memory task (Olton & Samuelson, 1976) and
the T- or Y-maze working memory task (Deacon & Rawlins, 2006; Shoji et al., 2012; Wenk,
2001). The everyday-like memory (Al Abed et al., 2016) and everyday-like rule revision
radial maze tasks we employ in Part 2 of this study imply both working memory and active
forgetting dimensions. Indeed, a disadvantage of the T- or Y-maze spatial working memory
tasks may reside precisely in the fact that they do not provide the occasion for active
forgetting to be engaged, since there is no, or very little, context-relevant cognitive content
which could cause significant interference. On this point, in Part 2 of the present study, we

draw attention to the fact that one of the transgenic mouse lines we test in the everyday-
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like memory task displays an extreme deficit in its working memory dimension, and yet
the same mouse line has previously been described as having no deficit in working memory
on the basis of the simpler T-maze protocol (Albayram et al., 2016). Based on this
discrepancy, we advance that the mouse line in question is impaired specifically in its
capacity for active forgetting. Yet since, in real world terms, active forgetting is precisely
part of our “everyday-like” working memory demands, this raises the question of the extent
to which an animal task which does not have a prominent active forgetting component

should be described as a model of something as multifaceted as working memory.

2.3 Different systems, different revisions.

We have now briefly reviewed four different learning and memory systems and their
respective putative neural bases: 1) cortico-hippocampal spatiotemporal episodic learning
and memory; 2) cortico-striatal procedural and habitual learning and memory; 3)
amygdalar affective or emotional learning and memory, and; 4) prefrontal cortex-mediated
working memory, incorporating cognitive control and active forgetting. In Part 2 of this
study, we will see how the everyday-like rule revision paradigm differentially engages all
four of these systems during both the pre- and post-choice phases of decision-making and
also as a function of trial complexity. This will enable us to qualify, if not yet precisely
quantify, their respective contributions to cognition under conditions of novel
environment state-action policy revision. Notably, it will become clear that there is a
significant and observable difference in the rates of policy/rule revision between each
memory system, with working memory updating the fastest and procedural memory the
slowest, a certain subtly persistent affective memory phenomenon notwithstanding. The
translational relevance of these differences is wholly contained in the term everyday-like,

since we maintain that real world learning, memory, and state-action policy revision
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typically occur in humans under conditions where all four of these cognitive and affective

dimensions are present.

More and more, however, our everyday lives also imply an obligation (a social one at least)
to reason about increasingly complex subjects, such as epidemiology, virology,
immunology, climate science, international diplomacy and economics, etc. Reflecting the
work of Damasio mentioned above, in such complex epistemic conditions the cortico-
hippocampal capacity to weigh up and comparatively evaluate all available relevant factors
is rapidly exhausted, figuratively and perhaps literally overcome with noise, with the result
that the agent instead responds using affective and/or procedural learning and memory. In
this regard, observing and interpreting which of these four memory systems are or are not
significantly impacted by trial complexity in our everyday-like rule revision paradigm is
one of the most powerful experimental innovations presented here. For example, we will
see that cortico-hippocampal memory performance is significantly impacted by trial
complexity whereas the post-choice signals of affective memory are not. We believe our
observation of just such discrepancies provides the most persuasive evidence that the
behaviors elicited by our paradigm are eminently comparable with that phenomenon
which has long been described in humans and is now commonly referred to as ‘myside’

confirmation bias.
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3. Confirmation bias

Nickerson (1998) explains that the most psychologically interesting dimension of biased
evidence seeking and evaluation is the unconscious kind. Indeed, related to the brief
discussion of active forgetting above, in a certain sense we might even describe the general
mechanism of confirmation bias as the non-recognition (because of high uncertainty), and

consequent non-inhibition, of intrusive or interfering cognitive content.

3.1 Nomenclature: ‘myside’ or choice?

In the more recent literature on confirmation bias, a new nomenclature has emerged which
subdivides the concept into two quite distinct, though putatively interacting, cognitive
phenomena: 1) ‘Myside’ bias, or how an agent over-values novel information which
confirms previously internalized beliefs or other state-action policies (Mercier & Sperber,
2017; Stanovich et al., 2013; Stanovich & West, 2007), and; 2) choice-confirmation bias,
whose effects are more immediately the product of favoring repetition of choices which
have just led to better than expected outcomes (Chierchia et al., 2021; Palminteri, 2021;
Palminteri et al., 2017). Myside bias corresponds to the object of study found in the classical
literature review “Confirmation Bias: A Ubiquitous Phenomenon In Many Guises”
(Nickerson, 1998), and is the object of investigation of the present study. In view of this
title, it is fitting that choice-confirmation bias has emerged as a means of isolating one such
guise in order to study it with greater precision. So, although it is not the central object of
our own investigation, it was important to us to embrace the research potential such
conceptual and functional clarification provides, which is why we do open the door to a
choice-confirmation bias analysis of our findings in Part 2, highlighting its potential for
dedicated future research. From this point on in the present text, however, “myside bias”
and “confirmation bias” will be used interchangeably, with “choice-confirmation bias”

specified as such where mentioned.
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3.2 Biased notions about myside bias.
3.2.1 “The smarter you are, the less biased you’ll be.”

One of the most natural things to imagine, something which plays out hundreds of
thousands of times daily on social media and elsewhere, is that someone in whom we can
very easily observe the myside bias must therefore be severely lacking in intelligence, since
otherwise they would surely see it themselves: We are right, they are wrong; they don’t
change their mind when we present them with arguments we have found to be convincing,
therefore they must be dumb. However, recent work has begun to empirically demonstrate
that strength of myside bias is actually independent of cognitive ability and does not
correlate to standard measures of general intelligence (Macpherson & Stanovich, 2007;
Stanovich et al., 2013; Stanovich & West, 2007). Although this seems counter-intuitive, it
should not be surprising, since clear bases for drawing this same conclusion are present
throughout Nickerson’s classical review on confirmation bias. For example, Nickerson tells
us that even Francis Bacon, describing the psychological mechanism we now refer to as
confirmation bias, stated that philosophers and scientists did not escape the tendency
(Nickerson, 1998). We might also refer to the infamous so-called “Nobel disease” or
“Nobelitis”, being a trend that has been noticed for Nobel prize-winners (hence, de facto,
presumably very intelligent individuals) to seemingly disproportionately go on to be
convinced by pseudo-science or worse, despite mountains of evidence indicating their lack
of justification for doing so (Diamandis, 2013). The example of Nobel disease can serve us
as more than an interesting curiosity, however. Importantly, the majority of occurrences
of it happen when the scientist in question suddenly takes an interest in a domain outside
of the one s/he won a Nobel prize for. In this sense, their confirmation bias with respect to
evidence that is disconfirmatory towards their new pet position is occurring beyond the
epistemic zone in which they enjoy the highest level of certainty, i.e. their domain of

expertise. If we parallel this to the case of the average person, an individual could score very
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highly in general intelligence tests, have a very high IQ, yet not at all be educationally
equipped to understand the complex ins and outs of, say, climate science or molecular
biology. For such an individual, these would represent domains of high uncertainty,
regardless of their level of cognitive ability, or general intelligence, or indeed impression
of their own level of understanding (Sloman & Fernbach, 2017). Whether the uncertainty
be due to technical or to moral complexity, it is in such individual-specific high uncertainty
domains we should expect to observe most confirmation bias, even more so if the domain
also implies a strong affective dimension for the individual, such as politics (Kaplan et al.,
2016; Stanovich, 2021). Indeed, politics is a domain where people tend to stake out broad-
stroke positions such as ‘left’ or ‘conservative’ or ‘libertarian’, in a way that is highly
susceptible to give rise to selective evidence seeking and biased weighting of information
relevant to politically charged, morally or technically complex issues (e.g. trans rights or
climate science, respectively). This is a phenomenon that is only aggravated further in the
algorithmic world of social media (Cinelli et al., 2021; Lazer et al., 2018). Force of habit
and affect should not be underestimated in these situations of high uncertainty that go
beyond conscious cognitive ability. Indeed, accurate estimation of their contribution may
help explain why strength of myside bias, if it does indeed primarily arise from procedural
and affective memory, is not correlated to measures of general intelligence, typically
focused on cortico-hippocampal cognitive functions. Indeed, as Stanovich remarks, despite
this clear dissociation, no standard measures of general intelligence yet assess the cognitive

ability to, for example, overcome confirmation bias (Stanovich et al., 2013).

3.2.2 “Of course animals don’t [or do] display myside bias!”

Soon after design and pilot validation of the everyday-like rule revision task as an animal
model for myside confirmation bias, I happened to be reading an article in The New Yorker

(Kolbert, 2017) discussing Hugo Mercier and Dan Sperber’s then new book The Enigma of
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Reason (Mercier & Sperber, 2017). The article laid out the fundamentals of Mercier and
Sperber’s theory of the evolution of reason in humankind: “Reason developed not to
enable us to solve abstract, logical problems or even to help us draw conclusions from
unfamiliar data; rather, it developed to resolve the problems posed by living in
collaborative groups.” Part of this evolutionary scale solution to social problems, the
authors advance, is specifically persuasive reason, the capacity to weave together arguments
with the capacity to convince others to do what we think is best for the group. In such
socio-epistemic conditions, developing a stronger cognitive capacity for persuasive
reasoning than for strictly factual or critical reasoning would carry a reproductive
advantage, particularly in asserting oneself into a position of authority over the group:
“There was little advantage in reasoning clearly, while much was to be gained from
winning arguments” (Kolbert, 2017). However, Mercier and Sperber go a step further in
their claim that confirmation bias must have first evolved in humans, in whom they say it
confers a selective advantage; they also explicitly claim that non-human animals could not
have evolved the cognitive capacity for confirmation bias, because in animals it would
threaten survival. As quoted in the New Yorker article: “Imagine, Mercier and Sperber
suggest, a mouse that thinks the way we do. Such a mouse, ‘bent on confirming its belief
that there are no cats around,” would soon be dinner.” First impressions upon reading this
should be that the illustration used is not analogous to what we, to what they label ‘myside’
bias in humans. If a human were reasoning analogously to this hypothetical mouse, we
would most likely label it a psychosis, not confirmation bias. Yet, in their book itself, the
authors go further still, claiming “Unsurprisingly, then, no confirmation bias emerges
from studies of animal behavior.” On the one hand, this is, or at least was, trivially true.
On the other hand, were it a statement made about human rather than animal research,
the authors would surely have concluded that this was a hypothesis which demanded direct
empirical testing instead of a priori dismissal. As such, this dismissal itself could be

interpreted as confirmation bias at work, in precisely the sense described by Francis Bacon:
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“The human understanding when it has once adopted an opinion [...] draws all things else

to support and agree with it” (Bacon, 1620; Nickerson, 1998).

A fundamental, albeit neglected implication of confirmation bias is that it should be just
as likely to underpin “correct” as “incorrect” responses. In the school of philosophy known
as “virtue epistemology” there is much discussion of something called “epistemic luck,”
which is when an agent believes something that is correct but by virtue of luck rather than
of “proper” thinking (Pritchard, 2005; Turri & Sosa, 2013). The implication of this is that,
all other things being equal, both a person who disagrees with us and a person who agrees
with us on a given question may be equally likely to have arrived at their respective
positions via the effects of myside bias. So, it should not have been surprising when I later
still stumbled across a presumption in animal behavior specialist Jaak Panksepp’s work that
confirmation bias was something which we should of course expect to see manifest in the
behavior of rats, for example (Panksepp, 1998). In short, in the absence of actual empirical
testing of the question through specifically designed experiments (Popper, 1935), and
although they reach opposing conclusions, both Panksepp and Mercier and Sperber were

likely reasoning to a comparable extent under the action of myside bias.

Various other facets of myside confirmation bias will be discussed again at length in Part 2
of this work. Naturally, I have attempted to temper the influence of my own myside bias
at every step of this investigation; conception, experimentation, data collection and
analysis, and interpretation. However, the greatest safeguard against confirmation bias that
we possess as a species, and on this point I agree with Mercier and Sperber, resides in the
good faith confrontation of our own beliefs and convictions with those of others in a spirit
of reciprocal learning and progress. On which note, I invite the reader to study the content
of this PhD project with a mind as critical as it is open, and look forward to the good faith

confrontations to follow.
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“This work was strictly voluntary, but any animal who absented
himself from it would have his rations reduced by half.”

George Orwell, Animal Farm (1945).
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Indoctrination as active inhibition of spontaneous exploration:

Introduction of a novel mouse model.

Christopher Stevens, Cathy Lacroix, Yamuna Mariani, Giovanni Marsicano, Aline Marighetto.

Abstract

Indoctrination has been defined as any educative process that actively discourages open-
mindedness or curiosity. In parallel, few aspects of mouse behavior have been better
characterized than their natural curiosity. So, given a recognized lack of knowledge
about the cognitive and neurophysiological underpinnings of the phenomenon, we
developed a model of indoctrination-like learning in mice. Based around a tactile
stimulus-response (S-R) rule in the 8-arm radial maze, our research reveals a decoupling
of early rule acquisition from its delayed sustained expression, the latter requiring active
inhibition of spontaneous exploration. This reflects the distinction between simple
transmission of cognitive content, common to all education, and the extra effort
required to transform that content into a curiosity suppressing “doctrine”. We began
investigating the mechanisms of this decoupling using transgenic and physiological
ageing approaches. Deletion of the endocannabinoid type-I receptors (CB:) from
dopamine type-I receptor (Di) expressing neurons of the forebrain impaired rule
expression but not acquisition. This deficit was rescued by viral re-expression of CB,
specifically in GABAergic neurons of the striatal direct pathway of D1-CB1-KO mice. In
aged mice also, rule expression but not acquisition was impaired, based upon which we
postulate that age-related decrease in cognitive flexibility translates here into reduced
capacity to inhibit spontaneous exploratory responses. Combining these results, we
suggest that inhibitory cognitive flexibility in the dorsal striatum plays a key role in
enabling acquired behavioral strategies to supplant innate ones. We advance, for further
investigation in humans, that indoctrination requires, and is perhaps best characterized
as a coopting, or “hijacking” of cognitive flexibility as a means to suppressing

spontaneous curiosity.
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Introduction

Indoctrination has been described as teaching that thwarts “open-mindedness” or
curiosity, as education that produces “close-minded” individuals, who in turn are
defined as those who are “unable or unwilling to give due regard to reasons that are
available for revising their current beliefs” (Callan & Arena, 2009; Taylor, 2017). Such
a definition of close-mindedness closely matches that given for the psychological
phenomenon of confirmation bias in the go-to literature review on the subject
(Nickerson, 1998): an inability or unwillingness to accurately evaluate evidence that
casts the truth of a belief or hypothesis into question, while simultaneously over-valuing
evidence that confirms said belief or hypothesis. Combined, this implies that
indoctrination not only tends to give rise to confirmation bias, but also that where we
observe marked confirmation bias we should suspect that the learning processes which
have led to it tended towards indoctrination. While indoctrination has most usually been
portrayed as undesirable in any democratic educative process (Dewey, 1916), and while
public education in developed nations may now be moving in a more “progressive”
direction, we nevertheless find influential contemporary historical apologetics for forms
of indoctrination in civic and scientific education (Conant, 1948; Crozier et al., 1975;
Kuhn, 1977, 1961), as well as the argument that indoctrination of some manner may be
an inevitable part of all education (Macmillan, 1983), not to mention an ever-growing
mountain of evidence indicating that forms of indoctrination in informal learning
contexts, notably via the internet, are as present as ever (Alfano et al., 2018;
O’Callaghan et al., 2015). Not surprising then that both terms, indoctrination and
confirmation bias, are becoming ever more prominent in public discourse, with the
growth of societal concerns such as the widespread dissemination of political and
scientific misinformation via traditional and social media networks. Yet despite this
growing presence and concern, it has also been remarked that we know little about the
cognitive and neural implications or consequences of educative processes, such as
indoctrination, which work against natural exploratory curiosity (Kaplan et al., 2016;

Reynolds & Canna, 2012).

Animal Farm, George Orwell’s allegory of political manipulation, may be the first thing

to come to mind if asked for an example of animals being indoctrinated. Part of its

59



power as an allegory derives from a shared assumption that the indoctrination of real
world animals is in essence fantastical. However, when it comes to gaining a deeper
scientific understanding of the cognition and neurophysiology underpinning any human
brain state, firstly, evolution must be accounted for (Cisek & Hayden, 2022) and,
secondly, assumptions should be permitted only if accompanied by experimental
conditions under which they could, in theory at least, be falsified (Popper, 1935). Thus,
when a theory of the evolution of human reasoning leans on an assumption that
confirmation bias could only emerge from human brains (Mercier & Sperber, 2017), the
coherence of the overarching theory cannot also serve as foundational evidence for the
assumption. Nor can we use absence of evidence (e.g. the fact that indoctrination based
confirmation bias-like behavior has never been observed in a non-human animal species)
as evidence of absence (e.g. the conclusion that indoctrination based confirmation bias-

like behavior therefore cannot be observed in a non-human animal species, as asserted

by Mercier & Sperber, 2017).

Across two papers, of which this is the first, we lay out the results of directly empirically
testing and investigating the following hypothesis: non-human animals subjected to real-
world analogous indoctrination-like (present paper) and confirmation bias-like (Stevens
et al., 2022b) environmental conditions will display behaviors analogous and
comparable to human indoctrination and confirmation bias. Beyond the intrinsic
interest of observing and investigating this behavior in mice, if validated, the hypothesis
would imply that indoctrination and confirmation bias are primarily functions of the
particularities of human environments and not primarily functions of the particularities

of human brains.

A fundamental characteristic of rodents that makes them so interesting and relevant for
the study of behavioral neuroscience consists precisely in their own innate exploratory
behavior. In the language of reinforcement learning, this exploratory behavior can be
modeled as a state-action policy (Sutton & Barto, 2018) whereby, when in a state So, an
agent (i.e. mouse) will spontaneously take that action A, which will move it into a new
state S, representing the greatest available environmental novelty or uncertainty (Frank
et al., 2009), e.g. a zone of the environment either not yet or least recently explored. In

laboratory conditions, such behavior has been thoroughly investigated in the phenotype
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of exploratory spontaneous alternation in the T-maze, Y-maze, and radial maze
(Dember & Richman, 1989; Lalonde, 2002; Olton & Samuelson, 1976; Richman et al.,
1986). As a result, once we had formalized the core principle of indoctrination as the
explicit inhibition of spontaneous exploratory behavior with respect to a cognitive
content being taught, we selected an experimental environment in which we knew mouse
exploratory behavior was maximal, in order that its suppression would be gradual
enough to provide the occasion for both detailed analysis and intervention. Based on
previous work from our laboratory (Marighetto et al., 1999), we knew that mice placed
in a large 8-arm radial maze (designed to accommodate either mice or rats, hence
particularly large relative to mice) would display highly persistent exploratory behavior,
even under motivated (food-restricted) conditions where they are being trained to visit
and receive a food reward on a fixed subset of arms only. In the language of classical
decision-making literature, this reflects what is called the exploration/exploitation trade-
off (March, 1991), whereby an agent acts under the opposing influences of the perceived
value of exploring new possibilities (e.g. re-visiting arms which have never yet been
rewarded) versus the value of repeatedly exploiting known certainties (e.g. re-visiting
arms which have always been rewarded). Exploitation implies foregoing exploration
and vice-versa, hence “trade-off.” In order to provide mice with as unambiguous a
“known certainty” to exploit as possible, we conceived of a simple tactile stimulus-
response (S-R) rule (Colombo et al., 1990; McDonald & Hong, 2004) of the type
referred to as “win-stay” (McDonald & White, 1993; Packard et al., 1989). A “win-
stay” rule means that, when rewarded, the agent must subsequently repeat the same
action (e.g. press lever, visit arm) in the same place (e.g. left, right, cue location, etc.) in
order to be rewarded again. This is in opposition to a “win-shift” rule whereby the agent
must switch to the other lever or arm, etc., from the one that was just rewarded in order

to be rewarded again.

We divided the arms and central platform of the radial maze according to two surface
types, one always rewarded (S1), one never rewarded (S0), and imposed a “win-stay”
rule (R1) with respect to S1. To emphasize the tactile dimension, R1 training was
conducted in darkness. Across repeated binary choice trials (one trial = one free choice
between two contiguous radial maze arms, one S1, one S0), we taught mice that they
would receive a food reward only if they visited S1 arms. R1 therefore implied that, in

order to maximize food-reward, mice limit their explorations to only half the area of the
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environment. Or, in other words, in order to exploit R1 successfully, mice had to
overcome their innate drive to explore continuously, which in a dark but tactile
environment they could most reliably achieve by alternating choices between S1 and SO

arms from trial to trial.

S-R learning, such as R1, has been classically associated with striatal structures,
specifically in rodents with the dorsolateral striatum (McDonald & White, 1993;
Packard et al., 1989). We therefore hypothesized that direct and indirect pathway
functions, such as novel action sequence “chunking” (i.e. consolidation of multi-
component actions into singular, direct pathway selectable ones, like riding a bicycle or
touch-typing) and selection (Graybiel, 1998), would play a role in resistance towards
expression of R1. This was in part based on a previous study demonstrating that
response sequences were more spontaneously “chunked” by rodents under a location
“shift” strategy than by rodents under a location “stay” strategy in the T-maze (Cohen
et al., 2004). By similar logic, we also reasoned that these same striatal functions would
not significantly impact acquisition of the S1-reward association, since its acquisition
implied no antagonism with other cognitive functions. To investigate this predicted
decoupling, we developed behavioral analyses allowing us to evaluate cognitive
indicators of R1 acquisition — i.e. decision latency (Carland et al., 2019; Marighetto et
al., 2000), post-choice run time (Carland et al., 2019; Dhawale et al., 2021; Dudman &
Krakauer, 2016; Marighetto et al., 1999), and deliberative choice revision (Redish,
2016; Tolman, 1939) — as distinct from the primary indicator of R1 expression, i.e.

percentage of correct R1 responses.

To more deeply investigate the striatal hypothesis, we employed a genetic approach
using the D1-CB;-KO transgenic mouse line, in which cannabinoid type-I receptors (CB:)
are conditionally deleted from dopamine type-I receptor (D:) positive neurons of the
forebrain (Monory et al., 2007). Within the striatum, D are expressed on inhibitory
medium-spiny GABAergic neurons of the direct pathway. CB; expressed on the pre-
synaptic element of these neurons exert a retrograde inhibitory modulatory effect,
producing a net effect of inhibiting an inhibitory signal. Indeed, deletion of CB; receptors
has been shown to potentiate the net inhibitory signal of direct pathway neurons (Soria-
Gomez et al., 2021). Activation of the direct pathway has been associated with reward

coding and “stay” action-selection strategies (Nonomura, 2018; Vicente et al., 2016).
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In the present study, however, we reframe these results from the operant behavior
literature and hypothesize that the direct pathway “stay” strategy may be better and
more broadly interpreted as the repeated (“stay”) selection of whichever action is most
spontaneously performed in a given task environment, i.e. repeated interaction with one
operandum in operant conditions, but repeated alternation of contiguous arms in maze
conditions (see Discussion). This interpretation would also imply that the no-reward
coding “shift” action-selection associated with Ds-expressing indirect pathway
activation (Nonomura, 2018; Vicente et al., 2016) translate in the maze context to
“shifting” strategy away from spontaneous (exploratory) alternation to, notably,
repeated (exploitatory) selection of only one arm or surface. In this framing, our
hypothesis was that persistent direct pathway-mediated selection of the innate
exploratory response would be potentiated in D1-CB;-KO animals, further disrupting its
gradual inhibition via the indirect pathway-mediated no-reward coding “shift” to the
novel exploitatory strategy, required for high R1 performance. Crucially, with respect
to the distinction made above, if this interpretation were accurate, expression but not

acquisition of R1 should be impacted by manipulation of the direct pathway.

Finally, since it is known that both CB; and D, expression in the central nervous system,
including in the striatum, decreases with ageing (Bilkei-Gorzo, 2012; Wang et al., 1998),
we hypothesized that resistance to expression of a novel win-stay exploitatory rule
would also increase with age. In terms of classical ageing phenotypes, we predicted that,
in aged mice, diminishing age-related cognitive flexibility would translate in our radial
maze task as more rigid expression, through reduced inhibitory control, of the innate,
exploratory strategy, thereby blocking expression of the acquired S-R exploitatory
strategy (the latter being the proverbial “new trick” of this scenario). As above, we again
predicted that this age-related disruption would be specific to expression and not

acquisition of the S1-reward association.

Our results reveal that mice did initially make use of the tactile environmental affordance
to guide surface-based exploratory behavior, displaying a robust and significant trend
to alternate between S1 and SO from trial to trial during early sessions. Multiple
behavioral analyses revealed that mice began to acquire the S1-reward association as
early as the third session of training. However, resistance to sustained expression of S1

exploitatory behavior was vigorous, such that it took up to 15 sessions of training for
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some individual mice to reach criterion performance level of 75% correct R1 responses
averaged across two sessions. This clear decoupling of rule acquisition from sustained
expression demonstrates that, in mice also, simply learning that a certain strategy will
be reinforced is not alone sufficient to suppress exploration: a prolonged protocol of
indoctrination-like training is required in order to inhibit it. This resistance to R1
expression was more marked in D;-CB:-KO mice compared to wildtype littermates,
with, however, no observable differences with respect to acquisition. The wildtype R1
expression phenotype was successfully rescued by targeted viral re-expression of CB; in
the D; positive direct pathway of the striatum, through which spontaneous behaviors
are putatively selected. Finally, aged mice, classically characterized by a decrease in
cognitive flexibility, demonstrated even stronger resistance to expression, but not to
acquisition of R1. Though seemingly paradoxical, what we suggest based on these
results is that indoctrination requires, or is perhaps best characterized as a coopting
(Gould et al., 1979; Gould & Vrba, 1982), a neuronal recycling (Dehaene & Cohen,
2007), or what in addiction studies is called a “hijacking” (Munro, 2015; Schultz, 2016)
of cognitive flexibility, using it to inhibit natural curiosity with respect to the cognitive

content being learnt.

Materials & Methods

Animals: Young (8 to 12 weeks) C57BL/6] male mice were obtained from Charles River
and collectively housed in a standardized animal room (23 °C; lights on 7 AM to 7 PM;
four or five mice per cage). Mice from the aged cohort (~18 months) underwent ageing
in collective housing on site at the animal facility of the Neurocentre Magendie. D;-CB-
KO mice were generated as previously described (Monory et al., 2007; Terzian et al.,
2011) by crossing CB; floxed mice (Marsicano et al., 2003) with D;-Cre line mice
(Lemberger et al., 2007), in which the Cre recombinase was placed under the control of
the D1 gene (Drd1a). As previously described (Zerucha et al., 2000; Monory et al.,
2006), DIx5/6-Cre mice were crossed with CB:ffmice to obtain CB:#£Dixs/6-Cre (here called
DIx-CB-KO) and their CB:#f (WT) littermate controls. 8 to 14-week-old naive male D;-
CB1-KO and DIx-CBi-KO and their respective WT littermates were used. All animals

were moved to individual cages 2 weeks before the beginning of experiments.
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Food restriction: Five days prior to the first day of training, all animals were placed
under a progressive food restriction schedule in order to gradually bring them to 85%
to 90% of their baseline free feeding weight (calculated by weighing animals each day
for 3 days during ad libitum food access). Individual animal weight and welfare was
monitored daily throughout the duration of the experimentation. All experiments were
conducted in accordance with European Directive 2010-63-EU and with approval from
the Bordeaux University Animal Care and Use Committee CCEAS0. All efforts were

made to minimize suffering and reduce the number of animals used.

Viruses and surgery: D1-CB-KO mice were anesthetized in an induction box containing
5% Isoflurane (Virbac, France) before being secured in a stereotaxic frame (Model 900,
Kopf instruments, CA, USA) in which 1.0% to 1.5% isoflurane was continuously
supplied via an anesthetic mask for the duration of the surgery. Animals were injected
with local analgesic (Lidocaine/Lidor, 2mg/ml, 100ul per mouse) and opioid analgesic
(Buprenorphine/Buprecare, 0.3 mg/ml,100 ul per mouse) at the beginning of surgery.
For viral intra-striatal AAV delivery, AAV vectors were injected with the help of a
microsyringe (0.25 mL Hamilton syringe with a 30-gauge beveled needle) attached to a
pump (UMP3-1, World Precision Instruments, FL, USA). D:-CB1-KO mice were injected
directly into the striatum (STR) (1 pl per injection site at a rate of 0.5 pl per min, for a
total of 8 pl per animal), with the following bilateral coordinates: AP 1.5; ML = 2; DV
-3.5/ -3, and AP -0.5; ML = 2.6; DV -3.5 / -3. Following virus delivery at each site,
the syringe was left in place for 2 minutes (DV -3.5 sites) and 5 minutes (DV -3 sites)
before being slowly withdrawn from the brain. 6 mice were injected with pAAV-CAG-
flexx-IRES-mCYT (empty control vector) to create the D1-CB1-KO-Str-- group and 6
mice with pAM-CAG-flexx-CB1myc to induce re-expression of the CB; receptor gene in
the striatum and create the D;-CB,-KO-Str.., group. At the end of surgery, all operated
animals were given an anti-inflammatory injection (METACAM, 2mg/ml, 50ul per
mouse i.p.). In this experiment, expression was allowed to take place for 4-5 weeks after
local infusions. Mice were monitored and weighed daily post-operation for three days
and also given one more i.p. injection of Metacam the day after surgery, as described
above. All animals rapidly regained their pre-surgery body weight, meaning none needed

to be excluded from the experiments.
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Radial maze: The apparatus is an 8-armed fully automated radial maze (Imetronic), the
surface of which is raised ~100cm off ground level. Access to each arm is from a central
platform by means of automated vertically sliding doors. When all doors are closed
during behavior, the experimental animal is contained within the central platform, a
regular octagon of size 483cm? and edge 10cm (i.e. the width of each arm and door). At
the distal end of each 50cm length arm is an automated pellet distributor for dispensing
food reward. The distributor is set into a slight indent in order to hide its state (i.e. baited
or not baited) from the animal. For this study, we produced removable polymer panels
which could be placed so as to cover the entire area of the radial maze. The panels are
of two distinct tactile types: smooth surfaced panels (similar to the usual surface of the
radial maze) and irregular surfaced panels (the finish of which was a uniform but
irregular beveled pattern of < 2mm maximum relief). This allowed us to present the
radial maze according to various tactile configurations: entirely smooth, entirely
irregular, or various combinations of smooth and irregular. Animal movements are
detected via video camera and motion detection software (GenCam) using either visible
or infra-red light, depending on the experimental conditions (see below). The motion
detection software communicates with a second piece of software, POLYRadial
(Imetronic), through which pre-programmed sequences of automated radial maze
actions are triggered. This program is used for the design and execution of behavioral
exercises (sequences of door openings, location of food reward, conditions for opening
and closing of doors, etc.). Hence, the exercises are customizable and contingent upon

a combination of the detected movements of the animal and automated timed sequences.

Behavior

Habituation: Prior to the first day of tactile discrimination learning, all animals were
habituated to the context and functioning of the radial maze apparatus. Food restriction,
as described above, began three days before habituation (i.e. five days before training).
At the beginning of each habituation session, the animal was placed by the experimenter
in the central platform of the radial maze, all 8 doors of which were closed. Once
removed to the control room, the experimenter launched the habituation program via
the POLYRadial software. The habituation program began by an interval of 10 seconds

during which the animal could explore the central platform. Following this, all 8 doors
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opened simultaneously, presenting the animal with the opportunity to freely explore the
entire surface of the maze. As the animal explored, once it had advanced to the most
distal section of a given arm (location of the distributor and food reward) and returned
to the central platform, the door of that arm automatically closed behind it, thus
preventing further access to that arm during the current session. Thus, once the animal
had fully explored all 8-arms, it found itself again contained within the central platform.
At this point, a further habituation session could be launched if needed. It was
considered that when an animal had recovered and consumed at least 5 out of 8 available
food rewards in a single session that it was fully habituated to the relevant functionalities
of the apparatus. All animals reached this habituation criterion within an average of 5
sessions, conducted one after the other without removing the animal from the apparatus,
thereby also minimizing stress. Since our R1 tactile discrimination task was to be
conducted in the dark, thus potentially making it difficult for animals to perceive that
doors always opened in contiguous pairs, animals also underwent a second habituation
session 24 hours after the first, during which pairs of doors opened simultaneously,
creating a choice to explore one of two neighboring arms, as would be the case in each
of the subsequent tactile discrimination phase. Crucially however, during both phases
of habituation, the surface of the radial maze was entirely covered in the surface type
(smooth or irregular) to which a given animal was to be assigned during the subsequent
R1 tactile discrimination training. In this way, even during habituation, animals assigned
to learn to associate, for example, the irregular surface with reward location had no

prior experience the smooth surface being associated with reward, and vice versa.

Tactile discrimination: R1 tactile discrimination training (figure 1) was conducted either
under low red lighting, in which case the radial maze was also surrounded by a black
curtain to fully conceal any visual extra-maze spatial cues, or, when the option became
available to us, under infra-red light (i.e. total visible darkness, precluding the need for
curtain surround). No difference in learning rates or other behaviors was remarked
between the low red light with curtain configuration versus the infra-red light
configuration. The major advantage of the latter was ease of set-up and physical access
for the experimenter to the radial maze. The rationale behind conducting this task in
darkness was to deprive the animal of its capacity for visual spatial orientation, thereby
obliging it to rely on other sensory inputs, notably tactile. Ethanol (70%) was also used

to give the radial maze a particular odor-based context. Both of these sensory
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particularities, visual and olfactory, would also allow us to maximize the novelty of the
second environment in the second phase of our project, covered in the follow-up paper

to this one (Stevens et al., 2022b).

4 of the 8 arms, plus their corresponding central platform segments, were covered with
smooth surface panels, the remaining 4 arms and platform segments with irregular
surface ones. Each animal would learn that only one of the two surfaces was predictive
of reward location (S1). The configuration of the two surface types could be modified
in various ways from one session to the next. At the beginning of the first session only,
once the animal had been placed in the central platform, 40 seconds were allowed before
the experimenter launched the task. This interval was intended to let the animal make
an initial exploration of the central platform and become aware of the novelty of the
environment; i.e. no longer composed of just one, but rather two distinct surface types.
Once these 40 seconds had passed, the training session was launched. Each trial of R1
training began with the opening of a contiguous pair of doors, giving access to two
contiguous arms; one smooth surfaced arm and one irregular surfaced arm. The animal
then had to choose which of these arms to visit, having already learned from the
habituation phase that a food reward could be found in the distributor at the distal end
of the arms. Once the animal was detected in the most distal zone of one of the accessible
arms, the door to the unchosen arm closed automatically, denying the animal the
opportunity to further revise its choice. The implication here being that, prior to that
point, the animal could, in fact, revise an initial choice by retracing its steps and choosing
the other arm instead. In order for the trial to end, the animal had to enter the most
distal section of one arm (where, if it had chosen the S1 arm, it found a food reward),
and then return to the central platform, whereupon the door of the arm just visited
would close behind it. Subsequently, following an inter-trial interval of 5 seconds and
once the animal was detected in a zone of the central platform opposite to them, the
next pair of doors in the pre-programmed sequence opened. Across trials, the relative
left and right position of S1 and SO was counter-balanced. Training consisted of either
one or two sessions per day, with each session composed of between 16 and 36 trials
(all session sequences open and available, see below). Animals were exposed to a
combination of arm pair presentations designed to expedite their learning of the tactile
discrimination rule. In early sessions, sequences were composed of a combination of

repeated consecutive presentations of a same pair plus pseudo-randomized presentations
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of all available pairs. The aim of the repeated sequences was to explicitly lead the animal
to inhibit its innate drive to alternate. As the animals approached criterion level across
sessions, the arm pair presentation sequences became progressively pseudo-random, as
this was ultimately the only reliable test that responses were based solely on tactile
discrimination and not on other sources, such as body turn memory, etc. The final
sessions of tactile discrimination training were therefore fully pseudo-random trial
sequences. Performance criterion was fixed as follows: animals had to attain either an
average of at least 75% correct responses across two of the final pseudo-random
sessions, or above 70% if they had performed above 80% on at least one session. In
experiments with a control group, control animals were rewarded on every trial
regardless of which surface, S1 or SO, they chose. All young C57Bl6/] mice in the
experimental group were trained until they reached criterion. In the case of the D-CB;-
KO and aged mice experiments presented here, not all animals reached criterion (see

Results).

Analysis

All raw data extraction, analysis, statistical comparison, and graphical representation
was generated using custom codes written in Python (Van Rossum & Drake, 2009)
thanks to the pandas (Reback et al., 2020), numpy, pingouin (Vallat, 2018), bioinfokit
(Bedre, 2021), matplotlib (Hunter, 2007), and seaborn (Waskom, 2021) libraries. All

code is open source and available at https://github.com/metaphysiology. Here we give

brief details about the behavioral parameters we analyzed.

Decision latency: The time taken by each animal between the instant when a trial began
(doors of the current trial pair open) and the instant when the threshold between the
central platform and the arm of the animal’s definitive choice was first crossed (decision
latency, milliseconds). We were further able to classify these decision latencies according

to various factors such as surface type of the definitively chosen arm, etc.

Run time: The time taken for animals to travel the distance from the threshold of the
definitively chosen arm to the reward-distributor containing distal extremity (run time,
milliseconds). As above, we could then classify this measure according to whether the

definitive choice was S1 or S0, etc.
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Choice revision: During certain trials, animals crossed the threshold into one arm of a
pair but, prior to entering its most distal zone (which would trigger the closing of the
door to the unchosen arm), revised their choice by exiting the arm again. At this point
animals could either choose to explore the other arm of the pair or (more rarely) re-
enter the same arm. As long as the distal zone of either arm had not been entered, this
process could technically continue indefinitely. We developed a novel analysis to
quantify this behavior, which we took to be an occasional external and physical
manifestation of the ongoing cognitive decision-making process. On a given trial, each
additional crossing of either of the two central platform-to-arm thresholds, in the
direction from the platform towards the arm only, was quantified as one choice revision.
Each choice revision was quantified as a ‘KOOK’ unit, capturing the fact that some
choice revisions were ultimately error-inducing, ‘KO’, while others were rectifying,
‘OK’. In practice, when choice revision occurred, the mean number of KOOKSs in a single
trial was 1.11 and the median 1, but KOOK values sometimes went far higher, with 10
being the highest number of choice revisions we observed in a single trial. Hence, it must
be noted that this physically manifest choice-revision behavior was subject to high inter-
and intra-individual variability, with some animals having a higher tendency to manifest
it than others, independently of any other relevant factors such as performance, etc.,
(supplementary figure S.2¢, the cumulative quantification of choice revisions reveals the
width of the distribution of this behavior). This choice revision behavior is similar but
not identical to what is described in the literature as vicarious trial-and-error (VTE)

(Redish, 2016). (See boxes on run time and choice revision in Discussion.)
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Figure 1 — “Indoctrination” learning radial
maze environment.
Experiments were conducted in darkness under

low-red or infra-red lighting. Solid grey
represents smooth surface, dappled grey the
irregular surface. Yellow ‘+’ symbols represent
location of food reward. Which surface was
rewarded (S1) was counter-balanced between
animals.

Results

1. Acquisition and expression of a binary choice-based tactile discrimination foraging
rule.

We trained mice under a tactile discrimination-based reward-location association rule
(R1) to choose, trial after trial, between the two contiguous radial maze arms of a
sequence of arm-pairs, each arm of which was covered with one of two distinct surface
types, one predictive of reward location (S1), one predictive of absence of reward (S0).
This training was conducted in conditions of zero or almost zero visibility, i.e. without
any extra-maze spatial cues, thereby constituting a classical stimulus-response (S-R) task

where the stimulus in question was tactile (McDonald & Hong, 2004).
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Figure 2 — Behavioral responses to repeated training on a tactile win-stay stimulus-response
rule.
Experimental animals are represented in red, controls in blue. All error bands represent 95%

confidence intervals, vertical spaces between bands provide visual indication of statistical
significance; detailed statistical analysis in main text. (A) % correct tactile discrimination
responses over repeated training sessions, displayed as rolling averages over 2 sessions (as per
definition of criterion level for end of training: 75% correct responses averaged over two
sessions). R1 trained animals (n=50) represented in red, control animals (n=28) represented in
blue. Controls were rewarded on all trials, regardless of surface chosen. Curves represent mean
population score, dots represent individual performances. Zoombox shows additional training
sessions needed for certain experimental animals to reach criterion. (B) Initial surface alternation
behavior averaged across first two sessions in both experimental and control populations. Both
populations alternated according to surface in their trial choices significantly more than chance
level during these sessions; error bars = s.e.m. (C) Average number of consecutive S1 versus SO
choices per session. Space between error bands shows R1 trained population began making
consecutive S1 choices significantly more than SO choices beginning from session 3, a behavior
never seen in controls. (D) Individual peak to average post-peak performance comparison for
those R1 trained animals (33/50) who had highest performance prior to final training session.
Drop in performance post-peak highly significant, with 7/33 animals falling back below criterion
R1 level of 75%. (E) Median decision latencies by population and by surface. Decision latency
significantly higher in R1 trained animals compared to controls, and significantly higher within
group between S1 and SO. (F) Median run times (post-definitive choice) from door threshold to
distal zone of arm by population and by surface. Controls, rewarded on every trial, rapidly
develop faster run times than R1 trained population who, with repeated training, develop
particularly long run times specifically on unrewarded SO arms, but are also slower on always
rewarded S1 arms than controls. (G) Mean total choice revision (animal initially crosses
threshold into one arm but revises its choice before reaching distal zone) by population and by
surface. R1 trained population began to engage in significantly more choice revision behavior
than controls as early as session 3, with revisions increasingly and significantly favoring S1 final
choices rather than SO final choices.
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1.1 Mice are innately sensitive to tactile differences and can use them to navigate a radial
magze.

Tactile discrimination bebavior: With extensive training, all young CS57Bl6/]
experimental mice reached the criterion level of 75% correct R1 responses averaged
across two consecutive sessions (mean population performance in final session 83%,
n=50, combined results from four iterations of the experiment; figure 2a, red line =
population mean, red dots = individual performances). Animals in these experiments
were trained until this criterion was reached, resulting in a differential total of training
trials/sessions per individual (figure 2a zoom-box, mean trials to criterion = 265, spread
across 11 to 15 sessions; T-test with Welch correction between overall mean and chance
level of 50%, t(595) = 31.1, p < 0.0001). Control mice, rewarded on every trial during
training sessions regardless of which surface they chose, developed no preference for
either surface (control mice, n=28; figure 2a, blue line and dots; control mice performed
between 7 and 10 training sessions, mean total trials = 222; T-test with Welch correction
between overall mean and chance level of 50%, #(277) =-0.62, p = 0.533). In one of the
experiments pooled into the analysis above (supplementary figure S.1i), we tested one
group of mice on a within-maze tactile configuration which remained fixed in each
session (‘Fixed’, n = 10), while for another group we altered the within-maze tactile
configuration on a session-by-session basis (‘Fluid’, n = 10). The rationale behind this
experiment was to test whether mice in the ‘Fixed’ group would, over time, form and
furthermore make use of a tactile-based cognitive map of the radial maze. As can be seen
by the 95% CI error bands in the figure, however, this environmental difference had no
impact on R1 performance, adding evidence to the idea that R1 responding was
primarily striatal rather than hippocampal. In short, whether or not mice in the ‘Fixed’
group did form a tactile cognitive map of the radial maze, it neither aided nor impeded

them in reaching criterion performance in the S-R task.

Tactile spontaneous alternation: During early exposures to the environment (sessions 1
and 2), both the experimental and control groups displayed a robust, significantly
greater than chance level tendency to alternate their arm choices from one trial to the
next according to surface type (figure 2b; T-test, experimental group #99) = 6.5, p <
0.0001, controls, t(55) = 5.35, p < 0.0001). In the control group only, reinforced on
every trial regardless of surface choice, this tendency remained significantly above

chance level until the fifth session (supplementary figure S.1a; T-test, p < 0.05 per session
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up to session 5; trend continued but p > 0.05 in sessions 6 to 10). Individual levels of
initial surface alternation, a potential proxy for measuring strength of innate tactile-
based exploratory drive, did not, however, correlate with subsequent global R1
performance in the experimental mouse group (supplementary figure S.1b, R2 = 0.01).
Thus, initially, each of the two surfaces was explored on average on no more than two
consecutive trials before animals alternated surface. While this was observed in the
experimental group in the first two sessions, the average number of consecutive trial
choices towards S1 began to be significantly higher than those towards SO beginning as
early as the third session, indicating at least some level of S1-reward association
acquisition by that stage (figure 2¢; S1 = unbroken red lines in figures; SO = dashed red
lines in figures; pairwise t-tests with Bonferroni adjustment; session 3 #(98) = 4.16, p =
0.0007; all subsequent sessions, p < 0.0007; all sessions overall difference #(644) = 18.7,
p <0.0001). In control animals, however, regular surface alternation persisted across all
sessions with no significant difference between the average number of consecutive
responses on either surface in any session (figure 2c, blue lines in figures; pairwise t-tests
with Bonferroni correction #(554) = 0.24, p > 0.9). The consistently low average number
of consecutive trials towards SO in experimental mice demonstrated very little variance
across individuals as compared to the highly variant average number of consecutive
trials towards S1 (see 95% CI error bands, figure 2c). Since initial strength of
exploration was not predictive of performance, variance in the average number of
consecutive S1 choices in the experimental group may be putatively due to variance in

the strength of individual inhibition of the exploratory strategy.

Persistent R1-antagonistic exploratory bebavior: Even when the average number of
consecutive trial choices towards S1 reached its peak (figure 2¢; mean consecutive
correct choices, 4.9), this number corresponded to less than a quarter of the total number
of trials comprising the session in question (23 or 24 trials). Even the average maximum
streak of consecutive correct choices (mean of max correct choices, 9.8) corresponded
to less than half the total number of trials in the corresponding session (supplementary
figure S.1c-¢). Around one third of animals from the experimental group (17 out of 50)
attained their peak performance during their final session of training. In the other 33
animals, we were able to observe a significant drop of ‘very large’ effect size on the
Cohen scale when comparing individual peak performance score to individual averaged

post-peak performance score, with 7 of the animals’ performance averages dropping
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back below the criterion level of 75% post-peak (figure 2d, paired t-test between peak
and post-peak performances, #(32) = 8.33, p < 0.001, unbiased Cohen effect size, d =
1.44). We also noted after how many trials in each session, on average (mean of discrete
value), the experimental group first explored an unrewarded SO arm (i.e. per session
initial exploratory choice). We found that animals from the trained population did not,
on average, first explore SO significantly later than animals from the control group until
session eight (supplementary figure S.1f). Even in the final sessions, however, the timing
of R1 trained animals’ initial SO choices occurred earlier during sessions than expected.
To investigate this, we modelled a predicted distribution of initial SO choices using the
R1 performance values from each individual animal’s penultimate training session, then
compared this to the actual SO choice data from the final session (supplementary figure
S.1g; trained group data = red bars, control group data = blue bars, trained group
predictions = orange bars; predicted distribution represents mean values of 1000
modelled iterations). While the control group chose between S1 and SO almost perfectly
randomly, in accordance with their lack of surface preference (i.e. ~50% first chose SO
on the first trial, ~50% of the remainder on the second trial, etc.), the tactile choice
behavior of trained animals in initial trials did not correspond to their R1 performances
from the previous session. Notably, while the predicted distribution showed no animals
choosing SO on the first trial, the data showed that almost 20% of trained mice in fact
did so. Overall, trained mice were nearly 3 times more likely to choose SO within the
first three trials of the final R1 session than our model based on their R1 performances
from the previous session indicated. Correspondingly, the timing of the first (and in
some cases only) SO choice also did not correlate with individual R1 performance during
the final session, indicating that initial exploratory behavior was not a direct function
of strength of overall R1 expression in experimental animals (supplementary figure S.1g
+h, R2=0.03). This corresponds with the possibility that sustained R1 expression relies
more on the strength of active and ongoing inhibition of the exploratory drive than it
does on strength of R1 acquisition, and this could explain why we see most exploration
towards the beginning of post-learning sessions, putatively prior to inhibition of
exploration being engaged upon initial introduction into the environment. Furthermore,
as we saw above, strength of initial innate exploratory drive in sessions 1 and 2 also did

not predict R1 performance, again fitting the putative scenario in which it is the strength
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of the cognitive capacity to inhibit spontaneous exploration that is the primary

contributor to R1 expression.

1.2 Cognitive behavioral analysis of decision-making and execution behavior confirms
decoupling of R1 acquisition and expression.

Beyond trial-by-trial surface choice behavior, the experimental group was also
distinguishable from the control group by significant differences in fine-grained in-trial

cognitive behaviors.

Decision latency: Following an initial global decrease in both groups between the first
and second sessions, the decision latency (i.e. time elapsed from start of trial to instant
of crossing threshold of definitively chosen arm) only in the experimental group began
to level off from session 3 onwards, with values on S1 choice trials consistently higher
within group compared to SO choice trials, while decision latency in the control group,
independently of chosen surface, continued to decrease steadily until the end of the R1
training phase (figure 2e; curves represent the per session population median of the
individual per session median decision time values, grouped according to surface of the
definitive arm choice; ‘Group’ and ‘Surface’ differences; two-way ANOVA with pairwise
Tukey HSD post-hoc test; significant effect of ‘Group’, F(1, 1741) = 21.5, p = 0.001,
with significant effect of interaction ‘Group*Surface’, F(1, 1741) = 5.7, p = 0.017,
repeated measures ANOVA revealed a significant effect of ‘Surface’ in the experimental
group, F(1, 49) = 9.43, p = 0.003, but not in control group, F(1, 27) = 1.5, p = 0.23;
‘Group’ and ‘Session’/repeated training differences; repeated measures ANOVA with
Greenhouse-Geisser correction within ‘Session’ for each group, from session 3 to end;
experimental group, F(8, 392) = 2.19, p = 0.058; control group, F(7, 189) = 4.15, p =
0.036. The choice of session 3 here is not arbitrary but corresponds to the session where
the experimental group no longer significantly alternated by surface and instead began
to increase their average consecutive number of S1 choices, see supplementary figure
S.1a and figure 2c¢). In short, decision latency was globally higher in experimental
animals, who had to exploit only part rather than explore all of the radial maze in order
to obtain food rewards. Strikingly, decision latency was also specifically higher within
the experimental group on trials where the ‘exploit’ surface (S1) rather than the de facto

‘explore’ surface (S0) was chosen, seeming to reveal a hierarchy of cognitive effort in the
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inhibition of spontaneous behaviors, being a supplementary inhibitory cognitive effort

the control group did not need to engage in.

Post-choice run time: Over the course of the first five sessions, global run time (i.e. time
elapsed between instant of crossing threshold of definitively chosen arm and instant of
entering the distal, reward distributor containing zone of that arm) decreased
significantly, independently of surface-arm choice and at a comparable rate in both the
experimental and control groups (figure 2f; curves represent the per session population
median of the individual median run times; repeated measures ANOVA within ‘Session’,
F(10,780)=75.7,p <0.0001). Beginning in session 3, however, there emerged a reliable
trend for overall, surface independent run times to be lower in the control group
compared to the experimental group. ANOVA tests revealed this trend to be statistically
significant when averaged across training sessions (one-way ANOVA with Tukey HSD
post-hoc, significant effect of ‘Group’, F(1, 1743) = 6, p = 0.014). Finally, beginning as
a trend in session 6 and becoming more significant over subsequent training sessions,
run time increased on trials where animals from the experimental group, but not the
control group, chose SO arms, while it simultaneously decreased when they chose S1
arms (figure 2f; repeated measures ANOVA within experimental group, significant
effect of ‘Surface’, F(1, 49) = 48.8, p < 0.0001; post-hoc pairwise t-tests revealed
significance between surface run times began at session 7, #(98) =2.95, p = 0.039). Thus,
control animals, always rewarded regardless of choice and thus putatively having greater
post-choice confidence, displayed globally lower run times than experimental animals,
who in turn had significantly lower run times on S1, the always rewarded surface, than
on SO, the never rewarded surface. This demonstrates a clear post-choice cognitive
differentiation between the two surfaces reflecting the strength of acquisition of the S1-

reward association.

Choice revision: Overall, the experimental group engaged in significantly more choice
revision behavior (i.e. initially entering one arm of the trial pair but revising that choice
prior to reaching the distal zone) than the control group (figure 2g, one-way ANOVA
with Tukey HSD post-hoc, significant effect of ‘Group’, F(1, 1746) = 12.9, p = 0.001).
A significant trend only in mice from the experimental group to revise their choice in a
rectifying (i.e. terminating on S1 arms) rather than error-inducing (i.e. terminating on

SO arms) manner was seen to emerge early in training, another indication of successful
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R1 acquisition (repeated measures ANOVA, significant effect of ‘Surface’, F(1, 49) =
203, p < 0.0001; pairwise t-tests reveal first significant effect of ‘Surface’ occurred in
session 3, #(76) = 3.45, p = 0.0009). Looking at the performance from the final session,
we also searched for indications that a process of proceduralization of R1 behavior in
the experimental group may have given rise to decreasing choice revision behavior, as
predicted by (Redish, 2016). Firstly, however, mean population levels of choice revision
did not decrease as a function of training. Secondly, no relationship emerged between
level of choice revision behavior and either strength of R1 performance or S1 run time
(supplementary figure S.2a-b, R2 = 0.00, R% = 0.026, respectively). Neither of these
findings can be taken to be conclusive, however, since, with sufficient over-training,
choice revision may effectively eventually decrease, in line with predictions from the
literature. Nevertheless, it is difficult to predict just how much training that would

require in our particular environmental conditions.

Overall, significant between- and within-group differences emerged as a function of
training: higher overall decision latency in experimental group, primarily driven by
within-group S1 choice decision times; higher overall run time in experimental group,
amplified by increased within-group values on SO arms; more overall choice revision in
experimental group, driven by marked within-group trend to revise towards S1 more
than towards SO. Each of these findings demonstrates that imposing an exploitatory
response behavior in an environment where exploration is the spontaneous response
gives rise to a measurable and significant increase in cognitive effort, which we suggest
is primarily the effort of having to actively inhibit the exploratory drive in order to

express R1.

2. Independence of R1 acquisition and expression investigated via manipulation of
striatal function.

As we have just seen (figure 2a, f, g), detailed behavioral analysis revealed that mice
from the experimental group demonstrated cognitive signs of having acquired the S1-
reward association up to 10 sessions prior to reaching criterion R1 performance level.
If successful exploitation of R1 did in fact require inhibition of an innate exploratory
drive, i.e. the very basis of spontaneous alternation memory models in rodents, we

hypothesized that striatal, specifically direct and indirect pathway, functions such as
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Figure 3 — Deletion of CB1 receptors from D1-positive neurons impacts expression but not
acquisition of R1.

All error bands represent 95% confidence intervals, vertical spaces between bands provide visual
indication of statistical significance; detailed statistical analysis in main text. (A) Evolution of %
correct tactile discrimination responses over repeated training sessions, displayed as rolling
averages over 2 sessions (as per definition of criterion level: 75% correct responses averaged
over two sessions). Wildtype animals (n=13) represented in red, D1-CB;-KO (n=16) in blue-gray.
Curves represent mean population score, dots represent individual performances. The D;-CB:-
KO population dropped slightly but significantly below wildtype littermates in expression of
R1. (B) D;-CB;-KO animals were then subdivided into two populations: those who did reach
criterion, D1-CB1-KOupy it (n=11) represented in lilac; and those who did not, D1-CB1-KOpy_cic
(n=5) still in blue-gray. This subdivision of the D;-CB;-KO population was intended to reveal
where above and below criterion animals did and did not differ in parameters other than R1
expression. (C) Di-CB1-KOypy_oic displayed a rebound in exploratory surface alternation behavior
which corresponded to the same point (session 7) where R1 expression in the D1-CB1-KOgpy_ciic
and wildtype populations began to rise above theirs. Overall, the D-CBi-KOpy_cic group
alternated by surface significantly more than both the D1-CB-KO,py_cic and wildtype groups. (D)
Median run times by group and by surface. All three groups displayed significantly higher run
times on the unrewarded SO surface compared to the S1 surface, a cognitive indicator of S1-
reward association acquisition. No significant difference in SO run times between groups
indicated equal levels of R1 acquisition. (E) Mean total choice revision. Di-CB1-KOpy_cric did
perform significantly less choice revision towards S1 than D;-CBi-KOgpy_cir, indicating that
capacity for choice revision may be a significant contributing factor in R1 expression.
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novel action “chunking” and action selection (Graybiel, 1998) would be central to
resistance towards expression of R1 and its subsequent exploitation. As a complement
to this hypothesis, we also reasoned that these same specific striatal functions would not
impact acquisition of the S1-reward association rule itself, since the strict acquisition
implied no conflict with prior cognitive contents or tendencies. In order to explore this
scenario, we used a genetic approach, employing the D-CB-KO transgenic mouse line
to potentiate the net inhibitory signal of the Di-expressing medium spiny neurons of the
direct pathway. Our hypothesis was that, in turn, selection of innate exploratory
responses would also be potentiated in D;-CB;-KO animals, potentially disrupting a
gradual, indirect pathway-mediated inhibitory no-reward coding “shift” of strategy
towards the tactile S-R action required for high R1 performance. To enable direct
comparison between all experimental animals, R1 training sessions in the following
experiments were capped at 13 for all mice, with no additional training sessions for
those who did not reach criterion by that stage. The final 5 sessions, comprising 131

trials in total, were composed entirely of pseudo-randomized trial-pair sequences.

2.1 Deletion of CB1 from D1 positive neurons negatively impacts expression, but not
acquisition, of an exploration-antagonistic S-R rule.

We observed that, averaged across the final 5 sessions of pseudo-randomized trial
sequences, the wildtype group displayed significantly higher R1 expression than the D;-
CBi-KO group (figure 3a, results pooled from two iterations of the experiment, both of
which produced comparable results; WT, n = 13; D;-CB1-KO, n = 16; one-way ANOVA
with pairwise Tukey HSD post-hoc, F(1, 143) = 6.26, p = 0.013). To investigate our
hypothesis that any R1 exploitation deficit in D{-CB:-KO mice would be due to a
reduced capacity for expression rather than acquisition of the S1-reward association
rule, we divided the D;-CB;-KO population into two groups; those who did reach R1
criterion level within 13 training sessions and those that did not. The former group we
labelled D1-CB1-KOupy_crie (n = 11, including 3 borderline cases whose highest 2-session
average R1 performance was 73.9% rather than 75%, but who had performed above
80% in at least one session), the latter group Di-CBi-KOpy_ciie (n = 5). The Dy-CB;-
KOuby ric group began to outperform the Di-CBi-KOpy e group in terms of R1

expression as early as session 6 (figure 3b), giving rise to a significant overall difference
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between the two groups in R1 performance averaged across the final 5 pseudo-
randomized trial sequence sessions (one-way ANOVA with pairwise Tukey HSD post-
hoc, F(1,78) = 39.07, p = 0.001). Naturally, however, this difference in R1 performance
must primarily be understood as an artefact of how the two groups were defined. More
strikingly, when we analyzed the respective median run times between the above and
below criterion groups, focusing again on the final § sessions, we found that both
manifested significantly higher values on SO than on S1 (figure 3d, one-way ANOVAs
with Tukey HSD post-hoc, Di-CBi-KOupy ity F(1, 107) = 36.1, p = 0.001; D:-CBs-
KOpw_crit, F(1, 48) = 19.02, p = 0.001; WT curve is displayed for visual comparative
purposes but not further analyzed). Moreover, there was no significant difference
between the groups in either overall run time or in SO run time specifically (one-way
ANOVA; overall run time between groups, F(1, 157) = 0.27, p = 0.61; SO run time
between groups, F(1, 77) = 0.02, p = 0.88). This difference in run time between S1 and
SO indicated that sensorial environmental feedback reached indistinguishable strength
of cognitive “meaning” relative to R1 in both above and below criterion D;-CB;-KO
mice. With respect to choice revision behavior, we found that the Di-CB1-KO,py_cric group
did engage in significantly more choice revision behavior, specifically towards the
rewarded surface, compared to the D1-CB1-KOpw_oic group (figure 3e; two-way ANOVA
on mean choice revision values revealed a significant ‘Group*Surface’ interaction, F(1,
156) = 8.33, p = 0.007; post-hoc pairwise Tukey HSD revealed key difference in ‘D:-
CB1-KOuby_crit S1° vs ‘D1-CB1-KOpw_cie S1°, p = 0.001). This suggested that R1 expression
differences between the two groups could reside in a differential ability to actively inhibit
(albeit sometimes after-the-fact via choice revision) the spontaneous and innate
exploratory drive, i.e. precisely that putatively indirect pathway-mediated function we
hypothesized would be relatively weaker in a scenario where direct pathway activity was
potentiated. Interestingly, there was also a corresponding trend in 11 out of the 13
sessions for Di-CBi-KOpy e animals to perform more surface-based alternation
behavior, a behavior already linked with exploratory processes in our original
experiments above, than the D1-CB1-KOuby_oric or wildtype groups (figure 3¢ and figure
2b). Overall, D1-CBi-KOpy_cric animals alternated by surface significantly more than the
other two groups, another indication that the reason for their low R1 expression was
related to exploratory drive and not weak R1 acquisition (one-way ANOVA with
pairwise Tukey HSD post-hoc; F(2, 374) = 5.1; D1-CBi-KObpyw_cric v8 D1-CB1-KOupy_criey, P
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= 0.02; D1-CB1-KObyw_cric vs wildtype, p = 0.006). Finally on this point, when the same
animals were subsequently tested in an exploratory, alternation-based declarative
memory task (Stevens et al. 2022b), D;-CBi-KOpw_cric animals significantly out-
performed D:-CBi-KOubv_orie animals. This again strongly indicates that successful
inhibition of the exploratory drive, rather than strength of acquisition of the S1-reward
association per se, is the key factor in achieving strong R1 expression. Further
complementary evidence for the fundamental role played in R1 expression by a certain
equilibrium between the direct and indirect pathways also came from an experiment we
ran in animals lacking CB: from all GABAergic neurons of the forebrain (therefore
notably including both the Di-positive cells of the direct pathway and the D,-positive
cells of the indirect pathway), which allowed us to posit that a new equilibrium had been
reached between two “potentiated” neuronal populations. In contrast to the D;-CB;-
KO population, this putatively striatally “balanced” transgenic line (named DIx-CB;-
KO for the GABA-specific DIx5/6 gene) displayed no observable difference in their R1

expression curve compared to their wildtype littermates (supplementary figure S.3a).
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Figure 4 - Re-expression of CB1 receptors in D1-positive neurons recovers capacity for
sustained R1 expression.

All error bands represent 95% confidence intervals, vertical spaces between bands provide visual
indication of statistical significance; detailed statistical analysis in main text. (A) Evolution of %
correct tactile discrimination responses over repeated training sessions, displayed as rolling
averages over 2 sessions (as per definition of criterion level: 75% correct responses averaged
over two sessions). Di-CBi-KOy.. (n=6) represented in blue-gray, Di-CBi-KOgy.r (n=6)
represented in magenta. Curves represent mean population score, dots represent individual
performances. D1-CB1-KOg.: robustly overtook D1-CBi-KOy.. in R1 expression starting from
session 7. (B) Peak to average post-peak performance comparison shows that Di-CB-KOs.s.
not only expressed R1 more strongly but also more robustly than D;-CB-KOsy.., no individual
falling below criterion following peak performance. This robustness of R1 exploitation we
attribute to CB; re-expression giving rise to an over-expression, thereby boosting local inhibitory
control in the direct pathway. (C) Median decision latencies by group and by surface. No
significant differences were observed between the two groups in terms of decision latency. (D)
Median run times by group and by surface. Similarly with run time, both groups displayed
comparable differences between SO and S1 run times, albeit with higher variability in D-CBy-
KOsuss:. (E) Mean total choice revision. Choice revision was also significantly biased towards
final S1 choices, with no significant difference between the two groups.
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2.2 Re-expression of CBy receptors in D, positive neurons of the direct pathway rescues
performance of an exploration-antagonistic S-R rule.

In order to confirm that the deficit observed in overall R1 expression in D;-CB;-KO
animals was indeed due to deletion of CB; from D; positive neurons of the direct
pathway, we used a viral approach to re-express CBi receptors locally in D; positive
neurons of the striatum (D1-CBi-KOsr44, n = 6). If our general hypothesis regarding the
contribution of inhibitory modulation of the direct pathway during R1 expression were
accurate, then this targeted CB; re-expression should rescue wildtype levels of R1
performance compared to Di-CB-KO animals injected with an empty vector virus (D;-
CB1-KOsir., n = 6; see Materials & Methods). The behavioral results we obtained
confirmed these predictions. Firstly, averaged across the final 5§ pseudo-randomized trial
sequence sessions, D1-CB-KOg.» mice displayed significantly stronger expression of R1
than D1-CBi-KOs.... mice (figure 4a, one-way ANOVA with pairwise Tukey HSD post-
hoc, F(1, 58) = 14.33, p = 0.001). Furthermore, we also observed less post-peak
performance variance in the D1-CBi-KOsyyr group compared to both the D1-CBi-K Oy
- group and other groups from other experiments, visible in the fact that all individuals
from the CB; reexpression group maintained above criterion expression even post-peak
(figure 4b). Two other details are worth mentioning. Firstly, in this experiment all D;-
CB1-KOsy.. mice also reached criterion performance, in contrast to what we had
observed in D1-CB;-KO mice. This relative improvement in performance could be related
to the fact that these animals had undergone and recovered from surgery, or it could
simply be the result of probabilistic variance which would average out to a lower
performance if replicated with a larger population. Neither scenario, however, detracts
from the significantly boosted performance of the D;-CBi-KOsyr group compared to
the D1-CB1-KOs:w.- group. Secondly, since our targeted viral re-expression of CB; actually
gives rise to an over-expression, compared to wildtype levels, of the receptor protein
(both in per neuron absolute terms, due to the CAG promoter (Hitoshi et al., 1991), and
in terms of expression in Di-positive neurons which do not express CB; in wildtype
animals), this apparent boosting, beyond mere rescue, of R1 expression lends strength
to the idea that inhibitory modulatory control in the direct pathway is indeed central to
successful inhibition of spontaneous, innate exploratory strategies. Interestingly, we also
observed a significant trend for D;-CBi-KOse.. animals to have both higher overall

decision latencies and higher overall run times compared to D;-CBi-KOsy.. animals,
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potentially indicating that the relative over-expression of CB; increased the amount of
overall decision-making cognition via increased inhibitory processes in the direct
pathway, in turn contributing to stronger R1 performance (figure 4c-d, one-way
ANOVA with pairwise Tukey HSD post-hoc, final 5 sessions; decision latency, F(1, 309)
= 5.63, p = 0.018; run time, F(1, 117) = 4.56, p = 0.035). Both groups also engaged in
significantly more choice revision towards S1 than S0, but with no significant difference
between the two groups (figure 4e). Though we may have expected to observe more
manifest choice revision in the D1-CB1-KOgsu./e group, their increased decision latencies
still indicate that they displayed more cogitation in resolving choice conflict than did the

D;-CBi-KOys.. group.

2.3 Aged mice negatively impacted in expression but not acquisition of an exploration-
antagonistic S-R rule.

As can be seen from the x-axis of figure 5a, R1 training of aged animals, as we had
predicted, required more sessions than any of our previous experiments with young
C57BIl6/] or transgenic animals. By session 13 (i.e. the number of training sessions fixed
for the genetic approach experiments seen above) the mean R1 performance averaged
across two sessions of the experimental population was only 63.9%, with only one
individual having reached the 75% performance criterion for that session. This
resistance to sustained expression of R1 was reflected in more persistent surface
alternation behavior in aged compared to young experimental mice (compare, for
example, sessions 7 in supplementary figures S.1a and S.4a). Consequently, we
continued training with all animals, experimental and controls, for a further two
sessions. By this point (session 15), 3 out of 11 aged mice from the experimental group

still had not yet reached criterion levels.
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Figure 5 - Aged mice severely impaired in expression but not acquisition of R1.

All error bands represent 95% confidence intervals, vertical spaces between bands provide visual
indication of statistical significance; detailed statistical analysis in main text. (A) Evolution of %
correct tactile discrimination responses over repeated training sessions, displayed as rolling
averages over 2 sessions (as per definition of criterion level: 75% correct responses averaged
over two sessions). R1 trained aged mice (n=11) represented in red, aged controls (n=7)
represented in blue. Controls were rewarded on all trials, regardless of surface choice. Curves
represent mean population score, dots represent individual performances. Even after 15 sessions
of R1 training, 3 aged mice had still not reached criterion performance. Additional training
sessions (zoombox) were not sufficient to elicit stronger R1 expression in these animals. (B) Peak
to average post-peak performance comparison revealed highly significant drop following peak
performance, with all animals who reached peak performance prior to final session (n=7)
subsequently dropping back below criterion level. (C) Average consecutive surface choices per
session: R1 trained animals were consecutively choosing S1 arms significantly more than SO
arms already by session 4, indicating that the S1-reward association was acquired at this point.
(D) Median post-decision run times by group and by surface. R1 trained animals had
significantly higher run times on SO compared to S1 across all 5 final pseudo-random R1 training
sessions, again showing that R1 was robustly acquired. (E) Mean total choice revisions. Aged
R1 trained animals significantly favored final S1 decisions when revising initial choice across all
5 final pseudo-random R1 training sessions.
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Furthermore, out of those animals who had reached criterion, we observed a highly
significant post-peak performance drop of ‘huge’ Cohen effect size in the 7 animals who
reached criterion prior to their final session of training (figure 5b; paired t-test with
unbiased Cohen effect size, ¢(6) 7.3, p = 0.0003, d = 3.9). This provided still further
evidence of the ongoing active inhibition of the exploratory drive necessary for sustained
exploitation of R1. Difficulty not only in engaging but also in maintaining such a level
of active inhibition could therefore be a fundamental dimension of age-related deficits
in cognitive flexibility. Finally, it is also worth remarking that whereas surface
alternation behavior in the young R1 trained population dropped significantly below
50% as early as session 7 (supplementary figure S.1a), in the aged population this did
not happen until session 14 (supplementary figure S.4a), which is yet again strong

indication that aged mice were more rigidly exploratory than young adult mice.

Naturally, we next asked the same question of our aged animals as we had of the D;-
CB:-KO mice (see figure 3d), i.e. was their deficit in R1 exploitation due to an
impairment in acquisition or expression of R1, if not both? Our initial hypothesis was
the same as with the D;-CB:-KO mice; that any R1 performance deficit in aged mice
would be primarily due to impairment of expression but not acquisition of the S1-reward
association. Our observations confirmed this hypothesis. Firstly, although variance was
much higher than in the results from young C57Bl6/] (due to both smaller population
size and, precisely, to aged mice behaving more erratically with respect to exploiting
R1), the greater number of average consecutive choices towards S1 compared to SO
approached significance as early as session 4 (figure Sc; pairwise t-tests with Bonferroni
adjustment; session 4 #(20) = 3.27, p = 0.058). Having reached statistical significance in
session 5, the magnitude of the difference in consecutive choices between S1 and SO,
although always reliably present, subsequently fluctuated greatly from session to session
(which we attribute to age-related decrease in the capacity to sustainably inhibit
spontaneous exploration) until the final 3 sessions in which the difference was reliably
highly significant (session 5, #(20) = 3.91, p = 0.013; sessions 13-15, least significant
value, #20) = 4.37, p = 0.004). The overall difference in S1 vs SO average consecutive

choices across all training sessions was also highly significant (¢#(340) = 10.1, p < 0.0001).

With respect now to the more fine-grained cognitive measures, in post-choice run time

we observed a robust trend for experimental aged mice to have higher run times on SO
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arms emerging as early as session 6, and this reached statistical significance across the
final 5 sessions (figure 5d; one-way ANOVA with Tukey HSD post-hoc, F(1, 120) =
48.18, p = 0.001). Similarly, mean choice revision behavior in R1 trained aged mice also
began to favor correction towards S1 beginning from session 6 and was significant
across the final 5 sessions (figure Se; one-way ANOVA with Tukey HSD post-hoc, F(1,
120) = 41.18, p = 0.001). Although in this experiment we did not test young mice
simultaneously with aged mice, the run time results here correspond with those observed
in our earlier experiments (compare figure 5d and figure 2f), with this difference that
choice revision in young mice began to favor S1 earlier and was, globally speaking, more
pronounced and less erratic than in aged mice (compare figure Se and figure 2g; large
differences in population size may also be an important factor here). Regarding decision
latency, as with young mice, we observed globally higher decision times in trained
animals than in controls, although this did not reach statistical significance across the
final 5 pseudo-random trial sequence sessions (supplementary figure S.4b; one-way
ANOVA between ‘Group’, F(1, 190) = 0.21, p = 0.65). That the difference between the
two populations did not reach significance appears to have been due to especially high
levels of variability in the control group rather than being due to a reduced phenotype
in the experimental group. Finally, in order to doubly confirm our acquisition vs
expression hypothesis, we also looked at the relative S1 vs SO run times in only those
three experimental animals who did not reach criterion R1 expression levels. Here again
we saw the same robust trend, this time beginning in session 4, for SO run times to be
greater than S1 run times, indicating that the S1-reward association had indeed been
acquired even by these particularly R1 expression resistant animals (supplementary
figure S.4c). This provided important supplementary confirmation that the impairment
in aged mice was indeed at the level of R1 expression rather than acquisition, and
therefore that the key mechanism lacking vigor in older mice was inhibition of

spontaneous exploratory strategies.
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Discussion

The present study is the first to explicitly frame behavioral training of rodents that is
intentionally antagonistic with respect to their spontaneous exploratory drive as a model
of indoctrination, based on a broad definition of this concept as any mode of teaching
which by its nature thwarts “open-mindedness” or natural curiosity (Callan & Arena,
2009; Taylor, 2017). The task itself can be understood as a simple state-action policy
revision (Sutton & Barto, 2018), insofar as innate or “naive” animal behaviors can be
framed as evolutionarily preserved state-action policies, of which “exploration” is the

one we expected rodents to spontaneously express in the experimental environment we

had designed.

Innate behavioral phenotypes of complex organisms preserved across evolution, such as
curiosity, are theorized to reflect those cognitive responses most likely to obtain an
adaptive advantage across the range of environments with which a species has evolved
(Lewontin & Levins, 2000; Levins & Lewontin, 1985; Lorenz, 1958; Schmalhausen,
1949). But what adaptive advantage could the potential to be indoctrinated carry?
Novel, learned cognitive behaviors, acquired as a function of contingent particularities
of a given environment in which the organism actually finds itself, can be either
cooperative or competitive with respect to innate, unlearned behaviors (Reid et al.,
2008; Staddon & Simmelhag, 1971). Impairments, not only in acquisition but also in
expression of novel, environmentally contingent responses, risk suboptimal exploitation
of environments or even, in some human and animal contexts, punishment. With respect
to this, cognitive plasticity or flexibility itself has been conceptualized as a preserved
feature of complex organisms, precisely enabling them to inhibit and go beyond the
innate in acquiring and expressing novel behaviors in order to best exploit unpredictable
environmental particularities (Wexler, 2011). Thus, although it may seem conceptually
counter-intuitive, our results indicate that indoctrination, in the sense where this term
implies the enforced suppression of natural tendencies towards exploration and
curiosity, not only requires inhibitory cognitive flexibility but may be best understood
as a coopting (Gould et al., 1979; Gould & Vrba, 1982), neuronal recycling (Dehaene
& Cohen, 2007), or “hijacking” (Munro, 2015; Schultz, 2016) of it as a means of

suppressing the spontaneous exploratory drive.
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Tactile sensitivity and surface-based spatial alternation.

The aim of the task we have introduced here was to train mice to the point of significant
exploitation of a tactile-based S-R rule, a rule specifically designed to be antagonistic
towards their innate, spontaneous exploratory drive. The exploratory drive in question
is precisely that which underpins the well-characterized and experimentally exploited
rodent behavior of spontaneous spatial alternation (Lalonde, 2002; Olton & Samuelson,
19765 Richman et al., 1986). That extended training was needed for many animals to
reach criterion R1 performance (i.e. 75% correct responses averaged across two
sessions) invites a first objection that perhaps mice were not immediately sensitive to the
surface distinction, or that mice who were slow to reach criterion were simply slow in
acquiring the S1-reward association. With respect to the first objection, we had, on the
contrary, predicted that since the task was conducted in the absence of visual spatial
cues so mice would initially employ their sensory awareness of the distinct surfaces as a
guide to direct exploration of the entire surface of the radial maze via a process of
surface-based, as opposed to visual or proprioceptive, etc., spatial alternation. Such
tactile alternation behavior would presuppose a capacity not only to sensorially
discriminate between the two surfaces but also to cognitively contextualize their
semantic relevance as spatial orienters (Colombo et al., 1990; McDonald & Hong,
2004). Accordingly, despite the fact that it was not reinforced, initial above chance level
trial-to-trial surface-based alternation behavior is precisely what we observed in each
iteration of our protocol, whether in young C57Bl6/] mice or in aged or transgenic
animals. Moreover, control animals (rewarded on every trial regardless of whether they
alternated or repeatedly chose one surface) maintained a trend for above chance level
surface-based alternation throughout training (mean population score). The fact that all
mice initially displayed above chance-level surface-based alternation, even though this
behavior was not reinforced, also indicates that the exploratory drive in rodents is
primitive with respect to classical visuo-spatial spontaneous alternation (Gaffan &
Davies, 1981) and will recruit any relevant sensorial environmental cues afforded to an
animal, including tactile, as a means of guiding exploration. Perhaps counter-intuitively,
however, we found no evidence of any simple cognitive relation between strength of
initial surface-based exploratory drive and subsequent capacity to inhibit it, as there was
no correlation between individual initial surface alternation performance and

subsequent strength of R1 expression. This was a first indication from our results that
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the cognitive mechanisms required for inhibiting spontaneous exploration are to an
important extent independent from the mechanisms underpinning both the strength of
the innate exploratory drive and the strength of the acquired exploration antagonistic

rule.

Exploitation requires active inhibition of exploration.

Demonstrating that resistance to exploitation was not the result of slow acquisition of
the S1-reward association, our behavioral analyses in young C57Bl6/] mice revealed that
this association could be detected in average consecutive surface choices, in decision
latency, and in choice revision behavior as early as the third session, and in run time as
early as the sixth session; i.e., long before sustained expression of R1 was reached. In
other words, behavioral expression of the otherwise well acquired S1-reward association
remained in persistent conflict with the more primitive drive to continue exploring the
environment. Such decoupling of distinct memory expression systems in aged mice
further corroborates earlier work on multiple memory systems from our team
(Marighetto et al., 1999). This led us to conceive of “exploration” and “exploitation”
as they relate to the R1 environment as distinct, integrated and unitary behavioral
sequences, or “chunks” (Graybiel, 1998; Jin et al., 2014), putatively available for
selection as competing strategies through the interactions of the direct and indirect
pathways. In this regard, it was interesting to observe that in the experimental mouse
group, median decision latency was significantly higher, not only overall when
compared to control animals, but also specifically on trials where S1, the “exploitatory”
option, was chosen as compared to trials where SO, the “exploratory” option, was
chosen. This indicates that, in contrast to exploration (which is “spontaneous”),
engaging in sustained exploitatory choices required an observable amount of additional
cognitive effort. We suggest that this additional effort resides in a cognitive requirement
to actively inhibit the innate exploratory strategy so that the acquired R1 strategy can

be expressed.

Persistent conflict between the exploitation and exploration strategies was also observed
in other parameters. When comparing peak performance to averaged post-peak
performances in the majority of young C57Bl6/] who achieved their highest R1

performance prior to the final session (33 out of 50), R1 expression dropped sharply
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and significantly following peak exploitation, with around 25% of animals dropping
back below criterion levels post-peak. This again demonstrates that expression of R1
was not a simple matter of incrementally reinforcing or stamping-in the S1-reward
association and related S-R response. Rather R1 expression also required active and
ongoing inhibition of the more primitive exploratory drive. Results from the experiment
where we added modulatory inhibitory control back to the direct pathway, via targeted
viral reexpression of CBy, further validated this interpretation: benefiting from increased
inhibitory control (as described, targeted viral reexpression actually gives rise to an over-
expression compared to baseline wildtype levels) animals were able not only to express
R1 earlier and more reliably, but also to maintain a more even peak:post-peak
performance ratio compared to control D;-CB;-KO animals injected with an empty viral
vector. Conversely, in aged animals, with their well-characterized age-related deficit in
cognitive flexibility generally and inhibitory control specifically (Coxon et al., 2012),
R1 expression was slower to emerge, more erratic once it had emerged, and in the
peak:post-peak performance ratio all aged animals concerned dropped back below
criterion level, compared to just a subset of young mice. Taken together, these particular
observations extend a somewhat neglected idea that reinforcement learning of one
behavior may be as much, if not primarily, a question of the extinction, through non-
reinforcement, of competing behaviors (Staddon & Simmelhag, 1971). In fact, by
highlighting the role played by active inhibition, as opposed to mere extinction, of
competing behaviors, our results also bring us closer to some of the most recent theories
in the neuroeducation literature, notably the 3-system theory of the cognitive brain, in

which the third system is precisely inhibitory control (Houdé, 2019).

Another manifestation of the same exploratory persistence was observed in the fact that,
in the final session of R1 training, the experimental group first explored an SO arm, on
average, significantly earlier than could be predicted from a distribution of when initial
SO choices would occur, modelled on the individual R1 performances from the
penultimate session. Turning again to our hypothesis that active inhibition of the
exploratory drive is the key factor in gating sustained R1 expression, we suggest that
mice, upon initial introduction to the radial maze, may not instantly engage this
inhibition, thus allowing the exploratory drive to manifest more strongly at the
beginning of the session. Moreover, the preferentially early per-session manifestation of

exploratory activity in the R1 environment could be seen as refutational in nature; by
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exploring SO early, mice can be interpreted as testing the validity of R1, not only by
confirming it (visiting S1) but also by actively (“active” because earlier than predicted)
attempting to refute it (visiting SO). A consideration such as this, examined in the light
of classical literature from the psychology of reasoning (Wason, 1960, 1966, 1968),
prompts the intriguing evolutionary notion that mice may retain a stronger refutational

reflex than adult humans.

Exploration better explained by global information gain than by foraging.

What Wason highlighted in his experiments is that, when reasoning on rules, attempting
to refute the validity of a rule (e.g. “Test SO: if no reward, revert to R1 behavior”) is a
statistically more reliable means of maximizing information for the agent than
attempting only to confirm it (e.g. “Test S1: if reward, stick with R1 behavior”). That
we observed initial SO choices occurring earlier than a S1 choice probability distribution
could explain brings further evidence to the school of thought in behavioral psychology
which places a prime on learning (in the sense of information gain), above reward
foraging, as the primary driver of exploratory behavior, or what is commonly referred
to as “curiosity” (Gaffan & Davies, 1981; Inglis et al., 2001; Kidd & Hayden, 2015).
This is also interesting with respect to the classical dichotomy between goal-directed and
habitual behavior. In our protocol, we observed clear goal-directed behavior (e.g. early
initial SO choice) even subsequent to S-R scores of 95 to 100%, scores which would
normally be considered as signs that a habitual responding level was being reached. This
proactive exploratory behavior would be difficult to explain if reward were the primary
goal, but less so if we take the primary goal to be global information gain (of which
reward location is but one element), especially in the context of large environments such
as the radial maze. Looking to the literature, food restriction per se has previously been
associated with increased exploratory behavior in rodents (Gelegen et al., 2006; Heinz
et al., 2021). However, in these studies exploration is simply conflated with foraging
behavior in a way that, as mentioned above, does not correspond with our observations.
In fact, direct investigation of this precise question is largely lacking in the literature. In
one recent study, where reward preference was established prior to a T-maze task,
researchers found that the exploratory drive in non-food restricted mice led them to

spatially alternate their arm choices more than they chose the reward containing arm of
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the maze to which they had previously developed a preference (Habedank et al., 2021).
In contrast, in another recent study, mice restricted to 85% of their baseline weight
rapidly developed a strong side preference (~90%) in a free-choice T-maze task where
they were rewarded regardless of the arm they chose (Park et al., 2021). A comparative
reading of these studies seems, once again, to reveal a clear distinction between, on the
one hand, exploration per se and, on the other hand, foraging behavior in the strict sense
of food-directed behavior. Bearing in mind that the animals in our study were also food
restricted to 85-90% baseline, when we further compare the rapidly established (3
sessions) side-preference observed in the T-maze apparatus (Park et al., 2021) to the
more gradually attained sustained expression of R1 in the results from our present study
in the larger radial maze apparatus (11+ sessions), this suggests a complex yet intuitive
interaction between level of environmental uncertainty (low in the small surface area
illuminated T-maze; high in the large surface area non-illuminated radial maze) and
strength of information gain exploratory drive versus foraging drive. Once a hungry,
foraging animal is satisfied it has minimized environmental uncertainty (i.e. in a highly
simplistic environment), there will be much less motivation for it to continue exploring
— which would require a certain cognitive budget via e.g. working memory — rather than
repeatedly returning to a reliable food source by simply repeating a low cognitive cost
proceduralized action. However, in the kind of natural environments in which rodents
have evolved, environmental uncertainty would certainly be much higher than in a T-
maze. Notably, with respect to our model, it also confirms that it would make little sense
to speak of “indoctrination” in a learning environment where the innate exploratory
drive is not maximized. With respect to all of these environmental considerations around
exploratory drive persistence, future research could focus specifically on over-training
mice towards R1 exploitation, studying how long it takes for S-R behavior to become
truly procedural in mice in the larger, higher uncertainty, and in that sense therefore
more naturalistic, radial maze apparatus. Another related prediction worth investigation
is that post R1 criterion food reward devaluation, via satiety, would restore exploratory
behavior, to the expense of R1 performance. Furthermore, while in this study we limited
our indoctrination-like protocol reinforcers to presence and absence of reward only,
future work could go further and study the impact of including a mild SO-aversion
association (e.g. air-puff or quinine) alongside the S1-reward association. In the presence

of such “punishment” of exploratory behavior, we should expect to observe a significant
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acceleration in inhibition of the innate exploratory drive and, with this, accelerated and

strengthened sustained expression of R1.

Direct pathway implication in “shift” and “stay” strategies.
The above considerations relating to exploration versus exploitation in the context of

the radial maze contributed to a broader line of reflection regarding the nature of what

[ [

the literature refers to as “win-shift” versus “win-stay” behaviors (Gaffan & Davies,
1981; Packard et al., 1989; Sage & Knowlton, 2000). In reviewing literature from both
maze and operant protocols, it struck us that the cognitive implications, from the
animal’s perspective, of engaging in either win-shift or win-stay behavior should be
strongly dependent upon whatever the innate, spontaneous behavior of the animal
would be in a given environment (i.e. maze or operant). Exploring this question was
important to us because of recent studies investigating the specific direct and indirect
pathway activations correlated with win-shift versus win-stay behavior, work which,
crucially, was conducted only in operant conditions (Kwak & Jung, 2019; Nonomura
et al., 2018; Vicente et al., 2016). This work showed that the Di-expressing direct
pathway codes for “reward” signals and the consequent decision to “stick” to the
current operandum, whereas the D,-expressing indirect pathway codes for “no-reward”
signals and the consequent decision to “switch” to the other operandum. However,
convergent evidence from both published studies (Reed, 2016; Vannoni et al., 2014) and
unpublished observations discussed in correspondence with several researchers (Allen
Neuringer, Chris Rodgers, Jonny Saunders) strongly suggests that in operant conditions
(levers, lickers, or nose-pokes) “stay” is the statistically more likely spontaneous baseline
action in rodents. This is in marked contrast to maze conditions where it is well
established that “shift” is the spontaneously dominant strategy. Based on this contextual
baseline discrepancy, we proceeded to reframe the findings from the operant literature
and instead hypothesize that direct pathway activity may be correlated to whichever
action corresponds closest to an animal’s statistically most likely spontaneous action in
a given environment, i.e. “stay” in operant conditions but “shift” in maze conditions.

Consequently, if our hypothesis were accurate, then potentiating the intrinsic activity of

the direct pathway in the R1 maze environment should in turn potentiate exploratory
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behavior, making it more difficult to inhibit, and thus more difficult for R1 exploitatory

behavior to be expressed.

CB;-mediated inhibitory control in direct pathway and its behavioral implications.

To test the direct-pathway potentiation hypothesis, we turned to the D;-CB:-KO
transgenic mouse line, in which the CB; receptor is conditionally deleted from all D;-
positive neurons of the forebrain (Monory et al., 2007), including the medium spiny
neurons composing the direct pathway in the dorsal striatum, but not including the D,-

positive neurons composing the indirect pathway.

That this D1-CB:-KO population displayed lower R1 expression than their wildtype
littermates in both iterations of the experiment, can be taken as evidence towards our
cognitive interpretation of how the direct and indirect pathways flexibly interact as
acquired exploitatory behaviors compete for expression with the innate exploratory
drive. Notably, inhibitory modulatory control of the direct pathway provided by CB,
seems to play a significant role. Regarding our hypothesis that R1 expression but not
acquisition would be affected by manipulation of the direct pathway, when we divided
the D1-CB;-KO population according to whether or not R1 criterion performance had
been reached within 13 sessions, we nevertheless observed simultaneous emergence of
comparably greater run times on SO vs S1 in both below criterion and above criterion
animals. Below criterion animals did, however, perform significantly less rectifying
choice revision behavior compared to their above criterion D;-CB;-KO littermates. This
run time versus choice revision phenotype discrepancy in below criterion animals
supports our general interpretation that successful exploitation of R1, in both C57Bl6/]
and D;-CBi-KO animals alike, is achieved via an active process of inhibiting the
persistent innate exploratory drive, implying that the more likely initial strategy choice
on a given trial, even long after the S1-reward association has been acquired, remains
spontaneous exploration rather than R1 exploitation. This initial strategy selection
would then have to be actively over-ruled, i.e. revised, putatively via a combination of
indirect pathway-mediated (Nonomura et al., 2018) and retrograde CBi-mediated
signals. If direct pathway signals are potentiated by CB, deletion, as has been previously
shown (Soria-Gomez et al., 2021), then correction of initial movement-initiating activity

would be rendered more difficult, constituting a strong neurobiological candidate for
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the phenotype we observed. This exploration priming interpretation of our trial-by-trial
observations is also compatible with the observation discussed above that initial session-
by-session SO exploration occurs preferentially in the earliest trials, even in the final R1
training session. We also gathered further complementary evidence for this
interpretation when we conducted R1 training with DIx-CB;-KO animals who lack CB;
on all GABAergic neurons of the forebrain, i.e. including both the direct and indirect
pathways. If we can posit that this “twin” potentiation re-establishes a new equilibrium
in the competition between direct and indirect pathway mediated strategies, then this
provides a strong candidate explanation for why we did not observe a decrease in R1
expression in DIx-CB;-KO mice compared to their wildtype littermates. Future
investigation into our direct pathway potentiation hypothesis could make use of cued
optogenetic approaches which would allow for increased direct pathway activity on
specific trials or arm pairs but not others, thereby enabling within-subject performance

comparison.

To verify that restoring modulatory inhibitory control to the direct pathway, via CB,
would be sufficient to restore the inhibitory striatal flexibility necessary for the innate
exploratory strategy to be overcome by the acquired exploitatory one, we virally re-
expressed CBy receptors locally in Di-positive neurons of the dorsal striatum of D;-CBy-
KO mice. Here, we observed that D;-CBi-KOs.. animals expressed the R1 rule
significantly stronger and more robustly (i.e. with less variance) than their D;-CB;-KOs-
.- littermates who had been injected with an empty viral vector. As mentioned in the
results, R1 exploitation in the Di-CBi-KOsy.. group even tended to be stronger and
more robust than wildtype performances. This latter result we tentatively attribute to
our viral reexpression giving rise to a relative over-expression of CB; (see Materials &
Methods), and thus increased direct pathway inhibitory control, compared to wildtype
animals. In either case, the result reveals that adding inhibitory control to the direct
pathway facilitates expression of an exploitatory S-R rule, enabling the flexibility needed
to inhibit and switch away from innate responses. Relative to previous work showing
that CB; expressed on Di-positive neurons in the hippocampus play a role in novel-
object recognition memory (Oliveira da Cruz et al., 2020), this result with local CB,
reexpression in the striatum only also demonstrates that the hippocampal D;-CB;,
population is not necessary for successful and timely expression of an exploitatory

tactile-discrimination rule. This also corroborates what we observed when we compared
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(in young C57BIl6/] mice) results from an experimental set-up with a fixed tactile spatial
map to one in which the map was fluid, i.e. modified every session: no difference in R1
performance between the fixed and fluid groups, indicating that a hippocampal spatial

strategy was not being used even when putatively available.

Aged mice display decreased inhibition of exploration strategy.

Even more than the D;-CB,-KO population, aged animals were also highly impaired in
their ability to overcome the innate exploratory drive in order to exploit the R1 strategy,
but again despite no observable impairment in their acquisition of the S1-reward
association. Indeed, in the present study certain aged mice, trained for longer than the
others yet still never reaching R1 criterion, nevertheless displayed the same characteristic
S1-reward acquisition phenotypes of robust differential SO vs S1 run time plus
significantly more rectifying than error-inducing choice revision. If exploratory
responses do develop into some kind of innate “chunk” strategy in a given environment,
as hypothesized above, then, as cognitive flexibility in the form of active inhibition
decreases with age, increasingly rigid cognitive selection of such a “chunk” is what we
should expect to observe, despite unimpaired acquisition of the reward-association basis
for a competing strategy. Since this well-characterized age-related decline in inhibitory
cognitive flexibility (Coxon et al., 2012) correlates with, among other things, a decrease
in levels of both CB; and D: (Bilkei-Gorzo, 2012; Wang et al., 1998), it would be
interesting in future work to over-express CB; in the direct pathway of aged mice, on
the hypothesis that this would improve their capacity to switch from innate exploratory
to acquired exploitatory strategies. Indeed, recent work has shown that chronic
treatment of aged mice with THC restores subsequent flexible cognitive function (Bilkei-
Gorzo et al., 2017), demonstrating that potentiation of the endocannabinoid system has

therapeutic value in the reversal of the cognitive impacts of ageing.
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Taken together, the results from our experiment with aged mice further illustrate the
persistence of the innate, evolutionarily preserved drive towards exploration in mice,
revealing that, with age, deterioration of inhibitory cognitive flexibility seems to
translate into reinforced rigidity in the selection of primitive, unrewarded exploratory
strategies, despite robust acquisition of competing, rewarded strategies. Bringing all this
back to the objective of our study, it appears that as inhibitory cognitive flexibility
decreases with age or genetic manipulation, resistance to indoctrination increases,
though the mechanism underpinning this resistance may more accurately be described
as a reduced capacity to flexibly inhibit competing innate behaviors. As a final thought
we do not have the scope to develop here, the phenotypes we observed across our
experimental groups are highly reminiscent of those seen in tasks which also rely on a
specific type of inhibitory cognitive flexibility referred to as adaptive forgetting
(Anderson & Floresco, 2021; Bekinschtein et al., 2018; Schmitz et al., 2017; Hulbert et
al., 2016). While the literature on adaptive forgetting has thus far been focused on
hippocampal memory functions, generalizing the striatal results we have observed in our
task into this same explanatory paradigm may prove very fruitful to future research
avenues. Within this paradigm, indoctrination would be a hijacking of adaptive

forgetting as a means of suppressing “unwanted thoughts” (Schmitz et al., 2017) with

Differential run time: Run time has previously been analyzed by our laboratory as a parameter in a radial
maze “Go/No-Go” protocol (Marighetto et al., 1999). In such experiments, animals sometimes “go” even
when they have learnt there will be no reward at the location of the presented option, i.e. on arms where
they should “No-Go”. However, when trained animals “go” on a “No-Go” trial, their run time advancing
towards the reward zone of the arm is higher than on “Go” trials. In the present study, we present run time
as a proxy measure of post-choice confidence. Several justifications for this interpretation can be found in
our observations. Firstly, comparing run times between the two C57Bl/6] populations during R1 training,
these were lower in always-rewarded control animals on both SO and S1 arms than they were in trained
animals even on S1 arms. This indicates that animals in the always-rewarded control group correspondingly
displayed an overall, surface independent, higher level of per trial post-choice confidence in finding a
reward. Secondly, in classical declarative memory experiments (see Stevens et al., 2022b), run time was
significantly lower on correct choice trials compared to incorrect trials, especially on trials of lower
complexity, indicating that reward location confidence shapes run time differences more than tactile
differences per se. This differential run time phenotype may also have an affective dimension, putatively
related to amygdalar function (McDonald et al., 2004; McDonald and Hong, 2004).

Reliable cognitive measures for post-choice confidence in rodent models, especially mice, are relatively
lacking in the literature (Carandini and Churchland, 2013; Hanks and Summerfield, 2017; Kepecs et al.,
2008), despite this being a fundamental component of decision making processes. In the radial maze, this
component is gained as a fact of the apparatus itself, enabling analysis of cognitive processes in mice while
they are physically realizing their choice, in a manner not possible where execution is quasi-instantaneous
(e.g. lever press). This opens up exciting possibilities for future iz vivo investigation into its neurobiological
bases.
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the sole precision that it would be the educator who has decided which thoughts are

unwanted.

Choice revision: Another important decision-making relevant cognitive behavior afforded by the radial
maze apparatus is physically manifest choice revision, whereby an animal crosses, partially or fully, the
threshold of one arm of the presented pair in a trial but then stops, turns around, and returns to the central
platform to revise its choice, either by entering the other arm of the current pair or (less frequently) by re-
entering the same arm, a process which can even be repeated several times within a given trial. Like run
time as a reflection of post-choice confidence, choice revision behavior presents an exciting prospect for in
vivo investigation. With only minor tweaking, it would be relatively easy to identify, from live video tracking
of a session, the instant at which an animal physically turns back on its most recent choice and then correlate
brain activity recorded in vivo to this instant in a classical peri-event manner. The experimental and control
groups combined (n = 78) performed a total of 2,584 manifest choice revisions, or identifiable ‘KOOK’
events, during R1 training with the former group manifesting around twice as much choice revision as
control animals, making of such events robust and fertile ground for future research.

Relative to the existing literature in decision-making, choice revision in the present study is similar to what
is referred to as “vicarious trial-and-error” (VTE), first identified and theorized in now classic papers in
behavioral psychology (Muenzinger and Gentry, 1931; Tolman, 1948, 1939). An excellent review of
classical and recent work into the psychology and neurobiology of VTE can be found in (Redish, 2016).
However, there are important differences between classical VTE and what we call choice revision here. On
a technical level, VTE, most often studied in rats, is ethologically more fine-grained since it quantifies not
only full-body movements but also head movements accompanying an animal looking back and forth. Our
mice also made such movements, but at the scale of the radial maze apparatus the sensitivity of our motion
tracking equipment allowed us to identify and quantify only large or full-body movements. For this reason,
we suggest that the behavior we report here as choice revision is a representative fraction only of the full
range of cognitive choice revision occurring both mentally and in a range of discrete to large physical
movements. Full-body choice revision does carry the advantage of implying a temporal sequence in which
action execution, action revision, action arrest, alternative action execution, etc., can be isolated. Pursuant
to this, it is interesting to note on a cognitive level that, contrary to the literature on VTE, we did not observe
a decrease in choice revision as tactile S-R behavior shifted to being putatively more procedural. As we have
already discussed, in the context of the radial maze, the exploratory drive in mice is tenaciously persistent,
both in the results we report here and in previous studies from our laboratory (Marighetto et al., 1999). As
a result, we observed high levels of rectifying choice revision (correcting an initial exploratory action to an
exploitatory one) even after 200+ trials.
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Concluding remarks.

It is clearly not plausible to imagine that mammals have adaptively evolved mechanisms
for the purpose of resisting indoctrination. Rather, the experiments we have run with
the present model strongly suggest that the conditions for indoctrination are primarily
a function (or artefact) of our species’ unique environment, and therefore not primarily
a function of our species’ unique neural make-up. Human indoctrination, an eminently
social phenomenon, may therefore constitute an instance of social cooptation of
evolutionarily much older mechanisms of neurocognitive flexibility: an artefact of
human socio-psychological environments in which unchecked exploratory behavior is
often perceived as being disadvantageous to a given population. This stands counter to
recent literature which has rejected the possibility that cognitive mechanisms analogous
to indoctrination or confirmation bias could exist in non-human mammals (Mercier &

Sperber, 2017).

In the present paper, we have focused on those mechanisms involved during
indoctrination, while in a follow-up paper to this one (Stevens et al., 2022b) we focus
on the cognitive consequences of entering a new environment which demands that the
content of this indoctrination be revised. We believe we have demonstrated the validity
of this initial indoctrination phase of the model, especially with respect to the clear and
lasting disambiguation it elicits between, on the one hand, acquisition of the basic S1-
reward association and, on the other hand, sustained exploitatory expression of it.
Beyond the clear pedagogical, political, and social interest of gaining a deeper cognitive
and neurobiological understanding of how the mammalian mind-brain bends under such
situations of indoctrination, the introduction of this behavioral model also opens several
avenues for future pre-clinical research in domains having known cognitive interactions,
either as cause or effect, with indoctrination such as addiction (Norton, 1994),
psychological disorders including delusions and schizophrenia (Wareham, 2019),
trauma recovery (Curtis & Curtis, 1993), and others. Finally, the validation of this
model alters the research environment itself with respect to our current thinking around
the neural and environmental evolution of the higher reasoning faculties of humans (for

discussion of this angle specifically, see Stevens 2022), adding a new layer to our
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considerations of the broader neural, cognitive, social, and ultimately ecological

implications of how we learn and how we teach.
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Supplementary figure S. 1 - Exploratory resistance to R1 expression.
Experimental animals are represented in red, controls in blue. All error bands represent 95%

confidence intervals, vertical spaces between bands provide visual indication of statistical
significance; detailed statistical analysis in main text. (A) Session-by-session surface alternation
behavior reveals that control animals, rewarded on every trial regardless of surface chosen,
tended to maintain above chance level alternation by surface behavior throughout R1 training.
(B) Linear regression analysis revealed no correlation between individual strength of initial
surface alternation in R1 trained animals and subsequent R1 expression performance, R2 = 0.01.
(C), (D) + (E) Looking at average longest run of consecutive correct S1 choices, while R1 trained
animals quickly rise highly significantly above control animals, even in the final session these
runs represent less than half the total number of trials in the session. (F) Despite clear R1
acquisition and increasing expression, in terms of on which trial per session animals first choose
the exploratory SO option, the R1 trained population chooses SO significantly later than controls
only from session 8 onwards, and with very large within population variance. (G) Based on
individual R1 expression performance in the penultimate session, we modeled when R1 trained
animals would be predicted to choose SO in the final session (orange bars). This revealed that
R1 trained animals (red bars) were in fact actively first making exploratory SO choices earlier
than could have been predicted by R1 performance only. Controls (blue bars), as expected, first
chose SO according to a random compatible distribution. (H) Using linear regression analysis,
we nevertheless found no correlation between timing of initial exploratory SO choice and
subsequent R1 performance, R? = 0.03. (I) Testing to see if the possibility of a hippocampal
dimension would impact R1 expression, we compared performance in one cohort where the
tactile configuration changed in every session (‘Fluid’ group, n=10) to performance in a cohort
for whom the tactile configuration remained the same in every session (‘Fixed’, n=10). No
difference in R1 expression was observed, indicating that either a tactile map was not formed,
or if it was, it neither aided nor impaired R1 expression. Both cohorts were thus subsequently
pooled into the overall R1 trained population.
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Supplementary figure S. 2 - Analysis of choice revision behavior.

(A) + (B) Since the existing literature on vicarious trial & error (VTE) predicts a decrease of
deliberative behavior as a function of response proceduralization, we compared levels of choice
revision in the final R1 session, where performances were highest and therefore closest to being
proceduralized. However, linear regression analysis revealed no correlation between either final
R1 performance and choice revision (R2 = 0) or S1 run time and choice revision (R2 = 0.026).
(C) Cumulative analysis of choice revision behavior in R1 trained animals revealed very large
inter-individual variance in this behavior, which was not, however, as the linear regressions in
(A) and (B) show, related to either R1 performance or to run time.
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Tactile Discrimination
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Supplementary figure S. 3 - Deletion of CB1 receptors from all
GABAergic neurons of forebrain does not negatively impact R1
expression.

Error bands represent 95% confidence intervals. (A) In contrast to
Di-CBi-KO  mice, DIx-CB;-KO mice (n=8) displayed no
impairment compared to wildtype littermates (n=6) in attaining
sustained expression of R1. We suggest this may because the
putative imbalance created between direct and indirect pathway
strengths in D;-CB-KO (the direct pathway but not the indirect
pathway expresses Di) would be cancelled out in DIx-CB;-KO,
wherein CB; are deleted from both the direct and the indirect
pathways.
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Supplementary figure S. 4 - Aged animals rigidly exploratory despite R1 acquisition.

All error bands represent 95% confidence intervals, vertical spaces
between bands provide visual indication of statistical significance;
detailed statistical analysis in main text. (A) In terms of alternation by
surface, the aged R1 trained population (n=11) did not significantly
depart from chance level until session 14. (B) The aged R1 trained
population showed a similar trend to young adult R1 trained mice to
have higher decision latencies than controls, and higher S1 (i.e.
exploitatory) than SO (i.e. exploratory) choice decision latencies, though
none of these trends reached statistical significance. (C) Having isolated
the 3 aged R1 trained animals who did not reach criterion R1
performance, even with 3 additional training sessions, we checked to see
if these 3 animals were also impaired in R1 acquisition. This was not the
case: beginning from session 4, this subgroup displayed robustly higher
SO run times than S1 run times, indicating that they had indeed acquired
the S1-reward association.

119



PART II

120



121



“Got his rag out that evening on the bowling green because | sailed inside him.
Pure fluke of mine: the bias.”

James Joyce, Ulysses (1922).
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Investigating hallmarks of ‘myside’ confirmation bias in a novel

mouse model of everyday-like rule revision.

Christopher Stevens, Cathy Lacroix, Mathilde Bouchet, Faustine Roudier, Yamuna Mariani,

Giovanni Marsicano, Aline Marighetto.

Abstract

As the daily flow of information available to us increases in speed, complexity, detail,
and sheer quantity, our capacity to rationally filter and then integrate it by revising our
prior beliefs has become a central question for a wide range of experimental and human
sciences. Confirmation, or “myside” bias — over-valuation of novel information which
confirms previously internalized cognitive content (beliefs, rules, etc.) and corresponding
under-valuation of novel information which disconfirms this same cognitive content —
is a serious obstacle to our ability to adaptively revise our beliefs in this complex
epistemic environment. Indeed, in modern times, confirmation bias has become a
particularly pernicious fact of society, contributing to the propagation of fake news, to
the polarization of society, and even to the current scientific replication crisis.
Nevertheless, the presence of confirmation bias-like behaviors in non-human animals
has never been explored, and therefore little is understood about either its
neurophysiological underpinnings or its evolution. In order to advance research in this
direction, we designed a novel mouse model of rule revision in such a way that the model
environment would be susceptible to elicit myside confirmation bias-like behavior in
mice. In the present study, we validate this model and provide the first description of
myside confirmation bias-like behaviors in a non-human animal. We also present the
results of preliminary investigations using transgenic and aged mice, which enable us to
begin disentangling how multiple memory systems contribute to the expression and

suppression of confirmation bias.
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Introduction

As the daily flow of information available to us, and, to a greater and greater extent,
socially imposed upon us, increases in speed, complexity, detail, and sheer quantity, our
capacity to rationally filter and then integrate it by revising our prior beliefs finds itself
at the center of most critique and analysis of our modern, digital society. Confirmation
bias (Nickerson, 1998), specifically in the form now commonly referred to as “myside”
bias (Mercier & Sperber, 2017; K. Stanovich et al., 2013; K. Stanovich & West, 2007),
has emerged in this environment as a particularly pernicious fact of human cognition,
accused of contributing to the propagation of fake news (Lazer et al., 2018), to the
polarization of society into camps between which dialogue becomes next to impossible
(Del Vicario et al., 2017; K. E. Stanovich, 2021), and even to science specific challenges
such as the replication crisis (Baker, 2016; Nuzzo, 2015). The cognitive mechanism of
action of myside confirmation bias can be summed up as follows: over-valuation of
novel information which confirms previously internalized cognitive content (beliefs,
behavioral rules, etc.) and corresponding under-valuation of novel information which
disconfirms and calls into question this same cognitive content (Nickerson, 1998). The
result is a biasing of all novel information towards the epistemic positions already held
by the agent, hence my-side bias. As such, its reach goes far beyond the short list of
examples above, implicating it in almost every aspect of human interaction involving the
updating or revision of beliefs in light of new information: a ubiquitous cognitive
phenomenon, identified in some form since antiquity at least (Bacon, 1620; Nickerson,
1998), and hypothesized by some to be an essential, core dimension of how humans
reason (Mercier & Sperber, 2017). So, while myside confirmation bias may be
historically central to who we are as an evolved species, in today’s world, as we are
implicitly and sometimes explicitly requested to form opinions and revise our beliefs on
an ever-broadening range of increasingly complex and technical topics and events, many
of which are literally matters of life and death (COVID response, climate change, etc.),

it does seem that this particular cognitive bias is reaching critical pressure.

This points to an important but relatively over-looked dimension of bias, which we can
better grasp by tracing its modern English usage back to its roots in the game of lawn

bowls. To quote a bowl manufacturer’s guide on the subject of bias, “The behaviour of
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a bowl in play is determined by the weight, velocity of delivery, its bias (or displacement
of the centre of gravity from the bowl's centre) and finally, by the nature of the surface
upon which it is delivered,” (Taylor-Rolph Co. Ltd., 1938). Thus, the bias of a bowl
refers to the fact of its center of gravity being displaced; it is inherent to the object.
However, the significance of this inherent bias emerges only during play, in interaction
with the bowling lawn. In order to have the bowl come to rest at a desired spot, one
must compensate for the inherent bias by delivering it towards a point some distance
orthogonal to the target. And an inexpert player, not sufficiently aware of this inherent
bias, will most likely deliver the bowl wide of their intended mark. Nevertheless, as the
scene evoked in James Joyce’s Ulysses illustrates, bias may also, by a stroke of pure luck
or “fluke”, transform a flawed delivery into an apparently accurate one. In an important
sense, this etymological source signposts everything that we need to investigate in order
to understand how confirmation bias impacts behavior: 1) By what means the center of
gravity of cognition is displaced in the brain (inherent bias); 2) an accurate description
of the environment this biased cognition must navigate, and; 3) the level of
foreknowledge cognitive agents have about their own inherent bias and how this can be

used to compensate for it.

Perhaps surprisingly, it is the first of these, relating to the neurophysiological
mechanisms underpinning confirmation bias, that we know the least about (Kaplan et
al., 2016). One overlooked reason for this lack of understanding is the absence of ad
hoc models designed to investigate whether processes like confirmation bias occur in
non-human animals, the existence of which would allow for neurobiological
investigation of the underpinning mechanisms. Thus, we designed a novel mouse model
of rule revision, specifically in such a way that the model environment would be
susceptible to elicit myside confirmation bias-like behavior, on condition that the
cognitive mechanisms for doing so are indeed present in the mouse brain. Our
experimental design therefore leaned on this twofold assumption: that the observable
consequences by which we identify myside bias in humans primarily result from
particularities of the (epistemic) environments our species has created for itself to
navigate, and therefore there is no empirical reason to suppose that the inherent
neurobiological component of myside bias (the bias in the bowl) is unique to humans,
as has recently been claimed (Mercier & Sperber, 2017). Indeed, in terms of accurately

understanding the underpinning neurophysiology of any cognitive phenomenon, lines of
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investigation must encompass the direct and experimental study of its evolution (Cisek

& Hayden, 2022).

Our model consists of two steps; a rule training phase followed by a rule revision phase.
Note that what we refer to here as behavioral “rule revision” should be understood
synonymously with “belief revision”, insofar as both beliefs and rules constitute policies
for governing action in given states, i.e. what are referred to as “state-action policies”
in the language of computational reinforcement learning (Sutton & Barto, 2018). Across
two papers, of which this is the second, we present a detailed description of both
experimental phases, along with fine-grained analysis of the behaviors observed in
young adult C57BI6/] mice as well as transgenic and aged mice. To briefly recap the first
phase (Stevens et al., 2022a), we subjected mice to a learning schedule in the 8-arm
radial maze which we qualified as a protocol of “indoctrination”, broadly defined as
any educative process through which natural exploratory drives are inhibited. Our goal
in that phase was to robustly impart an initial tactile stimulus-response (S-R) behavioral
rule (R1), whereby mice would learn to choose between two surfaces, only one of which
was ever predictive of reward location (S1), while the other surface always predicted
absence of reward (S0). We furthermore demonstrated that sustained R1 expression, but
not R1 acquisition, relies on modulatory inhibitory control over the dorso-striatal direct
pathway, the mechanism through which the innate exploratory drive is inhibited. In the
second phase, presented here, R1 trained mice were introduced to a new, highly novel
radial maze environment where, in order to perform a hippocampus dependent
everyday-like memory (EdM) task based around the spontaneous rodent behavior of
spatial alternation (Al Abed et al., 2016), they had to simultaneously revise the
previously learned R1 rule. The result is a task we refer to as everyday-like rule revision
(EdRR). Specifically, the EARR task was designed in such a way that, as mice perform
it, the outcomes from their trial-by-trial performances generate a sequence of
confirmations and disconfirmations of the R1 rule. We accomplished this by adding the
two surfaces from the first phase, S1 and S0, to the classical EdM environment such that
every EAM trial equally constituted an instance of choice between S1 and SO. Crucially,
however, S1 was no longer a stimulus predictive of reward location, but merely one
among other incidental spatial details of the environment. Behind this design was the
desire to more accurately model real world, differentially complex and ambiguous

situations of belief revision, in contrast to classical “pure” reversal protocols incapable
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of generating sequences of confirmations and disconfirmations, and thereby also
incapable of reproducing phenomena such as confirmation bias. Referring back to our
analogy, our full model can therefore be understood as a first phase in which we shape
the inherent bias (i.e. we train mice to the point of internalizing the R1 rule, thereby
creating the “myside” analog), and a second phase in which we deliver the now biased
animals into a novel environment (in which they are obliged to revise R1) and observe

to what extent their behavior recapitulates human myside bias-like phenomena.

Our observations during revision of R1 reflect myside confirmation bias in several
important ways. The vast majority of errors committed in the EARR task were biased
towards S1. However, no major impact on overall number of EARR errors was observed
when compared to controls, mirroring the now well-established finding in humans that
strength of myside bias is independent of general intelligence (K. Stanovich et al., 2013;
K. Stanovich & West, 2007). Initial exploratory sampling of the novel environment was
not affected, indicating that the primary cognitive effect of previous learning was not a
reduction of curiosity towards novelty per se but rather a dysfunction of evaluation and
integration of the novel environmental information, as per our definition of myside bias
above. Indeed, we observed an important lag, over repeated EdRR sessions, in the
updating of the likelihood of choosing S1, despite R1 being disconfirmed significantly
more than it was being confirmed in the EARR environment. The probability of choosing
S1 was also strongly correlated to EARR trial complexity, meaning that with more
cortico-hippocampal mnemonic uncertainty came higher likelihood of reverting to the
striatal R1 response strategy. Analyzing more fine-grained behavioral measures, despite
S1 choices consistently leading to more errors, we observed signs of persistent and
“irrational” post-choice over-confidence in S1 responses. Moreover, on trials where
animals physically revised their initial choice, this revision occurred significantly more
often towards a final S1 choice. Based on preliminary investigations using transgenic
and aged mice, we suggest that R1 bias and its gradual inhibition are largely, but not
wholly, independent of the capacity to perform the EARR task and therefore of the
related cortico-hippocampal functions, which is once again commensurate with the lack
of correlation observed between myside bias and general intelligence in humans. Finally,
we frame our findings in the context of a multiple memory systems (McDonald & Hong,
2004; McDonald & White, 1993; White & McDonald, 2002) interpretation of everyday

cognitive function and show how tasks like EdAM and EdRR are uniquely suitable for
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investigating the delicate balance between the contributions of such multiple systems

and how it can be affected by cognitive state, mental disorder, and ultimately ageing.

Materials & Methods

Animals: Young (8 to 12 weeks) C57BL/6] male mice were obtained from Charles River
and collectively housed in a standardized animal room (23 °C; lights on 7 AM to 7 PM;
four or five mice per cage). Mice from the aged cohort (18 months) underwent ageing
in collective housing on site at the animal facility of the Neurocentre Magendie. D1-CB;-
KO mice were generated as previously described (Monory et al., 2007; Terzian et al.,
2011) by crossing CB; floxed mice (Marsicano et al., 2003) with D;-Cre line mice
(Lemberger et al., 2007), in which the Cre recombinase was placed under the control of
the D1 gene (Drd1a). As previously described (Zerucha et al., 2000; Monory et al., 2006),
DIx5/6-Cre mice were crossed with CBi#f mice to obtain CBitpixss-cre (here called Dlx-
CBi-KO) and their CBi# (WT) littermate controls. Eight to 14-week-old naive male D1-
CBi-KO and DIx-CB:-KO and respective WT littermates were used. All animals were

moved to individual cages 2 weeks before the beginning of experiments.

Food restriction: Five days prior to the first day of training, all animals were placed
under a progressive food restriction schedule in order to gradually bring them to 85%
to 90% of their baseline free feeding weight. Individual animal weight and welfare was
monitored daily throughout the duration of the experimentation. All experiments were
conducted in accordance with European Directive 2010-63-EU and with approval from
the Bordeaux University Animal Care and Use Committee CCEAS50. All efforts were

made to minimize suffering and reduce the number of animals used.

Viruses and surgery: D1-CB1-KO mice were anesthetized in an induction box containing
5% Isoflurane (Virbac, France) before being secured in a stereotaxic frame (Model 900,
Kopf instruments, CA, USA) in which 1.0% to 1.5% isoflurane was continuously
supplied via an anesthetic mask for the duration of the surgery. Animals were injected
with local analgesic (Lidocaine/Lidor, 2mg/ml, 100ul per mouse) and opioid analgesic
(Buprenorphine/Buprecare, 0.3 mg/ml,100 ul per mouse) at the beginning of surgery.
For viral intra-striatal AAV delivery, AAV vectors were injected with the help of a

microsyringe (0.25 mL Hamilton syringe with a 30-gauge beveled needle) attached to a
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pump (UMP3-1, World Precision Instruments, FL, USA). D;-CB;-KO mice were injected
directly into the striatum (STR) (1 pl per injection site at a rate of 0.5 pl per min, for a
total of 8 pl per animal), with the following bilateral coordinates: AP 1.5; ML = 2; DV
-3.5/ -3, and AP -0.5; ML = 2.6; DV -3.5 / -3. Following virus delivery at each site,
the syringe was left in place for 2 minutes (DV -3.5 sites) and 5 minutes (DV -3 sites)
before being slowly withdrawn from the brain. 6 mice were injected with pAAV-CAG-
flexx-IRES-mCYT (empty control vector) to create the D;-CB:-KO-Str.- group and 6
mice with pAM-CAG-flexx-CB1myc to induce re-expression of the CB, receptor gene in
the striatum and create the D-CB-KO-Str.., group. At the end of surgery, all operated
animals were given an anti-inflammatory injection (METACAM, 2mg/ml, 50ul per
mouse ip.). In this experiment, expression was allowed to take place for 4-5 weeks after
local infusions. Mice were monitored and weighed daily post-operation for three days
and also given one more daily i.p. injection of Metacam, as described above. All animals
regained their pre-surgery body weight, meaning none were excluded from the

experiments.

Radial maze: The behavioral apparatuses used are 8-armed fully automated radial mazes
(Imetronic), the surface of which is raised ~100cm off ground level. Access to each arm
is from a central platform by means of automated vertically retracting doors. When all
doors are closed during behavior, the experimental animal is contained within the
central platform, a regular octagon of size ~485cm? and edge 10cm (i.e. the width of
each arm and door). At the distal end of each 50cm length arm is an automated pellet
distributor for dispensing food reward. The distributor is set into a slight indent in order
to hide its state (i.e. baited or not baited) from the animal. For this study, we produced
removable polymer panels which could be placed so as to cover the entire area of the
radial maze. The panels, all painted the same color as the radial maze, were of two
distinct tactile finishes: smooth surfaced panels (similar to the usual surface of the radial
maze) and irregular surfaced panels (the finish of which was a uniform but irregular
beveled pattern of < 2mm maximum relief). This allowed us to present the radial maze
according to various tactile configurations: entirely smooth, entirely irregular, or various
combinations of smooth and irregular. Animal movements in the radial maze are
detected via video camera and motion detection software (GenCam) using either visible
or infra-red light, depending on the experimental conditions (see below). The motion

detection software communicates with a second piece of software, POLYRadial
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(Imetronic), through which pre-programmed sequences of automated radial maze
actions are triggered. This program is used for the design and execution of behavioral
exercises (sequences of door openings, location of food reward, conditions for opening
and closing of doors, etc.). Hence, the exercises are customizable and contingent upon
a combination of both the detected movements of the animal and automated timed

sequences.

Behavior

Habituation: Prior to the first day of tactile discrimination learning, all animals were
habituated to the context and functioning of the radial maze apparatus. Food restriction,
as described above, began three days before habituation (i.e. five days before training).
At the beginning of each habituation session, the animal was placed by the experimenter
in the central platform of the radial maze, all 8 doors of which were closed. Once
removed to the control room, the experimenter launched the habituation program via
the POLYRadial software. The habituation program began by an interval of 10 seconds
during which the animal could explore the central platform. Following this, all 8 doors
opened simultaneously, presenting the animal with the opportunity to freely explore the
entire surface of the maze. As the animal explored, once it had advanced to the most
distal section of a given arm (location of the distributor and food reward) and returned
to the central platform, the door of that arm automatically closed behind it, thus
preventing further access to that arm in the current session. Thus, once the animal had
fully explored all 8-arms, it found itself again contained within the central platform. At
this point, a further habituation session could be launched if needed. It was considered
that when an animal had recovered and consumed at least 5 out of 8 available food
rewards in a single session that it was fully habituated to the relevant functionalities of
the apparatus. All animals reached this habituation criterion within an average of 5
sessions. Since the tactile discrimination phase is conducted in the dark, thus potentially
making it difficult for animals to perceive that doors always opened in contiguous pairs,
animals also underwent a second habituation session 24 hours after the first, during
which pairs of doors opened simultaneously, creating a choice to explore one of two
neighboring arms, as would be the case in the subsequent tactile discrimination phase.

Crucially however, during both phases of habituation, the surface of the radial maze
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was entirely covered in the surface type (smooth or irregular) to which a given animal
was to be assigned during the subsequent tactile discrimination training. In this way,
even during habituation, animals assigned to learn to associate, for example, the
irregular surface with reward location had no prior experience of being rewarded on the

smooth surface, and vice versa.

Tactile discrimination: In a preliminary phase (figure 1a), mice were trained in the radial
maze to discriminate between two surface types, one smooth and one irregular, in a
stimulus-response (S-R) manner. For each animal, only one of these surface types was
predictive of reward location (S1) while the other surface was predictive of no-reward
(S0). This preliminary task was conducted in darkness in order to remove the capacity
for visual spatial orientation, thereby obliging reliance on other sensory inputs, notably
tactile. Each trial consisted of choosing between two neighboring arms to visit, one S1,
one SO. Mice were considered to have fully internalized this S1-reward association rule
(R1) when they had reached a mean performance of 75% correct responses averaged

across two sessions.

In order to successfully express R1, animals had to inhibit and overcome their innate
exploratory drive to explore both surfaces equally and instead adopt a “win-stay”
strategy (McDonald & White, 1993) with respect to S1. During this phase, ethanol
(70%) was also used to add a specific odor-based dimension to the R1 environment. For

full description and behavioral analysis, see (Stevens et al., 2022a).
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Figure 6 - Behavioral environments and tasks.
Graphical representation of the radial maze environments composing the full everyday-like rule

revision protocol. (A) The R1 tactile discrimination phase is conducted in darkness, removing
all visual spatial bearings, with the objective of focusing attention on the tactile dimension. The
surface of the radial maze is divided in two according to surface: a smooth surface, represented
in solid gray, and an irregular surface, represented in dappled gray. Each animal learns that one
of the two surfaces is always predictive of food reward location (yellow ‘+> symbols). This
surface is referred to as S1. Whether S1 is the smooth or the irregular surface is counter-balanced
among the animals. All 8 arms are used in this phase. Each trial consists of a choice between
two contiguous arms, one S1, one SO. A 70% ethanol mix is also used to give this R1
environment a distinct olfactory dimension. (B) Once animals have completed R1 training
(either by reaching 75% criterion level averaged across two sessions or by completing a fixed
number of R1 sessions, depending on experimental conditions; see main text) they are moved to
the EARR radial maze environment, which contains several novel differences with respect to the
R1 environment: radial maze situated in a separate room; lights on, hence visibility of spatial
landmarks (represented by the black shapes around the radial maze); 1% acetic acid mix used
to distinguish environment at the olfactory level. The EARR task, similar to the classical EdM
task, uses 6 arms of the radial maze, arranged into three pairs, A, B, and C. However, EdRR is
distinct from EAM by the presence in each pair of one S1 and one SO arm. The cognitive
consequence of this is that every EAM trial (spatially alternate relative to previous choice on
present pair; see below) simultaneously constitutes an instance of an R1 trial (choose S1 rather
than SO). This allows us to qualify each EAM error made during performance of EARR as either
an R1/S1 or a nonR1/S0 type error, providing the basis for the quantification and analysis of
R1 bias during everyday-like revision of R1. (C) Illustrative sample sequence of classical EdAM
task. On trial #-2, the animal chose the left arm of pair A and was rewarded. Trial #-1 on pair
A then constitutes a complexity level 1 trial, as there has been 1 interposed trial on pair B
between 7-2 and 7n-1. The animal correctly chooses the right arm on #-1. When pair A is next
presented, it constitutes a complexity level 3 trial, as there have been 3 interposed trials (pairs
C, C, and B) between 7n-1 and n. To choose correctly on trial 7, the animal must focus on
recalling which arm it chose on trial #-1, inhibiting interference from both the interposed trials
on other pairs and from the memory of trial n-2.
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Everyday-like memory: As previously described (Al Abed et al., 2016), the aim of the
everyday-like memory (EdM) task in the radial maze is to model daily life situations in
which numerous, repetitive events, of varying complexity and often with only subtle but
important changes in their content must be accurately remembered and recalled. For
example, we have to keep in memory multiple pieces of constantly changing information
such as “Where did I park my car?”, “Did I feed the dog?”, “What groceries need
replacing?”, etc., for variable periods, all while occupied with other daily activities, until
that information is needed again and mobilized. These situations require both mnemonic
retention and continuous inhibitory organization/updating of memories as they are used,
in order to avoid interference from other similar memories. The demands on mnemonic
retention and inhibitory organization are oppositely proportional with respect to the
temporal interval between repetitions. To illustrate: the more frequently I park my car
in the same zone, the lower the demand on mnemonic retention (i.e. “Where did I park
at work this morning?” versus “Where did I park at the airport two weeks ago?”), but
the higher the demand on inhibitory mnemonic organization in order not to mix up

successive placements (“No! This is where I parked yesterday morning!”).

In the EAM model (figure 1b), animals must simultaneously (i) store items of information
relative to three distinct task contexts (arm pairs; A, B, and C), i.e. which was the most
recently visited arm from each of the three sequentially presented arm pairs (figure 1c),
and (ii) use and update each of these items of stored information in order to correctly
choose which arm to visit out of the currently presented pair. Mice have no way of
predicting which of the three task contexts/arm pairs they will be presented with on any
given trial, and thus no way of knowing, while waiting in the central platform for the
next trial to begin, which memory they will next need to recall nor which ones they will
need to inhibit. Identification of which pair is which depends on spatially identifying its
position relative to prominent extra-maze cues in the experimental room (represented

by the black shapes surrounding the maze in figure 1b).

In each session of EAM, animals are presented with a sequence of 23 trials, each trial
consisting of one presentation of one of the 3 arm pairs (A, B, and C). This sequence
changes from session to session, and is pseudo-random (i.e. unpredictable) from the
mouse subject’s perspective. Mice must choose to visit one arm out of an arm pair in

each trial. On a given trial, the reward will always be located in that arm which was not
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visited by the mouse on the previous presentation of the same arm pair, whether their
previous choice was correct or incorrect. In other words, the reward in a given pair
switches arm only once it has been retrieved (compare what happens with pairs A and
C to what happens with pair B in the sample sequence represented in figure 1¢). The
task therefore implies retaining in memory which arm was visited on any given arm pair
presentation 7 (the “sampling” trial) until the next trial consisting of a presentation of
the same arm pair, 7+1 (the “testing” trial). In short, the EdM task relies on and
reinforces the spontaneous mouse behavior of spatial alternation and, in contrast to the
“win-stay” tactile discrimination R1 rule, requires a “win-shift” strategy (McDonald &
White, 1993). The number of interposed trials on either of the other two arm pairs, plus
the duration of the inter-trial intervals (ITI), constitute the retention component of the
task. An organizational mnemonic component is also present in both the necessity to
inhibit pair-specific interference on any given arm pair presentation 7, so that the
previous n-1 choice and not the previous-previous 7-2 choice is recalled (figure 1c¢), and
also in the need to inhibit mnemonic content relative to the other two pairs which would
constitute intrusive and interfering cognitive noise to the recall process specific to the

present pair.

At the beginning of each EdM session, the animal is placed at the center of the maze,
with all vertically opening arm access doors in the up/closed position. After a 10 second
pause, the two doors to one of the 3 pairs (A, B or C) open simultaneously by retracting
below the surface of the maze, whereupon the mouse can choose to visit the distal,
reward zone of one of the two arms. The door of the non-chosen arm closes only once
the mouse has reached the reward zone of its chosen arm. When the mouse returns and
is again detected in the central platform of the maze, the door of the chosen arm also
closes behind it. After a given ITI (in the present study ITIs = 5-10s unless otherwise
stated), during which the mouse is confined to the central platform, another trial begins
with the opening of two doors, either of the same arm pair, or one of the other two arm
pairs, and so on. In the classical version of the EAM task, on the initial per session trial
of each pair both arms contain a food reward. This trial establishes how the reward will
spatially alternate in the subsequent trials and is not included in the calculation of EdAM

performance.
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The mnemonic challenge of EAM on which we primarily focus in the present study is
the retention difficulty of each trial, determined by the number of trials on the other two
arm pairs interposed between a presentation 7 and subsequent presentation n+1 of the
same arm pair. This gives rise to 5 levels of complexity, denoted by the number of
interposed trials on the other two arm pairs, i.e. from 0 to 4. Level O therefore
corresponds to two immediately consecutive presentations of the same arm pair, with
no interposed trials on other pairs, and is thus most similar to a classical T- or Y-maze
spontaneous alternation trial (figure 1c¢; the second presentation of pair C is therefore a
level O trial; the second presentation of pair A, a level 1 trial; the third presentation of

pair A, a level 3 trial, etc.).

The sequences of pairs A, B and C within a training session of the EdM task have been
designed such that three consecutive sessions are required in order to equally balance
the number of trials of each difficulty level. Hence, behavioral parameters expressed as
a function of trial complexity are calculated as the mean or median per block of 3
sessions and analyzed on this basis. Each block of 3 sessions consists of 12 trials of each
complexity level, for a total of 60 trials, not including the initial “sampling” trial on

each of the three arm pairs which do not figure in evaluation of the EAM performance.

Rule revision: The rule revision modification to the EAM task (everyday-like rule
revision, EARR) consists in its combination with the S1 and SO surfaces from the tactile
discrimination phase (Fig.1). Thus, the primary specificity of the EdRR task consists
simply in the presence, on each arm pair and in each trial, of a S1 arm and a SO arm,
counter-balanced left and right between pairs. Also, in contrast to the classical EdAM
task, in EdARR only the S1 arm is rewarded in the initial trial of each pair in each session,
following which reward location spatially alternates as a function of being recuperated.
This tactile modification of the EAM environment entails that, as an animal performs
the EARR task, a sequence of confirmations and disconfirmations of R1 is generated:
whenever a S1 arm is rewarded or a SO arm is not rewarded, R1 is confirmed.
Conversely, whenever a SO arm is rewarded or a S1 arm is not rewarded, R1 is
disconfirmed. It is on this basis that we present this rule revision model also as a

potential model of myside confirmation bias.

Thus, once animals have reached criterion level performance in the R1 environment,

they are moved to a new radial maze in a new room, in presence of a new odor (acetic
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acid, 1%, as opposed to ethanol), with new lighting conditions (lights turned on)
rendering intra- and extra-maze cues visible. The rationale for these contextual changes
was to emphatically announce, via multiple sensory systems, that a novel environment,

distinct from the R1 environment, has been entered.

In brief, as R1 trained mice perform the EARR task, they must not only retain and
organize their previous actions as per the classical EAM task, but additionally adaptively
“forget” the R1 rule in order to ensure that they respond to each trial as an instance of
EdM and not as an instance of R1, which would otherwise lead them to repeatedly
choosing S1. This addition of S1 and SO to the EdM environment enabled us to qualify
each EdRR choice and error an animal made. We could then calculate both the total
number of S1 choices and the proportion of S1 errors to total S1 + SO errors, providing

us with two strong measure for assessing the magnitude and evolution of R1 interference

in EdM behavior.

Analysis

All raw data extraction, analysis, statistical comparison, and graphical representation
was generated using custom codes written in Python (Van Rossum & Drake, 2009)
using the pandas (Reback et al., 2020), numpy, pingouin (Vallat, 2018), bioinfokit
(Bedre, 2021), matplotlib (Hunter, 2007), and seaborn (Waskom, 2021) libraries. All

code is open source and available at https://github.com/metaphysiology. Here we give

brief details about some of the cognitive behavioral parameters we analyzed.

Decision latency: The time taken by each animal between the instant when a trial began
(doors of the current trial pair open) and the instant when the threshold from the central
platform into the surface-arm of the animal’s definitive choice was first crossed (decision
latency, milliseconds). We were further able to analyze these decision latencies according

to various factors such as surface type of the definitively chosen arm, etc.

Run time: The time taken for animals to travel the distance from the threshold of the
definitively chosen arm to the reward-distributor containing distal extremity (run time,
milliseconds). As above, we could then analyze this measure according to whether the

definitive choice was S1 or S0, etc.
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Choice revision: During certain trials, animals crossed the threshold into one arm of a
pair but, prior to entering its most distal zone (which would trigger the door to the
unchosen arm to close), revised their choice by exiting the arm. At this point animals
could either choose to explore the other arm of the pair or (more rarely) re-enter the
same arm. As long as the distal zone of either arm had not been entered, this process
could technically continue indefinitely. We developed a novel analysis to quantify this
behavior, which we took to be an occasional external and physical manifestation of the
ongoing cognitive decision-making process. On a given trial, each additional crossing of
either of the two central platform-to-arm thresholds, in the direction from the platform
towards the arm only, was quantified as one choice revision. Each choice revision was
quantified as a ‘KOOK’ unit, capturing the fact that some choice revisions were
ultimately error-inducing, ‘KO’, while others were rectifying, ‘OK’. For detailed

discussion of the run time and choice revision parameters, see (Stevens et al., 2022a).

Results

Impact on EAM performance of a previously acquired, biasing cognitive rule.

To begin, we present the results from young C57Bl6/] animals who completed 12
sessions of the everyday-like memory R1 rule revision task (EdRR). This number of
sessions allowed us to characterize not only the initial impact but also the evolution over
time/repeated training of the previously learned, partially EAM antagonistic R1 rule. We
defined the following two groups from three iterations of the experiment; animals who
had acquired and expressed the R1 tactile discrimination rule up to criterion level in the
first environment (R1 trained population, n = 40), and animals who had been rewarded

on every trial in the first environment, regardless of their surface choices (controls, n =

19).
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Figure 7 - Impact on everyday-like memory of a previously learned rule especially visible in
nature of errors committed.

Experimental animals are represented in red (n=40), controls in blue (n=19). All error bands
represent 95% confidence intervals, vertical spaces between bands provide visual indication of
statistical significance; detailed statistical analysis in main text. Curves represent population
means, dots are individual values. (A) Everyday-like memory performance calculated from 20
per session trials. R1 trained and control populations both began with very low, barely above
chance level overall performances which improved gradually with repeated training and at a
comparable rate. Controls performed slightly but significantly better than R1 trained during
first block of 3 sessions only. (B) Although both populations made similar overall numbers of
EdM errors, during EARR 1 + 2 especially, ~90% of R1 trained errors were biased towards S1.
This proportion decreased with repeated EARR training, primarily as a function of decreasing
numbers of S1 errors. Even in final EARR sessions, however, significantly more errors occurred
on S1 compared to SO. Control animals also displayed a slight emergent bias towards S1,
significant when averaged across all sessions but not in any given session (analyzed further
below). (C) We then calculated a within-error R1 bias index per animal, per session by taking
the relative difference between S1 and SO errors (S1 errors — SO errors / Total errors) and tracking
its evolution. No significant decrease was observed between EARR 1 and EdRR 2 in R1 trained
animals, after which the within-error R1 bias began to gradually decrease, though even after 12
sessions of EARR errors were still biased towards S1. Controls also developed a slight S1 error
bias over repeated EARR training, which achieved statistical significance in the final 4 sessions.
(D) + (E) Mirroring human studies showing no correlation between strength of myside bias and
overall cognitive ability, linear regression analyses revealed no correlation between strength of
individual performance levels in the R1 training phase and either first EARR session or first
EdRR block (composed of sessions 1-3) levels of within-error R1 bias. (F) Linear regression
analysis also found no correlation between level of within-error R1 bias and overall EAM
performance across the first block, indicating that how biased an animal was in the errors it
committed was no predictor of how many errors overall it would make, and vice versa, once
again very closely mirroring findings in human studies of myside bias.
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To recall briefly, reward location in the classical EAM task is determined by a rule of
trial-by-trial spatial alternation between the arms of each given pair (total 3 pairs; A, B,
and C, see figure 1b). In EdRR, each trial of the EdM task also constitutes an instance
of the R1 choice between visiting an S1 arm or an SO arm. This implies the necessity for
the animal to ignore/inhibit its prior R1 learning in order to perform in a purely EAM
manner. If not, it risks making consistent EAM errors by acting according to R1 and
thereby over-visiting S1 arms rather than spatially alternating (refer to Materials &
Methods for detailed description). In order to contextually mark the transition from the
R1 to the EARR task, we designed the two task environments to be as novel as possible
with respect each other; new room and radial maze, change of visibility conditions from
darkness to lights on, thus presence of visual spatial landmarks in EdRR, plus a change

in ambient odor.

1. Nature — more than number — of EAM errors impacted by previous rule learning.

EdM performance: R1 trained and control animals performed comparable levels of
correct responses per session and displayed comparable learning curves over the 12
sessions/4 blocks of training, with a statistically significant difference only when
averaged across the first block (sessions 1-3) for the R1 trained population to perform
worse than controls (figure 2a; one-way ANOVA with pairwise Tukey post hoc; Block
1, F(1, 175) = 4.9, p = 0.028). Individual performances (R1 trained population only) in
the EARR task also did not correlate with either averaged (supplementary figure S.1a,
R2=0.002) or weighted averaged R1 performances (using a discount factor to give older

R1 session performances less weight; supplementary figure S.1b, R2 = 0.00).

Within-error R1 bias: Beginning with the first session (EdRR 1), though similar in terms
of mean total number of errors (EARR 1; R1 trained population, mean errors 9.85;
controls, mean errors 8.95), the nature of these errors was vastly different between the
two groups. During EdRR 1, the mean ratio of errors on S1 arms to SO arms was around
9:1 in the R1 trained population, whereas in controls this ratio approached 1:1 (4.2:4.7)
(figure 2b; mixed ANOVA design, interaction between ‘Group’ within ‘Surface’, F(1,
57) =47.4,p < 0.0001). Interestingly, during EARR 2, conducted 24 hours after EARR
1, this mean error ratio decreased only very slightly in the R1 trained population, to

around 8.5:1. We also analyzed and represented this error bias and its evolution over
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repeated EARR training as a relative difference (S1 errors — SO errors / Total errors),
calculating per animal and per session what proportion of its total errors were biased
towards the previously learnt R1 behavioral rule. This revealed that in many R1 trained
animals, especially in the first EARR sessions where the greatest total number of errors
were made, 100% of these were committed on S1 arms (figure 2¢). Overall, the R1
trained population made a significantly higher proportion of S1 errors than controls
(figure 2c; one-way ANOVA with pairwise Tukey HSD post hoc, F(1, 705) = 96, p =
0.001). No significant decrease in this within-error R1 bias was observed between EARR
1 and EARR 2. We did also observe a trend in controls to commit a comparatively higher
proportion of errors on S1 arms than on SO arms. This was significant when averaged
across all sessions and will be further analyzed below (repeated measures ANOVA, F(1,

18) = 20.5, p < 0.0003).

These results demonstrate that the strongest impact of prior R1 learning was manifest
not in EAM performance itself (although it was initially observable here also) but rather
in the nature of the errors committed. Linear regression analyses, however, revealed no
correlation between final individual R1 performances and strength of within-error R1
bias in EARR 1 (supplementary figure S.1c, R? = 0.018). Neither was a correlation found
when we accounted for the full R1 historic of each animal by comparing total weighted
R1 performance (using a discount factor to give more weight to later R1 sessions
compared to earlier, more temporally distant ones) against the within-error R1 bias in
either EARR 1 (figure 2d, R = 0.001) or in block 1 (i.e. EdARRs 1 = 3; figure 2e, R? =
0.01). Finally, individual within-error R1 bias index values in block 1 also did not
correlate with EARR performance across the same sessions (figure 2f, R2=0.001). Taken
together, we translate this lack of simple correlations between behaviors as preliminary
evidence that the cognitive output elicited by the EdRR task is the result of multiple
cognitive systems interacting in a manner too complex to be easily reduced. It also
indicates that levels of cognitive ability in each of these systems are, at least to some

meaningful degree, independent of each other.
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Figure 8 - High initial environmental novelty-driven exploratory behavior decreases as novelty
fades.
Transfer from the R1 to EARR environment constitutes high multi-sensorial novelty (see figure

1). Here we assess the impact of this novelty on behavior. R1 trained animals (n=40) represented
in red, controls (n=19) represented in blue. (A) Exploration index (EI) per animal per session,
calculated from number of trials (as a function of total number of trials) within which animals
explored each available arm at least once. Low EI values indicate all available arms were
explored within a low number of trials, high EI values that certain arms were visited repeatedly
at the expense of other arms not being explored. Boxplots represent median and interquartile
range. Values for final R1 session (black background columns), EARR 1, and EdRR 2. Certain
outliers notwithstanding, the R1 trained population, who explored less than controls in the final
R1 session, nevertheless explored the novel environment during EARR 1 at almost optimal levels,
with a lower median population EI even than controls. During EARR 2, in the same and
therefore, logically, now less novel environment, the R1 trained population, but not controls,
had a significantly higher median EI score, which we will see corresponded with higher initial
probability of choosing S1 (‘P(S1)’). (B) Linear regression analysis revealed no correlation
between individual EI values and strength of within-error R1 bias, indicating independence of
the cognitive mechanisms responsible for these behaviors. With respect to this, note in (A) that
certain optimal explorers in EdARR 1 failed to fully explore all arms in EARR 2. (C) Analyzing
in more detail, we represented as histograms the trials in which animals made their first SO choice
(1 bin = 1 trial). This revealed that R1 trained animals were already choosing earlier than could
be predicted from R1 performance levels in the final R1 session, but this leftward skewing
increased significantly in EARR 1 with 57.5% or R1 trained animals choosing SO on the first
trial. This proportion decreased in EARR 2, though still skewed towards the beginning of the
session. Controls first chose SO according to a population probability closer matching random
distribution (see main text for details). (D) Average population level P(S1) per trial for final R1,
EdRR 1, and EdRR 2. This allows visualization of pronounced initial exploratory behavior in
trials 1 + 2 of EARR 1, followed by persistently high P(S1 values in remaining EARR 1 trials and
in EdRR 2.
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2. Environmental novelty and exploratory drive: R1 responding increases as novelty
decreases.

Novelty boosts exploration: As we have just seen, the R1 trained population displayed
marked R1 error bias in the EARR task without, however, committing many more total
errors than controls, meaning they did also visit SO arms. Moreover, by analyzing intra-
session trial-by-trial behavior, we were able to observe that, in EARR 1 especially, the
primary driver of SO exploration was not, as may have been expected, an accumulation
of unrewarded visits to S1 arms triggering a “lose-shift” strategy response towards SO.
Rather, upon first placement in the novel EARR environment, the R1 trained population
explored all available arms, S1 and SO, on average even more methodically and
efficiently than controls (figure 3a). To quantify this behavior, we calculated an
exploration index (EI) for each animal, with lower values indicating earlier exploration
of all 6 available arms and higher values meaning that certain arms had been repeatedly
visited at the expense of others not yet visited. The EI was therefore a function of the
minimum number of trials required in a given EARR session trial sequence for all 3 arm-
pairs to be presented at least twice. In EARR 1, for example, this occurred with trial
number 7. Animals who had explored all 6 arms by trial number 7 of EARR 1 were thus
attributed an optimal EI of 0, labelled ‘Optimal’ on the y-axis in figure 3a (optimally
exploring animals in EARR 1; R1 trained, 20/40, 50%:; controls, 6/19, 31.6%). Animals
who explored all 6 arms at least once by trial 8 were attributed an EI of 0.0625 (R1
trained, 7/40, 17.5%; controls, 3/19, 16%), and so on. Only 2/40 (5%) R1 trained
animals failed to explore all 6 arms of the novel radial maze by the end of EdRR 1.
These animals were attributed an EI of 1.1, labelled ‘Fail’ on the y-axis in figure 3a.
Overall, the R1 trained population had a median EI of 0.0625 in EARR 1, i.e. one degree
above optimal, whereas the control group had a median EI of 0.1875, though there was
no statistically significant effect of ‘Group’ in EARR 1 EI values. In brief, the high initial
novelty of the EARR environment seems to have either amplified the exploratory drive
or, we suggest instead, inhibited ongoing active inhibition of the exploratory drive (see
below and (Stevens et al., 2022a)). Either of these scenarios could explain why the effect
of novelty on exploration was actually slightly more prominent in the R1 trained

population than in controls, since for R1 trained animals “explore”, as we shall see in
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more detail below, translates behaviorally as “choose S0”, in opposition to “choose S1”

which is the S-R “exploit” command they were trained on in the preliminary R1 phase.

As novelty fades, interference invades: In order to more fully appreciate the role of
novelty in this prominently exploratory behavior, antagonistic to R1 persistence, we
posited that any effect of novelty should be maximal upon first exposure to the novel
environment (i.e. EARR 1) and therefore, logically, lessened in subsequent sessions. We
therefore calculated the EI values from both the previous (final R1) and subsequent
(EdRR 2) sessions and compared these to the EI values from EdRR 1. Due to the
intentionally accentuated qualitative environmental differences between the EdRR
environment and the prior R1 environment, direct within-individual comparison
between final R1 and EARR 1 could at best be indicative (R1 had no spatial landmarks,
animals were therefore less able to discern whether they had, for example, visited all SO
arms or simply one SO arm several times; R1 uses all 8 arms of the maze, EARR only 6,
etc.). However, comparing the final R1 session behavior (black columns in figure 3a)
between R1 trained and control animals, we observed that 30/40 R1 trained animals
(75%) did not fully explore the R1 environment compared to only 6/19 control animals
(32%), leading in turn to a significant difference in overall exploratory performance
(one-way ANOVA with pairwise Tukey HSD post-hoc between groups, with unbiased
Cohen effect size, F(1,57) = 6.12,p = 0.016, d = 0.69). Next, as seen above, both groups
displayed an increase in exploratory behavior when introduced to the novel EdARR
environment. Upon second exposure to the EARR environment (i.e. EdRR 2), however,
the median EI value significantly increased as compared with EARR 1 in the R1 trained
population but not in controls, due to a relatively increased preference for choosing S1
(figure 3a; R1 trained, 0.0625 EdRR 1 vs 0.3125 EdRR 2, paired t-test, #(39) = 2.6, p =
0.013; controls, 0.1875 EdRR 1 vs 0.25 EdRR 2, paired t-test, #(18) = 0.3, p = 0.76).
The number of individual R1 trained animals who failed to explore all available arms
by the end of the session also increased from 2/40 (5%) in EARR 1 to 5/40 (12.5%) in
EdRR 2, whereas in the control group no animals failed to explore all available arms in
either EARR 1 or 2. Yet, strikingly, all R1 trained animals who failed to fully explore
during EdRR 2 had been optimal or quasi-optimal explorers in EARR 1 (EI < 0.1).
Moreover, there was no correlation between how quickly R1 trained animals explored
all available arms and how biased they were in their errors during the rest of EARR 1

(figure 3b, R2 = 0.063) or EdARR 2 (supplementary figure S.1d, R2 = 0.007), once again
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indicating that differentially powerful and separate, albeit interacting, cognitive

mechanisms were responsible for each of these behaviors.

Exploring space and rules: We next identified and compared on which trial each animal
made its first SO choice, again in the final R1 session, in EARR 1, and in EdRR 2 (figure
3¢). Looking first at the final R1 session (figure 3¢, top), we can see that even here,
despite having learnt that SO was not associated with reward location, the majority of
R1 trained animals made their first SO (i.e. exploratory) choice towards the beginning
of the session (7, 9, and 8 animals out of 40, i.e. 17.5%, 22.5%, and 20% of R1 animals
in the first, second, and third trials, respectively). The remaining 16/40 R1 trained
animals (40%) made their first SO choice somewhere between the 4™ and 18" trials out
of a total of 23 or 24 trials during their final R1 session (the timing of first SO choice in
final R1 session was not predictive of R1 performance; see (Stevens et al., 2022a) for
full analysis and discussion of exploratory behavior during R1 training). In the case of
control animals, it was expected that they would make their first SO choice in the R1
environment according to a random choice behavior compatible distribution, and this
is what we observed; all control animals first chose SO within the first five trials
according to a distribution of 10, 5, 1, 2, and 1 individuals out of 19 per trial, i.e. 52.6 %,
26.3%, 5.2%, 10.5%, and 5.2%, respectively. However, when initially introduced to
the novel EARR environment, the proportion of R1 trained animals choosing the SO arm
on the first trial increased to 23/40 (57.5%). 15 of the remaining 17 R1 trained animals
(15/40, 37.5%) chose SO on the second trial, 1 on the third trial and, finally, the last of
the R1 trained animals on the 8" trial (figure 3¢, middle). Importantly, the timing of
these initial EARR environment SO choices can be explained neither by strength of
individual R1 performance in the final R1 session 24 hours earlier, nor by purely random
choice behavior, again indicating a pointedly exploratory boost primarily due to
environmental novelty per se. Recall that the very first presentation of each pair in each
session of EdRR necessarily constitutes a confirmation of R1; in these three trials, S1
arm choices are rewarded, SO arm choices unrewarded. Precisely, one reason we
included this session-leading “anchor” of R1 confirmations in our experimental design
was to enable a certain level of separation between behavioral response to environmental
novelty and behavioral response to rule novelty. In EARR 2, animals still tended to
explore SO surfaces early, but markedly less so than in EARR 1 (figure 3¢, bottom). 18/40
R1 trained animals (45%) chose the SO arm on the first trial, 10/40 (25%) on the second
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trial, 2/40 (5%) on the third trial, leaving 10/40 (25%) animals who did not explore an
SO arm in any of the initial three EARR 2 trials, compared to only 1/40 (2.5%) in EARR
1. The initial novelty of the EARR environment thus appeared to increase exploratory
behavior in two senses: firstly, “topologically” with respect to physical exploration of
all accessible regions of the environment; secondly, “nomologically” (from Greek
nomos, meaning law, rule, or custom) with respect to pointedly exploring beyond the
bounds dictated by the R1 rule, an exploration which translates as an initial active

preference for choosing SO arms.

Explore first, whatever the expense: Finally, we looked at the conditional likelihoods,
at the population level, of choosing the S1 or SO arm in every trial of the first two EdRR
sessions (with specific focus on the initial three trials; figure 3d, middle & bottom),
comparing them to the S1 vs SO population choices made during their final R1 training
sessions (figure 3d, top). Here we saw that the likelihood of an animal from the R1
trained population choosing an S1 arm on the first EARR 1 trial was 0.425, and 0.368
for an animal from the control group (figure 3d, middle). We tested the statistical
significance of these results against both the 0.5 chance value expected if a population
were choosing randomly and also against both populations’ final R1 likelihoods of
choosing the S1 arm on the first trial (Final R1, P(S1I1% trial); R1 trained = 0.825;
controls = 0.474). These analyses revealed no significant difference compared with
chance level in either population (t-tests with Welch correction against 0.5; R1 trained,
£(39) = 0.95, p = 0.349; controls, #18) = 1.16, p = 0.262) but a significant difference in
the R1 trained population only when compared with their first trial behavior in the final
R1 session (T-tests with Welch correction; R1 trained, #(39) = 5.05, p < 0.0001; controls,
£(18) = 0.93, p = 0.365). On the second trial, however, the likelihood of choosing the S1
arm decreased further to 0.175 in the R1 trained population, and to 0.263 in the control
group. As this observation indicates, out of those R1 trained animals who had chosen
to explore the SO arm on the first trial (i.e. 23/40, who were therefore not rewarded on
this trial and thereby experienced a confirmation of R1 “in the negative”, i.e. SO + no-
reward), a significant majority (18/23, 78.3%) nevertheless did not consequently choose
the S1 arm on the second trial, but instead chose again to explore an SO arm, foregoing
the possibility of reward even under the modalities of the R1 rule. In control animals
also, 10/12 (83%) who chose SO on the first EARR 1 trial (and were thereby unrewarded)

chose SO again on the second trial. Out of those R1 trained animals who chose the S1
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arm on the first trial, thereby receiving a reward and a “positive” confirmation of R1
(i.e. S1 + reward), again the most significant proportion (15/17, 88.2%) nevertheless
chose to explore the SO arm on the second trial. In control animals, 4/7 (57%) who had
chosen S1 on the first trial chose SO on the second trial, commensurate with both random
choice behavior and control group choice behavior in the final R1 session. This low trial
2 likelihood of S1 choice was significantly different from chance level in both the R1
trained population (#(39) = 5.34, p < 0.0001) and in controls (#18) = 2.28, p = 0.035),
but significantly different from the S1 choice likelihood on the same trial in the final R1
session only in the R1 trained population (2(39) = 8.6, p < 0.0001; controls, #(18) = 2.03,
p =0.057). It was only on EARR 1 trial 3 that overall population level decision behavior
shifted in the R1 direction, with a likelithood in R1 trained animals of 0.75 and in control
animals of 0.734 of choosing the S1 arm. Even at the extremes of individual behavior,
only 1 R1 trained animal chose to explore S1 arms on each of the initial presentations
of the three pairs in EARR 1, compared to 3 who chose three consecutive SO arms. This
serves to underline the cognitive implication of all the above results: under the initial
effect of high novelty, the drive to explore overcame even at the cost of repeated foregone

reward.

During the rest of EARR 1, the R1 trained population level likelihood of choosing S1
stayed above 0.5 on every trial except the final one, a trial of the simplest level of EdAM
complexity (level 0, see below), whereas in the control group this surface choice
likelihood oscillated more or less evenly above and below the 0.5 chance level (see
below). Compatible with our hypothesis of decreasing impact of novelty with repeated
exposure to the novel environment, in EARR 2 we did not observe the same low S1
choice values in the initial trials (figure 3d, bottom). The probability of an animal from
the R1 trained population choosing the S1 arm in either of the first two trials was higher
(0.575 in both) than in EdRR 1 and not significantly different to chance likelihood level
in either case. Similar to EARR 1, however, the likelihood of the R1 trained population
choosing an S1 arm subsequently stayed above 0.5 throughout the remaining trials of
EdRR 2. Indeed, in both EARR 1 and EdRR 2, overall surface choice behavior was
significantly different to chance level in the R1 trained population (T-test with Welch
correction and unbiased Cohen effect sizes; EARR 1, #(22) = 5.05, p < 0.0001, d = 1.05;
EdRR 2, #(22) = 7.42, p < 0.0001, d = 1.54; note that the effect size of this difference is
~1.5 times greater in EARR 2 compared to EARR 1) but not in controls (EdRR 1, #(22)
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=0.68,p = 0.5; EARR 2, #(22) = 1.96, p = 0.06). It is also clear from figure 3d (bottom)
that troughs in the R1 trained population likelihood of choosing S1 preferentially

occurred on trials of complexity level 0, which leads us onto our next focus of analysis.

3. More complex EdAM trials occasion higher R1 interference in choice behavior.

Based on previous work from our lab (Al Abed et al., 2016), we expected performances
in the EdRR task to be a function of trial complexity, with scores highest on the least
complex trials (level 0). To recall (see Materials & Methods), trials at complexity level
0 are most closely equivalent to basic spontaneous spatial alternation tasks, since the
pair presented during such trials is the same pair that was presented in the directly
previous trial, i.e. without any interposed presentations of other pairs. Nevertheless, it
must also be recalled that, unlike with the basic T- or Y-maze apparatus, even on
spontaneous alternation-like EAM trials of complexity level 0, animals are holding other
context-relevant cognitive content relating to the two other arm-pairs, uncertain of when

they will next need it.

EdM performance as a function of trial complexity: In order to achieve stronger
statistical power in our trial complexity level analyses, session performances were
aggregated into blocks of three, according to our experimental design whereby each
block was conceived so as to comprise exactly 12 trials of each level of complexity (for
5 levels of trial complexity, giving a total of 60 trials, excluding initial presentation of
each pair in each session). At this level of analysis, we observed that, as with naive mice
from previous studies (Al Abed et al., 2016), the percentage of incorrect EdM responses
in both the R1 trained and control populations was a function of trial complexity (figure
4a; top, three-way ANOVA, major effect of ‘Difficulty’, F(4, 3500) = 130, p < 0.0001).
At this level also, it was clear that only in block 1 (figure 4a, top left) and only on the
most complex trials, did the R1 trained population make significantly more errors than
controls (pairwise t-tests with Bonferroni correction, between ‘Group’ difference;
complexity level 3, #(103) = 3.01, p = 0.016; complexity level 4, #(105) = 3.02, p =
0.016).
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Figure 9 - R1 interference in EARR very significantly impacted by trial complexity.

By aggregating sessions into blocks of 3, each block contains exactly 12 trials of each trial
complexity level, allowing for more robust statistical analysis while still maintaining a sufficient
dimension of evolution over time. Elsewhere, we analyze all trials, averaged across complexity
levels and including initial trials (see figure 5). Here we analyzed errors, probability of choosing
S1 or SO (‘P(Sn)’) and probability of being rewarded (outcome) given that S1 or SO had been
chosen (‘P(RwlISn)’), all as a function of trial complexity. We provide two visualizations of the
same findings. In (A), trial complexity from O to 4 is represented on the x-axis and each column
represents a block of EARR, from 1 to 4. In (B), EARR blocks are represented on the x-axis,
values according to trial complexity are represented as color-coded curves, from yellow (level 0)
to burgundy (level 4), and each column represents one of the populations: R1 trained, left;
controls, right. Error bands in all cases represent 95% confidence intervals. (A) + (B), top row:
% of EAM errors was significantly impacted by trial complexity, matching what we expected
based on the existing classical EAM task literature. Level 0 performance in both groups was
particularly strong, even in block 1. By contrast, R1 trained animals performed significantly
worse than controls only on level 3 + 4 trials and only in block 1. Their performance in these
trials was below what could be explained by chance. In subsequent blocks, EAM performance
in both groups improved as a function of time, nevertheless always as a function of trial
complexity. (A) + (B), middle row: P(Sn) expressed as a probability between 0 and 1. P(S1)
increased highly significantly as a function of trial complexity in R1 trained animals. This
dependence of P(Sn) on trial complexity decreased gradually but was still visible and significant
in all blocks. P(Sn) on level 0 trials thus demonstrated the least impact of R1 training. Indeed, a
reflection of high EAM performance on level O trials is precisely that R1 trained animals were
capable of actually choosing SO more often than S1, but on these easiest trials only (more details
in text). In controls, by contrast, P(Sn) fluctuated on all trial complexity levels except level 4
where a slightly but consistently higher P(S1) value was observed, potentially indicating a
consistent response strategy involving surface on these trials. (A) + (B), bottom row: P(RwlSn)
expressed as a probability between 0 and 1. The probability of R1 trained animals being
rewarded was significantly higher on trials of all complexity levels when they chose SO as
opposed to S1. This is a reflection of the fact that the majority of their EAM errors were
committed on S1 arms, implying that reward was most often “waiting” for them on the SO arm
of a pair. P(RwISO) did not significantly evolve over time, except on level 4 trials, where it
decreased slightly. Rather, with repeated EARR training, P(RwIS1) gradually rose up to almost
comparable levels as P(RwISO) on all complexity levels, though even this improvement with time
had a trial complexity dependence most easily visualized in block 3 where P(RwIS1) decreases
step like from 0.8 at level 0, to 0.6 on levels 1-2, to 0.5 on levels 3-4. Whereas, in contrast,
P(RwlIS0) is higher on level 0, as expected, but almost equal at ~0.75 on all trial complexity
levels.
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Errors made by the R1 trained population on complexity level 3 trials in block 1 went
significantly beyond chance level, i.e. the percentage of errors that would be achieved by
choosing randomly (i.e. 50%), and a similar but not significant trend was seen with
errors made on complexity level 4 trials (independent t-tests; difficulty level 3, #(119) =
4.29, p < 0.0001; difficulty level 4, #(119) = 1.61, p = 0.1). We also observed that the
number of errors decreased significantly and consistently across all complexity levels as
a function of time/repeated training (three-way ANOVA, major effect of ‘Block’, F(3,
3500) = 72, p < 0.0001). In figure 4b (top, left and right) we have given an alternative
graphical representation of these same evolutions. Here, time in blocks of training is
represented on the x-axis, performance curves for each level of trial complexity are
color-coded on a heat-scale from yellow (level 0) to burgundy (level 4), and the two
populations are assigned to separate columns; R1 trained population on the left, controls
on the right. This representation renders even clearer just how significantly fewer errors
occurred on complexity level O trials (yellow lines), those corresponding closest to
spontaneous alternation tasks, across all training blocks and in both the R1 trained and
control populations (pairwise t-test between % errors performed at trial complexity level

0 and level 1, averaged across groups and blocks, #58) = 5.47, p < 0.0001).

Surface choice probability as a function of trial complexity: In figure 2¢ above, we
measured R1 interference on EAM performance as a function of bias observable in the
nature of the errors committed during performance of the EdRR task. This
demonstrated that although R1 trained animals and control animals made comparable
overall numbers of errors, the nature of these errors was significantly and persistently
biased towards S1 in R1 trained animals. However, such an analysis presented alone
may give rise to the misleading idea that bias exists only when mistakes are made,
whereas, in fact, bias induced by previous learning cannot and should not be reduced to
something that manifests only when errors arise, since errors are as much a function of
the environment as they are of the cognitive processes of the organism. Crucially, in line
with the origin of the term in the game of bowls, where there is a bias in cognition, we
should expect it to manifest independently of whether a given subject-environment
interaction gives rise to a correct or to an incorrect outcome (see Discussion below). For
this reason, we also measured the overall trial-by-trial probability of choosing S1 or SO,
independently of whether or not that choice led to an EAM error (figure 4a & figure 4b,

middle rows).
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In a behavioral paradigm based on spatial alternation, in which the space in question is
divided half and half by two different surfaces, all other things being equal besides we
should expect the probability of exploring each surface type to converge towards 0.5,
with a certain calculable margin of variance, in both animals performing the task
perfectly and in animals performing purely randomly. Comparing this to our results
from each block (figure 4a, middle row), what we observed in controls is that the mean
choice probability of exploring each surface (‘P(S1)’ and ‘P(S0)’) lay between maximal
extremes of 0.6 and 0.4, respectively, across all blocks and across all levels of trial
complexity, with the 95% confidence interval (CI) error bands over-lapping between the
two surfaces to the extent that the mean probability of choosing one surface over
another achieved statistical significance at only three discrete points; level 3 complexity
trials in block 1 (pairwise t-test with Bonferroni correction, #(112) = 3.42, p = 0.004),
and levels 1 and 4 complexity trials in block 2 (pairwise t-tests with Bonferroni
correction, #(112) = 2.91, p = 0.02; #(112) = 3.61, p = 0.002, respectively). This result
indicated a dependent interaction between trial complexity and surface choice in the
control group, which emerged as statistically significant on complexity levels 3 and 4
only when averaged across all blocks (pairwise t-tests with Bonferroni correction,
interaction ‘Difficulty*P(Sn)’, level 3, #(454) = 2.74, p = 0.031; level 4, t(454) = 5.33, p
< 0.0001, respectively). These same observations are also visible in figure 4b, middle
row, right column; moving from block to block along the x-axis, we see that the bounds
of the vertical 95% CI variance in surface choice probability values did not go
significantly beyond 0.6 and 0.4. We did, however, again see the same visible but limited
tendency for even control animals to choose S1 more than SO in trials above complexity
level 0, most prominently so in complexity level 4 trials. In a two-way ANOVA averaged
across all blocks, this gave rise to a significant global effect of surface on choice in
controls, with a significant interaction between difficulty and surface (F(1, 2270) = 34,

p = 0.001, with Tukey HSD post-hoc; F(4, 2270) = 3.42, p = 0.009, respectively).

Although we observed a surface effect in controls which could not be explained by prior
learning (analyzed further below), the R1 trained population was significantly more
impacted by surface (two-way ANOVA, interaction ‘Group*P(Sn)’; F(1, 7076) = 104, p
< 0.0001). In this population, we observed a very strong dependent interaction between
trial complexity and surface choice. Across all blocks, the probability of choosing S1

increased highly significantly (mirrored by a proportional decrease in SO choice
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probability) as a function of trial complexity (pairwise t-tests with Bonferroni
correction, #(958) > 4, p < 0.0001 for all levels; unbiased Cohen effect sizes, level 0, d =
0.3; level 1, d = 0.85; level 2, d = 0.86; level 3, d = 1.31; level 4, d = 1.15), though the
magnitude of the difference did decrease gradually as a function of time/repeated
training (two-way ANOVA, interaction ‘P(Sn)*Block’; F(3, 4792) = 69, p < 0.0001;
ANOVA with Tukey post-hoc on P(Sn) in block 4; F(1, 1198) = 35.2, p = 0.001;
unbiased Cohen effect size, d = 0.34). In fact, in the visual comparison seen in
supplementary figure S.2e, we can see that P(S1) on complexity level 3-4 trials
(designated ‘complex’ in this graphical representation) during the first block of EARR
were almost as high as P(S1) in the final R1 session, despite the fact, just seen, that the

majority of these P(S1) choices in EARR block 1 were giving rise to unrewarded errors.

P(S1) and P(SO) values were most closely matched in the R1 trained population on
complexity level 0 trials in block 1 (mean values P(S1) = 0.53, P(S0) = 0.47). In
subsequent blocks, the R1 trained population was significantly more likely to choose SO
arms in complexity level O trials. Although this SO preference at level 0 may seem
counter-intuitive, it is actually easily explained by the fact that the same animals were
significantly more likely to choose S1 arms at all other trial complexity levels, meaning
that whenever a complexity level 0 trial occurred, there was a statistically higher
probability that the animal had chosen the S1 arm on the immediately previous
presentation of the same arm pair. Thus, if the animal spatially alternated on a level 0
trial (which, referring to figure 4a, top, we can see that the R1 trained population was
doing on average 80% or more of the time in these blocks), this would necessarily imply
choosing the SO arm significantly more often than the S1 arm, only on level 0 trials. Still,
that R1 trained animals had the cognitive capacity to choose SO more often on these

level O trials is note-worthy.

In figure 5b, we have represented session-by-session P(S1) vs P(S0) values averaged
across all trial complexity levels, this time also including the initial trials, which have no
EdM trial complexity level. And, in supplementary figure S.2a, for completeness, we
have also isolated and represented the session-by-session P(S1) vs P(S0) values for these
initial trials only, where we can again see the dramatic change in P(Sn) between the high
novelty EARR 1 and subsequent lower novelty EARR sessions in R1 trained animals, as

discussed above (figure 4a-d).
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Reward probability, given surface choice, as a function of trial complexity: Next, we
looked at the resultant conditional probabilities for animals from both groups to obtain
a food reward (correct EAM response) given the surface chosen (‘P(RwISn)’) and as a
function of trial complexity level (figure 4a and figure 4b, bottom rows). Since we are
looking at the probability of obtaining a reward as a function of EdM trial complexity
level, the initial presentation of each pair in each session is not included, as per the
experimental design of the classical EAM task (see Materials & Methods). Thus, we
recall again that in these initial pair presentations P(RwIS1) = 1 and P(RwIS0) = 0, for
both the R1 trained and control populations (these will be accounted for in figure 5a
below). In contrast to P(Sn), where both perfect and purely random EdM performances
would result in the values of P(S1) and P(S0) converging towards 0.5, a hypothetical
perfect EAM performance in the EARR environment would result in P(RwIS1) = 1 and
P(RwlS0) = 1, while a purely random performance would result in the values of P(RwlIS1)
and P(RwIS0) converging towards 0.5. A general trend for the probability of reward on
both surfaces to increase across time/repeated training was observed, with no significant
difference between the two groups in overall P(Rw) (one-way ANOVA, F(1, 6473) =
0.38, p = 0.54; this is a logical extension of overall EdM performances being similar
between the two groups, as seen in figure 3a above). There was, however, a highly
significant interaction between ‘Group’ and ‘P(RwlSn)’ (two-way ANOVA with Tukey
HSD post-hoc; ‘Group*P(RwlSn)’, F(1, 6471) = 82, p = 0.001). Analyzing within the
groups, P(RwlIS1) was very significantly lower than P(RwlISO) in the R1 trained
population (figure 4a, bottom; one-way ANOVA with pairwise Tukey HSD post-hoc,
F(1,4340) = 529, p = 0.001, Cohen effect size, d = 0.699), an expected result given that
their P(S1) was significantly higher than their P(S0). This significant difference between
P(RwIS0) and P(RwIS1) values in the R1 trained population was observed at all trial
complexity levels across blocks 1 — 3 and persisted, albeit less significantly, in block 4

also (pairwise t-tests with Bonferroni correction averaged across all blocks;

‘P(RwISn)*Difficulty’, p < 0.0001 at all difficulty levels).
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Figure 10 - Controls but not R1 trained animals update P(Sn) in accordance with
P(RewardISurface Type).

Overall per session P(RwISn) values, averaged across all complexity levels and encompassing
initial per session trials on each pair, in which P(RwIS1) = 1 and P(RwIS0) = 0. P(Sn) per session
is represented beside this, allowing easy visualization of the contrast between the R1 trained and
control groups with respect to the relationship between, specifically, P(RwIS1) and P(S1). All
error bands represent 95% confidence intervals (for detailed statistical analyses, see main text).
(A) P(RwISn). The R1 trained and control populations experienced opposing outcome values in
this regard. In R1 trained animals, P(RwISO) was higher than P(RwIS1) throughout the first 3
blocks. Their P(RwIS0) did not significantly evolve over repeated training, rather P(RwlIS1)
gradually increased over time until the two values came level in the final block only. By contrast,
in controls, P(RwIS1) was slightly but robustly higher than P(RwIS0) across all 12 sessions of
EdRR, a contribution to which comes from the initial per session trials in which P(RwlIS1) = 1.
(B) P(Sn). The fact that the control group displayed a robust trend, beginning only from EdRR
2, to slightly favor S1 thus seems to find at least partial explanation in this group’s robustly
higher P(RwIS1) values. It is also clear to what extent P(S1) values in the R1 trained population
remained persistently resistant to the fact that they were being rewarded less often when they
chose S1, and precisely more often when they chose SO. (C) + (Table) Mean total R1
confirmations and disconfirmations per session per group. Our EARR protocol was designed
specifically in such a way that trial-by-trial outcomes could be qualified as either confirmations
or disconfirmations of the previously learned R1 rule. In the Table, we recap briefly which EARR
outcomes constitute an R1 confirmation and which a disconfirmation. Recalling that in EARR
the outcome of the initial per session trial on each pair is always a R1 confirmation, this implies
that both hypothetical perfect and perfectly random EdRR performances will generate a total
number of R1 confirmation outcome trials converging towards 13 (out of 23) and of R1
disconfirmation outcome trials converging towards 10. The horizontal unbroken and dashed
light grey lines at 13 and 10, respectively, are visual anchors to help represent this. Thus, it is
visually clear that total numbers of confirmations and disconfirmations in control animals did
tend to converge towards these modelled values, whereas in the R1 trained population initial
values were inverted in this respect; many more R1 disconfirmations being the result of many
incorrect (in terms of EAM) S1 choices. Only during the final block did this population begin to
converge towards modelled values. Referring back to (B), the visible lack of decrease in P(S1)
between EARR 1 and EdRR 2 in the R1 trained population is all the more striking in light of
the number of R1 disconfirmations we see they had experienced during EARR 1.
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In controls also, a trend for P(RwISO) to be higher than P(RwIS1) emerged starting in
block 2, but reached statistical significance only in block 4 in complexity level 4 trials
(pairwise t-tests with Bonferroni correction averaged across all blocks, interaction
‘P(RwISn)*Difficulty’; levels 0-2, p > 0.9; level 3, p = 0.34; level 4, t(106) = 3.3, p =
0.007). Importantly, however, we will now see that, in controls, overall surface-based
differences in P(RwISn) and P(Sn) were commensurate with each other, which was not

the case in the R1 trained population (figure Sa-b).

It was essential to also analyze overall P(RwlSn), including the initial three trials from
each session on which P(RwlS1) = 1 and P(RwIS0) = 0, since the outcome of these trials
would exert a strong influence on each animal’s summed P(RwlISn) experience per
session. Indeed, what we observed (figure 5a) is that when these initial trial P(RwISn)
values were included, P(RwIS1) and P(RwIS0O) were drawn closer together in the R1
trained population than when they were analyzed according to EAM trial complexity,
coming into almost perfect alignment by the final three sessions/final block. In controls,
interestingly, inclusion of the initial trials revealed that their P(RwIS1) was globally
higher than P(RwlIS0) in all EARR sessions (figure 5a), a fact which was hidden when
these values were analyzed according to EAM trial complexity only. Hence, looking at
figure 5a and 5b as we have presented them here side-by-side, we are invited to entertain
the possibility that the observed trend for P(S1) values to rise slightly higher than P(S0)
values as a function of time in controls may at least in part be explained as a cognitive
behavioral response (e.g. some kind of putatively Bayesian updating) to this population’s
consistently higher P(RwlIS1) values. Lending weight to this hypothesis of an ongoing
P(RwlSn) updating in controls is the observation that P(RwIS1) was already higher than
P(RwlS0) in EARR 1, whereas P(S1) rose above P(S0) only starting from EdRR 2 (figure

5a-b, see Discussion).

4. Hallmarks of myside confirmation bias during EARR.

The specific objective behind the design of our behavioral paradigm was to model state-
action policy revision in mice in a real-world, everyday-like environment, i.e. where the
situations in which we have to employ acquired cognitive content may vary greatly in
complexity and uncertainty, and where new information coming from the environment

is often ambiguous with respect to previously acquired cognitive content, such as beliefs,
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rules, and state-action policies. With that in mind, we designed our paradigm in such a
way that performance of the EdRR task would generate, trial-by-trial, a sequence
comprised of both confirmations and disconfirmations of the previously learned R1
tactile discrimination rule (see Materials & Methods). In these EdRR task conditions,
R1 confirmations could take two forms; correct (i.e. rewarded) EAM response on an S1
arm, or incorrect (i.e. unrewarded) EAM response on an SO arm. Likewise, R1
disconfirmations could also take two forms; correct EAM response on an SO arm, or
incorrect EAM response on an S1 arm (see figure 5, table). Recall also that on initial per
session presentation of each pair, arm choices can be neither correct nor incorrect in
terms of the classical EAM task (which is based on making a choice on trial N according
to the choice made on the same pair on trial N-1, thus excluding the initial N which has
no corresponding N-1). In EdRR, upon initial per session presentation of each pair, only
S1 arms were rewarded, meaning that regardless of whether S1 or SO was chosen,
response on these initial three trials always gave rise to an R1 confirmation. In other
words, the optimal action policy for the EARR task can be formalized as follows: “1.
On the initial trial of each pair in a given session, choose the S1 arm. 2. On all subsequent
pair presentations, spatially alternate with respect to previous choice.” One of the
questions we wanted to investigate with this experimental design was whether, during
the cognitive process of rule revision, we would observe behavior that reflected a specific
myside confirmation bias relative to the previously internalized R1 rule. Indeed, a central
hypothesis of our experimental design was that precisely such a bias would be observed

in these conditions.

Session-by-session R1 confirmations and disconfirmations: In figure Sa-b, we see
evidence that, in the R1 trained population but not in controls, there was a lag in rule
revision observable as a delay in updating P(Sn) as a function of P(RwlISn). Indeed, in
figure 5, we have presented the all-trial inclusive, session-by-session, trial complexity
independent representations of these P(Sn) and P(RwlSn) values side-by-side in order to
make this lag clear. To these, we have added a representation of the session-by-session
mean total number of R1 confirmations and disconfirmations experienced during the
second phase EdRR task by animals from each of the two groups (figure 5c). As a
heuristic, we have also included a table that recapitulates which EdRR trial-context-
specific outcomes constitute a confirmation and which a disconfirmation of R1. During

the first five EARR sessions, we observed that the R1 trained and control populations
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had diametrically opposed experiences in terms of R1 confirmations and
disconfirmations; the R1 trained population experienced significantly more
disconfirmations than confirmations, while the controls experienced significantly more
confirmations than disconfirmations. We additionally added two extra elements to
figure Sc in order to better frame these results: since the initial per session trial on each
pair necessarily constitutes an R1 confirmation, this entails that, during EdRR, both a
perfect EAM performance and a purely random EdM performance will tend to elicit a
per session number of R1 confirmations converging towards 13 (solid light grey
horizontal line at y = 13) while disconfirmations will correspondingly converge towards
10 (dashed light grey horizontal line at y = 10). Visually, these elements allow us to see
that, in controls, R1 confirmation and disconfirmation averages remained close to these
modelled values throughout EdRR, whereas in the R1 trained population, in the early
sessions, the average total R1 confirmation and disconfirmation values were inverted
with respect to the same modelled values (mean values EARR 1, R1 confirmations = 9.2;
R1 disconfirmations = 13.8). Across the 12 EdRR sessions, these values came close to
the modelled values in the R1 trained population only during the final block, but even
then still not as close as in controls. Thus, while both the R1 trained and control
populations’ R1 confirmation and disconfirmation values were significantly different to
the modelled values of 13 and 10, respectively, this difference was significantly greater
in the R1 trained population (T-tests with unbiased Cohen effect sizes; R1 trained, #(479)
= 24.6, p < 0.0001, d = 1.12; controls, #227) = 5.2, p < 0.0001, d = 0.34; one-way
ANOVA with Tukey HSD post-hoc between ‘Group’, F(1, 706) = 112.5, p = 0.001).
Finally, it is of particular interest, in terms of rule revision, to note that there was no
decrease in P(S1) between sessions 1 and 2 in R1 trained animals (figure 5b, pairwise t-
test, #(39) = 0.56, p = 0.5). This relative absence of revision of P(S1) in EdRR 2 is to be
considered in light of the average 13.8 R1 disconfirmations experienced during EdARR

1, accounting for 60% of all trials.

S. R1 bias persists in cognitive behaviors over extensive training in the EdRR
environment.

Population differences in decision latency fade during EARR: Prior to their introduction

into the EARR environment, in the latter half of the R1 training phase, the R1 trained
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population displayed significantly higher overall decision latency values compared to
controls, and also significantly higher within group decision latency values on S1 arms
compared to SO arms (Stevens et al., 2022a). Upon introduction to the EdRR
environment, we observed an initial increase in overall decision latency in both the R1
trained and control populations compared to their final R1 session values (figure 6a; R1
trained, ~2900 ms up from ~2500 ms in final R1; controls, ~2600 ms up from ~2000
ms in final R1). However, overall decision latency remained significantly higher in the
R1 trained population only during EdRR 1, after which there was no longer any
significant difference in overall decision latency between the two populations (decision
latency comparison between groups; pairwise t-tests with Bonferroni correction and
unbiased Cohen effect sizes; EARR 1, #115) = 3.38, p = 0.01, d = 0.54; EdRR 2, #(92)
=2, p = 0.64). We did observe that mean decision latency was higher in the R1 trained
population during EARR 2 when choosing SO arms compared to S1 arms, having
actually increased from EdRR 1 to EARR 2, such that averaged across the three EARR
sessions of block 1, the R1 trained population had higher decision latencies when their
decision-making led them to explore SO arms, which is to say, specifically when they
were deciding to “transgress” the R1 rule (figure 6a, difference approached statistical
significance; pairwise t-tests with Bonferroni correction and unbiased Cohen effect sizes,
£(238)=2.5,p =0.055,d = 0.3). From block 2 onwards, however, there were no further
observable differences in decision latency, neither by surface chosen nor, in important
contrast to the R1 phase, by experimental group. These results can be interpreted as
reflecting initially increased cognitive conflict in overcoming R1 in the EdRR
environment (increased decision latency on SO choices compared to S1). Furthermore,
the fact that decision latencies in both groups decreased steadily over repeated EARR
training also reveals that, overall, the spatial alternation “shift” behavior elicited by the
EdM task does indeed come more spontaneously to mice than the “win-stay” S1
exploitation behavior demanded by the previous R1 rule (Stevens et al., 2022a). That
this should be the case even when the EdM task is being conducted under rule revision

conditions producing significant effects in many other behaviors is all the more striking.
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Figure 11 - Confirmation bias-like effects highly persistent in post-decision cognitive
behaviors.

To allow deeper investigation of deliberative processes, not only before but also after trial
choice, we developed analyses for measuring decision latency, post-decision run time, and choice
revision behaviors, thus making the most of behaviors that are uniquely possible with the radial
maze apparatus. These behaviors proved to be highly revelatory with respect to R1 interference
during EARR and offered powerful insights into the cognitive and putative neurobiological
mechanisms underpinning the cognition of rule revision. All error bands represent 95%
confidence intervals (see main text for detailed statistical analyses). (A) Median decision latencies
(in milliseconds) by surface and by session. Both populations displayed a significant time-
dependent decrease in decision latency as a function of repeated EdRR training. In EARR 1 + 2,
R1 trained animals displayed a trend for significantly higher decision latency, particularly on SO
choice trials in EdRR 2, putatively an indication of cognitive effort to inhibit the R1 drive to
choose S1. (B) Median run times (in milliseconds), independent of surface, by session. Averaged
across all EARR sessions, R1 trained animals displayed lower post-choice run times, an indicator
of post-choice confidence, than controls. This was in contrast to the R1 training phase during
which controls displayed lower overall post-choice run times. (C) Median run times (in
milliseconds) by surface chosen. R1 trained animals displayed significantly higher per session SO
run times up until EARR 5 (note the lag in group homogenization compared with evolution of
decision latency). Furthermore, R1 trained run times on S1 arms remained consistently lower,
indicating a certain level of persistent “over-confidence” in these choices, up until session 12.
(D) Median run times (in milliseconds) by difficulty by block. Confirming the robustness of these
lower S1 run times, we can see here that it was reliably the case over all trial complexity levels
and in all blocks. (E) Mean total choice revision by surface by session. R1 trained animals
displayed around twice as much choice revision behavior as controls, with a significant tendency
for the final decision to be an S1 choice. This was especially true in early EARR sessions,
decreasing gradually as a function of time, but with a persistent trend still even in EARR 12. (F)
Mean total choice revision by outcome by session. Controls were significantly more likely to
engage in rectifying rather than error-inducing choice revision across all EARR sessions. Choice
revision in R1 trained animals in EARR 1 + 2 was as likely to lead to error as to a correct
response. Only from EdRR 6 onwards was choice revision in R1 trained animals significantly
more likely to be rectifying. (G) In level O trials, almost all choice revision in controls was
rectifying whereas R1 trained animals were as likely to make an error with as without choice
revision. This was driven by R1 bias (see main text).
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Diminishing yet persistent differences in run time between populations and between
surfaces: Next, we looked at post-choice run times, the trial-by-trial time taken to travel
from the threshold between the central platform and the chosen arm to its distal, reward
distributor containing zone. This post-choice fact of the radial maze apparatus is a
central feature enabling analysis of cognitive processes in mice while they are physically
realizing their choice, in a manner not possible where execution is quasi-instantaneous
(e.g. lever press). Whereas in the latter half of R1 training, overall run time was higher
in the R1 trained population (which we suggested may be due to control animals
attaining higher confidence in being rewarded on every trial and therefore manifesting
less post-choice hesitation (Stevens et al., 2022a)), in the EdRR task we observed that
overall run time, averaged across all sessions and surfaces, was actually slightly but
significantly lower in the R1 trained population (figure 6b, one-way ANOVA with
Tukey HSD post-hoc, F(1, 705) = 10.5, p = 0.001). Looking at the constitution of these
overall values, we observed that, during the first five EARR sessions, run times were
significantly higher in R1 trained animals on SO arms compared to both control animals
(figure 6¢; see 95% CI error bands; this difference translated into a statistically
significant overall between-group difference in SO run times; one-way ANOVA with
Tukey HSD post-hoc, F(1, 705) = 7.6, p = 0.006) and to their own S1 arm run times
(figure 6¢, one-way ANOVA with Tukey HSD post-hoc, F(1, 956) = 77.6, p = 0.001: no
significant difference between S1 and SO run times in controls; F(1,454) = 0.2, p = 0.67).
In fact, this within-R1 trained population, between-surface difference was significant
even when we analyzed only blocks 3-4, i.e. even when there was no longer any
significant session-by-session difference (one-way ANOVA with Tukey HSD post-hoc,
F(1,478) = 6.6, p = 0.001). Taking all this together, it seems that lower S1 run times in
the R1 trained population throughout EARR was driving this group’s overall, surface-
independent lower run time values. Interestingly, when we looked at these group level
differences in run times as a function of trial difficulty and repeated training (figure 6d),
we observed that, in the first block especially, run times were significantly greater in the
R1 trained population on SO arms at all trial complexity levels, including level 0, on
which, as we have seen, these animals were nevertheless performing relatively well
(figure 6d, pairwise t-tests ‘Difficulty* Surface’ with Bonferroni correction and unbiased
Cohen effect sizes, within first block; level 0, #(174) = 5.3, p < 0.001, d = 0.72; level 1,
H155)=3.4,p <0.001,d = 0.49; level 2, (117) = 5.5 p < 0.001, d = 0.81; level 3, #81)
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=3.1,p < 0.001, d = 0.55; level 4, #82) = 4.2, p < 0.001, d = 0.76). We can also see
from figure 6d just how reliable, across trial difficulty and repeated training, the trend
for lower S1 run times was in the R1 trained group. For perspective, we can compare
this surface choice breakdown of run times to an EAM outcome (correct or incorrect)
breakdown (supplementary figure S.3a, bottom). Here, we can see that with repeated
training, run times on incorrect response trials increase more steadily at all trial
complexity levels, but especially level 0, in the control group compared to the R1 trained
group, i.e. towards a robust phenotype we also see in the classical EAM task for animals
to have higher run times on incorrect response trials, putatively when they have a
stronger feeling of reduced confidence in being rewarded (unpublished data, but see
wildtype animals in supplementary figures S.6¢ and S.7d). A suggestion of these run time
results is that, in R1 trained animals, there is some kind of highly persistent, putatively
affective (McDonald et al., 2004; McDonald & Hong, 2004) over-confidence in being
rewarded on S1 arms, even after extensive EdRR training throughout the majority of

which P(RwIS1) is in reality significantly lower than P(RwlIS0) (figure 5a).

Choice revision behavior: Finally, we also measured and analyzed physical choice
revision behavior in both populations, i.e. when animals made an initial crossing of the
threshold into one arm of a pair, but then revised their choice, returned to the central
platform and made another choice. Once again, the possibility for this behavior is a
feature of the radial maze apparatus. As a cognitive behavior, it is very similar to the
deliberative rodent behavior referred to as “vicarious trial and error” (VTE) and thus
putatively the result of representational contributions (Redish, 2016). However, since in
the radial maze choice revision can also imply a certain level of advancing along an
initially chosen arm, it may go beyond VTE and also encompass a similar amygdalar,
affective component to that hypothesized with run time (McDonald et al., 2004;
McDonald & Hong, 2004). The R1 trained population engaged in this behavior
significantly more than control animals, both overall and independently of difficulty
level (figures 7e-f, one-way ANOVA with Tukey HSD post-hoc, F(1, 1414) = 72.1,p =
0.001; supplementary figure S.3b, two-way ANOVA, no significant interaction of
‘Group *Difficulty’). We also observed that both populations, independently and pooled
together, performed significantly more choice revision on complexity level O trials
compared to all other complexity levels, with in fact no significant difference in amount

of choice revision behavior observed between the other complexity levels
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(supplementary figure S.3b; only pooled results shown; pairwise t-tests within
‘Difficulty’ between trial complexity level 0 and each other level, #(58) > 3.9, p-values <
0.0002; between all other levels, #(58) < 1.4, p-values > 0.17). Curiously, however, we
also observed that, looking specifically at choice revision towards S1 arms in the R1
trained population, choice revision on complexity level 1-4 trials was just as high as on
complexity level 0 ones (supplementary figure S.3c), indicating an active cognitive
deliberation-provoking interference from R1 in trials of all complexity levels. Choice
revision decreased significantly over time/repeated EdRR training in the R1 trained
population only, having started out in EARR 1 at a much higher level than controls
(repeated measures ANOVA within ‘Session’, R1 trained group, F(11, 429) = 9.2,
corrected p < 0.0001; control group, F(11, 198) = 0.7, p = 0.74). In control animals,
what little of this behavior we observed was equally balanced between the two surfaces
but did occur more often in a choice rectifying rather than error-inducing manner (figure
6e, one-way ANOVA with pairwise Tukey HSD post-hoc; within control group,
between correct/incorrect outcome, F(1, 454) = 68.8, p = 0.001). The R1 trained
population, in contrast, revised their choice significantly more often towards S1 than
towards SO arms (one-way ANOVA with Tukey HSD post-hoc; within R1 trained
group, between ‘Surface’, F(1, 958) = 56.1, p = 0.001). This effect was especially
significant in EARR 1 (figure 6e, pairwise t-tests with Bonferroni correction and
unbiased Cohen effect sizes; EARR 1, #(78) = 4.1, p = 0.001, d = 0.91; difference in
EdRR 2, which appears significant on graph, was not significant following Bonferroni
correction, #(78) = 2.7, p = 0.09). However, as seen in figure 6f, in EARR 1 and 2 choice
revision in the R1 trained population was equally likely to lead to an error as to a
correction. It was only from EdRR 6 onwards that significantly more R1 trained
population choice revision was rectifying rather than error-inducing (pairwise t-tests
with Bonferroni correction and unbiased Cohen effect sizes; EARRs 1-5 + 11, #(78) <
2.5,p >0.05; EARRs 6-10 + 12, #(78) > 3, p < 0.05), but even during these sessions, the
overall significant trend for more choice revision to terminate with an S1 choice persisted
(figure 6e, one-way ANOVA with Tukey HSD post-hoc on EdRRs 6 — 12, F(1, 558) =
20.1, p = 0.001), and this trend did not switch at any point during the 12 sessions of
EdRR. Finally, since we had already observed in supplementary figure S.3b that
significantly more choice revision occurred on complexity level O trials, and also that

EdM performance was significantly higher at complexity level 0 trials (figure 4a, top),
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we hypothesized that there would be an observable interaction in the data between these
two results. Hence, we isolated complexity level O trials and separated them into two
groups; those level 0 trials where no choice revision occurred (‘(KOOKSs = 0’) and those
where at least one choice revision occurred (‘KOOKs > 0°) (figure 6g). We initially
looked at block 1 in order to capture the period of strongest effects of the previous R1
learning. During this first block, the R1 trained population engaged in choice revision
behavior on 81 out of 480 (16.9%) level O trials, and controls on 21 out of 228 (9%).
What we observed (figure 6g) is that the EdM performance of the two populations was
similar on level 0 trials when no choice revision occurred, but that only controls
committed significantly fewer EAM errors on those level 0 trials where they engaged in
choice revision behavior, as opposed to the R1 trained population who were just as
likely to make an error even with choice revision (one-way ANOVA with Tukey HSD
post-hoc, within each population between ‘KOOKSs = 0’ and ‘KOOKs > 0’; R1 trained
population, F(1, 173) = 0.05, p = 0.83; control population, F(1, 72) = 13.1, p = 0.001).
To be precise, in the case of the control animals, out of 21 trials on which choice revision
occurred, only 1 of these gave rise to an error. With respect to surface, in the R1 trained
population, 87% of the errors (102/117) made during block 1 on level 0 trials with no
choice revision behavior (‘(KOOKSs = 0’) were towards S1, compared to 51% (35/68) in
controls. On trials with choice revision (‘(KOOKSs > 0’), in the R1 trained population
100% of the errors (26/26) were towards S1. As mentioned, in control animals only 1
error arose at this level when choice revision occurred, precluding any meaningful
analysis with respect to distribution of errors by surface. These differences between the
populations in choice revision behavior were most marked in block 1, as we had
expected, but did also hold when analyzed across all training blocks averaged together,
even though with repeated EdRR training the R1 trained population also began to make
less error-inducing choice revision (supplementary figure S.3d, one-way ANOVA with
Tukey HSD post-hoc, within each population between ‘KOOKs = 0’ and ‘KOOKs > 0’;
R1 trained population, F(1, 661) = 3.8, p = 0.051; control population, F(1, 282) = 14.4,
p = 0.001). Averaged across all blocks, 236/316 (75%) of all level O errors without
choice revision in the R1 trained population were S1 choices, while 38/43 (88%) of all
level 0 errors with choice revision were. Taken together, these analyses of choice revision
behavior confirmed what we had predicted: that increased cognitive deliberation was

just as, if not more, likely to give rise to R1 biased choice behavior as less deliberatively
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made choices were. In short, R1 bias, in all the forms we observed it during EARR, was

no simple affair of unthinking persistence of previous learning.

6. Intra-session, surface independent choice-confirmation bias also contributes to pair-
by-pair EARR errors.

Beyond the myside bias effect characterized above, we had also predicted that we may
observe a more immediate, proximal intra-session confirmation bias effect. What we
mean by this is an increased probability on a given trial # to try to confirm the outcome
of the previous trial on the same pair, 7-1, when that outcome was rewarded as opposed
to not rewarded. This type of more proximal confirmation bias is a cognitive
phenomenon which has been the object of much recent human and computational
investigation under the label of “choice-confirmation bias” (Chierchia et al., 2021;
Palminteri, 2021; Palminteri et al., 2017). Thus, although our experimental conditions
were designed specifically to elicit myside confirmation bias-like effects, they did also
offer the opportunity to measure choice-confirmation bias-like effects, if these were
present. Hence, looking at trial-by-trial performance as a function of the previous
outcome on a given pair (‘Pair N-1’), we observed that both the R1 trained and control
populations were significantly more likely to choose the same surface again if the
outcome on the previous presentation of the current pair had been a reward. In other
words, they were more likely to try to confirm a previous outcome in the case that this
had been rewarded. In order to disentangle, as much as possible, any such proximal
intra-session confirmation bias effect from the R1 bias effect, we conducted analysis of
S1 and SO outcomes independently (figure 7a-b). Firstly, with respect to surface choices
following either S1 rewarded (S1+) or S1 unrewarded (S1-) trials, we found that both
R1 trained animals and controls were significantly more likely to choose S1 on trial n
when 7-1 had been an S1+ rather than an S1- outcome (two-way ANOVA between ‘Pair
n-1 outcome’ and between ‘Group’, averaged over all blocks of EARR; highly significant
effect of both ‘Pair #-1 outcome’ and ‘Group’, F(1, 1401) = 164, p < 0.0001, F(1, 1401)
=39, p < 0.0001, respectively).
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Figure 12 - Intra-session choice-confirmation bias observed in both R1 trained and control
populations.

Both controls and, despite their previous S1-reward association learning, R1 trained animals
displayed choice-confirmation bias-like behavior relative to both S1 and SO, which we
analyzed separately precisely to disentangle the results from the R1 bias. (A) P(S1). Analyzing
at the level of 3 session blocks, we saw that both R1 trained and control populations were
significantly more likely to choose S1 on a presentation 7 of a pair when the outcome from
the presentation 7n-1 of the same pair had been S1+ (i.e. rewarded) rather than S1- (i.e. not
rewarded). The trend was present in all blocks, but did not reach statistical significance only
in controls and only in block 1. (B) P(S0). Similarly both the R1 trained and control
populations were significantly more likely to choose SO on a presentation 7z of a pair when
the outcome from the presentation n-1 of the same pair had been SO+ rather than SO-. The
trend was present in all blocks, but notably did not reach significance in either population in
block 1. The reduced effect sizes in block 1 could, pending further investigation, be the
anomalies here, especially when it is recalled that block 1 englobes all the novelty effects of
the transfer from the R1 to the EARR environment.
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However, the same statistical analysis revealed no significant effect of the interaction
‘Pair n-1 outcome* Group’ (F(1, 1410) = 1, p = 0.3). These statistical results indicate, as
figure 7a suggests, that although there was an overall ‘between Group’ effect (certainly
due to R1 trained animals choosing S1 significantly more than controls over), there was
no significant difference between the effect sizes of their respective ‘between Pair -1
outcome’ differences. More convincingly still however, was the fact that both the control
and the R1 trained populations also displayed a higher probability of choosing SO on a
trial 7 if the outcome on trial #-1 had been SO+ rather than SO-. While the effects seen
with respect to S1+/S1- may to some extent be related to previous learning in the R1
trained population, or to P(RwIS1) being higher than P(RwISO) in controls, that
explanation would not account for our observation of the same effect with respect to
S0+/S0-. These results open the possibility that this choice-confirmation bias-like effect
is a parallel cognitive mechanism which can nevertheless interact with myside-
confirmation bias-like effects in such a way as to amplify their manifestation. By the
facts of the EdRR rule, choosing, for example, S1 following either an S1+ or an S1- will
necessarily give rise to an error and therefore to an absence of reward, meaning that
whatever inherent bias there is towards an effect such as this, it may be partially
restrained by the EdRR experimental design. In a scenario where errors were not rapidly

guaranteed, it is possible this choice-confirmation bias-like effect would be stronger.

Discussion

The present study is the first to provide robust evidence of non-human animals
manifesting myside confirmation bias-like behavior in situations where a previously
internalized behavioral rule/state-action policy (Sutton & Barto, 2018) must be revised
in the context of a novel environment which is semantically ambiguous with respect to
it, in the sense that information from this novel environment sometimes confirms and
sometimes disconfirms the prior rule. The results constitute validation of a mouse model
of real-world, everyday-like human situations in which previously reinforced beliefs,
understood as action policies, need to be updated or revised in light of novel information
coming from a dynamic and complex environment. Beyond its inherent interest in
providing the means to gaining a deeper understanding of how the mammalian mind-

brain cognitively and neurobiologically adapts to such situations, the introduction of
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this model opens many avenues for future pre-clinical research in domains where
differential confirmation bias-like phenotypes have been observed in humans, such as
addiction rehabilitation and behavior change (Granero et al., 2020; Prochaska, 2008),
schizophrenia (Doll et al., 2014), ageing (Wilson et al., 2018), as well as other
physiological (Rollwage et al., 2020; Rollwage & Fleming, 2021; K. Stanovich et al.,
2013; K. Stanovich & West, 2007) and pathological (Balzan et al., 2013) conditions.
Furthermore, this model validation in and of itself alters the research environment with
respect to our current thinking around the neurobiological and environmental evolution
of the higher reasoning faculties of humankind. What follows is a comprehensive
discussion of our results, their implications, and what they suggest for future research

directions.

Impact on everyday-like memory performance of a previously acquired, partially
antagonistic cognitive rule.

When animals “indoctrinated” to reliably respond to the tactile stimulus-response rule
(R1) (Stevens et al., 2022a) were transferred to the EARR environment, our first
observation was that this prior learning generated only a slight although initially
significant negative impact on overall EAM performance compared to controls, whose
prior learning experience was to have been rewarded on every trial. An important
cognitive consequence of this control condition is that both R1 trained and control
animals were dealing, in the EdJRR phase, with comparably radical, albeit distinct,
changes to the response-outcome (R-O) reward contingencies they had become
accustomed to over repeated exposures to the R1 radial maze environment. This fact of
our experimental design entailed an important advantage in interpretation of the results,
in that it provided us with a control for the initial frustration the R1 trained population
was likely to experience in the EARR environment upon not obtaining reward when
expected (Amsel, 1958; Martin-Garcia et al., 2015), an interesting phenomenon in itself,
but not the direct object of our investigations. The necessity to adapt to such radical
changes in reward contingency may indeed explain why EAM performance in the EARR
environment was much lower, even in controls, than performances normally observed
in the classical EAM task with naive animals (Marighetto et al., 2011), and it is

important that this point be underlined: overall EAM performance does appear to be
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negatively affected by R1 training, and also by our R1 phase control condition.
Nevertheless, one may have expected the initial mean EdM performance in the R1
trained population to fall below chance level, which indeed would have been the case
had they chosen S1 arms during EARR 1 according to their mean likelihood of choosing
S1 during the final R1 session, i.e. 83%. Why did this not happen?

EdM performance and the impact of novelty on exploration.

The links between novelty and exploration in both humans and rodents are well
established and have been the subject of much research and discussion (Farahbakhsh &
Siciliano, 2021; Lustberg et al., 2020; McDonald et al., 2004; Park et al., 2021). The
most significant observation from our experiments in this regard is that, upon initial
introduction to the novel EARR environment, which we had expressly made as
sensorially novel as possible (new room, new radial maze, new lighting conditions, new
ambient odor), not only did the R1 trained population not immediately attempt to
explore S1 arms, they pointedly did the opposite. A majority of R1 trained animals chose
the SO surface on the very first EdARR 1 trial, followed by an even greater majority of the
remainder on the second trial. In fact, a significant majority of first trial SO choosing
animals also chose SO on the second trial despite having received no reward from their
first SO choice (recall the optimal policy for performing EARR; choose S1 on initial per
session presentation of each pair, then spatially alternate on all subsequent pair
presentations). This result was as surprising as it is fascinating, since it indicates that
environmental novelty can drive not only topographical exploration of the new
environment in mice, but also nomological exploration directed precisely beyond the
bounds defined by an internalized behavioral rule. The possibility can even be suggested
that these two modes of exploration are connected, potentially subsumed under an
information gain exploratory drive (Inglis et al., 2001), a question we intend to explore
in future work as part of a computational modeling approach to deeper understanding
of the behaviors observed in mice in this study (also discussed in (Stevens et al., 2022a)).
Recalling that, for control animals, absence of reward on an initial SO choice during
EdRR constituted the very first time they had encountered a no-reward outcome on a
trial, thus beyond environmental novelty, there was also a putative effect of frustration

or surprise at play (Amsel, 1958; Xu et al., 2021). This could explain why, of those
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controls who chose the rewarded S1 on the first trial of EARR 1, only half (i.e.
commensurate with random choice behavior) chose SO on the second trial, whereas of
those who chose the unrewarded SO on the first trial, a majority chose SO again on the
second trial, revealing a higher probability for a counter-intuitive “lose-stay” strategy,
which we do not believe can be satisfactorily explained by decision inertia (Al6s-Ferrer

et al., 2016) and therefore merits further investigation.

Following on from this last point, classical studies on the various manifestations of
confirmation bias in humans have focused heavily on the finding that human subjects
primarily engage in rule testing via confirmation rather than refutation, despite the fact
that in terms of information gain the latter strategy has the capacity to return more
decisive information. If we consider the initial trials in EARR 1 as a putative animal
analog of one of Wason’s classical human reasoning tasks from the psychology literature
(Wason, 1960, 1966, 1968), it is curious to remark that the majority of R1 trained mice
began by making refutational rather than confirmational action decisions with respect
to the R1 rule, i.e. by first choosing SO rather than S1. Above chance-level probability
of R1 trained populations choosing SO on the first EARR trial was highly replicable
across all iterations of the protocol we conducted, including those with transgenic and
aged mice (data not shown). During final R1 sessions also, we had observed that the R1
trained population was more likely to first explore an SO arm early rather than later in
the session, earlier even than could be predicted on the basis of their S1 choice
probability from the previous session (Stevens et al., 2022a). This apparently
refutational behavioral was less marked in R1 sessions than in EAJRR 1, but taken
together both invite the intriguing possibility that laboratory mice will more
spontaneously attempt to refute a rule than adult humans will. This eventuality in turn
suggests that the specific bias towards rule confirmation identified by Wason may be at
least in part more a result of education than nature, a suggestion already put forward
by Raymond Nickerson in his classic literature review on confirmation bias (Nickerson,
1998) and seemingly backed up by recent studies showing that “win-stay”-like
confirmatory behavior increases in humans as a function of maturation (Chierchia et al.,

2021).

Manifestation of the novelty-induced exploratory drive was not limited to only the first

two trials of EARR 1. The median number of trials taken by the R1 trained population
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to at least once explore all six available arms, S1 and SO, of the EARR radial maze
approached optimal level (i.e. 7 trials) during EARR 1, making them stronger initial
explorers than even controls. Since we hypothesized that this burst of exploration was
driven primarily by the salient novelty of the EARR environment, we also predicted that
we would see less striking exploratory behavior later in EARR 1 and also in EdRR 2.
This prediction was borne out by the data. First, on all trials from 3 to 22 of EARR 1,
the R1 trained population were more likely to choose S1, with the surface choice
probability shifting towards SO only on the final 23rd trial, tellingly a complexity level
0 trial. Subsequently, we observed that the median exploration score in the R1 trained
population increased significantly in EdJRR 2, i.e. mice took longer to explore all
available arms at least once during EARR 2 compared to EdRR 1, fitting with our
hypothesis that the initial burst of exploration was primarily a cognitive response to

novelty.

As mentioned above, there is some precedent in the literature demonstrating a
facilitation of S-R reversal learning when this takes place in a novel context rather than
in the same context as the initial learning (McDonald et al., 2004). However, our EARR
protocol was designed precisely not to be a simple reversal paradigm, and while previous
results in rule reversal follow a steady upwards curve, here we notably saw no mean
difference in P(S1) in experimental animals between EARR 1 and EdRR 2, despite an
average of ~60% of all EARR 1 trials giving rise to disconfirmations of R1. Thus,
novelty, rather than repeated errors from behaving according to R1, was the primary
driver of initial exploratory, i.e. SO, choice behavior. In the language of reinforcement
learning then, what these results with regards to exploration during EdARR 1 and EdARR
2 seem to reveal is that the R1 trained population had no deficit compared to controls
with respect to their initial exploratory sampling of a novel environment, but they were
impaired in subsequently using their experiences of R1 disconfirmation to appropriately
update their level of adherence to the R1 rule. Finally, if we compare this to other recent
work which demonstrated, in naive mice, that increased novelty improves consolidation
of proximal experiences (Takeuchi et al., 2016), this gives an even better idea of just
how strong the impact of myside confirmation bias-like effects from prior learning can
be, since the manifestation of this bias which we observed seemed precisely to relate to

a failure to sufficiently consolidate R1 disconfirmations from session to session.
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Win-stay versus win-shift strategies.

The primary finding from our analysis of the indoctrination-like R1 training phase of
our protocol was that, in maze conditions, win-shift behavior comes more
spontaneously to mice than win-stay and that the transition to the latter is mediated in
part by local modulatory inhibitory control (i.e. via the retrograde inhibitory action of
CBi receptors) over the direct pathway of the dorsal striatum (Stevens et al., 2022a).
Indeed, we advanced that R1 expression required ongoing inhibition of the spontaneous
exploratory drive, and this was corroborated by our EdARR investigation in two ways.
The first we have just seen; initial environmental novelty is sufficient to lift inhibition of
exploration and, despite their intense win-stay training, R1 trained mice demonstrate
that their exploratory drive, when not inhibited, is as active as ever. Secondly, when
local modulatory inhibitory control in the direct pathway was reduced, by conditional
deletion of the CB, receptor from D expressing neurons of the forebrain (see Appendix),
a certain number of these transgenic animals did not reach criterion R1 performance.
Based on our inhibitory control hypothesis, we suggested that this was due to a reduced
capacity to inhibit the direct pathway-mediated win-shift exploratory drive. And indeed,
subsequently when we moved these below R1 criterion D:-CB:-KO mice to the EARR
environment, we were able to observe that they instantly and persistently performed
significantly better on the win-shift based EdRR task than their above R1 criterion Di-
CBi-KO littermates. This convincingly demonstrates that learning which demands
inhibition of spontaneous exploratory behavior is a central component of subsequent
myside confirmation bias. Nevertheless, this same below R1 criterion D-CB:-KO
population, who committed significantly fewer EdRR errors and displayed lower overall
P(S1) than their wildtype littermates, were just as biased towards S1 on those errors that
they did commit, showing that they were still impacted, albeit less so, by the

indoctrination-like schedule of the R1 training phase.

Again in the R1 training phase, we corroborated our hypothesis regarding the role of
local modulatory inhibitory control in the direct pathway by virally re-expressing CB1
receptors on the D1-expressing neurons, which make up the direct pathway of the dorsal
striatum, of D;-CB;-KO mice. This population (D:-CB;-KO-Str...) displayed a significant

facility in attaining and maintaining criterion R1 performance, which is to say, in
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inhibiting spontaneous exploration, during the R1 phase (Stevens et al., 2022a). Relative
to our current study, these same enhanced R1 expressing animals did not however
perform worse in EARR nor display more bias than D;-CB;-KO-Str... littermates, injected
with an empty viral vector. This may in itself be a reflection of just how much EdRR
performance relies on the interaction of multiple systems, as opposed to R1 performance

which is predominantly striatal (Stevens et al., 2022a).

Finally, the observation that decision latency increases as a function of successful
performance of R1, compared to controls, but then decreases to be equivalent to control
levels as a function of repeated exposure to the EARR task, is another indication that
the cognition required for R1 is not spontaneous, whereas that required for EdM is.
Thus, although the R1 rule may seem formally simpler from a human perspective, it
seems clear that from a murine point of view, EAM responding comes significantly more
naturally. However, in the particular case of EARR, neither responding rapidly nor, as
we have seen in the case of choice revision, are any guarantee of protection from the

expression of bias from previous learning.

Within-error R1 bias.

While only a slight and initial significant difference was observed between the R1 trained
and control populations in the overall number of session-by-session EAM errors, the
nature of the errors committed by the two groups was vastly different. On average, the
R1 trained population committed almost 90% of their errors on S1 arms in EdRR 1
compared to an almost even split of errors across S1 and SO arms observed in controls.
To obtain a more robust evaluation of the extent of R1 error bias manifest in the EdAM
errors, we calculated the relative difference between error types (S1 errors — SO
errors/Total S1 + SO errors) to produce a within-error R1 bias index. Curiously,
however, we found no correlations between R1 training phase performances (either final
or summed or weighted) and R1 error bias, nor even between EARR 1 exploration score
and R1 error bias, all of which is further indication of the multiplicity of cognitive
processes mobilized by our EARR protocol, e.g., respectively, the cognitive mechanisms
necessary for inhibiting the innate exploratory drive during R1 training and those
involved in sensitivity to environmental novelty and inhibition of interfering/intrusive

mental content, etc. This was the first of many reflections in our mouse model of the
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finding in human studies that myside bias is not correlated to measures of general
intelligence (K. Stanovich et al., 2013; K. Stanovich & West, 2007). By the final, fourth
block of EdRR training (sessions 10-12), the within-error R1 bias index was no longer
different between the R1 trained and control groups, with both groups displaying a
slight within-error R1 bias. Naturally, this raised the question of why the control group
may have developed such a bias during EARR training. One potential explanation is the
contingent fact that the overall session-by-session probability of receiving a reward
having chosen an S1 arm, i.e. P(RwlIS1), was reliably higher than P(RwIS0) in controls
across all EdRR sessions. Thus, some kind of putatively Bayesian and striatal statistical
process of updating R-O values from session to session could explain this trend in
controls (Kim et al., 2009; Samejima et al., 2005). In the case of the R1 trained
population, by contrast, P(RwIS1) was significantly lower than P(RwIS0O) until the fourth
block of EARR, and thus their within-error R1 bias persisted not because of but despite

these experiences.

R1 bias as a function of trial complexity.

As discussed above, only a slight significant overall difference was observed in EdM
performance between the R1 trained and control populations. This difference, present
during the first block only, was driven by the R1 trained population making significantly
more EAM errors than controls on the most complex trials only (levels 3 and 4). During
the first block of EARR, performance in controls did not drop below chance level at any
trial complexity. Here and in previous studies (Marighetto et al., 2011), chance level
performance in the EAM task has been interpreted as a reflection of animals not being
able to accurately recall their choice from the previous presentation of the current pair,
thus leading them to choose randomly the arm to visit on the current trial, thereby giving
rise to the chance level performance. Also according to this interpretation, animals
perform more EAM errors on more complex trials because these trials imply not only
more interposed, interfering cognitive content, but also more “passive” forgetting with
the passage of time, all of which creates a perfect cognitive storm for clear recollection
of the relevant past action, i.e. which arm was chosen on the previous presentation of
the current pair. In terms of R1 interference in EAM performance during EdRR, an

interesting parallel emerges in the observation that, in the R1 trained population, the
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probability of choosing S1 (‘P(S1)’) also increased significantly as a function of trial
complexity. Thus, it seems that the probability of an R1 trained animal choosing S1 on
the most complex trials was so high during the first block that this actually pushed their
total number of errors beyond chance level, the level at which controls were performing

on those same complexity level trials.

An affective contribution to biased cognition?

Myside bias in humans is commonly referred to as the irrational, emotional dimension
of human reasoning (Pinker, 2021; K. E. Stanovich, 2021). In (Stevens et al., 2022a) we
already advanced that the marked differences observed between run times on S1 and SO
arms could, based on previous studies, have an affective, putatively amygdalar
component (McDonald et al., 2004; McDonald & Hong, 2004). During early EARR
sessions, we observed that the higher run times associated with SO decreased only
gradually over repeated training. Furthermore, lower run times on S1 were observed up
until the 12% session of EdRR, indicating some level of highly persistent “over-
confidence” in S1 choices even after 9 sessions of training during which P(RwlIS1) was
reliably lower than P(RwlIS0). This is also a clear demonstration that bias can and does

manifest beyond instances of error.

Similarly, since in the EAM and EdRR tasks, mice have the possibility of advancing along
an arm prior to revising their choice (provided that they do not reach the final distal
zone), there may also be an affective contribution to the significantly S1 favoring choice

revision behavior we observed.

Every episode of choice revision during EdRR could constitute an almost literal window
into myside-like bias as it is happening: initial cortico-hippocampal cognitive decision
making impacted after the fact by striatal statistical and amygdalar affective inputs
which bias the response towards the previously internalized rule. During the 12 sessions
of the EARR phase with young adult C57Bl6/] mice, we identified 1,275 choice revision
episodes in the R1 trained population, making of such events robust and fertile ground

for future investigations and interventions.
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Myside confirmation bias: failure to cognitively identify and inhibit intrusive thoughts?
Intrusive thoughts and their inhibition through a cognitive mechanism referred to as
active (or adaptive) forgetting have been the focus of much recent investigation
(Anderson & Floresco, 2021; Anderson & Hulbert, 2021; Bekinschtein et al., 2018;
Costanzi et al., 2021; Geraerts et al., 2007). While most of the literature on active
forgetting has thus far concentrated on cortico-hippocampal inhibition, it is worth
noting in the context of our EdRR task that medial prefrontal cortex (mPFC) projections
to the dorsal striatum also exert inhibitory control in rodents (Terra et al., 2020). One
of the particularities of the EAM and EdRR behavioral paradigms is the fact that, before
they can be inhibited, those thoughts which are intrusive relevant to the present trial
must first be contextually identified from interactions with the environment. This
process of identification notably becomes more difficult the more complex (in terms of
number of interposed trials on other pairs) the present trial is. So while we observed that
on level 0 trials R1 trained animals had a high level of success in exerting inhibitory
control over the R1 striatal strategy, this capacity decreased as trial complexity and
thereby response uncertainty increased. With regards to increasing uncertainty as trial
complexity increases in the EAM and EdRR tasks, light may be shed on this by research
demonstrating that active inhibition of cognitive content can provoke a kind of amnesia
with respect to it (Hu et al., 2017; Hulbert et al., 2016). Thus, on a complexity level 4
trial, for example, the theory of adaptive forgetting suggests that the memory of the
response to the last presentation of the present pair has been actively inhibited four
times, i.e. on each of the four interposed trials where that memory was not relevant. In

this sense, we can see that it is a fine line between adaptive and maladaptive forgetting.

Furthermore, in this regard, in forthcoming work from our team, we have found that
poor mnemonic performance in aged mice on EdM tasks with a high organizational
demand correlates with increased activity in the hippocampus compared to young adult
mice. For this reason, we have begun to theorize the possibility that at least one
dimension of age-related mnemonic cognitive decline is, counter-intuitively, not an

excess of forgetting, but rather a deficit of adaptive forgetting.

Perhaps most promisingly with regards to future research avenues, through our
experiments in the EdAM and EJRR tasks, we were able to demonstrate, for the first time,

a central role for cannabinoid type-1 receptors expressed on GABAergic neurons of the
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forebrain in adaptive forgetting. Indeed, in the DIx-CB;-KO population we seem to have
discovered a phenotype of near total incapacity for active forgetting, despite this mouse
line having no deficit in basic (i.e. without a notable inhibitory component) spatial
working memory (Albayram et al., 2016) or spatial retention memory (Han et al., 2012).
In preliminary work we conducted in the classical EdM task (see Appendix), DIx-CB;-
KO reliably performed worse on complexity level O trials (which closest resemble a basic
spatial alternation task) than both aged mice and mice with lesions of the CA1l
(Marighetto et al., 2011). This was further confirmed by their performance in the present
EdRR task, where unlike all other R1 trained populations, including aged mice, DIx-
CB;-KO did not manage to achieve better than chance performance even on level 0 trials.
In fact, under the weight of the R1 bias, they actually performed significantly lower than
chance on level O trials in the first block of EdRR sessions. However, looking especially
at the classical EAM task, we also observed significantly higher pre- and post-choice
deliberative behavior (decision latency, run time, choice revision) in DIx-CB;-KO mice
compared to wildtype, strongly suggesting a surplus of active cognitive content, which
is what we should expect to see where there is a dysfunction of active forgetting. Taken
together, this is very strong evidence that inhibitory control requires the population of
CB; receptors expressed on GABAergic neurons of the forebrain, and thus if inhibitory
control is fundamentally linked to real world working memory demands, then working
memory does also require GABA-CBi. A phenotypical and putatively functional
similarity between aged and DIx-CB;-KO mice has been previously identified in a Morris
water-maze spatial learning task (Albayram et al., 2011). Thus, echoing recent research
showing that chronic THC administration improves spatial and reversal memory in aged
mice (Bilkei-Gorzo et al., 2017), our results confirm the potential of the
endocannabinoid system as a therapeutic target for age-related memory decline, with

much pre-clinical research yet waiting to be conducted.

Finally on this point, during discussion of our results with other researchers, one
recurring comment was that, since R1 trained animals were apparently not biased on
level O trials, then they could not be said to have a strong myside confirmation bias.
However, we believe that the capacity for mPFC inhibition of striatal responses in simple
contexts can explain this, in mice and potentially in humans also. Indeed, context
inappropriate thoughts, as we have already discussed, are precisely easier to identify and

inhibit in simple contexts. Consider two toy examples of situations where the correct
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response would be evident, even to someone who may otherwise be committed to
doctrines that give rise to strong confirmation bias in situations of higher inherent
uncertainty: I’ve just broken my arm; will I go to the hospital or will T seek a
homeopathic remedy? I want to know what the weather is going to be like tomorrows;
will T consult the meteorological forecast or my horoscope? Intrusive thoughts may
simply no longer be recognized as such once task-inherent uncertainty rises above a
certain noise-to-signal ratio. Indeed, we even observed that R1 trained animals who
hesitated about and ultimately revised their initial choice on level O trials were just as
likely to make a (biased) error than when they did not revise their choice, whereas choice
revision in controls was almost always rectifying at level 0. And this is despite the fact
that when R1 trained animals did 7ot revise their choice on level O trials, they performed
as strongly as controls, indicating that, in the case of a biased agent, opening the door
to uncertainty, e.g. by hesitating, is widening the point of entry for bias into the decision
making process. Again, as an observable behavior this corresponds closely with a certain
interpretation of human reasoning reached on the basis of myside bias, i.e. that we spend
more of our cognitive energy on rationalizing than we do on being rational (Mercier &
Sperber, 2017). In brief, for mice in the EARR task as for humans in everyday life, simply
“thinking more” offers no protection against bias. This again also relates to the
decoupling of levels of general intelligence from susceptibility to myside bias observed

in humans (K. Stanovich et al., 2013; K. Stanovich & West, 2007).

In certain contrast to mice during EdRR, however, humans do possess a powerful
capacity for outcome reinterpretation. We do not have the scope to develop this point
here, but the cognitive mechanism referred to informally as “sour grapes”, after the fable
of the fox and the grapes from Aesop and LaFontaine, precisely allows for absence of
reward to be reinterpreted as a positive event, often making this the most “rewarding”,
globally “reinforcing” cognitive option by which to “protect” the integrity of established
neural pathway circuitry (Kaplan et al., 2016). Thus, this manner of resolving cognitive
dissonance (Festinger, 1957) may certainly contribute to myside bias in humans, but is

in fact a distinct cognitive function.
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Choice-confirmation bias-like effects

Related to the human capacity for reinterpreting outcomes, we will very briefly return
to the preliminary investigation we conducted with respect to choice-confirmation bias-
like effects, i.e. a higher likelihood to try to confirm a choice when it led to a positive
rather than to a negative outcome. As we demonstrated, we were able to measure just
such an effect, to comparable extents, in both the R1 trained and the control
populations, with respect to both P(S1) being higher following S1+ versus S1- outcomes
and P(S0) being higher following SO+ versus SO- outcomes. On this point, it is also worth
noting that by the facts of the EARR rule, choosing, for example, S1 following either an
S1+ or an S1- will necessarily give rise to an error and therefore to an absence of reward,
meaning that whatever inherent kind of choice-confirmation bias there may be in mice,
it may actually be partially restrained by the EARR experimental design. In a scenario
where errors were not so rapidly guaranteed, it is possible this choice-confirmation bias-
like effect would be stronger. In humans, the potential for outcome re-interpretation, a
mechanism of resolution of cognitive dissonance (Festinger, 1957), may thus in turn also
amplify choice-confirmation bias-like behaviors in circumstances where, for example,
we convince ourselves our choice was good even if the outcome wasn’t. The question of
the precise cognitive, neurobiological, and evolutionary roots underpinning such
interactions between distinct behavioral and epistemic mechanisms remains rich terrain

for future investigation in both humans and animals.

Majority of bias suppression occurs through striatal and/or affective functions.

As we have just seen, both aged and especially DIx-CB;-KO mice are impaired in their
capacity for active forgetting. Interestingly, however, extinction of the R1 bias
proceeded at a similar rate in both of these populations as compared to wildtype
littermates and all other populations tested. In the case of DIx-CB;-KO, they did display
slightly more R1 bias than wildtypes in each session, but declining at a comparable rate.
Once again reinforcing the idea that higher cognitive ability is largely independent of
myside-like bias, this shows that the cortico-hippocampal capacity to perform the EARR
task offers only limited protection from the effects of R1 bias. As demonstrated by their
unaffected performance during R1 training (Stevens et al., 2022a), DIx-CB;-KO display

normal striatal function. Therefore, if, as we have already suggested, the striatum is
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responsible for incremental, statistical updating of response-outcome values, this, and
not cortico-hippocampal function, could be the major contributing factor to extinction
of R1 bias. In parallel, surface-based differences in run time and choice revision, which
we have at least partially related to amygdalar/affective function, also declined normally

over repeated EdRR training in both aged and DIx-CB:-KO mice.

A multiple memory systems conception of myside confirmation bias.

Taken together, the results validating the EARR model of everyday-like rule revision and
consequent myside confirmation bias, as well as the results from our preliminary
transgenic and ageing approach interventions using the model, open up a compelling
possibility: that the EAM and especially EARR task are uniquely capable of differentially
mobilizing up to four interacting (competing and/or cooperating) memory systems:
episodic memory, striatal memory, affective memory, and working memory (englobing
its dimension of inhibitory control; figure 8). Beginning with working memory, it is
widely accepted that Y- and T-maze spatial alternation preferentially engages this
memory system (Albayram et al., 2016; Aultman & Moghaddam, 2001; Jobson et al.,
2021; Shoji et al., 2012). In the classical EAM task also, various studies from our team,
including the present one, have shown that animals with either lesion of the CA1 region
of the hippocampus (Marighetto et al., 2011) or genetically induced episodic memory
dysfunction (i.e. DIx-CBi-KO, seen above) are still capable of above chance level
performance, but in level O trials only (and in the case of DIx-CB-KO only slightly above
chance). These results suggest that hippocampal memory is necessary for level 1 to level
4 complexity trials but not for level 0 trials, a conclusion that also fits with well-
established hypotheses which take working memory to be a cortical rather than
hippocampus-centered memory system (Baddeley, 2003; Curtis & D’Esposito, 2003;
Lara & Wallis, 2015). Nevertheless, with our results from DIx-CB:-KO and aged
animals, we also saw that the hippocampus is not sufficient for success on level 1 to 4
trials; top-down cortico-hippocampal active inhibition of interfering cognitive content

is also required.
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Figure 13 - Anatomical and functional mapping of multiple memory systems.
Translational interpretation of our results leads us to suggest that the cortico-

hippocampal contribution (blue squares above) to EARR behavior may be most closely
related to what is measured under the label of general intelligence or cognitive ability
in humans, which has been shown not to correlate with individual strength of myside
side bias, just as we found no correlation between EAM performance and either
strength of initial R1 expression during training or within-error R1 bias during EdRR,
the primary contributors to which, we hypothesize, may be signals from deeper and
more ancient structures, such as the striatum and the amygdala.
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In our schema of these multiple memory systems (figure 8), we have colored the cortical
and hippocampal systems in blue as being indicative of those memory systems most

closely related to measures of general (semantic, associative, etc.) intelligence in humans.

Increasing complexity in the EAM task is a matter of more and more uncertainty being
added to representational episodic memory recall via a combination of increased
interfering cognitive content from a higher number of interposed trials (o7, as proposed
above, an amnesia effect produced by adaptively forgetting this content on trials where
it is not needed) and time-dependent decline in the availability of precise and trial-
relevant cognitive content. During EdRR, on trials of high complexity, we observed that
the R1 trained population was significantly more likely to respond according to the S-
R, striatally acquired R1 rule than according to the exploratory spatial alternation EdAM
rule. It is therefore plausible to suggest the following mnemonic model of the behavior;
as contextualized cortical and hippocampal representational memory systems become
noisier, due to increased uncertainty, so action choice will increasingly fall to
decontextualized S-R striatal and/or affective amygdalar memory systems. In our schema
(figure 8), we have colored the striatal and amygdalar systems in orange as being
indicative of those memory systems most closely related to habitual, emotional, and
therefore most often labelled “irrational” responding, typically not directly elicited by
tests of general intelligence. If striatal R-O values are updating in some kind of ongoing
Bayesian manner (Ballard et al., 2018; Kim et al., 2009; Markowitz et al., 2018;
Nonomura et al., 2018; Samejima et al., 2005), incorporating the context-independent
full historic of P(RwlIS1) from both the EdRR and prior R1 environments, and if the
striatum is more heavily relied on to select action on more complex trials, then this could
explain why P(S1) remains significantly higher on complex trials compared to easier
ones until at least block 4 of EARR. We can also bring some convergent evidence to this
multiple memory systems hypothesis from our control group data. Here, we saw how,
starting from EARR 1, P(RwIS1) was reliably higher than P(RwIS0) in all sessions. In a
breakdown of both P(Sn) and within-error R1 bias according to trial complexity, we
also saw that controls developed a significant trend to choose S1 more than SO on level
4 trials and also committed a significantly higher proportion of errors towards S1 on
level 4 trials in blocks 2 to 4. If resorting to a striatal, and therefore statistical, response
strategy on the most complex trials is an innate feature, then since, overall, control mice

were statistically experiencing higher reward probability when they chose S1 compared
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to SO, it is plausible to suggest that this statistical S-R response strategy is what we saw
manifest in their significantly S1 biased level 4 surface choices. Similarly, it is not
impossible that for the same reason (S1 more often rewarded than S0), control mice also
developed a better “feeling” (i.e. via the amygdala) about that surface which could also
have biased their choices in that direction in the absence of a clear cortico-hippocampal
signal. However, we saw no sign of such an amygdalar contribution in control mice in
either their run time or choice revision behaviors, where no surface-based phenotype
developed over time, indicating to us (a question for further investigation) that the

striatum is more sensitive to subtle differences in response-outcome values.

If such an ongoing surface-based statistical evaluation is indeed taking place during the
EdRR phase, then rule revision with respect to R1 may be a case of taking one step
backward for every two steps towards overcoming R1 responding in favor of the spatial
alternation behavior necessary for successful EAM performance. This would seriously
delay the updating process compared to, for example, more classical all-or-nothing
reversal learning protocols, and could therefore be a key component in the lag we
observed in R1 trained animals with respect to their updating of P(Sn) as a function of
both P(RwISn) — whereby P(RwIS0) was significantly higher than P(RwIS1) for the first
9 sessions of EARR but P(S1) remained significantly higher than P(S0) throughout all 12
sessions — and the balance of R1 confirmations versus disconfirmations — where per

session R1 disconfirmations significantly outweighed confirmations for the first §

sessions of EdRR.

Finally, striatal memory would not play a role only in the most complex trials. Since the
striatum is essential to the selection and initiation of movement, it is ultimately involved
in decision-making, and especially decision execution, at all levels of complexity. Indeed,
in the R1 trained population, striatal S-R responding leads to significant interference at
all trial complexity levels, but at levels 3 and 4, striatal response may be the only recourse
left to the organism. The role of the striatum in action choice has previously been
modelled as a softmax action selection rule (Kim et al., 2009) whereby the probability
of choosing one action over another (e.g. “explore arm on the left” vs “explore arm on
the right”, or “respond to S1” vs “respond to S0”) varies according to the difference
between the values attributed to each of the potential actions (e.g. a = (Os1 — Oso), where

a stands for the chosen action and O stands for the estimated/predicted value of each
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action option (e.g. Qs = estimated/predicted value of choosing S1), as per the O-
Learning reinforcement learning approach (Watkins & Dayan, 1992)). In this kind of
picture, what we suggest is that on easier complexity trials, signals coming from cortical
working memory and/or hippocampal episodic memory to the striatum are low in
uncertainty/noise. These signals, along a certain probability distribution, would have the
capacity to tip the Qsi vs Qso balance away from the striatum’s local and historical
valuations of these options. However, as uncertainty increases, the signals coming from
these upstream memory systems would become noisier and thus less able to influence
striatal action selection. The same can be suggested with respect to a putative amygdalar
contribution to decision making, especially post-initial choice cognition, since the
parameters we have related to this, i.e. run time and choice revision, actually tend to be
strongest on easier trials in classical EAM but not in EdRR, where they are equally

distributed across trial complexity levels.

If, as we suggest, this multiple memory systems interpretation of myside confirmation
bias-like behavior is accurate, then what psychology refers to as myside bias may be
fundamentally a latent neurobiological fact of all organisms which have evolved just
such multiple memory systems; stimulated, co-opted, exapted into action in the case of
humans by the specific epistemic environments of belief, knowledge, persuasion, and
indoctrination we have created for ourselves. We believe that our present study has

opened the way to much future research in this direction.
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Supplementary Figures S.1-3:
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Supplementary figure S. 5 - Absence of correlations hints towards interaction of multiple
cognitive systems.

Several linear regression analyses were calculated from individual R1 trained population
parameters in order to look for correlations between behaviors which intuitively could have
been correlated. (A) No correlation was found between summed tactile discrimination (R1)
performance in the training phase and summed EAM performance during EdRR (a negative
correlation might have been expected). (B) We then weighted the R1 performance, discounting
earlier compared to later performances, in case earlier low R1 performances were occluding a
relationship, but still no correlation between these two behaviors. (C) Specifically between R1
performance in the final R1 session only and within-error R1 bias during the first EARR session
only (two sessions which were separated by 24 hours), we again found no correlation. Notably,
both relatively weak and strong R1 performers were just as likely to display a 100% S1 error
bias during EARR 1. (D) Finally, having observed that novelty per se had a major impact on
behavior, especially during EARR 1, we instead compared individual EI values in EARR 2 with
levels of within-error R1 bias also in EARR 2, but again no correlation was seen.
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Supplementary figure S. 6 — S1 bias clear and robust during EARR, as a relative difference
within errors and as a function of trial complexity in overall P(S1).
All error bands represent 95% confidence intervals, vertical spaces between bands indicate

statistical significance (detailed statistical analyses in main text). (A) Isolated P(Sn) values for
initial 3 trials which are omitted by analyses by trial complexity. Once again, the impact of
novelty on initial exploratory behavior in R1 trained animals during EARR 1 is very clear.
Following EARR 1, P(S1) is significantly higher than P(SO) in almost all sessions in the R1 trained
population. In controls, we observed more fluctuation, but still with a slight tendency for P(S1)
to be higher. Recall that in these initial 3 trials, i.e. the first trial on each pair, only S1 was
rewarded, thus P(RwIS1) = 1 and P(RwISO) = O for these trials. (B) Linear regression analysis
found no correlation between final R1 performance and overall P(S1) in EARR 1. (C) P(Sn) as a
function of trial complexity averaged across all sessions/blocks. In this representation, it is clear
that P(S1) is, on average, slightly higher in controls on all trial complexities above level 0, but
this reaches significance only on level 4 trials. (D) As we had done for the overall within-error
R1 bias index, we also calculated the relative difference in S1 versus SO errors as a function of
trial complexity. At this level, there was no dependence of within-error R1 bias on trial
complexity, only a slight dependence on time/repeated training which mirrored the trend of the
overall within-error R1 bias to decrease over time. However, in controls, we can again see that,
in blocks 2-4 especially, this population was significantly more likely to make errors on S1 than
on SO arms on complexity level 4 trials. (E) Having seen from figure 4 that P(Sn) in R1 trained
animals seemed to mark out 3 distinct groupings of complexity (level 0, easy; levels 1-2, medium;
levels 3-4, complex), we looked at P(S1) in the final R1 session (which was equal, by definition
of the task, to R1 performance) and compared it to P(S1) values across the first block of 3 EARR
sessions grouped according to these three levels. This provides a clear visual representation of
just how close R1 trained animals were in early EdRR sessions to performing on complex trials
almost identically to how they had performed in the R1 environment where they had never
experienced any R1 disconfirmations.
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Supplementary figure S. 7 — R1 bias disturbs development of normal EAM phenotype in
deliberative behaviors.
All error bands represent 95% confidence intervals. (A) top; median run time by surface by

difficulty by block. (A) bottom; median run time by outcome by difficulty by block. As shown
above, R1 trained animals maintain persistently lower run times on S1 in all blocks and at all
trial complexity levels. As a function of outcome, we can see that controls in EdARR more quickly
develop a stable run time phenotype across all trial complexities (i.e. higher run times on
incorrect outcome trials; see supplementary figures A.3 + A.6) compared to R1 trained animals,
which show a lag in this respect on more complex trials especially. This could, precisely, be
caused by a sustained “over-confidence” effect on S1 choices, independently of outcome. (B)
Mean total choice revision by difficulty. Averaged across all blocks, R1 trained animals
displayed significantly more choice revision than controls at all trial complexities. However,
both groups engaged in significantly more choice revision behavior on level 0 trials. (C) Mean
total choice revision by difficulty by surface. Dividing mean choice revision values according to
surface further reveals that choice revision in R1 trained animals, but not controls, that
terminated on S1 surfaces was equally high on all trial complexity levels, or rather was just as
high on level 1-4 trials as it was on level O trials. This indicates that striatal R1 cognitive content
has a greater capacity to remain active and potentially intrusive at any trial complexity level, in
contrast to cortico-hippocampal EAM content which decreases in activation (putatively as an
effect of adaptive forgetting), thus leaving fewer EAM elements capable of provoking choice
revision, as a function of complexity level. (D) In level O trials, almost all choice revision in
controls was rectifying whereas R1 trained animals were comparatively likely to make an error
with as without choice revision. 88% of these errors with choice revision, averaged across all
blocks, were from S1 final choices (see main text).
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Appendix / Supplementary material

Preliminary experimental interventions.

Having characterized our novel protocol and demonstrated its face validity as a model
of both rule revision and ‘myside’ confirmation bias in an everyday-like memory-based
cognitive task, we next employed both genetic and ageing approaches to test its practical
potential as a tool for dissecting and better understanding the underlying cognitive and
neurobiological mechanisms. In this secondary results section, we briefly summarize the
data collected from a selection of exploratory experiments, primarily with a view to
demonstrating the model’s potential to both inspire novel research questions and carry
forward established domains of research, such as the impacts of ageing on cognition.

These results are referenced where appropriate in the discussion of the main paper.

A.1 Genetic approaches.

A.1.1 Independence of R1 acquisition and expression demonstrated via manipulation of
striatal function.

As seen and discussed in detail in Stevens et al., 2022a, D;-CB;-KO mice (a mouse breed
in which CB: has been conditionally deleted from dopamine type-I receptor (D)
expressing neurons of the forebrain) were impaired in R1 expression but not acquisition
compared to wildtype littermates. Within the striatum, D; are expressed on inhibitory
GABAergic medium spiny neurons of the direct pathway. CB; expressed on the pre-
synaptic element of these neurons exert a retrograde inhibitory modulatory effect, thus
producing a net effect of inhibiting an inhibitory signal. Deletion of CB; receptors from
these neurons has been shown to potentiate their net inhibitory signal (Soria-Gomez et
al. 2021). Thus, our hypothesis for the R1 phase had been that continued selection of
the spontaneous exploratory response would be potentiated in D;-CB;-KO animals,
rendering this cognitive strategy more resistant to the active inhibition necessary to allow
the R1 response strategy to be properly “chunked” (i.e. consolidated from multi-
component actions into a singular, direct pathway selectable one, such as riding a bicycle

or touch-typing) and thereby expressed in a sustained manner also via the direct pathway

(Graybiel 1998; Jin, Tecuapetla, and Costa 2014).
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Supplementary figure A. 1 — R1 expression performances of transgenic and aged cohorts
during R1 training phase.
All error bands represent 95% confidence intervals. (A) Wildtype mice (red, n=13) plus D;-CB;-

KO subdivided into two populations: D1-CB1-KOupy_ciie (, n=11), who reached R1 criterion
performance of 75%, and; D1-CB1-KOpy_cie (blue-gray, n=5), who did not. (B) R1 performance
was restored and even reinforced in D1-CB1-KOg./. (magenta, n=6) who expressed and sustained
R1 more rapidly and more robustly than D;-CB;-KOs.. mice (blue-gray, n=6). (C) No
significant differences in R1 expression were observed between wildtype (red, n=6) and Dlx-
CB;-KO mice (green, n=8). All individuals from both groups reached criterion performance. (D)
Aged R1 trained mice (red, n=11) required extensive training compared to young adult mice to
reach R1 criterion performance. Even after 17 sessions of training, 3 of the aged individuals still
showed no signs of reaching it and were thus excluded and not brought to the EdRR phase. (E)
The only phenotype observed in DIx-CB;-KO mice during R1 training was their slightly but
significantly longer (when averaged across the § final pseudo-random R1 sessions) run times on
SO choices.
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R1 acquisition versus expression during EdRR: Our direct pathway potentiation
hypothesis implied what we might call a threshold effect; the R1 strategy would meet
more resistance in becoming “chunked”, but if and when this happened, we should then
no longer observe a phenotype related to its expression, since this expression would
henceforth also be controlled via the direct pathway. To explore this idea, we divided
the D1-CB1-KO mice into two groups at the end of R1 training; those that had reached
criterion level R1 performance and those that had not. Those who had reached criterion
we labelled D1-CBi-KOuby_oric (n=11, including 3 borderline cases whose highest 2-session
average R1 performance was 73.9% rather than 75%, but who had performed above
80% in at least one session), and those who had not reached criterion we labelled D;-
CB1-KOpw_ciie (n=5) (see supplementary figure A.1a). As reported in Stevens et al., 2022a,
we observed no difference in measures of R1 acquisition between these two groups,
despite the significant difference in expression. At this point, we posited that, if our
original hypothesis were accurate (i.e. that D1-CB1-KOpw_cri animals failed to reach R1
criterion due to a failure to sufficiently inhibit spontaneous exploration), then in the
EdRR task, which leans on the spontaneous exploration behavior of spatial alternation,
we should observe stronger performances in below criterion animals compared to above
criterion animals, whether D1-CB;-KO or wildtype. (Recall that in a pilot study, we had
observed no memory related or other cognitive phenotype differences in D;-CB;-KO
mice compared to their wildtype littermates in the classical EAM protocol, see

supplementary figure A.3a-d.)

As predicted, the D1-CBi-KOpy_cric group performed significantly better in EARR than
both above R1 criterion wildtype and D1-CB1-KO,py_crie animals, not only at first, but
reliably over the course of 6 sessions of EARR. In contrast, there was no significant
difference in EAM performance between the Di-CBi-KOub i and wildtype groups
(supplementary figure A.2a; one-way ANOVAs with pairwise Tukey HSD post-hoc; Di-
CBi1-KObyw_cric v8 D1-CB1-KOQupy_crie, F(1, 94) = 16.1, p = 0.001; D1-CBi-KObyw_cic vs WT,
F(1, 88) =15.4, p = 0.001; D1-CB1-KOaby_crie vs WT, F(1, 124) = 0.04, p = 0.85). This is
strong evidence in favor of our hypothesis that the cognitive mechanisms which had
prevented D;-CBi-KOpy_oic from reaching R1 criterion were indeed related to the
strength of expression of the spontaneous exploratory drive which the classical EAM
task was precisely designed to mobilize (Al Abed et al. 2016). However, despite this
stronger EAM performance, the D1-CBi-KOpyw_oric group were equally biased towards S1
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Supplementary figure A. 2 — Below R1 criterion D1-CB;-KO mice display significantly stronger
EdM performance, but still biased.

All error bands represent 95% confidence intervals. (A) EAM performance during EARR. Both
wildtype (n=10) and D;-CBi-KOgby_oic animals (n=11) displayed characteristically poor EdM
performances during initial EARR sessions. In contrast, D1-CB-KOypy_aic animals scored above
chance level starting from EARR 1 and reliably performed better than the other two groups
across all EARR sessions. (B) Within-error R1 bias results, however, revealed that, despite there
being fewer of them in total, on the errors they did commit, D1-CB1-KOy,,_cic were just as biased
towards S1 as their above criterion littermates, wildtype and KO. (C) P(Sn) values revealed that
all three groups, despite different starting values, quickly dropped to and maintained similarly
higher P(S1) compared to P(S0) values. (D) In terms of run time according to surface also, Di-
CB1-KOpy_aic animals displayed at least equal sensitivity, with comparably larger run times on
SO compared to S1 surfaces observed in all three groups.
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in their errors (supplementary figure A.2b) and also, albeit slightly less than the D;-CB;-
KOuby crie and wildtype groups, in their overall P(S1) behavior (supplementary figure
A.2¢). Moreover, in terms of sensorial environmental feedback, when we looked at run
time by surface chosen in the EARR phase, we saw that the Di-CBi-KOpy_cie group
displayed the same characteristically significant higher run times on SO compared to S1
(supplementary figure A.2d), indicating that the R1 bias we were observing may itself
be best understood as a striatally-based matter of expression rather than a cortical

question of cognitive content.

Re-expression of CB1 receptors in D1 expressing neurons of the striatum rescues
capacity for exploitation of an exploration-antagonistic stimulus-response rule: In order
to verify the deficit in overall R1 performance we had observed in the D;-CB;-KO
population was indeed related to CBi-mediated mechanisms in the direct pathway, we
used a viral approach to re-express CB: receptors locally in Dy expressing neurons of the
striatum (D1-CB1-KO-Str,.., n = 6). We hypothesized that this re-expression would rescue
expected levels of R1 exploitation compared to D:-CB;-KO animals injected with an
empty vector virus also in the striatum (D:-CB;-KO-Str.., n = 6; see Materials &
Methods). Verifying this, in the R1 phase, we observed that D;-CB;-KO-Str,/, mice did
perform significantly better in R1 than D;-CB;-KO-Str.. mice, strongly expressing R1
both earlier and more robustly (less session-by-session variance) than D;-CB;-KO-Str..
mice (supplementary figure A.1b), and even comparatively stronger than wildtype
animals from other iterations of the experiment. Since viral re-expression of CB; using
the CAG-promoter method generally gives rise to an over-expression relative to wildtype
levels (Hitoshi, Ken-ichi, and Jun-ichi 1991), we suggested increased inhibitory
modulatory control in the direct pathway, due to local CB; over-expression, as a putative
explanation for this group’s improved capacity to inhibit spontaneous exploratory
behavior, thereby allowing for earlier and stronger R1 expression, via the mechanisms

detailed above.
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Supplementary figure A. 3 - D1-CB1-KO display no specific phenotype in classical EAM task.
Before characterizing how different transgenic mouse lines would respond in the EdRR task, we
first ran preliminary tests to measure their performance in the classical EdM task. All error bands
represent 95% confidence intervals. We also measured more detailed cognitive behaviors like
decision latency and, thanks to analyses we developed for the EARR task, also run time and
choice revision. (A) % Incorrect responses according to difficulty. Wildtype (red, n=6) and Ds-
CBi-KO (lavender, n=6) animals displayed almost identical and characteristic EdM
performances, committing least errors on level 0, and globally more errors as trial complexity
increased. (B) Decision latency by trial complexity by outcome. Again, both groups displayed a
characteristic profile of decision latencies decreasing as a function of trial complexity. We believe
this highly replicable phenotype may be the result of having more detailed active cognitive
content to process on easier trials compared to more complex one where, precisely, relative
cognitive content has already significantly faded, as reflected in performance, and perhaps here
also. Interestingly, especially on easier trials, decision latencies on trials were the outcome was
an error tended to be slightly longer than when the outcome was correct. (C) Run time by trial
complexity by outcome. This is the first time post-decision run time in the classical EAM task
has been characterized. What we see is that run time when the outcome is correct is stable across
all trial complexity levels but is higher on easier trials when the outcome is incorrect, decreasing
then as a function of trial complexity. This indicates a higher level of hesitancy, a lower level of
post-choice confidence when animals are travelling down what will be an unrewarded arm.
What cognitive processes lead to this phenotype, whether it reflects “suspicion” of error or
“intentional” EdM transgression, these are open questions. (D) Choice revision by trial
complexity by outcome. Similarly, mice were more likely to revise their choice on easier trials
and, overall, but especially on easier trials, choice revision was rectifying significantly more often
than error-inducing. Indeed, choice revision in these two groups, as we can see, almost never
resulted in error.
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When moved to the EARR environment, however, no significant differences were
observed between the D;-CB-KO-Str.. and D;-CB:-KO-Str,, groups in EdM
performance (supplementary figure A.4a), in P(Sn) values (supplementary figure A.4b),
in decision latency (supplementary figure A.4c), or in choice revision (supplementary
figure A.4d). The D1-CB,-KO-Str,,, group did, however, display higher overall run times
than D;-CBi-KO-Str,. and also higher run times specifically on SO choices
(supplementary figure A.4e; one-way ANOVAs with pairwise Tukey HSD post-hoc,
between ‘Group’, F(1, 142) = 19.6, p = 0.001; within ‘Surface’ [SO] between ‘Group’,
F(1,70) =10, p = 0.003). This indicated that the D:-CB-KO-Str,.. group retained higher
cognitive sensitivity and responsivity (putatively via increased CB; modulatory activity)
to tactile-based reward location probabilities grounded in striatal S-R mechanisms, even
though this did not have a manifest effect on their EdM choice behavior. This may also
constitute further, retrospective evidence that what allowed these animals to attain and
maintain higher R1 expression in the first phase was indeed a case of ongoing active
mechanisms of inhibition, rather than a case of simply reaching a “state” of stronger R1

responding.

211



212

sasuodsay 1931100 %,

uoissag uolssag uolssag uolssag uolssag
9 s v £ z 13 9 s 14 € z 13 9 s L4 € z 13 9 s ¥ £ z L 9 s 14 £ z 13
000k Fro
~ Lo 0002 asueyy --—-
e
f—— —r— T (0S)d =w= .
= o T sl . rzo
L i = —_—m 0008 (18)d —o— A -
7 b \ 005k (ug)d P u . -
Y . L = d\“pl/!\. ooy g | *ISONIEDD — T €0
——— // R 5 -ng-oyigoia — 7
z Yo 2,
] dnoug [ Lyo
" N 000z m 000§ M. o — |x|“\.;
N | 3 \, z ===
le © N 3 2
& N 2 oo B ——
A S oosz 3 2 . . T
% ~ Z -
v ooz 3
05 == 08 == 08 =#= 3
15 —.— IS —.— IS —-— 7 .
ussoy) svseung s uasoyy aoeuNg oooe uasoY) 92BHNG 0008 . soueyy -
+1S-04 18010 —— +1S-0Y4-190-10 —— +I1S-0N- 190710 —— N (g=u) +11S-0M-180-10 ——
-15-0)-182-40 —— -1S-0M-1807 10— -S-OX- 18210 —— 0006 (9=u) -N18-0X-180-1Q ~——
dnoigy dnoig oose dnoig dnog
B2BJING X UOISIASY a210YD @0BLING X awI] uny 82BHNG X 8w} uoisioag (08)d sA (18)d aosuewlopad WP3



Supplementary figure A. 4 - Re-expression of CB1 locally in striatum of D1-CB;-KO mice had
no impact on EARR performance.
During R1 training, we had observed that D-CB-KOg.. mice expressed R1 more rapidly and

more robustly than their D1-CB1-KOy... littermates. However, when we moved them to the
EdRR environment, they displayed neither worse EAM performance nor higher bias than their
littermates. All error bands represent 95% confidence intervals. (A) % Correct EAM responses.
Di-CBi-KOgyurr performed equally poorly initially as their D;-CB;i-KOygy... littermates and
improved their EAM performance at a similar rate. (B) P(Sn). In terms of surface choice
probability, both groups showed equally significant preference for choosing S1 over SO and
displayed comparable decrease in this preference with repeated EARR training. (C) Median
decision latencies by group and by surface. Both groups displayed comparable decision latencies
with no significant difference according to surface chosen. Values were, however, highly
variable, especially in Di-CB1-KOsy. animals. (D) Median run times by group and by surface.
D1-CB1-KOgye displayed consistently higher median values in run time on both S1 and SO
surfaces compared to D1-CB1-KOyx,... littermates, once again with very high variability. (E) Mean
total choice revision by group and by surface. Both groups displayed significant S1 favoring
choice revision behavior, which decreased at a similar rate in both populations with repeated
EdRR training.
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A.1.2 Inhibition of R1 interference independent of successful EAM performance.

In order to begin disentangling hippocampal from striatal contributions to R1 rule
revision in the EARR environment, we turned to the DIx-CB-KO transgenic mouse line,
in which CB; receptors are conditionally deleted from all GABAergic neurons of the
forebrain. In preliminary work, we had validated the hypothesis that DIx-CB;-KO mice
would be severely impaired in the hippocampus-dependent classical EdM task
(supplementary figure A.6a-b). This hypothesis had been based in part on work showing
that CB, expressed on GABAergic neurons of the hippocampus are necessary for the
formation of second-degree indirect associations but not first-degree direct associations
(Busquets-Garcia et al. 2018). Hypothesizing that this impairment could be caused by a
dysfunction in the specifically organizational and active inhibition/adaptive forgetting
dimensions of cortico-hippocampal memory (two key cognitive elements of the classical
EdM paradigm), we had therefore predicted that DIx-CB;-KO would be incapable of
successfully performing the EAM task, albeit in a task complexity-dependent manner.
Specifically, we predicted they would achieve better than chance performance on level 0
trials, since we had also verified, confirming the literature (Albayram et al. 2016), that
this mouse line had no deficit in basic Y-maze spontaneous alternation (data not shown).
Moreover, previous work from our lab had shown that animals lesioned in the CA1
region of the hippocampus had relatively normal performances on level 0 complexity
trials of the EAM task but did not reach better than chance performance on any of the
more complex levels (Marighetto, Brayda-Bruno, and Etchamendy 2011). Looking at
supplementary figure A.6a, the deficit in performance in DIx-CB;-KO mice compared to
their wildtype littermates is clear and striking. Beyond this between group difference, we
can see a clear effect of ‘Difficulty’ in the wildtype group (one-way ANOVA, F(4, 985)
= 30.1, p < 0.0001; pairwise Tukey HSD post-hoc tests revealed statistically significant
differences in 6 out of 10 levels of comparison). Looking closer only at the DIx-CB;-KO
results, level 0 was slightly but significantly above chance performance (t-test with
Welch correction and unbiased Cohen effect size between complexity level 0
performance and chance level of 50%, #(206) = 3.3, p = 0.001, d = 0.23) but when we
ran an ANOVA to check the statistical significance of the slight effect of Difficulty visible

on the graph, this trend did not achieve significance at any level of
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Supplementary figure A. 5 - CB1 deletion from GABAergic neurons impairs EARR
performance, increases initial R1 bias, but does not impair its extinction.

All error bands represent 95% confidence intervals. (A) % Correct EAM responses. DIx-CB;-
KO performed consistently more poorly than their wildtype littermates. Their mean population
performance never went beyond chance level performance. (B) % EdM errors as a function of
trial complexity. Wildtype animals displayed characteristically higher performance on level 0
trials, but DIx-CB-KO performed comparably poorly on all levels, including level 0. (C)
Probability of surface choice. DIx-CB;-KO displayed consistently higher P(S1) compared to
wildtype littermates, but this value did decrease at a similar rate in both groups as a function of
repeated EARR training, indicating that DIx-CB;-KO mice were capable of revising R1 despite
not being able to perform EdM. (D) Median run times by group and by surface. DIx-CB;-KO
were also more sensitive to surface in terms of displaying even higher run time values on SO
compared to wildtype animals. (E) Mean total choice revision by group and by surface. Both
groups displayed comparable phenotypes for choice revision; more in earlier EdRR sessions and
favoring S1 final decisions. (F) Mean total choice revision by group and by outcome. Similarly,
looking at choice revision as a function of final choice outcome (correct or incorrect EdM
response), no significant differences were observed.
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Supplementary figure A. 6 - CB1 deletion from GABAergic neurons severely impairs EAM
performance.
Prior to analyzing their response to the EdRR protocol, we first characterized how DIx-CB;-KO

mice would behave in the classical EAM task. We had predicted they may be slightly impaired,
but in fact these preliminary studies revealed a more extreme phenotype than we had expected,
including increased levels of cognitive behaviors in deliberative decision-making parameters. All
error bands represent 95% confidence intervals. (A) % Incorrect responses according to
difficulty. Wildtype animals (red, n=14) displayed characteristic EAM performance as a function
of trial complexity, with highest scores on level 0 trials. In contrast, DIx-CB-KO (green, n=15)
attained only slightly, albeit significantly higher performance on level 0 and level 1 trials only.
Performance on all other complexity levels did not go beyond chance. (B) However, when
intertrial interval was increased to 20s, this improved DIx-CB;-KO performance on level 0 trials,
reflecting an improvement putatively due to increased “passive” forgetting of interfering
cognitive content. (C) Median decision latencies by difficulty and by outcome. DIx-CB;-KO
displayed robustly higher decision latencies across all trial complexity levels independently of
outcome and otherwise following the same phenotype seen in wildtype animals; higher decision
latencies on easier trials, decreasing steadily as a function of difficulty. (D) Median run times by
difficulty and by outcome. Wildtype animals here displayed the same characteristic run time
phenotype seen in D1-CB1-KO and wildtypes; higher run time on incorrect outcome trials,
higher on easier trials and decreasing as a function of difficulty. In contrast, DIx-CB;-KO
displayed significantly higher run times with no dependence on trial complexity or outcome. (E)
Mean total choice revision by difficulty and by outcome. Again, wildtype animals displayed the
same characteristic phenotype as other groups; more choice revision on easier trials, significantly
favoring correct outcomes. DIx-CB;-KO displayed significantly more choice revision,
independently of trial complexity and outcome. These three deliberative phenotypes in DIx-CB;-
KO indicate a surplus of active cognitive content which led us to theorize a deficit of adaptive
forgetting in this mouse line.
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comparison (one-way ANOVA, F(4, 1030) = 2.2, p = 0.07). In short, performances, as
predicted, were better on level 0 trials, but this difference was smaller than we would
have predicted, demonstrating that DIx-CB;-KO are in fact more impaired in the EdAM
task than animals with lesions to the CA1l. Finally, when we increased the inter-trial
interval to 20000ms, performance in DIx-CB:-KO mice on complexity level 0 trials only
improved significantly compared to performance on the same complexity trials at ITIs
of 10000ms and below (supplementary figure A.6a-b, t-test with Welch correction
between complexity level O performance at ITI = 20000 and at ITI <= 10000, #(22) = 3,
p = 0.005), constituting further evidence that the deficit in this mouse line was indeed at

the level of active inhibition/adaptive forgetting, the cognitive need for which decreases

as a function of increasing I'TI (Al Abed et al. 2016).

Interestingly, in these pilot experiments in the classical EAM task, we also observed that,
compared to their wildtype littermates, DIx-CB;-KO animals displayed amplified overall
cognitive activity in decision latency, run time, and choice revision behavior (one-way
ANOVAs with pairwise Tukey HSD post-hoc; decision latency, F(1, 433) = 15.3, p =
0.001; run time, F(1, 867) = 45.4, p = 0.001; choice revision, F(1, 868) = 39.1, p =
0.001). However, in contrast to wildtype animals, run time was not dependent on
whether or not the arm chosen was the correct one (as seen above with D;-CB;-KO and
their wildtype littermates, run time was significantly higher, in a trial complexity-
dependent manner, in wildtype animals on trials where the incorrect arm was chosen;
supplementary figure A.6d; one-way ANOVA with pairwise Tukey HSD post-hoc on
overall run times between ‘Outcome’, correct or incorrect; wildtype group, F(1, 417) =
7.8,p =0.005; KO group, F(1,448) =0.17, p = 0.68; trial complexity-dependent element
visible in figure). Nor did the amount of choice revision depend on trial complexity in
KO animals (one-way ANOVA with pairwise Tukey HSD post-hoc revealed a
significant effect of ‘Difficulty’ in choice revision in wildtype animals, with specifically
significant effects in level 0 vs 2, 0 vs 3, and 0 vs 4, F(4, 1045) = 8.7, p = 0.001; in Dlx-
CB1-KO animals, no significant effect of ‘Difficulty’ was observed, F(4, 1120) = 0.6, p =
0.63). Finally, choice revision was also not more likely to be rectifying than error-
inducing in DIx-CB;-KO mice, unlike in wildtype animals (one-way ANOVAs with
pairwise Tukey HSD post-hoc on choice revision between ‘Outcome’ correct or
incorrect; wildtype, F(1,418) =20.1, p = 0.001; DIx-CB-KO, F(1, 448) = 0.1, p = 0.72).
All of these results point towards an over-active and thereby imprecise treatment of
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online cognitive content in DIx-CB;-KO mice, spilling over to severely affect even the
spontaneous alternation equivalent level 0 complexity trials, indicating that a
characteristic of their endophenotype is a dysfunction of targeted, top-down active
inhibition, in turn responsible for the organizational adaptive forgetting necessary for

successful EAM performance.

Deletion of CB1 receptors from GABAergic neurons of the forebrain does not impact
expression of an exploration-antagonistic S-R rule: The phenotypes seen in DIx-CB;-KO
mice above, in the hippocampus-dependent EAM task, made it all the more striking
when this same mouse line displayed no phenotype in the preliminary R1 training phase
of our rule revision protocol (supplementary figure A.1c). Indeed, this reinforces the idea
we put forward in Stevens et al., 2022a, that the R1 tactile discrimination task is
dependent upon the striatum and not the hippocampus. These R1 results also fit with
recent work, mentioned above, showing that DIx-CB;-KO mice have no phenotypical
impairment in forming direct associations (Busquets-Garcia et al. 2018). The only factor
in which we observed a difference during R1 training was run time, with DIx-CB;-KO
mice being slightly more sensitive, albeit erratically so, to the SO surface than their
wildtype littermates, giving rise to a significantly higher SO run time when averaged
across the final, fully pseudo-random sessions of R1 (supplementary figure A.le; one-
way ANOVA with pairwise Tukey HSD post-hoc within SO run times between ‘Group’,
F(1,136) = 4.3, p = 0.0078).

Deletion of CB1 receptors from GABAergic neurons of the forebrain increases R1
interference during EdRR without impeding its inhibition: When both groups were
moved to the EdRR phase (all subjects from both groups reached criterion in R1), we
observed a significant effect of repeated training on performance in both groups.
However, only wildtype animals rose above chance level EAM performance; DIx-CB;-
KO mice, as predicted, did not (supplementary figure A.5a). Indeed, DIx-CB;-KO mice,
but not wildtype, performed significantly below chance level during the first three
sessions (t-tests between block 1 performance and chance level of 50; DIx-CB;-KO, t(23)
= 6.6, p < 0.0001; wildtype, t(17) = 0.8, p = 0.45). In the second block, DIx-CB;-KO
were closer to chance level but wildtype animals performed significantly better than
chance level (t-tests between block 2 performance and chance level of 50; DIx-CB;-KO,
t(23) = 1.5, p = 0.14; wildtype, t(17) = 3.5, p = 0.003). Averaging across all EdARR
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sessions to look at EdRR errors by trial complexity level, we observed that R1 trained
wildtype animals performed well primarily on level 0 trials, whereas R1 trained DIx-
CB-KO mice were at below chance performance at all trial complexity levels We also
observed a trend for DIx-CB:-KO to have higher P(S1) and lower P(S0) values compared
to wildtype animals in each session. This difference was statistically significant in the
first block but not in the second (supplementary figure A.5c; one-way ANOVAs with
pairwise Tukey HSD post-hoc, block 1, F(1, 40) = 8.7, p = 0.005; block 2, F(1, 40) =
1.5, p = 0.23), reflecting what is visible in supplementary figure A.5c; that, despite failure
to perform beyond chance level in the EARR task, DIx-CB;-KO mice did in fact inhibit
R1 interference at a similar rate to their WT littermates, albeit beginning from a higher
starting point. In terms of run time, we observed a similar and significant trend as in the
R1 phase for the DIx-CB;-KO mice to be more sensitive to SO, with even larger run times
on this surface compared to WT mice (two-way ANOVA, ‘Group’ and ‘Surface’, F(1,
164)=4.8, p = 0.03, with Tukey HSD post-hoc on ‘Group*Surface’ interaction revealing
a significant KO SO vs WT SO effect, p = 0.001). When we analyzed choice revision
(supplementary figure A.5e-f), we observed that, in contrast to the classical EAM pilot
we had conducted (supplementary figure A.6e), DIx-CB:-KO animals did not display
this behavior more than wildtype animals in the EARR task (one-way ANOVA, F(1,
166) = 1.29, p = 0.4). This may be explained by the fact, observed in our characterization
of the EdRR paradigm (figure 7e-f), that prior R1 learning in itself increases choice
revision behavior, which may occlude a prior learning-independent trend towards
increased choice revision specifically in the DIx-CB:-KO. We did, however, observe that
in the second block (sessions 4-6) DIx-CB:-KO but not wildtype mice were still revising
their choice more towards S1 than towards SO (block 2, one-way ANOVAs within
‘Group’ between ‘Surface’ with pairwise Tukey HSD post-hoc; WT, F(1, 34) = 1.4, p =
0.71; DIx-CB-KO, F(1, 82) = 9.6, p = 0.003). This result coincides with the fact that in
block 2, wildtype animals began to revise their choice more often in a rectifying than in
an error-inducing manner, to a greater extent than DIx-CB;-KO mice, though this did
not reach statistical significance. On this last point, we again draw attention to the
preliminary classical EAM experiment we conducted with the DIx-CB;-KO line, during
which we observed that KO animals, despite performing significantly more choice
revision, did so in a way that was no more likely to give rise to a correct than an incorrect

EdM response (supplementary figure A.6e).
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Supplementary figure A. 7 - Aged mice displayed robust EAM deficit in conditions of R1 rule
revision compared to controls.

Aged R1 trained animals (red, n=8) displayed robust R1 bias but, unlike young adult R1 trained
mice, also performed more poorly than controls (blue, n=7) in EAM across all sessions of EARR.
Error bands represent 95% confidence intervals. Vertical spaces between error bands indicate
statistical significance (for detailed statistical analyses, see main text). (A) % Correct EAM
responses. As with young adult mice, both R1 trained and control animals performed poorly in
initial sessions. With repeated training, controls, especially in blocks 3 + 4, improved their
performance slightly, whereas the R1 trained population did not. Averaged across all sessions,
controls thus performed significantly better. (B) Errors by surface type by block. R1 trained
animals were highly biased in their errors, especially in block 1. This bias decreased rapidly but
remained significant in later blocks also. (C) top row, % Incorrect EAM responses by difficulty
and by block. Control animals performed significantly better on level O trials in all blocks, with
their performances on all levels, but especially 0, globally improving over repeated EdRR
training. R1 trained animals performed slightly better on level O trials, significantly so in block
1 and averaged across all blocks, but did not perform at higher than chance level on any other
trial complexity level. (C) middle row + (E) P(Sn) by difficult and by block. Control animals
displayed highly erratic behavior in terms of surface choice probability, nevertheless with a
strong tendency, significant when averaged across all blocks to have higher P(S1) values on level
4 trials, similar to what had been observed in young adult controls. R1 trained animals displayed
globally higher P(S1) values, especially in block 1, but this too was more erratic than what had
been observed in young adult mice. (C) bottom row + (D) P(RwISn) by difficulty and by block.
In aged controls, as with young adults, P(RwIS1) was globally higher than P(RwIS0), which
could, once again, explain their higher P(S1) values on level 4 trials. R1 trained animals had
higher P(RwIS0O) values than P(RwIS1) values but in block 1 only, after which P(RwlISn) values
fluctuated somewhat erratically. (F) Median run times by surface by session. Run times in aged
control animals displayed very high variability. R1 trained animals displayed characteristic
higher SO run times in initial sessions as well as slightly but reliably lower S1 run times across
all sessions. Forthcoming work from our lab shows that aged mice have a deficit in adaptive
forgetting. This phenotype combined with the persistent resistance they demonstrated to
sustained R1 expression during R1 training may account for the combination seen here, i.e.
robust extinction of R1 bias coupled, counter-intuitively, with a global deficit in EdM
performance. If aged mice are impaired in active inhibition of interfering cognitive content in
classical EAM conditions, then the addition of the extra R1 cognitive content may serve simply
to exacerbate this, albeit indirectly. Further investigation is required into these open questions.
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A.2 Ageing approach

The physiological ageing process is known to have important negative impacts on
inhibitory cognitive flexibility (Coxon et al. 2012). Our own lab has published
important work in the area of age-related decline of declarative memory capacity using
both the EAM and other radial maze-based tasks (Marighetto et al. 1999; Marighetto,
Brayda-Bruno, and Etchamendy 2011). More specifically, with respect to the CBi-based
genetic approaches we employed above, it has been demonstrated that levels of CB;
decrease with age, thereby weakening certain functions of the endocannabinoid system
(Bilkei-Gorzo 2012; Bilkei-Gorzo et al. 2017; Albayram et al. 2011). Taking all this
together, we had predicted that, similar to D{-CB:-KO mice, aged mice would be
impaired in expression, but not acquisition, of the R1 tactile discrimination rule. Such
an impairment is precisely what we observed (supplementary figure A.1d; see also
Stevens et al., 2022a). Aged mice required longer R1 training than young mice to reach
criterion R1 performance, and some animals, even with additional training, still did not
reach this level supplementary figure A.1d zoombox). Knowing from previous work
from our lab that aged mice are impaired in the classical EAM task (putatively due to a
decline in the active inhibition/adaptive forgetting necessary for organizing cognitive
content), and now knowing they were also impaired in expression of R1 (putatively due
to a decline in the active inhibitory cognitive flexibility necessary to overcome
spontaneous exploratory behavior), no self-evident hypothesis was forth-coming
regarding how these phenotypes would combine when brought together in the context
of the EARR environment. Therefore, with respect to the exact nature of R1 interference
in the EARR phase, we proceeded without a clear hypothesis of how performance in the
EdRR task may differ in aged compared to young mice. In these experiments, we again
used a control group of aged littermates who were, as with the original experiment in
young C57Bl6/] mice, rewarded on every trial during R1 training, regardless of whether
they chose S1 or SO.

A.2.1 EAM performance negatively impacted by R1 interference in aged mice.
Having eliminated the three below criterion aged mice, 8 R1 trained aged animals and

all 7 aged controls were moved to the EARR environment. Here, we trained both groups,
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as per the original experiment (figure 2a), for 12 sessions in order to track the evolution
of the impact of prior R1 learning (supplementary figure A.7a). Most interestingly,
compared to our observations in young mice, aged R1 trained mice displayed a robust
and persistent impairment in the EAM performance itself compared to controls
(supplementary figure A.7a, one-way ANOVA averaged across all sessions with pairwise
Tukey HSD post-hoc and unbiased Cohen effect size, F(1, 178) = 15.6, p = 0.001, d =
0.59). Additionally, while EAM performance seemed to improve slightly as a function
of repeated training in controls, this was not the case in the R1 trained group, though
this evolution achieved significance in neither group when corrected for lack of
sphericity (repeated measures ANOVA within ‘Session’ with Greenhouse-Geisser
correction for € < 1; R1 trained group, F(11, 77) = 1.6, uncorrected p = 0.1, GG
corrected p = 0.2; control group, F(11, 66) = 2.2, uncorrected p = 0.026, GG corrected
p = 0.1). With respect to the nature of the errors made, as was the case in young mice
(figure 2b), aged R1 trained mice made significantly more errors on S1 than SO arms
(supplementary figure A.7b, sessions averaged across blocks of 3; mixed ANOVA
significant interaction between ‘Group’ within ‘Surface’, F(1,13) = 4.7, p = 0.049; Tukey
HSD post-hoc on interaction revealed significant differences between R1 trained S1 and
SO errors, p = 0.001; between R1 trained S1 and control S1 errors, p = 0.001; but no
significant difference between control S1 and SO errors, p = 0.5). When we looked at the
number of errors committed as a function of repeated training and trial complexity
(supplementary figure A.7¢, top row), we observed that performance in control animals,
but not in R1 trained animals, tended to improve with repeated training (each column,
left to right, represents a consecutive block; one-way ANOVA with pairwise Tukey HSD
post-hoc within each group revealed a slight but significant effect of ‘Block’ on
performance only in control animals, F(3, 416) = 3.4, p = 0.018; R1 trained, F(3, 476)
=1.2,p = 0.26). There was also a significant effect of trial difficulty in both groups, the
size of which was nevertheless greater in controls (one-way ANOVA with pairwise
Tukey HSD post-hoc, R1 trained, F(4, 475) = 4.1, p = 0.003; controls, F(4, 415) = 8.4,
p < 0.0001).

In terms of surface choice probability, ‘P(Sn)’, we did not observe the same direct linear
effect of trial complexity as we had in young animals (see figure 4a, middle row), but
the general trend for P(S1) to be lower in R1 trained animals at level O still emerged

clearly over time (supplementary figure A.7c, middle row). Averaged across all blocks,
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there was a significant effect of trial difficulty on P(Sn) values in R1 trained animals but
not in controls (one-way ANOVA with pairwise Tukey HSD post-hoc, R1 trained, F(4,
475) = 3, p = 0.019; controls, F(4, 415) = 1.3, p = 0.28). Again averaged across all
blocks, there was a trend, similar to what we had observed in young control mice, for

P(S1) to be greater than P(S0) on complexity level 4 trials.

P(RwlSn) reflected similar trends to those seen in young mice (see figure 4a, bottom
row), with aged R1 trained animals significantly more likely to obtain a reward when
they chose SO as opposed to S1 (two-way ANOVA on interaction ‘Group*P(RwlSn)’,
averaged across all blocks, F(1, 1668) = 16.2, p < 0.0001; pairwise Tukey HSD post-
hocs, R1 P(RwlISO) vs R1 P(RwlS1), p = 0.001; Ctrl P(RwISO) vs Ctrl P(RwlIS1), p = 0.9).
As with the results seen in young mice, the relation of P(RwISn) results to rule revision
come into strongest focus when viewed side by side with the P(Sn) results (supplementary
figure A.7d-e). Here we again see that P(Sn) in R1 trained mice does not evolve to match
their P(RwlSn) values. As we saw above, young control animals tended to develop a
preference for P(S1), which was consistent with the fact that their P(RwIS1) values were
reliably higher than their P(RwISO) values (see figure 4a-b). In aged control mice also,
P(RwlIS1) was reliably higher than P(RwIS0) (supplementary figure A.7d), yet their P(S1)
was erratic, notably going below P(SO) during the final block (supplementary figure
A.7¢). In aged R1 trained mice, mean block-by-block P(RwIS1) and P(RwIS0) values
reached similar values by the second block, much earlier than with young R1 trained
mice (see figure 5a). One possibility, inspired in part by the results seen when we placed
below R1 criterion D1-CB;-KO mice in the EdRR task, is that the high level of resistance
to R1 expression manifest during R1 training led them, in the EARR phase, to return
sooner and more strongly to exploration based behavior than young R1 trained animals
had. If this were the case, then the age-related decrease in cognitive flexibility
underpinning a “rigid” drive to explore, coupled paradoxically with their age-related
inherent limitation with respect to the cognitive requirements of the EAM task, would
translate into the principal net behavioral result we observed in the aged R1 trained
population; a compounding and exacerbation of the usual age-related classical EAM

impairment.

Finally, we also looked at run time behavior in aged mice during the EARR phase. As

one might expect, run times were globally higher in aged compared to young mice
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(overall median run time during EARR, independent of group, trial difficulty, and
surface; aged mice, 1782.5ms; young mice, 1291ms). This inherent reduction in
locomotor speed with age may therefore have served to occlude some of the differential
cognitive effects we would expect to see following R1 training. Nevertheless, run times
were still significantly higher on SO compared to S1 in aged R1 trained animals during
the first block of EdRR training, but not in controls (supplementary figure A.7f, one-
way ANOVA with pairwise Tukey HSD post-hoc, F(1, 46) = 24, p = 0.001; controls
F(1, 40) = 0.3, p = 0.58). Furthermore, similar to what we had observed in younger
mice, even beyond this significant first session difference, median S1 run times remained
robustly lower than median SO run times in aged R1 trained animals, giving rise to a
significant effect averaged across all 4 blocks of repeated EARR training (one-way
ANOVA with pairwise Tukey HSD post-hoc, F(1, 190) = 11.9, p = 0.001; controls, F(1,
166) = 0.9, p = 0.34). (We note that, in terms of run time, control animals displayed
highly erratic behavior, visible in the large error band variance in supplementary figure
A.7f. For this reason, we restricted our run time analyses to between surface

comparisons within the R1 trained group.)
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General Conclusion & Perspectives

The novel two-fold model of indoctrination-like learning and everyday-like rule revision,
which constitutes the principal component of the thesis project presented here, raises
more questions than it answers. Its strength, however, is in providing the means for
investigating those questions. Here, we have shown what has been discovered in
pursuing just two such avenues of research: using conditional deletion and viral re-
expression of specific populations of CB; receptors as a technique for isolating and
modulating the contributions to behavior of certain memory systems but not others,
and; using aged mice to study how cognitive decline impacts the availability of cognitive
resources necessary for organizational memory, especially in environments that demand
revision of a prior rule. As an extension to the research already conducted here,
immediate future work will continue to characterize the specific role of the
endocannabinoid system in both everyday-like memory and everyday-like rule revision,
especially since this system has already demonstrated its promising potential as a
therapeutic target for age-related decline in declarative memory performance (Bilkei-
Gorzo et al., 2017). More precisely, we wish to conduct viral CB; re-expression studies
in the DIx-CB:-KO mouse line in order to answer the question of whether their apparent
lack of inhibitory control, visible in the combination of increased deliberative behaviors
yet inability to successfully perform EAM or EdRR, is due to CB; loss specifically in the
prefrontal cortex or to CBy loss locally in the hippocampus. Such viral re-expression
experiments had in fact been begun at precisely the moment the first lockdown of the
COVID health crisis was announced, incurring the regrettable but necessary loss of all
our operated experimental animals. Along similar lines, we also aim to conduct viral
CBi over-expression experiments in aged mice, separately in the dorsal striatum, relative
to their poor performance in inhibiting the exploratory drive during R1, and in the
prefrontal cortex or hippocampus, relative to their poor performance in EdM and
EdRR. These experiments represent pre-clinical studies which have the potential to

rapidly contribute to human clinical research into age-related memory decline.

Another future experimental avenue will make use of the optogenetic set up recently
developed by our team for targeted control of discrete neuronal populations iz vivo in
freely behaving animals in the radial maze. The modular scope of the radial maze will

allow us, for example, to monitor the effects of inhibition or activation of specific EAM
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or EdRR task relevant circuits in a pair specific manner, thus creating a situation of
within-subject control. To take just one example as illustration, the medial prefrontal
cortex could be inhibited on one out of three pairs during EARR, in which case we would
predict that performance and R1 bias would be increased on this pair, even on level 0
trials, compared to the other two pairs (hypothesis based on the importance of top-down
mPFC mediated inhibitory control for successful performance of the EAM and EdRR
tasks). Similarly, through targeted activation or inhibition of amygdalar or dorso-striatal
activity, we will be able to directly test hypotheses relating to the putative contributions

of these regions to, for example, run time and choice revision behaviors.

Finally, with respect to experiments which we already have the technical capacity to
undertake within the team, we are currently in the process of setting up a
fiberphotometry system for use iz vivo in freely behaving mice in the radial maze. This
technique comes with vast potential in terms of monitoring brain activity during specific
discrete behavioral episodes, such as slower run times on incorrect choices during EAM
and on SO arms during R1 and EdRR, or in the instants leading up to, during, and
immediately following physical choice revisions in both tasks. The development of tools
of analysis during the present thesis project, enabling the identification and temporal
isolation of such discrete episodes, provides the possibility of relating monitored brain
activity to such events in a classical and powerful peri-event manner. This combination
of discrete behavior identification and iz vivo neural activity monitoring is an extremely

exciting prospect for future research in our team.

We have already begun work on expanding the scope of our animal model of EARR by
developing a virtual version for human subjects. Such a virtual model has already been
published for the classical EAM task, and we believe an EdRR version would be of
particular interest in today’s world, given the ever more evident fact that confirmation
bias is a phenomenon we cannot afford to have only partial understanding of. Already,
the simple fact of having succeeded in producing comparable and robust effects in mice,
by itself substantially alters our previous best understanding of myside confirmation
bias. Furthermore, specific phenotypes for confirmation bias have already been related,
as mentioned above in the introduction to “Investigating hallmarks of ‘myside’
confirmation bias in a novel mouse model of everyday-like rule revision,” to several

physiological and pathological psychological conditions. Consequently, having a virtual
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model capable of eliciting myside confirmation bias-like behavior could become a tool
not only for studying the phenomenon in clinical patients but also for discovering how

best to cognitively guide them in overcoming it.

Finally, the power of computational modeling for gaining deeper insights into behavior
and for providing the means to develop and test functional hypotheses cannot be over-
stated. For this reason, we have already established collaborative links with members of
the Mnemosyne Team at the Institut des Maladies Neurodégénératives (IMN) here in
Bordeaux with a view to projects that will exploit the power of computational models
towards deepening our understanding of the various behaviors elicited by both the EAM
and EdRR tasks. Such complex tasks, which mobilize a multiplicity of interacting
memory systems, constitute exciting challenges for the computational community and,
in turn, computational models offer powerful means for generating predictions (i.e.
over-activation of circuit X within a model will lead to phenotype Y) which can then be
tested empirically using techniques such as those mentioned above; modulatory
transgenic manipulations, in vivo optogenetics, and in vivo monitoring of neural

activity.

The important point we wish to retain and communicate in final conclusion to this
doctoral research is that all of the above possibilities will have been enabled by initial,
attentive, detailed, and meticulous observation and description of animal responses to
behavioral tasks developed as much as possible to reflect real world situations. Just how
essential this research dimension is to our capacity, as neuroscientists, to say something
meaningful about brain function is a message which has still not fully spread throughout
the community, but which we are determined to add our voice to (Genzel, 2021;

Krakauer et al., 2017; Niv, 2021; Staddon & Simmelhag, 1971).
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Neural and cognitive bases of confirmation bias-induced interference in
declarative memory performance.

Confirmation bias is a well-described and ubiquitous cognitive behavior whereby novel
information from the environment is over-valued when it confirms and under-valued
when it disconfirms previously consolidated cognitive content (e.g. beliefs, learned
associations, etc.). The maladaptive responses this phenomenon can give rise to are
implicated in social problems such as the spread of “fake news” and vary according to
both contextual complexity and the mental state of the subject.

Nevertheless, very little research has been dedicated to understanding the neural
mechanisms or evolution underpinning this spontaneous human cognitive response to
novel information. Thus, we designed a mouse model for confirmation bias-like
behavior, enabling exploration of its cognitive and neurobiological underpinnings and
their evolution. Our model is based on a cognitive level definition of the phenomenon;
over-valuation of novel environmental elements which confirm and under-valuation of
novel environmental elements which disconfirm a previously consolidated cognitive
content. Our results to this point (using a two-task, two-context radial maze protocol)
show a strong bias effect which is observable as a deviation in the performance of a
classical declarative memory task, the persistence of which is trial-complexity
dependent.

Detailed behavioral analysis has enabled us to identify several more basic cognitive
components impacting the bias effect, such as adaptive forgetting and the
exploration/exploitation balance. These cognitive components have been identified with
specific neural circuits whose activity is susceptible to intervention and/or monitoring in
freely moving task-performing animals. They are also implicated in many psychiatric
conditions (depression, schizophrenia, etc.) making of this model a novel tool for pre-
clinical research of which we are developing a human version for clinical research and a
computational version for formulating and testing predictions.
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