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“Confirmation bias has been used in the psychological literature to refer to a 

variety of phenomena. Here I take the term to represent a generic concept that 

subsumes several more specific ideas that connote the inappropriate bolstering 

of hypotheses or beliefs whose truth is in question.”  

Raymond Nickerson, (1998). 

 

 

The empirical findings from the two studies constituting the present PhD research will 

ultimately inspire the interpretation that the object of investigation, confirmation bias, can 

be meaningfully theorized as a particular product or artefact of organisms possessing 

multiple memory and learning systems having to navigate dynamic environments that 

demand revision of previously formed state-action policies. It seems judicious, therefore, 

to open proceedings with an introduction briefly outlining the history, development, and 

relevance to the present research endeavor of the central technical terms: 1) state-action 

policies; 2) multiple memory and learning systems, and; 3) confirmation bias itself. My 

hope is that, over the course of this introduction, it will become clear to the reader that the 

now uncontroversially admitted presence of 1) and 2) in a vast range of species naturally 

gives rise to two key questions regarding 3), i.e. confirmation bias, being a phenomenon 

which, by contrast, the literature has thus far admitted of only in humans. Those two 

questions are: 

1. Do non-human animals whose state-action policies are shaped via multiple memory 

and learning systems also, putatively thereby, possess the cognitive capacity to 

manifest confirmation bias-like behaviors? 
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2. Is the well-characterized phenomenon of confirmation bias in humans a 

consequence of our state-action policies being shaped via multiple memory and 

learning systems? 

The first question neatly sums up the orientation of the research I have undertaken during 

my PhD, and my findings in this respect, communicated in the two research articles 

constituting Part 1 and Part 2 of this manuscript, represent the first elements of an 

empirical response to it to appear in the literature. In turn, I hope my present contributions 

will inspire future research to tackle the second question in a similarly direct and empirical 

manner.  

 

 

Since I do not actually develop a computational approach in the present work, my 

borrowing of and reflections around certain terms and notions from the domain of 

computational reinforcement learning is primarily intended as an aid in conceptualizing 

the extent to which certain complex cognitive functions displayed by both humans and 

non-human animals are eminently comparable and mutually informative. This is not, 

however, a purely neutral consideration, since certain philosophical positions, either 

implicitly or explicitly but in either case widely held, make many skeptical or dismissive of 

the idea that ‘beliefs’ are something animals are capable of possessing. This presents an 

unignorable obstacle in the context of presenting an animal model of any human cognitive 

process, such as confirmation bias, which is inextricably intertwined with beliefs.  

By providing conceptual language and tools for grouping together all cognitive content 

that directs action in a context-dependent manner, reinforcement learning isolates and 

unifies what beliefs, rules, strategies, stimulus-response behaviors, memory- and learning-
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based decisions, reward-expectation based probabilistic choices, and more all have in 

common: prior learning recalled, via perception of current environmental state, as a guide 

to action. Indeed, computational reinforcement learning theories have already been 

applied to make it easier for us to isolate and analyze the general cognitive conditions 

underpinning phenomena otherwise specifically associated with humans, such as 

indoctrination and confirmation bias notably (Palminteri, 2021; Palminteri et al., 2017; 

Summerfield & Parpart, 2022). This can in turn facilitate the work involved in designing 

animal models capable of eliciting behaviors which, if observed, would thereby imply the 

presence of comparable cognitive conditions in the species in question.  

The following presentation of the concept of state-action policies does not aim to be 

exhaustive, nor even comprehensive, as to do this would require delving deep into domains 

such as dynamic programming, which are both beyond the expertise of the author and 

graciously not necessary for the reader to grasp in order to fully understand the 

experimental approach adopted here. Rather, my intention is simply to give the reader a 

sense of how mutually beneficial familiarity with concepts from both experimental 

psychology and reinforcement learning can be. For similar reasons, I have made the choice 

to exclude mathematical annotation from this brief introduction, as I have learnt from 

personal experience that it can present a seemingly insuperable psychological obstacle to 

the uninitiated. 

 

At its most basic, a state-action policy is a formalism from the language of reinforcement 

learning that describes any kind of decision-making rule or strategy consisting in “a 

mapping from perceived states of the environment to actions to be taken when in those 

states” (Sutton & Barto, 2014). How reinforcement learning conceptualizes this mapping 

is historically rooted in experimental animal psychology, notably in the works of Edward 
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Thorndike. Thorndike (1911) famously presents the simple but powerful concept of the 

Law of Effect, the idea that any action leading to an outcome the agent perceives as positive 

will increase the probability of the agent repeating that action, whereas any action leading 

to an outcome the agent perceives as negative will decrease the probability of that action 

being repeated. These are what are now commonly referred to as, respectively, positive 

reinforcers and negative reinforcers, terminology made famous in the early work of the 

behaviorist experimentalist and theorist B.F. Skinner (B F Skinner, 1938)1.  

Since the units reinforcement modulates are initially spontaneous actions, the Law of 

Effect relates to what is called instrumental learning2. This in turn implies an innate, or 

primitive, trial-and-error strategy on the part of the agent with respect to its environment: 

execute an action; evaluate its outcome; increase or decrease frequency of action as per 

outcome evaluation. As an illustration, in an experimental environment the action might 

be pressing a lever (initially as an action produced at random), the outcome a food reward 

evaluated as positive, and the consequence of this positive reinforcement an increased 

comparative probability of pressing the lever again rather than engaging in some other 

non- or negatively reinforced action. What this implies is a learning mechanism that relies 

equally on 1) exploration (or searching, i.e. trying out various actions, or more accurately 
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interactions with the environment), 2) evaluation (of action outcomes), and 3) associative 

memory (i.e. storing, for future recall, previous action-outcome-evaluation associations). 

Since these three components readily lend themselves to geometric and numeric 

abstraction, it is easy to understand why Thorndike’s theorization of trial-and-error 

learning went on to inspire the still nascent discipline of artificial intelligence (AI) in the 

1950s.  

By various accidents of history, AI research became decoupled from and progressed during 

several decades without further consideration of animal psychology or cognition 

(Gershman et al., 2015). Underlining this separation in his groundbreaking advancement 

towards re-bridging that gap, Chris Watkins commented in his PhD thesis in 1989 that he 

did not know of “a single paper on animal learning published in the main stream of 

literature on ‘artificial intelligence’” (Watkins, 1989). The particular sensitivity to matters 

of ecological learning this observation reveals has as a result that Watkins’ work (Watkins, 

1989; Watkins & Dayan, 1992) is particularly interesting for those whose background is in 

the domain of animal research rather than computation or AI. This is because Watkins 

takes as his starting point the conviction that deep reflection on how animals learn to 

behave efficiently in real environments (ecological or experimental) could (and indeed did) 

inspire great progress in the domain of computational reinforcement learning. In turn, in 

the domain of neuroscience where the behavioral dimension is regularly accused of being 

neglected (Krakauer et al., 2017; Niv, 2021), recent successes of reinforcement learning 

might inspire us with respect to the potential returns of deeper reflection on the behaviors 

of our own preferred animal models. As an example, in his conceptualization of the 

problem of reinforcement learning, Watkins succeeds in cutting through debate over the 

nature of the complex, putative relationships between instrumental and classical Pavlovian 

learning mechanisms elicited by highly constrained experimental environments by instead 

reframing the question in evolutionary terms, asking; by what general learning mechanisms 
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might an animal in a given environment modify its behavior in accordance with the 

optimization of its present and future reproductive success? As he promptly points out, 

however, the question of how to identify and define what is optimal for a given animal 

agent is no simple affair, especially when dealing with agents who have evolved in 

naturalistic dynamic environments and when furthermore lacking knowledge about 

potentially relevant innate and context-dependent behavioral tendencies resulting from 

that evolution (Summerfield & Parpart, 2022; Watkins, 1989). This in turn adds a layer of 

complexity when it comes to evaluating, in an observational capacity, whether or not, and 

at what scale of reference (immediate task? lifetime? evolutionary?), a given state-action 

policy can be said to be ‘optimal’. Indeed, this stands as an important open question for 

investigation at the crossroads of AI, cognitive science, and neuroscience, one which will 

be further discussed in the course of the present manuscript. 

 

 

Through reinforcement learning, we gain formalisms for accounting not only for how 

policies can be formed but also for how they can be revised. In both cases, this is understood 

to be the result of the agent evaluating outcomes (which may be fixed or dynamic) from 

actions taken when in a given state, associatively storing these state-action-outcome 

evaluations, and using them to inform future action when in the same or a similar state. 

As such, the term state-action policy allows us to subsume, under one abstract concept, any 

plastic (i.e. revisable) cognitive content that is understood to govern an organism’s (i.e. 

agent’s) action selection in a context-dependent manner. Cognitive content such as beliefs, 

rules, attitudes, stimulus-response associations, etc.  

Central to the concept of a state-action policy is the fact that each action taken also brings 

the agent into a new state. This has been referred to as SARSA, for state-action-reward-state-
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action, whereby from an initial state s1 the agent takes action a1 whereupon it receives 

reward r and moves into state s2, from where it can take action a2, and so on (Sutton & 

Barto, 2014). This can be illustrated using a well-known example which, in Part 1 of the 

present work, will be referred to as a state-action policy that emerges spontaneously in mice 

under specific laboratory conditions, i.e. spatial alternation (Dember & Richman, 1989; 

Richman et al., 1986). 

Spatial alternation has been classically studied using either T- or Y-maze apparatuses. These 

consist in a starting corridor leading to a choice-point, being the physical junction where 

a choice must be made to visit either the left or the right arm of the maze. In a free choice 

version of the task, an animal placed at the base of the starting corridor will first advance 

towards the choice-point. Let state s1 be the first arrival of the mouse at the choice-point3. 

From this state it can choose as an action either to explore the left arm or the right arm. 

Let us suppose it chooses the left arm and let us call this a1. In a reinforced version of the 

task, the mouse will receive usually a food reward r at the end of the left arm it has just 

explored. Following consumption of the reward, the animal is returned by the 

experimenter to the starting corridor. When it arrives again at the choice-point, this now 

represents a new state we can call s2, comprised of both the animal’s location at the choice-

point plus the stored memory that its previous relevant state-action a1 was to explore the 

left arm. The animal’s innate spatial alternation policy dictates that the most probable state-

action a2 that the mouse will take now is to explore the previously unexplored right arm. 

If the experimenter is reinforcing spatial alternation, then on this trial choosing the right 

arm will be rewarded (positively reinforced) and choosing the left arm not rewarded 

(negatively reinforced), and so when moved to s3 (location plus the stored memory that 

previous state-action a2 was to explore the right arm) the mouse’s next state-action a3 will 

 
Note that reinforcement learning algorithms allow for an essentially limitless range in the scale of what counts 

as a state or action. For illustrative purposes, here we zoom out to the scale of only the most strictly necessary 

task-definition relevant choice actions.
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most likely be to explore the left arm again, and so on. The complete state-action policy for 

this spatial alternation reinforcing T- or Y-maze experimental environment can thus be 

described something like this; when in a choice-point state sn, take that state-action an 

which is the complement of the state-action an-1 taken in state sn-1, where the set A of all 

possible actions the agent can choose from is limited to {‘explore left arm’, ‘explore right 

arm’}.  

By merit of being a reliable spontaneous behavioral tendency, presumably preserved across 

evolution due to some reproductive advantage it brings to the organism, the case of spatial 

alternation calls for special consideration, falling under what Watkins refers to as “innate 

knowledge.” In the context of learning and the evaluation of learning rates, the 

fundamental question he asks is this: “What types of innate knowledge do animals have, 

and in what ways does this innate knowledge contribute to learning?” (Watkins, 1989). 

However, it is furthermore just as important to frame such a notion of “innate knowledge” 

as it relates to the behavioral affordances provided by a given environment. For example, 

mice will spatially alternate in a T- or Y-maze even if this behavior is not positively 

reinforced, meaning this particular state-action policy emerges even in the absence of an 

explicit environmental reinforcer to evaluate. In fact, recent work has shown that mice will 

spatially alternate in a T-maze even after prior establishment of a preference for a reward 

found in only one of the arms (Habedank et al., 2021).  

This latter observation supports a theory of animal exploration wherein global information 

gain takes primacy over foraging, in the strict sense, as the principal cognitive drive 

underpinning exploratory behavior (Inglis et al., 2001). This primacy of pure exploration 

can even be related to Jaak Panksepp’s theorization of “seeking” as the most fundamental 

affective drive of organisms, “which helps elaborate energetic search and goal-directed 

behaviors in behalf of any of a variety of distinct goal objects” (Panksepp, 1998). Foraging 

specifically for food, in this theory, becomes just one special case of a global exploratory 
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drive, primitive with respect to any particular goal: sometimes exploration may take the 

form of foraging, other times mate- or shelter-seeking, etc. Through these interpretative 

lenses, it seems more accurate to affirm that what mice do spontaneously is not so much 

to spatially alternate as it is just to explore. In this interpretation, it is then the physical 

conditions, if not to say constraints, of the T- or Y-maze environments which channel this 

exploration to manifest as what experimenters subsequently observe and label as 

‘spontaneous spatial alternation’. Indeed, in terms of reinforcement learning, all other 

things being equal, spatial alternation can be understood simply as the maximally efficient 

or optimal policy for exploring a T- or Y-maze.  

Conversely, it is by this same “innate knowledge” policy logic that in Part 1 of the present 

work, where the environmental conditions of the tactile discrimination task reinforce 

explicitly non-exploratory behavior, we will interpret this learning not as initial formation 

of a novel policy but rather as demanding a context-dependent revision of the innate 

exploratory policy. As an illustration, let us briefly elaborate how this relates to 

experimental conditions employed in the present investigation. In the tactile 

discrimination experimental set-up presented in Part 1, the surface area of the radial maze 

is divided according to two different surface types, one smooth, one irregular. Since the 

experiment is conducted in darkness, in the absence of visual spatial clues, an efficient 

strategy for ensuring exploration of the whole environment would therefore be to form 

the state-action policy of alternating surface type chosen when deciding, trial by trial, 

which to visit between two neighboring arms of the radial maze, each of which has a 

different surface type. In this context, we can imagine a state s2 (location at choice-point 

plus the stored memory that previous state-action a1 was to explore, say, a smooth surfaced 

arm) in which the most efficient state-action a2 the mouse can take, if acting according to 

the innate exploratory state-action policy, will be to now choose the irregular surfaced arm. 

However, as is the actual case in our protocol, if only one of these surfaces is ever rewarded, 
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then exploratory behavior will be negatively reinforced whenever a state-action choice 

brings the mouse to visit an arm of the unrewarded surface. According to reinforcement 

learning theory, this should set in place an incremental revision, via ongoing action-

outcome evaluation, of the exploratory, surface-alternation policy.  

However, the crucial point to grasp here is that the behavioral manifestation of the “innate 

knowledge” elicited in mice by the radial maze (i.e. prioritize exploration of unexplored or 

least recently explored areas) does not so much contribute as it stands in opposition to the 

learning our tactile discrimination protocol aims to transmit (i.e. ‘Choose only one 

surface’). Not to mention that, behind this opposition, is nothing less than the momentum 

of countless millennia of evolution. A stark contrast therefore appears with respect to 

behavioral tasks (such as those we present in Part 2) which are designed to exploit spatial 

alternation: here, exactly the same innate knowledge that opposes non-exploratory learning 

becomes essentially sufficient for successful performance. Reflection on the mutual 

implications, for animal behavior studies and for reinforcement learning, of this context-

dependent contrast in how innate tendencies manifest poses a particularly interesting 

challenge to our understanding of learning and the shaping of optimal state-action policies 

on the basis of that learning, as we shall now see. 

 

One of the challenges for an optimality approach to reinforcement learning, a challenge 

broached by Watkins and further underlined by the results from our own experiments in 

Parts 1 and 2 of the present work, is that what is optimally efficient in one environment 

may not be optimally efficient across the lifespan of an organism, who may well have to 

confront and overcome survival threatening changes to its environment during that time. 

Indeed, even though in our tactile discrimination protocol (Part 1) we extensively and 

unambiguously discourage mice from exploring, in what we call an “indoctrination-like” 
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manner, we nevertheless observe robust evidence that the exploratory drive does not so 

much diminish over the course of this training as it becomes progressively actively inhibited. 

In this interpretation, it is increased engagement of this active inhibition that in fact 

enables the organism to act under, to ‘exploit’ the surface-reward association policy, more 

so than an incremental strengthening of this association itself. Indeed, we see increased 

exploratory behaviors precisely at moments when we might intuitively expect active 

inhibition to be lower, such as upon initial introduction into a familiar environment (i.e. 

beginning of session) or, significantly more so, upon initial introduction into a novel one. 

Moreover, we identify intra-session time points of significant exploratory behavior 

precisely with those trials where the population probability of choosing the unrewarded 

surface reaches levels that cannot be accounted for either by previous policy exploitation 

performances or by purely random choice distribution patterns.  

A cognitive interpretation of this is that, just as exploration in the T- and Y-maze is shaped 

to manifest as spatial alternation by the physical constraints of the apparatus, so in our 

tactile discrimination protocol in the radial maze, what it means to explore is shaped, 

behaviorally speaking, by prior cognitive constraints arising from acquisition of the surface-

based state-action policy: to “explore” in the tactile discrimination task is to pointedly visit 

the unrewarded surface. Exploring in this interpretation is not just something which might 

occur in states where the animal makes a decision at random instead of exploiting the 

optimal reward policy it has nevertheless formed (though this behavior may also 

sometimes happen). Rather, once the optimal reward policy has been internalized, this 

appears to constitute a cognitive constraint that shapes exploration to manifest actively as a 

transgression of the policy in moments when we might expect active inhibition to be 

lowest/not yet engaged. Furthermore, if novelty does indeed boost exploratory behavior 

(Farahbakhsh & Siciliano, 2021; Lustberg et al., 2020; Park et al., 2021), and if exploration 

is, as we have just suggested, actively directed towards transgressing the internalized policy, 
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then this could explain why classical rule reversal protocols have been shown to be more 

effective when the reversal occurs in a novel environment rather than in the same one 

where the initial reward-association rule was acquired (McDonald et al., 2004). Similarly, 

the sheer strength of the exploratory drive elicited by the radial maze apparatus (putatively 

related to its much larger surface area as compared to a classical T- or Y-maze) gives rise to 

extremely slow increases in stimulus-response exploitatory behavior, despite the rewarded 

surface being, to borrow terms from the famous Rescorla-Wagner model of learning, both 

a reliable and salient predictor (Rescorla & Wagner, 1972).  

Precisely what our “indoctrination-like” protocol reveals is that how mice actually revise 

their innate exploratory state-action policy confounds a view where repeated positive 

reinforcement simply increases the vigor of the target response. Indeed, such robust active 

behavioral tendencies make it difficult to see how exploratory behavior could be 

satisfactorily accounted for simply by increasing the probability of choosing an action at 

random when in certain states. While the animal behavior literature does also provide a 

theorization in which reinforcement is taken to be at least as much a case of non-reinforced 

spontaneous behaviors becoming extinguished over time (Staddon & Simmelhag, 1971), 

if environmentally elicited active exploration requires not extinction but rather ongoing 

and active inhibition, then this requires a different conceptualization again. Furthermore, 

since the exploratory behavior in our paradigm does appear to be active, as opposed to 

random, this complicates interpretation of how the mice themselves will interpret a no-

reward outcome following an exploratory action. As will be shown and discussed, we have 

good reason to believe that if there is reward-prediction on exploratory trials, then it is of 

a measurably different quality to the reward-prediction on exploitatory trials, and this 

makes it difficult to know to what extent it makes sense to speak of a “reward-prediction 

error” (terminology again borrowed from the Rescorla-Wagner model of learning) when 

the outcome of an exploratory decision is indeed no-reward.  
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We might advance that it is fundamental to their evolved nature for opportunistic species, 

such as mice, rats, humans, and others, to maintain the capacity for vigorous exploratory 

behavior even after extended periods spent in environments the organism has been able to 

reliably exploit. And while this is no guarantee that integrating active exploration would 

therefore be an optimal strategy for reinforcement learning and artificial intelligence, it is 

interesting to note both that the question of efficient exploration is still deemed to be wide 

open in several areas of the discipline and that active exploration approaches are one of the 

avenues currently being pursued in this regard (Khamassi et al., 2017; Ménard et al., 2020; 

Shyam et al., 2019), alongside approaches which make exploration intrinsically (as opposed 

to just environmentally) reinforcing for the agent (Oudeyer et al., 2007; Schäfer et al., 2022; 

Singh et al., 2005). As we shall later see in Part 1, if indoctrination is to have meaning then 

it is precisely in the sense of active suppression of innate exploratory drives, of what in lay 

terms can be called natural curiosity. So then, it is worth asking, firstly, whether merely 

setting the parameters of a state-action policy to “greedy” (i.e. a minimum exploration, 

maximal immediate reward seeking policy; see Sutton and Barto, 2014) could ever be a 

suitable proxy for an “indoctrinated” agent. And, secondly, whether we stand to learn 

something about human behavior by creating learning algorithms which do actually have 

the capacity to generate meaningfully “indoctrinated” computational agents. 

In light of all these considerations regarding persistent active exploration, perhaps the 

greatest curiosity of the present investigation is that when we subsequently bring 

“indoctrinated” mice to revise the tactile state-action policy back towards an exploratory 

mode, we observe highly significant, persistent, multi-faceted, and trial-complexity 

dependent interference. However, in order to arrive at an understanding of why this 

interference arises in the way it does when nevertheless reverting to spontaneous 

exploratory behavior, we must first pass under review the multiplicity of cognitive and 

neural learning and memory systems this process engages. 
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In the brief presentation of state-action policies above, we traced the origin of the concept 

back to Thorndike’s Law of Effect. Now, in considering the development of the idea of 

multiple learning and memory systems, the natural starting point happens to reside in one 

of the earliest and most conceptually sophisticated opponents of Thorndike’s purely 

stimulus-response vision of behavior, namely Edward Chace Tolman (Tolman, 1932). 

Tolman dared to imagine that we might actually be able to use nevertheless strictly 

behavioral observation to infer things that were happening inside the living “black box” 

situated between stimuli and responses, i.e. the mind-brain of the behaving organism. 

From this starting point in Tolman, we will then trace some of the major historical 

advancements in the idea of multiple learning and memory systems, describing the 

research landscape in which the behavioral paradigms of the present study were designed 

and their results interpreted.  

 

Tolman’s first great innovations in the theory of learning came in his concepts of “latent 

learning” and “cognitive maps” (Tolman, 1948). Crucially, neither of these concepts were 

anything that could be accounted for by the stimulus-response/reinforcement learning 

theories of Tolman’s predecessors and contemporaries, such as Thorndike, Skinner, 

Watson, Hull, etc. Very simply, all the while maintaining an observationally-grounded 

behaviorist methodology, what Tolman did was demonstrate that learning could occur 

even in the absence of reinforcement. Let us take a moment to look at how he approached 

this demonstration experimentally.  

Tolman conceived of a simple yet elegant experiment in which he ran three groups of rats 

in what he called a 6-unit alley T-maze, essentially comprised of three interconnected T-

mazes, with a start-point and an end-point (where a food reward could be optionally 



32 
 

placed) separated from each other by six choice-points. The first group of rats found a food 

reward at the end point starting from day 1. The second group found a food reward there 

starting only from day 7, and the third group starting from day 3. In other words, the first 

group was reinforced for completing the maze from the outset, the other two groups only 

from a delayed timepoint onwards, meaning their initial runs in the maze were not 

reinforced. Counting the number of wrong turns each rat made before arriving at the end-

point, Tolman observed that the first group learned gradually and incrementally, session 

by session, to make less errors and arrive more directly to the point of reinforcement. 

Importantly, this kind of gradually improving performance towards a reinforced goal had 

already been provided with explanations using pure stimulus-response/reinforcer type 

hypotheses: the food reward is a primary reinforcer, the last maze-turn to be taken before 

reaching it a secondary reinforcer, the second-last maze-turn another secondary reinforcer 

contingent on the last one, etc. During initial runs, groups 2 and 3 did not show any such 

gradual “improvement” in their maze navigation in the non-reinforced sessions, since they 

were not motivated to reach any particular point more than any other. However, following 

their first reinforcement, in sessions 7 and 3, respectively, they did not subsequently 

demonstrate gradual and incremental performance improvement in the way group 1 had. 

Instead, their performance improved by a significant leap between the first reinforced 

session to the next, and this leap was all the more significant in group 2, first reinforced in 

session 7, than in group 3, first reinforced in session 3. These leaps in performance 

confounded simple stimulus-response/reinforcer type explanations. What Tolman instead 

concluded is that the rats, simply by navigating the maze without any reward objective, 

were nevertheless learning something about it. This he called latent learning, in the sense 

that there was learning occurring on the cognitive level which had not yet been provided 

with an occasion to be observably manifest. This occasion was then provided by the 

introduction at the end point of the maze, during a later session, of a positive reinforcer. 

In other words, the non-reinforced rats were forming some kind of cognitive map as they 
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navigated the maze, and this fact became observable as soon as the rats were provided with 

the environmental motivation to recall that map in order to arrive as directly as possible to 

a specific point in the territory. From this explanation, it is clear in what sense “latent 

learning” and the notion of “cognitive maps” go hand in hand in Tolman’s learning theory. 

In this way, Tolman laid the groundwork not only for consideration of multiple distinct 

forms of learning but also for how these may interact during memory-based recall. Indeed, 

it was precisely by designing an experiment with the ability to show how classical stimulus-

response reinforcement learning and latent cognitive map learning interact that Tolman 

was able to disentangle the presence of both. As we shall see below, this inspired later 

researchers to adopt similar approaches and to similar powerful effect. Tolman himself 

would also continue to complexify our understanding of how learning occurs, explicitly 

pursuing a pluralistic vision throughout his career, with articles such as “There is more 

than one kind of learning” (Tolman, 1949). Through this work, he was instrumental in the 

emergence of the cognitive sciences, before anything was known about what neural 

functions might be responsible for the various kinds of learning he had nevertheless 

observed through subtle variation of experimentally elicited behaviors. 

 

Later research, some of it Nobel prize-winning, employed in vivo electrophysiological 

recordings in rats to neurophysiologically situate the cognitive maps Tolman had inferred 

only from behavior within the hippocampus (O’Keefe, 1976; O’Keefe & Dostrovsky, 1971; 

O’Keefe & Nadel, 1978). O’Keefe and Nadel further advanced that the hippocampus 

contributed to memory by mapping experiences not only spatially, i.e. according to where 

they had happened, but also temporally, i.e. according to when they had happened. This 

spatiotemporal interpretation of hippocampal memory function represented a fertile 
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proximity with then still recent work in human psychology from Elvin Tulving, who as a 

complement to “semantic memory” (i.e. memory of abstract facts, “The earth is 4 billion 

years old,” “Gandalf is a wizard,” etc.) had theorized the concept of “episodic memory,” 

defined by him as “information about temporally dated episodes or events, and temporal-

spatial relations among these events” (Tulving, 1972). Archetypal examples of episodic 

memory can therefore be thought of as (honest) answers to any question of type “Where 

were you when X happened?”  

Along with the earlier famous case of patient H.M., in whom severe and lasting episodic 

amnesia was produced by therapeutic resection of the hippocampus-containing medial 

temporal lobe (Scoville & Milner, 1957), these experimental and theoretical advances led 

to an explosion of research into hippocampal function which continues to the present. 

Since then, beyond its role in the formation of spatiotemporal episodic memories 

(Eichenbaum, 2017a; Ranganath, 2019; Sellami et al., 2017), a vast literature has 

demonstrated that the hippocampus is also centrally involved in, for example, the 

formation of associations and subsequent relational memory (Busquets-Garcia et al., 2018; 

Cohen & Eichenbaum, 1993; Eichenbaum, 2010; Konkel & Cohen, 2009), as well as 

recollection per se (Hirsh, 1974; Hirsh et al., 1978; Ranganath et al., 2004).  

The enormous experimental and theoretical contribution Howard Eichenbaum in 

particular made to our understanding of memory function throughout his long career 

insisted on the need to complexify our vision, not only of hippocampal function beyond 

the strictly spatiotemporal, but also of memory itself beyond only the hippocampal 

formation (Byrne, 2008; Eichenbaum, 2010, 2016, 2017b; Eichenbaum & Cohen, 2001). 

Interestingly, continuing in the footsteps of Tolman, one of Eichenbaum’s major 

motivations was to show that a limit asserted by one of his predecessors was not justified. 

In this case, the limit in question was described by Tulving himself, in his claim that 

episodic memory was an exclusively human cognitive function. Eichenbaum, driven by the 



35 
 

conviction that animal models were the most fertile territory available for gaining deep 

understanding of general brain function, set out to challenge this claim by experimentally 

demonstrating episodic memory function in rats (Ranganath, 2019). In a nutshell, the 

global theoretical approach consists in tying cognitive memory function to 

neurophysiological brain function to such an extent that where we observe the latter to be 

sufficiently comparable across species then we should expect to observe the former, 

provided the presence of appropriate environmental conditions for the animal to interact 

with. Indeed, Eichenbaum and Cohen (2001) draw a twofold conclusion with respect to 

the relationship between general brain function and memory: first, memory is “a 

consequence of the fundamental plasticity of the brain” and is thereby “tied to ongoing 

information processing in the brain”; secondly, since information processing is organized 

across “several functional systems,” thus “there are multiple forms of memory that have 

distinct psychological and information processing characteristics, composing multiple, 

functionally and anatomically distinct memory systems” (Byrne, 2008). In short, the 

hypothesis here is that if memory is indeed based on an essentially ubiquitous neuronal 

phenomenon such as brain plasticity then it can only be multiple both in neural basis and 

cognitive function.  

 

Relative to the above discussions of early behaviorist interpretations of learning, the idea 

that different observable forms of learning and memory would be associated with distinct 

neural functions also led to experimental demonstrations that procedural or habitual 

memory (corresponding most closely to the kind of incremental stimulus-response 

learning Thorndike, Skinner, etc., imagined could explain all animal behavior) relied on 

cortico-striatal rather than hippocampal function (Balleine & O’Doherty, 2010; Cohen et 

al., 1997; Eichenbaum, 2010; Gremel & Costa, 2013; McDonald & White, 1993; M. Packard 
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et al., 1989; M. G. Packard & McGaugh, 1996). Anecdotally, the case of patient H.M. is also 

instructive in this regard, since he was perfectly capable, through practice, of learning and 

improving a new motor skill, even though from lesson to lesson he would have no 

recollection of the previous episode of instruction (Corkin, 1968; Eichenbaum, 2013). This 

striatum-mediated procedural learning and memory is the primary focus of Part 1 of the 

present work, in which we develop the “indoctrination-like” anti-exploratory protocol 

described above. 

 

It also led to the further dissociation of an affective memory system, distinct from both 

cortico-hippocampal declarative memory and cortico-striatal procedural memory, this time 

strongly associated with amygdalar function (Aggleton & Mishkin, 1986; Eichenbaum, 

2010; LeDoux, 1993; McDonald et al., 2004; McDonald & Hong, 2004; McDonald & 

White, 1993; White & McDonald, 2002). It is through the affective memory system that an 

emotional dimension is brought to learning and recollection. Huge research efforts over 

the last 30 years or so have demonstrated how this emotional dimension contributes (most 

often, though not always, beneficially) to behavior and cognition. Examples are the 

capacity for rapid behavioral threat response that bypasses slower cortical processing 

(LeDoux, 1990, 1992), somatic sensitivity to choice-contingent reward losses too complex 

for explicit cortical calculation (Bechara & Damasio, 2005), or the fundamental appetitive 

and motivational “seeking” drive to explore the world at all (Panksepp, 1998). 

Crucial to all of these discoveries was innovative behavioral experimental design. In the 

cited works from Packard, McDonald, White, and Hong, for example, experimental design 

capable of demonstrating multiple memory system dissociation relied heavily on the 

numerous modular possibilities offered by the 8-arm radial maze apparatus, the same piece 
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of experimental equipment chosen by us in the present study in order to investigate 

context-based interactions between up to four distinct memory systems. 

 

Which brings us to the last memory system to be discussed here, last but perhaps most well-

known, by name at least; working memory. To begin, we can return to the example of 

patient H.M., in whom loss of the medial temporal lobe had given rise to a total incapacity 

to store novel facts or events in long-term memory. Despite this extreme functional loss, 

(Scoville & Milner, 1957) were able to observe that patient H.M. had nevertheless retained 

the ability to, for example, repeat back a string of digits he had just had spoken to him, 

indicating that whichever brain function underpinned this particular memory capacity was 

not fundamentally reliant upon the hippocampus. The memory system patient H.M. could 

rely on to do this is now commonly referred to as “working memory,” after seminal work 

notably by Alan Baddeley beginning in the 1970s (Baddeley, 1992; Baddeley & Hitch, 

1974). Baddeley insisted on the fact that this mnemonic function was not merely a passive 

short-term store but was rather active, context-dependent, and manipulable (hence 

working). From his earliest (human) experimental and theoretical texts on the subject, he 

linked working memory function directly to retrieval. In fact, his final major publication 

prior to shifting to the label “working memory” is entitled “Retrieval rules and semantic 

coding in short-term memory” (Baddeley, 1972). Moreover, in the same text, retrieval itself 

is linked to the possibility of intrusions, i.e. retrieved cognitive content which is either not 

relevant to the task at hand, such as retrieving a letter in a digit-based task, or which is 

relevant but mistaken, such as retrieving the wrong digit. It was also Baddeley who began 

employing the now familiar term “executive” to describe certain functions of working 

memory, including retrieval and allocation of attention.  
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Given that the label “working memory” applies to such a wide range of cognitive functions 

which may be engaged in various combinations as an organism interacts with its 

environment, it follows, from the words of Eichenbaum and Cohen quoted above, that 

these functions certainly also correspond to distinct neural circuits. The first work in this 

direction actually predates Baddeley’s theorization of working memory as such and was 

carried out in monkeys by C. Jacobsen. He observed that monkeys with prefrontal cortex 

(PFC) ablation displayed a deficit in a delayed-response task (Jacobsen, 1936) of the type 

that would later be recognized as a working memory task. As mentioned, from the earliest 

theoretical discussions of working memory in humans, it has been associated with 

cognitive control, retrieval, and intrusions. In this latter respect, the last decade has seen a 

significant increase in research into memory retrieval-related active or adaptive forgetting of 

interfering or intrusive cognitive content, which underpins precise memory recall 

(Anderson & Hulbert, 2021; Bekinschtein et al., 2018, 2018; Wimber et al., 2015). This 

research explicitly ties this active forgetting function to working memory and its central 

neural mechanism has been identified with top-down PFC-mediated inhibitory control of 

hippocampal activity (Anderson & Floresco, 2021). 

In laboratory rodents, working memory tasks come in several varieties (Dudchenko, 2004), 

including the classical radial maze working memory task (Olton & Samuelson, 1976) and 

the T- or Y-maze working memory task (Deacon & Rawlins, 2006; Shoji et al., 2012; Wenk, 

2001). The everyday-like memory (Al Abed et al., 2016) and everyday-like rule revision 

radial maze tasks we employ in Part 2 of this study imply both working memory and active 

forgetting dimensions. Indeed, a disadvantage of the T- or Y-maze spatial working memory 

tasks may reside precisely in the fact that they do not provide the occasion for active 

forgetting to be engaged, since there is no, or very little, context-relevant cognitive content 

which could cause significant interference. On this point, in Part 2 of the present study, we 

draw attention to the fact that one of the transgenic mouse lines we test in the everyday-



39 
 

like memory task displays an extreme deficit in its working memory dimension, and yet 

the same mouse line has previously been described as having no deficit in working memory 

on the basis of the simpler T-maze protocol (Albayram et al., 2016). Based on this 

discrepancy, we advance that the mouse line in question is impaired specifically in its 

capacity for active forgetting. Yet since, in real world terms, active forgetting is precisely 

part of our “everyday-like” working memory demands, this raises the question of the extent 

to which an animal task which does not have a prominent active forgetting component 

should be described as a model of something as multifaceted as working memory. 

 

We have now briefly reviewed four different learning and memory systems and their 

respective putative neural bases: 1) cortico-hippocampal spatiotemporal episodic learning 

and memory; 2) cortico-striatal procedural and habitual learning and memory; 3) 

amygdalar affective or emotional learning and memory, and; 4) prefrontal cortex-mediated 

working memory, incorporating cognitive control and active forgetting. In Part 2 of this 

study, we will see how the everyday-like rule revision paradigm differentially engages all 

four of these systems during both the pre- and post-choice phases of decision-making and 

also as a function of trial complexity. This will enable us to qualify, if not yet precisely 

quantify, their respective contributions to cognition under conditions of novel 

environment state-action policy revision. Notably, it will become clear that there is a 

significant and observable difference in the rates of policy/rule revision between each 

memory system, with working memory updating the fastest and procedural memory the 

slowest, a certain subtly persistent affective memory phenomenon notwithstanding. The 

translational relevance of these differences is wholly contained in the term everyday-like, 

since we maintain that real world learning, memory, and state-action policy revision 
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typically occur in humans under conditions where all four of these cognitive and affective 

dimensions are present.  

More and more, however, our everyday lives also imply an obligation (a social one at least) 

to reason about increasingly complex subjects, such as epidemiology, virology, 

immunology, climate science, international diplomacy and economics, etc. Reflecting the 

work of Damasio mentioned above, in such complex epistemic conditions the cortico-

hippocampal capacity to weigh up and comparatively evaluate all available relevant factors 

is rapidly exhausted, figuratively and perhaps literally overcome with noise, with the result 

that the agent instead responds using affective and/or procedural learning and memory. In 

this regard, observing and interpreting which of these four memory systems are or are not 

significantly impacted by trial complexity in our everyday-like rule revision paradigm is 

one of the most powerful experimental innovations presented here. For example, we will 

see that cortico-hippocampal memory performance is significantly impacted by trial 

complexity whereas the post-choice signals of affective memory are not. We believe our 

observation of just such discrepancies provides the most persuasive evidence that the 

behaviors elicited by our paradigm are eminently comparable with that phenomenon 

which has long been described in humans and is now commonly referred to as ‘myside’ 

confirmation bias. 
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Nickerson (1998) explains that the most psychologically interesting dimension of biased 

evidence seeking and evaluation is the unconscious kind. Indeed, related to the brief 

discussion of active forgetting above, in a certain sense we might even describe the general 

mechanism of confirmation bias as the non-recognition (because of high uncertainty), and 

consequent non-inhibition, of intrusive or interfering cognitive content. 

 

In the more recent literature on confirmation bias, a new nomenclature has emerged which 

subdivides the concept into two quite distinct, though putatively interacting, cognitive 

phenomena: 1) ‘Myside’ bias, or how an agent over-values novel information which 

confirms previously internalized beliefs or other state-action policies (Mercier & Sperber, 

2017; Stanovich et al., 2013; Stanovich & West, 2007), and; 2) choice-confirmation bias, 

whose effects are more immediately the product of favoring repetition of choices which 

have just led to better than expected outcomes (Chierchia et al., 2021; Palminteri, 2021; 

Palminteri et al., 2017). Myside bias corresponds to the object of study found in the classical 

literature review “Confirmation Bias: A Ubiquitous Phenomenon In Many Guises” 

(Nickerson, 1998), and is the object of investigation of the present study. In view of this 

title, it is fitting that choice-confirmation bias has emerged as a means of isolating one such 

guise in order to study it with greater precision. So, although it is not the central object of 

our own investigation, it was important to us to embrace the research potential such 

conceptual and functional clarification provides, which is why we do open the door to a 

choice-confirmation bias analysis of our findings in Part 2, highlighting its potential for 

dedicated future research. From this point on in the present text, however, “myside bias” 

and “confirmation bias” will be used interchangeably, with “choice-confirmation bias” 

specified as such where mentioned. 
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One of the most natural things to imagine, something which plays out hundreds of 

thousands of times daily on social media and elsewhere, is that someone in whom we can 

very easily observe the myside bias must therefore be severely lacking in intelligence, since 

otherwise they would surely see it themselves: We are right, they are wrong; they don’t 

change their mind when we present them with arguments we have found to be convincing, 

therefore they must be dumb. However, recent work has begun to empirically demonstrate 

that strength of myside bias is actually independent of cognitive ability and does not 

correlate to standard measures of general intelligence (Macpherson & Stanovich, 2007; 

Stanovich et al., 2013; Stanovich & West, 2007). Although this seems counter-intuitive, it 

should not be surprising, since clear bases for drawing this same conclusion are present 

throughout Nickerson’s classical review on confirmation bias. For example, Nickerson tells 

us that even Francis Bacon, describing the psychological mechanism we now refer to as 

confirmation bias, stated that philosophers and scientists did not escape the tendency 

(Nickerson, 1998). We might also refer to the infamous so-called “Nobel disease” or 

“Nobelitis”, being a trend that has been noticed for Nobel prize-winners (hence, de facto, 

presumably very intelligent individuals) to seemingly disproportionately go on to be 

convinced by pseudo-science or worse, despite mountains of evidence indicating their lack 

of justification for doing so (Diamandis, 2013). The example of Nobel disease can serve us 

as more than an interesting curiosity, however. Importantly, the majority of occurrences 

of it happen when the scientist in question suddenly takes an interest in a domain outside 

of the one s/he won a Nobel prize for. In this sense, their confirmation bias with respect to 

evidence that is disconfirmatory towards their new pet position is occurring beyond the 

epistemic zone in which they enjoy the highest level of certainty, i.e. their domain of 

expertise. If we parallel this to the case of the average person, an individual could score very 
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highly in general intelligence tests, have a very high IQ, yet not at all be educationally 

equipped to understand the complex ins and outs of, say, climate science or molecular 

biology. For such an individual, these would represent domains of high uncertainty, 

regardless of their level of cognitive ability, or general intelligence, or indeed impression 

of their own level of understanding (Sloman & Fernbach, 2017). Whether the uncertainty 

be due to technical or to moral complexity, it is in such individual-specific high uncertainty 

domains we should expect to observe most confirmation bias, even more so if the domain 

also implies a strong affective dimension for the individual, such as politics (Kaplan et al., 

2016; Stanovich, 2021). Indeed, politics is a domain where people tend to stake out broad-

stroke positions such as ‘left’ or ‘conservative’ or ‘libertarian’, in a way that is highly 

susceptible to give rise to selective evidence seeking and biased weighting of information 

relevant to politically charged, morally or technically complex issues (e.g. trans rights or 

climate science, respectively). This is a phenomenon that is only aggravated further in the 

algorithmic world of social media (Cinelli et al., 2021; Lazer et al., 2018). Force of habit 

and affect should not be underestimated in these situations of high uncertainty that go 

beyond conscious cognitive ability. Indeed, accurate estimation of their contribution may 

help explain why strength of myside bias, if it does indeed primarily arise from procedural 

and affective memory, is not correlated to measures of general intelligence, typically 

focused on cortico-hippocampal cognitive functions. Indeed, as Stanovich remarks, despite 

this clear dissociation, no standard measures of general intelligence yet assess the cognitive 

ability to, for example, overcome confirmation bias (Stanovich et al., 2013).  

 

Soon after design and pilot validation of the everyday-like rule revision task as an animal 

model for myside confirmation bias, I happened to be reading an article in The New Yorker 

(Kolbert, 2017) discussing Hugo Mercier and Dan Sperber’s then new book The Enigma of 



44 
 

Reason (Mercier & Sperber, 2017). The article laid out the fundamentals of Mercier and 

Sperber’s theory of the evolution of reason in humankind: “Reason developed not to 

enable us to solve abstract, logical problems or even to help us draw conclusions from 

unfamiliar data; rather, it developed to resolve the problems posed by living in 

collaborative groups.” Part of this evolutionary scale solution to social problems, the 

authors advance, is specifically persuasive reason, the capacity to weave together arguments 

with the capacity to convince others to do what we think is best for the group. In such 

socio-epistemic conditions, developing a stronger cognitive capacity for persuasive 

reasoning than for strictly factual or critical reasoning would carry a reproductive 

advantage, particularly in asserting oneself into a position of authority over the group: 

“There was little advantage in reasoning clearly, while much was to be gained from 

winning arguments” (Kolbert, 2017). However, Mercier and Sperber go a step further in 

their claim that confirmation bias must have first evolved in humans, in whom they say it 

confers a selective advantage; they also explicitly claim that non-human animals could not 

have evolved the cognitive capacity for confirmation bias, because in animals it would 

threaten survival. As quoted in the New Yorker article: “Imagine, Mercier and Sperber 

suggest, a mouse that thinks the way we do. Such a mouse, ‘bent on confirming its belief 

that there are no cats around,’ would soon be dinner.” First impressions upon reading this 

should be that the illustration used is not analogous to what we, to what they label ‘myside’ 

bias in humans. If a human were reasoning analogously to this hypothetical mouse, we 

would most likely label it a psychosis, not confirmation bias. Yet, in their book itself, the 

authors go further still, claiming “Unsurprisingly, then, no confirmation bias emerges 

from studies of animal behavior.” On the one hand, this is, or at least was, trivially true. 

On the other hand, were it a statement made about human rather than animal research, 

the authors would surely have concluded that this was a hypothesis which demanded direct 

empirical testing instead of a priori dismissal. As such, this dismissal itself could be 

interpreted as confirmation bias at work, in precisely the sense described by Francis Bacon: 
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“The human understanding when it has once adopted an opinion […] draws all things else 

to support and agree with it” (Bacon, 1620; Nickerson, 1998). 

A fundamental, albeit neglected implication of confirmation bias is that it should be just 

as likely to underpin “correct” as “incorrect” responses. In the school of philosophy known 

as “virtue epistemology” there is much discussion of something called “epistemic luck,” 

which is when an agent believes something that is correct but by virtue of luck rather than 

of “proper” thinking (Pritchard, 2005; Turri & Sosa, 2013). The implication of this is that, 

all other things being equal, both a person who disagrees with us and a person who agrees 

with us on a given question may be equally likely to have arrived at their respective 

positions via the effects of myside bias. So, it should not have been surprising when I later 

still stumbled across a presumption in animal behavior specialist Jaak Panksepp’s work that 

confirmation bias was something which we should of course expect to see manifest in the 

behavior of rats, for example (Panksepp, 1998). In short, in the absence of actual empirical 

testing of the question through specifically designed experiments (Popper, 1935), and 

although they reach opposing conclusions, both Panksepp and Mercier and Sperber were 

likely reasoning to a comparable extent under the action of myside bias.  

Various other facets of myside confirmation bias will be discussed again at length in Part 2 

of this work. Naturally, I have attempted to temper the influence of my own myside bias 

at every step of this investigation; conception, experimentation, data collection and 

analysis, and interpretation. However, the greatest safeguard against confirmation bias that 

we possess as a species, and on this point I agree with Mercier and Sperber, resides in the 

good faith confrontation of our own beliefs and convictions with those of others in a spirit 

of reciprocal learning and progress. On which note, I invite the reader to study the content 

of this PhD project with a mind as critical as it is open, and look forward to the good faith 

confrontations to follow. 
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“Got his rag out that evening on the bowling green because I sailed inside him. 

Pure fluke of mine: the bias.”  
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