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Abstract
We propose a new separation technique of internal gravity waves (resp. inertial waves)
and eddies in stratified (resp. rotating) turbulence. The separation is based on the
dispersion relation of waves modified by the advection of a vertically sheared horizontal
flow (resp. the geostrophic mode) called sweeping effect. Different regimes are studied
with a low Froude number Fr � 1 (resp. Rossby number Ro � 1) but with a varying
buoyancy Reynolds number Reb (resp. inertial Reynolds number ReI). We observe that
the distribution of energy between waves and eddies follow the Fr (resp. Ro) number. We
establish the evolution equations for the waves and eddies parts separately. Generally,
we observe a large transfer of energy from waves to eddies. We also observe in the
rotating case that it is mostly waves that transfer energy to the geostrophic mode. A
few inverse cascades are observed for particular types of transfers. The dissipation and
mixing due to waves and eddies against the different parameters are calculated. Finally,
2D velocity fields are decomposed into their wave and eddy parts.

Keywords Turbulence, stratification, rotation, mixing, dissipation, transfer, energy,
waves, eddies.

Résumé
Nous développons une nouvelle technique de séparation des ondes internes de gravité
(resp. des ondes inertielles) et tourbillons dans des écoulements turbulents stratifiés
(resp. en rotation). Cette séparation est basée sur la relation de dispersion des ondes
modifiée par l’advection d’un écoulement cisaillé (resp. du mode géostrophique) appelée
effet sweeping. Différents régimes sont étudiés à bas nombre de Froude Fr � 1 (resp.
nombre de Rossby Ro � 1) mais avec un nombre de Reynolds de flottaison Reb (resp.
nombre de Reynolds d’inertie ReI) variable. Nous observons que la répartition d’énergie
entre les ondes et les tourbillons dépend fortement du nombre de Fr (resp. du nombre
de Ro). Nous définissons l’équation d’évolution de l’énergie pour les ondes et tourbillons
séparément. De manière générale, on observe un large transfert d’énergie des ondes vers
les tourbillons. Dans le cas en rotation, on observe que c’est principalement les ondes
qui alimentent le mode géostrophique. Quelques cascades inverses sont observées pour
certains types de transferts. La dissipation et le mélange dûs aux ondes et tourbillons
sont aussi calculés. Enfin, les vitesses des ondes et des tourbillons sont séparément
visualisées dans des plans de coupe 2D.

Mots clefs Turbulence, stratification, rotation, mélange, dissipation, transfert, énergie,
ondes, tourbillons.
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Chapter 1

Introduction

1.1 Where do IGW and IW occur?

Internal Gravity Waves (IGW) exist in stratified flows, where the density varies with
height in a stable stratification (heavy fluid below light fluid). This type of flow is
encountered in the atmosphere and ocean where density varies with altitude. It is
possible to observe waves with the help of clouds as shown in figure 1.1. Hence, they can
be very important in the dynamics of the weather and climate which require modelling

Figure 1.1: Example of atmospheric gravity waves (source: Jacques Descloitres,
MODIS Rapid Response Team, NASA/GSFC)

1
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Figure 1.2: Visualisation of the polar jet stream. Faster winds are in red and slower
winds are in blue (source: NASA’s Goddard Space Flight Center)

of the atmosphere and ocean. For example the 2001 IPCC report explains that random
internal waves are one of the most important processes driving ocean mixing [136].
Furthermore, this report claims that the uncertainty over the parameterization of the
ocean mixing is probably small for a few decades on climate’s projection but considerable
for larger time scale. While the understanding of the ocean mixing has increased, there
is still uncertainties that could influence the thermal expansion of the ocean [31], the
climate model performance, or the accuracy of the simulation in the Indian and Atlantic
tropical oceans [47].

Similarly Inertial Waves (IW) exist in rotating flows. This type of flow is particularly
studied for planetary cores. They also take place in the atmosphere or ocean and in
this case they are called Rossby waves [115]. Different types of inertial waves exist,
for example, planetary Rossby waves are created with a variation of the Coriolis force
with latitude and topographic Rossby waves exist in a rotating fluid with a variable
depth [80]. They are linked to the formation and behaviour of the jet stream (associated
to Rossby waves) which influences a lot the weather and climate on Earth [134]. An
example of the polar jet stream is displayed in figure 1.2.

It is possible to trap and visualize in a wave attractor the movement of IGW as in Brouzet
et al. [20], Maas et al. [88] and the movement of IW as in Brunet et al. [21]. Waves can
also be observed in the atmosphere. It is particularly the case during an eclipse [32, 95]
because when the moon hides the sunlight it suddenly changes the radiation that the
atmosphere receives, which is assimilated as a forcing and results in the creation of
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waves. The velocities linked to these waves are very close to an ellipse shape [32]. For
example, in Colligan et al. [32], plotting the zonal wind velocity in the x axis and the
meridional wind velocity in the y axis after an eclipse, an ellipse shape is recovered which
can be understood as the imprint of atmospheric gravity waves.

1.2 How do they manifest?

It can be obscure to understand how waves behave inside a fluid. Indeed, we are much
more used to “seeing” the waves (such as the surface waves on the ocean) or “listening”
to the waves (such as sound waves). Yet, it is possible to obtain a global understanding of
an IGW movement inside a fluid as shown in figure 1.3. When a parcel of fluid of density
ρ1 goes to a heavier fluid environment ρ2, it is quite obvious that a force will occur on
the parcel of fluid to move it to a lower density environement ρ3. Then the parcel of
fluid of density ρ1 has a higher density than its environment and it is pushed downward
again. However this movement is not perfectly vertical as the flow is incompressible.
The incompressibility of the flow creates also some horizontal velocities.
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Figure 1.3: Representation of the movement of IGW in a stratified flow.

In the case of rotating turbulence the mechanism of IW movement is somehow more
complicated. IW appear in a rotating frame because of the Coriolis force −2Ω × u

(see figure 1.4). When a parcel of fluid moves at a velocity field u1, the Coriolis force
creates a force F1 on it. This induces a new velocity on the parcel of fluid u2 and a
new force F2. By repeating this phenomenon for u3 and u4, we obtain a parcel of fluid
that oscillates like a wave. Again, this velocity field is not purely two dimensional and
vertical components of velocity also exist due to incompressibility.
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Figure 1.4: Representation of the movement of IW in a rotating flow.

1.3 Why do we need to separate waves and eddies?

When a flow is strongly stratified or rotating, waves can dominate the overall structure
of the flow. If the amplitude of the waves is small, we are in the weak wave turbulence
regime. The non-linearity can be ignored compared to the stratified or rotating term and
it is possible to derive an analytical solution for this kind of flow [120]. If the amplitude
of the waves is large, waves interact due to the non-linear term and we recover the strong
wave turbulence regime [110].

When the flow is barely stratified or barely rotating, one can ignore the stratified and
rotating term and, far from boundaries, one recovers the classical result of 3D homoge-
neous and isotropic turbulence (HIT) summarized in Frisch [48]. Despite not knowing
an analytical solution for HIT, this type of flow is well known and has been the subject
of numerous articles. Furthermore, 2D flows have also been extensively documented as
in Boffetta and Ecke [14], Kraichnan and Montgomery [70], Tabeling [137].

Added complexity arises in between those two cases, when the stratified or rotating
terms are important but do not dominate the flow. In this case, the eddy dynamics
cannot be studied individually from the wave dynamics as they are entangled with one
another. Furthermore, waves can create eddy turbulence [11, 44] and conversely, eddy
turbulence can create waves [107, 150]. Hence, it is useful to separate the waves and
eddies to better understand how they interact with one another and to observe their
dynamics individually. This is the objective of this thesis.

The manuscript is organised as follows. The first chapter presents the equation for
rotating and stratified flows. It shows the properties of IGW and IW. The effect of large
structure on the wave’s characteristics is also presented. The second chapter presents a
new technique to extract the 3D wave field and the 3D eddy field in a turbulent flow.
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The fourth and fifth chapters show new physical results obtained from our wave/eddy
separation technique for stratified or rotating flows.



Chapter 2

Waves in Flows

In this chapter, we sum up the relevant properties of Internal Gravity Waves (IGW) and
Inertial Waves (IW) encountered in stratified or rotating flows.

2.1 Equations for a stratified fluid

We start by the computation of the different sets of equations used in this thesis. In the
case of a stratified flow, the Navier-Stokes equations are

ρ(∂tu+ u ·∇u) = −∇p+ µ∇2u+ ρg (2.1)

∇ · u = 0 (2.2)

∂tρ+ u ·∇ρ = χ∇2ρ. (2.3)

The dynamical variables used here are defined as u = (ux, uy, uz) the velocity vector, p
the pressure term, ρ the density, µ the dynamic viscosity, χ the thermal diffusivity and
g the vertical gravity.

Compare to the full Navier-Stokes equation for compressible flow, the Boussinesq ap-
proximation assumes that only variations of density linked to gravity are important
[15]. This is the case in flows where variations of density are small but where the flows
is driven by a strong buoyancy force. The other terms where the density is involved
neglect its variation. As a result, the equation of continuity (mass conservation) can
be simplified as an incompressible flow (2.2) and lead to a simplified equation in (2.1).
The fluctuations of density in the inertial term can also be neglected and the density

6
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Figure 2.1: Decomposition of the buoyancy field ρ(x, t) with a linear background
density field ρ0 + αz.

field follows an advection-diffusion equation (2.3). The density field can be linked to the
temperature or concentration of a species as the salt in the ocean.

The density ρ(x, t) can be considered with a linear background density field variation
ρ0 − αz and a density fluctuation ρ′(x, t) (see figure 2.1), where α is the spatial average
gradient of density α = |dρ/dz|. Furthermore, only small variations of density are
allowed (ρ′ � ρ0). The density field is:

ρ(x, t) = ρ0 − αz + ρ′(x, t). (2.4)

By injecting equation (2.4) into equations (2.1) and (2.3), the Navier-Stokes equations
in the Boussinesq approximation become:

ρ0(∂tu+ u ·∇u) = −∇p+ µ∇2u+ (ρ0 − αz + ρ′)g

∇ · u = 0

∂tρ
′ + u ·∇ρ′ + αuz = χ∇2ρ′.

(2.5)

The term ρ0 disappears from the advection-diffusion equation as it is constant. Fur-
thermore, as the Boussinesq approximation states that the buoyancy variations are only
important in the terms linked to gravity, the fluctuation of density ρ′ and the linear
term αz are neglected in the inertial part of the equation of momentum in (2.5).

In a flow at rest, −∇p+ (ρ0 −αz)g = 0. The pressure term can also be rewritten using
the linear background of density field. The new pressure term p′ becomes:

p′ = p+ (−ρ0z +
α

2
z2)g + cste. (2.6)
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We multiply the advection equation (2.3) by g/ρ0 and we define b = −ρ′g
ρ0

. We also in-
troduce the Brunt-Väisälä frequency N =

√
αg/ρ0. Hence, the Navier-Stokes equations

become:

∂tu+ u ·∇u = − 1

ρ0
∇p′ +

µ

ρ0
∇2u+ bn

∇ · u = 0

∂tb+ u ·∇b+N2uz = χ∇2b.

(2.7)

Then, we non-dimensionalise the equations (2.7) using a characteristic time T and a
characteristic length scale L. The new dimensionless variables are written with a sub-
script ‘d’:

u = L/Tud, t = Ttd, p′ = ρ0(L/T )
2pd, ∇ = ∇d/L, N = Nd/T. (2.8)

By inserting the dimensionless variables (2.8) into equations (2.7), and dropping the
subscript ‘d’ we get:

∂tu+ u ·∇u = −∇p+ ν∇2u+ bn

∇ · u = 0

∂tb+ u ·∇b = −N2uz + χ∇2b

(2.9)

where ν = µT
ρL2 and can be understood as the inverse of the Reynolds number. As

the Reynolds number describes the effect of the viscosity, ν will be associated to the
kinematic viscosity in this thesis. Equations (2.9) are the set of equations for stratified
cases that will be used in this thesis.

2.2 Equations for a rotating fluid

We derive the set of equations used in the rotating case. We start by writing the Navier-
Stokes equations in the inertial frame:

∂tu+ u ·∇u = −1

ρ
∇p+

µ

ρ
∇2u

∇ · u = 0.

(2.10)

The velocity field in the rotating frame ur is linked to the velocity field in the absolute
frame (non rotating frame) u as shown in figure 2.2. The equation that links these two
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Figure 2.2: Velocity fields ur and ua in the rotating frame and velocity field u in the
Cartesian frame.

velocities is
u = ur +Ω×R = ur + ua (2.11)

where ua = Ω×R is the rotating velocity, R is the distance to the axis of rotation and
Ω is the rotation rate (see figure 2.2).

In the rotating frame, the Navier-Stokes equations become:

∂tur + ur ·∇ur = −1

ρ
∇p−Ω× (Ω×R)− 2Ω× ur +

µ

ρ
∇2ur

∇ · ur = 0.

(2.12)

In a flow at rest, the rotating velocity ua is linked to the pressure field pa by the
equation 1

ρ∇pa+Ω× (Ω×R) = 0. Furthermore, the centrifugal term can be rewritten
Ω× (Ω×R) = −∇(12Ω

2R2). Therefore, the pressure term can include the centrifugal
term as well. This new pressure term pr is

pr = p− ρ

2
Ω2R2. (2.13)

The Navier-Stokes equations with rotation retain only the Coriolis term −2Ω× u and
become:

∂tur + ur ·∇ur = −1

ρ
∇pr − 2Ω× ur +

µ

ρ
∇2ur

∇ · ur = 0.

(2.14)

Again, we non-dimensionalise equation (2.14) against a characteristic time T and a char-
acteristic length scale L. The new dimensionless variables are written with a subscript
‘d’:

ur = L/Tud, t = Ttd, pr = ρ(L/T )2pd, ∇ = ∇d/(L), Ω = Ωd/T. (2.15)
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By inserting the dimensionless variables in equation (2.15) into equation (2.14), and
dropping the subscript d we obtain:

∂tu+ u ·∇u+∇p = −2Ω× u+ ν∇2u

∇ · u = 0
(2.16)

where ν is defined similarly to the stratified case. Equations (2.16) are the set of equa-
tions for rotating cases that will be used in this thesis.

2.3 Navier-Stokes equations for rotating and stratified
flows

The Navier-Stokes equations in both rotating and stratified cases are presented in equa-
tion (2.17). The stratified equation is written under the Boussinesq approximation,
when the variation in density is taken into account only in the direction of gravity z. It
is studied both analytically and by numerical simulations:

∂tu+ ω × u = −∇p+ ν∇2u+ nb− 2Ω× u+ Fu

∇ · u = 0

∂tb+ u ·∇b = −χ∇2b−N2n · u+ Fb,

(2.17)

with ω = ∇ × u and ω × u = u · ∇u − 1

2
∇u2. Note that the gradient term 1

2
∇u2

is not written in equation (2.17) because it is inserted in the modified pressure field
p = p′ − u2/2 similarly to equation (2.13).

We sum up the different dynamical variables used in this thesis, they are defined as
u = (ux, uy, uz) the velocity vector, ω = ∇ × u the vorticity, p the modified pressure
term, b the negative fluctuation of density around the mean constant gradient N2, n

the vertical unit vector along the stratification and the physical parameters are ν the
kinematic viscosity, X the thermal diffusivity, Ω the rotation rate and N the Brunt-
Väisälä frequency. Fu = (Fux , Fuy , Fuz) and Fb are different forcings that vary depending
on the case and is explained for each simulation (see sections 2.6.2.2, 2.7.1, 4.2.1 for
example). All equations and parameters are dimensionless by reference to length and
scale as shown for example in equations (2.8) and (2.15).
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While it is possible to consider a rotating and stratified flow at the same time, in this the-
sis we only consider either flow separately, a purely stratified flow (without the Coriolis
term −2Ω× u) or a purely rotating flow (without density variations).

2.4 Craya-Herring frame

Equations (2.17) can be rewritten using the spatial Fourier transform denoted by ˆ with
k a wavevector. For example the spatial Fourier transform of the velocity vector u(x, t)

is
û(k, t) =

1

2π3

∫ 2π

0
u(x, t)e−ik·xd3x. (2.18)

The flows that we are using are incompressible (∇ · u = 0) meaning that in the spatial
Fourier domain the velocity field is perpendicular to the wavevector (k · û(k) = 0). This
suggests a new frame of reference called Craya-Herring frame (see figure 2.3). In this
new frame the velocity field is perpendicular to the wave vector [63, 120]. This new
frame is different from the classical Cartesian frame and permits the reduction of the
velocity field from three components to only two components. The new polar spherical
coordinates are the toroidal component et, the poloidal component ep and the radial
component er. They are unit vectors of the so-called Craya-Herring frame (et, ep, er)
and are defined using the vertical unit vector ez as:

er = k/k, et = er × ez, ep = er × et. (2.19)

In this frame of reference, the velocity vector û in Fourier space is perpendicular to the
wavevector k as the flow is incompressible (∇ ·u = 0 or k · û = 0). As a result, the new
velocity field in Fourier space can be defined with only two components, the toroidal
velocity v̂t and poloidal velocity v̂p:

û(k) = v̂tet + v̂pep (2.20)

Note that this particular frame is ill-defined when the angle θ done between the wavevec-
tor k and the horizontal plane is θ = ±π/2, or when the horizontal wavenumber kh = 0

as both the toroidal and poloidal components can be in any direction. For the particular
point kh = 0, we can set the velocity ûx to be equal to the toroidal velocity ût and the
velocity ûy to be equal to the poloidal velocity ûp (or the inverse).
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Figure 2.3: The polar-spherical frame of reference linked to k in spectral space, also
named Craya-Herring frame. Unit vectors are toroidal et, poloidal ep, radial er.

2.4.1 Dispersion relation for internal gravity waves

From equations (2.9), we will compute the dispersion relation of IGW that links a spatial
statistic (an angle) to a time statistic (a frequency). To do so, we first remove the
non-linear terms. Indeed, IGW are plane-wave solutons of the linearised Navier-Stokes
equations. Without non-linear terms, the Navier-Stokes equations in the Boussinesq
approximation of equations (2.9) are:

∂tu+∇p− ν∇2u = nb (2.21)

∇ · u = 0 (2.22)

∂tb− χ∇2b = −N2n · u. (2.23)

Taking the divergence of (2.21) one finds the Poisson equation

∇2p = ∇ · nb. (2.24)

The spatial Fourier transform of equations (2.21) and (2.24) yields:

∂tûi + (ikip̂− nzδiz b̂) + νk2ûi = 0 (2.25)

p̂ = −i
kz
k2

b̂. (2.26)

Combining equations (2.25) and (2.26) one obtains:

∂tûi + (
kikz
k2

− nzδiz)b̂+ νk2ûi = 0. (2.27)

The buoyancy b has been projected on a plane perpendicular to k by applying the
projector operator Pij = δij − kikj

k2
. This operator projects any term to make them
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perpendicular to k.

Taking the spatial Fourier transform of equation (2.23) and multiplying by the unit
vector k/k, the buoyancy term becomes:

∂tb̂
k

k
+ χk2b̂

k

k
= −N2ûz

k

k
. (2.28)

Projecting equations (2.27) and (2.28) on the Craya-Herring frame, one therefore gets a
new, simpler set of kinematic equations:

∂tv̂
t + νk2v̂t = 0

∂tv̂
p + cos θb̂+ νk2v̂p = 0

∂tb̂−N2 cos θv̂p + χk2b̂ = 0.

(2.29)

The angle θ is the angle between the wavevector k and the horizontal plane (see figure
2.3). By taking the Fourier transform in time of equations (2.29) and writing ˜ the
Fourier transform in space and time of the components, we get:

iωṽt + νk2ṽt = 0

iωṽp + cos θb̃+ νk2ṽp = 0

iωb̃−N2 cos θṽp + χk2b̃ = 0

(2.30)

where, for example, the Fourier transform in time of component v̂t(k, t) is:

ṽt(k, ω) =

∫
v̂t(k, t)e−iπωtdt. (2.31)

By removing the diffusive terms (ν = χ = 0), and merging the last two equations in
(2.30), we obtain an equation for the poloidal term (which is similar for buoyancy):

(N2 cos2 θ − ω2)ṽp = 0 (2.32)

We expect a non-null solution for ṽp. Hence, equation (2.32) is possible if and only if
the dispersion relation for internal gravity waves in stratified flows is satisfied [82]:

ωr = ±N cos θ. (2.33)

A particularity of the dispersion relation (2.33) is that it does not depend on the length
of the wavevector k but only on its direction and on the stratification strength N . This
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is not the case for other types of waves such as capillary waves.

If the viscous term is kept with a Prandtl number Pr = ν/χ = 1 then the solution of
equation (2.30) is:

ω = ±N cos θ + iνk2. (2.34)

From the plane wave solution ei(k·x+ωt), replacing the angular frequency ω by its value in
equation (2.34), the effect of the viscous term is only a damping of the wave amplitude
of the form e−νk2t.

2.4.2 Dispersion relation for inertial waves

To compute the dispersion relation of IW, we remove the non-linear term in the rotating
Navier-Stokes equations computed in (2.16). The new set of equations is:

∂tu+∇p− ν∇2u = −2Ω× u (2.35)

∇ · u = 0. (2.36)

Taking the divergence of (2.35)

∇2p = ∇ · (−2Ω× u), (2.37)

the spatial Fourier transform of (2.35) and (2.37) is

∂tû+ (ikp̂+ 2Ω× û) + νk2û = 0 (2.38)

p̂ = i
2k · (Ω× û)

k2
. (2.39)

Combining (2.38) and (2.39):

∂tû+ 2

(
−k · (Ω× û)

k2
k+Ω× û

)
+ νk2û = 0. (2.40)

The rotation terms are projected perpendicular to k with the projector operator
P = δij − kikj

k2
.
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Projecting equation (2.40) onto the Craya-Herring frame, the velocity field can now be
written with only two components:

∂tv̂
t − 2Ω sin θv̂p + νk2v̂t = 0

∂tv̂
p + 2Ω sin θv̂t + νk2v̂p = 0.

(2.41)

By taking the Fourier transform in time of equations (2.41), we obtain

iωṽt − 2Ω sin θṽp + νk2ṽt = 0

iωṽp + 2Ω sin θṽt + νk2ṽp = 0.
(2.42)

By removing the viscous term (ν = 0), and merging the two equations in (2.42), we
obtain an equation for the poloidal velocity (which is similar for the toroidal velocity):

(4Ω2 sin2 θ − ω2)ṽp = 0 (2.43)

We expect a non-null solution for ṽp. Hence, equation (2.43) is possible if and only if
the dispersion relation for inertial waves in rotating flows is satisfied:

ωr = ±2Ω sin θ. (2.44)

Again, the dispersion relation written in equation (2.44) does not depend on the value
of the wavevector k but only on its direction and on the rotation strength 2Ω.

If the viscosity ν is kept, then the solution of equation (2.42) is:

ω = ±2Ω sin θ + iνk2. (2.45)

Similarly to the stratified case, the viscous term can be understood as a damping term
of the wave amplitude.

2.4.3 Phase and group velocities

The phase velocity vΦ and group velocity vg of waves can be calculated from the dis-
persion relation ωr (equations (2.33) and (2.44)). They are written:
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vΦ = kωr/k
2 and vg = ∇k(ωr) =


∂ωr

∂kx
∂ωr

∂ky
∂ωr

∂kz

 . (2.46)

The phase velocity can be understood as the propagation of phase crest, where k · x+

ωrt = cste [115]. According to [115], the crest of constant phase φ = k · x + ωrt =

constant, propagates perpendicularly to the wavevector k since ∇xφ = k with a phase
velocity vΦ = ωrk/k

2. It propagates with a phase velocity vΦ parallel to k if ωr < 0

and anti-parallel to k if ωr > 0. On Figure 2.4, we plot the four possibilities (the four
quadrants Q1, Q2, Q3, Q4) of the propagation of the crest of phase in the plane (θ, ω)

according to the sign of θ and ω.

The group velocity (the envelope of the wave) is the velocity at which the energy is prop-
agated. The dispersion relation, the phase velocity and group velocity can be rewritten
as in Jause-Labert [66] for rotating flows:

ωr = ±2Ω
kz
k
, vΦ = ±2Ω

kz
k2

k, vg = ±2Ω
k× (ez × k)

k3
. (2.47)

For stratified flows, the dispersion relation, the phase velocity and group velocity can
be written as in Davidson [35]:

ωr = ±N
kh
k
, vΦ = ±N

kh
k2

k, vg = ±N
kzk× (k× ez)

k3kh
. (2.48)

From equations (2.47) and (2.48), it is obvious that the group velocity is perpendic-
ular to the phase velocity (vg ⊥ vΦ) for waves in both stratified and rotating flows [115].

2.5 Direct Numerical Simulation method

The non-dimensional Navier-Stokes equations are solved using an in-house pseudo-
spectral code in FORTRAN 90 and parallelized with MPI. This code have been already
used in the research group for many papers [2, 38, 72, 73, 92, 140]. The equations are
solved on a 3D 2π-periodic box and on a uniform grid space in the three directions. The
number of points in each direction is ng, so that each DNS is computed with n3

g points.
The Navier-Stokes equations are computed in the 3D spatial Fourier domain using the
P3DFFT library [116] but the non-linear terms are computed in the physical domain
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Figure 2.4: Diagram representing the four possibilities Q1, Q2, Q3, Q4 of the propa-
gation of the crest of constant phase φ = k ·x+ωrt = constant in the plane (θ, ωr) (see
text for explanation). We also introduce k′ = (−kx,−ky, kz) as the horizontal opposite

of k and sharing the same angle θ.

to reduce the computational cost. The phase shifting method is used, resulting in a
truncated term at kmax =

√
2ng/3 [28]. The numerical time integration is done using a

third-order Adams-Bashforth scheme [72].

2.6 Space-time analysis of the flow

As shown in the equations (2.44) and (2.33), the waves experience a natural relationship
between the spatial component θ and the time component ω. In order to use this link,
we need to analyse the flow in space and in time.

2.6.1 Numerical technique for space-time analysis

In the experimental work done by Yarom and Sharon [147], a new method has been
implemented to calculate the spatio-temporal energy against the angular frequency ω a
variable related to time, and the angle between the wave vector k and horizontal plane
θ, a variable related to space. This was also done in numerical works [75] and in an
experiment with wave attractor [34]. A similar technique was also implemented where
the energy was calculated against the frequency ω and the wavenumber k [41]. More
recently, this technique have been refined to calculate the density of energy against ω, θ
and k [72, 92].
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We explain here how the space-time statistics are computed to link the direction of prop-
agation θ — a spatial variable — to the frequency ω — a time variable in a varying range
of wavenumber k. This is done by calculating the time-dependent angular-dependent
spectral density of kinetic energy. To do this, the wave vector space is first decomposed
into several elementary cones with an angle θ with respect to the horizontal plane and
a length k (see Figure 2.5). Due to the θ angle discretization, the elementary cone is a
thin volume where all wave vectors k have an angle θ(k) ∈ Iθ = [θ −∆θ, θ −∆θ].

To compute the energy into this elementary cone, we decompose the computation into
four steps:

1. each elementary cone that contains a wave vector k with an angle θ(k) ∈ Iθ, is
divided into sub-volumes by selecting the scale k = |k|. Then, all the velocity
vectors are summed over the sub-volume in a local average of velocity Û(θ, t, k) =∑
θ(k)∈Iθ,|k|=k

û(k, t).

2. The Fourier transform in time of that new variable is computed as Ũ(θ, ω, k) =

FFT
[
Û(θ, t, k)

]
.

3. The spectral density of kinetic energy is recovered in a (θ, ω) plane for a range of
scales between k1 and k2 that is a set of sub-volumes:

E(θ, ω, k1 ≤ k ≤ k2) =
∑

k1≤k≤k2

E(θ, ω, k) =
∑

k1≤k≤k2

|Ũ(θ, ω, k)|2. (2.49)

4. The total spectral density of kinetic energy into an elementary cone, regardless of
scale k, can be computed as a summation over all sub-volumes:

E(θ, ω) =
∑

0≤k≤kmax

E(θ, ω, 0 ≤ k ≤ kmax) , (2.50)

where û is obtained from DNS. It is also possible to apply the same algorithm on the
separate components of the velocity field (ûx, ûy, ûz) and on the buoyancy field b̂.

When the numerical simulation contains only waves, one should observe a peak of energy
density that follows the dispersion relation curve defined by equations (2.33) or (2.44)
in the (θ, ω) plane (as illustrated in Figure 2.7b).

2.6.2 Saint Andrew’s cross for stratified flow: a benchmark

In order to test our method to compute the density of energy against (θ, ω), we compare
the theoretical solution against the numerical simulations in the following.
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k

Figure 2.5: Decomposition of the Fourier space in elementary “cones” containing
wavevectors k with given wavenumber amplitude k, and θ within discretized intervals

between 0 (kz = 0) and π/2 (kh = 0) as done in Teaca et al. [138].

Figure 2.6: Example of a Saint Andrew’s cross obtained experimentally from an
oscillating cylinder in a stably stratified flow (reproduced from Mowbray and Rarity

[103]).

When an oscillation inside a stratified or rotating flow at a regular frequency ωf occurs,
it is possible to observe the propagation of waves at the frequency of the forcing and for a
particular angle θ. Hence, a saint Andrew’s cross appear which is named so, because the
propagation of waves at the angle θ creates a shape very similar to the saint Andrew’s
cross. An example of this Saint Andrew’s cross in a stably stratified flow is visible in
an experiment done by Mowbray and Rarity [103] and in a numerical simulation in
figure 2.7a. The Saint Andrew’s cross can be created in a stratified or rotating flow by
oscillating a cylinder at a regular frequency in it [43] or by directly forcing the flow to
oscillate as done in this thesis. Its main advantage is to propagate IGW or IW in only
four directions. As waves are localized in space, it allows the visualization of the phase
and group velocities directly in the flow.
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2.6.2.1 Analytical solution

We derive the analytical solution of a stratified flow forced on the buoyancy term by
an oscillating point at frequency ωf . From the Navier-Stokes equations in Boussinesq
approach projected in the Craya-Herring frame (see equations (2.29)), we add a pointwise
sinusoidal forcing on the buoyancy term:

∂t

(
v̂p

b̂

)
+

(
0 cos θ

−N2 cos θ 0

)(
v̂p

b̂

)
=

(
0

sin(ωf t)

)
(2.51)

where v̂p is the corresponding solution for the poloidal component of velocity.
Denoting ωr = N cos θ and by writing the set of equations (2.51) against only the
buoyancy term b̂, one gets:

∂2
t b̂(t) + ω2

r b̂(t) = ωf cos(ωf t) (2.52)

The solution of this equation is the sum of the homogeneous and of a particular solution:

b̂(t) =


C cos(ωrt) +D sin(ωrt) +

ωf cos(ωf t)

ω2
r − ω2

f

if ω2
r − ω2

f 6= 0

C cos(ωrt) +D sin(ωrt) +
t

2
sin(ωf t) if ω2

r − ω2
f = 0.

(2.53)

Using the initial conditions b̂(t = 0) = 0 and ∂tb̂(t = 0) = 0, the solution of this
equation is

b̂(t) =


ωf

cos(ωf t)− cos(ωrt)

ω2
r − ω2

f

if ω2
r − ω2

f 6= 0

t

2
sin(ωf t) if ω2

r − ω2
f = 0.

(2.54)

Applying the time Fourier transform on (2.54) in the case ω2
r − ω2

f 6= 0, the solution for
the buoyancy is

b̃(k, ω) =
ωf

ω2
r − ω2

f

[
δ(ω − ωf ) + δ(ω + ωf )

2
− δ(ω − ωr) + δ(ω + ωr)

2

]
(2.55)

and similarly for the poloidal velocity component, the solution at ω2
r − ω2

f 6= 0 is

ṽp(k, ω) =
cos θ

ω2
r − ω2

f

[
ωf

ωr

δ(ω − ωr) + δ(ω + ωr)

2i
−

δ(ω − ωf ) + δ(ω + ωf )

2i

]
. (2.56)

A peak of energy is obtained in the equations (2.55) and (2.56) for ω = ±ωf and for
ω = ±ωr representing respectively the forcing frequency and the dispersion relation
frequency. The equations diverge for ωf = ±ωr because the calculation is done for an
inviscid case. When viscosity is added, the solution is a lot more complicated but the
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denominator is not only composed of the difference between ω2
f and ω2

r but also by the
viscous term (see Annexe A). Hence the solution does not diverge but reaches a peak of
finite value. In numerical simulations, where the viscosity is set very low but not null,
the solution does not diverge as well when ω2

r − ω2
f ' 0 (see section 2.6.2.2).

2.6.2.2 Numerical simulation

We test here the statistical characterization of waves by a simple benchmark consisting
of a single wave propagation in a Saint Andrew’s cross pattern, as in experiments [82].
The flow forcing produces only waves and is examined from its initial condition at rest.
Several forcing possibilities exist to create either a single isolated wave or several super-
imposed ones. The forcing term is introduced in the linearized Navier-Stokes equations
in the Boussinesq approximation: the non-linear terms ω × u and u ·∇b are removed
from equations (2.17), likewise in the numerical simulation. For this benchmark, the
forcing Fb is only imposed in the buoyancy equation, so that Fu = 0. We choose a point
forcing localized in physical space (as in section 2.6.2.1), of the form:

Fb = δx sin(ωf t) (2.57)

with ωf = 0.3. This forcing implemented only in the buoyancy equation of system (2.17)
ensures that the incompressibility condition is maintained for the velocity field. The
function δx is the Dirac function. In the Fourier space, it means that all wavenumbers
are forced even though there is more energy for high wavenumbers.

The resolution of the numerical simulation is ng = 128 in each direction meaning that
the box solved contains a total number of n3

g = 1283 points. We assume negligible
viscous diffusion so that ν = 10−7, and the Brunt-Väisälä frequency is N = 1. We recall
that all parameters are written non-dimensional against time and space (see equations
(2.8) and (2.15)), thus no dimensions are written when the parameters are set. As
expected, we observe in Figure 2.7 the propagation of waves according to an angle θ

set by ωr such that ωr = N cos θ. Figure 2.7a shows the distribution of the vertical
velocity components, and the same pattern could be observed in the buoyancy field.
The spatio-temporal analysis is then applied using 1000 fields separated by a time step
∆t = 0.5. The total time span is therefore 79.6TN where the TN = 2π/N is the Brunt-
Väisälä period. Upon computing the space-time statistics of energy density E(θ, ω)

according to equation (2.50), the energy distribution in the (θ, ω) plane (Figure 2.7b)
appears to concentrate in two kinds of regions: (a) along two horizontal lines of energy
concentration, at ωf = ±0.3; these lines are the traces in the numerical simulation of
the pointwise spatial forcing — almost a Dirac — which oscillates at frequency ωf ,
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which is Fourier transformed. (b) Along the dispersion relation curve ; in absence of
non-linearity, no energy redistribution can occur away from the immediate input due to
the forcing. Both kinds of energy concentration curves correspond to the response of
the linear system to the forcing, with one component at its forcing frequency ωf and
one at the natural frequency of the system, which is here the frequency of the waves ωr.
The maximum of E(θ, ω) is therefore observed at the crossing points of the forcing and
the dispersion relation curves, that is at θ ' 72.5. In physical space, this peak energy
results in the observation of waves propagating at θ ' 72.5, which is indeed what we
measure on Figure 2.7.

2.6.2.3 Comparison between analytical and numerical results

This numerically observed solution of the response of the linearized system of equa-
tions to harmonic forcing is computed analytically in section 2.6.2.1 from the inviscid
Boussinesq-Navier-Stokes equations with a zero initial condition. The analytical solu-
tion for the buoyancy field and poloidal velocity field is written in equations (2.55) and
(2.56). From this solution, two regions of concentration of energy can indeed be found.
One along the line defined by ω = ±ωf which is the frequency of the forcing and one
along the curve ω = ±ωr which is the frequency of the waves along the dispersion rela-
tion. The analytical solution diverges for ωf = ±ωr because it is an inviscid solution,
but it shows that the maximum of energy is at the intersection of these frequencies. For
numerical simulations as the flow has a little bit of viscosity, the energy peaks but does
not diverge for ωf = ±ωr.

Note that several vertical lines at constant angle θ are visible in Figure 2.7b in a log-
scale. Each point sharing the same angle θ corresponds to an independent set of Fourier
transforms in time of all of the vertical velocity field sharing the same angle θ.

2.6.3 Hann windowing technique, when is it used?

A windowing technique can be particularly useful to filter the data in order to make them
periodic. This can be particularly interesting for our cases where Fourier transform
of non periodic data is done. We explain here in which cases the Hann windowing
technique (sometimes referenced as Hanning windowing technique) is used on a signal.
The windowing technique used here on a period T is the Hann window:

H(t) =
1

2
− 1

2
cos(2πt/T ). (2.58)
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Figure 2.7: (a) Distribution of vertical velocity component uz showing the Saint An-
drew’s cross pattern of propagation of waves in the (x, z) plane in physical domain
(zoomed in, the complete resolution domain is [−π, π]3) for a simulation with a reso-
lution ng = 128 grid points in each direction, and stratification frequency N = 1. The
group velocity vg, phase velocity vΦ and wavevector k are also represented. (b) The
corresponding concentration of energy density E(θ, ω) in the (θ, ω) Fourier domain (in
log scale). Red dashed line: dispersion relation curve ωr(θ) for internal gravity waves

defined by equation (2.33). Black dotted line: forcing frequency ωf .

We almost never have a perfect periodic signal in turbulence. Therefore, it might be
useful to use a windowing technique to help reduce the spectral leakage (the spreading
of energy in ω). In figures 2.8 a and b, we can see the effect of the Hann window on the
result. The dispersion relation obtained is much sharper in figure 2.8a where a Hann
window is used than in figure 2.8b where no windowing technique is used. There is still
a little spreading in figure 2.8a, particularly at the intersection between the forcing and
the dispersion relation. This is due to the viscous effect and the discretization error.

For a non periodic signal, the drawback of the use of a windowing technique is that the
signal it is applied on is modified. Its amplitude and energy are modified depending on
the windowing technique used. For example, if a Hann window is used, it is necessary
to compensate the signal by a factor of 1.63 in order to keep the same energy or by
a factor of 2 in order to keep the same maximum amplitude as shown in [125]. From
this, a trade off needs to be made. Should I keep the same energy in my system or keep
the same amplitude? This choice could influence our results. Therefore, for the rest of
the thesis, the Hann window is used in this thesis for only qualitative results or when
no statistics are calculated after. If statistics are computed from the signal, no Hann
window is used.



Chapter 2. Waves in Flows 24

- /2 - /4 0 /4 /2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-34

-32

-30

-28

-26

-24

ω
/N

θ
- /2 - /4 0 /4 /2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-34

-32

-30

-28

-26

-24

(a) (b)

θ

ω
/N

Figure 2.8: Energy density E(θ, ω) in the (θ, ω) Fourier domain where: (a) a Hann
window is applied to the time signal; (b) no windowing technique is applied to the
time signal. Red dashed line: dispersion relation curve ωr(θ) for internal gravity waves

defined by equation (2.33). Black dotted line: forcing frequency ωf .

2.7 Non-linear effect on the dispersion relation of waves

In this section, we consider all the possible effects that could modify the dispersion
relation of waves in stratified or rotating flows: kinematic effect due to the presence of
a large-scale flow, or the dynamical effect due to non-linear interactions.

When looking at the modification of wave frequency, a few phenomena can be considered.
The first one is similar to the Doppler effect, and the second one is called sweeping effect.
This difference is schematically represented in figure 2.9 where in the case of the Doppler
effect, the car is moving compared to the observer and no wind is occurring. In the case
of the sweeping effect, it is the wind which is blowing and the car is static compared
to the observer. In both cases the frequency of the sound wave emitted by the car and
heard by the observer is modified. As shown in section 2.7.1 and 2.7.2, the two cases
are not equivalent in the case of IGW in stratified flows or of IW in rotating flows. A
third possible phenomenon studied is the effect of a gradient of advective velocity (as if
the wind speed was different against height in figure 2.9).

  

Car 
speed

Wind speed

Static 
observer

Wave emission

Figure 2.9: Doppler effect (car moving and no wind) and sweeping effect (car static
and wind blowing)
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Figure 2.10: Doppler effect of a uniform motion of the source generating the internal
gravity waves. (a) Vertical velocity uz in the (x, z) plane in physical space where the
red arrow illustrates the vertical velocity of point forcing with cz = 6.28×10−3 (zoomed
in). (b) The corresponding concentration of energy density E(θ, ω, 56 < k < 60) in the
(θ, ω) Fourier domain (in log scale). Red dashed line: dispersion relation curve ωr(θ)
for internal gravity waves. Black dotted line: original forcing frequency ωf . Yellow

dash-dotted line: modified frequency of the forcing with k=60 given in (2.60).

Unless stated otherwise, the numerical simulations done in this entire section use the
same numerical parameters as the one written in section 2.6.2.2.

2.7.1 Doppler Effect

We investigate a configuration where the wave production mechanism moves at a con-
stant velocity, and in which the modification of the dispersion relation could be different.
This new configuration is simulated using a forcing Fb modified so that it is spatially
phase-shifted, which, in practice, is done in Fourier space. In physical space, the forcing
is thus advected at constant vertical velocity cz. The new forcing is therefore:

Fb = δx−czt sin(ωf t) (2.59)

with ωf = 0.3. The value of cz = 6.28× 10−3 is chosen to be large enough (but not too
large) to observe a difference in the concentration of energy density (see figure 2.10b).

In Figure 2.10a in the physical vertical plane, the local forcing can be seen to move in
the positive z direction in physical space for the same physical and numerical parameter
as in paragraph 2.6.2.2.

In the Fourier domain, the dispersion curve is not modified, but only the forcing fre-
quency ωf is modified by addition of the correction −c · k = −czk sin θ. It is modified
similarly to the sweeping effect as the new forcing frequency (dash-dotted yellow curve
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in Figure 2.10b) is equal to
ω′
f = ωf − czk sin θ. (2.60)

Therefore, the Doppler effect does not modify the frequency of internal gravity waves
and the original dispersion relation is preserved. This is shown in Figure 2.10b, where
the dispersion relation (2.33) is not modified (red dashed curve), whereas the forcing
frequency is modified according to equation (2.60) for a wavenumber amplitude between
56 < k < kmax = 60. At the crossing between the two curves indicating the modified
frequency of forcing and the dispersion relation, the concentration of energy density
E(θ, ω) is maximal: at (θ, ω) = (−1.5, 0.1) and (−0.9, 0.6), and at the points (0.9,−0.6)

and (1.5,−0.1).

2.7.2 Sweeping effect for stratified or rotating fluids

We now consider how the characteristics of the waves can be modified through the
advection of a flow. This phenomenon is called sweeping effect and is mostly due to the
advection of waves by a large scale flow. It is different from the Doppler effect where
the source of the waves moves, but not the background flow.

The effect of the sweeping by an advecting flow on the dispersion relation can be com-
puted by finding the Green’s function (i.e. the response of a linear system to a Dirac
forcing in space and time). First, we compare the dispersion relation obtained numeri-
cally and analytically in the case of homogeneous and constant advecting flow for strat-
ified flows. Then, we analyse the effect of non-homogeneous advection on the dispersion
relation for rotating or stratified flow.

2.7.2.1 Analytical solution of the sweeping effect for a stratified flow

The influence of the sweeping effect on the waves is easily computed in the case of a
homogeneous and constant advecting flow c. In the case of a Dirac forcing in space and
time on the buoyancy field, the Navier-Stokes equations in the Boussinesq approximation
are:

∂tu+ c ·∇u+∇p− ν∇2u = nb

∇ · u = 0

∂tb+ c ·∇b− χ∇2b = −N2n · u+ δ(x)δ(t)

(2.61)
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where the forcing Fb = δ(x)δ(t) is a dirac forcing in space and time. To solve the linear
homogeneous system in equation (2.61) is equivalent to find the Green’s function of this
system.

As c = cste then ∇ · (c · ∇u) = 0 and ∇ · c = 0. Writing equation (2.61) in matrix
form, we get:

(∂t + ic · k)


ût

ûp

b̂

+


νk2 0 0

0 νk2 − cos θ

0 N2 cos θ νk2



ût

ûp

b̂

 =


0

0

δt

 . (2.62)

The toroidal component ût has an obvious solution and is not looked at later. We also
write ωr = N cos θ. Diagonalising the matrix in equation (2.62):

(∂t + ic · k)

(
ûp

b̂

)
+ P

(
νk2 − iωr 0

0 νk2 + iωr

)
P−1

(
ûp

b̂

)
=

(
0

δt

)

where P =

(
−i/N i/N

1 1

)
and P−1 =

(
iN/2 1/2

−iN/2 1/2

)
.

(2.63)

This equation is then rewritten as:

(∂t + ic · k)

(
ûpG

b̂G

)
+

(
νk2 − iωr 0

0 νk2 + iωr

)(
ûpG

b̂G

)
=

(
δt/2

δt/2

)

where

(
ûpG

b̂G

)
= P−1

(
ûp

b̂

)
.

(2.64)

Applying the Fourier transform in time to (2.64):

(
ũpG

b̃G

)
=

1
2

1
νk2+i(ω+c·k−ωr)

1
2

1
νk2+i(ω+c·k+ωr)

 . (2.65)

The solution for the poloidal and buoyancy component is:

(
ũp

b̃

)
= P

(
ũpG

b̃G

)
=

 i
2N

{[
νk2 + i(ω + c · k+ ωr)

]−1 −
[
νk2 + i(ω + c · k− ωr

]−1
}

1
2

{[
νk2 + i(ω + c · k+ ωr)

]−1
+
[
νk2 + i(ω + c · k− ωr

]−1
}  .

(2.66)

From equation (2.66), one can see that the buoyancy energy b̃2 increases when ω →
±ωr − c · k. This scenario corresponds to the wave domain and the dispersion relation
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is modified due to the term c ·k. Hence a uniform advecting flow modify the dispersion
relation of waves due to the sweeping effect. The new dispersion relation for internal
gravity waves with a constant and homogeneous advecting flow c is:

ω±
c = ±N cos θ − c · k (2.67)

2.7.2.2 Analytical solution of sweeping effect for a rotating flow

The above analyses done for the stratified case can also be done for the rotating case.
The influence of the sweeping effect on the inertial waves is easily computed in the case
of a homogeneous and constant advecting flow c. In the case of a Dirac forcing in space
and time on the toroidal velocity, the Navier-Stokes equations are:

∂tu + c ·∇u+∇p− ν∇2u = −2Ωn× u+ Ft (2.68)

∇ · u = 0 (2.69)

where Ft is the projection of a toroidal dirac in the cartesian space. It is derived in the
Fourier space as F̂t = (

ky
kh
δt,−kx

kh
δt, 0).

As we get c = cste then ∇ · (c ·∇u) = 0 and ∇ · c = 0. Equation (2.68) can be written
in the toroidal-poloidal space:

(∂t + ic · k)

(
ût

ûp

)
+

(
νk2 −2Ω sin θ

2Ω sin θ νk2

)(
ût

ûp

)
=

(
δt

0

)
. (2.70)

We write ωr = 2Ω sin θ. The matrix involving rotation and viscosity in (2.70) is diago-
nalized as:

(∂t + ic · k)

(
ût

ûp

)
+ P

(
νk2 − iωr 0

0 νk2 + iωr

)
P−1

(
ût

ûp

)
=

(
δt

0

)

where P =

(
−i i

1 1

)
and P−1 =

(
i/2 1/2

−i/2 1/2

)
.

(2.71)
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The equation (2.71) becomes:

(∂t + ic · k)

(
ûtG

ûpG

)
+

(
νk2 − iωr 0

0 νk2 + iωr

)(
ûtG

ûpG

)
=

(
iδt/2

−iδt/2

)

where

(
ûtG

ûpG

)
= P−1

(
ût

ûp

)
.

(2.72)

Applying the Fourier transform to (2.72) a solution is found:

(
ũtG

ũpG

)
=

 i
2

1
νk2+i(ω+c·k−ωr)

− i
2

1
νk2+i(ω+c·k+ωr)

 . (2.73)

The solution for the toroidal and poloidal component is:

(
ũt

ũp

)
= P

(
ũtG

ũpG

)
=

1
2

{[
νk2 + i(ω + c · k− ωr)

]−1
+
[
νk2 + i(ω + c · k+ ωr

]−1
}

i
2

{[
νk2 + i(ω + c · k− ωr)

]−1 −
[
νk2 + i(ω + c · k+ ωr

]−1
} .

(2.74)

Similarly to the stratified case, when ω → ±2Ω sin θ− c · k then the toroidal energy ũt
2

and poloidal energy ũp
2 increase. The evolution of the peak of energy varies depending

on the viscosity ν. Therefore, when a peak of energy is observed in the frequency ω

and spatial domain k, it corresponds to the motion associated with waves. The new
dispersion relation for inertial waves with a constant and homogeneous advecting flow c

is:
ω±
c = ±2Ω sin θ − c · k. (2.75)

2.7.2.3 Sweeping by a homogeneous flow in a stratified flow

We here study numerically how a constant and uniform advecting flow modifies the
frequency of the internal gravity waves. We compare our numerical result to the analyt-
ical solution of equation (2.67) with a sweepping effect by a homogeneous and constant
advecting flow. It should modify the waves frequency by a factor c · k.

A numerical simulation is done using a forcing Fb defined in practice in Fourier space.
For the rest of the study of the sweeping effect, the forcing Fb is:

Fb = sin(ωf t) (2.76)

with ωf = 0.3.
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Figure 2.11: Sweeping effect of a homogeneous vertical mean velocity field on the
propagation of an internal gravity wave. (a) Vertical velocity uz in the (x, z) plane in
physical space where the red arrow illustrate vertical velocity with cz = 10−2 (zoomed
in). (b) The corresponding concentration of energy density E(θ, ω, 56 < k ≤ 60) in the
(θ, ω) Fourier domain (in log scale). Red dashed line: original dispersion relation curve
ωr(θ) for internal gravity waves defined by equation (2.33). Black dotted line: forcing
frequency ωf . Yellow dashed-dotted line: deviation of the dispersion relation for k = 60

defined by equation (2.77).

We consider a vertical advecting velocity field c = (0, 0, cz), i.e. along the natural
axis of symmetry of the system, borne by the gravity vector. The Saint Andrew’s
cross pattern obtained without mean flow as in paragraph 2.6.2.2 is therefore convected
towards positive z direction. As a result the dispersion relation is modified by the term
c · k = czkz = czk sin θ:

ω′ = ωr − czk sin θ (2.77)

The result is shown on the two panels of Figure 2.11 for cz = 10−2, with the same physi-
cal and numerical parameters as in paragraph 2.6.2.2. The left plot of Figure 2.11 shows
that the wave-packet is translated, thus producing a ‘wake-like’ pattern, much as that
of a uniformly propelled boat for surface waves. The right panel of Figure 2.11 shows
the distribution of energy density E(θ, ω). This figure shows that the dispersion relation
is modified according to equation (2.77), and that maximum modification is observed
when considering the largest wavenumber range 56 < k ≤ kmax = 60. This domain of
wavenumber is chosen in order to observe the maximum effect of the sweeping effect.
Moreover, the energy density E(θ, ω, 56 < k ≤ 60) gets very large at the intersection
between the forcing and the modified dispersion relation with an asymmetrical angle
value of θ ' ±0.8rad and θ ' ±1.3rad. Note that the Figure 2.11b is in agreement
with Figure 2.4 in quadrant Q1, c is in the opposite direction compared to the vertical
component of phase velocity vφ, and the frequency ω decreases compared to the disper-
sion relation. In quadrant Q2, a similar kinematic reasoning leads to an increase of the
angular frequency ω. This reasoning could be extended to quadrants Q3 and Q4.
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(a) (b)

Figure 2.12: Total kinetic energy in physical space of a VSHF extracted from (a) a
5123 points turbulent simulation with Reb = 0.1 and Fr = 0.0014 (see section 4.2.4 for

more details); (b) our modelled VSHF with kz = 10.

2.7.2.4 Sweeping by an inhomogeneous flow for stratified fluids

In the previous cases, an idealized flow is used to convect IGW. However, actual flows
are in general not homogeneous in space. Here, the propagation of waves convected by
a large-scale non uniform flow is considered. In a stratified flow, a large-scale shear flow
can often dominate the overall structure of the flow, and evolves slowly in time. It is
called the Vertically Sheared Horizontal Flow (VSHF). This shear flow is characterized
by vertical variation only, without vertical velocity (see figure 2.12a for example). This
strong vertical shearing depends only on a vertical wave vector (i.e. kh = 0), so that the
velocity ushear(kh = 0, kz) is parallel to the horizontal plane and the dispersion relation
gives a frequency ω = 0 [129]. Its overall structure can be modelled by taking a velocity
field u(kh = 0, kz) as done in figure 2.12b. VSHF mode is not considered as a wave and
the perturbation density distribution b in this case is uniformly zero. Therefore, these
large-scale non uniform flows are often the dominant sources of sweeping of internal
gravity waves. This mode has generally been observed in numerical simulations, either
in forced turbulence [64, 126, 129] or in decaying turbulence [57], as well as in statistical
approaches such as EDQNM models [55] or the statistical state dynamics [46]. Moreover,
VSHF appear in strongly stratified turbulence (low Froude number and high buoyancy
Reynolds number) and not in weak stratification (high Froude number) [71]. In the
context of geophysical fluid dynamics, the VSHF is an ageostrophic horizontal wind and
can help to understand the emergence and maintenance of some turbulent jets, such
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as banded winds of Jupiter or equatorial deep jets of ocean by an interaction between
wave and mean flow [5]. Nevertheless, the formation of VSHF is not really understood
in many ways. Several theories try to explain the mechanisms of VSHF’s formation,
such as resonant interactions among gravity wave [126, 129], rapid distortion theory [50]
and recently by a linearized version of statistical state dynamics [46]. It appears that
the VSHF is fed by an interaction with small scales of turbulence, so that a little bit of
turbulence is required.

An idealized model of a VSHF is created (ushear(kh = 0, kz)). It has only one vertical
wavenumber forced (kz with kh = 0) and its amplitude is set as a constant. In
figure 2.13, we can observe the effect of this model of VSHF (ushear(kh = 0, kz) with
varying vertical wavenumber kz (1st column) on the dispersion relation of IGW (2nd
column) and on the propagation of the Saint Andrew’s cross (3rd column). In the first
column of figure 2.13, only the velocity field in the x direction ux(x, z) in the physical
space is shown. In the Fourier domain it is defined as ûx(kh = 0, kz). The vertical
wavenumber is changed from kz = 1 to kz = 50 with an increment of 10 for each different
case (kz = 10, kz = 20, ...). The horizontal rms velocity ch,rms(kh = 0) for each
VSHF is set constant and is equal to ch,rms(kh = 0) = 0.008. The numerical simula-
tions are done with the same physical and numerical parameters as in paragraph 2.6.2.2.

Hence, it is possible to observe the effect of the scale of the VSHF on the dispersion
relation. At large scale (kz = 1), the VSHF flow does not fluctuate much and modify
the dispersion relation as if the VSHF was homogeneous. The new dispersion relation
follows the relation ω = ωr + u(kh = 0) · k. When the scale of the VSHF decreases,
the dispersion relation has less components at high frequency, but more components
at angles |θ| higher. As the scale of the VSHF diminishes more and more this effect
increases. For the smallest scale of the VSHF (kz = 50), the dispersion relation is
modified differently than for a large scale VSHF. No energy exists at a frequency higher
than the Brunt-Väisälä frequency N . Furthermore, the energy is localized at all angles
θ with a frequency smaller than the Brunt-Väisälä frequency. This shows that a small
scale VSHF has a very different effect on sweeping than a large scale VSHF. Overall,
the Saint Andrew’s cross pattern changed a little for a VSHF at high scale (we see some
ripples for x > 0 which are not here for x < 0) but is does not seem to be very modified
for small scale VSHF.

To better understand the sweeping effect of a VSHF with high vertical wavenumber,
figure 2.14 shows the concentration of energy for points oscillating at a pulsation ωf = 0.3

for only wavenumbers close to an angle θ = ±π/4. For figure 2.14a, no special effect is
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Figure 2.13: Sweeping effect of a VSHF flow with varying vertical wavenumber kz
on the Saint Andrew’s cross pattern of propagation of IGW. 1st column: VSHF used
to convect the Saint Andrew’s cross. 2nd column: Density of kinetic energy in the
(θ, ω) plane. Red dashed line: dispersion relation curve ωr(θ) for IW. Black dotted

line: original forcing frequency ωf . 3rd column: Saint Andrew’s cross convected.
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Figure 2.14: Concentration of energy density E(θ, ω) in the (θ, ω) Fourier domain
(in log plot).The only wavenumbers forced have an angle θ = 45. Red dashed line:
dispersion relation curve ωr(θ) for IGW. Black dotted line: original forcing frequency
ωf (plotted for all angles θ). (a) No special effect added (as sweeping or gradient). (b)

Sweeping with a VSHF kz = 50.

added, but for figure 2.14b, the flow is advected through the sweeping by a VSHF with
kz = 50 (similarly to the last line on figure 2.13). In Figure 2.14a, the components of
the flow that contains energy has always θ = ±π/4 and most of the energy is either at
the forcing point ωf = 0.3 or at the frequency of the dispersion relation N cos

π

4
. This

result is very similar to the figure 2.8a, but with only one angle forced in the flow. On
the contrary, this is not the case when the sweeping effect occurs as all the dispersion
relation is visible (in figure 2.14b) for any angle θ. This shows that the sweeping effect
from a small scale VSHF can modify the original angle of propagation of the waves.
The process of creation of other frequencies and angles could be understood in a few
steps:

• The forcing creates energy at the points ωf and at the points N cos
π

4
for an angle

θ = π/4.

• The sweeping by the VSHF changes the angle of the energy. Lines appear at
frequencies ωf and N cos

π

4
for all angles θ.

• As energy is present for all angles θ, energy appears along the dispersion relation
as in step 1 or equations (2.55) and (2.56). The full dispersion relation ωr is
recovered.
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Figure 2.15: Sweeping effect of the VSHF with a vertical wavenumber kz = 1 and a
varying pulsation ωF on the dispersion relation created from an oscillating Dirac. (a)

ωF = π/4 (b) ωF = π/2 (c) ωF = π.

2.7.2.5 Effect of an advecting flow with a non zero frequency on a stratified
flow

In turbulent flow, the VSHF or GM can slowly vary in time. It is necessary to understand
how their frequency can modify the sweeping effect. To do so, we make the amplitude
of the VSHF vary as a sinusoid with a pulsation ωF and we use it to advect the Saint
Andrew’s cross. This means that the VSHF fluctuates at a non zero frequency. As a
result the rms velocity is modified compared to the previous tests and in order to keep
it constant, we multiply it by a factor π/2. This new oscillating VSHF ûshear,ωF

can be
written as:

ûshear,ωF
=

π

2
sin(ωF t)ûshear. (2.78)

Figure 2.15 shows the effect on the dispersion relation of the VSHF oscillating at a
pulsation ωF . We observe that the dispersion relation is repeated in pulsation for every
ωF . The new pulsation created is ω2 = ωr + ωF . Then this new pulsation interacts
again with the fluctuating VSHF to create another dispersion relation of frequency
ω3 = ω2 + ωF . This process is repeated many times, but the amplitudes of those
new dispersion relations decrease as |ω| increases. This repetition of the dispersion
relation pattern is very similar to the non-linear interaction between components of
wavevector k,p,q where ω(k) = ω(p) + ω(q) and k = p + q [133]. Suprisingly, there
is no modification of the dispersion relation by the sweeping effect. This shows that
only close to zero frequency advecting flow can modify the frequency of waves with the
sweeping effect.

2.7.2.6 Sweeping by an inhomogeneous flow for rotating fluid

In rotating flows, a large scale flow can often dominate the overall structure of the
flow and evolve slowly in time [75]. It is called the geostrophic mode (GM) and is
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(a) (b)

Figure 2.16: Total kinetic energy in physical space of a GM extracted from (a) a
5123 points turbulent simulation with 2Ω = 80 (see section 5.2 for more details); (b)

our modelled GM with kh = 1

.

characterized by a horizontal variation only (i.e. kz = 0) with a purely horizontal
velocity uGM (kh, kz = 0) (see figure 2.16 for example). This GM is also not considered
as waves despite having an angle θ = 0 and a frequency ω ∼ 0. As this GM is large
scale and often dominates the flow [75], it can be considered as the main source of
sweeping of inertial waves [27]. It is not well understood how this GM arises, but
several theories exist from near-resonant triadic interaction [78, 127] to quartetic in-
stability [22] or resonant quartet of IW [128] (see section 5.1 for more details on the GM).

We modelled an ideal GM (uGM = u(kz = 0, kh)) similarly to the VSHF (see section
2.7.2.4) by enforcing only one wavenumber kh with kz = 0. Our model assumes here
that the GM is purely horizontal and has no vertical component. The amplitude of
the GM for the different value of kh is also set as a constant. Then, we did the same
analysis for the GM as for the VSHF to explore the effect of the scale of the GM on the
sweeping effect. This is done on the rotating case, with the same parameters as in the
stratified case and by choosing 2Ω = 1. The only difference between the rotating case
and stratified case is that the forcing is now done on the vertical velocity component
instead of the buoyancy component. The forcing on the vertical velocity component is
written Fuz = sin(ωf t). However, it appears that our flow diverged when the scale was
getting lower. Why is that so?
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Figure 2.17: Probability density function of the amplitude of the velocity in the x
direction ux of the GM and of the VSHF depending on the horizontal (kh) and vertical

(kz) wavenumber.

In figure 2.17, we observe the pdf of the velocity ux in x direction for a large scale and
small scale VSHF and GM having the same horizontal rms velocity of 0.008 (here the
rms velocity in x direction is 0.005) and obtained from a numerical simulation with 1283

points. The domain is equally divided between 100 intervals from ux = 0 to ux = 0.0265.
Therefore, all values within an interval of 0.00265 are considered the same. We observe
that the distribution of velocity of the VSHF mode is constant depending on its scale
and does not exceed 0.008. On the contrary, the distribution of the velocity of the GM
varies a lot and exceeds quite clearly the maximum value of the VSHF. This is expected
as the VSHF is similar to a sinusoidal fluctuation while a GM is composed of vortex
with a large velocity at its center. At large scale, (kh = 1) the maximum value of the
GM is only 0.013 but at smaller scale (kh = 40) the maximum value of the GM mode
is 0.0265 but for only for one point. Therefore, we had a problem for our algorithm
to reach a convergence with an advecting GM, when dealing with points at very high
velocity and small scale.

In figure 2.18, we observe the effect of a model of the GM (uGM = u(kz = 0, kh)) of
varying horizontal wavenumber kh (1st column) on the dispersion relation (2nd column)
and on the propagation of the Saint Andrew’s cross (3rd column). The GM keeps the
same rms velocity in all cases. In the first column of figure 2.18, only the velocity field
in the x direction ux(x, y) in the physical space is shown. In the Fourier domain it is
defined as ûx(kz = 0, kh). We observe that the Saint Andrew’s cross is modified a lot by
the GM mode contrarily to the VSHF which does significantly modify the propagation
of the Saint Andrew’s cross.

At large scale (kh = 1) the GM has an effect on the dispersion relation which is very
well estimated by the sweeping effect due to the rms velocity ch,rms(kz = 0). When the
scale of the GM is smaller (kz = 10), it seems that some energy begins to appear at
frequency ω lower than the smallest frequency normally allowed by the sweeping from
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Figure 2.18: Sweeping effect of the GM with a horizontal wavenumber kh = 1 or
kh = 10 on the Saint Andrew’s cross pattern of propagation of IGW. 1st column: GM
(ux(kz = 0)) used to convect the Saint Andrew’s cross. 2nd column: Density of kinetic
energy in the (θ, ω) plane. Red dashed line: dispersion relation curve ωr(θ) for IW.
Black dotted line: original forcing frequency ωf . 3rd column: Saint Andrew’s cross

convected.

the rms velocity of the GM mode (for |θ| > π/4 there is energy between 0.3 < |ω| < 2Ω).
Unfortunately, for a smaller (kh ≥ 20) GM with the same rms velocity the algorithm
diverged. As shown in figure 2.17, the GM at small scale reach a higher maximum
velocity for a constant rms velocity. Hence, it is possible that the maximum velocity
limit where the simulation converges is overcome for a small scale GM which leads to
the divergence of the simulation. Generally, we observe this divergence very locally in
space. This could be the imprint of a critical point, where two physical process balance
one another [104]. In our case, this could happen when the sweeping is exactly opposite
to the group velocity of waves. As the wave stagnate in this point, the energy could
diverge near this point and make the numerical simulation diverge as well.

2.7.3 Effect of a linear gradient of velocity

We observed that the VSHF and GM can modify the frequency of the waves through
the sweeping effect with the non-linear term c · ∇u. Does the effect of the GM and the
VSHF can also influence the dispersion relation through its gradient (u · ∇c)? We now
study analytically and numerically how the GM can modify the dispersion relation in
rotating flow and how the VSHF can do the same for stratified flow. The numerical
parameters will be the same as in the sweeping cases.
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2.7.3.1 Stratified flow

Analytical study

We start by looking at how a gradient of a VSHF can affect the dispersion relation of
IGW. To do so, we use a modified version of the Navier-Stokes equations:

∂tu+ u ·∇c+∇p− nb = 0

∇ · u = 0

∂tb+N2n · u = 0.

(2.79)

We can approximate any gradient by a linear gradient of velocity c in the three directions
of its three components:

c =


A1x+B1y + C1z

A2x+B2y + C2z

A3x+B3y + C3z

 . (2.80)

If we consider c to be mainly dependent on the shear flow then A1 = A2 = A3 = B1 =

B2 = B3 = C3 = 0. The advection term u ·∇c in the above equation (2.79) becomes:

u ·∇c =


C1uz

C2uz

0

 . (2.81)

Taking the Fourier transform in space and time of equation (2.79) and writing it in
matrix form:

A · X̄ =



iω 0 C1 ikx 0

0 iω C2 iky 0

0 0 iω ikz −1

ikx iky ikz 0 0

0 0 N2 0 iω





ũx

ũy

ũz

p̃

b̃


= 0. (2.82)

By calculating the determinant of A, we found two non trivial solutions for detA = 0 if
and only if:

ω = ±
√
− k2z
4k4

(C1kx + C2ky)2 +N2 cos2 θ − ikz(C1kx + C2ky)

2k2
. (2.83)



Chapter 2. Waves in Flows 40

The imaginary term in equation (2.83) can decrease (similarly to the viscosity) or
increase the amplitude of the waves. The term under the square root can be real or
imaginary depending on its sign.

By assuming C1 = C2, which is roughly the case for shear flow, we can simplify the
square root term of equation (2.83). Then we can compute a turning point when the
gradient dominates the dispersion relation, i.e. when k2zC

2
1 (kx + ky)

2 = 4N2k2hk
2. This

happens when C1 =
2Nkkh

kz(kx+ky)
∼ 2N .

• If C1 � 2N , the gradient dominates the stratification. The unique non trivial
solution for equation (2.83) is ω = 2i

kzC1(kx+ky)
2k2

. In this case the solution is purely
an amplification or a diffusing term.

• If C1 � 2N , the stratification dominates the gradient. We find again the typical
dispersion relation with a viscous effect ω ' ±N cos θ.

C1 can be estimated by the average derivative of a velocity c(z). Here,
C1 ' ∂zc(z) ∼ c

∆VSHF
z

or in the Fourier domain C1 ∼ ckVSHF
z where c is the rms

velocity of the VSHF, kVSHF
z is the average vertical wavenumber of the VSHF and

∆VSHF
z is a typical scale of the VSHF. As the VSHF flow is large scale we mostly have

kz ∼ 1 so C1 ∼ c. Therefore, we can say that if the stratification is high and the rms
velocity of the VSHF flow is low (i.e. c � 2N) or if the gradient Richardson number
Ri =

N2

(∂zc)2
is high, then the gradient of VSHF has little effect on the waves.

Numerical simulation

Some numerical simulations are done to observe the effect of the gradient of the VSHF
on the dispersion relation. The same VSHF as in section 2.7.2.4 are used. In figure
2.19, the first column is the vertical wavenumber of the VSHF changed from kz = 1

to kz = 50 with an increment of 10 (i.e. kz = 10, kz = 20, ...). The second column is
the effect of the VSHF on the dispersion relation of IGW obtained from a pulsating
Dirac. The third column is the Saint Andrew’s cross obtained after the advection by
the VSHF.
At large scale (kz = 1) the gradient of the VSHF has no effect on the dispersion relation
and no effect on the Saint Andrew’s cross pattern. As the vertical wavenumber of the
VSHF increases kz ≥ 10 the dispersion relation is modified, but no effect is visible on
the Saint Andrew’s cross. The highest modification is obtained for the largest vertical
wavenumber of the VSHF kz = 50. In all cases, the Saint Andrew’s cross pattern is not
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modified despite the modification in the dispersion relation.

The gradient of the VSHF does not seem to amplify the frequency of the IGW, as no
component higher than N exists in the (ω, θ) plane. Instead, it seems that the angle of
propagation of the IGW is slightly modified as a higher concentration of energy exists
at |ω| > |ωr| for a constant θ. This could result from the modification of the angle of
propagation of the waves. Waves propagating vertically (with θ ' 0) are subject to
large fluctuations of the gradient and their angle of propagation might change while still
keeping their frequency. Those waves which normally propagate with an angle θ = 0 end
up propagating at an angle θ > 0 or θ < 0 but at the same frequency they initially had,
thus a high concentration of energy in the (ω, θ) place for a frequency ω > ωr. There is
also some energy at |ω| < |ωr| for a constant θ.

To better understand the effect of the gradient of the VSHF with high vertical wavenum-
ber (kz = 50), figure 2.20 shows the concentration of energy for a forcing oscillating at
a pulsation ωf = 0.3 for only wavevector k with an angle θ = ±π/4. In the previous
section, figure 2.14a shows the same case, but with no special effect added (no sweeping
or gradient of VSHF) and can be useful to compare against the effect of the gradient of
the VSHF. Figure 2.20 shows that the gradient of the VSHF can modify the angle of
propagation of the flow. We observe that energy exists for all angles at ω = ωf = 0.3, at
ω = N cos

π

4
and at ω = ωr. The result is very similar to the sweeping case. First, the

points ω = N cos
π

4
and ω = ωf = 0.3 propagating at the angle θ = π/4 are modified by

the gradient of the VSHF and propagate at a new angle with the same pulsation. This
creates new energy along the dispersion relation for the new angle θ and this loop is
repeated again. Furthermore, the energy seems to be deviated towards larger angles of
propagation θ, where the group velocity of IGW is horizontal (see figure 2.7a to visualize
the group velocity).

In Figure 2.21, the amplitude of the VSHF is modified (1st column) to observe the effect
of its gradient on the dispersion relation (2nd column) and on the Saint Andrew’s cross
pattern (3rd column). It can be compared with figure 2.19 where the amplitude of the
VSHF is fixed constant. Due to convergence problems, the VSHF amplitude for kz = 1

could not be further increased than a maximum velocity of around 0.03 as otherwise the
numerical simulation would diverge (for a maximum velocity of 0.15 that is the case).
This could be understood by using the analytical study done previously: when C1 starts
to be big enough against N the pulsation can become purely imaginary and lead to an
unstable point (in particular for points with large kz and small kh).

However, it is still possible to slightly increase the amplitude of the VSHF. We observe
that for a VSHF with a vertical wavenumber kz = 1 in the first line of figure 2.21, despite
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Figure 2.19: Effect of the gradient of a VSHF flow with varying vertical wavenumber
kz on the Saint Andrew’s cross pattern of propagation of IGW. 1st column: VSHF
used to convect the Saint Andrew’s cross. 2nd column: Density of kinetic energy in
the (θ, ω) plane. Red dashed line: dispersion relation curve ωr(θ) for IW. Black dotted

line: original forcing frequency ωf . 3rd column: Saint Andrew’s cross convected.
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Figure 2.20: Effect of the gradient of the VSHF (with kz = 50) on the energy density
E(θ, ω) in the (θ, ω) Fourier domain (in log scale) of IGW. The only wavenumbers
forced have an angle θ = ±π/4 and a forcing frequency ωf = 0.3. Red dashed line:
dispersion relation curve ωr(θ) for IGW. Black dotted line: original forcing frequency

ωf for all angles θ.

increasing the amplitude of the VSHF, there is no effect on the dispersion relation and
on the Saint Andrew’s cross pattern. On the contrary, the effect of the amplitude of the
VSHF does modify a lot the dispersion relation for a small scale V SHF with kz = 50.
In the second line of figure 2.21, the dispersion relation is modified, but less than in the
last line of figure 2.19. When the VSHF amplitude increases for a constant kz = 50 as
in the third line of figure 2.21, the dispersion relation is more spreaded against the angle
θ. It even modify the Saint Andrew’s cross pattern. This shows that when the am-
plitude of the VSHF is bigger, the θ spreading on the dispersion relation is bigger as well.

To conclude, the gradient of the VSHF has an effect on IGW, but only for a gradient
created from a small scale VSHF with large amplitude. However, this is not the case in
stratified flows as the VSHF is large scale. Therefore, we can assume that the gradient
of the VSHF does not arouse an important effect on the dispersion relation.

2.7.3.2 Rotating flow

Similarly to the stratified case, we look at how the gradient of the GM can modify the
dispersion relation for IW. To do so, we start from a modified version of the Navier-
Stokes equations:

∂tu+ u ·∇c+∇p = −2Ω× u

∇ · u = 0.
(2.84)
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Figure 2.21: Effect of the amplitude of the gradient of a VSHF flow with a vertical
wavenumber kz = 1 or kz = 50 on the Saint Andrew’s cross pattern of propagation
of IGW. 1st column: VSHF (ux(kh = 0)) used to convect the Saint Andrew’s cross.
2nd column: Density of kinetic energy in the (θ, ω) plane. Red dashed line: dispersion
relation curve ωr(θ) for IGW. Black dotted line: original forcing frequency ωf . 3rd

column: Saint Andrew’s cross convected.

We can approximate any gradient by a linear gradient of velocity c in the three directions
of its three components:

c =


A1x+B1y + C1z

A2x+B2y + C2z

A3x+B3y + C3z

 . (2.85)

If we consider c to be mainly dependent on the GM then A3 = B3 = C1 = C2 = C3 = 0.
The non-linear term u ·∇c in the Navier-Stokes equations becomes:

u ·∇c =


A1ux +B1uy

A2ux +B2uy

0

 . (2.86)
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Taking the Fourier transform in space and time of equation (2.84) and writing it in
matrix form:

A · X̄ =


iω +A1 B1 − 2Ω 0 ikx

A2 + 2Ω iω +B2 0 iky

0 0 iω ikz

ikx iky ikz 0




ũx

ũy

ũz

p̃

 = 0 (2.87)

If we suppose that ∇ · c = 0 then A1 = −B2. By inverting x and y axis and keeping
∇ · c = 0 then we also obtain A2 = −B1.

The matrix (2.87) has a non trivial solution for detA = 0 if and only if (in the case the
terms in the square roots are positive):

ω =
iA1(k

2
y − k2x)

2k2
±

√
−A2

1(sin
2 θ +

(k2y − k2x)
2

4k4
) + sin2 θ(B1 − 2Ω)2. (2.88)

Similarly to the stratified case, the gradient A1 inserts an imaginary part to the
dispersion relation. It means that it can amplify or reduce the amplitude of the waves.
The square root terms of the equation (2.88), which can be imaginary if the term
under the square root is negative, is quite complicated. When ky � kx or kx � ky the
gradient A1 would dominate the overall dispersion strongly. As, in average, we expect
to have A1 ∼ B1, in the case where A1 � 2Ω then the dispersion relation would be
purely imaginary.
On the contrary, the gradient B1 does not involve an imaginary term. Its effect solely
depends on its value and not on the wavenumber k. The effect of B1 can be understood
as an amplification or reduction of the rotation rate that the waves feel. It can be worth
considering only if B1 & 2Ω as otherwise it is negligible in equation (2.88) against the
rotation rate 2Ω.

It is also possible to approximate the value A1 and B1 because A1 ∼ ∂xcx ∼ ∂ycy and
B1 ∼ ∂ycx ∼ ∂xcy. Overall, the GM is equal in all directions (as it rotates), so in
average cx ∼ cy. Therefore, with c =

√
c2x + c2y the rms velocity of the GM, we get

A1 ∼ ckx/
√
(2) ∼ cky/

√
2 and B1 ∼ cky/

√
2 ∼ ckx/

√
2. Finally, we can estimate the

average value of the gradient A1 ∼ B1 ∼ ckh/
√
2.

Overall, the effect of the gradient of the GM in rotating flows is larger and more com-
plicated than the VSHF in stratified flows. While both have an amplification or a
reduction effect of the amplitude of the waves similar to a viscous term, it can also alter
the dispersion relation.
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Figure 2.22: Effect of the gradient of a GM with a horizontal wavenumber kh = 1 on
the Saint Andrew’s cross pattern of propagation of IGW. (a) GM (ux(kz = 0)) used to
convect the Saint Andrew’s cross. (b) Density of kinetic energy in the (θ, ω) plane. Red
dashed line: dispersion relation curve ωr(θ) for IW. Black dotted line: original forcing

frequency ωf . (c) Saint Andrew’s cross convected.

Numerical study

As the sweeping effect of the GM, it is not possible to test the effect of a scale smaller
than kh = 10 as the algorithm diverges. Only the result with kh = 1 can be presented as
others diverge. A possible reason is that, for large horizontal wavenumber, the difference
between kx and ky increases, and as shown in equation (2.88), this can lead to an unstable
flow. Furthermore, the maximum velocity increases for the same rms velocity when the
GM is at smaller scale. This is even enhanced as for small scales the gradient of velocity
is further increased. For all these reasons, it is understandable that the gradient of the
GM has a divergence effect on the simulation. Reducing the rms velocity field of the
GM is not really a solution, as it is quite obvious that a too small velocity gradient will
have no effect on the dispersion relation of waves.

In figure 2.22, the effect of the geostrophic mode (figure 2.22a) can be seen on the
density of kinetic energy (figure 2.22b) and on the propagation of the Saint Andrew’s
cross (figure 2.22c). We observe that the gradient of the GM at large scale has no effect
on the dispersion relation and on the Saint Andrew’s cross propagation.



Chapter 3

Separation of waves and eddies

This chapter describes a new technique to extract the 3D wave field and 3D eddy field
from a 3D velocity field and density field. It contains three parts. The first part 3.1
is the description of the separation algorithm of waves and eddies depending on the
advective flow. Two techniques are exposed. The second part 3.2 is the application
of the separation technique on a Saint Andrew’s cross with a homogeneous convective
flow. Finally, the third part 3.3 is the limitation and potential improvement of this new
separation technique.

3.1 The general method for the 4D analysis

The separation technique of waves and eddies is done by using the Fourier transform in
space and time. Its objective is to use the dispersion relation of waves to extract them
from the rest of the turbulence called “eddies”.

3.1.1 General technique

The algorithm of separation of waves and eddies can be decomposed in a few steps:

1. Direct Numerical Simulation (DNS) provides time-dependent velocity–buoyancy
spectral coefficients in 3D Fourier space in terms of the wavevector k. In the
following, we denote by f̂ either the velocity or buoyancy coefficient, as f̂(k, t).

2. The 1D time-Fourier transform is done as FFT (f̂(k, t)) = f̃(k, ω).

3. For each point (kx, ky, kz, ω) in the 4D space, a filter ζ(k, ω) is created where
ζ(k, ω) = 1 for the points belonging to the “wave” field (denoted f̃w(k, ω)) and

47
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Figure 3.1: Description of the different steps for separation of waves and eddies using
a 4D Fourier transform.

ζ = 0 for the points belonging to the “eddy” field (denoted f̃e(k, ω)). The filter
ζ(k, ω) can be determined with two different techniques (see sections 3.1.4 and
3.1.5). It is applied on f̃ :

f̃w(k, ω) = ζ(k, ω)f̃(k, ω)

f̃ e(k, ω) = (1− ζ(k, ω))f̃(k, ω).
(3.1)

In the stratified case, the VSHF mode (kh = 0) is removed from the wave and eddy
components. It corresponds to the point (θ = ±π/2) in the (θ, ω) plane. In the
rotating case, the GM (kz = 0) is removed from the wave and eddy components
as well. It corresponds to the point (θ = 0) in the (θ, ω) plane.

4. The 1D inverse Fourier transforms is computed FFT−1(f̃w(k, ω)) = f̂w(k, t) and
FFT−1(f̃e(k, ω)) = f̂e(k, t) to return to the physical time for the wave and eddy
coefficients.
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5. The 3D inverse Fourier transform is done in physical space, which permits the re-
covery of the wave and eddy field in physical space and their visualization. From a
velocity or buoyancy component f(x, t), the eddy part and wave part are separated
such that f(x, t) = fe(x, t) + fw(x, t).

3.1.2 Separation for the stratified case

In this section, we explain how the separation into wave and eddy component is done in
the stratified case.

For stratified flows, it is possible to take advantage of the Craya-Herring frame [119]
to improve our decomposition. We expect the poloidal and buoyancy terms to be the
only components which recover the dispersion relation [92]. On the contrary the toroidal
term is considered to be purely composed of eddies and does not recover the dispersion
relation. Indeed, in equation (2.62), the IGW are only in the poloidal and buoyancy term
and the toroidal term is dropped. This is the basis of the Riley’s decomposition [119].
It considers the waves as being composed of the full buoyancy and poloidal component
and the eddies to be only composed of the toroidal term. Hence, Riley’s decomposition
is valid for high stratification and low Reynolds number where eddies are horizontal and
2D. As a result, no vertical eddy can exist (as it is a poloidal term), and this is not
physically true especially at high Reynolds number and high stratification.
By merging the spatial decomposition and our space-time separation it is possible to
enhance the precision of the decomposition. Hence, step 3 of the algorithm of section
3.1.1 becomes:

ũw(k, ω) = ζ(k, ω)ũp(k, ω)ep

ũe(k, ω) = ũt(k, ω)et + (1− ζ(k, ω)) ũp(k, ω)ep

b̃w(k, ω) = ζ(k, ω)b̃(k, ω), b̃e(k, ω) = (1− ζ(k, ω)) b̃(k, ω)

(3.2)

where the variable f in section 3.1.1 is replaced here by up or b.

While the buoyancy term is separated as explained in equation (3.1), the wave velocity
is now composed purely of poloidal terms and the eddy velocity is composed of all the
toroidal terms and also some poloidal terms.

We also separate the VSHF from the rest of the flow. In the end, for stratified flow, the
velocity component u(x, t) is separated in a wave, eddy and VSHF part such as:

u(x, t) = ue(x, t) + uw(x, t) + us(x, t), (3.3)
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while the component of the buoyancy field is separated only in a wave and eddy part:

b(x, t) = be(x, t) + bw(x, t). (3.4)

The superscript s stands for the VSHF defined in the Fourier space as
ûs(k, t) = û(kz, kh = 0, t).

We applied the separation technique to the flow components in the Craya-Herring frame.
This has numerous advantages in the stratified case; it only requires two velocities
(ut, up) components instead of three in the cartesian frame (ux, uy, uz) and IGW are
already spatially separated from toroidal eddies. It would also be possible to apply this
algorithm directly to the Cartesian velocity fields but the precision would be lower as
part of the toroidal component would be considered as waves.

3.1.3 Separation for the rotating case

In this section, we explain how the separation in wave and eddy components is done in
rotating cases. For rotating flow, we also take advantage of the Craya-Herring frame to
reduce the number of the velocity components from three to two. Yet, there is no equiv-
alent of Riley’s decomposition in rotating turbulence, that is why this decomposition is
something entirely new. Indeed, inertial waves are expected to be both on the toroidal
and poloidal components contrarily to the stratified case. Hence, step 3 of the algorithm
of section 3.1.1 becomes:

ũw(k, ω) = ζ(k, ω)(ũt(k, ω)et + ũp(k, ω)ep)

ũe(k, ω) = (1− ζ(k, ω)) (ũt(k, ω)et + ũp(k, ω)ep)
(3.5)

where the variable f in section 3.1.1 is replaced by ut or up.

We also separate the GM from the rest of the flow. For rotating flow, the velocity
component u(x, t) is separated in a wave, eddy and GM part such as:

u(x, t) = ue(x, t) + uw(x, t) + ug(x, t). (3.6)

The superscript g stand for the GM defined in the Fourier space as ûg(k, t) = û(kh, kz =

0, t).
It is also possible to use this algorithm directly on the velocities in the Cartesian frame.
While no loss of accuracy would be expected, the process would be more computationally
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consuming as the filtering needs to be applied to three components (ux, uy, uz) instead
of two (ut, up).

3.1.3.1 Orthogonal decomposition

In this section we explain how the decomposition in a wave and eddy components for the
stratified or rotating case can be used to define an orthogonal basis. The decomposition
of the flow in waves, eddies and VSHF or GM permits to define an orthogonal basis
and an inner product in vector function space, by using the complete set of unit vector
functions eik·x and eiωt. Applying the inverse four-dimensional Fourier transform from
frequency space (k, ω) to physical space (x, t) yields

ua(x, t) =
∑
k,ω

ũa(k, ω)e−ik·x−iωt (3.7)

ba(x, t) =
∑
k,ω

b̃a(k, ω)e−ik·x−iωt, (3.8)

where a stands for w, e, s or g. Note that the letter w means the wave part, e means
the eddy part, s means the VSHF part and g means the GM part of the flow.

For two functions f̂ and ĝ, we thus define an inner product in terms of wavevector k and
time t, as [f̂(k, t), ĝ(k′, t)] ≡ 1

T

∫
T f̂(k, t)ĝ(k′, t)δk−k′dt where T is the considered time

span and is the complex conjugate. Due to the orthogonality of vector space functions
and orthogonality of Fourier velocity with wavevector space k from incompressibility,
one shows the orthogonality between wave, eddy, and shear or geostrophic parts:

[b̂i(k, t), b̂j(k′, t)] 6= 0

[ûim(k, t), ûjn(k
′, t)] 6= 0

 only if i = j and k = k′ (3.9)

where i, j stand for w, e, s or g, and m, n stand for space directions x, y, or z. Note
that we also have [eiω1t, eiω2t] = δω1−ω2 , which mean that only components with the
same frequency and wavevector are non-zero in the inner product [ ].
Moreover, the overall energetic content is

< f̂, ĝ >=
∑
k

Re[f̂(k, t), ĝ(k, t)] (3.10)

and the energetic contents against the sphere of radius K is

< f̂, ĝ >K=
∑
k

|k|=K

Re[f̂(k, t), ĝ(k, t)]. (3.11)
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3.1.4 Explicit definition of ζ

In order to complete the algorithm exposed in section 3.1.1, it is necessary to explain
how the filter ζ is computed.

First, it is necessary to find a typical velocity, which advects the flow. Generally, the
main advective flow is the shear flow c = uh(kh = 0) for stratified turbulence and the
geostrophic mode c = uh(kz = 0) for rotating turbulence. Indeed, these types of flow
are generally large scale and slowly fluctuate with time. Next, the rms velocity of the
advecting flow c = (cx, cy, cz) is computed and noted crms = (crms

x , crms
y , crms

z ). As the
advecting velocity is chosen as a constant, the numerical simulation (or at least the
convective flow) must have reached a statistical stationary state. Then, the filter ζ(k, ω)
can be explicity defined as:

ζ(k, ω) =


1 if

ωr − |crms
x kx| − |crms

y ky| − |crms
z kz| ≤ ω ≤ ωr + |crms

x kx|+ |crms
y ky|

+ |crms
z kz|

0 otherwise.

All components (k, ω) close to the dispersion relation with a sweeping effect are consid-
ered as waves and eddies otherwise. This filter selects as waves a range of frequencies
which follows the dispersion relation ωr advected by a flow between [−crms,+crms]. This
type of filtering also implies that the fluctuations of the advecting velocity are close to
its rms value.

3.1.5 Adaptive definition of ζ

In the explicit definition of ζ the sweeping effect of the advective velocity is constant
in space and time. This is clearly not the case in general numerical simulation and it
needs to be further improved. In this section we propose a different algorithm where the
advective velocity can fluctuate in space and time c(x, t).

3.1.5.1 Green’s function

Here we explain how the use of the Green’s function can help to define the filter ζ.

In the stratified case, for an inhomogeneous advecting velocity c(z, t), we generalize a
property that appears in the analytical wave solution (2.66): when the frequency ω →
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±N cos θ− c ·k, the density energy |b̃G|2 peaks, only damped by viscosity. This permits
to compute the Green’s function relevant for the linearized equations (2.61) where c(z, t)

is the inhomogeneous VSHF, numerically extracted from DNS i.e. ĉ(kz, t) = û(kh =

0, kz, t) and Fb is an inhomogeneous distribution of Dirac functions in space and time.
The precise definition of Fb is:

Fb(x, t) =

δ(x(t)) if t ≤ 100∆t

0 otherwise,
(3.12)

where ∆t is the time step of the original DNS and x(t) is randomly defined at each time
step ∆t. Here the distribution of Dirac is varying in time and space to take into account
the non-uniform distribution of the advective flow c(z, t). The set of equations used in
this case are:

∂tuG + c ·∇uG +∇pG − νG∇2uG = bGz

∂tbG + c ·∇bG −XG∇2bG = −N2uz,G + Fb

∇ · uG = 0

(3.13)

where the subscript G is used to define a variable linked to the computation of the
Green’s function. While we do not have an analytical solution for this equation with an
advective velocity c(x, t), we can approximate that the set of solutions is very close to
the solutions found in equations (2.66).

A good practice is to check that the toroidal term is null. Due to the advective velocity
it is possible to get a non-zero toroidal term which could hinder the accuracy of the
technique. If the advective flow chosen is the shear flow, there is no problem as the
shear flow is neither considered as a toroidal or a poloidal term. The interaction of the
VSHF with a poloidal component does not create a toroidal component. The same is
true for the interaction of the VSHF and the toroidal component, it cannot create a
poloidal component.

In figure 3.2, the successive Dirac of the forcing Fb are shown at the 100th time step
(figure 3.2a) and at the end of our simulation after the convection by a VSHF (figure
3.2b). In figure 3.2a, some Diracs are clearly visible and start to advect into the entire
physical domain. Not all Diracs are visible because their location are not in the observed
plane. Finally, in figure 3.2b, we can see that the waves created by the Diracs have
convected a lot and occupied a large area in the (x, z) plane. This is actually what
is wanted, that waves occupy a large area and are convected differently depending on
where they are in order to follow the fluctuation of the VSHF for stratified fluid and
GM for rotating fluid.
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Figure 3.2: Visualization of the vertical velocity fields from random Dirac in space
at successive 100 time steps. a) after 100 iterations (b) after 5000 iterations when the

flows have been convected.

Similarly, in the rotating case, we generalize a property that appears in the analytical
wave solution (2.74): when the frequency ω → ±2Ω sin θ−c ·k, the toroidal energy |ũtG|2

peaks, only damped by viscosity. This permits the computation of the Green’s function
relevant for the linearized equations (2.68) where c(x, y, t) is the inhomogeneous GM,
numerically extracted from DNS i.e. ĉ(kx, ky, t) = û(kx, ky, kz = 0, t) and Ft

u is an
inhomogeneous distribution of Dirac functions in space and time on the toroidal part of
the flow on the toroidal part of the equation. The precise definition of Ft

u is:

Ft
u(x, t) =

δt(x(t)) if t ≤ 100∆t

0 otherwise,
(3.14)

where ∆t is the time step of the original DNS, δt(x(t)) is a Dirac in space on the
toroidal part of the equation and x(t) is randomly defined at each time step ∆t. Here
the distribution of Dirac is varying in time and space to take into account the non
uniform distribution of the advective flow c(x, y, t). The set of equations used in the
rotating case are:

∂tuG + c ·∇uG +∇pG − νG∇2uG = −2Ωn× uG + F t
u

∇ · uG = 0
(3.15)

Hence, for stratified or rotating flows, when the energy peaks, we assume the (ω,k) point
belongs to the waves. If the energy is low, we assume that the (ω,k) point belongs to
the eddies.
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Figure 3.3: Description of the different steps for the adaptive definition of ζ of sepa-
ration of waves and eddies (in the stratified case).

3.1.5.2 Numerical implementation

We explain how the adaptive definition of ζ is done numerically. Here are the steps of
the adaptive definition of ζ:

1. From the first non-linear Direct Numerical Simulation (DNS 1) the advecting ve-
locities c(x, t) in the Cartesian coordinates are recovered against time.

2. A second linear Direct Numerical Simulation (DNS 2) is done. It computes the
Green’s function by solving equations (3.13) in the stratified case and equations
(3.15) in the rotating case with a very low viscosity. For each iteration among the
first 100, one Dirac forcing randomly localized in space is done without advecting
velocity. Then the advective velocity c(x, t) is extracted from the DNS 1 and is
used to convect the flow after the first 100 iterations for the same duration of
simulation as DNS 1.

3. In the stratified case, the 1D Fourier transform in time is done on the buoyancy
field b̂G in DNS 2 using a Hann window: FFTHann(b̂G(k, t)) = b̃G(k, ω). In the
rotating case, the 1D Fourier transform is done on the toroidal velocity ûtG in
DNS 2 using a Hann window: FFTHann(û

t
G(k, t)) = ũtG(k, ω). For both cases, it

is done by ignoring the first 100 iterations in step 3.

4. The filter ζ is created and defined as:

• for stratified flows

if |b̃G(k, ω)|2 ≥ β−1maxω

[
|b̃G(k, ω)|2

]
then ζ(k, ω) = 1 else ζ(k, ω) = 0 (3.16)
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Figure 3.4: Density of potential energy energy in the (θ,ω) Fourier domain (in log
scale) of a Dirac forcing (Fb = δxδt) convected by a constant and homogeneous velocity

c = (−0.1, 0, 0).

• for rotating flows

if |ũtG(k, ω)|2 ≥ β−1maxω

[
|ũtG(k, ω)|2

]
then ζ(k, ω) = 1 else ζ(k, ω) = 0 (3.17)

where β is a variable which can be adjusted to select the wave frequencies.

The subscript G stand for the flow components of the second direct numerical simulation
where the Green’s function solution is computed.

For the stratified case, choosing the advective velocity c = uh(kh = 0) ensures that the
toroidal term in step 2 is zero (at the machine precision). Indeed, in equation (2.62),
the toroidal term is ignored and does not possess energy if it is not forced. For rotating
flows, the algorithm is similar, except that the filter ζ and the Dirac forcing is based on
the toroidal velocity instead of the buoyancy field bG. In both cases, the filter could
also be based on the poloidal velocity. The viscosity in DNS 2 is chosen very low as
high viscosity might dampen the peak of energy (see equations (2.74) and (2.66)) and
reduce the amplitude difference between eddies area and waves area. A Hann window
technique is used because it increases the accuracy of the filter ζ by creating a sharper
peak of energy. However, no windowing technique is used when dealing with the data of
DNS 1 because it modifies the signal and therefore its statistics. A necessary condition
for the success of the separation algorithm is that most of the energy in step 3 is in the
wave domain.

The choice of the value β is rather difficult. For example, in the case of a stratified
flow with a constant advection c = (−0.1, 0, 0), N = 1 and a Dirac forcing Fb = δxδt,
we simulate the Green function by solving equations (3.13). The density of potential
energy is plotted in figure 3.4. It shows how the dispersion relation is modified. For a
specific wavevector k0 = (40, 30, 20), we plot the potential energy of b(k0, ω) depending
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Figure 3.5: Comparison between the explicit and implicit definition of ζ at the
wavevector k0 = (40, 30, 20) against ω. The density of potential energy b2 is also

added.

on ω. To fix β, we compare the explicit definition of ζ (defined in section 3.1.4) with
the adaptive definition of ζ (defined in section 3.1.5). With a value of β = 1/100 we
capture all peaks of energy in the signal, for positive and negative frequencies. The
explicit method captures only the two peaks of energy, whereas the adaptive method
capture the two peaks of energy as well but also the spread of the peak of energy.

Generally, choosing β = 100 ensures that most (around 90%) of the wave energy is
effectively selected as waves. β is the cutoff parameter for identifying the spectral peaks.
Two reasons render imprecise the capture of peaks in the simulation of Green’s functions.
First, even if very low (e.g. νG = XG = 10−8 ), viscosity tends to smear the peaks around
the resonance frequencies ω±

c (k) = ±N cos θ − c · k as shown in the analytical solutions
(2.66) and (2.74) with a homogeneous velocity c. Spectral discretization also adds to this
smearing: for each wavevector k, 100% of energy is localized in a single frequency ω±

c (k)

when analytically computed, whereas it is distributed over a bandwidth of frequencies
in simulations. The second reason is due to time discretization: the frequency ω±

c

is not exactly measured, but is approximated by the two closest discrete frequencies.
These two mechanisms lead to a search for the set of points closest to the peak. When
trying to capture the peak in a configuration similar to the analytical solution (2.66), we
observe that the peaks span several orders of magnitude in amplitude over a bandwidth of
frequencies. In simulations, even if 100% of the energy is distributed over all frequencies,
in practice the energy is still located in a small frequency range.

Another possible way to choose β is to increase its value until most of the energy is
considered as waves (around 90 %), which also gives a β = 100. Choosing a higher β is
in general not relevant because not much energy will be associated to waves in step 3.
However, choosing a lower β might be relevant in highly turbulent cases. Indeed, in the
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case where waves and eddies share the same frequency, a lower β might help to avoid
select eddies as waves. It would only select space-frequency domain where waves are
highly concentrated and trade off the space frequency domain where waves are sparse
to be considered as eddy.

This new algorithm is longer and more computationally expensive because it requires
a second DNS and a temporal treatment. Furthermore, it also requires more data
storage as large batches of 3D fields are required (∼ 1000 3D fields for each component).
However, it should be more precise than the explicit algorithm because the physical scale
and the variability in time of the advecting flow is taken into account. Furthermore, it
still works with non stationary flow (even if the advecting flow varies).

3.2 Practical application on a Saint Andrew’s cross

In this section the explicit definition of ζ is applied to separate the wave and the eddy
components of the flow. The numerical parameters are the same as in chapter 2.6.2.2.
The case of study is a Saint Andrew’s cross convected in the x direction. The result is
very similar to the Saint Andrew’s cross convected in the vertical direction in section
2.7.2. The chosen convective velocity is c = (10−2, 0, 0). As the convective velocity is in
only one direction, one could decide to refine the explicit definition of ζ in section 3.1.4
to take only one direction into account. However, for simplicity, the filtering technique
is kept as if the convective flow were in both positive and negative x direction.

According to step 3 of the method, we computed the vertical velocity uz(k, ω) in four-
dimensional space (k, ω). Since the 4D filtering is defined for every (k, ω), the velocity
is either a wave part uz = uwz or an eddy part uz = uez, depending on the value of
(k, ω). Then, the three vertical densities of the energy are defined (denoted with ? to
distinguish them with other definitions used before) and associated to uz, uwz and uez:

E?
z (θ, ω) =

∑
θ(k)∈Iθ,0≤|k|≤kmax

1

2
|ũz(k, ω)|2 (3.18)

E?,e,w
z (θ, ω) =

∑
θ(k)∈Iθ,0≤|k|≤kmax

1

2
|ũe,wz (k, ω)|2 (3.19)

with this definition, E?
z (θ, ω) = E?,e

z (θ, ω) + E?,w
z (θ, ω). The energy computation done

in equation (3.18) is more precise than the energy computation done in equation (2.50).
In Figure 3.6, one can see E?

z for the full vertical velocity field (Figure 3.6a), the wave
part E?,w

z (Figure 3.6b) and the eddy part E?,e
z (Figure 3.6c). In Figure 3.6c, we see
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that there is no energy along the dispersion relation (indicated with a red dashed line).
This is the imprint of the discretization error of the filtering technique. Furthermore,
the density of vertical energy is quite low in Figure 3.6c when, at the same location in
(θ, ω) plane in Figure 3.6b, the density of vertical energy is high. Indeed, most of the
energy in this area comes from the waves that were modified in angular frequency by
the sweeping effect (for large wavenumber kx, i.e small scale). It is the manifestation of
the density of energy sharing the same coordinate in the (θ,ω) plane, but for a different
wavevector k and consequently a different sweeping effect.

Compared to the total energy on Figure 2.7 using the calculation for the density of
energy shown in section 2.6.1, our 4D analysis appears more precise — i.e. without
vertical line — whereas no treatment such as Hann windowing is applied to the data.
The main reason for this is due to the difference in the two algorithms for obtaining the
energy density. The calculations in equations (3.18) and (3.19) first compute the energy
density before it gathers the flow component in a θ ∈ Iθ domain. It is only after applying
the Fourier transform that the energy density is computed. In order to understand the
link between the two methods, by analogy with the total energy defined previously in
(2.50), we define the vertical energy by:

Ez(θ, ω) =
1

2
TF

| ∑
θ(k)∈Iθ,0≤|k|≤kmax

ûz(k, t)|2
 . (3.20)

This technique, detailed in section 2.6.1 is less computationally expensive than the de-
tailed calculation of energy shown in equations (3.18) and (3.19). It starts by gathering
the flow component in the θ ∈ Iθ domain before computing the energy density. The
Fourier transform in time is done at the end, after the computation of the energy. As
shown in Maffioli et al. [92], the difference between the two formulations (3.18) and
(3.20) of vertical density of energy is:

Ez(θ, ω) = E?
z (θ, ω) + Re


∑

θ(k)∈Iθ
θ(k′)∈Iθ
k′ 6=k

ũz(k, ω)ũz(k
′, ω)


(3.21)

with k′ a wave vector different from k sharing the same domain Iθ. The second term in
the right-hand-side corresponds to the error done by the calculation of Ez(θ, ω) (which
is approximative) against the calculation of E?

z (θ, ω) (which is exact). The error cor-
responds to the crossing energy sharing the same domain Iθ. This difference can be
summed up in one sentence: the energy of the sum of the flow component in a domain
Iθ is different than the sum of the energy of the flow component in the same domain
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Figure 3.6: Sweeping effect of a homogeneous horizontal mean velocity field on the
Saint Andrew’s cross pattern of propagation of internal gravity wave after filtering the
wave and eddy component. Concentration of vertical energy density in the (θ, ω) Fourier
domain (in log scale). Red dashed line: original dispersion relation curve ωr(θ) for
internal gravity waves defined by equation (2.33). Black dotted line: forcing frequency
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Figure 3.7: Sweeping effect of a homogeneous horizontal mean velocity field on the
Saint Andrew’s cross pattern of propagation of internal gravity wave after filtering the
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z.

Iθ. The final result ends up being slightly different for laminar cases. For a turbulent
case, we assume that the correlation term < û(k, t)û(k′, t) > is almost zero on average.
An example of the difference between these two techniques can be seen in Maffioli et al.
[92].

After the analysis in the domain (k, ω), we come back to physical space (x, t), where the
vertical velocity uz(x, t) is decomposed into wave and eddy parts uz(x, t) = uez(x, t) +

uwz (x, t). Figure 3.7 shows uz(x, t), uwz (x, t) and uez(x, t). In the eddy component (Figure
3.7c), only the Dirac in space is visible whereas for the wave component (Figure 3.7b)
only the wave propagation is visible. By doing the sum of the Figures 3.7b and c, the
same kind of flow is obtained as in Figure 3.7a. Therefore, we can safely assume that for
the case of simple, laminar, convective flow, this filtering technique works rather well.
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3.3 Potential improvement and limitation

The ratio β = 100 could be reduced. Indeed, from the numerical simulation done,
choosing this ratio ensures that all the wave energy is assigned to the wave part of the
decomposition. However, it also means that eddies might be considered as waves. A
better balance between these two possibilities can be found especially in the case of
highly turbulent flow where the wave and eddy domain are close to one another. The
ratio β could be modified depending on the relative importance of waves and eddies in
the flow.

The adaptive algorithm could be further improved. For example, the filter ζ is
created as a filter all or nothing. Each point (k, ω) is supposed to be composed of
only waves or only eddies. This is probably not the case and a better filter could be
computed. For example, this new filter could be modified depending on the relative
importance of energy at (k, ω) against the maximum of energy at a wave vector k for
all frequencies ω. In this case, for stratified flows, when the energy at the point (k, ω)
is |b̃G(k, ω)|2 =

1

γ
maxω

[
|b̃G(k, ω)|2

]
then we would allocate γ% of this (k, ω) point to

the eddy part and the rest to the wave part.
Another possibility would be to combine an all or nothing filter with a proportional filter.
For example, when the energy at the point (k, ω) is higher than 1

10
maxω

[
|b̃G(k, ω)|2

]
then this point is allocated entirely to waves (i.e. ζ = 1). When the energy at point
(k, ω) is in a range such that 10 ≤ γ ≤ 100 with |b̃G(k, ω)|2 =

1

γ
maxω

[
|b̃G(k, ω)|2

]
then we would allocate 100

90
(γ− 10)% to eddies and the rest to waves (i.e. ζ =

γ− 10

90
).

However, using a separation technique which shares some (k, ω) points in a wave and
eddy part would cancel the interesting property of the orthogonal decomposition of the
wave and eddy part obtained in a all or nothing filter (see section 3.1.3.1).

This algorithm is also dependent on the choice of the convective velocity. The slow
modes (the GM or the VSHF) are expected to be the main responsible of the sweeping
effect as it is large scale and slowly varying in time. However, other large scale flow
might actively participate in the advection of the waves. For example, in isotropic
turbulence, the sweeping effect is caused by the random large scale eddies which contain
most of the energy in the flow. They advect the small scale eddies randomly [61, 144].
Hence, small scale waves or eddies in our stratified or rotating flow separation algorithm
can be subject to sweeping due to the large scale eddies as well. However, in order to
take into account this, a better understanding of the role of the sweeping by large scale
eddies in this separation technique would be necessary.
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Maybe, selecting all the flow as the advecting flow and using an enhanced algorithm of
the adaptive definition of ζ might improve the separation of waves and eddies. Indeed,
from a general point of view, all the flow convects the rest of the flow. However, if
all the flow is considered as advecting flow and the algorithm used currently is not
modified, the sweeping effect would be too large and all the flow would be considered
as waves. However, if the filtering is enhanced, by changing from a filter all or nothing
to a more refined filter, the result might be more precise.

The waves and the eddies are separated in the (k, ω) domain. Nevertheless, we observed
that large scale flow can extend the area (k, ω) where waves are located through the
sweeping effect (see section 2.7.2). Therefore, as the sweeping effect gets larger, the
domain (k, ω) associated with the motion of waves gets bigger. In the case of a very
large sweeping effect, this algorithm would nearly consider as waves all the frequencies.
To quantify this limit we use the non-dimensionnalized number N/(ckη) where c is the
rms velocity of the sweeping velocity and kη is the Kolmogorov wavenumber. When
N/(ckη) � 1, the sweeping effect has a large effect on the smallest scales compared to
the frequency of the waves and the separation technique might not be very effective.
Otherwise, when N/(ckη) � 1, the sweeping effect has little effect on the smallest scales
compared to the frequency of the waves and the separation technique is likely to be
very effective.

Finally, this algorithm involves a lot of steps and is quite complicated. If one is not
careful enough, it is very likely that errors are done in the process resulting in some
loss of computation time. Furthermore, the algorithm involves the storage of a lot of
3D fields, it requires a lot of memory to be run and it requires a huge amount of data
storage.
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Stratified turbulence

4.1 Introduction

In stably stratified turbulence, Internal Gravity Waves (IGW) and eddies are closely
entangled and interact with each other at different scales, as observed in the ocean [see
e.g. 33]. Many studies focus on different kinds of interactions, separately. First, the wave-
vortex interaction concerns the propagation of IGW through large quasi-geostrophic
eddy flow [105] during which energy is transfered from eddy to waves. The eddies thus
appear to deviate rays of IGW [102]. Second, the wave-wave interaction was examined
starting from the isolated triadic point of view [112], then considering a stochastic field
composed of many resonant triadic interactions [106] and finally extended to the wave
turbulence formalism [87]. The creation of IGW in a surrounding quiescent region due
to a localized stratified turbulent cloud has been studied by Maffioli et al. [90]. Lelong
and Riley [79] studied the weakly non-linear interactions in a highly stratified system
between a vortical mode (i.e. a horizontal rotating eddy) and an IGW. They show that
the vortical mode acts as a catalyst and facilitates the energy transfer between waves.

Nevertheless, in stably stratified turbulence, mixing by waves and eddies occurs over a
wide range of scales, rendering difficult their separation and the precise identification of
mutual interactions. According to Brethouwer et al. [19], several regimes of stratified
turbulence are found depending on the Froude number Fr = εu/Nu2h and the buoyancy
Reynolds number Reb = εu/νN

2 where εu is the kinetic energy dissipation, uh is the rms
horizontal velocity, N the Brunt-Väisälä frequency and ν the viscosity (see section 4.2.3).
Those two numbers are linked by the horizontal Reynolds number Reh = u4h/(εuν) with

the equation Reb = Fr2Reh and Reh =
u4h

(εuν)
. For a strong stratification, at Fr � 1

and Reb � 1, the regime is a viscosity-affected stratified flow (VASF) and the flow is

63
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Figure 4.1: Schematic of the different regimes found in stably stratified flows (inspired
from Brethouwer et al. [19]). Typical regimes found in DNS and experiments are added.
Regimes for ocean (N ∼ 10−3rad/s) and atmosphere (N ∼ 10−2rad/s) are plotted for

indication and can vary considerably.

dominated by large smooth and stable horizontal layers and few turbulent-like structures,
such as vortex tubes, are observed. The different regimes are visible on figure 4.1.

This flow appears to be characteristic of a large-scale vortical mode [145]. At Fr � 1

and Reb � 1, the regime is strongly stratified turbulence (SST) where large vertically
sheared horizontal flow (VSHF) and three-dimensional (3D) overturning structures are
observed. In order to separate a turbulent field into eddy and wave parts, Riley et al.
[119] first proposed a 3D spatial decomposition. This decomposition was extensively
used for stably stratified flow with or without rotation in many theoretical and numerical
studies that explored different properties of IGW, eddies, VSHF and their interactions
in terms of energy, transfer and scale dependence (see e.g. [55], [9], [129], [69], [62]).

According to Godeferd and Cambon [55], the non linear transfer concentrate the energy
along the VSHF, i.e. kh = 0. An illustration of this mechanism can be seen on figure
4.2.

This approach appears to be relevant at small Froude number Fr � 1 and low buoyancy
Reynolds number Reb � 1 where the eddies are mostly horizontal and the vertical
motion and density field are associated to IGW [79]. Nevertheless, when Reb increases,
as in the SST regime, parts of the vertical velocity and density fields are linked to
vertical mixing and therefore not to waves. Moreover, IGW are characterized by their
dispersion relation ωr(k) = N cos θ(k) where θ(k) is the angle of the wave-vector k with
the horizontal plane. Clearly, Riley’s decomposition is a spatial decomposition and does
not reflect the temporal properties of the waves, since it includes all frequencies of the
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Figure 4.2: Visualization of the non linear transfer, which concentrate energy around
the VSHF (at kh = 0).

flow motion, even outside the dispersion relation. Therefore, the dispersion relation of
IGW cannot be characterized with this decomposition.

Alternative approaches have been developed, for example by selecting only a few Fourier
modes [85], and detecting in their temporal signal the presence of frequency peaks linked
to their wave vector by the dispersion relation, which is a signature of IGW. Recent
detailed analyses have been proposed to study waves in turbulence: in stratified turbu-
lence, a global signature of IGW was observed in experiments of Savaro et al. [121] and
in numerical simulations by Di Leoni and Mininni [40] and Maffioli et al. [92] clearly
characterized the presence of IGW by using a temporal analysis of reduced energy from
Riley’s decomposition.

However, there is a heavy computational cost to a complete wave/eddy separation,
so that simplifying assumptions are used in the above-mentioned methods: horizontal
isotropy, and the fact that transport of IGW occurs in a homogeneous distribution
of VSHF. The latter assumption discards possible variations in time and space of the
transporting motion that in principle modifies significantly the waves dispersion relation.
We extend Riley’s decomposition by taking into account the 3D spatial and temporal
properties of fields. This method permits the extraction of the 3D fields of IGW and
eddies separately, accounting for the overturning of density and vertical velocity.

In this chapter, the adaptive algorithm is applied on a stratified flow using also the
Craya-Herring frame. The first section explains:

• the forcing (section 4.2.1),

• the added viscosity (section 4.2.2) used that damps considerably the VSHF in
order to achieve statistical stationarity of the flow,

• all the parameters of the DNS (section 4.2.3) that explore various stratified tur-
bulent regimes,
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• the influence of the VSHF on the dispersion relation with the sweeping and gradient
effect (section 4.2.5).

In the second section (4.3), we present the partition of energy between waves and eddies.
It explores the energy ratio as well as the energy spectrum of the wave and eddy part.
The third section (4.4) presents an energy budget for waves and eddies, with mutual
interaction and different fluxes. The fourth and fifth sections (4.5,4.6) present the dissi-
pation linked to waves and eddies as well as the mixing. The sixth section (4.7) makes a
detailed analysis on the different transfer occuring in the flow and the inverse or direct
cascade of energy it participated in. The last section (4.8) shows some visualization of
the decomposition of the total field in a wave and eddy part.

4.2 Parameters

4.2.1 Forcing technique

Classical forcing techniques such as the forcing on a sphere (a wavenumber shell) in the
Fourier domain [45, 93] might give energy to the VSHF modes, which already tends to
gather most of the energy of the flow. Indeed, the VSHF with (kh = 0, kz) is located on
a sphere with a radius kz. To avoid such a phenomenon, a forcing technique developed
by Andrea Maffioli is used [89, 92]. This forcing can be used to avoid the wavenumbers
related to the slow modes. The forcing is applied on the suface of a cylinder and takes
as argument 4 variables (see figure 4.3):

• the horizontal wavenumber forced kh,f

• the minimum vertical wavenumber forced kv,fmin

• the maximum wavenumber forced kv,fmax

• the energy input by the forcing P .

This cylindrical forcing inserts a constant input of energy P in the system for all
wave vectors k = (kx, ky, kz) in the cylindrical shell kh = kh,f (at a ∆k/2 preci-
sion) and kv,fmin − ∆k ≤ |kz| ≤ kv,fmax + ∆k. It can be seen in Figure 4.3 where
two cylinders corresponding to the area forced by the cylindrical forcing are represented.

The input energy is equally divided on average between the toroidal aF f̂1 and the
poloidal aF f̂2 components of the flow. The forcing is placed at a random position
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Figure 4.3: Visualization of the cylindrical forcing as done in Maffioli et al. [92]

such that f̂1 = eiθ1 cosφ and f̂2 = eiθ2 sinφ where θ1, θ2 and φ are uniformly distributed
random numbers between 0 and 2π meaning that the forcing is not correlated in time.
The variable aF is the intensity of the forcing, it is computed later and depends on
the power input P chosen. The forcing can be projected on the Cartesian coordinates
f̂ = (f̂x, f̂y, f̂z):

f̂x =
1

kh
(kyf̂1 + kxkz f̂2/k)

f̂y =
1

kh
(−kxf̂1 + kykz f̂2/k)

f̂z =
−kh
k

f̂2.

(4.1)

Between two time steps the forcing is constant so that we can write

∂û

∂t
= aF f̂ ⇒

û(t+∆t)− û(t)

∆t
' aF f̂ . (4.2)

The forcing power into a wave vector k is:

∂û2/2

∂t
= 0.5

∂û

∂t
û+ 0.5

∂û

∂t
û = 0.5aF f̂ û+ 0.5aF f̂ û. (4.3)
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It can be approximated using equation (4.2) as

∂û2/2

∂t
' aF f̂ ·

û(t+∆t) + û(t)

2
+ aF f̂ ·

û(t+∆t) + û(t)

2

= aF Re(f · û(t+∆t)) + aF Re(f · û(t)) (4.4)

= 2aF Re(f · û(t)) + a2F∆tRe(f̂ · f̂).

The energy of this forcing is computed as the sum of the physical forcing (aFPuf ) and
an artificial forcing (a2FPff ) created by the discrete time step where aF f̂ is constant.

aFPuf = 2aF
∑
k

Re(
¯̂
fxûx +

¯̂
fyûy +

¯̂
fzûz)

a2FPff = a2F∆t
∑
k

Re(
¯̂
fxf̂x +

¯̂
fyfy +

¯̂
fz f̂z).

(4.5)

The total input of energy P is supposed to be equal to the energy input by the forcing.
Therefore the equality P = aFPuf + a2FPff must be imposed with P a constant. This
equation has two solutions:

a+F =
−Puf +

√
P 2
uf + 4PffP

2Pff

a−F =
−Puf −

√
P 2
uf + 4PffP

2Pff
.

(4.6)

We decide to keep the minimum amplitude of forcing, so we choose aF = min(a+F , a
−
F )

(this technique is named constant power minimal forcing). aF is updated at each time
step in order to keep P constant. Finally the forcing F̂u = aF (f̂1e

t + f̂2e
p) can be

computed in the toroidal-poloidal coordinates.

This forcing has two main advantages. When the flow reaches a statistically stationary
state, the input of energy equals the dissipation of energy so P = εu + εb. Moreover, as
this forcing chooses some wavevectors to be forced, it is possible to avoid sensitive areas,
such as close to the shear mode (kh = 0) for stratified flows and the geostrophic mode
(kz = 0) for rotating flows. Indeed, these modes tend to dominate the overall structure
of the stratified or rotating flows even if there are not directly forced. By using a forcing
that input energy far from these modes we slightly reduce its importance.
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Figure 4.4: (a) Our parameters of the numerical simulations (open circle for 5123

points and filled circle for 2563 points). For reference, the DNS of Maffioli et al. [91]
(from 963 points to more than 10243 points) and Garanaik and Venayagamoorthy [52]
(5123 points) are shown. (b) Total kinetic energy ET

u (t) and VSHF energy Eu(kh = 0, t)
for α = 1 and α = 0 for Reb = 5 and Fr = 0.023.

4.2.2 Controling VSHF growth with added viscosity

However, even with this new forcing it is difficult to reach a stationary steady state
because the slow modes still slowly grows in time. In order to further reduce the impor-
tance of the slow modes, a new viscous term Fα is added in the Navier-Stokes equation
as done in rotating turbulence in Le Reun et al. [75].

For stratified flow, this added viscosity is inserted in the kinetic part of the Navier-Stokes
equations and equals:

F̂α(k, t) =

{
−αû(k, t) if kh = 0

0 otherwise.
(4.7)

where the value of α modifies the relative importance of the VSHF against the overall
structure of the flow. Therefore, the value of α is chosen in function of the wanted
importance of the VSHF.

4.2.3 Parameter space

Equations (2.9) are solved using a standard pseudo-spectral algorithm in a 2π-periodic
three-dimensional spatial domain. A phase shifting method is used to treat aliasing in the
non-linear term (see Lam et al. [72] for details). The Prandtl number is Pr = ν/X = 1.
Ten numerical simulations were run with the parameters shown in table 4.1 at resolutions
2563 and 5123. The exploration of the parameters is mainly based on 5123 points, the
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lower resolution of 2563 points is used to confirm and explore trends. We plotted in
Figure 4.4 the exploration points in the parameter space (Fr,Reb), along with data from
Maffioli et al. [91] and Garanaik and Venayagamoorthy [52]. In stratified turbulence,
results are typically shown against:

Fr =
εu

Nu2h
, Reb =

εu
νN2

(4.8)

where εu is the kinetic energy dissipation, uh is the rms horizontal velocity. Fr is the
Froude number and is considered as the ratio of flow inertia over the stratification.
The buoyancy Reynolds number Reb can also be written as Reb = (

kη
kO

)4/3. It can

be understood as the ratio of the Kolmogorov wavenumber kη = (
εu
ν3

)1/4, the biggest

wavenumber of the turbulent flow, over the Ozmidov wavenumber kO =

√
N3

εu
[114], the

wavenumber at which stratification becomes less important. Reb measures the extent
between the large scales dominated by stratification and IGW (up to Ozmidov scale kO)
and small scales dominated by isotropic dissipation (the Kolmogorov scale). N is the
Brunt-Väisälä frequency and ν is the viscosity. According to Brethouwer et al. [19], we
explore different regimes:

• a viscosity-affected stratified flow (VASF) regime which contains weak IGW inter-
actions where wave anisotropy extends to small scales (Fr � 1 and Reb � 1),

• a strongly stratified turbulence (SST) regime where the scale of wave anisotropy
is distinct from small dissipative scales (Fr � 1 and Reb � 1).

The exploration of these two regimes also induces a modification of the Taylor-length-
based Reynolds number Reλ = urmsλ/ν with λ the Taylor scale and urms the rms
velocity. The regimes studied in our numerical simulations and in other numerical sim-
ulations are shown in figure 4.4a. The figure shows that the two resolutions 2563 and
5123 explore different regions of parameter space (Fr,Reb) and we expect this to change
the characteristics of the transition regime between the VASF and SST regime. Addi-
tional few points in parameter space at 2563 resolution permit the exploration of a slight
variation of Reb and Fr. The two parameters Fr and Reb are of course dependent on one
another since

Reb = Fr2Reh with Reh =
u4h

(εuν)
. (4.9)

The horizontal Reynolds number Reh = u4h/(εuν) defined by Maffioli et al. [91] accounts
for the horizontal turbulence intensity. The 2563 simulations have almost one order of
magnitude lower Reh than 5123 simulations (see table 4.1) for similar (Reb, F r). By
adjusting the resolution, one can therefore study the variation of the dynamical system
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5123 points with ν = 1/700

N Fr Reb Reh Reλ DE SE(%) ωmax ωmin urmskmax kmaxη ∆t
(×10−4)

20 0.035 11 9000 146 760 0.3 1570 3 800 1.12 2
30 0.023 5 9500 148 1080 0.4 1570 3 810 1.12 2
50 0.013 1.8 10700 180 980 0.4 1570 3 890 1.12 2
70 0.007 0.9 18000 225 820 0.3 1570 3 990 1.12 2
100 0.004 0.5 31000 290 730 0.3 1570 3 1110 1.12 2
200 0.0014 0.1 51000 430 22 0.08 3140 6 1300 1.13 1
600 0.00045 0.01 49000 510 11 0.005 3140 6 1370 1.19 1

2563 points with ν = 1/250

N Fr Reb Reh Reλ DE SE(%) ωmax ωmin urmskmax kmaxη ∆t
(×10−4)

50 0.014 0.7 3600 94 2500 1 1570 3 423 1.18 4
70 0.0095 0.35 3900 109 420 0.16 1570 3 450 1.19 5
200 0.0022 0.04 8300 175 74 0.03 1570 3 557 1.21 4

Table 4.1: List of parameters in the ten DNS runs. Reh = u4
h/(εuν) is the horizontal

Reynolds number, SE is the ratio of energy of shear flow over the total kinetic energy,
DE is the ratio of density of shear energy per point against the total kinetic energy per

point, ωmax = π/∆t′ is the maximum pulsation solved and ωmin = 2π/T

is the minimum pulsation solved.

either by setting Fr and weakly increasing Reb (from low to high resolution), or by setting
Reb and weakly increasing Fr (from high to low resolution) in the parameter map. While
a wide range of Fr and Reb number are analysed in this campaign of numerical simulation,
the values analysed here are far from the values typically found in ocean and atmosphere
(see figure 4.1). In some numerical simulation a Froude number close to the ocean and
atmosphere is reached (Fr ∼ 10−3, 10−4), but this is done at the cost of the buoyancy
Reynolds number which is very low for this particular Froude number (Reb ∼ 10−2).
However, no numerical simulation in our campaign reaches the typical value of Reb
found in ocean and atmosphere. Our analysed flows are significantly less turbulent than
flow found in ocean and atmosphere. Hence, no clear and direct conclusion can be drawn
for ocean and atmosphere phenomena as their regime are not attained here, but some
trends can still be determined.

4.2.4 Numerical parameters

The time step ∆t varies with the stratification N to agree with the CFL condition. For
the spatial resolution of 5123 points, the maximum wavenumber is kmax = 241 such that
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kmaxη ∼ 1.1, η being the Kolmogorov scale (see table 4.1). This moderate number of
points is necessary because our wave/eddy decomposition requires many 3D fields in
time. Turbulence reaches a statistically stationary state due to the added body force Fu

in equation (2.17), as in Maffioli et al. [92] who injected a constant power

P =

∫
Fu · u dv = 10. (4.10)

Fu is spectrally localized on a cylindrical spectral surface of horizontal wave number kh =

4 and vertical wave number 1 ≤ kz ≤ 3, away from the VSHF at û(kh = 0, kz). It forces
the poloidal and toroidal parts of the velocity equally. Thus, this choice allows on average
the wave and vortex components of the flow (in the sense of Riley’s decomposition) to
be excited in equal proportions. The forced wavenumbers are at an angle θf between
the wavevector k and the horizontal plane, in the range 0.72 ≤ θf ≤ 1.31, meaning that
high frequencies close to N are forced and a wave turbulence cascade may develop with
lower frequency. To delay the emergence of VSHF at large scale, we add a friction term
F̂u − αû(kh = 0, kz) (with α = 1) as proposed by Le Reun et al. [75] to stabilise the
geostrophic mode in rotating turbulence. The latter authors also note that this term
mimics the effect of a horizontal wall. It also helps the numerical simulation to reach
a stationary state as shown in figure 4.4b. This figure shows the total kinetic energy
ET

u (t) and the kinetic energy of VSHF ET
u (kh = 0, t) for α = 1 and α = 0. Both

energies diverge when α = 0 but stay bounded when α = 1. This statistical stationarity
allows the computation of time Fourier transforms with fewer truncation-related spurious
effects. Furthermore, the divergence of the kinetic energy ET

u (t) for α = 0 is about the
same as that of VSHF energy ET

u (kh = 0, t), meaning that roughly the same amount
of energy is advected by the VSHF. The main difference between the two cases with
and without friction is that the flow is significantly advected by VSHF in the first case
(α = 0) whereas this advection is much less in the case with friction (α = 1).

Our simulations contrast with those of Maffioli et al. [92] in that we apply a friction
term to quench VSHF to less than a few percent of the total kinetic energy, though still
active enough to contribute to the flow structuration. We show in table 4.1 that the
percentage of shear energy over the total kinetic energy (SE = ET

u (kh = 0, t)/ET
u (t)) is

very low. However, we still consider the VSHF to be the main advecting flow.

We consider that all wavevectors kx, ky, kz (5123 points) are ‘active’ — i.e. they are
prone to contributing significantly — in the total kinetic energy, whereas in the kinetic
energy of the VSHF, we only consider as active wavevectors with kh = 0, at whatever
kz (512 points). Then, from these total kinetic energy ET

u and kinetic energy of VSHF
ET

u (kh = 0), it is possible to define the following average energy densities: eK = ET
u /512

3

and eshear = ET
u (kh = 0)/512. These average densities take explicitly into account the
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number of active wavenumbers they involve. Finally, we can define the average density
ratio per wavevector by DE = eshear/eK . The value DE is given in table 4.1 and shows
the relative importance of the VSHF compared to the number of points in the DNS
involved. DE ∼ 1000 shows that the VSHF importance per point is strong for weaker
stratification, but decreases while still intense for higher stratification.

In a second kind of DNS we run in order to build the ζ function, in preparation for the
DNS with 5123 points, the Green’s function is simulated during T = 10000∆t by using
equation (2.17) with the forcing term Fb =

∑
x,t δ(x)δ(t) where each Dirac function is

set at a random position and enforced at each time step ∆t during the first 100∆t.
The initial condition of this calculation is zero. The velocity c comes from the VSHF
û(kh = 0, kz) extracted every ∆t′ = 10∆t from the DNS, after it has reached statistical
stationarity. To ensure that IGW are not dissipated, we use very small viscosity νG =

XG = 10−8 and we check that only the poloidal part ûp and the density b̂ are active with
respect to the toroidal part ût that is close to machine-precision zero. We apply the FFT
in time on 1000 fields of b̂G extracted every ∆t′. For DNS with 2563 points the time step
∆t can be taken larger and result in a DNS with less iterations (T = 4000 or 5000∆t) but
with statistics written on the same time step ∆t′ = 0.002 as in numerical simulations with
5123 points. The time step is chosen very small in order to capture the sweeping effect
from the full rms velocity urms on the highest frequency of eddies urmskmax [30, 139],
as validated in homogeneous and isotropic DNS simulation by Di Leoni et al. [41]. The
highest frequency of eddies urmskmax must be compared to maximum frequency ωmax

and minimum frequency ωmin resolved by the numerical algorithm. The fields are not
extracted at every ∆t both to reduce the memory cost and because in the DNS this time
step comes mainly from the CFL constraint.

The value β = 100 is based on the simulation of the Green’s function under conditions
similar to the analytical solution (2.66) for buoyancy b̃G,a which is a benchmark for our
method. Indeed, two reasons render imprecise the capture of peaks in the simulation
of Green’s functions. First, even if very low (e.g. νG = XG = 10−8 ), viscosity tends
to smear the peaks around the resonance frequencies ω±

c . Spectral discretization also
adds to this smearing: for each wavevector k, 100% of energy is localized in a single
frequency ω±

c (k) when analytically computed, whereas it is distributed over a bandwidth
of frequencies in simulations. The second reason is due to time discretization: the
frequency ω±

c is not exactly measured, but is approximated by the two closest discrete
frequencies. These two mechanisms lead to a search for the set of points closest to
the peak. When trying to capture the peak in a configuration similar to the analytical
solution (2.5), we observe that the peaks span several orders of magnitude in amplitude
over a bandwidth of frequencies. In simulations, even if 100% of the energy is distributed
over all frequencies, in practice a large percentage is still located in a small frequency
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range. In numerical simulations in the exact configuration of the analytical solution
b̃G,a, we adjusted β to 100 because we observe that 95% of the total potential energy is
selected as waves around a small bandwidth of frequencies. This 95% value is retained
for all the simulations of the Green’s function from equation (2.61). Choosing lower β

means that less potential energy from equation (2.61) would be considered as waves,
meaning that some eddies would be assigned as waves. Conversely, choosing a higher
β would not change much in the wave energy in equation (2.61) and might increase
the number of eddies associated to IGW. In configurations other than the analytical
solution, simulations of Green’s functions also show that more or less 95% of the total
potential energy is preserved as waves.

4.2.5 VSHF influence on the dispersion relation

What is the effect that influence the most the dispersion relation? It is the sweeping
effect or the effect of the gradient? In this section we answer these questions by studying
the VSHF influence on the dispersion relation through the sweeping effect and the effect
of the gradient. While in sections 2.7.3.1 and 2.7.2.4, these studies are done on an
idealized VSHF, this time the analyses are done on a VSHF extracted from one of the
turbulent flow we are studying (from the DNS with 2563 points and N = 50 in table
4.1).

In figure 4.5, we can observe the effect of a full VSHF on the dispersion relation. The
forcing used here is a multitude of Diracs in space at successive time steps exactly
as explained in the second step of the separation technique (in section 3.1.5.2). The
sweeping effect of the full VSHF is shown in figure 4.5a and the gradient effect of the
full VSHF is shown in figure 4.5b.

Example of energy spectrum of the VSHF can be found in figure 4.11. It shows that the
VSHF is mostly large scale. The sweeping effect of the VSHF on the dispersion relation,
visible in figure 4.5a is very large and is well estimated by the rms velocity of the full
VSHF flow in yellow. On the contrary the gradient effect is visible in figure 4.5b and
does not modify the dispersion relation (in red).

From these observations, we can safely assume that the dispersion relation of IGW is
mostly modified by the sweeping effect. It can be well estimated by computing the rms
velocity of the VSHF flow.
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Figure 4.5: Effect of the the VSHF on the dispersion relation. (a) Sweeping effect
of the VSHF on the dispersion relation (b) Gradient effect of the VSHF on the dis-
persion relation. Yellow lines is the dispersion relation modified by the sweeping effect

calculated by the rms velocity. Red lines are the initial dispersion relation.

4.3 Partition of energy between IGW and eddy

4.3.1 Energy ratio

In this subsection, we consider the separation of energy between IGW and eddies in
terms of percentage. This distribution is analysed against the typical non-dimensional
numbers of stratified turbulence, the Froude number Fr and the buoyancy Reynolds
number Reb.

4.3.1.1 Total

The total mechanical energy ET = ET
u +ET

b is the sum of kinetic energy ET
u and potential

energy ET
b . Based on our orthogonal decomposition, we split these energies into their

wave and eddy parts as ET = Ew + Ee and El = El
u + El

b, with El
u = 0.5 < ûl, ûl >

and El
b = 0.5N−2 < b̂l, b̂l > where l stands for w (wave), e (eddy) or T (total) and <,>

is defined in section 3.1.1. The eddy part of the poloidal kinetic energy is defined as
Ep,e = 0.5 < ûp,e, ûp,e >.

Figures 4.6a and 4.6b show for both resolutions, the energy distribution between waves
and eddies, Ee and Ew compared to total energy ET . Since two parameters Fr and Reb
appear to be strongly correlated (recall that Reb = RehFr2), we plot the distribution
against Fr and Reb separately. Moreover, we can observe the evolution of these energies
either at constant Reb and weakly increasing Fr (from high to low resolution on figure
4.6a), or at constant Fr and weakly decreasing Reb (from high to low resolution on figure
4.6b). As expected, on figure 4.6 we observe that the eddy part of any form of energy
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Figure 4.6: Evolution of the percentage of energy in waves and eddies
(Ee

i /E
T , Ew

i /E
T ) for kinetic, potential and total energy (i = b, u, T respectively)

against (a) Reb; (b) Fr. Numerical simulations with 5123 points are shown with open
symbols and solid lines, and numerical simulations with 2563 points are shown with

filled symbols and dotted lines.

Ee increases and the wave part Ew decreases, both when Reb increases (figure 4.6a) and
when Fr increases (figure 4.6b).

Staquet and Godeferd [132] found a similar distribution of kinetic energy (60% to eddies
and 40% to waves) at Fr ' 0.006 for decaying turbulence. Moreover, at fixed Reb
(figure 4.6a), when Fr increases, there is more energy in the eddy part than in the wave
part, as expected by the meaning of Fr (inertial effects are more important than gravity
effects). By increasing Fr, the evolution of Ew, Ee as a function of Reb seems to be
shifted to smaller values of Reb as well as towards the equilibrium point where Ew = Ee.
Nevertheless, at fixed Fr (figure 4.6b), when Reb decreases, there is more energy in the
eddy part than in the wave part, which is not obvious. Once again, this evolution seems
to be shifted towards a smaller value of Fr.

To analyse this result, we must analyse the composition of each type of energy. Fig-
ures 4.6a and 4.6b show the ratio of potential and kinetic energy distribution of waves
(Ew

b , E
w
u ) and eddies (Ee

b , E
e
u) compared to total energy ET . First, we observe that the

potential energy Ew
b and kinetic energy Ew

u contain the same percentage of total energy
of waves, i.e. Ew

b ∼ Ew
u for any Reb or any Fr, as generally expected for gravity waves.

Secondly, we observe that the potential energy of eddies is less than the kinetic energy
of eddies i.e. Ee

u > Ee
b for any Fr or Reb. Nevertheless, at fixed Fr, for instance at
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Fr ∼ 0.014, when Reb decreases, there is more kinetic energy in eddy for lower Reb i.e.
Ee

u(Fr = 0.014,Reb = 0.7) > Ee
u(Fr = 0.013,Reb = 1.8).

This non obvious result can be analysed by decomposing the kinetic energy of eddies
into poloidal and toroidal parts. By following the decomposition (3.2), the eddy part
can be decomposed into a poloidal and a toroidal component: Ee

u = Ep,e
u + Et,e

u where
Ep,e

u = 0.5 < ûp,e · ep, ûp,e · ep > and Et,e
u = 0.5 < ût,e · et, ût,e · et >. On figures

4.6a and 4.6b we only show Ep,e
u , from which the value of Et,e

u = Ee
u − Ep,e

u can be
deduced. We observe the same percentage of total energy in the poloidal and buoyancy
eddy energy, i.e. Ee

b ∼ Ep,e
u independently of Fr or Reb. This percentage increases slowly

with Reb or with Fr. Note that the total potential energy ET
b = Ew

b +Ee
b is linked to the

available potential energy (see section 14.1 in Davidson [35]). The available potential
energy is a mechanical form of gravitational potential energy that stores the energy of
an unstable density pattern, i.e. the light- and heavy-density fluid parcels are not in
equilibrium. While a part of this unstable configuration is related to the IGW (Ew

b ) as
the waves induce spatial variations of density fluctuation, the other part (Ee

b ) contains,
among other things, the density overturns (light density over heavy density). It seems
that the equality Ee

b ∼ Ep,e
u reflects the effect of eddies in the vertical plane, which is

directly related to the poloidal part of the velocity field. Since Ee
b ∼ Ep,e

u is more or
less constant with Reb at fixed Fr, this means that only the toroidal part Et,e

u increases
when Reb decreases. The increase of Et,e

u leads to an increase of the total kinetic energy
of the eddy part Ee

u. We remind that the toroidal part (kh 6= 0) does not include the
VSHF (kh = 0). Generally, large scales contain more kinetic energy than small scales
dominated by the dissipation, so that the large scale vortical modes are well represented
by the toroidal part of the energy. We therefore argue that the relative increase — with
respect to total energy — of the part of kinetic energy in the vortical modes can be
associated with an increase in large, smooth and stable horizontal layers as the flow
is more and more in the VASF regime by decreasing Reb, as in the nomenclature by
Brethouwer et al. [19]. This observation could explain the shift of the distribution of
energy Ew, Ee towards smaller Fr as Reb decreases.

Note that at Reb ≥ 5 and Fr ≥ 0.02, it seems that Ep,e
u ' Ee

b ' Ew
b ' Ew

u .

In the original decomposition by Riley et al. [119], at large Reb all the potential energy
of eddies Ee

b and the poloidal part of the kinetic energy of eddies Ep,e
u are wrongly

assigned to the wave part (i.e. ∼ 10% for each part), thus inducing a departure of 40%
in comparison to our results: +20% of energy in IGW and −20% of energy in eddies.
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Figure 4.7: Evolution of the percentage of energy for poloidal (Ep,i
u /Ep,T

u and poten-
tial (Ei

b/E
T
b energy in waves and eddies (i = w, e respectively) against (a) Reb; (b) Fr.

Numerical simulations with 5123 points are shown with open symbols and solid lines,
and numerical simulations with 2563 points are shown with filled symbols and dotted

lines.

4.3.1.2 Poloidal and potential

In the previous section where the eddy energy is examined as the sum of a part of the
poloidal term and all the toroidal term, the effect of our separation technique is slightly
hidden by the toroidal part. Therefore, in this section we directly study at the separation
of just the poloidal energy and just the potential energy in a wave and eddy part.

Figure 4.7 shows the ratio of poloidal energy of waves (i = w) and eddies (i = e) over
the total poloidal energy Ep,i

u /Ep,T
u =< ûp,i · ep, ûp,i · ep > / < ûp,T · ep, ûp,T · ep >

as well as the ratio of potential energy of waves (i = w) and eddies (i = e) over the
total potential energy Ei

b/E
T
b =< b̂i, b̂i > / < b̂T , b̂T > against the buoyancy Reynolds

number (figure 4.7a) and against the Froude number (figure 4.7b).

First, we observe that the distribution in potential and poloidal energy of waves and
eddies is exactly the same. At the same Reb, we observe that for a higher Froude
number, the ratio of wave energy decreases and the ratio of eddy energy increases. For
a constant Fr, surprisingly the ratio of waves slightly increases with Reb and the ratio of
eddies decreases slightly as well (by a few percent). We could say that the distribution
of energy in the poloidal and potential energy between waves and eddies is strongly
dependent on the Fr number. This underline the observation done in figure 4.6, and
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Wave Eddy
Term velocity buoyancy velocity buoyancy

Riley’s decomposition up b ut ×
4D decomposition up,w bw ut + up,e be

Table 4.2: Difference in velocity and buoyancy components for the Riley’s decompo-
sition [119] and our 4D decomposition

shows that the increase in eddy energy when Reb decreases is due to the increase of
toroidal energy in the flow, and not an increase of poloidal eddy energy.

4.3.2 Energy spectra against k

In the next section, we analyse the energy spectrum. While the result in the DNS with
2563 points are available, we prefer to only consider the simulation with 5123 points
because the scaling of the energy spectrum is clearer with more points.

4.3.2.1 Riley’s decomposition vs 4D decomposition

First, we remind the reader that the Riley’s decomposition sets the wave part as the
full poloidal terms and the eddy part as the full toroidal term. On the contrary, our
decomposition (see section 3.1.2) sets the wave part as only a part of the poloidal term
(around the dispersion relation) and the eddy part as the sum of the full toroidal term
and a poloidal part (away from the dispersion relation). In Riley’s decomposition the
kinetic wave energy is Ep

u and the kinetic eddy energy is Et
u whereas in our decomposition

the kinetic wave energy is Ep,w
u and the kinetic eddy energy is Et

u+Ep,e
u . These differences

are sum up in table 4.2.

We can observe the added value of our decomposition against the Riley’s decomposition
in figure 4.8. We observed that the Riley’s decomposition is very similar to our
decomposition at low wavenumber k which is expected because the sweeping effect
is weak at low wavenumber as it is proportional to the wavenumber k. At large
wavenumber k we observe that the kinetic energy for eddies in figure 4.8a is slightly
underestimated with the Riley’s decomposition. For the kinetic energy of waves in
figure 4.8b the kinetic energy of waves is clearly different in the Riley’s decomposition
than in our decomposition. This can be understood as our eddy part is the sum of the
full toroidal part and slight portion of the poloidal part of the flow. As a result adding
a part of the poloidal component does not change a lot the overall energy as it is hidden
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Figure 4.8: Kinetic energy spectra difference between the Riley’s decomposition and
our decomposition (named Lam in the legend) for (a) toroidal and eddy. (b) poloidal
and wave. Numerical simulations with the different Brunt-Väisälä frequency are shifted

by a power of 10 for clarity.

by the toroidal energy. On the contrary the wave kinetic energy is solely composed of
poloidal energy and when this poloidal energy is separated in two parts (i.e. an eddy
and wave part), it is more visible that the waves lose energy.

Therefore the study of the typical scaling in the energy spectra for IGW and eddies
is different depending on the separation technique used. We expect different results
of energy spectra if only the Riley’s decomposition is used as in Kimura and Herring
[69] or if our decomposition is used. Our separation technique takes into account both
the spatial and spatial/temporal properties of waves. We expect it to be more precise
than Riley’s decomposition as Riley’s decomposition solely takes into account the spatial
properties of waves. Compared to Riley’s decomposition, our decomposition increases
the scaling of the eddy energy spectrum as it adds energy to it when k increases. On the
contrary, the scaling of the wave energy spectrum decreases as we remove some energy
in it when k increases.

4.3.2.2 IGW and eddy energy spectra

The energy spectra for the wave part and eddy part of our decomposition is visible in
figure 4.9 against the wavenumber k.

The eddy part of the energy spectrum seems to follow a k−5/3 scaling for both the
kinetic energy and potential energy and for all numerical simulations (see figures 4.9a
and 4.9c). If one is only interested in the poloidal component of the kinetic energy
spectra, one can look directly at the potential energy spectra. Indeed the potential
and poloidal terms are linked, and we expect the eddy part of these two to be very similar.
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The wave part of the energy spectrum is exactly the same for the kinetic energy spectra
(figure 4.9b) as for the potential energy spectra. This is expected because the poloidal
component strongly interacts with the potential component. It seems that the wave
part of the flow follows a k−3 scaling for N > 50. For highly turbulent flow (N ≤ 30),
the scaling is much lower, possibly even lower than the −5/3 Kolmogorov-like slope.

In all plots of figure 4.9, we observe a decline in energy at large wavenumber when the
stratification increases. This comes from the smallest scale kη which decreases slightly
when our stratification increases.

The result that we obtained are very similar to the atmospheric measurements done
in Nastrom and Gage [109]. In this article they observed the kinetic energy spectrum
near the tropopause and found an energy spectrum close to k−3 at large scale and an
energy spectrum close to k−5/3 at small scale. This is exactly what we could obtain.
At large scale, IGW energy spectrum dominates and are close to a k−3 scaling and at
small scale eddies dominate with a scaling close to k−5/3. In numerical simulations done
in Kimura and Herring [69], they found that, at large stratification, the total kinetic
energy spectrum was close to a k−3 scaling and, at small stratification, the total kinetic
energy spectrum is close to k−5/3. This is again an outcome that shares similarities with
our results. At large stratification, we encounter mostly IGW with a scaling close to
k−3 whereas at small stratification we face both IGW and eddies with a scaling close to
k−5/3.

4.3.3 Energy spectra against kz

The stratification creates an asymmetry in the flow. Vertical components are strongly
influenced by the variation of the stratification whereas the horizontal components are
not subject to the stratification. This means that the energy spectra against a 3D
direction (i.e. the wavenumber k) is probably not the best parameter to observe energy
spectra. Instead, we can use the vertical kz and horizontal kh wavenumber which takes
into account the variability of the flow in the vertical and horizontal directions.

In Figure 4.10 are plotted the kinetic and potential energy spectra of eddies and waves
against the vertical wavenumber kz. In Figure 4.10a and c, it is difficult to find a typical
scaling for the eddy energy. On the contrary, the scaling for the wave part in figures
4.10b and d tends to be close to k−3 at large stratification N ≥ 50 or when Reb < 2. This
can be nuanced for large stratification at N = 200 and N = 600 because the dissipative
scale is at a smaller wavenumber and the inertial scale where the scaling is visible is very
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Figure 4.9: Kinetic (first row) and potential (second row) energy spectra for for
numerical simulations with 5123 points shown in table 4.1 against wavenumber k for

(a,c) eddies. (b,d) waves. Typical slopes are placed for reference.

small. For small stratification (N ≤ 30), we do not observe any typical scaling. The
wave energy at low stratification seems very close to the eddy energy.

This result can be compared with other works where Brethouwer et al. [19] found a
potential energy spectrum with a k−3

z scaling for Reb > 1 and no inertial scaling for
Reb < 1. Similarly, Maffioli [89] found a k−3

z scaling in stratified turbulence for a large
scale horizontal flow (by selecting only flow components with a wavenumber lower than
a certain value). This is an ingenious way to select mostly waves as the figure 4.9 shows
that IGW dominate at small scales. However, this separation of scale is not done in our
paper. On the contrary, Kimura and Herring [69] found two different scalings in their
poloidal energy spectrum: a k−2

z scaling for flows at small stratification and a k−3
z scaling

for flows with a large stratification. From the new perspective of our decomposition we
can say that when a scaling close to k−3

z is observed, it means that IGW are dominating
the flow for small Reb. On the contrary, when a different scaling is observed, it means
that the eddy energy spectrum modifies the overall energy spectrum (or the poloidal
energy spectrum for Kimura and Herring [69]).
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Figure 4.10: Kinetic (first row) and potential (second row) energy spectra for numer-
ical simulations with 5123 points shown in table 4.1 against the vertical wavenumber

kz for (a,c) eddies. (b,d) waves. Typical slopes are placed for reference.

4.3.3.1 Energy spectra of the VSHF

Figure 4.11 shows the energy spectrum of the VSHF from different numerical simulation
with varying Brunt-Väisälä frequencies. We observe that at large scale (k < 10), the
energy is high and constant. For smaller scale (k > 10) the energy of the VSHF decreases
rapidly, following a scaling close to k−7. We do not know why this scaling arises. Due
to the very steep energy spectrum of the VSHF, a different fit could have been made
in the form of a stretched exponential as shown in Verma et al. [143] (but not done
here). As a viscous effect is added to the VSHF, a different added viscosity value of α
could change the energy spectrum of the VSHF. Yet, this shows that the VSHF is large
scale and is composed of a multitude of wavenumber kz. Note that the energy spectrum
of the VSHF is exactly the same against the wavenumber k and kz as the horizontal
wavenumber is null kh = 0.

4.3.4 Energy spectra against kh

Figure 4.12 shows the kinetic and potential energy spectra of eddies and waves against
the horizontal wavenumber kh.
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Figure 4.11: Energy spectrum of the VSHF for numerical simulations with 5123

points shown in table 4.1 against the vertical wavenumber kz.
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This time, the eddy energy is very well adapted to a scaling close to k
−5/3
h for all

stratification strengths. For the wave energy at large stratification (N ≥ 50), the waves
follow a k−3

h scaling, whereas at smaller stratification (N ≤ 30), the wave energy seems
to follow a scaling similar to the eddy energy, a k

−5/3
h scaling.

This result can be compared with the numerical simulation done in Lindborg [84]. In
this article, Lindborg found a potential and kinetic energy spectrum of scaling k

−5/3
h

especially for low Froude number (Fr ∼ 10−3) with a box larger in the horizontal direc-
tion than in the vertical direction. Similarly, Brethouwer et al. [19] found a kinetic and
potential energy spectrum to be close to k

−5/3
h when the Froude number (Fr ∼ 0.001)

and buoyancy Reynolds number (Reb ∼ 10) is higher. When Fr and Reb decrease, they
found a steeper slope for the kinetic and potential energy spectrum. Furthermore, they
analysed the energy spectrum with a constant Reb = 9 and by varying the Froude and
Reynolds number and found that the kinetic and potential energy spectrum scaling
was constant at k

−5/3
h . Comparing these results with our data, we could say that the

observation done by Brethouwer et al. [19] and Lindborg [84] were done in cases with a
lot of eddies (Reb � 1) and where IGW have a horizontal energy spectrum close to k

−5/3
h .

The Riley’s decomposition was done in [69]. They show that the toroidal energy
spectrum against the horizontal wavenumber have two scalings: a k−3

h scaling at small
horizontal wavenumber and a k

−5/3
h scaling at higher horizontal wavenumber. It is

possible that, if our decomposition were used in their DNS, the added poloidal term
to the toroidal part would modify the scaling of the eddy energy spectrum to be only
close to a k

−5/3
h . For the poloidal energy spectrum against the horizontal wavenumber

in Kimura and Herring [69], they found that the energy spectrum was close to a k−2
h

scaling for high stratification and close to a k
−5/3
h for high stratification. Again, if our

decomposition were used in their DNS, the slope of the wave part would be increased
as we take more and more poloidal terms as kh increases to transfer to the eddy part.
It is possible that if they had used our decomposition, they could find a slightly higher
slope for high stratification DNS obtaining similar results than us.

In conclusion the eddy energy spectrum can be approximated by a slope of −5/3 for
the wavenumber k and horizontal wavenumber kh. The wave energy spectrum can
be approximated to a −3 slope for all types of wavenumber (k, kh and kz) at large
stratification N ≥ 50. For lower stratification N ≤ 30 the result seems closer to a −5/3

slope. This sudden change in the wave energy slope might come from two factors. The
physic of the waves might be altered by eddies at low stratification or enough eddies
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remain in the wave part of the flow to influence the result of the wave energy spectra at
low stratification.

While our analysis focuses only on the energy spectrum against the spatial wavenumber
spectrum, other works consider the energy spectrum against the angular frequency ω.
For instance, this was done in an empirical model by Garrett and Munk [53, 54] for
internal gravity waves. Numerous works tried to further improve this model, as done
in Levine [81], Lvov and Tabak [86]. An example of an energy spectrum against the
angular frequency can be found in Polzin and Lvov [118].

4.4 Balance of energy and flux

In homogeneous and isotropic turbulence the Lin equation is useful to assess the evolu-
tion of energy through time t and wavenumber k. It is written as:

∂tE(k, t) = T (k, t)− 2νk2E(k, t) (4.11)

where T (k, t) correspond to the spectral transfer term [120] and E(k, t) is the kinetic
energy. The Lin equation is also the equivalent of the Kármán Horwarth equation [37]
in the Fourier space. In this section we will use our new decomposition to derive an
equation similar to the above Lin equation for waves and eddies.

4.4.1 Derivation of the Lin type equation

The evolution of total energy in stratified turbulence is driven by the flux of energy in
equation dET /dt = P − εT where the total dissipation εT = εu + εb with εu = ν <

k2û, û > and εb = XN−2 < k2b̂, b̂ >. During the statistically stationary regime, the
total energy stored is constant, so that dET /dt = 0 and, for all stratification intensities,
the output flux balances the input flux as P ' εT . The wave and eddy decomposition
now permits adressing the question how do wave- and eddy-related fluxes evolve with
stratification?

We compute the Lin type equation — i.e. the balance equation in spectral space — for
the waves and the eddies in a stratified flow as done in Verma [142]. To do so, we start
by taking the Fourier transform in space of the stratified part of equations (2.17):

∂tû(k, t) = −ω̂ × u(k, t)− ikp(k, t)− νk2û(k, t) + b̂(k, t)z+ F̂u(k, t)

∂tb̂(k, t) = −û ·∇b(k, t)− χk2b̂(k, t)−N2ûz(k, t)
(4.12)
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where ω̂ × u(k, t) and û ·∇b(k, t) are the 3D Fourier transform in space of ω× u(x, t)

and u ·∇b(x, t).

Multiplying equations (4.12) by ûl(k, t)

2
for the kinetic part and by b̂l(k, t)

2N2
for the

potential part and adding the resultant equation with its complex conjuguate, we obtain:

∂tRe

{
û · ûl

2

}
(k, t) = −Re

{
ω̂ × u · ûl

}
(k, t)−νk2Re

{
û·ûl

2

}
(k, t)+Re

{
ûlz b̂
}
(k, t)

+ Re
{
F̂u · ûl

}
(k, t)

∂tRe

{
1

2N2
b̂b̂l
}
(k, t) = − 1

N2 Re
{
û ·∇b · b̂l

}
(k, t)− χk2Re

{
1
N2 b̂b̂l

}
(k, t)

− Re
{
ûz b̂l

}
(k, t)

(4.13)
where l stands for w for the wave part or e for the eddy part.

As the wave and eddies components are disjoint in the spatial and time Fourier domain,
the average on the large period T0 is [ûl, û] = [ûl, ûw + ûe + ûs] = [ûl, ûl] where [,] is
defined in equation (3.9). Yet, as ûs � ûw and ûs � ûe, the VSHF velocity field ûs is
not taken into account. This is also the case for the buoyancy field [b̂l, b̂] = [b̂l, b̂l] and
the interaction between the velocity field and the buoyancy field [ûz, b̂

l] = [ûlz, b̂
l] (or

[b̂, ûlz] = [b̂l, ûlz].

Thus, taking the average over the period T0 of equations (4.13), summing all wavevectors
k on a sphere of radius K = |k|, decomposing the non-linear term in their wave or eddy
part and as the wave and eddy part of the flow are close to stationarity (i.e. d/dt ∼ 0),
we get:

0 = tlu,ww(K) + tlu,we(K) + tlu,ew(K) + tlu,ee(K)− 2νK2elu(K) + tlu→b,l(K) + P l(K)

0 = tlb,ww(K) + tlb,we(K) + tlb,ew(K) + tlb,ee(K)− 2χK2elu(K)− tlu→b,l(K).

(4.14)

To define all the terms in equation (4.14), we use the operator <>K defined at the
end of section 3.1.3.1. The kinetic energy is elu(K) =< û, ûl >K , the potential energy
is elb(K) =< b̂, b̂l >K , the kinetic transfers are tlu,ij(K) = − < ω̂i × uj , ûl >K , the
potential transfers are tlb,ij(k) = −N−2 < ̂ui ·∇bj , b̂l >K , the buoyancy flux are
tlu→b,l(K) =< b̂, ûlz >K=< ûz, b̂

l >K , and the forcing is pl(K) =< Fu, û
l >K . The

non-linear terms produce four different possibilities for every l part as the terms
ω × u =

∑
i,j=w,e

ωi × uj and u · ∇b =
∑

i,j=w,e

ui · ∇bj have their two components

decomposed in a wave or eddy part.
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It can be shown as in Verma [142] that the potential transfer is also tlb,ij(K) =

1

T

∫
T
Im


∑
k

|k|=K

∑
p+q=k

(k · ui(q))(bj(p)bl(k))

. For a triadic interaction of only waves el-

ements (i, j, l) = (w,w,w) the frequencies of the waves elements are (ωc(q), ωc(p), ωc(k))

where ωc is the dispersion relation modified by the sweeping effect and defined in equa-
tion (2.67). Hence, the particular transfer twb,ww(K) corresponds to the triad interaction
where for any wavevector p, q and k we obtain a spatial resonance p + q = k and a
temporal resonance ωc(p) + ωc(q) = ωc(k) [133] because < eiωc(q)eiωc(p), eiωc(k) >= 1

if ωc(p) + ωc(q) = ωc(k). Hence, the transfers twu,ww and twb,ww are wave turbulence
transfers.

When considering other types of transfer such as the interaction with only eddies, the
spatial resonance (p+ q = k) is still verified, but the temporal resonance is modified to
take into account all possible frequencies (ω(p) + ω(q) = ω(k)). Here, ω is a different
frequency than the dispersion relation of the waves. The same observations can be made
for other types of potential transfer tlb,ij and the kinetic transfer tlu,ij(K).

4.4.2 Balance of energy

Summing over all wavenumbers K in equations (4.14), we obtain the equation of balance
of global energy:

0 = T l
u,ww + T l

u,we + T l
u,ew + T l

u,ee − εlu + T l
u→b,l + P l

0 = T l
b,ww + T l

b,we + T l
b,ew + T l

b,ee − εlb − T l
u→b,l

(4.15)

where the kinetic dissipation is εlu = ν < k2ûl, ûl > and the potential dissipation is
εlb = XN−2 < k2b̂l, b̂l >. The kinetic transfer is T l

u,ij = − < ω̂i × uj , ûl > and the
potential transfer is T l

b,ij = −N−2 < ûi · ∇bj , b̂l >. The transfer from the kinetic to
potential part is T l

u→b,l =< ulz, b
l >. The total injected power is P = Pw +P e = 10 and

for the l part it is P l =< F̂u, û
l >.

Summing the two equations in (4.15), we compute the overall balance equation for waves
and eddies:

0 = Tw
ee + Tw

we − εwT + Pw

0 = T e
ww + T e

ew − εeT + P e
(4.16)

where εlT = εlu + εlb is the total dissipation rate for each part l = w, e and the exchange
term is T l

ij = T l
u,ij + T l

b,ij = − < ω̂i × uj , ûl > −N−2 < ûi · ∇bj , b̂l >. The transfers
T l
il = 0 disappeared because these transfers are only between the same l components.
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Figure 4.13: Evolution with (a) Reb, and (b) Fr, of the contributions of forcing P l,
dissipation εl and transfer T e

iw from waves to eddies. The transfer from eddies to waves
is easily computed as the inverse of the transfer from waves to eddies Tw

ie = −T e
iw.

Numerical simulations with 5123 points correspond to open symbols and solid lines,
numerical simulations with 2563 points to filled symbols and dotted lines.

They are akin to more classical transfer and are shown later in section 4.7. It pumps
and gives the same amount of energy to the l component, so it is a kind of cascade of
energy.

In equations (4.16), one neglects the interactions T l
sj of waves and eddies with VSHF

because in our simulations, these terms are small compared to others (for N = 100,
T l
sj ∼ O(10−7T l

ij)). As discussed by Verma [142], triadic transfers are such that T l
ij =

−T j
il so that Tw

we = −T e
ww and T e

ew = −Tw
ee. The detailed proof for this equality is done in

appendix B. T l
ij is an energy exchange term between l and j parts, due to the interaction

between the part j ‘convected’ by part i that exchanges energy with part l.

Thus, T j
ij = 0 so that such terms are not net exchange terms, but are dynamically

similar to convection terms, since they convey the modification of part j by part i that
acts onto part j [142]. For instance, T e

ee = 0 and Tw
ww = 0 are respectively similar to a

classical non-linear transfer between eddies and to a non-linear transfer between waves.
In the statistically stationary regime, dEw,e/dt = 0 and the equilibrium of the fluxes is
reached since all terms compensate one another.

Figures 4.13a and 4.13b show, for both resolutions, the evolution with Reb and with
Fr of the amount of the different terms in equation (4.16). Again, we can estimate the
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Figure 4.14: Sankey’s diagram of energy flux at Reb = 1.8 and Fr = 0.013 (see text).

evolution of these values either at fixed Reb and weakly increasing Fr (from high to low
resolution) or at fixed Fr and weakly decreasing Reb (from high to low resolution). In
order to facilitate physical interpretation, we show a corresponding flux diagram (a.k.a.
Sankey’s diagram) in figure 4.14 for Reb = 1.8 and Fr = 0.013 to visualize quantitatively
the energy flux from the injection P to the two dissipations εwT and εeT , either directly,
or indirectly by wave/eddy exchange terms T l

ij . Each band represents a component of
the balance of energy, with a width proportional to the energy flux it involves. Red,
blue and cyan respectively indicate the wave, eddy and exchange parts.

Figures 4.13a and 4.13b show that at Reb > ReTb ' 2 and Fr > FrT ' 0.02, the input
power for waves and eddies is in balance exclusively with the dissipation, i.e. P e ' εeT

and Pw ' εwT and there is no exchange between waves and eddies. This does not mean
that there is no transfer between waves and eddies, it only means that, overall, no net
transfer occurs, but a scale-by-scale transfer (a ‘cascade’) is still possible between them.
Moreover, injected energy is mainly pumped by eddies since P e > Pw. This changes
completely when Reb decreases or Fr decreases as Reb < ReTb or Fr < FrT . Indeed,
in the most stratified case Fr = 0.00045 at very low Reb = 0.01, the input power and
dissipation are more important for the wave part than for the eddy part (Pw > P e and
εwT > εeT ) and the exchange terms Tw

we and Tw
ee remove energy from waves (Pw > εwT )

and redistribute it to eddies (P e < εeT ). As Reb increases and Fr increases close to the
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transition Reb ∼ ReTb and Fr = FrT , the dissipation associated with eddies gets larger
(εeT > εwT ) as expected but, surprisingly, the input power for waves remains large and
there is a significant transfer from the wave part to the eddy part which amounts to a
total up to 50% of the eddy dissipation. During this transition, the exchange between
wave and eddy is dominant. Similarly, in Godeferd and Cambon [55], a lot of the energy
appears to be pumped from the waves by the exchange term Tw

we. In this transition
zone, at fixed Reb, when Fr increases, as expected, the eddy part takes more importance
and the evolution seems to be shifted to a lower ReTb .

Nevertheless, by comparing the numerical simulations with 5123 points and 2563 points,
it appears that the transfer mostly depends on the Froude number, although its ampli-
tude varies slightly between the two resolutions. Moreover, the way the forcing and the
dissipation are distributed between waves and eddies seems relatively invariant against
the Froude number.

These observations result in a global analysis of transfers between waves and eddies: the
global exchange is zero for the exchange terms, i.e. T e

ee = Tw
ww = Tw

ew = T e
we = 0, but

these terms are associated to ‘cascades’ and therefore influence indirectly the transfers
between wave and eddies. For example, the global term Tw

ew = 0, meaning there is no
global exchange, but there is still a scale-by-scale transfer between waves aided by an
eddy that acts as a mediator [142].

4.4.3 Detailed analysis of the transfers between different parts

The analysis was done before without differentiating the potential and kinetic transfer
as done in equation (4.16). Here we study the exchange of energy by separating
the kinetic and potential transfer as done in equation (4.15). Figure 4.15 shows
the potential T l

b,ij and kinetic T l
u,ij transfer from eddies to waves and inversely

(j 6= l). As the transfer is simply a term of exchange of energy, its sum is zero and
we have T l

b,ij = −T j
b,il for the potential transfer and T l

u,ij = −T j
u,il for the kinetic transfer.

We observe that the potential transfer in figures 4.15 b and d dominate the kinetic
transfer in figures 4.15 a and c. In the potential transfer most of the energy is pumped
from waves and give to eddies. On the contrary, in the kinetic transfer no clear trend
can be observed and the transfers are very small except at large Reb where the energy
is pumped from eddies to be given to the waves. At constant Fr the amplitude of the
potential transfer increases a lot as Reb increases. The transfer seen from waves to
eddies in the figure 4.13, where the kinetic and potential part are merged, is mostly due
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Figure 4.15: Evolution of the potential transfer of energy (b, d) T+,l
b,ij and of the

kinetic transfer of energy (a, c) T+,l
u,ij(with i = w or i = e) from waves to eddies (j = w

and l = e) or from eddies to waves (j = e and l = w) against (a, b) Reb; (c, d) Fr.
Numerical simulations with 5123 points are shown with open symbols and solid lines,
and numerical simulations with 2563 points are shown with filled symbols and dotted

lines.

to the potential transfer as the amplitude of the potential transfer is greater than the
amplitude of the kinetic transfer.

4.5 Mixing

The above wave/eddy flow decomposition also permits to understand the contribution
of IGW and eddies to mixing. The total mixing coefficient is defined by Γ = εb/εu

[117]. For oceanographic application, the eddy diffusity of density κρ can be used for
parameterizing the stratification mixing with equation κρ = XPrΓReb [29]. In this
formulation, it is possible that a highly efficient mixing at low Reb lead to a smaller
eddy diffusity of density than flows with a higher Reb. Γ is also useful for calculating the
vertical diffusivity of density used in the model proposed by Osborn [113]. Whereas Γ

was approximated to a constant Γ ' 0.2 in the ocean where Reb ∼ 100−1000 [96], recent
DNS in decaying stratified turbulence at resolution 5123 [52] and forced stratified DNS
at larger resolution [91], suggest a dependence of Γ with Fr and Reb. On figure 4.16b, we
reported these authors’ values for Γ in a Froude range similar to ours, i.e. Fr � 1 and
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Figure 4.16: Mixing coefficients Γ, Γw, Γe compared with data from literature against
(a) Reb, and (b) Fr. Numerical simulations with 5123 points are shown by open symbols
and solid lines, and numerical simulations with 2563 points with filled symbols and

dotted lines.

associated with Reb ' 10−20 (forced case) and Reb ' 1−10 (decaying case). Moreover,
in a wave regime of superposed low-amplitude IGW with weak nonlinear interactions,
Le Reun et al. [76] find that Γ = 1/Pr = 1.

Our simulations explore the transition between these two regimes. In order to under-
stand separately the effect of waves and eddies on mixing, we therefore separate the total
mixing coefficient Γ = εb/εu = Γw + Γe into mixing due to waves Γw = εwb /(ε

e
u + εwu )

and mixing due to eddies Γe = εeb/(ε
e
u + εwu ) by using εu = εeu + εwu and εb = εeb + εwb .

On figures 4.16a and 4.16b, the coefficients Γ, Γw, Γe are plotted versus Reb and Fr
respectively, and compared to the above-mentioned data. Our coefficient values seem
to coincide better with a variation in Fr rather than with a variation in Reb (as in the
flux analysis discussed previously in section 4.4). For Reb ≥ 1 and Fr ≥ 10−2, we find
a value Γ ' 0.5 similar to that in Garanaik and Venayagamoorthy [52] at similar reso-
lution and slightly lower Froude number. Moreover, we observe that the wave mixing
and eddy mixing reach a plateau, as expected, but the eddies mix more than waves
since Γe ' 0.4 ≥ Γw ' 0.1. Note that our decomposition considers as eddies, among
others, the breaking of internal waves or overturning with vertical velocity. This could
nuance the belief that overturning is the main source of mixing [60]. The global mixing
coefficient found by Maffioli et al. [91] is close to our mixing coefficient by eddies Γe.
As their DNS are done at a higher Reb ' 10− 20, it is possible that their flows contain
mostly eddies, resulting in a mixing coefficient dependent only on mixing by eddies.
When Reb → 0, the total mixing increases and tends to Γ ' 1 as expected by Le Reun
et al. [76]. In this case, Γw increases a lot, whereas Γe decreases. Indeed, we expect
at very low buoyancy Reynolds number that the waves dominate the flow and become
the main factor of mixing. At fixed Fr, when Reb decreases, the same physics is shifted
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Figure 4.17: Kinetic and buoyancy dissipation for waves and eddies against (a) Reb,
and (b) Fr. Numerical simulations with 5123 points are shown by open symbols and
solid lines, and numerical simulations with 2563 points with filled symbols and dotted

lines.

to low Reb but in a non-obvious way the plateau value seems to be constant for wave
mixing Γw ' 0.1, while mixing by eddy seems to be weaker Γe ' 0.3. However, the
mixing coefficient Γ can depend on the forcing used as explained in Howland et al. [65].
This implies that the eddy mixing coefficient and the wave mixing coefficient depend on
the forcing used as well. In Howland et al. [65], when waves are forced, stronger values
of Γ are obtained than when eddies are forced. We could expect similar behaviour in
our results as our forcing forces mostly waves at Reb < 2 and Fr < 10−2 and mostly ed-
dies otherwise. It would be interesting to modify the forcing to control the distribution
between waves and eddies in each of our numerical simulations. This would allow us to
assess its effect on our computation of the mixing coefficient of waves Γw and eddies Γe.

4.6 Dissipation

In order to better understand the physical phenomena underlying mixing and its mod-
elling, an in-depth analysis of the different dissipation terms is necessary. Note that
while kinetic and buoyancy energies are more related to large scales, the different dissi-
pations are related to small scales. On Figures 4.16c and 4.16d, we plotted the different
contributions to dissipation as functions of Reb and Fr. Note that during statistically
stationary regime, the constant forcing P = 10 and dissipation are in balance so that
P ' εeu+εwu +εeb+εwb . First, as expected for IGW, the kinetic and potential dissipations
of the waves are equal, i.e. εwb ∼ εwu . Moreover, this confirms the idea proposed by
Le Reun et al. [76] that Γ = 1 is always true for the IGW even if they are mixed with
eddies. Secondly, the kinetic dissipation of eddies is greater than the potential dissipa-
tion of eddies i.e. εeu > εeb. Thirdly, all these values tend towards a plateau when Fr is
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large and Reb ' 1, with εwb ∼ εwu ∼ εeu/6. In this regime, as all the statistics εw,e
b and

εw,e
u involved reach a plateau, so does the mixing coefficient. Apparently, our coefficient

values seem to coincide better with a variation in Fr rather than a variation in Reb which
shifts the evolution to a lower Reb. At fixed Fr and decreasing Reb, all dissipation terms
remain unchanged except εeb, which implies that the mixing Γe due to eddies decreases.

4.7 Scale by scale analysis of transfer

Whereas in the section 4.4, we were interested in the global exchange of energy from
waves to eddies, in this section we will focus on the transfer between waves and eddies
in the flow as well as the transfer between scales. Some focus will be done on the
strength of the forward or backward cascade in the flow.

It was believed that in stratified flows, an inverse cascade due to a 2D phenomenon
[49, 83] was occurring. Then, in numerical simulations done in Herring and Métais [64],
only a weak inverse cascade was obtained. Furthermore, the transfer between waves
(poloidal mode) and vortical mode (toroidal mode) was also calculated in Herring and
Métais [64] using Riley’s decomposition. In numerical simulations of stratified flows with
variable rotation rate, Métais et al. [97] found that no inverse cascade was occurring when
2Ω � N but an inverse cascade occurred when 2Ω ∼ N . Moreover, a forward cascade of
IGW was hypothesized in Gage [49], and the famous poem of Richardson was adapted to
IGW to become: “big waves have little waves that feed on deformation, and little waves
have lesser waves to turbulent dissipation (in the eddy sense)”. In his paper, Dewan [39]
exposed the idea of a forward cascade of IGW similarly to the classical cascade of eddies
in isotropic turbulence. Then, in more recent numerical simulation done in Lindborg
[84] and Lindborg and Brethouwer [85], a forward cascade is observed in stratified flows
for both the potential and kinetic energy flux. Hence, numerous works tried to tackle
the presence of inverse or direct cascade.

From the separation of waves and eddies it is possible to understand how the transfer
between them occurs and which interaction is responsible for a forward or a backward
cascade. In our case, there is a very large number of different possible transfers. For
the potential and kinetic transfers, four interactions (w + w, w + e, e + w and e + e)
can occur which can lead to a transfer of energy between the wave or eddy. This means
that in total, the kinetic and potential transfer possess each eight possible transfers. If
the transfer between the kinetic to potential energy is also taken into account as well,
it adds four other transfers. In total there are 20 different transfers that could occur in
our numerical simulation, and yet, here we neglected the transfer by the VSHF. If the
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Figure 4.18: An idealized transfer reduced in four variables T+, T−, k+, k−

VSHF was taken into account, this could lead to an impressive 27 different transfers for
the kinetic and for the potential transfers and still four possible transfers for the kinetic
to potential transfer. In total, this would lead to an astonishing number of 58 possible
transfers (27 kinetic transfers +27 potential transfers +4 kinetic to potential transfers).
Furthermore, analysing each of those transfers against the wavenumber (as it is usually
done [4]) is quite complex as there are lot of fluctuations. We characterize all the terms
of the cascade of energy (see equations (4.15)) by analyzing for each terms four different
values:

• T+,l
a,ij =

∑
k, tla,ij(k)>0

tla,ij(k), the total value of transfer given to l by the interaction

between i and j,

• T−,l
a,ij =

∑
k, tla,ij(k)<0

tla,ij(k), the total value of transfer pumped from l by the inter-

action between i and j,

• k+,l
a,ij =

∑
k, tla,ij(k)>0

ktla,ij(k)

T+,l
a,ij

, the weighted average scale of transfer given to l by the

interaction between i and j,

• k−,l
a,ij =

∑
k, tla,ij(k)<0

ktla,ij(k)

T−,l
a,ij

, the weighted average scale of transfer pumped from l

by the interaction between i and j,

where a stand for u for the kinetic transfer, b for the potential transfer and u → b for
the buoyancy flux (note that for the buoyancy flux, there is no variable j).

Through these four variables illustrated in figure 4.18, the transfer tla,ij(k) can be
summmarized. It is possible to determine the strength of the transfer as well as the
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scale it is operating. The transfer related to the cascade of energy is characterized by
T+,l
a,ij = −T−,l

a,ij , as opposed to the transfer of exchange of energy T l
a,ij = T+,l

a,ij + T−,l
a,ij 6= 0

shown in section 4.4.3. In order to facilitate the understanding of the scale of transfer

we use the ratio of weighted average scale k
+/−,l
a,ij =

k+,l
a,ij

k−,l
a,ij

for the potential and kinetic

transfers. When this ratio is lower than one (k+/−,l
a,ij < 1), this means that an inverse

cascade is occurring, the energy is pumped at small scales and given back at larger scale.
When this ratio is greater than one (k+/−,l

a,ij > 1), this means that a direct cascade is
occurring, the energy is pumped at large scales and given back at smaller scales.

4.7.1 Transfer between waves and eddies themselves

4.7.1.1 Transfer amplitude

In figure 4.19, I only show the positive potential and kinetic transfer between eddies
T e
a,ie and waves Tw

a,iw themselves (with i = e or i = w). As these transfers do not give
or take energy to another part of the flow, the net transfer is zero, meaning that the
negative transfer is exactly the opposite of the positive transfer (T+,l

a,ij = −T−,l
a,ij). There

is a cascade of energy.

In figure 4.19, we observe that at low Reb and Fr (in a wave turbulence regime), the
wave cascade dominates as the wave turbulence transfer (i.e. T+,w

a,ww) dominates. At
high Reb and Fr, it is the eddy cascade that becomes dominant (the transfer T+,e

a,ee).
This supports the fact that our decomposition is relevant and allows us to extract the
relevant dynamics of the flow as we investigate a regime dominated by wave turbulence
and also a more turbulent regime. Furthermore, the transfer related to waves T+,w

a,ww

is stronger for the potential transfer than the kinetic transfer (i.e. T+,w
b,ww > T+,w

u,ww)
while the transfer related to eddies T+,e

a,ee is stronger for the kinetic transfer than for the
potential transfer (i.e. T+,e

u,ee > T+,e
b,ee). Hence, waves are more active in the potential

part of the flow while eddies are more active in the kinetic part of the flow. It shows
that the importance of transfer is probably dependent on the quantity of that type of
energy in the flow. In the kinetic part of the flow, there is a large quantity of eddies
(all the toroidal part and a bit of the poloidal part) while in the potential part of the
flow, there is a large quantity of waves.

To be more precise, on figures 4.19 a and c, we observe that the transfers involving
interactions between waves and eddies (i.e. T+,e

b,we and T+,w
b,ew) are more or less constant

for all Reb and Fr. Yet, the strength of these two transfers differ and we always



Chapter 4. Stratified turbulence 98

0

2

4

6

T
b,ee

+,e

T
b,we

+,e

T
b,ww

+,w

T
b,ew

+,w

10
-2

10
-1

10
0

10
1

0

2

4

6

T
u,ee

+,e

T
u,we

+,e

T
u,ww

+,w

T
u,ew

+,w

0

2

4

6

T
b,ee

+,e

T
b,we

+,e

T
b,ww

+,w

T
b,ew

+,w

10
-3

10
-2

0

2

4

6

T
u,ee

+,e

T
u,we

+,e

T
u,ww

+,w

T
u,ew

+,w

Reb

Fr

(a)

(b)

(c)

(d)

Figure 4.19: Evolution of the positive potential transfer (a,c) T+,j
b,ij and positive kinetic

transfer T+,j
u,ij (with i = w or i = e) between waves (j = w) or eddies (j = e) against

(a, b) Reb; (c, d) Fr. Numerical simulations with 5123 points are shown with open
symbols and solid lines, and numerical simulations with 2563 points are shown with

filled symbols and dotted lines.

experience T+,w
b,ew > T+,e

b,we. For the transfer involving only the waves Tw
b,ww, we observe

that its value increases significantly when Reb increases and Fr decreases. The transfer
of waves dominates when waves dominates the flow as seen in the ratio of energy in
section 4.3.1 (at small Fr and to a lesser extent at large Reb). On the contrary, for
the transfer involving only the eddies, we observe that the value of the transfer does
not change much with Fr but seems to increase when Reb increases. As Reb increases,
more overturning occurs and this could lead to an increase of eddy transfer as density
overturning is an eddy phenomenon involving the potential energy (high density over
low density). The maximum value of transfer is largely dominated by the transfer
between waves only, especially at small Fr.

More specifically, on figures 4.19 b and d, the transfers involving waves (T+,w
u,ew and T+,w

u,ww)
are rather weak. Yet, we can see that T+,w

u,ww increases slightly when Reb increases or
when Fr decreases. In comparison, the transfer involving only eddies T+,e

u,ee is stronger,
especially at high Reb and high Fr. T+,e

u,ee increases significantly when Fr increases at
constant Reb and increases slightly when Reb decreases at constant Fr. It follows the
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Figure 4.20: Evolution of the ratio of scales of potential transfer (a, c) k
+/−,j
b,ij and of

kinetic transfer (b, d) k
+/−,j
u,ij (with i = w or i = e) between waves (j = w) or eddies

(j = e) against (a, b) Reb; (c, d) Fr. Numerical simulations with 5123 points are
shown with open symbols and solid lines, and numerical simulations with 2563 points

are shown with filled symbols and dotted lines.

evolution of the energy ratio of eddies shown in figure 4.6 against Fr and Reb. No clear
trend can be observed for the transfer T+,e

u,we.

4.7.1.2 Ratio of scales

First, we consider the ratio of scales of potential transfer k
+/−,j
b,ij and of kinetic transfer

k
+/−,j
u,ij between waves (j = w) or eddies (j = e) themselves as shown in figure 4.20.

We do not analyse the average ratio of negative transfer k−,j
a,ij and at the average ratio

of negative transfer k+,j
a,ij because the interpretation of these two variables differentiated

becomes difficult. Furthermore, the average scale of negative transfers k−,j
a,ij are roughly

constant around the value of the forcing scale. On the contrary, it is generally the
average scale of positive transfers k+,j

a,ij which fluctuate.

From a general perspective, we observe that the cascade is direct for all trans-
fers for eddies k

+/−,e
a,ij > 1 and for the potential transfer for waves k

+/−,w
b,ij > 1.

This direct cascade is also stronger as Reb increases and Fr decreases. No cascade for
k
+/−,w
u,ww ∼ 1 can be observed and a slight inverse cascade exists for k+/−,w

u,ew < 1 at high Fr.
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To be more precise on k
+/−,j
b,ij , we observe that there is always a direct cascade (i.e.

k
+/−,j
b,ij > 1) and that the direct cascade is slightly stronger for eddies than for waves

k
+/−,e
b,ie & k

+/−,w
b,iw . Not much trend can be guessed on the figure 4.20a against the

buoyancy Reynolds number as the 2563 points and 5123 points results cross each other.
However, the results are much clearer on the figure 4.20c against the Froude number.
We observe that, for a constant Fr number and increasing slightly Reb, the ratio of
scales k

+/−,e
b,we , k+/−,e

b,ee and k
+/−,w
b,ew increase. All of those ratio of scales have at least an

eddy component associated with it. It probably means that it is the eddy component
that influences the direct cascade to be stronger when the flow is more turbulent.
Indeed on the ratio of scales involving only waves k

+/−,w
b,ww no particular trend can be

observed depending on Fr or Reb.

More specifically, on kju,ij , the direct cascade is stronger for eddies than for waves
k
+/−,e
u,ie � k

+/−,w
u,iw . The direct cascade is also stronger for eddies (k+/−,e

u,ie ) as the strati-
fication decreases, while no clear trends against the stratification can be drawn for the
cascade of waves.

Surprisingly, an inverse cascade occurs for small stratification as the ratio of scales
k
+/−,w
u,ew < 1. It corresponds to the transfer by the advection of a wave by an eddy

that give or pump energy to a wave. For a constant Reb the ratio of scales k
+/−,e
u,we ,

k
+/−,e
u,ee and k

+/−,w
u,ew increase as the Fr number decreases. For a constant Fr, the ratio

of scales k
+/−,e
u,we and k

+/−,e
u,ee increase as the Reb number increases, but no trend can be

concluded for k
+/−,w
u,ew in this case. Indeed, as Reb = Re2hFr, when Fr is constant and

Reb increases, it means that the horizontal Reynolds number Reh increases as well. If
the Reynolds number increases, we expect smaller scales of the flow to be created, and
this small scale flow needs to be fed some energy. As the only source of energy to the
smaller scales is the transfer of energy, it is the transfers related to eddies that are mostly
reponsible for the creation of smaller scale flow. This shows that, when the flow is more
turbulent, the direct cascade is stronger, which is expected as the Kolmogorov scale
decreases. However, we show that the direct cascade depends especially on the transfer
that involves eddies.

4.7.2 Ratio of scales for the transfers of exchange of energy

Then, we consider the ratio of scales of potential transfer k
+/−,l
b,ij and of kinetic transfer

k
+/−,l
u,ij from waves to eddies (j = w and l = e) and from eddies to waves (j = e and

l = w) as shown in figure 4.21. The ratio of scales analysed here is linked to the transfer
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Figure 4.21: Evolution of the ratio of scales of potential transfer (a, c) k
+/−,l
b,ij and

of kinetic transfer (b, d) k
+/−,l
u,ij (with i = w or i = e) from waves to eddies (j = w

and l = e) or from eddies to waves (j = e and l = w) against (a, b) Reb; (c, d) Fr.
Numerical simulations with 5123 points are shown with open symbols and solid lines,
and numerical simulations with 2563 points are shown with filled symbols and dotted

lines.

of exchange of energy studied in section 4.4.3.

In general we observe that the cascade is direct and is slightly stronger as the stratifica-
tion increases. At very large stratification, only the ratio of scales k

+/−,e
u,ew is lower than

one.

To be more precise, for a constant Fr, the ratio of scales k
+/−,e
u,ew , k

+/−,e
u,ww and k

+/−,w
u,we

increases as Reb increases. No particular trend can be drawn against Fr or for the ratio
of scales k+/−,w

u,ee . For a constant Fr the ratio of scales k+/−,w
b,we , k+/−,w

b,ee and k
+/−,e
b,ew increases

as Reb increases. For a constant Reb the ratio of scales k
+/−,w
b,we and k

+/−,w
b,ee increases as

well when Fr decreases. No clear trend can be drawn for the ratio of scales k
+/−,e
b,ww .

4.7.3 Buoyancy flux transfer

In the previous sections, we analysed the transfer between only the waves and the eddies
in the kinetic or the potential part of the equations. However, it is also possible that a
transfer of energy occurs from the kinetic to potential term, this is called the buoyancy
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Figure 4.22: Evolution of the positive T+,j
u→b,j and negative T+,j

u→b,j buoyancy flux (a,
c) and of the average scale of positive k+,j

u→b,j and negative k−,j
u→b,j buoyancy flux (b,

d) between waves (j = w) or eddies (j = e) against (a, b) Reb; (c, d) Fr. Numerical
simulations with 5123 points are shown with open symbols and solid lines, and numerical

simulations with 2563 points are shown with filled symbols and dotted lines.

flux. Indeed, the forcing is only done on the kinetic part of the equation so we can
expect a positive transfer from the kinetic to potential energy.

On a long period T0, we expect the transfers from the kinetic wave to the buoyancy
eddy, and from poloidal eddy to potential wave to be close to zero, because for any k the
frequency of the wave domain terms is different than the frequency of the eddy domain.
Hence, we have teu→b,w(k) → 0 when T0 → ∞. Furthermore, the vertical velocity uz

involve only in the poloidal component (and not in the toroidal component). Hence,
there is no transfer from the toroidal eddy to the buoyancy wave as well despite both
components sharing some similar frequencies. This means that we also get twu→b,e(k) → 0

when T0 → ∞.

Figures 4.22 a and c show the positive and negative value of the buoyancy flux. The
overall sum is positive as expected as the forcing is only done in the kinetic part of the
equations and a transfer naturally occur from the kinetic energy to the potential energy.

We observe that it is mostly waves that transfer energy to the potential part of the
flow with T+,w

u→b,w. This transfer of energy increases as Fr decreases or Reb increases. A
smaller amount of energy is transferred from the potential to the kinetic energy with the
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transfer involving only eddies T−,e
u→b,e. IGW do not transfer energy from the potential

to kinetic part of the flow, except at very large stratification. The transfer T+,w
u→b,w is

stronger when Reb increase, it means that the flow is more turbulent, it can overcome
the stratification and transfer energy to the potential part of the flow. When the flow
is more stratified (Fr decreases) but at constant Reb, there is more wave energy (see
section 4.3.1) and, as the waves interact between their potential and poloidal terms, it
seems logical that the transfer T+,w

u→b,w increases as well.

Figures 4.22 b and d show the average scale of positive and negative kinetic to potential
transfer. We observe that the positive scale is constant for all simulations and is close to
the forcing values kforc ∼ 5. However the negative average scale of kinetic to potential
transfer seems to evolve with Reb. k−,l

u→b,i increases when Reb increases as well. Its value
also increases slightly when eddies are involved rather than when waves are involved (i.e.
k−,e
u→b,e > k−,w

u→b,w ). This means that, as Reb increases, the direct cascade from potential
to kinetic energy is stronger.

4.8 Visualization

From the separation of waves and eddies, it is possible to observe the eddy and wave
velocity and buoyancy fields in the physical space. It is difficult to draw quantitative
result from those fields, but they are useful to understand the different eddies and waves
phenomena.

4.8.1 Buoyancy fields

Figure 4.23 shows the total, wave and eddy buoyancy field for different stratification
strength of the DNS with 5123 points. In the total buoyancy field (1st column) of figure
4.23, the flow is more turbulent and there is more overturning (black line crossing) when
the stratification decreases. The amplitude of b(x, y) increases because the potential
energy increases when N increases. Furthermore, the structures are small scale for
N = 20, while being large scale for N = 600.

In the wave buoyancy field (2nd column) of figure 4.23, the flow is quite similar to
the total buoyancy field, but the black lines are smoother especially for the cases with
Reb > 1, meaning that little to no overturning happens in the wave part.

In the eddy buoyancy field (3rd column) of figure 4.23, the flow seems always at small
scale. While no overturning is visible for large stratification cases, for low stratification
cases (N < 70), there is a significant part of overturning visible. This is indeed expected
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as overturning starts to occur when Reb & 1. The amplitude of the eddy buoyancy field
is also significantly smaller for large stratification than the waves. On the contrary, for
small stratification the amplitudes of the wave and eddy buoyancy fields are similar.
This supports the energy distribution shown for these cases in section 4.3.1.

4.8.2 Vertical velocity fields

Figure 4.24 shows the total, wave and eddy vertical velocity field for different stratifi-
cation strength of the DNS with 5123 points. In the total vertical velocity field (1st
column) of figure 4.24, the flow is more turbulent when the stratification decreases. The
difference of the flow scale is clearly visible. At small stratification N = 20 the flow is
small scale whereas at large stratification (N = 600), the flow is very large scale. The
amplitude of uz(x, y) increases slightly with the stratification when N increases. Fur-
thermore the structures are small scale for N = 20 while being large scale for N = 600.

In the wave vertical velocity field (2nd column of figure 4.24), the general pattern of
the flow is similar to the total vertical velocity field. It is especially true for very large
stratification (N = 600).

In the eddy vertical velocity field (3rd column of figure 4.24), the flow seems always at
small scale and very turbulent. The amplitude of the eddy part of the vertical velocity
field is nearly constant in all cases except at N = 600 where it decreases.

4.9 Conclusion

In this chapter, we used the separation technique presented in chapter 3 using an
implicit definition of the dispersion of waves explained in section 3.1.5 in the case of
stably stratified flows. We apply this separation technique on a campaign of numerical
simulation for varying values of Fr and Reb number. We observe that the distribution of
poloidal and potential energy between waves and eddies depends mostly on Fr number.
We also observe that the energy spectrum of eddies follows a k−5/3 slope and a k

−5/3
h

slope as well. As for the energy spectra of waves, it follows a steeper slope than eddies
closer to a k−3, k−3

z and k−3
h when N > 50 and a slope closer to a k−5/3, k

−5/3
z and

k
−5/3
h when N ≤ 50.

Then, a balance of energy and flux for waves and eddies is computed. We observe
that a large transfer occurs from waves to eddies for numerical simulations with
Reb < 2 and Fr < 0.02. Most of the mixing is due to waves at low Fr number, but
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at large Fr the mixing due to eddies is two to three times higher than the mixing
due to waves. Furthermore, the kinetic and buoyancy dissipation of waves seems
to be dependent against the Froude number Fr and decrease as Fr increases. Wave
and eddy cascade of energy are observed. A wave cascade of energy dominates at
low Fr and low Reb while an eddy cascade of energy dominates at high Fr and high
Reb. Direct cascades of energy are mostly observed except for a few types of interactions.

Finally, 2D buoyancy and vertical velocity fields are visible for the different numerical
simulations. Large differences can be observed between the wave and eddy part which
support that our separation technique actually works in a turbulent stratified flow.



Chapter 5

Rotating turbulence

5.1 Introduction

In rotating turbulence, inertial waves (IW), eddies and the geostrophic mode (GM) are
mixed and interact together. Contrarily to the stratified case, no spatial separation
such as the Riley’s decomposition [119] exist in the rotating case to separate waves
and eddies. In a turbulent case where all structures are stongly interacting, how the
interactions between waves, eddies and GM are organised?

The characteristics of IW are detected in turbulent flow both in experiments [27, 147] and
numerical simulations [41, 75]. On the other hand, the GM is a powerful, large structure
that greatly influences the properties of turbulence [56, 120]. IW can also be impacted
by the presence of the GM. Indeed, inertia-gravity waves, which are created when both
rotation and stratification occur, are subject to diffusivity by the GM [68, 122]. As
shown in figure 5.1, different regimes for rotating flows can be observed [56]. It depends
on the Reynolds number (Re = Ul/ν) and Rossby number (Ro = U/(2Ωl)) where U is
a velocity scale associated with an integral scale l. At Ro � 1 and Re � 1 the flow is
dominated by inertial waves. For Ro � 1 and Re > 1 the flow is dominated by inertial
waves which interact weakly and constitute the wave turbulence regime. For Ro < 1

and Re � 1 quasi-two dimensional turbulence is observed. However, in our numerical
simulations, we controlled the emergence of the GM and the flow is less dominated by
the 2D flow at high Reynolds number and low Rossby number.

Moreover, the formation of the GM is not totally understood. It is compatible with the
linear theorem of Taylor-Proudman [58] which predict that in rapidly rotating flow, the
flow is invariant along the axis of rotation (i.e. kz = 0) [13] but this theorem does not
determine whether this 2D flow has two or three components. For moderate Rossby

108
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Re

Ro

Figure 5.1: Schematic of the different regimes found in rotating flows (reproduced
from Godeferd and Moisy [56]).

(Ro ∼ 1) in DNS and in asymptotic theories [25], the non-linear transfer concentrate
the energy along the GM (i.e kz = 0). Sharma et al. [124] also found that the transfer
of energy was toward kz = 0 in decaying rotating turbulence and in forced rotating
turbulence (for larger wavenumber than the forcing wavenumber) for a ReI < 0.4 (see
section 5.2 for a definition of ReI). An illustration of this mechanism can be seen in
figure 5.2.

Different mechanisms are proposed to understand the emergence of the GM. For exam-
ple, in inhomogeneous flows, Davidson et al. [36] proposed that the vertical coherent
structures could develop due to linear inertial wave propagation. No non-linear pro-
cesses are involved here, but a modification of the phase of the various Fourier modes
can create columnar eddies. This was demonstrated from an experiment with a cloud of
turbulence, where the distance travelled by the leading edge of the columnar structures
comply with the group velocity of inertial waves. A similar analysis have been conjec-
tured for homogeneous flow in Staplehurst et al. [131]. Smith and Waleffe [128] say that
the exact resonant triad (i.e. k+ p+ q = 0 and ω(p) + ω(q) + ω(k) = 0, with k, p, q
3D wave vectors) transfer energy so that it tends to decrease the ratio kz/k due to the
“instability assumption” [146] but never reach exactly the GM (i.e. kz = 0.) because
the resonant interaction cannot occur. Similarly, the asymptotic theory [10] excludes
the possibility of a GM at large-time limit at very low Ro (Ro � 1). Indeed, from a
general perspective, Greenspan [59] demonstrated that exact triadic resonance cannot
transfer energy to the GM (i.e. kz = 0, ω(k) = 0 with ω(q) = −ω(p) and pz = −qz

in Waleffe [146]). To reach kz = 0, two other mechanism [111, 128] bypass Greenspan’s
results and transfer energy to the GM:

• the first mechanism would be a near resonant triad interaction p + q = k with
pz = −qz, kz = 0 and ω(p) + ω(q) + ω(k) ∼ 0. Similarly, in Le Reun et al. [78],
an instability mechanism is shown numerically and analytically to excite the GM
by inertial waves. This is driven by near-resonant triadic interaction.



Chapter 5. Rotating turbulence 110
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Figure 5.2: Visualization of the non linear transfer, which concentrate energy around
the GM (at kz = 0).

• The second mechanism explained in Smith and Waleffe [128] would be a quartet
mechanism. The resonant quartet occurs when two successive triad interaction
occur, it leads to k+p+q = 0, ω(p)+ω(q)+ω(k) = 0 and p+ r+ s+ t = 0 and
ω(p) + ω(r) + ω(s) + ω(t) = 0 where k,p,q, r, s are 3D wavevectors and t is a 2D
wavevector representing the GM (i.e. tz = 0). In Newell [111], a quartet mech-
anism is also introduced so that a resonant quartet of Rossby waves can transfer
energy to a zonal flow. In Brunet et al. [22], it is a quartetic secondary instability
that is evoked to be responsible of the geostrophic mode. Nevertheless, experi-
ments seem to show that the resonant quartets of IW can trigger an instability at
the origin of the GM [22] in the case where the rotating turbulence is dominated
by IW in wave turbulence regime (low Rossby number).

The different mechanisms presented concern the emergence of the GM due to wave-wave
interaction. Beyond that mechanism of onset, in homogenous turbulence, Bourouiba
et al. [18] found that the GM is driven by the interaction of two small-scale horizontal
and small-frequency 3D components. One question appears: in the presence of waves
and eddies, what interactions transfer energy to the GM? Is it the wave-wave, wave-eddy,
eddy-wave or eddy-eddy interactions that manage the GM?

Finally, two types of cascade can appear in rotating turbulence, a direct cascade as in
homogenenous and isotropic turbulence and inverse cascade as in 2D turbulence. In a
forced rotating experiment by Baroud et al. [8], they observed an inverse cascade as
small vortices merged into larger vortices at the start of their experiment. In a decaying
rotating experiment, Morize et al. [100] observed a net inverse cascade at large scale.
Yet, these inverse cascades are not directly observed and it is not absolutely sure if
an inverse cascade was really observed in these two experiments [26]. In more recent
experiments, Yarom et al. [148] also observe an inverse cascade in a rotating turbulence
experiment for the horizontal part of the flow. Campagne et al. [26] show the presence
of direct cascade (for small horizontal scale) and an inverse cascade for large horizontal
scale. In numerical simulations of rotating flows, Smith et al. [130] found that inverse
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and direct cascade of energy can coexist. Mininni and Pouquet [98] also found an inverse
cascade of energy and a direct cascade of energy and of helicity. In these experiments
and simulations, the inverse cascade is not associated to a particular structure of the
flow. Is it due to the GM? the wave? the eddy?

In Bourouiba and Bartello [17], the flow is separated in three parts, a GM with a vertical
velocity (uz(kz = 0)) field and a horizontal velocity (ux(kz = 0), uy(kz = 0)) field, and
a 3D component (u(kz 6= 0)). They looked at the different transfers occurring between
these three parts and found that at their moderate Rossby number Ro = 0.2, the transfer
involving only the horizontal GM created an inverse cascade. In Buzzicotti et al. [23],
DNS are done where the GM is removed from the equations. They observed that the
GM played an important role in the inverse cascade of energy, but other 3D phenomenon
also bring energy to the larger scale. Then, in Buzzicotti et al. [24], they found that an
inverse cascade occurred close to the forcing scale for homochiral interaction that fed
the GM. For the direct cascade, they show that it is dominated by interactions that do
not involve the GM.

While previous works seem to link the GM (which is close to a 2D flow at small Ro)
to an inverse cascade, all these works do not separate the effect of wave and eddies in
the inverse or direct cascade of energy. Hence, this question arises: which transfer is
responsible of the inverse or direct cascade? Is it the wave-wave, eddy-eddy, GM-wave...?

To answer these questions, the adaptive algorithm is applied on various rotating flows
using also the Craya-Herring frame. The first section explains:

• the added viscosity (section 5.2.1) used that damps considerably the GM in order
to achieve statistical stationnarity of the flow,

• all the parameters of the DNS (section 5.2) that explore various rotating turbulent
regimes,

• the necessity to take into account the vertical velocity in the GM (section 5.2.3),

• the influence of the GM on the dispersion relation with the sweeping and gradient
effect (section 5.2.4).

In the second section (5.3), we present the partition of energy between waves and eddies.
It explores the energy ratio as well as the energy spectrum of the wave, eddy and GM
part. The third section (5.4) presents an energetical budget for waves, eddies and the
GM, with mutual interactions and different fluxes. The fourth section (5.5) presents the
dissipation linked to waves and eddies. The fifth section (4.7) makes a detailed analysis
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on the different transfer occuring in the flow and the inverse or direct cascade of energy
it participated in. The last section (4.8) shows some visualization of the decomposition
of the total field in a wave and eddy part.

5.2 Parameters

5.2.1 Controling GM growth with added viscosity

For the rotating case the same cylindrical forcing is used as in the stratified case, but
with slightly different parameters (see section 4.2.1). The forcing is done here on a
cylindrical spectral surface of horizontal wave number kh = 1 and vertical wave number
2 ≤ kz ≤ 4. However, even with this new forcing, it is difficult to reach a stationary
steady state because the GM slowly grows in time, as with the VSHF in the stratified
case. In order to further reduce the importance of the GM, a new viscous term Fα is
added in the Navier-Stokes equation as done by Le Reun et al. [75].

For rotating flow, this added viscosity is:

F̂α(k, t) =

{
−αû(k, t) if kz = 0

0 otherwise.
(5.1)

where the value of α modifies the relative importance of the slow modes against the
overall structure of the flow. Therefore, the value of α is chosen in function of the
wanted importance of the slow modes.

5.2.2 Parameter space

Equations (2.16) are solved using the same code as explained in section 4.2.3. Nine
numerical simulations have been run with the parameters shown in table 5.1 at
resolutions 2563 and 5123. Contrarily to the stratified cases, the exploration of the
parameters is mainly based on 2563 points, the higher resolution of 5123 points is used
to confirm and explore trends. Yet, for particular statistics such as energy spectrum,
the results are based on the simulations with 5123 points.

The results of the numerical simulation are shown against

• the Rossby number Ro =
ε

2ΩU2
h

with Uh = uh − uh(kz = 0) which account for the

ratio of the horizontal flow inertia over the effect of the rotation rate and ε is the
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kinetic energy dissipation. This Rossby number is akin to the Froude number in
stratified flow, but the horizontal velocity of the GM is removed from the definition
of the typical horizontal velocity of the Rossby number. In the stratified case, the
VSHF was damped a lot, it had negligible energy, and the added viscosity α was
set constant for every numerical simulations. It did not infuence the value of the
Froude number. In the rotating case, we changed the value of α, so that the GM
has varying importance in the flow. Removing the horizontal velocity of the GM
in the calculation of the Rossby number removes its dependence on the value of α.

• the inertial Reynolds number ReI =
ε

ν(2Ω)2
as in Marino et al. [94] which is akin

to the buoyancy Reynolds number in stratified turbulence.

The Zeman-Hopfinger scale kΩ =

√
(2Ω)3

ε
defined in [101, 149] and the Kolmogorov

scale kη = (
ε

ν3
)1/4 can be used to compute the inertial Reynolds number ReI = (

kη
kΩ

)4/3.
The Zeman-Hopfinger scale is the limit wavenumber above which the rotation is still
considered important while the Kolmogorov scale is the smallest scale in the turbulent
flow. Hence, the ratio of these two quantities is very useful to measure the importance
of the effect of rotation against the dissipation. We study the same range of regime as in
the stratified flow, a regime strongly dominated by the rotating term (i.e. Ro � 1) with
varying values for ReI . We adapt the classification proposed in Brethouwer et al. [19]
in the case of stratified turbulence to the rotating case. When we focus on the regime
where Ro � 1 and ReI � 1, there is a weak wave interaction and the wave dissipates up
to the small scales; we will call it the “viscosity-affected rotating flow” (VARF). When
we focus on the regime where Ro � 1 and ReI � 1 the wave dissipation occurs at a
scale much larger than the dissipative scale; we will call it “strongly rotating turbulence”
(SRT).

We plot in Figure 5.3 the exploration points in the parameter space (Ro,ReI). The
exploration of these two regimes also induces a modification of the Taylor-length-based
Reynolds number Reλ = urmsλ/ν with λ the Taylor scale and urms the rms velocity. By
adjusting the resolution, one can therefore study the variation of the dynamical system
either by setting Ro and weakly increasing ReI (from low to high resolution), or by
setting ReI and weakly increasing Ro (from high to low resolution) in the parameter
map. While in the stratified case (in chapter 4), the analysis was based on 5123 points
and secondarily with 2563 points, here, the analysis is based more on direct numerical
simulation with 2563 points than 5123 points as we did more simulation with 2563 points
in the rotating case.

The Ekman number Ek = Ro
Reh can also be used when dealing with rotating flows [99].

Rotating flows are particularly studied in planetary cores, where for example in the
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5123 points, ν = 1/700 and α = 0.5

2Ω Ro ReI Reh Ek Reλ kΩ P ε
15 0.06 28 7780 7.7× 10−6 255 19 10 9
80 0.007 1 20400 3.4× 10−7 720 240 14 7
300 0.0011 0.074 61200 1.8× 10−8 1350 1400 20 9.5

2563 points, ν = 1/250 and α = 0.5

2Ω Ro ReI Reh Ek Reλ kΩ P ε
5 0.2 95 1960 1.1× 10−4 120 3.6 10 9.5
15 0.07 14 2860 2.5× 10−5 150 16 14 13
30 0.03 3.5 3900 7.7× 10−6 210 47 14 12.5
80 0.0076 0.4 6930 1.1× 10−6 395 230 14 10
300 0.0015 0.04 17800 8.4× 10−8 600 1400 20 14

2563 points, ν = 1/2500 and α = 0.01

2Ω Ro ReI Reh Ek Reλ kΩ P ε
5 0.04 1 625 6.4× 10−5 400 112 0.01 0.01

Table 5.1: List of parameters in the DNS runs. Reh = (uh − uh(kz = 0))4/(εν) is the
horizontal Reynolds number.

Earth’s core the dimensionless numbers are close to Re ∼ 109 and Ek = 10−15 [74]. The
micro rossby Roω = ω

2Ω is also used in Mininni and Pouquet [98] as the ratio of the
vorticity over the rotation rate.

10 -2 10 -1 10 0 10 1 10 2

10 -3

10 -2

10 -1

512 3

256 3

VARF

SRT

ReI

Ro

Figure 5.3: Parameters of the numerical simulations (open circle for 5123 points and
filled circle for 2563 points).
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5.2.3 Should the GM contain uz?

The GM agrees with the Taylor Proudman theorem which states that the structure
is invariant along the vertical axis (2D flow) in rapidly rotating flow [58]. In the case
of unbounded domain, some linear instabilities arise and break the vortex pair to
create 3D flow [13]. It is not possible to deduce from the Taylor Proudman theorem
whether the flow has two or three components. Here we answer this question for the GM.

In a stratified flow, no vertical flow exists that satisfies the VSHF definition (i.e. uz(kh =

0)). This is due to the incompressibility of the fluid because for a wavevector k with
kh = 0, we verify k · û = kzûz = 0. In rotating flow, the GM is defined by a flow
invariant along the vertical axis (i.e. u(kz = 0)). The incompressibility constraint
û ·k = 0 does not constrain the flow to be purely horizontal, and three components can
exist (ux, uy, uz).
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Figure 5.4: Percentage of energy of the vertical velocity field u2
z(kz = 0) over the total

GM energy in 3D u2
x(kz = 0)+u2

y(kz = 0)+u2
z(kz = 0) against the Rossby number Ro.

On the contrary, even if the vertical velocity field uz(kz = 0) is damped with the added
dissipation shown in section 4.2.2, no external forces prevent a vertical velocity. Hence,
it is possible to obtain a velocity field uz(kz = 0), that is not insignificant. This is shown
in figure 5.4 where the ratio of energy of the vertical velocity field over the total kinetic
energy is plotted against the Rossby number and defined as

u2z(kz = 0)

u2x(kz = 0) + u2y(kz = 0) + u2z(kz = 0)
. (5.2)
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We observe that at very small Rossby number, the velocity uz(kz) = 0 is negligible.
However, when the Rossby number increases (Ro > 0.04), this is no longer the case
and the velocity uz(kz = 0) can even dominate the structure of the GM. Overall, the
importance of the velocity uz(kz = 0) evolves with the Rossby number. The lone point
in figure 5.4 done with 2563 points with α = 0.001 has less vertical component in the
GM. This means that if no added viscosity is enforced (i.e. α = 0), the GM tends to
become more horizontal with little vertical velocity. In this case, we would probably
recover a quasi 2D horizontal GM.

Finally, due to the importance of the vertical velocity uz(kz = 0), we decide to consider
the GM as a 2D flow with three components (2D3C) satisfying the condition on the
vertical wavenumber kz = 0.

5.2.4 Effect of the advection and gradient of the GM on the dispersion
relation

In figure 5.5, we can observe the vertical energy spectrum in figure 5.5a of the horizontal
GM taken from the numerical simulation with 2Ω = 5 and ν = 1/2500 (see table
5.1). The sweeping effect on the dispersion relation of the horizontal GM is shown in
figures 5.5b and c. It is the numerical simulation equivalent of equations (2.68) and
(2.69). More precisely, figure 5.5b shows the sweeping effect of a varying horizontal GM
with time (ûh(kz = 0, t)) whereas figure 5.5b shows the sweeping effect of a constant
horizontal GM with time (ûh(kz = 0)). The effect of the gradient of the horizontal GM
on the dispersion relation is shown in figure 5.5d. It solves the numerical simulation
equivalent to equations (2.84).

Again, the GM is large scale here as its energy spectrum decreases close to a −4 slope.
We cannot compare the result for the GM with the result for the VSHF as the forcing
and added dissipation terms for the rotating case are different from the stratified case.
Similarly to the stratified case, the gradient of the full GM has no effect on the dispersion
relation. However, the sweeping effect of the GM is very large. The effect of sweeping
with the rms velocity of the GM (i.e. uh,rms(kz = 0) ) is shown in yellow and is clearly
not strong enough to take into account the advection of IW by the GM.

The variability in time of the GM has a large effect on the sweeping effect as in the
figure 5.5c the sweeping effect is closely approximated by the rms velocity of the GM
(by a factor of around 1.5) because the GM is set constant in time. On the contrary,
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Figure 5.5: Effect of the horizontal 2D GM on the dispersion relation. (a) Energy
spectrum of the horizontal 2D GM used (b) Sweeping effect of the horizontal GM on the
dispersion relation (with time fluctuation) (c) Sweeping effect of the constant value of
the horizontal GM on the dispersion relation (no time fluctuation) (d) Gradient effect
of the GM on the dispersion relation. Yellow lines are the dispersion relation modified
by the sweeping effect calculated by the rms velocity. Red lines are the initial dispersion

relation.

in figure 5.5b, the GM is allowed to evolve in time and the corresponding effect on the
dispersion relation is much larger.

Furthermore, the simulation did not diverge as the simplified cases done with a GM with
a constant vertical wavenumber (as in section 2.7.2.6). The reason for this is probably
because there is a continuum of wavenumber in the GM. When an unstable point is
created with one particular vertical wavenumber, the increasing energy is potentially
killed by the convection from another vertical wavenumber.
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Figure 5.6: Evolution of the percentage of energy Ei/ET for waves (i = w), eddies
(i = e) and geostrophic mode (i = g) against (a) ReI ; (b) Ro. Numerical simulations
with 5123 points are shown with open symbols and solid lines, and numerical simulations

with 2563 points are shown with filled symbols and dotted lines.

5.3 Partition of energy

5.3.1 Energy ratio

To get a global understanding of the energy distribution, we first examine the ratio of
energy for the wave, eddy and geostrophic modes.

Fgiure 5.6 shows the ratio of the wave energy Ew = 0.5 < ûw, ûw >, of the eddy energy
Ee = 0.5 < ûe, ûe > and of the GM energy Eg = 0.5 < ûg, ûg > against the total
energy ET = 0.5 < û, û >, where <> is defined in equation (3.10) and uw, ue and ug

are defined in section 3.1.3. Similarly to the stratified case, the result is plotted against
the Rossby number Ro and against the inertial Reynolds number ReI . Simulations
with 2563 points and with 5123 points are used to compare the influence of the Rossby
and inertial Reynolds numbers. At fixed Rossby number, going from the 2563 points
numerical simulations to the 5123 points simulations increases the ReI number. At
fixed ReI number, going from the 2563 points numerical simulations to the 5123 points
simulations decreases the Ro number.

Figure 5.6 shows that, when Ro decreases at fixed ReI , the GM energy increases slightly
and when Ro is fixed and ReI increases, the GM energy increases slightly as well. The
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dotted lines.

particular numerical simulation with Eg ' 40% of the total energy is higher than the
other point because the viscosity added to the GM is smaller in this case (α = 0.001)
than in the other cases (α = 0.5). As for the ratio of wave and eddy energy, it is quite
complicated to draw any conclusion as the ratio of these energies is affected by the
quantity of energy in the GM.

In figure 5.7, we remove the energy of GM, in order to better analyse the ratio of wave and
eddy energy. It shows the toroidal and poloidal wave energies Ei,w = 0.5 < ûi,w, ûi,w >

and eddy energies Ei,e = 0.5 < ûi,e, ûi,e > (with i = t or p) against the total energy
without the geostrophic mode ET −Eg. First, we observe that the toroidal and potential
energy are very close for both the wave and eddy energies. Yet, for both of them the
toroidal energy is slightly higher than the poloidal energy. This could be due to the fact
that the vertical component uz(kz = 0) is removed from the wave and eddy energies and
associated with the GM. Furthermore the ratio of wave and eddy energies seems to be
dependent on the Rossby number. This is especially clear in the case with 2563 points
with α = 0.001. Hence, when the Rossby number increases, the importance of waves
decreases and the importance of eddies increases. No conclusion about the dependence
with the inertial Reynolds number can be drawn.
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5.3.2 Energy spectra

While the ratio of energy of waves and eddies is interesting, more information can
be understood from the energy spectra. We observe at the energy spectra against the
wavenumber k, horizontal wavenumber kh and vertical wavenumber kz for the numerical
simulations done with 5123 points. We do not study the numerical simulations with 2563

points because their inertial range is smaller and it is hard to draw any conclusion from
them.

From the work done in Zeman [149], it is suggested that a k−2 scaling could arise in
rotating flows. This was also shown in Zhou [151] where an energy scaling of k−5/3

was obtained without rotation and an energy scaling k−2 with strong rotation. In the
intermediate rotation rate, the slope would depend on the ratio of the wavenumber k to
the Zeman-Hopfinger wavenumber kΩ [101, 149]. This slope was also seen in experiments
in Baroud et al. [8] where an energy spectrum close to k−2 was observed from PIV
measurements of a rotating flow with Ro = 0.06 and Reλ = 360. More recently a k−2

scaling was observed in the DNS done in Mininni et al. [99] at small wavenumber and
in Müller and Thiele [108] where they found a k−2

h scaling in their DNS.

However, other scaling could be expected. In the theoretical work by Galtier [51], he
found that in the limit where kh � kz with structure elongated along the horizontal
plane, the anisotropic spectra obtained are E(k) ∼ k

−5/2
h k

−1/2
z . Numerous works tried

to recover these anisotropic spectra such as in Sharma et al. [123] where they found
similar anisotropic spectra as Galtier [51] but by selecting precise values of vertical
wavenumber 1 ≤ kz ≤ 6 and a precise value of horizontal wavenumber kh = 35.

Other works seem to observe a k−5/3 energy scaling. For example, Mininni et al. [99]
found an energy scaling k−5/3 for large wavenumber in their DNS. In an experiment
done in Baqui and Davidson [6] at a large Rossby number Ro ' 0.4 the energy spectrum
found was k

−5/3
h but also k

−5/3
z . Baqui et al. [7] also found that for smaller Ro number

no slope was observed. In Alexakis and Biferale [3], it is explained that in rotating flow
we expect a k−5/3 energy spectrum when the wavenumber k is bigger than the Zeman-
Hopfinger scale k > kΩ and when the wavenumber k is bigger than the forcing scale.
When the wavenumber k is between the forcing and Zeman-Hopfinger wavenumber, the
energy spectrum slope will depend on the process that drives the cascade of energy. It
can be the weak wave turbulence, the helicity transfer, the energy cascade, the enstrophy
cascade or a mix of them.

Finally, Vallgren et al. [141] found an energy slope ranging from k−3 for Ro = 0 to an
energy slope k−5/3 at large Rossby Ro = 0.2. Moreover, Le Reun et al. [77] also found
a k−3 scaling for low Rossby number in their DNS with a linear forcing.
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Figure 5.8: Comparison between the energy spectra of the eddy part and wave part.
The Zeman-Hopfinger scale kΩ is also represented when possible. Numerical simulations

with a different rotation rate 2Ω are shifted by a power of 10 for clarity.

5.3.2.1 Energy spectra vs k

In a first approach, we consider the energy spectra against the wavenumber k. The
eddy energy spectrum is Ee(k) = 0.5 < ûe, ûe >k and wave energy spectrum is Ew(k) =

0.5 < ûw, ûw >k where <>k is defined in (3.11). Figure 5.8 shows the difference between
the wave and eddy energy for the three cases of study with 5123 points. At large scale
(or small wavenumber k), the wave energy dominates a lot the eddy energy. When
the scale decreases (or wavenumber k increases) the difference between the wave and
eddy energy decreases. Hence the slope observed for wave energy spectra should be
higher than for the eddy energy spectra. In the case 2Ω = 15 the eddy energy is higher
than the wave energy for a wavenumber k ≤ 20. For the two other cases, the eddy
energy is close (or overcome slightly) the wave energy for a wavenumber k ' 100. This

result can be analysed against the Zeman-Hopfinger wavenumber kΩ =

√
(2Ω)3

ε
which

is the wavenumber at which we expect eddies to dominate the waves. For 2Ω = 15, the
Zeman-Hopfinger wavenumber is kΩ = 20 which is not exactly the result we obtained.
For 2Ω = 80 the Zeman-Hopfinger wavenumber is kΩ ' 240 and for 2Ω = 300 the
Zeman-Hopfinger wavenumber is kΩ ' 1700. The result for larger rotation rate is a
bit different than the expected result from the Zeman-Hopfinger wavenumber. Yet the
overall trend is respected, the limit wavenumber where the eddies are more important
than the waves increase with the rotation rate.
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We compared the wave and eddy energy spectrum qualitatively, we now focus on the
quantification of each energy spectrum. Figure 5.9 shows the energy spectra of waves
(figure 5.9a) and eddies (figure 5.9b) against the wavenumber k with some typical slope
that can be found in the litterature.

We observe that the wave energy spectra are closer to a −2 slope for the most turbulent
cases 2Ω = 80 and 2Ω = 15. For the rotating case 2Ω = 300, the wave energy spectrum
seems closer to a −3 slope. The eddy energy spectra seems closer to a −5/3 slope in the
event 2Ω = 80 and 2Ω = 300. In the case where 2Ω = 15 the energy spectrum is flatter
than a −5/3 slope.

These results can be observed against the literature. At high rotation rate, Le Reun
et al. [77], Vallgren et al. [141] found an energy scaling close to k−3. This is indeed what
we found in the wave part of the flow which dominate the flow. No scaling close to k−5/3

is observed in this regime as this seems to be related to the eddies and they are hidden
by the waves as they dominate the flow. For lower rotation rate, we observe a clear k−2

scaling for the waves. This is again a result that has been found in numerous works
[8, 99, 149, 151]. In the work of Sharma et al. [123], the scaling obtained is steeper and
closer to a k−5/2 slope, but it could be due to the fact that the forcing is relatively small
scale and the scaling is applied on a scale larger than the forcing. On the contrary, in our
numerical simulation the forcing is large scale and the scaling is applied to a smaller scale
than the forcing. Hence, different physical phenomena are responsible for an inverse and
direct cascade of energy and it could result in a steeper energy spectrum for a backward
cascade of energy than for a forward cascade of energy. For the very small slope in the
eddy part at 2Ω = 15, we can do two hypotheses. It can be related to the physics of the
flow, but it can also be a representation of the limit of the algorithm where some parts
of the eddy spectrum are assimilated to waves. As the waves dominate the flow this does
not necessarily change the energy spectrum of waves, but it could modify substantially
the energy spectrum of eddies.

5.3.2.2 Energy spectra vs kz

As the rotation rate modifies the flow, the flow is anisotropic. It means that the
statistics of the flow change with different directions. Hence, similarly to the stratified
case, the energy spectra can be studied against the vertical and horizontal wavenum-
ber to take into account the anisotropic properties of the flow. In this subsection,
we consider the energy spectrum of waves and eddies against the vertical wavenumber kz.
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Figure 5.9: Wave (a) and eddy (b) energy spectra for numerical simulations with
5123 points shown in table 5.1 against wavenumber k. Typical slopes are placed for

reference.

Figure 5.10 shows the energy spectra of waves (figure 5.10a) and eddies (figure 5.10b)
against the vertical wavenumber kz with some typical slope that can be found in the
literature. For the wave energy spectra, it seems that the slope increases as the rotation
rate increases as well. For 2Ω = 15 the energy wave spectrum is close to a −5/3 slope
and for 2Ω = 80 the energy wave slope is between a −2 and a −3 slope. For large
rotation rate 2Ω = 300 the wave energy spectrum has a very high slope, higher than a
−3 slope. For the eddy energy spectrum, the same overall analyses can be made. When
the rotation rate increases, the slope of the eddy energy spectrum increases as well. For
2Ω = 15 the eddy energy spectrum slope is lower than the −5/3 slope. For 2Ω = 80 the
eddy energy spectrum slope is slightly lower than the −2 slope. For 2Ω = 300 the eddy
energy spectrum is lower than the −3 slope.

The higher slope at a higher rotation rate can be explained as, when the rotation rate
increases, the energy tends to be more and more two dimensional so that the energy
decreases faster against kz.

These results are quite far from the analytical solution found in Galtier [51] where
E(k) ∼ k

−5/2
h k

−1/2
z . This could be explained as we do not select a particular kh and vary

the value of kz as done in Le Reun et al. [77] which recover the Zakharov-Kolmogorov
spectrum derived in Galtier [51]. At a large Rossby number Ro ' 0.4, Baqui and
Davidson [6] found an energy spectrum evolving as k−5/3 which seems to be very close
to our result for 2Ω = 15 (and a Ro = 0.06).

5.3.2.3 Energy spectra vs kh

In this subsection, we consider the energy spectra against the horizontal wavenumber kh.
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Figure 5.10: Wave (a) and eddy (b) energy spectra for numerical simulations with
5123 points shown in table 5.1 against the vertical wavenumber kz. Typical slopes are

placed for reference.
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Figure 5.11: Wave (a) and eddy (b) energy spectra for numerical simulations with
5123 points shown in table 5.1 against the horizontal wavenumber kh. Typical slopes

are placed for reference.

Figure 5.11 shows the energy spectra of waves (figure 5.11a) and eddies (figure 5.11b)
against the horizontal wavenumber kh with some typical slope that can be found in the
literature. For 2Ω = 80, 300, a −2 slope for the wave energy spectra is obtained. In the
case 2Ω = 15, it seems that we are closer to a k−5/3 slope. For the eddy energy spectra,
a −5/3 slope is obtained for 2Ω = 80 and 2Ω = 300. For the eddy energy spectrum at
2Ω = 15 the slope obtained is lower than a −5/3 slope.

These results are again quite far from the analytical study done in [51] where E(k) ∼
k
−5/2
h k

−1/2
z . However, for the same reason as in section 5.3.2.2 we select all kz in our

energy spectrum against kh and that could modify our results. In a different DNS done in
Le Reun et al. [77] where such separation is done the analytical solution found by Galtier
[51] is obtained. Furthermore, it is not sure that we have kh � kz. Yet, our result still
matches other works as for example in Müller and Thiele [108] an energy spectrum close
to k−2 was found for a Ro ∼ 10−2. This suggests that the energy spectrum that they
measured was probably mostly composed of IW. For a large Rossby number (Ro ' 0.4),
Baqui and Davidson [6] found an energy spectrum to be close to k

−5/3
h . This could
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Figure 5.12: Energy spectrum of the 3D GM for various numerical simulations against
the horizontal wavenumber kh.

be the imprint of the eddy energy spectrum (as we expect few waves at that Rossby
number). Yet, our eddy energy spectrum flatten at 2Ω = 15 while we should probably
recover the same energy spectrum as in the other two rotation rate. This strange, sudden
change supports the hypothesis that our separation technique could set as waves what
should normally be an eddy. This could result in a lower than expected scaling for the
eddy energy. Similarly to section 5.3.2.1, the scaling of the energy spectrum obtained
in Verma et al. [143] against the horizontal wavenumber kh is steeper than our scaling.
Again, this could be due to the fact that in Verma et al. [143], the scaling is done on
a larger scale than the forcing, whereas our scaling is done at a scale smaller than the
forcing scale. As a result, the scaling could be different because in one case a forward
cascade of energy occurs and in the other case an inverse cascade of energy occurs.

Figure 5.12 shows the energy spectrum of the 3D GM (with uh(kz = 0) and uz(kz = 0))
from different numerical simulations with varying rotation rate. We observe that the
larger the rotation rate the steeper the slope of the energy spectrum of the GM. Starting
from 2Ω = 15, the energy of the GM follows a k−5/2 slope, whereas at 2Ω = 300,
the energy follows a k−5 slope. Hence the GM is indeed large scale, but that scale
seems to get slightly smaller as 2Ω increases (the peak of energy is obtained at a larger
wavenumber k). We do not know why these slopes arise. There might be an effect of
the added viscosity α. A different added viscosity value of α could change the energy
spectrum of the GM. Note that the energy spectrum of the GM is exactly the same
against the wavenumber k and kh as the vertical wavenumber is null kz = 0.
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5.4 Balance of energy and flux

5.4.1 Equation of energy

We compute the Lin type equation for the waves, eddies and the GM in a rotating flow
as done in Verma [142] for isotropic turbulence or as done in section 4.4 for stratified
flows. To do so, we start by taking the Fourier transform in space of equation (2.17):

∂tû(k, t) = −ω̂ × u(k, t)− ikp̂(k, t)− νk2û(k, t)− 2Ω× û(k, t) + F̂u(k, t) (5.3)

where −ω̂ × u(k, t) is the 3D Fourier transform in space of ω × u(x, t).

Multiplying equations (5.3) by ûl(k, t)

2
and adding the resultant equation with its com-

plex conjuguate, we obtain:

∂tRe

{
û · ûl

2

}
(k, t) = −Re

{
ω̂ × u · ûl

}
(k, t)−νk2Re

{
û · ûl

2

}
(k, t)+Re

{
F̂u · ûl

}
(k, t)

(5.4)
where l stands for w=wave, e=eddy or g=GM.

As the wave, eddies and GM components are defined disjoint in spatial and time Fourier
domain in our decomposition, the average on the large period T0 is [ûl, û] = [ûl, ûw +

ûe + ûg] = [ûl, ûl] where [,] is defined in equation (3.9). This time the GM has enough
energy and is kept into account.

Thus, taking the average over the period T0 of equation (5.4), summing over all wavevec-
tors k on a sphere of radius K = |k| and decomposing the non-linear term in its wave,
eddy or GM parts, we obtain:

∂te
l(K) =

∑
i=w,e,g

tliw(K) + tlie(K) + tlig(K)− 2νK2el(K) + pl(K) (5.5)

To define all the terms in equation (4.14), we use the operator <>K defined at the
end of section 3.1.3.1. The kinetic energy is el(K) =< û, ûl >K , the transfers are
tlij(K) = − < ω̂i × uj , ûl >K and the forcing is pl(K) =< Fu, û

l >K . The non-
linear term produces nine different possibilities for every l part as the term ω × u =∑
i,j=w,e,g

ωi×uj . As explained in section 4.4, the particular transfer twww(K) corresponds

to the triad interaction where for any wavevector p, q and k we get a spatial resonance
p+q = k and a temporal resonance ωc(p)+ωc(q) = ωc(k) [133] with ωc(k) the dispersion
relation of waves modified by the sweeping effect and defined in equation (2.75).
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Summing over all wavenumbers K in equation (5.5), we obtain:

dEw/dt = Tw
ee + Tw

we + Tw
wg + Tw

ge + Tw
eg + εw + Pw (5.6a)

dEe/dt = T e
ww + T e

ew + T e
wg + T e

gw + T e
eg + εe + P e (5.6b)

dEg/dt = T g
ee + T g

we + T g
ww + T g

ew + εg (5.6c)

where the kinetic dissipation is εl = ν < k2ûl, ûl > for l = w or e and
εg = ν < k2ûg, ûg > +α < ûg, ûg >. The kinetic transfer is T l

ij = − < ω̂i × uj , ûl >

and the injected power P = Pw + P e for each part is P l =< F̂u, û
l >. As the small

evolution in time of the wave Ew, eddy Ee and geostrophic mode Eg energy is known
as well as the transfer T l

ij and dissipation εl, it is possible to compute the forcing in
the wave Pw and the forcing in the eddy P e. In the statistically stationary regime,
dEw,e,g/dt ' 0 and the equilibrium of the fluxes is reached since all terms compensate
one another.

As all our numerical simulations in the rotating case involve a varying forcing power P

(from P = 0.01 to P = 20), this means that the transfer and the different components
depend on that variable. Hence, contrary to the stratified case (where P is constant),
all transfer components are expressed as a percentage of the total forcing value P .

5.4.2 Sankey diagram

In order to better understand the transfer between the waves, eddies and the GM, we
draw the Sankey diagram which represents the full balance of energy (written in equation
(5.6)). This representation offers a more visual and less complex analysis of the physical
phenomena than a representation of the different parameters of the equations (5.6)
against Ro or ReI .

In the Sankey diagram, for the rotating case, the transfers take the energy from forcing
P in part Pw and P e then they bring the energy to the dissipation composed of three
parts εw, εe and εg. While in the stratified case the transfers are only in one direction
(from waves to eddies), in the rotating case the energy can be transferred many times
from one part of the flow to another part of the flow without being dissipated. This
means that, an input/output balance of energy is needed for each part, for eddies (noted
Be), for waves (noted Bw) and for the geostrophic mode (noted Bg). This problem can
be understood with an example: since no forcing goes to the GM, there is no origin
for the transfer from the GM to eddies or to waves. Hence, there is no source of flux
for this transfer, and no graphical link in the Sankey diagram. Hence, it is necessary
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Figure 5.13: Sankey diagram representing the different terms of the full Lin equation
written in equation (5.6) for the numerical simulation with 5123 points. The boxes

Bl(with l = w, e, g) represent the input/output balance of energy for any part l.
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to introduce the input/output balance of energy for the GM. All transfers, must take
energy to a part Bj to give that energy to a different part Bl. The forcing P l feeds
directly the input/output balance of energy Bl and all the dissipation εl dissipates the
energy from the input/output balance of energy Bl. We also draw the importance of the
variation in time of each energy ∂tE

l which can give (if negative) or take (if positive)
energy to its input/output balance of energy Bl.

A few general and qualitative observations can be made from these Sankey diagrams:

• First, we observe from figure 5.13 that most of the forcing enforces waves as
Pw � P e for any Ro and ReI (see section 5.4.3 and figure 5.14 for a detailed
and quantitative analysis).

• Secondly, a lot of energy is transferred from the wave part to the eddy part due
to many interactions. The transfer T e

ew is always strong for all cases, but other
transfers such as T e

gw and T e
ww appear in some cases. For a detailed and quantitative

analysis, you can read section 5.4.3 and section 5.4.4.

• Thirdly, a lot of energy is transferred from the wave part to the GM. It can be
due to wave-wave interaction T g

ww in accordance with mechanism find by Brunet
et al. [22] or Le Reun et al. [78] in wave turbulence regime. In our simulations, it
seems to be still valid in a turbulent regime at higher ReI . Nonetheless, eddy-wave
interaction T g

ew can still play an important role in the transfer of energy from waves
to eddies (see section 5.4.5 for a detailed and quantitative analysis).

• Fourthly, at low Ro and ReI , a small part of energy come from the eddy part to
the GM due to the wave-eddy (T g

we) and eddy-eddy (T g
ee) interaction. However,

at high Ro and ReI a small part of energy is taken from the GM to the eddy part
through the same mechanism (see section 5.4.5).

5.4.3 Global flux of energy

According to the Sankey diagram (5.13), we describe globally and quantitatively the
different fluxes occuring in rotating turbulence. In order to do this, we introduce the
global transfer between each part. We introduce :

• the total transfer from eddies to waves: Tw
∗e = Tw

we + Tw
ee + Tw

ge

• the total transfer from waves to eddies: T e
∗w = T e

ww + T e
ew + T e

gw

• the total transfer from eddies to the GM: T g
∗e = T g

we + T g
ee
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Figure 5.14: Evolution with ReI of the percentage of the contributions of forcing P l,
dissipation εl and transfer T l
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simulations with 5123 points correspond to open symbols and solid lines, numerical
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• the total transfer from waves to the GM: T g
∗w = T g

ww + T g
ew

Figure 5.14a shows the component of the simple and condensed Lin equation for the
wave part (a), for the eddy part (b), and for the GM (c) of the equation (5.6) against
the inertial Reynolds number ReI . The same figure is done against the Rossby number
in the figure 5.15.

As the forcing amplitude P differs between all cases, all results are shown in terms of
percentage against the total amplitude of forcing P . We observe that Pw always contains
more than 85% whereas P e contains less than 15% of the total forcing. Therefore, most
of the forcing P goes to the waves especially at medium ReI .

Since the waves receive most of the energy of the forcing, then it explains why the
transfer T e

∗w in figure 5.14 is huge and pumps up to 40% of the total energy from the
waves to give it to eddies through the transfer T e

∗w visible in figure 5.14b. This transfer
increases with Ro and ReI .

There is no forcing on the GM, so we observe that the sum of transfer in the GM is
roughly equal to the dissipation of the GM (as the flow is stationary). We observe
that in all cases of figure 5.14c, most of the GM energy comes from waves. Eddies do
not give much energy and can even take energy from the GM at small rotation rate.
Transfer from eddies to GM (T g

∗e) and waves to GM (T g
∗w) tend to decrease as Ro and

ReI increase. It becomes negative for the transfer from eddies to GM (T g
∗e) at the highest

Ro and ReI . This means that the energy of the GM is transferred to the eddy part and
the GM energy decreases as seen in figure 5.6.

5.4.4 Detailed analysis of the transfers from waves to eddies

In the previous analysis of transfer we focused only on the general transfer between the
same quantities (between waves themselves, or eddies themselves or GM themselves).
We did not separate the effect of the different interactions. Here, we consider how
the transfer of energy occurs from the waves to the eddies by analysing the different
components T e

iw of the transfer T e
∗w. Note that, as T e

iw = −Tw
ie (see appendix B for a

detailed proof), we do not consider the transfer between eddies to waves.

Figure 5.16 shows the transfers from waves to eddies T e
iw. First, we can say that in nearly

all cases and all transfers there is a global transfer from waves to eddies. It seems that
the transfer T e

ww tends to decrease when the rotation rate decreases, this is especially
true for the simulations with 5123 points, yet for the numerical simulations with 2563

points the conclusion is harder. When the Rossby number increases, we expect less



Chapter 5. Rotating turbulence 132

10 -1 10 0 10 1 10 2
-10

0

10

20

30

40

10 -3 10 -2 10 -1
-10

0

10

20

30

40

T
ww
e

T
ew
e

T
gw
e

ReI

Ro

(a)

(b)

%

%

Figure 5.16: Evolution of the total transfer from waves to eddies T e
iw (with i =

w or e or g) against (a) ReI ; (b) Ro. Numerical simulations with 5123 points are shown
with open symbols and solid lines, and numerical simulations with 2563 points are shown

with filled symbols and dotted lines.

waves in the flow (see section 5.3.1), so it seems logic that the transfer T e
ww decreases

as it involves the interactions between two waves. The result of the transfer T e
ew is a

bit clearer. It seems to increase mainly with ReI , when the flow is more turbulent.
When the flow becomes more turbulent and since we force mainly the wave part, this
interaction lead to a transfer from the waves to the eddies. Not much can be said on
the transfer T e

gw as many fluctuations occur.

5.4.5 Detailed analysis of the transfers from waves or eddies to the
GM

We consider how the transfer of energy occurs from the waves or eddies to the GM by
analysing the different components T g

ij of the transfer T g
∗j (with j = w, e). Note that, as

T g
ij = −T j

ig, we do not consider how the energy is pumped from the GM.

Figure 5.17 shows the transfers T g
ij that take energy from waves or eddies to give energy

to the GM. We observe that, in general the wave-wave interaction (T g
ww) is higher than

the other transfer. However, for a few cases of large or small Ro and ReI , we observe that
the eddy-wave interaction (T g

ew) is equivalent to the wave-wave interaction (T g
ew ∼ T g

ww).
Nevertheless, around Ro ∼ 0.01 and ReI ∼ 1, the transfer T g

ew < 0, meaning that energy
is pumped from the GM to be given to the waves.
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Figure 5.17: Evolution of the total transfer from waves or eddies to the GM T g
ij =

T+,g
ij + T−,g

ij (with i, j = w or e) against (a) ReI ; (b) Ro. Numerical simulations with
5123 points are shown with open symbols and solid lines, and numerical simulations

with 2563 points are shown with filled symbols and dotted lines.

The eddy-eddy interaction T g
ee transfer always slightly more to the GM than the wave-

eddy interaction T g
we. It is also less prone to pump energy of the GM at large Ro and

ReI .

We conclude that in rotating turbulence, the GM is mostly fed by the waves. The first
type of transfer found which feeds the GM is the wave-wave interaction (T g

ww). This
result opposes the impossibility of exact triadic resonant interaction that feed the GM
explained in Greenspan [59]. Yet, it is in accordance with other mechanisms described
in Brunet et al. [22], Le Reun et al. [78] for example. The second type of transfer found
which feeds the GM is new, it is the eddy-wave interaction T g

ew. Such conclusion shows
the diversity of mechanism that can feed the GM.

5.5 Dissipation

After analysing the different properties of the transfer, we can examine the different
ratios of the dissipation term by the waves, the eddies and the GM.

In equation (5.6) most of the dissipative terms are already defined. We also define the
dissipation rate for the GM due to the added viscous term ν by:
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εν,g = ν < k2ûg, ûg > . (5.7)

There is still one more dissipation term that occurs. It comes from the added dissipative
term α. The dissipation linked to that term is:

εα,g = α < ûg, ûg > . (5.8)

So that the total dissipation term is εT = εw + εw + εν,g + εα,g and the total GM
dissipation is εg = εν,g + εα,g.

Figure 5.18 shows the percentage of the different dissipative terms against the inertial
Reynolds number and the Rossby number. First, we observe that the dissipation of
the GM due to the viscosity ν evolves with ReI . The lower ReI is, the higher the
dissipation on the GM is as well. This is different for the dissipation of the GM due to
the viscous term α because it does not seem to be linked to the Ro or ReI number but
simply increases when the rotation rate increases. Overall, the dissipation by the GM
increases as the rotation rate increases as well and reach 60% of the total dissipation
of the 5123 points simulations at Ro = 0.0011. As for the dissipation by the waves
and eddies, they could seem to depend on the Rossby number, but this is actually not
the case as their importance is hindered by the modification of the dissipation by the GM.

To better analyse the dissipation of waves and eddies, we prefer to analyse the ratio of
the dissipation of waves and eddies against the total dissipation without the dissipation
of GM. Furthermore, we define the dissipation by the toroidal and poloidal velocity field
by:

εt,i = ν < k2ût,i, ût,i >,

εp,i = ν < k2ûp,i, ûp,i >
(5.9)

where i stands for e or w.

Figure 5.19 shows the percentage of poloidal and toroidal dissipation for waves and eddies
against ReI and Ro. We observe that, when the dissipation is dominated by waves, the
poloidal dissipation for waves and eddies is slightly higher than the toroidal dissipation
for the same component. When the dissipation is dominated by eddies, it is the toroidal
dissipation for waves and eddies that is slightly higher than the poloidal dissipation.
This phenomenon could come from the fact that a large part of the toroidal components
is removed from the eddy and wave parts to be placed in the GM at small ReI and Ro.
Contrarily, at large ReI and Ro, we observed that the energy was pumped from the GM
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to eddies (see section 5.4.5) which could result in more energy in the toroidal part that
is dissipated. Moreover, in most previous analyses, we ignored the numerical simulation
with 2563 points and α = 0.01 because the numerical parameters were very different
from the other numerical simulations. It resulted in a very high quantity of GM in the
flow. However, as we focus on the ratio of dissipation without GM, this piece of data
is very useful, especially if we assume that the repartition of dissipation between waves
and eddies do not significantly depend on the GM. In figure 5.19, it is possible to use
this numerical simulation to determine that the ratio of dissipation of waves and eddies
depends mostly on the ReI number. The wave dissipation becomes more important than
the eddy dissipation when ReI . 3. This dependence of the repartition of the wave and
eddy dissipation against ReI can be understood with its definition. As ReI = (

kη
kΩ

)4/3,
when kΩ � kη most of the dissipation is done by waves whereas when kΩ � kη most of
the dissipation is done by eddies.

5.6 Scale by scale analysis of transfer

In the analysis of section 5.4, we were interested in the global exchange of energy
between waves, eddies and the GM. In this section we focus on the transfer between
waves, eddies and the geostrophic mode with themselves in the flow. Some focus will
be done on the strength of the forward or backward cascade in the flow.

From the separation of the flow in waves, eddies and GM, it is possible to examine how
the transfer between them occurs. In our case, there is a very large number of different
possible transfers. Nine interactions (w + w, w + e, e + w, e + e, w + g, g + w, e + g,
g + e and g + g) can occur which can lead to a transfer of energy between the waves or
eddies or GM. This means that in total, there are 27 possible transfers.

Yet, all of these transfers are not possible. For example, it is not possible to obtain
an eddy or wave component from the interaction of two GM. Indeed, as the GM has
kz = 0, it means that the interaction of two GM can only create a new GM: with
non-linear interaction of two GM with a wavevector k = (kx, ky, 0) and p = (px, py, 0),
the resulting wavevector q must satisfy the equation k = p + q. This means that the
new wavevector q = (kx − px, ky − py, 0) is also a GM.
Similarly, it is not possible to obtain a GM through the interaction of a GM with a
wave or eddy component. Indeed, a wave or eddy component has a vertical wavenumber
kz 6= 0. Hence, for the interaction of a GM with a wavevector k = (kx, ky, 0) with a
wave or eddy component with a wavector p = (px, py, pz 6= 0) then the third wave
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vector q of the non-linear interaction must satisfy the equation k = p + q. This is the
case if and only if q = (kx − px, ky − py,−pz 6= 0). This means that no GM can receive
energy when it comes from the interaction of a GM and a wave or eddy component.
Ultimately, there are only 21 possible transfers in our decomposition. Five transfers
take or give energy to the GM and eight transfers that give or take energy to the waves
and to the eddies.

Similarly to the stratified case, considering each of these transfers against the wavenum-
ber is very tedious. Instead, we decided to study the same set of variables used in section
4.7 to summarize the transfer t(k), which are redefined here as a reminder:

• T+,l
ij =

∑
k, tlij(k)>0

tlij(k), the total value of transfer given to l by the interaction

between i and j,

• T−,l
ij =

∑
k, tlij(k)<0

tlij(k), the total value of transfer pumped from l by the interaction

between i and j,

• k+,l
ij =

∑
k, tlij(k)>0

ktlij(k)

T+,l
ij

, the weighted average scale of transfer given to l by the

interaction between i and j,

• k−,l
ij =

∑
k, tlij(k)<0

ktlij(k)

T−,l
ij

, the weighted average scale of transfer pumped from l by

the interaction between i and j.

Again, in order to facilitate the comprehension of the scale of transfer we use the ratio

of weighted average scale k
+/−,l
ij =

k+,l
ij

k−,l
ij

for the potential and kinetic transfers. When

this ratio is lower than one (k+/−,l
ij < 1), this means that an inverse cascade is occurring,

the energy is pumped at small scales and given back at larger scale. When this ratio
is greater than one (k+/−,l

ij > 1), this means that a direct cascade is occurring, the
energy is pumped at large scales and given back at smaller scales. We also always hold
T+,j
ij = −T−,j

ij and we can recover the transfer from the j part to the l part computed
in equation (5.6) as T l

ij = T+,l
ij + T−,l

ij .

Contrary to the stratified case, where the forcing is constant in all cases, in the ro-
tating case the forcing amplitude differs. Hence, the transfer variable T+,l

ij are non-
dimensionnalised against the forcing P .
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Figure 5.20: Evolution of the positive transfer T+,j
ij (with i = w, e or g) between (a,c)

waves themselves (j = w) and (b,d) eddies (j = e) or GM (j = g) themselves against
(a, b) ReI ; (c, d) Ro. Numerical simulations with 5123 points are shown with open
symbols and solid lines, and numerical simulations with 2563 points are shown with

filled symbols and dotted lines.

5.6.1 Local transfers

First, we consider the transfer between waves themselves. This means that a component
i which can be an eddy, a wave or a GM advects a wave component to give or
take energy to a wave. Figure 5.20 shows the total value of positive transfer from
waves to waves T+,w

iw , eddies to eddies T+,e
ie and GM to GM T+,g

gg against the inertial
Reynolds number ReI and the Rossby number Ro. We never plot the total value of
negative transfer T−,j

ij as it is exactly the inverse of the total value of positive transfer
T+,j
ij = −T−,j

ij .

We observe that it is the triadic interaction of waves T+,w
ww (figure 5.20a and c) which

dominates all other transfers. It can even transfer 50− 60% of the total energy for large
rotation rate. The value of this transfer seems mostly dependent on the Ro number.
At fixed Ro, when ReI increases, we observe that the strength of the triadic interaction
T+,w
ww is slightly stronger. This means that triadic interactions of IW are stronger when

the Rossby number decreases and also stronger when the flow is more turbulent. For
the other transfers involving waves T+,w

ew and T+,w
gw , their amplitude fluctuates with ReI

and Ro and no particular trend can be drawn.
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Figure 5.21: Evolution of the average ratio of scales of transfer k
+/−,l
ij (with i, j =

w or e) in (a,c) waves (l = w) and in (b,d) eddies (l = e) against (a,b) ReI ; (c,d) Ro.
Numerical simulations with 5123 points are shown with open symbols and solid lines,
and numerical simulations with 2563 points are shown with filled symbols and dotted

lines.

In figures 5.20b and d, we notice that, as Ro decreases at fixed ReI and as ReI increases
at fixed Ro, the transfer linked to the GM (T+,g

gg ) is stronger. This could be expected
as we have shown in section 5.3.1 that the GM becomes more important (for the same
added viscosity α) when Ro decreases at constant ReI and when ReI increases at constant
Ro. It is normal to obtain a stronger transfer if these quantities contain more energy.
Similarly the transfer T+,e

ge decreases when Ro decreases at constant ReI and when ReI
increases at constant Ro. This observation can be analysed similarly to the previous
case. When Ro decreases at constant ReI and when ReI increases at constant Ro, the
GM energy decreases and fewer GM advect eddies to exchange energy with another
eddy.

The transfer T+,e
we seems more dependent on ReI and increases slightly with it. The

transfer T+,e
ee increases a lot when ReI increases. When ReI increases, the flow is more

turbulent and we expect more eddies to interact with one another.
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5.6.2 Ratio of scales

5.6.2.1 Only waves and eddies involved

Figure 5.21 shows the ratio of average scale of transfer in waves kwij (figures 5.21a and
c) and in eddies keij (figures 5.21b and d) without any GM component involved. First,
we can observe that the cascade is mostly forward (k+/−,l

ij > 1). Overall, when the
rotation rate decreases, the strength of the forward cascade increases. Yet, two particular
transfers seem to show an inverse cascade. At small rotation rate an inverse cascade is
visible for the ratio of scales k+/−,e

ww and at large rotation rate an inverse cascade is visible
for the ratio of scales k

+/−,w
ee . The reason for this is still unclear. This is supported in a

study by Buzzicotti et al. [23] where 3D phenomena different from the GM are involved
in an inverse cascade of energy.

Some ratio of scales involving mostly waves (i.e. k
+/−,w
ww and k

+/−,w
we ) increase as Ro de-

creases and as ReI increases. When ReI increases at constant Ro and when Ro decreases
at constant ReI , it seems that the ratio of scales k

+/−,e
ew increases as well, meaning that

the forward cascade is stronger. No particular trend is observable for the ratio of scales
k
+/−,w
ew , k+/−,e

ee and k
+/−,e
we .

5.6.2.2 GM involved in a transfer in waves or eddies

After focusing on the ratio of scales for transfers where only waves or eddies components
are involved, we can examine the effect of the GM on the cascade of energy. In this part,
we consider the ratio of scales where the GM is involved in the transfer to/from waves
or eddies.

Figure 5.22 shows the ratio of scales of transfer in waves k
+/−,w
ij and in eddies k

+/−,e
ij

with some GM involved (i = g or j = g). First, we observe that, contrary to section
5.6.2.1, more transfers reach an inverse cascade k

+/−,l
ij < 1 at a large rotation rate. In

figure 5.22a and c, this is the case when the GM advects an eddy or a wave to give or
take energy from waves (for the ratio of scales k

+/−,w
gj ). In figures 5.22b and d, it is the

case only for the ratio of scales k
+/−,e
wg . This result is similar to the observation done in

[23], where the GM is observed to play a strong role in the inverse cascade of energy.
Yet, our results go further, it details the type of interaction where the GM participates
in an inverse cascade with waves and eddies. In general, we remark that the stronger
the rotation rate, the lower the ratio of scales. No clear conclusion can be drawn on the
dependence of the Rossby or inertial Reynolds number.
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Figure 5.22: Evolution of the average ratio of scales of transfer k
+/−,l
ij (with i, j =

w or e or g) in (a,c) waves (l = w) and in (b,d) eddies (l = e) against (a,b) ReI ; (c,d)
Ro. Numerical simulations with 5123 points are shown with open symbols and solid
lines, and numerical simulations with 2563 points are shown with filled symbols and

dotted lines.

5.6.2.3 Ratio of scales for the transfer in the GM

Finally, we consider the ratio of scales k
+/−,g
ij from the transfer that pumps or gives

energy to the GM. Figure 5.23 shows the ratio of average scale in the GM k
+/−,g
ij with

only eddies or waves involved (i, j = w or e). The attentive reader can already spot a
discrepancy in figure 5.23, since there are a few points that are lacking (for example
k
+/−,g
ww and k

+/−,g
ew have many points missing). This is because no negative transfer

T−,g
iw exist, so there is no average scale of negative transfer k−,g

iw and the ratio of average
scale is ill-defined. Overall, the average ratios k

+/−,g
iw are mostly smaller than one which

means waves give energy to the GM mostly in a backward cascade. Furthermore, there
are many cases where waves give energy to the GM without even pumping energy to
the GM. There is also a backward cascade at low rotation rate for the ratio of scales
k
+/−,g
ee but no specific dependence with ReI and Ro can be observed. The ratio of scales

k
+/−,g
we oscillates, but seems mostly responsible for a forward cascade. As for the ratio

of scales of the transfer involving only the GM k
+/−,g
gg , it seems relatively invariant with

the ReI number, increases with it and is subject to a direct cascade. This result seems
in opposition with the result found in [17] with a definition the GM different from
ours, involving only the horizontal component. Note that, from preliminary result (not
presented here) if the definition of the GM was 2D (only the horizontal velocity field)
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Figure 5.23: Evolution of the average ratio of scales of transfer k
+/−,g
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is no negative average scale of transfer k−,g
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component. No ratio of scales k
+/−,g
ij can be defined for those points.

we would get a backward cascade for the transfer involving only the GM.

5.6.2.4 Summary on the ratio of scales

Due to the very high number of different transfer and high complexity of the analysis
against Ro and ReI , the conclusions on the different ratios of scale k

+/−,l
ij can be confus-

ing. If one wants a general conclusion, it is that when no GM is involved in a transfer,
most of the interactions results in a forward cascade of energy. On the contrary, when
the GM is involved in a transfer, some transfers are prone to inverse cascade of energy.
This is the case particularly at low Ro and low ReI when the GM starts to get more and
more two dimensional.

5.7 Visualization

Finally, we focus on the wave, eddy and total velocity fields. This section allows us
to understand more qualitatively our decomposition. In order to reach high spatial
accuracy in our velocity cuts, we only plot the data from the 5123 points numerical
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Figure 5.24: Total uz(x, z), wave uw
z (x, z) and eddy ue

z(x, z) vertical velocity field in
the middle of the y interval.

simulations.

Figure 5.24 shows the vertical velocity field uz(x, z) for the total part (1st column),
the wave part (2nd column) and the eddy part (3rd column). For the different vertical
velocity field shown, the rotation rate is changed at each different line, it starts at
2Ω = 15 (1st line), then at the rotation rate 2Ω = 80 (2nd line) to finish with a rotation
rate at 2Ω = 300 (3rd line). The vertical velocity fields are computed from the poloidal
velocity field in the Fourier domain, which is projected to the Cartesian frame as:

ûiz =
−kh
k

ûp,i (5.10)

where i stands for w or e.

We observe that most of the large structures are in the wave part of the velocity field.
The eddy part of the velocity field is smaller scale. The higher the rotation rate, the
higher the total and wave vertical velocity field. On the contrary, the amplitude of the
eddy vertical velocity field does not change much when the rotation rate is changed.
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for Ro = 0.06 and ReI = 28.

Figure 5.25 shows the velocity uy(x, z) for the wave, eddy and total parts of the flow. As
the filtering is done in the Craya-Herring frame, the velocity uy is separated in a velocity
that comes from the toroidal component uty or that comes from the poloidal component
upy. Hence two velocities can be computed from the wave and eddy components, a
toroidal and a poloidal velocity field. They are defined as:

ût,iy =
kxû

t,i

kh

ûp,iy =
kykzû

p,i

kkh

(5.11)

where i stands for w or e.

We observed that the toroidal velocity field is greater than the poloidal velocity field.
This is expected as the toroidal velocity field is divided in two parts (ux, uy) but the
poloidal velocity field is divided in three parts (ux, uy, uz). Hence the total horizontal
velocity field uy(x, z) is closer to the toroidal wave velocity field ut,wy than the poloidal
wave velocity field up,wy . Similarly to the observation made in figure 5.24, the eddy
velocity field is small scale whereas the wave velocity field is large scale.
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5.8 Conclusion

In this chapter, we used the separation technique presented in chapter 3 using an
implicit definition of the dispersion of waves explained in section 3.1.5 for the case
of rotating flow. We apply this separation technique on a campaign of numerical
simulation for varying values of Ro and ReI number. We observe that the distribution
of energy between waves and eddies depends on Ro number and the distribution of
wave and eddy dissipation depends on ReI . We also observe that the energy spectrum
of eddies and waves seems to intersect close to the Zeman-Hopfinger scale kΩ. The
eddy energy spectrum follow a scaling close to k−5/3 and k

−5/3
h . As for the wave energy

spectrum, it follows a steeper scaling, close to k−2 and k−2
h .

Then, a balance of energy and flux for waves, eddies and the geostrophic mode (GM)
is computed. We observe a large transfer from waves to eddies for all numerical
simulations. In particular the eddy-wave interactions increasingly feed the eddy part
as ReI increases. Furthermore, we witness that mostly waves feed the GM due to
wave-wave interactions, but also eddy-wave interactions. For the cascade of energy
terms, we observed that wave interactions dominate for all numerical simulations and
particularly at low Ro. Eddy interactions increased as ReI increased as well but its
value is still far below wave interactions for all cases. Transfers linked to the GM are
more prone to undergo a backward cascade that transfers that do not involve the GM.
This is especially true for large rotation rate, when the GM is two dimensional.

Finally, 2D cuts of the wave and eddy vertical velocity are plotted. Large differences
can be observed between the wave and eddy part which support that our separation
technique actually works in a turbulent rotating flow. This is also done in one case for
the velocity uy which is decomposed into its toroidal/poloidal part as well as its wave
and eddy part.
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Conclusion and perspectives

Conclusion

In this thesis, we tried to separate the waves from the rest of the turbulence (called
eddies) in stratified or rotating flows. This separation therefore permits the consideration
and analysis of flow statistics or visualizations, as in classical turbulence, but with a
special focus on wave or eddy dynamics, separately.

Chapter 2 starts by presenting the equations solved in the stratified and rotating cases
and how they are computed. The classical dispersion relation of waves is derived in both
the stratified or rotating cases. The computation of space-time statistics is defined. It
is used to observe numerically the trace of the dispersion relation of waves. Then, we
analysed the effect of non-linearity of the flow on the dispersion relation. We analyse
the advection (sweeping effect) and gradient effect (refraction) on the waves by varying
the frequency (in time) and the scale of the flow. In the end, we observe that it is
mostly the advection of waves by a large scale flow (the vertical sheared horizontal flow
(VSHF) or the gesotrophic mode (GM)) that modifies the most the dispersion relation
of waves.

Chapter 3 shows how the waves and eddies are separated from the turbulent flow in
the stratified or rotating case by taking into account the advection by a large scale
flow. It requires a 4D Fourier transform of the different quantities (the velocity field
and/or the buoyancy field) in time and space. Then, a filter ζ is defined which filters
the waves from the rest of the flow in the (ω,k) domain. The definition of this filter can
be done through two different techniques: a technique which directly defines its value
in the (ω,k) domain, or a technique that uses the Green’s function to define the (ω,k)

146
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domain of the waves implicitly. Finally, a simple example where a Saint Andrew’s cross
is convected is used to assess the ability of this separation technique.

Chapter 4 shows the results of the separation of waves and eddies in a stratified turbu-
lent flow. Numerous numerical simulations are done and results are shown against the
Froude number Fr or against the buoyancy Reynolds number Reb. We observe that the
energy partition between waves and eddies is mainly dependent on the Froude number.
Eddies follow an energy spectrum close to a −5/3 scaling against the wavenumbers k and
kh. Waves follow an energy spectrum close to a −3 scaling at large stratification against
the wavenumber k, kh and kz whereas at lower stratification the powerlaw obtained is
smaller. The balance of energy for waves and eddies separately are computed. Different
interactions occur (wave-wave, eddy-eddy, wave-eddy and eddy-wave interactions) be-
tween the wave and eddy parts of the flow. We observe a large transfer from the waves
to the eddies, particularly due to the potential transfer. We also compute the contribu-
tion to the mixing coefficient of IGW and eddy. At large Reb, a plateau is reached on
the split mixing contribution and we observe that the eddy mixing is four times that of
waves. Most of the dissipation is due to eddies except at very high stratification where
dissipation is dominated by waves. Finally, a deeper analysis of the transfers is done
on the waves and eddies terms, where the focus is put on the strength of the transfers
as well as the scale they are operating. We notice that the potential transfer involving
only waves dominates at large stratification and that the kinetic transfer involving only
eddies dominates at small stratification. Most transfers involve a forward cascade of
energy except the kinetic transfer where an eddy convects a wave to give or take en-
ergy to a wave (Tw

ew). At small stratification, this transfer is responsible of an inverse
cascade. Finally, we plot 2D velocity field which shows the decomposition of the full
flow in a wave and eddy part. We remark that waves are larger scale than eddies and
that isodensity-lines show that overturning is occurring mainly in the eddy part of our
decomposition.

Chapter 5 is similar in construction to chapter four, but it shows the results of the sepa-
ration of waves and eddies in a rotating turbulent flow. Numerous numerical simulations
are done and results are shown against the Rossby number Ro or against the inertial
Reynolds number ReI . Again, we observe that the distribution between wave and eddy
energy depends mostly on the Rossby number. For the distribution of the dissipation, it
depends mostly on the inertial Reynolds number. The balance of energy for the waves,
the eddies and the geostrophic mode separately are computed. We observe a large trans-
fer from the waves to the eddies. A large transfer from waves to the GM also occurs due
to wave-wave interaction, but also due to eddy-wave interaction. A refined analysis of
the transfers is also done. The transfer involving only the wave-wave interaction on the
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wave part Tw
ww is much stronger than all other transfers even if its effect decreases as the

rotation rate decreases. We mostly see direct cascade when only waves and eddies are
involved, except for the wave-wave interaction on the eddy part T e

ww which undergoes
an inverse cascade at small rotation. When the GM is involved, there is a mix between
inverse and direct cascades. Visualisation of the total, wave and eddy velocity field are
done and we discern that in our cases, waves are larger scale than eddies and keep the
general pattern of the total flow.

Perspectives

Such a separation technique is new in the field of stratified or rotating turbulence, so
that numerous possibilities exist for future work. We listed a few perspectives that seem
the most relevant below.

• This separation technique could be used in flows that mix stratification and rota-
tion. In this case, one should first answer this question: what is the main advecting
flow? Then, similar results than the one presented in this thesis could be com-
puted, such as energy distribution between waves and eddies, transfers, cascade of
energy...

• This separation technique could be adapted to other cases where waves follow
a dispersion relation. For example, it could be applied to capillary waves or to
magnetohydrodynamics with Alfvén waves.

• There is still room for improving the algorithm of separation of waves and eddies
(see section 3.3 for more details). In particular, there might be better advecting
flow than the VSHF or the GM depending on the case of study. For example,
it could be possible to choose also the large scale eddies or even all the flow.
Moreover, in the search for the peaks of the Green function, the choice of β used
to define the value of ζ can probably be further optimized. The type of filter which
is currently used is an all or nothing filter, and this is a good first approximation,
but in reality, waves and eddies can share the same wave vector and frequency
in the (k, ω) domain. To take this into account, a finer filter would be necessary.
Besides, the smallest scale of the flow (i.e. the Kolmogorov scale kη) is subject to
a strong sweeping effect (kηc) against the stratification strength N or the rotation

rate 2Ω. Hence, in our numerical simulations, we do not verify N

kηc
� 1 or 2Ω

kηc
� 1

so that the small scales of waves and eddies can more easily share the same points
in the (k, ω) domain.
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• We mostly used the implicit definition of ζ in our campaign of numerical simula-
tion in rotating or stratified flows. This seems the most relevant approach in the
rotating case as the explicit estimation of the dispersion relation do not encompass
all waves (see figure 5.5). However, in the stratification case, the explicit approach
could be used as well (and this would reduce slightly the computation cost compare
to the implicit approach) as all waves seem well encompassed with this technique
(see figure 4.5).

• A higher Reynolds number Reb or ReI for a constant Froude or Rossby number
is necessary to get closer to oceanic or atmosphere measurements to confirm and
confront our results. In this case, more computing power and also more storage
would be necessary to run these new numerical simulations.

• A different forcing could be used. One that gives more energy to eddies, in par-
ticular for rotating flow where nearly all the forcing is done in waves. The scale of
the forcing could also be changed in order to better observe a backward cascade
for example. Indeed, the choice of forcing can have a significant impact on the
statistics of the flow such as mixing [65].

• In the stratified case other numerical simulations could be done without damp-
ening as much as we did the VSHF (by choosing α = 0.5 as in the rotating case
for example). This could allow us to study the implication of the VSHF on the
transfers, as done in this thesis in the rotating case with the GM for example.

• Generally, many characterizations in the case of homogeneous and isotropic tur-
bulence could be applied separately on the wave and eddy parts of the flow.

• Other analyses could be done, such as the calculation of the structure function
to characterize the fluctuations of the wave and eddy part, the calculation of the
bicoherence to observe the transition of instabilities to turbulence or the calculation
of ring-to-ring energy transfer as in Sharma et al. [124] but for the eddy and wave
parts.

• Our separation technique defines clearly what is considered as waves: the areas in
the (θ, ω) space that follows the dispersion relation advected through the sweeping
effect. However, it does not define clearly what is considered as eddies. Indeed,
our eddy part is defined as everything that is not waves (and not the VSHF
in stratified flows or GM in rotating flows). To have a better understanding of
what contains the eddy part in our separation technique, one could also try to
characterize if our eddy part of the flow is similar to eddies found in homogeneous
and isotropic turbulence. One way to do so would be to check if the structure
function of order p of the eddy part of our separation technique is similar to the
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one found in homogeneous and isotropic turbulence. For example, do we recover
some intermittent behaviour as shown in Frisch [48] in our eddy part of the flow?

• Improve statistical model such as EDQNM or RANS in the modelization of wave
and eddy energy.



Appendix A

Saint Andrew’s cross with
viscosity

In this appendix, we calculate the response of the full Navier-Stokes equations in
Boussinesq approximation (with viscosity) of an oscillating particle in the flow. This
analytical study is linked to section 2.6.2.1 where the same analytical calculation is
done in the inviscid case.

The Navier-Stokes equation in Boussinesq approach is projected in the Craya-Herring
frame (see equation (2.29)) with a pointwise sinusoidal forcing on the buoyancy term:

∂t

(
v̂p

b̂

)
+

(
νk2 − cos θ

N2 cos θ νk2

)(
v̂p

b̂

)
=

(
0

sin(ωf t)

)
(A.1)

The two equations in (A.1) can be solved using the Green’s function

∂t

(
v̂p

b̂

)
+ P

(
νk2 − iωr 0

0 νk2 + iωr

)
P−1

(
v̂p

b̂

)
=

(
0

sin(ωf t)

)

where P =

(
−i/N i/N

1 1

)
and P−1 =

(
iN/2 1/2

−iN/2 1/2

)
.

(A.2)
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This equation is then rewritten as:

∂t

(
v̂pG

b̂G

)
+

(
νk2 − iωr 0

0 νk2 + iωr

)(
v̂pG

b̂G

)
=

(
1/2 sin(ωf t)

1/2 sin(ωf t)

)
where v̂G = P−1v̂.

(A.3)

We first look for a particular solution for bG(t). Let µ = e(iN sin θ+νk2)t then

∂t(b̂Gµ)(t) = ∂tb̂G(t)µ(t) + b̂G(t)∂tµ(t) = µ(t)
1

2
sin(ωf t). (A.4)

Therefore, solving (A.3) is equivalent to solving (A.4). By doing two integrations by
parts and by writing K = iωr + νk2, one can obtain:

∫ t

0
µ(x) sin(ωfx)dx = (−[

cos(ωfx)

ωf
µ(x)]t0 +

∫ t

0
Kµ(x)

cos(ωfx)

ωf
dx)

= −
cos(ωf t)

ωf
µ(t) +

1

ωf
+ [

sin(ωfx)

ω2
f

Kµ(x)]t0 −
∫ t

0
µ(x)

sin(ωfx)

ω2
f

K2dx.

(A.5)

Putting all terms in (A.5) of the form µ(x) sin(ωfx) on the left-hand-side and multiplying
by ω2

f :

∫ t

0
µ(x) sin(ωfx)(ω

2
f +K2)dx = − cos(ωf t)ωfµ(t) + ωf +Kµ(t) sin(ωf t). (A.6)

The solution for b̂G(t) is the sum of the particular solution and homogeneous solution:

b̂G(t) = 0.5
− cos(ωf t)ωf + ωfe

−(iωr+νk2)t +K sin(ωf t)

ω2
f + (iωr + νk2)2

+Be−(iωr+νk2)t. (A.7)

Using the initial condition v̂G(t = 0) = 0 and b̂G(t = 0) = 0, the second term in equation
(A.7) can be dropped:

b̂G(t) = 0.5
− cos(ωf t)ωf + ωfe

−Kt +K sin(ωf t)

ω2
f + (K)2

. (A.8)



Appendix A. Saint Andrew’s cross with viscosity 153

Taking the Fourier transform of (A.8) in time:

b̃G(ω) =0.5
−(δ(ω − ωf ) + δ(ω + ωf ))

ωf

2 + ωf [
∫ +∞
−∞ δ(λ− ωr)

−νk2

π((ω−λ)2+ν2k4)
dλ]

ω2
f +K2

+ 0.5
K
2i (δ(ω − ωf ) + δ(ω + ωf )

ω2
f +K2

.

(A.9)

Simplifying the convolution term and writing K ′ = −iωr + νk2 the solution of (A.3) is:

b̃G(k, ω) =0.5
−(δ(ω − ωf ) + δ(ω + ωf ))

ωf

2 + ωf
−νk2

π((ω−ωr)2+ν2k4)

ω2
f +K2

+ 0.5
K
2i (δ(ω − ωf ) + δ(ω + ωf )

ω2
f +K2

ṽpG(k, ω) =0.5
−(δ(ω − ωf ) + δ(ω + ωf ))

ωf

2 + ωf
−νk2

π((ω+ωr)2+ν2k4)

ω2
f +K ′2

+ 0.5
K′

2i (δ(ω − ωf ) + δ(ω + ωf )

ω2
f +K ′2 .

(A.10)

The final solution is:

ṽp(k, ω) = − i

N
ṽpG(k, ω) +

i

N
b̃G(k, ω)

b̃(k, ω) = ṽpG(k, ω) + b̃G(k, ω).

(A.11)

From the equation (A.11), we observe that when ωf ∼ ωr, a peak of energy will be
observed. The biggest difference with the inviscid case is that the viscosity makes that
peak of energy reach a finite value.
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Detailed proof of T l
u,ij = −T

j
u,il

In this appendix, we detailed the analytical proof for T l
u,ij = −T j

u,il with
T l
u,ij = − < ω̂i × uj , ûl >. Note that in the rotating case T l

u,ij is written as T l
ij

(there is no potential transfer).

The Fourier transform of the non-linear term can be rewritten as:

ω̂i × uj(k) =
∑

k=p+q

ω̂i(p)× ûj(q)

=
∑

k−p−q=0

ω̂i(p)× ûj(q)

=
∑

k−p−q=0

ω̂i(−p)× ûj(−q)

=
∑

k+P+Q=0

ω̂i(P)× ûj(Q) with P = −p and Q = −q

=
∑

k+p+q=0

ω̂i(p)× ûj(q) by dropping the upper case,

(B.1)

where is the complex conjuguate.

By applying the identity (A×B)×C = (C ·A)B− (C ·B)A then

ω̂i × ûj = (ip× ûi)× ûj = (ûj · ip)ûi − (ûj · ûi)ip

ω̂i × ûl = (ûl · ip)ûi − (ûl · ûi)ip,
(B.2)

which means that(
ω̂i × ûj

)
· ûl = (ûj · ip)(ûi · ûl)− (ûj · ûi)(ip · ûl) = −

(
ω̂i × ûl

)
· ûj . (B.3)
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With equations (B.3) and (B.1) we obtain:

ω̂i × uj(k) · ûl(k) =
∑

k+p+q=0

ω̂i(p)× ûj(q) · ûl(k)

= −
∑

k+p+q=0

ω̂i(p)× ûl(k) · ûj(q) using (B.3)

= −
∑

k+p+q=0

ω̂i(p)× ûl(q) · ûj(k)

= −ω̂i × ul(k) · ûj(k).

(B.4)

Using the equality shown in equation (B.4) as well as the definition for < > and [ ]

given in section 3.1.3.1, we finally show:

T l
u,ij = − < ω̂i × uj , ûl > =

∑
k

Re[ω̂i × uj(k, t), ûl(k, t)]

=
∑
k

Re

(
1

T

∫
T
ω̂i × uj(k, t) · ûl(k, t)δk−k′dt

)
=
∑
k

Re

(
1

T

∫
T
−ω̂i × ul(k, t) · ûj(k, t)δk−k′dt

)
=< ω̂i × ul, ûj >= −T j

u,il.

(B.5)

Similarly, we can prove that T l
b,ij = −N−2 < ûi · ∇bj , b̂l >= −T j

b,il.



Appendix C

Rough estimation of CO2
emissions related to this thesis

In this appendix, we try to calculate the amount of equivalent CO2 emissions done
during the three years of this thesis. It is quite complicated to take into account every
aspect of the activities done in this thesis. Thus, I do not say that this calculation
is perfect, but it should at least give some order of magnitude of the different CO2

emissions of the activities done in this thesis. The result is done as a CO2 equivalent
(CO2e) which represents the emission of any greenhouse gases based on the global
warming potential of CO2.

As this thesis is mostly numerical, we start by listing most of the computing resources
used during the thesis. They are:

• 1 000 000 h.cpu at the national supercomputer Jean-Zay in IDRIS

• 30TB of data on the store in IDRIS

• Around 100 000 h.cpu on Newton (local supercomputer in Lyon)

• 5 TB of data on the store in Newton

In [12], they estimated the equivalent carbon footprint of 1 h.cpu on their local
supercomputer in Grenoble. They found that on average, each cpu produced a footprint
equivalent to 4.68g of CO2 per hour. For our calculation we will do the rough estimation
that the equivalent footprint for 1 h.cpu is the same at the supercomputer Jean-Zay in
IDRIS and in the local supercomputer in Lyon called Newton. Hence the computation
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has roughly produced an equivalent to 5.1t of CO2.

The equivalent of CO2 produced by storing data on the cloud per year have been com-
puted in [67] in the case of the US. They found that for storing 1GB of data for one year
produce an equivalent of 2kg of CO2. We hypothesize that the data will be kept around
three years (which is very gentle). This means that the storage of 35TB of data gives
an equivalent of CO2 emission of 70t of CO2. This number is very high and is probably
overestimated, as the calculation in [67] is done with the electric mix of the USA which
is around five times higher than the one from France. Hence, if we suppose that most of
the carbon footprint from the storage of data comes from the electricity consumption,
we can estimate the CO2 emission of the storage of 35TB of data to be around 15tCO2e.
Furthermore, I will probably reduce the amount of storage at the end of the thesis.

Next, we only consider the travels done for the thesis by car, train or plane. We do
not consider travels by bike or by walking because they nearly do not produce any CO2

emission. The travels done during the thesis are (round trip):

• 1 trip to San Francisco for the AGU conference (by plane)

• 9 travels to Saint-Etienne for teaching (by TER)

• 1 trip to Grenoble for an ANR meeting (by TER)

• 1 trip to les Houches for winter school (by car with 4 people)

• 1 trip to Paris for a wave turbulence workshop (by TGV)

• 1 trip to Nice for the GDR turbulence (by TGV)

Using an online calculator, I found that the trip by plane produced around an equivalent
to 3 tons of CO2. On the website of ouisncf (the train company), it is possible to find
the footprint for 1km done in a TER train (24.81gCO2e) or a TGV train (1.73gCO2e).
Hence, the train amount for an equivalent of 29kg of CO2 emission. As for the travel by
car an online calculator gives an equivalent of 120kg of CO2 for 4 passengers, so 30kg
of CO2 for the travel.

Finally, we could also add the carbon footprint of the screen, the desktop computer
and laptop which are estimated at an equivalent of 14.4kg per year (only for its use) in
[16], so around 45kgCO2e for the duration of the thesis. We also need to account for
the emission of carbon during the manufacturing process. On Ademe’s website [1] (the
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French agency for ecological transition), the carbon footprint for a 21.5 inch screen is
estimated to 222 kg CO2e, the carbon footprint of a desktop computer is 169 kg CO2e
and of a laptop is 156 kg CO2e. However, as these objects will be used around six years
for the computers and ten years for the screen the carbon footprint for my thesis in the
fabrication of these objects should be at 66 kg CO2e for the screen, 75 kg CO2e for the
desktop computer and 78 kg CO2e for the laptop computer. In the end, the carbon foot-
print of the items related to computers is around 264 kg CO2e for the length of my thesis.

To conclude, I estimate this PhD thesis to produce around 23tCO2e, mostly due to
the storage of data, in a lesser measure to the cpu hours used and finally to the trip
made by plane for a conference. This result can be compared with the work done
in [135] who found that astronomers produced in average 37tCO2e per year. The
footprint of my thesis is smaller but this could be because I did not take into account
the carbon footprint of the powering of the faculty for example, and also because the
electric mix of Australia, which is the country of study in [135] use heavily coal for their
production of electricity (which is known to produce a lot of CO2e). Yet, the repartition
of CO2e is very similar in my thesis to the astronomy case because in the work done
in [135], 60% of the emission was due to supercomputer usage and 15% was due to flights.

Nonetheless, the carbon footprint of this thesis remains high and very far from the
objective of the “Paris agreement” which would require a net CO2e emission of zero.
To attain this objective, it is usually estimated that the average carbon footprint of a
French citizen should reach 2tCO2e per year [42]. This leads to some questions on the
sustainability of such research in order to comply with the “Paris agreement”.
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Résumé (long)

Je résume en français chapitre par chapitre l’ensemble de ce manuscrit de thèse.

Introduction

Les ondes internes de gravité ont lieu dans des écoulements stablement stratifiés, un
écoulement ou la densité du fluide varie avec la direction verticale, avec une couche de
densité plus lourde en dessous d’une couche de densité plus légère. Les ondes internes
de gravité apparaissent quand un volume de fluide évolue dans une densité différente à
sa propre densité et qu’une force de flottaison fait osciller ce volume de fluide. On les
retrouve dans l’atmosphère ou l’océan où elles influencent fortement leur dynamique.
Elles peuvent avoir un rôle important dans le mélange et la prédiction des modèles
climatiques, comme expliqué dans les rapports du GIEC [31, 47, 136].

Les ondes inertielles, ont elles lieu dans des écoulements en rotation, leur mouvement
est la résultante des forces de Coriolis dans le référentiel tournant. On les retrouve dans
l’océan et l’atmosphère mais aussi dans le noyau des planètes.

Les écoulements en turbulence homogène et isotrope ont fait l’objet de nombreux articles
et livres [48] (malgré le fait qu’aucune solution analytique n’existe). Pour les écoulements
fortement stratifiés ou fortement en rotation, il est possible de négliger le terme non
linéaire et d’obtenir une solution analytique [120]. Dans ce cas, nous connaissons aussi
très bien ce type d’écoulement. Le problème apparaît lorsque l’écoulement est stratifié ou
en rotation mais aussi turbulent. Dans ce cas, il n’est pas possible d’ignorer le terme non
linéaire, et l’écoulement possède une multitude de structures interagissant à toutes les
échelles. C’est justement l’interaction entre les tourbillons et les ondes qui représente un
obstacle à la compréhension de ce type d’écoulement. Dans cette thèse, nous proposons
une technique de séparation des ondes et des tourbillons afin de mieux comprendre leurs
interactions et comportements.

Ondes dans des écoulements

Pour commencer nous présentons les équations utilisées dans le cas stratifié et dans le
cas en rotation. Les équations utilisées sont adimensionnelles. Le référentiel de Craya-
Herring est défini. Il permet l’obtention des champs de vitesses et de densité de manière
élégante car ce référentiel utilise l’incompressibilité du fluide pour condenser le système
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d’équations en seulement trois équations dans le cas stratifié (au lieu de cinq) et deux
équations dans le cas en rotation (au lieu de quatre). On montre des résultats classiques
comme la relation de dispersion pour les ondes interne de gravité est définie (ωr =

±N cos θ) ainsi que pour les ondes inertielles (ωr = ±2Ω sin θ) et leurs vitesses de groupe
vg = ∇k(ωr) et de phase vΦ = kωr/k

2, où N est la fréquence de Brunt-Väisälä, 2Ω est la
vitesse de rotation et θ est l’angle réalisé par le vecteur d’onde k avec le plan horizontal.

Une technique de représentation de la concentration d’énergie en fonction de l’angle θ

et de la fréquence ω est présentée. C’est cette technique qui permet d’observer la trace
des ondes (la relation de dispersion) depuis un exemple simple comme la croix de Saint
André à des cas plus complexes d’écoulement turbulent. Nous observons qu’à partir
d’un forçage localisé en espace et oscillant, nous retrouvons la relation de dispersion
de manière numérique en traçant la concentration d’énergie en fonction de θ et ω. La
technique de fenêtrage de Hann est utilisée uniquement lorsque le résultat obtenu n’est
pas utilisé de manière quantitative mais de manière qualitative car cela modifie le signal,
ce qui peut s’avérer gênant pour tracer des statistiques.

Puis, les effets non linéaires sur les ondes sont observés. D’abord, nous observons l’ef-
fet Doppler, le mouvement continu dans une direction d’une particule oscillante dans
un écoulement au repos. Cela ne modifie pas la relation de dispersion des ondes mais
uniquement la fréquence de forçage. Par la suite, l’effet du sweeping est observé. Celui-ci
correspond à l’advection des ondes par un écoulement. On observe que l’effet sweep-
ing est très bien estimé lorsque l’écoulement advectant est homogène et constant. La
nouvelle relation de dispersion des ondes obtenue est ωc = ωr + c · k, avec c la vitesse
de l’écoulement advectant et k le vecteur d’onde. L’effet de l’échelle de l’écoulement
advectant est aussi analysé mais s’avère compliqué. En effet, nous montrons que la
vitesse maximale atteinte pour un écoulement de petite taille est supérieure à rms con-
stante à un écoulement de grande taille. De plus le mode géostrophique (étudié dans les
écoulements en rotation) atteint une vitesse maximale supérieure à l’écoulement cisaillé
(étudié dans les écoulements stratifiés) pour une même vitesse rms. Cependant, on
peut observer que l’échelle de l’écoulement advectant influence la relation de dispersion
des ondes assez fortement. La fréquence de l’écoulement advectant est aussi modifiée
et change significativement la relation de dispersion des ondes. Enfin, nous regardons
l’effet dû à un gradient de vitesse sur les ondes. Un gradient à grande échelle a peu
d’influence mais un gradient à petite échelle a beaucoup d’influence. Heureusement,
les petites échelles ont généralement peu d’énergie dans les écoulements turbulents au
contraire des grandes échelles. On peut donc penser qu’elles ont un effet limité sur la
relation de dispersion des ondes. De plus, nous considérons plus tard uniquement les
écoulements cisaillés dans le cas stratifié et le mode géostrophique dans le cas en rotation
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comme source d’advection pour les ondes. Ces deux types d’écoulements ont en général
une très faible fréquence temporelle.

Séparation des ondes et des tourbillons

Nous expliquons les différentes techniques pour séparer les ondes des tourbillons. Pour
cela, nous faisons la transformée de Fourier en espace et en temps d’une composante de
vitesse ou de flottaison noté f . A l’aide un filtre ζ(k, ω), qui a pour valeur un dans la
partie onde et zero dans la partie tourbillon, nous séparons les ondes et tourbillons:

f̃w(k, ω) = ζ(k, ω)f̃(k, ω)

f̃ e(k, ω) = (1− ζ(k, ω))f̃(k, ω).

Puis la transformée inverse en temps et en espace est réalisé sur chaque composante
onde et tourbillon.

Dans le cas stratifié, notre décomposition est un peu plus complexe car le terme toroidal
est considéré comme ne comprenant que des tourbillons (car il ne comprend pas d’ondes
dans les équations linéarisées). Ainsi, la séparation des termes en tourbillons et ondes
s’écrit :

ũw(k, ω) = ζ(k, ω)ũp(k, ω)ep

ũe(k, ω) = ũt(k, ω)et + (1− ζ(k, ω)) ũp(k, ω)ep

b̃w(k, ω) = ζ(k, ω)b̃(k, ω), b̃e(k, ω) = (1− ζ(k, ω)) b̃(k, ω)

La décomposition que nous montrons est orthogonal. Les parties ondes et tourbillons
sont disjoints en temps et en espace. Ainsi, pour tout nombre d’onde k et k′, la moyenne
temporelle du produit de deux composante f̂ i(k, t) et ĝj(k′, t) sur un grand temps T

est :

[f̂ i(k, t), ĝj(k′, t)] ≡ 1

T

∫
T
f̂ i(k, t)ĝj(k′, t)δk−k′dt 6= 0 seulement si i = j et k = k′,

avec i et j pouvant être égale à la partie onde (w), tourbillon (e) ou au mode
géostrophique (g).

Pour définir le filtre ζ(k, ω), nous développons deux techniques distinctes :

• Une première technique explicite consiste à estimer la vitesse rms de l’écoulement
advectant c. Puis, le domaine des ondes est défini par ζ(k, ω) = 1 lorsque ωr−c·k ≤
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ω ≤ ωr+c ·k. Les points n’appartenant pas au domaine des ondes sont considérés
comme des tourbillons et ζ(k, ω) = 0.

• La deuxième technique est plus raffinée. Elle permet de prendre en compte l’évolu-
tion spatiale et temporelle de l’écoulement advectant. Elle repose sur les fonctions
de Green. A partir d’une série d’impulsions en temps et en espace, il est possi-
ble de montrer que la densité d’énergie atteint un pic dans le domaine (k, ω) ou
les ondes s’expriment. Ainsi lorsqu’un pic est observé dans l’écoulement avec im-
pulsions advectées, cela correspond à la partie onde de la décomposition et nous
avons ζ(k, ω) = 1. Lorsque l’énergie au point (k, ω) est basse, nous sommes dans
le domaine des tourbillons et ζ(k, ω) = 0.

Pour finir, la première technique explicite de séparation des ondes et tourbillons est
appliquée à une croix de Saint André advectée horizontalement. Visuellement, ce test
est très concluant puisque l’on voit dans la figure 3.7 que la partie onde garde l’aspect
de croix, tandis que la partie tourbillon ne contient plus que le forçage.

Turbulence stratifiée

Nous appliquons la technique de séparation des ondes et tourbillons à plusieurs écoule-
ments stratifiés. Plus particulièrement, c’est la deuxième technique, qui utilise la fonc-
tion de Green qui est utilisée. Le forçage utilisé est un forçage développé dans [89, 92].
Il permet de forcer un cylindre (dans le domaine de spatial de Fourier) avec un nombre
d’onde horizontal constant et une amplitude de nombre d’ondes verticaux contraint. Il
est très utile afin d’éviter des points problématiques comme l’écoulement cisaillé (nom-
bre d’onde horizontal kh = 0). De plus, afin de réduire l’écoulement cisaillé un terme
de viscosité linéaire est ajouté. Les différentes simulations numériques sont réalisées
avec une résolution 2563 points et 5123 points ce qui permet de faire varier la valeur
du nombre de Froude Fr ou du Reynolds de flottaison Reb en gardant l’autre nombre à
peu près constant. Toutes les simulations sont réalisées à très faible Froude mais a des
nombres de Reynolds de flottaison variable (inférieur, supérieur ou égal à un).

On vérifie que l’écoulement cisaillé extrait d’écoulements turbulent est bien convecté
comme dans les cas idéalisés du chapitre 2. La relation de dispersion des ondes modifié
par cet écoulement cisaillé est bien estimé par la vitesse rms du cisaillement du fluide.

L’énergie des ondes et des tourbillons est représentée en fonction du Froude et du
Reynolds de flottaison. Nous montrons que la répartition des ondes et tourbillons dépend
aussi quelle quantité d’énergie est regardée. En ne regardant que la composante poloidal
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et de flottaison, qui contiennent toutes les deux des ondes et des tourbillons (alors que
la composante toroidal ne contient que des tourbillons) la répartition ondes/tourbillons
est fortement dépendante du nombre de Froude et dans une moindre mesure, du nombre
de Reynolds de flottaison.

Afin d’être plus précis, nous analysons aussi des spectres d’énergie des ondes et des
tourbillons en fonction du nombre d’onde k, du nombre d’onde horizontal kh et du
nombre d’onde vertical kz. Utiliser des nombres d’ondes différents (vertical et horizontal)
permet de rendre compte davantage de l’anisotropie créée par la stratification. On
observe que la partie tourbillon est proche d’une pente en −5/3 en fonction de k et
kh. Aucune tendance particulière n’apparaît pour le spectre d’énergie des tourbillons en
fonction de kz. Le spectre d’énergie des ondes semble proche d’une pente en −3, surtout
a grande stratification alors qu’à petite stratification, la pente obtenue est plus faible et
se rapproche d’une pente en −5/3.

Nous analysons ensuite le bilan d’énergie de notre système. Grâce aux propriétés de
notre technique de séparation il est possible de créer un bilan d’énergie séparé pour les
ondes w et tourbillons e :

0 = Tw
ee + Tw

we − εwT + Pw

0 = T e
ww + T e

ew − εeT + P e
(C.1)

ou T l
ij correspond au terme de transfert de l’advection de j par i pour prendre ou donner

de l’énergie à l. P l est le forçage dans la partie l et εlT correspond à la dissipation de
l’énergie par la partie l. i, j et l peuvent être égaux à la partie onde (w) et tourbillon (e)
de notre décomposition. On observe qu’un large transfert existe entre la partie onde et
tourbillon favorisant la dissipation d’énergie par les tourbillons. Le transfert potentielle
est responsable en grande partie de cet échange d’énergie alors que le transfert cinétique
est plus faible et fluctuant.

Le mélange ainsi que la dissipation dû aux ondes et tourbillons est analysé. On observe
un plateau à grand Fr et grand Reb ou le mélange dû aux tourbillons est environ quatre
fois important que le mélange du aux ondes. A petit Fr et petit Reb, c’est le mélange dû
aux ondes qui domine par rapport au mélange dû aux tourbillons. Aussi, nous représen-
tons les dissipations cinétiques et potentielles par les ondes et tourbillons. Un plateau
est aussi visible à petite stratification lorsque l’on observe la dissipation potentielle et
cinétique par les ondes et tourbillons. De plus la dissipation cinétique des ondes égale
la dissipation potentielle des ondes.
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Une analyse détaillée est faite du transfert cinétique T l
u,ij , du transfert potentiel T l

b,ij

et du transfert cinétique à potentiel T l
u→b,i. Le transfert est simplifié en quatre com-

posantes, l’échelle moyenne de transfert positif et négatif et la valeur du transfert positif
et négatif. Lorsque les nombres de Fr sont faibles c’est surtout le transfert potentiel
des ondes qui domine et un peu le transfert cinétique des ondes. Lorsque les nombres
de Fr et Reb sont élevés, c’est le transfert cinétique des tourbillons qui domine, et dans
une moindre mesure le transfert potentiel des tourbillons. La plupart de ces transferts
participent à une cascade direct d’énergie, qui devient de plus en plus directe quand la
stratification diminue. L’unique transfert qui participe à une cascade inverse d’énergie
est le transfert cinétique Tw

u,ew à forte stratification. Le transfert cinétique à potentiel est
dominé par les ondes. Beaucoup d’énergie est envoyé de la partie cinétique à la partie
potentielle à grande échelle par les ondes. En effet, seulement la partie cinétique est
forcée, donc c’est surtout les ondes qui sont forcées dans la partie potentielle grâce au
transfert d’énergie Tw

u→b,w. En revanche, le transfert d’énergie potentielle à cinétique est
surtout dû aux tourbillons et cela se réalise à petite échelle.

Finalement, des coupes 2D sont réalisés du champ de flottaison total b(x, z), onde
bw(x, z) et tourbillon be(x, z). On observe que la partie onde est de plus grande échelle
et les lignes d’isodensité sont lisses (on ne voit que très peu de retournement par rapport
au champ de flottaison total). Au contraire, la partie tourbillonnaire est à plus petite
échelle et les lignes d’isodensité se croisent beaucoup plus, signe que du mélange s’ef-
fectue. Le même genre d’analyse est réalisé pour la vitesse verticale avec des observations
similaires.

Turbulence en rotation

Nous appliquons maintenant la technique de séparation des ondes et tourbillons à
plusieurs écoulements en rotation avec 5123 points ou 2563 points. Cela permet de
faire varier le nombre de Rossby (Ro) et le nombre de Reynolds inertiel (ReI). Le
forçage utilisé est le même que dans le cas stratifié et un terme de viscosité linéaire est
ajouté sur le mode géostrophique (avec un nombre d’onde vertical kz = 0), cependant
cette viscosité additionnelle est choisie plus petite que dans le cas stratifié, ce qui permet
d’avoir toujours beaucoup d’énergie dans ce mode. Le mode géostrophique est d’ailleurs
considéré comme 3D car la composante verticale reste importante à nombre de Rossby
élevé.

On observe aussi que l’advection de Diracs par le mode géostrophique extrait des sim-
ulations turbulentes n’est pas bien estimé par la vitesse rms du mode géostrophique.
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Cela est en partie dû au fait que le mode géostrophique fluctue légèrement avec le temps
et possède donc une fréquence temporelle pas tout à fait nulle.

L’énergie des ondes et tourbillons est représentée en fonction du nombre de Rossby et
du nombre de Reynolds inertiel. On observe que la répartition de l’énergie entre ondes
et tourbillons est fortement dépendante du nombre de Rossby. Le spectre d’énergie des
ondes a une plus grande pente que le spectre d’énergie des tourbillons. Par exemple, le
spectre d’énergie des ondes en fonction du nombre d’onde k est plus proche d’une pente
−2 ou −3. Pour le spectre d’énergie des tourbillons, on est plus proche d’une pente en
−5/3. Il est difficile d’observer une pente clair en fonction du nombre d’onde vertical
kz. En fonction du nombre d’onde horizontal kh, l’énergie des ondes évolue proche d’une
pente en −2 alors que celle des tourbillons est plus proche d’une pente en −5/3.

Toujours par les propriétés de notre séparation, nous analysons le bilan d’énergie des
ondes, des tourbillons et du mode géostrophique séparément dans notre système. Le
système d’équations est :

dEw/dt = Tw
ee + Tw

we + Tw
wg + Tw

ge + Tw
eg + εw + Pw

dEe/dt = T e
ww + T e

ew + T e
wg + T e

gw + T e
eg + εe + P e

dEg/dt = T g
ee + T g

we + T g
ww + T g

ew + εg

(C.2)

Comme le mode géostrophique a toujours beaucoup d’énergie, celui-ci apparaît toujours
dans le bilan d’énergie (avec la lettre g). On observe que ce sont les ondes qui sont
presque exclusivement forcées, qu’un large transfert d’énergie des ondes aux tourbillons
a lieu et que le mode géostrophique est surtout alimenté par les ondes (et un peu par
les tourbillons). La répartition de la dissipation entre ondes et tourbillons dépend en
grande partie du ReI .

Pour être plus précis sur le transfert, ceux-ci sont décomposés en quatre composantes,
l’échelle moyenne du transfert positif et négatif et la valeur du transfert positif et né-
gatif. On observe que c’est le transfert qui implique uniquement les ondes T+,w

ww qui
domine très largement l’écoulement, surtout à petit Ro et petit ReI . Le transfert qui
implique uniquement les tourbillons T+,e

ee devient plus important à grand Ro et grand ReI
mais son importance reste beaucoup plus faible que le transfert composé uniquement
d’ondes. Lorsque seulement des ondes et tourbillons sont en interactions (sans mode
géostrophique impliqué), la plupart des transferts participent à une cascade directe sauf
pour le transfert T e

ww qui participe à une cascade inverse à petite rotation. En revanche
lorsque le mode géostrophique participe au transfert, plusieurs transferts participent à
une cascade inverse à grande rotation.
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Finalement, nous visualisons la séparation du champ de vitesses vertical uz(x, z) en sa
partie onde uz(x, z)

w et sa partie tourbillon uz(x, z)
e. La partie onde garde les grandes

structure de l’écoulement alors que la partie tourbillon est à plus petite échelle. La
même chose est faite à partir du champ de vitesses horizontal uy(x, z) et des observations
similaires sont faite comparé au champ de vitesses vertical.

Conclusion

Pour conclure, nous avons montré comment caractériser les ondes par leurs relations
de dispersion et comment la relation de dispersion pouvait être modifiée par le terme
non linéaire. L’effet non linéaire prépondérant est l’effet sweeping, l’advection des ondes
par un écoulement à grande échelle. Ces observations sont utilisées pour créer une
technique de séparation des ondes et des tourbillons dans des écoulements turbulents en
stratification ou en rotation. Pour cela nous utilisons la fonction de Green. On analyse la
répartition d’énergie entre ondes et tourbillons, leurs spectres d’énergie, la dissipation et
le forçage. Aussi, un accent particulier est mis sur le transfert entre ondes et tourbillons
et sur la présence et force de cascade inverse ou directe.

Il reste encore beaucoup de perspectives dans la séparation des écoulements en ondes et
tourbillons. Par exemple, on pourrait améliorer la technique de séparation des ondes et
tourbillons, notamment dans le choix de l’écoulement advectant. On pourrait l’appliquer
dans des cas stratifiés et en rotation ; un forçage différent pourrait être utilisé afin de
forcer davantage les tourbillons ; de nouvelles simulations numériques avec plus de points
pourraient être faites ; d’autres analyses comme la bicohérence pourrait être réalisées ...
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