
HAL Id: tel-03641951
https://theses.hal.science/tel-03641951v1

Submitted on 14 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robots that can see : Learning visually guided behavior
Alexander Pashevich

To cite this version:
Alexander Pashevich. Robots that can see : Learning visually guided behavior. Robotics [cs.RO].
Université Grenoble Alpes [2020-..], 2021. English. �NNT : 2021GRALM056�. �tel-03641951�

https://theses.hal.science/tel-03641951v1
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES
Spécialité : Informatique
Arrêté ministériel : 25 mai 2016

Présentée par

Alexander PASHEVICH

Thèse dirigée par Cordelia SCHMID,directeur de recherche,
Université Grenoble Alpes

préparée au sein du Laboratoire Laboratoire Jean Kuntzmann
dans l'École Doctorale Mathématiques, Sciences et
technologies de l'information, Informatique

Des robots qui voient : Apprentissage de
comportements guidés par la vision

Robots that can see: Learning visually
guided behavior

Thèse soutenue publiquement le 29 septembre 2021,
devant le jury composé de :

Madame CORDELIA SCHMID
DIRECTEUR DE RECHERCHE, INRIA CENTRE GRENOBLE-RHONE-
ALPES, Directrice de thèse
Monsieur CHRISTIAN WOLF
MAITRE DE CONFERENCE HDR, INSTITUT NATIONAL SC.
APPLIQUEES DE LYON, Rapporteur
Monsieur NICOLAS MANSARD
DIRECTEUR DE RECHERCHE, CNRS DELEGATION OCCITANIE
OUEST, Rapporteur
Monsieur IVAN LAPTEV
DIRECTEUR DE RECHERCHE, INRIA CENTRE DE PARIS, Examinateur
Monsieur JEAN-PAUL LAUMOND
DIRECTEUR DE RECHERCHE EMERITE, CNRS DELEGATION
OCCITANIE OUEST, Examinateur
Monsieur JAMES L CROWLEY
PROFESSEUR DES UNIVERSITES, GRENOBLE INP, Président
Monsieur PIERRE-YVES OUDEYER
DIRECTEUR DE RECHERCHE, INRIA CENTRE BORDEAUX SUD-
OUEST, Examinateur

iii

Abstract

Recently, vision and learning made significant progress that could
improve robot control policies for complex environments. In this
thesis, we introduce novel methods for learning robot control that
improve the state-of-the-art on challenging tasks. We also propose a
novel approach for the task of learning control in dynamic environ-
ments guided by natural language.

Data availability is one of the major challenges for learning-based
methods in robotics. While collecting a dataset from real robots is
expensive and limits scalability, simulators provide an attractive al-
ternative. Policies learned in simulation, however, usually do not
transfer well to real scenes due to the domain gap between real and
synthetic data. We propose a method that enables task-independent
policy learning for real robots using only synthetic data. We demon-
strate that our approach achieves excellent results on a range of
real-world manipulation tasks.

Learning-based approaches can solve complex tasks directly from
camera images but require non-trivial domain-specific knowledge for
their supervision. This thesis introduces two novel methods for learn-
ing visually guided control policies given a limited amount of super-
vision. First, we propose a reinforcement learning approach that
learns to combine skills using neither intermediate rewards nor com-
plete task demonstrations. Second, we propose a new method to
solve a task specified with a solution example employing a novel dis-
assembly procedure. While using no real images for training, we
demonstrate the versatility of our methods in challenging real-world
settings including temporary occlusions and dynamic scene changes.

Interaction and navigation defined by natural language instruc-
tions in dynamic environments pose significant challenges for learning-
based methods. To handle long sequences of subtasks, we propose a
novel method based on a multimodal transformer that encodes the
full history of observations and actions. We also propose to lever-
age synthetic instructions as intermediate representations to improve
understanding of complex human instructions.

For all the contributions, we validate our approaches against
strong baselines and show that they outperform previous state-of-
the-art methods.

Keywords: robotics, reinforcement learning, imitation learning,
sim2real transfer, visual-and-language navigation, neural networks,
computer vision, natural language processing, machine learning.

Résumé
Récemment, la vision par ordinateur et l’apprentissage automa-

tique ont fait des progrès significatifs qui pourraient améliorer le
contrôle des robots dans les environnements complexes. Dans ce ma-
nuscrit, nous introduisons de nouvelles méthodes d’apprentissage de
comportements des robots. Nous proposons également une nouvelle
approche pour la tâche d’apprentissage du contrôle guidé par le lan-
gage naturel.

La disponibilité des données reste l’un des défis principaux pour
les méthodes d’apprentissage en robotique. Néanmoins, bien que la
collecte d’un ensemble de données à partir de robots réels soit coû-
teuse et rarement extensible, les simulateurs offrent aujourd’hui une
alternative attrayante. Le comportement appris en simulation, ce-
pendant, ne se transfère généralement pas adéquatement à les scènes
réelles à cause de la difference principale entre les données réelles et
synthétiques. Pour faire face à cette limitation, nous proposons dans
cette thèse une méthode qui permet un apprentissage de compor-
tements pour les robots réels en utilisant uniquement des données
synthétiques. Nous démontrons que notre approche aboutit à d’ex-
cellents résultats sur une gamme de tâches de manipulation dans un
milieu réel.

Les approches d’apprentissage peuvent résoudre des tâches com-
plexes directement à base des images, mais nécessitent des connais-
sances spécifiques au domaine pour leur supervision. Nous propo-
sons deux méthodes d’apprentissage des comportements guidés par
la vision compte tenu d’une supervision limitée. Premièrement, nous
proposons une approche d’apprentissage par renforcement qui ap-
prend à combiner des compétences primitives. Deuxièmement, nous
proposons une nouvelle méthode pour résoudre des tâches définies
avec un exemple de solution qui utilise une procédure innovante de
désassemblage. Nous démontrons la polyvalence de nos méthodes
dans des contextes réels complexes, y compris des occlusions et des
changements dynamiques.

L’interaction et la navigation définies par le langage naturel dans
des environnements dynamiques posent des défis importants pour les
méthodes d’apprentissage. Pour gérer une longue séquence de sous-
tâches, nous proposons une nouvelle méthode qui garde l’historique
complet des observations et des actions. Nous proposons également
d’utiliser des instructions synthétiques pour améliorer la compréhen-
sion des instructions humaines complexes.

Pour toutes nos contributions, nous avons comparé nos approches
avec les techniques existantes et nous montrons que nos résultats sont
significativement meilleurs que ceux de l’état de l’art.

v

Acknowledgements
The accomplishment of this thesis would not have been possible without

the help of numerous people. First of all, I would like to thank my advisor,
Cordelia Schmid, for her knowledge, energy, support, and patience. I am
forever grateful for your guidance and time throughout my PhD. I am very
thankful to all the jury members for accepting to evaluate my work and in
particular, to Christian Wolf and Nicolas Mansard for taking the time to
review this manuscript.

Thoth and Willow teams at Inria provided me with an amazing environ-
ment for doing research and exceptional people to learn from. I am sincerely
grateful to Ivan Laptev who co-advised me on several projects for his ideas
and commitment. I would like to thank my collaborators at Willow, Robin
Strudel and Igor Kalevatykh, for a great teamwork experience. I was for-
tunate to be a part of Ganesha team at Google for six months where I was
warmly received by all team members. I am especially thankful to Chen
Sun, my internship host, for his kindness and amazing supervision. I would
like to also thank Danijar Hafner, James Davidson, and Rahul Sukthankar
who I had a pleasure to work with on my first project. I am very grateful
to Radu Horaud, my first supervisor at Inria, for showing me the beauty
of research and to Lidia Beliovskaya, my first teacher of informatics and
robotics, for instilling a passion to the field in me. I am very thankful to
Nathalie for being extremely responsive during my whole stay at Inria. I
also thank both Dashas, Lina, Kostya, and Charles for proofreading my
manuscript.

The list of colleagues and friends that have made my PhD an amazing
journey is long, and I hope those I missed will forgive me. To members
of Thoth team: Nikita for mentoring me during my first years, Konstantin
for answering an incredible amount of questions, Alberto for always use-
ful scientific discussions, Adria, Thomas, and Vicky for being great office
mates, Ricardo for helping me with the cluster, Valentin for sharing use-
ful insights. To members of Willow team who made me feel welcome in
Paris: Robin, Igor, Gul, Pierre-Louis, Justin, and Gregoire. To Michel and
Maria, interns at Thoth who I worked with. To my amazing friends all
over France: Kostya, Nikita, Jack, Dasha, Ahmet, Lina, Valentin, Fabien,
Vitalii, Camilo, Tanya, Minttu, Anurag, two Ivans, Anya, and Kyriakos.

I would like to express infinite gratitude to my father and mother for
their love and the education they gave me. I will be forever grateful to
France for offering me scholarships to make my studies here possible. Fi-
nally, last but not least, I would like to thank my dear Dasha who I met in
this PhD journey for her love and support.

Contents

Contents vii

1 Introduction 1
1.1 Goals . 3
1.2 Context . 5
1.3 Contributions . 11

2 Learning to augment synthetic images
for sim2real policy transfer 17
2.1 Introduction . 17
2.2 Related work . 20
2.3 Approach . 21
2.4 Results . 24
2.5 Conclusion . 32

3 Learning to combine primitive skills:
A step towards versatile robotic manipulation 33
3.1 Introduction . 33
3.2 Related work . 35
3.3 Approach . 38
3.4 Experimental setup . 41
3.5 Evaluation of BC skill learning 43
3.6 Evaluation of RLBC . 46
3.7 Qualitative results . 51
3.8 Conclusion . 57

4 Learning visual policies for building 3D shape categories 59

vii

viii Contents

4.1 Introduction . 59
4.2 Related work . 62
4.3 Approach . 64
4.4 Results . 70
4.5 Conclusion . 84

5 Episodic Transformer for vision-and-language navigation 85
5.1 Introduction . 85
5.2 Related work . 87
5.3 Method . 90
5.4 Results . 94
5.5 Conclusion . 112

6 Conclusion 113
6.1 Summary of contributions 113
6.2 Perspectives for future research 115

A Publications 123

B Software 125

Bibliography 127

1

Introduction

“... spend the summer linking a camera to a computer
and getting the computer to describe what it saw.”

Marvin Minsky on the goal of a 1966 undergraduate
summer research project [Boden, 2008]

Recent advances in machine learning offer an opportunity to build intel-
ligent systems with a wide range of capacities. Machine learning is a class
of methods to find patterns and regularities in collected datasets which are
then used to make predictions and decisions. Deep learning is a branch of
machine learning where artificial neural networks with multiple layers are
employed as function approximators. Parameters of the neural networks
are learned using stochastic gradient descent methods which minimize a
loss function chosen for a specific task.

The history of deep learning goes back to the 1950s [Rosenblatt, 1957,
LeCun et al., 1989, Rumelhart et al., 1986]. However, it received a new
level of attention in 2012 when neural networks first time outperformed
earlier models by a large margin on an image classification task [Krizhevsky
et al., 2012]. Since 2012, neural networks set new state-of-the-art results
in many areas including image and video understanding [He et al., 2017,
Simonyan and Zisserman, 2014a], image and text generation [Goodfellow
et al., 2014, Brown et al., 2020], speech recognition [Dahl et al., 2012],
game playing [Silver et al., 2016], machine translation [Wu et al., 2016],
and many others. The research community demonstrated that given a large
corpus of data, powerful compute resources, and very expressive models, a
deep learning approach can outperform models hand-engineered by domain
experts.

1

2 Chapter 1. Introduction

Figure 1.1 – Example of tasks where deep reinforcement learning was suc-
cessfully applied [Levine et al., 2015].

The robotics community adopted deep learning techniques and used
them to improve robotic perception and control. One popular application
is employing deep neural networks for object recognition, pose estimation,
or scene understanding and providing network outputs to a downstream
control system [Labbe et al., 2020, Andrychowicz et al., 2017, Finn et al.,
2016]. Another application is explicitly using deep neural networks for con-
trol policies learning and decision making [Zhu et al., 2017, Levine et al.,
2015] illustrated in Figure 1.1. Reinforcement learning (RL) is a popular
approach to learn control explicitely where the goal is to train a policy
maximizing rewards [Sutton and Barto, 1998]. The RL setting assumes
that an agent interacts with the world using a trial-and-error approach and
receives feedback defined with a scalar reward function. Deep reinforce-
ment learning (Deep RL) uses the same algorithms as RL but employs
deep neural networks as function approximators [Mnih et al., 2013]. An-
other popular approach to learn control is imitation learning (IL) where an
agent is provided with demonstrations of successful task execution from an
expert [Michie et al., 1990, Atkeson and Schaal, 1997].

One of the major challenges in robotics now is designing systems which
work in a wide range of conditions while using as little expert knowledge
about a specific task as possible. A real-world example of the ideal scenario
would be a household robot that can help humans to perform routine tasks
as soon as it is placed in an unknown apartment. Our work is a step towards

1.1. Goals 3

Figure 1.2 – Collecting large-scale datasets for robotics may require thou-
sands of hours of interaction and can be very expensive in practice [Levine
et al., 2016].

solving this challenge where we propose novel approaches to learn control for
real-world robots with the help of simulators. Our approaches are designed
to use less task-specific expertise than previously proposed methods and
to be able to operate under dynamical changes in a robot scene. We also
propose an approach to control autonomous agents using natural language
instructions.

1.1 Goals
The goal of our work is to propose novel methods to learn control policies

for real-world robotic systems which are able to perform a wide range of
tasks. We aim at designing robust systems that can work under dynamic
changes in their scene. We also make a step towards enabling autonomous
agents to understand instructions given in natural language.

The essential part of any deep learning approach is data to learn from.
Designing a robotic system which learns from a large scale real-world dataset
requires a mechanism for data labeling and automatic resets of the scene [Zeng
et al., 2019]. Even if such mechanism is implemented, collecting large
amounts of domain-specific data limits the scalability as learning policies
typically requires hundreds or thousands of hours of interaction [Levine
et al., 2016, Pinto and Gupta, 2016] (see Figure 1.2). Moreover, the dataset
might need to be recollected once scene conditions such as lighting, back-
ground clutter, or a camera configuration change. The mentioned factors

4 Chapter 1. Introduction

Figure 1.3 – An example of a vision-and-language navigation (VLN)
task [Shridhar et al., 2020] where an agent is required to achieve a goal
specified by natural language.

make learning control policies from real-world data challenging. Instead,
we aim to learn control policies using data from a physics simulator where
the real-world robotic scene is mimicked. Such data collection can be easily
parallelized and collected cheaply on scale [Liang et al., 2018]. We propose
to make learned control policies have similar behavior in simulated and
real scenes by finding a simulation-to-reality (sim2real) transformation and
applying it to synthetic images used for training. We also use this trans-
formation to account for changing factors of the robotic scene such as the
camera configuration and scene object shapes.

Learning a control policy through trial-and-error requires careful defini-
tion of the reward function which is called reward engineering. Specifying
the reward function becomes relatively straightforward once it is done using
only the completion signal. For example, a navigation agent can only be
provided with a signal whether it reached the target or not. In this case,
the supervision of a robotic system can be provided without domain-specific
knowledge and is therefore cheaper. However, in contrast to humans that

1.2. Context 5

can achieve goals over an entire lifetime with little to no reward, RL algo-
rithms often struggle to find solutions under such weak supervision [Nair
et al., 2018, Pathak et al., 2017]. To learn complex behavior from comple-
tion signals, we propose to use a hierarchical architecture where low-level
policies called skills are pretrained using short demonstrations and a high-
level policy learns to combine the skills through trial-and-error using the
completion signal. An alternative for providing supervision with little do-
main expertise is showing an agent an example of a completed task. In
the case of a robotic manipulator assembling furniture, the agent can be
shown an example of an assembled item. For this setting, we propose to
reverse the problem by disassembling the given example first and treating
the disassembly action sequences as a reversed assembly demonstration.

The most natural way of specifying a task for a robot is nevertheless
the human language. In this case, a robotic agent needs to reason about
natural language instructions and ground them on the perception of other
sensors. Such problems are known as multimodal and represent a signif-
icant challenge for learnable agents. In this dissertation, we take a step
towards bridging robotics and natural language processing and address a
visual-and-language navigation (VLN) task. The VLN task assumes that an
agent is placed in a simulated environment and is given a textual command
defining its goal. An example of a VLN problem is shown in Figure 1.3
where an agent is required to navigate and interact in a dynamic environ-
ment. The VLN setting requires an agent to walk in a partially observable
environment and to have long-term memory about its previous decisions
and observations. Recently, an attention-based architecture called trans-
former [Vaswani et al., 2017] was shown to improve state-of-the-art results
on tasks that require handling long sequences such as language process-
ing [Devlin et al., 2019, Sun et al., 2019]. We propose to employ the trans-
former architecture for sequential decision making on the multimodal VLN
task and show its advantages over prior work.

1.2 Context
Deep reinforcement learning (deep RL) is a popular approach for au-

tonomous agent training due to its ability to acquire complex behavior
using high-dimensional sensory input [Mnih et al., 2013] and supervision
in a form of a scalar reward function [Silver et al., 2017]. In robotics
where manual controller design can be difficult and highly specific for a
task and a robot platform, those properties make deep RL especially ap-
pealing for the community. Although deep RL was successfully used to

6 Chapter 1. Introduction

Figure 1.4 – A human teleoperator is using virtual reality to record expert
demonstrations for a robot [Zhang et al., 2018].

solve challenging problems in simulation [Berner et al., 2019, Jaderberg
et al., 2017, Heess et al., 2017, Peng et al., 2016], its application to real-
world problems is not straightforward due to the amount of required data.
The real-world applications of deep RL were mostly limited to locomotion
tasks with stable robots [Ha et al., 2018], simple manipulation tasks [Vecerik
et al., 2017, Mahmood et al., 2018], or tasks defined using low-dimensional
reparametrizations [Calandra et al., 2015].

Another popular approach for training autonomous agents is imitation
learning (IL) where an agent learns a policy given demonstrations of the
desired behavior [Morales and Sammut, 2004, Ratliff et al., 2008, Duan
et al., 2017]. Similar to Deep RL, IL algorithms were shown to work suc-
cessfully with deep neural networks used as function approximators [Pan
et al., 2018, Ho and Ermon, 2016]. One of the most popular methods in IL is
behavior cloning (BC) [Pomerleau, 1989] which learns to explicitely map ob-
served inputs into desired control outputs given a collected dataset [Bojarski
et al., 2017, Chen and Huang, 2017]. While providing demonstrations is fea-
sible for a real robot in some cases, for example, using teleoperation [Zhang
et al., 2018] as shown in Figure 1.4, the demonstrations are usually more
expensive to obtain than trials used in RL. Moreover, the IL methods and
BC, in particular, are known to suffer from the errors accumulating over
time known as the compounding errors problem [Xu et al., 2020]. One of
the ways to address the compounding errors is to use a feedback from an
online expert [Ross and Bagnell, 2014] which however requires additional
domain expertise. Another principled approach is injecting noise into ex-
pert demonstrations [Laskey et al., 2017]. In our work, we explore both RL

1.2. Context 7

Figure 1.5 – RoboTHOR is an example of a physics simulator that features
simulation to reality pairings [Deitke et al., 2020].

and IL approaches and propose novel ways of combining their strengths.
Data availability is a fundamental challenge of applying deep learning

techniques to train real-world autonomous agents. Modern deep learning
methods in computer vision and natural language processing use offline
datasets that contain several dozens or even hundreds of millions of labeled
examples [Sun et al., 2017, Wu et al., 2016]. Obtaining such datasets for
robotics is challenging due to the cost of robots, their exploitation time, dif-
ficulties to label data and automatically reset a robotic scene [Zhong et al.,
2017]. Therefore, one of the major research directions in robot learning is
developing methods to overcome the data requirement. Pretraining a neu-
ral network on a large general-purpose dataset was shown to be efficient for
reducing data requirements of a downstream task learning in the context of
supervised learning [Devlin et al., 2019, Shelhamer et al., 2017]. Recently,
similar techniques were used in the context of RL and IL methods [Hao
et al., 2020, Gupta et al., 2018]. Another direction that holds the promise
of lower data requirements is model-based RL which aims to aid learning by
introducing knowledge about the world [Hafner et al., 2019, Levine et al.,
2015]. With the same itention of reducing the data requirements, meta rein-
forcement learning (meta RL) methods learn to solve a distribution of tasks
to transfer this knowledge to a downstream task [Duan et al., 2016, Finn
et al., 2017].

Learning to control a robot using synthetic data from a physics simula-
tor and transferring such policies to the real world is an alternative solution
that we consider in our work. Realistic simulators provide a cheap and
scalable way of collecting enough trials and demonstrations to train deep
neural networks [Todorov et al., 2012, Coumans, 2009]. Another advan-
tage of simulators is the fully observable state of the world that can be

8 Chapter 1. Introduction

Figure 1.6 – Data randomization is an idea of randomizing simulated data
used for training to make learned policies to work in real-world scenes with-
out finetuning [Tobin et al., 2017].

accessed at any time and used for label generation without the need for hu-
man annotators [Shridhar et al., 2020, Anderson et al., 2018, Liang et al.,
2018]. The main challenge of using synthetic data for learning real-world
policies is the difference between simulation and reality which is known as
simulation-to-reality (sim2real) gap [Jakobi et al., 1995]. This difference is
observed in both outputs of simulated sensors and the physical behavior
of simulated objects. As a result, the policies trained on synthetic data
often decrease their performance when used in the real world [Tan et al.,
2018]. Despite a lot of recent effort of improving simulators to better match
the reality [Deitke et al., 2020, Kolve et al., 2017] (see Figure 1.5), having
a fast and realistic simulation remains an open challenge [Hennigh et al.,
2020, Erez et al., 2015].

The two principled approaches to overcome the sim2real gap are data
adaptation and data randomization. The data adaptation aims to improve
the real-world performance of a learned policy by leveraging data from a
simulator. Examples of data adaptation include pretraining on simulated
data and finetuning on real data [Karttunen et al., 2020], learning only a
specific part of the model using the real data [Mordatch et al., 2016], and
making distributions of real and simulation domains to match on either
sensor or feature level [Bousmalis et al., 2018, James et al., 2018, Lee et al.,

1.2. Context 9

Figure 1.7 – Hierarchical RL assumes training several policies of differ-
ent levels. This figure shows a two-level hierarchy of low-level policies
(φ1, φ2, φ3) which predict an action and a high-level policy θ which switches
between them [Frans et al., 2018].

2018]. The data randomization uses simulated data to learn real-world
policies by randomizing the simulation and ensuring that the data from a
real scene falls in the randomized distribution [Tobin et al., 2017, Sadeghi
and Levine, 2017] as shown in Figure 1.6. In this dissertation, we focus on
the data randomization approach.

Learning a control policy with RL requires defining a reward function.
While specifying rewards using several criteria of completion might seem
fairly straightforward, such sparse rewards often introduce new local op-
tima that can prevent agents from achieving optimal behavior [Jain et al.,
2021, Hadfield-Menell et al., 2017, Trott et al., 2019]. Moreover, learning
from sparse rewards may require a very large amount of data due to a much
harder exploration problem [Bellemare et al., 2016]. Reward shaping is a
popular technique to modify the reward signal to facilitate learning [Ng
et al., 1999], but may require problem-specific domain expertise [Clark and
Amodei, 2016]. Another approach of handling sparse rewards is to use ex-
ploration heuristics which help an agent to discover useful behavior [Burda
et al., 2019, Pathak et al., 2017]. Alternative approaches also include rela-
beling the goal of a task for each trial [Andrychowicz et al., 2017], learn-
ing objectives that encourage diverse behavior [Haarnoja et al., 2017], and
generating curriculums of starting states with increasing distances to the
goal [Florensa et al., 2017b].

Another principled way of learning from sparse rewards is to employ hi-
erarchies of policies. Such hierarchical architectures are known to aid explo-
ration both semantically and temporally [Nachum et al., 2019]. Hierarchical

10 Chapter 1. Introduction

methods in RL are generally based on either feudal framework [Dayan and
Hinton, 1993] or options framework [Sutton et al., 1999]. The feudal ap-
proaches learn a high-level policy that modulates a single low-level policy us-
ing a control signal [Haarnoja et al., 2018, Nachum et al., 2018, Vezhnevets
et al., 2017, Kulkarni et al., 2016, Hausman et al., 2018]. The option meth-
ods learn a high-level policy that switches between several low-level policies
called skills [Lee et al., 2019, Frans et al., 2018, Bacon et al., 2017, Florensa
et al., 2017a] as shown in Figure 1.7. Hierarchical RL may also employ IL
to pretrain some policies in the hierarchy [Das et al., 2018], or even use
policies trained with IL in the hierarchy directly [Le et al., 2018]. In this
dissertation, we consider the options framework and propose a novel way
of combining RL with IL.

While specifying a task with rewards or demonstrations may seem at-
tractive, the most natural way for humans to explain what needs to be done
is language. Reasoning about natural language poses a significant challenge
itself due to many factors including language differences, ambiguity, contex-
tual information importance, everyday changes, and others [Allen, 1995].
However, recent advances in deep learning significantly improved the state-
of-the-art in natural language processing (NLP) [Belinkov and Glass, 2019].
One of the major improvements in NLP was achieved by replacing recur-
rent networks which rely on hidden states [Hochreiter and Schmidhuber,
1997] with architectures computing attention to the whole input sequence
called transformers [Vaswani et al., 2017] (see Figure 1.8). Pretraining on
a large corpus of data from Wikipedia [Devlin et al., 2019] brought another
significant improvement and became a common first step for many NLP
tasks [Young et al., 2018].

Solving a task that requires language reasoning, scene understanding,
and control learning represents an even more difficult problem. On top of
the challenges specific for each of the three domains, the agent needs to
deal with the multimodality of the input. Recently, multimodal problems
combining vision and language were successfully addressed using transform-
ers [Sun et al., 2019, Gabeur et al., 2020, Ding et al., 2020]. One of the
problems that combine vision, language, and control is vision-and-language
navigation (VLN) [Anderson et al., 2018, Chen et al., 2019a]. The VLN
problem places an agent in a simulated environment and provides it with
navigation instructions given in natural language. A particularly interest-
ing scenario of VLN which brings it closer to robotics is ALFRED bench-
mark [Shridhar et al., 2020] where the agent is required to interact with a
dynamic environment. In this dissertation, we propose a novel approach for
ALFRED that makes a step towards bridging the gap between advances in
robot learning and NLP.

1.3. Contributions 11

Figure 1.8 – The self-attention mechanism of transformer networks intro-
duced in [Vaswani et al., 2017] improved state-of-the-art results in many
domains.

1.3 Contributions
This thesis presents four main contributions. In Chapters 2-4, we pro-

pose novel methods for learning policies for real-world robots. In Chapter 5,
we present an approach to solve a VLN problem defined with natural lan-
guage instructions. The contributions of this thesis are summarized in the
following paragraphs.
• To transfer control policies learned entirely from synthetic data to

the real world, we propose an approach that learns an augmentation
function making a policy behave similarly on simulated and real
data. Given simulated and real domains and a set of random image
transformations such as scaling and adding noise, our method finds
a sequence of transformations and their parameters that are used
to augment expert demonstrations in simulation. We show that the
learned augmentation function is task-independent and can be used
to learn control policies for several considered manipulation tasks.
The first column of Figure 1.9 shows examples of depth images from
expert demonstrations in simulation. The second column of Fig-
ure 1.9 shows the same images after applying the learned sim2real
augmentation function to them. A control policy is trained to imitate
the expert given the augmented synthetic images and is used directly
on real-world images shown in the third column of Figure 1.9. We
demonstrate a successful transfer of manipulation policies to real
robot scenes for three tasks while using no real images for policy

12 Chapter 1. Introduction

Figure 1.9 – Transferring a policy learned to place a cup in simulation
to the real world. Synthetic depth images (first column) are augmented
with random transformations during policy training (second column). The
learned policy is applied to depth maps from the real robot scene (third
column).

training. This work was published in IROS 2019 [Pashevich et al.,
2019a] and is presented in Chapter 2. We also use the proposed
approach in our later work presented in Chapters 3 and 4.
• To learn control policies for challenging manipulation tasks from

sparse reward signals, we propose an approach that learns to com-
bine skills. The skills such as grasping and going to are learned from
few short synthetic demonstrations employing recent CNN architec-
tures and data augmentation techniques. Given a vocabulary of pre-
trained with IL skills, a high-level policy is trained to switch between
the skill policies using RL as shown in Figure 1.10. In contrast to
previously proposed methods, our approach does not require inter-

1.3. Contributions 13

Go to bottle Grasp Go to bowl Pour

Figure 1.10 – A vocabulary of primitive robotics skills learned with Behavior
Clonning is combined with Reinforcement Learning to perform a composi-
tional task of grasping and pouring.

mediate rewards and complete task demonstrations during training.
We also demonstrate the versatility of learned policies in challenging
settings including temporary occlusions and dynamic scene changes.
Notably, while all of our policies are learned on visual inputs in sim-
ulated images, we demonstrate a successful transfer to real-world
scenes using the previously described sim2real approach. This work
was published in ICRA 2020 [Strudel et al., 2020b] and is presented
in Chapter 3.
• We propose a novel approach for learning control policies to build

3D objects specified by an example of their final configuration. The
learned policies can assemble 3D shapes such as arches given building
blocks of cubic and similar shapes shown in Figure 1.11 on the left.
We propose to leverage a simulator to solve the problem in a low-
dimensional state-space first and to transfer the learned policies to
the high-dimensional image space of a real robot using the previously
mentioned sim2real approach. We also propose a disassembling pro-
cedure which automatically generates a dataset of assembly demon-
strations to learn from. The proposed procedure first disassembles

14 Chapter 1. Introduction

Figure 1.11 – Primitives on the left are assembled by learned policies into
arch shapes on the right. The policies are trained on simulated data and
transferred to the real world to assemble 3D objects from unseen primitives
resembling building blocks used during training.

the given shape example and then reverses disassembly actions into
an assembly demonstration. The control policies are trained using
an automatically collected in simulation dataset of demonstrations
and reach high success rates when evaluated on a real robot. We
show that the learned visual policies generalize to assembling shapes
using real-world building blocks never seen during training such as
stones shown in the bottom of Figure 1.11. Moreover, we demon-
strate that the learned policies can react to dynamic changes in real
robot scenes. This work was published in IROS 2020 [Pashevich
et al., 2020a] and is presented in Chapter 4.
• Our last contribution addresses the multimodal VLN problem where

an agent navigates and interacts in a simulated environment given
a goal defined with natural language. We propose Episodic Trans-
former (E.T.), an novel architecture based on the self-attention mech-
anism. In contrast to recurrent-based architectures relying on a hid-
den state, E.T. encodes all previous visual observations and actions
history to be able to attend to objects seen before and actions taken
in the past. Figure 1.12 shows an example of a compositional VLN
task where actions which require attending to the past are high-
lighted with red arrows. To decouple understanding the visual ap-

1.3. Contributions 15

Figure 1.12 – An example of a compositional task in the ALFRED
dataset [Shridhar et al., 2020] where the agent is asked to bring two vases
to a cabinet. The figure shows six frames from an expert demonstration
with corresponding step-by-step instructions. The instructions expect the
agent to be able to navigate to a fireplace which is not visible in its current
egocentric view and to remember its previous location by referring to it as
"where you were standing previously".

pearance of an environment from the variations of natural language
instructions, we propose to leverage synthetic instructions as an in-
termediate representation. We demonstrate that encoding longer his-
tory with self-attention is critical to accomplish compositional tasks
and that pretraining and joint training with synthetic instructions
further improve the performance. This work was published in ICCV
2021 [Pashevich et al., 2021a] and is presented in Chapter 5.

2

Learning to augment synthetic images
for sim2real policy transfer

2.1 Introduction
Learning visuomotor control policies holds much potential for addressing

complex robotics tasks in unstructured and dynamic environments. In par-
ticular, recent progress in computer vision and deep learning motivates new
methods combining learning-based vision and control. Successful methods
in computer vision share similar neural network architectures, but learn
task-specific visual representations, e.g. for object detection, image seg-
mentation or human pose estimation. Guided by this experience, one can
assume that successful integration of vision and control will require learn-
ing of policy-specific visual representations for particular classes of robotics
tasks.

Learning visual representations requires large amounts of training data.
Previous work has addressed policy learning for simple tasks using real
robots e.g., in [Levine et al., 2016, Pinto and Gupta, 2016, Zhang et al.,
2018]. Given the large number of required attempts (e.g. 800,000 grasps
collected in [Levine et al., 2016]), learning with real robots might be difficult
to scale to more complex tasks and environments. On the other hand,
physics simulators and graphics engines provide an attractive alternative
due to the simple parallelization and scaling to multiple environments as
well as due to access to the underlying world state during training.

Learning in simulators, however, comes at the cost of the reality gap.
The difficulty of synthesizing realistic interactions and visual appearance
typically induces biases and results in low performance of learned policies
in real scenes. Among several approaches to address this problem, recent
work proposes domain randomization [Tobin et al., 2017, Tobin et al., 2018]

17

18
Chapter 2. Learning to augment synthetic images

for sim2real policy transfer

Figure 2.1 – Example depth images for the task “Cup placing”. Synthetic
depth maps (first column) are augmented with random transformations
during policy training (second column). The resulting policy is applied to
depth maps from the real robot scene (third column).

by augmenting synthetic data with random transformations such as ran-
dom object shapes and textures. While demonstrating encouraging results
for transferring simlator-trained policies to real environments (“sim2real”
transfer), the optimality and generality of proposed transformations re-
mains open.

In this work we follow the domain randomization approach and propose
to learn transformations optimizing sim2real transfer. Given two domains,
our method finds policy-independent sequences of random transformations
that can be used to learn multiple tasks. While domain randomization
can be applied to different stages of a simulator, our goal here is the effi-
cient learning of visual representations for manipulation tasks. We therefore
learn parameters of random transformations to bridge the domain gap be-
tween synthetic and real images. We here investigate the transfer of policies
learned for depth images. However, our method should generalize to RGB
inputs. Examples of our synthetic and real depth images used to train and

2.1. Introduction 19

test the “Cup placing” policy are illustrated in Figure 2.1.

Learning augmentation function
(task independent)

Sim2Real
augmentation

functionsim data

real data

MCTS + Cube
position regression

validation

training

Training control policies
(no real data)

BC policy learning
on augmented images

Sim2Real
control
policy

Running control policies
(real world)

Figure 2.2 – Overview of the method. Our contribution is the policy-
independent learning of depth image augmentations (top left). The result-
ing sequence of augmentations is applied to synthetic depth images while
learning manipulation policies in a simulator (top right). The learned poli-
cies are directly applied to real robot scenes without finetuning on real
images (bottom).

In more details, our method uses a proxy task of predicting object lo-
cations in a robot scene. We synthesize a large number of depth images
with objects and train a CNN regressor estimating object locations after
applying a given sequence of random transformations to synthetic images.
We then score the parameters of current transformations by evaluating
CNN location prediction on pre-recorded real images. Inspired by the re-
cent success of AlphaGo [Silver et al., 2017] we adopt Monte-Carlo Tree
Search (MCTS) [Coulom, 2006] as an efficient search strategy for transfor-
mation parameters.

20
Chapter 2. Learning to augment synthetic images

for sim2real policy transfer

We evaluate the optimized sequences of random transformations by ap-
plying them to simulator-based policy learning. We demonstrate the suc-
cessful transfer of such policies to real robot scenes while using no real
images for policy training. Our method is shown to generalize to multiple
policies. The overview of our approach is illustrated in Figure 2.2. The
code of the project is publicly available at the project website [Pashevich
et al., 2019b].

2.2 Related work
Robotics tasks have been addressed by various learning methods includ-

ing imitation learning [Duan et al., 2017] and reinforcement learning [Ried-
miller et al., 2018]. Despite mastering complex simulated tasks such as
Go [Silver et al., 2017] and Dota [OpenAI, 2018], the addressed robotics
tasks remain rather simple [Zhang et al., 2018, Riedmiller et al., 2018, Gu
et al., 2016]. This difference is mainly caused by the real-world training
cost. Learning a manipulation task typically requires a large amount of
data [Levine et al., 2016, Pinto and Gupta, 2016]. Thus, robot interaction
time becomes much longer than in simulation [Gu et al., 2016] and expert
guidance is non-trivial [Zhang et al., 2018].

Learning control policies in simulation and transferring them to the real
world is a potential solution to address these difficulties. However, the visual
input in simulation is significantly different from the real world and therefore
requires adaptation [Sadeghi and Levine, 2017]. Recent attempts to bridge
the gap between simulated and real images can be generally divided into
two categories: domain adaptation [Bousmalis et al., 2018] and domain
randomization [Tobin et al., 2017]. Domain adaptation methods either map
both image spaces into a common one [James et al., 2018, Mueller et al.,
2018] or map one into the other [Lee et al., 2018]. Domain randomization
methods add noise to the synthetic images [Pinto et al., 2018, Sadeghi
et al., 2018], thus making the control policy robust to different textures
and lighting. The second line of work is attractive due to its effectiveness
and simplicity. Yet, it was so far only shown to work with RGB images.
While depth images are well suited for many robotics tasks [Litvak et al.,
2019], it is not obvious what type of randomization should be used in the
case of depth data. Here, we explore a learning based approach to select
appropriate transformations and show that this allows us to close the gap
between simulated and real visual data.

Domain randomization is also referred to as data augmentation in the
context of image classification and object detection. Data augmentation

2.3. Approach 21

is known to be an important tool for training deep neural networks and
in most cases it is based on a manually designed set of simple transfor-
mations such as mirroring, cropping and color perturbations. In general,
designing an effective data augmentation pipeline requires domain-specific
knowledge [Dvornik et al., 2018]. Depth images might be augmented by
adding random noise [Handa et al., 2016], noise patterns typical for real
sensors [Eitel et al., 2015] or by compensating missing information [Yang
et al., 2012].

Learning to augment is a scalable and promising direction that has been
explored for visual recognition in [Paulin et al., 2014]. Recent attempts to
automatically find the best augmentation functions propose to use Rein-
forcement Learning and require several hundreds of GPUs [Cubuk et al.,
2019]. Given the prohibitive cost of executing thousands of policies in a
real-robot training loop, we propose to optimize sequences of augmenta-
tions within a proxy task by predicting object locations in pre-recorded
real images using the Monte Carlo Tree Search [Coulom, 2006]. A related
idea of learning rendering parameters of a simulator has been recently pro-
posed for a different task of semantic image segmentation in [Ruiz et al.,
2019].

2.3 Approach
We describe the proposed method for learning depth image augmenta-

tions in Sections 2.3.2 and 2.3.3. Our method builds on Behavior Cloning
(BC) policy learning [Pomerleau, 1989, Ross and Bagnell, 2014] which we
overview in Section 2.3.1.

2.3.1 Behavior cloning in simulation
Given a dataset Dexpert = {(ot, at)} of observation-action pairs along

with the expert trajectories in simulation, we learn a function approximat-
ing the conditional distribution of the expert policy πexpert(at|ot) control-
ling a robotic arm. Here, the observation is a sequence of the three last
depth frames, ot = (It−2, It−1, It) ∈ O = RH×W×3. The action at ∈ A =
R7 is the robot command controlling the end-effector state. The action
at = (vvvt,ωt, gt) is composed of the end-effector linear velocity vvvt ∈ R3, end-
effector angular velocity ωt ∈ R3 and the gripper openness state gt ∈ {0, 1}.
We learn the deterministic control policy π : O → A approximating the ex-
pert policy πexpert. We define π by a Convolutional Neural Network (CNN)
parameterized by a set of weights θ and learned by minimizing the L2 loss

22
Chapter 2. Learning to augment synthetic images

for sim2real policy transfer

for the velocity controls (vvvt,ωt) and the cross-entropy loss LCE for the bi-
nary grasping signal gt. Given the state-action pair (st, at) and the network
prediction πθ(st) = (v̂̂v̂vt, ω̂t, ĝt), we minimize the loss:

λL2 ([v̂t̂vt̂vt, ω̂t], [vvvt,ωt]) + (1− λ)LCE (ĝt, gt) , (2.1)

where λ ∈ [0, 1] is a scaling factor of the cross-entropy loss which we exper-
imentally set to 0.9.

2.3.2 Sim2Real transfer
Given a stochastic augmentation function f , we train a CNN h to predict

the cube position on a simulation dataset Dsim =
{
(Isim
i , psim

i)
}
. Given an

image Isim
i , the function f sequentially applies N primitive transformations,

each with a certain probability. This allows for bigger variability during the
training. We minimize the L2 loss between the cube position psim

i and the
network prediction given an augmented depth image h (f(Isim

i)):∑
k

EL2
(
h
(
f(Isim

k)
)
, psim

k

)
. (2.2)

We evaluate augmentation functions by computing the average error of net-
work prediction on a pre-recorded real-world dataset, Dreal =

{
(Ireal
i , preal

i)
}

as
ereal = 1

n

n∑
k=1

L2
(
h(Ireal

k), preal
k

)
. (2.3)

The optimal augmentation function f ∗ should result in a network h with
the smallest real-world error ereal. We assume that the same augmentation
function will produce optimal control policies. We re-apply the learned
stochastic function f ∗ on individual frames ofDexpert at every training epoch
and learn πsim2real. We use πsim2real to control the real robot using the
same control actions as in the simulation, i.e., areal

t = (vvvreal
t ,ωreal

t , greal
t) =

πsim2real(Ireal
t), see Figure 2.2.

2.3.3 Augmentation space
We discretize the search space of augmentation functions by considering

sequences of N transformations from a predefined set. We then apply the
selected sequence of transformations in a given order to each image. The
predefined set of transformations consists of the depth-applicable standard
transformations from PIL, a popular Python Image Library [Clark, 2015],
as well as Cutout [DeVries and Taylor, 2017], white (uniform) noise and salt

2.3. Approach 23

(bernoulli) noise. We also take advantage of segmentation masks provided
by the simulator and define two object-aware transformations, i.e., bound-
ary noise and object erasing (see Section 2.4.2 for details). The identity
(void) transformation is included in the set to enable the possibility of re-
ducing N . The full set of our eleven transformations is listed in Table 2.1.
Each transformation is associated with a magnitude and a probability of
its activation. The magnitude defines the transformation-specific parame-
ter. For each transformation we define two possible magnitudes and three
probabilities. With N = 8 in our experiments, our search space roughly
includes (11× 2× 3)8 ≈ 3.6 ∗ 1014 augmentation functions. We reduce the
search space by restricting each transformation, except identity, to occur
only once in any augmentation sequence.

2.3.4 Real robot control

Algorithm 1 Sim2Real policy transfer algorithm
1: *** Given datasets Dsim,Dreal,Dexpert

sim ***
2: MCTS = init_mcts()
3: repeat
4: f = MCTS.sample_path()
5: CNN = train_cube_prediction(f,Dsim) . Equation 2.2
6: ereal = compute_error(CNN,Dreal) . Equation 2.3
7: MCTS.update(ereal) . Backpropagate the error
8: until the smallest ereal is constant for 500 iterations
9: f ∗ = MCTS.select_best_path()
10: πsim2real = train_BC_policy(f ∗,Dexpert

sim) . Equation 2.1
11: return πsim2real

To find an optimal sequence of augmentations, we use Monte Carlo Tree
Search (MCTS) [Coulom, 2006] which is a heuristic tree search algorithm
with a trade-off between exploration and exploitation. Our search procedure
is defined in Algorithm 1. The algorithm iteratively explores the Monte
Carlo tree (lines 3-8) by sampling sequences of transformations (line 4),
training a cube position prediction network on an augmented simulation
dataset (line 5), evaluating the trained network on the real dataset (line
6) and backpropagating the evaluation error through the Monte Carlo tree
(line 7). Once the smallest error on the real dataset stays constant for 500
iterations, we choose the best augmentation function according to MCTS
(line 9) and train sim2real control policies using the simulation dataset
of augmented expert trajectories on the tasks of interest (line 10). Once

24
Chapter 2. Learning to augment synthetic images

for sim2real policy transfer

Figure 2.3 – The original synthetic depth image on the left is augmented
by the sequence of eight random transformations learned by our method.

trained, the control policies can be directly applied in real robot scenes
without finetuning. The sequence of eight transformations found by MCTS
is illustrated in Figure 2.3.

2.4 Results
This section evaluates the transfer of robot control policies from simu-

lation to real. First, we describe our tasks and the experimental setup in
Section 2.4.1. We evaluate independently each of predefined basic trans-
formations on the cube position prediction task in Section 2.4.2. In Sec-
tion 2.4.3, we compare our approach of learning augmentation functions
with baselines. Finally, we demonstrate the policy transfer to the real-
world robotics tasks in Section 2.4.4.

2.4.1 Experimental setup
Our goal is to learn a policy to control a UR5 6-DoF robotic arm with

a 3 finger Robotiq gripper for solving manipulation tasks in the real world.
The policy takes as input 3 depth images ot ∈ RH×W×3 from the Kinect-1
camera positioned in front of the arm. We scale the values of depth images
to the range [0, 1]. The policy controls the robot with an action at ∈ R7.
The control is performed at a frequency of 10 Hz. All the objects and
the robotic gripper end-effector are initially allocated within the area of
60× 60 cm2 in front of the arm. The simulation environment is built with

2.4. Results 25

the pybullet physics simulator [Coumans, 2009] and imitates the real-world
setup.

We consider three manipulation tasks.
• Cube picking task shown in Figure 2.5a. The goal of the task is to

pick up a cube of size 4.7 cm and to lift it. In simulation, the cube
size is randomized between 3 and 9 cm.
• Cubes stacking task shown in Figure 2.5b. The goal of the task is

to stack a cube of size 3.5 cm on top of a cube of size 4.7 cm. We
randomize the sizes of cubes in simulation between 3 to 9 cm.
• Cup placing task shown in Figure 2.6. The goal of the task is to

pick up a cup and to place it on a plate. In simulation, we randomly
sample 43 plates from ModelNet [Wu et al., 2015] and 134 cups from
ShapeNet [Chang et al., 2015]. We use three cups and three plates
of different shapes in our real robot experiments.

Figure 2.4 – For demonstrations recorded in simulation, we randomly sam-
ple several viewpoints in a section of a sphere centered around a reference
viewpoint.

2.4.2 Evaluation of individual transformations
Before learning complex augmentation functions, we independently eval-

uate each transformation from the set of transformations defined in Sec-
tion 2.3.3. We first describe each transformation and the associated values
of magnitude:
• Affine transformation randomly translates and rotates the image in

the range of [−9, 9] pixels and [−5, 5]◦, or alternatively by [−16, 16]
pixels and [−10, 10]◦.

26
Chapter 2. Learning to augment synthetic images

for sim2real policy transfer

Transformation Error in sim Error in real
Identity 0.63± 0.50 6.52± 5.04
Affine 0.59± 0.450.59± 0.450.59± 0.45 4.83± 4.42
Cutout 1.19± 0.87 1.86± 2.451.86± 2.451.86± 2.45
Invert 0.88± 0.60 4.63± 3.28
Posterize 0.66± 0.48 5.54± 4.59
Scale 0.67± 0.47 6.00± 4.37
Sharpness 0.83± 0.49 5.48± 3.84
WhiteNoise 0.68± 0.54 3.60± 2.33
SaltNoise 0.72± 0.50 2.42± 1.16
BoundaryNoise 0.88± 0.66 2.06± 1.17
EraseObject 0.64± 0.47 1.93± 1.01

Table 2.1 – Cube prediction error (in cm) for synthetic and real depth
images evaluated separately for each of eleven transformations considered
in this work. The errors are averaged over 200 pairs of images and cube
positions.

• Cutout [DeVries and Taylor, 2017] samples one or three random rect-
angles in the image and sets their values to a random constant in
[0, 1].
• Invert function inverts each pixel value by applying the operation
x 7→ 1− x and does not have any parameters.
• Posterize transformation reduces the number of bits for each pixel

value to be either 5 or 7.
• Scale transformation randomly multiplies the image with a constant

in one of the two ranges: [0.95, 1.05] or [0.97, 1.03].
• Sharpness transformation increases the image sharpness either ran-

domly in the range between 50% and 100% or by 100%.
• WhiteNoise transformation adds uniform noise to each pixel with a

magnitude of 0.04 or 0.08.
• SaltNoise transformation sets each pixel value to 1 with the proba-

bility 0.01 or 0.03.
• BoundaryNoise transformation uses the semantics mask of the simu-

lator and removes patches of pixels located at the boundary between
different objects. For BoundaryNoise, we remove either 2 or 4 pixels
along the boundaries.
• EraseObject transformation removes either the table or the walls

behind the robot using the semantics segmentation mask.
All the above transformations are associated with a probability in the set

2.4. Results 27

(a) Cube picking task

(b) Cube stacking task

Figure 2.5 – Frame sequences (RGB and depth) of real-world tasks per-
formed with a policy learned on a simulation dataset augmented with our
approach. The tasks are: a) picking up a cube, b) stacking two cubes.

{33%, 66%, 100%}. For instance, the probability 33% means that the trans-
formation is applied 1 out of 3 times and 2 our of 3 times it acts as the
identity function.

As explained in Section 2.3.2, we evaluate each augmentation function
by computing the prediction error of the cube position in real depth images
after training the position regressor on simulated data. We collect 2000

28
Chapter 2. Learning to augment synthetic images

for sim2real policy transfer

(a) Cup placing task

(b) Cup placing task with another set of objects

Figure 2.6 – Frame sequences (RGB and depth) of real-world tasks per-
formed with a policy learned on a simulation dataset augmented with our
approach. Both figures illustrate the cup placing task where different sets
of objects are used.

pairs of simulated depth images and cube positions for training and 200
real depth images for evaluation. To be robust to viewpoint changes in real
scenes, each simulated scene is recorded from five random viewpoints. We
randomize the camera viewpoint in simulation around the frontal viewpoint
by sampling the camera yaw angle in [−15, 15]◦, pitch angle in [15, 30]◦,

2.4. Results 29

and distance to the robot base in [1.35, 1.50] m as shown in Figure 2.4. We
only require the viewpoint of the real dataset to be within the simulated
viewpoints distribution. Moreover, we allow to move the camera between
different real robot experiments.

We treat each transformation in the given set as a separate augmenta-
tion function (sequence of length 1) and use each of them independently to
augment the simulation dataset. Next, we train a CNN based on ResNet-
18 architecture [He et al., 2016] to predict the cube position given a depth
image. During the network training, we compute the prediction error with
Equation 2.3 on two validation datasets, 200 simulated images and 200 real
images. To evaluate each augmentation function more robustly, we always
start the CNN training at the same initial position. For each transforma-
tion, we report the cube position prediction error in Table 2.1. With no
data augmentation, the trained network performs well in simulation (er-
ror of 0.63 cm) but works poorly on real images (error of 6.52 cm). Cutout
transformation reduces the regression error by more than 4 cm and indicates
that it should be potentially combined with other transformations.

2.4.3 Augmentation function learning
We compare the augmentation function learned by our approach to sev-

eral baselines on the task of estimating the cube position in Table 2.2.
The baselines include training the network on synthetic images (i) without
any data augmentation, (ii) with augmentation sequences composed of 8
random transformations (average over 10 random sequences), (iii) with a
handcrafted augmentation sequence of four transformations built accord-
ing to our initial intuition: Scale, WhiteNoise, EraseObjects and SaltNoise,
(iv) with the best single transformation from Section 2.4.2 and (v) with
the learned augmentation composed of 4 transformations. To have a robust
score and exclude outliers, we compute the median error over evaluations
of 10 training epochs.

Baselines (i)-(iii) with no augmentation learning demonstrate worst re-
sults on the real dataset. Results for learned transformations (iv)-(vi) show
that more transformations with different probabilities help to improve the
domain transfer. Table 2.2 also demonstrates the trade-off between the per-
formance in different domains: the better augmentation works on the real
dataset, the worse it performs in the simulation. Effectively, the learned
augmentation shifts the distribution of simulated images towards the dis-
tribution of real images. As a consequence, the network performs well on
the real images that are close to the training set distribution and works

30
Chapter 2. Learning to augment synthetic images

for sim2real policy transfer

Augmentation Error in sim Error in real
i None 0.63± 0.500.63± 0.500.63± 0.50 6.52± 5.04
ii Random (8 operations) 6.56± 4.05 5.77± 3.12
iii Handcrafted (4 operations) 0.99± 0.68 2.35± 1.36
iv Learned (1 operation) 1.19± 0.87 1.86± 2.45
v Learned (4 operations) 1.21± 0.78 1.17± 0.71
vi Learned (8 operations) 1.31± 0.90 1.09± 0.731.09± 0.731.09± 0.73

Table 2.2 – Cube prediction error (in cm) on synthetic and real depth images
using different types of depth data augmentation. More augmentations
increase the error for synthetic images and decrease the error for real images
as expected from our optimization procedure. The errors are averaged over
200 pairs of images and cube positions.

Augmentation Pick Stack Cup Placing
None 3/20 1/20 0/20
Handcrafted (4 operations) 9/20 2/20 6/20
Learned (1 operation) 8/20 1/20 1/20
Learned (8 operations) 19/2019/2019/20 18/2018/2018/20 15/2015/2015/20

Table 2.3 – Success rates for control policies executed on a real robot (20
trials per experiment). Results are shown for three tasks and alternative
depth image augmentations.

worse on the original simulated images that lie outside of the training set
distribution.

The best augmentation sequence found by our method is illustrated in
Figure 2.3 and contains the following transformations: Cutout, EraseOb-
ject, WhiteNoise, EdgeNoise, Scale, SaltNoise, Posterize, Sharpness. Learn-
ing an augmentation function of length 8 takes approximately 12 hours on
16 GPUs. The vast majority of this time is used to train the position esti-
mation network while MCTS path sampling, evaluation and MCTS back-
propagation are computationally cheap. We iteratively repeat the training
and evaluation routine until the error does not decrease for a sufficiently
long time (500 iterations). Once the sim2real augmentation is found, it
takes approximately an hour to train the BC control policy.

2.4. Results 31

2.4.4 Real robot control
In this section we demonstrate that the data augmentation learned for

a proxy task transfers to other robotic control tasks. We collect expert
demonstrations where the full state of the system is known and an expert
script can easily be generated at training time. We augment the simulated
demonstrations with the learned data augmentation and train BC policies
without any real images. Moreover, we show that our augmentation is not
object specific and transfers to tasks with new object instances not present
in the set of expert demonstrations. For each task, we compare the learned
augmentation function with 3 baselines: no augmentation, handcrafted aug-
mentation and best single transformation. Each evaluation consists of 20
trials with random initial configurations. The results are reported in Ta-
ble 2.3.

Cube picking task. Success rates for policies learned with different aug-
mentation functions are strongly correlated with results for cube position
estimation in Table 2.2. The policy without augmentation has a success
rate 3/20. Single transformation and handcrafted augmentation have 9/20
and 8/20 successful trials respectively. The sim2real policy learned with
our method succeeds 19 out of 20 times.

Cube stacking task. Given a more difficult task where more precision
is required, the baseline approaches perform poorly and achieve the success
rate of only 2/20 for the handcrafted augmentation. We observe most of
the failure cases due to imprecise grasping and stacking. We successfully
tested the learned data augmentation function on cubes of varying sizes
which indicates high control precision. Overall, our method was able to
stack cubes in 18 runs out of 20.

Cup placing. Solving the Cup placing task requires both precision and
the generalization to previously unseen object instances. The policies are
trained over a distribution of 3D meshes and thus leverage the large dataset
available in the simulation. All baselines fail to solve the Cup placing ex-
cept for the handcrafted augmentation which succeeds 6 times out of 20.
Our approach is able to solve the task with the success rate of 15/20 despite
the presence of three different instances of cups and plates never seen dur-
ing training. These results confirm our hypothesis that the augmentations
learned for a proxy task of predicting the cube position, generalize to new
objects and tasks.

32
Chapter 2. Learning to augment synthetic images

for sim2real policy transfer

2.5 Conclusion
In this chapter, we introduce a method to learn augmentation functions

for sim2real policy transfer. The learned augmentation function consists of
a sequence of random transformations such as scaling and adding noise and
is used to augment synthetic images. Once augmented, synthetic images
are used for policy learning using the behaviour cloning approach. The con-
trol policies learned on augmented synthetic images can be applied directly
on a real robot without any further finetuning. To evaluate the transfer,
we propose a proxy task of object position estimation that requires only
a small amount of real-world data. Our evaluation of data augmentation
shows significant improvement over the baselines. We also show that the
performance on the proxy task strongly correlates with the final policy suc-
cess rate. Our method does not require any real images for policy learning
and can be applied to various manipulation tasks. We apply our approach
to solve three real-world tasks including the task of manipulating previously
unseen objects.

3

Learning to combine primitive skills:
A step towards versatile robotic

manipulation

3.1 Introduction
In this chapter, we consider visually guided robotics manipulations and

aim to learn robust visuomotor control policies for particular tasks. Au-
tonomous manipulations such as assembling IKEA furniture [Suárez-Ruiz
et al., 2018] remain highly challenging given the complexity of real environ-
ments as well as partial and uncertain observations provided by the sensors.
Successful methods for task and motion planning (TAMP) [Srivastava et al.,
2014, Lozano-Pérez and Kaelbling, 2014, Toussaint, 2015] achieve impres-
sive results for complex tasks but often rely on limiting assumptions such
as the full state observability and known 3D shape models for manipu-
lated objects. Moreover, TAMP methods usually complete planning before
execution and are not robust to dynamic scene changes.

Recent learning methods aim to learn visuomotor control policies di-
rectly from image inputs. Imitation learning (IL) [Pomerleau, 1989, Ross
and Bagnell, 2014, Pinto et al., 2018, Ng and Russell, 2000] is a supervised
approach that can be used to learn simple skills from expert demonstra-
tions. One drawback of IL is its difficulty to handle new states that have
not been observed during demonstrations. While increasing the number
of demonstrations helps to alleviate this issue, an exhaustive sampling of
action sequences and scenarios becomes impractical for long and complex
tasks.

In contrast, reinforcement learning (RL) requires little supervision and
achieves excellent results for some challenging tasks [Mnih et al., 2015, Sil-

33

34
Chapter 3. Learning to combine primitive skills:

A step towards versatile robotic manipulation

ver et al., 2016]. RL explores previously unseen scenarios and, hence, can
generalize beyond expert demonstrations. As full exploration is exponen-
tially hard and becomes impractical for problems with long horizons, RL
often relies on careful engineering of rewards designed for specific tasks.

Common tasks such as preparing food or assembling furniture require
long sequences of steps composed of many different actions. Such tasks have
long horizons and, hence, are difficult to solve by either RL or IL methods
alone. To address this issue, we propose a RL-based method that learns
to combine simple imitation-based policies. Our approach simplifies RL by
reducing its exploration to sequences with a limited number of primitive
actions, that we call skills.

Given a set of pretrained skills such as "grasp a cube" or "pour from
a cup", we train RL with sparse binary rewards corresponding to the cor-
rect/incorrect execution of the full task. While hierarchical policies have
been proposed in the past [Das et al., 2018, Le et al., 2018], our approach
can learn composite manipulations using no intermediate rewards and no
demonstrations of full tasks. Hence, the proposed method can be directly
applied to learn new tasks. See Figure 3.1 and Figure 3.2 for an overview
of our approach.

Our skills are low-level visuomotor controllers learned from synthetic
demonstrated trajectories with behavioral cloning (BC) [Pomerleau, 1989].
Examples of skills include go to the bowl, grasp the object, pour from
the held object, release the held object, etc. We automatically generate
expert synthetic demonstrations and learn corresponding skills in simulated
environments. We also minimize the number of required demonstrations by
choosing appropriate CNN architectures and data augmentation methods.
Our approach is shown to compare favorably to the state of the art [Pinto
et al., 2018] on the FetchPickPlace test environment [Plappert et al., 2018].
Moreover, using the sim2real approach from the previous chapter [Pashevich
et al., 2019a] we demonstrate the successful transfer and high accuracy of
our simulator-trained policies when tested on a real robot.

We compare our approach with two classical methods: (a) an open-loop
controller estimating object positions and applying a standard motion plan-
ner (b) a closed-loop controller adapting the control to re-estimated object
positions. We show the robustness of our approach to a variety of per-
turbations. The perturbations include dynamic change of object positions,
new object instances and temporary object occlusions. The versatility of
learned policies comes from both the reactivity of the BC learned skills
and the ability of the RL master policy to re-plan in case of failure. Our
approach allows to compute adaptive control and planning in real-time.

In summary, this chapter makes the following contributions. (i) We pro-

3.2. Related work 35

time
n n

Figure 3.1 – Temporal hierarchy of master and skill policies. The master
policy πm is executed at a coarse interval of n time-steps to select among
K skill policies π1

s . . . π
K
s . Each skill policy generates control for a primitive

action such as grasping or pouring.

pose to learn robust RL policies that combine BC skills to solve composite
tasks. (ii) We present sample efficient training of BC skills and demonstrate
an improvement compared to the state of the art. (iii) We demonstrate
successful learning of relatively complex manipulation tasks with neither
intermediate rewards nor full demonstrations. (iv) We successfully transfer
and execute policies learned in simulation to real robot setups. (v) We show
successful task completion in the presence of perturbations. Our simulation
environments and the code used in this work are publicly available on our
website [Strudel et al., 2020a].

3.2 Related work
Our work is related to robotics manipulation such as grasping [Lampe

and Riedmiller, 2013], opening doors [Gu et al., 2016], screwing the cap of
a bottle [Levine et al., 2015] and cube stacking [Popov et al., 2017]. Such
tasks have been addressed by various methods including imitation learning
(IL) [Duan et al., 2017] and reinforcement learning (RL) [Riedmiller et al.,
2018].

Imitation learning (IL). A neural network is trained to solve a task by
observing demonstrations. Approaches include behavioral cloning (BC) [Pomer-

36
Chapter 3. Learning to combine primitive skills:

A step towards versatile robotic manipulation

Master policy

Skill policy 1

Skill policy K

Input depth frames Output actions

Skill 1-hot encoding

Figure 3.2 – CNN architecture used for the skill and master policies. The
network is conditioned on one-hot skill encoding using FiLM encoding and
outputs master choice and skill actions simultaneously.

leau, 1989] and inverse reinforcement learning [Ng and Russell, 2000]. BC
learns a function that maps states to expert actions [Ross and Bagnell,
2014, Pinto et al., 2018], whereas inverse reinforcement learning learns a re-
ward function from demonstrations in order to solve the task with RL [Ho
and Ermon, 2016, Kumar et al., 2016, Popov et al., 2017]. BC typically
requires a large number of demonstrations and has issues with not observed
trajectories. While these problems might be solved with additional expert
supervision [Ross and Bagnell, 2014] or noise injection in expert demon-
strations [Laskey et al., 2017], we address them by improving the standard
BC framework. We use recent state-of-the-art CNN architectures and data
augmentation for expert trajectories. This permits to significantly reduce
the number of required demonstrations and to improve performance.

Reinforcement learning (RL). RL learns to solve a tasks without
demonstrations using exploration. Despite impressive results in several do-
mains [Silver et al., 2016, Mnih et al., 2015, Kober et al., 2013, Gu et al.,
2016], RL methods show limited capabilities when operating in complex and
sparse-reward environments common in robotics. Moreover, RL methods
typically require prohibitively large amounts of interactions with the envi-
ronment during training. Hierarchical RL (HRL) methods alleviate some of
these problems by learning a high-level policy modulating low-level work-
ers. HRL approaches are generally based either on options [Sutton et al.,

3.2. Related work 37

1999] or a feudal framework [Dayan and Hinton, 1993]. The option methods
learn a master policy that switches between separate skill policies [Frans
et al., 2018, Lee et al., 2019, Bacon et al., 2017, Florensa et al., 2017a]. The
feudal approaches learn a master policy that modulates a low-level policy
by a control signal [Haarnoja et al., 2018, Nachum et al., 2018, Vezhnevets
et al., 2017, Kulkarni et al., 2016, Hausman et al., 2018]. Our approach
is based on options but in contrast to the cited methods, we pretrain the
skills with IL. This allows us to solve complex and sparse reward problems
using significantly less interactions with the environment during training.

Combining RL and IL. A number of approaches combining RL and IL
have been introduced recently. Gao et al. [Gao et al., 2018] use demonstra-
tions to initialize the RL agent. In [Cheng et al., 2018, Sun et al., 2018]
RL is used to improve expert demonstrations, but does not learn hierar-
chical policies. Demonstrations have also been used to define RL objective
functions [Hester et al., 2018, Nair et al., 2018] and rewards [Zhu et al.,
2018]. Das et al. [Das et al., 2018] combine IL and RL to learn a hierar-
chical policy. Unlike our method, however, [Das et al., 2018] requires full
task demonstrations and task-specific reward engineering. Moreover, the
addressed navigation problem in [Das et al., 2018] has a much lower time
horizon compared to our tasks. [Das et al., 2018] also relies on pretrained
CNN representations which limits its application domain. Le at al. [Le
et al., 2018] train low-level skills with RL, while using demonstrations to
switch between skills. In a reverse manner, we use IL to learn low-level con-
trol and then deploy RL to find appropriate sequences of pretrained skills.
The advantage is that our method can learn a variety of complex manip-
ulations without full task demonstrations. Moreover, [Das et al., 2018, Le
et al., 2018] learn discrete actions and cannot be directly applied to robotics
manipulations that require continous control.

In summary, none of the methods [Das et al., 2018, Le et al., 2018,
Cheng et al., 2018, Sun et al., 2018] is directly suitable for learning complex
robotic manipulations due to requirements of dense rewards [Das et al.,
2018, Sun et al., 2018] and state inputs [Cheng et al., 2018, Sun et al.,
2018], limitations to short horizons and discrete actions [Das et al., 2018, Le
et al., 2018], the requirement of full task demonstrations [Das et al., 2018, Le
et al., 2018, Cheng et al., 2018, Sun et al., 2018] and the lack of learning
of visual representations [Das et al., 2018, Cheng et al., 2018, Sun et al.,
2018]. Moreover, our skills learned from synthetic demonstrated trajectories
outperform RL based methods, see Section 3.5.4.

38
Chapter 3. Learning to combine primitive skills:

A step towards versatile robotic manipulation

3.3 Approach
Our RLBC approach aims to learn multi-step policies by combining re-

inforcement learning (RL) and pretrained skills obtained with behavioral
cloning (BC). We present BC and RLBC in Sections 3.3.1 and 3.3.2. Im-
plementation details are given in Section 3.3.3.

3.3.1 Skill learning with behavioral cloning
Our first goal is to learn basic skills that can be composed into more

complex policies. Given observation-action pairsD = {(ot, at)} along expert
trajectories, we follow the behavioral cloning approach [Pomerleau, 1989]
and learn a function approximating the conditional distribution of the ex-
pert policy πE(at|ot) controlling a robot arm. Our observations ot ∈ O =
RH×W×M are sequences of the lastM depth frames. Actions at = (vt,ωt, gt),
at ∈ ABC are defined by the end-effector linear velocity vt ∈ R3 and angular
velocity ωt ∈ R3 as well as the gripper openness state gt ∈ {0, 1}.

We learn the deterministic skill policies πs : O → ABC approximat-
ing the expert policy πE. Given observations ot with corresponding expert
(ground truth) actions at = (vt,ωt, gt), we represent πs with a convolu-
tional neural network (CNN) and learn network parameters (θ, η) such that
predicted actions πs(ot) = (v̂t, ω̂t, ĝt) minimize the loss LBC:

λ ‖[v̂t, ω̂t]− [vt,ωt]‖2
2 + (1− λ) (gt log ĝt + (1− gt) log (1− ĝt)) , (3.1)

where λ ∈ [0, 1] is a scaling factor which we empirically set to 0.9.
Our network architecture is presented in Figure 3.2. When training a

skill policy πis, such as reaching, grasping or pouring, we condition the net-
work on the skill using the recent FiLM architecture [Perez et al., 2018].
Given the one-hot encoding si of a skill i, we use si as input to the FiLM gen-
erator which performs affine transformations of the network feature maps.
FiLM conditions the network on performing a given skill, which permits
learning a shared representation for all skills. Given an observation ot, the
network CNN(θ|si) generates a feature map xit conditioned on skill i. The
spatially-averaged xi is linearly mapped with FC(η) to the action of πis.

3.3.2 RLBC approach
We wish to solve composite manipulations without full expert demon-

strations and with a single sparse reward. For this purpose we rely on a
high-level master policy πm controlling the pretrained skill policies πs at
a coarse timescale. To learn πm, we follow the standard formulation of

3.3. Approach 39

reinforcement learning and maximize the expected return Eπ
∑∞
k=0 γ

krt+k
given rewards rt. Our reward function is sparse and returns 1 upon suc-
cessful termination of the task and 0 otherwise. The RL master policy
πm : O × ARL → [0, 1] chooses one of the K skill policies to execute the
low-level control, i.e., the action space of πm is discrete: ARL = {1, . . . , K}.
Note, that our sparse reward function makes the learning of deep visual
representations challenging. We, therefore, train πm using visual features
xit obtained from the BC pretrained CNN(θ|si). Given an observation ot,
we use the concatenation of skill-conditioned features {x1

t , . . . , x
K
t } as input

for the master CNN(µ), see Figure 3.2.
To solve composite tasks with sparse rewards, we use a coarse timescale

for the master policy. The selected skill policy controls the robot for n
consecutive time-steps before the master policy is activated again to choose
a new skill. This allows the master to focus on high-level task planning
rather than low-level motion planning achieved by the skills. We expect
the master policy to recover from unexpected events, for example, if an
object slips out of a gripper, by re-activating an appropriate skill policy.
Our combination of the master and skill policies is illustrated in Figure 3.1.

RLBC algorithm. The pseudo-code for the proposed approach is shown
in Algorithm 2. The algorithm can be divided into three main steps. First,
we collect a dataset of expert trajectories Dk for each skill policy πks . For
each policy, we use an expert script that has an access to the full state of the
environment. Next, we train a set of skill policies {π1

s , . . . , π
K
s }. We sample

a batch of state-action pairs and update parameters of convolutional layers
θ and the skills linear layer parameters η. Finally, we learn the master πm
using the pretrained skill policies and the frozen parameters θ. We collect
episode rollouts by first choosing a skill policy with the master and then
applying the selected skill to the environment for n time-steps. We update
the master policy weights µ to maximize the expected sum of rewards.

3.3.3 Approach details
Skill learning with BC. We use ResNet-18 for the CNN(θ|si), which
we compare to VGG16 and ResNet-101 in Section 3.5.1. We augment input
depth frames with random translations, rotations and crops. We also per-
form viewpoint augmentation and sample the camera positions on a section
of a sphere centered on the robot and with a radius of 1.40m. We uni-
formly sample the yaw angle in [−15◦, 15◦], the pitch angle in [15◦, 30◦],
and the distance to the robot base in [1.35, 1.50] m. The impact of both
augmentations is evaluated in Section 3.5.2. We normalize the ground truth

40
Chapter 3. Learning to combine primitive skills:

A step towards versatile robotic manipulation

Algorithm 2 RLBC approach algorithm
1: *** Collect expert data ***
2: for k ∈ {1, . . . , K} do
3: Collect an expert dataset Dk for the skill policy πks
4: *** Train {π1

s , . . . , π
K
s } by solving: ***

5: θ, η = arg minθ,η
∑K
k=1

∑
(ot,at)∈Dk

LBC(πks (ot), at) . Equation 3.1
6: while task is not solved do
7: *** Collect data for the master policy ***
8: E = {} . Empty storage for rollouts
9: for episode_id ∈ {1, . . . , ppo_num_episodes} do
10: o0 = new_episode_observation()
11: t = 0
12: while episode is not terminated do
13: kt ∼ πm(ot) . Choose the skill policy
14: ot+n, rt+n = perform_skill(πkt

s , ot)
15: t = t+ n

16: E = E ∪ {(o0, k0, rn, on, kn, r2n, o2n, . . .)}
17: *** Make a PPO step for the master policy on E ***
18: µ = ppo_update(πm, E)

of the expert actions to have zero mean and a unit variance and normal-
ize the depth values of input frames to [−1, 1]. We learn BC skills using
Adam [Kingma and Ba, 2014] with the learning rate 10−3 and a batch size
64. We also use Batch Normalization [Ioffe and Szegedy, 2015].

Task learning with RL. We learn the master policies with the PPO [Schul-
man et al., 2017] algorithm using the open-source implementation [Kostrikov,
2018] where we set the entropy coefficient to 0.05, the value loss coefficient
to 1, and use 8 episode rollouts for the PPO update. For the RLBC method,
the concatenated skill features {x1

t , . . . , x
K
t } are processed with the master

network CNN(µ) having 2 convolutional layers with 64 filters of size 3× 3.
During pretraining of skill policies we update the parameters (θ, η). When
training the master policy, we only update µ while keeping (θ, η) parame-
ters fixed. We train RLBC using 8 different random seeds in parallel and
evaluate the best one.

Real robot transfer. To deploy our method on the real robot, we use
the sim2real transfer technique from the previous chapter [Pashevich et al.,
2019a]. This method uses a proxy task of cube position prediction and a set

3.4. Experimental setup 41

of basic image transformations to learn a sim2real data augmentation func-
tion for depth images. We augment the depth frames from synthetic expert
demonstrations with this method and, then, train skill policies. Once the
skill policy is trained on these augmented simulation images, it is directly
used on the real robot.

3.4 Experimental setup
This section describes the setup used to evaluate our approach. First,

we present the robot environment and the different tasks. Next, we describe
the synthetic dataset generation and skill definition for each task.

Robot and agent environment For our experiments we use a 6-DoF
UR5 robotic arm with a 3 finger Robotiq gripper, see Figure 3.3. In simu-
lation, we model the robot with the pybullet physics simulator [Coumans,
2009]. For observation, we record depth images with the Microsoft Kinect
2 placed in front of the arm. The agent takes as input the three last depth
frames ot ∈ R224×224×3 and commands the robot with an action at ∈ R7.
The control is performed at 10 Hz frequency.

UR5 tasks For evaluation, we consider 3 tasks: UR5-Pick, UR5-Bowl and
UR5-Breakfast. The UR5-Pick task picks up a cube of a size between 3.5
cm and 8.0 cm and lifts it up, see Figure 3.3a. In UR5-Bowl the robot has to
grasp the cube and place it in the bowl, see Figure 3.3b. The UR5-Breakfast
task contains a cup, a bottle and a bowl as shown in Figure 3.3c. We use
distinct ShapeNet [Chang et al., 2015] object instances for the training and
test sets (27 bottles, 17 cups, 32 bowls in each set). The robot needs to
pour ingredients from the cup and the bottle in the bowl. In all tasks, the
reward is positive if and only if the task goal is reached. The maximum
episode lengths are 200, 600, and 2000 time-steps for UR5-Pick, UR5-Bowl,
and UR5-Breakfast correspondingly.

3.4.1 Synthetic datasets
We use the simulated environments to create a synthetic training and

test set. For all our experiments, we collect trajectories with random initial
configurations where the objects and the end-effector are allocated within a
workspace of 80× 40× 20 cm3. The synthetic demonstrations are collected
using an expert script designed for each skill. The script has access to the
full state of the system including the states of the robot and the objects.

42
Chapter 3. Learning to combine primitive skills:

A step towards versatile robotic manipulation

(a) UR5-Pick

(b) UR5-Bowl

(c) UR5-Breakfast

Figure 3.3 – UR5 tasks used for evaluation: (a) task of picking up the cube,
(b) task of bringing the cube to the bowl, (c) task of pouring the cup and
the bottle into the bowl. (Left) simulation, (right) real robot.

3.5. Evaluation of BC skill learning 43

To generate synthetic demonstrations, we program end-effector trajectories
and use inverse kinematics (IK) to generate corresponding trajectories in
the robot joints space. Each demonstration consists of multiple pairs of the
three last camera observations and the robot control command performed
by the expert script. For UR5-Pick, we collect 1000 synthetic demonstrated
trajectories for training. For UR5-Bowl and UR5-Breakfast, we collect a
training dataset of 250 synthetic demonstrations. For evaluation of each
task, we use 100 different initial configurations in simulation and 20 trials
on the real robot.

3.4.2 Skill definition
UR5-Pick task is defined as a single skill. For UR5-Bowl and UR5-

Breakfast, we consider a set of skills defined by expert scripts. For UR5-
Bowl, we define four skills: (a) go to the cube, (b) go down and grasp, (c) go
up, and (d) go to the bowl and open the gripper. For UR5-Breakfast, we
define four skills: (a) go to the bottle, (b) go to the cup, (c) grasp an object
and pour it to the bowl, and (d) release the held object. We emphasize
that the expert dataset does not contain full task demonstrations and that
all our training is done in simulation. When training the RL master, we
execute selected skills for 60 consecutive time-steps for the UR5-Bowl task
and 220 time-steps for the UR5-Breakfast task.

3.5 Evaluation of BC skill learning
This section evaluates the different parameters of the BC skill training

for the UR5-Pick task and a comparison with the state of the art. First,
we evaluate the impact of the CNN architecture and data augmentation
on the skill performance in Sections 3.5.1 and 3.5.2. Then, we show that
the learned policies transfer to a real robot in Section 3.5.3. Finally, we
compare the BC skills with the state of the art in Section 3.5.4.

3.5.1 CNN architecture for BC skill learning
Given the simulated UR5-Pick task illustrated in Figure 3.3a(left), we

compare BC skill networks trained with different CNN architectures and
varying number of expert demonstrations. Table 3.1 compares the suc-
cess rates of policies with VGG and ResNet architectures. Policies based
on the VGG architecture [Simonyan and Zisserman, 2014b] obtain success
rate below 40% with 100 training demonstrations and reach 95% with 1000

44
Chapter 3. Learning to combine primitive skills:

A step towards versatile robotic manipulation

Demos VGG16-BN ResNet-18 ResNet-101
20 1% 1% 0%
50 9% 5% 5%
100 37% 65% 86%
1000 95% 100%100%100% 100%100%100%

Table 3.1 – Evaluation of BC skills trained with different CNN architectures
and number of demonstrations on the UR5-Pick task in simulation.

Demos None Standard Viewpoint Standard &
Viewpoint

20 1% 49% 39% 75%
50 5% 81% 79% 93%
100 65% 97% 100%100%100% 100%100%100%

Table 3.2 – Evaluation of ResNet-18 BC skills trained with different data
augmentations on UR5-Pick task in simulation.

demonstrations. ResNet [He et al., 2016] based policies have a success rate
above 60% when trained on a dataset of 100 demonstrations and reach 100%
with 1000 demonstrations. Overall ResNet-101 has the best performance
closely followed by ResNet-18 and outperforms VGG significantly. To con-
clude, we find that the network architecture has a fundamental impact on
the BC performance. In the following experiments we use ResNet-18 as it
presents a good trade-off between performance and training time.

When examining why VGG-based BC has a lower success rate, we ob-
serve that it has higher validation errors compared to ResNet. This indi-
cates that VGG performs worse on the level of individual steps and is hence
expected to result in higher compounding errors shown in Figure 3.4.

3.5.2 Evaluation of data augmentation
We evaluate the impact of different types of data augmentations in Ta-

ble 3.2. We compare training without data augmentation with 3 variants:
(1) random translations, rotations and crops, as is standard for object de-
tection, (2) record each expert synthetic demonstration from 10 varying
viewpoints and (3) the combination of (1) and (2).

Success rates for UR5-Pick on datasets with 20, 50 and 100 demon-
strations are reported in Table 3.2. We observe that data augmentation is
particularly important when only a few demonstrations are available. For

3.5. Evaluation of BC skill learning 45

Figure 3.4 – Compounding errors from a VGG-based policy. The policy
(red) drifts away from the expert trajectory (blue) and does not recover.

20 demonstrations, the policy trained with no augmentation performs at
1% while the policy trained with standard and viewpoint augmentations
together performs at 75%. The policy trained with a combination of both
augmentation types performs the best and achieves 93% and 100% suc-
cess rate for 50 and 100 demonstrations respectively. In summary, data
augmentation allows a significant reduction in the number of expert trajec-
tories required to solve the task.

3.5.3 Real robot experiments
We evaluate our method on the real-world UR5-Pick illustrated in Fig-

ure 3.3a(right). We collect demonstrated trajectories in simulation and
train the BC skills network applying standard, viewpoint and sim2real aug-
mentations. We show that our approach transfers well to the real robot
using no real images. The learned policy manages to pick up cubes of 3
different sizes correctly in 20 out of 20 trials.

3.5.4 Comparison with state-of-the-art methods
One of the few test-beds for robotic manipulation is FetchPickPlace

from OpenAI Gym [Plappert et al., 2018] implemented in mujoco [Todorov
et al., 2012], see Figure 3.5a. The goal for the agent is to pick up the cube
and to move it to the red target (see Figure 3.5a). The agent observes
the three last RGB-D images from a camera placed in front of the robot
ot ∈ R100×100×4×3. The positions of the cube and the target are set at
random for each trial. The reward of the task is a single sparse reward of
success. The maximum length of the task is 50 time-steps.

For a fair comparison with [Pinto et al., 2018], we do not use any data
augmentation. We report the success rate of ResNet-18 policy in Fig-

46
Chapter 3. Learning to combine primitive skills:

A step towards versatile robotic manipulation

(a) FetchPickPlace (b) Comparison with [Pinto et al., 2018]

Figure 3.5 – Comparison of BC ResNet-18 with state of the art [Pinto et al.,
2018] on the FetchPickPlace task. BC ResNet-18 results are reported for
200 different initial configurations.

ure 3.5b. We follow [Pinto et al., 2018] and plot the success rate of both
RL and IL methods with respect to the number of episodes used (either
trial episodes or demonstrations). Our approach outperforms the policies
trained with an imitation learning method DAgger [Ross and Bagnell, 2014]
in terms of performance and RL methods such as HER [Andrychowicz et al.,
2017] and DDPG [Lillicrap et al., 2016] in terms of data-efficiency. Accord-
ing to [Pinto et al., 2018], DAgger does not reach 100% even after 8 ∗ 104

demonstrations despite the fact that it requires an expert during train-
ing. HER reaches the success rate of 100% but requires about 4 ∗ 104 trial
episodes. Our approach achieves the 96% success rate using 104 demonstra-
tions.

Our policies differ from [Pinto et al., 2018] mainly in the CNN architec-
ture. Pinto et al. [Pinto et al., 2018] use a simple CNN with 4 convolutional
layers while we use ResNet-18. Results of this section confirm the large im-
pact of the CNN architecture on the performance of visual BC policies, as
was already observed in Table 3.1.

3.6 Evaluation of RLBC
This section evaluates the proposed RLBC approach and compares it

to baselines introduced in Section 3.6.1. First, we evaluate our method on
UR5-Bowl in Section 3.6.2. We then test the robustness of our approach to

3.6. Evaluation of RLBC 47

UR5-Bowl
perturbations

Detect &
Plan

Detect &
Replan BC-ordered RLBC

No perturbations 17/20 16/20 17/20 20/2020/2020/20
Moving objects 0/20 12/20 13/20 20/2020/2020/20

Occlusions 17/20 10/20 2/20 18/2018/2018/20
New objects 16/20 14/20 15/20 18/2018/2018/20

Table 3.3 – Comparison of RLBC with 3 baselines on the real-world UR5-
Bowl task with dynamic changes of the cube position, dynamic occlusions
and new object instances.

various perturbations such as dynamic changes of object positions, dynamic
occlusions, unseen object instances and the increased probability of colli-
sions due to small distances between objects. In Section 3.6.3, we show that
RLBC outperforms the baselines on those scenarios both in simulation and
on a real robot. Note, that our real robot experiments are performed with
skills and master policies that have been trained exclusively in simulation
using sim2real augmentation [Pashevich et al., 2019a]. We use the same
policies for all perturbation scenarios. Qualitative results of our method
are available at the project website [Strudel et al., 2020a].

3.6.1 Baseline methods
We compare RLBC with 3 baselines: (a) a fixed sequence of BC skills

following the manually pre-defined correct order (BC-ordered); (b) an open-
loop controller estimating positions of objects and executing an expert
script (Detect & Plan); (c) a closed-loop controller performing the same
estimation-based control and replanning in case if object positions change
substantially (Detect & Replan). We use the same set of skills for RLBC
and BC-ordered. We train the position estimation network using a dataset
of 20.000 synthetic depth images with randomized object positions. All
networks use ResNet-18 architecture and are trained with the standard,
viewpoint and sim2real augmentations described in Section 3.5.2.

3.6.2 Results on UR5-Bowl with no perturbations
We first evaluate RLBC and the three baselines on the UR5-Bowl task

(see Figure 3.3b). When tested in simulation, all the baselines and RLBC
manage to perfectly solve the task. On the real-world UR5-Bowl task, BC-
ordered and Detect & Plan baselines sometimes fail to grasp the object

48
Chapter 3. Learning to combine primitive skills:

A step towards versatile robotic manipulation

(a) Dynamic changes of
cube position in UR5-Bowl.

(b) Dynamic occlusions of
the objects in UR5-Bowl.

(c) Replacing the cube with
unseen objects in UR5-Bowl.

(d) Decreasing the distance
between objects in UR5-Breakfast.

Figure 3.6 – Performance of RLBC and baseline methods in simulated en-
vironments under perturbations: (a) dynamic changes of cube position; (b)
dynamic occlusions; (c) replacing the cube by unseen objects; (d) decreasing
the distance between objects.

3.6. Evaluation of RLBC 49

which leads to task failures (see Table 3.3, first row). On the contrary,
RLBC solves the task in all 20 episodes given its ability to re-plan the task
in the cases of failed skills.

We have also attempted to solve the simulated UR5-Bowl task without
skills by learning an RL policy performing low-level control. We have used
ImageNet pretrained ResNet-18 to generate visual features. The features
were then used to train low-level RL control policy with PPO. Whereas
such a low-level RL policy did not solve the task a single time after 104

episodes, RLBC reaches 100% after 400 episodes.

3.6.3 Robustness to perturbations
Robustness to dynamic changes in object position. We evaluate
RLBC against the baselines in the UR5-Bowl scenario where the cube is
moved several times during the episode. We plot success rates evaluated in
simulation with respect to the number of position changes in Figure 3.6a.
We observe the stability of RLBC and the fast degradation of all baselines.
As both RLBC and BC-ordered use the same set of skills, the stability of
RLBC comes from the learned skill combination. The "Moving objects" row
in Table 3.3 reports results for 3 moves of the cube evaluated on the real
robot. Similarly to the simulated results, we observe excellent results of
RLBC and the degraded performance for all the baselines.

Robustness to occlusions. We evaluate the success of UR5-Bowl task
under occlusions. Each occlusion lasts 3 seconds and covers a large ran-
dom part of the workspace by a cardboard. Figure 3.6b shows success
rates with respect to the number of occlusions in the simulated UR5-Bowl
environment. Similarly to the perturbation results in Figure 3.6a, RLBC
demonstrates high robustness to occlusions while the performance of other
methods quickly degrades. The "Occlusions" row in Table 3.3 reports results
for a single occlusion performed during the real-robot evaluation. Baseline
methods are strongly influenced by occlusions except Detect & Plan which
performs well unless occlusion happens during the first frames. Our RLBC
policy performs best compared to other methods.

Robustness to new object instances. We evaluate the robustness of
methods to the substitution of a cube by other objects not seen during the
training of UR5-Bowl task. Figure 3.6c shows the success rate of RLBC and
other methods with respect to the number of new objects in simulation. The
novel objects are ordered by their dissimilarity with the cube. The difficulty

50
Chapter 3. Learning to combine primitive skills:

A step towards versatile robotic manipulation

Figure 3.7 – Illustration of a failure case for the BC-ordered approach for
UR5-Breakfast with close by objects.

UR5-Breakfast
cup distance BC-ordered RLBC

> 10 cm 16/2016/2016/20 16/2016/2016/20
< 4 cm 8/20 16/2016/2016/20

Table 3.4 – Comparison of RLBC and manually ordered BC skills on simple
and hard scenarios of the UR5-Breakfast task.

of grasping unseen objects degrades the performance of grasping skills. In
contrast to other methods RLBC is able to automatically recover from er-
rors by making several grasping attempts. Table 3.3 reports corresponding
results on a real robot where the cube has been replaced by 10 unseen ob-
jects. Similarly to the other perturbations we observe superior performance
of RLBC.

Impact of the distance between objects. We vary the distance be-
tween a bottle and a cup in the UR5-Breakfast task. The smaller distance
between objects A and B implies higher probability of collision between a

3.7. Qualitative results 51

robot and A when grasping B behind A. The choice of the grasping order
becomes important in such situations. While our method is able to learn
the appropriate grasping order to maximize the chance of completing the
task, the BC-ordered and other baselines use pre-defined order. Figure 3.6d
demonstrates the performance of RLBC and BC-ordered for different ob-
ject distances in the simulated UR5-Breakfast task. As expected, RLBC
learns the correct grasping order and avoids most of collisions. The per-
formance of BC-ordered strongly degrades with the decreasing distance. In
the real-world evaluation shown in Table 3.4, both RLBC and ordered skills
succeed in 16 out of 20 episodes when the distance between objects is larger
than 10 cm. However, the performance of BC-ordered drops to 8/20 when
the cup and the bottle are at 4cm from each other. In contrast, RLBC
chooses the appropriate object to avoid collisions and succeeds in 16 out of
20 trials. Figure 3.7 shows an example scene with a cup and a bottle being
near to each other while the cup is placed in front of the bottle. As the
BC-ordered policy is pre-programmed to grasp the cup first, the execution
of this policy results in a collision between a gripper and a bottle, followed
by the failure of the task. Our RLBC policy learns to select the order of
objects for grasping to avoid failures of the task.

3.7 Qualitative results
We present additional qualitative results for the RLBC approach on the

real robot. We first illustrate examples of UR5-Bowl and UR5-Breakfast
policies while the robot is facing the challenges of previously unseen objects,
dynamic changes of object locations and occlusions. We then illustrate
feature map activations of the network providing better understanding of
learned policies.

UR5-Bowl: multiple objects. We experiment with the RLBC policy
trained in the UR5-Bowl environment. Once the robot succeeds to place
a cube in the bowl, we put another cube on the table and let the policy
continue, see Figure 3.8. While the UR5-Bowl policy has been trained to
handle one cube only, it automatically generalizes to multiple cubes when
run in a loop.

UR5-Bowl: previously unseen objects. We further test the RLBC
UR5-Bowl policy in the presence of previously unseen objects. While the
policy has been trained to manipulate cubes of different sizes, we observe
its robustness to other object shapes. As shown in Figure 3.9, the policy

52
Chapter 3. Learning to combine primitive skills:

A step towards versatile robotic manipulation

Figure 3.8 – RLBC approach for UR5-Bowl with two cubes.

successfully grasps and places into a bowl real objects, such as apples, or-
anges, lemons, and toys. Notably, in cases of failing to grasps an object,
the robot automatically recovers and completes the task. This behavior
comes naturally from our RLBC master policy that has learned to adapt
the sequence of skills given current observations of the scene.

UR5-Breakfast: new object instances. To enable generalization of
learned policies to new object instances, our UR5-Breakfast environment
contains cups, bottles and bowls of different shapes from ShapeNet [Chang
et al., 2015]. During testing we run the learned RLBC UR5-Breakfast
policy on a real robot and experiment with instances of bottles and cups
unseen during training. Figure 3.10 demonstrates successful executions of
the RLBC UR5-Breakfast policy in scenes with significant variations in
object shapes, for example, using a wine glass instead of a cup.

UR5-Breakfast: dynamic changes of object location. Our BC skills
make decisions at every time-step and, hence, can instantly adapt to chang-
ing conditions of the scene. We verify this by varying object positions
during grasping attempts of the RLBC UR5-Breakfast policy. Figure 3.11
illustrates the reactive behavior of the robot grasping a cup that is being

3.7. Qualitative results 53

Figure 3.9 – RLBC approach for UR5-Bowl with previously unseen objects.

simultaneously moved by the person. The cup is successfully grasped after
multiple changes of its position.

UR5-Breakfast: occlusion. Another example of the instant re-planning
by our RLBC policy is demonstrated in Figure 3.12. While the robot ap-
proaches an object, we temporary occlude the object and disrupt the ex-
ecuting BC skill. Given the hierarchical nature of our RLBC approach,

54
Chapter 3. Learning to combine primitive skills:

A step towards versatile robotic manipulation

Figure 3.10 – RLBC approach for UR5-Breakfast with previously unseen
object instances.

Figure 3.11 – RLBC approach for UR5-Breakfast with dynamic changes of
object locations.

3.7. Qualitative results 55

Figure 3.12 – RLBC UR5-Breakfast policy executed in a robot scene with
a temporary occluded bottle.

the RL master is able to recover from this failure by starting another skill
that leads to the completion of the task. More precisely, when the bottle
gets occluded in the example of Figure 3.12, the robot changes its strategy
and decides to grasp and pour from a cup. Once the occlusion is removed,
the robot automatically resumes and completes the task by grasping and
pouring from the bottle.

Feature map activations The RLBC policy uses no explicit represen-
tation of scenes, for example in terms of categories and locations of objects.
Some interpretation of learned policies, however, can be obtained by ex-
amining spatial activations of the neural network at intermediate network
layers. Figure 3.13 shows silency maps of an RLBC policy highlighting

56
Chapter 3. Learning to combine primitive skills:

A step towards versatile robotic manipulation
grasping a bottle

moving a bottle

pouring from a bottle

releasing a bottle

Figure 3.13 – Left: Feature map activations of the RLBC UR5-Breakfast
policy are overlayed on the input depth images. Right: corresponding
frames taken from a different viewpoint.

3.8. Conclusion 57

which parts of the image the agents concentrates on. The silency maps are
computed as activations of convolutional feature maps obtained from last
layers of CNN(θ) and CNN(ηi), i = 1, . . . , K (see Figure 3.2), averaged
over all channels and layers. The resulting heatmaps are shown for different
stages of the UR5-Breakfast task. Interestingly, while grasping and moving
the bottle, the network generates highest activations around the bottle and
the gripper, while ignoring other objects. When releasing the bottle, how-
ever, high activations are also observed around the cup. The attention to
the cup might be explained by the need of avoiding collisions when placing
the bottle on the table. Note, that we provide no intermediate rewards to
RL, however, RL learns to avoid collisions since collisions imply failures of
the final task and, hence, no final positive reward during training. Once the
bottle is placed on the table, activations become low for the bottle, while
the heatmap obtains maximum values for the manipulated cup. Observa-
tions of such feature maps have been useful in our work to identify certain
cases of failures. We believe feature map activations are a useful tool to
interpret learned policies.

3.8 Conclusion
This chapter presents a method to learn combinations of primitive skills.

We propose to pretrain skills using behavior cloning and demonstrate how
to use recent CNN architectures and data augmentation to significantly
decrease the number of required demonstrations. We then propose to learn
a master policy that switches between skills using reinforcement learning
and a task completion signal. In contrast to previous methods, our approach
requires neither full-task demonstrations nor intermediate rewards. We use
our sim2real method proposed in Chapter 2 and transfer policies learned
in simulation to a real robot using only synthetic data. We demonstrate
excellent results both in simulation and on a real robot. Due to the ability of
skills to react on dynamic changes in the scene and the ability of the master
policy to replan in case of a skill failure, we demonstrate the versatility of
our approach in challenging real-world settings which include changes of
object positions, temporary object occlusions, and new object instances.

4

Learning visual policies for building 3D
shape categories

4.1 Introduction
Our daily physical activities such as cooking, dressing or navigation re-

quire complex sequences of actions which people successfully and seamlessly
plan based on sensory input. Action planning typically depends on the goal
and constraints provided by the environment. Despite extensive prior work,
existing autonomous agents are still far from the human-level planning per-
formance, especially in unknown and cluttered environments [Ebert et al.,
2018, Wang et al., 2019a].

Action planning is a hard problem due to the large action spaces, expo-
nential complexity and partial observability [Irpan, 2018, Jaderberg et al.,
2017]. To simplify the problem, existing work on task planing [Garrett et al.,
2018b, Nair et al., 2018, Srivastava et al., 2014, Toussaint, 2015] typically
operates in the state space assuming the full knowledge of the environment.
While such an assumption can be practical in structured and controlled
environments, full state reconstruction for common scenes remains a highly
challenging problem [Grabner et al., 2018]. Arguably, the precise recovery
of scene parameters such as its geometry, composition, friction coefficients,
etc., is more difficult than the primary planning task itself. It is there-
fore desirable to design sensor-based planning policies that do not rely on
explicit scene geometry and full state estimation.

Vision-based control policies have recently become popular for robotic
manipulation [Agrawal et al., 2016, Levine et al., 2015, Zeng et al., 2019]
and navigation [Codevilla et al., 2018, Gandhi et al., 2017]. While this line
of work shows promise, it has mostly been applied to the low-level motion
planning such as predicting next motion direction. In our work we aim

59

60 Chapter 4. Learning visual policies for building 3D shape categories

Figure 4.1 – Primitives on the left are assembled by our learned policy into
arches on the right. We assemble objects of similar shapes in the simulator
and learn visual manipulation policies that can build real 3D shapes from
unseen primitives resembling building blocks used during training.

to learn visual policies for high-level task planning. Given visual input,
our policies generate sequences of picking, rotating and placing actions for
building 3D shapes.

Object manipulation has a long history in robotics. In particular, assem-
bling objects from a given set of primitives has been addressed, for exam-
ple, in [Popov et al., 2017, Chen et al., 2019b]. Prior work in this domain
often aims to build particular object instances for which the structure is
pre-defined [Suárez-Ruiz et al., 2018], specified by demonstrations [Huang
et al., 2018, Duan et al., 2017] or given by a goal image [Janner et al.,
2019]. Here we go further and learn to assemble different objects of a shape
category. Such a task is significantly more complex compared to building
particular object instances as it requires generalization to varying sets of
building primitives. Moreover, we show empirically that our method is able
to generalize to new primitives unseen during training (see Figure 4.1).

Our approach contains two stages as illustrated in Figure 4.2a. In the
first stage we discover new object instances and learn their assembling poli-
cies in state space. To this end, we propose a disassembling procedure and

4.1. Introduction 61

State space
policy training

Observation space
policy training

(a) Our two-phase method overview. Given an example object and a shape
classifier on the left, our method generates new objects with similar shape and
discovers action sequences for building these objects in the state space. The state
and observation space policy training phases are explained below.

Input
object

instance
+

Shape
classifier

State space

Unmake 1. Learn state
policy __

2. Generate new
object instances

●
●
●

●
●
●

Observation space

Learn CNN
policy with BC

and Sim2Real

1. Render states
2. Generate action

heatmaps

HourGlass
CNN

An arch shape
built by real

robot

state-actions
pairs for
building objects

P
ic

k
P

la
ce

(b) State space policy training

Input
object

instance
+

Shape
classifier

State space

Unmake 1. Learn state
policy __

2. Generate new
object instances

●
●
●

●
●
●

Observation space

Learn CNN
policy with BC

and Sim2Real

1. Render states
2. Generate action

heatmaps

HourGlass
CNN

An arch shape
built by real

robot

state-actions
pairs for
building objects

P
ic

k
P

la
ce

(c) Observation space policy training

Figure 4.2 – The first phase of the method works in the low-dimensional
state space and generates state-action pairs (si,ai) using the proposed dis-
assembly procedure iteratively (see Figure 4.2b). The second phase of the
method works in the visual observation space and trains a control policy
for a real robot (see Figure 4.2c). It first renders states si as realistic ob-
servations oi and generates 2D heatmaps (hpick

i , hplace
i) encoding source and

target locations and orientations of one or several primitives. Heatmaps
can represent multiple hypothesis for the next action when several identical
primitives are used or multiple object instances can be assembled. Positions
on our 2D heatmaps correspond to positions on the 2D surface of a table,
hence, the identified local maxima on heatmaps can be used to control the
robot. It then trains a Behavior Cloning policy π to predict hpick and hplace

from observations. The learned policy is directly transferred to a real robot
which assembles 3D objects from primitives.

62 Chapter 4. Learning visual policies for building 3D shape categories

generate assembly trajectories by (a) unbuilding objects and (b) reverting
action sequences. We then learn a value function and apply it to build new
object instances. We iterate the disassembling and learning steps to obtain
a policy assembling a 3D shape.

In the second stage we assemble objects given images of observed scenes.
We render states from assembly trajectories obtained in the first stage
and learn visual assembly policies with Behavior Cloning (BC) [Pomerleau,
1989]. To enable predictions of multiple valid actions at any given time, we
propose a heatmap representation for the output of visual policies. While
all our policies are learned in a simulated environment, we enable their
direct transfer to a real robot using the sim2real augmentation technique
presented in Chapter 2 [Pashevich et al., 2019a].

As main contributions of this chapter, we (i) propose a novel disassembly
algorithm for building shape categories in state space, (ii) design and learn
visual policies with heatmap outputs to address multimodality of predicted
actions, (iii) demonstrate a successful application of the method to a new
task of building shape categories on a real UR5 robot. Moreover, our policies
are learned with no human demonstrations, can re-assemble partially built
objects, and adapt to unseen primitives resembling building blocks used
during training.

4.2 Related work
Assembly tasks such as constructing IKEA furniture [Suárez-Ruiz et al.,

2018] remain to be a hard robotics challenge. Learning-based methods usu-
ally address simpler tasks such as cube stacking [Riedmiller et al., 2018, Pa-
shevich et al., 2018]. Duan et al. [Duan et al., 2017] use demonstrations
and attention modules to build a tower instance shown by an expert. Jan-
ner et al. [Janner et al., 2019] learn an object-centric representation of the
scene to reproduce a tower instance from a goal image with an MPC-like
control. Huang et al. [Huang et al., 2018] train a Graph Network to build a
tower instance specified by a demonstration. We go beyond specific object
instances and aim to assemble multiple objects from a given shape cate-
gory, such as an arch. Moreover, we learn to build objects from different
sets of possibly unseen primitives. To facilitate the learning, we propose
to use disassembling to generate assembly trajectories. While the idea of
reversible actions has been explored e.g., in [Florensa et al., 2017b, Nair
et al., 2020, Sukhbaatar et al., 2017, Hosu and Rebedea, 2016], our method
differs from the work on disassembling object instances [Zakka et al., 2019]
by computing multiple disassembly paths and accounting for alternative

4.3. Approach 63

valid actions.

Our work is related to methods of Task and Motion Planing (TAMP) [Gar-
rett et al., 2015, Lozano-Pérez and Kaelbling, 2014, Srivastava et al., 2014,
Toussaint, 2015]. Long-term task planning prohibits costly rollouts, hence,
TAMP methods deploy preconditions and postconditions to actions and
optimize symbolic planners [Fikes and Nilsson, 1971]. While some of these
methods solve impressive tasks, conditions require manual and task-specific
design [Edelkamp and Hoffmann, 2004, He et al., 2015, Paxton et al., 2019].
Moreover, TAMP methods typically operate in state-space [Garrett et al.,
2018a], hence, their generalization to sensor-based input in the real world
requires non-trivial scene understanding [Dantam et al., 2018]. In our work
we learn visual policies and directly predict control sequences from image
inputs.

Convolutions Neural Networks (CNNs) have significantly advanced vi-
sual recognition [He et al., 2016, Ren et al., 2015, Newell et al., 2016] and
robotics, for example in tasks such as tossing objects [Zeng et al., 2019],
cube stacking [Popov et al., 2017], grasping [Lampe and Riedmiller, 2013]
and opening doors [Gu et al., 2016]. Direct methods for visual control avoid
explicit scene reconstruction and derive actions directly from image obser-
vations. Such methods typically use Reinforcement Learning (RL) [Kober
et al., 2013] with auxiliary rewards [Riedmiller et al., 2018] or Imitation
Learning (IL) [Argall et al., 2009, Sadeghi and Levine, 2017] relying on
large amounts of demonstrations [Zhang et al., 2018, Rahmatizadeh et al.,
2018]. The complexity of problems addressed by direct methods is typically
limited by the task length and the number of manipulated objects [Ried-
miller et al., 2018, Zhang et al., 2018, Rahmatizadeh et al., 2018]. Indirect
methods first estimate scene parameters [Espiau et al., 1992, Andrychow-
icz et al., 2017] such as object positions and orientations, and then deploy
state-based planning strategies. Scene reconstruction from images, however,
might be a more challenging task than solving a control task itself [Pinto
and Gupta, 2016, Grabner et al., 2018]. We avoid drawbacks of direct and
indirect methods and first solve the task in the simulated state space. We
then use obtained solutions as automatic supervision for learning visual
policies in the observation space. Inspired by [Levine et al., 2015, Mahler
et al., 2017], we render states and train visual policies for a real robot using
BC [Pomerleau, 1989] and sim2real [Pashevich et al., 2019a, Tobin et al.,
2017].

64 Chapter 4. Learning visual policies for building 3D shape categories

Figure 4.3 – Examples of different shape instances that belong to an arch
shape category of 4 units height. While the first three instances are built
of different primitives, the third and the fourth instances are built of the
same set of primitives but differ in their configurations.

4.3 Approach
We address the problem of building a 3D object shape by manipulating a

set of available primitives with a robot. The configuration of the primitives
on the table defines the state, s ∈ S. We assume to have access to a shape
classifier function fC : S → {0, 1}. The classifier decides whether a given
state belongs to the target shape category which is defined as a subset of the
state space, C = {s ∈ S|fC(s) = 1}. The shape category includes several
shape instances which differ either in which primitives are used or in the
assembled configuration of primitives as shown in Figure 4.3. Given fC and
a single shape instance ŝ ∈ C, our method learns a visual policy π that
generates a robot action given a camera observation o ∈ O. The resulting
sequence of actions is then used to assemble a shape instance from available
primitives. Our policy operates in the observation space O, i.e., it only has
access to the image of a current scene before deciding on the next action.
Moreover, the policy is expected to build new object configurations from
unseen primitives that resemble building blocks used during training.

4.3.1 Overview of the method
Our method has two stages: (i) generating action sequences in the state

space and (ii) learning visual policies in the observation space. We use
a simulated environment for both stages, however, our visual policies are
trained with sim2real data augmentation presented in Chapter 2 [Pashevich
et al., 2019a] and directly transfer to the real robot. The overview of the
method is presented in Figure 4.2.

The first stage aims to find new shape instances and to construct action
sequences for building them. It takes as input one 3D shape and a shape
classifier. We propose to use an unmake procedure to generate valid ac-

4.3. Approach 65

tion sequences. We disassemble the given shape instance and interpret the
resulting sequences as reversed assembly demonstrations. We disassemble
objects in multiple ways to find all assembly actions that are possible in
the same state. We refer to the shape classifier fC as a sparse reward signal
which we use to learn a state-value function Vk. We generate new shape
instances using a state policy µk which is greedy with respect to the learned
Vk. For a fixed number of iterations, we repeat the unmake procedure using
the new set of instances and train an updated value function Vk+1. This
part of our approach is described in Section 4.3.2.

In the second stage we learn a visual policy that infers appropriate
actions from image observations. We convert states si into observations
oi = R(si) using a graphics renderer R and train a CNN policy π with
Behavior Cloning (BC). Given the assembly trajectories produced by the
first stage, each state is associated with a valid set of actions ai that we turn
into a heatmap hi to predict all possible actions simultaneously. Then π
is trained in a supervised manner using observation-heatmap pairs (oi, hi).
This part of our approach is described in Section 4.3.3.

4.3.2 Building objects in state space
We define the full state of our environment by the vector s = (x1, . . . , xm)>

with x ∈ R12 representing parameters for m primitive shapes (our building
blocks) in the scene. Each primitive x is defined by three position coordi-
nates, three orientation angles in the 3D space, three spatial extents (width,
height and depth), and three color channels (the building order may depend
on the color, see Section 4.4.2). A robot action a ∈ A corresponds to a high-
level skill of picking, placing and rotation of a primitive: a = (x, p, o) where
x ∈ {x1, . . . , xm} is the primitive to pick, p ∈ R3 is the position to place
it, and o ∈ R3 is the orientation x is placed in. We restrict orientations of
primitives to the three axis-parallel directions and assume that all primi-
tives are located on the surface of a table or on top of each other. Assuming
access to the simulator T , applying action at in the state st would result
into st+1 = T (st, at).

Building an object from a given set of primitives requires finding an ap-
propriate sequence of actions a1:n = {a1, . . . , an} that transforms an initial
state s0 into the desired shape state sn ∈ C. Finding a correct sequence
a1:n is not trivial even in the state space. Given the large space of possible
actions and the exponential growth of the number of action sequences de-
pending on n, the naive brute-force search works only for building simple
objects.

66 Chapter 4. Learning visual policies for building 3D shape categories

Unmake & Merge Pick location Place locations

Figure 4.4 – The proposed unmake procedure disassembles objects in mul-
tiple ways (left) and generates set of pick & place actions available from
each state (right). For visual policies, we use the heatmap representation
to predict all the actions simultaneously.

Making objects by unmaking. For an object example defined by the
state ŝ ∈ C we propose to find valid building sequences a1:n via disassem-
bling or unmaking ŝ. We first find a sequence of unmake actions ã1:n =
{ã1, . . . , ãn}, where ãi moves a random non-blocked primitive on an ob-
ject ∗ to a random non-occupied location on the table. If m is the number
of primitives constituting object ŝ, we can disassemble ŝ by a sequence of
n = m − 1 unmake actions. We call an action invertible if for any action
ã such that T (si, ã) = sj there exists an inverse action a = ã−1 such that
T (sj, a) = si. We assume our unmake actions to be invertable and obtain
a valid sequence of actions for building ŝ as a1:n = {ã−1

n , . . . , ã−1
1 }.

We use the above randomized unmake procedure to generate a large
and diverse set of valid state-action sequences. While each action ai in the
sequences is associated with a single state si, there might be multiple valid
assembly actions in the state si which would lead to a correct shape instance
in the future. For example, when building an arch, the same cube could be
placed both to the left and to the right pillars (see Figure 4.4). We do an
additional step to associate each state si with a set of valid actions available
in it. We look for identical states in the generated state-action sequences
and merge their actions into a set of valid actions. However, the states
may not match exactly due to the randomness in the initial positions of
primitives. Therefore, we merge actions of equivalent states (denoted as ≈)
which we define as states that differ only in positions of primitives located

∗. By “non-blocked primitives on objects“ we refer to primitives that are not on the
table surface and that can be freely lifted above their current positions. Such primitives
can be easily derived from s.

4.3. Approach 67

on the table. As a result, we record state-actions pairs (si,ai) where actions
ai = {aj|sj ≈ si} are used for generating heatmaps in the observation space
phase.

Given M action sequences of length N we collect a dataset Dµ with
state-actions pairs Dµ = {(si,ai)}i=1,...,M∗N that can be readily used to
train a policy for assembling an object instance defined by state ŝ.

Finding new object instances. To generalize our policies to build new
objects of the similar shape given any set of primitives, we construct new
instances through learning a value function. The value function Vk : S → R
estimates the sum of discounted rewards r : S → R under an assembly
policy µk : S → A where Vk(s) = Eµk

[∑
j γ

jr(st+j)|st = s
]
and γ ∈ [0, 1) is

the discount factor. We define the reward with the shape classifier r(st) =
fC(st) which makes the value function learn the actions required to build the
shape. Given a learned value function Vk, we deduce the assembly policy
by choosing at+1 as µk+1(st) = arg maxa Vk(T (st, a)). We sample an initial
state s0 with a random set of primitives and apply µk+1 to choose an action
sequence a1:n resulting in an object of the desired shape: fC(sn) = 1. We
record all instances of the target shape found by assembling is a set CVk .

Learning value function. The value function Vk is learned iteratively
using instances found with the greedy policy µk−1. In the first stage of
training, we learn V0 using the input instance ŝ only. We run the unmake
procedure for all discovered instances in CVk , Given a sequence of state-
actions pairs {(s1,a1), . . . , (sn,an)}, the value function estimate for state
si is V̂ (si) = γn−i. We also estimate values of states obtained by applying
random disassembly actions ãj to trajectory states si: sji = T (si, ãj). The
value estimate V̂ (sji) is known if there exists sj ∈ {s1, . . . , sn} such that
sji ≈ sj. Otherwise, we set the value as V̂ (sji) = γV̂ (si) which means that
we can reach si from sji using a single assembly action ã−1

j . We record
all state-value pairs to the dataset DkV and learn the value function by
minimizing the loss

η̂k = arg min
η

MSE(Vk(si), V̂ (si)), (4.1)

where Vk is implemented as a fully connected neural network with parame-
ters η̂k and MSE is the mean square error. Once the training is converged,
we discover new shape instances with µk, unmake them, recollect Dk+1

V and
learn Vk+1. After K phases, we run the unmake procedure on the set of
discovered instances CVK and record all state-actions pairs to the dataset Dµ.

68 Chapter 4. Learning visual policies for building 3D shape categories

The overview of our approach in the state space is illustrated by Figure 4.2b
and lines 14-28 of Algorithm 3.

4.3.3 Learning in observation space
We want to learn a visual policy π for assembling objects from di-

verse sets of primitives by a real robot. The sole input of the policy is
the camera observation of the scene. We learn the image-action associa-
tion with a supervised learning approach, Behavior Cloning (BC) [Pomer-
leau, 1989], where we obtain supervision with solutions found in the state
space. Given the dataset Dµ with state-actions pairs {(si,ai)}, we use a
pybullet [Coumans, 2009] graphics renderer R to generate an RGB-D im-
age oi = R(si) for each state si in Dµ. In order to allow multiple actions
for each observation oi, we generate an action-heatmap hi ∈ H given the
list of actions ai = {a1

i , . . . , a
l
i}. We record the observation-heatmap pairs

to the dataset Dπ. The policy π : O → H is implemented as a CNN and is
trained to predict correct action-heatmaps π(oi) = hi for all (oi, hi) ∈ Dπ.
We show an advantage of the heatmaps-based architecture over a network
that directly predicts positions and orientations in Section 4.4.4.

For the task of building objects with a real robot, we consider separate
pick and place actions that are parameterized by positions and orientations
of primitives on the 2D plane of a table. For simplicity, we assume that the
elevation of a primitive above the table can be estimated by external means
such as an overhead depth camera or a force-feedback sensor of the robot
arm. We define the output of our policy by distributions over 2D positions
on the table plane and 3 possible orientations of primitives on the table. We
represent such distributions as heatmaps (hpick, hplace) corresponding to the
source and target parameters of primitives. Our heatmaps are 4-channel
images with one channel representing (x, y) position distribution of a pick
or place action and three other channels representing orientation. To obtain
the action parameters, we find the (x, y) coordinates as a maximum over
the first heatmap channel. Given the extracted x and y location, we find
the maximum over the 3 remaining channels at (x, y) to choose one out of 3
possible orientations. The placing positions and orientations might depend
on the picked primitive, hence, we predict pick and place action-heatmaps
sequentially.

We render separate observations (opick, oplace) for pick and place action-
heatmaps (hpick, hplace) respectively. For each list of pick-place actions ai,
we render the observation opick

i = R(si) and define hpick
i as an image with

Gaussian distributions around positions of all picked objects by ai. For each
picked object, we render the observation oplace

i = R(si) with the robotic arm

4.3. Approach 69

Algorithm 3 Pseudo-code of our approach.
1: Input: instance ŝ, classifier fC, simulator T, augmentation fsim2real
2:
3: function unmake(state s, simulator T)
4: D = {s : (value = 1, actions = {})}
5: for s ∈ D do
6: *** Disassemble by moving non-blocked objects ***
7: for ã ∈ disassembly_actions(s) do
8: s̃ = T (s, ã)
9: Ṽ = D[s].value ∗ γ . upper bound for the value
10: D̃ = {s̃ : (value = Ṽ , actions = {ã−1})}
11: D = merge_similar_states(D, D̃)
12: if s̃.is_initial then return D
13:
14: *** Train the value function V ***
15: CV0 = {ŝ} . Known instances of the category
16: for k ∈ {0, . . . , K − 1} do . Number of value function iterations
17: DkV = {} . State-value pairs dataset
18: for si ∈ CVk do
19: Diunmake = unmake(si)
20: Diunmake = expand_with_random_actions(Diunmake)
21: DkV = merge_similar_states(DkV ,Diunmake)
22: Vk = train(DkV , fully_connected)
23: µk = greedy_policy(Vk)
24: CVk+1 = {} . Set of instances discovered with µk
25: for i ∈ {1, . . . , building_attempts} do
26: si = build_instance(T, µk)
27: if fC(si) = 1 then
28: CVk+1.append(si)
29:
30: *** Train the visual policy π ***
31: Dµ = {} . Dataset of state-actions pairs
32: for si ∈ CVK do
33: Diunmake = unmake(si)
34: Dµ = merge_datasets(Dµ,Diunmake)
35: Dπ = {} . Dataset of observation-heatmap pairs
36: for (si,ai) ∈ Dµ do
37: opick

i , oplace
i = render(si)

38: hpick
i , hplace

i = generate_heatmaps(ai)
39: Dπ.append

(
(opick
i , hpick

i), (oplace
i , hplace

i)
)

40: π = train(Dπ, hourglass, fsim2real)
41: Output: assembly policy π for a real robot

70 Chapter 4. Learning visual policies for building 3D shape categories

picking this object and create the heatmap hplace
i with all possible placing

positions in ai (see Figure 4.4). We record all observation-heatmap pairs
in the dataset Dπ.

Heatmaps are often used as CNN outputs in tasks such as human pose
estimation [Newell et al., 2016, Wei et al., 2016] and segmentation [Shel-
hamer et al., 2017]. We follow [Newell et al., 2016] and use a HourGlass
CNN architecture for heatmap prediction π(o) 7→ h. Given Dπ, we train π
by minimizing the loss θ̂ = arg minθMSE(πθ(oi), hi), where θ̂ are parame-
ters of the HourGlass CNN. We obtain parameters for the pick and place
actions by maximizing the obtained location heatmaps over the 2D space
and then maximizing orientations over the 3 channels at the selected loca-
tion. The overview of our policy learning is illustrated by Figure 4.2c and
lines 30-41 of Algorithm 3.

4.4 Results

Estimation of centroids from depth map Correction of heatmap-predicted location

Figure 4.5 – Correction procedure applied to the spatial maxima of pre-
dicted heatmaps. Left: object centroids (blue bars) are estimated by the
spatial clustering of depth-map locations above the table surface. Right:
The location of the heatmap maxima (red bar) is corrected to the location
of the closest object centroid. Refer to Section 4.4.1 for further explana-
tions.

In this section we evaluate our approach both in simulation and on a
real UR5 robot. We start with implementation details in Section 4.4.1 and
present tasks used for evaluation in Section 4.4.2. Section 4.4.3 confirms
the importance of learning the state-value function for efficient task solving.

4.4. Results 71

Section 4.4.4 evaluates visual policies trained to solve tasks in the observa-
tion space. We validate our proposed network architecture and highlight
the importance of the disassembling procedure. We show a few examples
of successful and failed trails on a real robot in Section 4.4.5. Additional
qualitative results are available on the project website [Pashevich et al.,
2020b].

4.4.1 Implementation details
We control a 6-DoF UR5 robotic arm with a 3 finger Robotiq grip-

per. In simulation, we model the robot and its environment with the
pybullet physics simulator [Coumans, 2009]. Given the positions and ori-
entations of primitives to be manipulated, we use standard path planing
methods [LaValle, 2006, Şucan et al., 2012] to implement the pick and place
actions. The elevation of primitives above the table surface is obtained with
a Microsoft Kinect-2 camera located above the table.

Our observations are depth images recorded with another Kinect-2 cam-
era placed in front of the robot arm. We use the same parameters for real
and simulation cameras (location and calibration). Visual policies receive
the depth image and color segmentation masks corresponding to the colors
of primitives. While visual policies in simulation have average errors of less
than 5mm, the sim2real gap increases this value up to 2-3 cm on the real
robot. Given that stacking multiple primitives requires high precision, we
apply a correction procedure using the depth camera. As illustrated in Fig-
ure 4.5, given a depth map, we first obtain object centroids by clustering
points above the table surface. Next, we predict the spatial location for
the next action by maximizing the heatmap produced by the policy. The
predicted location is then corrected to the location of the nearest cluster
centroid. The applied corrections are typically in the order of 2-3 centime-
ters.

The neural network Vη for Value Function has five fully-connected layers
with 128 hidden units, ReLU activations and Batch Normalization [Ioffe and
Szegedy, 2015]. We train Vη for 20 iterations of 30 epochs each using Adam
and LR=1e-3. The CNN πθ contains one HourGlass [Newell et al., 2016]
module which we compare to ResNet [He et al., 2016] in Section 4.4.4.
The spatial dimensions of HourGlass input and output are 256x256 and
64x64 pixels respectively. We train πθ using Adam and LR=2.5e-4 for 50
epochs. For both value and visual networks, we use datasets of size 200.000
value-state and heatmap-observation pairs correspondingly. To enable the
transfer of policies to the real robot, we use the sim2real transfer tech-
nique [Pashevich et al., 2019a] to augment synthetic depth maps during

72 Chapter 4. Learning visual policies for building 3D shape categories

training. Color segmentation masks are augmented with Bernoulli noise.
During rendering, we also randomize shapes of primitives by adding noise to
spatial coordinates of points that define cube meshes. We use 500 episodes
for evaluation in simulation and 20 trials on the real robot.

4.4.2 Tasks
Tower. The goal of the agent is to stack cubes in a specific order of colors
(see Figure 4.6). In the beginning of the task, green, yellow and red cubes
of size 1 unit (1U) are randomly distributed on the surface of a table. The
unit corresponds to a physical size of 4.5 cm. The lowest cube is always
green, the rest of the tower is defined as alternating yellow and red cubes.
We use the Tower task to compare HourGlass and ResNet architectures in
Section 4.4.4.

Arch. The agent needs to use all primitives available on a table to build
an arch (see Figure 4.7). The construction primitives are cubes of size 1U
and beams of length 2U and 3U. The arch shape category is defined as
two symmetrical pillars with a bar bridging them. For example, pillars of
an arch could be constructed from a 3U beam, three cubes or one cube
and a 2U beam. Initially, all primitives are randomly distributed on the
surface of the table. The beams can have three axes-parallel orientations.
The primitives can have any color that differ from the color of the table.
The location of pillars on the table is pre-defined. There are 49, 16 and 4
instances for 5U, 4U and 3U arch shapes correspondingly. We use the Arch
task to evaluate the generalization of our method to the shape category and
to show advantages of unmaking procedure in Sections 4.4.3 and 4.4.4.

4.4.3 Learning in state space
This section evaluates how efficient our approach in generalizing to 3D

shapes in the state space. For evaluation, we use a simulated Arch task.
Our approach receives a single shape instance as an input and learns a
state-value function by unmaking this instance. Given the trained value
function and the simulator, we obtain the state policy by iterating over
all possible actions and taking the one that maximizes the value function
prediction. This state policy is then used to discover new object instances.
We iteratively repeat the state-value network training after unmaking the
discovered instances during 20 iterations. We compare our approach to
MCTS [Coulom, 2006] and random exploration. Similarly to the state pol-
icy, both baselines choose an object for picking and its placing location

4.4. Results 73

Figure 4.6 – Visualization of predictions of visual policies using HourGlass
(green blobs) and ResNet-18 (red crosses) architectures. The policies are
trained to build towers and should start by placing a yellow cube on the
green one. ResNet predicts the correct picking location when all the cubes
have distinct colors (left). Once identical yellow cubes are introduced to the
scene (right), ResNet fails to choose between them and predicts an averaged
location. HourGlass locates all the cubes correctly in both cases.

Arch, state space 3U 4U 5U
Random 3.4e3± 5.0e3 1.5e4± 1.2e4 6.1e4± 9.6e4
MCTS [Coulom, 2006] 6.3e2± 4.7e2 7.0e3± 6.2e3 1.6e4± 2.4e4
Ours (state policy)∗ 4.0e0± 0.7e04.0e0± 0.7e04.0e0± 0.7e0 5.7e0± 0.7e05.7e0± 0.7e05.7e0± 0.7e0 6.9e0± 1.8e06.9e0± 1.8e06.9e0± 1.8e0
Oracle 4.0e0± 0.7e0 5.7e0± 0.7e0 6.4e0± 1.0e0

Table 4.1 – Average amount and standard deviation of steps required to
build an arch shape for our method, random exploration and MCTS. ∗The
simulation steps used for training of our method are not included.

on top of other objects. The baselines also choose the placing orientation
among the three axis-parallel directions. For MCTS, we use a shape match-
ing score which is defined by a percentage of how much the arch shape is
completed with primitives.

We estimate an average amount of steps required by our method and
the baselines to build an arch, and report results in Table 4.1. We also
report the minimum number of steps required to build an arch (Oracle).
Note that the Oracle has a non-zero variance since arches can be composed
from different numbers of primitives. While the efficiency of our approach
is comparable to Oracle, baselines require orders of magnitude more steps
to find a correct solution. For example, to build a 5U arch, MCTS and

74 Chapter 4. Learning visual policies for building 3D shape categories

Figure 4.7 – Assembling arches of 3 and 5 units in simulation (top) and
with a real robot (middle). Assembling arches with never-seen primitives
resembling cubes and beams on the real robot (bottom). The image pairs
correspond to initial and final states.

4.4. Results 75

Figure 4.8 – Our visual policies successfully re-build shapes using primitives
added to the table.

the random exploration require 1.6e4 and 6.1e4 steps respectively while our
method solves the task in 6.9 steps on average. We expect our method
to scale well to more complex tasks where the complexity of baselines will
prohibit their use.

4.4.4 Evaluation of visual policies

This section evaluates visual policies trained to solve tasks given images
as input. We validate the HourGlass architecture in Section 4.4.4, show
benefits of the proposed unmaking approach over prior work in Section 4.4.4,
evaluate generalization of our method to the shape category in Section 4.4.4
and present an evaluation on the real robot in Section 4.4.4.

Tower, simulation 3 cubes 5 cubes 7 cubes
ResNet-18 [He et al., 2016] 99.2 1.4 0.0
HourGlass [Newell et al., 2016] 99.699.699.6 97.297.297.2 94.894.894.8
Tower, real 3 cubes 5 cubes 7 cubes
HourGlass [Newell et al., 2016] 95.0 90.0 90.0

Table 4.2 – Success rates of visual policies (in percent) trained to build
tower instances of 3, 5 and 7 cubes. On the real robot, the policies are
evaluated using 20 trials.

76 Chapter 4. Learning visual policies for building 3D shape categories

Arch, simulation 3U 4U 5U
category

Single unmake trajectory 98.6 92.8 69.6
Multiple unmake trajectories 99.099.099.0 98.898.898.8 95.695.695.6

Table 4.3 – Success rates of visual policies trained to build the arch shape
category of different heights. The policies are trained on trajectories ob-
tained by disassembling the same object once or multiple times.

Visual policies architecture

We compare our heatmap-based architecture to a ResNet-18 network
that directly outputs source and target parameters of manipulated prim-
itives. Our approach uses HourGlass [Newell et al., 2016] to predict a
multimodal distribution of picking and placing actions. The first heatmap
corresponds to 2D locations on the robot workspace, the three additional
heatmaps encode orientations of a primitive. ResNet-18 [He et al., 2016]
predicts five values corresponding to 2D locations and three orientations of
objects.

We train HourGlass and ResNet-18 networks to build towers of 3, 5 and 7
cubes of green, yellow and red colors. For ResNet-18, we adapt the learning
rate to 1e-3 and the input image size to 224. Table 4.2 indicates that both
HourGlass and ResNet policies achieve almost perfect accuracy for towers
of 3 cubes (Figure 4.6, left). Given more complex scenes with multiple
primitives of the same color, ResNet fails due to its unimodal prediction. As
illustrated in Figure 4.6, it outputs a mean location of relevant primitives.
The HourGlass-based policy builds towers of 7 cubes with a failure rate
of 6% where the errors are mainly caused by occlusions. On the real-
world Tower task with 7 cubes, the HourGlass-based policy succeeds in 18
trials out of 20. The two failure cases were caused by an occlusion and
misidentifying a cube due to the sim2real gap. Empirically, we did not find
any performance improvement when using multiple HourGlass modules.

Learning by unmaking

This section compares the proposed approach of unmaking assembled
objects with prior work [Zakka et al., 2019]. While our method disassembles
objects in multiple ways, [Zakka et al., 2019] proposes to use a single dis-
assembly trajectory. Such disassembly trajectories consist of pairs of state
and corresponding action. However, there could be multiple correct actions
possible in a state as shown in Figure 4.4. We address this by computing

4.4. Results 77

Arch, simulation 3U 4U 5U 3U 4U 5U
instance category

Instance policies 99.4 97.8 96.8 61.4 54.4 32.6
Uni-height policies 99.699.699.6 98.298.298.2 98.098.098.0 99.099.099.0 98.898.898.8 95.695.695.6
Multi-height policy 97.4 96.4 95.4 97.8 95.4 94.0

Table 4.4 – Success rates of visual policies trained by disassembling only the
input instance (top) and instances found by state policies. The state policies
are trained on arches of the same height (middle) and arches of heights 3-
5U (bottom). The policies assemble arches given a fixed set of primitives
(left) or various configurations of primitives (right). While instance and
uni-height policies need to be trained for each given arch height, a single
multi-height policy can assemble arches of various heights.

several disassembly paths and merging actions that correspond to states,
where the only difference comes from positions of primitives located on the
table surface.

We train visual policies on observation-heatmap pairs obtained with and
without multiple unmake trajectories. Table 4.3 shows that using multiple
unmake paths significantly improves the performance. The performance
difference is 26% on the hardest task of building 5U arches. Using multiple
unmake paths make the policy learn multiple hypothesis of picking and
placing locations. This property becomes critical when multiple identical
objects are used or if there exist several shape instances where identical
primitives are assembled in different configurations.

Learning to build a 3D category shapes

This section evaluates the generalization of our approach to a shape
category. We train visual policies on trajectories of unmaking 3 sets of arch
instances: (i) only the input instance, (ii) instances obtained by a state
policy trained on arches of the same height, (iii) instances obtained by a
state policy trained on arches of heights 3-5U. We refer to these policies
as (i) instance, (ii) uni-height and (iii) multi-height. For instance and uni-
height policies, we train separate networks to build arches of each height.
For multi-height policy, the same network is used to build arches of varying
heights.

We evaluate all the policies separately on the set of primitives corre-
sponding to the input instance (Table 4.4, left) and on different sets corre-
sponding to the entire category (Table 4.4, right). In the first case, all the

78 Chapter 4. Learning visual policies for building 3D shape categories

Figure 4.9 – Successful construction of an arch of 3 and 4 units from blocks
with a real robot. Note the rotation movements performed by the robot to
change the orientation of certain blocks.

4.4. Results 79

Figure 4.10 – Successful construction of an arch of 5 units from blocks with
a real robot (top). Construction of arches from new primitives that have
not been observed during training (bottom).

80 Chapter 4. Learning visual policies for building 3D shape categories

policies assemble arches with less than 5% of failures. The results of uni–
height policies are higher compared to the instance policies. We believe that
this improvement is due to a higher variation of the category instances that
can be seen as a form of data augmentation. However, the performance of
the instance policies rapidly drops when they are exposed to unseen sets of
primitives. The uni-height policies have 2-3% higher success rates than the
multi-height policy. Their success rates on 5U arches are 95.6% and 94.0%
correspondingly. However, we need to train only a single network for the
multi-height policy which is then able to reason about available primitives
on the table and decide which arch height to build.

Real robot evaluation

This section evaluates the performance of our method on the real-world
Arch task using two scenarios: (i) "normal" scenario that matches the simu-
lation, (ii) "re-assembling" scenario. In the "normal" scenario the robot has
to assemble arches from varying sets of primitives. Table 4.5 (left) shows
that uni-height policies have similar performance to the multi-height policy
in the standard scenario except for 3U arches. In the "re-assembling" sce-
nario the task starts with an assembled arch and additional primitives on
the table (see Figure 4.8). The agent is expected to re-assemble the arch by
using all available primitives on the table. Our method is able to automat-
ically re-assemble shapes without additional training due to the presence
of random pick-place actions in the train set. Similarly to the value func-
tion dataset described in Section 4.3.2, we record observation-actions pairs
corresponding to the inverse of the one-step random actions that include ex-
amples of re-assembling. In the "re-assembling" scenario (Table 4.5 (right))
the multi-height policy has higher success rates for 4U and 5U arches. We
illustrate the assembly of arches with the real UR5 robot arm in Figures 4.7,
4.8 and on the project website [Pashevich et al., 2020b]. Failure cases with
incorrect assembly are typically caused by occlusions and the gap between
simulated and real environments.

Finally, we test the generalization of our approach to new building prim-
itives and compare it to the MCTS baseline. We use three different sets
of primitives that resemble cuboids used during training. The sets contain
(i) 2 jars and a pencil case (Figure 4.7 bottom left), (ii) 4 cans and a juice
box (Figure 4.7 bottom right), (iii) 5 stones (Figure 4.1 bottom). The in-
put we provide to the MCTS baseline is the state of primitives in terms
of their sizes and locations. Size and location are determined by clustering
3D points, which are obtained based on depth image coordinates above the
table similarly to the prediction correction procedure used for our method.

4.4. Results 81

Figure 4.11 – Construction of arches from new primitives that have not
been observed during training. Despite the fact that our visual policy has
been trained only with block-shaped primitives and only in simulation, it
is able to generalize to new diverse primitives in a real robot setup.

82 Chapter 4. Learning visual policies for building 3D shape categories

Figure 4.12 – Failure cases for arch construction with a real robot. The
failures originate from wrong choice of the target location (top example)
and a failure to grasp a soft object (bottom example).

4.4. Results 83

Arch, real 3U 4U 5U 3U 4U 5U
normal scenario re-assembling

Uni-height policies 95.095.095.0 80.080.080.0 75.075.075.0 90.090.090.0 75.0 70.0
Multi-height policy 85.0 80.080.080.0 75.075.075.0 90.090.090.0 80.080.080.0 80.080.080.0

Table 4.5 – Success rates of visual policies assembling arches of different
heights on a real robot. Over 20 trials, the policies are evaluated on a
normal Arch task and a "re-assembling" scenario when the agent needs to
adapt to additional primitives introduced to the scene after the arch had
already been built.

Arch, real set 1 set 2 set 3
novel primitives

Detect + MCTS [Coulom, 2006] 60.0 35.0 20.0
Our method 90.090.090.0 80.080.080.0 55.055.055.0

Table 4.6 – Success rates of our method and an MCTS baseline for assem-
bling arches using novel primitives on a real robot. The arches built with
primitives from sets 1, 2 and 3 are shown in Figure 4.7 (bottom left), Fig-
ure 4.7 (bottom right) and Figure 4.1 (bottom) correspondingly.

We estimate the spatial dimensions of primitives by fitting bounding boxes
to depth points associated to each 3D cluster. Table 4.6 shows that our
method significantly outperforms the MCTS baseline with the performance
gap of up to 45%. In all cases the failures of MCTS are caused by errors
in the estimation of size and location of the primitives. Given the incorrect
estimates, MCTS cannot find an assembly path to build a correct arch. In
contrast, our method relies on position correction based on direct image
input and does not require spatial estimation of the primitives. Both meth-
ods often fail on the third set of primitives with stones given the substantial
difference of stones to cuboid primitives used during training.

4.4.5 Qualitative results
Figures 4.9-4.12 demonstrate application of our method to the construc-

tion of arches on a real robot. Figures 4.9 and 4.10(top) present the con-
struction of arches from blocks. The blocks are initially arranged in random
positions and orientations. The policy changes positions and orientations
of blocks, leading to the successful construction of arches of different sizes.
Figures 4.10(bottom) and 4.11 demonstrate arch constructions from new

84 Chapter 4. Learning visual policies for building 3D shape categories

primitives that have not been observed during training. We emphasize that
our learned visual policies directly control the robot without intermediate
geometric reconstruction of the world state. Nevertheless, the policy can
handle diverse object shapes. The robustness to new shapes could be fur-
ther improved by using various shapes for policy training in simulation.
Finally, Figure 4.12 illustrates few failure cases originating from incorrectly
estimated pick and place locations as well as from a failure to grasp a soft
object (a shoe).

4.5 Conclusion
In this chapter, we propose an approach to build 3D object shapes using

a robotic arm and varying sets of primitive building blocks. Our method
consists of two phases where the first phase solves a simpler task in the
low-dimensional state space. The second phase uses the obtained solutions
as supervision to train visual policies in the high-dimensional observation
space. The state-space solutions are transferred to the observation space
using a renderer of a simulator and heatmaps that represent all valid actions
from a given state. We also propose a novel disassembly procedure that
samples disassembly paths and reverses their actions to collect assembly
demonstrations. We use our prior work described in Chapter 2 and train
real-world policies using only synthetic images. We demonstrate successful
application of our method to tasks of assembling tower and arch shapes on
a real robot and show the ability of our policies to react on dynamic changes
in the scene. Notably, our method can re-assemble shapes using additional
building blocks introduced to the real scene and shows robust performance
with unseen primitives resembling building blocks used during training.

5

Episodic Transformer for
vision-and-language navigation

5.1 Introduction
Having an autonomous agent that can perform various household tasks

given natural language commands is a long standing goal of the research
community. To benchmark research progress, several simulated environ-
ments [Anderson et al., 2018, Shridhar et al., 2020, Puig et al., 2018] have
recently emerged where the agents navigate and interact with the envi-
ronment following natural language instructions. Solving the vision-and-
language navigation (VLN) task requires the agent to ground human in-
structions in its embodied perception and action space. In practice, the
agent is often required to perform long compositional tasks while observ-
ing only a small fraction of the environment from an egocentric point of
view. Demonstrations manually annotated with human instructions are
commonly used to teach an agent to accomplish specified tasks.

This chapter attempts to address two main challenges of VLN: (1) han-
dling highly compositional tasks consisting of many subtasks and actions;
(2) understanding the complex human instructions that are used to specify
a task. Figure 5.1 shows an example task that illustrates both challenges.
We show six key steps from a demonstration of 53 actions. To fulfill the
task, the agent is expected to remember the location of a fireplace at t = 0
and use this knowledge much later (at t = 31). It also needs to solve object-
(e.g.“another vase”) and location-grounded (e.g.“where you were standing
previously”) coreference resolution in order to understand the human in-
structions.

Addressing the first challenge requires the agent to remember its past
actions and observations. Most recent VLN approaches rely on recurrent ar-

85

86 Chapter 5. Episodic Transformer for vision-and-language navigation

Figure 5.1 – An example of a compositional task in the ALFRED
dataset [Shridhar et al., 2020] where the agent is asked to bring two vases
to a cabinet. We show several frames from an expert demonstration with
corresponding step-by-step instructions. The instructions expect the agent
to be able to navigate to a fireplace which is not visible in its current ego-
centric view and to remember its previous location by referring to it as
"where you were standing previously".

chitectures [Tan et al., 2019, Wang et al., 2019b, Zhu et al., 2020, Ma et al.,
2019a] where the internal state is expected to keep information about pre-
vious actions and observations. However, the recurrent networks are known
to be inefficient in capturing long term dependencies [Vinyals et al., 2015]
and may fail to execute long action sequences [Graves et al., 2016, Shridhar
et al., 2020]. Motivated by the success of the attention-based transformer
architecture [Vaswani et al., 2017] at language understanding [Devlin et al.,
2019, Brown et al., 2020] and multimodal learning [Sun et al., 2019, Ding
et al., 2020], we propose to use a transformer encoder to combine mul-
timodal inputs including camera observations, language instructions, and
previous actions. The transformer encoder has access to the history of the

5.2. Related work 87

entire episode to allow long-term memory and outputs the action to take
next. We name our proposed architecture Episodic Transformer (E.T.).

Addressing the second challenge requires revisiting different ways to
specify a task for the autonomous agent. We observe that domain-specific
language [Ghallab et al., 1998], and temporal logic [Gopalan et al., 2018,
Manna and Pnueli, 1992] can unambiguously specify the target states and
(optionally) their temporal dependencies, while being decoupled from the
visual appearance of a certain environment and the variations of human
instructions. We hypothesize that using these synthetic instructions as an
intermediate interface between the human and the agent would help the
model to learn more easily and generalize better. To this end, we propose
to pretrain the transformer-based language encoder in E.T. by predicting
the synthetic instructions from human instructions. We also explore joint
training, where human instructions and synthetic instructions are mapped
into a shared latent space.

To evaluate the performance of E.T., we use the ALFRED dataset [Shrid-
har et al., 2020] which consists of longer episodes than the other vision-and-
language navigation datasets [Anderson et al., 2018, Puig et al., 2018, Chen
et al., 2019a], and also requires object interaction. We experimentally show
that E.T. benefits from full episode memory and is better at solving tasks
with long horizons than recurrent models. We also observe significant gains
by pretraining the language encoder with the synthetic instructions. Fur-
thermore, we show that when used for training jointly with natural language
such intermediate representations outperform conventional data augmenta-
tion techniques for vision-and-language navigation [Fried et al., 2018] and
work better than image-based annotations [Lynch et al., 2019].

In summary, our two main contributions are as follows. First, we propose
Episodic Transformer (E.T.), an attention-based architecture for vision-
and-language navigation and demonstrate its advantages over recurrent
models. Second, we propose to use synthetic instructions as the intermedi-
ate interface between the human and the agent. Both contributions com-
bined allow us to achieve a new state-of-the-art on the challenging ALFRED
dataset. Our code and models are available on the project page [Pashevich
et al., 2021b].

5.2 Related work
Instruction following agents. Building systems to understand and ex-
ecute human instructions has been the subject of many previous work [Bug-
mann et al., 2001, Branavan et al., 2009, Tenorth et al., 2010, MacMahon

88 Chapter 5. Episodic Transformer for vision-and-language navigation

Figure 5.2 – Episodic Transformer (E.T.) architecture. To predict the next
action, the E.T. model is given a natural language instruction x1:L, visual
observations since the beginning of an episode v1:t and previously taken ac-
tions a1:t−1. Here we show an example that corresponds to the 6th timestep
of an episode: t = 6. After processing x1:L with a transformer-based lan-
guage encoder, embedding v1:t with a ResNet-50 backbone and passing a1:t−1
through a look-up table, the agent outputs t actions. During training we
use all predicted actions for a gradient descent step. At test time, we apply
the last action at to the environment.

et al., 2006, Chen and Mooney, 2011, Bollini et al., 2013, Misra et al.,
2017, Misra et al., 2016, Paul et al., 2018, Lynch et al., 2019]. Instruction
types include structured commands or logic programs [Manna and Pnueli,
1992, Ghallab et al., 1998, Puig et al., 2018], natural language [Chen and
Mooney, 2011, Tellex et al., 2011], target state images [Lynch et al., 2019] or
a mix [Lynch and Sermanet, 2020]. While earlier work focuses on mapping
instructions and structured world states into actions [Mei et al., 2016, An-
dreas and Klein, 2015, Patel et al., 2019], it is desirable for the agents to
be able to handle raw sensory inputs, such as images or videos. To ad-
dress this, the visual-and-language navigation (VLN) task is proposed to
introduce rich, unstructured visual context for the agent to explore, per-
ceive and execute upon [Anderson et al., 2018, Ku et al., 2020, Chen et al.,
2019a, Mehta et al., 2020, Krantz et al., 2020]. The agent is requested to
navigate to the target location based on human instructions and real, or
photo-realistic image inputs, implemented as navigation graphs [Anderson
et al., 2018, Chen et al., 2019a] or continuous environment [Krantz et al.,
2020] in simulators [Todorov et al., 2012, Kolve et al., 2017, Deitke et al.,

5.2. Related work 89

2020, Savva et al., 2019]. More recently, the ALFRED environment [Shrid-
har et al., 2020] introduces the object interaction component to complement
visual-language navigation. It is a more challenging setup as sequences are
longer than in other vision-language navigation datasets and all steps of a
sequence have to be executed properly to succeed. We focus on the AL-
FRED environment and its defined tasks.

Training a neural agent for VLN. State-of-the-art models in language
grounded navigation are neural agents trained using either Imitation Learn-
ing [Fried et al., 2018], Reinforcement Learning [Li et al., 2020] or a combi-
nation of both [Tan et al., 2019, Wang et al., 2019b]. In addition, auxiliary
tasks, such as progress estimation [Ma et al., 2019b, Ma et al., 2019a],
back-tracking [Ke et al., 2019], speaker-driven route selection [Fried et al.,
2018], cross-modal matching [Wang et al., 2019b, Huang et al., 2019], back
translation [Tan et al., 2019] and text-based agent training [Côté et al.,
2018, Shridhar et al., 2021] are proposed to improve the performance and
generalization of neural agents in seen and unseen environments. Most
of these approaches use recurrent neural networks and encode previous
observations and actions as hidden states. This work proposes to lever-
age transformers [Vaswani et al., 2017] which enables encoding the full
episode of history for long-term navigation and interaction. Most relevant
to our approach are VLN-BERT [Majumdar et al., 2020] and Recurrent
VLBERT [Hong et al., 2021], which also employ transformers for VLN. Un-
like our approach, VLN-BERT [Majumdar et al., 2020] trains a transformer
to measure the compatibility of an instruction and a set of already gener-
ated trajectories. The concurrent work Recurrent VLBERT [Hong et al.,
2021] proposes to use an explicit recurrent state and a pretrained VLBERT
to process one observation for each timestep. This shortens the model’s
memory and might be harmful for long horizon tasks such as ALFRED. In
contrast, we do not introduce any recurrency and process the whole history
of observations at once.

Multimodal Transformers. Transformers [Vaswani et al., 2017] have
brought success to a wide range of classification and generation tasks, from
language [Vaswani et al., 2017, Devlin et al., 2019, Brown et al., 2020], to
images [Dosovitskiy et al., 2021, Carion et al., 2020] and videos [Girdhar
et al., 2019, Wang et al., 2018]. In [Parisotto et al., 2020], the authors
show that training transformers for long time horizon planning with RL
is challenging and propose a solution. The convergence of the transformer
architecture for different problem domains also leads to multimodal trans-

90 Chapter 5. Episodic Transformer for vision-and-language navigation

formers, where a unified transformer model is tasked to solve problems
that require multimodal information, such as visual question answering [Lu
et al., 2019], video captioning and temporal prediction [Sun et al., 2019], or
retrieval [Gabeur et al., 2020]. Our Episodic Transformer can be considered
a multimodal transformers, where the inputs are language (instructions),
vision (images) and actions.

Semantic parsing of human instructions. Semantic parsing focuses
on converting natural language into logic forms that can be interpreted
by machines. It has applications in question answering [Zelle and Mooney,
1996, Zettlemoyer and Collins, 2007, Berant et al., 2013], and can be learned
either with paired supervision [Zettlemoyer and Collins, 2005, Yu et al.,
2018, Berant et al., 2013] or weak supervision [Artzi and Zettlemoyer, 2013,
Patel et al., 2020]. For instruction following, semantic parsing has been
applied to map natural language into lambda calculus expressions [Artzi and
Zettlemoyer, 2013] or linear temporal logic [Patel et al., 2020]. We show
that rather than directly using the semantic parsing outputs, it is more
beneficial to transfer its pretrained language encoder to the downstream
VLN task.

5.3 Method
We first define the vision-and-language navigation task in Section 5.3.1

and describe the Episodic Transformer (E.T.) model in Section 5.3.2. We
then introduce the synthetic language and explain how we leverage it for
pretraining and joint training in Section 5.3.3.

5.3.1 VLN background
The vision-and-language navigation task requires an agent to navigate in

an environment and to reach a goal specified by a natural language instruc-
tion. Each demonstration is a tuple (x1:L, o1:T , a1:T) of a natural language
instruction, expert visual observations, and expert actions. The instruction
x1:L is a sequence of L word tokens xi ∈ R. The visual observations o1:T is
a sequence of T camera images ot ∈ RW×H×3 where T is the demonstration
length and W ×H is the image size. The expert actions a1:T is a sequence
of T action type labels at ∈ {1, . . . , A} used by the expert and A is the
number of action types.

The goal is to learn an agent function f which approximates the expert
policy. In the case of a recurrent architecture, the agent predicts the next

5.3. Method 91

(a) Pretraining on natural to synthetic translation.

(b) Joint training using natural and synthetic annotations.

Figure 5.3 – Training with natural and synthetic language. Top: We pre-
train the language encoder of the model to translate natural language in-
structions to synthetic language instructions. Due to a more task-oriented
synthetic representation, the language encoder learns a better represen-
tation. We use the language encoder weights to initialize the language
encoder of the agent (shown in yellow). Bottom: We jointly use demon-
strations annotated with natural language and demonstrations annotated
with synthetic language to train the agent. Due to the larger size of the
synthetic language dataset, the resulting agent has better performance even
when evaluated on natural language annotations.

action ât given a language instruction x1:L, a visual observation ot, the
previously taken action ât−1, and uses its hidden state ht−1 to keep track of
the history:

ât, ht = f(x1:L, ot, ât−1, ht−1). (5.1)

For an agent with full episode observability, all previous visual observa-
tions o1:t and all previous actions â1:t−1 are provided to the agent directly
and no hidden state is required:

ât = f(x1:L, o1:t, â1:t−1). (5.2)

92 Chapter 5. Episodic Transformer for vision-and-language navigation

5.3.2 Episodic Transformer model

Our Episodic Transformer (E.T.) model shown in Figure 5.2 relies on
attention-based multi-layer transformer encoders [Vaswani et al., 2017]. It
has no hidden state and observes the full history of visual observations and
previous actions. To inject information about the order of words, frames and
action sequences, we apply the sinusoidal encoding to transformer inputs.
We refer to this encoding as positional encoding for language tokens and
temporal encoding for expert observations and actions.

Our E.T. architecture consists of four encoders: language encoder, visual
encoder, action encoder, and multimodal encoder. The language encoder
shown in the bottom left part of Figure 5.2 gets instruction tokens x1:L as
input. It consists of a look-up table and a multi-layer transformer encoder
and outputs a sequence of contextualized language embeddings hx1:L. The
visual encoder shown in the bottom center part of Figure 5.2 is a ResNet-50
backbone [He et al., 2016] followed by 2 convolutional and 1 fully-connected
layers. The visual encoder projects a visual observation ot into its embed-
ding hot . All the episode visual observations o1:T are projected independently
using the same encoder. The action encoder is a look-up table shown in the
bottom right part of Figure 5.2 which maps action types a1:T into action
embeddings ha1:T .

The multimodal encoder is a multi-layer transformer encoder shown in
the middle of Figure 5.2. Given the concatenated embeddings from modal-
ity specific encoders (hx1:L, h

o
1:T , h

a
1:T), the multimodal encoder returns out-

put embeddings (zx1:L, z
o
1:T , z

a
1:T). The multimodal encoder employs causal

attention [Vaswani et al., 2017] to prevent visual and action embeddings
from attending to subsequent timesteps. We take the output embeddings
zo1:T and add a single fully-connected layer to predict agent actions â1:T .

During E.T. training, we take advantage of the sequential nature of the
transformer architecture. We input a language instruction x1:L as well as
all visual observations o1:T and all actions a1:T of an expert demonstration
to the model. The E.T. model predicts all actions â1:T at once as shown
at the top of Figure 5.2. We compute and minimize the cross-entropy loss
between predicted actions â1:T and expert actions a1:T . During testing at
timestep t, we input visual observations o1:t up to a current timestep and
previous actions â1:t−1 taken by the agent. We select the action predicted
for the last timestep ât, ĉt and apply it to the environment which generates
the next visual observation ot+1. In Figure 5.2 we show an example that
corresponds to the 6th timestep of an episode where the action Left will be
taken next.

5.3. Method 93

5.3.3 Synthetic language
To improve understanding human instructions presenting a wide range

of variability, we propose to pretrain the agent language encoder with a
translation into a synthetic language, see Figure 5.3a. We also generate ad-
ditional demonstrations, annotate them with synthetic language and jointly
train the agent using both synthetic and natural language demonstrations,
see Figure 5.3b.

An example of the synthetic language and a corresponding natural lan-
guage instruction is shown in Figure 5.3a. The synthetic annotation is
generated for each expert demonstration using the expert path planner ar-
guments. In ALFRED, each expert path is defined with Planning Domain
Definition Language (PDDL) [Ghallab et al., 1998] which consists of sev-
eral subgoal actions. Each subgoal action has a type and a target class,
e.g. Put Apple Table or Goto Bed which we use as a synthetic annotation
for this subgoal action. Note that such annotation only defines a class but
not an instance of the target. We annotate each expert demonstration with
subgoal action annotations concatenated in chronological order to produce
a synthetic annotation y1:M .

We use synthetic language to pretrain the language encoder of the
agent on a sequence-to-sequence (seq2seq) translation task. The translation
dataset consists of corresponding pairs (x1:L, y1:M) of natural and synthetic
instructions. The translation model consists of a language encoder and a
language decoder as shown in Figure 5.3a. The language encoder is identi-
cal to the agent language encoder described in Section 5.3.2. The language
decoder is a multi-layer transformer decoder with positional encoding and
same hyperparameters as the encoder. Given a natural language annota-
tion x1:L, we use the language encoder to produce embeddings h1:L. The
embeddings are passed to the language decoder which predicts N transla-
tion tokens ŷi. We train the model by minimizing the cross-entropy loss
between predictions ŷ1:N and synthetic annotations y1:M . Once the training
converges, we use the weights of the translator language encoder to initialize
the language encoder of the agent.

We also explore joint training by generating an additional dataset of
expert demonstrations annotated with synthetic language. We use the AI2-
THOR simulator [Kolve et al., 2017] and scripts provided by Shridhar et
al. [Shridhar et al., 2020]. Apart from the annotations, the synthetic dataset
differs from the original one in terms of objects configurations and agent
initial positions. We train the agent to predict actions using both natural
language and synthetic language datasets as shown in Figure 5.3b. We
use the same language, vision and action encoders for both datasets but

94 Chapter 5. Episodic Transformer for vision-and-language navigation

use two different look-up tables for natural and synthetic language tokens
which we found to work the best experimentally. For both datasets, we
sample batches of the same size, compute the loss for both batches and do
a single gradient descent step. After a fixed number of training epochs, we
evaluate the agent on natural and synthetic language separately using the
same set of validation tasks.

5.4 Results
In this section, we ablate different components of E.T. and compare

E.T. with state-of-the-art methods. First, we describe the experimental
setup and the dataset in Section 5.4.1. Next, we compare our method to a
recurrent baseline and highlight the importance of full episode observability
in Section 5.4.2. We then study the impact of joint training and pretrain-
ing with synthetic instructions in Section 5.4.3 and compare with previous
state-of-the-art methods on the ALFRED dataset in Section 5.4.4. Finally,
we provide qualitative results including visualizations of transformer atten-
tion maps and examples of agent trajectories in Section 5.4.5.

5.4.1 Experimental setup
Dataset. The ALFRED dataset [Shridhar et al., 2020] consists of demon-
strations of an agent performing household tasks following natural language
defined goals. The tasks are compositional with nonreversible state changes.
The dataset includes 8, 055 expert trajectories (o1:T , a1:T) annotated with
25, 743 natural language instructions x1:L. It is split into 21, 023 train, 1, 641
validation and 3, 062 test annotations. The validation and test folds are di-
vided into seen splits which contain environments from the train fold and
unseen splits which contain new environments. To leverage synthetic in-
structions to pretrain a language encoder, we pair every annotated instruc-
tion x1:L with its corresponding synthetic instruction y1:M in the train fold.
For joint training, we generate 44, 996 demonstrations (y1:M , o1:T , a1:T) from
the train environments annotated automatically with synthetic instructions.
For ablation studies in Section 5.4.2 and Section 5.4.3, we use the validation
folds only. For comparison with state-of-the-art in Section 5.4.4, we report
results on both validation and test folds.

Baselines. In Section 5.4.2, we compare our model to a model based on a
bi-directional LSTM [Shridhar et al., 2020]. We use the same hyperparam-
eters as Shridhar et al. [Shridhar et al., 2020] and set the language encoder

5.4. Results 95

hidden size to 100, the action decoder hidden size to 512, the visual em-
beddings size to 2500, and use 0.3 dropout for the decoder hidden state.
We experimentally find the Adam optimizer with no weight decay and a
weight coefficient 0.1 for the target class cross-entropy loss to work best.
The LSTM model uses the same visual encoder as the E.T. model. In Sec-
tion 5.4.4, we also compare our model to MOCA [Singh et al., 2020] and
the model of Nguyen et al. [Van-Quang Nguyen, 2020].

Evaluation metrics. For our ablation studies in Sections 5.4.2 and 5.4.3,
we report agent success rates. To understand the performance difference
with recurrent-based architectures in Section 5.4.2, we also report success
rates on individual subgoals. This metric corresponds to the proportion of
subgoal tasks completed after following an expert demonstration until the
beginning of the subgoal and conditioned on the entire language instruction.
We note that the average task length is 50 timesteps while the average
length of a subgoal is 7 timesteps.

Implementation details. Among the 13 possible action types, 7 actions
involve interacting with a target object in the environment. The target
object of an action at is chosen with a binary mask mt ∈ {0, 1}W×H which
specifies the pixels of visual observation ot that belongs to the target object.
There are 119 object classes in total. The pixel masksmt are provided along
with expert demonstrations during training. We follow Singh et al. [Singh
et al., 2020] and ask our agent to predict the target object class ct, which
is then used to retrieve the corresponding pixel mask m̂t generated by a
pretrained instance segmentation model. The segmentation model takes ot
as input and outputs (ĉt, m̂t).

The agent observations are resized to 224 × 224. The mask generator
receives images of size 300× 300 following Singh et al. [Singh et al., 2020].
Both the visual encoder and the mask generator are pretrained on a dataset
of 325K frames of expert demonstrations from the train fold and correspond-
ing class segmentation masks. We use ResNet-50 Faster R-CNN [Ren et al.,
2015] for the visual encoder pretraining and ResNet-50 Mask R-CNN [He
et al., 2017] for the mask generator. We do not update the mask generator
and the visual encoder ResNet backbone during the agent training. In the
visual encoder, ResNet features are average-pooled 4 times to reduce their
size and 0.3 dropout is applied. Resulting feature maps of 512 × 7 × 7
are fed into 2 convolutional layers with 256 and 64 filters of size 1 by 1
and mapped into an embedding of the size 768 with a fully connected layer.

96 Chapter 5. Episodic Transformer for vision-and-language navigation

Model Task Sub-goal
Seen Unseen Seen Unseen

LSTM 23.2 2.4 75.5 58.7
LSTM + E.T. enc. 27.8 3.33.33.3 76.6 59.5
E.T. 33.833.833.8 3.2 77.377.377.3 59.659.659.6

Table 5.1 – Comparison of E.T. and LSTM architectures: (1) an LSTM-
based model [Shridhar et al., 2020], (2) an LSTM-based model trained
with the transformer language encoder of the E.T. model, (3) E.T., our
transformer-based model. All models are trained using the natural language
dataset only and evaluated on validation folds. The two parts of the table
show the success rate for tasks (average length 50) and sub-goals (average
length 7). While the sub-goal success rates of all models are relatively close,
E.T. outperforms both recurrent agents on full tasks which highlights the
importance of full episode observability.

Both transformer encoders of E.T. have 2 blocks, 12 self-attention heads and
the hidden size of 768. We use 0.1 dropout inside transformer encoders.

We use the AdamW optimizer [Loshchilov and Hutter, 2019] with 0.33
weight decay and train the model for 20 epochs. Every epoch includes 3, 750
batches of 8 demonstrations each. For joint training, each batch consists
of 4 demonstrations with human instructions and 4 demonstrations with
synthetic instructions. For all experiments, we use a learning rate of 10−4

during the first 10 epochs and 10−5 during the last 10 epochs. Following
Shridhar et al. [Shridhar et al., 2020], we use auxiliary losses for overall and
subgoal progress [Ma et al., 2019a] which we sum to the model cross-entropy
loss with weights 0.1. All the hyperparameter choices were made using a
moderate size grid search. Once the training is finished, we evaluate every 2-
nd epoch on the validation folds. Following Singh et al. [Singh et al., 2020],
we use Instance Association in Time and Obstruction Detection modules
during evaluation.

5.4.2 Model analysis
Comparison with recurrent models. To validate the gain due to an
episodic memory, we compare the E.T. architecture with a model based on
a recurrent LSTM architecture. We train both models using the dataset
with natural language annotations only. As shown in Table 5.1, the recur-
rent model succeeds in 23.2% of tasks in seen environments and in 2.4% of
tasks in unseen environments. E.T. succeeds in 33.8% and 3.2% of tasks re-

5.4. Results 97

Visible Frames Actions
Seen Unseen Seen Unseen

None 0.5 0.2 23.7 1.7
1 last 28.9 2.2 33.833.833.8 3.23.23.2
4 last 31.5 2.0 32.0 2.4
16 last 33.5 2.9 31.1 2.8
All 33.833.833.8 3.23.23.2 27.1 2.2

Table 5.2 – Ablation on accessible history length of E.T., in terms of visual
frames (left two columns) and actions (right two columns).

spectively which is a relative improvement of 45.6% and 33.3% compared to
the LSTM-based agent. However, the success rate computed for individual
subgoals shows only 2.3% and 1.5% of relative improvement of E.T. over
the recurrent agent in seen and unseen environments respectively. We note
that a task consists on average of 6.5 subgoals which makes the long-term
memory much more important for solving full tasks.

To understand the performance difference, we train an LSTM-based
model with the E.T. language encoder. Given that both LSTM and E.T.
agents receive the same visual features processed by the frozen ResNet-50
backbone and have the same language encoder architecture, the principal
difference between the two models is the processing of previous observations.
While the E.T. agent observes all previous frames using the attention mech-
anism, the LSTM-based model relies on its recurrent state and explicitly
observes only the last visual frame. The recurrent model performance shown
in the 2-nd row of Table 5.1 is similar to the E.T. performance in unseen
environments but is 17.7% less successful than E.T. in seen environments.
This comparison highlights the importance of the attention mechanism and
full episode observability. We note that E.T. needs only one forward pass for
a gradient descent update on a full episode. In contrast, the LSTM models
need to do a separate forward pass for each episode timestep which signifi-
cantly increases their training time with respect to E.T. models. We further
compare how E.T. and LSTM models scale with additional demonstrations
in Section 5.4.3.

Accessible history length. We train E.T. using different lengths of the
episode history observed by the agent in terms of visual frames and pre-
vious actions and show the results in Table 5.2. The first two columns of
Table 5.2 compare different lengths of visual observations history from no
past frames to the entire episode. The results indicate that having access

98 Chapter 5. Episodic Transformer for vision-and-language navigation

to all visual observations is important for the model performance. We note
that performance of the model with 16 input frames is close to the perfor-
mance of the full episode memory agent, which can be explained the average
task length of 50 timesteps.

The last two columns of Table 5.2 show that the agent does not benefit
from accessing more than one past action. This behavior can be explained
by “causal misidentification” phenomenon: access to more information can
yield worse performance [de Haan et al., 2019]. It can also be explained by
poor generalizability due to overfitting of the model to expert demonstra-
tions. We also note that the model observing no previous actions is 29.8%
and 46.8% relatively less successful in seen and unseen environments than
the agent observing the last action. We therefore fix the memory size to
be unlimited for visual observations and to be 1 timestep for the previous
actions.

Model capacity. Transformer-based models are known to be expressive
but prone to overfitting. We study how the model capacity impacts the
performance while training on the original ALFRED dataset. We change
the number of transformer blocks in the language encoder and the multi-
modal encoder and report results in Table 5.3. The results indicate that
the model with a single transformer block is not expressive enough and the
models with 3 and 4 blocks overfit to the train data. The model with 2
blocks represents a trade-off between under- and overfitting and we there-
fore keep this value for all the experiments.

Attention visualization. We present visualizations of visual and text
attention heatmaps in Section 5.4.5.

5.4.3 Training with synthetic annotations
Joint training. We train the E.T. model using the original dataset of
21, 023 expert demonstrations annotated with natural language and the ad-
ditionally generated dataset of 44, 996 expert demonstrations with synthetic
annotations. We compare three types of synthetic annotations: (1) direct
use of visual embeddings from the expert demonstration frames, no lan-
guage instruction is generated. A similar approach can be found in Lynch
and Sermanet [Lynch and Sermanet, 2020]; (2) train a model to gener-
ate instructions, e.g.with a speaker model [Fried et al., 2018], where the
inputs are visual embeddings from the expert demonstration frames, and
the targets are human annotated instructions; and (3) subgoal actions and

5.4. Results 99

Blocks Seen Unseen
1 25.0 1.6
2 33.833.833.8 3.23.23.2
3 28.6 2.2
4 19.8 1.1

Table 5.3 – Ablation of E.T. model capacity. We compare E.T. models
with different number of transformer blocks in language and multimodal
encoders.

Synthetic instr. Test on synthetic Test on human
Seen Unseen Seen Unseen

Expert frames 54.054.054.0 6.16.16.1 28.5 3.4
Speaker text 36.3 3.1 37.4 3.9
Subgoal actions 47.2 5.9 38.538.538.5 5.45.45.4
No synthetic - - 33.8 3.2

Table 5.4 – Comparison of different synthetic instructions used for joint
training. We jointly train E.T. using demonstrations with human anno-
tations and demonstrations with different types of synthetic instructions.
In the first two columns, we evaluate the resulting models using the same
type of synthetic annotations that is used during training. In the last two
column, the models are evaluated on human annotated instructions.

objects annotations described in Section 5.3.3. For (1), we experimentally
find using all expert frames from a demonstration works significantly better
than a subset of frames. The visual embeddings used in (1) and (2) are ex-
tracted from a pretrained frozen ResNet-50 described in Section 5.4.1. To
generate speaker annotations, we use a transformer-based seq2seq model
(Section 5.3.3) with the difference that the inputs are visual embeddings
instead of text.

We report success rates of models trained jointly and evaluated indepen-
dently on synthetic and human annotated instructions in Table 5.4. The
results are reported on the validation folds. The model trained on expert
frames achieves the highest performance when evaluated on synthetic in-
structions. However, when evaluated on human instructions, this model has
15.6% relatively lower success rate in seen environments than the baseline
without joint training. This indicates that the agent trained to take expert
frames as instructions does not generalize well to human instructions. Using

100 Chapter 5. Episodic Transformer for vision-and-language navigation

Train data Seen Unseen
21K human only 33.8 3.2
21K human & 11K synth. 35.5 4.1
21K human & 22K synth. 38.3 5.55.55.5
21K human & 44K synth. 38.538.538.5 5.4

Table 5.5 – Joint training of the E.T. model using different number of
demonstrations annotated with subgoal actions. We report success rates
on the validation folds.

Train data LSTM E.T.
Seen Unseen Seen Unseen

Human annotations 23.2 2.4 33.8 3.2
Human + synthetic 25.2 2.9 38.538.538.5 5.45.45.4

Table 5.6 – Comparison of an LSTM-based model and E.T. trained jointly
with demonstrations annotated by subgoal actions. The results in-
dicate that E.T. scales better with additional data than the LSTM-based
agent.

speaker translation annotations improves over the no joint training baseline
by 10.6% and 21.8% relative in seen and unseen environments respectively.
Furthermore, our proposed subgoal annotations bring an even larger im-
provement of 13.9% and 68.7% relative in seen and unseen environments
which highlights the benefits of joint training with synthetic instructions in
the form of subgoal actions.

We further study the impact of additional data and train the E.T. agent
using different number of demonstrations annotated with subgoal actions.
The results are shown in Table 5.5. We can see that increasing the number
of synthetic demonstrations in the joint training up to 22K brings a sig-
nificant improvement over the model trained on human annotations only.
However, doubling the synthetic demonstrations up to 44K has a very mi-
nor impact on the agent performance. We use 44K demonstrations with
synthetic annotations for further experiments with joint training.

Finally, we study if the recurrent baseline also benefits from joint train-
ing with synthetic data. Table 5.6 shows that the relative gains of joint
training are 2.3 and 4.4 times higher for E.T. than for the LSTM-based
agent in seen and unseen environments respectively. These numbers clearly
show that E.T. benefits more from additional data and confirms the advan-

5.4. Results 101

Objective Transfer Seen Unseen
None - 33.8 3.2
BERT Text embedding 32.3 3.4
Seq2seq Translated text 35.2 3.6
Seq2seq Text encoder 37.637.637.6 3.83.83.8

Table 5.7 – Comparison of modelswith different language encoder pre-
training strategies. We pretrain a seq2seq model to map human instruc-
tions into synthetic instructions and transfer either its output text (third
row) or its learned weights (fourth row). For completeness we also compare
with no pretraining (first row) and BERT pretraining (second row).

tage of our model over LSTM-based agents.

Language encoder pretraining. Another application of synthetic in-
structions is to use them as an intermediate representation that decouples
the visual appearance of an environment from the variations of human an-
notated instructions. For this purpose we resort to pretraining the E.T. lan-
guage encoder with the synthetic instructions. In particular, we pretrain a
seq2seq model to map human instructions into synthetic instructions as de-
scribed in Section 5.3.3, and study whether it is more beneficial to transfer
explicitly the “translated” text or implicitly as representations encoded by
the model weights. Our pretraining is done on the original train folds with
no additionally generated trajectories. The seq2seq translation performance
is very competitive, reaching 97.1% in terms of F1 score. To transfer ex-
plicitly the translated (synthetic) instructions, we first train an E.T. agent
to follow synthetic instructions from the training folds, and then evaluate
the agent on following human instructions by translating these instructions
into synthetic ones with our pretrained seq2seq model.

Table 5.7 compares these two pretraining strategies. We can see that
both strategies outperform the no pretraining baseline (first row) signifi-
cantly, and that transferring the encoder works better than explicit trans-
lation. For completeness we also report results with BERT pretraining [De-
vlin et al., 2019] (second row). The BERT model is pretrained on generic
text data (e.g.Wikipedia). We use the BERT base model whose weights are
released by the authors. We extract its output contextualized word embed-
dings and use them as the input word embeddings to the language encoder.
To our surprise, when compared with the no pretraining baseline, the BERT
pretraining decreases the performance in seen environments by 4.4% and
brings a marginal improvement of 6.2% relative in unseen environments.

102 Chapter 5. Episodic Transformer for vision-and-language navigation

Pretraining Joint training Seen Unseen
33.8 3.2

3 37.6 3.8
3 38.5 5.4

3 3 46.646.646.6 7.37.37.3

Table 5.8 – Ablation study of joint training and language encoder pre-
training with synthetic data. We present baseline results without leverag-
ing synthetic data (first row), the independent performance of pretraining
(second row) and joint training (third row), and their combined perfor-
mance (fourth row).

We conjecture that domain-specific language pretraining is important for
the ALFRED benchmark. Overall, these experiments show another advan-
tage of the proposed synthetic annotations and highlights the importance of
intermediate language representations to better train instruction-following
agents.

We finally combine the language encoder pretraining and the joint train-
ing objectives and present the results in Table 5.8. We observe that these
two strategies are complementary to each other: the overall relative im-
provements of incorporating synthetic data over the baseline E.T. model
are 37.8% and 228.1% in seen and unseen environments, respectively. We
conclude that the synthetic data is especially important for generalization
to unseen environments.

We present a complete breakdown of performance improvements with
respect to the components added to the LSTM-based baseline model pro-
posed by Shridhar et al. [Shridhar et al., 2020]. First, we replace ImageNet
visual features with features pretrained to detect objects in ALFRED as
explained in Section 5.4.1. Next, we replace explicit pixel mask predictions
with a pretrained MaskRCNN model proposed by Singh et al. [Singh et al.,
2020]. These two components combined bring a significant improvement
over the original baseline performance [Shridhar et al., 2020]. We then re-
place the LSTM model with the E.T. architecture, pretrain the language
encoder of the agent to translate human language to synthetic representa-
tions, and jointly train the agent using additional 45K demonstrations to
achieve the performance reported in Table 5.8.

5.4. Results 103

Components Seen Unseen
LSTM baseline (Shridhar et al. [Shridhar et al., 2020]) 4.8 0.2
+ ALFRED detection pretraining 8.5 0.4
+ Pretrained MaskRCNN [Singh et al., 2020] 23.2 2.4
- LSTM; + Transformer (E.T.) 33.8 3.2
+ Synthetic language pretraining 37.6 3.8
+ Joint training with 45K demonstrations 46.6 7.3

Table 5.9 – Complete breakdown of performance improvements. We report
the performance of the model proposed by Shridhar et al. [Shridhar et al.,
2020] and sequentially add components that improve its success rate one
by one. The components include (1) visual features pretrained to detect
objects in ALFRED, (2) a pretrained MaskRCNN to predict pixel masks,
(3) the E.T. model, (4) language encoder pretraining on human to synthetic
translation, (5) joint training with additional data.

Model Validation Test
Seen Unseen Seen Unseen

Shridhar et al. [Shridhar et al., 2020] 3.70 0.00 3.98 0.39
Nguyen et al. [Van-Quang Nguyen, 2020] N/A N/A 12.39 4.45
Singh et al. [Singh et al., 2020] 19.15 3.78 22.05 5.30
E.T. 33.78 3.17 28.77 5.04
E.T. (pretr.) 37.63 3.76 33.46 5.56
E.T. (pretr. & joint tr.) 46.59 7.32 38.42 8.57

Human performance - - - 91.00

Table 5.10 – Comparison with the models submitted to the public leader-
board on validation and test folds. The highest value per fold is shown in
bold. ‘N/A’ denotes that the scores are not reported on the leaderboard
or in an associated publication. Our method sets a new state-of-the-art on
all metrics.

5.4.4 Comparison with state-of-the-art
We compare the E.T. agent with models from the public leaderboard ∗,

which have an associated publication. The results on validation and test

∗. https://leaderboard.allenai.org/alfred, the results were submitted on
February 22, 2021.

https://leaderboard.allenai.org/alfred

104 Chapter 5. Episodic Transformer for vision-and-language navigation

Figure 5.4 – A visualization of normalized attention heatmap to previous
visual observations, from white (no attention) to red (high attention). In
this example, a microwave is first observed at the 8th timestep, and is high-
lighted by the visual attention at the 19th timestep when the agent is asked
to put the apple in the microwave.

folds are shown in Table 5.10. The E.T. model trained without synthetic
data pretraining and joint training sets a new state-of-the-art on seen en-
vironments (row 4). By leveraging synthetic instructions for pretraining,
our method outperforms the previous methods [Shridhar et al., 2020, Van-
Quang Nguyen, 2020, Singh et al., 2020] and sets a new state-of-the-art on
all metrics (row 5). Given additional 45K trajectories for joint training, the
E.T. model further improves the results (row 6).

5.4.5 Qualitative results
In this section we provide additional analysis, including visualizations

of transformer attention maps with respect to visual and language inputs
as well as a few examples of solved and failed tasks.

Visualizing visual attention

To better understand the impact of using a transformer encoder for ac-
tion predictions, we show several qualitative examples of attention weights
produced by the multimodal encoder of an E.T. agent. We use attention
rollout [Abnar and Zuidema, 2020] to compute attention weights from an
output action to previous visual observations. Attention rollout averages

5.4. Results 105

Figure 5.5 – A visualization of normalized attention heatmap to previous
visual observations. In this example, the agent is asked to cut a potato
(timesteps 17 − 18) and to put a slice of it in a pot. At timestep 39 when
the agent is asked to retrieve the sliced potato, it attends to frames at
timesteps 17− 18 to decide where to go.

Figure 5.6 – A visualization of normalized attention heatmap to previous
visual observations. In this example, the agent is asked to move two identi-
cal pans. It moves the first pan at timesteps 20− 22 and attends the frame
at timestep 29 when moving the second pan (see the two corresponding
pink squares).

106 Chapter 5. Episodic Transformer for vision-and-language navigation

Figure 5.7 – A visualization of normalized attention heatmap to previous
visual observations. In this example, the agent is asked to wash a cloth and
to put it in a cupboard. The agent washes the cloth at timestep 20 but the
washed cloth does not look very different from a dirty one. At timestep 31,
the agent attends to the previous frames where the washing action is visible
to keep track of the cloth state change.

attention of all heads and recursively multiplies attention weights of all
transformer layers taking into account skip connections. Figures 5.4-5.7
show examples where an E.T. model attends to previous visual frames to
successfully solve a task. The frames attention weights are showed with
a horizontal bar where frames corresponding to white squares have close
to zero attention scores and frames corresponding to red squares have high
attention scores. We do not include the attention score of the current frame
as it is always significantly higher than scores for previous frames.

In Figure 5.4 the agent is asked to pick up an apple and to heat it using
a microwave. The agent walks past a microwave at timestep 8, picks up
an apple at timestep 18 and attends to the microwave frame in order to
recall where to bring the apple. In Figure 5.5 the agent slices a potato at
timesteps 17− 18 (hard to see on the visual observations). Later, the agent
gets rid of the knife and follows the next instruction asking to pick up a
potato slice. At timestep 39, the agent attends to the frames 17− 18 where
the potato was sliced in order to come back to the slices and complete the
task. In Figure 5.6 the agent needs to sequentially move two pans. While
picking up the second pan at timestep 29, the agent attends to the frames
20 − 22 where the first pan was replaced. In Figure 5.7 the agent is asked
to wash a cloth and to put it to a drawer. The agent washes the cloth

5.4. Results 107

at timestep 20 but the cloth state change is hard to notice at the given
frames. At timestep 31, the agent attends to the frame with an open tap
in order to keep track of the cloth state change. To sum up, the qualitative
analysis of the attention mechanism over previous visual frames shows that
they are used by the agent to solve challenging tasks and aligns with the
quantitative results presented in Section 5.4.3.

Visualizing language attention

Figure 5.8 illustrates transformer attention scores from an output action
to input language tokens by comparing two models: (1) E.T. model trained
from scratch, (2) E.T. model whose language encoder is pretrained as in
Section 5.3.3. Similarly to the visual attention, we use attention rollout
and highlight the words with high attention scores with red background
color.

In the first example of Figure 5.8, the agent needs to pick up a bat. While
the non-pretrained E.T. model has approximately equal attention scores for
multiple tokens (those words are highlighted with pale pink color) and does
not solve the task, the pretrained E.T. attends to “bat” tokens (highlighted
with red) and successfully finds the bat. In the second example, the agent
needs to first cool an egg in a fridge and to heat it in a microwave later.
The non-pretrained E.T. has the similar attention scores for “microwave”
and “refridgerator” tokens (they are highlighted with pink) and makes a
mistake by choosing to heat the egg first. The pretrained E.T. agent has
higher attention scores for the “refridgerator” tokens and correctly decides
to cool the egg first. In the third example, the agent needs to pick up a knife
to cut a potato later. The non-pretrained agent distributes its attention
over many language tokens and picks up a fork which is incorrect. The
pretrained E.T. agent strongly attends to the “knife” token and picks the
knife up. The demonstrated examples show that the language pretraining
of E.T. results in language attention that is better aligned with human
interpretation.

Qualitative analysis

We show 3 successful and 2 failed examples of the E.T. agent solving
tasks from the ALFRED validation fold. In Figure 5.9(top) the agent suc-
cessfully heats an apple and puts it on a table. The agent understands the
instruction “bring the heated apple back to the table on the side” and navi-
gates back to its previous position. In Figure 5.9(bottom) the agent brings
a washed plate to a fridge. The agent does not know where the plate is and

108 Chapter 5. Episodic Transformer for vision-and-language navigation

Figure 5.8 – Visualizations of normalized language attention heatmaps,
without and with the language encoder pretraining. Red indicates a higher
attention score. We observe that the agent trained without language pre-
training misses word tokens that are important for the task according to
human interpretation (marked with blue rectangles). In contrast, the pre-
trained E.T. agent often is able to pay attention to those tokens and solve
the tasks successfully.

walks along a counter checking several places. Finally, it finds the plate,
washes it and brings it to the fridge. In Figure 5.10 the agent performs a

5.4. Results 109

t = 0 t = 4 t = 5 t = 26 t = 36

t = 38 t = 40 t = 43 t = 56 t = 58

Goal: Put a heated apple on the table. Instructions: Turn left and go to
the table. Pick up the apple on the table. Go right and bring the apple to
the microwave. Heat the apple in the microwave.

t = 0 t = 6 t = 12 t = 13 t = 20

t = 21 t = 26 t = 31 t = 32 t = 33

t = 34 t = 39 t = 48 t = 49 t = 50

Goal: Place a rinsed plate in the fridge. Instructions: Walk ahead to the
door, then turn left and take a step, then turn left and face the counter.
Pick up the dirty plate on the counter. Walk left around the counter, and
straight to the sink. Clean the plate in the sink. Turn left and walk to the
fridge. Place the plate on the top shelf of the fridge. Place a pan containing
slicing tomato in the refrigerator. Bring the heated apple back to the table
on the side. Put the heated apple on the table in front of the salt.
Figure 5.9 – Examples of successfully solved tasks. Top: The agent picks
up an apple, puts it into a microwave, closes it, turns it on, opens it, picks
up the apple again, then navigates back to the table on the side and puts
the apple on the same table. Bottom: The agent does not know where the
dirty plate is and looks at several places on the counter (the first row). It
then sees the plate in the corner of the top right image, picks it up, goes
to a sink, opens a tap, picks the plate again, navigates to a fridge, opens it
and puts the plate to the top shelf of the fridge.

110 Chapter 5. Episodic Transformer for vision-and-language navigation

t = 0 t = 14 t = 28 t = 29 t = 30

t = 31 t = 51 t = 64 t = 65 t = 77

t = 97 t = 98 t = 110 t = 129 t = 130

t = 131 t = 140 t = 146 t = 147 t = 148

Goal: Place a pan containing slicing tomato in the refrigerator. Instruc-
tions: Turn right, move to the table opposite the chair. Pick up the knife
that is near the tomato. Turn left, move to the table opposite the chair.
Slice the tomato that is on the table. Turn left, move to the counter that
is left of the bread, right of the potato. Put the knife in the pan. Turn
left, move to the table opposite the chair. Pick up a slice of tomato from
the counter. Turn left, move to the counter that is left of the bread, right
of the potato. Put the tomato slice in the pan. Pick up the pan from the
counter. Turn left, move to in front of the refrigerator. Put the pan in the
refrigerator.
Figure 5.10 – Example of a successfully solved task. The agent uses 148
actions to complete the task. The agent picks up a knife from a table, slices
a tomato in the first image of the second row, brings the knife to a stove,
puts the knife on a plate, walks back to the table, grabs a tomato slice,
returns to the stove, puts the tomato slice on the same plate, picks up the
plate, navigates to a fridge, opens it, puts the plate with the knife and the
tomato slice on a shelf and closes the fridge.

5.4. Results 111

t = 0 t = 4 t = 17 t = 28 t = 34

t = 35 t = 45 t = 54 t = 57 t = 58

Goal: Move a bowl from the table to the coffee table. Instructions: Move
across the room to the dining room table where the statue is. Pick up the
bowl to the right of the statue on the table. Carry the bowl to the glass
coffee table. Place the bowl on top of the coffee table between the statue
and the square black tray.

t = 0 t = 9 t = 14 t = 21 t = 29

t = 35 t = 45 t = 46 t = 62 t = 63

t = 68 t = 77 t = 85 t = 88 t = 96

Goal: Look at a basketball in the lamp light. Instructions: Turn around
and go to the foot of the bed. Pick up the basketball from the floor. Turn
around and go to the desk in the corner. Turn on the lamp.
Figure 5.11 – Failure examples. Top: The agent correctly finds both dining
and coffee tables but gets confused with "the bowl to the right of the statue"
reference. The agent decides to pick up a statue instead of a bowl and
fails to solve the task. Bottom: The agent is exposed to an unknown
environment and fails to follow the navigation instructions. It wanders
around the room, eventually finds a basketball but fails to locate a lamp
and decides to terminate the episode in front of a mirror.

112 Chapter 5. Episodic Transformer for vision-and-language navigation

sequence of 148 actions and successfully solves a task. This example shows
that the agent is able to pick up small objects such as a knife and a tomato
slice. The agent puts both of them to a plate and brings the plate to a
fridge.

Among the most common failure cases are picking up wrong objects and
mistakes during navigation. In Figure 5.11(top) the agent misunderstands
the instruction “pick up the bowl to the right of the statue on the table” and
decides to pick up a statue on the frame marked with red. It then brings
the statue to a correct location but the full task is considered to be failed.
Figure 5.11(bottom) shows a failure mode in an unseen environment. The
agent is asked to pick up a basketball and to bring it to a lamp. The agent
first wanders around a room but eventually picks up the basketball. It then
fails to locate the lamp and finds itself staring into a mirror. The agent
gives up on solving the task and decides to terminate the episode.

5.5 Conclusion
In this chapter, we propose Episodic Transformer (E.T.), an architec-

ture for vision-and-language navigation tasks based on the self-attention
mechanism. In contrast to commonly used recurrent architectures that rely
on a hidden state, E.T. observes the complete history of vision, language,
and action inputs and encodes it with a multimodal transformer. We quan-
titatively and qualitatively demonstrate that providing the whole history
of observations and actions is important for agent performance on compo-
sitional tasks. On the challenging ALFRED benchmark, E.T. outperforms
competitive recurrent baselines and achieves state-of-the-art performance.
We also propose to use synthetic instructions as intermediate representa-
tions for language-only pretraining and joint training with human annotated
instructions. Given the synthetic instructions, the performance of E.T. is
further improved in seen and especially, in unseen environments.

6

Conclusion

Our work proposes novel approaches for learning control policies for real
robots. Our experiments demonstrate that control for real-world robots can
be learned using only synthetic images and a limited amount of domain
knowledge. We also made a step towards bridging the gap between robot
learning and natural language processing by proposing a new approach to
solve a language-conditioned navigation task.

In Section 6.1, we summarize key contributions made in this disserta-
tion and main observations of our experiments. In Section 6.2, we discuss
research directions which can be considered for future work.

6.1 Summary of contributions
Learning to augment synthetic images for sim2real policy transfer.
Our first contribution is a method to learn augmentation functions for
simulation-to-reality policy transfer. We study how a proxy task of ob-
ject position estimation and a small amount of real images can be used to
find a simulation-to-reality function. This function consists of a sequence
of random transformations such as scaling and adding noise and is used to
augment synthetic images. Once augmented, synthetic images and corre-
sponding expert actions can be used for policy learning with the behavior
cloning approach. The control policies learned on augmented synthetic im-
ages can be used directly on a real robot. Our experiments suggest that the
found simulation-to-reality augmentation function is task-independent and
can be used to learn control policies for a range of manipulation tasks. By
training policies on a distribution of objects and their shapes in simulated
scenes, our approach allows real-world policies to be robust to unseen dur-
ing training objects. Our experiments also indicate that the performance

113

114 Chapter 6. Conclusion

on the proxy task strongly correlates with the real-world performance of
the learned policies. Notably, our method only requires real images for the
proxy task of object position estimation and does not require any real im-
ages of downstream manipulation tasks. We evaluate our method on three
real-world manipulation tasks including picking, stacking and placing. We
further apply our method on more complex tasks such as a task of pouring
of several objects and an assembly task.

Learning to combine primitive skills.
Our second contribution is a method to learn combinations of primitive
skills. We propose to pretrain skills with behavior cloning and show how to
significantly decrease the number of required demonstrations by exploring
recent CNN architectures and data augmentation. We then propose to learn
a master policy that switches between skills using reinforcement learning
and a task completion signal. In contrast to prior approaches, our method
requires neither full-task demonstrations nor intermediate rewards. We
demonstrate that the skill policies learned with behavior cloning can imme-
diately react to changes in the scene and the master policy learned through
trial-and-error can replan in case of a skill failure. Our approach also em-
ploys the previously proposed method for sim2real transfer and works on a
real robot while using only synthetic images for training. We show excel-
lent results on simulated tasks and their real-world counterparts. We also
demonstrate the versatility of our approach in challenging real-world set-
tings with dynamic scene changes which include changes of object positions,
temporary object occlusions, and unseen during training object instances.

Learning visual policies for building 3D shape categories.
Our third contribution is a method to assembly 3D object shapes using
a robotic arm and varying sets of building blocks. To solve this chal-
lenging task using only a final configuration example for supervision, we
propose a two-phase approach. First, our approach solves the task in a
low-dimensional state space of a simulator by disassembly. We suggest that
disassembly trajectories are easier to sample and they can be treated as
assembly demonstrations once reversed. We also propose to transfer low-
dimensional state-space demonstrations to the visual observation space of
a robot by using a renderer of the simulator. In the second phase of the
method, we train visual policies using behavior cloning and automatically
collected assembly demonstrations. Similar to our previous approaches, we
apply the sim2real augmentation function and use only synthetic images to
train real-world policies. We demonstrate the reactive ability of our method
to re-assemble objects using additional primitives introduced to the real seen

6.2. Perspectives for future research 115

and the robust performance of our policy for unseen primitives resembling
building blocks used during training. Our visual assembly policies reach up
to 95% success rate when evaluated on a real robot.

Episodic Transformer for vision-and-language navigation.
Our fourth contribution is a method for solving vision-and-language nav-
igation tasks called Episodic Transformer (E.T.). We propose a novel
transformer-based architecture which is able to solve compositional se-
quences of subtasks. At any time, the poposed architecture observes a com-
plete history of language instructions, vision observations, and previous ac-
tions and encodes them with a multimodal transformer. We quantitatively
and qualitatively show that providing the whole history of observations and
actions is important for agent performance. On the challenging ALFRED
benchmark, our approach outperforms competitive recurrent baselines and
achieves state-of-the-art performance. We also propose to use synthetic in-
structions as intermediate representations to decouple understanding the
visual appearance of an environment from the variations of natural lan-
guage instructions. The synthetic instructions are used for language-only
pretraining and joint training together with human-annotated instructions.
We experimentally show that the synthetic instructions improve perfor-
mance on seen and especially unseen environments and help our model to
improve state-of-the-art results on both of them.

6.2 Perspectives for future research
In this section, we introduce several ideas about future extensions of our

work, which are suggested by our experiments and recent developments in
the fields of robot learning, computer vision, and machine learning.

6.2.1 Learning to augment synthetic images for sim2real
policy transfer

Extending sim2real transfer to RGB data. The proposed ap-
proach finds a sequence of random transformations for depth images to
transfer learned control policies from simulation to reality. Previous work
found that designing such transformations manually could lead to a success-
ful policy transfer for RGB images [Tobin et al., 2017]. We hypothesize that
applying our method of Monte Carlo tree search over possible sequences of
transformations for RGB data could result in optimal sim2real augmenta-
tions and potentially outperform the mentioned manually designed transfor-

116 Chapter 6. Conclusion

Figure 6.1 – Our sim2real approach does not consider the differences be-
tween simulation and reality in terms of physical behavior of synthetic ob-
jects. Such differences may be critical for a successful transfer of policies in
contact-rich tasks. The figure shows an example of such task where the left
part shows a simulated legged robot and the right part shows its real-world
correspondance [Tan et al., 2018].

mations. Such transformations for RGB data could include random color
operations with already rendered images such as contrast and brightness
change [Cubuk et al., 2019] and explicitely rendered appearance changes
such as texture swaps. Once our method is extended to the RGB data, it
could be further extended for RGB-D images by applying the transforma-
tions to corresponding image channels.

Addressing the physical sim2real gap. While our work focuses
on visual differences between simulated and real images, we do not con-
sider possible differences of simulation from the real world in terms of the
physical behavior of synthetic objects. Although we did not observe the
impact of such differences for our manipulation tasks, the physical sim2real
gap might play a key role in transferring policies for contact-rich manip-
ulations and locomotion [Liu et al., 2019] (see Figure 6.1). Apart from
designing high-fidelity simulations of controllers and sensors using system
identification methods, previous work proposed to use domain randomiza-
tion approaches and to manually design sensor noise and perturbations in
synthetic environments [Tan et al., 2018]. One can also consider extending
our approach by adding transformations that impact physical behavior of
simulated objects and robots such as friction coefficients changes and mass
perturbations. In this case, a major challenge may lie in reducing the cost
of the data generation to make the sim2real function search feasible using
limited resources.

Making the method to be robot platform agnostic. The pro-
posed method can handle several differences between simulation and re-
ality including a camera position, background clutter, and novel objects

6.2. Perspectives for future research 117

unseen during training. However, we assume that a specific robotic arm
is used which is simulated using an exact model provided by its manufac-
turer. Previous work showed that it is possible to train a control policy that
works on a range of robotics platforms using a small amount of data for
adapation [Nagabandi et al., 2019, Ghadirzadeh et al., 2021]. In theory, it
should be possible to leverage a simulator to learn a single control policy for
several robotics arms which, for instance, have the same number of degrees
of freedom. One could use our method and design a set of random trans-
formations for the arm configuration, its visual appearance and physical
behavior. To facilitate the learning process, control policies might be con-
ditioned on the current arm configuration and the robot action space can
be parameterized independently of the manipulator’s internal state using
the end-effector position.

6.2.2 Learning to combine primitive skills
Learning multiple tasks with shared skills. The proposed ap-

proach assumes learning a master policy to combine a set of skills. The mas-
ter policy is learned through trial-and-error and skill policies are pretrained
from short demonstrations. Although our method can autonomously de-
cide which skills to use and which to ignore for a given task, the provided
demonstrations of skills are specifically designed using knowledge of which
subtasks the current task can be decomposed into. Moreover, some tasks
may have an intersecting vocabulary of skills required for a successful so-
lution [Farahani and Mozayani, 2020]. A possible extension of our method
would be using it for solving multiple tasks given a broad set of skills. Such
extension would introduce a more challenging problem from the RL explo-
ration point of view and would result in longer training time. This difficulty
could be addressed using exploration heuristics [Tang et al., 2017, Pathak
et al., 2017] or more sample-efficient RL approaches including off-policy and
model-based methods [Fujimoto et al., 2019, Hafner et al., 2019].

Learning soft combinations of skills. While our proposed approach
assumes hard skill switching by the master policy, i.e. only one skill policy
can be chosen by the master at any given time, the approach could benefit
from being able to combine several skills. Our preliminary work demon-
strated that in some cases choosing one skill at a time (shown on the left in
Figure 6.2) may results in suboptimal behavior and can be outperformed
by predicting a modulation signal with the master policy instead [Pashe-
vich et al., 2018]. One of the examples of such modulation signal is the
coefficients to weigh actions of individual skills with (shown on the right
in Figure 6.2). At the same time, using several skills at once can allow

118 Chapter 6. Conclusion

Figure 6.2 – Our preliminary work demonstrated that soft combinations of
skills (right) can outperform hard skill switching (left) which can be applied
in the context of our proposed method [Pashevich et al., 2018].

for a further increase in versatility by employing lower-level skills such as
movements in orthogonal directions [Florensa et al., 2017a]. This future
work follows the same direction as the previous proposal and could further
increase the generalizability of our approach.

Unsupervised skill discovery. Our approach assumes that each of
the demonstrations used to learn skill policies has a skill label. Unsuper-
vised skill discovery given unlabeled demonstrations or even less structured
data such as self-play [Lynch et al., 2019] would allow to futher decrease the
amount of domain-specific prior knowledge. In our preliminary work [Pa-
shevich et al., 2018], we found that a hierarchy of RL policies can divide a
manipulation task into skill subtasks such as reaching, grasping, and lift-
ing without any additional supervision. Another approach would be to use
clustering techniques such as the EM approach [Greff et al., 2017] to divide
long demonstrations into short skills and to train skill policies with the
cluster labels [Karoly et al., 2019]. A potential difficulty would be to find
the optimal granularity of discovered skills, in other words, to decide how
high- or low-level they should be.

6.2.3 Learning visual policies for building 3D shape
categories

Extending the method for physically irreversible actions. The
proposed approach disassembles 3D object shapes and reverses applied ac-
tions to get assembly demonstrations. While this disassembling procedure

6.2. Perspectives for future research 119

may not be directly applicable to all tasks out of the box, we believe that
it could generalize even to physically irreversible actions in tasks such as
preparing a meal and more complex assembling tasks involving, for exam-
ple, drilling. This can be done by learning an appropriate backward model
in simulation [Agostinelli et al., 2019, Edwards et al., 2018] and using it
for the action reversal. For instance, in the task of making tea or, more
precisely, pouring water into a cup, the "unpouring" action is not feasible
in the real world. However, one could predict the result of "unpouring"
from a cup full of water using a learned backward model. Next, a simulator
can be used to generate an observation with an empty cup and water in a
kettle. Therefore, it would be possible to generate demonstrations of tea
preparation in simulation, use them to learn a control policy and transfer
it for a real-world tea preparation task.

Reducing the method complexity. To find the shortest assem-
bly demonstration from a given state, our proposed approach extensively
searches for all possible disassembly paths and merges them into a demon-
stration. The complexity of such procedure grows exponentially with the
number of primitives used in the scene. While this did not become a bot-
tleneck for the problems considered in our work, more complex tasks may
require significantly longer time to generate demonstrations for. For such
cases, one can extend our method to use an approximation of the exten-
sive search by sampling a fixed number of disassembly trajectories. Apart
from reducing the wall time required for generating demonstrations, one
could increase the sample efficiency of the proposed approach in terms of
the number of required demonstrations by using more recent off-policy RL
methods [Espeholt et al., 2018, Munos et al., 2016].

Generalizing the category definition. Our work proposes a novel
method to learn control policies able to build objects that have a certain
3D shape which we refer to as a category. The trained policy is required
to learn what the given 3D shape is. In our work, we consider tasks of
building relatively simple 3D shapes of towers and arches. We believe that
it is possible to make an agent reason about more sophisticated concepts
such as, for example, the concept of a house which means a few connected
walls equipped with a door and covered with a roof. Making the agent
learn such rules might be simpler than providing it with a large number of
simulated examples of various houses. Another interesting example of an
extension for the category definition and our method application could be
the furniture assembly task where the agent is asked to build, for instance,
an object that belongs to a chair category [Suárez-Ruiz et al., 2018].

120 Chapter 6. Conclusion

(a) Language-conditioned manipulation task [Stepputtis et al., 2020].

(b) Instruction-following task with a physical quadcopter [Blukis et al., 2019].

Figure 6.3 – We believe that the E.T. architecture can be applied to solve
multimodal robotics problems where the task is defined using natural lan-
guage instructions.

6.2.4 Episodic Transformer for vision-and-language
navigation

Extending the E.T. architecture to arbitrarily long tasks. One
of the main advantages of the E.T. architecture is the capacity to encode
a full history of previous observations and actions. Despite the benefits
shown by our experiments, this feature comes at the cost of lengthy input
sequences which might become prohibitively expensive in longer tasks. To
this extend, several solutions can be proposed starting from simply using
only a fixed number of the latest observations and actions. Moreover, novel
attention-based models extending transformers for handling much longer
input sequences [Zaheer et al., 2020, Dai et al., 2019] can be used. Our
model also inherits the quadratic complexity of the transformer architecture
with respect to the input length which might become a bottleneck to use it
in real time. The same class of mentioned above transformer architectures
could be considered to decrease the complexity to linear [Zaheer et al.,
2020, Katharopoulos et al., 2020].

Applying the E.T. architecture in the context of robotics. While
our work is not directly applied to robotics, we consider it to be a step

6.2. Perspectives for future research 121

towards bridging the gap between developments in robot learning and nat-
ural language processing. The proposed approach is shown to work in the
context of vision-and-language navigation and we believe that it is gener-
alizable to other control tasks where an agent receives a multimodal input
such as language commands and visual observations. Examples of this sce-
nario include manipulation tasks with a robotic arm defined by natural
language [Stepputtis et al., 2020] shown in Figure 6.3a and controlling a
quadcopter to reach goals defined by textual instructions [Blukis et al.,
2019] shown in Figure 6.3b. The major challenges of applying the E.T.
architecture for such tasks lie in a potential change of discrete actions to
continuous control and higher requirements for the visual perception caused
by the usage of real-world images. In addition, the previously mentioned
adaptations for handling long inputs might be necessary depending on the
robot control frequency and a task length.

Improving model performance by using other input modali-
ties. The proposed E.T. architecture uses a multimodal encoder on top
of separate encoders for each of three input modalities: language, images,
and actions. Transformer-based architectures were shown to successfully
work with various types of modalities including language, RGB images,
videos, speech, hyperspectral images, and others [Sun et al., 2019, He et al.,
2020, Gabeur et al., 2020]. Recently, novel datasets were proposed with po-
tential applications of other data sources such as human speech [Ku et al.,
2020] to improve the performance of control policies. One could equip
the proposed E.T. architecture with another encoder to solve tasks where
speech is also available. Another promising extension would be providing
the model with a map of an environment which could be treated as one more
token of another modality. Such map can be either provided as a ground
truth map if it is available [Chen et al., 2021] or a map estimated on the
fly [Chaplot et al., 2020, Narasimhan et al., 2020]. The map modality could
be especially important to improve the navigation performance and close
the gap between seen and unseen environments.

A

Publications
This thesis has led to several publications summarized below.

International Conferences

• A. Pashevich ∗, R. Strudel∗, I. Kalevatykh, I. Laptev, C. Schmid
Learning to Augment Synthetic Images for Sim2Real Policy Trans-
fer
Proceedings of the IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS) 2019, [Pashevich et al., 2019a].
https://hal.archives-ouvertes.fr//hal-02273326v1

• R. Strudel∗, A. Pashevich∗, I. Kalevatykh, I. Laptev, J. Sivic, C.
Schmid
Learning to combine primitive skills: A step towards versatile robotic
manipulation
Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA) 2020, [Strudel et al., 2020b].
https://hal.archives-ouvertes.fr/hal-02274969v1

• A. Pashevich∗, I. Kalevatykh∗, I. Laptev, C. Schmid
Learning visual policies for building 3D shape categories
Proceedings of the IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS) 2020, [Pashevich et al., 2020a].
https://hal.archives-ouvertes.fr/hal-02945024v1

• A. Pashevich, C. Schmid, C. Sun
Episodic Transformer for Vision-and-Language Navigation
Proceedings of the International Conference on Computer Vision

∗. Equal contribution

123

https://hal.archives-ouvertes.fr//hal-02273326v1
https://hal.archives-ouvertes.fr/hal-02274969v1
https://hal.archives-ouvertes.fr/hal-02945024v1

124 Appendix A. Publications

(ICCV) 2021, [Pashevich et al., 2021a].
https://hal.archives-ouvertes.fr/hal-03371803v1

Other Publications

• A. Pashevich, D. Hafner, J. Davidson, R. Sukthankar, C. Schmid
Modulated Policy Hierarchies
Deep Reinforcement Learning Workshop, in conjunction with the
Conference on Neural Information Processing Systems (NeurIPS)
2018, [Pashevich et al., 2018].
https://hal.archives-ouvertes.fr/hal-01963580v1

https://hal.archives-ouvertes.fr/hal-03371803v1
https://hal.archives-ouvertes.fr/hal-01963580v1

B

Software

Several code bases created over the course of the PhD are available online.

• Source code of sim2real and RLBC approaches:
https://github.com/rstrudel/rlbc
The code allows to train control policies for several manipulation
tasks and to transfer them to a real-world UR5 robot. The code
implements skill policies pretraining with behavior clonning, master
policy training with Proximal Policy Optimization, sim2real aug-
mentation function optimization procedure with Monte Carlo Tree
Search, and scalable data collection and policy evaluation tools.
The code also allows to implement other manipulation tasks and
train control policies for them. The documentation provides exact
steps to reproduce the results of two our papers [Pashevich et al.,
2019a, Strudel et al., 2020b]. The code is written using PyTorch
library.

• Source code of the Episodic Transformer (E.T.) approach:
https://github.com/alexpashevich/E.T.
The code allows to train a VLN agent for the ALFRED benchmark.
The code implements the transformer-based E.T. architecture and
a scalable way to evaluate it on validation and test folds of AL-
FRED. The repository contains links to pretrained models and ad-
ditional ALFRED trajectories used for their training. The documen-
tation provides exact steps to reproduce our results [Pashevich et al.,
2021a]. The code is written using PyTorch library.

125

https://github.com/rstrudel/rlbc
https://github.com/alexpashevich/E.T.

Bibliography

[Abnar and Zuidema, 2020] Abnar, S. and Zuidema, W. (2020). Quantify-
ing attention flow in transformers. In Annual Meeting of the Association
for Computational Linguistics (ACL).

[Agostinelli et al., 2019] Agostinelli, F., McAleer, S., Shmakov, A., and
Baldi, P. (2019). Solving the rubik’s cube with deep reinforcement learn-
ing and search. Nature Machine Intelligence.

[Agrawal et al., 2016] Agrawal, P., Nair, A. V., Abbeel, P., Malik, J., and
Levine, S. (2016). Learning to poke by poking: Experiential learning of
intuitive physics. In Advances in Neural Information Processing Systems
(NeurIPS).

[Allen, 1995] Allen, J. (1995). Natural Language Understanding. Benjamin
/ Cummings Publishing Company.

[Anderson et al., 2018] Anderson, P., Wu, Q., Teney, D., Bruce, J., John-
son, M., Sünderhauf, N., Reid, I., Gould, S., and van den Hengel, A.
(2018). Vision-and-Language Navigation: Interpreting visually-grounded
navigation instructions in real environments. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

[Andreas and Klein, 2015] Andreas, J. and Klein, D. (2015). Alignment-
based compositional semantics for instruction following. In Conference
on Empirical Methods in Natural Language Processing (EMNLP).

[Andrychowicz et al., 2017] Andrychowicz, M., Crow, D., Ray, A., Schnei-
der, J., Fong, R. H., Welinder, P., McGrew, B., Tobin, J., Abbeel, P., and
Zaremba, W. (2017). Hindsight experience replay. Advances in Neural
Information Processing Systems (NeurIPS).

127

128 Bibliography

[Argall et al., 2009] Argall, B. D., Chernova, S., Veloso, M., and Browning,
B. (2009). A survey of robot learning from demonstration. IEEE Robotics
and Automation Society (RAS).

[Artzi and Zettlemoyer, 2013] Artzi, Y. and Zettlemoyer, L. (2013).
Weakly supervised learning of semantic parsers for mapping instructions
to actions. Transactions of the Association for Computational Linguistics
(TACL).

[Atkeson and Schaal, 1997] Atkeson, C. G. and Schaal, S. (1997). Robot
learning from demonstration. In International Conference on Machine
Learning (ICML).

[Bacon et al., 2017] Bacon, P.-L., Harb, J., and Precup, D. (2017). The
Option-Critic Architecture. In Conference on Artificial Intelligence
(AAAI).

[Belinkov and Glass, 2019] Belinkov, Y. and Glass, J. R. (2019). Analysis
methods in neural language processing: A survey. Transactions of the
Association for Computational Linguistics (TACL).

[Bellemare et al., 2016] Bellemare, M. G., Srinivasan, S., Ostrovski, G.,
Schaul, T., Saxton, D., and Munos, R. (2016). Unifying count-based
exploration and intrinsic motivation. In Advances in Neural Information
Processing Systems (NeurIPS).

[Berant et al., 2013] Berant, J., Chou, A., Frostig, R., and Liang, P. (2013).
Semantic parsing on freebase from question-answer pairs. In Conference
on Empirical Methods in Natural Language Processing (EMNLP).

[Berner et al., 2019] Berner, C., Brockman, G., Chan, B., Cheung, V.,
Debiak, P., Dennison, C., Farhi, D., Fischer, Q., Hashme, S., Hesse,
C., Józefowicz, R., Gray, S., Olsson, C., Pachocki, J. W., Petrov, M.,
de Oliveira Pinto, H. P., Raiman, J., Salimans, T., Schlatter, J., Schnei-
der, J., Sidor, S., Sutskever, I., Tang, J., Wolski, F., and Zhang, S. (2019).
Dota 2 with Large Scale Deep Reinforcement Learning. arXiv preprint.

[Blukis et al., 2019] Blukis, V., Terme, Y., Niklasson, E., Knepper, R. A.,
and Artzi, Y. (2019). Learning to map natural language instructions
to physical quadcopter control using simulated flight. In Conference on
Robot Learning (CoRL).

[Boden, 2008] Boden, M. (2008). Mind As Machine: A History of Cognitive
Science. Oxford University Press.

Bibliography 129

[Bojarski et al., 2017] Bojarski, M., Yeres, P., Choromańska, A., Choro-
manski, K., Firner, B., Jackel, L., and Muller, U. (2017). Explaining
how a deep neural network trained with end-to-end learning steers a car.
arXiv preprint.

[Bollini et al., 2013] Bollini, M., Tellex, S., Thompson, T., Roy, N., and
Rus, D. (2013). Interpreting and executing recipes with a cooking robot.
Experimental Robotics.

[Bousmalis et al., 2018] Bousmalis, K., Irpan, A., Wohlhart, P., Bai, Y.,
Kelcey, M., Kalakrishnan, M., Downs, L., Ibarz, J., Pastor, P., Konolige,
K., Levine, S., and Vanhoucke, V. (2018). Using Simulation and Domain
Adaptation to Improve Efficiency of Deep Robotic Grasping. In IEEE
International Conference on Robotics and Automation (ICRA).

[Branavan et al., 2009] Branavan, S. R., Chen, H., Zettlemoyer, L. S., and
Barzilay, R. (2009). Reinforcement learning for mapping instructions to
actions. In Annual Meeting of the Association for Computational Lin-
guistics (ACL).

[Brown et al., 2020] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Ka-
plan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell,
A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child,
R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen,
M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C.,
McCandlish, S., Radford, A., Sutskever, I., and Amodei, D. (2020). Lan-
guage models are few-shot learners. In Advances in Neural Information
Processing Systems (NeurIPS).

[Bugmann et al., 2001] Bugmann, G., Lauria, S., Kyriacou, T., Klein, E.,
Bos, J., and Coventry, K. (2001). Using verbal instructions for route
learning: Instruction analysis. In Towards Intelligent Mobile Robots
(TIMR).

[Burda et al., 2019] Burda, Y., Edwards, H., Pathak, D., Storkey, A.,
Darrell, T., and Efros, A. A. (2019). Large-scale study of curiosity-
driven learning. In International Conference on Learning Representations
(ICLR).

[Calandra et al., 2015] Calandra, R., Seyfarth, A., Peters, J., and Deisen-
roth, M. (2015). Bayesian optimization for learning gaits under uncer-
tainty. In Annals of Mathematics and Artificial Intelligence.

[Carion et al., 2020] Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kir-
illov, A., and Zagoruyko, S. (2020). End-to-end object detection with
transformers. In European Conference on Computer Vision (ECCV).

130 Bibliography

[Chang et al., 2015] Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan,
P., Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S., Su, H., Xiao, J.,
Yi, L., and Yu, F. (2015). ShapeNet: An Information-Rich 3D Model
Repository. arXiv preprint.

[Chaplot et al., 2020] Chaplot, D. S., Gandhi, D., Gupta, S., Gupta, A.,
and Salakhutdinov, R. (2020). Learning to Explore using Active Neu-
ral SLAM. In International Conference on Learning Representations
(ICLR).

[Chen and Mooney, 2011] Chen, D. and Mooney, R. (2011). Learning to
interpret natural language navigation instructions from observations. In
Conference on Artificial Intelligence (AAAI).

[Chen et al., 2019a] Chen, H., Suhr, A., Misra, D., Snavely, N., and Artzi,
Y. (2019a). Touchdown: Natural language navigation and spatial rea-
soning in visual street environments. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[Chen et al., 2021] Chen, K., Chen, J. K., Chuang, J., V’azquez, M., and
Savarese, S. (2021). Topological planning with transformers for vision-
and-language navigation. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

[Chen et al., 2019b] Chen, Z., Guo, D., Xiao, T., Xie, S., Chen, X., Yu,
H., Gray, J., Srinet, K., Fan, H., Ma, J., Qi, C., Tulsiani, S., Szlam,
A., and Zitnick, L. (2019b). Order-Aware Generative Modeling Using
the 3D-Craft Dataset. In International Conference on Computer Vision
(ICCV).

[Chen and Huang, 2017] Chen, Z. and Huang, X. (2017). End-to-end learn-
ing for lane keeping of self-driving cars. In IEEE Intelligent Vehicles
Symposium (IV).

[Cheng et al., 2018] Cheng, C.-A., Yan, X., Wagener, N., and Boots, B.
(2018). Fast policy learning through imitation and reinforcement. In
Conference on Uncertainty in Artificial Intelligence (UAI).

[Clark, 2015] Clark, A. (2015). Python Imaging Library (PIL). https:
//pillow.readthedocs.io/en/stable/.

[Clark and Amodei, 2016] Clark, J. and Amodei, D. (2016). Faulty
reward functions in the wild. https://openai.com/blog/
faulty-reward-functions/.

https://pillow.readthedocs.io/en/stable/
https://pillow.readthedocs.io/en/stable/
https://openai.com/blog/faulty-reward-functions/
https://openai.com/blog/faulty-reward-functions/

Bibliography 131

[Codevilla et al., 2018] Codevilla, F., Miiller, M., López, A., Koltun, V.,
and Dosovitskiy, A. (2018). End-to-end driving via conditional imitation
learning. In IEEE International Conference on Robotics and Automation
(ICRA).

[Côté et al., 2018] Côté, M.-A., Kádár, Á., Yuan, X., Kybartas, B., Barnes,
T., Fine, E., Moore, J., Hausknecht, M., El Asri, L., Adada, M., et al.
(2018). Textworld: A learning environment for text-based games. In
Workshop on Computer Games.

[Coulom, 2006] Coulom, R. (2006). Efficient selectivity and backup opera-
tors in monte-carlo tree search. Computers and Games.

[Coumans, 2009] Coumans, E. (2009). Bullet physics engine. https://
bulletphysics.org.

[Cubuk et al., 2019] Cubuk, E. D., Zoph, B., Mané, D., Vasudevan, V., and
Le, Q. V. (2019). AutoAugment: Learning Augmentation Policies from
Data. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

[Dahl et al., 2012] Dahl, G. E., Yu, D., Deng, L., and Acero, A. (2012).
Context-Dependent Pre-Trained Deep Neural Networks for Large-
Vocabulary Speech Recognition. In IEEE Transactions on Audio, Speech,
and Language Processing.

[Dai et al., 2019] Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V., and
Salakhutdinov, R. (2019). Transformer-xl: Attentive language models
beyond a fixed-length context. In Annual Meeting of the Association for
Computational Linguistics (ACL).

[Dantam et al., 2018] Dantam, N. T., Kingston, Z. K., Chaudhuri, S., and
Kavraki, L. E. (2018). An incremental constraint-based framework for
task and motion planning. The International Journal of Robotics Re-
search (IJRR).

[Das et al., 2018] Das, A., Gkioxari, G., Lee, S., Parikh, D., and Batra,
D. (2018). Neural modular control for embodied question answering. In
Conference on Robot Learning (CoRL).

[Dayan and Hinton, 1993] Dayan, P. and Hinton, G. (1993). Feudal Re-
inforcement Learning. In Advances in Neural Information Processing
Systems (NeurIPS).

[de Haan et al., 2019] de Haan, P., Jayaraman, D., and Levine, S. (2019).
Causal confusion in imitation learning. In Advances in Neural Informa-
tion Processing Systems (NeurIPS).

https://bulletphysics.org
https://bulletphysics.org

132 Bibliography

[Deitke et al., 2020] Deitke, M., Han, W., Herrasti, A., Kembhavi, A.,
Kolve, E., Mottaghi, R., Salvador, J., Schwenk, D., VanderBilt, E.,
Wallingford, M., Weihs, L., Yatskar, M., and Farhadi, A. (2020).
Robothor: An open simulation-to-real embodied ai platform. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

[Devlin et al., 2019] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2019). Bert: Pre-training of deep bidirectional transformers for language
understanding. In Conference of the North American Chapter of the
Association for Computational Linguistics (NAACL).

[DeVries and Taylor, 2017] DeVries, T. and Taylor, G. W. (2017). Improved
Regularization of Convolutional Neural Networks with Cutout. arXiv
preprint.

[Ding et al., 2020] Ding, D., Hill, F., Santoro, A., and Botvinick, M. (2020).
Object-based attention for spatio-temporal reasoning: Outperforming
neuro-symbolic models with flexible distributed architectures. arXiv
preprint.

[Dosovitskiy et al., 2021] Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weis-
senborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. (2021). An image is worth 16x16 words:
Transformers for image recognition at scale. In International Conference
on Learning Representations (ICLR).

[Duan et al., 2017] Duan, Y., Andrychowicz, M., Stadie, B., Ho, J., Schnei-
der, J., Sutskever, I., Abbeel, P., and Zaremba, W. (2017). One-shot im-
itation learning. In Advances in Neural Information Processing Systems
(NeurIPS).

[Duan et al., 2016] Duan, Y., Schulman, J., Chen, X., Bartlett, P. L.,
Sutskever, I., and Abbeel, P. (2016). RL2: Fast Reinforcement Learning
via Slow Reinforcement Learning. arXiv preprint.

[Dvornik et al., 2018] Dvornik, N., Mairal, J., and Schmid, C. (2018). Mod-
eling Visual Context is Key to Augmenting Object Detection Datasets.
In European Conference on Computer Vision (ECCV).

[Ebert et al., 2018] Ebert, F., Finn, C., Dasari, S., Xie, A., Lee, A. X., and
Levine, S. (2018). Visual Foresight: Model-Based Deep Reinforcement
Learning for Vision-Based Robotic Control. arXiv preprint.

[Edelkamp and Hoffmann, 2004] Edelkamp, S. and Hoffmann, J. (2004).
PDDL2.2: The Language for the Classical Part of IPC-4. Technical
Report, University of Freiburg.

Bibliography 133

[Edwards et al., 2018] Edwards, A., Downs, L., and Davidson, J. C. (2018).
Forward-backward reinforcement learning. In ICRA Machine Learning
in Planning and Control of Robot Motion Workshop.

[Eitel et al., 2015] Eitel, A., Springenberg, J. T., Spinello, L., Riedmiller,
M. A., and Burgard, W. (2015). Multimodal deep learning for robust
RGB-D object recognition. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS).

[Erez et al., 2015] Erez, T., Tassa, Y., and Todorov, E. (2015). Simulation
tools for model-based robotics: Comparison of Bullet, Havok, MuJoCo,
ODE and PhysX. In IEEE International Conference on Robotics and
Automation (ICRA).

[Espeholt et al., 2018] Espeholt, L., Soyer, H., Munos, R., Simonyan, K.,
Mnih, V., Ward, T., Doron, Y., Firoiu, V., Harley, T., Dunning, I., Legg,
S., and Kavukcuoglu, K. (2018). IMPALA: scalable distributed deep-rl
with importance weighted actor-learner architectures. In International
Conference on Machine Learning (ICML).

[Espiau et al., 1992] Espiau, B., Chaumette, F., and Rives, P. (1992). A
new approach to visual servoing in robotics. IEEE Transactions on
Robotics and Automation.

[Farahani and Mozayani, 2020] Farahani, M. D. and Mozayani, N. (2020).
Evaluating skills in hierarchical reinforcement learning. International
Journal of Machine Learning and Cybernetics.

[Fikes and Nilsson, 1971] Fikes, R. and Nilsson, N. (1971). Strips: A new
approach to the application of theorem proving to problem solving. Ar-
tificial Intelligence.

[Finn et al., 2017] Finn, C., Abbeel, P., and Levine, S. (2017). Model-
agnostic meta-learning for fast adaptation of deep networks. In Interna-
tional Conference on Machine Learning (ICML).

[Finn et al., 2016] Finn, C., Tan, X., Duan, Y., Darrell, T., Levine, S., and
Abbeel, P. (2016). Deep spatial autoencoders for visuomotor learning. In
IEEE International Conference on Robotics and Automation (ICRA).

[Florensa et al., 2017a] Florensa, C., Duan, Y., and Abbeel, P. (2017a).
Stochastic Neural Networks for Hierarchical Reinforcement Learning. In
International Conference on Learning Representations (ICLR).

[Florensa et al., 2017b] Florensa, C., Held, D., Wulfmeier, M., Zhang, M.,
and Abbeel, P. (2017b). Reverse curriculum generation for reinforcement
learning. In Conference on Robot Learning (CoRL).

134 Bibliography

[Frans et al., 2018] Frans, K., Ho, J., Chen, X., Abbeel, P., and Schulman,
J. (2018). Meta Learning Shared Hierarchies. In International Conference
on Learning Representations (ICLR).

[Fried et al., 2018] Fried, D., Hu, R., Cirik, V., Rohrbach, A., Andreas, J.,
Morency, L.-P., Berg-Kirkpatrick, T., Saenko, K., Klein, D., and Darrell,
T. (2018). Speaker-follower models for vision-and-language navigation.
In Advances in Neural Information Processing Systems (NeurIPS).

[Fujimoto et al., 2019] Fujimoto, S., Meger, D., and Precup, D. (2019). Off-
policy deep reinforcement learning without exploration. In International
Conference on Machine Learning (ICML).

[Gabeur et al., 2020] Gabeur, V., Sun, C., Alahari, K., and Schmid, C.
(2020). Multi-modal transformer for video retrieval. In European Con-
ference on Computer Vision (ECCV).

[Gandhi et al., 2017] Gandhi, D., Pinto, L., and Gupta, A. (2017). Learn-
ing to fly by crashing. In IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS).

[Gao et al., 2018] Gao, Y., Xu, H., Lin, J., Yu, F., Levine, S., and Darrell,
T. (2018). Reinforcement Learning from Imperfect Demonstrations. In
International Conference on Learning Representations (ICLR) workshop.

[Garrett et al., 2015] Garrett, C. R., Lozano-Pérez, T., and Kaelbling, L. P.
(2015). FFRob: An efficient heuristic for task and motion planning.
Algorithmic Foundations of Robotics XI.

[Garrett et al., 2018a] Garrett, C. R., Lozano-Pérez, T., and Kaelbling,
L. P. (2018a). FFRob: Leveraging symbolic planning for efficient task
and motion planning. The International Journal of Robotics Research
(IJRR).

[Garrett et al., 2018b] Garrett, C. R., Lozano-Pérez, T., and Kaelbling,
L. P. (2018b). Sampling-based methods for factored task and motion
planning. The International Journal of Robotics Research (IJRR).

[Ghadirzadeh et al., 2021] Ghadirzadeh, A., Chen, X., Poklukar, P., Finn,
C., Björkman, M., and Kragic, D. (2021). Bayesian meta-learning for
few-shot policy adaptation across robotic platforms. In arXiv preprint.

[Ghallab et al., 1998] Ghallab, M., Howe, A., Knoblock, C., Mcdermott,
D., Ram, A., Veloso, M., Weld, D., and Wilkins, D. (1998). PDDL: The
Planning Domain Definition Language.

Bibliography 135

[Girdhar et al., 2019] Girdhar, R., Carreira, J., Doersch, C., and Zisser-
man, A. (2019). Video action transformer network. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR).

[Goodfellow et al., 2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu,
B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014).
Generative adversarial nets. In Advances in Neural Information Process-
ing Systems (NeurIPS).

[Gopalan et al., 2018] Gopalan, N., Arumugam, D., Wong, L., and Tellex,
S. (2018). Sequence-to-Sequence Language Grounding of Non-Markovian
Task Specifications. In Proceedings of Robotics: Science and Systems
(RSS).

[Grabner et al., 2018] Grabner, A., Roth, P. M., and Lepetit, V. (2018).
3D Pose Estimation and 3D Model Retrieval for Objects in the Wild. In
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[Graves et al., 2016] Graves, A., Wayne, G., Reynolds, M., Harley, T.,
Danihelka, I., Grabska-Barwińska, A., Colmenarejo, S. G., Grefenstette,
E., Ramalho, T., Agapiou, J., Badia, A. P., Hermann, K. M., Zwols,
Y., Ostrovski, G., Cain, A., King, H., Summerfield, C., Blunsom, P.,
Kavukcuoglu, K., and Hassabis, D. (2016). Hybrid computing using a
neural network with dynamic external memory. Nature.

[Greff et al., 2017] Greff, K., van Steenkiste, S., and Schmidhuber, J.
(2017). Neural expectation maximization. In Advances in Neural In-
formation Processing Systems (NeurIPS).

[Gu et al., 2016] Gu, S., Holly, E., Lillicrap, T., and Levine, S. (2016).
Deep Reinforcement Learning for Robotic Manipulation. In International
Conference on Machine Learning (ICML).

[Gupta et al., 2018] Gupta, A., Murali, A., Gandhi, D., and Pinto, L.
(2018). Robot Learning in Homes: Improving Generalization and Reduc-
ing Dataset Bias. In Advances in Neural Information Processing Systems
(NeurIPS).

[Ha et al., 2018] Ha, S., Kim, J., and Yamane, K. (2018). Automated Deep
Reinforcement Learning Environment for Hardware of a Modular Legged
Robot. In International Conference on Ubiquitous Robots (UR).

[Haarnoja et al., 2018] Haarnoja, T., Hartikainen, K., Abbeel, P., and
Levine, S. (2018). Latent space policies for hierarchical reinforcement
learning. In International Conference on Machine Learning (ICML).

136 Bibliography

[Haarnoja et al., 2017] Haarnoja, T., Tang, H., Abbeel, P., and Levine,
S. (2017). Reinforcement learning with deep energy-based policies. In
International Conference on Machine Learning (ICML).

[Hadfield-Menell et al., 2017] Hadfield-Menell, D., Milli, S., Abbeel, P.,
Russell, S. J., and Dragan, A. (2017). Inverse reward design. In Ad-
vances in Neural Information Processing Systems (NeurIPS).

[Hafner et al., 2019] Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha,
D., Lee, H., and Davidson, J. (2019). Learning latent dynamics for
planning from pixels. In International Conference on Machine Learn-
ing (ICML).

[Handa et al., 2016] Handa, A., Patraucean, V., Badrinarayanan, V.,
Stent, S., and Cipolla, R. (2016). Scenenet: Understanding real world
indoor scenes with synthetic data. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[Hao et al., 2020] Hao, W., Li, C., Li, X., Carin, L., and Gao, J. (2020). To-
wards learning a generic agent for vision-and-language navigation via pre-
training. In IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR).

[Hausman et al., 2018] Hausman, K., Springenberg, J. T., Wang, Z., Heess,
N., and Riedmiller, M. (2018). Learning an Embedding Space for Trans-
ferable Robot Skills. In International Conference on Learning Represen-
tations (ICLR).

[He et al., 2020] He, J., Zhao, L., Yang, H., Zhang, M., and Li, W. (2020).
HSI-BERT: Hyperspectral Image Classification Using the Bidirectional
Encoder Representation From Transformers. In IEEE Transactions on
Geoscience and Remote Sensing.

[He et al., 2017] He, K., Gkioxari, G., Dollar, P., and Girshick, R. (2017).
Mask R-CNN. In International Conference on Computer Vision (ICCV).

[He et al., 2015] He, K., Lahijanian, M., Kavraki, L., and Vardi, M. (2015).
Towards manipulation planning with temporal logic specifications. In
IEEE International Conference on Robotics and Automation (ICRA).

[He et al., 2016] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep
Residual Learning for Image Recognition. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR).

[Heess et al., 2017] Heess, N., Dhruva, T., Sriram, S., Lemmon, J., Merel,
J., Wayne, G., Tassa, Y., Erez, T., Wang, Z., Eslami, S., Riedmiller,

Bibliography 137

M. A., and Silver, D. (2017). Emergence of Locomotion Behaviours in
Rich Environments. arXiv preprint.

[Hennigh et al., 2020] Hennigh, O., Narasimhan, S., Nabian, M., Subrama-
niam, A., Tangsali, K., Rietmann, M., Ferrandis, J., Byeon, W., Fang,
Z., and Choudhry, S. (2020). NVIDIA SimNet: an AI-accelerated multi-
physics simulation framework. arXiv preprint.

[Hester et al., 2018] Hester, T., Vecerik, M., Pietquin, O., Lanctot, M.,
Schaul, T., Piot, B., Sendonaris, A., Dulac-Arnold, G., Osband, I., Aga-
piou, J., Leibo, J. Z., and Gruslys, A. (2018). Deep Q-learning from
Demonstrations. In Conference on Artificial Intelligence (AAAI).

[Ho and Ermon, 2016] Ho, J. and Ermon, S. (2016). Generative adversar-
ial imitation learning. In Advances in Neural Information Processing
Systems (NeurIPS).

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J.
(1997). Long short-term memory. Neural Computation.

[Hong et al., 2021] Hong, Y., Wu, Q., Qi, Y., Rodriguez-Opazo, C., and
Gould, S. (2021). A Recurrent Vision-and-Language BERT for Naviga-
tion. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

[Hosu and Rebedea, 2016] Hosu, I.-A. and Rebedea, T. (2016). Playing
atari games with deep reinforcement learning and human checkpoint re-
play. In ECAI Workshop on Evaluating General Purpose AI.

[Huang et al., 2018] Huang, D.-A., Nair, S., Xu, D., Zhu, Y., Garg, A.,
Fei-Fei, L., Savarese, S., and Niebles, J. C. (2018). Neural task graphs:
Generalizing to unseen tasks from a single video demonstration. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

[Huang et al., 2019] Huang, H., Jain, V., Mehta, H., Ku, A., Magalhaes,
G., Baldridge, J., and Ie, E. (2019). Transferable representation learn-
ing in vision-and-language navigation. In International Conference on
Computer Vision (ICCV).

[Ioffe and Szegedy, 2015] Ioffe, S. and Szegedy, C. (2015). Batch Normal-
ization: Accelerating Deep Network Training by Reducing Internal Co-
variate Shift. In International Conference on Machine Learning (ICML).

[Irpan, 2018] Irpan, A. (2018). Deep reinforcement learning doesn’t work
yet. https://www.alexirpan.com/2018/02/14/rl-hard.html.

https://www.alexirpan.com/2018/02/14/rl-hard.html

138 Bibliography

[Jaderberg et al., 2017] Jaderberg, M., Mnih, V., Czarnecki, W., Schaul,
T., Leibo, J. Z., Silver, D., and Kavukcuoglu, K. (2017). Reinforcement
learning with unsupervised auxiliary tasks. In International Conference
on Learning Representations (ICLR).

[Jain et al., 2021] Jain, U., Liu, I.-J., Lazebnik, S., Kembhavi, A., Weihs,
L., and Schwing, A. (2021). GridToPix: Training Embodied Agents with
Minimal Supervision. arXiv preprint.

[Jakobi et al., 1995] Jakobi, N., Husbands, P., and Harvey, I. (1995). Noise
and the Reality Gap: The Use of Simulation in Evolutionary Robotics.
In European Conference on Artificial Life (ECAL).

[James et al., 2018] James, S., Wohlhart, P., Kalakrishnan, M., Kalash-
nikov, D., Irpan, A., Ibarz, J., Levine, S., Hadsell, R., and Bousmalis, K.
(2018). Sim-to-Real via Sim-to-Sim: Data-efficient Robotic Grasping via
Randomized-to-Canonical Adaptation Networks. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

[Janner et al., 2019] Janner, M., Levine, S., Freeman, W. T., Tenenbaum,
J. B., Finn, C., and Wu, J. (2019). Reasoning about physical interactions
with object-oriented prediction and planning. In International Confer-
ence on Learning Representations (ICLR).

[Karoly et al., 2019] Karoly, A. I., Fuller, R., and Galambos, P. (2019).
Unsupervised clustering for deep learning: A tutorial survey. Acta Poly-
technica Hungarica.

[Karttunen et al., 2020] Karttunen, J., Kanervisto, A., Hautamäki, V., and
Kyrki, V. (2020). From video game to real robot: The transfer between
action spaces. In IEEE Conference on Acoustic, Speech, and Signal Pro-
cessing (ICASSP).

[Katharopoulos et al., 2020] Katharopoulos, A., Vyas, A., Pappas, N., and
Fleuret, F. (2020). Transformers are rnns: Fast autoregressive trans-
formers with linear attention. In International Conference on Machine
Learning (ICML).

[Ke et al., 2019] Ke, L., Li, X., Bisk, Y., Holtzman, A., Gan, Z., Liu,
J., Gao, J., Choi, Y., and Srinivasa, S. (2019). Tactical rewind: Self-
correction via backtracking in vision-and-language navigation. In IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. (2014). Adam: A method
for stochastic optimization. arXiv preprint.

Bibliography 139

[Kober et al., 2013] Kober, J., Bagnell, J., and Peters, J. (2013). Rein-
forcement learning in robotics: A survey. The International Journal of
Robotics Research (IJRR).

[Kolve et al., 2017] Kolve, E., Mottaghi, R., Han, W., VanderBilt, E.,
Weihs, L., Herrasti, A., Gordon, D., Zhu, Y., Gupta, A., and Farhadi,
A. (2017). AI2-THOR: An Interactive 3D Environment for Visual AI.
arXiv preprint.

[Kostrikov, 2018] Kostrikov, I. (2018). Pytorch implementations of re-
inforcement learning algorithms. https://github.com/ikostrikov/
pytorch-a2c-ppo-acktr.

[Krantz et al., 2020] Krantz, J., Wijmans, E., Majumdar, A., Batra, D.,
and Lee, S. (2020). Beyond the nav-graph: Vision-and-language naviga-
tion in continuous environments. In European Conference on Computer
Vision (ECCV).

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E.
(2012). ImageNet classification with deep convolutional neural networks.
In Advances in Neural Information Processing Systems (NeurIPS).

[Ku et al., 2020] Ku, A., Anderson, P., Patel, R., Ie, E., and Baldridge, J.
(2020). Room-Across-Room: Multilingual Vision-and-Language Naviga-
tion with Dense Spatiotemporal Grounding. In Conference on Empirical
Methods in Natural Language Processing (EMNLP).

[Kulkarni et al., 2016] Kulkarni, T. D., Narasimhan, K., Saeedi, A., and
Tenenbaum, J. (2016). Hierarchical deep reinforcement learning: Inte-
grating temporal abstraction and intrinsic motivation. In Advances in
Neural Information Processing Systems (NeurIPS).

[Kumar et al., 2016] Kumar, V., Gupta, A., Todorov, E., and Levine, S.
(2016). Learning Dexterous Manipulation Policies from Experience and
Imitation. arXiv preprint.

[Labbe et al., 2020] Labbe, Y., Zagoruyko, S., Kalevatykh, I., Laptev, I.,
Carpentier, J., Aubry, M., and Sivic, J. (2020). Monte-carlo tree search
for efficient visually guided rearrangement planning. IEEE Robotics and
Automation Letters.

[Lampe and Riedmiller, 2013] Lampe, T. and Riedmiller, M. (2013). Ac-
quiring visual servoing reaching and grasping skills using neural rein-
forcement learning. In IEEE International Joint Conference on Neural
Networks (IJCNN).

https://github.com/ikostrikov/pytorch-a2c-ppo-acktr
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr

140 Bibliography

[Laskey et al., 2017] Laskey, M., Lee, J., Fox, R., Dragan, A. D., and Gold-
berg, K. (2017). DART: noise injection for robust imitation learning. In
Conference on Robot Learning (CoRL).

[LaValle, 2006] LaValle, S. (2006). Planning Algorithms. Cambridge Uni-
versity.

[Le et al., 2018] Le, H. M., Jiang, N., Agarwal, A., Dudík, M., Yue, Y., and
III, H. D. (2018). Hierarchical Imitation and Reinforcement Learning. In
International Conference on Machine Learning (ICML).

[LeCun et al., 1989] LeCun, Y., Boser, B., Denker, J. S., Henderson, D.,
Howard, R. E., Hubbard, W., and Jackel, L. D. (1989). Backpropagation
applied to handwritten zip code recognition. Neural Computation.

[Lee et al., 2018] Lee, K.-H., Ros, G., Li, J., and Gaidon, A. (2018). SPI-
GAN: Privileged Adversarial Learning from Simulation. In International
Conference on Learning Representations (ICLR).

[Lee et al., 2019] Lee, Y., Sun, S.-H., Somasundaram, S., S. Hu, E., and
J. Lim, J. (2019). Composing Complex Skills by Learning Transition
Policies with Proximity Reward Induction. In International Conference
on Learning Representations (ICLR).

[Levine et al., 2015] Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2015).
End-to-End Training of Deep Visuomotor Policies. The Journal of Ma-
chine Learning Research.

[Levine et al., 2016] Levine, S., Pastor, P., Krizhevsky, A., and Quillen,
D. (2016). Learning Hand-Eye Coordination for Robotic Grasping with
Deep Learning and Large-Scale Data Collection. International Society
for Engineers and Researchers (ISER).

[Li et al., 2020] Li, J., Wang, X., Tang, S., Shi, H., Wu, F., Zhuang, Y., and
Wang, W. Y. (2020). Unsupervised Reinforcement Learning of Trans-
ferable Meta-Skills for Embodied Navigation. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

[Liang et al., 2018] Liang, J., Makoviychuk, V., Handa, A., Chentanez, N.,
Macklin, M., and Fox, D. (2018). Gpu-accelerated robotic simulation
for distributed reinforcement learning. In Conference on Robot Learning
(CoRL).

[Lillicrap et al., 2016] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N.,
Erez, T., Tassa, Y., Silver, D., and Wierstra, D. (2016). Continuous
control with deep reinforcement learning. In International Conference
on Learning Representations (ICLR).

Bibliography 141

[Litvak et al., 2019] Litvak, Y., Biess, A., and Bar-Hillel, A. (2019). Learn-
ing a High-Precision Robotic Assembly Task Using Pose Estimation from
Simulated Depth Images. In IEEE International Conference on Robotics
and Automation (ICRA).

[Liu et al., 2019] Liu, H., Zhang, Z., Xie, X., Zhu, Y., Liu, Y., Wang, Y.,
and Zhu, S. (2019). High-fidelity grasping in virtual reality using a glove-
based system. In IEEE International Conference on Robotics and Au-
tomation (ICRA).

[Loshchilov and Hutter, 2019] Loshchilov, I. and Hutter, F. (2019). Decou-
pled weight decay regularization. In International Conference on Learn-
ing Representations (ICLR).

[Lozano-Pérez and Kaelbling, 2014] Lozano-Pérez, T. and Kaelbling, L. P.
(2014). A constraint-based method for solving sequential manipulation
planning problems. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS).

[Lu et al., 2019] Lu, J., Batra, D., Parikh, D., and Lee, S. (2019). Vilbert:
Pretraining task-agnostic visiolinguistic representations for vision-and-
language tasks. In Advances in Neural Information Processing Systems
(NeurIPS).

[Lynch et al., 2019] Lynch, C., Khansari, M., Xiao, T., Kumar, V., Tomp-
son, J., Levine, S., and Sermanet, P. (2019). Learning latent plans from
play. In Conference on Robot Learning (CoRL).

[Lynch and Sermanet, 2020] Lynch, C. and Sermanet, P. (2020). Ground-
ing Language in Play. arXiv preprint.

[Ma et al., 2019a] Ma, C.-Y., Lu, J., Wu, Z., AlRegib, G., Kira, Z., Socher,
R., and Xiong, C. (2019a). Self-Monitoring Navigation Agent via Auxil-
iary Progress Estimation. In International Conference on Learning Rep-
resentations (ICLR).

[Ma et al., 2019b] Ma, C.-Y., Wu, Z., AlRegib, G., Xiong, C., and Kira,
Z. (2019b). The regretful agent: Heuristic-aided navigation through
progress estimation. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR).

[MacMahon et al., 2006] MacMahon, M., Stankiewicz, B., and Kuipers, B.
(2006). Walk the talk: Connecting language, knowledge, and action in
route instructions. In Conference on Artificial Intelligence (AAAI).

142 Bibliography

[Mahler et al., 2017] Mahler, J., Liang, J., Niyaz, S., Laskey, M., Doan,
R., Liu, X., Ojea, J. A., and Goldberg, K. Y. (2017). Dex-Net 2.0:
Deep Learning to Plan Robust Grasps with Synthetic Point Clouds and
Analytic Grasp Metrics. In Proceedings of Robotics: Science and Systems
(RSS).

[Mahmood et al., 2018] Mahmood, A., Korenkevych, D., Vasan, G., Ma,
W., and Bergstra, J. (2018). Benchmarking reinforcement learning algo-
rithms on real-world robots. In Conference on Robot Learning (CoRL).

[Majumdar et al., 2020] Majumdar, A., Shrivastava, A., Lee, S., Anderson,
P., Parikh, D., and Batra, D. (2020). Improving vision-and-language
navigation with image-text pairs from the web. In European Conference
on Computer Vision (ECCV).

[Manna and Pnueli, 1992] Manna, Z. and Pnueli, A. (1992). The Tempo-
ral Logic of Reactive and Concurrent Systems. Springer-Verlag, Berlin,
Heidelberg.

[Mehta et al., 2020] Mehta, H., Artzi, Y., Baldridge, J., Ie, E., and
Mirowski, P. (2020). Retouchdown: Adding touchdown to streetlearn as
a shareable resource for language grounding tasks in street view. arXiv
preprint.

[Mei et al., 2016] Mei, H., Bansal, M., and Walter, M. (2016). Listen, at-
tend, and walk: Neural mapping of navigational instructions to action
sequences. In Conference on Artificial Intelligence (AAAI).

[Michie et al., 1990] Michie, D., Bain, M., and Hayes-Michie, J. (1990).
Cognitive models from subcognitive skills. IEEE Control Engineering
Series.

[Misra et al., 2017] Misra, D., Langford, J., and Artzi, Y. (2017). Mapping
instructions and visual observations to actions with reinforcement learn-
ing. In Conference on Empirical Methods in Natural Language Processing
(EMNLP).

[Misra et al., 2016] Misra, D. K., Sung, J., Lee, K., and Saxena, A. (2016).
Tell me dave: Context-sensitive grounding of natural language to manip-
ulation instructions. The International Journal of Robotics Research.

[Mnih et al., 2013] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. (2013). Playing Atari
With Deep Reinforcement Learning. In Advances in Neural Information
Processing Systems (NeurIPS) Deep Learning Workshop.

Bibliography 143

[Mnih et al., 2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A.,
Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland,
A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I.,
King, H., Kumaran, D., Wierstra, D., Legg, S., and Hassabis, D. (2015).
Human-level control through deep reinforcement learning. Nature.

[Morales and Sammut, 2004] Morales, E. F. and Sammut, C. (2004).
Learning to fly by combining reinforcement learning with behavioural
cloning. In International Conference on Machine Learning (ICML).

[Mordatch et al., 2016] Mordatch, I., Mishra, N., Eppner, C., and Abbeel,
P. (2016). Combining model-based policy search with online model learn-
ing for control of physical humanoids. In IEEE International Conference
on Robotics and Automation (ICRA).

[Mueller et al., 2018] Mueller, M., Dosovitskiy, A., Ghanem, B., and
Koltun, V. (2018). Driving policy transfer via modularity and abstrac-
tion. In Conference on Robot Learning (CoRL).

[Munos et al., 2016] Munos, R., Stepleton, T., Harutyunyan, A., and Belle-
mare, M. G. (2016). Safe and Efficient Off-Policy Reinforcement Learn-
ing. In Advances in Neural Information Processing Systems (NeurIPS).

[Nachum et al., 2018] Nachum, O., Gu, S., Lee, H., and Levine, S. (2018).
Data-efficient hierarchical reinforcement learning. In Advances in Neural
Information Processing Systems (NeurIPS).

[Nachum et al., 2019] Nachum, O., Tang, H., Lu, X., Gu, S., Lee, H., and
Levine, S. (2019). Why does hierarchy (sometimes) work so well in rein-
forcement learning? Advances in Neural Information Processing Systems
(NeurIPS).

[Nagabandi et al., 2019] Nagabandi, A., Clavera, I., Liu, S., Fearing, R.,
Abbeel, P., Levine, S., and Finn, C. (2019). Learning to adapt in dy-
namic, real-world environments through meta-reinforcement learning. In
International Conference on Learning Representations (ICLR).

[Nair et al., 2018] Nair, A., McGrew, B., Andrychowicz, M., Zaremba, W.,
and Abbeel, P. (2018). Overcoming exploration in reinforcement learning
with demonstrations. In IEEE International Conference on Robotics and
Automation (ICRA).

[Nair et al., 2020] Nair, S., Babaeizadeh, M., Finn, C., Levine, S., and Ku-
mar, V. (2020). Time Reversal as Self-Supervision. In IEEE International
Conference on Robotics and Automation (ICRA).

144 Bibliography

[Narasimhan et al., 2020] Narasimhan, M., Wijmans, E., Chen, X., Darrell,
T., Batra, D., Parikh, D., and Singh, A. (2020). Seeing the Un-Scene:
Learning Amodal Semantic Maps for Room Navigation. In European
Conference on Computer Vision (ECCV).

[Newell et al., 2016] Newell, A., Yang, K., and Deng, J. (2016). Stacked
hourglass networks for human pose estimation. In European Conference
on Computer Vision (ECCV).

[Ng et al., 1999] Ng, A., Harada, D., and Russell, S. J. (1999). Policy invari-
ance under reward transformations: Theory and application to reward
shaping. In International Conference on Machine Learning (ICML).

[Ng and Russell, 2000] Ng, A. Y. and Russell, S. J. (2000). Algorithms for
inverse reinforcement learning. In International Conference on Machine
Learning (ICML).

[OpenAI, 2018] OpenAI (2018). Openai five. https://blog.openai.com/
openai-five/.

[Pan et al., 2018] Pan, Y., Cheng, C.-A., Saigol, K., Lee, K., Yan, X.,
Theodorou, E., and Boots, B. (2018). Agile Autonomous Driving us-
ing End-to-End Deep Imitation Learning. In Proceedings of Robotics:
Science and Systems (RSS).

[Parisotto et al., 2020] Parisotto, E., Song, F., Rae, J., Pascanu, R., Gul-
cehre, C., Jayakumar, S., Jaderberg, M., Kaufman, R. L., Clark, A.,
Noury, S., Botvinick, M., Heess, N., and Hadsell, R. (2020). Stabilizing
Transformers for Reinforcement Learning. In International Conference
on Machine Learning (ICML).

[Pashevich et al., 2018] Pashevich, A., Hafner, D., Davidson, J., Suk-
thankar, R., and Schmid, C. (2018). Modulated Policy Hierarchies. In
Advances in Neural Information Processing Systems (NeurIPS) Deep Re-
inforcement Learning workshop.

[Pashevich et al., 2020a] Pashevich, A., Kalevatykh, I., Laptev, I., and
Schmid, C. (2020a). Learning visual policies for building 3D shape cate-
gories. In IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS).

[Pashevich et al., 2020b] Pashevich, A., Kalevatykh, I., Laptev, I., and
Schmid, C. (2020b). Learning visual policies for building 3D shape
categories, project webpage . http://pascal.inrialpes.fr/data2/
3D-shapes/.

https://blog.openai.com/openai-five/
https://blog.openai.com/openai-five/
http://pascal.inrialpes.fr/data2/3D-shapes/
http://pascal.inrialpes.fr/data2/3D-shapes/

Bibliography 145

[Pashevich et al., 2021a] Pashevich, A., Schmid, C., and Sun, C. (2021a).
Episodic Transformer for Vision-and-Language Navigation. arXiv
preprint.

[Pashevich et al., 2021b] Pashevich, A., Schmid, C., and Sun, C. (2021b).
Episodic Transformer for Vision-and-Language Navigation, project web-
page. https://sites.google.com/view/episodictransformer.

[Pashevich et al., 2019a] Pashevich, A., Strudel, R., Kalevatykh, I.,
Laptev, I., and Schmid, C. (2019a). Learning to augment synthetic im-
ages for sim2real policy transfer. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS).

[Pashevich et al., 2019b] Pashevich, A., Strudel, R., Kalevatykh, I.,
Laptev, I., and Schmid, C. (2019b). Learning to augment synthetic
images for sim2real policy transfer, project webpage. http://pascal.
inrialpes.fr/data2/sim2real.

[Patel et al., 2020] Patel, R., Pavlick, E., and Tellex, S. (2020). Grounding
Language to Non-Markovian Tasks with No Supervision of Task Specifi-
cations. In Proceedings of Robotics: Science and Systems (RSS).

[Patel et al., 2019] Patel, R., Pavlick, R., and Tellex, S. (2019). Learn-
ing to ground language to temporal logical form. In Conference of the
North American Chapter of the Association for Computational Linguis-
tics (NAACL).

[Pathak et al., 2017] Pathak, D., Agrawal, P., Efros, A. A., and Darrell,
T. (2017). Curiosity-driven exploration by self-supervised prediction. In
International Conference on Machine Learning (ICML).

[Paul et al., 2018] Paul, R., Arkin, J., Aksaray, D., Roy, N., and Howard,
T. M. (2018). Efficient grounding of abstract spatial concepts for natural
language interaction with robot platforms. The International Journal of
Robotics Research.

[Paulin et al., 2014] Paulin, M., Revaud, J., Harchaoui, Z., Perronnin, F.,
and Schmid, C. (2014). Transformation pursuit for image classifica-
tion. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

[Paxton et al., 2019] Paxton, C., Barnoy, Y., Katyal, K., Arora, R., and
Hager, G. D. (2019). Visual robot task planning. In IEEE International
Conference on Robotics and Automation (ICRA).

https://sites.google.com/view/episodictransformer
http://pascal.inrialpes.fr/data2/sim2real
http://pascal.inrialpes.fr/data2/sim2real

146 Bibliography

[Peng et al., 2016] Peng, X. B., Berseth, G., and van de Panne, M. (2016).
Terrain-adaptive locomotion skills using deep reinforcement learning.
Transactions on Graphics.

[Perez et al., 2018] Perez, E., Strub, F., de Vries, H., Dumoulin, V., and
Courville, A. C. (2018). FiLM: Visual Reasoning with a General Condi-
tioning Layer. In Conference on Artificial Intelligence (AAAI).

[Pinto et al., 2018] Pinto, L., Andrychowicz, M., Welinder, P., Zaremba,
W., and Abbeel, P. (2018). Asymmetric Actor Critic for Image-Based
Robot Learning. In Proceedings of Robotics: Science and Systems (RSS).

[Pinto and Gupta, 2016] Pinto, L. and Gupta, A. (2016). Supersizing self-
supervision: Learning to grasp from 50K tries and 700 robot hours. In
IEEE International Conference on Robotics and Automation (ICRA).

[Plappert et al., 2018] Plappert, M., Andrychowicz, M., Ray, A., McGrew,
B., Baker, B., Powell, G., Schneider, J., Tobin, J., Chociej, M., Welinder,
P., Kumar, V., and Zaremba, W. (2018). Multi-goal reinforcement learn-
ing: Challenging robotics environments and request for research. arXiv
preprint.

[Pomerleau, 1989] Pomerleau, D. A. (1989). Alvinn: An autonomous land
vehicle in a neural network. In Advances in Neural Information Process-
ing Systems (NeurIPS).

[Popov et al., 2017] Popov, I., Heess, N., Lillicrap, T., Hafner, R., Barth-
Maron, G., Vecerík, M., Lampe, T., Tassa, Y., Erez, T., and Riedmiller,
M. (2017). Data-efficient Deep Reinforcement Learning for Dexterous
Manipulation. arXiv preprint.

[Puig et al., 2018] Puig, X., Ra, K., Boben, M., Li, J., Wang, T., Fidler, S.,
and Torralba, A. (2018). Virtualhome: Simulating household activities
via programs. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

[Rahmatizadeh et al., 2018] Rahmatizadeh, R., Abolghasemi, P., Bölöni,
L., and Levine, S. (2018). Vision-Based Multi-Task Manipulation for
Inexpensive Robots Using End-to-End Learning from Demonstration. In
IEEE International Conference on Robotics and Automation (ICRA).

[Ratliff et al., 2008] Ratliff, N., Bagnell, J. A., and Srinivasa, S. S. (2008).
Imitation learning for locomotion and manipulation. In IEEE Robotics
and Automation Society (RAS).

Bibliography 147

[Ren et al., 2015] Ren, S., He, K., Girshick, R., and Sun, J. (2015).
Faster R-CNN: Towards Real-time Object Detection with Region Pro-
posal Networks. In Advances in Neural Information Processing Systems
(NeurIPS).

[Riedmiller et al., 2018] Riedmiller, M. A., Hafner, R., Lampe, T., Neunert,
M., Degrave, J., de Wiele, T. V., Mnih, V., Heess, N., and Springenberg,
J. T. (2018). Learning by playing - solving sparse reward tasks from
scratch. In International Conference on Machine Learning (ICML).

[Rosenblatt, 1957] Rosenblatt, F. (1957). The perceptron - a perceiving and
recognizing automaton. Technical Report 85-460-1, Cornell Aeronautical
Laboratory.

[Ross and Bagnell, 2014] Ross, S. and Bagnell, J. A. (2014). Reinforce-
ment and Imitation Learning via Interactive No-Regret Learning. arXiv
preprint.

[Ruiz et al., 2019] Ruiz, N., Schulter, S., and Chandraker, M. (2019).
Learning To Simulate. In International Conference on Learning Rep-
resentations (ICLR).

[Rumelhart et al., 1986] Rumelhart, D. E., Hinton, G. E., and Williams,
R. J. (1986). Learning representations by back-propagating errors. Na-
ture.

[Sadeghi and Levine, 2017] Sadeghi, F. and Levine, S. (2017). CAD2RL:
Real Single-Image Flight Without a Single Real Image. In Proceedings
of Robotics: Science and Systems (RSS).

[Sadeghi et al., 2018] Sadeghi, F., Toshev, A., Jang, E., and Levine, S.
(2018). Sim2Real View Invariant Visual Servoing by Recurrent Con-
trol. In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

[Savva et al., 2019] Savva, M., Kadian, A., Maksymets, O., Zhao, Y., Wi-
jmans, E., Jain, B., Straub, J., Liu, J., Koltun, V., Malik, J., et al.
(2019). Habitat: A platform for embodied ai research. In International
Conference on Computer Vision (ICCV).

[Schulman et al., 2017] Schulman, J., Wolski, F., Dhariwal, P., Radford,
A., and Klimov, O. (2017). Proximal policy optimization algorithms.
arXiv preprint.

[Shelhamer et al., 2017] Shelhamer, E., Long, J., and Darrell, T. (2017).
Fully Convolutional Networks for Semantic Segmentation. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence.

148 Bibliography

[Shridhar et al., 2020] Shridhar, M., Thomason, J., Gordon, D., Bisk, Y.,
Han, W., Mottaghi, R., Zettlemoyer, L., and Fox, D. (2020). AL-
FRED: A Benchmark for Interpreting Grounded Instructions for Ev-
eryday Tasks. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

[Shridhar et al., 2021] Shridhar, M., Yuan, X., Côté, M.-A., Bisk, Y.,
Trischler, A., and Hausknecht, M. (2021). Alfworld: Aligning text and
embodied environments for interactive learning. International Conference
on Learning Representations (ICLR).

[Silver et al., 2016] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre,
L., van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershel-
vam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner,
N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T.,
and Hassabis, D. (2016). Mastering the game of Go with deep neural
networks and tree search. Nature.

[Silver et al., 2017] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I., Huang, A., Guez, A., Hubert, T., Baker, L. R., Lai, M., Bolton, A.,
Chen, Y., Lillicrap, T. P., Hui, F., Sifre, L., van den Driessche, G.,
Graepel, T., and Hassabis, D. (2017). Mastering the game of Go without
human knowledge. Nature.

[Simonyan and Zisserman, 2014a] Simonyan, K. and Zisserman, A.
(2014a). Two-Stream Convolutional Networks for Action Recognition
in Videos. In Advances in Neural Information Processing Systems
(NeurIPS).

[Simonyan and Zisserman, 2014b] Simonyan, K. and Zisserman, A.
(2014b). Very Deep Convolutional Networks for Large-Scale Image
Recognition. arXiv preprint.

[Singh et al., 2020] Singh, K. P., Bhambri, S., Kim, B., Mottaghi, R., and
Choi, J. (2020). MOCA: A Modular Object-Centric Approach for Inter-
active Instruction Following. arXiv preprint.

[Srivastava et al., 2014] Srivastava, S., Fang, E., Riano, L., Chitnis, R.,
Russell, S., and Abbeel, P. (2014). Combined task and motion plan-
ning through an extensible planner-independent interface layer. In IEEE
International Conference on Robotics and Automation (ICRA).

[Stepputtis et al., 2020] Stepputtis, S., Campbell, J., Phielipp, M., Lee, S.,
Baral, C., and Amor, H. B. (2020). Language-conditioned imitation learn-
ing for robot manipulation tasks. In Advances in Neural Information
Processing Systems (NeurIPS).

Bibliography 149

[Strudel et al., 2020a] Strudel, R., Pashevich, A., Kalevatykh, I., Laptev,
I., and Schmid, C. (2020a). Learning to combine primitive skills: A
step towards versatile robotic manipulation, project webpage. https:
//www.di.ens.fr/willow/research/rlbc/.

[Strudel et al., 2020b] Strudel, R., Pashevich, A., Kalevatykh, I., Laptev,
I., Sivic, J., and Schmid, C. (2020b). Learning to combine primitive skills:
A step towards versatile robotic manipulation. In IEEE International
Conference on Robotics and Automation (ICRA).

[Suárez-Ruiz et al., 2018] Suárez-Ruiz, F., Zhou, X., and Pham, Q.-C.
(2018). Can robots assemble an ikea chair? Science Robotics.

[Şucan et al., 2012] Şucan, I. A., Moll, M., and Kavraki, L. E. (2012). The
Open Motion Planning Library. Robotics and Automation Magazine.

[Sukhbaatar et al., 2017] Sukhbaatar, S., Kostrikov, I., Szlam, A., and Fer-
gus, R. (2017). Intrinsic motivation and automatic curricula via asym-
metric self-play. In International Conference on Learning Representations
(ICLR).

[Sun et al., 2019] Sun, C., Myers, A., Vondrick, C., Murphy, K., and
Schmid, C. (2019). VideoBERT: A Joint Model for Video and Language
Representation Learning. In International Conference on Computer Vi-
sion (ICCV).

[Sun et al., 2017] Sun, C., Shrivastava, A., Singh, S., and Gupta, A. (2017).
Revisiting Unreasonable Effectiveness of Data in Deep Learning Era. In
International Conference on Computer Vision (ICCV).

[Sun et al., 2018] Sun, W., Bagnell, J. A., and Boots, B. (2018). Trun-
cated horizon policy search: Combining reinforcement learning & imita-
tion learning. In International Conference on Learning Representations
(ICLR).

[Sutton and Barto, 1998] Sutton, R. S. and Barto, A. G. (1998). Reinforce-
ment Learning: An Introduction. The MIT Press.

[Sutton et al., 1999] Sutton, R. S., Precup, D., and Singh, S. (1999). Be-
tween mdps and semi-mdps: A framework for temporal abstraction in
reinforcement learning. Artificial intelligence.

[Tan et al., 2019] Tan, H., Yu, L., and Bansal, M. (2019). Learning to
Navigate Unseen Environments: Back Translation with Environmental
Dropout. In Conference of the North American Chapter of the Associa-
tion for Computational Linguistics (NAACL).

https://www.di.ens.fr/willow/research/rlbc/
https://www.di.ens.fr/willow/research/rlbc/

150 Bibliography

[Tan et al., 2018] Tan, J., Zhang, T., Coumans, E., Iscen, A., Bai, Y.,
Hafner, D., Bohez, S., and Vanhoucke, V. (2018). Sim-to-Real: Learning
Agile Locomotion For Quadruped Robots. In Proceedings of Robotics:
Science and Systems (RSS).

[Tang et al., 2017] Tang, H., Houthooft, R., Foote, D., Stooke, A., Chen,
X., Duan, Y., Schulman, J., Turck, F., and Abbeel, P. (2017). Explo-
ration: A study of count-based exploration for deep reinforcement learn-
ing. In Advances in Neural Information Processing Systems (NeurIPS).

[Tellex et al., 2011] Tellex, S., Kollar, T., Dickerson, S., Walter, M., Baner-
jee, A., Teller, S., and Roy, N. (2011). Understanding natural language
commands for robotic navigation and mobile manipulation. In Confer-
ence on Artificial Intelligence (AAAI).

[Tenorth et al., 2010] Tenorth, M., Nyga, D., and Beetz, M. (2010). Un-
derstanding and executing instructions for everyday manipulation tasks
from the world wide web. In IEEE International Conference on Robotics
and Automation (ICRA).

[Tobin et al., 2017] Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba,
W., and Abbeel, P. (2017). Domain Randomization for Transferring
Deep Neural Networks from Simulation to the Real World. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).

[Tobin et al., 2018] Tobin, J., Zaremba, W., and Abbeel, P. (2018). Do-
main Randomization and Generative Models for Robotic Grasping. In
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS).

[Todorov et al., 2012] Todorov, E., Erez, T., and Tassa, Y. (2012). Mu-
JoCo: A physics engine for model-based control. In International Con-
ference on Intelligent Robots and Systems.

[Toussaint, 2015] Toussaint, M. (2015). Logic-geometric programming: An
optimization-based approach to combined task and motion planning. In
International Joint Conference on Artificial Intelligence (IJCAI).

[Trott et al., 2019] Trott, A., Zheng, S., Xiong, C., and Socher, R. (2019).
Keeping Your Distance: Solving Sparse Reward Tasks Using Self-
Balancing Shaped Rewards. In Advances in Neural Information Pro-
cessing Systems (NeurIPS).

[Van-Quang Nguyen, 2020] Van-Quang Nguyen, T. O. (2020). A hierarchi-
cal attention model for action learning from realistic environments and

Bibliography 151

directives. In European Conference on Computer Vision (ECCV) EVAL
Workshop.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017). Attention
is all you need. In Advances in Neural Information Processing Systems
(NeurIPS).

[Vecerik et al., 2017] Vecerik, M., Hester, T., Scholz, J., Wang, F.,
Pietquin, O., Piot, B., Heess, N., Rothorl, T., Lampe, T., and Ried-
miller, M. A. (2017). Leveraging demonstrations for deep reinforcement
learning on robotics problems with sparse rewards. arXiv preprint.

[Vezhnevets et al., 2017] Vezhnevets, A. S., Osindero, S., Schaul, T., Heess,
N., Jaderberg, M., Silver, D., and Kavukcuoglu, K. (2017). FeUdal Net-
works for Hierarchical Reinforcement Learning. In International Confer-
ence on Machine Learning (ICML).

[Vinyals et al., 2015] Vinyals, O., Kaiser, L., Koo, T., Petrov, S., Sutskever,
I., and Hinton, G. (2015). Grammar as a Foreign Language. In Advances
in Neural Information Processing Systems (NeurIPS).

[Wang et al., 2019a] Wang, A., Kurutach, T., Liu, K., Abbeel, P., and
Tamar, A. (2019a). Learning Robotic Manipulation through Visual Plan-
ning and Acting. arXiv preprint.

[Wang et al., 2018] Wang, X., Girshick, R., Gupta, A., and He, K. (2018).
Non-local neural networks. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

[Wang et al., 2019b] Wang, X., Huang, Q., Asli, C., Gao, J., Shen, D.,
Wang, Y.-F., Wang, W., and Zhang, L. (2019b). Reinforced Cross-Modal
Matching and Self-Supervised Imitation Learning for Vision-Language
Navigation. In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR).

[Wei et al., 2016] Wei, S.-E., Ramakrishna, V., Kanade, T., and Sheikh, Y.
(2016). Convolutional Pose Machines. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR).

[Wu et al., 2016] Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M.,
Macherey, W., Krikun, M., Cao, Y., Gao, Q., Macherey, K., Klingner,
J., Shah, A., Johnson, M., Liu, X., Łukasz Kaiser, Gouws, S., Kato, Y.,
Kudo, T., Kazawa, H., Stevens, K., Kurian, G., Patil, N., Wang, W.,
Young, C., Smith, J., Riesa, J., Rudnick, A., Vinyals, O., Corrado, G.,
Hughes, M., and Dean, J. (2016). Google’s neural machine translation

152 Bibliography

system: Bridging the gap between human and machine translation. arXiv
preprint.

[Wu et al., 2015] Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang,
X., and Xiao, J. (2015). 3D ShapeNets: A deep representation for vol-
umetric shapes. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).

[Xu et al., 2020] Xu, T., Li, Z., and Yu, Y. (2020). Error bounds of im-
itating policies and environments. In Advances in Neural Information
Processing Systems (NeurIPS).

[Yang et al., 2012] Yang, N., Kim, Y., and Park, R. (2012). Depth hole
filling using the depth distribution of neighboring regions of depth holes
in the Kinect sensor. In IEEE International Conference on Signal Pro-
cessing, Communications and Computing (ICSPCC).

[Young et al., 2018] Young, T., Hazarika, D., Poria, S., and Cambria, E.
(2018). Recent trends in deep learning based natural language processing.
IEEE Computational Intelligence Magazine.

[Yu et al., 2018] Yu, T., Zhang, R., Yang, K., Yasunaga, M., Wang, D.,
Li, Z., Ma, J., Li, I., Yao, Q., Roman, S., et al. (2018). Spider: A
large-scale human-labeled dataset for complex and cross-domain semantic
parsing and text-to-sql task. Conference on Empirical Methods in Natural
Language Processing.

[Zaheer et al., 2020] Zaheer, M., Guruganesh, G., Dubey, K. A., Ainslie,
J., Alberti, C., Ontañón, S., Pham, P., Ravula, A., Wang, Q., Yang, L.,
and Ahmed, A. (2020). Big Bird: Transformers for Longer Sequences.
Advances in Neural Information Processing Systems (NeurIPS).

[Zakka et al., 2019] Zakka, K., Zeng, A., Lee, J., and Song, S. (2019).
Form2Fit: Learning Shape Priors for Generalizable Assembly from Dis-
assembly. IEEE International Conference on Robotics and Automation
(ICRA).

[Zelle and Mooney, 1996] Zelle, J. M. and Mooney, R. J. (1996). Learning
to parse database queries using inductive logic programming. In Confer-
ence on Artificial Intelligence (AAAI).

[Zeng et al., 2019] Zeng, A., Song, S., Lee, J., Rodríguez, A., and
Funkhouser, T. A. (2019). TossingBot: Learning to Throw Arbitrary
Objects with Residual Physics. In Proceedings of Robotics: Science and
Systems (RSS).

Bibliography 153

[Zettlemoyer and Collins, 2007] Zettlemoyer, L. and Collins, M. (2007).
Online learning of relaxed ccg grammars for parsing to logical form.
In Conference on Empirical Methods in Natural Language Processing
(EMNLP).

[Zettlemoyer and Collins, 2005] Zettlemoyer, L. S. and Collins, M. (2005).
Learning to map sentences to logical form: Structured classification with
probabilistic categorial grammars. Conference on Uncertainty in Artifi-
cial Intelligence (UAI).

[Zhang et al., 2018] Zhang, T., McCarthy, Z., Jow, O., Lee, D., Chen, X.,
Goldberg, K. Y., and Abbeel, P. (2018). Deep Imitation Learning for
Complex Manipulation Tasks from Virtual Reality Teleoperation. In
IEEE International Conference on Robotics and Automation (ICRA).

[Zhong et al., 2017] Zhong, Y., Dai, Y., and Li, H. (2017). Self-supervised
learning for stereo matching with self-improving ability. arXiv preprint.

[Zhu et al., 2020] Zhu, F., Zhu, Y., Chang, X., and Liang, X. (2020).
Vision-language navigation with self-supervised auxiliary reasoning tasks.
In IEEE Conference on Computer Vision and Pattern Recognition
(CVPR).

[Zhu et al., 2017] Zhu, Y., Mottaghi, R., Kolve, E., Lim, J. J., Gupta, A.,
Fei-Fei, L., and Farhadi, A. (2017). Target-driven Visual Navigation in
Indoor Scenes using Deep Reinforcement Learning. In IEEE International
Conference on Robotics and Automation (ICRA).

[Zhu et al., 2018] Zhu, Y., Wang, Z., Merel, J., Rusu, A. A., Erez, T.,
Cabi, S., Tunyasuvunakool, S., Kramár, J., Hadsell, R., de Freitas, N.,
and Heess, N. (2018). Reinforcement and imitation learning for diverse
visuomotor skills. Proceedings of Robotics: Science and Systems (RSS).

	Contents
	Introduction
	Goals
	Context
	Contributions

	Learning to augment synthetic images for sim2real policy transfer
	Introduction
	Related work
	Approach
	Results
	Conclusion

	Learning to combine primitive skills: A step towards versatile robotic manipulation
	Introduction
	Related work
	Approach
	Experimental setup
	Evaluation of BC skill learning
	Evaluation of RLBC
	Qualitative results
	Conclusion

	Learning visual policies for building 3D shape categories
	Introduction
	Related work
	Approach
	Results
	Conclusion

	Episodic Transformer for vision-and-language navigation
	Introduction
	Related work
	Method
	Results
	Conclusion

	Conclusion
	Summary of contributions
	Perspectives for future research

	Publications
	Software
	Bibliography

