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Abstract

Thèse de doctorat de l’université Sorbonne Paris Nord

Enumeration of triangulations modulo symmetries and of rooted

triangulations counted by their number of (d− 2)-simplices in dimension d ≥ 2

by Nicolas Dub

O(N) invariants are the observables of real tensor models. We represent them by regular

colored graphs dual to d-dimensional triangulations. We enumerate the invariants using

permutation group techniques and reveal that the algebraic structure organizing them

differs from that of the unitary invariants. At fixed rank and fixed number of vertices,

an associative semi-simple algebra with dimension the number of invariants naturally

emerges from the formulation. Using the representation theory of the symmetric group,

we enlighten a few crucial facts: the enumeration of O(N) invariants gives a sum of con-

strained Kronecker coefficients, there is a representation theoretic orthogonal basis of the

algebra that reflects its dimension; normal ordered 2-point correlators of the Gaussian

model evaluate using permutation group language, these functions provide other repre-

sentation theoretic orthogonal bases of the algebra.

Tensor models are furthermore generalizations of matrix models and as such, it is natural

to ask whether they satisfy some form of the topological recursion. The world of unitary-

invariant observables is howbeit much richer in tensor models. It is therefore a priori un-

clear which set of observables could satisfy the topological recursion. Here we show that

some set of observables is present in arbitrary tensor models which have non-vanishing

couplings for the quartic melonic interactions. It satisfies the blobbed topological re-

cursion in a universal way. The spectral curve is a disjoint union of Gaussian spectral

curves, with the cylinder function receiving an additional holomorphic part. This result

is achieved via a perturbative rewriting of tensor models as multi-matrix models due

to Bonzom, Lionni and Rivasseau. It is then possible to formally integrate all degrees

of freedom except those which enter the recursion, meaning interpreting the Feynman

graphs as stuffed maps. We further provide new expressions to relate the expectations of

U(N)d-invariant observables on the tensor and matrix sides.
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Résumé

Thèse de doctorat de l’université Sorbonne Paris Nord

Enumeration of triangulations modulo symmetries and of rooted

triangulations counted by their number of (d− 2)-simplices in dimension d ≥ 2

par Nicolas Dub

Les invariants orthogonaux sont les observables des modèles de tenseurs réels. Nous les

représentons au travers de graphes colorés et réguliers qui sont duaux à des triangula-

tions de dimension d. Nous énumérons ces invariants à l’aide de méthodes empruntées

au groupe symétrique et montrons que la structure algébrique qui les régit diffère du cas

unitaire. À rang et nombre de sommets fixés, une algèbre associative et semi-simple de

dimension le nombre d’invariants émerge naturellement de notre formulation. À l’aide

de la théorie des représentations du groupe symétrique nous prouvons notamment que

l’énumération des invariants orthogonaux se traduit par une somme de coefficients de

Kronecker contraints et qu’il existe une base de Fourier orthogonale de l’algèbre qui re-

flète sa dimension.

Les modèles de tenseurs généralisent les modèles de matrices, l’on est de fait en droit

de se demander s’ils satisfont une certaine forme de récurrence topologique. Le monde

des observables unitaires étant néanmoins bien plus riche pour les tenseurs, il est difficile

a priori de savoir quel ensemble d’observables est en mesure de satisfaire cette récur-

rence. Un de ces ensembles est cependant présent dans tout modèle de tenseurs dont les

constantes de couplage des interactions quartiques meloniques sont non nulles. La courbe

spectrale est une union disjointe de courbes spectrales gaussiennes, et l’amplitude du

cylindre se dote d’une part holomorphe. Ce résultat est obtenu par une réécriture pertur-

bative des modèles de tenseurs en modèles dits multi-matrices, et due à Bonzom, Lionni

et Rivasseau. Il est ainsi possible d’intégrer, du moins formellement, tous les degrés de

liberté, sauf ceux entrant dans la récurrence. Les graphes de Feynman s’interprètent alors

comme des cartes farcies. Finalement, nous donnons de nouvelles relations liant valeurs

moyennes des observables tensorielles et matricielles.
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Introduction

Matrix and tensor models – Random tensor models are a generalization of matrix

models. Since their inception [1, 2, 3], random tensors offer a framework for studying

random discrete geometries as they aim at extending the successful relationship between

random matrices [4] and two-dimensional quantum gravity to higher dimensions. The

main goal of this approach is to devise a transition from discrete geometries to contin-

uum geometries in any dimension. Howbeit, the original proposals for tensor models were

plagued with difficulties and no significant development occurred in the field for twenty

years. Only recently have random tensor models witnessed major progress [5] with, for

instance, the advent of a new large N expansion generalizing ’t Hooft genus expansion [6]

for higher dimensional (pseudo-)manifolds. Moreover, recall that matrix models are in-

timately connected to combinatorial maps, the latter being generated by the Feynman

expansion of the former [4, 7]. For instance, in the 1-Hermitian matrix model,

ˆ

dM e−
N
2t
trM2+N

∑
k≥1

tk
k
trMk

=
∑

maps

tn

n!
N2−2h

∏

k≥1

tnk

k , (1)

where the sum is over maps of genus h with n labeled edges and nk faces of degree k ≥ 1.

The quantity in the exponential on the left-hand side is called the action, or the potential,

and the tks are called the coupling constants. In tensor models, this relationship is also

generalized, meaning that the Feynman expansion of tensor models generate piecewise-

linear d-dimensional (pseudo-)manifolds [5, 8, 9, 10]. This is why tensor models were

already proposed as candidate for quantum gravity in the early 90s, long before a large

N limit was found [11]. The existence of such a limit for tensors naturally unveiled several

analytical results, among which the discovery of their critical behavior (branched poly-

mers [12, 13]), the universal property of random tensors [14], and the discovery of new

families of renormalizable non-local quantum field theories with interesting UV [15, 16, 17]

and nonperturbative behaviors supporting the discovery of new universality classes for

gravity [18, 19, 20].
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More recently, and quite unexpectedly, tensor models have been shown to provide the

same large N limit as the Sachdev-Ye-Kitaev (SYK) model [21, 22] of condensed matter

physics (a model which is exactly solvable at large N in the IR and exhibits maximal

chaos, it is dual to the Jackiw-Teitelboim 2D gravity [23, 24]). For its deep connections

with black hole physics and AdS/CFT correspondence, the SYK model embodies a vi-

brant topic of research. This has driven the development of tensor models in the last

few years. Indeed, new models have been introduced and their large N limit explored

[25, 26]. Some models could also be explored beyond leading order using combinatorial

techniques [27].

A key feature of tensor models is that the set of observables and interactions is quite

larger than in matrix models [28], and grows with d. In U(N)-invariant matrix models,

observables are products of traces trMn, for M Hermitian. In U(N)2-invariant models,

they are products of traces tr(MM †)n, for M a complex matrix. In both cases, there is

a single invariant at fixed degree in M (in addition to products of invariants of smaller

degree). More generally, there is a set of generators of the ring of U(N)d-invariant poly-

nomials, called the set of bubbles. They are characterized by a d-tuple of permutations,

up to a left and a right action on the tuple. There is a graphical representation as d-

regular bipartite graphs with edges labeled by a color from J1, dK such that all colors are

incident on every vertex. They have been studied in [29, 30, 31], where a relation to

Kronecker coefficients was found. Enforcing other sets of symmetries leads to other sets

of observables, like using O(N)d instead of U(N)d relaxes the bipartiteness of the bubbles

[33, 32] as will be seen later on.

This enlarged set of observables in tensor compared to matrix models is the source of

various universality classes found in the large N and continuum limit. Indeed, it is well-

known in 2D that models built with interaction trMk, generating k-angulations, have

all the same universality class (that of pure 2D quantum gravity). However, for d > 2,

there are more possible bubbles, i.e. more interactions at fixed order k in T, T , which

correspond to different d-dimensional building blocks. Choosing different bubbles as in-

teractions can then lead to different universality classes [9]. This however does not seem

to be the case in 3D, where all planar bubbles (dual to building blocks homeomorphic to

the ball) used as interactions always lead to the universality class of random trees (i.e.

branched polymers) [10].
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Figure 1 – Symmetric group view of unitary invariants.

Orthogonal invariants – As already mentioned, several, if not all, of the previous

studies heavily rely on the understanding of the combinatorics of the Feynman graphs

and observables of the considered tensor model. Let us now introduce two particular

contributions on tensor model graphs that the present work extends.

In [29], the authors worked out the enumeration of the unitary invariants, as observables

in complex tensor models. One way of comprehending the theory space of rank-d complex

tensor models is to specify its set of observables. The latter are merely U(N)d-invariants

(at time, we simply call them U(N), complex or unitary tensor invariants). We know that

a convenient manner to represent U(N) invariants defines as a canonical mapping to d-

regular bipartite colored graphs [34]. Stated in this way, the inventory of tensor invariants

formulates by uniquely using permutation groups (see Figure 1). One should record that

these symmetry group techniques and its representation theory have been developed dur-

ing the last years [35]–[46]. They turned out to be powerful, flexible and versatile enough

to address diverse enumeration problems from scalar field theory and matrix models, to

gauge (QED, 2D and 4D Yang-Mills) and string theories. In physics, for instance, they

brighten the half-BPS sector of N = 4 SYM [35]–[40]. Moreover, unforeseen correspon-

dances arise from these studies, for instance, counting Feynman graphs in φ4 scalar field

theory relates to string theory on a cylinder or listing Feynman graphs of QED relates to

the counting of ribbon graphs [39]. These correspondances emerge from another interface

playing a hinge role between enumeration problems: via the Burnside lemma, with each

enumeration problem using the symmetric group (and its subgroups), we can associate

a Topological Field Theory on a 2-complex (named TFT2) with gauge group given by

the symmetric group (and its subgroups). Such a formulation also unfolds multiple in-

terpretations of the counting formulae with links with the theory of covering spaces in

algebraic and complex geometry (see references in [39]). The reference [29] establishes
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several enumeration formulae pertaining to observables of complex tensor models. Using

the Burnside lemma, one recasts the enumeration of U(N) invariants into a partition

function of a permutation lattice gauge field theory, a TFT2. It is via this mapping that

one elucidates that counting unitary invariants corresponds to counting branched covers

of the 2-sphere. Branched covers are well known objects in algebraic and complex geom-

etry [47], in topological string theory, and in dimension 2, they correspond to complex

maps [38]. Thus, there is an underlying geometry inherited by tensor models from the

TFT2 formulation that still needs to be understood. There is however a proviso: the

counting formulae are only valid when the size N of the tensor is larger than the number

of tensors convoluted. More generally, one should resort to a more careful study [45, 46].

The study of tensor invariants has a follow-up in [30]. Their equivalent classes are viewed

as the basis elements of a vector space Kd(n), a subspace of C[Sn]
⊗d, the rank-d group

algebra of the symmetric group Sn. Kd(n) shows stability under an associative prod-

uct, and it is endowed with a non-degenerate pairing. Therefore, at a fixed rank d and

fixed number of vertices n, tensor invariants span a semi-simple algebra. (Note that,

importantly, other algebraic structures could be set up on tensor invariants [48, 49, 50].

The above structure is however unique, up to isomorphism.) As a consequence of the

Wedderburn-Artin theorem, any semi-simple algebra decomposes as a sum of irreducible

matrix subalgebras. The representation theory of the symmetric group sheds more light

on the remaining analysis as it enables to reach the Wedderburn-Artin matrix decomposi-

tion of the algebra of tensor observables: the dimension of the algebra is a sum of squares

of the Kronecker coefficients (these are multiplicity dimensions in the decomposition of

a tensor product of representations in irreps; Kronecker coefficients are still under active

investigation in Combinatorics and Computational Complexity Theory, see, for instance,

[51, 52] and more references therein), each square matching exactly the dimension of a

matrix subalgebra. The orthogonal bases of the algebra and its matrix subalgebras have

been worked out, meanwhile the Gaussian 2-point correlators also provide new represen-

tation theoretic orthogonal bases.

In this work, we consider O(N) tensor models and their observables and investigate

if they support the same previous enumeration and algebraic analysis. Fleshed out the

first time in [33], such models extended the large N expansion to real tensors. The

graphs that determine the O(N) invariants keep the edge coloring but are not bipartite.

This naturally leads to a class of observables wider than that of the U(N) tensor mod-

els. To enumerate O(N) invariants, we use a standard counting recipe: we use tuples
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of permutations on which act permutation (sub)groups that define equivalence classes.

We then count the points in the resulting double coset space. The equivalence relation

in the present setting is radically different from the U(N) situation and requires more

work to obtain a valuable counting formula. With their generating functions in hand, we

provide software (Mathematica, Sage) codes to achieve the counting of O(N) observables

for any tensor rank. We emphasize that our results match the seminal work of Read in

[55] that dealt with the enumeration of k-regular graphs with 2n vertices with k-edge-

coloring. However, Read’s formula was only evaluated for the k = 3 regular graphs with

2n = 2, 4, 6 vertices with edges of three different colors. Our code extends this counting

for any k and any n. We produce integer sequences that are new (un-reported as of yet)

to the On-Line Encyclopedia of Integer Sequences [56].

Moreover, seeking other correspondances, we address the TFT formulation of our count-

ing and show that to count O(N) observables amounts to count covers of glued cylinders

with defects (the rank of the tensors relates to the number of cylinders and defects). After

introducing the algebra of O(N) invariants, we show that it is semi-simple, and as such,

admits a Wedderburn-Artin decomposition. An invariant orthogonal basis of the algebra

transpires in our analysis but it does not yield the decomposition of the algebra in ma-

trix subalgebras. We proceed to the representation theoretic formulation of the counting

and its consequences. As to be distinguished from the U(N) case, the dimension of the

algebra is a sum of constrained Kronecker coefficients restricted to partitions with all

even length rows. The representation theoretic tools exhibit a basis of the algebra, the

dimension of which directly reflects the sum of constrained Kroneckers. The Gaussian 2-

and 1-point correlators also compute in terms of permutation group formulae. A corol-

lary of that analysis is that 2-point functions, in the normal order, select a representation

theoretic orthogonal basis of the algebra. In that sense, the Gaussian integration in the

representation Fourier space performs as a pairing of observables.

Blobbed topological recursion – A natural question for tensor models is to go be-

yond the large N limit. In particular, it is natural to ask whether the methods used for

this purpose for matrix models still work for tensor models and whether it depends on

the set of chosen interactions. In this work we will focus on the topological recursion of

Eynard-Orantin [57, 58, 59, 60]. Let us nevertheless mention previous works on tensor

models beyond the large N limit. A standard combinatorial analysis of maps was applied

to the Feynman graphs of the so-called colored tensor models by Gurau and Schaeffer

[61], and extended to the set of Feynman graphs of the multiorientable model (which has
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U(N)2×O(N) symmetry, at d = 3) by Fusy and Tanasa [62]. They classify the Feynman

graphs appearing at a given order of the 1/N expansion of their respective models. They

also identify those which are the most singular in the continuum limit at each order of

the 1/N expansion, thereby allowing for a double-scaling limit, whose 2-point function

was calculated.

In parallel, interest grew around the so-called quartic melonic model. It is a tensor model

with up to d quartic interactions having a special structure called melonic. This interest

in the quartic model comes from the existence of the Hubbard-Stratonovich technique

which transforms this tensor model into a multi-matrix model. It opened up a new way of

analyzing tensor models through matrix models. The double-scaling limit for this model

was done in [63] (for a result similar to [61]). It was also realized in [64] that in the large

N limit, the eigenvalues do not spread because the Coulomb repulsion is subdominant.

Instead, they all fall in the potential well, as anticipated in [65]. One can then study the

fluctuations around the saddle point, an analysis started in [64] where the leading order

fluctuations were shown to obey Wigner’s semi-circle law.

In [66], the first instance of topological recursion in the context of tensor models was es-

tablished. Recall that in the ordinary Hermitian 1-matrix model, the topological recursion

applies to the calculation of the n-point, genus g, correlation functions Wn,g(x1, . . . , xn)

which appear in the expansion of connected n-point functions

〈tr 1

x1 −M
· · · tr 1

xn −M
〉c =

∑

g≥0

N2−n−2gWn,g(x1, . . . , xn). (2)

In terms of maps, it is a recursion on the generating functions of maps of genus g, with n

marked faces whose perimeters are tracked by the variables x1, . . . , xn. The topological

recursion takes a universal form, and uses a spectral curve as initial data. The spectral

curve is determined by the disc and cylinder functions W1,0(x) and W2,0(x1, x2).

In [66], the matrix model is the one obtained in [64] for the fluctuations of the eigenvalues

around the saddle point. It has d Hermitian matrices M1, . . . ,Md where Mc is said to be

of color c and the correlations now need to have the colors of their variables specified,

Wn(x1, c1; . . . , xn, cn) = 〈tr
1

x1 −Mc1

· · · tr 1

xn −Mcn

〉c. (3)

As it turns out, the coupling between the colors is not too strong and a topological

recursion can be derived where the spectral curve is a disjoint union of d spectral curves for
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Gaussian matrix models, with an additional holomorphic term for the cylinder function.

This is due to

condition 1 the U(N)d symmetry. It implies that the matrices of different colors can

only interact through products of traces of different colors. The action is of the

form

SN(M1, . . . ,Md) =
∑

p1,...,pd≥0

tN(p1, . . . , pd) trM
p1
1 . . . trMpd

d , (4)

condition 2 the 1/N expansion. It is such that only the quadratic terms of the action

survive the large N limit,

SN(M1, . . . ,Md) ∼
N→∞

N

d∑

c=1

actrM
2
c +

d∑

c,c′=1

bcc′trMctrMc′ , (5)

(in which sense is explained in the text).

Those two conditions guarantee that an extension of the topological recursion, called

the blobbed topological recursion, or rather a multi-colored extension of the latter, holds

with the spectral curve being a disjoint union of Gaussian spectral curves, except for

W2,0(x1, c1; x2, c2) which has an additional holomorphic part compared to its usual form.

The blobbed topological recursion was introduced by Borot [67] and further formalized

by Borot and Shadrin [68]. In our context, it applies to matrix models with multi-trace

interactions having a topological expansion, i.e. of the form

SN(M) =
∑

n,h≥0

∑

p1,...,pn≥0

N2−n−2h t(h)(p1, . . . , pn) trM
p1 . . . trMpn . (6)

Combinatorially, those types of models generate stuffed maps, defined in [67]. They are

maps which are not built by the gluings of disks but as gluings of surfaces of genus h

with n boundary components of perimeters p1, . . . , pn. In [66] this interpretation survives

with an additional coloring of the boundary components.

In the blobbed topological recursion, the recursion for correlation functions still has the

same universal term as the ordinary topological recursion, which calculates the singu-

lar parts of the correlation functions. In addition, there are now holomorphic contri-

butions [67, 68]. It is also important to keep in mind that the action (4) is in fact

topological only for d = 4d′ + 2, for d′ ∈ ◆ [66], meaning that the couplings take the

form tN(p1, . . . , pd) =
∑

h≥0N
2−d−2ht(h)(p1, . . . , pd). For other values of d, one can do
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as if the action were topological by absorbing some N -dependence into the couplings

t(h)(p1, . . . , pd), and then apply the blobbed topological recursion.

Here we show how to apply this approach to arbitrary U(N)d-invariant models, provided

that there are quartic melonic interactions (among others) and some invertibility con-

dition of a quadratic form at large N . This revolves around the fact that after some

intermediate field techniques and formal integration, such tensor models can always be

rewritten as matrix models with a set of d Hermitian matrices satisfying the conditions

1 and 2. Therefore, the correlation functions of these matrices satisfy the blobbed topo-

logical recursion, with the same spectral curve as in the quartic melonic model of [66].

Remarkably (and evidently from [67]), the specifics of the model, i.e. the choice of in-

teractions, only contribute to some effective action and not to the form of the blobbed

topological recursion. In combinatorial terms, the specifics only contribute to the generat-

ing functions of the stuffings of the maps. Proving the blobbed topological recursion does

not require knowing the explicit effective action, but only that the conditions 1 and 2 are

satisfied. In this sense, the blobbed topological recursion is universal in our framework.

The only difference between our formulas and those of [66] is that the generating func-

tions of the stuffing were explicitly known in [66] while their explicit dependence on the

coupling constants will be left unknown here (their N -dependence is however important).

Method – There are however some technical obstacles to overcome. Arbitrary tensor mod-

els cannot be directly transformed into matrix models using the Hubbard-Stratonovich

transformation as the latter only works for quartic interactions. This first obstacle was

overcome in [70] where it was shown that there are still matrix models rewritings. This

was proven using a bijection between the Feynman graphs of the tensor model and those

of the corresponding matrix model. A second proof was also provided by manipulations

of formal integrals (integrals which are only defined as their Feynman series). Here we

will repeat this proof, adapting it to go through the second obstacle, which we explain

now.

The method of [70] turns a tensor model into a matrix model with complex matrices MC

labeled by subsets of J1, dK, i.e. C ⊂ J1, dK. However, applying the same recipe as in

[66] requires to have d Hermitian matrices M1, . . . ,Md instead. This is remedied in two

steps. We first show that it is possible to replace the complex matrices MC with pairs of

Hermitian matrices (YC ,ΦC)C⊂J1,dK. Then, provided that the quartic melonic interactions

are turned on, it is possible to integrate formally over all matrices except Y1, . . . , Yd. In

terms of Feynman graphs, this means that one has combinatorial maps with colored edges
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corresponding to the matrices Y1, . . . , Yd, and everything else is packed in some stuffing

of the maps. Keeping in mind the goal of the topological recursion, it is necessary to

control the N -dependence of the stuffings in terms of their boundary components.

The next step is to observe that all the eigenvalues of Y1, . . . , Yd fall into some potential

well at large N , and move on to the study of their fluctuations. This is where one ob-

serves that the conditions 1 and 2 are still satisfied and lead to the blobbed topological

recursion. It would be interesting to know whether condition 2 could be removed in gen-

eral. It is known to be possible in the case of a single matrix model as originally done

in [67]. However, in the multi-colored case, it would require a 1-cut (Brown’s) lemma for

a system of coupled equations with catalytic variables, thus extending the framework of

[71], which is outside the reach of this manuscript.

Expectations – When discussing the topological recursion in the context of tensor mod-

els, there is another natural question to address, which is how to relate the expectations

of generic observables on the tensor side to the quantities evaluated via the topological

recursion on the matrix side. In [64] for the quartic melonic model, it was shown that

the expectations of trMn
c are expectations of Hermite polynomials of some melonic cyclic

bubbles on the tensor side. This relation can also be inverted via Hermite polynomi-

als. In [66], the expectations of arbitrary tensor observables (bubbles) were expressed in

terms of quantities evaluated by the matrix models, but it involved summing over Wick

contractions.

In the present work, we generalize the Hermite polynomial relationship of [64] to arbi-

trary observables on both the tensor and matrix sides. To express the expectation of a

matrix observable in terms of tensorial observables, one has to take derivatives of the

potential (which in the case of the quartic melonic model is quadratic, therefore leading

to Hermite polynomials). The other way around, i.e. to express the expectation of a

tensorial observable in terms of matrix expectations, one has to take derivatives of some

effective potential for the matrices YCs (in the quartic melonic model, it reduces again to

a quadratic potential, hence Hermite polynomials), which comes from integrating all the

matrices ΦCs.

Plan – The manuscript is structured as follows. Chapter 1 starts by briefly introducing

the problem of quantum gravity in any dimension, and then gives the recipe for working

it out in d = 2 with the help of random matrices. It ends by an elementary example of

the topological recursion formalism applied to Hermitian matrices. In Chapter 2 random
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tensor models are defined and some of their properties and features are given. The sym-

metric group techniques for counting tensor invariants are also discussed. In Chapter 3

things get more involved. A particularly important type of tensor model is introduced,

viz. the quartic melonic model, and the heavy machinery of the topological recursion

formalism applied to it, it serves as a reference point for our study in Part III. Chapter 4

sets up our notations for real tensor models and their O(N) invariants. We then develop

the double coset counting using permutation group formalism. We also discuss therein

the TFT formulation of the counting and its consequences, introduce the basics of the

representation theory of the symmetric group, and re-interpret the counting in that lan-

guage. Chapter 5 discusses the double coset algebra built out of the O(N) invariants and

lists its properties. Next, Chapter 6 details the 1- and 2-point correlators of the Gaussian

tensor models and their representation theoretic consequences. Chapter 7 briefly lists

a few remarks on the counting of invariants of the real symplectic group Sp(2N). The

counting principle here is similar to that of the O(N) model, but with subtleties that

one should pay heed to. In Chapter 8 we define the tensor models of interest and their

multi-matrix equivalent. Theorems 8.3.2 and 8.3.3 give some of the relationships be-

tween the expectations of observables on the tensor and matrix sides. Chapter 9 explains

how to formally integrate all matrices except Y1, . . . , Yd, leading to an effective matrix

model in Theorem 9.1.1. We use the same technique of formal integration to express the

expectations of tensorial observables in terms of matrix expectations in Theorem 9.2.1.

The large N limit of the effective model is discussed and leads to a matrix model for

the fluctuations. We study the latter in Chapter 10, by describing the Schwinger-Dyson

equations, which can be analyzed along the lines of [66, 67]. We only present some key

aspects which are needed to state Theorem 10.4.1, about the blobbed topological recur-

sion, since everything works as in [66]. We then summarize our work and draw some of its

perspectives. Finally, the manuscript closes with an appendix that divides into two main

parts: the first collects identities of the representation theory of the symmetric group

that are useful in the text, while the other details the software codes that generate the

sequences of numbers of invariants at sundry tensor ranks d = 3, 4, ....
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Introduction en Français

Matrices et tenseurs aléatoires – Les modèles de tenseurs aléatoires sont une gé-

néralisation des modèles de matrices. Depuis leur création [1, 2, 3], ils offrent un cadre

dans lequel étudier la géométrie aléatoire et visent à étendre le succès des modèles de

matrices [4] quant à la gravité quantique 2D aux dimensions supérieures. Cette approche

a pour but d’opérer une transition entre géométries discrètes et continues en dimension

arbitraire. Cependant, les premiers modèles de tenseurs proposés souffraient de multiples

difficultés et aucun développement significatif ne vit le jour pendant une vingtaine d’an-

nées. Ce n’est que récemment que d’importants progrès [5] ont été réalisés, comme par

exemple la découverte d’un nouveau développement en 1/N généralisant le développe-

ment en genre de ’t Hooft [6] aux (pseudo-)variétés de dimension supérieure. Il convient

également de rappeler que les modèles de matrices sont intimement liés aux cartes com-

binatoires, ces dernières étant générées par le développement en graphes de Feynman de

ceux-ci [4, 7]. Par exemple, dans le cas du modèle à une matrice hermitienne, on a :

ˆ

dM e−
N
2t
trM2+N

∑
k≥1

tk
k
trMk

=
∑

cartes

tn

n!
N2−2h

∏

k≥1

tnk

k , (7)

où la somme porte sur les cartes de genre h avec n arêtes étiquetées et nk faces de degré

k ≥ 1. La grandeur à l’intérieur de l’exponentielle dans le terme de gauche est appelée

action, ou potentiel, et les tk sont les constantes de couplage. Les modèles de tenseurs

généralisent également cette relation. En effet, le développement en graphes de Feynman

des modèles de tenseurs génère des (pseudo-)variétés de dimension d, linéaires par mor-

ceaux [5, 8, 9, 10]. C’est pourquoi les modèles de tenseurs avaient déjà été proposés comme

solution au problème de la gravité quantique au début des années 1990, bien avant qu’une

limite large N ne soit découverte [11]. L’existence d’une telle limite pour les tenseurs a

naturellement contribué à dévoiler plusieurs résultats analytiques, parmi lesquels on peut

citer la découverte de leur comportement critique (polymères ramifiés [12, 13]), la pro-

priété d’universalité des tenseurs aléatoires [14] et la découverte de nouvelles familles de

théories quantiques des champs renormalisables et non-locales, avec des comportements
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non-perturbatifs et UV intéressants [15, 16, 17], appuyant ainsi la découverte d’une nou-

velle classe d’universalité pour la gravité [18, 19, 20].

Plus récemment, et de manière plutôt étonnante, il a été montré que les modèles de ten-

seurs admettaient la même limite largeN que le modèle Sachdev-Ye-Kitaev (SYK) [21, 22]

de la matière condensée. Ce dernier est exactement résoluble à large N dans l’IR, il mani-

feste la propriété de chaos maximal et est dual à la gravité 2D de Jackiw-Teitelboim [23,

24]. En partie pour ses liens avec la physique des trous noirs et la correspondance

AdS/CFT, le modèle SYK est un sujet de recherche brûlant qui a porté le dévelop-

pement des modèles de tenseurs ces dernières années. En effet, de nouveaux modèles ont

été introduits et leur limite large N étudiée [25, 26]. Certains d’entre eux ont même pu

être explorés au-delà de l’ordre dominant en usant de techniques combinatoires [27].

Un trait caractéristique des modèles de tenseurs est le fait que leurs ensembles d’ob-

servables et d’interactions sont bien plus larges que dans les modèles de matrices [28], et

croissent avec d. Dans les modèles de matrices dits U(N)-invariants, les observables sont

des produits de traces trMn, où M est hermitienne. Dans les modèles U(N)2-invariants,

ce sont des produits de traces du type tr(MM †)n, où M est une matrice complexe. Dans

les deux cas, il n’y a qu’un seul invariant à degré en M fixé (en plus de produits d’inva-

riants de degrés inférieurs). Plus généralement, il existe un ensemble de générateurs de

l’anneau des polynômes U(N)d-invariants appelés bulles. Celles-ci se caractérisent par un

d-uplet de permutations, aux actions à gauche et à droite près sur ce dernier. L’on peut les

représenter graphiquement comme des graphes bipartis d-réguliers dont les arêtes portent

une couleur dans J1, dK de telle sorte que toutes les couleurs soient incidentes à chaque

sommet. Ces graphes ont été étudiés dans [29, 30, 31], où une relation avec les coeffi-

cients de Kronecker a été mise à jour. Enfin, imposer d’autres symétries amène d’autres

ensembles d’observables, comme le fait d’utiliser O(N)d à la place de U(N)d qui assouplit

la condition de bipartisme des bulles [33, 32] comme nous allons le voir.

Cet ensemble élargi d’observables tensorielles est source de nombreuses classes d’universa-

lité qui apparaissent dans les limites large N et continue. En effet, il est bien connu que les

modèles 2D, construits avec une interaction de type trMk et générant les k-angulations,

ont tous la même classe d’universalité, à savoir celle de la gravité quantique 2D dans le

vide. Néanmoins, pour d > 2, il existe potentiellement plus de bulles, donc plus d’inter-

actions à ordre k fixé en T , T , qui correspondent à différents composants élémentaires

de dimension d. Un choix différent de bulles comme interaction peut alors conduire à
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Figure 2 – Invariants unitaires représentés au travers du groupe symé-
trique.

différentes classes d’universalité [9]. Cela ne semble cependant pas être le cas en 3D,

où toutes les bulles planaires (duales à des composants élémentaires homéomorphes à la

sphère) utilisées comme interaction mènent toujours à la classe d’universalité des arbres

aléatoires (polymères ramifiés) [10].

Invariants orthogonaux – Comme mentionné précédemment, de nombreuses, si ce

n’est toutes les études sus-citées reposent sur la compréhension de la combinatoire des

graphes de Feynman et observables du modèle de tenseurs considéré. Ce travail s’appuie

sur et étend deux principaux résultats sur les graphes des modèles de tenseurs.

Dans [29], les auteurs ont énuméré les invariants unitaires comme des observables dans

des modèles de tenseurs complexes. En effet, une façon de décrire l’espace des tenseurs

complexes de rang d est d’en donner les observables. Ces dernières ne sont autres que

les invariants U(N)d (nous les appellerons indifféremment invariants U(N), complexes ou

unitaires). Nous savons que ces invariants sont idéalement représentés par des graphes

colorés bipartis d-réguliers [34]. Leur inventaire est alors uniquement déterminé par des

groupes de permutations (voir Figure 2). Il est important de noter que ces techniques

de groupes symétriques ainsi que leurs théories des représentations ont été développées

ces dernières années [35]–[46]. Elles se sont révélées puissantes, flexibles et suffisamment

versatiles pour s’attaquer à divers problèmes d’énumération tant en théorie des champs

scalaires et modèles de matrices qu’en théories de jauge (QED, Yang-Mills en 2D et 4D)

et théories des cordes. En physique, par exemple, elles jettent un éclairage nouveau sur le

secteur demi-BPS de la théorie de Yang-Mills Supersymétrique N = 4 [35]–[40]. De plus,

de nouvelles correspondances inattendues se dégagent de ces études, comme par exemple

le lien entre graphes de Feynman de la théorie φ4 et théorie des cordes sur un cylindre,
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ou encore entre graphes de Feynman de l’électrodynamique quantique et le comptage

de graphes à rubans [39]. Ces dernières émergent d’une autre interface occupant un rôle

charnière entre problèmes d’énumération. En effet, via le lemme de Burnside, à tout pro-

blème d’énumération impliquant le groupe symétrique, on peut associer une théorie des

champs topologique sur un 2-complexe (appelé TFT2) dont le groupe de jauge est donné

par le groupe symétrique. Une telle formulation amène à de nouvelles interprétations des

formules de comptage avec notamment des liens avec la théorie des revêtements en géo-

métrie algébrique et complexe (voir les références dans [39]). La référence [29] établit de

nombreuses formules se rapportant à l’énumération des observables des modèles de ten-

seurs complexes. À l’aide du lemme de Burnside, l’énumération des invariants unitaires

est refondue en une fonction de partition d’une théorie de jauge sur réseau, une TFT2.

Ainsi, compter les invariants unitaires revient à compter les revêtements ramifiés de la

2-sphère. Les revêtements ramifiés sont des objets bien connus en géométrie algébrique et

complexe [47], en théorie des cordes topologique et correspondent, en dimension 2, à des

applications complexes [38]. Il existe donc une géométrie sous-jacente pour les tenseurs,

héritée de la formulation en termes de TFT2 et qui reste à être élucidée. Il est cependant

important de souligner que les formules de comptage ne sont valides que lorsque la taille

N des tenseurs est supérieure à leur nombre. Plus généralement, une étude plus appro-

fondie est nécessaire [45, 46].

L’étude des invariants tensoriels se poursuit dans [30]. Leurs classes d’équivalences sont

vues comme les éléments d’une base d’un espace vectoriel Kd(n), un sous-espace de

C[Sn]
⊗d, l’algèbre de groupe de rang d du groupe symétrique Sn. L’espace Kd(n) est

stable par produit associatif et est muni d’un produit scalaire. C’est pourquoi, à rang d et

nombre de sommets n fixés, les invariants tensoriels engendrent une algèbre semi-simple.

(Il est néanmoins important de noter que d’autres structures algébriques peuvent être

construites à partir de ces invariants [48, 49, 50]. La précédente est en revanche unique, à

isomorphismes près.) Par le théorème de Wedderburn-Artin, toute algèbre semi-simple se

décompose en somme de sous-algèbres de matrices irréductibles. La théorie des représen-

tations du groupe symétrique permet ensuite d’expliciter la décomposition en matrices de

Wedderburn-Artin de l’algèbre : la dimension de l’algèbre n’est autre qu’une somme de

carrés de coefficients de Kronecker (ces derniers peuvent être vus comme les multiplicités

dans la décomposition d’un produit tensoriel de représentations en représentations irré-

ductibles ; ils sont toujours activement étudiés en combinatoire et théorie de la complexité

computationnelle, voir par exemple [51, 52] et les références qui y sont contenues), chaque
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carré correspondant exactement à une des sous-algèbres de matrices. Les bases orthogo-

nales de l’algèbre et de ses sous-algèbres ont été explicitées, d’autres encore proviennent

des corrélateurs gaussiens à 2 points.

Dans ces travaux, nous nous intéressons aux modèles de tenseurs O(N) (appelés aussi

orthogonaux, ou réels), ainsi qu’à leurs observables et cherchons à déterminer s’ils suivent

le même schéma d’énumération que précédemment ou ont le même comportement algé-

brique. Etudiés avec précision pour la première fois dans [33], ces modèles étendent le

développement large N aux tenseurs réels. Les graphes correspondant aux invariants or-

thogonaux conservent la coloration de leurs arêtes mais perdent leur caractère biparti.

Cela amène tout naturellement une classe d’observables plus large que dans le cas unitaire.

Pour énumérer les invariants orthogonaux, nous utilisons des n-uplets de permutations sur

lesquels agissent des (sous-)groupes de permutations, définissant ainsi des classes d’équi-

valences. Nous comptons ensuite les points dans la classe double ainsi formée. La relation

d’équivalence est ici radicalement différente du cas unitaire et nécessite plus de labeur

pour obtenir une formule de comptage satisfaisante. Equipés de leurs fonctions généra-

trices, nous donnons quelques codes informatiques (Mathematica, Sage) pour compter

les observables orthogonales à n’importe quel rang. Nous soulignons que nos résultats

sont en accord avec les travaux fondateurs de Read [55] qui traitent de l’énumération

des graphes à 2n sommets k-réguliers à arêtes k-colorées. Cependant, Read n’appliqua sa

formule qu’aux cas k = 3 pour 2n = 2, 4, 6, alors que notre code étend ce comptage à tous

k et n. Nous produisons des suites nouvelles (non encore rapportées) qui n’apparaissent

pas dans l’OEIS [56].

De plus, la formulation en termes de TFT de notre comptage montre que compter les

invariants orthogonaux revient à compter des revêtements de cylindres accolés présentant

des lacunes (le rang des tenseurs est en lien direct avec le nombre de ces cylindres et la-

cunes). Après avoir introduit l’algèbre des invariants orthogonaux, nous montrons qu’elle

est semi-simple et en tant que telle admet une décomposition de Wedderburn-Artin.

Notre analyse révèle l’existence d’une base orthogonale invariante de l’algèbre, mais qui

ne fournit pas la décomposition de l’algèbre en sous-algèbres matricielles. Par opposition

au cas unitaire, la dimension de l’algèbre est une somme de coefficients de Kronecker

contraints et restreints aux partitions paires. Les outils de la théorie des représentations

fournissent une base à l’algèbre, dont la dimension dépend directement de la somme des

Kronecker contraints. Les corrélateurs gaussiens à 1 et 2 points s’expriment également

dans le langage du groupe symétrique. Comme corollaire à cette analyse, les fonctions
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à 2 points normalement ordonnées sélectionnent une base orthogonale de représentation

de l’algèbre. En ce sens, l’intégration se traduit par un couplage des observables dans

l’espace de Fourier.

Récurrence topologique à blobs – Une question qui se pose pour les modèles de

tenseurs est la possibilité d’aller au-delà de la limite large N . Tout particulièrement, il

est naturel de se demander si les méthodes utilisées à cette fin dans les modèles de ma-

trices sont encore applicables aux tenseurs et si elles dépendent des interactions choisies.

Dans ces travaux nous nous focaliserons sur la récurrence topologique d’Eynard-Orantin

[57, 58, 59, 60]. Citons néanmoins quelques travaux précédents menés sur les modèles de

tenseurs au-delà de la limite large N . Une analyse combinatoire standard a été appliquée

aux graphes des modèles dits colorés par Gurau et Schaeffer [61], et étendue à l’ensemble

des graphes de Feynman du modèle multi-orientable (qui a pour symétrie U(N)2×O(N)

en dimension d = 3) par Fusy et Tanasa [62]. Les graphes de Feynman apparaissant à

un ordre donné en 1/N ont été classés dans chaque modèle. Les auteurs ont également

identifié les graphes les plus singuliers dans la limite continue à chaque ordre en 1/N ,

prouvant ainsi l’existence d’une double limite d’échelle dont la fonction à 2 points a été

calculée.

En parallèle, un modèle particulier, dit quartique melonique, commença à attirer l’at-

tention. C’est un modèle possédant jusqu’à d interactions quartiques d’une structure

particulière appelée melonique. L’intérêt porté au modèle quartique melonique provient

essentiellement de l’existence de la technique d’Hubbard-Stratonovich qui transforme ce

modèle de tenseurs en un modèle multi-matrices, ce qui ouvrit ainsi la voie à une nouvelle

méthode d’analyse des modèles de tenseurs, à savoir au travers des modèles de matrices.

La double limite d’échelle de ce modèle fut explicitée dans [63] (un résultat similaire à

[61]). Dans [64], les auteurs ont également réalisé que dans la limite large N , les valeurs

propres ne s’étalent pas car la répulsion coulombienne est sous-dominante. En revanche,

elles tombent toutes au fond du puits de potentiel, comme anticipé dans [65]. L’on peut

alors étudier leurs fluctuations autour du point col, une analyse débutée dans [64], où il a

été montré que l’ordre dominant des fluctuations obéit à la loi du demi-cercle de Wigner.

Dans [66], une première instance de la récurrence topologique dans le contexte des modèles

de tenseurs a été établie. On rappelle que dans le cas du modèle à une matrice hermitienne,

la récurrence topologique s’applique au calcul des fonctions de corrélationWn,g(x1, . . . , xn)

à n points, de genre g qui apparaissent dans le développement des fonctions à n points
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connexes

〈tr 1

x1 −M
· · · tr 1

xn −M
〉c =

∑

g≥0

N2−n−2gWn,g(x1, . . . , xn). (8)

Dans le langage des cartes, c’est une récurrence sur les fonctions génératrices des cartes

de genre g avec n faces marquées dont les périmètres sont reliés aux variables x1, . . . , xn.

La récurrence topologique revêt une forme universelle et repose sur la donnée initiale

d’une courbe spectrale. La courbe spectrale est quant à elle déterminée par les fonctions

du disque et du cylindre W1,0(x) et W2,0(x1, x2).

Dans [66], le modèle de matrices obtenu est celui trouvé en [64] pour les fluctuations des

valeurs propres autour du point col. Il se compose de d matrices hermitiennes M1, . . . ,Md

où Mc est dite de couleur c et où les fonctions de corrélation doivent refléter la couleur

des variables,

Wn(x1, c1; . . . , xn, cn) = 〈tr
1

x1 −Mc1

· · · tr 1

xn −Mcn

〉c. (9)

Il se trouve que le couplage entre les couleurs est relativement faible et l’on peut écrire une

récurrence topologique où la courbe spectrale est une union disjointe de d courbes spec-

trales de modèles de matrices gaussiens, à ceci près que la fonction du cylindre acquiert

un terme holomorphe. Ceci est dû aux conditions suivantes :

condition 1 la symétrie U(N)d. Celle-ci implique que les matrices de différentes couleurs

ne peuvent interagir qu’au travers de produits de traces de différentes couleurs.

L’action prend la forme

SN(M1, . . . ,Md) =
∑

p1,...,pd≥0

tN(p1, . . . , pd) trM
p1
1 . . . trMpd

d , (10)

condition 2 le développement en 1/N . Il est tel que seuls les termes quadratiques de

l’action survivent dans la limite large N ,

SN(M1, . . . ,Md) ∼
N→∞

N
d∑

c=1

actrM
2
c +

d∑

c,c′=1

bcc′trMctrMc′ . (11)

Ces deux conditions garantissent qu’une extension de la récurrence topologique, dite à

blobs (ou multi-colorée), existe et dont la courbe spectrale est une union disjointe de

courbes spectrales gaussiennes, excepté pour W2,0(x1, c1; x2, c2) qui se dote d’une partie

holomorphe supplémentaire. La récurrence topologique à blobs a été introduite par Borot
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[67] et plus tard formalisée par Borot et Shadrin [68]. Dans notre contexte, elle s’applique

aux modèles de matrices avec des interactions multi-traces admettant un développement

topologique, à savoir de la forme

SN(M) =
∑

n,h≥0

∑

p1,...,pn≥0

N2−n−2h t(h)(p1, . . . , pn) trM
p1 . . . trMpn . (12)

D’un point de vue combinatoire, ces types de modèles génèrent des cartes farcies, définies

en [67]. Ce sont des cartes qui ne sont pas construites en recollant des disques, mais des

surfaces de genre h à n composantes du bord de périmètres p1, . . . , pn. Dans [66], cette

interprétation survit avec néanmoins une coloration supplémentaire des composantes du

bord.

Dans la version à blobs, la récurrence sur les fonctions de corrélation possède toujours le

même terme universel que dans le cas ordinaire, à savoir celui qui calcule les parties singu-

lières de ces fonctions. Qui plus est, des contributions holomorphes s’ajoutent [67, 68]. Il

reste néanmoins important de garder à l’esprit que l’action (10) n’est en fait topologique

que pour d = 4d′ + 2, pour d′ ∈ ◆ [66], ce qui signifie que les constantes de couplage

prennent la forme tN(p1, . . . , pd) =
∑

h≥0N
2−d−2ht(h)(p1, . . . , pd). Pour d’autres valeurs

de d, on peut faire comme si l’action était topologique en réabsorbant une partie de la

dépendance en N dans les constantes de couplage t(h)(p1, . . . , pd), puis en appliquant la

récurrence topologique.

Ici nous montrons comment mettre cette approche en œuvre pour des modèles U(N)d-

invariants arbitraires, sous réserve qu’il existe des interactions quartiques meloniques

(entre autres) ainsi qu’une certaine condition d’inversibilité d’une forme quadratique à

large N . Tout cela repose sur le fait qu’après emploi de certaines techniques de champ

intermédiaire et d’intégrations formelles, de tels modèles de tenseurs peuvent toujours

être réécrits comme des modèles de matrices à d matrices hermitiennes satisfaisant aux

conditions 1 et 2. C’est pourquoi les fonctions de corrélation de ces matrices satisfont la

récurrence topologique à blobs et ce avec la même courbe spectrale que le modèle quar-

tique melonique de [66]. De manière remarquable (et évidente d’après [67]), les détails du

modèle, à savoir le choix des interactions, ne contribuent qu’à une action effective et non

pas à la forme de la récurrence topologique à blobs. En termes combinatoires, les détails

ne contribuent qu’aux fonctions génératrices de la farce des cartes. Démontrer la validité

de la récurrence à blobs ne nécessite pas de connaître explicitement l’action effective, mais

seulement que les conditions 1 et 2 soient satisfaites. En ce sens, la récurrence topolo-

gique à blobs est universelle dans notre cadre. La seule différence entre nos formules et
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celles de [66] repose sur le fait que les fonctions génératrices de la farce étaient connues

explicitement dans [66], alors que leur dépendance en les constantes de couplage demeure

inconnue ici (leur dépendance en N reste néanmoins importante).

Méthode – Il existe cependant quelques obstacles techniques à surmonter. Tout modèle

de tenseurs ne peut être directement transformé en un modèle de matrices grâce à la

transformation d’Hubbard-Stratonovich étant donné que cette dernière ne fonctionne

qu’avec des interactions quartiques. Ce premier obstacle a été surmonté dans [70] où il a

été montré qu’il était toujours possible de réécrire le modèle avec des matrices. Ceci fut

prouvé en utilisant une bijection entre les graphes de Feynman du modèle de tenseurs

et ceux du modèle de matrices correspondant. Une seconde preuve fut également donnée

par des manipulations d’intégrales formelles (qui ne sont définies que via leurs séries de

Feynman). Ici nous répéterons cette preuve en l’adaptant afin de surmonter le second

obstacle que nous explicitons maintenant.

La méthode employée dans [70] transforme un modèle de tenseurs en un modèle de

matrices avec des matrices complexes MC étiquetées par des sous-ensembles de J1, dK, à

savoir C ⊂ J1, dK. Néanmoins, appliquer la même recette que dans [66] nécessite à la place

d’avoir d matrices hermitiennes M1, . . . ,Md. Ce problème est résolu en deux étapes. Nous

montrons d’abord qu’il est possible de remplacer chaque matrice complexe MC par une

paire de matrices hermitiennes (YC ,ΦC)C⊂J1,dK. Ensuite, et sous réserve que les interactions

quartiques meloniques soient allumées, il est possible d’intégrer formellement sur toutes

les matrices hormis Y1, . . . , Yd. En termes de graphes de Feynman, cela signifie que l’on

est en présence de cartes combinatoires à arêtes colorées correspondant aux matrices

Y1, . . . , Yd, tout le reste étant entassé dans une quelconque farce de la carte. Gardant en

mémoire le but de la récurrence topologique, il est nécessaire de contrôler la dépendance

en N des différentes farces en termes de leurs composantes du bord.

La prochaine étape consiste à observer que toutes les valeurs propres de Y1, . . . , Yd tombent

dans un puits de potentiel à large N et de poursuivre par l’étude de leurs fluctuations.

C’est ici que l’on observe que les conditions 1 et 2 sont toujours satisfaites et conduisent à

la récurrence topologique à blobs. Il serait intéressant de savoir si la condition 2 peut être

supprimée en général. L’on sait cela possible dans le cas d’un modèle mono-matrice [67],

cependant, dans le cas multi-coloré, cela nécessiterait un lemme à une coupure (ou lemme

de Brown) pour un système d’équations couplées possédant des variables catalytiques,

élargissant partant le cadre de [71], ce qui dépasse les limites de ce manuscrit.
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Attentes – En traitant de la récurrence topologique dans le contexte des modèles de ten-

seurs, il est une autre question qui vient naturellement à l’esprit, à savoir comment relier

les valeurs moyennes d’observables du côté des tenseurs aux quantités évaluées via la ré-

currence topologique du côté des matrices. Dans [64] pour le modèle quartique melonique,

il a été montré que les valeurs moyennes de trMn
c sont des valeurs moyennes de polynômes

d’Hermite en des bulles cycliques melonique du côté des tenseurs. Cette relation peut être

inversée grâce aux polynômes d’Hermite. Dans [66], les valeurs moyennes d’observables

tensorielles (bulles) arbitraires ont été exprimées en termes de quantités évaluées par les

modèles de matrices, mais cela impliquait de sommer sur des contractions de Wick.

Dans ce manuscrit, nous généralisons la relation sur les polynômes d’Hermite de [64] à

des observables arbitraires à la fois du côté des tenseurs et des matrices. Afin d’expri-

mer la valeur moyenne d’une observable matricielle à l’aide d’observables tensorielles,

l’on est contraint de dériver le potentiel (qui dans le cas quartique melonique est qua-

dratique, ce qui conduit aux polynômes d’Hermite). Dans le cas contraire, c’est-à-dire

exprimer la valeur moyenne d’une observable tensorielle en termes de valeurs moyennes

matricielles, il faut prendre les dérivées d’un potentiel effectif en les matrices YC (dans

le modèle quartique melonique, il s’agit encore d’un potentiel quadratique, d’où les poly-

nômes d’Hermite), qui vient par intégration de toutes les matrices ΦC .

Plan – Ce travail est structuré de la manière suivante. Le Chapitre 1 commence par

introduire le problème de la gravité quantique en dimension arbitraire, puis en donne

une solution en dimension d = 2 à l’aide des modèles de matrices, qu’il introduit. Il se

termine par un exemple élémentaire d’application du formalisme de la récurrence topo-

logique au modèle hermitien mono-matrice. Dans le Chapitre 2, on définit les modèles

de tenseurs aléatoires et on en donne les principales propriétés et caractéristiques. L’on

introduit également les techniques issues de la théorie du groupe symétrique pour comp-

ter les invariants tensoriels. Dans le Chapitre 3 on rentre dans le vif du sujet. Un modèle

de tenseurs aléatoires particulièrement important est introduit, à savoir le modèle quar-

tique melonique, et le formalisme de la récurrence topologique lui est appliqué ; il sert de

référence pour l’analyse de la Partie III. Le Chapitre 4 présente nos notations pour les

tenseurs réels et leurs invariants orthogonaux. L’on développe ensuite le comptage double

classe en utilisant le formalisme du groupe des permutations. L’on discute également dans

ce chapitre de la formulation TFT du comptage et de ses conséquences, puis on introduit

le b.a.-ba de la théorie des représentations du groupe symétrique avant de réinterpréter

le comptage dans ce langage. Le Chapitre 5 traite de l’algèbre double classe construite
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à partir des invariants O(N) et liste ses propriétés. Ensuite, le Chapitre 6 détaille les

corrélateurs gaussiens à 1 et 2 points et leurs conséquences en termes de théorie des re-

présentations. Le Chapitre 7 liste brièvement quelques remarques concernant le comptage

d’invariants du groupe symplectique réel Sp(2N). Le principe est similaire au cas orthogo-

nal, moyennant quelques subtilités. Dans le Chapitre 8, on définit les modèles de tenseurs

qui nous intéressent, ainsi que leurs équivalents multi-matriciels. Les théorèmes 8.3.2 et

8.3.3 révèlent quelques relations entre valeurs moyennes d’observables du côté tensoriel

et matriciel. Le Chapitre 9 explique comment formellement intégrer toutes les matrices

à l’exception de Y1, . . . , Yd, ce qui conduit à un modèle de matrices effectif dans le théo-

rème 9.1.1. Les mêmes techniques d’intégration formelle sont utilisées pour exprimer les

valeurs moyennes d’observables tensorielles en termes de valeurs moyennes matricielles

dans le théorème 9.2.1. La limite large N du modèle effectif est discutée et conduit à

un modèle de matrices pour les fluctuations. Ce dernier est étudié dans le Chapitre 10

à l’aide des équations de Schwinger-Dyson suivant l’analyse de [66, 67]. Seuls certains

aspects essentiels à l’établissement du théorème 10.4.1 sur la récurrence topologique à

blobs sont traités, étant donné que tout fonctionne comme dans [66]. Nous résumons en-

suite nos travaux et en tirons les perspectives. Finalement, le manuscrit se clôt sur un

appendice qui se divise en deux grandes parties. La première recueille des identités de

la théorie des représentations du groupe symétrique qui nous sont utiles dans le texte,

alors que la seconde détaille les codes informatiques qui génèrent les suites du nombre

d’invariants à divers rangs d = 3, 4, . . .
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Chapter 1

Quantum gravity as random geometry

Quantum gravity (QG) has been evading physicists for quite some time now. From

as early as the 1960s, Feynman rules for the gravitational field are established and an

attempt to combine the mathematics of quantum mechanics and General Relativity (GR)

results in the Wheeler-DeWitt field equation [72]. However, the latter remains ill-defined

as standard quantum field theory methods fail because of the nonrenormalizability of GR.

Hawking’s “wave function of the universe” approach [73] is similarly flawed and one has

to wait until the 1980s for a renaissance of the genre with string theory and later Loop

Quantum Gravity and Tensorial Field Theories. For further accounts on the history of

QG, see for instance [74].

1.1 Looking for a quantum theory of gravity

Let d > 2 be an integer. In d-dimensional space, pure gravity is described by the partition

function

ZEH =

ˆ

D[g]e−SEH [g], (1.1)

where the integration is performed over the space of all (semi-)Riemannian metrics of a

given smooth manifold Σ. Denoting by R the (Ricci) scalar curvature of g and Λ the

cosmological constant, the Einstein-Hilbert (EH) action reads in local coordinates

SEH [g] =
1

16πG

ˆ

Σ

ddx
√
|g|(R− 2Λ), (1.2)

in natural units where c = 1, G is Newton’s fundamental constant of gravity and |g|
the determinant of the metric. In the classical theory, one then recovers the vacuum

Einstein field equations by applying the least action principal to SEH . Namely, in local
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coordinates, for µ, ν ranging from 1 to d and Rµν being the Ricci tensor (gµνRµν = R):

Rµν −
1

2
Rgµν + Λgµν = 0. (1.3)

From there one can obtain some rough insight into QG by “linearizing” Einstein’s equa-

tions on Minkowski space, i.e. by taking the metric to be a small perturbation of the flat

Minkowski metric ηµν : gµν = ηµν + εhµν and demanding that this metric be a solution

of (1.3) up to first order in ε. The quantum theory thus obtained turns out to be the

theory of a massless spin-2 particle called the graviton. The standard viewpoint of quan-

tum field theory would then be first to study the linearized equations and then turning

on the interactions by incorporating the non-linear terms. This approach however vio-

lates the “background independance” spirit of GR as it privileges the particular solution

being perturbed about (the Minkowski metric). This plagues the theory with infinities:

it is not renormalizable. As it is now thought that for a theory to accurately describe

our universe, it should be renormalizable, this failure calls for a different approach. A

common one - mainly developed by Regge [75] - consists in discretizing the manifold in

the following way. Consider a triangulation1 T of Σ consisting of blocks of d-simplices

σd. Historically, the discretized EH action treats all the lengths of the triangulation as

many geometric degrees of freedom, yielding a classical approximation of gravity on the

triangulation. Assume now that all edges have the same length, say l. The theory now

becomes an intrinsically quantum one, as the degrees of freedom are the triangulation

itself. Such a triangulation can be seen as piecewise flat, the d-simplices are flat and the

curvature is concentrated around the (d − 2)-simplices. The latter being given by the

so-called deficit angle
δ(σd−2) = 2π −

∑

σd−1⊃σd−2

θ(σd−1, σd−2), (1.4)

where the θ(σd−1, σd−2) are the dihedral angles hinged on σd−2 and the sum is taken over

pairs of (d − 1)-simplices sharing the same (d − 2)-simplex. For instance in dimension

d = 2, the curvature is concentrated over the vertices where arrangements of triangles

meet. A vertex with positive (resp. negative) deficit angle thus represents a concentration

of negative (resp. positive) curvature.

The EH action then takes the discrete form of the Regge action, where the first term en-

codes curvature and the second being the total volume of Σ, measured by the cosmological

1 Such a triangulation may not exist in general when Σ is only topological [76]. However, we know
from [77, 78] that every smooth manifold admits a (piecewise-linear) triangulation.
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constant:

SRegge =
1

8πG

(∑

σd−2

vol(σd−2)δ(σd−2)− 2Λ
∑

σd

vol(σd)
)
. (1.5)

Denoting by vk = lk

k!

√
k+1
2k

the volume of a k-simplex and by nk the number thereof, it

can be shown [12] that the action reduces to

SRegge =
1

8πG
(vd−2∆d−2 − 2Λndvd), (1.6)

where ∆d−2 = 2π nd−2 − d(d+1)
2

arccos
(
1
d

)
nd is the sum of the deficit angles. Indeed, the

deficit is linked to the number d(d+1)
2

of σd−1 simplices around each σd−2 simplex, the

dihedral angle being arccos
(
1
d

)
2. We then substitute the integral over the metrics of Σ

with a sum over homogeneous triangulations of the manifold

ˆ

D[g] ←→
∑

T triangulation of Σ

. (1.7)

A complete account of this substitution in d dimensions can be found in [12, 79], here we

only cite the result for d = 2:

Z(Λ) =
[
e−

1
4G

]2−2h(Σ) ∑

T triangulation of Σ

[
e

Λ
8πG

]#triangles

, (1.8)

where h(Σ) is the genus - the number of handles - of the surface Σ.

Let us now turn our focus to the two dimensional case, where the problem of QG can be

solved explicitly. This will allow us to introduce the central notion of random matrices.

1.2 Discretizing surfaces

Take d = 2 and suppose Σ is an orientable compact manifold without boundary. In this

setting, classical gravity is trivial. Indeed, from the Gauss-Bonnet theorem, the scalar

2 It is worth noticing that in dimension d = 3, as arccos
(
1
3

)
6= p

q
π, the sum of deficit angles cannot

be zero, hence the question of simulating flat three dimensional spaces with tetrahedra.
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curvature3 term is topological, thus non-dynamical:

ˆ

Σ

d2x
√
|g|R = 4πχ(Σ), (1.9)

where4 χ(Σ) = 2 − 2h(Σ) is the Euler characteristic of the surface. This, however, does

no longer hold in the quantum case, the reason of which is twofold. On the one hand,

large quantum fluctuations may change the genus of the surface, the partition function

should hence involve a sum over surfaces of all genera h. We write

Z(Λ) =
∑

h

ˆ

D[g]e
− 1

16πG

(
´

d2x
√

|g|R−2Λ
´

d2x
√

|g|
)

=
∑

h

ˆ

D[g]e−
1−h
2G

+ Λ
8πG

A,

(1.10)

with A =
´

d2x
√
|g| being the area of the surface. On the other, at fixed genus, the

random contributions stem from local (quantum) fluctuations of the metric field that

modify locally the area of the surface - it can be seen by factoring out the Gauss-Bonnet

term in the path integral (1.10). An illustration of this phenomenon is best given by the

Brownian map, where “random fluctuations” of the graph distance produce highly fractal

patterns as seen in Figure 1.1.

Note that even in two dimensions, the integral over the (infinite dimensional) space of

metrics is hard to perform in general, especially if Σ is not compact. Nevertheless, a way

was developed by Polyakov [81] in the 1980s as he was working on the quantization of

the bosonic string and which is nowadays known as Liouville’s approach to QG (see [4]

for a quick review). We, however, will not be taking this route. So let us once again

discretize the surface with triangles. The triangles are chosen to be equilateral so that the

triangulation is locally flat when there are exactly six triangles incident to a vertex v and

has positive (resp. negative) curvature when there are less (resp. more). More precisely,

the discrete equivalent of the Ricci scalar for each vertex is Rv = 2π(6− deg v)/ deg v, so

that
1

4π

ˆ

Σ

d2x
√
|g|R →

∑

v∈V (T )

(
1− deg v

6

)
, (1.11)

where deg v is the degree of the vertex v ∈ V (T ), i.e. the number of triangles incident

3 Note that in dimension d = 2, the Gaussian curvature is simply given by half the Ricci scalar.
4 When Σ is non-orientable the Euler characteristic reads χ = 2−k, where k, the non-orientable genus,

is the number of real projective planes appearing in a connected sum decomposition of the surface.
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Figure 1.1 – A Brownian map of genus 0, or more precisely a very large
random bipartite quadrangulation of the sphere. Image by Jérémie Bet-

tinelli [80].

to it. Writing V , E and F respectively the total number of vertices, edges and faces

(triangles) in T , the following relations hold:
∑

v∈V (T ) deg v = 3F (as there are three

corners per triangle) and 3F = 2E (since each face has three edges, each of which shared

by two faces). From (1.6) it now follows that the discretized action takes the form

SRegge(Λ) =
1

4G
(V − 1

2
F )v0 −

Λ

8πG
v2F. (1.12)

But from the definition of the Euler characteristic,

2− 2h = V − E + F
3F=2E
= V − 1

2
F, (1.13)

the action reduces to the expression

SRegge(Λ) =
1

4G
(2− 2h)− Λ

8πG
v2F, (1.14)

given at the end of the previous section.

A way of implementing such triangulations of surfaces uses the theory of random matrices,

that we now introduce.
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1.3 Random matrices

Broadly speaking, random matrix theories deal with probability laws on spaces of matri-

ces. Originally introduced by Wishart [82] in multivariate statistics, they made their first

appearances in physics with Wigner in the 1950s [83] through the study of the energy

spectrum of large nuclei. Since that time, random matrices have spread to almost every

field of mathematics and physics. They have been used in chaotic quantum theory to

compute for instance the Rydberg levels of hydrogen atoms in a strong magnetic field

[84], by ’t Hooft [6] in the large N limit of U(N) Quantum Chromodynamics, in string

theory and to count various maps and knots [85].

A random matrix theory is defined by the choice of both a matrix ensemble and proba-

bility measure on that ensemble. Depending on the symmetries of the system, one finds

that one has to consider three sets of matrices, invariant respectively under the orthogonal

O(N), unitary U(N) and symplectic group Sp(2N). It is conventional to refer to them

by the integer β = 1, 2, 4 that counts the number of real parameters of the off-diagonal

entries. One can furthermore assume that the matrices follow a Gaussian distribution:

ρ(M)dM ∝ exp

(
−1

2
βM2

)
dM. (1.15)

For β = 2 this defines the Gaussian Unitary Ensemble (GUE) of random matrices. The

Lebesgue measure is then expressed as the product of the Lebesgue measures on the real

components of the matrix:

dM =
∏

i

dMii

∏

i<j

dReMij d ImMij. (1.16)

However, measures that we will encounter are all constructed via a potential V :

dµ(M) = e−trV (M)dM, (1.17)

often chosen to be a polynomial function, but more involved potentials, sometimes called

semi-classical, can also be considered. A matrix of the GUE has real eigenvalues and can

be diagonalized as M = UΛU †, where Λ = diag(λ1, . . . , λN) and U is a unitary matrix.

The measure (1.16) can then be rewritten in terms of the measures on Λ and U as

dM = ∆2(λ)dΛ dU, (1.18)
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where dΛ =
∏

i dλi is the Lebesgue measure on R
N , dU is the Haar measure on U(N)

and ∆(λ) is the Vandermonde determinant

∆(λ) := det
i,j

λj−1
i =

∏

j<i

(λi − λj). (1.19)

To show this, notice that (1.16) is invariant under U(N)-conjugation, thus one has for

the differential of M :
dMij = (dΛ + [dU,Λ])ij

= δijdλi + (λi − λj)dUij.
(1.20)

Computing the Jacobian then yields

dM

dΛdU
= det

i,i′

(
dMii

dλi′

)
det

i 6=j,i′ 6=j′

(
dMij

dUi′j′

)
= ∆2(λ). (1.21)

The partition function associated to the measure dµ(M) (1.17) then becomes

Z =
1

Z0

ˆ

RN

N∏

i=1

dλi∆
2(λ)e−

∑
i V (λi), (1.22)

where Z0 is a normalizing factor related to the volume of the GUE. Explicitly5, it

reads [101]

Z−1
0 =

1

(2π)NN !
vol (U(N)) =

π
N(N−1)

2

∏N
j=1 j!

. (1.23)

It will henceforth be omitted.

Introductory example – Following what was said in the previous section, we consider

a particular random triangulation of a surface as examplified in Figure 1.2. Consider

N ×N Hermitian matrices, the partition function of such a model is given by

Z(t3, N) =

ˆ

dM e−N( 1
2t
trM2− t3

3
trM3), (1.24)

where the measure of integration is (1.16). This integral may be computed by formally

expanding the t3-term of the exponential, and by explicitly performing the term-by-term

5 The prefactor in the intermediate term stems from the liberty in choosing U in the diagonalization
of M . Indeed, the set of eigenvalues remains unchanged if one multiplies U on the right by elements of
the sets U(1)N of unitary diagonal matrices and SN of permutation matrices.
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Figure 1.2 – An example of a random triangulation of a surface. Each
triangle is dual to a three point vertex of a matrix model.

Gaussian integration:

Z(t3, N) =
∞∑

k=0

Nk t
k
3

k!

ˆ

dM
(trM3)k

3k
e−

N
2t
trM2

=
∞∑

k=0

Nk tk3
3kk!
〈(trM3)k〉.

(1.25)

These integrations can be carried out by applying Wick’s theorem:

〈Mi1j1 . . .Mi2nj2n〉 = N−n
∑

{pa,qa}

n∏

m=1

δipmjqmδiqmjpm , (1.26)

where the sum is taken over all the pairings of indices such that
⋃n

a=1{pa, qa} = J1, 2nK.

As an example let us work out the case k = 2:

〈
trM3 trM3

〉
=MMMMMM +MMMMMM +MMMMMM

+MMMMMM +MMMMMM +MMMMMM

+MMMMMM +MMMMMM +MMMMMM (1.27)

+MMMMMM +MMMMMM +MMMMMM
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+MMMMMM +MMMMMM +MMMMMM,

where each matrix pair contraction is given by the propagator

MijMkl = 〈MijMkl〉 =
t

N
δilδjk. (1.28)

Hence we obtain (repeated indices are summed):

〈N2 trM3 trM3〉 = N2〈MijMjkMkiMlmMmnMnl〉

=
1

N
(δikδjjδkmδilδmlδnn + δikδjjδknδinδlnδmm + . . . )

= 12N2 + 3.

(1.29)

This computation can be given the following graphical interpretation. Consider the gen-

eral matrix model (7). To each matrix element Mij one associates an oriented double

half-edge, where each line carries an index of the matrix. Each factor of the form trMk

is pictured as a k-valent vertex with k outgoing double half-edges, each vertex carrying

a weight Ntk. By virtue of Wick’s theorem, the result of the Gaussian integration is

obtained by summing over all possible ways of connecting the half-edges of the integrand

into pairs so as to form a closed graph, called fat or ribbon graph. Each vertex now

counts for a power of N , the sum over all indices results in a weight N per loop (face) of

the graph, and each propagator, or edge, comes with a t/N factor. We obtain the total

dependence on N of a ribbon graph as

NV−E+F = Nχ = N2−2h. (1.30)

We conclude that in our example, the dominant graphs O(N2) are the (twelve) planar

ones, that can be drawn on the sphere, there are also three non planar O(1) graphs,

that can only be drawn on the torus. This result can be generalized to arbitrary n-point

correlation functions of traces of powers of M :

Theorem 1.3.1 (’t Hooft [86], Brézin–Itzykson–Parisi–Zuber [87]).

〈
n∏

k=1

N
trMpk

pk

〉

c

=
∑

Γ

Nχ(Γ)

|Aut(Γ)| , (1.31)

where the sum is taken over all connected graphs Γ with n vertices of valence pk, k ∈ J1, nK.
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Furthermore, on taking the logarithm of the partition function, one is left with only

connected graphs. In our example, we get the following expansion for what is called the

free energy
lnZ(t3, N) = F (t3, N) =

∑

h≥0

N2−2hFh(t3), (1.32)

where Fh is the generating function of triangulations of genus h. In the large N limit,

only the leading order F0 survives, it counts the planar triangulations, i.e. triangulations

of the sphere S
2.

1.3.1 The steepest way to the continuum limit

One way of computing this large N limit is through the so-called steepest descent method

- or stationary phase approximation - that we now introduce. Consider the general matrix

model given by the partition function

Z(N) =

ˆ

dMe−N trV (M)

=

ˆ ∏

i

dλi∆
2(λ)e−N

∑
i V (λi),

(1.33)

where ∆(λ) is again the Vandermonde determinant, the λis are the eigenvalues of M and

we consider a polynomial potential. Let us first rewrite this integral as:

Z(N) =

ˆ N∏

i=1

dλie
−NS(λ), (1.34)

the action being:

S(λ) =
N∑

i=1

V (λi)−
2

N

∑

j<i

log |λi − λj|. (1.35)

This action exhibits a remarkable feature. Because of the presence of the Vandermonde

determinant, the eigenvalues cannot all fall in the potential well created by V , it is as if

they were experiencing a (2D logaritmic) Coulomb repulsion6. We are now interested in

finding the stationary points of the action, i.e. in solutions {λi} satisfying
∂S

∂λi
= 0, for

6 This is known in the litterature as the Coulomb gas picture.
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all i ∈ J1, NK. We obtain the following equations for all i ∈ J1, NK,

2

N

∑

j 6=i

1

λi − λj
= V ′(λi). (1.36)

They can be solved by introducing the (trace of the) resolvent of the matrix M :

ω(x) =
1

N
tr

1

x−M =
1

N

∑

i

1

x− λi
. (1.37)

Multiplying now (1.36) by 1/(x− λi) and summing over i, one gets successively

2

N

∑

i

∑

j 6=i

1

λi − λj
1

x− λi
=
∑

i

V ′(λi)

x− λi
,

1

N

∑

i

∑

j 6=i

1

λi − λj

(
1

x− λi
− 1

x− λj

)
=
∑

i

V ′(λi)− V ′(x)

x− λi
+
∑

i

V ′(x)

x− λi
1

N

∑

i,j

1

x− λi
1

x− λj
− 1

N

∑

i

1

(x− λi)2
=
∑

i

V ′(λi)− V ′(x)

x− λi
+NV ′(x)ω(x)

ω2(x) +
1

N
ω′(x)− V ′(x)ω(x) =

1

N

∑

i

V ′(λi)− V ′(x)

x− λi
,

(1.38)

where we have divided the whole expression by N . We denote p(x) = 1
N

∑N
i=1

V ′(x)−V ′(λi)
x−λi

,

it is a polynomial in x of degree l− 2 for deg V = l. In the large N limit, we can neglect

the ω′/N term, we arrive at the equation:

ω2(x)− V ′(x)ω(x) + p(x) = 0. (1.39)

Notice that in this limit, the distribution of eigenvalues ρ(λ) = 1
N

∑
i δ(λ − λi) becomes

continuous and ω is given by the Stieltjes transform of ρ:

ω(x) =

ˆ

dλ
ρ(λ)

x− λ. (1.40)

Eq. (1.36) can then be rewritten

ˆ

dλ′
ρ(λ′)

λ− λ′ = V ′(λ). (1.41)
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The eigenvalue density is extracted from ω(x) via

ρ(x) =
1

2iπ
lim
ǫ→0

(ω(x+ iǫ)− ω(x− iǫ)) . (1.42)

A general treatment of (1.39) can be found in [4], here we will focus on the Gaussian

case, in order to introduce the topological recursion later on. Let us write

W1(x) = 〈tr
1

x−M 〉 =
∑

n≥0

x−n−1〈trMn〉,

P1(x) = 〈tr
V ′(x)− V ′(M)

x−M 〉 and set V (x) =
1

2t
x2.

(1.43)

Note that in the saddle-point approximation, W1(x) ∼ Nω(x), such that the 1-point

correlation function W1 satisfies again (1.39) with P1 = lim
N∞

p. The solution reads

W1(x) =
V ′(x)

2
−
√
V ′(x)2 − 4P1(x)

2
, (1.44)

where we chose the negative branch as W1 scales like 1/x for |x| large and with P1(x) =
1
t
.

In the general case, W1 has 2(l − 1) branch points corresponding to the roots of the

polynomial V ′2 − 4P1. The support of ρ is then composed of l − 1 disconnected pieces.

In the simplest case, which interests us here, the potential has only one minimum, there

is thus just one connected support, thus only two branch points (with opposite values as

V is even). Then:

V ′(x)2 − 4P1(x) =
x2

t2
− 4

t

=
1

t2
(x− 2

√
t)(x+ 2

√
t),

(1.45)

which was to be expected according to Brown’s lemma (see next section). Such that

W1(x) =
1

2t

(
x−
√
x2 − 4t

)
, (1.46)

from which we get back Wigner’s celebrated semi-circle law: for λ ∈ [−2
√
t, 2
√
t],

ρ(λ) =
1

2πt

√
4t− λ2. (1.47)
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1.3.2 The double scaling limit

Consider now the following quartic model,

Z(t4, N) =

ˆ

dM e−N( 1
2
trM2+

t4
4
trM4). (1.48)

The free energy F (t4, N) = logZ(t4, N) admits an expansion over Feynman graphs.

Graphs contributing to F (t4, N) are ribbon graphs with 4-valent vertices and no external

leg, while those contributing to the 2-point function G2(t4, N) = 〈 1
N
trM2〉 are graphs

with quartic vertices and a marked edge. Let us now use the apparatus developed in the

previous paragraphs to compute the 2-point function in the large N limit. The potential

is now the following

V (x) =
1

2
x2 +

t4
4
x4, (1.49)

and the correlation function becomes

W1(x) =
1

2
(x+ t4x

3)− 1

2
(1 + t4x

2 + 2t4a
2)
√
x2 − 4a2, (1.50)

with

a2 =
1

6t4
(
√
1 + 12t4 − 1). (1.51)

From (1.42) together with (1.43) we find that

ρ(λ) =
1

2π
(1 + t4λ

2 + 2t4a
2)
√
4a2 − λ2. (1.52)

Notice that as t4 → 0, a → 1 and we recover Wigner’s semi-circle law (for t = 1). We

may now compute the 2-point function from

G2(t4) =

ˆ

dλλ2ρ(λ). (1.53)

This leads to (the sum is taken over the unmarked faces):

G2(t4) =
(1 + 12t4)

3/2 − 18t4 − 1

54t24
=
∑

n≥1

2 · 3n
(n+ 1)(n+ 2)

(
2n

n

)
(−t4)n−1, (1.54)

a result already obtained by Tutte in the 1960s [88] for counting rooted planar quadran-

gulations. From Theorem 1.3.1, it follows that G2(t4, N) can be expanded over powers of
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N , indexed by the genus h of the surface:

G2(t4, N) =
∑

h≥0

N2−2hG2,h(t4). (1.55)

From Eq. (1.54) we see that the planar contribution of the 2-point function exhibits a

critical behavior (square root branch point) at tc = − 1
12

and can thus be expanded as

G2(t4) ∼
t→t4

∑

n

nγ−3

(
t4
tc

)n

∼
t→t4
|tc − t4|2−γ, (1.56)

which is known as the critical limit. In our quartic potential example, γ = −1
2
. This is

generalized for higher order genera to7 8

G2,h(t4) ∼
t→t4

∑

n

n(γstr−2)(1−h)−1

(
t4
tc

)n

∼
t→t4

ah|tc − t4|(2−γstr)(1−h). (1.57)

We see that the higher genus contributions are enhanced when t4 approaches tc, this

means that if we take simultaneously the limit N → ∞ and t4 → tc, the large N genus

suppression would be compensated by the enhanced t4 → tc one, enabling every genus

surfaces to be treated on equal footing. To see this, define

κ−1 = N(t4 − tc)(2−γstr)/2 (1.58)

and take the limits N →∞ and t4 → tc by keeping fixed the coupling κ, yielding

G2(κ) =
∑

h≥0

ahκ
2h−2. (1.59)

This is known as the double scaling limit.

7 The critical exponent γstr is called the string susceptibility exponent, it characterizes asymptotically
the number of planar graphs with a fixed number of vertices. Note that in the planar case, γstr coincides
with γ of (1.56).

8 This is quite a striking result, it holds for every genus and while the exponent could a priori be any
complicated function of h, it is merely linear.
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1.3.3 Loop equations and topological expansion

We now turn our attention to the loop equations. In essence, loop equations are re-

lations between correlation functions obtained by integrating by parts in the matrix

integral. Equivalently, loop equations follow from the invariance of the matrix integral

under changes of integration variables – in this sense, loop equations are Schwinger–Dyson

equations and we will use the two names interchangeably. Consider thus the following

vanishing integrals:

1

Z

ˆ

dM
∑

a,b

∂

∂Mab

(
(Mn)abe

−N trV (M)
)
= 0, (1.60)

and let us define the connected correlation functions of order n:

Wn(x1, . . . , xn) =
∑

k1,...,kn

n∏

i=1

x−ki−1

〈
n∏

i=1

trMki

〉

c

=

〈
n∏

i=1

tr
1

xi −M

〉

c

, (1.61)

where the subscript c of course stands for “connected” and the connected expectation

value is defined by restricting its Feynman expansion to connected graphs only. For our

model, the loop equations yield

n−1∑

k=0

(
〈trMk〉〈trMn−1−k〉+ 〈trMktrMn−1−k〉c

)
−N〈tr(MnV ′(M))〉 = 0. (1.62)

To get the equation satisfied by the generating functions, multiply this equation by x−n−1

and sum over n. The first term becomes W1(x)
2 +W2(x, x). For the second term use the

following trick

∑

n≥0

〈tr(MnV ′(M))〉x−n−1 = 〈tr V
′(x)

x−M 〉 − 〈tr
V ′(x)− V ′(M)

x−M 〉

= V ′(x)W1(x)− P1(x),

(1.63)

yielding the 1-point equation

W1(x)
2 +W2(x, x)−NV ′(x)W1(x) +NP1(x) = 0. (1.64)

We will now act repeatedly on (1.64) with the loop insertion operator defined as follows.

If we write the potential as V (M) =
∑

n tnM
n, then for all x ∈ C, δ

δV (x)
=
∑

n x
−n−1 ∂

∂tn
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is such that
δ

δV (x)
Wn(x1, . . . , xn) = Wn+1(x, x1, . . . , xn). (1.65)

Before giving the n-point equation, define the sets I1, I2 ⊆ J2, nK that are such that

I1 ⊔ I2 = J2, nK. We furthermore write xIα the |Iα|-tuple of x values. We then have

∑

I1,I2

W|I1|+1(x1, xI1)W|I2|+1(x1, xI2) +Wn+1(x1, x1, . . . , xn)

+
n∑

j=2

∂

∂xj

Wn−1(x1, . . . , xj−1, xj+1, . . . , xn)−Wn−1(x2, . . . , xn)

x1 − xj
−NV ′(x1)Wn(x1, . . . , xn) +NPn(x1, . . . , xn) = 0,

(1.66)

where we defined

Pn(x1, . . . , xn) =

〈
tr
V ′(x1)− V ′(M)

x1 −M
n∏

i=2

tr
1

xi −M

〉

c

, (1.67)

it is a polynomial function in its first argument x1.

Finally, we know by Theorem 1.3.1 that all correlation functions admit the following

topological expansion

Wn(x1, . . . , xn) =
∑

g≥0

N2−2g−nWn,g(x1, . . . , xn). (1.68)

Plugging this into (1.66) then yields

∑

g1+g2=g

∑

I1,I2

W|I1|+1,g1(x1, xI1)W|I2|+1,g2(x1, xI2) +Wn+1,g−1(x1, x1, . . . , xn)

+
n∑

j=2

∂

∂xj

Wn−1,g(x1, . . . , xj−1, xj+1, . . . , xn)−Wn−1,g(x2, . . . , xn)

x1 − xj
−NV ′(x1)Wn,g(x1, . . . , xn) +NPn,g(x1, . . . , xn) = 0.

(1.69)
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1.4 A story of maps

There are various ways to define combinatorial maps, that will not be listed here. Instead

we will focus on two particular definitions that will be of interest for us, namely the

topological one and through Feynman graphs.

Definition 1.4.1 (Cellular embedded graph). A cellular embedded graph is the datum

(S,G, f) where

• S is a closed (connected, oriented) topological surface,

• G is a connected graph,

• f : G→ S is such that

(i) f(G) is a union of Jordan arcs,

(ii) S\f(G) is a union of simply connected open subsets of S.

Two cellular embedded graphs (S,G, f) and (S ′, G′, f ′) are said to be isomorphic if and

only if there exist a surface homeomorphism ψ : S → S ′ and a graph homeomorphism

φ : G→ G′ such that the following diagram commutes

. (1.70)

We are now equipped to give our first definition of a map.

Definition 1.4.2 (Combinatorial map [60]). A map is an equivalence class of cellular

embedded graphs modulo graph isomorphisms.

We call face a connected component of S\f(G), its degree is defined as the number of arcs

making up its boundary. A face can be marked by marking an edge, which is oriented so

that the face is on its right. A map with n boundaries is then a map with n marked faces

such that each face has only one marked edge oriented such that it is on its right. Let

us define the set of maps with n boundaries, v vertices and genus g as Mv
n,g and write

for m ∈ Mv
n,g, ni(m) the number of unmarked faces of m of degree 1 ≤ i ≤ l and kj(m)

the degree of the jth marked face. We furthermore allow marked faces to have degree at
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least one9, except for the atomic map for which k1(•) = 0. The generating function of

these maps is given by:

Wn,g(x1, . . . , xn|t1, . . . , tl|t) ≡
∞∑

v

tv
∑

m∈Mv
n,g

l∏

i=1

t
ni(m)
i

|Aut(m)|
n∏

j=1

x
−kj(m)−1
j

∈ ◗[x−1
1 , . . . , x−1

n , t1, . . . , tl][[t]],

(1.71)

where |Aut(m)| = 1 for all n ≥ 1, as marking a face kills the symmetries of the map.

Notice also that the number of vertices is redundant in the previous formula. Indeed,

from the definition of the Euler characteristic of a map with boundaries m ∈Mv
n,g,

χ(m) = 2− 2g − n = v − e+
l∑

i=1

ni(m), (1.72)

where e is the number of edges of the map, that expresses as twice the number of half-

edges:

2e =
n∑

j=1

kj(m) +
l∑

i=1

ini(m), (1.73)

yielding overall

v =
1

2

n∑

j=1

kj +
1

2

l∑

i=1

(i− 2)ni + χ. (1.74)

Wn,g can thus be recast into a formal power series in◗[[x−1
1 , . . . , x−1

n , t1, . . . , tl]] by making

the following substitutions

ti → tit
i
2
−1, xj →

xj√
t
, t→ 1, (1.75)

and working with t = 1. We will use the two definitions interchangeably and merely write

Wn,g(x1, . . . , xn) the generating function. It relates to the matrix correlation functions

by setting the potential to

V (x) =
x2

2
+

l∑

i=1

ti
i
xi. (1.76)

9 This means that our graphs may contain tadpoles and multi-edges.
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1.5 Topological recursion for the 1-Hermitian matrix

model

The topological recursion (short for Eynard-Orentin topological recursion [57, 58, 59, 60])

is in layman’s terms, a way of counting maps of a given topology, using only planar maps.

Recall Equation (1.44) of the previous section where we solved for W1(x) in the Gaussian

case. Let us now get more involved. First define

f(x, y) = y2 − V ′(x)y + P1(x). (1.77)

Notice that W1 satisfies f(x,W1(x)) = 0. We know that W1 is defined near infinity
(
∼ 1

x

)

but the form of the polynomial

V ′(x)2 − 4P1(x) ∝
2l−2∏

i=1

(x− ai) (1.78)

tells us it cannot be analytically continued on the whole complex plane, but instead on

Ĉ \
l−1⋃

i=1

[a2i−1, a2i], (1.79)

where Ĉ is the Alexandroff compactification of C obtained by adding a point at infinity,

Ĉ = C∪{∞} ≃ CP
1 and is called the Riemann sphere. Also the intervals [a2i−1, a2i] := Γi

are the branch cuts and we write Γ =
⋃l−1

i=1 Γi. One can thus define W1 either on Ĉ\Γ or

on the whole Riemann sphere, rendering it multivalued. In the case where W1 has only

one branch cut [a−, a+], one has the following useful lemma, referred to as Brown’s or

1-cut lemma:

Lemma 1.5.1 (Brown). The singular part of W1 can be written

V ′(x)2 − 4P1(x) =M(x)2(x− a+)(x− a−), a± = α± 2γ, (1.80)

where





α ∈ C[t1, . . . , tl][[t]], α = O(t)

γ2 ∈ C[t1, . . . , tl][[t]], γ2 = t+O(t2)

M(x) ∈ C[t1, . . . , tl][[t]][x], M(x) =
V ′(x)

x
+O(t).
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So that the solution to f(x, y) = 0 is given by

W1(x) =
V ′(x)

2
± 1

2
M(x)

√
(x− a+)(x− a−), (1.81)

which is of course (1.44) when we choose the negative branch. At this point however,

W1 remains multivalued, it is then convenient to introduce a two-sheeted cover of the

Riemann sphere. This is done by parametrizing the algebraic curve f(x, y) = 0 through

the so-called Zhukowsky transformation given for z ∈ Ĉ by

x(z) =
a+ + a−

2
+
a+ − a−

4
(z + z−1),

y(z) =
4

a+ − a−
z−1.

(1.82)

The exterior of the unit disc |z| > 1 then corresponds to the physical sheet, i.e. Equa-

tion (1.81) with the negative sign, while the interior |z| < 1 is mapped to the non-physical

sheet, i.e. Equation (1.81) with the positive sign. The two sheets are exchanged by the

(local Galois) involution that leaves the covering map x invariant:

ι : z 7→ 1/z. (1.83)

Note that the fixed points of ι are the zeros of x′(z), namely the branch points z = ±1,
and their images by x are the extremities of the cut a− and a+.

1.5.1 Disc and cylinder functions

From (1.68) we immediately see that in the large N limit the only surviving terms are

the planar ones, i.e those for which g = 0. The planar correlation functions then sat-

isfy (1.66). There are two of them of importance for us here:

• the disc function W1,0(x) = limN→∞
1
N
W1(x), which is the generating function for

rooted planar maps with one marked face, and

• the cylinder function W2,0(x1, x2) = limN→∞W2(x1, x2), which is the generating

function for planar maps with two boundaries.

Disc function – We already computed the disc amplitude in the previous section, it is

given by

W1,0(x) =
1

2t

(
x−
√
x2 − 4t

)
, (1.84)
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it has a cut along Γ = [−2
√
t, 2
√
t].

Cylinder function in the Gaussian case – By setting n = 2 in (1.66), one gets

(V ′(x1)− 2W1,0(x1))W2,0(x1, x2) =
∂

∂x2

W1,0(x1)−W1,0(x2)

x1 − x2
+ P2,0(x1, x2). (1.85)

We now restrict ourselves to the Gaussian case again, then by denoting the singular part

σ(x) =
√
x2 − 4t, we have

∂W1,0(x)

∂x
= −W1,0(x)

σ(x)
, (1.86)

which leads to the following expression for the Gaussian cylinder function

W2,0(x1, x2) =
x1x2 − σ(x1)σ(x2)− 4t

2(x1 − x2)2σ(x1)σ(x2)
. (1.87)

1.5.2 Topological recursion formula

Our correlation functions are singular on the cut Γ = [−2
√
t, 2
√
t] except for (n, g) ∈

{(1, 0), (2, 0)}, we thus perform a Zhukowsky tranformation (1.82)

x(z) =
√
t(z + z−1), (1.88)

that allows us to turn our correlation functions into differential forms by defining

ωn,g(z1, . . . , zn) := Wn,g(x1, . . . , xn)dx1 . . . dxn + δ(n,g),(2,0)
dx1dx2

(x1 − x2)2
, (1.89)

where for all i ∈ J1, nK,

xi = x(zi) and dxi = x′(zi)dzi. (1.90)

They have the following properties [60] that we do not prove here:

1. ωn,g(z1, . . . , zn) is a meromorphic form in every variable,

2. ωn,g is ι-antisymmetric, i.e. for all i ∈ J1, nK, (n, g) 6= (1, 0),

ωn,g(z1, . . . , zn) = −ωn,g(z1, . . . , ι(zi), . . . , zn), and

3. for 2g − 2 + n > 0 and (n, g) /∈ {(1, 0), (2, 0)}, ωn,g(z1, . . . , zn) has poles in z1 only

at z1 → ±1.
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One can then compute the disc and cylinder forms of the GUE:

ω1,0(z) =
1− z−2

z
dz

ω2,0(z1, z2) =
dz1dz2

(z1 − z2)2
.

(1.91)

Finally, we will need the following notations. For a differential form ϕ denote

∆ϕ = ϕ− ι∗ϕ, (1.92)

where the ∗ denotes the pullback on differential forms, also write

G(z, z1) =

ˆ z

ι(z)

ω2,0(·, z1), (1.93)

and define the recursion kernel

K(z, z1) =
∆G(z, z1)

2∆ω1,0(z)
. (1.94)

This allows us to write the following theorem:

Theorem 1.5.2 (Eynard ’04). For all 2g − 2 + n > 0, one has

ωn,g(z1, . . . , zn) = Res
z→±1

K(z, z1)

[
ωn+1,g−1(z, ι(z), z2, . . . , zn)

+

′∑

I1⊔I2=J2,nK
g1+g2=g

ω|I1|+1,g1(z, zI1)ω|I2|+1,g2(ι(z), zI2)

]
,

(1.95)

where the primed summation
∑′

is to be understood as the exclusion of the terms

(I1, g1) = (∅, 0) and (I1, g1) = (J2, nK, g). This formula expresses ωn,g in terms of invariants

with larger Euler characteristic χ = 2− 2g− n, hence the name topological recursion. It

stops after |χ| steps, when it reaches χ = 0 and hence ω2,0.
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Random tensor models

Tensor models are a natural generalization in dimension d > 2 of matrix models. Intro-

duced almost thirty years ago, their aim was to reproduce the successes of matrix models

in providing a theory of random geometries, especially in ways of quantizing QG. The

basic idea is that a certain integral over a space of rank-d tensors is the partition function

of a theory of d-dimensional triangulations.

Let V be a vector space over a field K of dimension dimK V = N . A tensor T of type

(p, q) can be seen as an element of V ⊗p ⊗ V ∗⊗q, where V ⊗p is to be understood as the

tensor product of p copies of V , and V ∗ is the corresponding dual space. If we equip

V and V ∗ with the canonically associated bases {ea} and {εb} (εb(ea) = δba) then the

components of T are defined as

T = T
a1...ap

b1...bq
ea1 ⊗ · · · ⊗ eap ⊗ εb1 ⊗ · · · ⊗ εbq , (2.1)

where repeated indices are summed. In what follows we will often identify the tensor with

its components in a given basis (that will not be specified). Also we do not distinguish

between covariant (down) and contravariant (up) indices. Hence, for us a tensor of rank

d ∈ N>2 will be written Ta1...ad , where of course ac ∈ J1, NK for all c ∈ J1, dK.

Consider now such a tensor and its complex conjugate, treated as independent variables.

We further assume that they obey no symmetry relations upon permutation of their

indices. In general, the main object of interest in any quantum theory is the expectation

value of a certain observable O, taken to be a function O(T, T ) of the components of the

tensor, we define it as

〈
O(T, T )

〉
=

1

Z(N)

ˆ

V ⊗d

dµC(T, T )O(T, T )e
−Nd−1V (T,T ), (2.2)
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where Z(N) =
´

dµC(T, T )e
−Nd−1V (T,T ) is the partition function and dµC(T, T ) the Gaus-

sian measure of covariance C defined as

dµC(T, T ) = detC−1e
−Nd−1

∑
ap,bp

Ta1...ad
(C−1)

a1...ad
b1...bd

T b1...bd

∏

ap

dTa1...addT a1...ad . (2.3)

Standard (invariant) tensor models are built from the standard Gaussian measure with

identity covariance, reducing the Gaussian measure to

dµ0(T, T ) := e−Nd−1 T ·T
∏

ap

dTa1...addT a1...ad . (2.4)

Non invariant tensor models, such as those arising from group field theories require

more involved covariances [89], such as projectors over gauge invariant states or in-

verse Laplacians. Finally, a typical interaction term V (T, T ) may be written in the form

V (T, T ) =
∑

i∈I N
δiλiBi(T, T ), for some finite set I, scaling coefficients {δi} and coupling

constants {λi}. The Bis are polynomials in the tensor entries and will be introduced in

the next section. We will get back to them in many more details in Part III. An example

of such an interaction term is given by the so-called multi-orientable model [90] where

Vmo(T, T ) =
λ
4

∑
i,j,k,l,m,n TijkT imnTnjlT lmk.

2.1 Uncolored tensor models

There is a natural transformation of a complex covariant rank d > 2 tensor T under the

action of the tensor product of representations of
⊗d

c=1 U(Nc) where each factor acts on

a tensor index independently. The complex conjugate of T is a contravariant tensor of

the same rank and denoted T . Here T is considered an object in W =
⊗d

c=1 Vc, where Vc
for all c ∈ J1, dK is some Hermitian space of dimension dim❈ Vc = Nc.

This defines uncolored tensors1, they transform in a given basis as

TU
a1...ad

=
∑

b1,...,bd

U
(1)
a1b1

. . . U
(d)
adbd

Tb1...bd

T
U

a1...ad
=
∑

b1,...,bd

U
(1)

a1b1
. . . U

(d)

adbd
T b1...bd ,

(2.5)

1 The name is historical. The first models [11] to be proven to admit a large N expansion required
d+1 pairs of colored conjugate tensors T c, T̄ c. It was then shown that integrating out all tensors but one
in the initial colored model leads to an action for a single uncolored tensor, hence effectively uncoloring
the colored model [28].



2.1. Uncolored tensor models 49

where for all c ∈ J1, dK the U (c)s are in fact the matrices of the group representations

ρc ∈ Hom(U(Nc), GL(Vc)). One can of course construct other such models by taking a

different Lie group in lieu of each U(Nc), e.g. in the multi-orientable model [90], W carries

a representation of U(N1)×O(N2)× U(N3), while the main focus of Part II will be put

on real tensors transforming under tensor products of representations of the orthogonal

group O(N).

We are now interested in constructing polynomial invariants of the components of the

tensors, called - by analogy with matrix models - trace invariants. Those can be obtained

by contracting, in all ways possible, pairs of covariant and contravariant tensors. As it

turns out, these contractions are in bijection with k-edge-colored bipartite graphs called

bubbles that we now introduce.

Definition 2.1.1 (k-bubble). A bipartite closed k-colored graph or k-bubble is a graph

B = (V (B), E(B)) that is a collection V (B) of vertices of fixed valence k and set E(B)

of edges, such that

• V (B) can be partitioned into two disjoint sets V • and V ◦ of equal size, such that

each edge e may only connect a vertex v• ∈ V • called black to a vertex v◦ ∈ V ◦

called white;

• the graph has a k-line coloring τ , that is an assignment of a color to each edge,

τ : E(B)→ J1, kK, such that the colors of the k edges incident to any vertex are all

different. Note that τ−1(c) is the subset of lines of color c.

The trace invariant associated to the k-bubble B is denoted

TrB(T, T ) or B(T, T ) :=
∑

i,j

δBij
∏

v,v′∈V (B)

TivT jv′
, δBij =

k∏

c=1

∏

ec∈τ−1(c)

δic
v•(ec)

jc
v◦(ec)

(2.6)

Following the Italian school of Pezzana, we know that every regular bipartite (d + 1)-

edge-colored graph G represents a d-dimensional colored triangulation of an orientable

pseudo-manifold. Besides, from our previous definition, a k-bubble of G is a maximally

connected subgraph of G comprising only edges with k fixed colors. We then get the

colored triangulation by duality, where every k-bubble Bk represents a (d−k)-subsimplex

σd−k and the (k + 1)-bubbles containing Bk represent the faces of σd−k. In particular,

(d− 2)-subsimplices correspond to cycles in the graph alternating two different colors. In

general we have the following correspondences:
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dual triangulation colored graph

d-simplex ↔ vertex

(d− 1)-simplex ↔ edge

(d− 2)-simplex ↔ bicolored cycle

(d− k)-simplex ↔ k-bubble

A colored d-simplex is a simplex, the boundary (d−1)-subsimplices of which have a color

in J0, dK such that each color appears exactly once. Through the colors, we can thus

define a canonical attaching rule between colored simplices as follows.

Notice that in a colored d-simplex, every (d − 2)-subsimplex is shared by exactly two

(d − 1)-subsimplices, say of colors c, c′, and can thus be labeled by the pair of colors

{c, c′}. Similarly, a (d− k)-subsimplex is identified by a k-bubble of colors in J1, dK. The

attaching rule is then the following. Take two different (d− 1)-subsimplices σc and σ′
c of

the same color c ∈ J0, dK living in two different d-simplices and attach them in the only

way that identifies all the subsimplices of σc and σ′
c which have the same color labels. In

other words, it is the only attaching map which preserves all induced colorings of their

k-subsimplices for k ∈ J0, d−1K. Let us give two lower-dimensional examples for the sake

of clarity.

In two dimensions, a colored triangle has edges of colors 0, 1, 2, and vertices ((d − 2)-

simplices) labeled by the pairs of colors {0, 1}, {1, 2}, {0, 2} where the vertex with colors

{c, c′} is the one shared by the edges of colors c and c′. Two triangles can be glued along

an edge of say color 0 by identifying the vertices of colors {0, 1} on both triangles, and

similarly identifying the vertices of colors {0, 2}, see Figure 2.1.

Figure 2.1 – Unique gluing of triangles of colors {0, 1, 2} which respects
all subcolorings.

In three dimensions, a colored tetrahedron has four triangles (faces) of colors 0, 1, 2, 3,

six edges ((d− 2)-simplices) colored {c, c′}0≤c<c′≤3 where {c, c′} labels the edge shared by

the triangles of colors c and c′, and four vertices ((d− 3)-simplices) with labels {0, 1, 2},
{0, 1, 3}, {0, 2, 3}, {1, 2, 3} where the vertex with label {c, c′, c′′} is the one shared by the
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three triangles of colors c, c′ and c′′. Two tetrahedra can be glued along a triangle of

color say 0 by identifying pairwise the edges which have 0 in their labels, i.e. both edges

of colors {0, c} for c 6= 0 in the two tetrahedra are identified, and further identifying

pairwise the vertices which have 0 in their labels, i.e. both vertices with colors {0, c, c′}
in the two tetrahedra are identified for all 1 ≤ c < c′ ≤ 3, as shown in Figure 2.2.

Figure 2.2 – Unique gluing of tetrahedra of colors {0, 1, 2, 3} which re-
spects all subcolorings.

2.2 Gurau degree and melons

Let us now introduce some definitions.

Definition 2.2.1 (Jacket). Let G be a (d+ 1)-colored graph and τ be a cycle on J0, dK.

A colored jacket J of G is an edge-colored ribbon graph having as 1-skeleton the graph G
and with faces made of graph cylces of colors (τ q(0), τ q+1(0)), for q ∈ J0, dK, modulo the

orientation of the cycle.

There are d!/2 such jackets for every (d+1)-colored graph, and being ribbon graphs, they

are completely classified by their genus gJ .

Definition 2.2.2 (Gurau degree [5]). The degree ω(G) of a colored graph G is the sum

of the genera of its jackets

ω(G) =
∑

J

gJ ≥ 0. (2.7)

The main characteristic of the degree is that it allows to count the number of faces of a

graph. Indeed, for a (d + 1)-colored graph with 2p vertices, the total number of faces is

given by

F =
d(d− 1)

2
p+ d− 2

(d− 1)!
ω(G). (2.8)
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The (reduced) degree can also be defined for the dual d-dimensional triangulation T and

reads

ω(T ) = d+
d(d− 1)

4
nd − nd−2. (2.9)

Notice that for d = 2, the degree corresponds to (twice) the genus of the surface. In higher

dimensions, it provides a generalization of the latter. It is not a topological invariant,

but it combines topological and combinatorial information about the graph.

There is a single quadratic trace invariant up to a factor, it is associated to the dipole, a

bubble made of two vertices and connected by d edges. Its trace invariant reads

TrD(T, T ) =
∑

ap

Ta1...adT a1...ad = T · T , (2.10)

and is used to construct the normalized Gaussian measure (2.4). Let now I be a finite

set, {Bi}i∈I a set of bubbles and {ti} their coupling constants. This allows us to define

the most general (d + 1)-dimensional generic tensor model via the following partition

function:

Z({ti}, N) =

ˆ

dµ0(T, T ) exp−Nd
∑

i∈I
N− 2

(d−1)!
ω(Bi)tiBi(T, T ). (2.11)

Remark 2.2.3. A large N expansion exists if and only if ω is bounded from below.

Let us now focus on a specific family of graphs called melonic, defined by inserting

recursively dipoles on the fundamental melon, himself a d-dipole.

Definition 2.2.4 (Melon). The melonic graphs or melons are the graphs generated by

melonic insertions on the elementary melon.

This process is illustrated in Figures 2.3 and 2.4 hereunder.

Figure 2.3 – The D-dipole or elementary melon.

Theorem 2.2.5 (Bonzom, Gurau, Riello, Rivasseau, 2011 [12]). The degree of a graph

vanishes if and only if the graph is a melon.
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Figure 2.4 – A melonic insertion on an edge of color i.

Proof. Let us give the proof for the necessary condition, the reverse being trivial. We start

by computing the degree for the elementary melon, from which we can generate every

melonic graph by repeated melonic insertions. For the elementary melon M , F = d(d+1)
2

and p = 1, hence from (2.8) ω(M) = 0.

Lemma 2.2.6. Melonic insertion leaves the degree unchanged.

Proof. By melonic insertion,

{
p → p+ 1

F → F + d(d−1)
2

,
(2.12)

such that again by (2.8), the degree remains the same. ✷

Which completes the proof. ✷

Remark 2.2.7. Melonic graphs form an infinite family of diagrams with vanishing degree.

From (2.7) and Theorem 2.2.5 one can then conclude that the generic tensor model (2.11)

has a well defined large N expansion dominated by melonic interactions Feynman graphs.

2.3 Counting U(N) invariants

In this section we restrict our discussion to d = 3, generalization to arbitrary dimension

is straightforward.

2.3.1 Symmetric group enumeration

Recall that invariants are generated by all the possible ways to contract pairs of covariant

and contravariant tensors. Diagrammatically, one can view these contractions as all

possible pairings between, say, n white and n black vertices, as depicted in Figure 2.52.

2 In Figure 2.5 the color labels have been made explicit to emphasize the fact that each white vertex
connects to a black one through edges of the same color. This is the most general 3-bubble with invariant
given by Equation (2.6).
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Figure 2.5 – Diagrammatic contraction of pairs of rank-3 tensors defining
the triple of permutations (σ1, σ2, σ3).

The different connections can be parametrized by a permutation σ ∈ Sn. Different

permutations can give the same graph if they are related by an equation of the form

σ′ = γ1σγ2, where γ1, γ2 live in subgroups H1, H2 of Sn related to the symmetries of the

white and black vertices respectively. This allows to count invariants as points in double

cosets of permutation groups. The enumeration of possible graphs is then recast into

counting triples of permutations

(σ1, σ2, σ3) ∈ (Sn × Sn × Sn), (2.13)

under the equivalence relation

(σ1, σ2, σ3) ∼ (γ1σ1γ2, γ1σ2γ2, γ1σ3γ2), (2.14)

where γ1, γ2 ∈ Sn. We are thus counting points in the double coset

Diag(Sn)\(Sn × Sn × Sn)/Diag(Sn). (2.15)

We denote the number of points in this double coset as Z3(n). For more general subgroups

H1 ≤ G, H2 ≤ G, the cardinality of such a coset is given by (see below)

|H1\G/H2| =
1

|H1||H2|
∑

C

ZH1→G
C ZH2→G

C zC , (2.16)

where the sum runs over conjugacy classes C of G, ZH→G
C is the number of elements

of H in C and zC stands for the size of the centralizer of C. The conjugacy classes

of S 3
n are entirely determined by a triple of partitions of n, namely (p1, p2, p3). This

correspondence holds because each conjugacy class is determined by a cycle structure.
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The diagonal subgroup now produces conjugacy classes of the form (p, p, p), and applying

(2.16), one gets

Z3(n) =
1

(n!)2

∑

p⊢n

(
n!

zp

)2

z3p =
∑

p⊢n

n∏

i=1

ipipi! , (2.17)

where the sum over p = (pℓ)ℓ is performed over all partitions of n =
∑

i ipi and

zp =
∏

i

ipipi! (2.18)

denotes the number of elements in Sn commuting with any permutation of cycle type p.

This sequence can be generated [29] and shows

1, 4, 11, 43, 161, 901, 5579, 43206, 378360, 3742738, . . . (2.19)

which corresponds to the series A110143 of the OEIS website.

Note that the number Z3(n) counts both connected and disconnected invariants. Fig-

ure 2.6 on the next page shows the graphical representation of the connected invariants

up to n = 3. The first order terms are (the capital letters refer to Figure 2.6):

• Z3(1) = 1 consists in the single connected dipole A,

• Z3(2) = 4 consists in three connected invariants, B1, B2 and B3, one of which being

given by ∑

ia,i′a

T
ic1 ic2 ic3

T
i′c1 ic2 ic3

Ti′c1 i
′
c2

i′c3
T

ic1 i
′
c2

i′c3 (2.20)

while the two others are obtained by a color permutation, plus one disconnected

invariant of the form (
∑

ia

Tic1 ic2 ic3T ic1 ic2 ic3

)2

, (2.21)

which is nothing but twice the dipole term (A,A),

• Z3(3) = 11 consists in seven connected invariants, viz. C1, C2, C3, D1, D2, D3

and E, plus four disconnected ones given by the combinations (A,A,A), (A,B1),

(A,B2) and (A,B3).

To get the number of connected invariants Zc
3(n) one can use the plethystic logarithm

function (see Chapter 4) and finds

1, 3, 7, 26, 97, 624, 4163, 34470, 314493, 3202839, . . . (2.22)
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Figure 2.6 – Colored graphs associated to connected contractions of pairs
of rank-3 tensors defining the triple of permutations (σ1, σ2, σ3).

Note that Equation (2.17) easily generalizes to arbitrary dimension d:

Zd(n) =
∑

p⊢n
zd−2
p . (2.23)

Let us now revisit this counting once more in the Topological Field Theory framework.

Equation (2.16) is in fact a consequence of Burnside’s lemma for counting the number of

orbits of a group action, we state it without proof:

Proposition 2.3.1. (Burnside’s lemma)

Consider a finite set X and a finite group H acting on it by multiplication. The number

of orbits of the H-action on X, denoted |X/H| is given by the average number of fixed

points of the group action. More explicitly,

|X/H| = 1

|H|
∑

h∈H
Xh, (2.24)

where Xh = {x ∈ X |h · x = x} is the set of fixed points of h ∈ H.
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Consider thus the double coset as the orbit of the H1×H2 - action on G. The fixed-point

counting formula for the number of orbits is given by

|H1\G/H2| =
1

|H1||H2|
∑

h1∈H1

∑

h2∈H2

∑

g∈G
δ(h1gh2g

−1), (2.25)

where δ is the delta function over the group G, equal to 1 if the argument is the identity

element and 0 otherwise. From this definition of the delta function, one sees that h1 and

h2 have to be in the same conjugacy class of G. Next, organise the sums according to

the conjugacy classes C of G and note the number of elements in the conjugacy class C

from H1 (resp. H2) Z
H1→G
C (resp. ZH2→G

C ). So the counting picks up a ZH1→G
C ZH2→G

C

term from the h1, h2 sums and for each such pair, there are zC possible gs, hence (2.16).

Particularizing to our double coset (2.15), this becomes - using (A.5) -,

Z3(n) =
1

(n!)2

∑

γi∈Sn

∑

σi∈Sn

δ(γ1σ1γ2σ
−1
1 )δ(γ1σ2γ2σ

−1
2 )δ(γ1σ3γ2σ

−1
3 )

=
1

(n!)2

∑

γi∈Sn

∑

Rl⊢n
χR1(γ1)χ

R1(γ2)χ
R2(γ1)χ

R2(γ2)χ
R3(γ1)χ

R3(γ2)

=
∑

Rl⊢n
C(R1, R2, R3)

2,

(2.26)

where the symbol

C(R1, R2, R3) =
1

n!

∑

σ∈Sn

χR1(σ)χR2(σ)χR3(σ), (2.27)

stands for the Kronecker coefficient that can be defined as the multiplicity of the irre-

ducible representation R3 in the tensor product of the irreps R1 and R2, or equivalently

as the multiplicity of the one-dimensional representation in R1 ⊗ R2 ⊗ R3. We refer the

reader to Appendix A for a precise definition of representations and characters of the

symmetric group. Hence, counting observables of tensor models of rank 3 coincides with

a sum of squares of Kronecker coefficients. As it turns out, this sum is also the dimension

of an algebra:
dimK3(n) =

∑

Rl⊢n
C(R1, R2, R3)

2. (2.28)
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2.3.2 Double coset algebra

In what follows we only state the main results pertaining to this algebra, a detailed

account thereof can be found in [30], while the orthogonal case will be addressed in

Chapter 5. We consider C[Sn] := SpanC{σ, σ ∈ Sn} the group algebra over Sn.

K3(n) as a double coset algebra in C[Sn]
⊗3 – Consider elements σ1⊗σ2⊗σ3 ∈ C[Sn]

⊗3

and the left and right diagonal action of Diag(C[Sn]) on the triple as:

σ1 ⊗ σ2 ⊗ σ3 →
∑

γi∈Sn

γ1σ1γ2 ⊗ γ1σ2γ2 ⊗ γ1σ3γ2, (2.29)

K3(n) is the vector subspace of C[Sn]
⊗3 which is left invariant by this group action:

K3(n) = SpanC

{
∑

γi∈Sn

γ1σ1γ2 ⊗ γ1σ2γ2 ⊗ γ1σ3γ2, σ1, σ2, σ3 ∈ Sn

}
. (2.30)

The equivalence classes defining K3(n) are the double cosets (2.15). Noticing that

id⊗ id⊗ id is the unit of K3(n), one easily verifies the following proposition.

Proposition 2.3.2. K3(n) is an associative unital subalgebra of C[Sn]
⊗3.

A Fourier basis of invariants – The Fourier transform of the basis (2.29) gives another

basis of invariants labeled by the tuple (R1, R2, R3, τ1, τ2) and given by

QR1,R2,R3
τ1,τ2

= κ
∑

σl∈Sn

∑

ia, ja

CR1,R2;R3,τ1
i1,i2;i3

CR1,R2;R3,τ2
j1,j2;j3

DR1
i1j1

(σ1)D
R2
i2j2

(σ2)D
R3
i3j3

(σ3)σ1 ⊗ σ2 ⊗ σ3,

(2.31)

with κ = d(R1)d(R2)d(R3)
(n!)3

and ia, ja ∈ J1, d(Ra)K. Besides, CR1,R2;R3,τ1
i1,i2;i3

are Clebsch-Gordan

coefficients involved in the tensor product representations of Sn with multiplicities τ1, τ2 ∈
J1,C(R1, R2, R3)K. These basis elements are invariant under left and right diagonal action

and multiply like matrices

QR1,R2,R3
τ1,τ2

QR′
1,R

′
2,R

′
3

τ2,τ3
= δ~R,~R′Q

R1,R2,R3
τ1,τ3

, (2.32)

where we denoted ~R = (R1, R2, R3).
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Orthogonality of the Q-basis – Consider the pairing δ3 : C[Sn]
⊗3 × C[Sn]

⊗3 → C

δ3(σ1 ⊗ σ2 ⊗ σ3, σ′
1 ⊗ σ′

2 ⊗ σ′
3) = δ(σ1σ

′−1
1 )δ(σ2σ

′−1
2 )δ(σ3σ

′−1
3 ), (2.33)

which extends linearly to the Q-basis:

δ3(Q
R1,R2,R3
τ1,τ2

, Q
R′

1,R
′
2,R

′
3

τ ′1,τ
′
2

) = κd(R3)
2δ~R,~R′δτ1,τ ′1δτ2,τ ′2 . (2.34)

Hence the Q-basis is orthogonal and since the pairing is bilinear non-degenerate, the

following theorem holds.

Theorem 2.3.3. K3(n) is an associative unital semi-simple3 algebra.

3 A (finite-dimensional) algebra is said to be semi-simple if it can be expressed as a Cartesian product
of simple algebras, i.e. algebras having no non-trivial two-sided ideals.
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Chapter 3

The quartic melonic tensor model

In this chapter we will cite results pertaining to the so-called quartic melonic model. This

model is of significance as it is the first tensor model on which the topological recursion

formalism has successfully been applied, yielding a blobbed topological recursion [66].

As before, we denote by Ta1...ad the components of the tensor T of rank d > 2 and size

N and T a1...ad those of T . Let Ec ≃ C
N be the vector space of color c. Then T lives in

⊗d
c=1Ec and transforms as

T →
d⊗

c=1

U (c)T. (3.1)

For all c ∈ J1, dK and ĉ its complement, we denote the quartic melonic bubble invariant

of color c as

Bc(T, T ) =
∑

ap, bp

Ta1...ac...adT a1...ac−1bcac+1...adTb1...bc...bdT b1...bc−1acbc+1...bd = .

(3.2)

We furthermore define Hc(T, T ) as the matrix obtained by contracting all the elements of

T with those of T except for the ones in position c. It can be written out in components

as
Hc(T, T )ab =

∑

a1,...,ac−1,ac+1,...,ad

Ta1...ac−1aac+1...adT a1...ac−1bac+1...ad . (3.3)

Our bubble invariant then rewrites Bc(T, T ) = trEc
HcH

†
c and the partition function of

the model reads

ZTensor(N, {gc}) =
ˆ

(CN )⊗d

dµ0(T, T ) exp−Nd−11

2

d∑

c=1

g2cBc(T, T ), (3.4)
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where the gcs are the bubbles’ coupling constants. We now introduce an intermediate

Hermitian N ×N matrix field Xc in order to split the interaction term; this is known in

the litterature as the Hubbard-Stratonovich transformation and expresses as

exp−Nd−11

2
g2cBc(T, T ) =

ˆ

dXc exp−Nd−1

(
1

2
trEc

X2
c − igctrEc

(
Hc(T, T )Xc

))
.

(3.5)

The integral over T and T is now a Gaussian integral and can be computed explicitly.

Introducing the notation X̃c = 1
⊗(c−1) ⊗Xc ⊗ 1

⊗(d−c), we rewrite the partition function

using the previous representation as

ZTensor(N, {gc}) =
ˆ d∏

c=1

dXc exp
[
− 1

2

d∑

c=1

tr⊗cEc
X̃2

c − tr⊗cEc
ln
(
1
⊗d + i

d∑

c=1

gcX̃c

)]
.

(3.6)

If P (T, T ) is a polynomial in the tensor entries and f a polynomial function that takes

as argument an N ×N matrix, we have the corresponding expectation values:

〈P (T, T )〉T =
1

ZTensor

ˆ

dµ0(T, T ) P (T, T ) e
−Nd−1 1

2

∑d
c=1 g

2
cBc(T,T ),

〈f(Xc)〉M =
1

ZTensor

ˆ d∏

c=1

dXc f(Xc) e
− 1

2

∑d
c=1 tr⊗cEc X̃2

c−tr⊗cEc ln(1⊗d+i
∑d

c=1 gcX̃c).

(3.7)

In particular, in the symmetric case where g2c = λ
2
, ∀c ∈ J1, dK, we have the following

proposition [64]

Proposition 3.0.1. For p ∈ N
∗ we have:

〈trH ′
c(T, T )

p〉T = 〈trHp(Xc)〉M , (3.8)

and

〈trXp
c 〉M = 〈trHp(H

′
c(T, T ))〉T , (3.9)

where H ′
c =

√
λ

2i
√
2
Hc is a rescaling of our matrix (3.3), and Hp is the Hermite polynomial

of order p defined as Hp(x) = e−
1
2

d2

dx2 xp.

This result will be generalized in Theorems 8.3.4 and 9.2.1 of Part III to arbitrary tensor

models with arbitrary bubble invariants.
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3.1 Large N limit and fluctuations

The large N limit of general quartic models is addressed in [9, 104]. To put it in a nutshell,

general quartic interactions possess two pairs of vertices linked together by k ≥ 1 colors

and two other pairs by d− k colors. The large N limit always yields branched polymers

as long as k is different from d/2. For k = d/2, the model possesses a branched polymer

phase and a planar map one, with a transition between the two. The melonic models

correspond to k = 1 (or k = d − 1 by symmetry). Let us now turn our attention to the

study of the eigenvalue fluctuations for the latter.

In [64] the saddle point analysis revealed that all the eigenvalues collapse into the potential

well by following a Wigner semi-circle law of width 1/(1 − α2). The usual spreading of

the eigenvalue density is here absent due to the fact that the Vandermonde is negligible

at large N . The extremum of the potential found by the authors is

α =

√
1 + 2dλ− 1

2id
√
λ/2

. (3.10)

This result is further generalized in [66] to the non symmetric eigenvalue distribution of

the model (3.6), and reads

αc = gc

√
1 + 4

∑
p g

2
p − 1

2i
∑

p g
2
p

. (3.11)

In order to study the fluctuations around these values, we follow again [64, 66] and make

the change of variables

Xc = αc 1Ec
+

1

N
d−2
2

Mc, (3.12)

where the scaling of the fluctuations is chosen such that the leading terms in the action

for the Xcs scale like the Vandermonde contribution, i.e. in N2. The partition function

then rewrites

ZTensor(N, {gc}) =
e−

Nd

2

∑
c α

2
c

(1 + i
∑

c gcαc)N
d
ZFluct(N, {αc}), for

ZFluct(N, {αc}) =
ˆ d∏

c=1

dMc exp

(
− N

2

∑

c

trEc
M2

c +
∑

p≥2

N
2−d
2

p

p
tr⊗cEc

(∑

c

αcM̃c

)p)
,

(3.13)
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with the same notational convention as earlier M̃c = 1
⊗(c−1) ⊗Mc ⊗ 1⊗(d−c). Notice that

the second term of ZFluct consists of multi-trace interactions. In order to derive the loop

equations for this model, we follow [66] and write them for the general d-matrix model

with interactions
∏d

c=1 trM
qc
c with generic action

S = N

d∑

c=1

trVc(Mc) +N2−d
∑

a1,...,ad ≥0

ta1...ad

d∏

c=1

trMac
c . (3.14)

3.2 Correlation functions

We introduce the following generating functions for products of n traces of colors c1, . . . , cn,

W n(x1, c1; . . . ; xn, cn) =
〈 n∏

i=1

trEci

1

xi −Mci

〉
=

∑

k1,...,kn≥0

W
(k1,c1;...;kn,cn)

n

n∏

i=1

x−ki−1
i ,

(3.15)

i.e.

W
(k1,c1;...;kn,cn)

n =
[ n∏

i=1

x−ki−1
]
W n(x1, c1; . . . ; xn, cn) =

〈 n∏

i=1

trEci
Mki

ci

〉
, (3.16)

and their connected counterparts

Wn(x1, c1; . . . ; xn, cn) =
〈 n∏

i=1

trEci

1

xi −Mci

〉
c
=

∑

k1,...,kn≥0

W (k1,c1;...;kn,cn)
n

n∏

i=1

x−ki−1
i ,

(3.17)

i.e.

W (k1,c1;...;kn,cn)
n =

[ n∏

i=1

x−ki−1
]
Wn(x1, c1; . . . ; xn, cn) =

〈 n∏

i=1

trEci
Mki

ci

〉
c
. (3.18)

The variable xi is said to be of color ci when it is the generating parameter for trEci
Mki

ci

expanded around infinity. We denote ❈c the copy of ❈ of color c, so that xi ∈ Uci for

some open subset of ❈ci . We will also need the functions

W
(k1,c

′
1;...;kl,c

′
l
)

n (x1, c1; . . . ; xn−l, cn−l) =
〈 l∏

i=1

trEc′
i

Mki
c′i

n−l∏

j=1

trEcj

1

xj −Mcj

〉
c
, (3.19)
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which are obtained from Wn(x1, c1; . . . ; xn−l, cn−l; x
′
1, c

′
1; . . . ; x

′
l, c

′
l) by extracting some se-

ries coefficients, viz.

W
(k1,c

′
1;...;kl,c

′
l
)

n (x1, c1; . . . ; xn−l, cn−l) =
[ l∏

i=1

x′−ki−1
i

]
Wn(x1, c1; . . . ; xn−l, cn−l; x

′
1, c

′
1; . . . ; x

′
l, c

′
l).

(3.20)

Furthermore we write (ki, ci) := (k1, c1; . . . ; ki−1, ci−1 ; ki+1, ci+1; . . . ; kn, cn), ∀i ∈ J1, nK.

It will also appear natural to introduce global correlation functions which are defined on

(an open subset of)

En =
( d⋃

c=1

❈c \ Γc

)n
, (3.21)

so that each xi can be evaluated on any color. These correlation functions are

Wn(x1, . . . , xn) =
d∑

c1,...,cn=1

Wn(x1, c1; . . . ; xn, cn)
n∏

i=1

✶(xi, ci). (3.22)

where ✶(x, c) is 1 if x ∈ ❈c and 0 otherwise. In terms of components,

Wn(x1, . . . , xn) =
∑

k1,...,kn≥0
(c1,...,cn)∈J1,dKn

W (k1,c1;...;kn,cn)
n

n∏

i=1

x−ki−1
i ✶(xi, ci). (3.23)

The correlation functions Wn(x1, c1; . . . ; xn, cn) are said to be the local expressions of

Wn(x1, . . . , xn), since each variable is assigned a fixed color. We are now ready to derive

the loop equations of the quartic melonic model.

3.3 Exact resolvent equations

3.3.1 1-point equation

The Schwinger-Dyson equations are obtain from the family of equations

∀c ∈ J1, dK,
1

Z

ˆ d∏

i=1

dMi

∑

a,b

∂

∂(Mc)ab

(
(Mn

c )abe
−S
)
= 0. (3.24)
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Computing the derivatives explicitly and summing over n ≥ 0 with x−n−1 yields

W 2(x, c; x, c)−N
∑

n≥0

〈tr (Mn
c V

′
c (Mc))〉x−n−1

−N2−d
∑

ac≥1
a
c′≥0, ∀c′ 6=c

acta1...ad
∑

n≥0

〈trMn+ac−1
c

∏

c′ 6=c

trM
ac′
c′ 〉x−n−1 = 0,

(3.25)

for all c ∈ J1, dK. The second and third terms are split using the standard trick

∑

n≥0

trMn+ax−n−1 = xa tr
1

x−M − tr
xa −Ma

x−M , (3.26)

yielding for the second contribution

∑

n≥0

〈tr (Mn
c V

′
c (Mc))〉x−n−1 = V ′

c (x)W 1(x, c)− P1(x, c), (3.27)

where P1(x, c) = 〈tr V ′
c (x)−V ′

c (Mc)
x−Mc

〉. The last contribution is similar and reads

∑

n≥0

〈trMn+ac−1
c

∏

c′ 6=c

trM
ac′
c′ 〉x−n−1

= xac−1〈tr 1

x−Mc

∏

c′ 6=c

trM
ac′
c′ 〉 − 〈tr

xac−1 −Mac−1
c

x−Mc

∏

c′ 6=c

trM
ac′
c′ 〉.

(3.28)

The quantity 〈tr xac−1−Mac−1
c

x−Mc

∏
c′ 6=c trM

ac′
c′ 〉 must be further split by

xac−1 −Mac−1
c

x−Mc

= −
ac−2∑

q=0

xac−2−qM q
c , (3.29)

yielding overall, for all c ∈ J1, dK and x ∈ Cc,

W 2(x, c; x, c)−NV ′
c (x)W 1(x, c) +NP1(x, c)

−N2−d
∑

ac≥1
a
c′≥0, ∀c′ 6=c

acta1...ad

(
xac−1W

(a1,c
′
1;...;ad−1,c

′
d−1)

d (x, c) +
ac−2∑

q=0

xac−2−qW
((ac,c) ; q,c)

d

)
= 0.

(3.30)
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We now would like to rewrite (3.30) in terms of connected correlation functions. For this

purpose denote R = {R1, . . . , Rℓ(R)} a set-partition of J1, nK, then

W n(x1, c1; . . . ; xn, cn) =
∑

R⊢J1,nK

ℓ(R)∏

α=1

W|Rα|({xRα
, cRα
}), (3.31)

with the short-hand notation {xRα
, cRα
} = {xr, cr}r∈Rα

. This first gives

W 2(x, c; x, c) = W1(x, c)
2 +W2(x, c ; x, c). (3.32)

Now take R = {R1, . . . , Rℓ(R)} to be as set-partition of J1, dK and for c ∈ J1, dK denote

Rc = {c} ∪R′
c the part that contains c, where R′

c can be empty. Then,

W
(a1,c

′
1;...;ad−1,c

′
d−1)

d (x, c) =
∑

R⊢J1,dK

W
(aR′

c
,cR′

c
)

|Rc| (x, c)
∏

α
Rα 6=Rc

W
(aRα ,cRα )

|Rα| , (3.33)

and
W

((ac,c) ; q,c)

d =
∑

R⊢J1,dK

W
(aR′

c
,cR′

c
; q,c)

|Rc|
∏

α
Rα 6=Rc

W
(aRα ,cRα )

|Rα| . (3.34)

The loop equation now reads in terms of connected components

W1(x, c)
2+W2(x, c ; x, c)−NV ′

c (x)W1(x, c) +NP1(x, c)

−N2−d
∑

R⊢J1,dK

∑

ac≥1
a
c′≥0, ∀c′ 6=c

acta1...ad
∏

α
Rα 6=Rc

W
(aRα ,cRα )

|Rα|

×
(
xac−1W

(aR′
c
,cR′

c
)

|Rc| (x, c) +
ac−2∑

q=0

xac−2−qW
(aR′

c
,cR′

c
; q,c)

|Rc|

)
= 0.

(3.35)

3.3.2 n-point equations

For a potential of the form Vc(x) =
∑

n t
(c)
n xn define the colored loop insertion operator

as δ
δVc(x)

=
∑

n x
−n−1 ∂

∂t
(c)
n

and for integers A, n denote IA(n) the set of lists of the form

I = (I1, . . . , IA) such that Iα ⊆ J2, nK and
⊔A

α=1 Iα = J2, nK. Repeated action of the loop
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insertion operator on (3.35) then gives for the global correlation functions

∑

(I1,I2)∈I2(n)
W|I1|+1(x1, xI1)W|I2|+2(x1, xI2) +Wn+1(x1, x1, . . . , xn)

−N
d∑

c=1

1(x1, c) (V
′
c (x1)Wn(x1, . . . , xn)− Pn(x1, . . . , xn))

+
n∑

j=2

1(x1, xj)
∂

∂xj

Wn−1(x2, . . . , xn)−Wn−1(x1, . . . , xj−1, xj+1, . . . , xn)

xj − x1

−N2−d
∑

R⊢J1,dK

∑

(I1,...,Iℓ(R))∈Iℓ(R)(d)

d∑

c=1

1(x1, c)
∑

ac≥1
a
c′≥0, ∀c′ 6=c

acta1...ad
∏

α
Rα 6=Rc

W
(aRα ,cRα )

|Rα|+|Iα| (xIα)

×
(
xac−1
1 W

(aR′
c
,cR′

c
)

|Rc|+|Ic| (x1, xIc) +
ac−2∑

q=0

xac−2−q
1 W

(aR′
c
,cR′

c
; q,c)

|Rc|+|Ic| (xIc)

)
= 0.

(3.36)

Ic is defined as Iα∗ where α∗ is the index such that Rα∗ = Rc. Moreover, we defined

1(x, y) =
∑d

c=1 1(x, c)1(y, c), it is 1 if and only if x and y are of the same color.

3.4 Disc and cylinder function at genus zero

Having treated the general potential case, we come back to the quartic melonic model,

where we have the following.

• The potentials are Vc(x) = x2/2 for all c ∈ J1, dK and x ∈ Cc;

• The color couplings are [66]

ta1...ad = −
1∑
c ac

( ∑
c ac

a1, . . . , ad

) d∏

c=1

αac
c N

d−2− d−2
2

∑
c ac ,

∑

c

ac ≥ 2. (3.37)

Crucially the ta1...ads depend on N and we read from (3.37) that the dominant ones are

given by
∑

c ac = 2. As the ac ≥ 0, the latter reduce to the two only couplings t0...2...0
and t0...1...1...0, where all dots represent zeros. Thus at large N the action behaves as

SN∞ = −N
2

d∑

c=1

(1− α2
c)trM

2
c +

∑

c 6=c′

αcαc′trMctrMc′ . (3.38)
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We will now cite, without re-deriving them, the expressions for the disc and cylinder

functions.

3.4.1 Colored disc functions

With the previous large N action, the disc function of color c satisfies the equation [66]

W1,0(x, c)
2 − (1− α2

c)xW1,0(x, c) + (1− α2
c) = 0, ∀c ∈ Cc, (3.39)

the solution of which being

W1,0(x, c) =
1− α2

c

2

(
x−

√
x2 − 4

1− α2
c

)
. (3.40)

This is the disc function of the GUE, it has a cut along Γc =

[
− 2√

1−α2
c

, 2√
1−α2

c

]
which is

said to be the cut of color c.

3.4.2 Colored cylinder functions

We introduce the notation

σ(x, c) =

√
x2 − 4

1− α2
c

, ∀x ∈ Cc\Γc. (3.41)

Then it can be shown that the colored cylinder functions take the form

W2,0(x1, c; x2, c) =
x1x2 − σ(x1, c)σ(x2, c)− 4/(1− α2

c)

2(x1 − x2)2σ(x1, c)σ(x2, c)

−
∑

p 6=c(αcαp)
2

∑d
p=1 α

2
p − 1

W1,0(x1, c)W1,0(x2, c)

(1− α2
c)σ(x1, c)σ(x2, c)

, for (x1, x2) ∈ C
2
c

(3.42)

and

W2,0(x1, c1; x2, c2) = −
αc1αc2∑d
p=1 α

2
p − 1

W1,0(x1, c1)W1,0(x2, c2)

σ(x1, c1)σ(x2, c2)
, for (x1, x2) ∈ Cc1 × Cc2 .

(3.43)
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3.5 Blobbed topological recursion

3.5.1 Spectral curve

As before, we denote Ĉc the copy of color c ∈ J1, dK of the Riemann sphere. For each

color, define

fc(x, y) = y2 − (1− α2
c)xy + (1− α2

c). (3.44)

These polynomials vanish along a curve C ⊂ ⋃d
c=1 Ĉc defined by

f(x, y) =
d∑

c=1

1(x, c)1(y, c)fc(x, y) = 0. (3.45)

We then introduce the following Zhukovski parametrization

x(z) =
d∑

c=1

1(x, c)1(z, c)
1√

1− α2
c

(z + z−1). (3.46)

In order to write the topological recursion, we will pull back the correlation functions

on the z-planes using the Zhukowski transformation, this will allow us to turn them into

differential forms:

ωn(z1, . . . , zn) = Wn(x(z1), . . . , x(zn))dx(z1) . . . dx(zn)

− δn,2
d∑

c=1

1(z1, c)1(z2, c)
dx(z1)dx(z2)

(x(z1)− x(z2))2
,

(3.47)

and give the expressions for the disc and cylindar differentials. The (global) disc function

has simple zeroes at z = ±1, those are the zeroes of dx(z):

ω1,0(z) =
d∑

c=1

1(z, c)
1− z−2

z
dz. (3.48)

While the cylinder forms are

ω2,0(z1, c; z2, c) =
dz1dz2

(z1 − z2)2
−
∑

p 6=c(αcαp)
2

∑d
p=1 α

2
p − 1

dz1dz2
z21z

2
2

,

ω2,0(z1, c1; z2, c2) = −
αc1αc2

√
(1− αc1)(1− αc2)∑d
p=1 α

2
p − 1

dz1dz2
z21z

2
2

.

(3.49)
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Notice that ω2,0(z1, c; z2, c) has a double pole on the diagonal z1 = z2 and that both

ω2,0(z1, c; z2, c) and ω2,0(z1, c1; z2, c2) have poles on z1 = 0 and z2 = 0 on each color. The

points z = ±1 in each color are called ramification points and we write

R = {z = ±1|∀c ∈ J1, dK, z ∈ Cc}. (3.50)

Finally we define a global bi-differential by writing

ω2,0(z1, z2) =
d∑

c1,c2=1

1(z1, c1)1(z2, c2)

(
δc1c2

dz1dz2
(z1 − z2)2

− Ωc1c2

dz1dz2
z21z

2
2

)
, (3.51)

where

Ωcc′ =
αcαc′

√
(1− αc)(1− αc′) + α2

c

(∑
p 6=c α

2
p + αc − 1

)
δcc′∑

p α
2
p − 1

. (3.52)

3.5.2 Blobbed topological recursion formula

We know that correlation functions admit a topological expansion, this is true also for

their associated differential forms, thus we write

Wn(x1, . . . , xn) =
∑

g≥0

N2−2g−nWn,g(x1, . . . , xn), (3.53)

ωn(z1, . . . , zn) =
∑

g≥0

N2−2g−nωn,g(z1, . . . , zn). (3.54)

With the same notations as in section 1.5.2, the kernel of the topological recursion is

again given by

K(z, z1) =
∆G(z, z1)

2∆ω1,0(z)
, (3.55)

and finally define the polar Pωn,g and holomorphic Hωn,g parts of ωn,g(z1, . . . , zn) by

Pωn,g(z1, . . . , zn) =
∑

z∈R
Resz G(z, z1)ωn,g(z, z2, . . . , zn)

Hωn,g(z1, . . . , zn) = ωn,g(z1, . . . , zn)− Pωn,g(z1, . . . , zn).

(3.56)
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We can then give topological recursion formulae for Pωn,g and Hωn,g, viz.

Pωn,g(z1, . . . , zn) =
∑

z∈R
ReszK(z, z1)

(
ωn+1,g−1(z, ι(z), z2, . . . , zn)

+
′∑

(I1,I2)∈I2(n)
g1+g2=g

ω|I1|+1,g1(z, zI1)ω|I2|+1,g2(ι(z), zI2)

)
,

Hωn,g(z1, . . . , zn) =
1

2πi

˛

⋃d
c=1 U(1)c

ω2,0(z1, z)νn,g(z, z2, . . . , zn),

(3.57)

where U(1)c is the copy of the unit circle of color c, and

νn,g(z, z2, . . . , zn) = Vn,g(x(z), x(z2), . . . , x(zn))dx(z2) . . . dx(zn), (3.58)

for

Vn,g(x, x2, . . . , xn) =
d∑

c=1

∑

R⊢J1,dK
Rc={c}

∑

(I1,...,Iℓ(R))∈Iℓ(R)(d)

1(x, c)

∑

h1,...,hℓ(R)≥0

d−ℓ(R)+
∑ℓ(R)

α=1 hα=g

∑

ac≥1
a
c′≥0,∀c′ 6=c

acta1...adx
ac
∏

Rα 6={c}
W

(aRα ,cRα )

|Rα|+|Iα|,hα
(xIα).

(3.59)
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Part II

On the counting of orthogonal tensor

invariants
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Chapter 4

Counting O(N) invariants

We now turn our attention to real tensor models and begin by setting up our notations.

Consider d ≥ 2 real vector spaces Vc, c ∈ J1, dK, of respective dimensions Nc, and the

action of
⊗d

c=1O(Nc) on
⊗d

c=1 Vc. Let T be a tensor of rank d with components Ti1...id
transforming under the tensor product of d fundamental representations of the groups

O(Nc). Each group O(Nc) acts independently on a tensor index ic and we can write

TO
i1...id

=
∑

j1,...,jd

O
(1)
i1j1

. . . O
(d)
idjd

Tj1...jd . (4.1)

The observables in this model are the contractions of an even number, say 2n with n ∈ N,

of tensors T which are obviously invariant under
⊗d

c=1O(Nc) transformations. We simply

name them O(N) invariants. Such invariants generalize real matrix traces and will be

denoted:

OK(T ) =
∑

j
(k)
c

K({j(k)c }1≤k≤2n
1≤c≤d )T

j
(1)
1 ...j

(1)
d

. . . T
j
(2n)
1 ...j

(2n)
d

, (4.2)

where the kernel K(·) factors in Kronecker deltas and identifies the indices of the tensors

in a particular pattern; the sole contractions permitted involve the tensor indices with

identical color labels c ∈ J1, dK. An elegant way of encoding the contraction pattern

of tensors consists in a d-regular graph with edge coloring with d different colors, and

one of each color at every vertex (representing each tensor). Those graphs are defined

as the bubbles of Chapter 2 albeit for the bipartiteness condition that is relaxed. We

hence slightly shift the notation and write b the colored graph, the invariant denotes

equivalently OK(T ) or Ob(T ). We will detail this in the next chapter.

We build a physical model by introducing a partition function

Z =

ˆ

dν(T ) exp(−SN(T )) , (4.3)
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where the action SN(T ) =
∑

b λbN
−ρ(b)Ob(T ) is defined as a finite sum over some O(N)

tensor invariants representing the model interactions each with coupling λb and scaling

parameter ρ(b); dν(T ) is a tensor field measure. In this part, we will consider only

correlators that are Gaussian. This means that the field measure will be Gaussian and

of the form

dν(T ) =
∏

jl

dTj1...jd e
−O2(T ) , O2(T ) =

∑

jk

(Tj1...jd)
2 . (4.4)

In other terms, O2(T ) plays the role of a quadratic mass term. The free propagator of

the Gaussian measure is given by

〈Ti1...idTj1...jd〉 =
ˆ

dν(T )Ti1...idTj1...jd = δi1j1 . . . δidjd , (4.5)

and will be used in the Wick theorem for computing Gaussian correlators. We will be

interested in the mean values of observables that are defined by

〈Ob(T )〉 =
1

´

dν(T )

ˆ

dν(T )Ob(T ) ,

〈Ob(T )Ob′(T )〉 =
1

´

dν(T )

ˆ

dν(T )Ob(T )Ob′(T ) . (4.6)

The second correlator will be restricted to normal order allowing only Wick contractions

from Ob(T ) to Ob′(T ). In Chapter 6, enlightened by the symmetric group formulation of

the O(N) invariants, we will reformulate (4.6) and analyse the representation algebraic

structure brought by the 2-point correlator. The first correlator is sketched as it evaluates

by modifying the previous calculation method.

We now proceed to the counting per se. Counting the number of invariants based on the

contractions of 2n copies of real tensors Ti1...id starts by a symmetric group construction.

Actually, this enumeration problem expresses as a permutation-TFT that we also discuss.

Finally, switching to representation theory, we derive the same counting formula in terms

of the Kronecker coefficients.
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Figure 4.1 – Diagrammatic contraction of rank-3 orthogonal tensors
defining the triple of permutations (σ1, σ2, σ3).

4.1 Enumeration of rank d ≥ 3 tensor invariants

Orthogonal invariants are in one-to-one correspondence with d-regular colored graphs

(see for instance [33]). We emphasize again that contrary to the graphs corresponding

to unitary invariants [11, 29], the present graphs are not bipartite and, so, their dual

triangulations might be non-orientable. It is however always possible to make a graph

bipartite by inserting another type of vertex of valence 2 called “black” (henceforth the

initial vertices are called “white”) on each edge of the graph. We therefore perform that

transformation and denote the new vertices vci , i ∈ J1, nK (recall that 2n is the number of

tensors) and c ∈ J1, dK. The resulting graph is neither regular, nor properly edge-colored,

as opposed to the unitary case. It is however bipartite as illustrated in Figure 4.1, that is

to be compared with Figure 2.5 of the previous part. This property concedes a description

of a colored graph in symmetric group language. We shall focus on d = 3 as the general

case will follow from this one.

We denote S2n the symmetric group of order (2n)!. Counting possible graphs consists in

enumerating triples

(σ1, σ2, σ3) ∈ S2n × S2n × S2n, (4.7)

subjected to the equivalence

(σ1, σ2, σ3) ∼ (γ1σ1γ, γ2σ2γ, γ3σ3γ) , (4.8)
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where γ ∈ S2n and the γis belong to the wreath product1 subgroup Sn[S2] ⊂ S2n. We

intend to count the points in the double coset

(Sn[S2]× Sn[S2]× Sn[S2])\(S2n × S2n × S2n)/Diag(S2n) . (4.9)

Let us denote Z3(2n) the cardinality of this double coset. Recall from Chapter 2 that in

a broader setting, for two subgroups H1 ≤ G and H2 ≤ G, the cardinality of the double

coset |H1\G/H2| is given by

|H1\G/H2| =
1

|H1||H2|
∑

C

ZH1→G
C ZH2→G

C zC , (4.10)

where zC stands for the number of elements of G commuting with any element in the

conjugacy class C. The sum is over conjugacy classes of G, and ZH→G
C is the number of

elements of H in the conjugacy class C of G. The conjugacy classes of S2n×S2n×S2n are

determined by triples (p1, p2, p3), where each pi is a partition of 2n. The presence of the

subgroup Diag(S2n) implies that only conjugacy classes determined by a triple (p, p, p)

should be conserved in the above sum. Applying (4.10), we get

Z3(2n) =
1

[n!2n]3(2n)!

∑

p⊢2n
Z

Sn[S2]3→S 3
2n

(p,p,p)

(2n)!

zp
z3p

=
1

[n!2n]3

∑

p⊢2n
Z

Sn[S2]3→S 3
2n

(p,p,p) z2p ,

(4.11)

with zp =
∏

i i
pipi! and where the sum over p = (pℓ)ℓ is performed over all partitions

of 2n =
∑

i ipi. The cardinality of a conjugacy class Cp of S2n with cycle structure2

determined by a partition p is given by |Cp| = (2n)!/zp. Next, we must determine the

size of ZSn[S2]3→S 3
2n

(p,p,p) which factors as

Z
Sn[S2]3→S 3

2n

(p,p,p) = (ZSn[S2]→S2n
p )3 . (4.12)

1 The wreath product Sn[S2] = S2 ≀ Sn is defined as the semi-direct product Sn
2 ⋊ Sn and is known

in the literature as the hyperoctahedral group. Seen as a permutation group, it is the signed symmetric
group of permutations of the set {−n,−n+ 1, . . . ,−1, 1, . . . , n− 1, n}.

2 Two permutations have the same cycle structure or are of the same cycle type if the unordered list of
sizes of their cycles coincide. The cycle type of a permutation in S2n determines a list p = (p1, . . . , p2n)
of numbers pi ≥ 0 of cycles of length i. The list p is a partition of 2n.
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We can get a single factor in this product from

1

n!2n
ZSn[S2]→S2n

p = [tnxp]ZS∞[S2](t, ~x), (4.13)

where appears the generating function of the number of wreath product elements in a

certain conjugacy class p ⊢ 2n, namely

ZS∞[Sd](t, ~x) =
∑

n

tnZSn[Sd](~x) = exp
∞∑

i=1

ti

i

∑

q ⊢d

1

zq

d∏

ℓ=1

xνℓℓi , (4.14)

with ~x = (x1, x2, . . . ), q = (νℓ)ℓ a partition of d such that
∑

ℓ ℓνℓ = d and in multi-index

notation xp := xp11 . . . xp2n2n . We adopt the “combinatorists’” notation and write as [xα]Z(x)

the coefficient of xα in the series expansion of Z. To understand where this comes from,

define the cycle index polynomial of H ≤ Sn as

ZH(~x) =
1

|H|
∑

p⊢n
ZH→Sn

p

∏

i

xpii . (4.15)

The generating function for cycle index polynomials of Sn is (see Chapter 15.13 in [53])

ZS∞(t, ~x) =
∞∑

n=0

tnZSn(~x) = exp
∞∑

i=1

tixi
i
. (4.16)

The cycle index polynomial of a wreath product is given for H ≤ G by (see Chapter 15.5

in [54])

ZG[H](~x) = ZG(~r), with ri = ZH(xi, x2i, x3i, . . . ), (4.17)

so that finally one can write the generating function of cycle index polynomials of Sn[Sd]
3:

ZS∞[Sd](t, ~x) =
∞∑

n=0

tnZSn[Sd](~x)

=
∞∑

n=0

tn
∑

p⊢2n

1

dnn!
ZSn[Sd]→S2n

p

∏

i

xpii

= exp
∞∑

i=1

ti

i
ZSd(xi, . . . , xdi),

(4.18)

which is indeed (4.14).

3 For d = 2, ZS∞[S2](t, ~x) = exp
∑

∞

i=1
ti

2i (x
2
i + x2i).
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The expression (4.11) finally computes to

Z3(2n) =
∑

p⊢2n

(
[tnxp]ZS∞[S2](t, ~x)

)3
z2p . (4.19)

In general, for arbitrary d, the above calculation is straightforward and yields, for any

d ≥ 2,

Zd(2n) =
∑

p⊢2n

(
[tnxp]ZS∞[S2](t, ~x)

)d
zd−1
p . (4.20)

We can generate the sequences Z3(2n) and Z4(2n) (both with n ∈ J1, 10K) using a Math-

ematica program shown in Appendix B.1 and obtain, respectively,

1, 5, 16, 86, 448, 3580, 34981, 448628, 6854130, 121173330 (4.21)

and
1, 14, 132, 4154, 234004, 24791668, 3844630928, 809199787472,

220685007519070, 75649235368772418 .
(4.22)

Following Read [55], the number Zd(2n) of d-regular colored graphs made with 2n vertices

is the coefficient of tn in
∏

m Φm(t), where

Φm(t) =





∞∑

j=0

Am/2(j)
d

j!mj
tmj/2 if m is even,

∞∑

j=0

((2j)!)d−1

(j!)d

(
md−2

2d

)j

tmj if m is odd,

(4.23)

and the function Ak(j) relates to the jth Hermite polynomial by Ak(j) = (i
√
k)jHj(

1
2i
√
k
).

We generate the corresponding sequences Z3(2n) and Z4(2n), n ∈ J1, 10K, using a Math-

ematica program (in Appendix B.2) and the results match with (4.21) and (4.22), re-

spectively. Hence, both methods yield the same results. The sequence (4.21) naturally

corresponds to the OEIS sequence A002830 (number of 3-regular edge-colored graphs with

2n nodes) [56]. The sequence (4.22) however is not yet reported on the OEIS. Hence,

the formula (4.20) is likely to generate arbitrary new sequences for each d > 3. We must

underline that the above counting of observables concerns connected and disconnected

graphs (generalized multi-matrix invariants). To obtain only connected invariants, we

use the plethystic logarithm (for recent applications of this function in supersymmetric
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Figure 4.2 – Connected colored graphs associated with rank-3 orthogonal
tensor invariants with up to 6 vertices.

gauge theory and further references, see [99]) transform on the generating series of the

disconnected invariants. This is achieved in the following manner. Define the generating

function of disconnected invariants as

Z3(x) =
∞∑

n=0

Z3(n)x
n, (4.24)

the plethystic logarithm is defined as

PlogZ3(x) =
∞∑

k=1

µ(k)

k
logZ3(x

k), (4.25)

where µ(k) is the Möbius function given by

µ(k) =





1 if k = 1,

0 if k has repeating prime factors,

(−1)n if k is a product of n distinct primes.

(4.26)



82 Chapter 4. Counting O(N) invariants

We obtain the enumeration of connected invariants (see Appendix B.2) as the coefficients

in the previous series’ expansion. For rank d = 3 and 4, respectively, up to order n = 10

they read,

1, 4, 11, 60, 318, 2806, 29359, 396196, 6231794, 112137138 (4.27)

and
1, 13, 118, 3931, 228316, 24499085, 3816396556, 805001547991,

219822379032704, 75417509926065404 .
(4.28)

As an illustration, Figure 4.2 depicts the rank-3 connected orthogonal invariants up to

order 3.

4.2 Topological Field Theory formulation

From the above symmetric group formulation of the counting of tensor invariants, one

extracts more information via other correspondences. In particular, the enumeration

reformulates as a partition function of a Topological Field Theory on a 2-complex (in

short TFT2) with S2n and its subgroup Sn[S2] as gauge groups. For a review of TFTs,

see [91, 92] and, in notation closer to what we aim at, [38, 39]. Let us however recall

some key features here. Consider a 2-dimensional cellular complex (a Hausdorff space

together with a cellular structure) X. We call vertices the 0-cells, edges the 1-cells and

plaquettes the 2-cells. Then one can define a partition function for a finite group G by

assigning a group element ge to each edge e and a weight w(gP ) to each plaquette P ,

where gP =
∏

e∈P ge. A natural choice independent of the size of the plaquette is given

by

w(gP ) = δ(gP ) =

{
1 if gP = id,

0 otherwise.
(4.29)

The partition function of the model then writes

Z[X;G] =
1

|G|V
∑

ge

∏

P

w(gP ), (4.30)

where V is the number of vertices in the cell decomposition. We will be interested in

cases where G is taken to be the groups S2n and Sn[S2], but let us exemplify it with

Sn. Take as an elementary example the torus realized as a rectangle, with opposite sides

identified. This is a cell decomposition with a single vertex, two edges a, c and a single
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plaquette. Assign to each edge a group element in Sn:

a −→ σ , c −→ γ. (4.31)

Thus the weight for the single plaquette is

w(gP ) = δ(γσγ−1σ−1), (4.32)

and the partition function is given by

Z[T2;Sn] =
1

n!

∑

σ,γ∈Sn

δ(γσγ−1σ−1). (4.33)

This partition function counts equivalence classes of homomorphisms from the fundamen-

tal group of the torus π1(T2) ≃ 〈a, c | cac−1a−1 = 1〉 to Sn (weighted by the number of

elements of Sn which fix the homomorphism under conjugation) where the equivalence

relation identifies a homomorphism with each of its conjugates by elements in Sn. By

Riemann’s existence theorem, this is equivalent to counting equivalence classes of covering

spaces of T2 of degree n (see for instance [100]), counted with weight equal to the inverse

of the order of the automorphism group of the cover. The partition function (4.33) thus

counts n-fold covers of the torus and can be interpreted as a partition function of a TFT2

on a cellular complex having the topology of a cylinder, as shown in Figure 4.3 below.

Figure 4.3 – TFT2 associated with the counting of n-fold covers of the
torus.

Consider now the counting of classes in the double coset (4.9), denote it as Z3(2n), and

then consider the relation (4.10). Using Burnside’s lemma, we have in standard notations:

Z3(2n) =
1

[n!2n]3(2n)!

∑

γi∈Sn[S2]

∑

σi∈S2n

∑

γ∈S2n

δ(γ1σ1γσ
−1
1 )δ(γ2σ2γσ

−1
2 )δ(γ3σ3γσ

−1
3 ) , (4.34)

where δ is the Kronecker symbol on S2n. This counting interprets as a partition function

of a TFT2 on a cellular complex given by Figure 4.4. On that lattice, we use two gauge
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groups S2n and Sn[S2]. The topology of that 2-complex is that of three cylinders sharing

the same end circle. Thus, enumerating orthogonal invariant corresponds to a S2n–TFT2

on three cylinders glued along one circle, with a restriction of the gauge group to be

Sn[S2] at the opposite boundary circle. This TFT2 has boundary holonomies endowed

with Sn[S2] group elements.

Figure 4.4 – S2n-TFT2 associated with the counting of orthogonal invari-
ants.

By successively integrating some delta functions, the TFT2 formulation produces alterna-

tive interpretations of the same counting. We extract γ from (4.34) and get γ = σ−1
3 γ−1

3 σ3

such that

Z3(2n) =
1

[n!2n]3(2n)!

∑

γi∈Sn[S2]

∑

σi∈S2n

δ(γ1σ1(σ
−1
3 γ−1

3 σ3)σ
−1
1 )δ(γ2σ2(σ

−1
3 γ−1

3 σ3)σ
−1
2 ) .

(4.35)

A change of variables σ1,2 ← σ1,2σ
−1
3 leads us to

Z3(2n) =
1

[n!2n]3

∑

γi∈Sn[S2]

∑

σ1,2∈S2n

δ(γ1σ1γ3σ
−1
1 )δ(γ2σ2γ3σ

−1
2 ) . (4.36)

This integration illustrates, in Figure 4.5, as the removal of a 1-cell associated with

the variable γ in the 2-complex. The partition function therefore shows two types of

invariances: the extraction of γ corresponds to one type of topological invariance, and

then, it is followed by the change of variables σ1,2 → σ1,2σ
−1
3 corresponding to a topological

invariance of a second kind.

Thus, the partition function (4.36) can also be written as

Z3(2n) = Z(S1 × I;DSn[S2]
×3) , (4.37)
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Figure 4.5 – Topological transformations of the 2-complex leaving the
partition function stable.

where Z(S1 × I;DSn[S2]
×3) is the partition function obtained by inserting three Sn[S2]-

defects - written DSn[S2] -, one at each end of the cylinder S
1 × I, and another one at

finite time t0 ∈ I, for some finite interval I, see Figure 4.6. A defect is defined as a closed

non-intersecting loop with a marked point. The relation (4.37) shows that orthogonal

invariants are in one-to-one correspondence with n-fold covers of the cylinder with three

defects, up to a (symmetry) factor, viz. the stabilizer subgroup of the graph that we

denote Aut(Gσ1,σ2,σ3).

Figure 4.6 – Cylinder with three defects.

The order of the stabilizer infers from

Sym(σ1, σ2) =
∑

γi∈Sn[S2]

δ(γ1σ1γ3σ
−1
1 )δ(γ2σ2γ3σ

−1
2 ) = Aut(Gσ1,σ2,σ3), (4.38)

which also relates to the number of equivalences (Sn[S2]×Sn[S2])\(Sn×Sn)/Diag(Sn[S2])

corresponding to a fixed (σ1, σ2).

The TFT formulation of the counting enriches it with a geometrical picture. Most of

the time, the base space of the TFT is viewed as a string worldsheet. The counting now

becomes a counting of worldsheet maps over a cylinder with defects. As noticed elsewhere

[29, 30], this once again shows that a link may exist between tensor models and string

theory, which could be elucidated via the TFT formalism. Such a link may be worth

investigating in the future.
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Rank-d counting and TFT2 – More generally, for rank d ≥ 3, the counting Zd(2n)

has a TFT2 formulation that generalizes what we discussed above in a straightforward

manner:

Zd(2n) =
1

[n!2n]d(2n)!

∑

γi∈Sn[S2]

∑

σi∈S2n

∑

γ∈S2n

d∏

i=1

δ(γiσiγσ
−1
i )

=
1

[n!2n]d

∑

γi∈Sn[S2]

∑

σi∈S2n

d−1∏

i=1

δ(γiσiγdσ
−1
i ) , (4.39)

where we extracted γ as previously: γ = σ−1
d γ−1

d σd.

The first equation of (4.39) shows that, in rank d, the TFT2-formulation of the counting

extends Figure 4.4 as the gluing of d cylinders along one circle. After integration, the

second equation reveals that the counting of orthogonal invariants therefore amounts to

the counting of weighted covers of d− 1 cylinders with d defects, one of the defects being

shared by all cylinders. In formula, denoting Ci the ith cylinder with base circle S
1
i and

Cd−1 the quotient space
⊔d−1

i=1 Ci / ∼, with the identification S
1
i ∼ S

1
j , we have

Zd(2n) = Z(Cd−1;DSn[S2]
×d).

4.3 The counting as a Kronecker sum

We now revisit the counting (4.34) under a different light, that of the representation

theory of the symmetric group (Appendix A reviews the main identities used in this

chapter and the following). Irreducible representations (irreps) of the symmetric group

S2n are labeled by partitions R ⊢ 2n, that are also Young diagrams.

Starting from the Burnside lemma formulation of (4.34), consider the following expansion

of the counting of rank-3 invariants using the representation theory of S2n:

Z3(2n) =
1

[n!2n]3(2n)!

∑

γl∈Sn[S2]

∑

σl∈S2n

∑

γ∈S2n

δ(γ1σ1γσ
−1
1 )δ(γ2σ2γσ

−1
2 )δ(γ3σ3γσ

−1
3 )

=
1

[n!2n]3(2n)!

∑

γl∈Sn[S2]

∑

γ∈S2n

∑

Rl ⊢ 2n

χR1(γ1)χ
R1(γ)χR2(γ2)χ

R2(γ)χR3(γ3)χ
R3(γ)

=
1

[n!2n]3

∑

Rl ⊢ 2n

C(R1, R2, R3)
∑

γ1∈Sn[S2]

χR1(γ1)
∑

γ2∈Sn[S2]

χR2(γ2)
∑

γ3∈Sn[S2]

χR3(γ3),

(4.40)
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where χR denotes the character in the representation R, we used the identity (A.5) in

Appendix A.1 to compute the deltas, and the Kronecker coefficient is defined as

C(R1, R2, R3) =
1

(2n)!

∑

γ∈S2n

χR1(γ)χR2(γ)χR3(γ) . (4.41)

Recall that the Kronecker defines the multiplicity of the representation R3 in the tensor

product R1 ⊗ R2, or the multiplicity of the trivial representation in R1 ⊗ R2 ⊗ R3 when

expanded back in irreps.

Above, the sums over the subgroup Sn[S2] have not yet been performed. To proceed with

these sums, we will use a useful result by Howe [93] (see also [95, 96] or a more recent

use of it in [43]):
1

|Sn[S2]|
∑

γ∈Sn[S2]

χR(γ) = δR,even, (4.42)

where δR,even = 1 if R is an “even” partition, that is, all its row lengths are even - we

denote it naturally 2R - and δR,even = 0 otherwise. This result is actually a consequence

of what is called Littlewood’s formula and Frobenius’s reciprocity, which we now recall.

Written out in terms of characters, Littlwood’s formula (see Proposition 4.1 in [94]) reads,

for all σ ∈ S2n,
1Sn[S2] ↑S2n (σ) =

∑

S ⊢2n
χ2S(σ), (4.43)

where 1Sn[S2] ↑S2n is the character of the trivial representation of Sn[S2] induced on S2n.

Now denoting χR ↓Sn[S2] the restriction of a character of S2n to Sn[S2], the following

equality, known as Frobenius’ reciprocity theorem4, holds:

〈
1Sn[S2], χ

R ↓Sn[S2]

〉
Sn[S2]

=
〈
1Sn[S2] ↑S2n , χR

〉
S2n

. (4.44)

By expliciting the scalar products, the previous equation becomes successively

1

n!2n

∑

γ∈Sn[S2]

1Sn[S2](γ)χ
R ↓Sn[S2] (γ) =

1

(2n)!

∑

σ∈S2n

1Sn[S2] ↑S2n (σ)χR(σ), (4.45)

1

n!2n

∑

γ∈Sn[S2]

χR(γ) =
1

(2n)!

∑

S ⊢2n

∑

σ∈S2n

χ2S(σ)χR(σ), (4.46)

1

n!2n

∑

γ∈Sn[S2]

χR(γ) =
∑

S ⊢2n
δR,2S, (4.47)

4 This is a special case. In all generality, for G a finite group with subgroup H and class functions
ϕ : G→ C and ψ : H → C, the theorem states 〈ψ,ResGH ϕ〉H = 〈IndGH ψ, ϕ〉G.
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which gives the desired result. Note that in the second line we used Littlewood’s formula

and the fact that by definition for γ ∈ Sn[S2], 1Sn[S2](γ) = 1 and χR ↓Sn[S2] (γ) = χR(γ),

while in the third, the characters’ orthogonality relation (A.6) was used.

Thus, we obtain, inserting this in (4.40)

Z3(2n) =
∑

Rl ⊢ 2n

C(2R1, 2R2, 2R3) . (4.48)

Comparing this sequence and (4.21), we produce a Sage code (see Appendix B.3) showing

that the numbers generated by (4.48) match with (4.21).

In the next chapter, we will show that this number is also the dimension of an algebra

K3(2n). It is an interesting problem to investigate how the counting of colored graphs

could contribute to the famous problem of giving a combinatorial interpretation to the

Kronecker coefficients [51, 52] (in the same way that Littlewood-Richardson coefficients

have found a combinatorial description). From previous work [30], we know that the sum

of squares of Kronecker coefficients associated with Sn equals the number of d-regular

bipartite colored graphs made with n black and n white vertices. Here the interpretation is

the following, the number of d-regular colored graphs (not necessarily bipartite) equals the

sum of all Kroneckers precluded those that are defined with partitions with odd rows. An

idea to contribute to the above problem is to refine the counting of graphs in a way to boil

down to a single Kronecker coefficient. In other words, given a non vanishing Kronecker

coefficient is it possible to list all graphs contributing to that Kronecker coefficient ? This

is certainly a difficult problem that will require new tools in representation theory.

Counting rank-d tensor invariants – The above counting generalizes quite naturally

at any rank d as

Zd(2n) =
1

[n!2n]d(2n)!

∑

γl∈Sn[S2]

∑

σl∈S2n

∑

γ∈S2n

d∏

i=1

δ(γiσiγσ
−1
i )

=
1

[n!2n]d

∑

Rl ⊢ 2n

∑

γl∈Sn[S2]

Cd(R1, . . . , Rd)χ
R1(γ1) . . . χ

Rd(γd)

=
∑

Rl ⊢ 2n

Cd(2R1, . . . , 2Rd),

(4.49)

where we introduced the notation

Ck(R1, . . . , Rk) =
1

(2n)!

∑

γ∈S2n

χR1(γ) . . . χRk(γ) . (4.50)
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This counts the multiplicity of the one dimensional trivial S2n irrep in the tensor product

of irreps R1⊗. . .⊗Rk, k ≥ 4. It expresses as a convoluted product of Kronecker coefficients

as

Ck(R1, . . . , Rk) =
∑

Sl⊢2n
C(R1, R2, S1)

[
k−4∏

i=1

C(Si, Ri+2, Si+1)

]
C(Sk−3, Rk−1, Rk) . (4.51)
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Chapter 5

Double coset algebra

We now discuss the underlying structure, an algebra, determined by the counting of the

O(N) invariants. The rank-3 case is first addressed for the sake of simplicity, and from

that, we will infer the general rank-d case whenever possible.

Consider C[S2n], the group algebra of S2n. Our construction depends on tensor products

of that space.

5.1 Kd(2n) as a double coset algebra in C[S2n]
⊗d

We fix d = 3. Consider σ1 ⊗ σ2 ⊗ σ3 as an element of the group algebra C[S2n]
⊗3, and

three left actions of the subgroup Sn[S2] and the diagonal right action of Diag(C[S2n]) on

this triple as:

σ1 ⊗ σ2 ⊗ σ3 →
∑

γi∈Sn[S2]

∑

γ∈S2n

γ1σ1γ ⊗ γ2σ2γ ⊗ γ3σ3γ . (5.1)

K3(2n) is the vector subspace of C[S2n]
⊗3 which is invariant under these subgroup actions:

K3(2n) = SpanC





∑

γi∈Sn[S2]

∑

γ∈S2n

γ1σ1γ ⊗ γ2σ2γ ⊗ γ3σ3γ, (σ1, σ2, σ3) ∈ S 3
2n



 . (5.2)

It is obvious that dimK3(2n) = Z3(2n), since each basis element represents the graph

equivalent class counted once in Z3(2n). Pick two basis elements, called henceforth graph

basis elements, and consider their product

[ ∑

γi∈Sn[S2]

∑

γ∈S2n

γ1σ1γ ⊗ γ2σ2γ ⊗ γ3σ3γ
][ ∑

τi∈Sn[S2]

∑

τ∈S2n

τ1σ
′
1τ ⊗ τ2σ′

2τ ⊗ τ3σ′
3τ
]
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=
∑

γi,τi∈Sn[S2]

∑

γ,τ∈S2n

γ1σ1γτ1σ
′
1τ ⊗ γ2σ2γτ2σ′

2τ ⊗ γ3σ3γτ3σ′
3τ

=
∑

τi∈Sn[S2]

∑

γ∈S2n

[ ∑

γi∈Sn[S2]

∑

τ∈S2n

γ1(σ1γτ1σ
′
1)τ ⊗ γ2(σ2γτ2σ′

2)τ ⊗ γ3(σ3γτ3σ′
3)τ
]
.(5.3)

This shows that the multiplication remains in the vector space. Hence, K3(2n) is an

algebra and (5.3) defines a graph multiplication. The proof is totally similar for Kd(2n)

(considering d factors in the tensor product) which is thus an algebra of dimension Zd(2n).

The product of graphs in the algebra K3(2n) illustrates as in Figure 5.1 below.

Figure 5.1 – Product of two graph basis elements (on the left) gives a
sum of graphs (on the right).

Gauge fixing – There is a gauge fixing procedure in the construction of orthogonal

invariants. One initially fixes a permutation σi but is still able to generate all invariants.

Consider ξ = (12)(34) . . . (2n − 1, 2n), and fix σ1 to belong to the stabilizer of ξ, i.e.

σ−1
1 ξσ1 = ξ. Since Stabξ = Sn[S2], we simply mean that we choose σ1 to be in that

subgroup. We already observe a difference with the unitary case [30]. Indeed, while

the gauge fixing in the unitary case leads to the definition of a permutation centralizer

algebra, the gauge fixing here will not bring such an algebra. The main difference with

the unitary case also rests on the fact that the left and right invariances on the triple

(σ1, σ2, σ3) in this case are radically different.
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Associativity – In the graph basis, we can check the associativity of the product of

elements of K3(2n):

([ ∑

γi∈Sn[S2]

∑

γ∈S2n

γ1σ1γ ⊗ γ2σ2γ ⊗ γ3σ3γ
][ ∑

τi∈Sn[S2]

∑

τ∈S2n

τ1σ
′
1τ ⊗ τ2σ′

2τ ⊗ τ3σ′
3τ
])

×
[ ∑

αi∈Sn[S2]

∑

α∈S2n

α1σ
′′
1α⊗ α2σ

′′
2α⊗ α3σ

′′
3α
]

=
∑

τi, αi

∑

γ, τ

[∑

γ,α

γ1σ1γτ1σ
′
1τα1σ

′′
1α⊗ γ2σ2γτ2σ′

2τα2σ
′′
2α⊗ γ3σ3γτ3σ′

3τα3σ
′′
3α
]

=
[ ∑

γi∈Sn[S2]

∑

γ∈S2n

γ1σ1γ ⊗ γ2σ2γ ⊗ γ3σ3γ
]

×



[ ∑

τi∈Sn[S2]

∑

τ∈S2n

τ1σ
′
1τ ⊗ τ2σ′

2τ ⊗ τ3σ′
3τ
][ ∑

αi∈Sn[S2]

∑

α∈S2n

α1σ
′′
1α⊗ α2σ

′′
2α⊗ α3σ

′′
3α
]

 .

(5.4)

The proof easily extends to any d, and we therefore claim the following:

Proposition 5.1.1. K3(2n) is an associative unital sub-algebra of C[S2n]
⊗3.

The unit is given by the equivalence class of (id, id, id). Such element corresponds to the

disconnected graph made with n connected components with full contraction of n pairs

of tensors (i.e. dipole graphs).

Pairing – There is an inner product (that we will call pairing) on Kd(2n) defined from

the linear extension of the delta function from the symmetric group to the tensor product

group algebra (see (A.24) in Appendix A.3 for details pertaining to the following nota-

tion). Take two basis elements (in obvious notation) and evaluate using proper change

of variables:

δ
(∑

γi,γ

d⊗

i

γiσiγ ;
∑

τi,τ

d⊗

i

τiσ
′
iτ
)
=
∑

γi,γ

∑

τi,τ

d∏

i

δ(γiσiγ(τiσ
′
iτ)

−1)

= (2n)!(n!2n)
∑

γi,γ

d∏

i

δ(γiσiγ(σ
′
i)
−1) .

(5.5)

Thus, either the tuples (σ1, . . . , σd) and (σ′
1, . . . , σ

′
d) define equivalent graphs Gσ1...σd

and

Gσ′
1...σ

′
d
, respectively, or the result is 0. This precisely tells us that the graph basis forms

an orthogonal system. The above computes further using the order of the automorphism



5.2. Constructing a representation theoretic basis of K3(2n) 93

group of the graph

δ
(∑

γi,γ

d⊗

i

γiσiγ ;
∑

τi,τ

d⊗

i

τiσ
′
iτ
)
= (2n)!(n!2n)δ(Gσ1...σd

;Gσ′
1...σ

′
d
)Aut(Gσ1...σd

) . (5.6)

Therefore, there exists a non degenerate bilinear pairing on Kd(2n) and the following

holds:

Theorem 5.1.2. Kd(2n) is an associative unital semi-simple algebra.

As a corollary of Theorem 5.1.2, the Wedderburn-Artin1 theorem guarantees that Kd(2n)

decomposes into matrix subalgebras. It might be interesting to investigate a basis of such

a decomposition of Kd(2n) in irreducible matrix subalgebras. One could be tempted to

think that, at d = 3, restricting to K3(2n), the Kronecker coefficients for even partitions

could be themselves squares, and therefore define the dimensions of the irreducible sub-

algebras. This is not the case as can easily be shown using the same Sage code given in

Appendix B.3 (by printing the Kronecker). This point is postponed for future investi-

gations. In the meantime, it is legitimate to ask a representation basis with labels that

reflect the dimension (4.48). This is the purpose of the next section.

5.2 Constructing a representation theoretic basis of K3(2n)

Let us introduce the representation basis of C[S2n] given by the elements

QR
ij =

κR
(2n)!

∑

σ∈S2n

DR
ij(σ)σ , with κ2R = (2n)! d(R) , (5.7)

that obey the orthogonality relation δ(QR
ij ;Q

R′

i′j′) = δRR′δii′δjj′ . The basis {QR
ij} counts

∑
R⊢2n d(R)

2 = (2n)! elements and forms the Fourier theoretic basis of C[S2n]. Appendix

A.3 collects a few other properties of this basis for a general permutation group.

We fix d = 3 and build now the invariant representation theoretic (Fourier for short)

basis of the algebra K3(2n) (5.2). Consider the right diagonal action ρR(·) and the three

1 The Wedderburn-Artin theorem states that any finite dimensional semi-simple algebra is isomorphic
to a finite product of matrix algebras over division algebras.
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left actions ̺i(·) on the tensor product C[S2n]
⊗3. Then we write:

∑

γ1, γ2, γ3∈Sn[S2]

∑

γ∈S2n

̺1(γ1)̺2(γ2)̺3(γ3)ρR(γ)Q
R1
i1j1
⊗QR2

i2j2
⊗QR3

i3j3

=
∑

γa

∑

γ

γ1Q
R1
i1j1
γ ⊗ γ2QR2

i2j2
γ ⊗ γ3QR3

i3j3
γ

=
∑

γa

∑

γ

∑

pl ,ql

DR1
p1i1

(γ1)Q
R1
p1q1

DR1
j1q1

(γ)⊗DR2
p2i2

(γ2)Q
R2
p2q2

DR2
j2q2

(γ)⊗DR3
p3i3

(γ3)Q
R3
p3q3

DR3
j3q3

(γ)

=
(2n)!

d(R3)

∑

γa

∑

pl ,ql

∑

τ

CR1,R2;R3,τ
j1,j2;j3

CR1,R2;R3,τ
q1,q2;q3

DR1
p1i1

(γ1)D
R2
p2i2

(γ2)D
R3
p3i3

(γ3)Q
R1
p1q1
⊗QR2

p2q2
⊗QR3

p3q3
.

(5.8)

We used (A.22) to multiply group elements with the Q-basis, see Appendix A.3; then use

(A.18) to sum over γ the three representation matrices, see Appendix A.2.

We couple this last result with a Clebsch-Gordan coefficient, in order to get, using (A.16):

∑

jl

CR1,R2;R3,τ
j1,j2;j3

∑

γa

∑

γ

̺1(γ1)̺2(γ2)̺3(γ3)ρR(γ)Q
R1
i1j1
⊗QR2

i2j2
⊗QR3

i3j3

= (2n)!
∑

pl ,ql

CR1,R2;R3,τ
q1,q2;q3

∑

γ1

DR1
p1i1

(γ1)
∑

γ2

DR2
p2i2

(γ2)
∑

γ3

DR3
p3i3

(γ3)Q
R1
p1q1
⊗QR2

p2q2
⊗QR3

p3q3
.

(5.9)

Once again, we should stress that
∑

γ∈Sn[S2]
DR

pq(γ) 6= 0 if and only if R is a partition of 2n

with even rows. This condition will be always assumed in the next calculations. Now, we

can split the Wigner matrix element using branching coefficients of Sn[S2] in S2n. Consider

V R an irrep of S2n (see Appendix A listing a few basic facts on representation theory of

Sn and our notations), and the subgroup inclusion Sn[S2] ⊂ S2n, we can decompose V R

in irreps V r of Sn[S2] as

V R =
⊕

r

V r ⊗ VR,r, (5.10)

where VR,r is a vector space of dimension the multiplicity of the irreducible representations

r in R. A state in this decomposition denotes |r,mr, νr〉, where mr labels the states of

V r and νr ∈ J1, dimVR,rK.

The branching coefficients that are of interest are the coefficients of |r,mr, νr〉 when

decomposed in an orthonormal basis of the irreps R:

BR; r,νr
i;mr

= 〈R, i |r,mr, νr〉 = 〈r,mr, νr |R, i〉 . (5.11)
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The last relation is deduced from the fact that we use real representations. Using the

decomposition of the identity, the branching coefficients satisfy the following identities

∑

i

BR; r,νr
i;mr

BR; s,νs
i;ms

= δrsδνrνsδmrms
(5.12)

∑

r,mr,νr

BR; r,νr
i;mr

BR′; r,νr
i′;mr

= δRR′δii′ . (5.13)

We have the following useful relation, for σ ∈ Sn[S2],

∑

j

DR
ij(σ)B

R; r,νr
j;mr

=
∑

m′
r

Dr
mrm′

r
(σ)BR; r,νr

i;m′
r
, (5.14)

where Dr
mrm′

r
(σ) is the representation matrix of σ as an element of Sn[S2]. Restricting

this to r = [2n], the one-dimensional trivial representation of Sn[S2], we obtain:

∑

j

DR
ij(σ)B

R;[2n],1
j;1 = D

[2n]
11 (σ)B

R;[2n],1
i;1 = B

R;[2n],1
i;1 . (5.15)

We now treat the sum over the representation matrices in (5.9). Inserting twice a complete

set of states therein, we get

∑

σ∈Sn[S2]

DR
ij(σ) =

∑

σ∈Sn[S2]

∑

r,νr,mr
s,νs,ms

BR; r,νr
i;mr

BR; s,νs
j;ms

〈r, νr,mr|σ|s, νs,ms〉 . (5.16)

Noting that
∑

σ∈Sn[S2]
σ =

∑
σ∈Sn[S2]

1Sn[S2](σ)σ is, up to the factor 1/[n!2n], nothing but

the projector onto the trivial representation of Sn[S2], the overlap computes to

∑

σ∈Sn[S2]

〈r, νr,mr|σ|s, νs,ms〉 = (2nn!)δr,[2n]δs,[2n]δ1mr
δ1ms

δ1νsδ1νr , (5.17)

since we have

∑

σ∈Sn[S2]

σ|s, νs,ms〉 =
∑

σ∈Sn[S2]

1Sn[S2](σ)
∑

k

Ds
msk(σ)|s, νs, k〉

=
∑

σ∈Sn[S2]

D
[2n]
11 (σ)

∑

k

Ds
msk(σ)|s, νs, k〉 =

2nn!

d([2n])

∑

k

δs,[2n]δ1ms
δ1νsδ1k|s, νs, k〉

= (2nn!)δs,[2n]δ1ms
δ1νs |[2n], 1, 1〉 . (5.18)
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Hence, ∑

σ∈Sn[S2]

DR
ij(σ) = 2nn!BR

i B
R
j , (5.19)

where we have defined BR
i = 〈R, i |[2n], 1, 1〉.

From the above calculation, we finally get from (5.9):

∑

jl

CR1,R2;R3,τ
j1,j2;j3

∑

γa

∑

γ

̺1(γ1)̺2(γ2)̺3(γ3)ρR(γ)Q
R1
i1j1
⊗QR2

i2j2
⊗QR3

i3j3

= (2n)!(n!2n)3BR1
i1
BR2

i2
BR3

i3

∑

pl ,ql

CR1,R2;R3,τ
q1,q2;q3

BR1
p1
BR2

p2
BR3

p3
QR1

p1q1
⊗QR2

p2q2
⊗QR3

p3q3
.

(5.20)

We now define an element

QR1,R2,R3,τ = κ~R

∑

pl ,ql

CR1,R2;R3,τ
q1,q2;q3

BR1
p1
BR2

p2
BR3

p3
QR1

p1q1
⊗QR2

p2q2
⊗QR3

p3q3

= κ~R

κR1κR2κR3

((2n)!)3

∑

σi

∑

pl,ql

CR1,R2;R3,τ
q1,q2;q3

[ 3∏

i=1

BRi
pi
DRi

piqi
(σi)

]
σ1 ⊗ σ2 ⊗ σ3,

(5.21)

where κ~R is a normalization constant to be fixed later and the notation ~R stands for

(R1, R2, R3). The set {QR1,R2,R3,τ} is of cardinality the counting of orthogonal invariants

given by (4.48).

Invariance – Let us check that the element QR1,R2,R3,τ is invariant under left multipli-

cation on each factor and diagonal right multiplication:

(γ1 ⊗ γ2 ⊗ γ3)QR1,R2,R3,τ (γ ⊗ γ ⊗ γ) = κ~R

∑

pl ,ql

CR1,R2;R3,τ
q1,q2;q3

BR1
p1
BR2

p2
BR3

p3

×
∑

ℓ1,j1

DR1
ℓ1p1

(γ1)Q
R1
ℓ1j1

DR1
q1j1

(γ)⊗
∑

ℓ2,j2

DR2
ℓ2p2

(γ2)Q
R2
ℓ2j2

DR2
q2j2

(γ)⊗
∑

ℓ3,j3

DR3
ℓ3p3

(γ3)Q
R3
ℓ3j3

DR3
q3j3

(γ)

= κ~R

∑

jl

CR1,R2;R3,τ
j1,j2;j3

∑

pl,ℓl

DR1
ℓ1p1

(γ1)B
R1
p1
DR2

ℓ2p2
(γ2)B

R2
p2
DR3

ℓ3p3
(γ3)B

R3
p3
QR1

ℓ1j1
⊗QR2

ℓ2j2
⊗QR3

ℓ3j3

= κ~R

∑

jl,ℓl

CR1,R2;R3,τ
j1,j2;j3

BR1
ℓ1
BR2

ℓ2
BR3

ℓ3
QR1

ℓ1j1
⊗QR2

ℓ2j2
⊗QR3

ℓ3j3

= QR1,R2,R3,τ , (5.22)

where we used once again (A.22) and (A.16) as intermediate steps and the identity (5.15)

to get the last line. We now check a few properties of the product of elements of K3(2n).
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Product – The elements (5.7) of the Fourier basis of C[S2n] multiply as follows (see

Appendix A.3.)

QR
ijQ

R′

kl =
κR
d(R)

δRR′δjkQ
R′

il . (5.23)

The definition (5.21) and relation (5.23) allow us to compute the product

QR1,R2,R3,τQR′
1,R

′
2,R

′
3,τ

′

=
κ~Rκ ~R′κR1κR2κR3

d(R1)d(R2)d(R3)
δ~R ~R′

∑

pl ql al bl

CR1,R2;R3,τ
q1,q2;q3

C
R′

1,R
′
2;R

′
3,τ

′

b1,b2;b3

× BR1
p1
BR2

p2
BR3

p3
BR′

1
a1
BR′

2
a2
BR′

3
a3
Q

R′
1

p1b1
⊗QR′

2
p2b2
⊗QR′

3
p3b3

δq1a1δq2a2δq3a3

=
κ~RκR1κR2κR3

d(R1)d(R2)d(R3)
δ~R ~R′

[∑

ql

CR′
1,R

′
2;R

′
3,τ

q1,q2;q3
BR′

1
q1
BR′

2
q2
BR′

3
q3

]
QR′

1,R
′
2,R

′
3,τ

′

.

(5.24)

Hence, the product of two basis elements expands in terms of QR1,R2,R3,τ . In a compact

notation, we write

QR1,R2,R3,τQR′
1,R

′
2,R

′
3,τ

′

= δ~R ~R′k( ~R′, τ)QR′
1,R

′
2,R

′
3,τ

′

, (5.25)

which shows that the product is almost orthogonal. Still it cannot represent the basis of

the Wedderburn-Artin matrix decomposition. The basis {QR1,R2,R3,τ} therefore decom-

poses K3(2n) into blocks mutually orthogonal in the labels R1, R2, R3. Still in each block

the decomposition remains unachieved.

Associativity – We check the associativity of the product in the Q-basis. On the one

hand, we have

(
QR1,R2,R3,τQR′

1,R
′
2,R

′
3,τ

′
)
QR′′

1 ,R
′′
2 ,R

′′
3 ,τ

′′

=
κ~RκR1κR2κR3

d(R1)d(R2)d(R3)
δ~R ~R′

[∑

ql

CR′
1,R

′
2;R

′
3,τ

q1,q2;q3
BR′

1
q1
BR′

2
q2
BR′

3
q3

]

× κ ~R′κR′
1
κR′

2
κR′

3

d(R′
1)d(R

′
2)d(R

′
3)
δ ~R′ ~R′′

[∑

ql

CR′′
1 ,R

′′
2 ;R

′′
3 ,τ

′

q1,q2;q3
BR′′

1
q1
BR′′

2
q2
BR′′

3
q3

]
QR′′

1 ,R
′′
2 ,R

′′
3 ,τ

′′

,

(5.26)
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while on the other,

QR1,R2,R3,τ
(
QR′

1,R
′
2,R

′
3,τ

′

QR′′
1 ,R

′′
2 ,R

′′
3 ,τ

′′
)

=
κ ~R′κR′

1
κR′

2
κR′

3

d(R′
1)d(R

′
2)d(R

′
3)
δ ~R′ ~R′′

[∑

ql

CR′′
1 ,R

′′
2 ;R

′′
3 ,τ

′

q1,q2;q3
BR′′

1
q1
BR′′

2
q2
BR′′

3
q3

]

× κ~RκR1κR2κR3

d(R1)d(R2)d(R3)
δ~R ~R′′

[∑

ql

CR′′
1 ,R

′′
2 ;R

′′
3 ,τ

q1,q2;q3
BR′′

1
q1
BR′′

2
q2
BR′′

3
q3

]
QR′′

1 ,R
′′
2 ,R

′′
3 ,τ

′′

.

(5.27)

The two expressions are identical.

Pairing – We use the pairing on C[S2n]
⊗3 along the lines of (A.26) and evaluate:

δ(QR1,R2,R3,τ ;QR′
1,R

′
2,R

′
3,τ

′

)

= κ~Rκ ~R′

∑

pl,ql,al,bl

CR1,R2;R3,τ
q1,q2;q3

C
R′

1,R
′
2;R

′
3,τ

′

b1,b2;b3
BR1

p1
BR2

p2
BR3

p3
BR′

1
a1
BR′

2
a2
BR′

3
a3

× δ(QR1
p1q1
⊗QR2

p2q2
⊗QR3

p3q3
;Q

R′
1

a1b1
⊗QR′

2
a2b2
⊗QR′

3
a3b3

)

= κ~Rκ ~R′

∑

pl,ql,al,bl

CR1,R2;R3,τ
q1,q2;q3

C
R′

1,R
′
2;R

′
3,τ

′

b1,b2;b3
BR1

p1
BR2

p2
BR3

p3
BR′

1
a1
BR′

2
a2
BR′

3
a3

× δ~R ~R′δp1a1δp2a2δp3a3δq1b1δq2b2δq3b3

= κ2~R d(R3)
∑

pl

[ 3∏

i=1

BRi
pi

]2
δ~R ~R′δττ ′

= κ2~R d(R3)δ~R ~R′δττ ′ ,

(5.28)

where, in the first line, we used (A.26), in the last, (A.13), and the fact that, by (5.12),

the following holds
∑

p(B
R
p )

2 =
∑

p〈[2n], 1, 1|R, p〉〈R, p |[2n], 1, 1〉 = 1, for all R ⊢ 2n.

We could therefore fix the normalization κ2~R = 1/d(R3).

The following statement holds:

Proposition 5.2.1. {QR1,R2,R3,τ} is an invariant orthonormal basis of K3(2n).

Proof. It is sufficient to show that the graph basis expands in terms of the Q-basis. We

express any graph basis element Gσ1,σ2,σ3 =
∑

γi∈Sn[S2]

∑
γ∈S2n

γ1σ1γ ⊗ γ2σ2γ ⊗ γ3σ3γ as

Gσ1,σ2,σ3 =
∑

Rl,τ

δ(QR1,R2,R3,τ ;Gσ1,σ2,σ3)Q
R1,R2,R3,τ . (5.29)

The definition of QR1,R2,R3,τ calls a linear combination of triples τ1 ⊗ τ2 ⊗ τ3 that must

have a non trivial overlap with Gσ1,σ2,σ3 . Let us compute the overlap between the bases.
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Start with (5.21) and then write (using (A.16) and then (5.15))

δ(QR1,R2,R3,τ ;Gσ1,σ2,σ3) = κ~R

κR1κR2κR3

((2n)!)3
((2nn!))3(2n!)

∑

al ,bl

CR1,R2;R3,τ
b1,b2;b3

[ 3∏

i=1

BRi
ai
DRi

aibi
(σi)

]
.

(5.30)

This number is, up to the normalization factor ((2nn!))3(2n!), the coefficient of the triple

σ1 ⊗ σ2 ⊗ σ3 in QR1,R2,R3,τ . ✷

We note that the basis {QR1,R2,R3,τ} is of the correct cardinality, that of Z3(2n) as we

sought. Finding the Wedderburn-Artin matrix basis of K3(2n) would mean that Z3(2n)

can be written as a sum of squares. Interestingly, within the TFT2 formulation of the

counting, we note that the partition function (4.36) computes further using (A.5) as

Z3(2n) =
1

[n!2n]3

∑

Rl⊢2n

(∑

γ1

χR1(γ1)
)(∑

γ2

χR2(γ2)
)(∑

γ3

χR1(γ3)χ
R2(γ3)

)

=
1

n!2n

∑

Rl⊢2n

∑

γ3

χ2R1(γ3)χ
2R2(γ3)

=
1

n!2n

∑

γ3

(
∑

R⊢2n
χ2R(γ3)

)2

,

(5.31)

thus, as a normalized sum of squares. This shows that Z3(2n) could admit several decom-

positions into squares. If
(∑

R⊢2n χ
2R(γ3)

)2
is the dimension of a subalgebra (given that

the characters are integers via the Murnaghan-Nakayama rule), this would mean that this

decomposition into subalgebras would be labeled by γ3 and will be even different from

the Wedderburn-Artin decomposition. This decomposition deserves further clarification

in the present O(N) setting.

About projectors – Let us conclude this chapter by defining the normalized projectors

P
Sn[S2]
i =

1

n!2n

∑

γi∈Sn[S2]

̺i(γi),

P S2n
R =

1

(2n)!

∑

γ∈S2n

ρR(γ),

(5.32)
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and by checking that the trace of their product indeed yields the dimension of the algebra

K3(2n):

dimK3(2n) = trC[S2n]⊗3(P
Sn[S2]
1 P

Sn[S2]
2 P

Sn[S2]
3 P S2n

R ) = trK3(2n)(1) . (5.33)

We have

∑

γa∈Sn[S2]

∑

γ∈S2n

̺1(γ1)̺2(γ2)̺3(γ3)ρR(γ)Q
R1
i1j1
⊗QR2

i2j2
⊗QR3

i3j3

=
∑

γa

∑

γ

∑

pl,ql

DR1
p1i1

(γ1)D
R1
j1q1

(γ)DR2
p2i2

(γ2)D
R2
j2q2

(γ)DR3
p3i3

(γ3)D
R3
j3q3

(γ) (5.34)

×QR1
p1q1
⊗QR2

p2q2
⊗QR3

p3q3
.

To compute the trace, pair this withQR1
i1j1
⊗QR2

i2j2
⊗QR3

i3j3
using the orthonormality property

δ(QR
ij;Q

S
kl) = δRSδikδjl and sum over Rl, il, jl yielding

∑

Rl⊢2n

∑

γa

∑

γ

∑

pl,ql,il,jl

DR1
p1i1

(γ1)D
R1
j1q1

(γ)DR2
p2i2

(γ2)D
R2
j2q2

(γ)DR3
p3i3

(γ3)D
R3
j3q3

(γ)

× δi1p1δj1q1δi2p2δj2q2δi3p3δj3q3
=
∑

Rl⊢2n

∑

γa

∑

γ

∑

il,jl

DR1
i1i1

(γ1)D
R1
j1j1

(γ)DR2
i2i2

(γ2)D
R2
j2j2

(γ)DR3
i3i3

(γ3)D
R3
j3j3

(γ)

= (2n)!
∑

Rl⊢2n

∑

γa

C(R1, R2, R3)χ
R1(γ1)χ

R2(γ2)χ
R3(γ3) . (5.35)

Hence we find (4.40) using Burnside’s lemma, and we have Z3(n) = dimK3(2n).
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Chapter 6

Correlators

Let us now analyze Gaussian correlators, starting with d = 3 we then extend the result

to any d. We consider the normal ordered correlator of two observables Ob(T )Ob′(T ) in

the Gaussian measure dν(T ) (4.4). Normal order means that we only allow contractions

from Ob(T ) to Ob′(T ).

6.1 Rank d = 3 correlator

Before computing the correlators, a few remarks are in order. A 3-tuple of permutations

labels the observables: Ob(T ) = Oσ1,σ2,σ3(T ) and Ob′(T ) = Oτ1,τ2,τ3(T ). Recall that

an observable Oσ1,σ2,σ3(T ) is in fact defined by a contraction of tensor indices. This

contraction pattern, that gives in return the colored edges of the graph associated with

the observable, is not defined by the triple (σ1, σ2, σ3) but instead by the following triple

(σ̃1, σ̃2, σ̃3) = (σ−1
1 ξσ1, σ

−1
2 ξσ2, σ

−1
3 ξσ3), (6.1)

where we recall that ξ is the fixed permutation (12)(34) . . . (2n− 1, 2n). The justification

of this is immediate: each swap in ξ corresponds to a label of the half-lines of the vertex

vci , see Figure 4.1. Consider the lth edge of color c from the lth tensor. The vertex links vci
the image of σc(l) and the pre-image through σc of ξ(σc(l)). We will need the following

convenient notation for tensors: Tai1ai2ai3 , where the index i ∈ J1, 2nK stands for the

label of the tensor which at the end will not matter in the definition of the observable.

Using this, an observable made of the contraction of 2n tensors can be expressed, for

aic ∈ J1, NK, as:

Oσ1,σ2,σ3(T ) =
∑

aic

2n∏

i=1

3∏

c=1

δaicaσ̃c(i)c

2n∏

i=1

Tai1ai2ai3 . (6.2)
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There are many redundant Kroneckers δs in the previous expression. However, the cal-

culus here is discrete and so there are no particular issues. When we will compute the

correlator using Wick’s theorem, it is the triple (σ̃1, σ̃2, σ̃3) that will be concerned.

The Wick contraction between two observables, in the normal order, introduces a permu-

tation µ ∈ S2n. A correlator simply counts cycles of a convolution of permutations. Let

us determine which convolution that is, using twice (6.2) and the free propagator (4.5):

〈Oσ1,σ2,σ3(T )Oτ1,τ2,τ3(T )〉 =
1

´

dν(T )

ˆ

dν(T )Oσ1,σ2,σ3(T )Oτ1,τ2,τ3(T )

=
∑

µ

∑

aic,bkl

[ 2n∏

i=1

3∏

c=1

δaicaσ̃c(i)c
δbicbτ̃c(i)c

][ 2n∏

i=1

3∏

c=1

δaicbµ(i)c

]
.

(6.3)

Summing over the bkl variables and using a change of variables, bic = aµ−1(i)c, lead us to

〈Oσ1,σ2,σ3(T )Oτ1,τ2,τ3(T )〉 =
∑

µ

∑

aic

[ 2n∏

i=1

3∏

c=1

δaicaσ̃c(i)c
δ
a
µ−1(i)c

a
µ−1τ̃c(i)c

]

=
∑

µ

∑

aic

[ 2n∏

i=1

3∏

c=1

δaicaσ̃c(i)c
δaica

µ−1τ̃cµσ̃c(i)c

]
,

(6.4)

where we also used σ̃−1
c = σ̃c. We can already guess that the correlator expresses as a

power of N in a number of cycles of µ−1τ̃cµσ̃c. However, the proof is not obvious because

of the redundancy of the δs introduced in the definition of the observable, see (6.2).

The following statement holds

Lemma 6.1.1. Let ai be an integer, ai ∈ J1, NK, for i ∈ J1, 2nK. Then (at fixed color c

that we will omit in the ensuing notation),

∑

ai

[ 2n∏

i=1

δaiaσ̃(i)
δaia

µ−1τ̃µσ̃(i)

]
= Nc(µ−1τ̃µσ̃) , (6.5)

where c(σ) is the number of cycles of the permutation σ.

Proof. The sole issue here is the redundancy of the Kroneckers. In fact, there is enough

information in the above sum to withdraw the correct number of cycles. Call “vertex δs”

those appearing in the product
∏2n

i=1 δ
ai
aσ̃(i)

, and (Wick) “contraction δs” the remaining ones

coming from the resolution of the Wick contraction. Note that there are redundancies in

each product of δs.
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Consider a fixed index i: to make things easier, we start by the simple case given by

µ−1τ̃µσ̃(i) = i. If µ−1τ̃µσ̃−1(i) = i, then (i) is a 1-cycle of µ−1τ̃µσ̃ and we also have

σ̃(i) = µ−1τ̃µ(i). Thus we have, among the contraction δs, two distinct δs which become

trivial, viz. δaiai and δ
aσ̃(i)
aσ̃(i) . The sums over ai and aσ̃(i) boil down to a single sum precisely

because of the vertex δaiaσ̃(i)
. Hence that cycle is counted once.

Let us inspect the general case. For an arbitrary i, call qi ≥ 1 the smallest integer such

that (µ−1τ̃µσ̃)qi(i) = i, and which defines a qi-cycle of µ−1τ̃µσ̃ (the case qi = 1 has been

dealt with above). In the product (6.5), we collect all contraction δs involved in the cycle

starting at some fixed i

qi∏

l=1

δ
a
(µ−1τ̃µσ̃)l−1(i)

a
(µ−1τ̃µσ̃)l(i)

. (6.6)

Since this product is at arbitrary i, we have a companion and distinct product of con-

traction δs that starts at σ̃(i):
∏qi

l=1 δ
a
(µ−1τ̃µσ̃)l−1(σ̃(i))

a
(µ−1τ̃µσ̃)l(σ̃(i))

. Hence, we combine both products

and multiply by one vertex δ

δaiaσ̃(i)

qi∏

l=1

δ
a
(µ−1τ̃µσ̃)l−1(i)

a
(µ−1τ̃µσ̃)l(i)

δ
a
(µ−1τ̃µσ̃)l−1(σ̃(i))

a
(µ−1τ̃µσ̃)l(σ̃(i))

, (6.7)

which evaluates to N after performing the sum over the corresponding ajs. Again, the

qi-cycle is counted once. It just remains to observe that the cycles, each defined by a

subset of indices aj, define partitions of the entire set of indices ai (once an index is used

in a cycle it cannot reappear in another). Thus, the sum over ai factorizes along cycles,

which completes the proof. ✷

Note that there may be alternative ways of defining real tensor observables using pairings

and without introducing the gauge redundancy. In any case, we could work in this setting,

keeping track of the necessary information.

From Lemma 6.1.1 applied to each color c = 1, 2, 3, we finally come to

〈Oσ1,σ2,σ3(T )Oτ1,τ2,τ3(T )〉 =
∑

µ

N
∑3

c=1 c(µ
−1τ̃cµσ̃c) . (6.8)

The 1-point correlator can be recovered from the above discussion. First, the 1-point

correlator cannot be normal ordered. Introduce the Wick contraction µ that belongs to

S∗
2n the subset defined by the pairings of S2n (a permutation pairing is made only of
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transpositions). Then, we obtain

〈Oσ1,σ2,σ3(T )〉 =
∑

µ∈S∗
2n

∑

aic

[ 2n∏

i=1

3∏

c=1

δaicaσ̃c(i)c

][ 2n∏

i=1

3∏

c=1

δaicaµ(i)c

]
. (6.9)

Next, we adapt Lemma 6.1.1 to
∑

ai

[∏2n
i=1 δ

ai
aσ̃(i)

δaiaσ̃µ(i)

]
= Nc(σ̃µ) and get

〈Oσ1,σ2,σ3(T )〉 =
∑

µ∈S∗
2n

N
∑3

c=1 c(µσ̃c) . (6.10)

6.2 Representation theoretic basis and orthogonality

We re-express the 2-point function in order to make explicit some of its properties. In-

serting three auxiliary permutations αc ∈ S2n, the above sum (6.8) reads

〈Oσ1,σ2,σ3(T )Oτ1,τ2,τ3(T )〉 =
∑

µ, αc

N
∑3

c=1c c(αc)

3∏

c=1

δ(µ−1τ̃cµσ̃cαc) = N6n
∑

µ

3∏

c=1

δ(µ−1τ̃cµσ̃cΩc),

(6.11)

where we introduced the central element Ωc =
∑

αc∈S2n
Nc(αc)−2nαc. The proof rests on

the equality c(α−1
c ) = c(αc), which holds because each cycle has an inverse, a cycle of the

same length. Then, we can rewrite (6.11) as

〈Oσ1,σ2,σ3(T )Oτ1,τ2,τ3(T )〉

= N6n
∑

µ

δ[(µ−1)⊗3(τ̃1 ⊗ τ̃2 ⊗ τ̃3)µ⊗3(σ̃1 ⊗ σ̃2 ⊗ σ̃3)(Ω1 ⊗ Ω2 ⊗ Ω3)]

= N6n
∑

µ

δ[(τ̃1 ⊗ τ̃2 ⊗ τ̃3)µ⊗3(σ̃1 ⊗ σ̃2 ⊗ σ̃3)(µ−1)⊗3(Ω1 ⊗ Ω2 ⊗ Ω3)] , (6.12)

where in the last equation we used the fact the Ωcs are central. We introduce the repre-

sentation theoretic element by pairing a basis element QR1,R2,R3,τ (5.21) and an observable

Oσ1,σ2,σ3 as

OR1,R2,R3,τ =
∑

σl

δ(QR1,R2,R3,τσ−1
1 ⊗ σ−1

2 ⊗ σ−1
3 )Oσ1,σ2,σ3

= κ~R

3∏

i=1

κRi

(2n)!

∑

σl

∑

pl,ql

CR1,R2;R3,τ
q1,q2;q3

[ 3∏

i=1

BRi
pi
DRi

piqi
(σi)

]
Oσ1,σ2,σ3 .

(6.13)
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As a linear combination of observables, we can calculate their correlators:

〈OR1,R2,R3,τ OR′
1,R

′
2,R

′
3,τ

′〉 = N6nκ~Rκ~R′

[ 3∏

i=1

κRi

(2n)!

κR′
i

(2n)!

]

×
∑

µ

δ

[
∑

σl,σ
′
l

∑

pl,ql,p
′
l
,q′

l

CR1,R2;R3,τ
q1,q2;q3

C
R′

1,R
′
2;R

′
3,τ

′

q′1,q
′
2;q

′
3

[ 3∏

i=1

BRi
pi
DRi

piqi
(σi)B

R′
i

p′i
D

R′
i

p′iq
′
i
(σ′

i)
]

×(σ̃′
1 ⊗ σ̃′

2 ⊗ σ̃′
3)µ

⊗3(σ̃1 ⊗ σ̃2 ⊗ σ̃3)(µ−1)⊗3(Ω1 ⊗ Ω2 ⊗ Ω3)

]

= N6nκ~Rκ~R′

[ 3∏

i=1

κRi

(2n)!

κR′
i

(2n)!

]∑

µ

δ

[
∑

pl,ql,p
′
l
,q′

l

CR1,R2;R3,τ
q1,q2;q3

C
R′

1,R
′
2;R

′
3,τ

′

q′1,q
′
2;q

′
3

×
[ 3⊗

i=1

B
R′

i

p′i

∑

σ′
i

(σ′
i)
−1ξD

R′
i

p′iq
′
i
(σ′

i)σ
′
i

]
µ⊗3
[ 3⊗

i=1

BRi
pi

∑

σi

(σi)
−1ξDRi

piqi
(σi)σi

]
(µ−1)⊗3

×(Ω1 ⊗ Ω2 ⊗ Ω3)

]
. (6.14)

Next, we introduce the operator Tξ : S2n → S2n that acts on S2n as Tξ(σ) = σ−1ξσ = σ̃

and extends by linearity on C[S2n]. The operator Tξ actually maps any permutation to

a pairing. Its image in C[S2n] is the vector subspace generated by all pairings (more

properties are derived in Appendix A.3). We re-express the above correlator as

〈OR1,R2,R3,τ OR′
1,R

′
2,R

′
3,τ

′〉

= N6nκ~Rκ~R′

∑

µ

δ

[
∑

pl,ql,p
′
l
,q′

l

CR1,R2;R3,τ
q1,q2;q3

C
R′

1,R
′
2;R

′
3,τ

′

q′1,q
′
2;q

′
3

×
[ 3⊗

i=1

B
R′

i

p′i
TξQ

R′
i

p′iq
′
i

]
µ⊗3
[ 3⊗

i=1

BRi
pi
TξQ

Ri
piqi

]
(µ−1)⊗3(Ω1 ⊗ Ω2 ⊗ Ω3)

]

= N6n
∑

µ

δ

[[
T⊗3
ξ

∑

p′
l
,q′

l

C
R′

1,R
′
2;R

′
3,τ

′

q′1,q
′
2;q

′
3

3⊗

i=1

B
R′

i

p′i
Q

R′
i

p′iq
′
i

]
µ⊗3

×
[
T⊗3
ξ

∑

pl,ql

CR1,R2;R3,τ
q1,q2;q3

3⊗

i=1

BRi
pi
QRi

piqi

]
(µ−1)⊗3(Ω1 ⊗ Ω2 ⊗ Ω3)

]

= N6n
∑

µ

δ

[
(T⊗3

ξ QR′
1,R

′
2,R

′
3,τ

′

)µ⊗3(T⊗3
ξ QR1,R2,R3,τ )(µ−1)⊗3(Ω1 ⊗ Ω2 ⊗ Ω3)

]

= N6n(2n)! δ
[
(T⊗3

ξ QR′
1,R

′
2,R

′
3,τ

′

)(T⊗3
ξ QR1,R2,R3,τ )(Ω1 ⊗ Ω2 ⊗ Ω3)

]
,

(6.15)
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where we used the right diagonal invariance of the basis QR′
1,R

′
2,R

′
3,τ

′
to achieve the last

stage of the calculation. Hence, this correlator computed with the Gaussian measure

of O(N) tensor models in the normal order, regarded as an inner product on the space

of observables, corresponds to the group theoretic inner product of the algebra K3(2n)

calculated on a product of the transformed basis T⊗3
ξ QR1,R2,R3,τ with an insertion of the

factor Ω1 ⊗ Ω2 ⊗ Ω3. The action T⊗3
ξ on QR1,R2,R3,τ reflects the fact that it is the triple

(σ̃1, σ̃2, σ̃3) which plays a major role for computing the cycles associated with Feynman

amplitudes in this theory (meanwhile the triple (σ1, σ2, σ3) was associated with the class

counting of the double coset space and its resulting algebra). In U(N) models [29], there

is a correspondence between Gaussian 2-point correlators in normal order and the inner

product on the algebra of observables but without the presence of the operator T⊗3
ξ . The

presence of T⊗3
ξ determines therefore a feature proper to O(N) tensor models.

We can further evaluate the above inner product as in Appendix A.4 and find:

〈OR1,R2,R3,τ OR′
1,R

′
2,R

′
3,τ

′〉 = δ~R′ ~Rδτ ′τ
∑

Si,τi

3∏

i=1

DimN(Si)

(
∑

bi,ci,pi

DSi

bici
(ξ)CSi,Si;Ri,τi

bi,ci;pi
BRi

pi

)2

,

(6.16)

which expresses the orthogonality of the representation theoretic basis {OR1,R2,R3,τ} (cor-

responding to normal ordered Gaussian correlators) of K3(2n). Note also that the pairing

between basis elements is a representation translation of the Gaussian integration.

Rank-d 2-point correlator – We obtain the 2-point correlator at rank d in a straight-

forward manner from the above derivation. We generalize (6.2) and (6.3) by extending

the product over c up to d ≥ 3 and considering a tensor Tai1ai2...aid . The calculations are

direct: we get (6.8) and (6.10) by changing the sum over c running over the colored cycles

up to d. Meanwhile, the orthogonality of the 2-point function is a property specific to

the rank 3 and cannot be reproduced easily at any rank.
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Chapter 7

On Sp(2N) tensor invariants

We provide a few remarks on the counting of real Sp(2N) tensor invariants. Carrozza and

Pozsgay recently addressed symplectic complex tensor models in the context of tensor-

like SYK models [26]. The authors focused on the complex group U(N) ∩ Sp(2N,C)
(its quantum mechanical tensor model admits a large N expansion and shares similar

properties with the SYK model) and, at the combinatorial level, on the improvement of

the numerical computations of the number of its singlets in rank 3. We could ask, in the

same vein as discussed above using symmetric group formulae, how to enumerate real

symplectic invariants in the pure tensor model setting, i.e. with no spacetime attached

to the tensor. We stress that, unlike in [26], we are interested in real and Bosonic fields

and address in the following the symplectic group itself Sp(2N,R) = Sp(2N) and its

(symplectic) invariants in any rank. We show below that they follow an enumeration

principle with the same diagrammatics than that of the O(N) invariants albeit with

some changes occuring at the level of the coset equivalence relation. Interestingly in

this Sp(2N) setting, the “virtual” vertices vci , in Figure 4.1, find an interpretation: they

correspond precisely to symplectic matrix J insertions in the Sp(2N) invariants.

Let us recall the usual notation and introduce the real 2N × 2N symplectic matrix J

which writes in blocks

J =

(
0 ✶N

−✶N 0

)
, J2 = −✶2N , (7.1)

where ✶N , for all N , is the identity matrix of MN(R). A matrix K ∈ Sp(2N) obeys

KTJK = J .
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A rank-d real tensor T , with components Tp1...pd , pc ∈ J1, 2NK, transforms under the

fundamental representation of
⊗d

c=1 Sp(2Nc) for fixed Nc, if each group Sp(2Nc) acts on

the index pc such that the transformed tensor satisfies:

TK
q1...qd

=
∑

p1,...,pd

K(1)
q1p1

. . . K(d)
q1p1

Tp1...pd , (7.2)

where K(c) ∈ Sp(2Nc), c ∈ J1, dK.

Observables in Sp(2N) tensor models are the contractions of an even number of tensors

T . They are invariant under
⊗d

c=1 Sp(2Nc) transformations and we call them Sp(2N)

invariants.

In understood notation, we define a new trace on two rank-d tensors as

Tr(T Jd T ) =
∑

pi,qi

J (1)
p1q1

. . . J (d)
pdqd

Tp1...pdTq1...qd . (7.3)

Thus, the tensor indices that are contracted couple with J . This is the generalization of

the symplectic form over matrices which is defined as ωJ(M,W ) = tr(MTJW ), and that

is invariant under symplectomorphisms.

We check that Tr(T Jd T ) is invariant under symplectic transformations:

Tr(TK Jd TK) =
∑

ri,si

∑

pi,qi

(
Kp1r1Kq1s1J

(1)
p1q1

)
. . .
(
KpdrdKqdsdJ

(d)
pdqd

)
Tr1...rdTs1...sd

= Tr(TJdT ) .

(7.4)

Now, we extend the trace (7.3) to arbitrary number of tensors. Still the contraction

obtained is an Sp(2N) invariant. We can easily observe that the Sp(2N) invariants can

be viewed once again in terms of d-regular colored graphs with a decoration on each edge.

The decoration seals the symplectic matrix J on each pair of contracted tensor indices.

Therefore, J can be represented by a new vertex on each edge which plays precisely the

same role as a black vertex vci in Figure 4.1.

The counting of Sp(2N) invariants is more subtle than that of O(N) invariants. Indeed,

for simplicity, let us consider in rank 3 (generalizing the following argument at any rank d

is straightforward), 2n tensors and count the possible triples (σ1, σ2, σ3) ∈ S2n×S2n×S2n
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subjected to the following invariance:

(σ1, σ2, σ3) ∼ (γ1σ1γ, γ2σ2γ, γ3σ3γ), (7.5)

where, on the right, we have the ordinary diagonal action of Diag(S2n) on the triple.

Meanwhile, on the left, the γis belong to an identical subgroup Gi = G′ but that is not

any more Sn[S2]. Switching the half-edges of the vertices vci produces a sign. This hints

to the fact that we should switch to the group algebra C[S2n]×C[S2n]×C[S2n] to perform

the coset. At this point, note that nothing excludes that the number of Sp(2N) invariants

matches the number of orthogonal invariants. Such interesting questions require much

more work and is left for future investigations.
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Part III

Blobbed topological recursion for

correlation functions in tensor models
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Chapter 8

Definition of the tensor and matrix

models

8.1 Bubbles and partition function

Let us begin this chapter by refreshing the reader’s memory about (un)colored tensor

models and expanding upon it.

Let d > 2 be an integer. For c ∈ J1, dK, we call Ec ≃ ❈N the space of color c. Recall

from Chapter 2 that a tensor T of rank d is an object in
⊗d

c=1Ec and its elements are

denoted Ta1...ad , with ac ∈ J1, NK for all c ∈ J1, dK. Also, in (un)colored tensor models, one

is interested in polynomials in the tensor entries which are invariant under the natural

action of (a representation of) U(N)d on T and T . This group acts as a different copy of

U(N) on each color index,

T →
⊗

c∈J1,dK

U (c) T. (8.1)

The only way to realize this invariance is to identify the index of a T and a T which are

in the same position, i.e. have the same color, and sum over the values of that index.

This is represented graphically as follows

N∑

ac=1

T···ac···T ···ac··· = c

T T
a1

ad

b1

bd

. (8.2)

A bubble is a connected, bipartite graph whose edges are labeled by a color in J1, dK, and

such that each vertex has degree d and all colors are incident to each of them. If B is a

bubble, the above rule associates to it a polynomial which is invariant under U(N)d and

denoted B(T, T ). These polynomials generate the ring of U(N)d-invariant polynomials.

If B has 2n vertices and one labels the white vertices from 1 to n and similarly for black
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vertices, then B can be described as a d-tuple (τ (1), . . . , τ (d)) of permutations on J1, nK.

Set τ (c)(v) = v′ if there is an edge of color c connecting the white vertex v to the black

vertex v′. The associated polynomial is

B(T, T ) =
∑

(i
(c)
1 ,...,i

(c)
n )

(j
(c)
1 ,...,j

(c)
n )

δτ
(1)···τ (d)

(i
(c)
1 ,...,i

(c)
n ),(j

(c)
1 ,...,j

(c)
n )

n∏

v=1

T
i
(1)
v ···i(d)v

T
j
(1)
v ···j(d)v

, (8.3)

with by definition

δτ
(1)···τ (d)

(i
(c)
1 ,...,i

(c)
n ),(j

(c)
1 ,...,j

(c)
n )

=
n∏

v=1

d∏

c=1

δ
i
(c)

v
, j

(c)

τ(c)(v)

. (8.4)

Invariance under relabeling of the white and black vertices implies invariance of B(T, T )

under left product of τ (1), . . . , τ (d) by σL and right product by σR, two permutations on

J1, nK. If C ⊂ J1, dK and Ĉ is its complement, then denote

EC =
⊗

c∈C
Ec and HC(T, T̄ ) =

C

̂

C

C

T

T

∈ EC ⊗ E∗
C , (8.5)

the matrix obtained by contracting all the colors from Ĉ between T and T . We will write(
HC(T, T )

)
(i(c)),(j(c))

the matrix elements. There is a single quadratic invariant (up to a

factor), given by the contraction of T with T along all colors, namely our dipole (2.10),

T · T =
N∑

a1,...,ad=1

Ta1···adT a1···ad = H∅(T, T ). (8.6)

For quartic invariants, we choose a color subset C ⊂ J1, dK and connect the indices of T

with colors in C with a T and those with colors in Ĉ with another T ,

QC(T, T ) = trEC

(
HC(T, T )

2
)
=

C

C

̂

C
̂

C
, (8.7)

where the notation trEC
indicates that the trace is taken in the spaces with colors in C.

It is invariant under C → Ĉ. Note that for C = {c} for some c ∈ J1, dK we get back
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the quartic melonic model of Chapter 3. In this part, we will furthermore consider cyclic

interactions, labeled by a color set C and an integer n ≥ 2

BC,n(T, T ) = trEC

(
HC(T, T )

n
)
=

C

C

C
̂

C

̂

C . (8.8)

It is again symmetric under the exchange of C and Ĉ. We say that the cyclic interaction

is melonic if |C| = 1, meaning that in HC(T, T ), T and T are contracted along all colors

except one. Let I be a finite set and {Bi}i∈I a finite set of bubbles, {ti} their coupling

constants and {si} some scaling coefficients. Denote B = {(Bi, ti, si)}i∈I . Then the

partition function is

ZTensor(N,B) =
ˆ

(❈N )⊗d

dTdT exp−Nd−1T · T + VN,B(T, T ),

with VN,B(T, T ) =
∑

i∈I
N sitiBi(T, T ),

(8.9)

and the free energy is given by F (N,B) = lnZTensor(N,B). Here the measure dTdT is

proportional to the product of the Lebesgue measures over the tensor entries, normalized

so that

ZTensor(N, ∅) =
ˆ

(❈N )⊗d

dTdT exp−Nd−1T · T = 1. (8.10)

Moreover, we only consider (8.9) to make sense by expanding eVN,B(T,T ) as a series in T, T

and integrating each term with the Gaussian weight e−Nd−1T ·T , i.e. we write

eVN,B(T,T ) =
∑

{ni≥0}i∈I

∏

i∈I

1

ni!

(
N sitiBi(T, T )

)ni , (8.11)

and perform the integral at fixed {ni} using Wick’s theorem. More precisely, we expand

Bi(T, T )
ni as a polynomial in the tensor entries

∏

i∈I
Bi(T, T )

ni =
∑

{a(c)q ,b
(c)
q }

δ({ni})({a(c)q , b(c)q }
)
T
a
(1)
1 ···a(d)1

T
b
(1)
1 ···b(d)1

. . . T
a
(1)
p ···a(d)p

T
b
(1)
p ···b(d)p

, (8.12)

by taking a product of (8.3). The tensor δ({ni}) is thus a product of Kroneckers. Here p is

the total degree, i.e. if Bi is of degree pi in T, T , then p =
∑

i∈I nipi. Then Wick’s theorem
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is applied, and leads to an expansion onto pairings, which are here simply permutations

σ ∈ Sp on the set of p elements,

ˆ

dTdT e−Nd−1T ·TT
a
(1)
1 ...a

(d)
1
T

b
(1)
1 ...b

(d)
1
. . . T

a
(1)
p ...a

(d)
p
T

b
(1)
p ...b

(d)
p

= N−(d−1)p
∑

σ∈Sp

δ(σ)
(
{a(c)q , b(c)q }

)
,

(8.13)

with

δ(σ)
(
{a(c)q , b(c)q }

)
=

p∏

q=1

d∏

c=1

δ
a
(c)
q , b

(c)
σ(q)

. (8.14)

A Feynman graph denoted G = ({ni}, σ) has amplitude

AN,B(G) = N−(d−1)p
∏

i∈I

(N siti)
ni

ni!

∑

{a(c)q ,b
(c)
q }

δ({ni})({a(c)q , b(c)q }
)
δ(σ)
(
{a(c)q , b(c)q }

)
. (8.15)

Since the tensors δ({ni}) and δ(σ) are products of Kroneckers, and the sums range from 1 to

N , those sums give NF (G) for some function F (G) which can be given a simple graphical

interpretation. Draw ni copies of Bi(T, T ) and use σ to connect each white vertex (labeled

with q) to a black vertex (labeled σ(q)) with an edge. It is customary to give the color

0 to those edges. A bicolored cycle of colors {0, c} is a closed path alternating an edge

of color 0 and an edge of color c. Denote Fc(G) the number of bicolored cycles of colors

{0, c}. Then, by tracking the sequence of index identification along the Kroneckers in

the above calculation, it comes that F (G) is the total number of such bicolored cycles,

F (G) =
∑d

c=1 Fc(G). Therefore

AN,B(G) = NF (G)−(d−1)p+
∑

i∈I sini

∏

i∈I

tni

i

ni!
, (8.16)

and the free energy reads

F (N,B) =
∑

connected G

AN,B(G). (8.17)

The parameters si are necessary so that the model has a large N limit which is non-trivial.

A non-trivial large N limit is such that F (N,B) appropriately rescaled1 is a non-trivial2

1 The usual rescaling is N−d.
2 In fact, one usually requires a condition which is a bit stronger: that an infinite number of graphs

from the Feynman expansion contributes to limN→∞ F (N,B)/Nd. It could be that only a finite number
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function of the coupling constants. A priori, those parameters depend on the whole set

{Bi}. However, all models solved so far are such that si is determined by Bi solely. For

instance, if Bi = BC,n then si = (|C| − 1)n + d − |C|. If P (T, T ) is a polynomial in the

tensor entries, its expectation is

〈P (T, T )〉B =
1

ZTensor(N,B)

ˆ

dTdT P (T, T ) exp−Nd−1T · T + VN,B(T, T ). (8.18)

8.2 Contracted bubbles

We introduce another representation of U(N)d, this time on matrices. Let (ΦC)C⊂J1,dK be

a set of Hermitian, or complex, matrices labeled by all color subsets (except the empty

set), such that ΦC ∈ EC ⊗ E∗
C . The action of U(N)d is

ΦC →
⊗

c∈C
U (c) ΦC

⊗

c∈C
U (c)†. (8.19)

Bubbles are graphs which can be associated to polynomials which generate the ring of

U(N)d-invariant polynomials in T, T . In this representation, the same role is played by

contracted bubbles.

Definition 8.2.1. A contracted bubble P = (B, π) is obtain from a bubble B by

• orienting the edges of B from white to black vertices,

• choosing a pairing π of the vertices of B into pairs {v, π(v)} where v is white and

π(v) is black,

• identifying the vertices v and π(v) of each pair and removing the loops.

Equivalently, i.e. by a trivial bijection, P is a connected graph with oriented edges, each

carrying a color c ∈ J1, dK, and such that the sub-graph Pc, for c in J1, dK, made of the

edges of color c only, is a disjoint union of oriented cycles. As a remark, we recall that

P can further be transformed into a map with colored edges, as shown in [70]. This will

not be necessary here. There is a bijection between the vertices of P = (B, π) and the

white vertices of B. For this reason we will identify them and use the same notations.

From the definition, we see that every vertex v of P carries a color set Cv ⊂ J1, dK, with

of graphs contribute at large N so that the free energy is a polynomial in the coupling constants. In
practice, these two conditions have always been equivalent and we will not discuss these subtleties further.
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exactly one incoming and one outgoing edge of every color c ∈ Cv. To obtain an invariant

polynomial P ({ΦC}) from the contracted bubble P , one associates to every vertex vC of

color set C a matrix ΦC , to every incoming incident edge of color c a right index j(c)v and

to every outgoing incident edge a left index i(c)v , e.g.

(
Φ{c1,c2,c3,c4}

)
(i(c1)i(c2)i(c3)i(c4)),(j(c1)j(c2)j(c3)j(c4))

=

j(c1)

j(c2)

j(c3)

j(c4)

i(c2)

i(c3)

i(c1)

i(c4)

. (8.20)

A left index of color c of a ΦC at vertex vC is identified with the right index of the same

color of a ΦC′ at vertex vC′ if there is an edge of color c from vC to vC′ .

Proposition 8.2.2. The polynomial associated to the contracted bubble P = (B, π) is

related to the bubble polynomial of B as follows

P ({HC(T, T )}) = BP (T, T ). (8.21)

Proof. We simply rewrite B(T, T ) in terms of the matrices HC(T, T ) given the choice of

pairing π. Indeed, each white vertex carries a T and each black vertex carries a T . If v

and π(v) are connected by edges with colors in Ĉ, then the sums over the indices of this

T and T with colors in Ĉ form the matrix HC(T, T ). Therefore

B(T, T ) =
∑

(i
(c)
v )c∈Cv

(j
(c)
v )c∈Cv

n∏

v=1

[
HCv

(T, T )
(i

(c)
v ),(j

(c)
π(v)

)

∏

c∈Cv

δ
i
(c)

v
,j

(c)

τ(c)(v)

]

=
∑

(i
(c)
v )c∈Cv

(j
(c)
v )c∈Cv

δτ
(1)···τ (d),π

(i
(c)
v )c∈Cv ,(j

(c)
v )c∈Cv

n∏

v=1

HCv
(T, T )

(i
(c)
v ),(j

(c)
v )
,

(8.22)

with

δτ
(1)···τ (d),π

(i
(c)
v )c∈Cv ,(j

(c)
v )c∈Cv

=
n∏

v=1

∏

c∈Cv

δ
i
(c)

v
,j

(c)

π−1◦τ(c)(v)

. (8.23)
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Using the bijection between the white vertices of B and the vertices of P = (B, π), we

recognize the dependence on HC as the function P ({HC}),

P ({ΦC}) =
∑

(i
(c)
v )c∈Cv

(j
(c)
v )c∈Cv

δτ
(1)···τ (d),π

(i
(c)
v )c∈Cv ,(j

(c)
v )c∈Cv

n∏

v=1

(
ΦCv

)
(i

(c)
v ),(j

(c)
v )
, (8.24)

which concludes the proof. ✷

8.3 Multi-matrix model and expectation values

Let {Pi}i∈I be a finite set of contracted bubbles and denote P = {(Pi, ti, si)}i∈I and

VN,P({ΦC}) =
∑

i∈I
N siti Pi({ΦC}). (8.25)

We then define the partition function, for pairs of matrices {XC ,ΦC}C⊂J1,dK,

ZMM(N,P) =
ˆ ∏

C⊂J1,dK

dXCdΦC exp−
∑

C⊂J1,dK

trEC

(
XCΦC

)
+ VN,P({ΦC})

− tr⊗cEc
ln
(
✶−N−(d−1)

∑

C

X̃C

)
,

(8.26)

where X̃C = ✶E
Ĉ
⊗ XC is the lift of XC to

⊗d
c=1Ec by adding the identity to the

colors c 6∈ C. Here MM stands for “multi-matrix”. In order to proceed to the Feynman

expansion, the above logarithm has to be expanded as

−tr⊗cEc
ln
(
✶−N−(d−1)

∑

C

X̃C

)
=
∑

n≥1

N−(d−1)n

n
tr⊗cEc

(∑

C

X̃C

)n

=
∑

words w = C1 · · ·Cn

N−(d−1)n

n
tr⊗cEc

X̃C1 · · · X̃Cn
.

(8.27)

There are two possibilities for the integral over XC ,ΦC , for each C ⊂ J1, dK, and the

precise form of the Feynman expansion depends on those choices:

• XC = Φ†
C are complex matrices, adjoint to each other;



120 Chapter 8. Definition of the tensor and matrix models

Z Z
†

1

− t

2

τ

2

Φ

i

1

t

1

τ

Φ

Y Y

Figure 8.1 – On the left hand side are the Feynman rules for the complex
model, with one propagator and two types of bivalent vertices. On the right
hand side are the Feynman rules for the Hermitian model, with two types

of propagators and one type of bivalent vertices.

• ΦC is Hermitian and XC = −iYC where YC is Hermitian. In this case, one needs

the coupling constant of the quartic bubble QC to be negative. We write it −tC/2
with tC > 0.

The equivalence between those two choices is not a given a priori because they require

different Feynman expansions. In the first case, one uses the quadratic term trEC
XCΦC

to define the propagator. In the second case however, one cannot use this term since it

reads −itrEC
YCΦC in terms of Hermitian matrices, and this is not positive-definite. This

is the reason why we need to add the condition tC > 0. The following lemma proves the

equivalence we need.

Lemma 8.3.1. For positive coupling constants t, τ , and a potential U which is a series

in two variables, the following equality holds formally

ˆ

▼N (❈)

dZdZ† e−trZZ†− t
2
trZ2− τ

2
trZ†2+U(Z,Z†) =

ˆ

H2
N

dY dΦ eitrY Φ− t
2
trΦ2− τ

2
trY 2+U(Φ,−iY ).

(8.28)

Here ▼N(❈) is the set of complex N ×N matrices and HN the set of N ×N Hermitian

matrices.

Proof. The Feynman rules of the left hand side and right hand side, for propagators

and bivalent vertices, are in Figure 8.1. The Feynman expansion of the left hand side is

obtained from the expansion

∑

l,n,m

(−t/2)n(−τ/2)m
l!n!m!

ˆ

▼N (❈)

dZdZ† e−trZZ†
(
trZ2

)n(
trZ†2

)m
U(Z,Z†)l, (8.29)

and performing Wick contractions between Zs and Z†s. The Feynman rules are thus



8.3. Multi-matrix model and expectation values 121

• solid half-edges corresponding to the matrix Z and dotted half-edges corresponding

to Z†;

• the propagator, coming from the quadratic term −trZZ†, gives rise to edges which

have a solid half and a dotted half, with weight 1;

• special vertices of degree 2 with weight − t
2

with two incident solid half-edges;

• special vertices of degree 2 with weight − τ
2

with two incident dotted half-edges;

• other vertices coming from the series expansion of U(Z,Z†).

We call the set of graphs from this expansion Gcomplex. The Feynman expansion of the

right hand side is obtained from the expansion

∑

l,p

ip

l!p!

ˆ

H2
N

dY dΦ e−
t
2
trΦ2− τ

2
trY 2
(
tr ΦY

)p
U(Φ,−iY )l, (8.30)

and performing independent Wick contractions between pairs of Φs and between pairs of

Y s.

• Solid half-edges corresponding to the matrix Φ and dotted half-edges corresponding

to X;

• propagators, coming from the quadratic terms− t
2
trΦ2− τ

2
trY 2, give rise to two types

of edges: either two solid half-edges, with weight 1/t, or two dotted half-edges, with

weight 1/τ ;

• special vertices of degree 2 with weight i with an incident solid half-edge and an

incident dotted half-edge;

• other vertices coming from the series expansion of U(Φ,−iY ).

We call the set of graphs from this expansion GHermitian. We show that summing the

chains of bivalent vertices in both Gcomplex and GHermitian leads to the same new set of

rules, for a set of graphs we denote Gsummed. These graphs are defined as follows.

• They have solid and dotted half-edges, and three types of edges: fully solid edges

with weight τ/(tτ +1), fully dotted edges with weight −t/(tτ +1) and edges made

of a solid and a dotted half-edge with weight 1/(tτ + 1).

• Other vertices coming from the series expansion of U .
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In the expansion of U , the solid half-edges are associated to the first variable (Z or Φ)

and the dotted half-edges to the second variable (Z† or −iY ). The sum of bivalent chains

starting and ending on solid half-edges in Gcomplex gives

a
b

a′

b′ =
∑

n≥0

( )

n

=
τ

tτ + 1
δaa′δbb′ . (8.31)

Here the indices a, b, a′, b′ are the matrix indices which are identified along Wick contrac-

tions. Notice that each vertex contributes to either 2× (−t/2) or 2× τ/2 where the extra

factors of 2 come from the two possibilities to add the bivalent vertices, since they are

symmetric under the exchange of their incident half-edges. The sum of bivalent chains

starting and ending on dotted half-edges is obtained by exchanging τ with −t,

a
b

a′

b′ =
∑

n≥0

( )

n

=
−t

tτ + 1
δaa′δbb′ . (8.32)

The last sum of bivalent chains is between a solid half-edge and a dotted half-edge

a
b

a′

b′ =
∑

n≥0

( )

n

=
1

tτ + 1
δaa′δbb′ . (8.33)

These are indeed the rules for Gsummed. Performing the same operation in GHermitian, one

gets

a
b

a′

b′ =
∑

n≥0

( )

n

=
1

t

∑

n≥0

(
i2

tτ

)n

=
τ

tτ + 1
δaa′δbb′ (8.34)

a
b

a′

b′ =
∑

n≥0

( )

n

=
1

τ

∑

n≥0

(
i2

tτ

)n

=
t

tτ + 1
δaa′δbb′ (8.35)

a
b

a′

b′ =
∑

n≥0

( )

n

=
i

tτ

∑

n≥0

(
i2

tτ

)n

=
i

tτ + 1
δaa′δbb′ .

(8.36)

These are not exactly the expected rules, but the difference is compensated by the other

vertices. Indeed, in GHermitian, the other vertices come from U(Φ,−iY ), i.e. there is a

factor −i on each dotted half-edge incident to such a vertex. Those factors can be re-

absorbed so that the weight of the vertices really comes from U(Φ, Y ), by multiplying

each dotted half-edge in (8.34), (8.35) and (8.36) by −i. This turns those rules into those

of Gsummed. ✷
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Let O({XC ,ΦC}) a U(N)d-invariant function (for the simultaneous action (8.19) on XCs

and ΦCs). Its expectation is

〈O({XC ,ΦC})〉P =
1

ZMM(N,P)

ˆ ∏

C⊂J1,dK

dXCdΦC O({XC ,ΦC})

× exp−
∑

C⊂J1,dK

trEC

(
XCΦC

)
+ VN,P({ΦC})− tr⊗cEc

ln
(
✶−N−(d−1)

∑

C

X̃C

)
. (8.37)

Lemma 8.3.2. Let f be a series which takes as arguments N × N matrices labeled by

the subsets of J1, dK. Then

〈f({HC(T, T )})〉VN,B=0 = 〈f({ΦC})〉VN,P=0. (8.38)

It was proven in [70], both using a bijection between their Feynman expansions, and

using formal integrals in the case of complex variables. Here we briefly reproduce the

calculation using formal integrals, in order to later relate the expectations of observables

on the tensor and matrix sides using the same technique.

Proof. Let us first focus on the case where the expectation on the right hand side of

(8.38) is evaluated using complex variables only, Φ†
C = XC . Then (8.38) comes from

f(h1, . . . , hm) =

ˆ

❈m

m∏

l=1

dxldφl e
∑m

l=1(−xlφl+xlhl) f(φ1, . . . , φm), (8.39)

where xl = φl for each l. It holds via Wick’s theorem, order by order in its series

expansion. Making use of (8.39) with every matrix elements of HC ,ΦC as variables, one

gets

f({HC(T, T )}) =
ˆ ∏

C

dΦCdXC e
∑

C trEC
(−XCΦC+XCHC(T,T ))f({ΦC}). (8.40)

It is now possible to directly integrate the above equation over T, T with a Gaussian

distribution, leading to

ˆ

dTdT f({HC(T, T )}) e−Nd−1T ·T

=

ˆ ∏

C

dΦCdXC f({ΦC}) e−
∑

C trEC
XCΦC−tr⊗

c Ec ln
(
✶−N−(d−1)

∑
C X̃C

)
.

(8.41)
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This equality holds up to irrelevant constants. Moreover, the measure on the tensor side

has been normalized. On the matrix side, the normalization is trivial when VN,P = 0. This

proves (8.38). In the case one wishes to use the Hermitian ΦC , YC with XC = −iYC , it is

necessary to have, instead of vanishing potentials, VN,P({ΦC}) = −Nd−1tCtrEC
Φ2

C/2 (and

in turn to have on the tensor side a quartic interaction VN,B(T, T ) = −Nd−1tCQC(T, T )/2).

Then Lemma 8.3.1 can be applied to turn the integrals over the complex matrix elements

to real matrix elements. The coefficient τ needed in Lemma 8.3.1 comes from the expan-

sion of the logarithm in the definition (8.37) of the expectation. ✷

Theorem 8.3.3. Let B = {(Bi, ti, si)}i∈I as in Section 8.1 and P = {(Pi, ti, si)}i∈I such

that Pi = (Bi, πi). Then,

ZTensor(N,B) = ZMM(N,P). (8.42)

Let f be a series which takes as arguments N×N matrices labeled by the subsets of J1, dK.

Then

〈f({HC(T, T )})〉B = 〈f({ΦC})〉P . (8.43)

Again, (8.42) was proved in [70], both using a bijection, and using formal integrals.

Proof. The equality between the partition functions simply derives from Lemma 8.3.2

for f({ΦC}) = eVN,P ({ΦC}) and the fact that, from Proposition 8.2.2, VN,P({HC(T, T )}) =
VN,B(T, T ). This takes care of the denominators in (8.43), and the latter is then equivalent

to

〈f({HC(T, T )})eVN,P ({HC(T,T )})〉VN,B=0 = 〈f({ΦC})eVN,P ({ΦC})〉VN,P=0, (8.44)

which follows from Lemma 8.3.2. ✷

Theorem 8.3.4. With the same notations as previously,

〈P ({XC})〉P =
∑

(i
(c)
v )c∈Cv

(j
(c)
v )c∈Cv

δτ
(1)···τ (d),π

(i
(c)
v )c∈Cv ,(j

(c)
v )c∈Cv

〈
e−VN,B(T,T )

n∏

v=1

−∂
∂
(
ΦCv

)
(j

(c)
v ),(i

(c)
v )

eVN,P
∣∣
ΦC=HC(T,T )

〉
B
.

(8.45)

This theorem generalizes Proposition 1 of [64] in two ways.

• First, [64] is focused on the quartic melonic model, VN,B =
∑

c
−tc
2
Nd−1trHc(T, T )

2.

In this case, VN,P({ΦC}) =
∑

c
−tc
2
Nd−1tr Φ2

{c} is quadratic. The theorem thus

explains the appearance of Hermite polynomials in [64].
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• Second, Theorem 8.3.4 presents the expectation of an arbitrary contracted bubble,

while [64] only considered 〈trEc
Xn

{c}〉.

The reciprocal theorem is Theorem 9.2.1. It is presented later because it uses the tech-

nique of partial integration of Section 9.1.

Proof. To prove (8.45), we apply Lemma 8.3.2 to the expectation on the right hand side,

〈
e−VN,B(T,T )

n∏

v=1

−∂
∂
(
ΦCv

)
(j

(c)
v ),(i

(c)
v )

eVN,P
∣∣
ΦC=HC(T,T )

〉
B

=
〈
e−VN,P ({ΦC})

n∏

v=1

−∂
∂
(
ΦCv

)
(j

(c)
v ),(i

(c)
v )

eVN,P

〉
P
,

(8.46)

which can then be rewritten as

〈
e−VN,P ({ΦC})

n∏

v=1

−∂
∂
(
ΦCv

)
(j

(c)
v ),(i

(c)
v )

eVN,P

〉
P

=
1

ZMM(N,P)

ˆ ∏

C

dXCdΦC

n∏

v=1

−∂
∂
(
ΦCv

)
(j

(c)
v ),(i

(c)
v )

eVN,P ({ΦC})

× exp−
∑

C

trEC

(
XCΦC

)
− tr⊗cEc

ln
(
✶−N−(d−1)

∑

C

X̃C

)

=
1

ZMM(N,P)

ˆ ∏

C

dXCdΦC

n∏

v=1

∂

∂
(
ΦCv

)
(j

(c)
v ),(i

(c)
v )

e−
∑

C trEC
(XCΦC)

× expVN,P({ΦC})− tr⊗cEc
ln
(
✶−N−(d−1)

∑

C

X̃C

)

=
1

ZMM(N,P)

ˆ ∏

C

dXCdΦC

n∏

v=1

(
XCv

)
(i

(c)
v ),(j

(c)
v )

× exp−
∑

C

trEC

(
XCΦC

)
+ VN,P({ΦC})− tr⊗cEc

ln
(
✶−N−(d−1)

∑

C

X̃C

)

=
〈 n∏

v=1

(
XCv

)
(i

(c)
v ),(j

(c)
v )

〉
.

(8.47)

In the second equality, we have used integration by parts. Summing over all indices with

the tensor δτ
(1)···τ (d),π, one recognizes the expansion (8.24) of P ({XC}). ✷
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Effective matrix model

Denote Xc = X{c} for c ∈ J1, dK to make the notation lighter. We will show that correla-

tors of the form 〈
trVc1

1

xc1 − δXc1

· · · trVcn

1

xcn − δXcn

〉
c
, (9.1)

where δXc is some fluctuation of Xc around its saddle point value, satisfy the blobbed

topological recursion. To this aim, we will integrate over all matrices except forX1, . . . , Xd

to get an effective matrix model for them. This effective matrix model has multi-trace

interactions. It is convenient to write them using partitions. Given a set of integers

λ1 ≥ · · · ≥ λl > 0, we say that λ = (λ1, . . . , λl) is a partition of length ℓ(λ) = l and size

|λ| =∑ℓ(λ)
i=1 λi. We also allow the special case λ = (0) with ℓ(λ) = 1. If M is a matrix on

V , we denote the multi-trace (also known as power sums)

Iλ(M) =

ℓ(λ)∏

i=1

trVM
λi . (9.2)

Furthermore, we denote λ = (λ(1), . . . , λ(d)) a vector of partitions, one for every color,

and

Iλ({Mc}) =
d∏

c=1

Iλ(c)(Mc). (9.3)

It contains ℓ(λ(c)) traces of color c, for a total of ℓ(λ) =
∑d

c=1 ℓ(λ
(c)) traces. It is of total

degree |λ| =∑d
c=1 |λ(c)| in the matrices.

Proposition 9.0.1. A series F in the matrices X1, . . . , Xd which is invariant under

U(N)d has an expansion

F ({Xc}) =
∑

λ

F (λ)Iλ({Xc}). (9.4)
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Proof. F has an expansion onto contracted bubbles. The latter are easily seen to be

disjoint union of unicycles for all colors, and their corresponding polynomials are Iλ. ✷

9.1 Partial integrals

We will assume

• the free energy F (N,B) has a 1/N expansion

F (N,B) = Nd′
∑

i≥0

N−δiFi(B), (9.5)

where (δi)i≥0 is an increasing, positive sequence and d′ > 2. As far as we know, all

tensor models for which the scaling of the free energy is known satisfy d′ = d;

• I is a finite set and si is rational for all i ∈ I. This implies rationality of the δis via

Equation (8.16);

• each Fi(B) exists in a neighborhood of the origin in the space of coupling constants;

• denoting −tc/2 the coupling constant of the quartic bubble Q{c} for c ∈ J1, dK,

we will need tc > 0 in order to choose Φ{c} Hermitian and Xc = −iYc with Yc

Hermitian.

The results of this section are a bit simplified by rescaling the matricesXc in the definition

(8.26) by Nd−1, so that up to irrelevant constants,

ZMM(N,P) =
ˆ ∏

C⊂J1,dK

dXCdΦC exp−
∑

C⊂J1,dK

Nd−1trEC

(
XCΦC

)
+ VN,P({ΦC})

− tr⊗cEc
ln
(
✶−

∑

C

X̃C

)
.

(9.6)

Denote

L({XC}) = −tr⊗cEc
ln
(
✶−

∑

C

X̃C

)
− 1

2
Nd−1

d∑

c=1

trEc
X2

c , (9.7)

which just removes some quadratic terms from the expansion of the logarithm (recall

Xc = X{c}).
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Theorem 9.1.1. Define the partial free energy

expFN,P({Xc}) =
ˆ ∏

C⊂J1,dK
|C|≥2

dXCdΦC

d∏

c=1

dΦ{c}e
−∑

C Nd−1tr(XCΦC)+VN,P ({ΦC})+L({XC}),

(9.8)

where Xc = −iYc, Yc Hermitian for c ∈ J1, dK. In the integral Φ{c} are Hermitian, while

the pairs {ΦC , XC} can be chosen complex, Φ†
C = XC, or with XC = −iYC with ΦC , YC

Hermitian (provided tC > 0) for all |C| > 1. Then

FN,P({Xc}) =
∑

λ

Nd′−ℓ(λ) tN,P(λ) Iλ({Xc}), (9.9)

where tN,P(λ) has a 1/N expansion which starts at order O(1)

tN,P(λ) =
∑

i≥0

N−δi(λ)t
(i)
P (λ), (9.10)

and (δi(λ))i≥0 are positive, increasing sequences of rationals. Furthermore

ZTensor(N,B) =
ˆ d∏

c=1

dXc exp

(
1

2
Nd−1

d∑

c=1

trEc
X2

c + FN,P({Xc})
)
, (9.11)

with the same relation between B and P as in Theorem 8.3.4.

Proof. The proof first establishes (9.11), by showing that the Feynman expansion of

ZTensor(N,B) can be obtained from that of FN,P({Xc}). Then, for each Feynman graph

of the expansion of FN,P({Xc}), we build a special Feynman graph for ZTensor(N,B) in

a way such that the N -dependence of this construction is controlled. Thus, the 1/N

expansion of the ZTensor(N,B) implies (9.9), (9.10).

Feynman rules – Theorem 8.3.4 allows for studying the matrix model instead of the

tensor model. Then proving (9.11) amounts to show that one can write the Feynman rules

so as to integrate first over all matrices ΦC , XC , except X1, . . . , Xd, and then integrate the

latter. This will be clear once we have described how we use the Feynman expansion on

ZMM(N,P). We choose for the Feynman expansion of ZMM(N,P) to use Φ{c} Hermitian

and Xc = −iYc with Yc Hermitian for c ∈ J1, dK. As for the matrices ΦC , XC for |C| > 1,

we can use the complex matrices or the Hermitian matrices either way. Let us choose

the latter, since it will let us have a unified description of the Feynman rules, and it is
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the setup for Theorem 9.2.1. This however requires tC > 0. We thus write integrals over

Hermitian matrices,

ZMM(N,P) =
ˆ ∏

C

dΦCdYC e
∑

C trEC

(
iNd−1ΦCYC− tC

2
Φ2

C−Nd−|C|

2
Y 2
C

)
+VN,P ({ΦC})+K({YC}),

(9.12)

with

K({YC}) = −tr⊗d
c=1 Ec

ln
(
✶+ i

∑

C

ỸC

)
+

1

2

∑

C

Nd−|C|trEC
Y 2
C

=
∑

words w ∈ W

(−i)|w|

|w| tr⊗d
c=1 Ec

ỸC1 . . . ỸC|w|
,

(9.13)

which is the series expansion of the logarithm minus its single-trace, quadratic terms

(since we have isolated them to be used for the propagators). The set W is a set of words

W = {w = C1 · · ·C|w|| ∀q ∈ J1, |w|K, Cq ⊂ J1, dK, |w| 6= 2 or w = C1C2 with C1 6= C2}.
(9.14)

We have also separated from VN,P its quadratic terms but we retain the notation. To

perform the Feynman expansion, we first expand

e
∑

C trEC
iNd−1ΦCYC+VN,P ({ΦC})+K({YC})

=
∑

{nC},{ni},{nw}

i
∑

C nC (−i)
∑

w nw|w|(N siti
)ni

∏
C nC !

∏
i ni!

∏
w nw!|w|

×
∏

C

(
trEC

ΦCYC

)nC ∏

i

(
Pi({ΦC})

)ni∏

w

(
tr⊗

c Ec
ỸC1 . . . ỸC|w|

)nw

.

(9.15)

Here the indices C span the subsets of J1, dK, and i ∈ I, and w ∈ W . Wick’s theorem

can then be applied and, at fixed {nC , ni, nw}, expresses the Gaussian moments as sums

over pairings {σC , ρC}, the first identifying pairs of ΦCs and the second identifying pairs

of YCs,
ˆ

e−
tC
2
trEC

Φ2
CΦCa1b1 . . .ΦCa2nb2n =

1

tnC

∑

σC

∏

{i,j}∈σC

δai,ajδbi,bj , (9.16)

where a pairing σC is a way to partition J1, 2nK into disjoint pairs {i, j}, and

ˆ

e−
Nd−|C|

2
trEC

Y 2
CYCa1b1 . . . YCa2nb2n = N−(d−|C|)n

∑

ρC

∏

{i,j}∈ρC

δai,ajδbi,bj . (9.17)
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We call a Feynman graph G = ({nC , σC , ρC}C⊂J1,dK, {ni}i∈I , {nw}w∈W ). The Feynman

rules are as follows.

• Solid half-edges of color type C correspond to the matrix ΦC , and dotted half-edges

of color type C correspond to YC .

• Propagators come from the quadratic terms −1
2

∑
C(tCtrEC

Φ2
C+N

d−|C|trEC
Y 2
C) and

give rise to two types of edges: fully solid edges of color type C with weight 1/tC

and fully dotted edges of color type C with weight N |C|−d.

• A special bivalent vertex of weight iNd−1 with an incident solid half-edge and an

incident dotted half-edge.

• Vertices coming from the expansion of K have dotted incident half-edges, and ver-

tices coming from the expansion of VN,P have solid incident half-edges.

The sums over all the indices, identified along interactions and Wick contractions will

be described below. Denote G the set of connected Feynman graphs for this Feynman

expansion. It is clear with those rules that one can first perform the integrals over

the matrices ΦC , YC for |C| > 1 and Φ{1}, . . . ,Φ{d} by summing over the corresponding

pairings, and then integrate over Y1, . . . , Yd by summing over ρ1, . . . , ρd. This proves

(9.11). In fact, one can integrate the matrices ΦC , YC in any particular order. This

means that partial integrals can be performed as one wishes. However, only in our case

will we be able to describe the effective action FN,P({Yc}). We denote G({Yc}) the set of

connected Feynman graphs for FN,P({Yc}). They are constructed using the same set of

Feynman rules except that fully dotted edges of color c ∈ J1, dK are not allowed anymore.

This means that all dotted half-edges of color c ∈ J1, dK are left hanging, viz.

H

c1

c2

. (9.18)

For instance, in the expansion of K({YC}), one finds terms with w = c1 · · · cn ∈ J1, dKn.

They contribute to Hw ∈ G({Yc}) as graphs with a single vertex and n hanging dotted

half-edges of colors c1, . . . , cn (respecting the cyclic order). Clearly there is a bijection
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between G and collections of graphs from G({Yc}) connected by Wick pairings ρ1, . . . , ρd.

Graphically, one obtains from G ∈ G the collections of graphs from G({Yc}) by cutting

all dotted edges into half-edges. The other way around, performing the Wick pairings

ρ1, . . . , ρd means connecting the corresponding dotted half-edges. From the above Feyn-

man rules we have found

FN,P({Yc}) =
∑

G∈G({Yc})
AG(N,P ; {Yc}), (9.19)

where AG(N,P ; {Yc}) is the amplitude of G. It is a polynomial in the matrices Ycs (since

it is a finite object). From the invariance under unitary transformations and Proposition

9.0.1, we find that

FN,P({Yc}) =
∑

λ

FN,P(λ)Iλ({Yc}). (9.20)

To establish the 1/N expansion of FN,P(λ), we need to look into the structure of the

Feynman graphs and their N -dependence. The reader already familiar with faces as the

origin of the N -dependence can skip this discussion.

Faces of Feynman graphs – As usual in matrix models, a factor N comes from

each face, but we need to explain what faces are in this multi-matrix, multi-size context.

In ordinary single-trace matrix models, it corresponds to a sequence of identifications

of matrix indices via propagators and interactions on a Wick contraction. In terms of

Feynman graphs, there is a cyclic order of the half-edges incident to each vertex. This

means that Feynman graphs are in fact combinatorial maps. A face is then a closed path

which follows an edge to a vertex, then uses the cyclic order around that vertex to move

to another half-edge (e.g. counter-clockwise), then follows that edge, etc. Consider an

index of color c of a ΦC in VN,P , or of a XC in K({XC}), for c ∈ C. In a Feynman

graph G ∈ G, the propagator identifies it with an index of another interaction which has

the same color, then because the interaction are unitary invariant, it is further identified

with an index of the same color of another matrix, which is then identified to another

index of the same color by a propagator, and so on. One ends up with a free sum from

1 to N for each such cycle, hence a power of N . We thus see that there could be a

notion of faces, but it is color by color, and it requires to track the index identifications

in VN,P({ΦC}). One of the key results of [70] is that the interaction VN,P({ΦC}) can be

given the structure of a map with edges labeled by color type C ⊂ J1, dK. Consider G ∈ G
and denote Gc ⊂ G for c ∈ J1, dK the sub-graph whose edges have color set C ∋ c. It is
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a disjoint union of ordinary combinatorial maps and the faces of color c are defined as

the faces of those maps. The weight of a graph then goes like NF (G) (and other factors

of N).

Feynman graphs for FN,P({Yc}) – Let H ∈ G({Yc}). It has faces of color c ∈ J1, dK as

defined above, but some faces go around some hanging dotted half-edges. We call them

external faces, while the others are internal faces. Every internal face contributes with a

factor N . However, since dotted half-edges of color c correspond to the matrix Yc which

is not integrated over, the Feynman amplitude receives a matrix Yc every time one goes

around a face and meets a hanging dotted half-edge. The matrix indices of Yc are then

identified along the face. An external face thus receives trEc
Y

lf
c where lf is the number

of such bivalent interactions around the face. This shows that for every H ∈ G({Yc}),
there exists a unique λ such that

AH(N,P ; {Yc}) = ÃHN
η(G)Iλ({Yc}), (9.21)

where ÃH is independent of N and of the matrices Ycs. For H ∈ G({Yc}), we denote ni

the number of interactions Pi, and bC the number of bivalent interactions tr(XCΦC) for

C ⊂ J1, dK, and Fint(G) the number of internal faces. It comes

η(H) = Fint(H) +
∑

i∈I
nisi +

∑

C

(d− 1)bC . (9.22)

We can thus write G({Yc}) =
⋃

λ Gλ({Yc}), where the amplitude of H ∈ Gλ({Yc}) is

proportional to Iλ({Yc}), and

FN,P(λ) =
∑

H∈Gλ({Yc})
ÃHN

η(H). (9.23)

Denote

dλ = sup
H∈Gλ({Yc})

η(H). (9.24)

If dλ < ∞, then dλ is actually a maximum. Indeed, we see in Equation (8.16) that the

exponent of N is a finite sum of integers - except for the si, but there are a finite number

of them and they are rationals and the same for all graphs. Therefore one can write the

exponents of N with the same denominator for all graphs, while the numerators consist

in a sequence of integers. If the latter has a finite supremum, it is obviously a maximum.
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1/N expansion – A graph G ∈ G is made out of sub-graphs Hλ1 , . . . , HλR
∈ G({Yc})

connected by dotted edges of colors in J1, dK. We denote E ′ the number of those edges and

further denote F ′
c the number of faces of color c which go along them, and F ′ =

∑d
c=1 F

′
c.

The sub-graphs Hλ1 , . . . , HλR
∈ G({Xc}) come with powers of N , η(Hλ1), . . . , η(HλR

)

and amplitudes ÃHλ1
, . . . , ÃHλR

. Altogether, the amplitude of G is

AN,P(G) = NF ′−(d−1)E′+
∑R

r=1 η(Hλr )

R∏

r=1

ÃHλr
. (9.25)

Consider H ∈ Gλ({Yc}). We build a graph G(H) ∈ G as follows. Let Hc ∈ G({Yc}) be

the graph which consists in a single vertex and a single dotted half-edge of color c. Then

we connect each hanging dotted half-edge of color c of H to Hc,

G(H) = H

c1

c2

, (9.26)

H corresponds to the interaction Iλ and therefore has ℓ(λ) external faces, and |λ| hanging

dotted half-edges. In G, each external face of H becomes an internal face, adding a factor

of N to the amplitude. Each univalent vertex Hc is also a connected component for the

d − 1 sub-graphs Gc′ , c′ 6= c. The total number F ′ of faces which go along the newly

added, fully dotted edges of color c ∈ J1, dK is thus ℓ(λ) + (d− 1)|λ|. The number E ′ of

those new edges is equal to |λ|. Formula (9.25) thus gives

AN,P(G(H)) = N ℓ(λ)+η(H) A(G(H)). (9.27)

By assumption, this is bounded by Nd′ for all H. Taking the supremum over all H ∈
Gλ({Yc}), one finds

dλ ≤ d′ − ℓ(λ), (9.28)

further implying that dλ is a maximum. This shows that FN(λ) ≤ Nd′−ℓ(λ) and it is

obvious that the sub-leading orders are rational powers of N . ✷
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While it is not necessary for our purposes, the leading order of F (N,P) can be described

as follows.

Proposition 9.1.2. The graphs contributing to the leading order of F (N,P) are trees

over sub-graphs Hλ1 , . . . , HλR
, with Hλr

∈ Gλr
({Yc}), satisfying η(Hλr

) = d′ − ℓ(λ).

Proof. We start with the following lemma: an edge e in G ∈ G is not a bridge, then G is

not leading order. Indeed, if e is of color c and not a bridge, it can be cut into edges of

color c as follows without disconnecting G,

G =

e

v1 v2

c → G′ = v1 v2

c

e1
v
′

1

v
′

2

e
′

2c

. (9.29)

The exponent of N for G′ is calculated from the Feynman rules as follows

AN,P(H) = NF+
∑

i∈I nisi+
∑

C(d−1)bC−(d−|C|)ECA(H), (9.30)

for any H ∈ G, where A(H) is independent of N . We now look at the variations of the

quantities appearing in this formula. From G to G′, the number of edges changes by 1,

the number of contracted bubbles bC of each type is unchanged. The number Fc of faces

of color c can increase or decrease by one. Moreover, {v′1} and {v′2} are new connected

components of the sub-graphs Gc′ for c′ 6= c, implying that the number of faces Fc′ varies

by exactly two. Therefore the total variation of the exponent of N is

∆
(
F +

∑

i∈I
nisi − (d− 1)(E − b)

)
= ±1 + 2(d− 1)− (d− 1) ≥ d− 2 > 0, (9.31)

which proves the lemma. As a consequence, a leading order graph is a tree over sub-

graphs Hλ1 , . . . , HλR
∈ G({Xc}). To maximize the exponent of N , we need to maximize

each η(Hλr
). As seen in the above proof, Hλr

therefore contributes to the leading order

if and only if η(Hλr
) = d′ − ℓ(λ). It is then easy to check that every graph obtained this

way behaves as Nd′ with respect to N and is thus a leading order graph. ✷

9.2 Bubble observables

In Theorem 8.3.4, we wrote the expectations of the multi-matrix model in terms of

expectations of the tensor model. Here we provide the reverse theorem.
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Theorem 9.2.1. Define the effective action

eWN,P ({XC}) =

ˆ ∏

C⊂J1,dK

dΦC e−
∑

C trEC
(XCΦC)+VN,P ({ΦC}), (9.32)

with the same techniques as in the proof of Theorem 9.1.1 to define FN,P({Xc}). Then

for any contracted bubble P = (B, π),

〈B(T, T )〉B =
∑

(i
(c)
v )c∈Cv

(j
(c)
v )c∈Cv

δτ
(1)···τ (d),π

(i
(c)
v )c∈Cv ,(j

(c)
v )c∈Cv

〈
e−WN,P ({XC})

∏

v

−∂
∂
(
XCv

)
(j

(c)
v ),(i

(c)
v )

eWN,P ({XC})
〉
P
.

(9.33)

It is the reciprocal of Theorem 8.3.4. It also generalizes [64] in the same two ways: to

arbitrary bubbles B(T, T ) instead of melonic cycles trH{c}(T, T )
n, and to an arbitrary

model instead of the quartic melonic one. There, since VN,P({ΦC}) =
∑d

c=1− tc
2
trEc

Φ2
{c},

the integral defining WN,P can be performed to find WN,P({Xc}) = 1
2tc

trEc
X2

c . This is

how we recover the Hermite polynomials found in [64]. Notice that the equivalent of our

theorems 8.3.4 and 9.2.1 in [64] both feature Hermite polynomials. Here we see that in

general it is not the same object in both theorems, since one has derivatives with respect

to VN,P({ΦC}), while the other has derivatives with respect to WN,P({XC}).

Proof. We start with the following equalities

〈B(T, T )〉B = 〈P ({HC(T, T )})〉B = 〈P ({ΦC})〉P , (9.34)

the first one being Proposition 8.2.2 and the second Theorem 8.3.3. Then we expand P

as a polynomial (8.24) and use the matrices XCs as sources,

〈
n∏

v=1

(
ΦCv

)
(i

(c)
v ),(j

(c)
v )
〉P =

1

ZMM(N,P)

ˆ ∏

C⊂J1,dK

dXCdΦC eVN,P ({ΦC})−tr⊗cEc ln
(
✶−N−(d−1)

∑
C X̃C

)

×
n∏

v=1

−∂
∂
(
XCv

)
(j

(c)
v ),(i

(c)
v )

e−
∑

C trEC
(XCΦC),

(9.35)
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then integrate by parts

〈
n∏

v=1

(
ΦCv

)
(i

(c)
v ),(j

(c)
v )
〉P =

1

ZMM(N,P)

ˆ ∏

C⊂J1,dK

dXCdΦC e−
∑

C trEC
(XCΦC)+VN,P ({ΦC})

×
n∏

v=1

∂

∂
(
XCv

)
(j

(c)
v ),(i

(c)
v )

e
−tr⊗cEc ln

(
✶−N−(d−1)

∑
C X̃C

)

.

(9.36)

At this stage, one performs the integrals over all ΦCs,

〈
n∏

v=1

(
ΦCv

)
(i

(c)
v ),(j

(c)
v )
〉P =

1

ZMM(N,P)

ˆ ∏

C⊂J1,dK

dXC eWN,P ({XC})

×
n∏

v=1

∂

∂
(
XCv

)
(j

(c)
v ),(i

(c)
v )

e
−tr⊗cEc ln

(
✶−N−(d−1)

∑
C X̃C

)

,

(9.37)

and integrate by parts again to find the Theorem. ✷

9.3 Comparison with ordinary multi-trace matrix mod-

els

The model (9.11) with action (9.9) has a natural interpretation in terms of stuffed maps

as introduced in [67], with additional colors on their boundary components, and a non-

topological expansion. Recall that a map can be seen as a gluing of polygons along their

boundaries. Here a polygon is simply a 2-cell homeomorphic to a disc, with k boundary

edges. We then call k the perimeter of the boundary. In stuffed maps, polygons are

replaced with elementary 2-cells of topology (h, λ), where λ = (λ1, . . . , λℓ(λ)) is a partition.

Such a 2-cell is homeomorphic to a surface of genus h with ℓ(λ) boundary components of

perimeters λ1, . . . , λℓ(λ). A stuffed map is a gluing of elementary 2-cells along the edges of

their boundary components. In matrix models, a polygon of perimeter k corresponds to

an interaction trXk in Feynman graphs. In matrix models with multi-trace interactions,

whose partition functions are of the form

ˆ

dX exp
∑

λ,h

N2−ℓ(λ)−2ht(h)(λ)Iλ(X), (9.38)
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the interaction N2−ℓ(λ)−2hIλ(X) is naturally interpreted as an elementary 2-cell of topol-

ogy (h, λ). Each trace in Iλ(X) =
∏ℓ(λ)

i=1 trX
λi gives rise to a boundary component, and

the exponent λi gives its perimeter. When interpreting the Feynman expansion of a ma-

trix model with multi-trace interactions in terms of stuffed maps, notice that the only

way to associate the genus h to an elementary 2-cell is that the exponent of N in front

of Iλ(X) is N2−ℓ(λ)−2h and the coupling constant t(h)(λ) is independent of N . In fact, a

matrix model with an interaction like

∑

λ

N2−ℓ(λ)tN(λ)Iλ(X), (9.39)

has a well-defined large N limit when tN(λ) itself admits a 1/N expansion starting at

order O(1), i.e. tN(λ) =
∑

i≥0 t
(i)(λ)N−δi(λ) where (δi(λ))i≥0 is an increasing sequence

of non-negative numbers. However, for the expansions of the free energy and of the

correlation functions to be called topological, they must be series in 1/N2. It is the case

when the coupling constants tN(λ) are themselves series in 1/N2, i.e. δi(λ) ∈ 2◆ but not

in general. The model (9.46) fits into this framework, with the following amendments.

• It has d matrices X1, . . . , Xd and interaction in the form Iλ({Xc}). In terms of

stuffed maps, it simply means that the boundary components of elementary 2-cells

are now colored and a partition λ(c) is needed to describe the perimeters of the

boundary components of each color c ∈ J1, dK. An elementary 2-cell with boundary

profile λ moreover comes with the weight Nd′−ℓ(λ)tN,P(λ).

• Obvious from the above discussion, the 1/N expansion is not topological, since

d′ 6= 2, and the sequence (δi(λ))i≥0 in (9.10) may not consist of even integers.

In the following section we first focus on the consequence of d′ > 2 for the large N limit.

9.4 Large N limit and fluctuations

Theorem 9.1.1 provides the form we are looking for to be able to apply the blobbed

topological recursion, as in [66]. In this section, we thus follow the first step of [66] which

is to subtract the leading contribution at large N .
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9.4.1 Subtracting the leading order

Changing variables from Xc = UcDcU
†
c to unitary matrices (U1, . . . , Ud) and eigenvalues,

Dc = diag(x
(c)
1 , . . . , x

(c)
N ) for all c ∈ J1, dK, in the matrix formulation of Theorem 9.1.1,

the angular parts are trivially integrated out. The change of variables also produces a

squared Vandermonde determinant for all c ∈ J1, dK. This gives

ZMM(N,P) =
ˆ d∏

c=1

N∏

ic=1

dx
(c)
ic

exp
(1
2
Nd−1

d∑

c=1

trEc
D2

c+FN,P({Dc})+2
d∑

c=1

∑

ic<jc

ln|x(c)ic
−x(c)jc

|
)
.

(9.40)

If one looks for saddle-points such that the eigenvalues do not scale with N , then one

sees that

• the quadratic terms scale like Nd,

• all terms from FN,P({Xc}) scale like Nd′ ,

• all the terms from Vandermonde determinants scale like N2.

This means that we can look for a solution without repulsion between eigenvalues, mean-

ing the eigenvalues x(c)i can simply fall onto their preferred value for all c. We moreover

set d′ = d so the two first types of contributions have the same scale. Consider

Xc = αc✶Ec
+

1

N
d−2
2

Mc. (9.41)

The αcs are set on a saddle point of the action for {Xc}. Moreover, the scaling 1/N
d−2
2

of the fluctuations is chosen so that the leading terms of the action in the Xcs scale like

N2, i.e. the same as the Vandermonde contributions.

9.4.2 Matrix model for the fluctuations

Before plugging (9.41) into (9.11), let us see its effect on a multi-trace interaction for a

single color (which we do not write explicitly),

Iλ

(
α✶+

1

N
d−2
2

M
)
=

ℓ(λ)∏

i=1

tr
(
α✶+

1

N
d−2
2

M
)λi

=

λ1,...,λℓ(λ)∑

µ1,...,µℓ(λ)=0

ℓ(λ)∏

i=1

(
λi
µi

)
αλi−µi N− d−2

2
µitrMµi .

(9.42)
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It is easily rewritten as a sum over partitions µ ⊂ λ. We denote the skew-partition

λ − µ = (λ1 − µ1, . . . , λℓ(λ) − µℓ(λ)) (we can complete µ with zeros if needed for µi≥ℓ(µ))

and |λ− µ| =∑i≥1 λi − µi. Also use the notation
(
λ
µ

)
=
∏ℓ(µ)

i=1

(
λi

µi

)
. Then

Iλ

(
α✶+

1

N
d−2
2

M
)
=
∑

µ⊂λ

(
λ

µ

)
α|λ−µ|N ℓ(λ)−ℓ(µ)− d−2

2
|µ| Iµ(M). (9.43)

We thus get the same expansion for Iλ({αc✶Ec
+Mc/N

d−2
2 }) by taking a product over

the colors. Overall,

FN,P
(
{αc✶Ec

+
1

N
d−2
2

Mc}
)
=
∑

µ

N2−ℓ(µ)− d−2
2

(|µ|−2) sN,P(µ) Iµ({Mc}), (9.44)

where the sum runs over all d-tuples of partitions µ = (µ(1), . . . , µ(d)) and ℓ(µ) =
∑d

c=1 ℓ(µ
(c)) and |µ| =∑d

c=1 |µ(c)|. The coefficients are

sN,P(µ) =
∑

λ⊃µ

tN,P(λ)
d∏

c=1

(
λ(c)

µ(c)

)
α|λ(c)−µ(c)|
c . (9.45)

They all have 1/N expansions starting at order O(1), simply obtained by using the 1/N

expansion of the coefficients tN,P(λ) =
∑

i≥0N
−δi(λ)t

(i)
P (λ). As a result, the matrix model

from Theorem 9.1.1 becomes

ZMM(N,P) = e
1
2
N2

∑
c α

2
c+FN,P ({αc✶Ec}) ZFluct(N,P),

with ZFluct(N,P) =
ˆ d∏

c=1

dMc exp
(1
2
N
∑

c

trEc
M2

c + SN,P({Mc})
)
,

(9.46)

where SN,P({Mc}) is

SN,P({Mc}) =
∑

µ,|µ|≥2

N2−ℓ(µ)− d−2
2

(|µ|−2)sN,P(µ) Iµ({Mc}), (9.47)

with

sN,P(µ) =
∑

i≥0

N−ηi(µ)s
(i)
P (µ), (9.48)

and (ηi(µ))i≥0 is an increasing sequence of non-negative rationals. The reason there is no

linear term in (9.46) (and no |µ| = 1 term above) is that the set {αc} is a saddle point.
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Chapter 10

Blobbed topological recursion for

colored, multi-trace matrix models

Going back to the discussion of Section 9.3, but replacing the original model ZMM(N,P)
with the one for the fluctuations, ZFluct(N,P) and action (9.47), we see that the latter

differs from the multi-trace models of [67] by

• the fact that it has d matrices,

• the fact that the 1/N expansions of the coupling constants in (9.47) are not topo-

logical.

To remedy the first difference, consider the following model, which is a generalization of

[67] to colored matrices. For a vector ℓ = (ℓ1, . . . , ℓd) of non-negative integers, denote

|ℓ| =∑d
c=1 ℓc. Also denote

Eℓ =
d⊗

c=1

E⊗ℓc
c , (10.1)

and M (i)
c = ✶⊗ · · · ⊗Mc⊗ · · · ⊗ ✶ the matrix acting on E⊗ℓc

c by Mc on the ith factor and

the identity everywhere else. Consider the model with partition function

ZTop(N,S) =

ˆ d∏

c=1

dMc exp
∑

ℓ

N2−|ℓ|trEℓ
SN,ℓ(M

(1)
1 , . . . ,M

(ℓ1)
1 ; . . . ;M

(1)
d , . . . ,M

(ℓd)
d ).

(10.2)

When the action has the following expansion

SN,ℓ(M
(1)
1 , . . . ,M

(ℓ1)
1 ; . . . ;M

(1)
d , . . . ,M

(ℓd)
d )

=
∑

h≥0

N−2hS
(h)
ℓ (M

(1)
1 , . . . ,M

(ℓ1)
1 ; . . . ;M

(1)
d , . . . ,M

(ℓd)
d ), (10.3)
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it is said to be topological (because it leads to an expansion in 1/N2 for the free energy,

like the genus expansion of single-trace matrix models). When it has an expansion onto

products of traces of the matrices Mcs, i.e.

trEℓ
SN,ℓ(M

(1)
1 , . . . ,M

(ℓ1)
1 ; . . . ;M

(1)
d , . . . ,M

(ℓd)
d ) =

∑

λ
ℓ(λ(c))=ℓc

SN(λ)Iλ({Mc}), (10.4)

and an invertible quadratic form, then the Feynman expansion corresponds to an expan-

sion onto stuffed maps (non-necessarily topological), as described in Section 9.3. Finally,

a topological expansion onto stuffed maps is obtained from

trEℓ
SN,ℓ(M

(1)
1 , . . . ,M

(ℓ1)
1 ; . . . ;M

(1)
d , . . . ,M

(ℓd)
d ) =

∑

h≥0
ℓ(λ(c))=ℓc

N−2hS(h)(λ)Iλ({Mc}). (10.5)

We will present the loop equations of this model. However, we will calculate the disc and

cylinder function only in the case where a special property of (9.47) is satisfied, namely

S(0)(λ) = O(N d−2
2 ), for |λ| ≥ 3, (10.6)

which in fact will imply that the large N limit is that of a Gaussian model. The second

key difference with [67] is that (9.47) is in general non-topological. Since the leading

order of the coupling constants is nevertheless N2−ℓ(λ), as in (10.2). Therefore, we can

define new coupling constants as follows

N−2hS
(h)
N,P(λ) =

∑

i≥0
2h=⌊ d−2

2
(|λ|−2)+ηi(λ)⌋

N− d−2
2

(|λ|−2)−ηi(λ) s
(i)
P (λ), (10.7)

i.e. we absorb s
(i)
P (λ) and its N -dependent prefactor into the coefficients S(h)

N,P(λ) by

rounding down its order to the closest 2h. Here we will follow the same route as in

[66, 67] and do everything as if S(h)
N,P(λ) were independent of N , except for the explicit

evaluation of the disc function and the cylinder function using (10.6). In principle, one

also has to eventually re-expand the coefficients S(h)
N,P(λ) as in (10.7).
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10.1 Correlation functions

If P ({Mc}) is an observable, its expectation is

〈P ({Mc})〉 =
1

ZTop(N,S)

ˆ d∏

c=1

dMc P ({Mc})

× exp
∑

ℓ

N2−|ℓ|trEℓ
SN,ℓ(M

(1)
1 , . . . ,M

(ℓ1)
1 ; . . . ;M

(1)
d , . . . ,M

(ℓd)
d ).

(10.8)

The natural set of observables are the expectations of products of traces of the matrices

{Mc}, i.e. expectations of Iλ({Mc}). We recall here for the reader’s sake the definitions

of the correlation functions introduced in section 3.2

W n(x1, c1; . . . ; xn, cn) =
〈 n∏

i=1

trEci

1

xi −Mci

〉
=

∑

k1,...,kn≥0

W
(k1,c1;...;kn,cn)

n

n∏

i=1

x−ki−1
i ,

(10.9)

i.e.

W
(k1,c1;...;kn,cn)

n =
[ n∏

i=1

x−ki−1
]
W n(x1, c1; . . . ; xn, cn) =

〈 n∏

i=1

trEci
Mki

ci

〉
, (10.10)

and their connected counterparts

Wn(x1, c1; . . . ; xn, cn) =
〈 n∏

i=1

trVci

1

xi −Mci

〉
c
=

∑

k1,...,kn≥0

W (k1,c1;...;kn,cn)
n

n∏

i=1

x−ki−1
i ,

(10.11)

i.e.

W (k1,c1;...;kn,cn)
n =

[ n∏

i=1

x−ki−1
]
Wn(x1, c1; . . . ; xn, cn) =

〈 n∏

i=1

trEci
Mki

ci

〉
c
. (10.12)

The variable xi is said to be of color ci when it is the generating parameter for trEci
Mki

ci

expanded around infinity. We denote ❈c the copy of ❈ of color c, so that xi ∈ Uci for

some open subset of ❈ci . We will also need the functions

W
(k1,c′1;...;kl,c

′
l
)

n (x1, c1; . . . ; xn−l, cn−l) =
〈 l∏

i=1

trEc′
i

Mki
c′i

n−l∏

j=1

trEcj

1

xj −Mcj

〉
c
, (10.13)
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which are obtained from Wn(x1, c1; . . . ; xn−l, cn−l; x
′
1, c

′
1; . . . ; x

′
l, c

′
l) by extracting some se-

ries coefficients

W
(k1,c′1;...;kl,c

′
l
)

n (x1, c1; . . . ; xn−l, cn−l) =
[ l∏

i=1

x′
−ki−1
i

]
Wn(x1, c1; . . . ; xn−l, cn−l; x

′
1, c

′
1; . . . ; x

′
l, c

′
l).

(10.14)

As a special case of such functions, when λ = (λ(1), . . . , λ(d)) is a d-tuple of partitions, and

c ∈ J1, dK and j ∈ J1, ℓ(λ(c))K, we denote λ(c,j) = (λ′(1), . . . , λ′(d)) the d-tuple of partitions

with

λ′
(c′)

= λ(c
′) for c′ 6= c and λ′

(c)
=
(
λ
(c)
1 , . . . , λ

(c)
j−1, λ

(c)
j+1, . . . , λ

(c)

ℓ(λ(c))

)
, (10.15)

i.e. the jth row of λ(c) is removed. Then we denote

W
(λ(c,j))
n (x1, c1; . . . ; xp, cp) = W

(λc′

i ,c′)
(c′,i) 6=(c,j)

(c′,i)∈J1,dK×J1,ℓ(λ(c
′))K

n (x1, c1; . . . ; xp, cp), (10.16)

with n = p+ℓ(λ)−1. It will also appear natural to introduce global correlation functions

which are defined on (an open subset of)

En =
( d⋃

c=1

❈c \ Γc

)n
, (10.17)

so that each xi can be evaluated on any color. These correlation functions are

Wn(x1, . . . , xn) =
∑

c1,...,cn∈J1,dK

Wn(x1, c1; . . . ; xn, cn)
n∏

i=1

✶(xi, ci), (10.18)

where ✶(x, c) is 1 if x ∈ ❈c and 0 otherwise. In terms of components

Wn(x1, . . . , xn) =
∑

k1,...,kn≥0
c1,...,cn∈J1,dK

W (k1,c1;...;kn,cn)
n

n∏

i=1

x−ki−1
i ✶(xi, ci). (10.19)

The correlation functions Wn(x1, c1; . . . ; xn, cn) are said to be the local expressions of

Wn(x1, . . . , xn), since each variables is assigned a fixed color.
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10.2 Loop equations

In this section we use the form (10.4) of the action.

10.2.1 1-point equation

The Schwinger-Dyson equations are obtained from

1

ZTop(N,S)

ˆ d∏

c=1

dMc

N∑

a,b=1

∂

∂(Mc)ab

((
Mn

c

)
ab
e
∑

λ
N2−ℓ(λ)SN (λ)Iλ({Mc})

)
= 0, (10.20)

by making the action of the derivative above explicit on each term of the integrand, and

summing over n ≥ 0 with x−n−1. One gets

W 2(x, c; x, c)+
∑

λ

N2−ℓ(λ)SN(λ)

ℓ(λ(c))∑

j=1

λ
(c)
j

〈
trEc

M
λ
(c)
j −1

c

x−Mc

∏

i 6=j

trEc
M

λ
(c)
i

c

∏

c′ 6=c

Iλ(c′)(Mc′)
〉
= 0.

(10.21)

We now work towards rewriting (10.21) in terms of connected correlation functions. De-

note R = {R1, . . . , Rℓ(R)} a set-partition of J1, nK, then

W n(x1, c1; . . . ; xn, cn) =
∑

R⊢J1,nK

∏

α

W|Rα|({xRα
, cRα
}), (10.22)

with the short-hand notation {xRα
, cRα
} = {xr, cr}r∈Rα

. This first gives

W 2(x, c; x, c) = W1(x, c)
2 +W2(x, c; x, c). (10.23)

The contribution of the interaction is split in the usual way using

M
λ
(c)
j −1

c

x−Mc

=
xλ

(c)
j −1

x−Mc

+

λ
(c)
j −2∑

q=0

xλ
(c)
j −2−qM q

c , (10.24)
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which leads to

〈
trEc

M
λ
(c)
j −1

c

x−Mc

∏

i 6=j

trEc
M

λ
(c)
i

c

∏

c′ 6=c

Iλ(c′)(Mc′)
〉

= xλ
(c)
j −1W

(λ(c,j))

ℓ(λ) (x, c)−
λ
(c)
j −2∑

q=0

xλ
(c)
j −2−qW

(λ(c,j);q,c)

ℓ(λ) .

(10.25)

Then rewrite each of the two terms using connected correlations. To do so, denote

L(λ) = {(c, i)|(c, i) ∈ J1, dK× J1, ℓ(λ(c))K}, (10.26)

and P(L(λ)) the set of partitions of L(λ), i.e. R = {R1, . . . , Rℓ(R)} ∈ P(L(λ)) if the Rαs

are non-empty, disjoint, and
⊔

αRα = L(λ). Moreover, for a fixed pair (c, j) ∈ L(λ), we

denote R(c, j) the part which contains (c, j), and

R(c, j) = {(c, j)} ∪R′(c, j), (10.27)

where R′(c, j) can be empty. Then,

W
(λ(c,j))

ℓ(λ) (x, c) =
∑

R∈P(L(λ))

W
(λR′(c,j),cR′(c,j))

|R(c,j)| (x, c)
∏

α
Rα 6=R(c,j)

W
(λRα ,cRα )

|Rα| . (10.28)

Here we use the short-hand notation (λRα
, cRα

) = (λ
(c′)
i , c′)(c′,i)∈Rα

. Furthermore

W
(λ(c,j);q,c)

ℓ(λ) =
∑

R∈P(L(λ))

W
(λR′(c,j),cR′(c,j);q,c)

|R(c,j)|
∏

α
Rα 6=R(c,j)

W
(λRα ,cRα )

|Rα| . (10.29)

The loop equation (10.21) then reads

W1(x, c)
2 +W2(x, c; x, c) +

∑

λ
R∈P(L(λ))

ℓ(λ(c))∑

j=1

N2−ℓ(λ)SN(λ)
∏

α
Rα 6=R(c,j)

W
(λRα ,cRα )

|Rα|

× λ(c)j

(
xλ

(c)
j −1W

(λR′(c,j),cR′(c,j))

|R(c,j)| (x, c)−
λ
(c)
j −2∑

q=0

xλ
(c)
j −2−qW

(λR′(c,j),cR′(c,j);q,c)

|R(c,j)|

)
= 0, (10.30)
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which can also be written as a global equation

W1(x)
2 +W2(x, x) +

∑

λ
R∈P(L(λ))

d∑

c=1

✶(x, c)

ℓ(λ(c))∑

j=1

N2−ℓ(λ)SN(λ)
∏

α
Rα 6=R(c,j)

W
(λRα ,cRα )

|Rα|

× λ(c)j

(
xλ

(c)
j −1W

(λR′(c,j),cR′(c,j))

|R(c,j)| (x, c)−
λ
(c)
j −2∑

q=0

xλ
(c)
j −2−qW

(λR′(c,j),cR′(c,j);q,c)

|R(c,j)|

)
= 0. (10.31)

10.2.2 n-point equations

The single-trace terms of the potential are

d∑

c=1

∑

λ≥1

N
(
s(0)(λ, c) + o(1)

)
trEc

Mλ
c . (10.32)

Then the loop insertion operator with respect to color c ∈ J1, dK is

δx =
d∑

c=1

∑

λ≥0

✶(x, c)x−λ−1 ∂

∂s(0)(λ, c)
. (10.33)

With the notations of paragraph 3.3.2, repeated actions of the loop insertion operator on

(10.31) gives

∑

(I1,I2)∈I2(n)
W|I1|+1(x1, xI1)W|I2|+1(x1, xI2) +Wn+1(x1, x1, . . . , xn)

+
n∑

j=2

✶(x1, xj)
∂

∂xj

Wn−1(x2, . . . , xn)−Wn−1(x1, . . . , xj−1, xj+1, . . . , xn)

xj − x1

+
∑

λ
R∈P(L(λ))

∑

(I1,...,Iℓ(R))∈Iℓ(R)(n)

d∑

c=1

✶(x1, c)

ℓ(λ(c))∑

j=1

N2−ℓ(λ)SN(λ)
∏

α
Rα 6=R(c,j)

W
(λRα ,cRα )

|Rα|+|Iα| (xIα)

×λ(c)j

(
x
λ
(c)
j −1

1 W
(λR′(c,j),cR′(c,j))

|R(c,j)|+|I(c,j)| (x1, xI(c,j))−
λ
(c)
j −2∑

q=0

x
λ
(c)
j −2−q

1 W
(λR′(c,j),cR′(c,j);q,c)

|R(c,j)|+|I(c,j)| (xI(c,j))
)
= 0.

(10.34)

I(c, j) is defined as Iα∗ where α∗ is the index such that Rα∗ = R(c, j). Moreover, ✶(x, y) =
∑d

c=1 ✶(x, c)✶(y, c) is 1 if and only if x and y are variables of the same color.
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10.2.3 Topological expansion

All correlation functions admit the usual topological expansion

W
(k1,c1;...;kp,cp)
n+p (x1, . . . , xn) =

∑

h≥0

N2−n+p−2hW
(k1,c1;...,kp,cp)
n+p,h (x1, . . . , xn). (10.35)

Plugging it into (10.34) leads to

∑

(I1,I2)∈I2(n)
h=0,...,g

W|I1|+1,h(x1, xI1)W|I2|+1,g−h(x1, xI2) +Wn+1,g−1(x1, x1, . . . , xn)

+
n∑

j=2

✶(x1, xj)
∂

∂xj

Wn−1,g(x2, . . . , xn)−Wn−1,g(x1, . . . , xj−1, xj+1, . . . , xn)

xj − x1

+
∑

λ
R∈P(L(λ))

(I1,...,Iℓ(R))∈Iℓ(R)(n)

∑

h,h1,...,hℓ(R)≥0

ℓ(λ)−ℓ(R)+h+
∑ℓ(R)

α=1 hα=g

d∑

c=1

✶(x1, c)

ℓ(λ(c))∑

j=1

S(h)(λ)
∏

α
Rα 6=R(c,j)

W
(λRα ,cRα )

|Rα|+|Iα|,hα
(xIα)

×λ(c)j

(
x
λ
(c)
j −1

1 W
(λR′(c,j),cR′(c,j))

|R(c,j)|+|I(c,j)|,h(c,j)(x1, xI(c,j))−
λ
(c)
j −2∑

q=0

x
λ
(c)
j −2−q

1 W
(λR′(c,j),cR′(c,j);q,c)

|R(c,j)|+|I(c,j)|,h(c,j)(xI(c,j))
)
= 0,

(10.36)

where h(c, j) is the hα∗ where α∗ is such that Rα∗ = R(c, j).

10.3 Large N limit

Restricting (10.36) to g = 0 gives the constraint h = h1 = · · · = hℓ(R) = 0, which in turn

implies ℓ(R) = ℓ(λ). This reduces the sum over partitions of L(λ) to a single one for

each λ, i.e. the partition into singletons, R = {{c′, i}}, for c′ ∈ J1, dK and i ∈ J1, ℓ(λ(c
′))K.

For (I1, . . . , Iℓ(λ)) ∈ Iℓ(λ)(n), we denote I(c′, i) = Iα when Rα = {c′, i}. This gives, for a

generic potential,

∑

(I1,I2)∈I2(n)
W|I1|+1,0(x1, xI1)W|I2|+1,0(x1, xI2)

+
n∑

j=2

✶(x1, xj)
∂

∂xj

Wn−1,0(x2, . . . , xn)−Wn−1,0(x1, . . . , xj−1, xj+1, . . . , xn)

xj − x1
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+
∑

λ
(I1,...,Iℓ(λ))∈Iℓ(λ)(n)

d∑

c=1

✶(x1, c)

ℓ(λ(c))∑

j=1

S(0)(λ)
∏

(c′,i) 6=(c,j)

W
(λ

(c′)
i ,c′)

|I(c′,i)|+1,0(xI(c′,i))

× λ(c)j

(
x
λ
(c)
j −1

1 W|I(c,j)|+1,0(x1, xI(c,j))−
λ
(c)
j −2∑

q=0

x
λ
(c)
j −2−q

1 W
(q,c)
|I(c,j)|+1,0(xI(c,j))

)
= 0. (10.37)

In the case (9.46) of ZFluct(N,P), which we are interested in, the leading order coefficients

S(0)(λ) actually have an extra N -dependence and satisfy (10.6). It implies that the

partitions λ appearing in (10.37) must be of size 2, viz. |λ| = 2. These partitions are of

the form λ = (λ(1), . . . , λ(d)) with

• either λ(c) = (2) for some c. We write the corresponding part of the action
1
2

∑d
c=1 actrEc

M2
c ;

• or λ(c) = (1, 1) for some c. We write the corresponding part of the action
1
2

∑d
c=1 bcc

(
trEc

Mc

)2
;

• or λ(c) = (1) and λ(c
′) = (1) for some c 6= c′. We write the corresponding part of

the action 1
2

∑d
c 6=c′ bcc′trEc

Mc trEc′
Mc′ , with bcc′ = bc′c.

This means that at large N , the correlation functions behave as if the action simply was

−N
2

∑

c

trEc
M2

c−
∑

|λ|=2

N2−ℓ(λ)s
(0)
P (λ) Iλ({Mc}) =

N

2

∑

c

actrEc
M2

c+
1

2

∑

c,c′

bc,c′trEc
Mc trEc′

Mc′ .

(10.38)

Then (10.37) becomes

∑

(I1,I2)∈I2(n)
W|I1|+1,0(x1, xI1)W|I2|+1,0(x1, xI2)

+
n∑

j=2

✶(x1, xj)
∂

∂xj

Wn−1,0(x2, . . . , xn)−Wn−1,0(x1, . . . , xj−1, xj+1, . . . , xn)

xj − x1

−
d∑

c=1

✶(x1, c)
(
acx1Wn(x1, . . . , xn)+

∑

(I1,I2)∈I2(n)
W|I1|+1,0(x1, xI1)

d∑

c′=1

bcc′W
(1,c′)
|I2|+1,0(xI2)

)
= 0.

(10.39)
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10.3.1 Disc function

The disc function of color c isW1,0(x, c) = limN→∞
1
N
W1(x, c), i.e. the generating function

of planar stuffed maps with a single boundary of arbitrary perimeter. The global disc

function is W1,0(x) =
∑d

c=1 ✶(x, c)W1,0(x, c). Equation (10.39) can be directly applied.

Before doing so, however, let us briefly mention the case of a generic potential, by setting

n = 1 in (10.37). For a fixed color c,

W1,0(x, c)
2

+
∑

λ

ℓ(λ(c))∑

j=1

S(0)(λ)
∏

(c′,i) 6=(c,j)

W
(λ

(c′)
i ,c′)

1,0 λ
(c)
j

(
xλ

(c)
j −1W1,0(x, c)−

λ
(c)
j −2∑

q=0

xλ
(c)
j −2−qW

(q,c)
1,0

)
= 0.

(10.40)

This is thus a set of d equations on d functions W1,0(x, c) with a single catalytic variable,

and some explicit dependence on coefficients of the unknown series. This generalizes

the classical equation of the 1-matrix, multi-trace model [67]. The analytic properties

of its disc function, described in [69], derive from an extension of [71], which applies to

stuffed maps with unbounded face degrees. Here, we would require a further extension,

to a system of equations. Instead of pursuing the generic route, we focus on the specific

model ZFluct(N,P). Setting n = 1 in (10.39), one finds

W1,0(x, c)
2 − ac

(
xW1,0(x, c)− 1

)
= 0, (10.41)

where we have used W
(1,c′)
1,0 = 0 for all c′, since W (1,c′)

1,0 = limN→∞
1
N
〈trEc′

Mc′〉 and the

model is invariant under {Mc} → {−Mc} at large N . The disc function of color c is thus

W1,0(x, c) =
ac
2

(
x−

√
x2 − 4

ac

)
, (10.42)

as in [66]. It has a cut along Γc = [− 2√
ac
, 2√

ac
] (if ac > 0), which is said to be the cut of

color c. The global disc function W1,0(x) =
∑d

c=1W1,0(x, c)✶(x, c) thus has d cuts, along
⋃d

c=1 Γc.
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10.3.2 Cylinder function

The cylinder function is the leading order of the two-point function. The local expression

is

W2,0(x1, c1; x2, c2) = lim
N→∞

W2(x1, c1; x2, c2) = lim
N→∞

〈trEc1

1

x1 −Mc1

trEc2

1

x2 −Mc2

〉c.
(10.43)

By setting n = 2 in (10.39), one finds

(
2W1,0(x1, c1)− ac1x1

)
W2,0(x1, c1; x2, c2) + δc1,c2

∂

∂x2

W1,0(x1, c1)−W1,0(x2, c2)

x1 − x2

−W1,0(x1, c1)
d∑

c′=1

bc1c′W
(1,c′)
2,0 (x2, c2) = 0, (10.44)

where a term −W2,0(x1, c1; x2, c2)
∑d

c′=1 bc1c′W
(1,c′)
1,0 has been removed because W (1,c′)

1,0 = 0

in this model. It generalizes the equations found for W2,0(x1, c1; x2, c2) in [66]. The

method used to solve them still works here. It processes by first finding the values of

W
(1,c′)
2,0 (x2, c2). To do so, we extract the coefficient of the equations at order 1/x1. It gives

− ac1W (1,c1)
2,0 (x2, c2)−

d∑

c′=1

bc1,c′W
(1,c′)
2,0 (x2, c2) = δc1,c2

∂W1,0(x2, c2)

∂x2
, (10.45)

which can be given a matrix form. Introduce the following d×dmatricesA = diag(a1, . . . , ad),

B = (bc,c′)1≤c,c′≤d and

W
(1)
2,0 (x) =

(
W

(1,c)
2,0 (x, c′)

)
1≤c,c′≤d

, ∂W1,0(x) = diag
(∂W1,0(x, c)

∂x
, . . . ,

∂W1,0(x, c)

∂x

)
.

(10.46)

It comes

W
(1)
2,0 (x) = −(A+B)−1∂W1,0(x), (10.47)

provided A+B is invertible. Denoting σ(x, c) =
√
x2 − 4/ac, we have

∂W1,0(x, c)

∂x
= −W1,0(x, c)

σ(x, c)
, (10.48)
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and it comes

W2,0(x1, c1; x2, c2) = δc1c2
x1x2 − σ(x1, c1)σ(x2, c2)− 4/ac1
2(x1 − x2)2σ(x1, c1)σ(x2, c2)

− 1

ac1

(
B

1

A+B

)
c1c2

W1,0(x1, c1)W1,0(x2, c2)

σ(x1, c1)σ(x2, c2)
.

(10.49)

The first part of this formula is the cylinder function for the GUE, while the other term

is due to the multi-trace interaction. Notice that the latter is not manifestly invariant

under the exchange symmetry (x1, c1)↔ (x2, c2). The cylinder function is thus basically

the same as in the quartic melonic model [66]. The difference is that in that case, the

matrices A,B were specific functions of the coupling constants t1, . . . , td, while they are

here, in general, functions of all the coupling constants ti, i ∈ I.

10.4 Blobbed topological recursion

The remaining is exactly similar to [66], with the replacement ac = 1−α2
c , which already

followed the theorems of [67, 68].

10.4.1 Spectral curve

Denote the Riemann sphere ❈̂, and ❈̂c its copy of color c ∈ J1, dK. For each color, define

fc(x, y) = y2 − acxy + ac. (10.50)

The Gaussian spectral curve is defined as CGaussian ⊂
⋃d

c=1 ❈̂
2
c by

f(x, y) =
d∑

c=1

✶(x, c)✶(y, c)fc(x, y) = 0. (10.51)

Recall that Γc = [− 2√
ac
, 2√

ac
] (for ac > 0) and denote Γ =

⋃d
c=1 Γc. It can be checked

as in [67] that our correlation functions Wn,g(x1, . . . , xn) are only singular along Γ (with

respect to each variable), except for (n, g) ∈ {(1, 0), (2, 0)}. We therefore introduce a

Zhukovski parametrization

x(z) =
d∑

c=1

✶(x, c)✶(z, c)
1√
ac
(z + z−1), (10.52)
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for |z| ≥ 1 in each color. As shown in [67], the correlation functions for (n, g) 6∈
{(1, 0), (2, 0)} are holomorphic for |z| ≥ 1 except at z = ±1. Moreover, they can be

analytically continued to the interior of a neighborhood of the unit circle, except at

z = ±1. In our case (see below), this analytic continuation can be performed for all

0 < |z| < 1. The correlation functions can thus be turned into differential forms

ωn,g(z1, . . . , zn) = Wn,g(x(z1), . . . , x(zn))dx(z1) . . . dx(zn)

+ δ(n,g),(2,0)

d∑

c=1

✶(z1, c)✶(z2, c)
dx(z1)dx(z2)

(x(z1)− x(z2))2
.

(10.53)

For (n, g) 6∈ {(1, 0), (2, 0)}, they are holomorphic on CnGaussian except at zi = 0,±1. In

the framework of the blobbed topological recursion, the singularities at 0 and at ±1 play

different roles. This is because the disc function has (simple) zeroes at z = ±1,

W1,0(x(z)) =
d∑

c=1

✶(z, c)

√
ac
z

⇒ ω1,0(z) =
d∑

c=1

✶(z, c)
1− z−2

z
dz, (10.54)

because they are the zeroes of dx(z). As for the cylinder function, it becomes

ω2,0(z1, z2) =
dz1 dz2

(z1 − z2)2
d∑

c=1

✶(z1, c)✶(z2, c)

− dz1dz2
z21z

2
2

d∑

c1,c2=1

✶(z1, c1)✶(z2, c2)√
ac1ac2

1

ac1

(
B

1

A+B

)
c1c2

,

(10.55)

which is singular along the diagonal z1 = z2 as expected, but also has poles at z1 = 0 and

z2 = 0 on each color. The points z = ±1 in each color are called the ramification points

and we denote

R = {z = ±1 ∈ ❈c, c ∈ J1, dK}. (10.56)

The spectral curve is also supplemented with the canonical involution ι(z) = 1/z which

preserves the ramification points.

10.4.2 Topological recursion formula

Recall the notations G(z, z1) =
´ z

ι(z)
ω2,0(·, z1), and ∆ϕ = ϕ − ι∗ϕ for a differential form

ϕ. The kernel of the topological recursion is K(z, z1) =
∆G(z,z1)
2∆ω1,0(z)

. We further define the



10.4. Blobbed topological recursion 153

polar and holomorphic part of ωn,g(z1, . . . , zn) as follows (terminology justified below)

Pωn,g(z1, . . . , zn) =
∑

z∈R
Resz G(z, z1)ωn,g(z, . . . , zn),

Hωn,g(z1, . . . , zn) = ωn,g(z1, . . . , zn)− Pωn,g(z1, . . . , zn).

(10.57)

Theorem 10.4.1. Assume that A+B is invertible, so that ω2,0 is given by (10.55). For

all (n, g) 6∈ {(1, 0), (2, 0)}, the holomorphic part is holomorphic while the polar part has

poles on R. They are given by

Pωn,g(z1, . . . , zn) =
∑

z∈R
ReszK(z, z1)

(
ωn+1,g−1(z, ι(z), z2, . . . , zn)

+
′∑

(I1,I2)∈I2(n)
g1+g2=g

ω|I1|+1,g1(z, zI1)ω|I2|+1,g2(ι(z), zI2)
)
,

(10.58)

and

Hωn,g(z1, . . . , zn) =
1

2iπ

˛

z∈⋃d
c=1 U(1)c

ω2,0(z1, z)νn,g(z, z2, . . . , zn), (10.59)

where U(1)c is the copy of the unit circle of color c, and

νn,g(z, z2, . . . , zn) = Vn,g(x(z), x(z2), . . . , x(zn)) dx(z2) . . . dx(zn) (10.60)

for

Vn,g(x, x2, . . . , xn) =
d∑

c=1

∑

λ

ℓ(λ(c))∑

j=1

∑

R∈P(L(λ))
R′(c,j)=∅

∑

(I1,...,Iℓ(R))∈Iℓ(R)(n)

✶(x, c)

∑

h,h1,...,hℓ(R)≥0

ℓ(λ)−ℓ(R)+h+
∑ℓ(R)

α=1 hα=g

S(h)(λ)xλ
(c)
j

∏

Rα 6={(c,j)}
W

(λRα ,cRα )

|Rα|+|Iα|,hα
(xIα).

(10.61)

Proof. The loop equations have the same form as in [66] and all the arguments, which

were borrowed from [67, 68] apply. ✷
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Summary and outlook

First of all, this work paves the way for a new formulation of real tensor models, their

observables and correlators in terms of symmetric groups and their representation theory.

The formulation is particularly convenient for implementing heavy computations using

software resources, thus, leading to a gain of confidence in the computational process.

Furthermore, with its multiple facets, the formalism elaborated here may shed a new

light on some results since it bridges theories - combinatorics, TFT and physics through

observables and correlators - which from the outset may look rather different.

We have enumerated O(N) or rank-d real tensor invariants as d-regular colored graphs

using a permutation group formalism. These invariants define the points of a double coset

of S d
2n. We used Mathematica and Sage codes to generate the sequences associated with

the number of these invariants from their generating functions. The sequences obtained

at d ≥ 4 are new according to the OEIS. Translated into the TFT2 formulation, the same

counting delivers the number of covers of gluing of cylinders with defects. Such covers

have been also observed while counting Feynman graphs of scalar field theory [39] and

relate to a string theory on cylinders. Thus, there should be an equivalent way of de-

scribing tensor observables in purely string theoretic language. Moreover, this link with

covers must be made precise: covers in 2D are related to holomorphic maps and may, in

return, give a geometry to the space of orthogonal invariants. This point fully deserves

further investigation.

Another piece of information reveals itself with the representation theoretic formulation

of the counting: the number of orthogonal invariants is a sum of constrained Kronecker

coefficients. The Kronecker coefficient is a core object in Computational Complexity the-

ory: either finding a combinatorial rule describing it (finding which combinatorial objects

it counts), or its vanishing property or otherwise remains under active investigation (see

references in [51, 52]). It concentrates a lot of research efforts since one expects that,

roughly speaking, understanding that object could lead to a separation of complexity

classes P vs NP. In our present work (as is similarly done in [30]), we show that the
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number of tensor model observables - represented by colored graphs and thus combina-

torial structures - links to a sum of Kronecker coefficients (in [30], it is a sum of square

of these coefficients). It remains of course to be seen how this would help with one of the

famous problems stated above. Perhaps a refined counting of colored graphs (endowed

with specific properties) could boil down the sum to a single Kronecker element. Such a

study may bring some progress in the field.

The equivalence classes associated with the colored graphs are mapped in the tensor prod-

uct of the group algebra C[S2n]
⊗d. They form the basis vectors of a subspace, namely

Kd(2n), that is in fact a semi-simple algebra. We call it a double coset algebra. Note also

that, as elements of an algebra, d-regular colored graphs multiply in a specific way, and

yield back a combination of d-regular colored graphs. In rank 3, we have found a “natu-

ral” representation theoretic basis {QR,S,T,τ}, of K3(2n), i.e. invariant and orthonormal.

Unlike the unitary case [30], this basis decomposes the algebra into blocks but does not

provide its Wedderburn-Artin (WA) decomposition in matrix subalgebras. This raises

other questions: in which basis can the WA decomposition be made explicit? Is there

a simple enough combination starting from QR,S,T,τ that produces the WA decomposi-

tion? A starting point of that analysis might be given by the work of Bremner [97] that

constructs the WA basis of a finite dimensional unital algebra over rationals. Finally, is

there a way to understand why the sum of constrained Kronecker coefficients is actually

a sum of squares (each of which being the dimension of a matrix subalgebra entering in

the WA decomposition)? Such points deserve future clarifications.

We also addressed normal ordered Gaussian 2-point correlators in this work and showed

that they formulate completely as a function of the size N of the tensor indices and

permutation cycles. We generated an orthogonal representation basis from these corre-

lators. This result is similar to what is observed in the unitary case, with the following

distinction: there is an operator acting on the triple defining the observables. We showed

that computing Gaussian correlators in representation theory space actually translates

to computing an inner product. Finally, we briefly sketched the main feature of Sp(2N)

invariants: although they obey the same diagrammatics than the O(N) invariants, they

satisfy a different rule concerning their equivalence classes. Thus, for the symplectic

group and its invariants, the story could be radically different from the orthogonal case

and will require more work.

On a different note, we have shown that, as long as there are quartic melonic interactions,

one can find in arbitrary tensor models a set of correlation functions which satisfy the
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blobbed topological recursion in a universal way. The spectral curve is then a disjoint

union of Gaussian spectral curves, with an additional holomorphic part to the cylinder

function which always has the same form.

Those results rely on the conditions 1 and 2 presented in the introduction and detailed

throughout Part III. In particular, the specifics of the model, i.e. the choice of interac-

tions, do not matter as long as the effective action obtained after the formal integration of

all the matrices except Y1, . . . , Yd has a well-defined 1/N expansion as we have described

in Theorem 9.1.1. This is why our formulae all have the same structure as in the case of

the quartic melonic model in [66].

We have also provided theorems 8.3.3, 8.3.4 and 9.2.1 to relate the expectations of the

U(N)d-invariant observables on the tensor and matrix sides.

There are still many interesting questions about the topological recursion for tensor mod-

els. Are there other sets of correlation functions satisfying the topological recursion? Is

it always a blobbed recursion? Can condition 2 from the introduction be removed? Is

it possible to proceed without going to matrix models and derive topological recursions

directly in the tensor formulation? There have been some efforts to use directly the

Schwinger-Dyson equations of tensor models, in [65] and [102], thus extracting the dou-

ble scaling limit of tensor models with melonic interactions for instance, but this is still

far from the topological recursion. We hope some of those questions can be tackled in

the near future.
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Appendix A

The symmetric group and its

representation theory

This appendix gathers useful identities and notations about the symmetric group Sn and

its representation theory. The presentation here is a summary of Appendix A, withdrawn

from [30], and the textbook by Hammermesh [98].

A.1 Representation theory of the symmetric group

Let n be a positive integer and Sn, the group of permutation of n elements. The Young

diagrams or partitions R of n, denoted R ⊢ n, label the irreducible representations (irreps)

of Sn. Consider VR a space of dimension d(R) (that will be made explicit below). An irrep

̺R : Sn → End(VR) is given by a matrix DR with entries ̺R(σ)|R, i〉 =
∑d(R)

l=1 DR
li (σ)|R, l〉

with σ ∈ Sn and with |R, i〉, i ∈ J1, d(R)K, an orthogonal basis of states for VR (this basis

obeys 〈R, j|R, i〉 = δij).

We write in short ̺R(σ) = σ and define the matrix elements as 〈R, j|σ|R, i〉 = DR
ji(σ). It

is common to assimilate the irreducible representation ̺R and the carrier space VR with

their label R.

From the commuting action of the unitary group U(N) and Sn on a tensor product space

V ⊗n, the Schur-Weyl duality teaches us that we associate an irrep R of Sn with an irrep of

U(N), provided N bounds the length l(R) of the first column of R, in symbol l(R) ≤ N .

Let us denote d(R) the dimension of R and DimN(R) the dimension of an irrep of U(N),

then those are given by

d(R) = n!/h(R) , DimN(R) = fN(R)/h(R) , (A.1)
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where h(R) is the product of the hook lengths and fN(R) is the product of box weights

(the content shifted by N) given respectively by h(R) =
∏

i,j(cj − j + ri − i + 1) and

fN(R) =
∏

i,j(N − i+ j); the pairs (i, j) label the boxes of the Young diagram with i the

row label and j the column label. The ith row length is ri and cj is the column length of

the jth column.

We now restrict to real representations and so the DR
ij(σ) must be real matrices. These

satisfy the following properties:

∑

i

DR
ai(σ)D

R
ib(σ

′) = DR
ab(σσ

′) , DR
ab(id) = δab , DR

ij(σ
−1) = DR

ji(σ) , (A.2)

∑

σ∈Sn

DR
ij(σ)D

S
kl(σ) =

n!

d(R)
δRS δikδjl (orthogonality) . (A.3)

The character of a given irrep R is simply the trace of DR(σ), χR(σ) = tr(DR(σ)) =
∑

iD
R
ii (σ). The Kronecker delta δ(σ) of the symmetric group (defined to be equal to 1

when σ = id and 0 otherwise) decomposes as

δ(σ) =
∑

R⊢n

d(R)

n!
χR(σ). (A.4)

The following identities are easily proven using the orthogonality relations of the repre-

sentation matrices:

∑

γ∈Sn

δ(γσγ−1τ−1) =
∑

R⊢n
χR(σ)χR(τ) (A.5)

∑

σ∈Sn

χR(σ)χS(σ) = n! δRS (A.6)

∑

γ∈Sn

χR(AγBγ−1) =
n!

d(R)
χR(A)χR(B)

If B is a
=

central element
n!χR(AB) (A.7)

Another useful identity expresses as

1

n!

∑

σ∈Sn

χR(σ)Nc(σ) = DimN(R) ,
∑

σ∈Sn

DR
ij(σ)N

c(σ) = δijfN(R) , (A.8)

where c(σ) is the number of cycles of σ.
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Defining the central element Ω ∈ C[Sn], as Ω =
∑

σ∈Sn
Nn−c(σ)σ, the first relation in

(A.8) can also be written as

Nn

n!
χR(Ω) = DimN(R) . (A.9)

A.2 Clebsch-Gordan coefficients

Consider two carrier spaces VR1 and VR2 of two irreps of Sn labeled by two Young diagrams

R1 and R2, respectively. The tensor product representation VR1⊗VR2 can be decomposed

into a direct sum of irreps VR3 with multiplicities

VR1 ⊗ VR2 =
⊕

R3⊢n
VR3 ⊗ V m

R3
. (A.10)

The tensor product space is spanned by a tensor product of the basis |R1, i1〉⊗ |R2, i2〉 :=
|R1, i1;R2, i2〉. On the right hand side, the direct sum corresponds to a basis set |R3, i3, τR3〉.
The label i3 runs over states of R3, and τR3 , the so-called multiplicity, runs over an or-

thogonal basis in the multiplicity space V m
R3

.

The Clebsch-Gordan coefficients are the branching coefficients between these bases:

C
R1,R2;R3, τR3
i1,i2; i3

:= 〈R1, i1;R2, i2|R3, τR3 , i3〉 = 〈R3, τR3 , i3|R1, i1;R2, i2〉 (A.11)

Note that they are real.

The following relations are detailed in Appendix A.2 in [30]:

∑

j1,j2

DR1
i1j1

(γ)DR2
i2j2

(γ)CR1,R2;R3, τ
j1,j2; j3

=
∑

i3

CR1,R2;R3, τ
i1,i2; i3

DR
i3j3

(γ) ; (A.12)

∑

i1,i2

CR1,R2;R3, τ
i1,i2; i3

C
R1,R2;R′

3, τ
′

i1,i2; j3
= δR3R′

3
δττ ′ δi3j3 ; (A.13)

∑

R3,i3,τ

CR1,R2;R3, τ
i1,i2; i3

CR1,R2;R3, τ
j1,j2; i3

= δi1j1 δi2j2 ; (A.14)

∑

R3,τ ; i3,j3

CR1,R2;R3, τ
i1,i2; i3

DR3
i3j3

(γ)CR1,R2;R3, τ
j1,j2; j3

= DR1
i1j1

(γ)DR2
i2j2

(γ) ; (A.15)

∑

j1,j2,j3

DR1
i1j1

(γ)DR2
i2j2

(γ)DR3
i3j3

(γ)CR1,R2;R3, τ
j1,j2; j3

= CR1,R2;R3, τ
i1,i2;i3

; (A.16)

∑

il,jl

CR1,R2;R3,τ1
i1,i2;i3

CR1,R2;R3,τ2
j1,j2;j3

DR1
i1j1

(γ1σ1γ2)D
R2
i2j2

(γ1σ2γ2)D
R3
i3j3

(γ1σ3γ2)
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=
∑

il,jl

CR1,R2;R3,τ1
i1,i2;i3

CR1,R2;R3,τ2
j1,j2;j3

DR1
i1j1

(σ1)D
R2
i2j2

(σ2)D
R3
i3j3

(σ3) ; (A.17)

∑

σ∈Sn

DR1
i1j1

(σ)DR2
i2j2

(σ)DR3
i3j3

(σ) =
n!

d(R3)

∑

τ

CR1,R2;R3,τ
i1,i2;i3

CR1,R2;R3,τ
j1,j2;j3

. (A.18)

Furthermore, we can generalize the second relation (A.8) as follows: given two permuta-

tions A and B, we have

∑

σ∈Sn

DR
ij(σ)N

c(σ−1AσB)

=
∑

γ,σ∈Sn

DR
ij(σ)δ(γ

−1σ−1AσB)Nc(γ)

(A.4)
=
∑

S,a

d(S)

n!

∑

γ,σ

DR
ij(σ)D

S
aa(γ

−1σ−1AσB)Nc(γ)

=
∑

S,a

d(S)

n!

∑

m,n,o,p

[∑

γ

DS
ma(γ)N

c(γ)
][∑

σ

DS
nm(σ)D

S
op(σ)D

R
ij(σ)

]
DS

no(A)D
S
pa(B) ,

(A.19)

with the property c(γ) = c(γ−1). We now use (A.8) and (A.18) to write

∑

σ∈Sn

DR
ij(σ)N

c(σ−1AσB)

=
∑

S,a

d(S)

n!

∑

m,n,o,p

δmafN(S)
( n!

d(R)

∑

τ

CS,S;R,τ
n,o;i CS,S;R,τ

m,p;j

)
DS

no(A)D
S
pa(B)

=
∑

S,τ

d(S)

d(R)
fN(S)

(∑

n,o

CS,S;R,τ
n,o;i DS

no(A)
)(∑

a,p

CS,S;R,τ
a,p;j DS

pa(B)
)
.

(A.20)

A.3 Basis of the group algebra C[Sn]

The matrix basis of the group algebra C[Sn] is defined by the elements

QR
ij =

κR
n!

∑

σ∈Sn

DR
ij(σ)σ , (A.21)

where the constant κ2R = n!d(R) is fixed by a normalization. The basis set {QR
ij} is of

cardinality
∑

R⊢n(d(R))
2 = n!. The elements QR

ij form a representation theoretic Fourier

basis for C[Sn].
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The left and right multiplication by group elements on QR
ij expand as

τ QR
ij =

∑

l

DR
li (τ)Q

R
lj , QR

ij τ =
∑

l

QR
il D

R
jl(τ) . (A.22)

Using the definition of the basis and (A.22), one gets

QR
ijQ

R′

kl =
κRκR′

(n!)2

∑

σ∈Sn

∑

τ∈Sn

DR
ij(σ)σD

R′

kl (τ)τ =
κR
n!

∑

σ∈Sn

DR
ij(σ)σQ

R′

kl

=
κR
n!

∑

σ∈Sn

DR
ij(σ)

∑

m

DR′

mk(σ)Q
R′

ml =
κR
n!

∑

m

n!

d(R)
δRR′δimδjkQ

R′

ml

=
κR
d(R)

δRR′δjkQ
R′

il .

(A.23)

We consider the Kronecker δ on Sn, and extend it (by linearity) as a pairing denoted

again δ on C[Sn], and then once again extend the result to C[Sn]
⊗d, d > 1, such that

δ(σ1 ⊗ . . .⊗ σd; σ′
1 ⊗ . . .⊗ σ′

d) = δ(σ1σ
′−1
1 ) . . . δ(σ−1

d σ′−1
d ) . (A.24)

Calculating the inner product δ(QR
ij;Q

R′

i′j′), we obtain

δ(QR
ij;Q

R′

i′j′) =
κ2R

n!d(R)
δRR′δii′δjj′ = δRR′δii′δjj′ . (A.25)

Then, for multiple tensor factors, we obtain

δ(QR1
i1j1
⊗ . . .⊗QRd

idjd
; Q

R′
1

i′1j
′
1
⊗ . . .⊗QR′

d

i′
d
j′
d
) =

d∏

a=1

δRaR′
a
δiai′aδjaj′a (A.26)

Hence, the basis {QR1
i1j1
⊗ . . .⊗QRd

idjd
} is a Fourier theoretic orthonormal basis for C[Sn]

⊗d.

In the text, we focus on S2n and we introduce the operator Tξ : S2n → S2n that acts

on S2n as Tξ(σ) = σ−1ξσ. In a natural way, Tξ extends by linearity on C[S2n]. Then,

without any possible confusion with the tensor notation T itself, Tξ ∈ End(C[S2n]) is the

image of the mapping T : S2n → End(C[S2n]), ξ 7→ Tξ. We then extend T by linearity to

T : C[S2n]→ End(C[S2n]), λξ + ρ 7→ Tλξ+ρ = λTξ + Tρ, λ ∈ C.
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We are interested in the properties of the transformed basis TξQR
ij which is nothing but

the Fourier transform of the pairing σ−1ξσ. First, let us see how they multiply:

(TξQ
R
ij) (TξQ

R′

i′j′) =
κRκR′

(2n!)2

∑

σ,ρ∈S2n

DR
ij(σ)D

R′

i′j′(ρ)σ
−1ξσρ−1ξρ . (A.27)

Note that the group order is now (2n)!. Introduce a change of variable σ → σρ−1, and

(TξQ
R
ij) (TξQ

R′

i′j′) =
κRκR′

(2n!)2

∑

σ,ρ∈S2n

∑

k

DR
ik(σ)D

R
kj(ρ)D

R′

i′j′(ρ)ρ
−1σ−1ξσξρ

=
κR′

(2n!)

∑

ρ∈S2n

DR′

i′j′(ρ)
∑

k

DR
kj(ρ)T(TξQ

R
ik
)ξ(ρ)

=
κR′

(2n!)

∑

ρ∈S2n

DR′

i′j′(ρ)T
∑

k DR
kj

(ρ)(TξQ
R
ik
)ξ(ρ) . (A.28)

Thus, the product of the transformed basis elements does not re-express easily in terms

of the transformed elements themselves. The left and right multiplications of fixed per-

mutations on the elements TξQR
ij, counterparts of (A.22), are given by:

τ(TξQ
R
ij) =

∑

a

(TξQ
R
ia)D

R
aj(τ)τ , (TξQ

R
ij)τ =

∑

a

(TξQ
R
ia)D

R
ja(τ)τ . (A.29)

The inner product of these elements expresses as:

δ(TξQ
R
ij, TξQ

R′

i′j′) =
κRκR′

(2n!)2

∑

σ,ρ∈S2n

DR
ij(σ)D

R′

i′j′(ρ) δ(Tξ(σ), Tξ(ρ)) . (A.30)

This is simply the Fourier transform of the delta δ(σ−1ξσρ−1ξρ) which tells us that the

sole terms remaining in this sum are those which define the same pairing. A closer

look shows that δ(σ−1ξσρ−1ξρ) = δ(ξσρ−1ξρσ−1). Then, this means that the elements

that contribute to the sum are those σρ−1 that belong to the stabilizer of ξ, that is

σρ−1 ∈ Sn[S2]. Hence, we change variable as σ → σ̄ = σρ−1, rename again σ̄ as σ and
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then rewrite, using the orthogonality of the representation matrices:

δ(TξQ
R
ij, TξQ

R′

i′j′) =
κRκR′

(2n!)2

∑

ρ∈S2n

∑

σ∈Sn[S2]

DR
ij(σρ)D

R′

i′j′(ρ)

=
κRκR′

(2n!)2

∑

a

∑

σ∈Sn[S2]

DR
ia(σ)

∑

ρ∈S2n

DR
aj(ρ)D

R′

i′j′(ρ)

= δRR′δjj′
κ2R

(2n!)2
2n!

d(R)

∑

a

∑

σ∈Sn[S2]

DR
ia(σ)δai′

= δRR′δjj′
∑

σ∈Sn[S2]

DR
ii′(σ) .

(A.31)

In the text, we compute a formula for that sum in terms of branching coefficients, see

(5.19). It turns out that the sum is non vanishing only if the partition R is even, meaning

that the length of each of its rows is even. Hence, from the above relation, (A.31), the

set of the transformed basis elements does not form an orthogonal system.

It is instructive to perform the same evaluation in an alternative way to discover new

identities satisfied by the Clebsch-Gordan coefficients. Consider the expansion of the

above inner product as follows:

δ(TξQ
R
ij, TξQ

R′

i′j′)

=
κRκR′

(2n!)2

∑

S

d(S)

2n!

∑

σ,ρ∈Sn

DR
ij(σ)D

R′

i′j′(ρ)χ
S(σ−1ξσρ−1ξρ)

=
κRκR′

(2n!)2

∑

S

d(S)

2n!

∑

a,b,c,d,e,f

DS
bc(ξ)D

S
ef (ξ)

∑

σ,ρ

DS
ba(σ)D

S
cd(σ)D

R
ij(σ)D

S
fa(ρ)D

S
ed(ρ)D

R′

i′j′(ρ)

=
κRκR′

(2n!)2

∑

S

d(S)

2n!

∑

b,c,e,f

DS
bc(ξ)D

S
ef (ξ)

(2n!)2

d(R)d(R′)

∑

τ,τ ′

CS,S;R,τ
b,c;i CS,S;R′,τ ′

f,e;i′

∑

a,d

CS,S;R,τ
a,d;j CS,S;R′,τ ′

a,d;j′

=
κRκR′

d(R)d(R′)

∑

S

d(S)

2n!

∑

b,c,e,f

DS
bc(ξ)D

S
ef (ξ)

∑

τ,τ ′

CS,S;R,τ
b,c;i CS,S;R′,τ ′

f,e;i′ δRR′δττ ′δjj′

= δRR′δjj′
κ2R

d(R)2

∑

S,τ

d(S)

2n!

∑

b,c,e,f

DS
bc(ξ)D

S
ef (ξ)C

S,S;R,τ
b,c;i CS,S;R,τ

f,e;i′

= δRR′δjj′
1

d(R)

∑

S,τ

d(S)F (S,R, τ ; i)F (S,R, τ ; i′) ,

(A.32)

where, at some intermediate steps, we used successively (A.18) and (A.13), and where

F (S,R, τ ; i) =
∑

b,cD
S
bc(ξ)C

S,S;R,τ
b,c;i . Using

∑
σ∈Sn[S2]

DR
ij(σ) = (2nn!)BR

i B
R
j (see (5.19)),
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we arrive to a new identity:

∑

S,τ

d(S)
(∑

b,c

DS
bc(ξ)C

S,S;R,τ
b,c;i

)(∑

e,f

DS
ef (ξ)C

S,S;R,τ
e,f ;j

)
=

(2nn!)

d(R)
BR

i B
R
j . (A.33)

Note the similarity of the left-hand-side member with (A.20) (adjusted for the symmetric

group S2n).

There exist graphical ways of representing identities in representation theory in general.

For the permutation group, Appendix A2 of [30] lists such graphical representations for

most of the identities given above. For instance, we use the graphical representation of

the representation matrix DR
ij(σ) as σi j , the Clebsch-Gordan coefficient CR2,R2;R3,τ

i1,i2;i3

represents as follows
τ

i1

i2

i3
R3

R1

R2

and the branching coefficient BR; r,νr
i;mr

looks like

i
νr

mr
R r

. Then the convolution given by (A.33) translates as the factorization:

∑

S,τ

d(S)
τ τ

ξ ξi j

S

S S

S

R R
=

(2nn!)

d(R)

i
1

1
R [2n]

j
1

1
R [2n] , (A.34)

hence, a new identity satisfied by the Clebsch-Gordan of the symmetric group.

A.4 2-point correlator evaluation

We prove in this part (6.16). To proceed, we will make use of (A.8), (A.13) and (A.18), or

alternatively (A.20), of Appendix A.2. Introducing k~R = κ~R

κR1
κR2

κR3

((2n)!)3
, then from (6.15),

we focus on the δ function:

δ
[
(T⊗3

ξ QR′
1,R

′
2,R

′
3,τ

′

)(T⊗3
ξ QR1,R2,R3,τ )(Ω1 ⊗ Ω2 ⊗ Ω3)

]

= k~Rk
′
~R

∑

pl,ql,p
′
l
,q′

l

CR1,R2;R3,τ
q1,q2;q3

C
R′

1,R
′
2;R

′
3,τ

′

q′1,q
′
2;q

′
3

[ 3∏

i=1

B
R′

i

p′i
BRi

pi

]

×
∑

σ′
i,σi

∑

αi

[ 3∏

i=1

Nc(αi)−2n
][ 3∏

i=1

D
R′

i

p′iq
′
i
(σ′

i)D
Ri
piqi

(σi)δ((σ
′
i)
−1ξσ′

i(σi)
−1ξσiαi)

]
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= k~Rk
′
~R

∑

pl,ql,p
′
l
,q′

l

CR1,R2;R3,τ
q1,q2;q3

C
R′

1,R
′
2;R

′
3,τ

′

q′1,q
′
2;q

′
3

[ 3∏

i=1

B
R′

i

p′i
BRi

pi

]∑

σ′
i,σi

[ 3∏

i=1

D
R′

i

p′iq
′
i
(σ′

i)D
Ri
piqi

(σi)
]

×
∑

Si,ai,gi

∑

αi

[ 3∏

i=1

Nc(αi)−2nDSi
giai

(αi)
]

×
∑

bi,ci,di,ei,fi

3∏

i=1

d(Si)

2n!
DSi

aibi
((σ′

i)
−1)DSi

bici
(ξ)DSi

cidi
(σ′

i)D
Si

diei
((σi)

−1)DSi

eifi
(ξ)DSi

figi
(σi)

= k~Rk
′
~R

N−6n

(2n!)3

∑

pl,ql,p
′
l
,q′

l

CR1,R2;R3,τ
q1,q2;q3

C
R′

1,R
′
2;R

′
3,τ

′

q′1,q
′
2;q

′
3

[ 3∏

i=1

B
R′

i

p′i
BRi

pi

] ∑

Si,ai,gi

[ 3∏

i=1

δgiaifN(Si)d(Si)
]

×
∑

bi,ci,di,ei,fi

∑

σ′
i,σi

[ 3∏

i=1

DSi

biai
(σ′

i)D
Si

cidi
(σ′

i)D
R′

i

p′iq
′
i
(σ′

i)D
Si

figi
(σi)D

Si

eidi
(σi)D

Ri
piqi

(σi)
]

×
[ 3∏

i=1

DS
bici

(ξ)DS
eifi

(ξ)
]
. (A.35)

It is the moment to use (A.18) to integrate the representation matrices and get:

k~Rk
′
~R

N−6n

(2n!)3

∑

pl,ql,p
′
l
,q′

l

CR1,R2;R3,τ
q1,q2;q3

C
R′

1,R
′
2;R

′
3,τ

′

q′1,q
′
2;q

′
3

[ 3∏

i=1

B
R′

i

p′i
BRi

pi

]∑

Si

[ 3∏

i=1

(2n!)DimN(Si)
]

×
∑

ai,bi,ci,di,ei,fi

3∏

i=1

[ 2n!

d(Ri)d(R′
i)

∑

τ ′i ,τi

C
Si,Si;R

′
i,τ

′
i

bi,ci;p′i
C

Si,Si;R
′
i,τ

′
i

ai,di;q′i
CSi,Si;Ri,τi

fi,ei;pi
CSi,Si;Ri,τi

ai,di;qi

]

×
[ 3∏

i=1

DSi

bici
(ξ)DSi

eifi
(ξ)
]
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∑
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DimN(Si)
]
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∑
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3∏

i=1

[∑

τ ′i ,τi
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Si,Si;R

′
i,τ

′
i
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δτ ′iτiδq′iqi

][ 3∏

i=1

DSi

bici
(ξ)DSi

eifi
(ξ)
]

=
(2n!)3k2~RN

−6n

∏3
i=1 d(Ri)2

[ 3∏
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δR′
iRi

] ∑
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′
l

CR1,R2;R3,τ
q1,q2;q3
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[ 3∏

i=1

B
R′

i

p′i
BRi

pi

]

×
∑

Si

[ 3∏

i=1

DimN(Si)
]
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×
∑

bi,ci,ei,fi

3∏
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[∑

τi
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bi,ci;p′i

CSi,Si;Ri,τi
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DSi

bici
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BRi
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−6n
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×
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. (A.36)

The evaluation finally yields

〈OR1,R2,R3,τ OR′
1,R

′
2,R

′
3,τ

′〉 = δ~R′ ~Rδτ ′τF (R1, R2, R3, τ)

F (R1, R2, R3, τ) =
∑

Si,τi

[ 3∏

i=1

DimN(Si)
][ ∑

bi,ci,pi

DSi

bici
(ξ)CSi,Si;Ri,τi

bi,ci;pi
BRi

pi

]2
. (A.37)

This is (6.16) and implies the orthogonality of the representation theoretic basis {OR1,R2,R3,τ}.
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Appendix B

Codes

We list here some algorithms which count the number of orthogonal invariants as given

in Part II. We use Mathematica and Sage softwares in the following.

B.1 Mathematica code for Zd(t)

We wish to compute the number Zd(2n) of rank-d orthogonal invariants made with 2n

tensors. In order to obtain that number, we first code the generating function, denoted

Z[X,t], of the counting of the number of elements of the wreath product Sn[S2] in a

certain conjugacy class of S2n. Doing this, we use the built-in function Count[list,

pattern] which counts the number of elements in a list matching a pattern. Then, we

extract a coefficient of tn in Z[X,t] that is involved in Zd[X,n,d] that encodes Zd(2n).

We finally give the counting for ranks 3 and 4, successively, for n ∈ J1, 10K.

X = Array[x, 20];

PP[n_] := IntegerPartitions[n]

Sym[q_, n_] := Product[i^(Count[q, i]) Count[q, i]!, {i, 1, n}]

Symd[X_, k_, q_] := Product[(X[[k*l]]/l)^(Count[q, l])/(Count[q, l]!), {l, 1, 2}]

Z[X_, t_] := Product[Exp[(t^i/i)*Sum[Symd[X, i, PP[2][[j]]], {j, 1, Length[PP[2]]}]],

{i, 1, 15}]

Zprim[X_, n_] := Coefficient[Series[Z[X, t], {t, 0, n}], t^n]

CC[X_, n_, q_] := Coefficient[Zprim[X, n], Product[X[[i]]^(Count[q, i]), {i, 1, 2*n}]]

Zd[X_, n_, d_] := Sum[(CC[X, n, PP[2*n][[i]]])^d*(Sym[PP[2*n][[i]], 2*n])^(d - 1),

{i, 1, Length[PP[2*n]]}]

Table[Zd[X, i, 3], {i, 1, 10}]

(out) {1, 5, 16, 86, 448, 3580, 34981, 448628, 6854130, 121173330}
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Table[Zd[X, i, 4], {i, 1, 10}]

(out) {1, 14, 132, 4154, 234004, 24791668, 3844630928, 809199787472, 220685007519070,

75649235368772418}

B.2 Mathematica code for counting with Hermite poly-

nomials

This part is dedicated to the implementation of an algorithm realizing Read’s enumera-

tion of k-regular graphs on 2n vertices with edges of k different colors where one of each

color is at every vertex. We want to compare Read’s results with the previous sequences.

Read’s generating function that encodes the above enumeration denotes ZR[t,d,n], in

the following program. Then, ZR[d,n] yields the counting at rank d with 2n vertices

and that is given by the coefficient of tn in ZR[t,d,n]. We evaluate Z3(2n) and Z4(2n)

for the ranks 3 and 4, respectively, and confirm that the results of Read match with the

previous results.

Next, the number of connected rank-d tensor invariants made with 2n tensors, written

below ZRc[d,n], can be obtained using the plethystic logarithm (Plog) function. The

Plog function PlogZd(t), denoted Plog[ZR,t,d,n], is defined with the MoebiusMu imple-

menting the Möbius function.

A[p_, v_] := (I Sqrt[p])^v HermiteH[v, 1/(2 I Sqrt[p])]

ZR[t_, d_, n_] = 1;

For[m = 0, m <= 20, m++

{If[OddQ[m],

Phi[m, t_, d_, n_] := (Sum[((2 v)!)^(d - 1)/(v!)^(d)*(m^(d - 2)/2^d)^

v t^(m v), {v, 0, n}]),

Phi[m, t_, d_, n_] := (Sum[(A[m/2, v])^d/(v! m^v) t^(m v/2), {v, 0, n}])]

};

ZR[t_, d_, n_] = ZR[t, d, n]*Phi[m, t, d, n]

]

ZR[d_, n_] := Coefficient[Series[ZR[t, d, n], {t, 0, n}], t^n]

Plog[F_, t_, d_, n_] := Sum[MoebiusMu[i]/i Log[F[t^i, d, n]], {i, 1, n}]

ZRc[d_, n_] := Coefficient[Series[Plog[ZR, t, d, n], {t, 0, n}], t^n]

Table[ZR[3, i], {i, 1, 10}]
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(Out) {1, 5, 16, 86, 448, 3580, 34981, 448628, 6854130, 121173330}

Table[ZR[4, i], {i, 1, 10}]

(Out) {1, 14, 132, 4154, 234004, 24791668, 3844630928, 809199787472, 220685007519070,

75649235368772418}

Table[ZRc[3, i], {i, 1, 10}]

(Out) {1, 4, 11, 60, 318, 2806, 29359, 396196, 6231794, 112137138}

Table[ZRc[4, i], {i, 1, 10}]

(Out) {1, 13, 118, 3931, 228316, 24499085, 3816396556, 805001547991, 219822379032704,

75417509926065404}

B.3 Sage code: Counting from the sum of Kroneckers

in rank d = 3

We provide here a Sage code that recovers the same counting through the sum of con-

strained Kronecker coefficients with even partitions (4.48).

We need the library SymmetricFunctions(QQ) which - as its name suggests - introduces

symmetric functions. The Kronecker coefficient associated with three partitions R, S and

T deduces as the usual Hall scalar product of Schur symmetric functions. In the following,

s(S) is the Schur function associated with the partition S.

s = SymmetricFunctions(QQ).s()

for n in range(1,4) :

Total=0

for R in Partitions(2*n) :

i=0

rep=0

while ( (i < R.length()) & (rep==0) ):

if ( (R.get_part(i)%2) !=0 ):

rep = 1

i=i+1

if (rep ==0) :

for S in Partitions (2*n) :
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j=0

rep2=0

while ( (j < S.length()) & (rep2==0) ):

if ( (S.get_part(j)%2) !=0 ):

rep2 = 1

j=j+1

if (rep2 ==0) :

for T in Partitions (2*n) :

k=0

rep3=0

while ( (k < T.length()) & (rep3==0) ):

if ( (T.get_part(k)%2) !=0 ):

rep3 = 1

k=k+1

if (rep3 ==0) :

a = ( s(S).itensor(s(T)) ).scalar ( s(R) )

Total =Total+a

print "Number of invariants at 2n =", 2*n, "is", Total

(out) Number of invariants at 2n = 2 is 1

Number of invariants at 2n = 4 is 5

Number of invariants at 2n = 6 is 16

Number of invariants at 2n = 8 is 86
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