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Résumé en Français  
Formulation d'hydrogels injectables poreux et modulables : nouvelles perspectives 

pour la régénération du tissu musculaire squelettique et l'évaluation de la myogénèse 

in vitro. 

Les pertes musculaires volumétriques issues d’incidents traumatiques baissent drastiquement 

les capacités de régénération du muscle et manquent de traitements efficaces. Les hydrogels 

injectables sont des candidats thérapeutiques prometteurs mais leur potentiel repose 

fortement sur la présence d'une porosité permettant l'infiltration de cellules et de vaisseaux en 

leur sein. Par conséquent, ce travail vise à (1) créer des hydrogels injectables et poreux à base 

de dendrimères greffés de poly(L-lysine) (DGL) et de NHS-polyéthylène-glycol (PEG) par une 

approche effervescente ; et (2) à évaluer leur capacité à soutenir la différenciation de 

progéniteurs des cellules musculaires pour la régénération du muscle strié squelettique. 

Dans ce travail de thèse, le comportement de myoblastes a d’abord été étudié sur des 

hydrogels denses DGL/PEG et a montré être corrélé aux propriétés mécaniques et à la 

composition du support. Des conditions favorables pour la prolifération et la différentiation des 

myoblastes ont donc été identifiées puis ciblées pour la mise en place d’une porosité 

permettant l’infiltration cellulaire au sein de l’hydrogel. Pour cela, les hydrogels ont été 
préparés en dissolvant un acide carboxylique et une base carbonée aux précurseurs liquides 

de DGL et de PEG afin de permettre la génération contrôlée de bulles de CO2 par 

effervescence. La simultanéité de l’effervescence à la réaction de réticulation de l’hydrogel 
DGL/PEG a permis de piéger les bulles de CO2 à l’intérieur du réseau polymérique, menant à 

la création d’une porosité interconnectée. Les hydrogels poreux effervescents (EPH) injectés 

en sous-cutané chez la souris via un système de seringue double se sont révélés 

biocompatibles et capables de promouvoir une vascularisation étendue. Finalement, des 

myoblastes primaires humains cultivés au sein des EPH ont démontré leur capacité à 

fusionner ensemble pour former des myotubes avec une striation visible, capables de 

contracter spontanément. La présence de cellules non prolifératives, n’entrant pas en 
différentiation et exprimant le marqueur de cellules souches musculaire (Pax7) ont aussi été 

observées dans les EPH. Ces résultats consolident le potentiel des EPH à soutenir la 

maturation de fibres musculaires tout en intégrant la formation et le réapprovisionnement des 

niches de cellules souches. Par conséquent, nous décrivons dans ce travail un hydrogel 

poreux innovant ayant un potentiel pour la prise en charge des pertes musculaires 

volumétriques à travers une application rapide et directe par injection.  

Mots clés : Hydrogels ; injectable et poreux ; régénération musculaire, ingénierie tissulaire, 

effervescence   
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Abstract  
Design of versatile injectable porous hydrogels: new perspectives for skeletal muscle 

tissue regeneration and in vitro evaluation of myogenesis 

Volumetric muscle loss (VML) decreases muscle regeneration capacity and lacks treatments. 

Injectable hydrogels are promising therapeutic candidates but their potential strongly relies on 

the presence of porosity allowing cell infiltration and vascularization. Therefore, this work 

aimed (1) to create injectable and porous hydrogels based on poly-(L-lysine) grafted 

dendrimers (DGL) and NHS-polyethylene-glycol (PEG) through an effervescent approach and 

(2) to evaluate their ability to sustain muscle cells progenitor differentiation for skeletal muscle 

regeneration. 

First, myoblasts behaviour in contact with dense DGL/PEG hydrogels of various condition has 

been shown to be correlated with substrate stiffness and composition. Conditions of interest 

for myoblasts proliferation and differentiation could be targeted for the engineering of a porosity 

able to sustain cellular infiltration inside the hydrogel. We found that effervescent porous 

hydrogels (EPH) of versatile mechanical properties could be prepared by dissolving a 

carboxylic acid and a carbonated base to DGL and PEG solutions, to generate CO2 bubbles 

by effervescence. The simultaneous reaction of effervescence with the DGL/PEG crosslinking 

entrapped the CO2 bubbles inside DGL/PEG network, leading to the formation a spontaneous, 

homogeneous and interconnected porosity. The use of sole precursor solutions allows to inject 

the formulations with a dual-chamber syringe and a static mixer, leading to porous hydrogels 

that were proven biocompatible by subcutaneous injection in mice. As a striking result, primary 

human myoblasts seeded into 3D EPH showed extensive myotube formation with visible 

striation and ability to spontaneously contract. The presence of quiescent and non-

differentiated cells inside EPH was confirmed with myogenic regulatory factor Pax7. These 

results consolidate EPH potential for muscle fibre maturation while preserving a pool of reserve 

cells, holding promise for tissue engineering applications. 

In conclusion, we describe a novel porous hydrogel with potential as scalable solution for VML 

treatments within a swift and straightforward injectable delivery, which provides an optimal 

substrate for muscle cells progenitors to differentiate into contractile myotubes while 

maintaining a pool of muscle stem cells. 

Keywords: Hydrogel ; Injectable and porous; Skeletal muscle regeneration; Tissue 

engineering ;  effervescence  
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Abbreviation 
2D Two-dimensional 

3D Three-dimensional 

Ach Acetylcholine 

BAM Bioartificial muscle 

BSA Bovine serum albumin 

Ca Citric acid 

CaC Calcium carbonate 

CBB Coomassie Brilliant Blue 

CEE Chicken embryo extract 

CTGF Connective tissue growth factor 

DAPI 4′,6-Diamidino-2-phenylindole dihydrochloride 

DGL Poly(L-lysine)- grafted dendrimers 

DM Differentiation medium 

DMA Dynamic mechanical analysis 

DMD Duchenne muscular dystrophy 

DMEM Dulbecco/Vogt modified Eagle's minimal essential medium 

DMF N,N-Dimethylformamide 

DMSO Dimethyl sulfoxide 

DPBS Dulbecco’s Phosphate Buffered Saline 

E’ Storage modulus in compression 

E’’ Loss modulus in compression 

E* Complex modulus in compression 

EBP Elastin binding protein 

ECM Extracellular matrix 

EDL Extensor digitorum longus muscle 

ELP ‘In house’ Elastin-like polypeptide 

EPH Effervescent porous hydrogel 

EtOH Ethanol 

FA Focal adhesion 

FAP Fibro-adipogenic progenitors 

FBS Fetal Bovine serum 

FDA US Food and drug administration 

FGF-2 Fibroblast growth factor 2 

FITC Fluorescein isothiocyanate 

Gaa Glacial acetic acid 

G’ Storage modulus in shear stress 



6 
 

G’’ Loss modulus in shear stress 

GF Growth factors 

GM Growth medium 

GMB Gelatine microbeads 

GMSCs Gingival mesenchymal stem cells 

HA Hyaluronic acid 

hESCs Human embryonic stem cells 

HGF Hepatocyte growth factor 

HPMC Hydroxypropyl methylcellulose 

HS Horse serum 

HUVEC Human umbilical vein endothelial cells 

IFNγ Interferon gamma 

IGF-1 Insulin-like growth factor 

iHMs Immortalized human myoblasts 

iPSC Human induced pluripotent stem cells 

IMDM Iscove’s Modified Dulbecco’s medium 

KC Potassium carbonate 

LSCM Laser scanning confocal microscopy 

MMP Matrix metalloproteinase 

MPs Microparticles 

MRF Myogenic regulatory factors 

MSCs Mesenchymal stem cells 

MyHC Myosin heavy chain 

MyoD Myogenic determination factor 

MyoG Myogenin 

NaC Sodium carbonate 

NabC Sodium bicarbonate 

NHDF Normal human dermal fibroblasts 

NHS N-Hydroxysuccinimide 

NMJ Neuromuscular junction 

OCT Optimal cutting solution 

PAA Poly(acrylic acid) 

PAAm Poly(acrylamide) 

PAMAM Poly(amidoamine) 

PCL Poly (ε-caprolactone) 

PEG Polyethylene glycol 

PEGDA poly(etgylene glycol) diacrylate 

PEG-NHS 
O,O′-Bis[2-(N-Succinimidyl-succinylamino)ethyl]polyethylene 

glycol 
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PEI Polyethylene-imine 

PEO Poly[ethlylene] oxide 

PGA Poly(glycolic acid) 

pHMs Primary human myoblasts 

PLA Polylactic acid 

PLGA Poly(lactic-co-glycolic acid) 

PLLA Polylactic acid  

pMMs Primary mice myoblasts 

Poly-HEMA Poly(2-hydroxyethyl methacrylate) 

P/S Penicillin / streptomycin 

PTFE polytetrafluoroethylene 

PVA Poly(vinyl alcohol) 

RGD Sequence Arginine-Glycine-Aspartic Acid 

RT Room temperature 

Sa Succinic acid 

SDS Sodium dodecyl sulfate 

SC Satellite cells 

SR Sarcoplasmic reticulum 

TA Tibialis anterior 

TGF-β Transforming growth factor beta 

TNF-α Tumor necrosis factor 

VML Volumetric muscle loss 
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Contexte général  

Le muscle strié squelettique est un tissu possédant une grande capacité de régénération. 

Après une lésion, il est capable de recouvrer complètement son architecture et sa 

fonctionnalité. Cependant, les plaies volumétriques, caractérisées par une perte d’au moins 
20% de la masse du muscle, bouleversent cette capacité de régénération et entrainent des 

déficits fonctionnels et des possibles handicaps. 

Le muscle strié squelettique est principalement constitué de fibres musculaires multinucléées 

résultant de la fusion de centaines de cellules spécialisées, les myoblastes. Ces fibres 

s’organisent en faisceaux alignés afin de fournir au muscle sa capacité de contraction. On sait 

maintenant depuis plusieurs décennies que la régénération du muscle est liée aux cellules 

satellites, les cellules souches logeant le long des fibres musculaires. Suite à une blessure, 

elles sont activées, migrent sur le site de la plaie pour y proliférer et se différentier en 

myoblastes, eux-mêmes capable de fusionner entre eux afin de reformer des fibres 

musculaires contractiles. Ainsi, elles participent activement à la régénération des fibres 

musculaires et au maintien de l’homéostasie du tissue. 
Cependant, dans le cas d’une perte volumétrique, la destruction partielle des cellules satellites 

et de la matrice extracellulaire (ECM) sur laquelle elles évoluent empêchent le bon déroulé du 

processus de régénération. Un déséquilibre entre le recrutement de cellules satellites et 

l’entrée de fibroblastes pour combler la plaie entraine un dépôt excessif de collagène et le 
remplacement progressif du muscle par un tissu fibreux n’ayant pas la capacité de contracter. 

Des traitements cliniques ont été développé et ont pour but de limiter la fibrose et retrouver la 

fonctionnalité du muscle. Ils consistent à débrider la plaie et à transplanter des greffons 

autologues de muscles. Cependant, l’utilisation de greffons est associée à de nombreuses 

limites, parmi lesquelles le manque de greffons et le risque de morbidité sur le site donneur 

sans oublier la nécessité de réaliser une seconde intervention chirurgicale, traumatique pour 

le patient. Des tentatives d’amélioration de la réparation tissulaire ont été étudiée via l’injection 
de cellules souches ou de facteurs de croissance spécifiques dans les plaies. Cependant, ces 

tentatives se sont révélées infructueuses suite à la mortalité cellulaire et à une élimination trop 

rapide des molécules dans le sang. 

Dans ce contexte, des stratégies basées sur l’ingénierie tissulaire et la médecine régénératrice 
ont été développées afin d’éviter les limitations associées aux greffes et à la thérapie cellulaire. 

Ces approches exploitent les principes de l’ingénierie et de la science de la vie vers le 
développement de substituts biologiques à forts potentiels capables de guider les cellules vers 

la régénération fonctionnelle des tissus. Dans le cas de blessures musculaires volumétriques, 

l’implantation dans le lit de la plaie d’une structure 3D susceptible de remplacer 
temporairement la matrice extracellulaire pour guider les cellules satellites vers la régénération 

fonctionnelle du tissu représente une thérapie prometteuse. Pour cela, la communauté 

scientifique s’est intéressée au développement de biomatériaux d’intérêt pouvant fournir ce 
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support aux cellules. Ces dernières décennies, il a été abondamment montré que le 

microenvironnement cellulaire est un puissant régulateur de leur comportement à travers des 

signaux physiques, biochimiques et architecturaux. Particulièrement, dans le cas de la 

régénération du muscle strié squelettique, le design de biomatériaux s’est concentré sur la 

chimie et les propriétés mécaniques du support pour la promotion d’interactions spécifiques 
avec les cellules musculaires à l’intérieur d’une architecture 3D.  

Idéalement, les biomatériaux formulés pour le traitement des défauts musculaires 

volumétriques devraient être injectables pour se conformer à des lésions complexes tout en 

interagissant étroitement avec les tissus environnants. Une porosité adéquate au sein du 

biomatériau est par ailleurs importante pour permettre la néo-vascularisation, l’innervation et 
l’entrée des cellules précurseurs de fibres musculaires au sein de la matrice. Pour cela, les 

hydrogels ont été largement étudiés pour leur excellente biocompatibilité, leur similarité avec 

les matrices extracellulaires natives en termes de rétention aqueuse et d’adhésion cellulaire 
ainsi que leur potentielle injectabilité.  

Récemment un hydrogel a été décrit au sein du laboratoire de biologie tissulaire et d’ingénierie 
thérapeutique, réalisé à partir de la réticulation de deux éléments standardisés : les 

dendrimères greffés de poly(L-lysine) (DGL) et le poly(éthylène) glycol (PEG). La nature 

synthétique de l’hydrogel permet un contrôle précis de sa chimie de réticulation ainsi que de 

ses propriétés mécaniques, hautement modulables. Contrairement à d’autres hydrogels 
synthétiques, l’hydrogel DGL/PEG possède une cytocompatibilité inhérente grâce aux charges 

positives apportées par les groupes amines des DGL ce qui lui permet d’interagir facilement 
avec les cellules  

L’utilisation de précurseurs liquides non cytotoxiques permet d’inclure une protéine élastique 

biomimétique (ELP) au sein de l’hydrogel. L’ajout de cette protéine au niveau du réseau 
polymérique de l’hydrogel a montré une augmentation de la prolifération et de la vitesse de 

migration des cellules sur le support. Une très bonne tolérance in vivo de l’hydrogel DGL/PEG 

implanté en sous-cutané a été observée, confirmant sa potentielle utilisation pour la 

régénération tissulaire. Cet hydrogel est d’autant plus prometteur qu’il est techniquement 
injectable grâce au mélange de précurseurs liquides. En considérant ces caractéristiques très 

intéressantes, le potentiel de cet hydrogel a été étudié plus avant dans cette thèse.  
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Objectifs de la thèse  

Bien que beaucoup d’efforts aient déjà été dédiés à la production de matrices pour la 
réparation du muscle strié squelettique, la plupart se fient à l’utilisation de cellules embarquées 

pour la régénération fonctionnelle du tissu. Cependant, l’incorporation de cellules limite le 

passage de ces matrices en étude clinique par les instances réglementaires. L’objectif de la 
thèse est donc d’évaluer l’hydrogel DGL/PEG comme support de la régénération musculaire. 

Pour répondre à cette problématique, nous proposons donc dans ce travail d’étudier plusieurs 
aspects du développement d’un hydrogel afin de proposer un support optimal pour guides les 

cellules musculaires vers une régénération fonctionnelle.  

I- Dans un premier chapitre, la capacité des hydrogels denses de DGL/PEG à 

fournir un support permettant le contrôle du comportement de myoblastes a 

été étudié. Les hydrogels sont des réseaux polymériques hautement hydratés 

pouvant mimer la matrice extracellulaire native. Parmi les hydrogels, ceux réalisés 

à partir de précurseurs synthétiques peuvent être ajustés précisément afin de 

moduler leurs propriétés mécaniques. Dans ce travail, les propriétés mécaniques 

apportées par les hydrogels DGL/PEG ont été modulées afin de contrôler le 

comportement de cellules musculaires. En plus de la rigidité du support, l’influence 
des quantités de DGL et d’ELP au sein de l’hydrogel sur le destin cellulaire ont été 

étudiées. Nous avons donc évalué l’effet de (1) six rigidités, (2) quatre ratios 

molaires de DGL: PEG et (3) une concentration d’ELP au sein des hydrogels. Pour 
valider l’effet des propriétés mécaniques et de la présentation de motifs 

biochimiques sur les cellules musculaires, trois types de myoblastes différents ont 

été utilisés : une lignée immortalisée de myoblastes murins (C2C12), des 

myoblastes primaires de souris et des myoblastes immortalisés humains. Ce 

chapitre nous a permis de cibler des conditions optimales capables d’interagir avec 

les cellules musculaires, leur fournissant à la fois un support permettant leur 

prolifération ainsi que leur fusion. 

 

II- Dans un deuxième chapitre, la possibilité de créer une porosité à l'intérieur de 

l'hydrogel DGL/PEG tout en préservant son potentiel injectable a été évaluée. 

Les exemples de biomatériaux à la fois directement injectables dans le corps et 

présentant une porosité permettant l’infiltration des cellules sont peu décrits dans 
la littérature. En particulier, très peu de cas ont été évalués pour la régénération 

fonctionnelle du muscle strié squelettique bien que l’injectabilité permettrait à 
l’hydrogel de se conformer à des plaies complexes tout en interagissant étroitement 
avec le tissu dans lequel il est placé. Par conséquent, le développement d’une 
formulation de l'hydrogel DGL/PEG à la fois injectable et poreuse pourrait offrir de 

nombreuses possibilités thérapeutiques pour la régénération des tissus mous 
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parmi lesquelles la gestion des plaies musculaires volumétriques. Dans ce travail, 

diverses méthodes ont été évaluées pour créer une porosité à l'intérieur de 

l’hydrogel DGL/PEG tout en maintenant sa possible délivrance par injection. La 
porosité résultante et sa modulation éventuelle ont été évaluées par l’intermédiaire 
de différents paramètres. L’infiltration cellulaire au sein de la structure poreuse et 
son potentiel pour la formation de tissu ont été étudiés. Enfin, en vue d’une 
application clinique potentielle, la biocompatibilité des nouvelles formulations a été 

validée par des injections en sous-cutané dans un modèle murin.  

 

III- Dans un troisième chapitre, l’interaction de cellules musculaires squelettiques 

avec les nouvelles formulations injectables et poreuses a été évaluée. 

Particulièrement, l’accent a été mis sur le potentiel de ces nouvelles formulations 
comme support permettant la prolifération et la différentiation de myoblastes, en 

vue d’étudier le processus de myogenèse tout en ouvrant la voie pour une future 

utilisation en ingénierie tissulaire. Par conséquent, le comportement de lignées 

murines et humaines ainsi que de myoblastes primaires murins et humains au sein 

des nouveaux hydrogels poreux effervescents a été apprécié.  

 

L’ensemble de ces résultats a finalement été discuté afin de déterminer le potentiel de ces 

nouvelles formulations en tant que modèle 3D in vitro pour la compréhension du processus de 

myogénèse. Finalement, ils ont permis d’ouvrir des perspectives vers l’établissement de 
protocoles d’optimisation permettant l’injection des hydrogels poreux effervescents au sein de 

plaies pour l’ingénierie tissulaire du muscle strié squelettique.  

 

  



17 
 

 

 

 

 

 

 

 

  

BIBLIOGRAPHIC INTRODUCTION 



18 
 

  



19 
 

1 The skeletal muscle tissue: structure, function and regeneration 

process after injuries 

Skeletal muscle tissue injuries are one of the most prevalent disabling injuries faced by military 

personnel and civilians. It is therefore an emerging focus area among orthopaedic and 

regenerative medicine fields. In particular, volumetric muscle loss (VML) is the result of an 

abrupt and frank loss of tissue that arises from traumatic or surgical events. The loss of skeletal 

muscle tissue characterizing VML often leads to functional impairment. It has been reported 

that VML is mainly the consequence of military exercise, vehicular accidents, machinery, 

moving objects, and also gunshots among civilians [1],[2]. It is estimated that emergencies for 

musculoskeletal injuries accounted for 15% of all emergency departments in the US in 2010. 

Among musculoskeletal injuries, amputation, open wounds and open fractures that can result 

in VML represented a 26.5 million dollars burden in 2010 for the US. The exact incidence of 

VML among civilians or soldiers has not been rigorously assessed in Europe and France. 

Nevertheless, a 15-years review of epidemiologic factors of open fractures among civilians 

estimates an incidence of 30.7 per 100.000 in the United Kingdom [3]. In addition, the number 

of car accidents in Europe, stated by the Annual accident report 2020 of the European 

Commission has been estimated to 56016 car accidents in France in 2019. Moreover, the 

increasing number of penetrating traumas (estimated at 5 to 13 % of traumatisms in France in 

2012 [4]) is particularity worrying in the current tense societal context of terrorist acts against 

civilians. These incidents, which are often associated with tissue loss, highlight VML 

preponderance over the complications faced by civilians. Unfortunately, traditional medicine 

and rehabilitation (i.e. wound debridement, advanced bracing) do not address the loss of 

functionality due to VML injuries. Moreover, the current standard of care consisting in skeletal 

muscle autografts suffer from many outcomes including grafts availability, donor site morbidity 

and the need for a second surgical procedure. Considering that VML traumas were related to 

lost workdays in the US in 2011 [5] and can lead to persistent functional deficit and long term 

muscle-related disability [6],[7], they represent a significant issue in health care with major 

socioeconomic impacts. It appears therefore of high clinical relevance to develop adapted 

treatments and therapeutic strategies for tissue functional regeneration related to volumetric 

muscle injuries. 

To develop such relevant and adapted therapeutic strategies, a good understanding of the 

skeletal muscle structure, and the processes occurring after an injury is mandatory. 
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1.1 The skeletal muscle tissue - Structure and functions 

Movements of the body are fundamental for life in the whole animal kingdom. Conscious 

movements of the entire organism such as walking, mastication, and swallowing enable vital 

food intake while unconscious movements of the oesophagus and stomach absorb and digest 

food. Besides, heartbeats are essential for the repartition of nutrients and oxygen throughout 

the entire body. The tissue responsible for movements in the body is the muscle, which 

accounts for much of the energy-consuming cellular work in active animals.  

To allow all these different movements, three highly specialized muscles are reported and 

categorized as striated and smooth.  

The smooth muscle is mainly found in the walls of hollow organs (blood vessels, uterus, and 

digestive organs). It is responsible for involuntary body activities such as arteries constrictions 

and gastrointestinal tract movements during digestion.  

On another hand, the striated muscle, contrarily to the smooth muscle, is characterized by a 

striated appearance under light microscopy, a consequence of the highly organized structure 

within the cells. Inside the striated muscle, two muscle types are reported:  the cardiac muscle 

or myocardium, only represented in the heart, forming the contractile walls allowing beating, 

and the skeletal muscle.   

With more than 600 individual muscles with distinct functions, the skeletal muscle tissue 

represents about 30 to 45 % of the total human body mass [8]. Skeletal muscle tissue is mainly 

composed of multinucleated cells, particularly arranged in bundles inside an organized 

extracellular matrix (ECM) supplied by blood capillaries. Each cell is in close contact with a 

network of nerves connected to the central nervous system [9]. Forces developed by the 

skeletal muscle are transferred to bones by tendons to trigger skeletal movements.  

The skeletal muscle tissue is therefore involved in mechanical and metabolic functions inside 

the body. Its primary function is the conversion of chemical energy into mechanical work to 

generate the force that drives many functions of the human body. It results in the ability to 

maintain the posture and voluntary movements of the skeleton allowing precise prehension, 

mastication, ocular movement, or locomotion among others [10]. It is the only type of muscle 

that can be consciously contracted. A second function is its role in body metabolism regulation, 

producing heat, and acting as a storage for substrates like amino acids [9].   
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Figure 1: The contractile machinery organization within muscle cells  

A) Muscle fibre organization - 3D reconstitution: myofibrils fill almost the entire cells leaving little space 

for organelles. B) Myofibrils bundles anchored from each other and with the cellular cytoskeleton through 

intermediate filaments. C) Skeletal muscle cell striated appearance is mainly due to the highly and 

specific organization of myofilaments (thin and thick filaments) into repeated structure called 

sarcomeres. A group of 200 myofilaments forms myofibrils, the contractile machinery inside the muscle 

fibre.  

Pictures adapted from:  

-The Gray’s anatomy, 2016 edition;  
-Dalakas et al., N Engl J Med 2000 DOI: 10.1056/NEJM200003163421104,  

-Koubassova and Tsaturyan, Biochemistry 2011 DOI: 10.1134/S0006297911130086,  

-Servier medical art  
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1.1.1 The striated muscle fibre 

Skeletal muscle tissue is mostly composed of contractile cells: muscle fibres or myofibres 

(Figure 1A and B). These multinucleated cells (syncytia) are organized in bundles of long fibres 

running the length of the muscle. A developed muscle is made of an association of hundreds 

of myofibres [11]. Muscle fibres highly specific organization, distribution, and alignment are 

determinant to provide the tissue its mechanical properties and ability to contract [12].  

The skeletal muscle striated appearance under microscopic observation is owed to a particular 

organization of contractile proteins: actin and myosin, organized in myofilaments, that 

constitute more than 80% of muscle fibre volume [13] (Figure 2C). Two strands of actin are 

organized to form thin filaments that contain regulatory proteins coiled around one another. 

Myosin molecules are arranged in a shifted network to form thick filaments. Myofilaments form 

highly regular structures called ‘sarcomeres’ that create a repeated pattern of light and dark 
bands (Figure 1Cand D). By convention, a sarcomere unit is defined as the region contained 

between two cytoskeletal structures called Z-lines. These lines contain a high density of 

proteins such as titin and α-actinin (190 kDa) anchoring thin filaments that run across the 

sarcomere to reach its centre where they overlap and intercalate in between thick filaments. 

In the middle of two adjacent Z-line, the M-line is composed of myomesin that anchors and 

stabilizes thick filaments by interacting with the myosin tail domain. A group of about 200 

myofilaments (thin and thick) [13] are packed together and surrounded by the sarcoplasmic 

reticulum (SR) to form the contractile machinery, myofibrils (Figure 1B). The 3D organization 

and mechanical stability of sarcomeres are provided by intermediate filaments which adhere 

to the sarcomere periphery and form transverse connections between adjacent myofibrils [14] 

(Figure 1B and C). Plectin, for instance, anchors Z-lines to adjacent myofibrils while desmin 

proteins maintain myofibril alignment by a connection to the muscle fibre cytoskeleton allowing 

to evenly distribute the contractile force [15]. These proteins maintain thousands of thin and 

thick filaments in parallel to one another and lead to sarcomeres coordinated movement.  

A muscle fibre is composed of thousands of myofibrils, constrained by the sarcolemma that 

fills almost the entire cell, leaving small spaces for organelles grouped inside the cytoplasm, 

termed sarcoplasm. Mitochondria, ribosomes, golgi apparatus are present around nuclei 

located at the periphery of the cell and small clusters of glycogen droplets are available in the 

sarcoplasm, providing a straightforward source of anaerobic energy independent of blood flow 

in case of burst activity. One muscle fibre can contain hundreds of nuclei underneath the 

sarcolemma, itself surrounded by the basal lamina of the cell. At the periphery of muscle fibres 

is located another cell type, satellite cells (SC) (Figure 2). SC comprise 30-35 % [16] of all 

muscle fibre nuclei in postnatal mouse muscle to reach 2.5-6 % in adult mouse muscles [17]. 

Although we lack details in the postnatal human muscle, similar percentages of SC were 

reported in adult human muscle (4 ± 2 %) [18]. They are mitotically quiescent cells first 

discovered by Mauro in 1961 [19] located in niches between the sarcolemma and the basal 
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lamina. SC function is tightly regulated by numerous signals of their microenvironment and 

their role during injury and muscle regeneration will be further detailed. 

 

Figure 2: Skeletal muscle cell progenitors – satellite cells 
A) Illustrative representation of satellite cell location at the periphery of muscle fibres: between the 
sarcolemma and the basal lamina of the cell. B) First picture of a satellite cells discovered by Mauro et 
al., (1960) in the frog (Stained with PbOH. X 22,000. Satellite cell of skeletal muscle fibres. Alexander 
Mauro from The Rockefeller Institute [19]). C) Satellite cell expressing pax 7 (in red) in its niche located 
on muscle fibre edges with D) DAPI (blue) counterstaining showing myonuclei of muscle fibres, scale 
bar 20µm. E) Transverse section of muscle stained for Pax 7 (red), dystrophin (white) to delimit myofibre 
membranes and nuclei were counterstaining with DAPI (blue). Arrows indicates pax 7 positive cells and 
arrowheads DAPI nuclei 
C,D,E adult mouse extensor difitorum longus muscle, pictures adapted from Relaix and Zammit 
Developement, 2012. doi: 10.1242/dev.069088 [20] 
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1.1.2 Innervation – control of the contractile process in skeletal muscle 

The coordinated contraction of all the myofibres inside the muscle leading to movement is 

triggered by the nervous system. To do so, skeletal muscle tissue is supplied by nerves known 

as ‘motor neurons’. They establish close contact with each muscle fibre, forming a specialized 

synapse, the neuromuscular junction (NMJ). Motor neurons enable skeletal muscles to 

respond to functional needs through the propagation of action potentials that are brief and local 

reversals of cell membrane polarity. One motor neuron and the muscle fibres supplied are 

called ‘motor unit’. The number of muscle fibres connected to one motor neuron is dependent 

on each muscle. For muscles that need accurate control, like ocular movements, motor units 

will be smaller than for posture muscles that do not require precise movements and regroup 

thousands of muscle fibres for one motor neuron [21].  

 

Figure 3: Skeletal muscle fibre innervation by motor neuron 
A) Illustration of skeletal muscle innervation.  
-Motor neuron are located in the ventral horn of the spinal cord  
-Each muscle fibre in skeletal muscle is innervated with motor end plates at the neuromuscular junctions 
-Neuromuscular junction with acetylcholine vesicles, acetylcholine receptors, and action potential (AP) 
migrating along muscle fibre sarcolemma. Adapted from Servier Medical art  
B) Motor nerve ending. Picture showing motor nerve ending. Iron Hemotoylin stain, 126X. Light 
micrograph. Alvin Telser Science Source 
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When the motor neuron is excited, it propagates an action potential with its axon and its 

branches to reach all the innervated muscle fibres. This action potential reaches the NMJ and 

triggers acetylcholine (Ach) release between the nerve ending and the muscle fibre 

sarcolemma. It generates an instantaneous and local depolarization of the sarcolemma that 

initiate another action potential all along the sarcolemma to cover the entire surface and depth 

of the muscle fibre via its invaginations (t-tubules) (Figure 3). Via a calcium release in the 

cytosol, it leads to sarcomere shortening and contraction through a specific mechanism 

involving actin and myosin myofilaments that go beyond the scope of this work (reviewed [22]). 

To allow movement of bones through skeletal muscle contraction, muscle fibres need to be 

included inside a functional unit. Therefore, each muscle fibre contains specific chains of 

molecules including the dystrophin-glycoprotein complex, evenly distributed along the 

sarcolemma, that connect the contractile myofilament to the extracellular matrix (ECM), which 

is subdivided into 3 different levels of organization [23] (Figure 4).  
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1.1.3 The extracellular matrix: the structure supporting muscle fibres 

organization 

Each mature muscle fibre is enclosed within the basal lamina, which is mainly composed of 

type IV collagen, laminin, fibronectin, and heparin sulfate proteoglycans and is immediately 

surrounded by the endomysium. As such, the endomysium represents muscle fibre 

immediate external environment and the innermost layer of skeletal muscle tissue. It is crossed 

by small capillaries and shelter satellite cells (SC) through α7β1 integrin that bind to laminin 

[24]. Ten to 100 muscle fibres, surrounded by the endomysium, form parallel bundles called 

fascicles surrounded by the perimysium. The perimysium is mainly composed of type I 

collagen [25] and carry larger blood vessels and nerves. It can contain elastin as well [26] but 

less than 1% of dry weight [27]. All the fascicles, surrounded by the perimysium are then 

gathered inside the epimysium to form the whole muscle. The epimysium is the external 

sheet of the deep fascia and is mainly composed of type I collagen [25] (Figure 4).  

All these conjunctive tissues (Endo-, peri- and epi-mysium) emerge to form the myotendinous 

junctions (where the muscle reaches tendon) and anchor the structure to the bone to form 

the musculoskeletal system. These 3 conjunctive tissues convert the muscle into a functional 

unit and have an effective coordinated function [28]. They represent up to 10% [29] of the 

skeletal muscle weight. Due to this particular attachment, muscle fibres possess the strength 

to withstand considerable force. The skeletal muscle ECM is therefore largely involved in force 

transmission to drive movements [30] and ensure a functional link between the skeletal muscle 

cells and the bone.  

 

Figure 4: Skeletal muscle structure and organization.  
Muscle fibres are the constitutive cells forming fascicles driving the whole muscle organization. Each 
muscle fibre is surrounded by the Endomysium. Ten to one hundred muscle fibres are organized in 
bundles to form fascicles enclosed inside the perimysium. All the fascicles are then forming the whole 
muscle enveloped inside the epimysium. Tissue (cm), fascicle (mm), muscle fibres (µm), myofibril 
(nm).Pictures adapted from the Gray’s anatomy, 2016 edition 
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Regarding ECM composition, endo-, peri-, and epimysium are mainly composed of collagen 

(about 9 to 30% of the muscle dry weight [23], [31]), that is present at the gene and/or protein 

level (reviewed in [32]). Type I and III collagens are the most abundant [25] Type I collagen 

forms strong parallel fibres that provide tensile strength and rigidity to the muscle while type III 

provides elasticity through a loose network of fibres. In addition to collagen, elastin is also 

present at a concentration of 11.1 ± 2.1 µg/ml [33] to confer rubber-like elasticity to the tissue, 

enabling to undergo deformation without rupture. Inside the ECM network, proteoglycans 

interact with collagen to maintain the structure and organization of the matrix [33]. They also 

provide high water content properties to the ECM through negatively charged sulfates enabling 

water retention. As such, they are able to bind with signalling molecules that are secreted 

locally to ensure cells and tissue cohesion [34]. The ECM is also composed of glycoproteins 

such as fibronectin and laminin [31] that interact both with cells and with collagen. Therefore, 

these molecules represent a link between cells and their direct environment allowing them to 

communicate tightly through interaction with cell surface receptors [35]. 

Similarly to other tissues, the skeletal muscle ECM represents a complex meshwork of proteins 

that provides structural support with unique architecture and mechanical properties. The latter 

can vary from muscle localization and function in the human body. In addition to stiffness, the 

ECM structural properties also play a significant role in cell behaviour and fate by conferring 

them with an optimal environment. For instance, skeletal muscle ECM, when decellularized, 

exhibits a high interconnected porous structure of about 80% porosity with longitudinal 

orientation [31] providing directional guidance for muscle contraction. ECM turnover and 

equilibrium between synthesis and degradation are required for cell migration, muscle fibre 

formation, and matrix reorganization by the action of remodelling enzymes, the 

metalloproteinase (MMPs). MMPs are calcium-dependent proteolytic enzymes, present in 

most tissues, able to remodel the pericellular environment by selectively digesting individual 

components of the ECM. For instance, MMP-1, -8, -13 can cleave type I, II and III collagens 

while MMP-2 and -9 degrade denatured type IV, VII and X collagens. Thus, they play a critical 

role by remodelling the ECM on which cells can evolve, participating in cellular migration. 

MMPs roles have been described in a range of developmental, functional and pathological 

processes in skeletal muscle tissue. For example, MMPs act in cell migration and 

differentiation following injury, notably MMP-1, MMP-2, and MMP-9 [36].  

The skeletal muscle ECM and its constant remodelling plays a crucial role to fulfil functions of 

tissue maintenance, in normal conditions, or during regeneration [37] and inflammatory 

activities.  

To conclude, in physiological conditions, the skeletal muscle ability to contract is highly 

dependent on a complex cellular organization mediated by the nervous system inside a 

vascularized and dynamic ECM. Therefore, in pathological or traumatic conditions, the 

restoration of cells’ contraction is linked to the recovery of this specific homeostasis. To do so, 
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many mechanisms are at play involving considerable cell crosstalk to coordinate myogenesis 

through ECM remodelling, neovascularization, and restoration of the innervation. 

1.2 Biological processes allowing skeletal muscle healing after injuries  

Damage to the skeletal muscle caused by direct trauma (e.g. car accidents, sports activities, 

surgical procedures, and military conflicts) or by indirect trauma (e.g. ischemia) are common. 

Given its implication in an unlimited number of tasks, it is easy to understand the reason why 

skeletal muscle integrity is so vital to maintain.  

Understanding the mechanisms by which skeletal tissue recovers its homeostasis is crucial to 

develop relevant treatments and innovative therapeutic strategies. Many studies have utilized 

different injury models to understand skeletal muscle regeneration. These models include, 

freeze injuries, crush injuries, or cardiotoxin induced injuries [38], [39]. However, the kinetic of 

regeneration is highly dependent on the extent of degeneration, the injured muscle type and 

the animal model. Among the various models, cardiotoxin induced injuries are easy to deliver 

without requiring a surgical procedure while being reproducible and maintaining the ECM 

structure. They are based on the injection of a peptide isolated from Naja nigricollis venom that 

induces depolarization of muscle cells and destroys their membranes. These traumatic injuries 

result in profound histopathological changes and loss of muscle function. Muscle recovery from 

these injuries requires damaged myofibres to be degraded and replaced through the orderly 

differentiation of satellite cells (SC). It has thus converted into an interesting model to study 

the process of regeneration and the cell types involved inside an intact ECM structure [40], 

[41].  

Whatever the method used, the inflammation reaction, the activation of satellite cells (SC), and 

muscle remodelling are various overlapping phases playing a critical role during muscle repair.  
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Figure 5: Overall view of various cell populations involved in skeletal muscle regeneration  
Top: Following injury, MuSCs (particularly satellite cells located on muscle fibre edges and expressing Pax7) leave their quiescent state to migrate within the 
site of injury and become proliferative myoblasts. They then proliferate and differentiate into myocytes able to fuse together or with damaged fibres to form 
myotubes that mature to repair the tissue. To do so, various myogenic regulatory factors (MRF) are implicated at various points. Finally, the whole process is 
possible due to the presence of the ECM acting as a support for stem cells to migrate and myotubes to mature providing stiffness and biochemical feedback to 
cells. Bottom: Other cell populations such as macrophages, monocytes, and fibroblasts are also critical, orchestrating the regeneration process through 
cytokines and growth factors release. Zammit 2017 [42], Howard 2020 [43], Tidball 2010 [44], Warren 2002 [45], Liu 2017 [46], Serrano 2008 [47],, Arnold 2007 
[48], Gordon 2003 [49], Mann 2011 [50], Lemos 2015 [51].  
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1.2.1 Muscle fibre regeneration process 

1.2.1.1 Activation of satellite cells  

As the post-mitotic condition of mature muscle fibres prevents them to proliferate [52], 

myogenic stem cells represent the key component to a successful regeneration program in 

case of injury or for the maintenance of homeostasis [53].  Particularly, skeletal muscle SC act 

as a reserve population of cells, able to proliferate in response to injury and give rise to new 

muscle fibres. Their role is critical as their depletion results in a drastic muscle regeneration 

impairment [54].  

In adult skeletal muscle, SC are localized in niches between the sarcolemma and basement 

membrane of mature muscle fibres [55]. They are quiescent cells that are specified by the 

expression of Pax7 marker, a transcription factor involved in embryonic myogenesis. SC are 

linked to Pax7 since its inactivation has been related to their severe depletion in animal models 

[56]. In addition to providing the progeny destined for differentiation, SC are able to maintain 

their population with a self-renewal ability [57] to ensure a constant undifferentiated population. 

Therefore, in response to injury, SC leave their quiescent state: a pool of satellite cells 

undergoes self-renewal to ensure niche replenishment, and others become activated by 

downregulating Pax7. Activated SC migrate from distant undamaged areas to the injury site 

where they undergo myogenic commitment to become spindle-shaped myoblasts [58],[44]. 

Myoblasts migrate, differentiate into myocytes to finally fuse to form muscle fibres de novo or 

with pre-existing damaged fibres. After muscle fibres regeneration, quiescent SC expressing 

Pax7 colonize again the niche between the sarcolemma and the basal lamina. The time course 

of SC response to injury in humans has been shown to peak at 7-8 days following injury while 

a residual elevation was still evidenced 30 days post injury [59]. The myogenesis process 

occurring during regeneration is simplified in Figure 5. 

Given SC behaviour is highly dependent on their microenvironment (niche, neighbouring, and 

ECM), their proliferation inside wounds is helped by the scaffolds provided by the intact ECM 

characterizing cardiotoxin-induced injuries. Moreover, one of the major factors allowing 

successful regeneration is the maintenance of the basal lamina below which SC are located. 

Therefore, the destruction of the basal lamina or the scaffolds on which cells can evolve can 

drastically impair the regeneration process by preventing SC migration to the injured site. 

Satellite cells are not the only cell type involved in muscle regeneration. Few studies have 

revealed the implication of other myogenic stem cells during skeletal muscle tissue 

regeneration, including bone marrow mesenchymal stem cells [60]; an undifferentiated 

resident population termed muscle-derived hematopoietic stem cells (MD-HSC) and a 

population of embryonic-like stem cells residing in adult tissues (reviewed in [61]).  
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1.2.1.2 From satellite cell activation towards muscle fibre maturation, the role 

of myogenic regulatory factors. 

Following their activation, SC experience differentiation towards mature muscle fibres to 

recover the tissue functionality. Each skeletal muscle fibre is a syncytium that forms as a result 

of the fusion of hundreds of myoblasts [62]. Myogenic regulatory factors (MRFs) are muscle-

specific helix-loop-helix transcription factors (including Myf5, MyoD, myogenin and Mrf4) that 

are involved in that regeneration process. The time specific implication of MRF in myogenesis 

during muscle regeneration is simplified in Figure 5. 

MyoD and Myf5 are the first MRFs involved in muscle fibre regeneration. They are mainly 

implicated in SC activation towards myoblasts and in muscle specification to trigger non-

muscle cell (fibroblasts) conversion into muscle [63]. During their activation, SC first express 

Myf5 while downregulating Pax7 to promote their proliferation to become myoblasts. Then, 

MyoD expression triggers their withdrawal from the cell cycle and entrance to differentiation. 

MyoD has been demonstrated to be a key factor in the regeneration process as its depletion 

in mice markedly impairs muscle regeneration [64]. The transition from activated SC to muscle 

differentiation to form muscle fibers is linked to the expression of Myogenin and Mrf4. Before 

fusion, mononucleated highly proliferative myoblasts exit the cell cycle to become myocytes 

that are specialized cells possessing the potential to fuse with each other. Expression of 

myogenin has a crucial role in myocytes fusion enabling them to fuse among themselves 

forming new myotubes or with existing damaged fibres. As myocytes fuse, they form 

multinucleated immature muscle fibres with nuclei aligned in the centre of the cells, the 

myotubes [65]. As myotubes mature into myofibres, contractile units form, which is 

concomitant with the expression of sarcomeric proteins such as myosin heavy chain (MyHC) 

[66].  New myofibres grow in size through the implication of mrf4 myogenic regulatory factor 

(also known as myf6) [67], involved in myofilament rearrangement and myonuclei repositioning 

from a central to a subsarcolemmal position to form the characteristic morphology of adult 

skeletal muscle fibres.  
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1.2.2 The inflammatory process  

Like for other tissues, directly after the injury, an inflammatory response occurs to orchestrate 

of the various phase of regeneration. This is the huge interaction between injured muscle and 

the immune system that regulates skeletal muscle regeneration. This phenomenon has been 

reviewed elsewhere [44] and is summarized in Figure 5.  

1.2.2.1 The role of macrophages  

Briefly, right after a skeletal-muscle injury, and regardless of the injury models used [39], an 

oedema formation and the activation of the complement system [68] trigger immune cell 

recruitment within the wound. Neutrophils (involved within 2 hours post-injury and peaking 

between 6&24 hours) participate in the digestion of damaged and necrotic myofibres as well 

as cell debris by phagocytosis [69]. Soon after neutrophil extravasation into injured muscle, 

circulating monocytes are recruited and convert into pro-inflammatory M1 macrophages (24 

hours post-injury and peaking at day 2 before declining) joined by their epimysium and 

perimysium resident counterparts. M1 macrophages participate in the inflammatory phase by 

cell debris phagocytosis and with the release of cytokines (TNFα [43], IL-1β [46] and IL-6 [47]) 

that drives the apoptosis of fibroblast cells and activates resident muscle stem cells (MuSC) 

and more specifically, SC proliferation [70]. There is a shift from the inflammatory phase to the 

remodelling phase through macrophages switching from M1 (pro-inflammatory) to M2 (anti-

inflammatory) phenotype [71]. M2 macrophages peak at day 4 post-injury which coincides with 

the moment when muscle regeneration begins to proceed rapidly and they can persist during 

the remodelling phase. M2 macrophages attenuate the inflammatory response and promote 

muscle tissue repair by initiating the early differentiation phase of myogenesis. Macrophages 

have thus a central regulatory role in the muscle response to injury by removing necrotic tissue 

and promoting muscle regeneration. Particularly, M2 macrophage depletion can drastically 

disturbs myoblasts fusion and myotubes maturation through the persistence of high levels of 

myoD in muscle 4 days post-injury [72]. Therefore, a clear correlation exists between M2 

macrophages and regulatory factors for muscle regeneration including MyoD and myogenin 

which confirms their role in regulating the process of skeletal muscle repair and maturation 

[46]. The ability of both M1 and M2 macrophages to orchestrate the phase of regeneration is 

mainly due to their cytokines and growth factors secretion in the wound site.  

1.2.2.2 Growth factors and cytokine release 

The presence of macrophages and therefore growth factors (GF) and cytokines release can 

drastically impact the regeneration process in many tissues and organs. In particular, during 

skeletal muscle repair, GF and cytokines are secreted by damaged fibres or macrophages.  

Among these molecules, the release of TNF-α by M1 macrophages participates in damaged 

muscle fibres proteolysis while promoting SC proliferation and differentiation [45]. However, 

TNF-α persistence is related to muscle repair impairment by inhibiting the fusion of myoblasts 
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[73]. In addition, the release of pro-fibrotic molecules (TGF-β) by M2 macrophages has been 

related to fibroblast activation, which is required for efficient muscle repair. However, the in 

vitro inhibition of SC proliferation and differentiation in contact with TGF- β confirms its role at 

end-stages of repair highlighting the drastic regeneration impairment it could trigger if released 

too soon.  

These examples demonstrate GF follow a strict release kinetic which perturbation can lead to 

aberrant repair. Therefore, skeletal muscle regeneration is complex and follows a strict 

temporal scheme. 

1.2.3 The role of ECM remodelling and nerve supply during repair  

While there is strong evidence of SC critical role in skeletal muscle regeneration, other cell 

types are implicated to various stages of the repair process. Among these cells, fibroblasts, 

macrophages, endothelial cells, and their associated pericytes are major cell types residing in 

the muscle ECM. While the regulatory effects of pro- and anti-inflammatory macrophages on 

myogenic cell stimulation and orchestration was previously described, increasing evidence 

also points to an important role of fibroblasts. Aside muscle fibres, fibroblasts are the main 

cell type present in the ECM. Their depletion in mice has been related to smaller regenerated 

myofibres due to their suspected interaction with SC dynamics, proliferating nearby at early 

stages of regeneration [74]. Fibroblasts have also been shown to enhance myogenic 

differentiation and fusion when in vitro cultured in contact with myoblasts [75] confirming their 

determinant role in skeletal muscle regeneration. Also, the number of fibroblasts in human 

injured skeletal muscles is increased on day 7 after injury with a further expansion by day 30 

(4-time control levels) [75]. The clear increase of fibroblast number can be related to a demand 

for ECM remodelling and rebuilding. During repair, fibroblasts are activated into α-smooth 

muscle actin (α-SMA)-expressing myofibroblasts. Myofibroblasts produce ECM components 

such as fibronectin or collagen that serve as a temporary scaffold to sustain muscle fibres 

growth and muscle regeneration through vascularization. This scaffold maintains the damaged 

tissue integrity and bridges the gap between ruptured myofibres [50]. Supported by the newly 

transient fibroblastic scaffold, muscle fibres form attachments to both native and new ECM, to 

let the muscle tissue to return to its homeostasis. Moreover, through this temporary scaffold, 

the tissue experiences the invasion of blood vessels and nerves to enhance tissue ingrowth 

and myotubes maturation. In addition to provide the framework structure that holds and guides 

the parallel alignment of myofibres, the ECM has also a role in nerve growth [76]. It has been 

demonstrated that the ECM interacts with Schwann cells for the regeneration of peripheral 

nerve and that the presence of collagen participates in nerve growth and regeneration [77]. 

This is of high relevance as the final maturation and growth of newly formed myotubes require 

the presence of nerves to be contractile. Therefore, the presence of the ECM during 

regeneration is critical to mechanically support activated SC and newly generated myofibres 
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inside a vascularized and innervated tissue. The ECM deposition is under the control of some 

GF particularly TGF-β, secreted by M2 macrophages at end-stages of regeneration.  

Finally, after ECM secretion, it’s remodelling and resorption is critical to ultimately recover 
tissue homeostasis. Therefore, MMPs have a relevant role in skeletal muscle repair by 

mediating ECM remodelling for scar tissue resorption and function restoration. For instance, 

MMP-2 is essential quickly after injury given its role in type IV collagen degradation helping 

myoblast proliferation and thus, new fibre formation [36]. Nevertheless, a too late MMP-2 

release can impair regeneration due to type IV collagen degradation of the basement 

membrane of newly formed cells [78], further confirming the need for a well-orchestrated 

release of signals for efficient regeneration. In addition to MMP-2, MMP-9 has also been 

associated with SC activation during the first stage of regeneration [79]. On the contrary, MMP-

13 activity in vivo was shown to peak at days 15 and 37 post-injury revealing its role in the 

long-term remodelling of wound connective tissues [80]. All these MMPs participate to the 

balance between ECM production and degradation to recover tissue architecture and guide 

regeneration. 

Muscle repair can be considered achieved when tissue architecture, vascularization, 

innervation and ability to contract have been fully restored. For instance, initial forces can be 

recovered 3-4 weeks after cardiotoxin-induced injuries [81].  
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1.3 Injuries and diseases overwhelming the regeneration capacity  

Despite the rapid and well-orchestrated skeletal muscle repair, the process can be 

compromised in several pathological conditions, during diseases like myopathies or following 

severe traumas and infections. Cardiotoxin-induced injuries are relevant to understand the 

regeneration mechanisms at play in case of the preservation of a scaffold maintaining tissue 

integrity. However, these types of injuries are not appropriate to study abnormal muscle repair 

when a destruction of the ECM is experienced.  

1.3.1 Volumetric muscle loss  

Contrary to cardiotoxin-induced injuries, some severe lesions can overwhelm the regeneration 

capacity described above. Volumetric muscle loss (VML) for instance, is characterized by a 

loss of more than 20% of the muscle mass and a destruction of the basal lamina [82]. Injuries 

with VML result in excessive tissue loss creating defects devoid of matrix, cells, and 

vasculature. The first major outcome in VML injuries, is the complete destruction of muscle 

fibres and ECM leading to SC niches deletion. The regeneration capacity, normally governed 

by SC proliferation, is thus drastically impaired. Therefore, VML regeneration relies on SC still 

located on wound edges. However, without any support, SC are devoted to stay on wound 

rims, unable to enter the wound to begin the regeneration program. The histological analysis 

of these injuries revealed a progressive fibrosis inside the wound with macrophages infiltration 

and minimal muscle fibre regeneration over time, leading to a marked scar tissue deposition 

and serious morbidity [83]. 

1.3.1.1 Normal repair versus fibrosis development  

Fibrosis is an unusual deposition of ECM components during wound healing leading to a loss 

of tissue architecture and functionality. Fibrosis of skeletal muscle tissue is characteristic of 

severe injuries but also of muscle dystrophies which showed the same set of chronic tissue 

damage.  Fibrosis is the consequence of an excessive amount of ECM inside the wound that 

can be triggered by an aberrant production of ECM proteins, alteration in ECM-degrading 

activities, or a combination of both. The fibrotic process usually begins 2 to 3 weeks after injury 

and leads to the conversion of muscle into non-functional fibrotic tissue. No fibrosis is observed 

in cardiotoxin-induced injuries after 1 month [39] restricting the model for the understanding of 

normal repair mechanisms and stem cell properties in these conditions.  

As described previously, the presence of fibroblasts is required for an efficient skeletal muscle 

regeneration process. Fibroblasts secrete ECM proteins [84] to provide the bio-scaffold 

sustaining SC infiltration and proliferation along with myotubes formation. This transient 

scaffold is then degraded as regeneration and growth of new myofibres proceed. Although 

necessary to tissue repair, fibroblasts are critical intermediates to chronic fibrosis. In nature, 

the survival of an organism depends on the rapid closure of wounds, which are gateways to 

toxins or infections. Highly proliferative fibroblasts are thus activated into myofibroblasts, to 
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produce collagen to close the wound. Due to the destruction of the basal lamina below which 

SC are located, myofibroblasts proceed more rapidly than myotubes formation to close the 

wound. They create a fibrotic tissue, forming a mechanical barrier inside the wound [69]. During 

the delayed skeletal muscle regeneration, muscle fibres initiate an attempt at regeneration, 

which is blocked by fibrosis. Due to the impossibility for muscle fibres to bridge the gap 

between wound edges, a part of the muscle can remain innervated as the dense fibrotic tissue 

prevents new axons from reaching the cells (Figure 6) [50]. Given this aberrant repair, VML 

can result in a lack of functionality of the whole muscle leading to an inability to contract and a 

decrease in muscle strength generation [85]. The presence of fibrosis resulting from VML can 

evolve towards permanent disabilities depending on the muscle type and location [86]. 

Moreover, the fibrotic tissue, lacking the native ECM elasticity renders the muscle susceptible 

to re-injury [87]. 

This fibrosis is the result of a complex crosstalk between cells, the immune system, and the 

ECM. Events leading to fibrosis have been particularly characterized in the case of muscular 

dystrophies.  

 

Figure 6: Injuries resulting in VML overwhelm the regeneration process  

A) Fibroblasts proceed more rapidly than muscle regeneration to fill large volume defect. The destruction 

of the basal lamina of muscle fibre, drastically reduces satellite cell number and the lack of ECM their 

capacity to infiltrate the defect.  B) Fibrotic tissue formation prevents the newly formed muscle fibres to 

bridge the gap leading to a lack of innervation and a loss of functionality.   



37 
 

1.3.1.2 Muscular dystrophies, a model to understand muscle fibrosis  

In skeletal muscle, fibrosis is mostly associated with a group of diseases known as muscular 

dystrophies. Muscular dystrophies are inherited skeletal muscle diseases caused by gene 

mutations [88]. All dystrophies share common characteristics such as progressive weakness 

linked to cycles of myofibre degeneration and regeneration and a progressive replacement of 

the skeletal muscle tissue by fibrotic and fat tissues. These diseases are thus characterized 

by a gradual replacement of functional muscle with scar tissue [89]. Nine major dystrophies 

are reported including Duchenne muscular dystrophy (DMD) which is the most severe form. 

DMD is caused by a mutation in the X-linked dystrophin gene, involving proteins able to link 

the muscle cell to the ECM. This lack of dystrophin protein decreases muscle fibre sarcolemma 

stability rendering fibres to be weak and break upon contraction. A mice model of DMD has 

been developed (mdx mice) in order to study the disease and has been extensively used over 

the last 30 years [90].  

 Chronic inflammation  

In normal muscle repair, the injury elicits an acute inflammation that leads to dead fibre 

phagocytosis after damage. In the case of dystrophies, the constant cycles of fibre 

degeneration is associated with a preservation of the inflammatory infiltrates over time, leading 

to chronic inflammation. As a result, an accumulation of specific growth factors (GF) and 

cytokines triggers the fibrosis experienced by dystrophic muscle through pro- or anti-

inflammatory cytokine deregulation [91]. The altered expression and secretion of cytokines and 

GF disrupt cell-cell communication and their resulting behaviour. The ability of SC to 

repopulate the tissue is then blocked while fibrogenic cells are continuously activated. It has 

been described that among these factors, TGF-β is highly over-expressed in dystrophic 

muscles and has thus been considered a major therapeutic target [89]. It is a GF stored in the 

ECM, and once released, mediates fibroblast activation into α-SMA-expressing myofibroblasts 

and the decrease production of matrix metalloproteinases (MMPs) [84] having a dual effect on 

fibrosis. Myofibroblasts are indeed the primary cell source of fibrotic components, triggering an 

excessive ECM deposition through type I and III collagens, fibronectin and tenascin C 

expression [92]. These cells also develop stress fibres to generate contractile force and exert 

tension on their surrounding microenvironment. Recent results have shown that skeletal 

muscle myofibroblasts can derive from fibro-adipogenic progenitors (FAP), which are a 

resident population of mesenchymal stem cell-like cells. They have the potential to differentiate 

into myofibroblasts or in adipocytes depending on the external environment. The presence of 

chronic inflammation during aberrant muscle injuries or dystrophies is widely accepted to 

trigger this apparent FAP and fibroblasts disrupted behaviour [84], [93]. Along with TGF-β1, 
other cytokines such as connective tissue growth factor (CTGF) [94], and osteopontin [95] 

have be related to fibrotic tissue formation through various pathways. Similarly to dystrophies, 

the extensive loss of ECM characterizing VML appeared to stimulate complement system and 
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TGF-β1 signalling in a sustained fashion [96], being the origin of the excessive fibrotic 

deposition and preventing SC to enter differentiation.  

Imbalance between M1 and M2 macrophages  

The chronic inflammation experienced during aberrant repair or dystrophies can be powered 

by the disturbance of the balance between M1 and M2 macrophages [76]. Macrophages being 

either pro- and anti-inflammatory constitute a heterogeneous population in regenerating 

muscle as their activities can be opposed and follow various kinetics. For instance, the M1/M2 

macrophage imbalance brought by the deletion of IL-10 in mdx mice has been associated with 

a reduced muscle strength [97]. 

Particularly, M2 macrophages are generally considered the most important pro-fibrotic 

regulator through the release of TGF-β1 and several types of tissue inhibitors of MMPs (TIMP). 

Their presence has been shown to increase with age in mdx mice which was related to fibrosis 

aggravation [98]. Severe injuries resulting in volumetric muscle loss have also been related to 

macrophages infiltration [83] and their accumulation and persistence in lacerated mouse 

muscle accompanied by persistent collagen deposition [50], [99]. These results strengthen the 

role of macrophages and their cytokine release in the formation of fibrotic tissue. Moreover, 

their huge influence on SC proliferation and differentiation can be the result of SC inability to 

reform muscle fibres in aberrant repair due to wrong signals.  

The persistent hypoxia 

Among the processes leading to fibrosis, hypoxia is also an inducer of the fibrotic program. 

Hypoxic conditions have been found to enhance the proliferation of human dermal fibroblasts 

seeded as single cells [100]. More interestingly, fibroblasts in vitro have shown to drastically 

upregulate the secretion of TGF-β1 and collagen when exposed to acute hypoxic conditions 
[101]. This phenomenon follows a classic healing process. When the tissue is injured, blood 

vessels break leading to basal ischemia and local hypoxia helping fibroblasts to enter 

proliferation and close the wound with procollagen synthesis. However, successful healing 

ultimately requires the stepwise restoration of physioxic conditions through revascularization 

as high oxygen percentages have been shown to induce fibroblast differentiation into 

myofibroblasts [102]. DMD patients are susceptible to hypoxia due to sarcolemmal localization 

of neuronal nitric oxide (nNOS) that plays a critical role in preventing vasoconstriction during 

exercise [103]. Due to nNOS dependence to the dystrophin-glycoprotein complex DMD 

patients experience local regions of ischemia during muscle activity that can lead to hypoxia 

[104].The master regulator of oxygen homeostasis known as hypoxia-inducible factor-1 (HIF-

1) has been found to be a major determinant of the healing process [105] with an increased 

expression in DMD patients [106]. Therefore, the persistent hypoxia in DMD patients can thus 

notably influence the formation of fibrosis. A parallel can be drawn with VML wound where the 

ischemia generated by blood vessel rupture is related to a delay in wound healing with a 

continuous increase of TGF-β1 resulting in scar tissue formation.  
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The stiffness modification 

Finally, the regulation of the tissue stiffness can also be a potent pro-fibrotic signal in multiple 

tissues [107]. Fibrotic tissues are known to be stiffer than the native skeletal muscle tissue due 

to ECM deposition rich in fibrillary collagens [108] in a particular organization [109]. Therefore, 

the mechanosensory behaviour and the signalling cascade of skeletal muscle cells and all the 

cells involved in muscle fibrosis (resident fibroblasts, inflammatory cells, fibroadipogenic 

progenitors, pericytes) are influenced [110]. Mechanical forces can also act on soluble factors 

such as TGF-β1 which is stored in a latent form in the ECM and can be activated as a direct 

result of mechanical tension [111]. 

Altogether these signals act synergistically to ultimately lead to the formation of a fibrotic tissue.  

 

Figure 7 : Some of the key signals influencing the transition of various cell types into myofibroblasts 

Various signals (hypoxia, presence of the ECM scaffold as support, environment stiffness, GF signalling 

and macrophages) can trigger a scar tissue formation in the skeletal muscle tissue and act 

synergistically.   
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1.3.2 Current trend and strategy for treatment 

Although the treatment of fibrosis in paramount to recover limb functionality, the paradigm of 

severe injury management is mainly focused on bone healing without considering the 

importance of soft-tissue repair. For example, the recovery from VML is poor and leads to 

significant long-term disabilities with an increasing rate of delayed amputation of deficient 

limbs.  

Given the nature of VML injuries, it is of interest to develop therapeutic strategies that could 

promote muscle fibre regeneration and thus restore muscle strength and function while 

minimizing fibrosis. The current management options for VML consist of a wound debridement 

within 12 hours followed by attempts to tissue coverage and the use of advanced bracing. 

These approaches are unfortunately poor and insubstantial for efficient tissue regeneration 

[112]. Also, protocols of closure are controversial. Some strategies recommend leaving the 

wound open after debridement, however increasing chances for contamination, while others 

recommend the use of muscle autografts/flaps to close wounds [113],[114]. Nonetheless, this 

option is mainly limited by alterations of anatomy in donor and recipient sites, extensive 

physical rehabilitation, and a limitation of suitable muscle graft/flap availability [115]. This 

technique also requires a second surgical procedure that increases the risk of complications 

and the total cost of the treatment. In addition to all these limitations, it does not carry a 

guarantee of the full restoration of muscle function and the ability to contract. 

There is therefore a need to develop other therapeutic approaches to guide striated 

skeletal muscle regeneration.  

1.3.2.1 The choice of relevant in vivo models to assess treatments 

For the regeneration of VML, there is a need to evaluate innovative treatments functionality 

and assess their effect on cells and tissues. To do so, researchers have to target adequate 

animal models for the preclinical evaluation of these new therapeutic approaches. The 

requirements of such models are multiple: (1) remove more than 20 % of the muscle mass of 

a defined muscle to (2) produce a loss of functionality through fibrosis after healing without 

experiencing (3) spontaneous functional healing or (4) compensation with other muscles. Also, 

the injury has to be reproducible to generate reliable statistics between treated and untreated 

injuries. To this end, many groups have developed VML in various animal models with mice 

and rats being largely used.  

The mice tibialis anterior (TA) volumetric muscle loss is a well-spread model to assess the 

functionality of treatments due to its limited endogenous regenerative capacity, functional 

impairment and the relatively easy access to the TA [116], [117]. Moreover, the establishment 

of studies to evaluate the functional recovery can easily be achieve through the testing of 

animal movement. Other hind limb muscles have been targeted for the same reasons such as 

the quadriceps [118], [119], with a decreased running speed maintained 6 weeks post-injury 
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[120]. Other models exploring a VML in the latissimus dorsi of mice have also been reported 

[121]. However, models based on mice muscles limit the maximal size of the defect and can 

prevent the validation of various treatments.  

Therefore, the use of rats has been fuelled by the need to have animal models with larger 

defects. The rat tibialis anterior (TA) is a well-spread model to assess the functional of 

treatments [122],[123]. Wu and others have developed a standardized method to create the 

defect presenting no spontaneous healing [124]. They assessed a loss a maximal tetanic force 

generated by the muscle at both 2 and 4 months post-injury. However, they found a 20% loss 

of the TA weight was associated with a 15% and 17% increase in extensor digitorum longus 

muscle (EDL) mass after 2 and 4 months post-injury, respectively [124]. Many studies have 

described this significant compensatory hypertrophy of the rat hind limb EDL after partial or 

complete removal of the TA [125]. This propensity to compensate TA hinders the clear 

interpretation of in vivo functional repair and, therefore, complicates the assessment and the 

comparison of treatments for muscle regeneration. Other models have thus been described. 

For example, Merritt and colleagues have found a defect in the lateral gastrocnemius helped 

discriminate the amount of regenerating skeletal myofibres and blood vessels between various 

regeneration strategies [126].  

In addition to limb muscles, some researchers have been developing a model of excision of 

the external and internal oblique layers of abdominal wall [127]. They tested resultant 

contractile and fatigue force after 26 weeks of implantation and highlighted significant 

differences between various treatments.  However, they did not perfectly assess their model 

as no negative control without intervention were performed.  

To conclude, animal models have been developed in a variety of muscles. Nevertheless, the 

high cost, the technical complications, and the inability to perform reproducible defects for 

reliable statistics limit the assessment of treatments made in the field. The lack of a 

standardized model also limits the comparisons among treatments. The choice of a relevant 

model still represents an issue for the validation of promising strategies.  

However, based on these models, attempts have been made to develop new treatments and 

test their efficacy. Strategies to improve skeletal muscle regeneration have been mainly based 

on 2 paradigms: muscle regeneration improvement and/or fibrosis inhibition.  

  



42 
 

1.3.2.2 Injectable soluble biochemical cues  

The main trend for the enhancement of muscle regeneration is the use of injectable soluble 

biochemical cues. 

As previously described, skeletal muscle tissue regeneration is characterized by an extensive 

cytokine release from inflammatory cells and injured muscle cells. These factors can drastically 

affect regeneration efficacy when injected in the wound, with instances reported through the 

injection of IGF (insulin-like factor I and II) [128] or HGF [129] to promote the transition of 

macrophages to the M2 phenotype. Besides, the administration of exogenous IL-10 to muscle 

cells in vitro has been associated with an increase of the cell proportion expressing myogenin 

[48] confirming its possible use to enhance muscle regeneration. The use of chemokines like 

SDF-1α [130] is also of interest as chemoattractant to recruit progenitor cells in the injury site 

and improve overall regeneration.  

Another strategy would be to modulate the biochemical microenvironment in a site-specific 

manner to prevent fibrosis [92]. The dominant role of TGF-β1 makes it an obvious target for 

anti-fibrotic treatments [131]. Its inactivation at a specific time or the administration of 

macrophage-released factors in the wound to stimulate myogenic cell proliferation [132] and 

regulate fibroblasts could be a way to control subsequent ECM production. TGF-β1 inhibition 

has been reported with nilotinib, a kinase inhibitor, to reduce muscle fibrosis in mdx mice [51]. 

It has also been described with interferon-gamma INF-γ that decreased fibrosis and improved 

muscle strength when injected in a mouse laceration model [133]. The use of IFN-γ, losartan 

[134], and suramin [135] are great therapeutic candidates involved in various stages of the 

TGF-β1 signalling pathway and already approved by the FDA [136].  

 

The major advantage in the use of soluble biochemical to treat muscle injury is their easy 

administration through safe injection. However, GF structural integrity can be severely 

comprised during injection leading to the need for high concentrations to elicit a measurable 

effect. Besides, the short half-life of growth factors and cytokines requires multiplying the 

number of injections and does not prevent their fast clearance by the vascular system [137], 

[138]. 

1.3.2.3 Cell therapy 

Cell therapy is another reported way to influence skeletal muscle regeneration. It consists of 

the injection of cells of interest to enhance or guide functional regeneration. Two strategies 

can be used: (I) cells obtained from a donor that requires an immune suppression treatment 

or (II) cells obtained from the patient, to prevent further treatments. For instance, cell therapy 

with exogenous M1 macrophages [99] has been successfully reported. This approach helped 

to reduce fibroblast proliferation and subsequent collagen accumulation through TNF-α 
expression while improving regeneration with a force production enhanced after treatment 
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[139]. On another hand, early anti-inflammatory M2 macrophage delivery has been described 

to improve myofibre size but along with persistent fibrosis leading to a lower force production. 

These strategies though are ambivalent due to the sensitive equilibrium between pro- and anti-

inflammatory cues during muscle repair. Boosting the pro-inflammatory phase through M1 

macrophages or HGF and IGF administration can ultimately lead to a chronic inflammation 

responsible for fibrosis. On the other hand, increasing M2 macrophages or anti-inflammatory 

cytokines involved in cell fusion could be an interesting strategy but eventually result in a higher 

fibroblast stimulation, M2 macrophages being implicated in fibrosis in numerous tissues [91]. 

The use of stem cells  

To avoid these limitations, injected stem cells are of utmost interest given their high 

regeneration potential. For instance, bone marrow-derived mesenchymal stromal cells (BM-

MSC) injection in muscle defect, has been shown to decrease collagen deposition and 

increase myofibre diameter in combination with skeletal muscle surgery [140], [141]. As 

described above, satellite cells (SC) play a significant role in skeletal muscle regeneration and 

can be isolated [142] to be used for cell therapy approaches. Fluorescence-activated cell 

sorting (FACS) techniques were developed to isolate SC and their progeny, the myoblasts, 

from striated skeletal muscle biopsies. These techniques are based on cell surface markers 

expressed on these cells [143], and enable them to isolate pure populations of human 

myoblasts from muscle samples. Cell therapy using SC or their myoblast progeny has been 

extensively described as treatments for muscular dystrophies (reviewed in [144], [145]). 

However, these examples generally resulted in human trial failure mainly due to the poor 

survival of injected cells. Finding a way to prevent massive and rapid cellular death during and 

after injection is one of the primary hurdles for successful cell transfer therapy. The second 

huge restriction in using cells is, as mentioned above, their origin, compelling the use of 

immunosuppressive therapy or the burdensome necessity to amplify patient cells before 

treatment without guarantee of maintaining their undifferentiated state. Therefore, cell therapy 

remains too restrictive in case of emergency treatments although being promising. 

In addition to these drawbacks, the use of cells or growth factors for direct injection in the case 

of VML results generally in poor integration due to the lack of ECM that guides the regenerative 

response [146] in addition to massive cellular death and extensive molecule washing by blood.  

Although these strategies can be operant in small defects, the presence of a large and 

consistent gap between edges characterizing VML prevents their efficacy.  

 

Given the extensive tissue loss characterizing VML, biomaterial-based technologies that could 

fill the gap between wound edges hold significant promise for the restoration of functional 

tissue. 
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2 Tissue engineering: new insights in skeletal muscle functional 

regeneration 

It has always been the dream of the humankind to be able to restore bodies and ultimately the 

function of tissues and organs. Recently, whole fields of reconstructive surgery have emerged 

to improve life quality, with tissue and organ reconstruction being the ambitious goal of 

regenerative medicine for these last 25 years. It is within this context that the field of tissue-

engineering (TE) was developed. In the actual situation where organ donor shortage 

represents an unsolved burden for our society, TE approaches have been heralded as an 

alternative treatment strategy that may circumvent the limitations associated with auto and 

allograft procedures. Shalak and Fox at the first tissue-engineering meeting held in 1988 in 

California defined TE as the application of the principles and methods of engineering and life 

sciences towards the development of biological substitutes that restore, maintain or improve 

tissue function. TE principle is based on the postulate that living cells are required to 

regenerate tissues de novo. Accordingly, TE strategies generally combine the use of cells 

within an engineered environment composed of growth factors and biomaterials to drive 

functional tissue regeneration in general, and skeletal muscle in particular (Figure 8). 

As raised above, the use of cells and growth factors (GF) is of high relevance for the 

regeneration of tissue but are often associated with cell mortality and GF dispersion in tissues. 

To overcome these drawbacks, biomaterials have been developed to fill tissue voids, carry 

cells and GF and enhance cell migration, growth, and differentiation towards an organized, 

mature, and healthy tissue. Biomaterials are defined as biological or synthetic constructs 

introduced in the body to interact with tissues and cells for medical purposes (therapeutic or 

diagnostic). To do so, various types of biomaterials have been developed and characterized 

including metal, ceramics, polymers, and composites [147]. While ceramics and metal have 

been largely described for bone repair or bone substitutes [148], polymers have been 

particularly explored for soft tissue applications. Polymer-based biomaterials, either from 

natural origin or synthetic, are formulated through physical or chemical reactions between 

polymer chains to form three-dimensional networks. They can be fashioned into various 

shapes including fibres, microparticles, 3D bio-printed scaffolds, gels, pastes, and sponges 

[149], [150]. 
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Figure 8: Skeletal muscle tissue engineering (SMTE) combined strategies 
Classic strategies rely on the combination of cells and growth factors inside a biomaterials able to mimic 
the environment encountered in native ECM. Many cell types can be used for SMTE, including satellite 
cells or their progeny, myoblasts, which are responsible for the maintenance of the regenerative capacity 
of skeletal muscle. However, their high mortality after injection in the body have prompted researcher to 
explore the potential of biomaterials to act as template for cells. In addition to be a support, biomaterials 
crosslinking chemistry can be adapted to allow the binding to growth factors and their controlled release 
to help cell proliferation and/or differentiation into contractile skeletal muscle. Biomaterials architecture 
and stiffness modulation can also increase cytocompatibility towards cells.   
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2.1 Interaction between cells and biomaterials for skeletal muscle tissue 

engineering purposes  

Skeletal muscle tissue engineering (SMTE) using polymer-based biomaterials holds significant 

promise for functional tissue regeneration. Indeed, it provides a tool to answer the drawbacks 

of the aforementioned approaches (i.e. cells and/or growth factors (GF) injection). The use of 

biomaterials could thus act as a cell carrier to prevent their elimination while providing a support 

on which they can evolve toward mature skeletal muscle tissue. Although being of high clinical 

relevance, the design of biomaterial for SMTE must answer complex specifications to interact 

with cells and tissues.  

In following paragraphs, we thus focus on existing biomaterial-based approaches developed 

for SMTE highlighting their advantages and drawbacks. First, the cell types used in these 

strategies are rapidly reviewed along with the mechanisms by which they interact with their 

microenvironment. The latter provides signals (including mechanical, biochemical and 

architectural cues) that affect cellular behaviour and that can be recapitulated by biomaterials. 

Therefore, the design of biomaterial is quickly addressed for general TE applications, to then 

emphasis on how they can be adapted to drive cells fate towards skeletal muscle tissue 

regeneration.  

2.1.1 Cells used in SMTE and their interaction with their microenvironment 

Considering that skeletal muscle tissue regeneration is highly dependent on stem cells 

differentiation into muscle fibre, the use of cells has been highly explored. Mostly, TE protocols 

using cells start with a biopsy to isolate cell populations with a potential for regeneration. Cells 

are either amplified or differentiated in vitro depending on the specific protocol used, to be 

seeded onto or embedded into a biomaterial scaffold. The cells inside the scaffolds are then 

placed or injected in VML injury sites to restore structure and function. Whatever the approach 

used, developing a successful cell-based strategy for SMTE relies on choosing the proper 

source of cells. Ideally, cells should be easy to isolate, purify, and expand in vitro without losing 

their myogenic potential. Stem cells are widely used in TE strategies due to their ability to self-

renew and differentiate into tissue-specific lineages. Protocols to harvest, purify, amplify, and 

use these cells will not be detailed here as it goes beyond the scope of this work. However, 

protocols have been reviewed in detail elsewhere [151]. 
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2.1.1.1 Cell types used in SMTE   

Muscle-derived stem cells (MDSC) are often considered the best cell source for SMTE 

because of their unique multi-lineage differentiation potential. For instance, some groups have 

demonstrated that human MDSC combined with fibrin biomaterials shaped as gel or micro-

thread to treat VML injuries could differentiate into new muscle fibres with reduced fibrotic 

tissue deposition [152], [153]. Particularly, among MDSC, satellite cells (SC) are great 

candidates due to their contribution to skeletal muscle regeneration and homeostasis. They 

can regenerate hundreds of new muscle fibres when associated with only one muscle fibre 

[154]. The potential of SC in SMTE has been evaluated in several studies. For example, a 

hyaluronan-based biomaterial applied to a mice tibialis anterior (TA) muscle defect showed a 

major structure improvement and an increased number of new muscle fibres when implanted 

with SC compared with the biomaterial alone [155]. SC have also been involved in mice TA 

muscle healing when delivered inside synthetic poly(ethylene glycol) (PEG) based support 

[156]. Hill et al. also demonstrated that unlike injected cells alone, SC delivered on alginate 

scaffolds led to an increase in muscle fibre regeneration in an injured mice muscle model [157], 

further confirming the biomaterial critical role to restore the tissue.  

Fewer studies have also focused on SC progeny, myoblasts, showing an interesting potential 

for regeneration [158]. Among myoblasts, the mouse immortalized cell line C2C12 manages 

to decrease the variability of primary cell isolation while its use makes possible comparative 

analysis between research groups. Due to their murine origin, C2C12 encapsulated in 

scaffolds are meant to be implanted in mice models [159].  

Not only SC or their progeny are of interest, for instances mesenchymal stem cells (MSC) 

have been reported in SMTE approaches due to their contribution to skeletal muscle 

regeneration [160]. After embedding in fibrin and collagen 3D culture models, they could  

successfully differentiate in vitro into myogenic lineage, as indicated by desmin, MyHC, and 

alpha sarcomeric actinin expression [161]. As for SC, the use of ECM matrices to carry MSC 

has shown to increase their capacity for functional skeletal muscle regeneration in a defect in 

the lateral gastrocnemius of rats [126], in comparison to cell injected alone. As a result, MSC 

exhibit features that are attractive in TE applications linked to their self-renewal ability, 

multipotency, and secretion of growth factors (GF) and cytokines. Additionally, they can be 

relatively easily isolated from bone marrow, fat, and umbilical cord tissues [162]. Finally, given 

MSC pluripotent nature, in addition to their differentiation towards muscle cells, they may 

participate in peripheral nerve repair and angiogenesis, which both play critical roles in muscle 

regeneration.  

Muscle derived pericytes and gingival mesenchymal stem cells (GMSC) have also been 

successfully embedded inside polyethylene glycol-based biomaterials or 3D scaffolds 

respectively to guide myogenic differentiation in vitro and in vivo [163],[164]. These instances 
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further consolidate the possible use of various cell origins to drive skeletal muscle 

regeneration.  

Various cell types can thus be considered for SMTE, which all need to be collected before re-

seeding, amplification and implantation. However, during their amplification, they experience 

drastic stiffness and biochemical environment differences compared to their native niche, 

which can alter their ability for regeneration. Consequently, freshly isolated SC contribute more 

significantly to muscle regeneration than cultured activated myoblasts [165] as their expansion 

in standard tissue culture plastic results in a loss of their self-renewal capability and clinical 

utility [166]. Other muscle cell populations including myoblasts or myotubes have been shown 

to be influenced by the substrate stiffness and composition in vitro [166]–[168]. In addition to 

skeletal muscle cells, Engler et al. have demonstrated that substrate stiffness can drive lineage 

specifications of naïve MSC in vitro toward muscle, neurons, or bone [169]. Therefore, to drive 

cell fate towards skeletal muscle tissue once implanted, biomaterials should be able to 

reproduce the native extracellular matrix signals experienced by skeletal muscle cells in vivo. 

Accordingly, culturing SC on softer substrates, better mimicking their native environment, could 

preserve their self-renewal capability and contribute extensively to muscle regeneration when 

transplanted in vivo.   

Given the foregoing, the field of biomaterial’s design has evolved over the past decades from 

developing materials that are strictly biocompatible, towards creating those that elicit a specific 

response from surrounding tissue and cells [170]. Biomaterials designed for TE applications 

have been shown to interact in vitro and in vivo with cells and tissues through many signalling 

mechanisms that can be resumed as mechanical, biochemical, and architectural. By 

presenting these cues, biomaterials can help cells enter the natural cascade of regeneration. 

Consequently, unravelling the interaction between multiple micro-environmental factors and 

cells, as well as understanding the underlying mechanisms by which cells recognize and 

interact with their immediate and distant environment is of utmost importance for biomaterial 

development. 
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2.1.1.2 Cells interaction with their microenvironment 

The regulation of interactions between cells and their microenvironment is archived by many 

mechanisms. Among these mechanisms, signalling molecules including growth factors (GF), 

cytokines and neurotransmitters can bind to specific receptors on cell membrane to initiate 

responses. These responses go from gene expression changes to the induction of whole 

processes such as cell division. Variation in the microenvironment can thus cause 

perturbations in the cell signalling process and might be associated to multiple pathologies. In 

addition, cells can respond to their immediate microenvironment through ubiquitous cell 

surface receptors known as integrins (Figure 9). 

Integrins are a large family of heterodimeric transmembrane proteins, formed by non-

covalently associated α and β subunits. Integrins bind ECM ligands through an extracellular 

domain and connect to the cell cytoskeleton via an intracellular domain. In humans, the integrin 

family contains 18 α and 8 β subunits that bind to form 24 αβ subunits, which combination, 

determine ligand specificity [171]. For example, a great number of integrins (e.g. ανβ3, ανβ1, 

ανβ5) binds molecules via the arginine-glycone-aspartic acid (RGD) sequence presents on 

some ECM proteins (such as fibronectin and vitronectin), while α subunits containing an αA-

domain (α1, α2, α10 and α11) combine with β1 to form a distinct laminin/collagen binding 

subfamily [172]. Integrins are particularly involved in cellular adhesion to substrates through a 

cascade of events starting with conformational changes of integrin ectodomains (low to high-

affinity integrins) after recognizing specific amino acid sequences on ECM proteins [173]. Once 

they have recognized specific ligands, integrins aggregate to form cell focal adhesions points 

(FA) [174]. At FA, integrin clusters are linked to actin cytoskeleton converting FA into major 

sites of cell-ECM crosstalk. To do so, structural linker proteins such as talin, vinculin, paxillin, 

focal adhesion kinase (FAK) and tensin, connect integrins to the actin cytoskeleton [175]. 

Therefore, integrin clustering allows cell spreading and cytoskeleton rearrangement. Besides 

promoting cellular adhesion, integrins can transmit information to cells, working as a regulator 

of cell functions including cell migration and differentiation. Integrins are involved in mediating 

cell-ECM contact interaction being thus a major mean by which cells communicate with their 

environment.   

Particularly, integrins can be implicated during skeletal muscle cell growth and differentiation. 

For instance, ανβ3 and ανβ5 integrins are expressed in muscle precursors cells and their 

blocking have shown to inhibit cell adhesion and migration on supports made of ECM proteins 

(fibronectin and vitronectin) [176]. Moreover, the ανβ3 integrin and more specifically the 

expression of β3 subunits, are drastically down-regulated during myoblasts terminal 

differentiation confirming their role during myogenesis [177]. It also appears that skeletal 

muscle satellite cells can sense environmental cues through β3 subunits to initiate their 

differentiation [178]. Indeed, the knockdown of β3 integrin expression triggers a focal adhesion 

disruption and an actin cytoskeleton disorganization impairing myoblasts migration and 
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subsequent differentiation [178]. The ECM receptors of the β1 subunit have also been shown 

to regulate the formation of a protein complex important for myoblasts fusion and to be involved 

in the assembly of the muscle fibre cytoskeleton [179]. These instances highlight the essential 

role of integrins and thus environmental stimuli on skeletal muscle cell behaviour.  

Therefore, the local environment surrounding muscle cells plays an important role in 

influencing their fate through cell-ECM communication.  

 

Figure 9 : Cell microenvironmental signals  

Cell behaviour can be modulated by various signals, either from their immediate or distant 

microenvironment. These signals influence cell ability to adhere, spread, grow, migrate and enter 

various paths of differentiation on the substrate. Pictures adapted from Servier Medical art  
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2.1.2 Cell response to mechanical cues  

Living cells are constantly exposed to mechanical stimuli arising from their immediate external 

environment. One important environmental factor is the stiffness of the ECM, which has a 

major effect on cells [180], [181]. The mechanical properties of tissues are highly dependent 

on their location and their function within the body. For instance, while the brain exhibits a very 

low elastic modulus of about 1-3 kPa, bone can reach 10 Gpa (reviewed [182]). This provides 

mechanical information to the surrounding cells and contribute to tissue function.  

2.1.2.1 The process of mechanotransduction  

Mechanotransduction can be defined as the mechanism by which cells recognize and respond 

to chemico-physical stimuli to process them into biochemical response or gene expression 

changes [183]. Various molecules, acting as mechanoreceptors, mediate this sensing process 

including integrins, stretch-activated ion channels and growth factor receptors [184]. While the 

precise underlying mechanisms by which mechanotransduction occurs remain so far elusive, 

it has been described that at cellular FA, cells transduce myosin-generated traction forces from 

the ECM to the cytoskeleton. Then, a highly complex mechanical signalling cascade leads to 

global cytoskeleton rearrangements and dynamics events that will ultimately guide their fate. 

What is currently known is that in response to external stimuli, focal adhesion kinases are 

recruited in developing FA. Moreover, the increased presence of vinculin [185], talin, and 

paxillin proteins has been related to the force applied on FA, confirming FA role in force 

transduction. Accordingly, the variation of substrate stiffness on which cells are seeded can 

drastically influence their adhesion, morphology and migration [186]. Based on these studies, 

it seems that tissue-specific progenitors can be differentiated and induced to maturation when 

cultured on substrates close to their physiological environment. 

2.1.2.2 Biomaterials stiffness variation to match tissues requirements  

Substrate stiffness has become an essential aspect in the development of tissue-engineered 

constructs to direct and regulate cell fate. In this context, synthetic-based biomaterials have 

been extensively described as they can be fashioned through various processing technologies 

allowing a strict control over their mechanical, structural, and chemical properties. Among 

synthetic materials, the use of polymers such as poly(acrylamide) (PAAm), Polyethylene glycol 

(PEG), poly (lactic-co-glycolic acid) (PLGA), Polylactic acid (PLA), Poly (ε-caprolactone) (PCL) 

[187] and Poly(glycolic acid) PGA have been described for various TE applications [188]. For 

instance, the stiffness of gels made of polymers such as PAAm can be easily controlled by 

varying the quantity of acrylamide monomer or bisacrylamide crosslinker [189]. Particularly, 

PEG [166] or PCL [167] gel-like constructs with tuneable mechanical properties have also been 

described for SMTE. 

Skeletal muscle ECM exhibits a particular stiffness between 5.6 ± 0.9 and 129.1 ± 38.9 kPa 

depending on the muscle location and method of measurement (see Table 1). The impact of 
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ECM stiffness during muscle regeneration has been highlighted by the lack of type IV collagen 

in mice which influences the niche stiffness and causes a reduction in satellite cell self-renewal 

capability [190]. Therefore, some studies have tried to approach skeletal muscle tissue 

stiffness with biomaterials.  

Table 1: Striated skeletal muscle tissue stiffness  

The skeletal muscle tissue stiffness depends on the muscle type, its location in the body, the direction 

of measurements, and working conditions. 

Muscle location Methods / load Parameters studied Elastic modulus Ref 

Biceps 
Magnetic resonance 

electrography 

Lateral 13 ± 4 kPa 

[191] Longitudinal 185 ± 60 kPa 

Shear modulus 54 ± 34 kPa 

Gastrocnemius 

and rectus femoris 

Adolescent under 

performance 

Shear wave 

elastography 

Gastrocnemius Lateral 11.8 ± 4.7 kPa 

[192] 
Gastrocnemius Medial 9.5 ± 2.8 kPa 

Rectus femoris 11.1 ± 2.2 kPa 

Biceps Brachii 

Young and old 

adults 

Shear wave 

elastography 

Young’s modulus 

90°C elbow flexion 
5.6 ± 0.9 kPa 

 [193] 

Full extension 16.9 ± 3.2 kPa 

Upper trapezius 

Shear modulus 

Young man 

Shear wave 

elastography 

with arm at 0, 30 and 

60°C of shoulder 
About 10 kPa [194] 

Lateral 

gastrocnemius 

Developing child 

Shear modulus by shear 

wave ultrasound 

elastography  

With 20° plantar flexion 7.1 kPa 

[195]  
With 20° dorsi flexion 36.2 kPa 

Tibialis anterior 

Adults 

Shear modulus 

supersonic shear 

imaging 

At 20% maximal 

voluntary contraction 
43.2  ± 12.8 kPa 

[196] 
At 60% maximal 

voluntary contraction 
129.1  ± 38.9 kPa 

Muscle cell layer 

C2C12 

Transverse force 

Atomic force microscopy 

(AFM) 

Undifferentiated cells 11.5 ± 1.3 kPa for 

[197] 
8 days in differentiation 45.3 ± 4.0 kPa 

Ansari et al. demonstrated that in vitro myogenic differentiation of encapsulated GMSC was 

only observed inside alginate biomaterials close to the skeletal muscle stiffness (i.e. 10-16kPa) 

in comparison to softer (<5 kPa) or stiffer (>20kPa) substrates [164]. Similarly, Engler et al. 

have highlighted that myotubes were better striated in vitro on substrates with stiffness 

resembling that of native muscle [198] in comparison with softer or stiffer supports. More 

interestingly, the same trend has been observed for in vivo skeletal muscle injury models. 

Garcia and colleagues have shown that the stiffness of acid hyaluronic scaffolds was an 

important parameter to control VML repair by directing SC fate [199]. Given these 

considerations, various groups have focused their research on the design of biomaterials for 

VML treatment with controlled stiffness to enhance skeletal muscle regeneration [200],[201]. 
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Although being appealing through their stiffness modulation, synthetic materials often lack cell 

adhesive motifs preventing optimal cellular adhesion and growth on their surface. Moreover, 

they can be related to inflammatory responses and long term auto-immunity  (after degradation 

or through prolonged persistence at the injury site) [202]. Therefore, they are generally 

combined with biocompatible natural-based biomaterials that can present biological cues for 

cell recognition and attachment such as integrin-binding motives. 

2.1.3 Cell response to biochemical cues 

One of the most basic and vital cell functions is cellular adhesion to the substrate that can be 

easily promoted by modifying the surface chemistry of biomaterials with functional groups 

[203]. Ideally, biomaterials should present these cell-recognition moieties to support cell 

adhesion and control cell fate through communication with integrins. In many instances, 

biochemical cues act synergistically with compliant substrates stiffness [204]. Particularity, 

skeletal muscle cells have revealed to be sensitive to their microenvironment through 

biochemical moieties and bindings to specific receptors.  

2.1.3.1 Naturally-derived biomaterials and matrices 

Therefore, the addition of RGD adhesion ligands can be a way to modulate early cell adhesion 

to engineered substrates. The covalent modification of natural and synthetic polymer-based 

surfaces with RGD adhesive peptide favoured the recognition and interaction of myoblasts 

with the substrate [205],[206]. In vitro RGD ligand density and distribution have been shown to 

enhance and regulate myoblasts proliferation and differentiation on surfaces [207]. 

Naturally-derived polymers have also been extensively used due to their structural similarity to 

native ECM, which allows them to recapitulate receptor-mediated signals to promote cell 

adhesion. In addition, these biomaterials are easily degraded in the body and biocompatible. 

Therefore, using natural polymers to form scaffolds for skeletal muscle injuries has become a 

well-known research avenue. One of the most common materials used is collagen [208], [120] 

due to its abundance in skeletal muscle ECM. The use of other ECM proteins such as 

fibronectin, laminin, elastin or tenascin C [199] or the use of fibrin [161], [116] have also been 

reported for a variety of SMTE applications.  

The use of laminin 

Among the aforementioned ECM proteins, laminin is of high interest for skeletal muscle cells 

due to its interaction with SC through α7β1 integrins [24]. Laminin is naturally present in the 

basal lamina [209] and has shown to have a great influence on muscle resident cell behaviour 

[210] and myoblasts locomotion and differentiation [211]. Given these considerations, collagen 

and gelatine sponges functionalized with laminin-111 have been developed, displaying high 

levels of in vitro myoblasts stimulation [212]. Moreover, when seeded on fibrin scaffolds 

functionalized with laminin, myoblasts increased their synthesis of MyoD and Desmin protein 

in comparison to myoblasts seeded on their pure fibrin scaffolds counterparts [213]. Cimenci 
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and others described an acceleration of SC activation with a better myofibre regeneration 

following injury using laminin nanofibres in vivo compared with untreated injuries [214]. 

Therefore, many groups have used laminin to provide the SC and their progeny adequate 

stimuli for their differentiation in vivo and in vitro, [101], [102]. Interestingly, the use of naturally-

derived materials can be combined with synthetic polymers to recapitulate both mechanical 

versatility along with the presence of naturally-derived receptors for cells. For instance, to 

remedy the lack of functionality that synthetic materials can encounter, poly(etgylene glycol) 

diacrylate PEGDA biomaterials have been functionalized with laminin to enable a better 

spread-out morphology of C2C12 compared to the rounded cells forming clusters observed on 

pure PEGDA supports [217].  

The elastin, a step towards providing both biochemical and mechanical cues 

Some ECM proteins have the dual role of providing mechanical strength and interact with cells. 

Collagen, for instance, provides tensile strength to a variety of tissues while binding with cells 

through integrins [218]. In addition to strength, the flexibility and the elasticity are essential 

requirements in many tissues and organs of the body and particularly in skin, lungs, or arteries, 

in which high deformations are required [219]. The major source of elasticity in tissues are 

elastic fibres. Elastic fibres consist of insoluble fibrillary structures made of around thirty ECM 

proteins that assemble to confer long-range deformability to connective tissues, 

complementing collagen tensile strength. These properties are critical for dynamic organs and 

tissues that undergo repeated cycles of extension and recoil [220]. In vertebrates, elastic fibres 

synthesis involves deposition and assembly of tropoelastin, the elastin monomer, upon 

microfibril structures to form mature elastic fibres. Besides their unique elastomeric properties, 

tropoelastin assembly, and presence in ECM influence cell growth and tissue homeostasis 

[219]. The mediation of the interaction of tropoelastin with cells has been mainly attributed to 

the elastin binding protein (EBP), which recognizes the pentapeptide GXXPG (in which the X 

can be substituted by any amino acid except proline) located in domain 24 of tropoelastin [221]. 

Weiss and colleagues proved that soluble tropoelastin also interacts with cells through a 

binding site encompassing the domain 36 known as RKRK motif able to bind to cells in a 

divalent cation–dependent manner through integrin ανβ3 [222], [223].  Moreover, Broekelmann 

and others identified a cell interaction site at the C-terminal of tropoelastin that binds cell 

glycosaminoglycans including heparan sulfate and chondroitin sulfate [224].  In addition to the 

C-terminal tail of tropoelastin, cells can interact also in a divalent cation-dependent manner 

with integrin ανβ5 between domains 17 and 18 located in the centre of tropoelastin [225].  

As such, the use of elastin-based biomaterials is promising to reproduce the natural elasticity 

of tissues and provide more relevant biochemical cues to cells [226]. Some instances have 

reported the use of recombinant human tropoelastin to form 3D scaffolds by electrospinning 

for dermal tissue engineering purposes [227]. Others highlighted the potential of a α-elastin 

gel-like biomaterial for soft tissue engineering applications [228].  
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Elastin sources  

Although elastin is an essential protein for ECM structure and properties, it remains under 

represented in biomaterials given its difficult purification and its calcium affinity when extracted 

from animal sources [229]. Moreover, elastin’s insoluble nature precludes its manipulation. 

Researchers have thus considered soluble sources of elastin for elastin-based materials 

through constructs reproducing selected parts of elastin. Particularly, elastin-like polypeptides 

(ELP), synthesized either chemically or by recombinant techniques have been promising 

biocompatible candidates for TE applications [230]. ELP are biological polymer oligopeptides 

based on the repetition of an amino acid sequence, VPGXG, in which the X can be substituted 

by any amino acid except proline. This sequence is the most frequent in native elastin and 

confers its hydrophobic behaviour.  

In particular, a group has recently shown that recombinant elastin-like polypeptides can 

enhance myoblasts adhesion, proliferation, and differentiation when grafted on plastic dishes 

[231]–[233]. Given their ability to stimulate myogenesis, ELP were enzymatically crosslinked, 

providing a successful step toward the development of elastin-based biomaterials for skeletal 

muscle tissue engineering [234]. These biomaterials have been able to recapitulate the rubber-

like elasticity found in native tissues and to interact with cells combining both biochemical and 

mechanical cues. 

The use of Matrigel  

Given that naturally-derived moieties are interesting for the behaviour of cells, Matrigel®, 

secreted by Engelbreth-Holm-Swarm (EHS) mouse sarcoma is also appealing as a biomaterial 

[235]. Matrigel is a complex environment resembling basal membrane ECM that contains niche 

factors such as laminin, type IV collagen, and heparan sulphate proteoglycans along with 

growth factors that greatly improve muscle regeneration by both the maintenance of Pax7+ 

cells and the increase of MyoD+ cells [236]. The use of matrigel in vitro has been related to 

myotubes formation enhancement with greater myoD and myogenin expression [237]. Due to 

its beneficial impact on tissue growth, matrigel has been largely used in vitro for the formation 

of bioartificial muscles (BAMs) [238], with collagen to regenerate chemical injuries [239] and 

to fabricate electrically stimulated contractile tissue-engineered skeletal muscles [240]. 

Particularity, in Vincent Gache group at the NeuroMyoGene Institute, the use of matrigel layers 

surrounding mice primary cells have been developed to mimic 

a propitious environment enhancing the maturation of myotubes with contractile units similar 

to what is observed in mature myofibres. This in vitro model enables them to maintain 

contractile myofibre layers up to 10 days to study proteins involved in muscle fibre formation 

and maturation with a special focus on nuclei repositioning and cytoskeleton rearrangement. 

However, despite its excellent cytocompatibility, by providing a great ECM substitute for cells 

in vitro, matrigel’s malignant source derived from murine sarcoma makes it unsuitable for 

clinical application with no potential for translatability.  
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2.1.3.2 Biomaterials as growth factors vehicles  

In addition to the biochemical cues provided by the immediate microenvironment, cells are also 

receptive to soluble factors. Growth factors (GF) and cytokines are among some of the most 

commonly investigated molecules to enhance skeletal muscle functional regeneration and 

prevent fibrosis. In this context, some scaffolds have been engineered to carry GF by 

encapsulation, absorption, or binding. GF are naturally stored by ECM glycosaminoglycans 

(GAG) through non-covalent interactions or are bound to ECM proteins. Some biomaterials 

have thus recapitulated these bindings with heparin sulfate-mimetic decorated scaffolds [241] 

or collagen  based scaffolds [161] that present GF-binding motives. The use of biomaterials to 

control GF release is attractive as they can serve as carriers, protecting GF from early 

degradation or clearing while allowing a controlled release over time. Once carried by 

scaffolds, GF can influence embedded cell differentiation and help them to regenerate muscle 

tissues. Many instances have been described in literature for SMTE, with IGF-1, HGF, or FGF 

being largely used due to their critical role in stimulating SC recruitment, proliferation, and 

differentiation during muscle repair [242], [243]. For instance, alginate matrices have shown to 

better promote the survival and migration of transplanted primary myoblasts when the scaffolds 

delivered GF (HGF, FGF2) during cell activation [157], [244]. Tomblyn and colleagues reported 

the high potential of a keratin scaffold as a muscle progenitor cell carrier together with 

controlled release of VEGF, IGF-1, and bFGF for skeletal muscle regeneration [245]. 

The use of GF has also been reported to enhance host cell recruitment inside acellular 

scaffolds after implantation. Ju and others have highlighted that muscle formation within an 

acellular gelatine-based scaffold was significantly accelerated in presence of IGF-1 loaded 

scaffolds. This tissue acceleration could be related to a better SC recruitment as they showed 

a higher presence of Pax7+ muscle cells in IGF-1 loaded scaffolds [246]. Grasman and 

colleagues further emphasized this trend by demonstrating HGF loaded fibrin micro-thread 

scaffolds significantly enhanced muscle tissue regeneration after 60 days [247]. These results 

were correlated with a higher presence of myogenin positive cells within the HGF loaded 

scaffolds compared with their non-loaded counterparts. Passipieri et al. went further, showing 

that keratin gels-like biomaterials loaded with GF (i.e. IGF-1, bFGF, or a combination of both) 

were more relevant to sustain functional recovery than scaffolds embedding skeletal muscle 

progenitor cells in skeletal muscle injuries in rats [248]. However, while promising results have 

been reported, the expensive nature of GF together with the need for extensive clinical trials 

to ensure their safety have slowed their progress towards clinical applications.   

In conclusion, biochemical cues provided by the biomaterial are important regulators of cell 

behaviour. Therefore, in the last decades, development of polymer-based biomaterials has 

been mainly focused on the choice of relevant polymer precursors to provide adequate 

biochemical and mechanical cues to interact with cells and/or GF. 
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2.1.4 Cell response to architectural cues and topography 

Besides mechanical and biochemical cues, architectural 3D organization of the ECM, in which 

cells are embedded, provides them with another feedback. While the exact role of the 

surrounding 3D organization toward cells still remains unclear, some efforts have been made 

by the scientific community to understand underlying processes and further mimic invivo 

conditions. 

2.1.4.1 Influence of 3D organisational signals on cells  

The 3D architecture has a profound influence on cell behaviour as evidenced by the effect of 

ECM fibre architecture during tumour development and disease progression [249]. 

Szulczewski and others demonstrated that organizational and mechanical signals provided by 

local environments acted synergistically on resulting cell comportment [250] highlighting how 

3D organization of the ECM may affect the way the matrix deforms due to force produced by 

cells. This can be related to the fact that cells fully embedded within 3D matrices form fewer 

FA clusters compared with cells in 2D substrates. Despite the reduction of FA in 3D, proteins 

involved in integrin communication are found dispersed throughout the cytoplasm, modulating 

cell demeanour [251]. More interestingly, curvotaxis has been recently identified to be the cell’s 

ability to respond to curvature variation, as a new physical cue affecting cell FA organization 

and gene expression [252]. It has been showed that cells naturally migrate toward the 

environment exerting less mechanical stress on their nuclei [253], extending the knowledge of 

the stimulus able to drive cell behaviour. Altogether, these instances highlight that 

dimensionality of cell-biomaterial interaction has a huge impact on cells and must be taken into 

consideration in biomaterial design, particularly for skeletal muscle tissue regeneration. 

2.1.4.2 The use of decellularized extracellular matrices 

To encompass biomechanical, biochemical, and architectural cues, a potential strategy 

consists in using decellularized ECM as biomaterials. They are natural scaffolds derived from 

tissues in which cellular contents have been removed while preserving the 3D ECM structure 

and composition. Decellularization of tissues can be achieved by soaking them in detergent 

mixture and chloroform for several days to remove cellular content and extract lipid, 

respectively [254]. Such scaffolds retain partly the biological activity and native ligands of the 

native tissue while maintaining the ECM anisotropy. Moreover, due to their degradation by 

immune cells, they can release native GF and ECM proteins, promoting host cell infiltration. 

Decellularized scaffolds have been studied as promising candidates for VML treatment by 

retaining ECM native structure and grooves between muscle fibres able to naturally guide cell 

differentiation (reviewed in [255]). For example, the use of skeletal muscle decellularized ECM 

was linked to an extensive recovery in a rat lateral gastrocnemius injury model [256] by 

supporting muscle regeneration and reducing fibrosis compared with a collagen-based 

biomaterial or with autograft implantation (clinical standard) [257]. Other groups have 
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described the use of decellularized porcine small intestinal submucosa ECM [118] with 

complete functional recovery after 6 months implantation in a rodent abdominal wall model in 

comparison with synthetic-based biomaterial [127]. Due to promising results in animal models, 

decellularized ECM scaffolds have been clinically evaluated for VML treatment. Mase and 

colleagues provided the first instance of a biologic scaffold composed of porcine small 

intestinal mucosa ECM for the functional regeneration of VML from military trauma [258]. They 

described a gain in strength and endurance of the targeted muscle 4 months after the surgery. 

In addition, Sicari and colleagues implanted porcine urinary bladder ECM in five male patient 

muscles presenting a minimum 25% functional and structural deficit. After 6-months of 

implantation, three of five patients presented a 20% functional improvement of the affected 

limb linked with the presence of desmin+ skeletal muscle cells and vascularization inside the 

decellularized scaffold [259]. These studies showed that decellularized ECM may serve as 

scaffolds to promote skeletal muscle remodelling without administration of exogenous cells. 

This further consolidate the relevance of recapitulating all the signals experienced by cells in 

vivo to regenerate skeletal muscle tissue.  

To conclude, decellularized scaffolds provide promising results in the design of inductive 

niches avoiding regulatory barriers associated with embedded cells, and potential cell-related 

immune response. However, the origin and availability of decellularized scaffolds still raise 

questions for a VML standardized treatment and their clinical use remains limited by outcomes 

and variability among patients. In addition, decellularization processes and lipid extraction 

need to be improved to avoid possible modification of the scaffold biochemistry interacting with 

cells.  

2.1.4.3 The use of manufactured macroporous scaffolds  

Due to the drawbacks associated with decellularized scaffolds, various approaches have been 

developed to design and produce scaffolds that recapitulate mechanical, biochemical and 

architectural signals encountered in native ECM. Since 2D substrates inherently misrepresent 

the in vivo behaviour of most cells, there has been a shift towards 3D tissue culture systems 

using biomaterials. Additionally, for tissue engineering purposes, a porosity inside biomaterials 

is an asset to sustain the migration of cells inside the scaffold and potentially regenerate the 

tissue de novo. Furthermore, porosity appears as well critical to allow vascular infiltration and 

nutrient and oxygen diffusion along with waste disposal to prevent necrosis in central regions 

of implanted biomaterials.  
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Macroporous scaffold requirements  

Many strategies rely on the creation of porosity and pathways inside biomaterials to better 

mimic the in vivo environment while sustaining cellular infiltration. As the physical architecture 

varies drastically between tissues and has a profound impact on its properties, porosity 

modulation has become a potential approach to improve and enhance tissue formation and 

function. Numerous cell types have been shown to behave differently depending on the final 

pore size generated inside a biomaterial in terms of cell infiltration, proliferation, migration, 

and differentiation [260],[261]. For instance, pores ranging from 100 to 200 µm have been 

proven to be the most effective in developing myotubes for skeletal muscle regeneration [262], 

[263]. On the other hand, pores of 300-400 µm facilitated osteoblasts infiltration and 

mineralization in bone tissue engineering approaches [264], [265], while pores between 80 and 

120 µm were particularly interesting for chondrocytes proliferation and ECM production [266]. 

In addition to pore size, pore interconnectivity, which is the pathway between pores (voids 

linking one pore to another), is required to enable cellular movement inside the scaffold. The 

size between pores should be suitably large for cellular migration in the initial stage and is thus 

as critical as the pore size. Consequently, optimal pore size and windows of interconnections 

are dependent on the tissue organization and cell types as cell size may drastically vary from 

2-7 µm for erythrocytes to about 100 µm for osteoclasts [267]. Pore size and windows of 

interconnection should allow cellular and vascular infiltration but should not be too large to 

prevent a significant decrease of the specific surface area or the production of weak scaffolds 

unable to sustain load-bearing mechanical strain. Indeed, porous biomaterials should achieve 

sufficient stiffness and strength to provide adequate mechanical integrity to the tissue. 

Instances of relevant macroporous scaffolds for SMTE 

The formation of a porosity inside biomaterials is thus relevant for many applications and 

particularly for SMTE, since muscle fibres must form over long distances (12 cm for the longest 

muscle fibres in the human body [268]). Considering myoblasts alignment is an essential step 

during regeneration and remodelling, many methods have explored the inducement of an 

oriented porosity inside biomaterials with patterned surfaces. Jana et al. have shown that 

scaffolds closely mimicking the native organization of skeletal muscle ECM are of relevance 

for the design of tissue-engineered constructs (reviewed [269]). For instance, scaffolds 

fashioned by casting processes on moulds with unidirectional channels have been reported 

using gelatine [201] or collagen [270]. The longitudinal orientation of channels has been shown 

to greatly influence myotubes width upon fusion by the maintenance of their alignment. For 

example, micropatterned 2D supports with 200-380 µm concave microgrooves could guide the 

unidirectional contraction of myotubes in vitro [270]. However, while these techniques remain 

attractive to understand and guide myotubes growth or form pre-patterned cell sheets, they 

present huge limitations to be used in vivo due to the lack of complete 3D architecture (Figure 

10A).  
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Figure 10: Some of the methods reviewed in this work to create an oriented porosity inside biomaterials 
A) Scaffold casting can be simply achieved by pouring biomaterials liquid precursors in a mould with 
unidirectional channels. Picture adapted from Chen et al., 2015, Biomaterials [270], B) Unidirectional 
freeze drying methods are based on the cooling and freezing of aqueous dispersion inside crosslinked 
biomaterials using a defined temperature gradient. The resulting unidirectional ice crystals are then 
sublimed to form a porous structure. Picture adapted from Kroehne et al., 2008 J. Cell. Mol. Med. [271] 
C) Electrospinning and D) 3D printing can form biomaterials of complex shapes with spaces allowing 
cellular infiltration inside a highly oriented structure. Pictures adapted from C) Montero et al., 2012 Acta 
biomater [272] and D) Kim et al., 2017 ACS applied Mat and Interfaces [273].  
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The creation of interconnected porosity inside scaffolds can be achieved by various 

approaches. One of these strategies consist of controlling the formation of ice crystals inside 

biomaterials through the progressive cooling the aqueous components, followed by their 

removal by sublimation (freeze-drying techniques), or by thawing (cryogelation) to create 

pores (Figure 10B). Sponge-based scaffolds obtained from these techniques have been 

associated with a decreased scar tissue formation and an increased number of muscle fibres 

when implanted into a partial resection of the vastus lateralis muscle in a rabbit model in 

comparison with the untreated injury [274]. This paper showed that crosslinked collagen 

shaped like 3D sponges with pore diameter ranging from 50 to 100 µm sustained efficient 

autologous cell recruitment for regeneration. In addition to collagen, Elowsson and colleagues 

have described a casein/gelatine interconnected porous scaffold with a pore size of 10 -80 µm 

by cryogelation with potential to be used for SMTE [275]. Another example described freeze-

dried porous sponges also made of a mix of gelatine, collagen, and laminin able to sustain an 

extensive autologous cell infiltration and differentiation in a VML mouse model after 2 weeks 

of implantation [212]. This could be explained by a highly interconnected porosity of pores from 

63-84 µm in diameter and a high porosity percentage of 93%, increasing the available surface 

for cells. While they presented limited muscle fibres regeneration, the scaffold protected the 

remaining muscle mass from chronic injury further sustaining the importance of biomaterials 

not only as matrices for cell infiltration but as mechanical support for the injured tissue.  

More interestingly, by varying the freezing kinetic and applying a uniaxial temperature gradient, 

the porosity inside biomaterials and sponges can be controlled and oriented with 

interconnections. For example, 3D scaffolds with aligned tubular structures using freeze-drying 

techniques have been described with chitosan [276] or collagen [271] crosslinked polymers, 

providing early orientation cues to obtain more mature and larger myotubes. 

Electrospinning has also gained significant attention in the past few years in the field of TE 

applications [277], [278]. The technique is based on the application of an electric field to draw 

fibres from a polymer solution towards an oppositely charged collector (Figure 10C). The 

applied voltage or viscosity of the solution can be modulated to control the resulting porosity 

created by the voids existing between fibres, forming interconnected pathways on which cells 

can migrate. In addition, the resultant electrospun nanofibres specific orientation and structural 

similarity to the native morphology of ECM makes them especially interesting for biomedical 

applications.   

For example, fibrous meshes of poly(lactic acid) (PLLA) implanted in TA of rats demonstrated 

successful mobilization of host muscle stem cells, recruited into the scaffolds through pores of 

50-100 µm [246]. McKeon-Fischer and colleagues also showed efficient infiltration and growth 

of myogenic cells inside PCL and poly(acrylic acid)/poly(vinyl alcohol) electrospun scaffold 

implanted for 28 days in vastus lateralis muscle in a rat model confirming the use of autologous 

cells to restore the tissue [279]. The use of natural polymer, such as collagen has also been 
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reported with potential for SMTE [280]. After cell infiltration inside the porosity, the architectural 

cues brought by fibre alignment stimulate muscle cell progenitors into exhibiting greater 

cytoskeleton alignment, striated myotubes formation, and expression of myogenic proteins 

[281],[282]. For instance, Gilbert-Honick and colleagues demonstrated that electrospun fibrin 

scaffolds can provide pro-myogenic alignment cues for efficient regeneration in a VML in TA 

mouse model [200]. Similarly, Nakayama and colleagues showed that 3D-parallel-aligned 

nano fibrillar collagen scaffolds better participated in VML recovery, through vascularization 

and innervation, than randomly oriented nanofibrillar scaffolds [283]. Overall, these findings 

consolidate the importance of orientation for efficient regeneration.  

 

3D printing has also been considered a promising strategy to pattern biomaterials with high 

precision. It is based on the deposition of a wide range of biomaterials in successive layers to 

generate predesigned porous structures (Figure 10D) [284]. Scaffolds made by 3D printing 

have been described to guide axon regeneration of neurons in spinal cord repair [285] and for 

heart tissue engineering [286]. It has also gain interest for SMTE. For instance, 

Seyedmahmoud and others formulated a 3D bio-printed gelatine methacryloyl-alginate 

scaffold with suitable application in SMTE. Likewise, 3D printed collagen and PCL patterned 

struts have shown to significantly increase the expression of myogenic genes in comparison 

to un-patterned control scaffolds [273]. Further studies on the use of 3D printing to produce 

scaffolds for SMTE has been reviewed elsewhere [287].  

Considering what is highlighted in preceding paragraphs, the conception of biomaterials for 

SMTE requires many features particularly for volumetric muscle loss (VML) treatment. Many 

groups have described various biomaterials and various strategies to enhance the formation 

of skeletal muscle tissue in vitro or in vivo for skeletal muscle tissue regeneration. Some of 

them have been reviewed in this introduction and are resumed in Table 2. 
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Table 2 : Review of the various strategies described in literature for skeletal muscle tissue regeneration using biomaterials 

Strategy for regeneration 
Key parameters of the strategy 

Polymers used for 
biomaterial design 

Application 
Advantages and limitations /parameters of 

interest 
Ref 

Stiffness variation 
G’: 1, 2 or 3 kPa 
E’: 5, 15, 30 or 45 kPa 
-11 kPa  
-12 kPa 

-Hyaluronic acid and PEGDA  
-Alginate  
-polyacrylamide  
-Fibrin 

VML defect 
Muscle injury 

 

(+) Mimic the native stiffness of skeletal muscle tissue. 
Control on cell fate by varying gel-like biomaterial 
stiffness.   

(-) Difficulty to precisely tune the mechanical behaviour of 
natural polymer-based biomaterials.  

[199] 
[164] 
[189] 
[200] 

 

Native structural cues  
Functionalization with  
-fibronectin, laminin tenascin-C, 
fibrinogen and RGD moieties 
-autologous minced muscle graft 

-Hyaluronic acid and PEGDA  
-Laminin-111  
-Laminin peptide nanofibres 
-Collagen  

VML 
Penetrating trauma  

(+) Enhance regeneration by providing natives cues.  
Match the biochemical characteristics of muscle tissue.  
Help cells to recognize their environment and evolve 
towards mature muscle fibres.  
 

[199], [207] 
[214] 
[208] 
[212] 
[215] 
[217] 

Biomaterials as delivery vehicle  
-Muscle stem cells / Primary 
human muscle derived and hECS 
/ rASCs / MPCs / MP / bone 
marrow MSCs 
-Growth factors: IGF-1 / bFGF / 
HGF 

-Matrigel/collagen 
- Four-arm PEG–MAL macromere 
-Alginate  
-Gelatine 
-type I collagen  
-Fibrin 
-Electrospun Chitosan/PVA 
-Fibrin micro-thread 
-Keratin 

In situ growth factor 
and/or cell delivery 
 
Ischemia/VML-like 
defect/  
Duchenne myopathy  
 
VML 
 

(+) Protect cells and growth factors during administration 
and prevent washing. Allow to provide cells for efficient 
regeneration. Biomaterials carrying cells and/or GFs 
generally showed higher regeneration potential than their 
non-loaded counterparts. 

(-) Most of the instances lack porosity to ensure cell 
survival in centre regions of biomaterials. 

[152], 
[156], [161] 
[163], [164] 
[206], [244] 
[245], [246] 
[247], [288] 

 
 

Injectability  

Embedded cells (Primary 
myoblasts, Satellite cells, MPCs, 
C2C12 cells, GMSCs, MDSCs) 

-Gel-like biomaterial derived from 
decellularized skeletal  
-Alginate  
-Hyaluronic acid  
-Fibrin 
-Chitosan/dextran 
-Keratin 

Cardiovascular 
engineering  
Muscle injury 

VML repair  

(+) Minimally invasive delivery / conform to the shape of 
complex wounds / easy to handle/ easy to keep sterilized/ 
Cellular and GFs protection during injection.  

(-) Main limitation due to the lack of porosity: Cells 
mortality in the centre of constructs: reflected probable 
diffusion limitations of nutrients toward the centre of the 
construct. Degradation not controllable, no support for the 
tissue. 

[164] 
[153], [155] 
[289], [159] 

[122] 
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Table 2: Review of the various strategies described in literature for skeletal muscle tissue regeneration using biomaterials (continued) 

Strategy for regeneration 
Key parameters of the strategy 

Polymers used for 
biomaterial design 

Application Advantages and limitations /parameters of interest Ref 

Decellularized matrices for 
biochemical cues  

-Skeletal Muscle ECM 

-Porcine small intestinal 
submucosa–extracellular 
matrix 

Transection injury with 
tissue loss 

VML model 

Physical model of skeletal 
muscle 

(+) Mimic the natural structural organization and composition of 
native ECM. Preserve biological signals.  

(-) Difficulty to transpose the technique to large animal model 
(lack of tissue and difficulty to treat them). Harsh treatment to 
prepare ECM not transposable to injectable purposes. Regulatory 
limitations.  

[256] 
[259], [118] 

[127] 
[31] 

[257] 

Porosity  
Tailorable and aligned/oriented  
 
-3D printing  
-Freeze drying  
-Cryogelation 

-Sphere creation + photo-
patterning process  

-Chitosan 
-Collagen / fibrin  
-Gelatine methacryloyl / 
alginate  
-Casein  
-Gelatine 
-Ovalbumin 
-poly(2-hydroxyethyl 
methacrylate) 

Ex vivo engineered tissue 
In vitro cell alignment and 
fusion 
Regeneration of defect in 
TA 

Muscle defect in vastus 
lateralis  

(+) Cellular infiltration and migration inside scaffolds to enhance 
regeneration. Possibility to modulate porosity to meet the 
requirements of tissues and drive cell fate through 3D architecture 
resembling native ECM. Higher surface area for cell loading. 
Pore size between 100-200 µm have shown optimal myotibe 
behaviour. 

(-) Lack of injectability and of conformation to the defect. 

Key parameters for optimization: Interconnectivity.  

[262], [276] 
[263], [271] 

[275],  
[212], 

[280], [274] 
[246] 
[279] 

2D/3D topographical cues  
Aligned pores and grooved 
scaffolds  
-Electrospinning  
-Micro-nano molding techniques 
-Water dispensing and freeze 
drying  
-3D printing  

-Collagen 
-PEGDA macromere 
-Gelatine 
-Collagen + PCL + PVA  
-PCL + silk fibroin + 
polyaniline  
 

-Ex vivo engineered tissue  
-In vitro cell alignment and 
fusion 
-Promotion of cell 
alignment improved with 
smaller channel 
-Regeneration of muscle 
defect 

(+) Possibility to modulate topography as a tool to control 
myotubes length and width/ promote orientation and elongation 
and influence cell behaviour. Interesting for in vitro study of 
myogenesis. 

(-) Difficulty to be transposed in vivo or for clinical usage due to 
the limited thickness and 2D shapeability. Not suitable for large 
volume defects / No injectability due to controlled pre-shaping of 
2D or 3D patterns (highly aligned). 

[270] 
[201] 
[273] 

 

 
MPCs: Skeletal muscle progenitor cells, GMSCs: Gingival mesenchymal stem cells, MDSCs: Muscle derived stem cells, MP: Muscle derived-
Pericytes, rASCs: rat adipose-derived mesenchymal stem cells, hESCs: Human embryonic stem cells. 
PVA: poly(vinyl alcohol), PCL: poly(ε-caprolactone), PEG: poly (ethylene glycol), PEGDA: poly(ethylene glycol diacrylate).  
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2.2 The design of an innovative biomaterial for volumetric muscle loss 

management 

Considering the complex interaction between cells and their environment, the design of 

relevant biomaterials for SMTE is a challenging task. In the following section we have enlisted 

and summarized the specific requirements for the development of an ideal biomaterial for 

volumetric muscle loss (VML) management. To do so, we first identified the features 

characterizing such injuries to define clinical needs. Subsequently, we analysed multiple 

aspects of an innovative biomaterial design to propose a novel solution for the treatment of 

these injuries.  

2.2.1 Clinical needs  

As previously mentioned, injuries resulting in VML are of high prevalence worldwide and are 

most of the time occurring to patients presenting poly traumas involving bones, organs, and 

soft tissues. Patient care is mainly focused on the repair of life-threatening injuries for the 

maintenance of their lives prioritizing bone healing and preventing possible infections and 

organ failure. In this context, patients experiencing VML can suffer from persistent functional 

muscle deficits resulting from their initial untreated injuries or the related surgical procedures 

[290].  

Current clinical treatments for VML consist of wound debridement and engraftments of 

autologous local muscle flaps/grafts to cover the wounds. These treatments are associated 

with certain limitations including muscle flap/graft shortage and possible morbidity at the donor 

site [291]. While attempts for stem cell or growth factors (GF) injection inside wounds have 

been reported, they have failed to enhance regeneration due to the too large tissue void 

associated with extensive cell mortality and molecule washing. In major limb trauma, the 

question remains whether to salvage or amputate the injured limb. Up to date, extensive work 

and attention have been dedicated to the design and commercialization of prosthetics rather 

than on the design of constructs able to guide functional tissue regeneration [292].  

Given these considerations, there is a need to develop a wound filler material that could be 

applied after debridement (12 hours post-injury) to bridge wound edges and help cells creating 

autologous neo-muscle in vivo. However, as the cell microenvironment regulates their fate and 

is of high significance in determining their functions, cells need to be introduced in a 

configuration optimizing differentiation into muscle fibres. Therefore, the development of an 

optimal environment appears critical to recover the functionality of the skeletal muscle tissue 

after injury.   
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2.2.2 Biomaterial requirements  

Although stem cells and particularly SC hold great therapeutic potential to regenerate skeletal 

muscle tissue, the vast number of needed cells and their phenotypic changes after in vitro 

amplification and culture limit their use. In the case of emergency interventions, the use of cells 

remains difficult due to the time needed to harvest, amplify, and re-implant them. Moreover, 

their implantation in humans is still controversial and their commercialization is hampered by 

regulatory bodies demanding extensive pre-clinical and clinical development. As an alternative 

to cell-based tissue-engineering therapies, some groups have evaluated acellular biomaterials. 

The strategy relies on biomaterial ability to create an environment that minimizes infection, 

promotes moisture balance, and regulates cell behaviour to promote tissue repair. Implantation 

of acellular scaffolds offers advantages over cell-based biomaterial including faster and simpler 

fabrication and storage while offering lower regulatory barriers and quicker paths of 

commercialization both in Europe and the US [293].  

However to be implanted as an acellular support to answer the complexity associated with 

VML injuries, the biomaterials should answer many requirements. We identified the following 

parameters as key characteristics to be studied for the development of a relevant biomaterial 

(Figure 11): 

-The biocompatibility of the biomaterials in contact with living tissue. The biomaterial 

designed should not damage surrounding tissues nor induce systemic adverse effects.  

-The cytocompatibility and cytotoxicity should be considered. The biomaterials should be 

formulated in a way that enhances cellular proliferation and differentiation while preventing 

their early death. 

-The injectability of the biomaterial would be appreciated. To be used as an acellular support, 

the biomaterial should provide superior adhesion to tissues to encourage some degree of host 

stem cell recruitment for subsequent tissue regeneration. The delivery of liquid precursors that 

could conform accurately with the shape of complex defects without leaving dead spaces could 

lead to tight interaction between the biomaterial and the surrounding tissues. This tight contact 

would allow close interaction with resident stem cells to enhance their recruitment. In addition 

to being delivered in a minimally invasive manner, injectable biomaterials would be valued for 

their easy handling while staying sterile in case of emergency.  

-The creation of a 3D architecture needs to be studied to enable cellular and vascular 

infiltration and thus sustain host tissue ingrowth for large defects. As the architecture can drive 

cell behaviour, the porosity should be varied to be able to match the requirements of muscle 

cells (alignments, muscle fibre diameters, and length). Also, the porosity should match the 

biomaterial injectability delivery (be formulated in adequate time without the use of toxic 

solvents).  
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-The stiffness of the biomaterial should be taken into consideration. At a macroscopic level, 

the biomaterial should be compliant with skeletal muscle tissue to withstand fatigue in 

unidirectional stress and potentially transmit the remaining muscle contraction. At a cellular 

level, the stiffness should be varied to study its effect on cell behaviour and cell recruitment 

inside the structure.  

-The biomaterial surface properties should encourage cellular adhesion, satellite cells (SC) 

migration, and differentiation along with myoblasts fusion to guide wound healing and tissue 

ingrowth. 

-The biodegradability of the biomaterial should match the rate of regeneration of the muscle 

with gradual resorption providing a template for the tissue during the time of repair.  

-The resulting biomaterials sterilization, transportation, and storage should also be evaluated 

since the biomaterial should be used in hospital within 24 hours after patient arrival.  

-Ultimately, the biomaterial designed should be reproducible and cost-effective. For VML 

treatment, the cost of this material is an important consideration as it will be upscale for large-

volume wounds. 

 

Figure 11: Product specification of an acellular scaffold able to guide skeletal muscle tissue regeneration 
The scaffold needs to interact tightly with the surrounding tissue to enable muscle stem cells (MuSC) 
recruitment while exhibiting an interconnected porosity for efficient cell entry. The scaffolds should 
possess mechanical, architectural and biochemical signals able to drive MuSC behaviour towards 
skeletal muscle tissue regeneration. Pictures adapted from Servier Medical art. 
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Considering the complex requirements defined above, the chosen biomaterial should thus be 

highly tailorable while maintaining common elements to the native ECM for cell to evolve. 

Accordingly, hydrogels appear to be promising, since they recapitulate many of the 

aforementioned requirements.  

Since the first example of contact lenses in 1960 by Wichterle and Lim [294], the interest in 

hydrogels has grown rapidly and their use as wound dressing, drug delivery devices (reviewed 

[295]), or cell carrier has demonstrated their potential in the biomedical field. They are 

particularly attractive as 3D support for cell growth and tissue restoration or replacement since 

they are easily made porous using conventional approaches. Owing to their similarity to native 

ECM and excellent biocompatibility, hydrogels can be used as alternative acellular scaffolds 

to decellularized ECM. Moreover, the possibility to precisely control their mechanical and 

degradation properties compared with decellularized ECM is of especial interest.  

2.2.3 Hydrogels: interesting candidates for tissue regeneration 

Hydrogels are hydrophilic polymer networks assembled by physical or chemical crosslinking 

(reviewed [296]) that can absorb aqueous solutions up to a thousand-fold their dry weight while 

maintaining their structural integrity without dissolving. Their high water content offers a great 

advantage over dry sponges or meshes, since it enable them to mimic the moisture balance 

encountered in vivo.  

2.2.3.1 Methods of production and hydrogel network 

Hydrogels can be classified as chemical or physical depending on the crosslinking points 

formed between hydrophilic polymers, either covalent or non-covalent. Crosslinking methods 

have a direct influence on the structural integrity of resulting hydrogels.  

Reversible physical hydrogels are characterized by non-covalent crosslinks including physical 

entangled networks such as intramolecular interactions in response to changes in external 

conditions (pH, temperature, ionic strength), and secondary forces interactions such as 

hydrogen bonds, electrostatic interactions or hydrophobic forces (reviewed [297]). These 

hydrogels have interesting reversibility and may benefit from an absence of chemical reaction 

making them attractive to avoid extensive washing before implantation to withdraw possible 

toxic crosslinkers. However, they generally exhibit poor mechanical properties and stability 

over time. 

Contrary to physical hydrogels, covalently crosslinked polymer networks referred to as 

chemical hydrogels, result in stronger interactions at intersection points of polymers chains, 

providing excellent mechanical stability. Generally, carboxyl, hydroxyl, and amine groups are 

the most targeted groups to form covalent interactions through Michael-type addition, click 

chemistry, photopolymerization, or the use of crosslinking agents [298]. These covalent 

networks form stable structures with tuneable mechanical properties. However, 

cytocompatibility and biocompatibility must be considered depending on the chemical reagents 
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used for the reaction and the release of toxic products in the case of direct in situ injectability 

purposes.  

The intrinsic characteristics of hydrogels are strongly influenced by the crosslinking method. 

At a molecular scale, physical and chemical hydrogels can be considered as porous polymer 

networks with pore space filled with water (Figure 12). The network structure is referred to as 

the hydrogel mesh with the distance between crosslinking points in the network called mesh 

size. Mesh size for typical hydrogels is in the 1-100 nm range [299] and is linked to the water 

retention capacity of hydrogels. Depending on the crosslinking reaction as well as polymers 

concentration and nature, hydrogels mesh size and subsequent mechanical properties vary. 

In the crosslinked state, hydrogels reach an equilibrium swelling in aqueous solutions that 

depends on the polymer network density and determine their overall nutrient and oxygen 

permeation. These hydrogel’s intrinsic swelling properties, aside from being very attractive to 

resemble the ECM, allow them to capture and release growth factors (GF) in a controlled 

manner strengthening their use as smart biomaterials for TE applications [300]. Many of the 

aforementioned instances directed toward SMTE used swollen hydrogels as a tool to capture 

GF while regulating their diffusion and release through hydrogels mesh size to enhance 

skeletal muscle regeneration with alginate [244], keratin [248],[245], or PEG [156] based 

hydrogels. 
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Figure 12 : Hydrogels representation at various scales 
A) The macroscopic hydrogel formulation characterized by form, size and porous structure. B) The 
network created by the crosslinking of hydrophilic polymers filled with aqueous solutions vs the 
macroporous structure created in porous hydrogel constructs (50-1000 µm). C) The mesh size: the size 
between 2 adjacent crosslinked points (1-100 nm). Both macroporous and microporous structure can 
be adapted by various strategies. 

2.2.3.2 Hydrogels from synthetic or natural polymers 

As for dry sponges and meshes, hydrogels can be formed from synthetic or natural crosslinked 

polymers. Hydrogels made of synthetic polymers have a long history of use in medical 

applications due to their inertia towards tissues with Poly(2-hydroxyethyl methacrylate) 

(polyHEMA) hydrogel being the first used followed by the poly[ethlylene oxide] (PEO), poly-

ethylene glycol (PEG), poly(vinyl alcohol) (PVA) and poly(acrylamide) (PAAm). The FDA 

considers these synthetic polymers along with PLGA, PGA and PLA safe for oral and 

intravenous applications consolidating their use in the biomedical fields. Their exact 

composition and highly reproducible chemical formulation makes them of great interest as 

mechanically tuneable hydrogels. Due to their many advantages, some examples of 

commercialized synthetic polymer based hydrogels have been reported in the biomedical field. 

Among them, hydrogels composed of repeated sequence of arginine, alanine, aspartic acid, 

and alanine known as purastat® (3D matrix) and puramatrix® (BD biosciences) have been 

studied as hemostatic gel for laparoscopic surgery [301] and for bone tissue engineering [302] 

respectively. PEG has also been extensively described alone or in association with other 

polymers given its low protein adsorption, its minimal inflammatory profile, well-established 
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chemistry and its long history of safety in vivo. PEG polymers are also relatively inexpensive, 

water-soluble, and range from 0.4 to 100 kDa [303], comforting their interest for the design of 

versatile hydrogels and as drug delivery or as a cell carrier systems [304]. In recent years, 

dendrigrafts and dendrimers have also been employed as well-defined building blocks for 

hydrogel formulation. They have shown potential as crosslinking monomers thanks to their 

highly organized 3D arborescent organization and the possibility to have a large number of 

terminal reactive end-groups available at their surface, enhancing the number of interactions 

(reviewed in [305]). Their combination with polymers mediates the formation of polymeric 

networks and particularly Poly(amidoamine) (PAMAM) and polyethylenimine (PEI) 

dendrigrafts have been used in biomaterials development [306]. For example, PAMAM 

dendrimers have been successfully crosslinked to functionalized PEG to form hydrogels for 

drug delivery systems [307]. However, PAMAM is related to high cytotoxicity and low 

interactions with cells [308].  

In addition to synthetic polymers, hydrogels can be fashioned with naturally-derived 

polymers. They have been widely used due to their biodegradability, biocompatibility and 

structural similarity to native ECM allowing cells to adhere. In the 1980s, the first hydrogel 

made of naturally-derived polymers was reported for artificial burn dressings using collagen 

[309]. Since then, some of them have led to commercialized formulations such as a collagen-

based hydrogel, Woun’Dres®, by coloplast for skin repair [310]. Hydrogels fashioned with 

crosslinked polysaccharides such as acid hyaluronic [155] and chitosan [262] have also been 

described for TE application given their naturally derived origin and their easy handling and 

crosslinking. Their use was also associated with commercialized product including 

AlgiMatrix™ from alginate for the development of more predictive in vitro cell culture models 

and HemCon®, a hemostatic bandage from chitosan. 

The design of hydrogels made of a combination of both sources (synthetic and natural 

polymers), has been fuelled to recapitulate both mechanical versatility along with the presence 

of natural receptors inside a hydrated matrix. 

Given their hydrated state and their easy production, hydrogels are interesting for VML 

treatment. They act as GF reservoirs and have close ECM mechanical properties able to 

enhance tissue regeneration. Moreover, since they are formulated from hydrophilic polymers, 

hydrogels are generally fashioned from liquid precursors suitable for their injection through 

needles.  
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2.2.3.3 Injectability  

In a context where most of the biomaterials require surgeons to make sufficiently large 

incisions to enable their placement, one of the major thrusts for TE in clinical settings is to 

develop injectable systems that can be applied as liquid precursors through minimally invasive 

delivery. In the case of VML management, injectable biomaterials would offer a clear 

advantage over implantable ones, which need to be pre-cut before placement, complicating 

the procedure and increasing the risk of infection. In addition the application of liquid precursors 

would enable a tight interaction with tissues for the management of wounds of complex shape, 

which is relevant for host cell recruitment inside acellular based biomaterials.  

Hydrogels are thus particularly interesting for minimally invasive delivery due to the use of 

hydrophilic polymers, easily solubilized in aqueous solutions, enabling their injection through 

needles. Once injected, the crosslinking of polymers forms a self-standing material directly in 

situ to promote the good integration to surrounding tissues, allowing them to function as a 

scaffold for cells. Although being an appealing approach, the suitability of hydrogels for 

injectable delivery is governed by many parameters (Figure 13). Difficulties in controlling the 

gelation process can limit the practical use of such hydrogels: too rapid gelation may result in 

needle clogging and the need to apply too much pressure on the plunger while too slow 

gelation could result in uncontrolled liquid dispersion through tissues and mass loss from the 

target site. Moreover, additional reagents necessary for hydrogel crosslinking may cause 

negative effects on cell growth and tissue health while implantable scaffolds can be extensively 

washed to remove undesirable impurities. Therefore, all of the components required to 

synthesize injectable hydrogels for direct in vivo injection must be nontoxic with a cell-friendly 

and perfectly chemically balanced reaction to prevent unrequired products from leaching. In 

addition, their use in a broad range of temperature conditions and their synthesis within 

seconds or minutes should be studied for VML treatments. 
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Figure 13 : Hydrogel formulation requirements for in situ direct injectability  
Hydrogels precursors need to be solubilized in liquid, aqueous and non-cytotoxic solutions. Hydrogel’s 
crosslinking should match injection rates while preventing dispersion in tissues. Hydrogel should be able 
to crosslink in situ without the need for washing or post-formulation treatment. Hydrogel chemical 
reaction should be non-cytotoxic to be performed in situ. Adapted from servier medical art 

Due to their many advantages, in situ injectable hydrogels are strongly favoured in biomedical 

applications [311]. For example, for direct injection of stem cells, which represents a promising 

therapeutic strategy to regenerate tissues, hydrogels have been studied as cell delivery 

vehicles to protect them during injection, prevent their dispersion once injected and then act 

as a support on which they can evolve [312]. Examples of minimally invasive hydrogels as cell 

carriers have been extensively reported for SMTE. Rossi and colleagues have embedded 

satellite cells (SC) inside an injectable hyaluronan-based hydrogel related to a major 

improvement in muscle structure and numbers of new fibres in a defect in mice tibialis anterior 

(TA) muscle [155]. Similarly, Guo and others described a dextran and chitosan-based 

injectable hydrogel as myoblasts cell line (C2C12) and human umbilical vein endothelial cells 

(HUVEC) delivery vehicles for a mice VML injury model [159]. An example of injectable 

alginate-based hydrogel with both cells and growth factors encapsulation has shown potential 

for SMTE highlighting hydrogel interest in the design of smart biomaterials [164].  

However, in most of the aforementioned examples, injected hydrogels lacked porosity for the 

efficient migration and proliferation of cells inside the constructs. This resulted in round-shaped 

cells embedded in hydrogels limiting their regeneration potential [164]. 



74 
 

2.2.4 From 2D to 3D: the challenging issue to obtain both injectable and 

porous biomaterials  

While injectable hydrogels are very interesting for their integration by surrounding tissues, only 

a few examples have allowed an efficient tissue ingrowth and cellular infiltration [313], the vast 

majority possess a too tight networks often preventing cellular movement within the material. 

In addition, hydrogels possessing a tight mesh could limit mass transport of oxygen and 

nutrient, mainly achieved by diffusion. In particular, for VML treatment characterized by large 

voids, diffusion of oxygen could be restricted leading to hypoxia and cellular mortality in centre 

regions of cell-loaded hydrogels [288]. Accordingly, the induction of porosity inside these 

hydrogels appears relevant. In the case of acellular hydrogel strategies, it would improve host 

cells recruitment where dense hydrogels could fill the void created by the injury, although 

confining cells to the wound edges. A porosity inside hydrogels could thus be an asset for the 

infiltration of cells located on the edges and potentially regenerate the tissue de novo. 

Furthermore, porosity appears critical for vascular infiltration and tissue ingrowth for large 

defects. 

The methods previously described for porosity induction (i.e. freeze-drying, casting, 

electrospinning, and 3D printing) provide highly tailorable porosity inside many types of 

biomaterials, including hydrogels. However, these methods need to pre-shape the porous 

structure before their application in contact with living tissues, impeding so their injection. As a 

result, these approaches are so far confined to pre-shaped structures for invasive and stressful 

implantations. Moreover, the approach used to create a porosity, besides being suitable with 

a minimally invasive delivery, should also be cell-friendly and perfectly chemically balanced to 

prevent any toxic product release while avoiding the use of organic solvents or harmful 

components. Consequently, instances of both in situ injectable and porous hydrogels remain 

scarce and their design still represents a technical challenge. However, some strategies have 

been developed over the past few years and are reviewed below, in Figure 14 and Table 3. 
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2.2.4.1 Current methods for the formation of injectable and porous hydrogels 

and their limitations  

Solvent casting and particle leaching  

Solvent casting and particle leaching techniques have been already extensively used for non-

injectable purposes. They are based on the dispersion of porogens (salts or polymers particles) 

into hydrogel precursors’ solutions or during the sol-gel transition. The hydrogel is then allowed 

to crosslink around porogens of controlled sizes that are subsequently leached by immersing 

the composite materials in a specific solvent and under precise conditions (temperature, pH, 

ionic strength). During leaching, the porogens leave voids inside the network, leading to the 

creation of porosity (Figure 14A).  Paraffin [314], sucrose [315], NaCl [316], or biodegradable 

hydrogel [317] have been largely described in literature as porogens. Unlike freeze-drying, 3D 

printing, or electrospinning, this method is technically compatible with injection thanks to the 

liquid state of hydrogel precursors and the small size of porogens, able to pass through 

needles. Nevertheless, while the porogens are generally non cytotoxic, their leaching or 

dissolution process generally involves harsh solvents, extreme temperature, or pH conditions 

unsuitable with direct contact with tissues or cells. Moreover, the use of salts is generally 

combined with organic solvents to slow down their dissolution and keep them in crystal form 

until hydrogel crosslinking, further preventing their use in contact with living systems. 

To combine these methods with injectability, some approaches rely on non-toxic porogens 

able to dissolve in physiological environments. For instance, gelatine [318]–[320], mannitol 

[321] or oxidized alginate with fibrin [322] have been reported, as these reversible gels are 

rapidly dissolved at physiological conditions (i.e. pH =7.4 and temperature =37 °C) thereby 

inducing the pore formation within hydrogels once injected. Particularly, the use of gelatine as 

a natural physically-formed hydrogel has been extensively described for particle leaching. 

Gelatine is a product resulting from the partial hydrolytic degradation of collagen. It has a 

thermo-reversible sol to gel transition associated with its triple coil helix structure. In aqueous 

elevated temperature solutions, gelatine exists in random coil conformation. Upon cooling, and 

for concentrations above 2%, a partial recovery of the collagen-like triple-helical structure 

occurs leading to the formation of a physically entangled network. This network creates a gel 

not soluble in aqueous cold solutions [323]. However, in physiological conditions (i.e. 37°C and 

pH 7.4), the gelatine recovers the random coil conformation and is dissolved. Then, the body 

physiologically degrade the gelatine due to its natural origin. 

 

Few studies have been able to demonstrate the in situ injectability of such systems with in vivo 

studies. Goh and colleagues have described an in situ injectable and porous PEG-diacrylate 

hydrogel with a porosity made by gelatine microparticles (MPs) leaching. However, the 

reported in vivo cell infiltration inside the construct remained scarce in their study and the 

hydrogel photosensitive crosslinking limited its use to superficial parts of the body (where light 

can reach the hydrogel). On the other hand, Zhu and others successfully reported the use of 
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thermo-sensitive hydrogels able to form self-standing materials upon temperature raise once 

injected into animals while showing extensive porosity due to mannitol MPs leaching. 

Nevertheless, to perform a porosity with windows of interconnections suitable for the infiltration 

of cells, there is a need to have a substantial density of MPs to allow their compaction which 

can be related to needle clogging. Although optimization needs to be done to reach the clinic, 

the strategy holds promise and worth further development.   

Highly compressible materials with elastic behaviour  

Another strategy consists of formulating hydrogels able to withstand high reversible 

deformation upon compression to be delivered through needles. Beduer and colleagues 

developed porous highly compressible cryogels [324] or 3D printed [325] pre-shaped alginate 

hydrogels able to be delivered in a minimally invasive way in dehydrated form. Once injected, 

the hydrogel undergoes a rapid volumetric recovery by swelling (Figure 14B). These hydrogels 

were able to interact with neurons and showed long-term preclinical evidence. This strategy 

has given birth to the AdipearlTM gel used for soft tissue reconstructive and plastic surgery 

(Volumina Medical, under clinical trials). Others instances of highly compressible hydrogels 

have been reported with a gelatine-based hydrogel [326] and a methacrylated-alginate 

hydrogel [327], injectable through conventional needles while maintaining a predefined 

geometry and architecture. All these examples have shown interesting results in vivo. 

However, one of the drawbacks that is worth mentioning is the fact that hydrogels are pre-

shaped before their injection. Their pre-shaped state could influence their interaction with 

tissues, preventing them to fill complex voids. Moreover, it requires the porosity and the 

material to be suitable with a 90% elastic deformation while recovering their initial shape 

without plastic non-reversible deformations. This feature limits the number of usable 

candidates and their mechanical properties modulation. 

Fast degradability strategies 

Various research groups have also explored the use of fast degradable hydrogels upon 

injection. The strategy lies in the injection of hydrogels in the site of interest and counts on their 

in situ fast degradability within the first hours of implantation to create a path for cells inside 

the bulk material (Figure 14C).   

Fast degradability can be based on the creation of fibrin hydrogels from the self-assembly of 

cleaved fibrinogen. These hydrogels are fashioned by mixing fibrinogen, a glycoprotein 

responsible for clotting in the body, with thrombin in calcium chloride solutions mimicking the 

natural haemostatic cascade. The variation of fibrinogen and thrombin concentrations enables 

obtaining tailorable fibrin meshwork. Therefore, the degradability of the hydrogel can be 

adapted to get the most favourable rate of degradation by loosening or tightening the resulting 

meshwork. In the body, fibrin clots are naturally degraded after the end of the coagulation by 

the plasmin enzyme, responsible for the fibrinolysis. Fibrin degradation products are then 

cleared by other proteases including cathepsins [328]. The ability of fibrinogen and thrombin 
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to form a highly degradable hydrated network has thus been exploited by various groups for in 

situ injectable purposes. These hydrogels were successfully injected in animal models with 

clinical potential for reconstruction of skeletal muscle defect [158], for tissue-engineered 

cartilage [329], and as cell delivery vehicles, rapidly releasing embedded cells to the site of 

injection [330]. All these instances described the use of a dual syringe system including 

Duploject® or Tissucol® kit to mix fibrinogen and thrombin upon injection. After injection, they 

all showed an appropriate crosslinking with a degradation of the resulting meshwork that was 

dependent on initial amounts of fibrinogen and thrombin.  

However, a common drawback of these approaches is the risk for un-polymerized fibrinogen 

and thrombin residues that could be related to clot formation in other un-specific sites. On top 

of that, while providing interesting biochemical cues due to naturally derived polymers, these 

hydrogels are hardly mechanically tuneable and are subjected to low reproducibility due to 

batch-to-batch variabilities. To overcome these drawbacks, degradable synthetic-based 

hydrogels can be used. For instance, physical crosslinking based on hydrogen bonding using 

pluronic® F-127 and carboxymethylcellulose [331] or based on pluronic® F-127, HA, and PGA 

[332] can be easily degraded in vivo due to weak interactions between polymers, leading to 

the formation of porosity. 

While being attractive, these hydrogels generally exhibit poor stability over time with a rapid 

degradation (2 weeks) restricting their application as long-term supports for cells and tissues. 

Hydrogel’s digestion by enzymes have also been investigated to form the porous system in 

situ at specific times. The strategy relies on the injection of a hydrogel followed by the injection 

of specific enzymes to degrade it at desired time points. It has been described with alginate-

based hydrogel degraded with alginate lyase [333] and with gelatine-hydroxyphenylpropionic 

acid/carboxylmethylcellulose-tyramine hydrogel degraded by cellulase enzyme [334]. PEG 

hydrogels with light controlled degradation have also been developed with UV light irradiation 

[335]. Nevertheless, these hydrogels degradability is based on further injection or light 

irradiation, making their use more complex than a one-shot injection. 

All these examples describe porosities formed in situ after hydrogels injection providing very 

interesting potential for various types of biomedical applications. However, the main drawback 

of these strategies in the case of VML management is the poor mechanical stability provided 

by such hydrogels, whose degradability is faster than the actual tissue regeneration. 
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Figure 14: Current strategies developed to obtain both porous and injectable hydrogels for various 
applications  
A) Solvent casting techniques followed by porogens leaching in physiological conditions B) Formulation 
of highly compressible porous hydrogels able to withstand 90% elastic deformation to be injected 
through needles, adapted from A. Béduer et al., Adv. Healthc. Mater., 2015 [324], C) fast degradability 
strategies and D) inverse porosity using self-assembly or annealing of micro/nanoparticles 
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Inverse porosity  

In the last few decades, efforts have been devoted to designing hydrogels at micro and 

nanoscales for their delivery through needles. The strategy is based on a two-step chemical 

reaction cascade, (1) the chemical crosslinking of individual micro or nanobeads hydrogels 

followed by (2) the chemical annealing or self-assembly of the beads into larger scaffolds, 

whose interconnection is created by the void between beads. The self-assembly or annealing 

is mandatory to avoid beads dispersion in tissues and act as a whole construct (Figure 14D). 

To form hydrogels at micro and nanoscales some strategies have been reported among which, 

microfluidics, emulsion and mechanical fragmentation have shown some potential [336]. 

For example, gelatine microparticles functionalized with photo-crosslinkable methacrylamide 

groups for subsequent crosslinking [337] have been successfully injected in a calvarial bone 

defect in rats with extensive cellular infiltration. Griffin and colleagues, decorated PEG-based 

microparticles with cell adhesive peptide and two transglutaminase peptide substrates that 

react together through factor XIII activation enabling particles assembly [338]. They showed a 

high potential for wound management and vasculature development.  

Although the use of nano or microbeads requires their self-assembly or annealing to act as 

scaffolds, some strategies have been successfully developed to allow both injectability and 

porosity inducement. However, the photo-crosslinking necessary to anneal microbeads in 

some instances need the introduction of surgical instruments to deliver the light source. These 

instruments render the device more traumatic for patients and more complicated to use in case 

of emergency. In addition, this approach is generally associated with low percentage of 

porosity considering the high density of particles needed to be annealed or assembled, 

restricting the space available for cells and tissues. Nevertheless, all of these approaches have 

shown to be relevant for various applications including tissue regeneration. 
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Table 3: Review of the strategies explored in literature to generate both injectable and porous hydrogels with their positive attributes and main limitations.  

Strategy / porosity 
realization 

Applications Positives attributes Limitations Ref 

Particle leaching 

-Muscle, cartilage, adipose 
tissue engineering  
-Cell encapsulation  
-TGF-β1 release  
 

-Compatible with various gelation 
system and material candidates. 
-Possibility to modulate pore size 
through particle size. 
-Molecules and cell release possible 
simultaneously to porogens leaching  

-Need a perfect coordination of delivery and gelation time especially 
to allow interconnection.  
-Number of porogen candidate are limited. Porogens should not 
interfere with the gelation process while leaching in physiological 
conditions. Their dissolution time must be appropriate and match 
tissue ingrowth. Porogens must be cell friendly and nontoxic.  

[320] 
[321] 
[319] 
[322] 
[318] 

Compressible scaffolds with 
shape memory properties 

- Brain and soft tissue 
engineering, 
-Cells and molecules 
encapsulation 

-Possibility to modulate the porosity 
through the cryogelation freeze/drying 
process.  
-Allow extensive washing or post-
formulation treatments. 

-Preformed hydrogels trigger less adaptability to complex shapes 
than liquid precursors.  
-The method is not compatible with various gelation system. Need to 
design a robust system able to withstand reversible deformations at 
over 90% to go through a needle and a rapid volumetric recovery 
once injected. Low mechanical versatility. 

[324], 
[325] 
[327] 
[326] 
[289] 
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Hydrogel digestion 
by enzyme 

-Soft tissue engineering 
-Revascularization 
applications  

-Degradability can match cellular 
infiltration and the tissue ingrowth for 
efficient regeneration  

-Need to inject the enzyme to degrade the hydrogel.  
-No mechanical support conservation over time linked to fast 
hydrogel degradation. Difficulty to control the porosity.  

[333] 
[334] 
 

UV-triggered degradation 
profile 

-Cells encapsulation  
Possibility to control the degradation 
profile to match the tissue ingrowth for 
regeneration 

Application of light for porosity inducement (more invasive for 
patients). Difficulty to control the porosity.  

[335] 
 

Fibrin degradability 
-Muscle, bone and cartilage 
engineering  

Fibrin is  biocompatible and 
biodegradable; there is no 
immunogenicity to be expected and 
foreign body reactions can be 
excluded 

Degradability should match the rate of tissue ingrowth to be a 
support. Be quick enough to allow cellular infiltration if not 
embedded. Not transposable to other hydrogel system. Not possible 
to use synthetic hydrogels. No control on the mechanical properties 
Risk for clot formation in other un-specific sites. 

[158] 
[330] 
[329] 

Weak interactions 
between polymers 

-Dermal filler  
-Tissue barrier for anti-
tissue adhesion 

No addition of any chemical 
crosslinking agents that may reduce 
biocompatibility  

-No mechanical support conservation over time linked to fast 
hydrogel degradation. Difficulty to control the porosity. 

[331] 
[332] 

Inverse porosity : 
Porosity obtained with the 
negative space between 
assembled microspheres 

-Cutaneous wound healing 
-Delivering vehicle for 
anesthetics  

Controllable porosity and injectability 
through microspheres diameter 
(microfluidic or water and oil emulsion)  

-No macro-mechanical properties able to sustain tissue.  
-Need to assemble microspheres together or contain them in a liquid 
vector to prevent microspheres dispersion in tissues.  
-Low percentage porosity compared with other methods. 

[338] 
[339] 
[340] 
[341] 

Emulsion templating technique 
Water and oil emulsion with 
sacrificial porogen (oil, gas) 

-Drug delivery system 
-Bone/ Systemic lupus 
erythematosus treatment 

Porosity with air bubbles generation: 
cell friendly  

Oil as a porogen can limit in vivo applications. 
Difficulty to maintain the emulsion and control it during injectability 
(luer lock dual syringe system). 

[342] 
[343] 
[344] 

Gas foaming methods 
-Broad tissue engineering 
applications 

-Volume expansion. Application to 
various crosslinking system 
-Most of instances only applicable to 
bone regeneration (use of cements). 
Use of CO2 : inert gas / cell friendly  

-Risk of gas cavity.  
-Gas leaching over time. 
-Difficulty to control pore size. 
-Not transposable easily to other systems. 

[345] 
[346] 
[347] 
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2.2.4.2 Gas foaming techniques: an interesting option 

Although the aforementioned approaches are of high relevance for the creation of porosity 

inside hydrogels, the use of gas foaming techniques present many advantages. Gas foaming 

techniques permit solvent-free formations of porous materials through bubble gas generation 

(reviewed [348]). Gas foaming found its original application in the biomedical science in the 

’80s in drug delivery. The use of air has been described to generate porosity inside silanized-

hydroxypropylmethylcellulose hydrogel coupled with α-TCP powders [346] and inside calcium 

phosphate bone cement [343] for bone tissue engineering suitable with paste injection. Air 

bubbles, indeed, appear spontaneously during the mixing of powders and liquid phase and 

can be exploited to create the porosity inside composites while avoiding the use of harsh 

solvents. 

Among gas foaming techniques, CO2 gas generation has also been extensively described. For 

instance, studies have reported the use of supercritical CO2 [349],[350], high pressure CO2 

[351],[228],[352], water-in-carbon dioxide emulsions [353],[354], or ammonium bicarbonate 

[355]–[357] to create porosity inside biomaterials of various applications. CO2 is a non-toxic, 

inert gas that does not affect the biochemical integrity of proteins such as elastin [358], 

lysozyme, and insulin [359]. Thus, the use of CO2 is generally cell friendly which makes it 

attractive for TE applications [260] and suitable with the use of growth factors (GF) [351].  

The effervescent approach  

Even though the use of CO2 is attractive, the aforementioned processes are generally not 

transposable to in situ injectability purposes. Interestingly, effervescence, which is a very 

common approach to generate CO2 bubbles, has not been investigated in the context of 

injectability. The use of effervescence, relies on the reaction between a carbonated base and 

a carboxylic acid with sodium bicarbonate (SB) and citric acid (CA) being the more common 

couple. Effervescent salts are promising for porosity creation due to their carbon dioxide 

evolving property upon contact in aqueous solution and relatively cell-friendly behaviour 

(reaction detailed Figure 15).  

Many groups have described the creation of porosity inside hydrogels using effervescent 

approaches, mostly based on two main strategies (Table 4). The first one takes advantage of 

the increase of viscosity experienced by the hydrogel liquid precursors during crosslinking. To 

do so, hydrogels precursors are mixed in acidic conditions and carbonated base powders are 

manually added to the solution to generate CO2 bubbles. The timing is relevant to disperse the 

carbonated base powders as a threshold viscosity is required to entrap CO2 bubbles inside the 

polymer network. It is even more relevant given that most of the crosslinking reactions 

described are sensitive to pH. The addition of base is then used to boost the resulting 

crosslinking reaction in a time-specific manner to entrap CO2 bubbles.   

In the second strategy, a dispersion of carbonated base powders throughout solidifying 

polymers is followed by crosslinked powders-loaded hydrogels immersion in an acidic bath for 
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the creation of CO2 bubbles inside the hydrogel network similarly to a salt-leaching-based 

method.  

 

Figure 15: Effervescent reaction between citric acid and sodium bicarbonate 

(a) Sodium bicarbonate dissolve in aqueous solution into bicarbonate and sodium ions, (b) citric acid 

react with bicarbonate to form carbonic acid. (c) Carbonic acid is unstable in water at atmospheric 

pressure and room temperature and immediately dissolve into H2O and CO2. Stoichiometric conditions 

require the use of 3 sodium bicarbonates to react with the 3 carboxylic groups available on one citric 

acid to form sodium citrate as the final end product.  

All the examples reviewed in Table 4 share common characteristics including the observation 

of a pore size broad distribution and an interconnection of the resulting porosity without the 

formation of a nonporous dense layer at the surface. The latter being crucial for cellular 

infiltration, it comforts the use of effervescent approaches as an effective way to produce a 

porosity suitable for TE applications. These methods allow obtaining an extensive porosity of 

up to 90 % with pore ranging from 10 to 600 µm depending on the studies. Of note, using an 

effervescent approach to create a porosity inside materials was generally reported for the 

design of ‘superporous hydrogels’ since the pores are in the order of a few hundred 

micrometers [360], defined as macropores according to previous consensus in TE applications 

[260],[343],[346]. Given that they exhibit fast swelling behaviour and superabsorbent 

properties, these hydrogels are generally designed as molecule carriers. However, these 

approaches showed also a potential interest in combination with cement to create bone grafts 
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[361][362], with PLLA or PEG hydrogels for cartilage regeneration [363],[364], or with elastin-

like recombinamers [365] for connective tissue regeneration. 

All of these instances described either a gas foaming/salt leaching process with acidic baths 

or formulations that need extensive washing to rinse organic solvents used to prevent alkaline 

crystals dissolution. As a result, even if the use of CO2 could be employed to avoid the use of 

harsh solvents, many instances included n-pentane, 2-methylbutane, hexane, heptane, 

dichloromethane, acetone, methanol to slow down effervescent powders solubilisation [366]. 

Moreover, a large part of these examples either used hydrogels with slow crosslinking velocity 

or included additional steps (ultrasound baths, freeze-drying) to be able to entrap CO2 bubbles 

inside the network. Hence, hydrogel chemistry or the need for mandatories additional steps 

prevented the direct, in situ minimally invasive delivery of these formulations.  

In conclusion, some strategies have already been described for the formation of porosity (1) 

compatible with hydrogel injection or (2) suitable for direct contact with cells and tissues without 

washing by avoiding the use of harsh solvents. However, instances of both porous and in situ 

injectable hydrogels remain scarcely described in literature. These hydrogels may offer 

interesting therapeutic possibilities through easy handling for emergency purposes. More 

specifically, in the case of VML, they could offer a ready-to-use treatment applicable through 

a single step injection while conforming accurately to the wound and allowing host cell 

recruitment.    

 

 



84 
 

Table 4: Porosity made by effervescence inside biomaterials and the processes limiting their in situ injectability (part I).  

The strategies are taking advantage of the hydrogel crosslinking simultaneous to the effervescent reaction.   

Strategy Material 
Porogens 

Porous structure 
Processes limiting In situ 

injectability 
Application Positive attribute Ref 

Concomitancy 
 

-Acid in liquid 
precursors 

 
-Addition of carbonated 
bases (in powders) at a 

specific time to 
hydrogels precursors. 
Hydrogel precursors 
need to be viscous 

enough to entrap CO2 
bubbles. 

Timing is important 
 
 

Use of pH change to 
boost crosslinking 

 

Acryl amide + 
BIS + Pluronic® 
F-127 

-Acrylic acid + sodium 
bicarbonate  
-Pore size: 100-250 µm - 
Over 300 µm 
-Presence of Interconnection 

-Hydrogels made of hazardous 
substances  
-Dehydration step at 60°C for 12 
hours  
-Washing in 80% ethyl alcohol for 1h  
-Crosslinking: 30min 

-Molecule absorption 
and controlled 
delivery and release 
-Gastroretentive 
drug delivery system 
/ Gastric retention 
devices 
-Critical fast swelling 
and superabsorbent 
properties required 
 

-Possibility to control the 
porosity: the porosity 
increased as the amount 
of base, acid, and foam 
stabilizer increased 
 
-Porous structure 
heterogenic and broad. 
 
-Possibility to form 
longitudinally formed 
structure and oriented 
pore structure 
 
-Basic pH stimulated 
polymerization 
 
 

[367] 

Chitosan / poly 
(vinyl alcohol) 
+pluronic® F127 

-Acetic acid + sodium 
bicarbonate  
Porosity: 40-88%   
-Presence of Interconnection 

-Freezing/thawing cycles for 
crosslinking   
-Crosslinking speed: overnight at RT  

[368] 

Vinyl monomers 

Acrylic acid  + sodium 
bicarbonate 
Pore size: 150-300 µm  
-Presence of Interconnection 

-Sodium bicarbonate suspension 
stirred with spatula  
-Use of TEMED /APS  

[369] 

Acrylic acid + 
Acrylamide + 
BIS + Pluronic® 
F127 

Acrylic acid + Sodium 
bicarbonate  
-Pore size 150µm   
-Highly connected pores 
 

-Hydrogels made of hazardous 
substances  
-Addition of absolute EtOH  
-Drying in food dehydrator (80°C for 
6 hours) and 4 hours of crosslinking 

[360] 

PEGDA +  
Pluronic® F127 
as a foam 
stabilizer 

Citric acid + Sodium 
bicarbonate   
-Pores 100 to 600 mm. Broad 
distribution 
-Interconnected, 70% porosity  

-Extensive washing after formulation 
-80% EtOH dehydration  
-Base addition with a constant 
stirring for 30 min.   
-Crosslinking: 30 min at 37°C 

-Mesenchymal stem 
cells seeding  
-Bone tissue 
engineering  

[362] 

PLGA 
Methacrylic acid + sodium 
bicarbonate  
10-20µm porosity: small 

-Toxic crosslinker (TEMED + APS) 
-Extensive washing  
-Crosslinking speed: 10 min at 4°C 

Fast release for 
treatment of 
thrombosis  

[370] 

poly-
(sulfobetaine 
methacrylate) 

Methacrylic acid +Sodium 
bicarbonate  

-Toxic crosslinker (TEMED+ APS) 
-Crosslinking speed: 30 min at room 
temperature 

Study of the 
morphology of 
endothelial cells  

[371] 
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Table 4: Porosity made by effervescence inside biomaterials and the processes limiting their in situ injectability (part II).  

The strategies rely on the entrapment of carbonated base powders inside hydrogels network to then immerse the hybrid biomaterials in acid baths, limiting in 

situ injectability.   

Strategy Material 
Porogens 

Porous structure 

Processes limiting In situ 
injectability 

Application Positive attribute Ref 

Multi-steps 
processes: 

Hydrogel formulated 
and crosslinked with 

carbonated base 
powders followed by 

its immersion in 
acidic solution 

(salt leaching/gas 
blowing method) 

Polyrotaxane + 
PEG-BA 

Citric acid +potassium 
carbonate 
-Macroporous hydrogels 
(200-400µm) 
-Well-interconnected 

-Incubation 24 hours at 40°C 
-Extensive washing for 36 hours 
with DMSO 
-Crosslinking speed: 24 hours at 
40°C 

Cartilage regeneration 
and chondrocytes 
culture 

Possible pore control 
through concentration of 

the citric acid bath 
and through size of 

carbonated base particles 
incorporated to the 

polymer 

[363] 

Elastin-like 
recombinamers 
containing RGD. 

Citric acid + Sodium 
bicarbonate 
-Controlled pore size <40; 
<100 or 40-100 µm. 
Homogeneous pores 
-Interconnected pores 

-Use of EtOH during formulation 
-Extensive washing in PBS 
-Crosslinking speed: 30 min at 
37°C 

Bioengineering 
materials with elastin. 
Fibroblasts and 
connective tissues 

[365] 

Elastin like 
polymers 

Citric acid + Sodium 
bicarbonate 
-200-300µm 
-Presence of 
interconnection 

-Use of DMF 
-Extensive washing in milli-Q 
water 
-crosslinking speed: 3 hours at 
RT 

Potential broad 
application. 
Endothelial cells in vitro 

[372] 

PLGA 

Ammonium bicarbonate + 
citric acid 
-Homogeneous pores 
Pore size 200 µm / 90% 
porosity 
 

-Use of chloroform and EtOH 
-Immersion in aqueous citric acid 
solution 
-Hot water baths 
-Extensive washing 

Swelling behaviour 
Molecule absorption 
and released by 
hydrogels 

[357] 
 

APS: ammonium persulfate ; BIS: (N’N-methylene-bis-acrylamide ; PEG-BA: poly (ethylene glycol)bisamine, PPF: poly (propylene glycol-co-

fumaric acid), PEGDA: poly (ethylene glycol) diacrylate, PLLA: poly (L-lactic acid), PLGA: poly (lactic-co-glycolic acid),  
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2.2.5 The choice of a relevant hydrogel system of potential for VML 

treatment.  

Our goal in this work was thus to propose an innovative biomaterial as a possible candidate to 

answer the complex product specifications that we defined above for the improvement of 

functional muscle regeneration after injury. Concretely, the objective is to develop a proof-of-

concept for VML treatment through various aspect of a biomaterial design to in fine interact 

conveniently with skeletal muscle cells and tissues. 

Recently, a hydrogel has been developed within the LBTI (Laboratoire de Biologie tissulaire et 

d’ingénierie thérapeutique) with the aim of combining mechanical tailorability with inherent 

properties for cell adhesion and growth [373]. To answer the complex requirements 

characterizing VML, this previously described hydrogel seems to be of high relevance. 

Hydrogel precursor’s choice dictates the biomaterial performance towards intended 

applications and is thus important. Among polymers, the PEG backbone has been largely used 

for the design of hydrogels due to its easy functionalization with reactive end-groups through 

various paths (e.g. methacrylate, acrylate, or NHS ester), to participate in covalent bonding for 

crosslinking. Resulting controllable crosslinking allows tailoring of the final support stiffness by 

modulating the chemical reaction. However, PEG bio-inertia requires most of the time an 

association with other functional moieties to promote cellular adhesion and survival. To provide 

the PEG polymer bioactivity while preserving its mechanical versatility, it was crosslinked with 

poly-(L-lysine) grafted dendrimers (DGL). DGL are polycationic arborescent-like structures 

formed by the assembly of naturally occurring L-lysine. They are obtained after lysine 

molecules grafting onto a linear poly-L-lysine (PLL) polymer structure to form increasing 

generation of DGL (G1 to GX). This synthesis is highly reproducible with a control on the 

molecular weight. DGL have shown to be soluble in aqueous solutions, stable under 

sterilization, with low cytotoxicity, and non-immunogenic properties [374]. As a consequence, 

they have been used in the biomedical field with applications in tissue regeneration based 

strategies [375], [376]. Among DGL the third generation (DGL-G3) ability to increase 

fibroblasts adhesion and proliferation when coated on plastic dishes in comparison to linear 

Poly-L-Lysine (PLL) [377] has encouraged its use in our group as crosslinking monomers to 

PEG to provide the inherent biochemical cues lacking to the inert PEG.  

DGL/PEG hydrogel formation has been shown to be possible through the simple and 

straightforward mixing of bifunctionalized O,O′-Bis[2-(N-Succinimidyl-succinylamino)ethyl] 

polyethylene glycol (NHS-PEG-NHS) and poly-(L-lysine) grafted dendrimers of third 

generation (DGL-G3) solutions. Amine groups that are available at the surface of the DGL in 

high-densities bind with PEG via N-hydroxysuccinimide (NHS) to form covalent amide bonds 

(Figure 16A and B), leading to the formation of a polymer network at adequate concentrations 

and ratios of both components. The DGL/PEG hydrogel thus preserves the PEG stiffness 
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versatility and the DGL inherent bioactivity without the need for further functionalization with 

functional moieties (Figure 16C) 

 

Figure 16: DGL/PEG hydrogel formulation 
A) poly-(L-lysine) grafted dendrimers present a high concentration of available amine (NH2) at their 
surface, enabling the reaction with PEG molecule through NHS. B) The reaction between DGL and 
PEG-NHS forms a covalently crosslinked network with the formation of amide bonds. C) The hydrophilic 
nature of both polymers enables the network to absorb large quantity of water leading to the self-
standing DGL/PEG hydrogel. In the reaction R represents the polyethylene glycol, R’ represents poly-
(L-lysine) grafted dendrimers of third generation–G3. C) Complex modulus in compression of DGL/PEG 
hydrogels of various concentration and ratio (kPa) showing a stiffness tailorability through DGL and PEG 
concentration.  Effect of the stiffness and hydrogel composition on fibroblastic cells showing different 
ability to spread out and proliferate on the support.  
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The DGL/PEG hydrogel has been studied in contact with normal human dermal fibroblasts 

with promising results ([373] and attached article). Fibroblasts were able to conveniently 

adhere and grow on DGL/PEG hydrogels without additional functionalization, assessing the 

influence of the DGL to provide inherent bioactivity to the hydrogel. Moreover, we 

demonstrated that fibroblastic cells were highly affected by the stiffness and the composition 

of DGL/PEG hydrogels in terms of adhesion, proliferation and migration (Figure 16C). 

Accordingly, interesting conditions were targeted to produce in vitro full-thickness skin 

equivalents when associated with keratinocytes and fibroblasts [378]. Finally, DGL/PEG 

hydrogel biocompatibility was studied in subcutaneous implantations in mice demonstrating 

mild foreign body reaction with macrophages visible at the external edges of implants. No 

granulocytes nor lymphocytes could be observed surrounding the DGL/PEG hydrogel, 

suggesting a good tolerability in contact with tissues and assessing its potential for tissue 

engineering.  

Considering that the DGL/PEG hydrogel holds promising results with fibroblastic cells, 

we wondered if it could be adapted to interact with skeletal muscle cells. Skeletal muscle 

cells possess a higher level of complexity compared with fibroblasts as they require various 

signals to grow or fuse. As the stiffness and the composition of the hydrogel can be varied by 

modulating DGL and PEG concentration and molar ratio, we wondered if it could affect skeletal 

muscle cells behaviour and how it could be controlled to be optimal for their growth and/or 

fusion.  

Along with the DGL/PEG hydrogel, an elastin-like polypeptide (ELP) has been developed in 

our laboratory to present a similar amino acid sequence schemes to native tropoelastin  [379]. 

It is composed of a repetition of hydrophilic motives present in native human tropoelastin: 

VGVAPG and VGVLPG (and the tropoelastin domain 36 including a disulfide bridge and a 

positively charged sequence GRKRK (Figure 17). 

 

Figure 17: The elastin-like polypeptide  
Structure of the elastin-like polypeptide developed in the laboratory. A flag tag (DYKDDDDK) is located 
right after N-terminal extremity followed by a repeated presence of hydrophobic domains VGVAPG-
VGVLPG and crosslinking domain AAAKAAAKAAK. The domain 36 containing GRKRK motif is 
represented in green. Red arrows point at ELP sequences interacting with cell EBP or integrins.  A stand 
for Alanine, C for Cysteine, D for Asp, G for Glycine, K for Lysine, L for Leucine, L for lysine, P for 
Proline, V for Valine, and Y for tyrosine. Adapted from Lorion 2015, Université Claude Bernard Lyon 1 
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When added to the culture medium of normal human dermal fibroblasts, the ELP presence 

has shown to increase cell proliferation. More interestingly, surfaces coated with the ELP have 

been related to an increased cell adhesion confirming its biological activity. This activity has 

been associated with GRKRK and VGVAPG functionality as the inhibition of ανβ3 integrins 

and EBP with anti-ανβ3 integrins antibodies and L-lactose respectively triggered a cell 

adhesion decrease [380]. Considering these results, the ELP was introduced inside DGL/PEG 

hydrogel liquid precursors to be entrapped inside the hydrogel network during crosslinking. 

The presence of the ELP inside the DGL/PEG network was associated with increased 

proliferation and spreading area of fibroblasts on the substrate [378]. It has also been related 

to an enhanced fibroblasts infiltration when incorporated in porous DGL/PEG hydrogels 

designed for full-thickness skin equivalent. 

Given promising results in contact with fibroblasts, and previous reports showing elastin-like 

polypeptide effect on myoblasts [234], we wondered if the addition of our ‘in house’ ELP 

inside DGL/PEG hydrogel could influence skeletal muscle cell behaviour. The ELP was 

thus envisaged to provide relevant biochemical cues to the DGL/PEG hydrogel to influence 

cell adhesion, proliferation and/or fusion.  

Finally, due to the hydrophilic nature of DGL and PEG polymers, they are soluble in aqueous 

solutions, and they can be, in theory, injected through needles to react upon injection and form 

a self-standing hydrogel. However, DGL/PEG hydrogel injectability has never been 

demonstrated in previous work. As not all liquid precursors based hydrogels are suitable for 

injection, we thus wanted to investigate whether the DGL/PEG hydrogel could be 

injected. Moreover, the DGL/PEG hydrogel has a tailorable crosslinking velocity depending 

on DGL/PEG ratios and concentrations, it can be varied to control precisely the time of the 

reaction and allow the passage through needles. We as well wondered if a porosity could 

be induced inside the DGL/PEG hydrogel while maintaining its injectable potential by 

taking advantage of its fast and tailorable crosslinking velocity. If few examples of fast gelling 

hydrogels have been reported in literature [381], [382], they are generally limited to low 

mechanical properties and poor stability. The DGL/PEG hydrogel by having controllable 

mechanical properties could enable the formation of a porosity while providing a support for 

skeletal muscle cell without adverse effects on tissues 
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General context 

The striated skeletal muscle tissue possesses a tremendous regeneration potential after direct 

or indirect traumas (e.g. car accidents or ischemia) following a well-coordinated series of 

events leading to the restoration of normal tissue architecture and function. However, 

volumetric muscle loss (VML) characterized by a loss of more than 20% of the muscle mass 

overwhelms this regeneration capacity and induce persistent functional deficit and disability.  

A fully developed muscle is made of an association of muscle fibres. Each muscle fibres is a 

syncytium formed as a result of the fusion of hundreds of specialized cells, myoblasts, able to 

fuse with each other. When the muscle is injured, muscle stem cells known as satellite cells 

are activated and migrate towards the site of injury to proliferate and differentiate into 

myoblasts contributing to muscle fibres regeneration. In VML, repair does not allow to restore 

the full functionality of the initial tissue in regards of contractility due to the lack of an orderly 

reconstitution of a structurally and mechanically valid extra-cellular matrix (ECM). Instead, a 

scar tissue is synthetized, attributed to the ablation of resident satellite cells and the lack of 

ECM that normally provides the structural and mechanical support on which cells can migrate 

and are guided towards functional regeneration. This imbalance between the recruitment of 

satellite cells and fibroblasts into the injury results in large amount of collagen deposition and 

the replacement of the muscle tissue by a fibrotic tissue, unable to contract.  

Current clinical treatments to prevent fibrosis and recover muscle functionality consist of 

wound debridement and engraftments of autologous local muscle grafts or flaps. However, 

autologous muscle grafts and flaps are associated with high prevalence of failures, need for a 

second surgical procedure, lack of muscle flap/graft availability, and morbidity at the donor site. 

While attempts for stem cell or growth factors injection inside wounds have been reported as 

promising innovative treatments, they generally failed to enhance regeneration due to the too 

extensive tissue void, leading to extensive cell mortality and molecule washing.  

In this context, tissue engineering and regenerative medicine, which aim to guide the functional 

regeneration of tissues and organs, are of high potential for VML treatment. They exploit the 

principles of engineering and life sciences towards the development of relevant biological 

substitutes overcoming the limitations associated with current treatments (auto and allograft 

procedures). The implantation in the wounded site of a 3D structure able to guide satellite cells 

and their progeny towards functional regeneration of the tissue is an interesting therapeutic 

possibility. In the last decades, it has become clear that the microenvironment is a potent 

regulator of muscle cell behaviour during the process of myogenesis through physical, 

biochemical, and architectural cues. Scaffold design has thus focused on biomaterials of 

specific chemistry, biochemical and mechanical properties for the promotion of highly precise 

interactions with skeletal muscle cells within a 3D environment.  
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Optimally, scaffolds for VML treatments should be injectable to conform to complex lesion 

shapes and tightly interact with the surrounding tissue while allowing neovascularization, 

innervation, and muscle precursor cells entry through adequate porosity. To this end, 

hydrogels have been extensively studied due to their excellent biocompatibility, their similarity 

to native extracellular matrices (ECM) in terms of water retention and cell adhesion, and 

injectable potential. Recently, 3D porous hydrogels have been designed to fill large defects 

while sustaining nutrient and oxygen transport as well as cellular and vascular infiltration for 

tissue ingrowth. Particularly, many studies have developed and characterized hydrogels able 

to carry cells inside wounds and guide them towards skeletal muscle tissue regeneration. 

However, they generally failed to design an optimal support providing all the mechanical and 

biochemical cues required by the tissue, in a single set and within a swift and straightforward 

injectable delivery. 

A recently developed hydrogel, made from standardized elements (poly-(L-lysine) grafted 

dendrimers (DGL) and polyethylene glycol, PEG), has shown to be a relevant substrate for 

various cells. The synthetic nature of the hydrogel provides a precise control over its chemistry 

resulting in a broad mechanical properties versatility. Contrarily to others synthetic based 

hydrogels, the DGL/PEG hydrogel possesses inherent cyto-compatibility to interact 

conveniently with cells through polycationic charges brought by the DGL amines. The 

DGL/PEG hydrogel crosslinking, made in physiological environments, presents the interesting 

feature to allow the inclusion of an elastin-like polypeptide (ELP) in its bulk, enabling an 

enhanced fibroblasts proliferation and migration. The DGL/PEG hydrogel has demonstrated 

good in vivo tolerability further confirming its potential for tissue regeneration. Very 

interestingly, the DGL/PEG hydrogel is technically injectable through the mixing of liquid 

precursors.  
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Thesis objectives  

While extensive development has been made in the production of scaffold-based strategies 

for skeletal muscle repair, most scaffolds rely on the use of embedded cells for functional 

regeneration. However, the incorporation of cells restricts their clinical approval by authorities. 

Considering there is no clinically approved therapy for the management of large muscle defects 

and given the very interesting features of DGL/PEG hydrogels, the aim of this thesis was 

therefore to investigate their potential to act as scalable support for the functional regeneration 

of skeletal muscle tissue in the case of VML. Accordingly, we propose in this work to study 

multiple aspects of a scaffold design to interact conveniently with host cells and tissues. To do 

so, multiple objectives were sought. 

I- In a first chapter, we investigated whether dense DGL/PEG hydrogels could 

act as a support to control muscle cell response through the modulation 

of mechanical and biochemical cues. Previous efforts have generally been 

orientated toward improving a single aspect of this set. Hydrogels are highly 

swollen polymeric network mimicking native ECM which stiffness and elasticity 

can be controlled to promote cell behaviour. In addition to the mechanical 

properties, the influence of the amount of DGL and ELP on substrate surface 

was further studied on cell fate. We thus evaluated the influence of (1) six 

various stiffness, (2) four various DGL/PEG molar ratios and (3) a single 

concentration of ELP inside the DGL/PEG hydrogel. To assess the effect of 

mechanical and biochemical cues on skeletal muscle cells, three cell types were 

studied herein: a mice myoblasts cell line (C2C12), primary mice myoblasts 

(pMMs) and immortalized human myoblasts (iHMs). This chapter helped us to 

find optimum parameters of the DGL/PEG hydrogel to sustain skeletal muscle 

cells (Figure 18, part I).  

 

II- In a second chapter, we evaluated the possibility to create a porosity inside 

the DGL/PEG hydrogel while preserving its in situ injectable potential. 

Instances of in situ injectable and porous biomaterials remain scarce in 

literature. In particular, very few instances have been evaluated for skeletal 

muscle functional regeneration. Therefore, the design of both injectable and 

porous DGL/PEG hydrogel may offer many therapeutic possibilities for soft 

tissue regeneration among which the management of VML. We therefore 

investigated various methods to create a porosity inside the hydrogel network 

through injection of liquid precursors, to interact tightly with the tissue in which 

it is placed. We then characterized the resultant porosity and its possible 

modulation through various parameters. Finally, we assessed the good 

cytocompatibility and biocompatibility of the innovative formulation to validate 
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its possible use for direct injection purposes following classic regulatory 

standards. Therefore, host response to DGL/PEG hydrogels was evaluated by 

subcutaneous injection in mice (Figure 18, part II). 

 

III- In a third and final chapter, we assessed the ability of the innovative 3D 

injectable formulation to guide skeletal muscle cells proliferation and 

differentiation. In view of further clinical applications, we performed injectable 

and porous formulation of the DGL/PEG conditions targeted in the first chapter 

to study their relevance toward muscle cells. Accordingly, the behaviour of 

C2C12 cells and human primary myoblasts was evaluated in proliferation and 

differentiation. The results generated in the third chapter provided a first proof-

of-concept for the use of 3D DGL/PEG hydrogel to manage VML injuries (Figure 

18, part III).  

 

All of these results were finally discussed to determine the potential of innovative formulations 

as in vitro 3D models for the study of myogenesis. In addition, this work opened perspectives 

for further optimization of the DGL/PEG hydrogel towards its direct in vivo injection for skeletal 

muscle tissue engineering  
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Figure 18: Thesis objectives 
Chapter 1:  Study dense DGL/PEG hydrogels as supports to control muscle cell response through the 
modulation of mechanical and biochemical cues 
Chapter 2: Evaluate the possibility to create a porosity inside the DGL/PEG hydrogel while preserving 
its injectable potential 
Chapter 3: Assess ability of the innovative 3D injectable formulation to act as a relevant support for 
skeletal muscle cells 
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1 Dense DGL/PEG hydrogel formulation  

The poly-(L-lysine) grafted dendrimers of third-generation (DGL-G3), 22 000 Da were 

purchased from COLCOM (Clapiers, France).  

The O,O′-Bis[2-(N-Succinimidyl-succinylamino)ethyl]polyethylene glycol at 2000 Da (PEG-

NHS) was bought from Sigma Aldrich (Saint Louis, USA).  

Sterile Dulbecco’s Phosphate Buffered Saline (DPBS), butan-1-ol, anhydrous N,N-

Dimethylformamide (DMF), and Dimethyl sulfoxide (DMSO) were purchase from Sigma Aldrich 

(Saint Louis, USA). 

Phosphate-buffered saline (PBS) 10X was purchased from EuroMedex (Strasbourg, France) 

and diluted in ultrapure water to obtain a final 1X concentration.  

Stock solutions of DGL and PEG-NHS were realized at 400 mg/ml (w/v) using 5 ml volumetric 

flasks. DGL was solubilized in PBS 1X and PEG-NHS in organic solvents (either DMF or 

DMSO) to prevent NHS hydrolysis in aqueous solutions. DGL and PEG-NHS aliquots were 

stored at -20 °C before use. Once thawed, DGL and PEG-NHS aliquots were kept on ice and 

used within the next hours to prevent successive freeze-thaw and loss of reactivity.  

The elastin-like polypeptide (ELP) was provided by the LBTI and solubilized in PBS 1X 

extemporaneously at desired concentration and kept on ice before use.  

Dense hydrogels of various DGL/PEG-NHS ratios and concentrations were prepared by simply 

adding PEG-NHS and DGL to the adjusted volume of PBS 1X in 2 ml conic tubes (Maxymum 

Recovery, Axygen) to obtain the desired concentrations followed by vigorous homogenization. 

When needed, ELP at a final concentration of 4 mg/ml was introduced with DGL in PBS and 

the PEG-NHS was then added to the solutions followed by vigorous homogenization.  

1.1  DGL/PEG hydrogel discs 

For discs, 400 µL of hydrogel precursors were let to crosslink inside 2 ml tubes of internal 

diameter of 8 mm). Subsequently the tubes conical bottom was cut and they were submerged 

in 100% ethanol for 20 min to trigger hydrogels shrinking and easy retrieval. The resulting 

cylindrical hydrogels were subsequently rehydrated in PBS 1X and sectioned using a 

vibratome (7550 Integraslice) at a 50 Hz frequency, 1 µm amplitude, and a slow blade speed 

of 0.10 to 0.15 mm/s. Finally, hydrogels discs of 2 mm high and 9.1 mm wide were stored in 

PBS 1X at 4 °C for further use (Figure 19A).  
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1.2  DGL/PEG hydrogel drops 

For drops, right after the homogenization, 90 µL of hydrogels precursors mix were deposited 

onto a highly hydrophobic PTFE plate. Hydrogels were allowed to crosslink for 10 minutes in 

wet chambers, detached from the hydrophobic surface, and immediately used for subsequent 

experiments without any washing or post formulation treatment. For culture cell purposes, 

DGL/PEG hydrogel drops were realized under a laminar airflow cabinet in an aseptic manner 

(Figure 19A).  

1.3  DGL/PEG hydrogel adhered discs in 48 well plates 

For hydrogels adhered in well plates, 90 µL of mixed liquid hydrogel precursors were rapidly 

deposited in wells of a 48 well plate and quickly recovered with 600 µL of hydrated butan-1-ol 

for meniscus smoothing. After crosslinking, hydrogels were extensively washed and sterilized 

overnight in an EtOH/PBS (70/30; v/v) solution at 4 °C followed by extensive washing with 

sterile DPBS. Hydrogels were kept immersed in sterile DPBS at 4 °C before use. To reach 

highly concentrated hydrogels, the preparation was performed in a cold room (4 °C) to slow 

down the chemical reaction. The resulting plane hydrogels were 10 mm wide and 0.7 mm high 

to prevent the cells from feeling the underneath plastic stiffness. 

In the present work, eight various DGL/PEG-NHS hydrogels concentrations were studied 

(Table 5) for a single ELP concentration of 4 mg/ml with the PEG-NHS either solubilized in 

DMF or DMSO (Figure 19A).  

Table 5: Concentrations and molar ratio of DGL/PEG hydrogels studied in this work 

DGL / PEG 

(mg/mL) 

DGL / PEG 

(mM) 

Nomenclature 

DGL/PEG (mM) 

DGL: PEG 

ratio 

25/50 1.14/25 1/25 * 1:25 

35/50  1.60/25 1.6/25 ** 1:16 

50/38 2.27/19 2/19 1:10 

50/50 2.27/25 2/25 1:12 

50/75  2.27/37.5 2/37 ** 1:16 

50/100 2.27/50 2/50 * 1:25 

*, ** DGL/PEG hydrogels of various stiffness but with the same DGL/PEG ratio  
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2 ELP production  

Kanamycin and polyethylene-imine (PEI) were brought from Sigma Aldrich (Saint Louis, USA). 

The elastin-like polypeptide (ELP) was obtained by recombinant protein production. The ELP 

DNA coding sequence was cloned with Flag tag fusion protein using the pET30a vector 

backbone. BL21(DE3) E.Coli strain was transformed with pET30a-Flag-ELP plasmid. Single 

colonies were isolated on Luria-Bertani (LB) agar 73 medium supplemented with 50 μg/ml 
kanamycin and incubated at 37°C overnight. Then, 200 ml of Terrific Broth supplemented with 

50 μg/ml kanamycin were inoculated with one colony and incubated at 37°C overnight under 

shaking (150 rpm). In a bioreactor (Minifors II, INFORS), a total of 4 L of Teriffic Broth were 

inoculated with preculture at DO=0,1. Bacteria were grown to log phase DO=1, in the presence 

of kanamycin, 1 mM trace elements, and glycerol (10g/L) at 37°C under agitation at 400 rpm 

and 20 % pO2. The temperature of the culture was decreased to 25°C and expression was 

induced with 1 mM Isopropyl β-d-1-thiogalactopyranoside (IPTG) for 16 hours under agitation 

from 400 rpm to 800 rpm at 20 % pO2. To avoid foam formation, 500 μL of anti-foam was 

added.  

For purification, the culture was harvested and centrifuged at 5000 g for 20 minutes, bacteria 

were resuspended in 400 ml of ultrapure water and lysed by pressure cell disruption at 2600 

bar (Cell Disruption System, Constant System Ltd). The lysate was harvest, buffered with 20 

mM Tris-HCl pH 8.8 and centrifuge at 10000 g for 20 min. The supernatant was treated with 

0.2 % Polyethylene-imine (PEI) on ice, PEI was slowly added under soft agitation and then 

centrifuged for 20 minutes at 10000g and 4 °C to eliminate precipitated contaminants. After 

eliminating contaminants, 500 mM of NaCl was added to the supernatant, incubated for 10 min 

at 40°C and finally centrifuged for 10 minutes at 10000 g and 40°C. The pellet was re-

suspended in DPBS overnight at 4°C and centrifuged at 5000g for 10 minutes at 4°C. Finally, 

the supernatant was freeze-dried (Cosmos, Cryotec) and stored at -20°C before use. Stock 

solutions of ELP were prepared by suspending the dry protein in DPBS to a maximal 

concentration of 40 mg/ml and used extemporaneously. 
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Figure 19 : Dense DGL/PEG hydrogel characterization  

A) Schematic representation of dense DGL/PEG hydrogel formulation in various shapes for 

characterization.  

-Discs were 9.1 mm wide and 2 mm high. Discs were extensively washed and sterilized before use. 

-Drops were formulated on hydrophobic surface (PTFE), detached, and used immediately without any 

washing of post formulation treatment to mimic direct in situ injection. Drops were realized in sterile 

conditions.  

-For cell culture, discs were adhered to cell culture plates. Adhered discs exhibited a flat surface of 9 

mm in diameter and 7 mm in height to prevent cells from feeling the plastic stiffness. Adhered discs 

were extensively washed and sterilized before use. 

B): Dense DGL/PEG characterization  

Top: Input parameters studied on dense DGL/PEG hydrogels, 

B1) Blue box: chemical and mechanical characterization of hydrogels as a function of inputs parameters 

B2) Yellow box: biological characterization using NHDF, C2C12 and ihMs cells as a function of inputs 

parameters 
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3 Elaboration of a DGL/PEG porosity suitable with its injection  

3.1 Preliminary study 

3.1.1 Particles leaching  

3.1.1.1 Gelatine microbeads realization 

Type B Gelatine was purchase from BioRad (Hercule, USA), sunflower oil was bought from 

Casino (France), and the tween 20 from EuroMedex (Strasbourg, France). 

Preparation of gelatine microbeads (GMBs) 

Gelatine microbeads (GMBs) were prepared following an established protocol with minor 

modification (Sokic et al., 2014 [261]). Briefly, 1 g of gelatine was dissolved in 9 ml ultrapure 

water at 60°C. The gelatine solution at 10 % (w/v) was then added in 50 ml of sunflower oil at 

60°C under stirring at 500 rpm. The emulsion was maintained for 10 min at 60°C, before 

lowering the temperature by adding an ice bath to reach ∼15 °C at a constant stirring. After 30 

minutes, the dispersion was divided into four 50 ml tubes and mix with an excess of cold PBS 

1X. The emulsion was kept below 15°C during washing to prevent GMBs solubilisation. Tubes 

were centrifuged for 10 minutes at 300 g and 4°C and the supernatant discarded. Tween 20 

at 1% in PBS 1X was then added in excess and 50 ml tubes centrifuged again to discard the 

supernatant containing tween 20 and oil. GMBs were rinsed twice with PBS 1X and four times 

with tween 20 at 1 % followed by three washes with distilled water. GMBs were either stored 

hydrated at 4°C in distilled water or frozen in liquid nitrogen, stored at -20°C overnight, and 

freeze-dried for storage.   

3.1.1.2 Porous hydrogels using gelatine microbeads 

DGL and PEG were mixed to obtain 400 µL of a final 2/25 mM concentration, vigorously 

homogenized by vortex, and rapidly transferred into 2 ml conic tubes (Maxymum Recovery, 

Axygen) containing either hydrated or dehydrated GMBs. The mix was vigorously pipetted to 

obtain a homogeneous distribution of GMBs throughout the hydrogel. After crosslinking, 

DGL/PEG hydrogels containing GMBs were immersed in PBS 1X and kept at 37°C under 

agitation for 24h. Positive and negative controls were performed with DGL/PEG hydrogels 

containing GMBs kept at 50°C or 4°C under agitation to follow GMBs leaching.  

Hydrogels were then manually cut and observed under a fluorescence microscope to follow 

gelatine leaching.  
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3.1.2 Stabilized air emulsion inside DGL/PEG hydrogels 

PEG 8000 was purchased from Sigma Aldrich (Saint Louis, USA). The tween 20 was bought 

from EuroMedex (Strasbourg, France). 

DGL and tween 20 between 5 and 15 % in PBS were deposited inside a 1 ml syringe. The 

PEG-NHS in DMF and the PEG 8000 between 5 to 15 % (w/v) in PBS were deposited inside 

another 1 ml syringe with a desired volume of air pumped into the syringe. The PEG 8000 was 

added to hydrogels precursors to increase solutions viscosity. Both syringes were joined by a 

connector and solutions with air were mixed by pushing the plungers of the syringes 

alternatively in opposite directions for 10 seconds followed by hydrogel precursor’s injection in 

2 ml conic tubes. Resulting hydrogels were carefully removed from the tube, cut longitudinally 

and observed under a light microscope. 

3.1.3 Effervescent approach 

The potassium, calcium, magnesium and sodium carbonate, the sodium bicarbonate, the citric 

acid, and the succinic acid, the pluronic® F-127 were all purchased in powders from Sigma 

Aldrich (Saint Louis, USA). The glacial acetic acid was purchased at 17.67 M from Carlo Erba 

reagents (Milan, Italy). 

The pluronic® F-68 was bought at 10% from Thermo fisher scientific (Waltham, MA, USA) and 

the tween 20 from EuroMedex (Strasbourg, France). 

3.1.3.1 Study of effervescent reaction  

Effervescent reaction properties were investigated to study their behaviour and their potential 

to match the crosslinking process of the DGL/PEG hydrogel.  

To this end, various carbonated bases and carboxylic acid (listed below) were studied 

solubilized in ultrapure water (concentration used listed Table 6).  

Table 6 : Carboxylic acid and carbonated base concentrations of stocks solutions  

Carbonated bases Stock solutions (saturation) 

Potassium carbonate (KC) K2CO3 8.1 M 
Calcium carbonate (CaC) CaCO3 1.3 x 10-4 M 

Magnesium carbonate (MgC) MgCO3 1.2 x 10-3 M 
Sodium Carbonate (NaC) Na2CO3 2.8 M 

Sodium bicarbonate (NabC) NaHCO3 1.03 M 
   

Carboxylic acids Stock solutions (saturation) 

Citric acid (Ca) C6H8O7 2.82 M 
Succinic acid (Sa) C4H6O4 0.59 M 

Glacial acetic acid (Gaa) CH3COOH 17.67 M 

Carbonate bases and carboxylic acids were mixed at various molar ratios (from 1:2 to 2:1 

Acid:Base) and various final molarities (0.5, 1.0, and 1.5 M) in PBS 1X or PBS 10X. The 

effervescence power and CO2 bubbles generation were visually assessed. The effect of 
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surfactant addition (tween 20, pluronic® F-127 or pluronic® F-68) at various concentrations was 

visually studied on effervescence duration over time and bubbles repartition. The pH of the 

solutions after effervescence was monitored at 25°C using a pH meter (Mettler Toleda, 

FiveEasy) at various time points. At least 3 various effervescence were generated for each 

condition studied. 

Study of the effect of pH, ionic strength, surfactant and PEG solvent on dense 

DGL/PEG hydrogels crosslinking and chemistry 

To investigate whether the effervescent reaction can be coupled to the DGL/PEG crosslinking 

reaction and to determine an appropriate range of conditions allowing CO2 bubbles 

entrapment, the DGL/PEG crosslinking was performed in various pH and ionic strength 

dependent medium. The pH (from 5 to 10), the ionic strength (from 0.5 to 1.68 M), the ion 

nature (acid and base cited below as well as hydrochloric acid (HCl) and sodium hydroxide 

(NaOH)) and surfactants influence on the resulting crosslinking was studied on DGL/PEG 

hydrogel using effervescent solutions that had already reacted.  

To do so, acid and base were mixed at various ratios and concentrations to obtain distinct pH 

and ionic strength. Effervescences were let to occur for 15 minutes with vigorous 

homogenization. After the effervescence was completed, the DGL in PBS and the PEG-

NHS in organic solvents were added to the mix and vigorously homogenized. After 

homogenizations, hydrogels of various DGL/PEG compositions were shaped like discs, drops, 

or adhered discs as needed. To study the effect of the pluronic® F-68 at 1.7; 3.3 and 5 %, DGL 

and PEG-NHS were added to pluronic® F-68 in PBS to obtain a 2/25 mM DGL/PEG 

concentration. Control hydrogels were composed of DGL/PEG at various concentrations in 

PBS.  

Table 7 : Gaa and KC respective concentrations in hydrogels to obtain a final 1.1M at various molar 
ratios 

Gaa:KC  
molar ratio 

Gaa (M) KC (M) 

1:1.6 0.428 0.684 
1:1.5 0.445 0.667 
1:1 0.582 0.530 

1.33:1 0.635 0.477 
1.5:1 0.667 0.445 

1.75:1 0.707 0.405 
2:1 0.741 0.371 

Table 8 : Gaa and KC respective concentrations in hydrogels to obtain a 1.75:1 molar ratio at various 
final concentration 

Gaa + KC final 
concentration (M) 

Gaa (M) KC (M) 

0.5 0.318 0.182 
1.0 0.636 0.364 
1.5 0.954 0.546 
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3.2 Effervescent porous hydrogels (EPH) formulation 

Glacial acetic acid (Gaa) and potassium carbonate (KC) were chosen for subsequent 

experiments at a 1.1 M final molarity and a molar ratio between 1.33:1 and 1.75:1. Pluronic® 

F-68 was chosen as a foam stabilizer at final concentrations between 1.7 and 5%. 

To prepare effervescent porous DGL/PEG hydrogels (EPH), DGL and KC were mixed at 

desired concentrations in PBS in a conic tube (1) to obtain a 200 µL final volume. 

Concomitantly, pluronic® F-68, Gaa, and PEG-NHS in organic solvents at desired 

concentrations were mixed in a second conic tube (2) to a 200 µL final volume. After vigorous 

homogenization of both mixes, mix (2) was transferred to mix (1) and manually homogenized 

by pipetting. After crosslinking, EPH were immersed in PBS for further use.   

The volume expansion of the EPH was quantified as follows: 400 µL EPH at various final 

DGL/PEG concentrations (1.6/25; 2/25 and 2/37 mM) were prepared as described above. 

Their volume expansion was then calculated as the ratio between the volumes of EPH after 

crosslinking and dense hydrogels of the same concentrations. At least three hydrogels were 

measured for each condition studied. 

3.2.1 Preparation of porous hydrogels by injection 

The injectability of effervescent porous DGL/PEG hydrogels (EPH) was assessed by preparing 

the two mixes as described above. After vigorous homogenization of both mixes, they were 

heated at 37°C in a water bath. Both mixes (200 µL each) were transferred in different 

compartments of a dual syringe (adhesive dispensing Ltd) at a ratio 1:1. Both mixes there then 

injected in a conic tube through a static mixing nozzle (adhesive dispensing Ltd – 49.7 mm). 

The injectable system was assessed on various hydrogels conditions (1.6/25; 2/25 and 2/37 

mM DGL/PEG with and without the presence of ELP) for a set 1.33:1 Gaa:KC molar ratio and 

3.3 % PF-68. 

After crosslinking, EPH formulated from manual homogenization or injection were immersed 

in PBS for 24 hours to prevent drying and favour CO2 bubbles removal. They were then 

removed from conic tubes, embedded in agarose 1 %, and manually cut to obtain 2 or 3 mm-

thick discs. Discs were then rinsed extensively with PBS at 60°C to remove agarose, sterilized 

overnight in a solution of EtOH/PBS (70/30 v/v), and stored in PBS for further use. 
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3.2.1.1 Force needed to inject the DGL/PEG hydrogel  

The force needed to inject DGL/PEG hydrogels was assessed with porous 2/25 mM DGL/PEG 

hydrogels prepared as described above. Dense 2/25 mM DGL/PEG hydrogels were prepared 

as control as follows: DGL in PBS was placed in the first compartment of a dual syringe and 

PEG with PBS in the other compartment to obtain 300 µL in each cartridge. The dual syringes 

connected to a mixing nozzle were placed in a Texture Analyser TA.HDplus (Texture 

Technologies, Hamilton, MA) and the force needed to push the plungers while maintaining a 2 

mm/s velocity was recorded using a 500 kg load cell. Distilled water was tested as a positive 

control. 

At least three dense and porous hydrogels were measured. 

4 Characterization of dense and porous DGL/PEG hydrogels  

4.1 Crosslinking velocity  

The crosslinking velocity of DGL/PEG hydrogels was recorded inside a small glass vial (8x35 

mm). Briefly, DGL in PBS at desired concentrations was mixed with the buffer of interest or in 

PBS 1X as a control in the vial under agitation (500 rpm) with a magnetic rod (5 mm). The vial 

was placed at exactly 4 cm from the magnetic stirrer and the PEG in organic solvent was added 

at the desired concentration. Crosslinking time was defined as the time needed to reach a 

viscosity threshold able to halt the magnetic rod after adding the PEG to the mix. The 

crosslinking time was defined at room temperature (RT) in a final volume of 50 µL. At least 

three hydrogels were measured for each condition studied. 

In addition, the PEG solvent was studied on the resulting crosslinking reaction. To do so, PEG-

NHS was solubilized in various solvents (DMF, DMSO and PBS) aliquoted and stored at -

20°C. Right after solubilisation (W0) and after 1 and 4 weeks of storage (W1 and W4), the 

crosslinking velocity of a 2/25 mM DGL/PEG hydrogel made in PBS was recorded as 

previously described. 

4.2 Crosslinking degree evaluation 

The crosslinking degree of DGL/PEG hydrogels was investigated using drops of 2/25 mM 

DGL/PEG dense hydrogels prepared using fluorescein-labeled DGL at 0.2 % of the final DGL 

concentration. Hydrogel drops were formulated with the buffer of interest and right after 

crosslinking, they were immersed in PBS (600 µL) without washing or post formulation 

treatments. After 24 hours incubation at 37°C, supernatants were harvested and their 

fluorescence measured using a fluorescence microplate reader (TECAN infinite® 200) at 

excitation 485 nm and emission 535 nm. At least three hydrogels were measured for each 

condition studied. 
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4.3 Dynamic mechanical analysis  

4.3.1 Principle 

One of the features of hydrogels is their viscoelastic behaviour resembling native ECM [383]. 

Hydrogels under deformation, display properties of both elastic solids and fluid resistance to 

flow. One of the most reliable and well-described ways to measure the viscoelastic properties 

of materials is through dynamic mechanical analysis (DMA) [384]. DMA is based on the 

application of small oscillatory stress (σ) to material samples (here in compression) with their 

resulting deformation (ε) monitored to generate another oscillatory strain curve.  

The phase shift between oscillatory stress and strain curses is therefore the measure of the 

amount of elasticity present in a sample. In oscillatory experiments, the phase shift allows to 

separate the elastic and viscous modulus of the materials with the following equation:  

𝑡𝑎𝑛 𝛿 = 𝐸′′𝐸′  

For viscoelastic material, the Hooke’s law is replaced by a specific relationship between the 

stress (σ) applied on samples and the resulting strain (ε) σ = 𝐸∗ε 

Where E* is the complex modulus: 𝐸∗ = 𝐸′ + 𝑖𝐸′′ 𝑖2 = −1 

E’ is the dynamic modulus of elasticity or the storage modulus and represents the elastic part 
of the material. The imaginary part (E’’) is called the loss modulus and represents the viscous 
part (out of phase) and is related to material’s ability to dissipate stress through heat.  

When E’ is higher than E’’, the material can be defined as mainly elastic with a phase shift 
below 45° 

4.3.2 Protocol 

The mechanical properties of dense (2 x 9.1 mm) and porous (3 x 9.1 mm) hydrogels discs of 

various compositions were analysed by cyclic compression with a dynamic mechanical 

analyser (DMA 242 E Artemis, NETZSCH, Germany). Hydrogels domain of linearity was first 

determined for each condition with a strain sweep test in compression performed in PBS 

immersion at room temperature (with amplitudes from 1 to 100 µm at 1 and 10 Hz). Samples 

were then subjected to compression at 10 % and 30 % strain (for dense and porous hydrogels 

respectively), 50 µm amplitude, and 1 Hz frequency in PBS immersion at a constant 

temperature of 25°C.  
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The 10 and 30 % constrain applied on dense and porous hydrogel cylinders was obtained 

using 1 mm wide PTFE blocks of 1.8 mm or 2.1 mm high respectively. Briefly, hydrogels 

cylinders were placed on the sample holder together with PTFE blocks, which were 10 and 30 

% shorter than the cylinders (2 and 3 mm high for dense and porous hydrogels respectively). 

The upper part of the geometry (used to applied strain on the sample) was then moved down 

on the samples until reaching the PTFE block, characterized by an abrupt pushrod 

displacement of more than 20 µm (recorded by the displacement sensor). The PTFE block 

was then carefully removed to obtain 10 or 30% constraints on the samples, and cyclic 

oscillatory stress in compression was applied to samples. At least three hydrogels were 

characterized per condition studied.  

4.4 Swelling ratio 

The swelling (Qs) of 2 mm thick and 4.5 mm wide half-circle hydrogels was determined in PBS 

at 37°C from dense hydrogels discs. Briefly, hydrogels were extensively rinsed in milliQ water, 

immersed in liquid nitrogen and freeze-dried for 48 hours at 400 mTorr (Cosmos, Cryotec). 

Freeze-dried samples were weighed using an analytical balance, immersed in a 37°C PBS 

solution, and kept at 37°C. Samples were blotted to remove exceeding PBS before each weight 

measurement performed after 1; 2; 4; 8; 24 and 48 hours of immersion. Measurements were 

taken until reaching equilibrium. The swelling ratio was calculated using the following equation:  𝑊𝑠 − 𝑊𝑑𝑊𝑑  

Where Ws represents the swollen weight of the sample at time t and Wd represents the dry 

weight of the freeze-dried sample. At least three hydrogels were measured per condition. 

4.5 Rheological measurements 

Rheological measurements were carried out on dense and porous 400 µL DGL/PEG hydrogels 

at 23°C. To do so, a Haake Mars rheometer (thermoHaake®, Germany) with a titanium parallel-

plate geometry (20 mm diameter) was used. Wall slip was avoided by using plates equipped 

with emery paper. Hydrogels right after homogenization were injected between parallel-plate 

geometries. A shear stress of 1 Pa was applied at five frequencies (i.e. 0.3; 0.5; 1; 1.8 and 3.2 

Hz). The evolution of G’ and G’’ overtime was followed with acquisitions every minute during 
the gelation process. G’ was determined as the stabilized value obtained at a constant 1 Pa 
constrain (less than 1% variation in the previous hour). Samples were then subjected to a 

strain increase from 0.1 Pa to 15 000 Pa at 1 Hz frequency. The fracture was determined as 

the strain related to an abrupt G’ decrease. 

The chemical characterization performed on DGL/PEG dense hydrogels of various 

components is resumed in Figure 19.B1. 
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4.6 EPH porosity characterization 

For representative pictures, EPH were immersed in a 0.1 % Coomassie brilliant blue G-250 in 

methanol/acetic acid/water (20/10/70; v/v/v) solution for one hour, followed by three washing 

in PBS. For porosity characterization, 2 mm-thick EPH discs were prepared as described 

above (injected or with manual homogenization) using fluorescein-labeled DGL (DGL-FITC) at 

0.4 % of the final DGL concentration.  

The resultant EPH structure was studied by image analysis from 2 mm-thick discs observed 

by laser scanning confocal microscopy (LSCM Zeiss Imager.Z2) under PBS immersion. To do 

so, 400 µm z-stacks were realized on the entire diameter of hydrogels discs (on both sides). 

To determine pore size, three arbitrary positions (in distinct z positions) were selected on each 

stack, and pore area and diameter were measured with ImageJ analysis. An average of 400 

pores in separated positions was quantified for each hydrogel. The total volume occupied 

by pores was extrapolated using ImageJ plugin “BoneJ” [385] on entire stack images of each 

hydrogel discs. The size of windows of interconnection was determined by a successive 

thresholding method adapted from Bellamkonda and colleagues [386] on 3 arbitrary positions 

on each z-stack. Briefly, binary images were used and pores were individualized using a 

watershed algorithm to obtain interconnections. An image containing the closed pores was 

subtracted to an inverted one without closed pores showing only interconnections between 

pores allowing their measurements. Interconnections were quantified in the three dimensions 

(x,y,z). 

The porosity was characterized for various Gaa:KC molar ratio, pluronic® F-68 concentration, 

DGL/PEG conditions and homogeneization methods (Table 9). At least three EPH per 

condition were characterized at six distinct positions (see Figure 20). 

Table 9: Parameters studied on DGL/PEG EPH porosity 

Gaa:KC  
molar ratio 

Pluronic ® F-68  
(%) 

Hydrogel concentration 
mM DGL/PEG 

Homogenization 
process 

1.5:1 

1.7% 

2/25 

Manual 

3.3% 

5% 

1.75:1 
3.3% 2/25 

1.33:1 

1.33:1 3.3% 

1.6/25 

Injection 2/25 

2/37 

 

  

https://www.linguee.fr/anglais-francais/traduction/thresholding.html
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Figure 20 : Porosity characterization  
Representative pictures of a 2/37 mM DGL/PEG hydrogel 400-µm stack made by laser scanning 
confocal microscopy. Hydrogel formulated with 1.33:1 Gaa:KC and 3.3 % PF-68 
A) The percentage of porosity was determined with BoneJ plugin using the entire 400-µm z-stack. B) 
One 2D picture was extracted from stack and C) converted into binary image. D) Watershed treatment 
was performed to individualize pores and reveal interconnections. E) Pore area calculation was 
performed with a selection of diameters above 20 µm (area = 314 µm²). F) Windows of interconnection 
were quantified by images subtractions to reveal only interconnections. Windows of interconnections 
were calculated in the 3 dimension for each stack. Particles above 200 µm² were selected. * and $ show 
interconnections compared with the raw picture (B). Pores and interconnections on edges were 
excluded. Only pores and interconnections represented in blue in this instance were analysed. G) 
Schematic representation of hydrogel observation after formulation. The hydrogel core was cut to obtain 
2 mm high slices at various positions. A stack was then performed on both side of each slice leading to 
6 stacks/hydrogel. At least three hydrogels/conditions were characterized. 
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5 Cell culture maintenance 

5.1 Dermal cells 

5.1.1 Material 

Dubecco’s Modified Eagle Medium (DMEM) / Ham’s F12 (DMEM-F12) 1:1 Glutamax, and 

trypsin – EDTA 0.05% were purchased from Gibco, Thermofisher Scientific (Waltham, MA, 

USA). Foetal bovine serum (FBS), penicillin/ streptomycin (penicillin 10,000 U/ml-

Streptomycin 10 mg/ml) and DMSO were purchased from Sigma Aldrich (St. Louis, MO, USA) 

5.1.2 Human dermal fibroblasts maintenance   

Normal human dermal fibroblasts (NHDF) isolated from foreskin were obtained from Promocell 

(Heidelberg, Germany). Cells were stored in liquid nitrogen and thawed for amplification. 

Briefly, frozen cells were immersed in 10 times their volume of Dubecco’s Modified Eagle 
Medium (DMEM) / Ham’s F12 (DMEM-F12) 1:1 Glutamax supplemented with 10% Foetal 

bovine serum (FBS) and 1 % penicillin/streptomycin (P/S). Cells were centrifuged at 200 g at 

4°C for 5 minutes, the cell pellet was then re-suspended in serum-supplemented DMEM- F12 

at 37°C and cells seeded at a density between 3000 and 5000 cells/cm² in tissue culture flasks. 

Cells were let to proliferate until reaching 80 % confluence and then detached by adding trypsin 

EDTA 0.5 % for 5 min at 37°C and 5 % CO2 after extensive washing with sterile DPBS to 

remove FBS. Once cells were detached, trypsin-EDTA was inhibited using twice the volume 

of 10% FBS-supplemented DMEM-F12. Cells were counted using a Malassez hemocytometer 

with trypan blue (1:1), centrifuged for 5 min at 200 g to remove trypsin EDTA, and re-

suspended in the suitable volume of serum-supplemented DMEM F-12 to achieve the desired 

density that was subsequently seeded on flasks or plates as desired. NHDF cells were grown 

below 80 % confluence.  

NHDF cells were used at passages below 12 or frozen in FBS containing 10 % DMSO at 1 x 

106 cells per mL. Cells were frozen in a progressive freezing box (1°C/min) and placed in liquid 

nitrogen for long-term storage. In every experiment involving hydrogels, positive controls were 

prepared by seeding NHDF on treated culture plastic.  
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5.2 Striated skeletal muscle cells 

5.2.1 Material 

DMEM 1X, Iscove's Modified Dulbecco's Medium (IMDM), DMEM high Glucose with pyruvate, 

medium 199 with glutamax supplement, FBS, Gentamycin, Horse Serum (HS), trypsin – EDTA 

0.05%, DPBS were purchased from Gibco, Thermofisher Scientific (Waltham, MA, USA). 

Dexamethasone, insulin from bovine pancreas, creatine, pyruvate, uridine, Ham’s F10 
medium, Penicillin/streptomycin (P/S) and puromycin were bought from Sigma Aldrich (St. 

Louis, MO, USA). Bovine serum albumin (BSA) was purchased from Euromedex (Strasbourg, 

France). Skeletal Muscle Cell Growth Medium with supplemented mix was purchased from 

PromoCell, Heidelberg, Germany. Matrigel was purchased from corning (NY, USA). 

5.2.2 Skeletal muscle cells general maintenance 

All cell types used were cultured at 37°C and 5% CO2 atmosphere with controlled hygrometry. 

Unless stated otherwise, in routine maintenance, myoblasts were always kept below 60 % 

confluence to prevent pre-differentiation into myocytes upon cell-cell contact. To passage, 

myoblasts were extensively washed with DPBS and detached from plastic dishes by 

immersing them in 0.05 % trypsin-EDTA for 5 minutes at 37°C. The detachment reaction was 

stopped by adding at least twice the volume of growth medium (GM) containing FBS. Cells 

were then centrifuged at 200 g for 5 minutes at RT to withdraw the remaining trypsin-EDTA. 

The cell pellet was resuspended in the desired volume of GM for seeding. Unless stated 

otherwise, proliferating cells were let to reach 80 % confluence before initiating their 

differentiation. To this end, cells were washed once with DPBS and immersed in differentiation 

medium (DM) which is a serum-depleted medium.  

Muscle cells were frozen in FBS containing 10 % DMSO at 1 x 106 cells per mL. Cells were 

frozen in a progressive freezing box (1°C/min) and placed in liquid nitrogen for long-term 

storage. 

In every experiment involving hydrogels, controls were prepared by seeding cells at the same 

density on culture plastic or matrigel coatings. Matrigel positive controls were made by adding 

cold 1/100 matrigel in wells for 30 minutes at room temperature followed by one washing with 

warm DPBS just before use.  
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5.2.2.1 Immortalized mice myoblasts cell line (C2C12) 

C2C12 cells were purchase from DSHB (USA). They are an immortalized myoblast cell line 

originally established from satellite cells of two-month-old C3H mice muscles 70 hours after a 

crush injury [387]. C2C12 cells were grown as undifferentiated myoblasts in growth medium: 

DMEM 1X supplemented with 15 % FBS and 1% P/S. To passage, cells were detached from 

10 cm culture Petri dishes (as described above) and seeded at low density (between 1700 to 

2600 cells/cm²) every 2-3 days. In GM, C2C12 cells proliferate with a doubling time of 

approximately 16h. C2C12 differentiation was initiated after reaching 80% confluence. To do 

so, cells were washed once with warm DPBS and immersed in DMEM 1X + 2 % horse serum 

(HS) + 1 % P/S. The differentiation medium was refreshed every 4 days.   

In every experiment involving hydrogels, controls were made by seeding C2C12 cells on 

matrigel coatings or culture plastic on which their behaviour is well known and characterized. 

Indeed, on matrigel or plastic dishes, C2C12 cells reach 80 % confluence after 30 h when 

seeded at a density of 15.000 cells/cm². Their differentiation and fusion for 24h up to 6 days is 

simply achieved by rinsing 80 % confluent cells once with DPBS and adding a low serum 

differentiation medium (DM). After 6 days in differentiation, the cell layer is rarely able to be 

maintained. Most of the experiments were then done up to six days. In this work, C2C12 cells 

were used up to passage 35. 

5.2.2.2 Primary mice myoblasts (pMMs) 

After approval by local ethics committees, mice primary cells were harvested from 5 days old 

C57BL/6 mice. To this end, mice were euthanized by decapitation and their undifferentiated 

posterior hind limb muscles (growing gastrocnemius, tibialis anterior, extensor digitorum 

longus, and quadriceps) rapidly collected and stored in cold PBS.  

Muscles were then cut in multiple parts using scissors and immersed in a digestion medium 

composed of 0.5 mg/ml collagenase and 3.5 mg/ml dispase (for type I and IV collagens and 

fibronectin cleavage) in PBS for about 1 hour at 37°C.  All the aforementioned steps were 

realized quickly after animal death and in a sterile manner to prevent cellular death and 

contamination.    

One centrifugation at 600 rpm for 5 minutes at room temperature was performed to discard 

cellular debris and a second at 1600 rpm for 5 minutes at RT to obtain a cellular pellet 

containing fibroblasts, myoblasts, and blood cells. The cellular pellet was re-suspended in 

DMEM 1X + 15 % FBS + 1 % P/S, filtered through 40 µm cell strainer, and incubated 5 hours 

at 37°C and 5% CO2 for fast fibroblasts plating.  

After 5 hours, non-adherent cells were harvested (containing myoblasts and circulating cells) 

and seeded on the substrate of interest or matrigel coatings as a control. In this work, pMMs 

were not subjected to passages and used directly after extraction.  
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Primary mice myoblasts were grown in IMDM medium supplemented with 20 % FBS, 1 % 

chicken embryo extract, 1 % P/S, and 0.005 % Gentamycin. Circulating cells and debris were 

removed 24 hours after seeding during medium refreshment. To induce differentiation, cells 

were cultured in a differentiation medium composed of IMDM, 2 % HS, and 1 % P/S. GM and 

DM medium were refreshed every second day.  

5.2.2.3 Immortalized human myoblasts (iHMs) 

Immortalized human myoblasts (iHMs) were kindly provided by Bénédicte Chazaud from 

Institut Neuromyogène. 

Briefly, these cells were derived from MuSCs that were isolated from muscle biopsies of 

healthy donors and expanded. Cells were then transformed with viral transduction of CDK4 

(cyclin-dependent kinase-4) and hTERT (human telomerase reverse transcriptase) to 

overcome cellular senescence [388]. 

Various clones were isolated with puromycin, amplified, and cultured in GM (detailed in Table 

10): 

Table 10: Cultures mediums used for immortalized human myoblasts  

Culture medium used for immortalized human myoblasts  
 

Growth medium (GM) Concentration (%) 
Skeletal Muscle Cell Growth Medium with 

supplemented mix  
40% (v/v) 

DMEM high glucose with pyruvate  30% (v/v) 
Heat-inactivated FBS 20% (v/v) 

Medium 199 - glutamax supplement 8% (v/v) 
Penicillin/streptomycin 1% (v/v) 

Dexamethasone  0.003 % (w/v) 
Puromycin 0.005 % (w/v) 

  
Differentiation medium (DM) Concentration  

Skeletal muscle cell Growth Medium without serum or 
supplemented mix 

100% (v/v) 

 
As for C2C12 cells, iHMs were kept below 60% confluence in routine maintenance and 

passaged as described above.  At about 80% confluence, cells were cultured in a serum-

depleted medium to initiate their differentiation.  

In every experiment made on hydrogels, controls were made by seeding same densities of 

iHMs cells on matrigel coatings or culture plastic as controls. 

In this work, two cell lines derived from biopsies of healthy donors of 95 and 121 months were 

used up to passage 38.  
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5.2.2.4 Primary human myoblasts (pHMs)  

Primary human myoblasts were kindly provided by the department of orthopaedic surgery, 

Geneva university hospitals & faculty of medicine [143]. Briefly, human muscle samples 

obtained from orthopaedic surgery waste of semitendinosus muscles were enzymatically 

dissociated. After dissociation, human myoblasts defined as CD56+ / CD146+ / CD45- / CD34- / 

CD144- were selected by FACS [143].  

Isolated pHMs were grown in GM (detailed below) refreshed every second day. Cells passage 

was performed as described above when they reached 60 % confluence to avoid pre-

differentiation. After reaching 80 % confluence cells were cultured in DM and refreshed every 

4 days (detailed Table 11). 

Table 11 : Cultures mediums used for primary human myoblasts 

Culture mediums used for human primary myoblasts culture 
 

Growth medium GM  Concentration 
Ham’s F10 (Gibco)  

FBS 15 % (v/v) 
BSA 0.5 mg/ml 

Fetuin 0.5 mg/ml 
Dexamethasone 0.39 µg/ml 

Insulin  0.04 mg/ml 
Creatine  1 mM 
Pyruvate  100 µg/ml 
Uridine  50 µg/ml 

Gentamycin 5 µg/ml 
 

Differentiation medium DM Concentration 
DMEM (Gibco)  

BSA 0.5 mg/ml 
Insulin  0.01 mg/ml 

Creatine 1 mM 
Pyruvate 100 µg/ml 
Uridine 50 µg/ml 

Gentamycin 10 µg/ml 
 
In this work, cells were kept up to passage 6. Three distinct pHMs were used in this work from 

biopsies of healthy male donors of 24 and 29 years old.  

 

 

 



117 
 

6 In vitro DGL/PEG hydrogels cytotoxicity using NHDF 

6.1 Cells in contact with extracts  

For in vitro cytotoxicity assays, extracts from different hydrogels were prepared. To do so, 

drops of 2/25 mM DGL/PEG dense hydrogels were prepared as described above. They were 

then immersed in 0.5 ml NHDF growth medium (DMEM F-12 + 10 % FBS + 1% P/S) without 

any washing or post-formulation treatments and kept at 37°C and 5 % CO2 for 24 hours. In 

parallel, NHDF cells were seeded on 24 wells plates at a 2000 cell/cm² density and cultured in 

GM. After 24 hours, the culture medium was removed and cells were immersed in a 1 ml mix 

of culture medium and 24h-hydrogels-extracts at a ratio 1:1 (Figure 21). 

Extracts were used to study the effect of acid:base and pluronic® F-68 addition in DGL/PEG 

hydrogels as well as the impact of PEG solvent (DMF versus DMSO) in resulting cellular 

behaviour. Moreover, washed hydrogels were used as control. 

Controls were made by immersing 24 hours adhered cells in a mix of the acid: base ratio, 

pluronic® F-68, and PEG solvent at the same concentration used for hydrogel formulation with 

culture medium at a ratio 1:1.  

At least 3 hydrogels per condition were used at various NHDF passage.  

 

Figure 21 : Schematic representation of dense DGL/PEG hydrogels extracts  

-Hydrogel drops were formulated and immediately immersed in culture medium for 24 hours, without 

washing or post formulation treatments 

-After 24 hours, the supernatant is harvested and deposited on adhered cells with fresh culture medium 

at a ratio 1:1  

-After 48 hours in contact with extracts, cells were used for subsequent experiments.  
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6.2 Cells in direct contact with unwashed EPH 

For injectability purposes, 1.6/25, 2/25, and 2/37 mM DGL/PEG EPH with 1.33:1 Gaa:KC molar 

ratio and 3.3 % pluronic® F-68 were produced inside 2 ml conic tubes as described above. 

They were removed from the tubes and manually cut to obtain cylinders of approximately 2 

mm high. Directly after formulation and cutting, and without any washing or post-formulation 

treatments, EPH cylinders were transferred into non-cell-treated 24 or 48 well plates. NHDF at 

a low density of 5x104 cells per hydrogel were seeded onto non-washed EPH in 600 µL 

complete culture medium and incubated at 37°C and 5 % CO2. The culture medium was 

refreshed 24 hours after seeding and every two days for 21 days.  

3 hydrogels per condition were used at 3 various NHDF passages.  

7 In vitro skeletal muscle cells cytotocompatibility toward 

DGL/PEG hydrogels 

7.1 Cell culture on coatings  

7.1.1 Coatings realization 

Wells of 24 well plates were coated by passive adsorption with 1 mg/ml DGL, ELP, or 

DGL+ELP in DPBS for 4 hours at 4°C followed by extensive washing with DPBS prior use. 

When performing coatings, bare polystyrene wells were used as positive controls. Matrigel 

was also used as a positive control for muscle cells. Matrigel at 1/100 in GM was added to the 

well and let to polymerize for at least 30 min at RT before washing the well with warm DPBS. 

7.1.2 Cell seeding 

To study the effect of DGL and ELP coatings on cells, C2C12 and pMMs were seeded on 

coatings. Briefly, C2C12 were seeded at 2000, 4000, or 40000 cells/cm² on coatings, matrigel 

and bare polystyrene in GM. C2C12 were let to reach 80 % and were then induced in 

differentiation for 6 days. 

Half of all the pMMs harvested from one mouse were seeded on coatings, matrigel and bare 

polystyrene. Cells were grown in GM for 48 hours and then induced in differentiation as follows: 

for pMMs on coatings and bare polystyrene, cells were immersed in DM for 6 days. For cells 

on matrigel, cells were cultured in DM for 2 days before adding matrigel diluted at ½ in DM for 

1h at 37°C followed by DM addition to help cells enter late differentiation for 4 additional days.  

On cells seeded on matrigel and bare polystyrene, free ELP at 50 and 100 µg/ml was added 

to the medium during proliferation and differentiation to study its effect when added freely in 

the medium.  
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Coatings were studied in triplicate from one pMMs isolation and at three various C2C12 

passages.  

7.2 Cell culture on 2D hydrogels 

Sterilized 2D hydrogel adhered in 48 well plates were soaked in GM and kept at 37°C, 30 

minutes before cell seeding. C2C12 and iHMs cells, 15.000 cells/specimen, were seeded on 

2D hydrogels of various concentrations in 0.6 ml growth medium and incubated at 37°C and 5 

% CO2. Cells were grown in GM until reaching 80 % confluence. Cells were then cultured in 

DM for 6 days using respective protocols described above. 

To study hydrogels suitability for skeletal muscle cells, 1/25, 1.6/25, 2/19, 2/25, 2/37 and 2/50 

mM DGL/PEG with and without the presence of the ELP were used. At least 3 hydrogels per 

condition were studied for each cell type and cells were studied at three various passages.  

7.3 Cell seeding on EPH 

To study the suitability of the 3D structure, various skeletal muscle cell types were seeded on 

EPH of various concentrations as follows:  

For each cell type, a drop of 100 µL of GM containing cells (density reported in Table 12) was 

homogeneously deposited on the top of EPH of various concentrations. Samples were 

incubated at 37°C for 1 hour to allow for cell attachment before adding 0.6 ml of growth medium 

to each well. Cells were cultured in GM for 4 to 8 days before depleting the medium in serum 

for 6 to 15 days. 

Table 12 : Cell density seeded on EPH  

Cell type Number of cells seeded on EPH 

C2C12 20.000 

iHMs 20.000 and 60.000 

pMMs Half of all the muscles harvested from one mouse 

pHMs 60. 000 

 

For skeletal muscle cells suitability, 1.6/25, 2/25, and 2/37 mM DGL/PEG EPH formulated by 

injection with 1.33:1 Gaa:KC and 3.3 % pluronic® F-68 with and without the presence of the 

ELP were studied. At least 3 EPH per condition were studied for each cell type.  
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8 Cell characterization on hydrogels  

8.1 Live/dead viability assay 

Cells viability was assessed by a live/dead assay at various time points post NHDF seeding 

on EPH. Briefly, NHDF on EPH were washed once with DPBS and immersed in a mix of 

propidium iodide (6 µM) and calcein (1 µM) in DPBS. After 20 minutes of incubation at 37°C 

and 5 % CO2, cells and samples were observed by LSCM (Zeiss Imager.Z2) within 20 minutes 

(live cells max. Ex/Em 494 nm/517 nm, dead cells max. Ex/Em 528 nm/617 nm). Controls were 

made to assess the live/dead assay. Briefly, NHDF cultured in petri dishes for 24 hours without 

treatment were used as positive controls and NHDF immersed in a mix of culture medium and 

tween 20 at 1 % for 10 minutes before live/dead assay were used as a viability negative control.  

8.2 Metabolic activity measurements 

Cells metabolic activity was measured with an alamar® blue assay on NHDF after 48 hours in 

contact with 24h hydrogels extracts and on C2C12 cells seeded at 2000 cells/cm² on surfaces 

coated with DGL, ELP, DGL+ELP and matrigel or on bare polystyrene after, 24, 48 and 120 

hours in GM.  

Briefly, the culture medium was removed from all conditions, cells were washed with warm and 

sterile DPBS and 400 µL of a 10 % alamar® blue mix in complete culture medium was added 

onto the cells. After 3 hours of incubation at 37°C, 5 % CO2, the supernatants were harvested 

and their fluorescence measured with a fluorescence microplate reader (TECAN infinite® 200) 

at excitation 535 nm and emission 610 nm. NHDF seeded at increasing densities without any 

treatments were used as positive controls for standard curve linearity assessment to determine 

the range in which alamar® blue assay could be conducted. 

8.3 Cell migration by time lapse  

To study C2C12 and iHMs cells in proliferative conditions, they were seeded on coatings at 

4000 cell/cm² or on 2D hydrogels as described above and tracked by time-lapse videos. Briefly, 

7 hours after seeding, plates were transferred into time-lapse microscope (Zeiss Axio Observer 

Z1 inverted) at 37°C and 5 % CO2. Five bright field pictures per well were taken using a 10X 

lens (N-Achroplan 0.25 ph1, N.A 0.25) every 10 minutes for 24 hours to follow cellular 

movement and morphology over time.  

Cellular velocity (from 7 to 30 hours post-seeding), confluence (7, 24 and 30 hours post-

seeding), and morphology (7 and 30 hours post-seeding) were assessed by image analysis of 

time-lapse video using imageJ (Figure 22).  
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8.4 Immunofluorescence 

Goat anti-mouse Alexa Fluor 488 (#A11029), goat anti-rabbit Alexa Fluor 555 (#A21429), goat 

anti-mouse Alexa Fluor 647 (#A21236) secondary antibodies and Alexa-fluor 488 or 647 

phalloïdin were brought from Thermofisher (Waltham, MA, USA). BSA and triton were brought 

from Euromedex (Strasbourg, France), DAPI, fluoromount were purchased from Sigma Aldrich 

(St. Louis, MO, USA) 

At dedicated time points, cells on coatings, 2D hydrogels, or EPH were fixed with 4 % 

paraformaldehyde (PFA) solution in PBS for 20 minutes at 37°C. Samples were then 

extensively washed with DPBS and stored in DPBS at 4°C before use. 

EPH cylinders were either used in immersion or cut in slices.  

EPH slices were obtained by first embedding fixed samples in optimal cutting temperature 

solution (OCT) by successive baths of increasing concentrations: 20; 50; 80; 90 and 100 % in 

PBS for 30minutes each. EPH were then cut (16-30 µm) with a cryotome, deposited on glass 

slides (Superfrost plus, thermofischer scientific), and fixed with acetone for 20 minutes at -

20°C. EPH slices of 1 mm wide were also obtained by manual cutting of EPH fixed samples.   

Cells on coatings, 2D hydrogels, or into 3D EPH were permeabilized 10minutes with a 0.1% 

triton solution in PBS and then immersed in blocking solution for 1h. Samples were then 

incubated in a solution of primary antibodies in blocking solution at 1% for 2 hours (Table 13). 

Secondary antibodies were then applied on samples for 2 hours in a wet chamber in the 

blocking solution at 1 %. For nucleus and actin staining, DAPI at 2 µg/ml and 488-phalloidin at 

4 µg/ml were added for 10 min at room temperature in blocking solution at 0.1 %. Unless stated 

otherwise, all incubation steps were performed at room temperature (RT), samples were rinsed 

three times in PBS between each step and kept immersed in PBS before use. 

Bovine Serum Albumin (BSA) in PBS was used as the blocking solution for myoblast cells, 

while goat serum in PBS was used as the blocking solution for NHDF cells.  
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Table 13: Primary antibodies used in this work  

8.5 Image analysis  

Cells on coatings and 2D hydrogels were analysed with a fluorescence microscope (Zeiss Axio 

Observer Z1 inverted) using a 10X lens (N-Achroplan 0.25 ph1, N.A 0.25). Three mosaics of 

12 pictures were performed for each condition, covering a large part of 48 wells plates. 

Samples on glass slides were mounted with fluoromount and whole EPH were kept immersed 

in PBS 1X to be analysed with an upright laser scanning confocal microscope (LSCM - Zeiss 

Imager.Z2). On EPH, 100 µm stacks were realized on five various positions and orthogonally 

projected.  

Skeletal muscle cells growth was studied on 2D hydrogels. To do so 5 positions per well were 

analysed per condition as follows: the area covered by cells on the total area of each picture 

was calculated. To follow cell movement, 10 cells per position were tracked using imageJ for 

24 hours. Three hydrogels per conditions were studied at three various cell passages. 

 

The fusion index (number of nuclei inside myotubes on the total number of nuclei in a picture) 

was quantified using imageJ on cropped areas of the coatings and 2D hydrogels mosaics. On 

2D and 3D hydrogels, the number of nuclei per myotubes and myotubes area, width (average 

of 3 distinct positions in the myotube) and ferret diameter were determined by image analysis 

with imageJ. The elongation index was calculated as the ratio of the feret diameter on 

myotubes width). For myotubes morphology quantification, myotubes of at least two nuclei 

were measured and at least three samples per condition were analysed at three various C2C12 

passages. Between 80 and 211 myotubes were analysed per condition (Figure 22). 

 

Primary antibody Dilution Fabricant Ref Production 

Type I Collagen  1/200 Novotec 20111-1 Rabbit 

Fibronectin 1/250 Abcam Ab45688 Rabbit 

MF20 – Myosin  

heavy chain 
1/10 

Home-made hybridoma from 

V.Gache group 
Mouse 

Desmin [Y66] 1/50 Abcam Ab32362 Rabbit 

PAX 7  No dilution DSHB Hybridoma Product PAX7 Mouse 

Sarcomeric α-actinin 

EA-53 
1/500 Sigma-aldrich A7811 Mouse 

Calcitonin receptor 1/30 Abcam Ab230500 Rabbit 

Ki67 1/1000 Abcam Ab15580 Rabbit 

MyoD 1/100 Proteintech  18943-1-AP Rabbit 
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The quantification of quiescent Pax7 positive cells was performed on EPH as follows: the 

percentage of Pax7 positive cells on the total number of nuclei was counted. Then, Pax7+/ 

ki67+ cells or Pax7+/myoD+ cells on the total number of pax7+ cells were quantified.  

 

Figure 22 : Skeletal muscle cells image analysis  
A) Representative picture of confluence quantification. C2C12 myoblasts on a 2/25 mM DGL/PEG 
hydrogel, 30 h post seeding in growth medium. The yellow line represent the manual calculation of the 
area covered by cells. The confluence percentage was determined as the area covered by cells on the 
total area of the picture.  
B) Representative picture of myotubes area (green line) for feret and circularity calculation, and width 
quantification (blue arrows) on C2C12 myotubes on a 2D 2/37 mM DGL/PEG hydrogel, - DAPI in cyan, 
Myosin heavy chain (MyHC) in red. 
C) Representative pictures of 2D index fusion quantification. C1) C2C12 myotubes on bare polystyrene 
after 6 days in DM - DAPI in cyan, MyHC in red. C2). The total number of nuclei was determined by a 
threshold, a binary treatment followed by a watershed individualization. C3). The number of nuclei inside 
MyHC positive cells was determined manually.  The fusion index was determined as the number of 
nuclei inside MyHC positive cells on the total number of nuclei.  
C2C12 confluence, myotubes morphology and fusion index on coatings or 2D hydrogels were quantified 
as followed: three distinct areas per well were analysed.  At least three wells per conditions were 
analysed at three various C2C12 passages.   
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9 Gene expression analysis 

TRIzol, TRI-Reagent® and Fast Universal SYBR Green Master (Rox) Roche were bought from 

Sigma Aldrich (St. Louis, MO, USA). SDS was purchased from Biosolve Chimie SARL (Dieuze, 

France). Chloroform was bought from VWR (Pennsylvania, USA). Propan-2-ol: Merck 

(Darmstadt, germany) 

9.1  RNA extraction 

To quantitatively measure the expression levels of MyoD, MyoG and Myh4, real-time 

polymerase chain reaction (RT-PCR) was performed on C2C12 onto EPH after 1, 3, and 6 

days in DM.   

For every group, at least 3 EPH were harvested and frozen in liquid nitrogen. Frozen samples 

were deposited into 2.0 ml lysing Matrix tubes containing 1.4 mm ceramic spheres in SDS 0.5 

% and subjected to high-speed lysis with FastPrep-24 5G Instrument at 4°C (2 cycles of 15 

sec at 5700rmp with 30 sec pause). Total RNA were isolated from the supernatant of lysed 3D 

scaffolds using TRIzol reagent according to the manufacturer’s recommendations. Briefly, 300 

µL TRIzol was added to 2.0 ml lysing tubes and EPH were subjected to a second high-speed 

lysis. The supernatant was collected and 60 µL of chloroform were added and mixed 

vigorously. The solution was left several minutes for decantation and centrifuged at 12.000g 

for 15 min and 4°C. The aqueous phase (the upper phase) was carefully recovered and 

transferred to clean microtubes. RNA precipitation was achieved by adding 300 µL isopropanol 

to the aqueous phase, mixing gently, incubating 10 minutes at RT, and centrifuging 12.000g 

for 10 minutes at 4°C. The supernatant was discarded and the RNA pellet rinsed three times 

with 800 µL of EtOH/RNAse-free water at 70/30 v/v and centrifuged at increasing velocity from 

7.500 to 10.000g for 5min at 4°C. The tubes were then left to air dry under the fume hood for 

10 minutes and resuspended in 15 µL RNAse-free water. The purity and concentration of the 

isolated RNA were measured with a spectrophotometer (Nanodrop 2000 Thermo-Scientific).  

9.2  Reverse transcription 

A single-stranded cDNA synthesis was performed with 400 ng total RNA using the GoScript™ 
Reverse Transcription System Kit from Promega following the manufacturer’s 
recommendations. After adding reaction mixture, reverse transcription was performed using 

poly(dT) oligopeptides in a thermocycler for 5 minutes at 25°C (annealing), 42°C for 1h 

(extending) and stopped by enzyme inactivation at 70°C for 15 minutes. The temperature was 

then decreased to 4-10°C and cDNA stored at -20°C before use.  

 

https://www.google.com/search?rlz=1C1GCEU_frFR821FR821&sxsrf=ALeKk02mML51NLiKyjIVz6V1fpD8CT7Cng:1603702968178&q=Darmstadt&stick=H4sIAAAAAAAAAONgVuLQz9U3SCkyNnzEaMwt8PLHPWEprUlrTl5jVOHiCs7IL3fNK8ksqRQS42KDsnikuLjgmngWsXK6JBblFpckppQAAPjVSN5OAAAA
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9.3 Real-time polymerase chain reaction 

Quantitative polymerase chain reaction (qPCR) of transcripts and endogenous controls, 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and 60s ribosomal protein L41 

(RPl41A) was performed. To do so, 16 ng of cDNA were mixed with SYBR® Green Supermix 

and forward and reverse primers in a CFX Real-Time PCR Detection System (Bio-Rad, 

Hercules, CA). Thermal cycle conditions were an initial 95°C for 10 min followed by 40 cycles 

at 95°C for 10 sec and 60°C for 30 sec.  

Data were analysed using the E-Ct method with normalization to the geometric mean of both 

housekeeping genes. To determine the relative expression of muscle markers, primers were 

designed to explore the various phases of myogenesis. Primer sequences are described in 

Table 14. 

Table 14 : Sequence of primers used for qPCR analysis 

Genes Primers Sequence 
MYOD1 – myoblast 

determination protein 1 
Forward AGC-ACT-ACA-GTG-GCG-ACT-CA 
Reverse GCT-CAA-CTA-TGC-TGG-ACA-GG 

MyoG - Myogenin 
Forward CAA-TGC-ACT-GGA-GTT-CGC-TC 
Reverse ACA-ATC-TCA-GTT-GGG-CAT-GG 

MyH4- Myosin Heavy Chain 4 
Forward CAA-GTC-ATC-GGT-GTT-TGT-GG 
Reverse TGT-CGT-ACT-TGG-GAG-GGT-TC 

Glyceraldehyde 3-phosphate 
dehydrogenase (GAPDH) 

Forward AAC-TTT-GGC-ATT-GTG-GAA-GG 
Reverse ACA-CAT-TGG-GGG-TAG-GAA-CA 

RPl41A-60S ribosomal protein 
L41-A 

Forward GCC-ATG-AGA-GCG-AAG-TGG 
Reverse CTC-CTG-CAG-GCG-TCG-TAG 

 

Expression levels of MyoD (early-stage marker), MyoG (mid-stage marker), and MyH4 (late-

stage marker) were studied on C2C12 seeded on 1.6/25, 2/25, and 2/37 EPH.  
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10 In vivo EPH biocompatibility assessment 

After approval by local ethic committees, 2 months old C57BL/6 mice used for preliminary 

studies and 7-weeks old hair-less SKH1 mice (Charles River, Ecully) were anesthetized by 

intraperitoneal xylazin-ketamin injection. A small incision was performed at the low back of the 

mice and 2 subcutaneous pockets created with a sterile spatula along mice flanks (Figure 23). 

Two hydrogels conditions (2/25 or 2/37 mM DGL/PEG) were injected (400 µL) directly into 

subcutaneous pockets or in a conic tube to be removed, cut and implanted in the pockets. 

Dense DGL/PEG hydrogels of various conditions (2/25 and 2/37 mM DGL/PEG) in PBS were 

injected as control (500 µL). After hydrogel injection, the static mixer was carefully removed 

and the incision was blocked to prevent liquid precursors to leak from the pockets. After cross-

linking the incision was sutured. EPH were made using a set 1.33:1 Gaa:KC molar ratio and 

3.3% pluronic® F-68. Dense hydrogel controls were made of DGL and PEG in PBS 1X. 

Mice, fed ad libitum, were monitored every two days for recovery and signs of distress. After 

three weeks, the mice were euthanized by anaesthetic overdoses (intra-peritoneal injection of 

thiopental) and hydrogel samples were harvested with the surrounding tissue. They were fixed 

in 4 % PFA solution in PBS overnight at 4°C, embedded in paraffin, sectioned and stained with 

Masson’s trichrome using standard procedures. To highlight the penetration of blood vessels 
in the implanted hydrogels, sections were stained for type IV collagen by immunofluorescence, 

cell nuclei were counter-stained with 2 µg/ml DAPI solution. Macrophages inside hydrogels 

were detected with antibodies against F4/80 by immunohistochemistry.  

The entire sample area and surrounding tissues were imaged at 6 various height for each 

sample using a Zeiss Axio Scan Z1 for brightfield acquisitions and a LSCM (Zeiss Imager.Z2) 

for fluorescent acquisitions. 

For dense and porous area quantifications, the entire sample at six various height was 

considered and areas were measured with ZEN blue 2.5 software.  
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Figure 23: Biocompatibility study and assessment of in situ porous formation by subcutaneous 
implantation and injection of EPH in mice 
Red dotted line: an incision was performed in the back of mice and two subcutaneous pockets were 
created along the mice flanks. Hydrogels were then in situ injected inside the subcutaneous pockets 
using a dual syringe connected to a static mixer (pink box) or injected inside a tube to be removed, cut 
and implanted inside pockets (blue box) 
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11 Statistics 

Statistical analyses were performed with Graphpad prism. All the data were subjected to 

Shapiro-Wilk normality test to assess whether they followed or not a normal distribution. 

Depending on the results parametric or non-parametric tests were performed. Tests were 

performed using variance analysis (ANOVA)/Kruskall-wallis tests or t-test/mann-whitney. 

Graphical data are shown as mean ± standard deviation (SD) and p-values of 0.05 and below 

were considered significant. Data values are presented as mean ± standard error (SE). 
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1 Evaluation of dense DGL/PEG hydrogels to act as a relevant 

support for skeletal muscle cells  

The development of biomaterials able to sustain cells growth must meet numerous 

requirements to match the needs of targeted tissues. One important feature of a scaffold 

design for skeletal muscle regeneration is to sustain rapid cell proliferation and migration to 

allow fusion into growing muscle fibres. To this end, variation of scaffold physical and 

biochemical features can be relevant.  

In this chapter, we aimed to study the relevance of a biocompatible and recently developed 

poly(ethylene) glycol (PEG)-based hydrogel as a substrate for myoblast proliferation, 

migration, and differentiation. The PEG backbone displays a low inflammatory profile and well-

established chemistry allowing PEG-based hydrogels to exhibit high mechanical versatility. 

Nevertheless, PEG hydrogels are biologically inert and  lack interactions with cells [373]. To 

overcome this limitation, we have developed in the laboratory an N-hydroxysuccinimide (NHS) 

bi-functionalized PEG hydrogel crosslinked with bioactive poly(L-lysine) grafted dendrimers 

(DGL) [373]. DGL/PEG hydrogel formulation was simply achieved by mixing PEG and DGL in 

aqueous solutions with vigorous homogenization. The amine groups available at the surface 

of the DGL are used as binding sites for the PEG, via NHS function, to form the polymer 

network through the formation of covalent amide bonds.  

The DGL/PEG hydrogel exhibit a large range of mechanical properties and interact with 

fibroblasts through polycationic charges brought by the DGL amine groups [377]. The stiffness 

versatility and the variation of DGL:PEG molar ratio have been shown to influence fibroblast 

behaviour, enabling control over cellular fate. Also, the cell-friendly DGL/PEG hydrogel 

crosslinking made in physiological environments is an interesting way to include active 

moieties, such as a recombinant elastin-like polypeptide (ELP), synthesized in our laboratory. 

The addition of ELP in the bulk material has been related to an enhanced fibroblast proliferation 

and velocity on the hydrogel [378]. Given the promising results that these hydrogels showed 

with fibroblasts, they were studied and characterized as full-thickness skin equivalents with 

encouraging results. Besides, when rendered porous and subcutaneously implanted in mice, 

their extensive vascularization pave the way for a potential use as scaffolds for tissue 

regeneration. 

Therefore, based on the DGL/PEG hydrogel potential for cell culture and tissue compatibility, 

this first chapter aims to (1) investigate its ability to function as a support for skeletal muscle 

cells and (2) find optimum parameters to sustain muscle cells proliferation and fusion through 

the modulation of mechanical and biochemical cues. We hypothesize that similarly to 

fibroblasts, it should be possible to control skeletal muscle cell behaviour through stiffness and 

DGL/PEG ratios. To validate this potential, we evaluated six various concentrations of DGL 

and PEG on myoblast cell lines from mice and human. We studied cell proliferation, 
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morphology, migration and fusion on the surface of the hydrogel to discriminate our conditions 

using various techniques.  

1.1 Two-dimensional DGL/PEG hydrogels characterization  

To investigate the support stiffness compliance with myoblast function, DGL/PEG hydrogels of 

various concentrations and stiffness were designed. 

The complex (E*), loss (E’’), storage (E’) moduli, and the loss factor (tan δ) of hydrogels of 
various compositions were determined at a 1 Hz frequency and 50 µm amplitude (Figure 24A). 

As previously described [373], the modulation of DGL/PEG ratio and concentration from 1/25 

to 2/50 mM DGL/PEG allowed to modulate the stiffness from 12.0 ± 2.4 kPa to 157.8 ± 14.1 

kPa respectively (Figure 24A and Table 15). For all hydrogels, E’ was greater than E’’ 
confirming the realization of a self-standing hydrogel whatever the concentration and ratio used 

(Figure 24B). Interestingly, while a proportional increase of PEG for a given DGL concentration 

induced a linear elastic modulus increase (R² = 0.9998), a proportional increase of DGL for a 

given PEG concentration triggered an exponential rise of E’ (Figure 24E and F). These results 

suggest that the DGL has a predominant control over the hydrogel stiffness and seems to be 

the limiting molecule in the reaction.  

Hydrogel swelling properties were determined in PBS at 37°C to mimic the physiological 

conditions (Figure 25 and Table 15). An increased DGL/PEG concentration and molar ratio 

triggered a decreased swelling of the hydrogel. The swelling ratio was 20.8 ± 0.4 and 8.6 ± 0.4 

for 1/25 and 2/50 mM DGL/PEG hydrogels respectively. Equilibrium swelling was reached after 

6 hours with a PBS absorption between 800 and 2000% of the hydrogels dry weight confirming 

their high water content. In conclusion, the modulation of both DGL and PEG concentration 

and their ratio enable precise control of the stiffness and water absorption of the resulting 

hydrogels. 
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Figure 24 : DGL/PEG hydrogel mechanical characterization  

A) Elastic modulus (E’), B) loss modulus (E’’), C) complex modulus (E*) and D) loss factor (tan δ) in 
compression of DGL/PEG hydrogels of various concentration and ratio (kPa) 

E) Elastic modulus as a function of DGL/PEG concentration for a given DGL concentration (2 mM) and 

F) for a given PEG concentration (25 mM). Lines: E) linear (R²: 0.9998) and F) exponential regression 

(R²: 08702) 

One-way ANOVA + Tukey’s multiple comparison test compared to Φ: 2/25, δ: 2/37, α: 2/50 mM 
DGL/PEG  
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Figure 25: DGL/PEG hydrogel swelling characterization 

Swelling ratio over time of dry hydrogels of various DGL/PEG concentration (mM) 

One-way ANOVA + Tukey’s multiple comparison test *: p<0.05; **:p<0.01, ***:p<0.001 

The six concentrations evaluated in this chapter offer a wide range of mechanical properties, 

DGL:PEG molar ratios and water absorption abilities. These conditions are detailed in Table 

15.  

Table 15 : mechanical characterization of six DGL/PEG hydrogels (mM) used in this work.  
Lines with the same colour represent hydrogels with the same DGL: PEG molar ratio but exhibiting 
different stiffness and swelling abilities. .  

DGL/PEG 
(mM) 

DGL :PEG 
ratio  

Elastic modulus 
(kPa) 

Loss modulus 
(kPa) 

Swelling 

1/25 1:25 12.0 ± 2.4 1.0 ± 0.3 20.8 ± 0.4 

1.6/25 1:16 18.3 ± 2.2 2.5 ± 0.4 19.4 ± 2.3 

2/19 1:10 30.6 ± 2.6 4.9 ± 0.8 19.7 ± 2.6 

2/25 1:12 54.7 ± 3.1 8.6 ± 1.2 14.6 ± 0.7 

2/37 1:16 105.5 ± 11.5 18.5 ± 3.4 11.1 ± 0.1 

2/50 1:25 157.8 ± 14.1 40.9 ± 9.6 8.6 ± 0.4 

 

Taking advantage of this versatility, the behaviour of C2C12 cells and immortalized human 

myoblasts (iHMs) was studied on the aforementioned hydrogels to investigate the effect of 

stiffness and DGL:PEG molar ratio. C2C12 cells were studied as a well-characterized cell line 

and owing to their ability to recapitulate all the molecular events leading to the development of 

myotubes [387]. They are thus an interesting model to study DGL/PEG hydrogel. In a second 

step, immortalized myoblasts from human were also evaluated to add robustness to these 

results.  
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1.2 Undifferentiated myoblasts response to DGL/PEG hydrogels of various 

concentrations  

To study C2C12 and immortalized human myoblasts (iHMs) behaviour on the hydrogel, cells 

were seeded at a density of 15000 cell/cm² on DGL/PEG flattened hydrogel discs formulated 

inside 48 well plates. Hydrogel discs were 1 cm wide, covering the entire diameter of the well 

and were 0.7 mm thick to preclude the possibility that cultured cells sense the stiffness of the 

underlying plastic dish.  

The adhesion, proliferation, and morphology of C2C12 on DGL/PEG hydrogel of various 

compositions were evaluated 30 hours post-seeding in growth medium (GM). Their velocity on 

the support was also evaluated for 24 hours in GM (Annex 1, supplementary movies 1,2 and 

3 representing C2C12 cells on 1.6/25; 2/25 and 2/37 mM DGL/PEG hydrogels respectively).  

C2C12 cells readily adhered to 2D DGL/PEG hydrogels, regardless of the conditions used. 

Their ability to proliferate on hydrogels, assessed by confluence increase observed over time, 

was observed for almost all conditions, except for the softer 1/25 mM DGL/PEG hydrogel 

(Figure 26A and supplementary information 2 in Annex). Interestingly, their ability to cover the 

surface 30 hours post-seeding was correlated with the hydrogel stiffness (Figure 26B). The 

stiffer the hydrogel, the higher the confluence until reaching a peak with the 2/37 mM DGL/PEG 

condition. However, the condition 2/50, although being the stiffer, was related to less C2C12 

confluence, indicating this condition could represent a threshold value. Cells on conditions 2/25 

and 2/37 mM DGL/PEG were not statistically different from the plastic dish positive control, 

indicating that C2C12 proliferation was not impaired on these DGL/PEG conditions. After 30 

hours on DGL/PEG hydrogel, C2C12 were well spread out and spindle-shaped except for the 

1/25 mM DGL/PEG condition which exhibited round-shaped cells related to a small spreading 

area (Figure 26C and D).  

C2C12 cells were able to move on DGL/PEG hydrogels in the same way as on plastic dish, 

consolidating hydrogel adequacy for cell culture (except for the softer 1/25 DGL/PEG 

condition) (Figure 26E). Interestingly, while the stiffness drove C2C12 proliferation, their 

morphology and migration on the support was linked to hydrogel composition through the 

amount of DGL in relation to PEG.  Cells on hydrogels with 1:25 and 1:10 DGL:PEG molar 

ratios were less mobile and presented a smaller area compared with hydrogels with 1:16 and 

1:12 DGL:PEG molar ratios, which were similar to the positive plastic dish control (Figure 26D 

and E). These results suggest that both the stiffness and the amount of DGL and PEG have 

an influence on C2C12 cells in terms of cell morphology, confluence after 30 hours, and cell 

mobility. 
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Figure 26: Undifferentiated myoblasts responses to DGL/PEG hydrogels of various concentrations and 

molar ratios. 

C2C12 cells A) confluence over time. C2C12 cells B) confluence, C) representative pictures, and D) 

morphology (spreading area per cell) 30 hours post seeding as a function of DGL/PEG hydrogel 

concentration and ratio (mM DGL/PEG). D) C2C12 velocity for 24 hours as a function of hydrogels 

concentration and molar ratio. 

P: Plastic dish 

B,E: One way ANOVA + Tukey’s multiple comparison p<0.05 compared to γ: 1.6/25; Φ: 2/25, δ:2/37, * 
Plastic dish 

D: Kruskall Wallis + Dunn’s vs plastic Dish, *: p<0.05 

Scale bar: 100 µm 
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Even if C2C12 cells are a relevant model to evaluate myoblasts behaviour, they misrepresent 

the cells encountered inside human muscle wound bed owing to their murine origin. The same 

experiments were thus realized on immortalized human myoblasts (iHMs) to consolidate these 

findings. The same trend was observed for iHMs with a cell confluence increase correlated 

with DGL/PEG hydrogel stiffness until reaching a peak for the 2/37 mM DGL/PEG condition 

(Figure 27A supplementary information 3 in Annex). Similarly to C2C12, the iHMS velocity was 

more related to DGL: PEG molar ratio than to stiffness, confirming that our previous results 

are robust regardless of the myoblasts cell line origin.  

 
Figure 27: Immortalized human myoblasts (ihMs) behaviour in proliferative conditions on DGL/PEG 

hydrogels of various concentration and molar ratio 

A) Cell confluence and B) representative pictures of ihMs 30 hours post seeding on hydrogels of various 

concentration and molar ratio. C) Cell velocity on hydrogels of various concentrations for 24 hours in 

growth medium (n=2). 

P: Plastic dish. A) One way ANOVA + Dunnett’s vs plastic dish, *: p<0.05.  

Finally, C2C12 and iHMs cells seeded on DGL/PEG hydrogels were able to reach 80% 

confluence after 4 to 6 days in the growth medium, except for the softer condition that was 

discarded (i.e. 1/25 mM DGL/PEG). 

In conclusion, regardless of the myoblast cell line, conditions of interests (in terms of stiffness 

and DGL:PEG ratio) could be selected to sustain cellular proliferation and/or migration similarly 

to the plastic dish positive control. The possibility to modulate the DGL/PEG hydrogel to guide 

skeletal muscle cell growth strengthens its potential for the intended application. 
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However, the regeneration potential of a biomaterial for skeletal muscle cells is also related to 

its ability to sustain cell differentiation and fusion to move towards muscle fibre regeneration. 

To study this ability, the medium was depleted in serum. It has been shown that upon serum 

depletion, myoblast cell cycle stops and, if confluent, cells start to differentiate, to align, and to 

fuse, forming the multinucleated myotubes [389]. 

1.3 Effect of DGL/PEG hydrogels of various conditions on myoblasts’ fusion 

After reaching 80% of confluence, C2C12 cells were cultured in differentiation medium (DM) 

to study their differentiation and subsequent fusion. The first phase of myoblasts differentiation 

is characterized by cell alignment [390], which was observed on 2D hydrogels 60 hours after 

serum depletion, meaning that cells were rapidly undergoing commitment (Annex 1, 2/25 mM 

DGL/PEG hydrogel + ELP supplementary movie 4). The subsequent fusion of myoblasts into 

growing myotubes is a common path in the differentiation of skeletal muscle, concomitant with 

the assembly of contractile myosin. On day 6 after serum depletion, myotubes were visible on 

almost all DGL/PEG hydrogels as highlighted by a myosin heavy chain staining (Figure 28A). 

On condition 2/19 mM DGL/PEG, which exhibited the highest proportion of DGL in relation to 

PEG (i.e. 1:10), no myotubes were visible after 6 days although it exhibited a 80% cell 

confluence compatible with cell fusion (Figure 28B). Corollary to this observation, the fusion of 

C2C12 on hydrogels appeared related to the DGL:PEG ratio. As depicted in Figure 28C, an 

increase of PEG in relation to DGL was correlated with a better C2C12 fusion until reaching a 

peak at a 1:16 DGL/PEG molar ratio. Indicating that this trend was unrelated to substrate 

stiffness, hydrogels of various elastic moduli but with the same DGL: PEG ratio (i.e. 1.6/25 and 

2/37 mM DGL/PEG) showed a similar C2C12 fusion index of 8.2 ± 1.1 and 8.1 ± 0.7 % 

respectively. Also, conditions with a small fusion index exhibited myotubes with a decreased 

number of nuclei per myotubes and a smaller area (Table 16). 

Table 16: C2C12 myotubes quantifications after 6 days in serum depleted medium medium as a function 
of hydrogel concentration (mM DGL/PEG).  
Nuclei per myotubes, myotubes area quantification and elongation index (feret diameter/width) 

DGL/PEG 
(mM) 

Nuclei/ myotubes Area (µm²) Elongation Index 

1/25 NA NA NA 

1.6/25 5.86 ± 1.55 5371 ± 1325 10.59 ± 0.44 

2/19 NA NA NA 

2/25 2.74 ± 0.83 1574 ± 875 9.81 ± 0.77 

2/37 7.81 ± 2.38 8782 ± 2621 11.18 ± 1.20 

2/50 2.79 ± 0.48 2887 ± 936 8.50 ± 0.61 

P 13.04 ± 5.57 15065 ± 5444 13.2 ± 2.08 
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Of note, the C2C12 fusion index on DGL/PEG hydrogel was lower than for the plastic dish 

positive control (index fusion of 18.0 ± 0.9) and myotubes were smaller with a decreased 

number of nuclei.  

 

Figure 28 : Effect of substrate on myoblasts differentiation after 6 days in serum-depleted medium  

A) Representative pictures of C2C12 cells fusion (Red: Myosin heavy chain (MyHC) and Blue: cell 

nuclei) on dense DGL/PEG hydrogels of various compositions    

B) Representative picture of C2C12 cell layers on 2/19 mM DGL/PEG hydrogel (Green: cell actin 

cytoskeleton and blue: cell nuclei)  

C) C2C12 fusion index as a function of hydrogel concentration (mM DGL/PEG),  after 6 days in serum 

depleted medium - One way ANOVA + Tukey’s multiple comparison compared to γ :1.6/25 and δ: 2/37 
mM DGL/PEG hydrogel, p<0.05 

Therefore, these results showed that some optimum DGL/PEG conditions were able to sustain 

C2C12 differentiation and subsequent fusion. However, in this study, while stiffness variation 
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had a great influence on cell proliferation, it appeared to be less critical than DGL: PEG molar 

ratio in the subsequent fusion. As a result, C2C12 differentiation could be controlled by varying 

the support composition. 

Overall, based on the C2C12 behaviour in both growth medium (GM) and differentiation 

medium (DM), the increasing amount of DGL inside DGL/PEG hydrogels was related to a 

decreased cell ability to spread out, to move, and to fuse, consolidating DGL implication in cell 

behaviour.  

1.4 Study of the effect of DGL on skeletal muscle cells  

To confirm the above-mentioned assumptions, C2C12 cells were studied on saturated DGL-

coated surfaces on which the resultant stiffness is brought by the polystyrene beneath and is 

not varied. Interestingly, C2C12 cells grown on DGL coatings showed a significantly decreased 

metabolic activity compared with the gold standard matrigel after 24, 48 and 120 hours in 

growth medium (Figure 29A). However, no differences were reported in terms of C2C12 

velocity between the plastic dish and DGL coatings, where they were significantly less mobile 

than on the matrigel positive control (Figure 29B). This indicates that C2C12 cells were less 

proliferative on DGL coatings but were able to migrate similarly than on the crude plastic dish. 

After proliferation, cells were immersed in serum depleted medium for six days. A similar fusion 

index of 23.3 ± 1.5 % and 26.5 ± 2.3 % was observed for C2C12 seeded on matrigel or crude 

plastic dish respectively while it dropped at 4.1 ± 0.9 % on DGL-coated polystyrene which 

represents a fusion decrease of about 85 % (Figure 29C). In addition to the myotubes fusion 

impairment, DGL coatings affected myotubes morphology, which exhibited a smaller area, and 

fewer nuclei in comparison to myotubes on non-coated plastic dish control (Figure 29D and 

Table 17).  

Table 17: Nuclei per myotubes and myotubes area quantification after 6 days in serum-depleted medium 

on various coated surfaces.  

C2C12 cells seeded at 40.000 cells/cm². t-test DGL VS Plastic Dish  (*) : p<0.05 

Coatings Nuclei/ myotubes Area (µm²) 

Plastic dish 47.40 ± 13.61 36631 ± 10131 

DGL 3.91 ± 0.94 (*) 4766 ± 787 (*) 

 

Of note, C2C12 cells were either seeded at a high density and immediately induced in 

differentiation or seeded at a low density, grown for 48 hours, and induced in differentiation. 

Both experiments showed the same results (85 % of fusion index decrease) indicating that the 

fusion impairment is not related to the upstream C2C12 proliferation phase and that DGL only 

impairs differentiation and/or fusion of cells. 

To add reliability to these results, the fusion of primary mice myoblasts (pMMs) was also 

evaluated to avoid possible biases associated with immortalized cell lines. Overall, pMMs 
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seeded on crude plastic dishes were barely able to spread out and showed less fusion than 

C2C12. This behaviour is illustrated in Figure 29E, where MyHC positive pMMs cells after 6 

days in differentiation remained mostly mononucleated and round but with a homogeneous 

repartition on the well. On the contrary, pMMs on DGL coatings were visually fewer in number 

and formed clusters highlighting an effect of the DGL on cell fusion (Figure 29E). These 

observations reinforce the supposed effect of DGL on immortalized and primary myoblasts cell 

fusion. 

Taken together, these results suggest that the presence of the DGL can impair C2C12 and 

primary mice myoblasts fusion, unrelated to stiffness and upstream proliferation. However, 

DGL crosslinking to increasing concentration of PEG to form hydrogels, enabled to recover 

C2C12 fusion until reaching a peak at a 2/37 mM DGL/PEG ratio.  
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Figure 29: Effect of various coated surface: DGL, Matrigel and plastic dish on C2C12 and pMMs 

proliferation and/or fusion.  

A) C2C12 cell metabolic activity 24, 48 and 120 hours post seeding and B) C2C12 cell velocity (µm/h) 

for 24 hours in GM on various coated surfaces. C2C12 cells seeded at a 4000 cells/cm² density.   

C) Fusion index and D) representatives’ pictures of C2C12 after 6 days in serum-depleted medium on 

various coated surfaces. C2C12 cells seeded at 40.000 cells/cm². E) pMMs afer 6 days in serum 

depleted medium on various coated surfaces. D, E) Red: MyHC, cyan : cell nuclei. A, B) One-way 

ANOVA + Dunnett VS matrigel, C) One way ANOVA + Tukey’s multiple comparison. *:p<0.05; **:p< 
0.01; *** p<0.00. (M: Matrigel and P: plastic dish) 
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1.5 Study of the effect of ELP addition inside DGL/PEG hydrogels on skeletal 

muscle cells  

The presence of the elastin-like polypeptide (ELP) could modify the way the hydrogel interacts 

with cell surface αvβ3 integrin and elastin binding protein through the presence of cell-

interacting motives in its primary sequence. Therefore, the effect of ELP adsorbed on surfaces, 

incorporated inside the 2D DGL/PEG hydrogels or added freely in the medium of cells was 

evaluated. Its effect on cell adhesion, migration, proliferation and fusion was assessed.   

The culture of C2C12 on ELP coatings was not correlated with an enhancement of cell 

metabolic activity in comparison to the crude plastic dish (Figure 30A). However ELP addition 

in hydrogel bulk resulted in a slight increase of C2C12 and iHMs cell confluence that was 

statistically significant in some conditions (Figure 30B and C). These results suggest an 

influence of the ELP when included inside the hydrogel or a synergic effect of stiffness and 

ELP presence.  

Contrarily to what was expected and previously described [379], the addition of the ELP at a 4 

mg/ml final concentration in various DGL/PEG hydrogels was not, in our experimental 

conditions, related to a variation of the final stiffness of the substrate. The DGL/PEG hydrogels 

mechanical properties in shear stress (shear modulus Table 18, and fracture strain, Table 19) 

remained unchanged. This invalidates possible assumptions on the influence of ELP on cells 

via modifications of the hydrogel stiffness. It thus highlights that another mechanism is at play.   

Table 18 : Rheological characterization of DGL/PEG hydrogels.  

Shear modulus (G’, KPa) of hydrogels of various concentrations and DGL: PEG molar ratio.  
 Shear Modulus G’ (kPa) 

DGL/PEG w/o ELP With ELP 

1.6/25 5.1 ± 0.3** 8.3 ± 0.7 

2/25 10.8 ± 1.9 15.4 ± 0.9 

2/37 26.7 ± 2.2 19.4 ± 2.8 

t-test w/o ELP VS with ELP ** : p<0.01  

 
Table 19: Rheological characterization of DGL/PEG hydrogels.  

Fracture strain (G’, KPa) of hydrogels of various concentrations and DGL: PEG molar ratio 

 Fracture Strain (kPa) 

DGL/PEG w/o ELP With ELP 

1.6/25 5.4 ± 0.5 6.9 ± 0.8 

2/25 4.2 ± 0.6 5.6 ± 0.7 

2/37 8.5 ± 0.4 8.1 ± 1.3 
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Figure 30: Effect of ELP on C2C12 and iHMs behaviour 
 A) C2C12 metabolic activity after 24, 48 and 120 hours in growth medium on various coatings: Matrigel, 
Plastic dish, and ELP. B) C2C12 and C) iHMs confluence (%) 30 hours post seeding in growth medium 
as a function of hydrogels of various composition ± ELP.  
C2C12 fusion index on D) various coatings (C2C12 cells seeded at a 40,000 cells/cm² density) and on 
E) 2D hydrogels of various composition ± ELP after 6 days in serum depleted medium.   
F) cell layer area (%) and G) representative pictures (4x3 mosaics) of C2C12 cell layers after 6 days in 
serum depleted medium (Blue : cell nuclei, green: actin cytoskeleton and red: MyHC) on various 
hydrogel conditions ± ELP. A, D) One way ANOVA + Tukey’s multiple comparison test. B,C, E,F) t-test 
conditions with ELP against conditions without ELP, *:p<0.05, **:p<0.01, ***:p<0.001  
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Similarly, the fusion of C2C12 on ELP coatings was not different from the crude plastic dish 

control or standard matrigel (Figure 30D). However, the ELP addition inside hydrogels bulk 

material was linked to a significant increase in C2C12 cell fusion for the condition 2/50 mM 

DGL/PEG (Figure 30E). Interestingly, the ELP presence inside the DGL/PEG hydrogel led to 

better stabilization of the cell layer during fusion (Figure 30F and G). This stabilization was 

significantly increased for conditions with the higher fusion index (i.e. 1.6/25 and 2/37 mM 

DGL/PEG) without affecting the fusion. These results suggest biological interactions between 

the ELP and C2C12 cells that were not related to substrate stiffness. As the C2C12 on ELP 

coatings did not behave differently from the crude plastic dish control, it tends to indicate that 

the ELP has a different effect when coated or when included inside DGL/PEG hydrogels.  

To better understand this phenomenon, the ELP was freely added to the culture medium of 

primary mice myoblasts (pMMs) differentiated on matrigel, resulting in a visual increase of the 

final number of nuclei (Figure 31A and B). These results suggest ELP can affect pMMs when 

available in the medium in comparison to coatings, where no effect was observed. Previous 

nuclear magnetic resonance studies indicated that the incorporation of ELP in DGL/PEG 

hydrogel liquid precursors do not lead to intermolecular interactions of the ELP with the 

DGL/PEG polymer mesh. Although the ELP is not bound to the DGL/PEG polymeric network, 

we could show that the ELP stays embedded inside the network and was not released after 

24 hours of incubation in PBS at 37°C [378]. This demonstrates that the effect observed when 

the ELP is incorporated in DGL/PEG hydrogel is not due to its delivery to the culture medium. 

Consequently, the different effects of the ELP when coated, included inside the DGL/PEG 

hydrogel, or added freely in the culture medium could be a result of its binding domain 

availability. The adsorption of the ELP on the surface could prevent the exposition of binding 

domains for cells. On the contrary, when added freely to the culture medium, the ELP could 

more freely interact with cells through privileged domains (i.e. hexapeptide VGVAPG with 

elastin binding protein (EBP) and domain 36 with integrin αvβ3). When included inside the 

DGL/PEG hydrogel, some domains of the ELP could however be presented at the surface. 

To conclude, when delivered in the medium or when included in DGL/PEG hydrogels of various 

compositions, the ELP had an influence on C2C12, iHMs, and pMMs in terms of cell 

proliferation, fusion, and cell layer stabilization.  
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Figure 31: Effect of free ELP of various concentration added to the culture medium of pMMs 

A) Myosin heavy chain in red and DAPI in cyan. B) A visual increased number of nuclei can be 

appreciated in the presence of free ELP in the medium. 

Red: Myosin heavy chain (MyHC) and cell nuclei in cyan.  
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In conclusion, the variation of stiffness, DGL:PEG molar ratios, and presence of an elastin-like 

polypeptide influenced the behaviour of various myoblast types in terms of proliferation, 

morphology, adhesion, migration, and fusion. Some favourable conditions, showing an 

adequate interaction with cells, could be targeted for subsequent experiments (Table 20). 

Table 20 : Summary table of 2D hydrogels effect on C2C12 and iHMs; and ELP effect on C2C12, iHMs, 
and pMMs. Study of cell proliferation, spreading, migration, and fusion. 

DGL/PEG (mM) Proliferation Spreading Migration Fusion 

1/25 --- --- -- Not studied 

1.6/25 + ++ +++ +++ 

2/19 + - -- --- 

2/25 +++ +++ ++ + 

2/37 +++ +++ +++ +++ 

2/50 + - -- ++ 

ELP ++ Not studied No effect ++ (layer stabilization) 
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1.6 Discussion  

The objective of this chapter was to examine how mechanical stiffness and biochemical cues 

of the DGL/PEG hydrogels can influence the behaviour of myoblasts in 2D. A good 

understanding of the parameters modulating cell fate is essential for the development of new 

scaffolds.  

In this work, six DGL/PEG hydrogels conditions were used to vary both substrate stiffness 

along with the effect of DGL and PEG molar ratio and characterize the impact of mechanical 

and biochemical changes on cell behaviour. To do so, several conditions were fashioned, 

exhibiting the same DGL: PEG ratio but with various stiffness. For instance, 1/25 and 2/50 mM 

DGL/ PEG at 1:25 DGL:PEG ratio had an elastic modulus of 12.0 ± 2.4 and 157.8 ± 14.1 kPa 

respectively and 1.6/25 and 2/37 mM DGL/PEG at a 1:16 DGL:PEG ratio showed elastic 

modulus of 18.3 ± 2.2 and 105.5 ±11.5 kPa respectively.  

1.6.1 Stiffness modulation and effect 

DGL/PEG hydrogel stiffness can be easily modulated by simply varying DGL and/or PEG 

concentration as well as their ratios. We demonstrated DGL had a higher influence on hydrogel 

stiffness than PEG. This is in line with previous assumptions made in our group showing a 

more significant contribution of DGL to control the crosslinking velocity [373]. DGL presents 

114 amines groups to act as a crosslinker, however, it is unlikely that all the end groups are 

involved in an amide bond with PEG molecules due to steric hindrance. This feature limits the 

maximal number of PEG grafted on a single dendrimer and increase the probability to react 

with an amine function on the same dendrimer and form intramolecular loops. Less 

concentrated hydrogel precursors, increase the space between dendrimers, with more 

probability to form intramolecular loops at the expense of network chains. Conversely, 

increasing the DGL concentration, reducing the steric crowding and the risk for intramolecular 

loops could thus result in higher stiffness through increased amide bonds with PEG.   

In this work, we showed that stiffness modulation, through DGL and PEG, affects cell 

morphology and proliferation, with soft substrates more likely to trigger less proliferative and 

round-shaped cells. Our findings are in line with previous studies showing the clear effect of 

stiffness on skeletal muscle cell behaviour. This is for instance in agreement with Engler and 

colleagues who demonstrated that stiffer substrate induced a higher myoblast spreading [198] 

than softer ones. The same trend has been described with fibroblasts and endothelial cells 

spreading [186]. These studies suggested that cells onto stiff substrates are more likely to 

produce stress fibres and vinculin-enriched focal adhesions (FA) resulting in stronger 

membrane adhesion and subsequent spreading. C2C12 proliferation on DGL/EPG hydrogel is 

also in line with studies showing the increasing proliferation of skeletal muscle cells with 

increasing stiffness in 2D [168]. This phenomenon could be explained by enhanced cell ability 

to assemble the machinery needed to generate traction forces and drive entry into the cell 
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cycle on increased substrate stiffness. Indeed, it has been shown that substrates too soft were 

not able to provide stable anchor sites to cell receptors, limiting the generation of forces by 

cells [391]. These results could explain C2C12 difficulty to proliferate in soft DGL/PEG 

conditions and their easy amplification on stiff plastic dishes.  

In addition to early adhesion, spreading, and proliferation, stiffness has been shown to affect 

myoblasts differentiation. For instance, C2C12 cells showed skeletal muscle typical striation in 

a higher proportion when cultured on substrates close to that of the native tissue (i.e. 15 kPa) 

[198] and exhibited a better overall differentiation on softer substrates than on stiffer ones 

[167]. Moreover, as presented in the introduction, muscle stem cells (MuSCs) responsible for 

the efficient regeneration of injured muscle tissue have been shown to be sensitive to their 

mechanical environment in vitro [392] with higher maintenance of their self-renewal ability on 

substrate closer to the native muscle stiffness than on plastic dish (~106 kPa) [166].  

All these instances strengthen the interest of stiffness modulation for skeletal muscle tissue 

regeneration and consolidate the potential of the DGL/PEG hydrogel, which showed precise 

and simple mechanical versatility. DGL/PEG hydrogel stiffness and swelling through mesh size 

variation could be easily adjusted depending on tissue needs. However, while we showed a 

clear effect of stiffness on myoblasts proliferation and early spreading, it was not related, in 

our case, to subsequent ability to differentiate and fuse. Accordingly, our findings tend to 

demonstrate that efficient cell differentiation and subsequent fusion is related to many factors 

and cannot be solely achieved by tuning the mechanical properties of the substrate. 

In fact, cell behaviour toward stiffness has been shown to be highly dependent on the nature 

of the adhesion receptor by which the cell binds to the substrate [186]. For instance, for a given 

stiffness, myoblasts differentiate better on cell layers composed of skeletal muscle cells than 

composed of fibroblasts [167]. In addition, skeletal muscle cells maturation is faster with a 

higher number of myotubes on substrates coated with poly-D-lysine and laminin compared 

with type IV collagen coatings of similar elasticity [393]. To conclude, the differentiation of 

skeletal muscle cells is influenced by both substrate elasticity and protein coatings 

demonstrating that biochemical cues and stiffness act synergistically. 
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1.6.2 The effect of DGL on skeletal muscle cells  

In this work, the use of a PEG backbone was evaluated due to the straightforward chemical 

versatility it offers, allowing control of the resulting mesh size and stiffness. The PEG effect on 

C2C12 proliferation and fusion was not here investigated due to many studies related to the 

topic, showing PEG-based hydrogels are adequate substrates for C2C12 cells [206], [394]. 

However, in aforementioned instances, PEG based-hydrogel needed to be functionalized with 

RGD ligands to conveniently interact with cells. In this work, we used the inert PEG in 

combination with DGL to provide the PEG polymer-based hydrogel with inherent bioactivity 

towards cells. In addition to bioactivity, we highlighted a major influence of DGL on skeletal 

muscle cell behaviour in both proliferation and differentiation/fusion. We demonstrated that the 

DGL:PEG molar ratio affected cell morphology and migration. The latter being crucial for cell 

infiltration from host tissue in 3D scaffolds and subsequent skeletal muscle cell fusion. We also 

showed that DGL drastically decreased the C2C12 fusion index. This could be due either to 

their inability to enter differentiation to form elongated myocytes (less mobile than myoblasts 

but with a greater ability to fuse [62]) or due to a fusion impairment of myocytes. This 

phenomenon was unrelated to stiffness as we showed that hydrogels of totally different 

stiffness but of similar DGL:PEG ratio equally sustained migration, spreading, and fusion, while 

a condition close to the native tissue stiffness (30.6 ±2.6 KPa), was not able to support 

proliferation and fusion due to a high amount of DGL.  

These results are in accordance with our previous observations on fibroblasts where the 

amount of DGL in the DGL/PEG hydrogel played a critical role in cell adhesion, morphology, 

and viability [373]. We proposed that DGL’s influence on cells was related to cationic charges 
interacting with phospholipids forming the cell plasma membrane. A high concentration of DGL 

in DGL/PEG hydrogel is related to an increased density of NH2 groups available at the surface 

of the substrate. Amine groups are positively charged at experimental conditions (pH 7.4) with 

a DGL pKa between 9 and 10 [395]. Charged surfaces using positive or negative ions have 

been related to cell affinity improvement in various cell types, [203]. Fibroblasts behaviour 

toward DGL was also explained by the increased expression of α5 integrin subunit by cells 

seeded on DGL coatings in comparison to poly-(L-lysines) [377] enabling an adhesion 

increased by 20%. Cells are known to use adhesion sites to contract the cell body forward 

[396] and be able to migrate on supports. This increased adhesion of cells could thus be the 

origin of a C2C12 and iHMs decreased propensity to migrate on DGL/PEG hydrogels of high 

DGL concentrations. Moreover, a too important concentration of cationic charges was related 

to cell mortality possibly due to a disruption of cell membrane integrity for too high DGL ratios 

(i.e. DGL:PEG ratios of 1:6) [373]. Therefore, in this work, the ratio of DGL:PEG was inferior 

to 1:10 to prevent early cell mortality and be able to study the effect of DGL amount.  

In addition to increased adhesion on substrates, it has been shown that positively charged 

NH2 grafted on polystyrene led to a higher proliferation of C2C12. Conversely, C2C12 cells 
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seeded on neutral surfaces displayed higher expression of myogenin in comparison with 

positively (NH2) and negatively (COOH) charged surfaces, suggesting better differentiation on 

neutral surfaces [397]. This was related to enhanced interaction of cells on NH2 moieties 

through α5β1 and αvβ3 integrins [397]. Given the major influence of β1 integrin subunits in 

myogenic differentiation, blocking them can drastically inhibit differentiation [397], their 

strengthened interaction with NH2 groups could thus influence muscle cell differentiation and, 

subsequent fusion. In addition to β1-integrin, β3-integrin subunits are crucial for C2C12 

adhesion and fusion as their specific siRNA-mediated silencing has been related to a reduced 

number of myoblasts expressing myogenic markers (such as myosin heavy chain) [178]. β3-

integrin subunit expression has also been shown to be induced in activated SCs during 

regeneration in mice [178]. Given the crucial role of β1 and β3 integrin subunits during 

myogenesis and regeneration, their enhanced interactions with NH2 moieties could explain 

the drastic C2C12 fusion impairment observed on DGL coatings and DGL/PEG hydrogel of 

high DGL concentration. 

In conclusion, a high DGL percentage inside the DGL/PEG hydrogels could influence cell 

behaviour in many ways through high density of positively charged NH2 groups. Due to an 

increased cell adhesion (through α5 integrin subunit), the presence of DGL could decrease 

C2C12 and iHMs mobility on the support, greatly affecting their aptitude to fuse upon cell-cell 

contact.  Moreover, the highly positive amine concentration could be related to a differentiation 

and fusion impairment through interactions with β1 and β3 integrin subunits involved in the 

fusion process. However, when coupled to PEG to form the hydrogel, amine charges, partially 

involved in covalent amide bond formation convert into neutral groups allowing the recovery of 

the differentiation potential. These results highlight the importance to choose an adequate 

DGL:PEG ratio since DGL can disrupt muscle regeneration.  

In conclusion, we demonstrated that C2C12 behaviour is driven by multiples cues acting 

synergistically. Although the stiffness versatility of the hydrogel is paramount to provide C2C12 

feedback to drive their fate, the presence of DGL and its covalent involvement with PEG had 

also a major influence.  

1.6.3 The effect of ELP on skeletal muscle cells 

Although in our experimental conditions, the ELP does not appear to influence DGL/PEG 

mechanical behaviour, its integration in the hydrogel bulk was associated with a modification 

of cell behaviour towards the hydrogel. We showed that the ELP presence resulted in a cell 

layer stabilization during differentiation, suggesting a better cellular adhesion to the hydrogel. 

This is in line with previously described studies. C2C12 have been shown to be sensitive to 

elastin-like polypeptide coatings, exhibiting a better adhesion after 5 hours with an increased 

spread area in comparison with glass control [233]. Along with adhesion, C2C12 displayed a 

higher differentiation on elastin-like polypeptide coatings than on glass [233]. H9c2 myoblasts 
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have also shown to exhibit higher genic expression of myoD, myogenin, and MyHC when 

seeded on elastin-like polypeptides coatings [232].  

Elastin-like polypeptides are usually described as highly hydrophobic moieties due to the 

repeated alternation of hydrophobic domains based on the pentapeptidic sequences VPGXG. 

Accordingly, the ELP designed in our laboratory is characterized by the repeated alternation 

of hydrophobic domains based on two human hexapeptidic sequences (VGVAPG-VGVLPG) 

[379]. The incorporation of ELP inside DGL/PEG hydrogel, while not influencing mechanical 

behaviour has been shown to decrease its overall wettability [378], having a possible effect on 

cell adhesion and morphology. For instance, it has been shown that a too hydrophobic or 

hydrophilic surface could impair adhesion of human MG63 osteosarcoma cells [398]. ELP 

could thus act as a wettability regulator by counterbalancing the hydrophilic behaviour brought 

by positively charged DGL and hydrophilic PEG chains, and could thus, enhance C2C12 

adhesion to maintain the cell layer during differentiation.  

Another point is that C2C12 and human myoblasts have been shown to express αvβ3 integrins 

[177], [178]. Considering β3-integrins are involved in focal adhesion [176], the presence of the 

GRKRK motif able to bind with αvβ3 integrins in the ELP could be related to a better cellular 

adhesion, strengthening the cell layer during differentiation. This binding could as well 

participate in explaining our results. However, while β3 integrin subunit has been shown to 
participate in the initiation of myogenesis in adult muscles through SCs activation, in our study, 

the presence of ELP was not correlated with a higher fusion index.  

Therefore, the use of the ELP could be considered for VML treatment to strengthen myoblasts 

adhesion during their differentiation and to maintain the neo tissue stability.  
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1.7 Conclusion and critical evaluation  

Understanding how substrates can direct cell function is critical to the rational design of 

biomaterials relevant for in vitro culture substrates or for tissue engineering applications. 

Because methods for inducing differentiation of primary myoblasts described previously and 

elsewhere (i.e. the use of Matrigel [399]) are clinically unsuitable or raise questions about 

safety issues and batch-to-batch variability, we focused on a more clinically feasible approach. 

Here, the PEG being biologically inert needed to be associated with DGL to be able to favour 

cellular adhesion, while preserving stiffness versatility and high reproducibility. 

The decision of a cell to proliferate, migrate or undergo differentiation is an integrated response 

to its adhesive and growth factors (GF) external environment. We demonstrated that stiffness 

and surface chemistry act as a modulator of C2C12 and immortalized human myoblasts fate. 

The C2C12 and immortalized myoblasts cell lines may not accurately reflect the response of 

primary cells to mechanical and biochemical cues. However, they were interesting models to 

study the effect of the hydrogels components on cells. The use of primary mice myoblasts was 

as well considered, but their complex culture protocols involving the use of important volumes 

of matrigel, restricted their utilization. 

Using these models, we demonstrated that surface stiffness in combination with DGL:PEG 

molar ratio affected essential cell proliferative behaviours, including adhesion, proliferation, 

morphology, and migration. As cell confluence is known to cause growth arrest, essential for 

myogenic differentiation, both stiffness, and biochemical cues were thus of high relevance to 

trigger cell fusion. In this work, we evidenced the clear effect of stiffness on skeletal muscle 

cell behaviour. Contrarily to Engler and colleagues that described a very narrow elasticity 

window enabling cellular fusion, we described a wider range. In addition, we showed that the 

presence of DGL on the 2D support greatly modulated the process of cell differentiation and 

fusion through mechanisms that need to be further investigated. For instance, to better 

understand the underlying processes, it would be of interest to study DGL coatings partially 

functionalized with anhydride acid such as succinic acid following the reaction 1 [400]. This 

reaction would allow converting NH2 into COOH groups and being able to study the effect of 

groups and charges on C2C12 cells while maintaining the DGL structure.  

(1) Reaction between succinic acid and NH2 groups leading to the formation of COOH groups 
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Another possibility to correlate the fusion impairment with the concentration of NH2 groups, 

would be to quantify the NH2 concentration and the electrical potential at the surface of 

DGL/PEG hydrogels of various concentrations. The determination of the zeta potential at the 

interface of hydrogel with the medium could help measuring the electrical potential and the 

electrostatic forces applied on cells. In addition, the ADECA  assay (amino density estimation 

by colorimetric method) could provide the number of available NH3+ groups at the surface of 

hydrogels [401]. It is a colorimetric assay based on the reversible specific interaction between 

coomassie brilliant blue (CBB) and protonated N+ groups such as NH3+. After CBB grafting on 

protonated surface, it is eluted and quantified to deduce the concentration of NH2 groups on 

surfaces. During the thesis, some effort have been dedicated towards the establishment of 

ADECA protocols on DGL/PEG hydrogel of various compositions. However, the penetration of 

the dye solution inside the hydrogel network distorted the analysis by quantifying protonated 

groups inside the hydrogel (having no interactions with cells) in addition to those present on 

the surface. Besides, the dye solution enter more quickly inside less concentrated hydrogel 

compositions, with looser mesh size. Future work could thus focus on the optimization of the 

dye exposure and elution time to quantify NH2 group present at the surface of DGL/PEG 

hydrogel and allow correlations with cell behaviour.  

To conclude, even if all the mechanisms were not fully explained, some conditions of the 

DGL/PEG hydrogel could sustain rapid C2C12 proliferation and fusion, consolidating its 

potential as a support for skeletal muscle cells. Altogether, these results enabled us to define 

three concentrations of interest for subsequent studies. Conditions 1.6/25 and 2/37 mM 

DGL/PEG with various stiffness and same DGL/PEG molar ratio were selected due to high 

fusion indexes in comparison to other conditions. The condition 2/25 mM DGL/PEG hydrogel 

was also chosen, given its ability to sustain C2C12 proliferation, similarly to the positive plastic 

dish control.   

Table 21 : C2C12 behaviour in proliferation and differentiation on the three conditions targeted  

mM 

DGL/PEG 

DGL :PEG 

ratio 

Elastic modulus 

(kPa) 

Proliferation 

(confluence) 

Differentiation 

(fusion index) 

1.6/25 1:16 18.3 ± 2.2 15.6 ± 3.5 8.2 ± 1.1 

2/25 1:12 54.7 ± 3.1 35.0 ± 8.7 2.5 ± 0.5 

2/37 1:16 105.5 ± 11.5 43.0 ± 5.5 8.2 ± 0.6 

     



155 
 

 

Figure 32 : Take home message Chapter 1  
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2 The development and characterization of a porosity inside 

DGL/PEG hydrogel compatible with its injection.  

The DGL/PEG hydrogel appears as a promising material in the biomedical field owing to its 

similarity to native extracellular matrices, and modularity in terms of stiffness and cell adhesion. 

We demonstrated that the DGL/PEG hydrogel is of interest for the sustained proliferation of 

skeletal muscle cells and their subsequent fusion. We demonstrated as well that its modulation 

allowed to control skeletal muscle cell behaviour, further consolidating its potential.  

Moreover, the use of solubilized polymer precursors to form the DGL/PEG hydrogel is 

compatible with their passage through needles to polymerize in situ. The design of injectable 

systems is one of the major needs for hydrogels applications in clinical settings, as they can 

conform accurately to irregularly shaped cavities and integrate to surrounding tissues via a 

minimally invasive surgery [402]. This advantage can cost-effectively shorten the surgical 

operation time, minimize the damaging effects on tissues, reduce scars size, and lower 

postoperative pain.  

However, to be used for tissue regeneration, the DGL/PEG hydrogel should lead to an efficient 

cellular and tissue ingrowth, with blood vessel infiltration to prevent hypoxia [288]. The number 

of hydrogel candidates that can be readily infiltrated and colonized without preformed porosity 

is so far limited [330], [334] and the induction of porosity inside hydrogels is, therefore, critical 

for regeneration purposes.  

A variety of techniques such as electrospinning, freeze-drying [150], gas/salt leaching [403], 

phase separation [404] or gas foaming techniques using high-pressure CO2 [228], [350], [352]–
[354] have been developed to induce a porous structure inside a hydrogel, in view of 

incorporating the features required by targeted tissues. Nevertheless, most of the 

aforementioned processes used to prepare the hydrogel itself or the porous structures within 

are generally not suitable with direct injection, due to mandatory production steps beforehand 

or to the use of harsh solvents. As a result, these approaches, although appealing to create a 

porosity inside hydrogels, are so far confined to pre-shaped structures for invasive and 

stressful implantations. 

The aim of this chapter is thus to find a way to (1) create a porosity inside the DGL/PEG 

hydrogel while (2) maintaining its technical injectability and (3) preventing the release of toxic 

products to be in situ injected without inducing toxic effects. 
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2.1 In situ injectability: the need to avoid the use of harsh solvents 

To be able to address the aforementioned aims, an important modification of the hydrogel 

formulation had to be performed beforehand. The DGL/PEG hydrogel described in the first 

chapter was prepared using PEG-NHS solubilized in N,N-Dimethylformamide (DMF), due to 

the N-Hydroxysuccinimide (NHS) function quick hydrolysis in aqueous solutions. However, 

DMF raises many safety issues linked to its carcinogenic, mutagenic, and reprotoxic (CMR) 

nature, which render it unsuitable for in situ injectability. To address this issue, it was decided 

in this work, to use a safer solvent, such as dimethyl sulfoxide (DMSO) that would also 

preserve the NHS groups’ reactivity over time.  

2.1.1 Effect of PEG solvents on normal human dermal fibroblasts (NHDF) 

As previously mentioned, dry DMF was used in first instance to avoid NHS ester groups’ 
hydrolysis in aqueous solutions. Indeed, PEG-NHS dissolved in PBS 1X showed a clear 

decrease of reactivity over time, visible through a significant crosslinking delay after 1 and 4 

weeks storage at -20°C (Figure 33A). On the contrary, when solubilized in DMSO, the PEG 

reactivity was not significantly decreased up to 4 weeks of storage compared to PEG 

solubilized in DMF. Given the need to take advantage of the tuneable and reproducible 

crosslinking velocity of the DGL/PEG hydrogel, the use of PBS was therefore abandoned. 

To study the effect of DMF and DMSO on cells, normal human dermal fibroblasts (NHDF) were 

cultured in contact with 24 hours extracts of dense hydrogels. Unless stated otherwise, all the 

dense hydrogels evaluated for cytotoxicity were used directly after formulation without any 

washing, to emulate the conditions of an in situ injection. 

As depicted in Figure 33B, 24 hours extracts of unwashed hydrogels formulated with PEG 

solubilized in DMF triggered a significant decrease of cell metabolic activity after 48 hours of 

contact. Conversely, the use of DMSO was related to a slight decrease in cell metabolic activity 

compared to the control and no significant difference compared to an extensively washed 

hydrogel.   

The drastic drop of cell metabolic activity observed with 24 hours hydrogels extracts formulated 

with DMF can be attributed to the solvent intrinsic cytotoxicity. As observed in Figure 33C, the 

addition of DMF at 1% on NHDF seeded on plastic dishes induced a significant decrease in 

their metabolic activity after 48 hours. Contrarily, 1% of DMSO added directly in the culture 

medium of NHDF did not induce any modification of their metabolic activity, compared with 

untreated control (Figure 33C). As a result, DMSO is an attractive alternative to the DMF for 

PEG solubilisation as no differences in cellular metabolic activity were highlighted between 

cells in contact with 24 hours extracts of control rinsed hydrogel or of unwashed hydrogel 

formulated with the PEG solubilized in DMSO.  
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Figure 33: Study of the use of other solvents for PEG-NHS solubilisation  

A) Crosslinking time of 2/25 mM DGL/PEG hydrogel with the PEG solubilized in DMF, DMSO or PBS 

and immediately used for reaction (W0) or stored at -20°C and used after 1 or 4 weeks (W1 and W4, 

respectively)  

B) NHDF cells in contact 48 hours with 24 hours hydrogel extracts of 2/25 mM DGL/PEG hydrogels 

formulated with PEG-NHS solubilized in DMSO (DMSO) or in DMF (DMF) used directly post formulation, 

or after an extensive washing (Washed DMF) as a positive control against cells without treatments (Ctrl), 

C) Effect of DMSO and DMF at a 1% final concentration 48 hours in contact with cells vs cells in contact 

with 1% PBS as a positive control (PBS). A) Mann-Whitney test DMF vs DMSO or DMF vs PBS. B, C) 

One way ANOVA + Dunnett’s multiple comparison test VS Ctrl or PBS 1X 

2.1.2 Validation of the use of DMSO instead of DMF for PEG solubilisation  

Due to the modification of PEG solvent, to match the requirement of in situ injectability, some 

of the results generated in chapter 1 were confirmed with 2D hydrogels formulated in DMSO. 

It was demonstrated that regardless of the PEG solvent used to formulate the hydrogels (either 

DMSO or DMF), similar results were obtained. In particular, no differences in terms of 

mechanical behaviour were reported for the three DGL/PEG conditions targeted (Figure 34A 

and B). Similarly, the behaviour of C2C12 cells was not impaired by the use of DMSO instead 

of DMF, as assessed by their proliferation and differentiation (Figure 34C and D). 

According to the lack of significant difference between DMSO and DMF in regard of mechanical 

properties or cell behaviour, all subsequent experiments were done using DMSO as solvent 

for the PEG-NHS. This allows strengthening the possible use of DGL/PEG hydrogels as an 

adequate substrate to be used in direct contact with cells, without harming effect.  
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Figure 34: Comparative study of 2D hydrogels formulated with PEG –NHS solubilized in DMF or in 

DMSO 

A) Mechanical properties in compression and B) swelling ratios of various DGL/PEG hydrogel conditions 

formulated from PEG either solubilized in DMF or DMSO.  

C2C12 cells C) confluence after 30 hours post seeding and D) fusion index after 6 days in serum 

depleted medium on various DGL/PEG hydrogel conditions formulated with the PEG solubilized in DMF 

or DMSO.  

A), B), C), D) t-test DMF vs DMSO  
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2.2 Elaboration of a porosity compatible with DGL/PEG injection  

To establish a porosity inside DGL/PEG hydrogels while maintaining their injectable potential, 

various techniques have been explored. Their respective advantages and drawbacks have 

been evaluated prior to describe the most optimal solution.  

2.2.1 Particle leaching   

As mentioned in the introduction, particle leaching techniques can form tailorable porosity and 

have shown interesting possibilities in combination with injection.   

Oil and water emulsion techniques described in this work allowed the formation of microbeads 

from a 10 % gelatine solution. The formation of the beads took advantage of the 

thermosensitive properties of the gelatine. Above temperatures of 25°C in aqueous solutions, 

gelatine is solubilized in a random coil conformation. Below 10°C, and for concentrations above 

2 %, gelatine recovers a triple helical structure to form a non-soluble physical hydrogel. As 

depicted in Figure 35A, round-shaped beads with a broad size distribution could be obtained 

and maintained in cold aqueous solutions.  

After formulation, gelatine microbeads (GMB) were successfully added to 4°C DGL/PEG 

hydrogel precursors to be entrapped inside the hydrogel network during crosslinking (Figure 

35B and C). Although entrapped inside the DGL/PEG hydrogel network, the GMB were visibly 

not in tight contact with each other. In addition, GMB were not able to leach after immersing 

24 hours the composite (DGL/PEG hydrogel entrapping GMB) in 37 °C and 50 °C water bathes 

(Figure 35D). GMB, not in contact during hydrogel formulation is a plausible explanation to 

these results. Without contact between GMB, their leaching will only occur through hydrogel 

mesh size diffusion. Generally, the gelatine molecular weight is comprised between 104 and 

107 g/mol with an average of about 105-106  g/mol [405]. Therefore, gelatine molecules chains 

of high molecular weight and high polydispersity might prevent their diffusion through 

DGL/PEG hydrogel tight mesh size.  

To overcome this issue, and try to create contact between GMB, they were used freeze-dried 

to provide a higher density of GMB during DGL/PEG formulation and simultaneous microbeads 

rehydration. After immersion of composite DGL/PEG hydrogels and GMB in a 37°C water bath, 

some pores generated localized interconnections (Figure 35E). The formation of air bubbles 

during the DGL/PEG network realization was also observed with the addition of dry GMB.  

Although particle-leaching technique seemed promising, the difficulty to perform GMB 

compaction during DGL/PEG formulation prevented their leaching. The lack of dissolution 

clearly precluded the formation of interconnected porosity inside the network, restricting the 

use of this technique.  
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Figure 35 : Alternatives solutions explored for the induction of a porosity inside the DGL/PEG hydrogel 

suitable with its injection  

A) Observation of GMB right after formulation in cold PBS 1X and B) embedded inside a 2/25 mM 

DGL/PEG hydrogel in light or fluorescence microscopy after 24 hours at C) 4°C or D) 37°C. GMB are 

visible in blue (autofluorescence). Red dotted line: GMB delimitation.  

E) DGL/PEG hydrogel mixed to freeze-dried GMB, let to be hydrated by hydrogels precursors. Red 

arrows: some pores were interconnected. F) Stabilized emulsion created during DGL/PEG crosslinking.  

 



163 
 

2.2.2  Gas entrapment – gas foaming methods 

One interesting feature of the DGL/PEG hydrogel is its fast and tailorable crosslinking velocity 

within seconds to minutes [373]. This characteristic can offer the opportunity to entrap air or 

gas bubbles inside the network during its crosslinking.  

The following parts are therefore dedicated to the investigation of the adequacy of various gas 

bubbles generation systems with the DGL/PEG hydrogel crosslinking.   

2.2.2.1 Stabilized air emulsion inside DGL/PEG hydrogels 

First, the use of stabilized air bubbles was envisaged to generate a porosity inside the 

DGL/PEG hydrogel similarly to Zhang and co-workers [346]  and as follows:  

A connector was used to join two syringes containing hydrogel precursors with a certain 

volume of air. Both solutions were homogenized by pushing the plungers of the syringes 

alternatively in opposite directions to create the air bubbles by emulsion during the mixing 

process. The incorporation of a surfactant together with PEG 8000 in hydrogel precursors 

enabled to stabilize air bubbles for several minutes and prevented their burst or fusion. After 

10 seconds of homogenization, the resultant hydrogel was injected inside a conic tube. In this 

manner, it was possible to create an important amount of air-stabilized bubbles entrapped 

inside the DGL/PEG hydrogel network. After cutting and observation under light microscopy, 

the resultant porous hydrogel exhibited air bubbles still entrapped inside the network with no 

clear contact between bubbles (Figure 35F).  

Neither the surfactant nor the viscosity increase through the PEG 8000 had an impact on 

DGL/PEG hydrogel crosslinking velocity. However, by varying amounts of surfactant and/or 

PEG 8000 from 5 to 15% (w/v), it was not possible to promote the formation of contact between 

stabilized air bubbles. Hence, the lack of interconnection seemed not related to a poor air 

bubbles stabilization but rather to an air bubble density too low to achieve contact. 

The observation that a critical amount of bubbles was mandatory to achieve contact, resulting 

in potential interconnection, incited us to explore other methods to form bubbles at a higher 

density. 

2.2.2.2 Effervescent reactions    

To bring an alternative to the aforementioned issue the use of acid-base effervescences, 

generating CO2 bubbles, was considered in this work. However, the question remains if an 

effervescent reaction, associated with the DGL/PEG hydrogel, could allow both injection and 

in situ formation of pores, in a single step. 

A first work was thus conducted on the choice of effervescence conditions. 
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Acid/base selection 

By mixing carboxylic acid and carbonated base in aqueous solutions, effervescences were 

effectively produced and could be adjusted. Only the results generated using acid and base 

solubilized in water are reported here. The use of powders was part of pilot experiments not 

described in this work and rapidly excluded due to the risk of needle clogging during the 

injection.   

The final concentration of acid and base, for a fixed ratio, allowed tailoring the effervescence 

power and duration over time whatever the acid/base couple used. While a low concentration 

(0.5 M) produced a non-explosive effervescence with minimal production of CO2 bubbles and 

a relatively short reaction duration, a higher concentration (1.5 M) induced a longer and 

explosive effervescence characterized by an important volume expansion. Of note, the more 

explosive the effervescence, the larger bubbles were observed. Therefore, a concentration of 

1.1 M was set in subsequent experiments to generate enough CO2 bubbles to generate 

homogeneous porosity while preventing a too explosive effervescence with the formation of 

giant CO2 bubbles that could weaken the resultant hydrogel.  

At this final concentration of 1.1 M, regardless of the acid/base couple used, effervescences 

generated were visually similar in terms of duration and CO2 bubbles generation. However, 

calcium carbonate, magnesium carbonate, and succinic acid were discarded due to their low 

solubility in water, requiring the use of too important volumes. Moreover, reactions with sodium 

bicarbonate and citric acid were also avoided due to the production of a potent anticoagulant, 

the sodium citrate [406]. 

Finally, five acid/base couples were of interest with the production of visually similar 

effervescences. The reaction of potassium carbonate (KC) with glacial acetic acid (Gaa) was 

finally chosen owing to their high water solubility and possibility to achieve high concentrations 

in small volumes.  

Table 22 : Study of various carboxylic acid and carbonated base to generate effervescences. 
Effervescences should generate a high density of CO2 bubbles. Check marks are highlighting acid:base 
couple enabling the generation of high CO2 bubbles density due to adequate solubilization in aqueous 
solutions to reach high final concentrations. 

          Base 

Acid 

Potassium 

carbonate 

Sodium 

carbonate 

Sodium 

bicarbonate 

Calcium 

carbonate 

Magnesium 

carbonate 

Acetic acid ☑ ☑ ☑ 

Low solubilisation of both 

carbonates. Difficulty to 

reach high final 

concentration for 

explosive effervescence 

Citric acid ☑ ☑ 

☑ Formation 

of sodium 

citrate 

Succinic 

acid 

Low solubilisation of the acid. Difficulty to 

reach high final concentration for explosive 

effervescence 
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Study of KC and Gaa effervescence and relative effect on DGL/PEG hydrogels 

As depicted in Figure 36A, for a final concentration of 1.1 M and by varying the Gaa:KC molar 

ratio, it was possible to modulate the pH of the solution after effervescence from 5.57 ± 0.03 

up to 7.25 ± 0.003. Of note, when deviating from the stoichiometric condition (i.e. 2:1 Gaa:KC 

molar ratios), a slower pH stabilization over time was observed. Conditions 1:1, 1.33:1 and 

1.5:1 Gaa:KC molar ratio were still not stabilized after 48 hours of reaction (with a pH of 8.14 

± 0.04; 7.47 ± 0.05 and 6.90 ± 0.06 respectively). On the contrary 1.75:1 and 2:1 Gaa:KC molar 

ratio were stabilized 15 minutes after the effervescent reaction. Interestingly, for a given final 

molarity, the molar ratio variation did not induce a visual difference between effervescence 

duration over time and CO2 bubble generation. On the contrary, the addition of a surfactant 

during the effervescent reaction stabilized CO2 bubbles for 3 minutes, which represents a very 

interesting mean to further control CO2 bubble generation.   

Considering the versatility of CO2 bubble production observed, the influence of the 

effervescence on DGL/PEG hydrogels crosslinking was then investigated, to determine their 

chemical compatibility and the possibility to use a surfactant as stabilizer. To do so, potassium 

carbonate and glacial acetic acid were let to react for 10 minutes at the desired concentrations, 

followed by extensive homogenization. The resulting solutions, after completion of effervescent 

reactions, were used for subsequent hydrogel crosslinking experiments.  

First, the effect of the final pH produced by effervescence was studied on a 2/25mM DGL/PEG 

hydrogel crosslinking. In PBS, which pH was adjusted from 5 to 10 with various Gaa:KC molar 

ratio (from 2:1 to 1:1.6 Gaa:KC respectively), the crosslinking time of a 2/25 mM DGL/PEG 

hydrogel was strongly influenced (Figure 36B). At a final acidic pH (5), the crosslinking time 

was delayed to 350 seconds while alkaline pH (10) resulted in immediate crosslinking. 

Suggesting a strong influence of the pH on DGL/PEG chemistry, unrelated to the couple used, 

a similar delay was observed with other acids. This was further confirmed by the variation of 

Gaa and KC final molarity for a given molar ratio, as the crosslinking time of a 2/25 mM 

DGL/PEG hydrogel stayed constant whatever the molarity used (Figure 36C).  

These results allowed to target a range of Gaa:KC molar ratios of interest between 1.75:1 and 

1.33:1 (between pH 5.7 ± 0.07 and 7.5 ± 0.05) to enable a 2/25 mM DGL/PEG hydrogel to 

crosslink in a time interval compatible with its injection (between 84.33 ± 11.05 and 9.33 ± 1.33 

seconds respectively). The suitability of this range of Gaa:KC molar ratios was also confirmed 

on the DGL/PEG compositions most suitable for muscle cells showing liquid precursors were 

able to crosslink into a self-standing hydrogel (Figure 36D). However, for all DGL/PEG 

conditions studied, the addition of Gaa:KC at a molar ratio of 1.75:1 lead to a significant tenfold 

crosslinking time increase due to acidic pH. Conversely, a 1.33:1 Gaa:KC molar ratio led to a 

not significant 1.5 crosslinking time increase due to a final pH close to PBS. Of note, the use 

of pluronic® F-68 as a surfactant did not induce any effect on the crosslinking time of a 2/25 
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mM DGL/PEG hydrogel regardless of the concentration used, which is of great interest for the 

control and stabilization of CO2 bubbles generated (Figure 36E). 

 

Figure 36 : Study of the compatibility of effervescent reactions with DGL/PEG hydrogels  
A) pH of solutions over time after effervescence of various Gaa:KC molar ratios for a given 1.1 M final 
concentration. B) Influence of Gaa:KC molar ratio on the crosslinking time of a 2/25 mM DGL/PEG 
hydrogel for a given 1.1 M final concentration. C) Influence of Gaa:KC final molarity on crosslinking time 
of a 2/25 mM DGL/PEG hydrogel for a given 1.75:1 Gaa:KC molar ratio. 
D) Crosslinking time comparison between various DGL/PEG hydrogels concentrations, as a function of 
a range of Gaa:KC molar ratio for a given 1.1 M final concentration. 
E) Influence of pluronic® F-68 final concentration on crosslinking time of a 2/25 mM DGL/PEG hydrogel. 
A, B,C  : Passed Shapiro-Wilk test : One way ANOVA + Tukey’s multiple comparison.  D,E:  Kruskal 
Wallis + Dunn’s VS ctrl.  *:p<0.05; **:p<0.01; ***: p<0.001 
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2.2.3  Influence of effervescence on DGL/PEG hydrogels crosslinking 

Owing to the great influence of the pH induced by effervescence on DGL/PEG hydrogels 

crosslinking velocity, its effect was further investigated at chemical and macroscopic levels on 

dense hydrogels. More specifically, the impact of delayed crosslinking on the properties of 

DGL/PEG hydrogels, was investigated using fluorescently-labelled DGL. Compared with a 

control 2/25 mM FITC-DGL/PEG hydrogel prepared in PBS, an  increased release of DGL (up 

to 2 folds) was measured in presence of Gaa:KC, while the addition of pluronic® F-68 did not 

seem to have any influence (Figure 37A and B). 

The weakened chemical reaction between DGL and PEG in effervescent conditions is possibly 

related to the final pH of the solutions. At acidic pH the DGL release was superior than at 

alkaline pH. These results are in line with the crosslinking velocity study, which showed that 

acidic pH triggers a longer crosslinking delay, possibly related to an impaired DGL chemical 

reaction. Accordingly, the complex modulus (E*) of all DGL/PEG dense hydrogels 

compositions, determined by mechanical dynamic analysis, showed a steep decrease of about 

40 % and 30 % when prepared with 1.75:1 and 1.33:1 Gaa:KC molar ratio, respectively (Figure 

37C). The addition of Gaa:KC also increased the swelling ratio of all hydrogels compositions, 

up to 24 % for a Gaa:KC molar ratio of 1.75:1 and 22 % for a Gaa:KC molar ratio of 1.33:1. 

Conversely, the addition of pluronic® F-68 did not result in variations of mechanical and 

swelling properties (Figure 37D and E).   

Overall, these results confirm the influence of pH on DGL/PEG hydrogels. All measured 

properties of hydrogels prepared with more acidic solutions (crosslinking delay, higher DGL 

release, stronger decrease of mechanical properties and higher swelling) are indeed in 

agreement with a lower level of crosslinking. Nevertheless, for all conditions with Gaa:KC, the 

elastic modulus (E’) was greater than the viscous modulus (E’’), confirming the formation of a 

hydrogel. Furthermore, the presence of Gaa:KC at various ratios did not prevent to control the 

hydrogel bulk mechanical properties from 10 to 50 kPa, through the variation of DGL/PEG 

concentrations. 
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Figure 37 : Influence of effervescence on DGL/PEG hydrogels 
DGL-FITC release from dense 2/25 mM DGL-FITC/PEG hydrogels formulated with various A) Gaa:KC 
molar ratios or B) pluronic® F-68 concentrations. The fluorescent signal is normalized to the one of 
control hydrogels  
Complex modulus (E*) in kPa of various dense hydrogel conditions formulated C) in PBS 1X (control) 
or in 1.75:1 and 1.33:1 Gaa:KC molar ratio buffers or D) with pluronic® F-68 at 1.7% and 5%  
E) Swelling ratio of various DGL/PEG hydrogels formulated in PBS (Ctrl) or in 1.75:1 and 1.33:1 Gaa:KC 
molar ratio and with various pluronic® F-68 concentrations. 
Passed Shapiro-Wilk normality test One way ANOVA + Dunnett’s vs control hydrogel *:p<0.05; 
**:p<0.01; ***p<0.001 
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2.2.4 Porous and injectable DGL/PEG hydrogels using an effervescent 

approach   

Given the pH-induced hydrogels delayed crosslinking, the possibility to match effervescence 

and hydrogel reaction was further investigated. Gaa and KC were dissolved in the PEG and 

DGL precursor solutions respectively in distinct tubes. After manual mixing (by pipetting) of the 

two solutions, neither the effervescent reaction nor the hydrogel crosslinking were hampered 

(Annex 1, supplementary movie 5). Therefore, it was possible to validate our hypothesis by 

successfully entrapping CO2 bubbles, stabilized for 30 seconds to 3 minutes, in solid hydrogels 

through simultaneous effervescence and polymerization (Figure 38A and B). Logically, the 

resulting foamy structures showed an important volume expansion of 600 %, 500 %, and 200 

% for 1.6/25, 2/25, and 2/37 mM DGL/PEG hydrogels respectively (Figure 38B and C).  

After hydrogel crosslinking and subsequent immersion in aqueous solutions, the CO2 removal 

revealed porous structures inside the hydrogels, regardless of their compositions (Figure 38D). 

Strikingly, the formed porosity appeared highly interconnected for all conditions with the 

observation of no isolated pores and from one up to 50 windows of interconnection per pore 

(Figure 38D). The Gaa:KC molar ratios between 1.33:1 and 1.75:1 determined previously to 

sustain the formation of a self-standing material, provided crosslinking times compatible with 

the entrapment of the formed CO2 bubbles. However, to improve the entrapment of CO2 

bubbles in slow-setting hydrogels (i.e. 1.6/25 and 2/25 mM DGL/PEG), the presence of 

pluronic® F-68 was mandatory to stabilize the effervescence during crosslinking. For fast-

setting ones (2/37 mM DGL/PEG), the presence of the surfactant was linked to a more 

homogeneous apparent distribution of CO2 bubble. 

In conclusion, the possibility to match effervescent reaction to hydrogel crosslinking was 

assessed with the conditions defined in Figure 36 and Figure 37. To perform the well-

orchestrated reactions, hydrogel precursors and effervescent components were stored 

separately before manual mixing by pipetting. These results provide a proof-of-concept for the 

induction of a porosity by effervescence inside DGL/PEG hydrogel. Therefore, the possibility 

to convert these formulations into injectable hydrogel was further investigated. 
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Figure 38: Porous and injectable DGL/PEG hydrogels using an effervescent approach   

(A) Schematic representation of effervescent porous hydrogels (EPH) realization. DGL and PEG are 

reacting to form the self-standing material while the reaction between Gaa and KC generates CO2 

bubbles stabilized by the pluronic ® F-68. An entrapment of CO2 bubbles inside the hydrogel enable to 

create the porous structure. B) Porosity obtained within a 2/25 mM DGL/PEG hydrogel. C) Calculation 

of volume expansion during formulation of porous VS dense 1.6/25; 2/25 and 2/37mM DGL/PEG 

hydrogels. D) Porosity obtained within 1.6/25 mM, 2/25 mM, and 2/37 mM DGL/PEG hydrogels. E) 

Observation of windows of interconnection in a 2/25 mM DGL/PEG hydrogel (red star: one window). 

Hydrogels formulated with 1.33:1 Gaa:KC and 3.3% pluronic® F-68 - Coomassie bue staining. n= 3 

Passed Shapiro-Wilk normality test One way ANOVA + Tukey multiple comparison *:p<0.05; **:p<0.01; 

***p<0.001 
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The possibility to inject the effervescent formulation was tested through a dual syringe system 

combined with a static mixer (Figure 39A and annex 1, supplementary movie 6). As a striking 

result, the effervescent reaction was not hindered by the injection and the stabilized foamy 

structure was crosslinked by the subsequent reaction of DGL with PEG, forming a self-standing 

porous structure. Similarly to manual homogenization, the evaluated DGL/PEG concentrations 

(1.6/25; 2/25 and 2/37 mM) were able to form a porous structure with an important volume 

expansion Figure 39B). The strength needed on the plunger to inject dense and porous 

DGL/PEG hydrogels of various conditions was not superior to that of water, demonstrating 

hydrogels precursors were still in liquid form during injection (Figure 39C). Hence, the 

homogenization of the solution using a static mixer was confirmed through a system easy to 

handle, which open technical potential for direct injectability.  
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Figure 39: The injectable system of the effervescent porous DGL/PEG hydrogel 

A) The establishment of a dual-chamber syringe connected to a static mixer for the storage and injection 

of DGL/PEG effervescent porous formulation. The effervescence and hydrogel precursors were stored 

in different cartridges of the dual syringe and both reactions could begin simultaneously through 

homogenization with the static mixer. B) The foamy structure obtained by injection within a 2/25 mM 

DGL/PEG hydrogels. C) Strength applied on the syringe plunger to maintain a 2 mm/s injection speed 

to inject H20 (positive control) dense and porous 2/25 and 2/37 mM DGL/PEG hydrogels. Hydrogels 

formulated with 1.33:1 Gaa:KC and 3.3% pluronic® F-68 n= 3 - One way ANOVA + Tukey multiple 

comparison  *:p<0.05; **:p<0.01; ***p<0.001 
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2.2.5 Porosity characterization  

The porous structure formed by effervescence in the different DGL/PEG hydrogels was 

evaluated by confocal microscopy to determine pore size, percentage of porosity and size of 

windows of interconnections (Figure 40A and annex 1, supplementary movie 7). Overall, the 

percentage of porosity of injected effervescent porous hydrogels (EPH) was comprised 

between 75.0 ± 2.3 % and 79.7 ± 1.9 % (Table 23, top). The average pore size was comprised 

between 280.1 ± 54.9 µm and 313.0 ± 32.3 µm (Table 23, top) and was characterized by a 

broad distribution with pores ranging from 35 up to 3000 µm. However, pores between 50 and 

100 µm were the most abundant proportionally (Figure 40B).  In all conditions studied, a highly 

interconnected porous structure could be obtained with interconnection ranging from 100.7 ± 

14.9 µm up to 131.4 ± 12.9 µm. As for pore size, windows of interconnections were 

characterized by a broad distribution (Figure 40C). Of note, no significant differences could be 

observed between the three DGL/PEG conditions studied.  

The variation of the Gaa:KC molar ratio was studied on manually homogenised EPH and did 

not result in significant differences in terms of pore size and windows of interconnection (Table 

23, bottom). However, for a given 3.3 % pluronic® F-68 and 2/25 mM hydrogel concentrations, 

the most acidic ratio (1.75:1) displayed a porosity significantly lower (62.1 ± 6.0 %) than less 

acid ones (74.4 ± 3.8 % and 75.6 ± 0.6 % for 1.33:1 and 1.5:1 Gaa:KC molar ratio respectively).  

Similarly, varying the pluronic® F-68 final concentration for a given 1.5:1 Gaa:KC molar ratio 

and 2/25 mM hydrogel concentration did not significantly modulate the pore sizes and windows 

of interconnection. However, the lowest pluronic® F-68 concentration (1.7 %) was related to a 

significant decrease in porosity (62.9 ± 7.6 %) compared with higher concentrations (75.6 ± 

0.6 % and 71.4 ± 1.9 % for 3.3 % and 5 % pluronic® F-68 respectively). Moreover, this was 

related to a higher distribution dispersal observed with a higher occurrence of extreme values 

(pore size up to 1000 µm). In conclusion, for a given 2/25 mM DGL/PEG concentration, with 

1.5:1 or 1.33:1 Gaa:KC molar ratio and 3.3 or 5 % pluronic® F-68, EPH were characterized by 

a high porosity with connected pores that form extensive channels. On the contrary, too acidic 

conditions (i.e. 1.75:1 Gaa:KC molar ratio) and/or low concentration of pluronic® F-68 (i.e. 1.7 

%) decreased the overall percentage of porosity of resultant EPH. 

The resulting porosity of injectable effervescent porous hydrogels (EPH) was characterized for 

various DGL/PEG hydrogel conditions with no significant differences reported regarding pore 

size (mean of 290 µm with pore between 50 and 100 µm being the more represented) and 

percentage of porosity (77 %). However, for all conditions the pore size was broad probably 

due to a high polydispersity of CO2 bubbles size. Interestingly, the effervescence approach 

induced the formation of windows of interconnections (of 117.8 µm on average) without 

additional treatment. Of note, injected 2/25 mM EPH displayed a higher pore size than their 

manually homogenized counterparts with mean pores of 306.0 ± 5.9 µm against 213.2 ± 7.4 

µm respectively for the same Gaa:KC (1.33:1) and pluronic® F-68 (3.3%) conditions.  
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Table 23 : Porosity characterization of injected (TOP) or manually homogenized (BOTTOM) DGL/PEG 

EPH. 

Various parameters were studied on resultant porosity: the DGL/PEG composition (1.6/25, 2/25 or 2:37 

mM DGL/PEG), the amount of pluronic® F-68 (1.7, 3.3 or 5%) and the Gaa:KC molar ratio for a given 

1.1 M final concentration (1.75:1, 1.5:1 or 1.33:1).  

*: Statistically different from PF-68 3.3% and 5% with Gaa:Pc 1.5:1; α : Statistically different from Gaa:Pc 

1.33:1 and 1.5:1 with PF-68 3.3%. One way anova + Tukey’s multiple comparison, n=3) 

Parameters studied Porosity characterization 
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 Pore Size (µm) 

-Mean ± SEM 

[Mode] - Median 

% Porosity 

Size of windows of 

interconnection (µm) 

-Mean ± SEM 

[Mode] - Median 

1.33:1 3.3% 

1.6/25 

Injection 

280.1 ± 54.9 

[50-100] -203 
75.0 ± 2.3 

100.7 ± 14.9 

[10-20] - 38 

2/25 
307.2 ± 36.5 

[50-100] -243 
76.8 ± 1.4 

130.4 ± 21.2 

[20-30] – 44 

2/37 
313.0 ± 32.3 

[50-100] -272 
79.7 ± 1.9 

131.4 ± 12.9 

[20-30] - 93 

1.5:1 

1.7% 

2/25 Manual 

201.8 ± 52.9 

[50-100] - 86 
62.1 ±  6.0* 

99.6 ± 36.2 

[20-30] – 53 

3.3% 
209.6 ± 10.0 

[0-50] -116 
75.6 ± 0.6 Not reported 

5% 
264.9 ± 74.7 

[50-100] -126 
71.4 ± 1.9 

128.9 ± 51.5 

[20-30] – 49 

1.75:1 

3.3% 

190.2 ± 33.1 

[50-100] -156 
62.9 ± 7.6 α 

103.6 ± 10.1 

[20-50] – 76 

1.5:1 
209.6 ± 10.0 

[0-50] -116 
75.6 ± 0.6 Not reported 

1.33:1 
208.2 ± 25.3 

[50-100] -136 
74.4 ± 3.8 

122.3 ± 14.9 

[20-30] – 74 
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Due to the porosity inducement and the creation of voids inside the material, EPH mechanical 

properties were logically significantly dropped compared to dense hydrogels of the same 

condition (Figure 40D). Moreover, by varying the Gaa:KC molar ratio of EPH of the same 

DGL/PEG initial concentration, it was possible to vary their compressive mechanical behaviour 

(Figure 40E).  Hence, it indicated that the stiffness modulation of the whole porous construct 

remains possible through two various pathways (i.e. DGL/PEG concentration and Gaa:KC 

molar ratio variation), which makes it very attractive to further meet the requirements of various 

tissues. Additionally, except for the condition 1.6/25 mM DGL/PEG and 1.75:1 Gaa:KC molar 

ratio, a viscous modulus could be measured that varied with EPH conditions confirming the 

conservation of a self-standing material (Figure 40F). However, the condition 1.6/25 mM 

DGL/PEG and 1.75:1 Gaa:KC molar ratio was mechanically too weak to withstand the 

induction of the porosity. Due to the too acidic condition, the resultant 1.6/25 mM DGL/PEG 

EPH were not strong enough to be handled and measured in compression.  

The establishment of a porosity inside DGL/PEG hydrogels compatible with their injection was 

thus validated and characterized. In order to assess the use of these new formulations for 

direct in vivo injection, they were used unwashed in direct contact with cells to evaluate their 

cytotoxicity and the cytocompatibility of the resultant porosity. Additionally, the in situ 

injectability of the new formulations was evaluated subcutaneously in mice to (1) validate the 

formation of the porosity directly in vivo and (2) study the biocompatibility of resultant 

formulations  
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Figure 40 : Porosity characterization of various effervescent porous hydrogel (EPH) conditions  

Representative picture of (A) 1.6/25,  2/25 mM and 2/37 mM FITC-DGL/PEG EPH. (B) Pore size of 

various FITC-DGL/PEG EPH compositions and (C) windows of interconnection size of 2/25 mM 

DGL/PEG EPH. 

D) Complex modulus (E*) in compression of dense and porous DGL/PEG hydrogels formulated with 

1.33:1 Gaa:KC molar ratios and pluronic® F-68 at 3.3%. E) Complex modulus (E*) and F) Loss modulus 

(E’’) of various porous DGL/PEG hydrogels formulated with 1.33:1 or 1.75:1 Gaa:KC molar ratio 

Unless stated otherwise, EPH were formulated with 1.33:1 Gaa:KC and 3.3% pluronic® F-68 and made 

by injection. n=3 – t-test d) dense vs porous e), f) porous EPH formulated with 1.33:1 vs 1.75:1 Gaa:KC 

molar ratio *:p<0.05; **:p<0.01; ***: p<0.0001 
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2.3 Study of innovative formulations compatibility with cells and tissues for 

in situ injectable purposes 

Cytotoxicity and cytocompatibility studies were performed using fibroblasts, as it is the cell type 

described and recommended in the ISO 10993 standard, part 5. The biocompatibility was also 

conducted following ISO 10993 standard, part 6 regarding tests for local effect after 

implantation to provide some preliminary data on this new formulation biocompatibility.   

2.3.1 In vitro EPH cytotoxicity  

The effect of the effervescence on the hydrogel was further investigated in regard to cell 

toxicity. To do so, normal human dermal fibroblasts (NHDF) were used directly in contact with 

porous hydrogels or in contact with 24 hours extracts of dense hydrogels. All the dense and 

porous hydrogels evaluated for the cytotoxicity and cytocompatibility study were tested directly 

after formulation without any washing or post formulation treatment, to be close to the final 

application of in situ injection.  

The metabolic activity of NHDF in contact for 48 hours with dense hydrogel extracts was first 

measured. Compared with a control 2/25 mM DGL/PEG hydrogel prepared in PBS, a cellular 

metabolic activity decrease was observed for cells in contact with extracts from hydrogels 

formulated with Gaa:KC, while the addition of pluronic® F-68 did not have any effect (Figure 

41A and C). Indicating that the decrease may be related to the acid/base reaction, Gaa:KC at 

1.33:1 added directly at the same concentration onto NHDF induced a significant decrease of 

cell metabolic activity. Similarly Gaa:KC at 1.75:1 induced a slight decrease of cellular 

metabolic activity, however non-significant  (Figure 41B).  

Cellular viability was further studied by direct contact with various DGL/PEG EPH generated 

with Gaa:KC at 1.33:1 molar ratio and pluronic® F-68 at 3.3 %. Cellular adhesion to the EPH 

was assessed after six hours and confirmed after 48 hours on 2/25 mM DGL/PEG EPH through 

clear cellular spreading (Figure 41D). As a striking result, NHDF were 72.0 ± 4.3 %, 88.3 ± 3.2 

% and 85.3 ± 2.3 % viable after 24 hours on 1.6/25, 2/25, and 2/37 mM DGL/PEG EPH, 

respectively (Figure 41E). Cell viability on unwashed EPH was not different from their 

extensively washed counterparts used as positive controls, confirming the non-cytotoxicity of 

the novel formulations. These results therefore demonstrate the potential of unwashed EPH to 

support NHDF adhesion, viability and spreading, consolidating their use with other cell types. 

In line with previous results with fibroblasts [373] or with C2C12 (chapter 1), it was also 

observed that by varying the DGL/PEG composition of EPH, cells behaviour in terms of early 

adhesion and cell spreading could be varied (Figure 41F). Soft conditions (i.e. 1.6/25 mM 

DGL/PEG) results in less spread cells than stiffer ones (i.e. 2/25 and 237 mM DGL/PEG).  

The effect of DGL/PEG mechanical and biochemical versatility on cells was thus preserved in 

the EPH settings.  
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Figure 41: In vitro EPH suitability for direct in situ injection purposes – Study of cytotoxicity  
Use of dense hydrogels or EPH right after formulations without any washing or post formulation 
treatments 
NHDF metabolic activity after 48 hours in contact with (A) 24h-extract of dense 2/25 mM DGL/PEG 
hydrogels formulated with various Gaa:KC molar ratios at 1.1 M, (B) with only Gaa and KC at 1.1 M and  
various molar ratios or (C) with 24h-extract of dense 2/25 mM DGL/PEG hydrogels formulated with 
various pluronic® F-68 concentrations. A/B/C : One way ANOVA + Dunnett’s VS control hydrogel 
(formulated in PBS) or control cells (no treatment)  *:p<0.05; **p<0.0. (D) Live/Dead assay in direct 
contact with EPH, 6 and 48 hours post seeding (live cells represented in green and dead cells in red, 
hydrogel in blue). (E) Quantification of live cells on the total number of cells after 24 hours on 1.6/25, 
2/25 and 2/37 mM DGL/PEG EPH right after formulation without any washing or post-formulation 
treatment against cells on washed EPH of the same conditions. t-test (washed VS unwashed 
conditions). (F) Live/dead assay on EPH of various compositions showing various cell spreading 24 
hours post seeding. 
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2.3.2 In vitro EPH cytocompatibility  

After 24 hours, NHDF cells cultured in 2 mm-thick EPH were homogeneously distributed 

throughout its thickness, confirming their very rapid entry inside the structure, due to the 

extensive interconnection between pores (Figure 42A). After 21 days, cells covered the major 

part of the available surface, attesting their ability to proliferate inside the EPH (Figure 42B). 

Moreover, the EPH sustained the in vitro deposition of extracellular matrix (ECM) proteins such 

as fibronectin and collagen, enabling cells to fill the pores (Figure 42C). Hence, the porous 

structure created by effervescence holds promise for cells culture, which strengthen the 

possibility to use the EPH for direct in situ delivery, without inducing adverse effects on cells 

while supporting their proliferation and ECM production.  

Owing to the maintenance of cell viability and adequate cytocompatibility, in the rest of this 

work, EPH were formulated with a 1.33:1 Gaa:KC molar ratio and a 3.3% pluronic® F-68 

concentration, to ensure a high percentage of porosity while maintaining relatively high 

stiffness. 
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Figure 42 : In vitro EPH suitability for direct in situ injection purposes. Study of cytocompatibility  

Use of dense hydrogels or EPH right after formulations without any washing or post formulation 

treatments 

(A) Cellular distribution throughout EPH 24 hours post seeding by DAPI/Phalloidin staining (cell nuclei 

in cyan and cytoskeleton in red, hydrogel in pink), (B) Cellular morphology and pore filling after 21 days 

in culture inside EPH (cell nuclei in blue, cytoskeleton in green, hydrogel in purple). 

(C) ECM deposition by cells 21 days post seeding in various EPH compositions (cell nuclei in cyan, 

fibronectin and type I collagen deposition in red, hydrogel in blue). 

EPH formulated with 1.33:1 Gaa:KC molar ratio and 3.3% pluronic® F-68 Scale bar: 100 µm 

 



181 
 

2.3.3 In situ EPH injectability assessment  

After in vitro cellular experiments, the behaviour of DGL/PEG hydrogels of different 

compositions was further evaluated in vivo by subcutaneous injection. The objectives were 

first (1) to assess the possibility to form porosity through injections performed directly in vivo 

along with comparing the porosity with effervescent porous hydrogels (EPH) formulated in 

tubes and then (2) evaluate the good in vivo tolerability and biocompatibility of innovative 

formulations.  

DGL/PEG EPH were successfully injected in subcutaneous pockets located on mice back 

(Figure 43A). Immediately after initiating the injection, an important volume expansion was 

visible due to the effervescent reaction and CO2 bubble formation (Annex 1, supplementary 

movie 8). After injection, the static mixer was immediately removed and the incision blocked 

to prevent liquid leakage. In less than a minute, hydrogel crosslinking was sufficient to leave a 

porous implant in place. During the 3 weeks implantation, no evidence of sepsis, infection, or 

pain was detected on the animals.  

Upon excision of the injected implants, EPH were visibly of darker and more reddish 

colouration than their dense counterparts (Figure 43A). Samples were stained with Masson’s 
trichrome for cell and collagen deposit observation (Figure 43B and C). After explantations, all 

injected EPH exhibited a porosity that confirmed the technical in vivo injectability of the 

formulation. The compatibility of the resultant effervescent porous structure to sustain cellular 

infiltration and tissue formation was indicated by the presence of cells (nuclei in purple and 

cytoplasm in light purple) and neo-tissues within the hydrogels (collagen deposits in green). 

Cells with elongated nuclei and light cytoplasm, presumably fibroblasts, were visible within the 

hydrogel in close contact with collagen. This cellular infiltration and collagen deposition were 

promoted despite the formation of a fibrous capsule (highlighted with the black dotted line) 

surrounding the hydrogel. These results clearly indicate that the hydrogel was well integrated 

by tissues and was not isolated by the fibrous capsule. On the contrary, dense hydrogels did 

not exhibit any porosity while showing dense structures around the void path created by the 

mixing nozzle (Figure 43C). Similarly to EPH, dense hydrogels were surrounded by a fibrous 

capsule made of fibroblasts and collagen deposition. However, contrary to their porous 

counterparts, dense hydrogels were not infiltrated by cells, showing no tissue deposition apart 

from the fibrous capsule. Dense hydrogels exhibited a too tight network to allow cells to enter 

the structure, confining them to hydrogel rims.  
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Figure 43 : Injection of hydrogels in sub-cutaneous pockets in mice  
A) Representative pictures of dense and porous hydrogels right after injection and 3 weeks post 
implantation. Red arrow: injection path. Yellow dotted line: hydrogels. P: porous and D: dense. A red 
coloration is observed for porous hydrogels.  
-Masson’s trichrome staining of the full explants after 3 weeks implantation of B) EPH formulated with 
1.33:1 Gaa:KC molar ratio, 3.3 % pluronic® F-68 and directly injected in sub-cutaneous pockets and C) 
Dense DGL/PEG hydrogels directly injected inside sub-cutaneous pockets. Close-ups are highlighting 
hydrogel (#), the fibrous capsule (black dotted line), synthetized collagen (red arrow), fibroblasts (+) and 
blood vessels (*). Figure expanded (supplementary information 4 and 5 in Annex) 
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Interestingly, for all EPH conditions, dense areas were observed at the interface with 

subcutaneous tissues (Figure 44A). The implants were not completely porous and the 

quantification of dense parts, comparatively to porous ones, indicated an important 

inhomogeneity related to the hydrogel concentration with 46.7 ± 4.2 and 68.8 ± 8.5 % porosity 

inside injected 2/25 and 2/37 mM DGL/PEG respectively. As for dense hydrogel controls, these 

dense structures were related to lower cellular and tissue infiltration, due to a lack of porosity 

enabling cellular entry. 

 
Figure 44 : Injection of EPH in sub-cutaneous pockets in mice  
A) Instance of a dense structure formation during injection (pink dotted line) for a 2/25 M DGL/PEG 
hydrogel 
Masson’s trichrome staining of the full explants after 3 weeks implantation and close-ups highlighting 
hydrogel (#), the fibrous capsule (red dotted line), synthetized collagen (red arrow), fibroblasts (+) and 
blood vessels (*) 
B) Quantification of dense over porous structure on the complete hydrogel area.  
EPH formulated with 1.33:1 Gaa:KC molar ratio, 3.3 % pluronic® F-68 and directly injected in sub-
cutaneous pockets 
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However, in the porous parts of injected EPH, a very extensive vascularization was observed 

within the entire hydrogel thickness contrarily to dense hydrogels controls. These results were 

confirmed by specific staining for type IV collagen presence, with structures resembling 

vessels observed in many pores (Figure 45). These results confirm that the porosity is well 

interconnected and sufficiently large to sustain vascular infiltration. However, when dense 

structures were observed, it was related to a decreased vascularization supposedly due to the 

lack of porosity. Similarly, no vascularization was visible inside dense control hydrogels. This 

observation further confirms the requirement of an adequate porosity to enhance 

neovascularization of hydrogels. 

 
Figure 45 : Blood vessel penetration in injected EPH of various conditions  
Type IV collagen staining (in red) of the explants after 3 weeks implantation highlighting hydrogel (in 
blue) and blood vessels (in red). An extensive vascularization of the porous structure was observed for 
all conditions 
Scale bar whole explant 500 µm, scale bar close up: 50 µm  
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For all hydrogels conditions (dense and porous), after three weeks of implantation, evidence 

of hydrogels degradation were noticeable. Cells present inside the fibrous capsule, visible at 

the rims of dense hydrogels were distinctly degrading the structure and slowly entering it. This 

phenomenon was particularly exemplified in Figure 43C, blue close ups. Particularly, an 

erosion of inter-porous dense walls of EPH was observed. Macrophages and resultant giant 

cells could be responsible for this digestion by phagocytosis. A specific staining for 

macrophages confirmed their slight presence inside the injected EPH, especially concentrated 

on hydrogels rims (Figure 46). However, the low density of inflammatory cells (granulocytes 

and lymphocytes) or macrophages inside injected EPH tends to indicate that all injected 

conditions exhibited a mild foreign body reaction with minimal sign of inflammation. These 

results suggest an adequate tolerability of the EPH by surrounding tissues with no evidence of 

subcutaneous gas accumulation. 
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Figure 46 : Macrophages presence in injected EPH of various conditions 

F4/80 staining of the explants after 3 weeks implantation (macrophages membrane in brown) and close-

ups highlighting hydrogel (#) and macrophage presence (orange arrows). The slight macrophage 

presence observed indicates a mild inflammation. Scale bar whole explant 500 µm, scale bar close up: 

50 µm 



187 
 

In parallel to in situ injected formulation, DGL/PEG hydrogels were injected inside a tube to be 

removed, cut, and subsequently implanted in the subcutaneous pockets without any washing 

or post formulation treatment. These implanted hydrogels were performed to assess the good 

tolerability of EPH and to compare the porosity induced though direct in vivo injection against 

injection in tube. 

As previously observed for porosity characterization and in vitro studies, and contrary to in vivo 

injected EPH, no dense structure were observed on implanted EPH. 

In comparison to their injected counterparts, implanted EPH were ticker (about 1 mm thick) 

and showed less conformation to the subcutaneous pockets. Injected EPH showed a porous 

structure that was flatter compared with implanted EPH porosity (Figure 47). As a corollary, a 

higher vascularization was visually observed inside implanted hydrogels compared with in situ 

injected EPH (Figure 47B). These observations could be linked to the porosity flattening or to 

the presence of aforementioned dense structures characterizing injected EPH that can prevent 

the porosity from being infiltrated by vessels. Curiously, the number of macrophages observed 

appeared higher inside implanted EPH in comparison with their injected counterparts, with an 

increased fusion of macrophages to multinucleated foreign body giant cells (Figure 47C, green 

arrows).  

 

Altogether, these results provide a proof-of-principle that the DGL/PEG effervescent porous 

hydrogel can be injected in-situ while enabling the formation of a suitable porosity that 

sustained cellular infiltration, mature vascularization, and tissue ingrowth. The formulation 

further showed a good tolerability in vivo, which validates its potential for tissue regeneration. 

However, the direct injection of the formulation in vivo was related to variability in the porosity 

generated and the tolerability toward tissues compared with hydrogel injected inside tubes to 

be then implanted.  
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Figure 47 : Sub-cutaneous implantation in mice of EPH of various compositions 

Representative pictures of porous hydrogels after 3 weeks implantation.  

A) Masson’s trichrome staining of the full explants after 3 weeks implantation and close-ups highlighting 

hydrogel (#), the fibrous capsule (black dotted line), macrophages ($), synthetized collagen (red arrow), 

fibroblasts (+) and blood vessels (*) 

B) Blood vessel penetration inside implanted EPH of various conditions. Type IV collagen staining (in 

red) of the explants after 3 weeks implantation highlighting hydrogel (in blue) and blood vessels (in red). 

C) Macrophages presence in implanted EPH of various conditions. F4/80 staining of the explants after 

3 weeks implantation (macrophages membrane in brown) and close-ups highlighting hydrogel (#) and 

macrophage presence (orange arrows). Giant cells were also visible (green arrows).   

EPH formulated with 1.33:1 Gaa:KC molar ratio, 3.3 % pluronic® F-68 and injected in a conic tube 

before cutting and implantation in sub-cutaneous pockets. Figure expanded (supplementary information 

6,7 and 8 in Annex) 
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2.4 Discussion 

In this chapter, the possibility to create a porosity inside the DGL/PEG hydrogel was 

investigated whilst maintaining its direct in vivo injectable potential.  

A first focus was made on the solvent used for PEG-NHS solubilisation. NHS esters groups 

hydrolyse in aqueous solution within minutes or hours depending on water content, 

temperature, and pH of solutions. Even if NHS ester group hydrolysis is very slow compared 

with their rate of reactions with amines, their storage remains difficult and reactions 

reproducibility is questioned [407]. The use of powders solubilized extemporaneously in 

aqueous solutions was precluded due to their high hygroscopic behaviour. This ability to attract 

and hold water molecules from the surrounding environment, ultimately leads to a loss of 

functionality of the powders. This feature render the solubilisation of PEG–NHS in aqueous 

solutions logistically complicated. Therefore, to strike a balance between NHS stability while 

maintaining a good reproducibility of the results, the PEG-NHS powders were solubilized in 

dry DMF. Nevertheless, the presence of DMF restricts the use of the DGL/PEG hydrogel in 

direct contact with cells and/or tissues. The DMSO was thus studied as an alternative to 

replace the DMF. In the chapter, the use of DMSO was related to a good reproducibility while 

preserving the same effects on skeletal muscle cells. Therefore, in the rest of this work, 

DGL/PEG hydrogels were formulated with the PEG solubilized in DMSO.  

To create porosity inside the DGL/PEG hydrogel, various approaches were evaluated. 

Previously described techniques such as particle leaching [319] or air bubble entrapment with 

stabilized emulsions [346] were explored with respect to their possible compatibility with the 

DGL/PEG hydrogel.   

2.4.1 Particle leaching  

Gelatine microbeads (GMB) were efficiently produced and entrapped inside the DGL/PEG 

hydrogel, showing compatibility with the formation of the crosslinked network. In this work, 

bead size was not quantified, however, the successful modulation of bead size through 

emulsion parameters (i.e. viscosity or agitation speed) has been extensively described in 

literature with gelatine and other particles [260]. Their modulation should thus be feasible in 

our conditions but would require additional optimization. However, the main drawback was the 

lack of contact between GMB preventing the good gelatine leaching through the hydrogel 

network. Without leaching, the porous structure could not be formed, with no possible cellular 

infiltration and/or migration. Resulting hydrogels were thus not transposable to in vitro or in 

vivo studies. A way to form interconnected porosity inside hydrogel would be to compact GMB 

by centrifugation and then pour the hydrogel precursors into this template of compacted 

microbeads [378]. By applying a centrifugal force, liquid precursors enter the structure while 

maintaining contact between microbeads, allowing their leaching through the path they 

created. However, centrifugation steps are not transposable to in situ injection purposes. 
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Moreover, the use of polymers of gelatine still raises safety issues for direct injection in 

humans. There is some concern due to their animal origin and possible disease transmission. 

This is a reason why some studies have focused their attention on thermosensitive hydrogels 

made of non-animal sources of polymers [321]. However, very few instances have been able 

to demonstrate in situ injectability of these new formulations while creating an interconnected 

porosity. Considering the difficulty to compact microparticles to form the porosity and the safety 

issues the use of sacrificial particles can present, the use of particle leaching using gelatine 

was discarded. Instead, the formation of the porosity though air bubble generation was 

evaluated. Stabilized air bubble emulsion methods to create a porosity inside biomaterials 

have the advantages to be cell-friendly and easily generated without the use of harsh solvents. 

2.4.2 Gas entrapment – gas foaming methods 

Air bubbles have previously been studied because they always appear during the mixing of 

powders and liquid phase. In this work, the generation of air bubbles during the mixing of dry 

GMB powders with liquid hydrogels precursors was experienced. Some studies have exploited 

this feature to generate porosity in cement for bone tissue regeneration [343]. Surfactants are 

generally added in scaffold precursors to stabilize emulsions and prevent bubbles to break 

[354]. Surfactants are molecules able to lower the surface tension between bubbles and their 

immediate environment. They are the major component of soaps and detergents. They contain 

both hydrophilic and hydrophobic parts triggering their displacement at air/water interfaces. 

Therefore, the surfactant molecule ensures a uniform dispersion of air bubbles by encircling 

them. In this work, the pluronic® F-68 was studied, as it is a non-ionic surfactant, known to be 

non-cytotoxic, cytocompatible, and safe for in vivo applications. Its addition to solutions 

enabled to stabilize air bubbles generated during the movement of syringes and thus allowed 

the DGL/PEG hydrogel to crosslink around bubbles in a way compatible with the precursors’ 
homogenization and the subsequent injection. Moreover, various DGL/PEG hydrogel 

concentrations could be generated around air bubbles.  

However, the major drawback of the method was the clear lack of interconnections between 

entrapped bubbles, resultant of a too low air bubble density. Nevertheless, the use of air 

enabled the formation of pores compatible with hydrogels precursors injection while avoiding 

the use of questionable solvents or molecules.   

 

Owing to the ability of gas to be entrapped inside hydrogel network, their use was further 

investigated through a method generating high gas bubble densities, to potentially lead to 

interconnections.  
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2.4.3 Porous and injectable DGL/PEG hydrogels using an effervescent 

approach   

The choice of effervescence has been fuelled by the extensive knowledge of acid-base 

reactions generating CO2 bubbles. Their inert and non-toxic nature, lack of organic solvents 

[260][351] and preservation of the biochemical integrity of proteins [358][359] provides a 

convenient tool to create porosities in a variety of materials, such as cement to create bone 

grafts [361][362], PLLA or PEG hydrogels for cartilage regeneration [363],[364] or elastin-like 

recombinamers [365] for connective tissue support. However, in all these instances, slow 

crystallization or crosslinking speeds impose additional steps to be able to entrap CO2 bubbles 

inside the network, which are non-transposable to in situ delivery systems [408]. To form 

porosity during the injection, the effervescence should be parallel to the hydrogel crosslinking 

speed.   

To evaluate this possibility, carboxylic acid and carbonate base pairs were explored to produce 

an effervescent reaction compatible with the simultaneous crosslinking of the hydrogel. Our 

objectives were multiple: (1) allowing a straightforward homogenization with hydrogel liquid 

precursors and (2) producing an explosive and long-term effervescence while (3) enabling the 

technical injection of the mix. Solubilized glacial acetic acid (Gaa) and potassium carbonate 

(KC) appeared to be the most promising candidates for the effervescence. Other acid and base 

combinations showed either too weak effervescences, re-precipitation of ions after the 

reaction, production of anticoagulant [406], or implication of produced ions in biological process 

in vivo (e.g. Ca2+ in skeletal muscle conscious movements [409]).  

The successful entrapment of CO2 bubbles generated by the effervescence inside DGL/PEG 

hydrogel network was taking advantage of its straightforward, swift, and tailorable crosslinking 

through DGL and PEG concentrations. This versatility was particularly explored here to match 

DGL/PEG hydrogel and effervescent reactions, while always conserving a viscosity threshold 

that would be suitable to inject the formulation. In a first step, the DGL/PEG hydrogels 

behaviour in pH dependent environments was studied. There are many instances of 

crosslinking reaction that are based on pH variation [410] or that can be significantly disturbed 

or boosted by pH [368], [369] but none of these instances exploited so far this feature to match 

an effervescent reaction for in vivo injectability purposes.  

It was demonstrated in this work that DGL/PEG hydrogels are sensitive to pH with a significant 

crosslinking delay in acidic conditions. This sensitivity to pH could be explained by the NHS 

esters end-groups in the PEG molecule. At acidic pH, NHS ester is less likely to undergo 

hydrolysis but is also less reactive. Conversely, at alkaline pH, the NHS ester group is more 

reactive but less stable [411]. NHS esters have indeed a half-life of 4-5 hours at pH 7 that 

drops to 1 hour at pH 8 and 10 minutes at pH 8.6 [412]. In addition, the effect of pH could also 

be related to the α-amine (pKa 9.16) and ε-amine (pKa 10) present at the surface of the DGL, 
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which are not available equally when they are at acidic or alkaline pH [395]. As a result, the 

DGL/PEG hydrogel crosslinking is less complete in acidic conditions, as demonstrated by a 

significant increase of DGL release from such hydrogels, a decrease of the resulting hydrogels 

mechanical properties, and an increase of their swelling, suggesting a mesh size variation 

[413].  

Overall, the possibility to control the hydrogel crosslinking through pH offers an interesting way, 

via the carboxylic acid and carbonate base pair, to define a suitable window to entrap the CO2 

bubbles while staying injectable. Such a window was found within a range of Gaa:KC molar 

ratio between 1.33:1 and 1.75:1 (pH between 5.5 and 7.5) for a given 1.1 final molarity. It was 

then possible to successfully induce a CO2-based porosity inside the hydrogels, through the 

simultaneous and well-orchestrated dual reaction of effervescence and crosslinking. To the 

best of our knowledge is the first example of such an approach of interdependent and 

simultaneous reactions to create porosity inside a hydrogel for in situ injectability purposes. 

Owing to the highly tuneable DGL/PEG crosslinking velocity, this synchronicity was achieved 

by varying both DGL/PEG and Gaa:KC ratios to match reactions while maintaining a low 

viscosity for its injection.   

Interestingly, hydrogel crosslinking modifications due to effervescent conditions were reflected 

by a slight decrease in metabolic activities of cells in contact with dense 24h-hydrogel-extracts. 

This could be correlated to the DGL release triggered by the pH-induced crosslinking 

impairment. It has indeed been shown previously by Lorion et al. that DGL displayed 

cytotoxicity towards human skin fibroblasts [377] above a concentration of 5 µg/mL. However, 

in the case of effervescent porous hydrogels (EPH), the DGL is sufficiently sequestrated inside 

the hydrogel network to prevent cell mortality in direct contact and sustain cell attachment, 

spreading, and proliferation without any washing or post formulation treatments.  

The porosity by effervescence could be generated inside three various DGL/PEG compositions 

that were studied in this work. This versatility is of great interest to provide porous matrices of 

controlled mechanical properties and defined interactions with targeted cells [414],[169]. Thus, 

in our system, both DGL/PEG concentrations and Gaa:KC molar ratios influenced stiffness, 

mesh size, and crosslinking speed, making their modulation even more precise and finer to 

meet the requirements of targeted tissues for tissue engineering applications and tissue 

regeneration. However, while the acid:base ratio had a significant effect on DGL/PEG 

hydrogels crosslinking and cell behaviour, it was not found to be correlated with a significant 

modulation of the resulting porosity or pores sizes. This stability and apparent drawback opens 

nonetheless the possibility to modulate the time needed before injection without varying the 

resulting porosity.   
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2.4.4 Porosity characterization  

The porous structure generation was mainly due to the stabilization of produced CO2 bubbles 

by the use of a surfactant. It is not surprising considering that many studies have also shown 

a correlation between the use of a surfactant and CO2 bubble stabilization. For instance, 

Keskar et al. used pluronic® F-127 as a foam stabilizer for CO2 bubbles generated by citric acid 

and sodium bicarbonate effervescence in a PEG hydrogel [362]. Partap et al. have described 

the impact of the addition of ammonium perfluoropolyether to stabilize a supercritical carbon 

dioxide in water emulsion [353] and Sarda et al. the use of sodium dodecyl sulfate to lower 

surface tension for bone cement macroporosity [343].  

In this work, the entrapment of stabilized CO2 bubbles inside the DGL/PEG hydrogel led to a 

porous structure with an average pore size comprised between 190.2 ± 33.1 µm and 313.0 ± 

32.3 µm, and can therefore be defined as macroporosity. Such a porosity, induced inside 

DGL/PEG hydrogels is close to what has been described for other systems using 

effervescence. For instance, Keskar et al. reported a broad distribution of pores ranging from 

100 to 600 µm in PEGDA hydrogels with the citric acid and sodium bicarbonate couple [362]. 

Tachaboonyakiat and colleagues described macropores between 200 and 400 µm in a 

poly(ethylene-glycol) bisamine hydrogel using citric acid and potassium carbonate as CO2 

bubbles producers [363]. Other instances reported macropores between 200 and 300 µm [372] 

or between 150 and 300 µm [369].   

The characterization of the porosity is of utmost importance to study the potential of hydrogels 

for various tissue-engineering applications. It has indeed been shown that porosity and pore 

size play a major role in the promotion of angiogenesis, and guide cellular fate inside the 

scaffold. Numerous cell types have been reported to behave differently depending on the final 

pore size, in terms of cellular infiltration, proliferation, migration, and differentiation [260], [261]. 

In addition, pore size has been demonstrated to influence vessel infiltration, with sizes between 

100 and 150 µm permitting a vascularization of whole hydrogels after subfascia or 

subcutaneous implantations  [403], [415]. Both cellular and vascular infiltration participate in 

tissue ingrowth and should be enhanced inside porous hydrogels.  

To provide the space for tissue to grow, not only pore size but also the pathway between pores 

is requested. Highlighting the high interest of the porosity obtained, the pores were highly 

interconnected, with windows of interconnection of 100 µm on average, and mode interval 

population between 20 and 40 µm. Interestingly, these interconnections were observed in all 

pores, forming a highly open channel structure throughout the entire 20 mm constructs. The 

interconnection between pores could be linked to both the presence of the surfactant that 

stabilizes CO2 bubbles and the effervescence power that leads to a high bubble density and 

reduce the aqueous interface between bubbles allowing their local fusion. Previous studies 

have described a correlation between pluronic® F-68 concentration and pore size [342] or 

between perfluoropolyether used as a surfactant and windows of interconnection size [354] 



194 
 

confirming the role of the surfactant on the porous structure creation. However, in our system, 

if the effect of pluronic® F-68 addition was possibly linked to the creation of the interconnection, 

it was not correlated with porosity or windows of interconnection variation, even though it led 

to a better bubble size homogeneity throughout the hydrogel.  

Windows of interconnection between pores supported the entrance and infiltration of cells for 

a successful host tissue ingrowth which is especially important for implants of large size [416]. 

This was validated in this study by the rapid and homogenous infiltration of cells seeded on 

the top of 2 mm thick EPH confirming the suitability of the created effervescent porous 

structure. The in vivo spontaneous cell infiltration and vascularization observed in EPH validate 

such suitable porous structure and windows of interconnection, independently of hydrogels 

composition and way of delivery. These results are furthermore in line with porosities described 

for efficient vascularization and cellular infiltration. For instance, a direct correlation between 

interconnection size and HUVEC proliferation in vitro has been shown [417]. It has also been 

demonstrated that windows of interconnections of 150 and 200 µm resulted in an increase in 

blood vessel area, volume, and number inside scaffolds implanted in bone defects [417], [418] 

or in pockets created in paravertebral fascia lumbodorsalis [419] compared with smaller 

interconnections. Too small interconnections appeared to limit the blood vessels infiltration 

through adjacent pores, whereas bigger interconnections allowed more abundant, large, and 

mature capillaries.  

In addition to their scale, a higher number of windows of interconnection can increase tissue 

invasion after 3 and 6 weeks in scaffold subcutaneously implanted in mice [420]. In this work, 

it was possible to maintain windows of interconnection through a direct in situ injectability 

delivery while attesting their suitability for cells and vessels infiltration. In addition, their size 

(100 µm in average) and number (at least one interconnection/pore) were in accordance with 

previous reports showing extensive vascularization. This local blood flow created by 

penetrating vessels and the hydrogel water content could help the diffusion and solubility of 

CO2 gas in the biological tissue, preventing the formation of gas cavity.  

 

Overall, pores obtained inside DGL/PEG hydrogel seem therefore of interest for a broad range 

of tissue engineering application. 
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2.4.5 In situ EPH injectability assessment  

Upon in situ injection, the formation of porosity inside DGL/PEG hydrogel of two compositions 

was validated. Curiously, a part of the injected hydrogels remained dense, creating a non-

porous layer in contact with tissues. While stiffer conditions (i.e. 2/25 and 2/37) were able to 

form a porous structure, the fraction of dense structure versus porous ones has been shown 

to be linked to DGL/PEG concentrations.  

This was potentially due to the lower crosslinking velocity characterizing less concentrated 

hydrogels, unable to entrap CO2 bubbles quickly enough to prevent their burst in contact with 

tissues. Therefore, the softer condition (i.e. 1.6/25 mM DGL/PEG hydrogel) could be 

considered not suitable for injectable purposes due to its significantly higher crosslinking time 

in presence of acid:base. These non-porous layers could explain the lower vascularization and 

cellular infiltration observed inside in situ injected hydrogels in comparison to their implanted 

counterparts. As such, this is a major optimization path for future applications.   

The dense layer formation observed for all conditions could be due to either (1) a lack of CO2 

bubbles stabilization in contact with tissues through a surface tension unbalance or (2) a 

delayed crosslinking due to acidic physiological pH. The latter hypothesis is relevant as 

temporary physiological acidosis has previously been observed in acute wounds [421]. 

Considering that the DGL/PEG effervescent hydrogel system is highly dependent on pH, a 

slight variation in the injected site could have a pronounced effect on the porous structure 

formation. The DGL/PEG hydrogel placed in direct contact with acidic tissues could thus 

experience a crosslinking delay, allowing the CO2 bubbles to escape the structure before their 

entrapment. Efforts could be made to strengthen the alkaline ratio of DGL/PEG hydrogel while 

staying in an acceptable range for injectability to boost the crosslinking velocity. 

Despite the non-porous layer observed and as could be expected from previous studies [373] 

and the cytocompatibility study, no intense immune reactions were observed upon injection. 

EPH produced a mild inflammatory response with a foreign body response (fibrous capsule 

formation) at the hydrogel periphery which is typical of biomaterials in subcutaneous 

implantation [422], [423]. Interestingly, the lowest presence of macrophages was observed on 

injected EPH compared with implanted ones, which could be explained by a different porous 

architecture or by a lower stiffness. It has indeed been shown that pore size could affect 

macrophages polarization in polyester scaffolds [424]. This indicates that it may exist an 

optimal range of pore size for macrophage behaviour. On another hand, the stiffness variation 

has been shown to influence macrophage activation [425] and some stiffness variation could 

exist between implanted and in situ injected EPH. The direct in situ injection of liquid hydrogel 

precursors inside subcutaneous pockets could be associated with precursor dilution by organic 

fluids during injection, lowering the final DGL/PEG concentration and the resulting stiffness. 

However, no clear differences were observed between the two implanted DGL/PEG 

compositions (and hence mechanical properties) studied. These results support a more likely 
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effect of the porosity on macrophages rather than stiffness, as a visual but not quantified 

difference as been reported between the porous structures of in situ injected EPH and 

implanted ones. However, the presence of macrophages inside porous biomaterials is a 

classical reaction after implantation. They are responsible for biomaterials degradation and 

can enhance vascularization inside the scaffold [426] attesting a common foreign body 

response towards DGL/PEG EPH.  
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2.5 Conclusion and critical evaluation  

The aim of this chapter was to provide a proof-of-concept for the development of an innovative 

porous and in situ injectable material. Here, an injectable and porous hydrogel system is 

reported in which the porosity does not pre-exist and is formed in situ by a controlled 

effervescent reaction, simultaneous to the injection. 

This design was possible given our DGL/PEG hydrogel candidate, which presents the 

advantage to have a swift and tailorable crosslinking velocity (seconds to minutes). The 

introduction of potassium carbonate (KC) and glacial acetic acid (Gaa) as CO2 bubble 

producers in the DGL/PEG hydrogels triggered an effervescent reaction while entrapping the 

produced bubbles in an interconnected network through the simple mixing of two solutions in 

a syringe. As such, it provides an innovative approach for in situ pore formation. In addition, 

the innovative DGL/PEG hydrogel offers extensively controllable mechanical properties (from 

10 to 50 kPa), inherent interactions with cells through polycationic charges brought by the DGL 

[377] and biocompatibility. In view of the foregoing, the method described here holds significant 

promise for many tissue engineering applications.  

However, the effervescent reaction inside DGL/PEG hydrogels was found to have a huge 

influence on their crosslinking chemistry, resulting in variation of their swelling and mechanical 

behaviour. This feature is of great interest to modulate the final stiffness of the material, 

however, it should be taken into consideration for further experiments as we know from chapter 

1 that stiffness and DGL:PEG ratio drastically affect skeletal muscle cell behaviour. 

Additionally, even though the Gaa:KC molar ratio and the surfactant concentration have an 

effect on hydrogel crosslinking velocity and CO2 bubbles stabilization respectively, their 

modulation do not allow to control the porosity generated. Many studies have shown that the 

porous structure is paramount to guide cell fate through pore size, percentage of porosity, and 

size of windows of interconnections and during this thesis, many experiments have been 

dedicated to the establishment of a way to control the porosity. For instance, the pipet tip 

internal diameter has been varied to modulate the shear force exerted on CO2 bubble and be 

able to split them. However, no significant differences were reported. Considering that 

differences between manual homogenisation and injection were evidenced, future work could 

focus on the use of various static mixer to study the effect of homogenization on CO2 bubble 

size and resultant porosity. 

In light of the in vivo study, we identified an important path of optimization for the injectable 

and porous hydrogels. The CO2 bubbles stabilization towards tissues need to be improved to 

prevent the formation of a dense layer and enhance cellular and vascular infiltration. To this 

end, some adjustments are required regarding the acid/base ratio or the DGL/PEG 

concentration to boost the crosslinking velocity and entrap CO2 bubbles before their burst in 

contact with tissues.  
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Altogether, these results confirm the potential of DLG/PEG EPH of various mechanical 

properties to provide a porosity suitable for adequate tissue ingrowth and extensive 

vascularization through a straightforward and minimally invasive delivery. Considering the 

challenge that the design of both in situ injectable and porous hydrogels represents and the 

numerous attempts that have been made in existing literature studies for their development, 

we believe that the methods developed here are of relevance. They provide a starting point for 

the synthesis of macroporous multifunctional and highly tuneable hydrogels with potential 

broad applicability.  

To the best of our knowledge is the first example of interdependent and simultaneous reactions 

using effervescence to create a porosity inside a hydrogel for in situ injectability purposes. 
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Figure 48 : Take home message chapter 2  
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3 Assessment of innovative injectable/porous formulations to act 

as relevant supports for skeletal muscle growth and 

differentiation 

In the previous chapter, we demonstrated the feasibility of inducing porosity inside DGL/PEG 

hydrogels while maintaining their injectable potential to combine the benefits from both 

characteristics. The resultant porous structures were proven cytocompatible for fibroblasts 

infiltration through sufficient windows of interconnection, in size and in number. Subsequent 

fibroblasts proliferation and ability to synthesize ECM components consolidate the porous 

structures’ potential to act as a scaffold for cells, while sustaining cell viability over time. Finally, 

the successful injection of DGL/PEG effervescent porous hydrogels (EPH) resulted in the 

formation of the porous structure directly in vivo, without inducing adverse effects on tissues 

(necrosis, chronic inflammation), underlining their potential to promote tissue regeneration.  

As demonstrated in the first chapter of this work, a tissue-engineered scaffold for the repair of 

skeletal muscle should possess adequate mechanical strength and biochemical cues to guide 

myoblasts proliferation and differentiation. Hence, the innovative effervescent porosity was 

successfully applied to three various DGL/PEG conditions, which allows the modulation of 

mechanical properties. Consequently, EPH can provide various signals to cells among which 

mechanical, biochemical but also architectural through the effervescently generated porosity. 

Indeed, in normal conditions, muscle cells evolve in a 3D network that is crucial for the 

maintenance of their biological behaviour and muscle contractile performance. Yet, the impact 

of dimensionality offered by 3D scaffolds on myoblasts in vitro remains unclear. Hence, aside 

from providing support for cells to evolve towards a functional tissue in large defect, the 3D 

architectural structure can also contribute to guide cell fate through adequate signals.  

In this chapter, we thus focused on the evaluation of three newly generated EPH to act as 

scaffolds for muscle cells, in order to determine their potential for skeletal muscle tissue 

regeneration. To do so, the 3D structure ability to sustain myoblasts proliferation and 

differentiation was assessed. First, the potential of the 3D structures was evaluated with 

C2C12 cells, as a well-characterized model to study myogenesis in 3D and as a mean of 

comparison to the results obtained in flat 2D hydrogels (chapter 1). However, as immortalized 

cells are more prone to genetic instability, they can lose tissue-specific functions characteristic 

of their mortal parental population [427]. Moreover, the investigation of the myogenesis of 

human myoblasts is more relevant than mice models to study some muscle diseases [18]. 

Given these considerations, primary human myoblasts (pHMs) behaviour was also evaluated 

inside EPH as a more relevant cell type for the final application.  
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Figure 49: C2C12 behaviour inside EPH of various concentrations 

A) C2C12 infiltration and homogeneous repartition inside EPH after 7 days in proliferative conditions 

(cell nuclei in blue and hydrogel in green) and close up with red arrows pointing at cell nuclei.  

B) Expression of myogenic genes (MyoD, MyoG and MyH4) on days 1, 3 and 6 after serum depletion 

on various EPH conditions - One way ANOVA + Tukey’s multiple comparisons. No significant differences 
were reported. 

C) Representative pictures of myotubes formation inside EPH of various DGL/PEG compositions (cell 

nuclei in blue, actin cytoskeleton in green, myosin heavy chain (MyHC) in red and hydrogel in dark grey).  
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3.1 C2C12 behaviour in 3D environments 

The ability of C2C12 cells deposited on the surface of 2 mm thick porous cylinders to migrate 

inside EPH was first evaluated to determine the capacity of the porous structure to support 

skeletal muscle cell infiltration. Interestingly, C2C12 seeded at a relatively low density on top 

of EPH (20.000 cells/cm²) were able to infiltrate the entire 2 mm-thick structure within 7 days 

(Figure 49A). Therefore, before inducing C2C12 differentiation, proliferative cells were allowed 

to populate the entire scaffold. While conditions 2/25 and 2/37 mM DGL/PEG were fully 

infiltrated within 4 days, C2C12 infiltration inside 1.6/25 mM DGL/PEG EPH required 7 days.  

After proliferation, the potential of 3D scaffolds to sustain C2C12 differentiation was 

appreciated by immersing cells in serum-depleted medium (DM). After 1, 3 and 6 days in DM, 

the gene expression of three myogenic markers was quantified to follow the different steps of 

myogenesis. RT-qPCR results indicated that MyoD and myogenin, involved respectively in 

myoblast alignment and differentiation into myocytes and myotubes, were evenly expressed 

over time by C2C12 during the whole differentiation process for all EPH conditions studied.  

The process of differentiation is mostly controlled by these two transcription factors (i.e. MyoD 

and Myogenin) whose deficiency can hamper the functional regeneration [428], [429].  

Moreover, a time-dependent expression of myogenic marker Myosin heavy chain 4 (MyH4) 

was observed (Figure 49B). MyH4 expression increased over time, which is consistent with 

the maturation of sarcomere inside new myotubes [430]. Given these considerations, C2C12 

cells within the EPH exhibited expressions of myogenic markers in a way consistent with 

normal muscle repair, indicating that EPH provided favourable substrate. Of note, no 

significant differences were reported on gene expression from cells inside EPH of various 

conditions. 
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Figure 50: C2C12 behaviour inside EPH of various concentrations after 6 days in serum depleted 

medium 

A) C2C12 myotubes repartition throughout an entire 1.5 mm-thick 2/25 mM DGL/PEG EPH. (Cell nuclei 

in blue, actin cytoskeleton in green, MyHC in red and hydrogel in grey) 

B) Repartition of myotubes morphology (area quantification in µm²) inside EPH of various conditions 

(i.e. 1.6/25, 2/25 and2/37 mM DGL/PEG) on areas between 1000 and 7000 µm². The number of nuclei 

corresponding to a specific area range was highlighted on the graph.   
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After confirming that cells were able to differentiate inside EPH, their morphology after 6 days 

in serum depleted medium was studied. Attesting the aforementioned results, C2C12 were 

able to form myotubes in all EPH conditions (Figure 49C). Overall, myotubes were found 

throughout the entire 2 mm thick EPH, further confirming the C2C12 entry inside EPH (Figure 

50A). For the softer condition (i.e. 1.6/25 mM DGL/PEG), myotubes area was smaller than for 

stiffer conditions (i.e. 2/25 and 2/37) although, non-significantly. Besides this result, the softer 

condition showed a higher population of myotubes having small areas of 1000-2000 µm² and 

2 to 3 nuclei per cell (Figure 50B and Table 24). Surprisingly, the 2/25 mM DGL/PEG EPH 

condition showed the best ability to sustain C2C12 fusion in 3D while it was barely able to 

support fusion in 2D (see chapter 1). Indeed, myotube area quantification indicated bigger 

myotubes into 2/25 mM DGL/PEG EPH with feret diameter up to 800 µm and up to 88 nuclei 

per myotube. Therefore, inside 3D EPH lower DGL: PEG (1:16) molar ratios were less prone 

to enhance cell fusion and form large myotubes compare with the higher DGL: PEG (1:12) 

molar ratio (Figure 50B and Table 24). 

Table 24: C2C12 myotubes quantifications after 6 days in serum depleted medium as a function of 3D 

EPH concentration (mM DGL/PEG).  

Nuclei per myotubes, myotubes area quantification and elongation index (feret diameter/width). One 

way ANOVA + Tukey’s multiple comparisons. Not significant 

DGL/PEG 

(mM) 

Nuclei/ 

myotubes 
Area (µm²) 

Elongation 

index 

1.6/25 8.3 ± 3.3 3694 ± 1231 13.7 ± 3.3 

2/25 9.8 ± 0.7 5221 ± 416 15.6 ± 1.8 

2/37 9.1 ± 2.6 4276 ± 1044 16.8 ± 1.4 

Interestingly, for all condition studied, some myotubes were found to bridge pores without 

continuous contact with the substrate (visible Figure 49, 2/37 top). This phenomenon could be 

the result of tension exerted by cells on their microenvironment enabling myotubes to be lifted 

after their growth [431].     

Overall, EPH guided the growth and differentiation of C2C12 cells, indicating potential as a 

suitable environment for myoblasts and sustained culture of myotubes.  
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Figure 51: pHMs fusion inside EPH of various concentrations  

A) pHMs onto EPH of various DGL/PEG concentrations after 6 (DM6) and 10 days (DM10) in serum 

depleted medium. Cell nuclei in blue, actin cytoskeleton in green and MyHC and desmin in red. The 

hydrogel is represented in dark grey. Some myotubes (2/25 DM10) were found bridging pore edges. 

B) Observation of striation, showing the organization of sarcomeric structures inside growing myotubes. 

Cell nuclei in blue, desmin in red and α-actinin staining in grey. 
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3.2 Primary human myoblasts 

The study of C2C12 cell behaviour is relevant as a well-characterized and reproducible model 

to outline general mechanisms and compare this work with existing literature studies. However, 

they misrepresent the cell type encountered in the wound bed of volumetric muscle loss (VML). 

Therefore, the behaviour of cells more relevant to the envisaged final application (human 

primary myoblasts, pHMs) was also investigated. They provide another step towards the 

characterization of EPH potential for skeletal muscle regeneration and in vitro study of 

myogenesis. However, the proliferation of these cells is slower than C2C12 cell growth. Given 

that pHMs need longer culture time, the condition 1.6/25 mM DLG/PEG was discarded due to 

a decreased proliferation of C2C12 cells and no significant differences in their subsequent 

fusion. 

3.2.1 Generation of contractile myotubes  

Primary human myoblasts (pHMs) showed the same aptitude as C2C12 cells to infiltrate the 2 

mm thick structure, further confirming that the porous structure is appropriate for the infiltration 

of cells of different origins. After proliferation and culture in serum-depleted medium (DM) for 

6 and 10 days, the majority of the cells within EPH of different conditions expressed myosin 

heavy chain and were observed with several nuclei, confirming their fusion potential (Figure 

51A). Additionally, the 3D hydrogels were able to sustain pHMs fusion in an organized fashion. 

Indeed, some of the produced multinucleated cells exhibited intrinsic alignment inside 

individual pores (exemplified in Figure 51A, 2/25, DM6 and 2/37 DM10).  

To further study myotube maturation, the organization of sarcomeres was analysed through α-

actinin protein straining 10 days post differentiation. Evidence of striation of the protein inside 

the cytoplasm of some multinucleated cells indicated the maturation of myotubes towards 

growing muscle fibres that have the potential to contract and exert tension on their 

microenvironment (Figure 51B). As a striking result, contractions of myotubes were indeed 

observed 6 days post differentiation and were maintained up to 8 days (Annex 1, 

supplementary movies 9 and 10 on 2/25 mM DGL/PEG EPH). Comparatively, cells seeded on 

matrigel coatings as positive control were also able to contract 6 days post differentiation for 

only 6 more days. In addition, on matrigel coatings, cells were more prone to detachment or 

cluster formation in comparison with cells within EPH. Myotubes from primary human 

myoblasts inside EPH were on average 25 µm wide and 400 µm long, regardless of the EPH 

condition. As a comparison, adult skeletal muscle myotubes diameters range from 10 to 100 

µm [432] and can reach 12 cm long for the longest fibres. Of further note, for all hydrogel 

conditions, cells maintained their integrity during the whole culture period (20 days) without 

collapsing and, similarly to C2C12 cells, some myotubes were able to lift from the substrate to 

bridge pore edges (exemplified in Figure 51A, 2/25 DM10 and 2/37 DM6). This phenomenon 

was more visible with pHMs compared with C2C12 cells. 
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Figure 52: pHMs behaviour inside EPH of various concentrations – Observation of Pax7 positive cells  
A,C,E) Representative pictures of pHMs onto A) 2/37 mM DGL/PEG EPH and C),E) 2/25 mM DGL/PEG 
EPH after A), E) 6 days or C) 10 days in serum depleted medium.  
Cells are differentiated into myotubes and side Pax7 positive cells (red arrows) were observed inside 
EPH that were non-proliferative (not expressing Ki67, D) green arrows) and not entering differentiation 
(not expressing myoD E) green arrows) 
B) Quantification of the number of cells expressing Pax7 on the total number of nuclei from pHMs after 
6 and 10 days in serum depleted medium. Quantification was made on 2 different EPH compositions 
(2/25 and 2/37 mM DGL/PEG). D) Quantification of the number of Pax7+/ki67+ cells on the total number 
of Pax7 positive cells after 6 and 10 days in serum depleted medium for 2/25 and 2/37 mM DGL/PEG 
hydrogels  
F) Quantification of the number of Pax7+/myoD+ cells on the total number of pax7 positive cells after 6 
and 10 days in serum depleted medium for 2/25 and 2/37 mM DGL/PEG hydrogels.  
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3.2.2 Generation of mononucleated Pax7 positive cells  

In addition to contractile myotubes, a population of mononucleated cells was observed inside 

EPH, located near myotubes and expressing the paired box protein Pax7 (Figure 52A). After 

6 and 10 days in differentiation, Pax7 positive nuclei accounted for about 15% of the total 

number of nuclei regardless of the EPH composition (i.e. 2/25 or 2/37 mM DGL/PEG 

hydrogels) (Figure 52B). Interestingly, Pax7 positive cells were found in clusters inside some 

pores at a relatively high percentage, while other pores were almost devoid of positively stained 

nuclei.  Among Pax7 positive cells, only 4.0 ± 0.3 % and 4.8 ± 0.7% were also positive to Ki67 

six days post differentiation for conditions 2/25 and 2/37 mM DGL/PEG respectively (Figure 

52C and D). Therefore, six days after differentiation inducement, about 95.6 % of Pax7 positive 

cells were non-proliferative. Moreover, a 65% and 75% decrease of Pax7+/Ki67+ cells was 

observed between six and ten days post differentiation while maintaining the pool of Pax7 

positive cells for conditions 2/25 and 2/37 mM DGL/PEG respectively. This decreased 

proportion of Pax7+/Ki67+ with increasing exposure to DM tend to indicate Pax7 positive cells 

enter a quiescent state over time.  

Moreover, among Pax7 positive nuclei, 36.2 ± 10.1 % and 32.2 ± 4.0 % were also positive to 

MyoD after six days in DM for 2/25 and 2/37 mM DGL/PEG conditions respectively (Figure 

52E and F). This trend seemed to be maintained 10 days post differentiation. It further 

consolidates that a part of Pax7 positive nuclei was non-proliferative while escaping 

differentiation to stay in a quiescent state close to the behaviour of satellite cells in vivo.  

 

Finally, myoblasts growth and fusion on EPH was assessed regardless of the origin and 

species used (Figure 53). Immortalized human myoblasts (iHMs) showed fusion through 

myosin heavy chain staining and primary mice myoblasts (pMMs) were observed covering the 

surface available on the EPH and contracting (annex 1, supplementary movies 11 and 12). 

These results increase the robustness of the results generated while opening many 

possibilities to use DGL/PEG EPH towards the evaluation of myoblasts behaviour from various 

origins. 
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Figure 53: Behaviour of myoblasts from various origin inside EPH after 15 days in differentiation – 
preliminary studies 
A) Representative picture of immortalized human myoblasts (iHMs) onto 2/37 mM DGL/PEG EPH. Cell 
nuclei in blue, actin cytoskeleton in green and MyHC in red.   
B) Representative picture of primary mice myoblasts (pMMs) onto 2/37 mM DGL/PEG EPH. Cell nuclei 
in blue, actin cytoskeleton in green.  
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3.3 Discussion 

Given the excessive tightness of the polymer network of DGL/PEG dense hydrogels, a 3D 

structure inside the hydrogel was created for cellular infiltration. Porous interconnected 

structures inside DGL/PEG hydrogels were successfully obtained through an effervescent 

approach as described in the second chapter. Three effervescent porous hydrogels (EPH) of 

various DGL/PEG concentrations could be easily formulated through a straightforward single-

step injection. 

Where many instances of scaffolds designed for skeletal muscle engineering lack a porous 

structure, which ultimately leads to cellular mortality of embedded cells [215],[433], the porosity 

generated inside our hydrogel allowed cellular infiltration and their viability over culture time. 

The EPH displayed a robust and reproducible 75% porous and highly interconnected structure 

resembling the native skeletal muscle extracellular matrix (ECM), which displays high 

interconnection and a porosity comprised between 74 % ± 3 % to 79 % ± 5 % [31]. Overall, the 

DGL/PEG EPH had a pore size of 300 µm on average with pores of 100 µm being the more 

represented. The porosity is thus close to what has been considered optimal in developing 

myotubes in literature [262], [263]. Pores between 50 to 400 µm have indeed already been 

shown to efficiently sustain the formation of mature myotubes for skeletal muscle regeneration 

both in vitro or in vivo [274],[212],[289]. The high number of interconnections inside EPH 

(quantified in the second chapter) sustained a quick and efficient C2C12 and pHMs infiltration. 

This feature is consistent with observations obtained with fibroblasts, which were distributed 

throughout an entire 2 mm-thick EPH after 24 hours of culture (chapter 2). For C2C12 cells, a 

delay in proliferation was observed for the condition 1.6/25 compared to conditions 2/25 and 

2/37 mM DGL/PEG, in line with results observed in the first chapter, when cells were cultured 

in 2D, at the surface of the hydrogels. This confirms that the mechanical versatility of the raw 

hydrogel material was not hindered by the formation of the porosity through effervescence. 

Consequently, C2C12 cells were let to populate 1.6/25 mM DGL/PEG EPH for longer times, 

prior differentiation.   

Once induced to myogenic differentiation, we could demonstrate that EPH were able to sustain 

the formation of myotubes from C2C12 cells, expressing various myogenic markers in a way 

consistent with what is described in native muscle regeneration [119], [434], [435].  

These results highlight the potential of the porous structure generated inside DGL/PEG 

hydrogels to act as relevant support for cells while enabling their infiltration in the bulk material. 

Considering VML injuries are generally characterized by wounds devoid of ECM, DGL/PEG 

EPH hold promise to be used as the support for tissue engineering purposes for host cell 

infiltration and subsequent differentiation into contractile muscle fibres.  
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3.3.1 Two-dimensional versus three-dimensional culture  

What is known about skeletal muscle cell fate and function generally derives from studies of 

monolayer cells seeded on rigid substrates (plastic or glass). Recently, 3D culture has been 

proposed to provide a more physiological and complex environment for cells than routine 2D 

monolayer culture not recapitulating native 3D signals [436], [437]. Surprisingly, for all 

conditions studied, C2C12 myotubes generated in 3D were more elongated, with a higher 

number of nuclei per cell and a smaller area compared with myotubes grown on 2D hydrogels 

(Chapter 1). Considering that the same hydrogel compositions were studied, this apparent 

better myotubes maturation inside EPH compared with myotubes grown on 2D flat hydrogels 

could be attributed to the architecture variability.  

This different C2C12 cell behaviour could be triggered by higher cell-to-cell interactions inside 

the EPH enabling the cells to fill the pores thus increasing cell confluence, which is paramount 

for efficient cell fusion. Moreover, the presence of pores compared with 2D flat hydrogels 

provided curvature, which has been related to cellular behaviour variability and could explain 

the differences observed herein [252].  

Particularly, cell cytoskeleton arrangement has been shown to be highly influenced when 

cultured in 3D compared with 2D monolayers through the increased expression of adhesion 

site proteins integrin α5 subunits and vinculin [438]. What is more, a faster differentiation and 

fusion kinetic of myoblasts in 3D fibrin matrices have been demonstrated and evidenced by 

higher mRNA concentration of α-actinin and myosin compared with 2D classical culture [438]. 

Indeed, during fusion, many adhesion proteins are involved to allow myoblasts to recognize 

one another and form temporary cell-cell contact to sustain membrane fusion. Among these 

proteins, integrin α3 subunit [439], integrin β1 subunit [440], M-cadherin and ADAM 12 [441] 

proteins play important roles. Particularly, integrin α3β1 is involved in cell-cell and cell-ECM 

adhesion and has shown to have a particular function in myoblasts fusion [440]. Interestingly, 

higher expression of integrin α3 subunit and M-cadherin mRNA level were observed in C2C12 

cultured within 3D environment compared with C2C12 cultured on 2D monolayers [441] 

explaining an increase of cell differentiation and fusion when cultured in 3D. These results 

highlight that the 3D environment is thus a potent regulator of cell function by upregulating the 

expression of proteins involved in cell fusion. Therefore, while supporting cell infiltration, the 

porous structure generated inside the DGL/PEG hydrogel could also enhance the fusion of 

resident cells to regenerate the tissue in case of VML, further consolidating the high potential 

of this hydrogel. 
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3.3.1.1 DGL: PEG molar ratio in 2D versus 3D culture 

In addition to increasing the cell fusion, the 3D environment reversed the effect of DGL: PEG 

molar ratio on cell behaviour. In the first chapter, we demonstrated that a high concentration 

of DGL, and thus NH2 groups available at the surface of 2D substrates, caused a C2C12 fusion 

impairment. We made the hypothesis that it was due to an increased adhesion of cells on the 

surface via integrin clustering on NH2 moieties. However, inside 3D environments with a higher 

concentration of DGL, myotubes from C2C12 were longer and with more nuclei per cell. 

Interestingly, it has been shown in existing literature studies that 3D environments resulted in 

reduced focal adhesion (FA) clustering of cells together with improved integrin expression 

distributed throughout cell cytoplasms [251]. Accordingly, the higher DGL: PEG molar ratio, 

having a deleterious effect in 2D through too strong FA clustering could thus be appropriate in 

3D by increasing the expression of integrins involved in cell fusion. This increased expression 

of integrins together with their better repartition inside the cells could thus counterbalance the 

DGL effect described in the first chapter. Therefore, it opens optimization pathways to find 

optimal DGL/PEG conditions for C2C12 proliferation and differentiation in a 3D organization. 

3.3.1.2 Myotubes behaviour  

Hence, we demonstrated that the EPH were able to sustain C2C12 differentiation and fusion 

in a sustained manner compared with 2D hydrogels of the same conditions. However, if mice 

C2C12 cells provided interesting results that allow to strictly compare 2D and 3D environments 

with similar materials, fewer groups have reported the use of primary human myogenic cells 

(pHMs) [438], [442]. Therefore, pHMs were evaluated during this work, to obtain a more 

accurate model to study EPH potential as a substrate to treat human skeletal muscle injuries.  

Logically, differences were revealed between the two cell sources. In particular, myotubes 

derived from pHMs showed higher maturation inside EPH with visible striation compared with 

C2C12 cells cultured in the same conditions. This trend was previously described with C2C12 

and primary human myogenic cells exhibiting different abilities to form contractile myobundles 

in laminin-coated micrometric channels inside a 3D hydrogel [443]. Particularly, spontaneous 

contractions and self-alignment were observed with pHMs and not with C2C12 cells. 

Contractions were also observed with primary mice myoblasts (pMMs), but not with 

immortalized human myoblasts. Overall, primary myoblasts were more prone to exhibit 

spontaneous contractions compared with immortalized myoblasts independent of the 

myoblasts origin (mice or human).  

However, the phenomenon of cell alignment inside pores was only observed for primary human 

myoblasts (supplementary information 9 in annex) while C2C12 and primary mice myoblasts 

exhibited a more random repartition. In a classical culture on matrigel, we showed in our group 

that pHMs have no spontaneous self-alignment, which is in line with what has been observed 

in literature [444], [445]. The curvature of EPH could thus bring appropriate signals to enhance 

cell alignment upon fusion, indicating that the cells could perceive the pore morphology. To the 
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best of our knowledge, this trend has not been reported in literature for non-aligned porosity  

such as our effervescently generated porous structure [446], [447]. Although staying 

unexplained, this is an interesting feature as a long-range organisation of myoblasts is required 

to create a muscle architecture globally aligned to provide tissue function.  

We also observed that myotubes were able to lift themselves inside the pores while remaining 

attached to the pore edges. This was the case for all myoblasts used but was particularly 

evident for pHMs. This phenomenon has been described elsewhere, with aligned myotubes 

exerting a passive tension on deformable pillars on which they were cultured, which enabled 

them to be lifted from the substrate [448]. In some instances, this passive tension also caused 

the pillars to be pulled closer together [431]. These groups concluded that their pillars system, 

serving as attachment points, were mimicking tendons within the musculoskeletal system. 

Accordingly, our results could be explained by the stiffness of 2/25 and 2/37 mM DGL/PEG 

EPH (34.9 ± 5.0 and 54.3 ± 0.5 kPa in compression respectively), which is higher than the 

reported muscle tissue stiffness but close to the tendon ECM (shear modulus between 25 to 

45 kPa [449]). Therefore, the EPH stiffness could mimic the tendon, providing specific signals 

to myotubes enabling them to exert passive tension to the support to be lifted inside the porous 

structure. However, no differences were observed between our two DGL/PEG conditions with 

different stiffness.  

Taken together, these results are in accordance with results obtained with C2C12 cells but go 

further, underlining EPH potential to sustain human myoblasts fusion and maturation into 

contractile and organized myotubes.  

3.3.2 The generation of myogenic reserve cells 

The use of pHMs also enabled us to study a feature not visible with C2C12 cells, which is the 

ability for myogenic precursor cells inside EPH to follow various paths. Contrarily to C2C12 

cells, a large part of the pHMs entered differentiation to fuse, while others regained a 

phenotype characteristic of quiescent satellite cells. In vivo, satellite cells (SC) are localized 

near muscle fibres and are directing tissue growth and regeneration upon injury [54]. SC can 

differentiate into myoblasts to regenerate the tissue while others preserve their self-renewal 

ability to repopulate stem cell niches. The capacity of the muscle to cope with serial damages 

and chronic degeneration is linked to the replenishment of the SC pool after each regeneration 

period [450]. Some studies have shown SC diverging fate is associated with variation in Pax7 

and MyoD expression: Pax7+MyoD- are quiescent cells, pax7+MyoD+ are activated SC or 

proliferating myoblasts while Pax7-MyoD+ are differentiating cells [451].  

In this work, we observed mononucleated cells expressing Pax7 while being non-cycling and 

not entering differentiation after 6 and 10 days of pHMs differentiation. These results are in line 

with studies showing the apparition of a subpopulation of quiescent, non-cycling, 

undifferentiated cells inside in vitro myogenic precursors cell cultures known as ‘reserve cells’ 
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(RC) [451]–[453]. They have been described as cells able to escape spontaneously terminal 

differentiation but which remain myogenic if further stimulated [452]. Here we showed that 15% 

of the cells remained undifferentiated in clusters after 6 and 10 days in differentiation. As a 

comparison, primary human myoblasts cultured on conventional plastic dishes for 48 hours in 

DM showed 38% of cells remaining mononucleated and escaping the terminal differentiation 

process among which 90% expressed Pax7 [454]. In this work, we went further, showing that 

it was possible to preserve the pool of Pax7 positive cells for up to 10 days.  

Moreover, the same group observed that after 120 hours in serum depleted medium, 35.8 ± 

6.2% of their myogenic reserve cell population where both pax7+MyoD+  which is consistent 

with what we obtained after 6 and 10 days in DM (36.2 ± 10.1 % and 32.2 ± 4.0 % for 2/25 and 

2/37 mM DGL/PEG hydrogels respectively). They also demonstrated that during seeding and 

proliferation, almost all their cells were Ki67+, Pax7+, MyoD+ to then engage towards 

differentiation or quiescence [454]. This observation could explain the decreased proportion of 

Pax7+/Ki67+ cells inside EPH observed between 6 and 10 days in DM. The cells, either entering 

quiescence or differentiation, were progressively downregulating ki67. 

The observation of cells following the path of proliferative inactivity could be related to the EPH 

porous structure and properties. For example, stiffness of the environment has been shown to 

inform the decision of SC to remain in quiescence in vitro [455]. However, in our case, no 

differences were observed between the two EPH conditions of various stiffness (i.e. 2/25 and 

2/37 mM DGL/PEG at 34.9 ± 5.0 and 54.3 ± 0.5 kPa respectively). As a comparison, a stiffness 

of about 2 kPa has been found to be optimal for the maintenance of SC quiescence in a 

collagen-based hydrogel scaffold [455], which could indicate that a yet unknown phenomenon 

is here at play.   

Nonetheless, providing an optimal environment to promote RC formation is of great interest for 

VML treatment due to their high regeneration potential. RC have demonstrated great abilities 

to improve muscle regeneration in vivo after injury in comparison to myoblasts [454]. The in 

vitro capability of RC to both self-renew and differentiate may be related to SC behaviour 

described in vivo. Therefore, RC offer an interesting therapeutic possibility for injured skeletal 

muscle while being easily generated in vitro.  

To conclude, we demonstrated that it was possible to form contractile myotubes, an essential 

target for muscle recovery, together with mononucleated RC relevant to support repeated 

cycles or regeneration from myogenic precursors seeded on EPH. In this chapter we thus 

validated that the generated EPH are great substrates for myotubes maturation and hold 

significant promise to be used as scaffolds for VML treatments. Moreover, considering that 

EPH provide an environment enabling the spontaneous contraction of human myotubes, they 

could also be interesting for the in vitro study of myogenesis. The primary function of the 

muscle tissue is to physically generate force, it thus seems crucial to appreciate mechanical 

stresses involved. Some researchers have indeed studied myoblasts contractile behaviour in 
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engineered 3D constructs [456] to provide innovative ways to evaluate drugs and/or molecules 

on cell ability to contract. The EPH could thus be converted in an in vitro model to study the 

process of myogenesis through the force applied by myotubes on microenvironment.   

Altogether, EPH provide an interesting alternative to matrigel, which has been extensively 

employed as the gold standard able to promote muscle cells spreading, mobility and 

differentiation [399]. However, the use of matrigel raises questions of batch-to-batch variability 

hampering the reproducibility of results while being strictly restricted to in vitro studies due to 

its murine origin and potential tumorigenicity. In this work, we developed a highly reproducible 

alternative, able to promote skeletal muscle cells differentiation and maturation into contractile 

muscle fibres in a 3D structure with possible translation to in vivo models.  
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3.4 Conclusion and critical evaluation  

This chapter aimed to evaluate the innovative effervescent porous hydrogel (EPH) as a support 

able to recapitulate some signals of the native microenvironment to influence skeletal muscle 

cells behaviour. While some positive attributes have been highlighted in the foregoing, several 

improvements can be done to fully understand cellular behaviour inside EPH and thus better 

approach the native skeletal muscle environment for tissue regeneration purposes.    

3.4.1 Two-dimensional versus three-dimensional culture  

We first investigated the variation of cell behaviour between 2D and 3D substrates. In line with 

other studies, our model showed that a 3D environment promoted a more efficient myoblasts 

fusion into myotubes, compared with 2D cultures, which further confirms the beneficial 

influence of the 3D environment on skeletal muscle cells. However, the fusion index was not 

quantified in 3D EPH due to large cell clusters and the difficulty to individualize nuclei. The 

comparison of cell behaviour on 2D versus 3D substrates was thus only based on myotubes 

morphology and might be biased. Therefore, the development of image analysis protocols able 

to individualize nuclei in 3D appears of relevance to increase the robustness of our results. 

However, one important advantage of our system is the comparison we made of 2D monolayer 

culture against 3D culture on scaffolds of similar compositions. On the contrary, most of the 

studies in literature compared 3D scaffolds against 2D monolayer on plastic or glass without 

considering the huge stiffness and biochemical variation between both models. However, in 

this work, we did not consider the difference in PEG-NHS solvent and the variation of stiffness 

induced by the effervescent reaction on the raw hydrogel between 2D and 3D models. 

Therefore, to be relevant, future work should focus on 2D monolayer formulated with Gaa:KC, 

pluronic® F-68 and with PEG solubilized in DMSO to perfectly recapitulate the mechanical 

behaviour of EPH.  

Moreover, in this work, we assumed that the different behaviour observed between cells in 2D 

versus 3D substrates could be related to differences in integrin repartition inside the cells and 

FA clustering as previously demonstrated in literature. However, most of the 3D environments 

described in existing studies were defining cells completely embedded inside the scaffold, 

having no prescribed polarity, and with migration and spreading sterically hindered [457]. In 

contrast, in this work, pores were large enough to provide a semi-3D environment, resembling 

a 2D substrate with a forced basal-apical polarity of cells, having an influence on their 

behaviour [457]. As a result, cells were able to migrate and spread within the scaffold, 

rendering comparison with scaffolds described in literature hazardous. In that respect, our 

assumptions regarding cell behaviour variation through adhesion proteins and FA clustering 

should be validated. In the future, C2C12 cells inside EPH or on 2D hydrogels could be 

transfected with specific siRNA to silence various integrin subunits expression and be able to 
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validate or refute these hypotheses with specific staining of FA proteins (focal adhesion kinase, 

paxillin, vinculin for instance).  

All in all, a better understanding of the mechanisms regulating skeletal muscle cell fate in 3D 

on DGL/PEG hydrogels could provide interesting perspectives for its use as a model to study 

myogenesis. More importantly, it would help us formulate an optimal environment to precisely 

control cell fate for the use of the DGL/PEG EPH to enhance tissue regeneration in skeletal 

muscle injuries. 

3.4.2 Porosity optimization 

After evaluating variation between 2D and 3D substrates, we focused on pHMs capacity to 

align inside single pores, once differentiated into myotubes. While the hydrogel does not 

possess the alignment recommended for myotubes growth, it does provide appropriate signals 

and pore size for myotubes alignment upon differentiation. However, compared to classic 

monolayer culture, myotubes exhibited smaller areas and number of nuclei per myotube. As a 

comparison, Perroud and colleagues showed primary human myoblasts cultured on classic 

culture plate formed myotubes with an area of about 60.000 µm² and an average of 65 nuclei 

per myotube [458]. Such results open the future possibility to adapt our 3D structures to 

generated longer myotubes and explore novel perspectives for translational approaches. 

Future work could focus on incorporating topographical cues such as pore alignment inside 

EPH to direct myotubes growth towards unified contractile units. However, it is highly 

challenging to topographically shape the porosity while maintaining its injectable potential. To 

address this specific issue, the use of other processes combined with the effervescence should 

be considered. Moreover, the establishment of image analysis protocols to quantify cell 

alignment using imageJ could be relevant to explain the spontaneous alignment of pHMs 

observed in this work. 

3.4.3 Stiffness and biochemical signals 

In this chapter, the 1.6/25 mM DGL/PEG hydrogel was not evaluated with pHMs due to slower 

skeletal muscle cell proliferation and difficult handling related to a low stiffness. However, this 

condition was the closest to the native muscle tissue with a stiffness of 17.1 ± 1.4 kPa. It would 

have been relevant to quantify myotubes striation and evaluate adequacy with Engler and 

colleagues' results who highlighted a better striation of C2C12 cells on substrates stiffness 

close to the native muscle [198]. Moreover, it would have been of interest to quantify the 

number of myotubes ‘lifted’ inside pores of EPH stiffness closer to the muscle tissue. As we 

assumed that myotubes ability to lift could be modulated by EPH stiffness, the quantification 

of ‘lifted’ myotubes on soft and stiff substrates could further enlighten our theory. Finally, the 

ELP was not studied in this chapter. As the ELP interacts with integrins, it could allow 

elucidating the aforementioned assumptions of the role of integrins in 3D.  
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3.4.4 Generation of myogenic reserve cells 

In addition to demonstrating that the innovative EPH is able to guide cell fusion, we observed 

cells inside EPH resembling reserve cells (RC). However, their myogenic potential needs to 

be assessed to be considered as RC. To this end, future work could focus on a way to detach 

and re-plate these cells to characterize their ability to differentiate and give rise to myotubes. 

Nevertheless, the detachment of cells from the DGL/PEG hydrogel represents a technical 

challenge due to strong interactions between cells and positively charged DGL, rendering 

classical trypsin protocols inefficient. Recently, some efforts have been made in our group to 

detach fibroblasts from 2D hydrogels. To do so, the addition of a solution of dextran sulfate 

sodium on cultures showed positive outcomes. The dextran sulfate sodium masks positive 

charges brought by DGL and therefore avoid too strong interactions between cells and 

substrate after trypsin addition. Unfortunately, these protocols are hardly transposable to 3D 

EPH due to the slow diffusion of dextran sulfate sodium of high molecular weight (>500,000 

g/mol) inside EPH. In the future, some efforts could be made towards the establishment of an 

appropriate protocol to detach cells from EPH while ensuring their viability. In this work, cell 

characterization was largely based on immunofluorescences, however, the detachment of 

viable cells could allow further understanding of underlying mechanisms.  

Finally, it would have been interesting to study pHMs in 2D to compare the results with EPH 

and draw conclusions on the architecture effect on RC. While much efforts have been made 

on the understanding of ECM binding sites and diffusible molecule influence on satellite cell 

behaviour in vivo, the evaluation of the external immediate architecture contribution remains 

scarcely described [55]. The EPH could thus provide an attractive in vitro model for the 

evaluation of the architecture effect on cells. As such, understanding the interactions between 

satellite cells and their microenvironment is paramount for the development of therapies for 

muscle disease of VML management. To this end, efforts should be made to tailor porosity 

and study the architecture variation on RC behaviour and the formation of clusters of Pax7 

positive cells.  

In conclusion, in this chapter, we gave preliminary results demonstrating EPH relevance for 

the growth and differentiation of primary human myoblasts. These results open opportunities 

for skeletal muscle regeneration through in situ injectable delivery. Moreover, we highlight that 

the DGL/PEG hydrogel seems to be relevant to follow cell fate in vitro. In vitro reproducible 

systems recapitulating myogenic precursor environment to understand the induction towards 

this lineage is useful. Therefore, these results also pave the way for a use of the 3D DGL/PEG 

hydrogel as in vitro model. 
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Figure 54: Take home message chapter 3 
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4 Pilot studies towards in vivo evaluation  

Considering the promising results highlighted in the third chapter, the logical next step 

identified in the work was the in vivo evaluation of EPH in muscle defects.  

To go towards in vivo studies and identify potential hurdles associated with direct EPH 

injection, pilot studies have been conducted in muscle defects of small animals. Muscle defects 

(about 2-4 mm wide and 5-8 mm deep) have been performed in gastrocnemius, tibialis anterior 

and gluteus maximus of rats and mice already euthanized. EPH were subsequently injected 

inside defects to determine the volume needed and the optimum conditions of DGL/PEG 

hydrogels enabling the formation of the self-standing porous hydrogel.  

After EPH injection in the muscle defect, the effervescently generated CO2 bubbles could not 

be maintained in contact with tissues. Instead, bubbles broke and accumulated at the surface. 

We thus identified a different behaviour compare with EPH injected in tubes (Figure 55A, B 

and C). This phenomenon can be compared with the observations of EPH directly injected in 

subcutaneous pockets in mice, in which dense structures were generated in contact with 

tissues. No obvious correlation could be noticed between the size and form of the defect and 

the CO2 bubbles stabilization. Similarly, when injected inside tubes of various forms and sizes, 

CO2 bubbles could always be stabilized to form a porosity inside DGL/PEG hydrogel. Even if 

a slight variation of the pore size was observed, although non-significant, the CO2 bubbles 

were maintained in contact with tube walls (Figure 55B, C and D).  

It was thus hypothesized that similarly to subcutaneous injection, a surface tension imbalance 

in contact with tissues could provoke CO2 bubbles to burst after their generation. The surface 

tension of polystyrene tubes is relatively low (about 34mN/m [459]) while it is higher for of 

tissues. For example, the tension surface of the blood  has been quantified at 55.9 ± 3.6 mN/m 

[460]. A high surface tension could counterbalance attraction forces of the surfactant that 

normally maintain CO2 bubbles stabilized and cause the bubbles to break out. To assess these 

assumptions, EPH were injected inside glass tubes (with a higher tension surface (about 230-

360 mN/m [461]) than polystyrene) to evaluate the effect of tubes surface tension. Interestingly, 

while a high percentage of giant bubbles were visible compared with EPH in polystyrene tube, 

a majority of the CO2 bubbles could be maintained in contact with the glass tube walls. If the 

role of surface tension on the EPH behaviour cannot be discarded, these results underlined 

that another mechanism is at play when EPH are in contact with tissues.  
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Figure 55 : EPH injected inside various supports.  
A) EPH injection in a muscle defect in a rat. Bubbles in contact with tissues were not maintained and 
some of them accumulated at the surface of the gel (red arrows). B) and C) EPH injected in tubes could 
be formed with stabilized CO2 bubbles, regardless of tubes size and form. No significant difference could 
be observed between the porosity created inside 2ml and 0.5 ml tubes. However, a slight variation of 
bubble size could highlight an effect of tube form and size on the formation of the porosity by 
effervescence.   

Therefore, before considering in vivo assessment of injection in muscle defects, some 

optimization regarding the EPH design should be carried on to quickly entrap CO2 bubbles 

before their burst in contact with tissues. For example, an instantaneous crosslinking could be 

triggered by increasing the pH of the acid:base ratio, the DGL/PEG concentration or the 

temperature of precursors’ solutions to entrap the generated bubbles. In addition, to avoid the 

CO2 bubbles to burst in contact with tissues, some effort could also be made on the 

optimization of CO2 bubble stabilization. The final concentration of pluronic® F-68 could be 

adjusted to sustain bubbles over time. The wound bed could also be covered with the 

surfactant to then inject the DGL/PEG hydrogel to further stabilize the CO2 bubbles in contact 

with tissues. However, the presence of a layer of pluronic® F-68 could result in EPH isolation 

from tissues, preventing cellular entry and therefore needs to be assessed. The study of other 

surfactant could also be explored such as the use of albumin, which lead to foam upon 

solubilisation. Finally, a combination of all these strategies could lead to an instantaneous 

cross-linking of the hydrogel upon injection, improving resulting bubbles entrapment for direct 

injection on tissues.    
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4.1 Ex vivo pilot study  

Given the foregoing and to avoid the unnecessary use of animals, ex vivo studies were 

conducted. These experiments were designed to study cells located in muscle tissue ability to 

enter the EPH. To do so, some muscles were harvested from recently euthanized mice, 

lacerated, rinsed with PBS and placed inside tubes. EPH of different conditions were 

subsequently injected inside the tube to surround the muscle (Figure 56A). Only the most basic 

acid:base ratio was targeted (i.e 1.33:1 Gaa:KC) and high concentration of DGL/PEG were 

chosen to allow a quick crosslinking (i.e : 2/25 and 2/37 mM DGL/PEG). Moreover, to boost 

the crosslinking velocity, precursors’ solutions were heated at 37°C before injection and the 

tube was placed in a 50°C water bath for few seconds upon injection. Due to the presence of 

the tube and no biological fluids, EPH could be formed surrounding mice muscles. The 

construct was then placed in culture medium and incubated at 37 °C and 5 % CO2 for 12 days 

to evaluate satellite cells entry inside the EPH surrounding the muscle. After 10 days, samples 

were fixed with PFA 4% and cut with a cryostat after their embedment in optimal cutting 

solution. Interestingly, a porosity could be observed in contact with tissues (Figure 56B, yellow 

dotted line). This stabilization of CO2 bubbles can be the result of tissue washing with PBS, 

having a lower surface tension (about 40 mN/m [462]) than the blood and of boosted 

crosslinking velocity with temperature, pH and concentration. However, no cellular entry was 

observed after 10 days and we assumed that most of the cells were dead due the lack of 

staining after specific immunofluorescences. We hypothesized that the culture methods were 

not appropriate for explants as muscle fibres are generally cultured on plates coated with 

collagen and immersed in specific culture medium [463], [464].  
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Figure 56: Ex vivo pilot study 
A) Muscles of the hind limb were harvested from euthanized mice, rinsed with PBS and placed in a 
polystyrene tube. EPH of different conditions were then injected in the tube to surround the muscle. The 
samples (muscle + EPH) were then placed in culture medium to follow cellular entry inside EPH. Red: 
cell nuclei, green: actin cytoskeleton and EPH auto-fluorescence. EPH (yellow dotted line). 

By boosting the crosslinking velocity of hydrogels, we demonstrated that EPH could be formed 

surrounding muscle inside tubes. In the future and for in vivo study, some conditions with 

higher DGL/PEG concentration (e.g 2.5/37 or 2/50) and smaller Gaa:KC molar ratio (e.g. 1.2:1 

or 1.1:1 Gaa:KC) could be tested in direct contact with tissues. 
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5 Work Conclusion, opportunities for improvement and 

perspectives  

5.1 Conclusion  

Volumetric muscle loss (VML) resulting from traumatic events or major surgical procedures 

represents an important socio-economic burden for western societies due to the lack of 

efficient treatments. Conventional strategies consisting of wound debridement and the use of 

muscle flaps and/or grafts are either unsubstantial or limited by major drawbacks. Innovative 

treatments involving the injection of cultured cells or growth factors (GF) are unrealistic 

approaches to treat large injuries due to low cell engraftment and survival, and GF dispersion 

in tissues. To overcome these challenges, tissue engineering strategies using biomaterials 

have been increasingly developed for tissue regeneration and look promising for functional 

skeletal muscle repair.   

Particularly, recent treatment options for the management of skeletal muscle tissue have 

explored the use of biomaterials to protect and carry embedded muscle cells and/or GF in the 

injured site. After carrying cells, the biomaterials are used to act as a support to promote their 

growth, proliferation and differentiation. However, very few of these approaches have reached 

clinics due to the extensive legal regulations associated with the use of autologous or allogenic 

cells and/or the cost of GF. Considering the need for treatment, this thesis project explored the 

potential of acellular biomaterials able to enhance skeletal muscle tissue regeneration. The 

paradigm of the present work was to find an innovative way to manage complex and substantial 

skeletal muscle wounds by designing an optimal, raw and simple enough biomaterial able to 

reach the clinics easily. Particularly, the use of hydrogels, closely mimicking the high water 

content of native extracellular matrices (ECM), can be finely tuned to control cell fate and 

therefore holds significant promise.  

Recently, we have developed an innovative hydrogel composed of poly-(L-lysine) grafted 

dendrimers (DGL) cross-linked by polyethylene glycol (PEG-NHS), which is biocompatible and 

has highly tailorable mechanical properties but requires a preformed porosity to be colonized 

with cells. The goals of this work, part of the GELIHPARBAL project, funded by the Agence 

Nationale de la Recherche (ANR) were (1) to develop an optimal formulation of this previously 

described DGL/PEG hydrogel to interact with skeletal muscle cells, to then (2) create a 

spontaneous porosity inside the DGL/PEG hydrogel through a novel approach compatible with 

its in situ injection. Finally, these innovative porous formulations of optimal conditions were 

studied with skeletal muscle cells to evaluate their potential for VML treatment.  

We first identified some parameters of the DGL/PEG hydrogels that could be varied to enhance 

multiple aspects of skeletal muscle cells behaviour including growth, migration and myotubes 

formation from myoblasts. We describe here that various skeletal muscle cell types were 
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impacted by substrate stiffness and various biochemical cues and we showed the 

possibility to control resultant cellular behaviour. Muscle cell proliferation on the substrate was 

correlated with the stiffness while the amount of DGL had a huge influence on myoblasts 

differentiation and fusion. It allowed us to identify optimal DGL/PEG compositions able to 

sustain the growth and fusion of cells in 2D. Moreover, we identified our ‘in house’ elastin-like 

polypeptide (ELP) as a protein able to influence cellular growth and adhesion during 

differentiation and fusion. However, regardless of the substrate composition, the polymer 

network was too tight to let cells to enter the structure, restricting its use for VML treatment and 

evaluation of the environment in 3D. The need to create pathways inside the DGL/PEG 

hydrogel for cells to infiltrate the structure was thus raised.   

Accordingly, in a second chapter, we developed a porosity inside the DGL/PEG hydrogel 

while maintaining the injectable potential of liquid precursors where many tissue-

engineered constructs described in literature do not present the significant advantage of being 

easily transposable to direct injection [288]. We found that effervescent porous hydrogels 

(EPH) of versatile mechanical properties could be prepared by dissolving acetic acid and 

potassium carbonate to DGL and PEG solutions to generate CO2 bubbles by effervescence. 

A thorough optimization of the acid-base effervescence was carried out to match the DGL/PEG 

hydrogel cross-linking reaction with the formation of CO2 bubbles. The simultaneous reaction 

of effervescence with the DGL/PEG crosslinking enabled the entrapment of generated CO2 

bubbles inside the DGL/PEG network leading to the formation of a spontaneous, 

homogeneous and interconnected porosity. The porous effervescent hydrogels could be 

injected with a dual-chamber syringe and a static mixer due to the use of sole precursor 

solutions. By being injectable, the EPH conform accurately to complex shapes, which is of high 

interest for sizable muscle mass loss. Innovative formulations were proven non-cytotoxic and 

cytocompatible towards fibroblastic cells, while not inducing adverse effects on tissues. What 

is more, DGL/PEG EPH have been shown to maintain mechanical stability and versatility 

where many of the tissue-engineered scaffolds are mechanically unsuitable and fail to provide 

the tissue with a sufficient mechanical support [158], [330]. The porosity and injectability of the 

described effervescent DGL/PEG hydrogels, together with their biocompatibility and versatility 

of mechanical properties, open broad perspectives for various regenerative medicine or 

material applications. 

Finally, we showed in this work that the porosity generated was suitable for a large variety of 

myoblast cells to grow and fuse. Regardless of the composition and stiffness used, primary 

myoblasts of various origins contracted inside EPH. We also demonstrated that EPH allowed 

cells to follow various pathways (i.e. differentiation and fusion or quiescence) in a way similar 

to what is described in skeletal muscle physiological regeneration. These experiments also 

allowed us to evaluate the effect of the 3D architecture on skeletal muscle cells providing 
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perspectives for the development of 3D models to study myogenesis in vitro and the ability for 

cells to follow various paths.  

The parameters explored herein provide new perspectives for the study of the process of 

myogenesis in vitro, enabling us to draw conclusions on the effect of various signals on skeletal 

muscle cells and pave the way for further optimization to be relevant in the case of a skeletal 

muscle volumetric muscle loss. However, to consider using this innovative DGL/PEG EPH for 

VML treatment, some optimization pathways have been highlighted throughout this work to 

enable the translation to in vivo defects.  

5.2 The use of EPH for VML treatments: perspectives and opportunity for 

improvement 

To be relevant in clinical applications, DGL/PEG hydrogels need to be further optimized and 

evaluated. The use of effervescence raises many questions for in situ application due to pH 

variation and the generation of CO2 bubbles inside the body.  

The final application of the DGL/PEG hydrogel (i.e. VML treatment) should take into 

consideration the local pH variation occurring in skeletal muscle injuries. Recently Berkmann 

and colleagues revealed local acidification of wounds in a rat muscle model following trauma, 

which was maintained up to 48 hours. They described a pH of 6.89 and proposed blood vessels 

rupture and subsequent hypoxic conditions could cause local tissue acidification. Due to 

hypoxia, cells switch from an aerobic to an anaerobic energy supply resulting in lactate 

production and local acidification of the environment [465]. This pH acidification has been 

described by another group in an incision model and has been related to nociceptor 

sensitization and pain [466]. As discussed in chapter 2 and chapter 4 the DGL/PEG EPH 

should thus be adapted to cope with the pH variation experienced by skeletal muscle wounds.  

However, it has been shown this acidification related to wound is characterized by high inter-

individual variations [465], which further complicates the establishment of a ready to use pH-

related dressing applicable for all patient.   

Besides, before optimizing the acid: base ratio to promote DGL/PEG EPH formulation as 

dressings in wound beds, we should also consider the pH effect on surrounding tissues. Both 

hydrogel pH and the presence of CO2 bubbles escaping the structure could locally decrease 

the pH of the wounds influencing the resulting wound healing. The use of acid to help to treat 

wounds has been reported and reviewed [467] highlighting the major influence of pH on cells 

and tissue repair. The variation of local pH indeed has been related to bacterial growth and 

MMP behaviour in wounds [468]. For instance, MMP-2 is activated at low pH whereas its 

degrading effect on collagen is reached at higher pH [469]. Moreover, it has also been found 

that bacterial colonization in wounds is decreased in acidic conditions and its presence was 

related to the shift toward alkaline pH characterizing chronic wounds and delaying healing 

[470], [471]. These instances highlight the major effect of pH on wound repair. The use of acid-
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base effervescences and CO2 bubbles could thus be optimized to provide an adequate pH 

environment able to enhance or decrease some enzymatic activation and bacterial invasion. 

These considerations provide a step towards the development of pH-related biomaterials for 

wound management. Therefore, in the system described herein, the pH could have a triple 

coordinated effect, allowing (1) the generation of porosity inside the DGL/PEG hydrogel, (2) 

the modulation of the cross-linking degree and mechanical properties of the material to match 

the need of the targeted tissue while (3) enhancing specific enzyme activation and activity to 

promote tissue healing.  

Another parameter that we should explore is the local hypoxia that the CO2 bubbles escaping 

the structure could trigger in the very first hours following injection. Oxygen plays a prominent 

role in the healing process. When considering the adequate moment in which injecting this 

new formulation we should consider the hypoxia and the pH modification due to the CO2 

bubbles escaping the structure.  Moreover, the use of effervescently generated porosity inside 

DGL/PEG hydrogel could provoke ischemia via the volume expansion, which could be related 

to hypoxia and fibrosis development. Nevertheless, in this work, no ischemia could be 

observed after subcutaneous injection of EPH of various conditions. This should be carefully 

evaluated for in vivo evaluation in a muscle defect. 

Finally, the stiffness modulation of cross-linked DGL/PEG hydrogels was not studied in this 

work and should be discussed for optimization. In the context of skeletal muscle regeneration, 

ECM stiffness has been shown to vary during repair with a muscle apparent modulus increase 

in the first 3 days following injury [472]. This increase has been related to type I and type VI 

collagens, laminin, and fibrin deposition as well as fibrin clot formation [472] and collapsed 

myofibres that exhibit a higher stiffness [473]. Consequently, while a transient ECM stiffening 

plays a role in the early stage of differentiation to trigger satellite cell proliferation and 

commitment, a softer stiffness, close to the native tissue is better for subsequent myotubes 

maturation. It is therefore of utmost importance to match the stiffness of a regenerative skeletal 

muscle tissue which might be different from a mature one, and that could evolved during the 

regeneration time course. This may set conflicting requirements for the scaffold stiffness.  

An interesting way to modulate the elasticity of the material to match the tissue regeneration 

would be through its gradual degradability in vivo. To be optimal, the in vivo degradation rate 

should match the tissue regeneration pace to favour alignment of new muscle fibres and 

recover the tissue homeostasis. However, it should not degrade too fast to act as a mechanical 

support for cells and the whole tissue during regeneration. The DGL/PEG hydrogel 

degradation has been studied in our laboratory in acidic, alkaline and neutral medium showing 

a mass decrease of hydrogel immersed in alkaline solutions [378]. Moreover, a slight 

degradation of subcutaneously implanted DGL/PEG hydrogel was observed by macrophages 

for all conditions after three weeks of implantation (chapter 2 and [373]). These results suggest 

the injectable and porous DGL/PEG hydrogel could be degraded inside the body, resulting in 
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customization of the resulting porosity by cells in situ. To answer that question, the DGL/PEG 

EPH need to be evaluated in a muscle defect in vivo over long implantation periods.  

To answer all of the aforementioned questions and to study DGL/PEG EPH potential to sustain 

myogenic differentiation while avoiding fibrosis, some efforts have been made during the thesis 

on the establishment of in vivo procedures detailed below. 

5.2.1 Perspective: in vivo evaluation  

The next crucial perspective of the work is the in vivo evaluation of the myogenic potential 

of the EPH in a muscle defect. The in vivo study will give us preliminary data to (1) validate the 

potential of EPH for VML treatment and (2) find the optimal conditions. 

The first step would be to optimize and improve the injected formulation to bind to muscle 

defects margin while remaining porous and having no deleterious effect on tissues as 

discussed previously. Once the EPH is optimized, a relevant animal model should be chosen. 

During the thesis, a preliminary in vivo project application was written. We selected the rat 

tibialis anterior (TA) model to perform the defect (Figure 57A). The rat was chosen given defect 

volume at least 10 times greater than in the mouse [124], which are too small to match the 

volumes required by the dual-chamber syringe/static mixer system (at least 100-200 µL). 

Moreover, the TA was chosen due to previous attempts for standardization reported in 

literature (Figure 57B) [124]. The EPH evaluation could be conducted on the 3 various 

DGL/PEG conditions to highlight the effect of the stiffness and the molar ratio in vivo. The 

contralateral TA of each rat could be used as a healthy control for each sample studied. A 

positive control could be made by producing the VML defect and placing back the minced 

tissue to the defect. The skeletal muscle tissue has indeed been shown to recover its 

functionality and produce controlled force after complete removal, mincing and placing back 

into the defect in small animal models [474], [475]. A negative control could be generated by 

letting the defect empty to create fibrosis and study the loss of functionality. 
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Figure 57: In vivo study designed for the evaluation of various EPH condition potential for skeletal muscle 
functional regeneration.  
A), B) The rat tibialis anterior (TA) muscle was chosen as a well-described volumetric muscle loss model 
characterized by a loss of functionality. C) In vivo experimental planning for the assessment of EPH 
ability to sustain functional muscle regeneration (D: days, W: weeks).  
A) BFP: Biceps femoris posterior, LG: Lateral Gastrocnemius, GM: Gluteus Maximus, TA: Tibialis 
Anterior, VL: Vastus Lateralis. Adapted from Charles et al.,  Plos One, 2016 [476]  and B) adapted from 
Wu et al., Bioresearch open access, 2012 [124]. 
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A study with two various time points has been designed so far. We decided to perform an early 

time point 3 weeks post-implantation to validate EPH efficacy in inherently favouring muscle 

regeneration over fibrosis. Three weeks post-injury is the moment when the anti-inflammatory 

process should be settled and, if not, when fibrosis can occur [477].  In addition to inflammation, 

the cross-section area (CSA) in µm² of muscle fibres after 3 weeks could be reported in 

comparison with the contralateral TA and controls to identify the best conditions. The fibrotic 

tissue could also be quantified as the area covered by collagen and fibronectin on cross-

sections. 

Previous studies have reported a functional recovery of defects in rat TA after 12 weeks of 

implantation of a scaffold [124], [248]. Given these considerations, we decided to define the 

last time point 12 weeks post-surgery to assess the functionality of the neo-formed tissues and 

study cell types present inside hydrogels. Extensive work should be dedicated to the 

establishment of protocols allowing to quantify the functionality of neo-formed tissues (catwalk, 

forces development, elasticity and fatigability ex vivo). Functionality tests (especially catwalks) 

should consider the huge extensor digitorum longus muscle (EDL) compensatory effect 

experienced on the whole hind limb functionality. To overcome these drawbacks, some 

research groups have measured the contractile and passive mechanical properties of TA and 

EDL muscles separately in mice [478] while others have evaluated the TA contribution on rat 

dorsiflexion of the foot [479]. However, these measures need the use of specific apparatus 

(Aurora scientific in situ muscle test system). Regardless of the functionality test, the negative 

control (defect left empty) and the positive control (defect filled with minced muscle) should be 

carefully characterized to find appropriate functional tests and define the limits of the study. 

Then, the formed tissue should be evaluated histologically to validate the presence and 

orientation of new-formed muscle fibres (staining for myosin protein family), fibrotic tissue (type 

I collagen), vascularization (α-SMA, CD31, type IV collagen) and neuromuscular junctions 

(specific β tubulins, AchR).  

Special attention should as well be given to the degradation of the hydrogel after 3 and 12 

weeks of implantation, to assess the pro-inflammatory M1 macrophage ability to phagocyte 

hydrogels.   

If the EPH potential is validated by the in vivo study, some effort could be made to convert the 

hydrogel as a ready-to-use device. To do so, it is necessary to find a way to guarantee sterility 

during injection, assembly and charging of the dual-chamber syringe to meet the requirements 

of clinical applications. A system that could generate a robust large-volume application in situ 

is the central hurdle in this material design. An operant system in microscale in vitro or in vivo 

may not necessarily perform on a larger scale in a human model. Injectable hydrogels are 

currently in use for minimally invasive surgery, but the design parameters for large-volume 

expensive hydrogel remain unclear and need to be addressed for the DGL/PEG EPH.  
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5.3 EPH potential as in vitro model to study myogenesis: perspectives and 

opportunity for improvement 

In addition to being pertinent for wound management, EPH are an interesting model to study 

cells within a 3D structure in vitro. The use of well-refined hydrogels mimicking skeletal muscle 

tissue microenvironment combined with relevant myogenic progenitor cells could be used as 

in vitro pre-clinical models. Moreover, the stiffness versatility of EPH and the biochemical cues 

present at their surface is a way to recreate various environments. It represents thus a very 

promising 3D model to study different signals on myoblast cell behaviour. 

For instance, innovative EPH could be relevant to evaluate the impact of the 3D structure on 

reserve cells self-renewal. The satellite cell niche has been extensively described in terms of 

ECM composition and signalling but barely in terms of 3D architecture and EPH structure could 

provide new insights. Moreover, the ability for differentiated cells to contract and produce force 

may be quantified as a way to study the environment on cell behaviour. Therefore, some 

improvement could be done on the establishment of protocols to measure forces and tension 

generated by cells to evaluate different treatments on their contractibility. To do so, EPH with 

cells could be recorded with high-resolution cameras or could be attached to stainless steel 

wires connected to tension transducers [480].  

Some efforts could also be made on EPH electrical and/or mechanical stimulation. It has been 

shown that skeletal muscle cells embedded inside fibrin biomaterial exhibited better maturity 

along with enhanced scaffold alignment when mechanically stimulated [481]. As previously 

discusses, the main guideline in designing a scaffold for in vitro skeletal muscle tissue 

construct is the organization and particular alignment of muscle fibres. Further improvements 

could be sought to enable the formation of long, thick and self-organized contractile units. 

Therefore external stimulation of EPH could result in their porous structure deformation 

favouring cell alignment. In addition, it could be considered to include vasculature and/or 

neuronal innervation to further enhance myotubes maturation towards contractile muscle 

fibres.  

5.3.1 Perspective: molecule release  

In addition, these bioengineered hydrogels could act as a platform to screen drugs, cells or 

therapeutic genes for treating inherited muscle diseases. The identification of specific factors 

that can positively affect muscle function (contraction, RC proportion, etc…) could lead to novel 
therapies for patients. Some instances of 3D bioartificial muscles (BAM) elaborated for 

screening purposes from primary myoblasts have allowed researchers to demonstrate IGF-1 

triggers hypertrophy and an increase of active force on contractile muscle cells. [482] 

Therefore, the development of a controlled release of molecules from DGL/PEG EPH could be 

investigated. Preliminary studies have been conducted during the thesis on the incorporation 
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of proteins inside dense DGL/PEG hydrogels to study their release over time (Figure 58). To 

do so, DGL/PEG hydrogels of various conditions have been formulated in solutions containing 

proteins (lysozyme and BSA) before being immersed for 21 days in PBS 1X. Molecule delivery 

from hydrogel networks has been monitored over time using a protein quantification assay 

(BCA). Interestingly, these preliminary results indicate that the release of molecules of interest 

can be controlled through both mesh size and amount of DGL, while preserving their activity. 

 

Figure 58: Molecule release from DGL/PEG hydrogels of various conditions. 
DGL/PEG hydrogels of various conditions were formulated with lysozyme and BSA 
Cumulative amount (%) of A) lysozyme and B) BSA released over time. Amount (µg) of C) lysozyme 
and D) BSA release for each time point from hydrogel of various DGL/PEG concentrations and ratios 
(1/15; 2/15 and 2/25 mM DGL/PEG representing DGL: PEG molar ratios of 1:15; 1:7.5 and 1:12 
respectively).  

Consequently, the hydrogel could be an important tool for biological studies of myogenesis 

and the identification of specific factors for the treatment of pathologies through controlled 

release of active proteins.  

In addition to be relevant as 3D model platform, molecule release could provide specific 

bioactivity to EPH to favour myoblasts over fibrotic scarring for VML treatment. Enhancing SC 

entry, migration and proliferation while alleviating the proliferation of fibroblasts and their 

differentiation into myofibroblasts through regulators of IGF-I, HGF or SDF-1α appears 

relevant. Moreover, counteracting the detrimental effect of excessive or deficient TGF-β 

signalling has many important clinical implications for tissue repair. Future work could focus 

on the optimization of DGL/PEG hydrogel concentration and ratio to meet the requirement of 
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muscle wound management in terms of GF release over time. This could be part of the in vivo 

study.   

5.3.2 Towards other tissues and organs  

Considering that the study aimed to explore the potential of the DGL/PEG hydrogel for muscle 

tissue regeneration, skeletal muscle cell response to the hydrogel was the primary focus. 

However, different cell types were able to grow on the hydrogel indicating a broader potential 

application range. Therefore, the DGL/PEG hydrogel could be adapted to interact with other 

cell types. For instance, the cardiac tissue has been studied given the cardiomyocytes 

spontaneously contraction when cultured in vitro. We demonstrated human induced pluripotent 

stem cell (iPSC) derived cardiomyocytes recovered their ability to contract after two days within 

EPH of various conditions (Annex 1, supplementary movies 13 and 14). After 5 days on EPH 

of different conditions, iPSC derived cardiomyocytes exhibited specific α-actinin striation visible 

in primary cardiomyocytes.  

 

Figure 59: Human iPSC derived cardiomyocytes inside EPH of various conditions 
Human iPSC were differentiated on matrigel coatings for 19 days following the STEMdiffTM 
cardiomyocytes differentiation kit from Stemcell. Cells were then detached from matrigel coatings and 
seeded on EPH of various conditions (i.e. 2/25 and 2/37 mM DGL/PEG) for 5 days.  
Two days post-seeding, cells were able to contract. Five days post-seeding, immunofluorescences were 
performed and specific striation characterizing cardiomyocyte cells were observed (alpha-actinin 
staining, red arrows). 

These results open up new perspectives for the use of DGL/PEG EPH as 3D models for other 

cell types.  

Overall, the effervescent method described herein provides a basis for the synthesis of 

macroporous multifunctional and highly tuneable hydrogels with direct in vivo injectable 

potential for broad tissue engineering applications.   
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1 Supplementary information 

 

Supplementary information 1:  

Link for movies: https://figshare.com/s/dfdfa8cf5f19c8d9771b 

  

https://figshare.com/s/dfdfa8cf5f19c8d9771b
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Supplementary information 2: C2C12 cells 30 hours post seeding as a function of DGL/PEG 

hydrogel concentration and ratio (mM DGL/PEG) - all condition studied 

 



243 
 

Supplementary information 3: Immortalized human myoblasts 30 hours post seeding as a 

function of DGL/PEG hydrogel concentration and ratio (mM DGL/PEG) - all condition studied 
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Supplementary information 4: Figure 43 expanded. Injection of various EPH conditions in 

sub-cutaneous pockets in mice. 

Masson’s trichrome staining of the full porous explants after 3 weeks implantation and close-

ups highlighting hydrogel (#), the fibrous capsule (red dotted line), synthetized collagen (red 

arrow), fibroblasts (+) and blood vessels (*). EPHs formulated with 1.33:1 Gaa:KC molar ratio, 

3.3 % Pluronic® F-68 and directly injected in sub-cutaneous pockets. 
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Supplementary information 5: Figure 43 expanded. Injection of various dense DGL/PEG 

conditions in sub-cutaneous pockets in mice. 

Masson’s trichrome staining of the full explants after 3 weeks implantation and close-ups 

highlighting hydrogel (#), the fibrous capsule (red dotted line), synthetized collagen (red arrow), 

fibroblasts (+) and blood vessels (*). Dense DGL/PEG hydrogel formulated in PBS.  
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Supplementary information 6: Figure 47 expanded. Implantation of various EPH conditions 

in sub-cutaneous pockets in mice. Masson’s trichrome staining of the full explants after 3 
weeks implantation and close-ups highlighting hydrogel (#), the fibrous capsule (black dotted 

line), macrophages ($), synthetized collagen (red arrow), fibroblasts (+) and blood vessels (*) 

EPH formulated with 1.33:1 Gaa:KC molar ratio, 3.3 % Pluronic® F-68, injected inside a tube 

to be cut and implanted in sub-cutaneous pockets.  
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Supplementary information 7: Figure 47 expanded. Implantation of various EPH conditions 

in sub-cutaneous pockets in mice. Type IV collagen staining of the full explants after 3 weeks 

implantation and close-ups highlighting hydrogel in blue (#) and blood vessels in red (*).  EPH 

formulated with 1.33:1 Gaa:KC molar ratio, 3.3 % Pluronic® F-68, injected inside a tube to be 

cut and implanted in sub-cutaneous pockets. 
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Supplementary information 8: Figure 47 expanded. Implantation of various EPH conditions 

in sub-cutaneous pockets in mice. Macrophages presence in implanted EPH of various 

conditions. F4/80 staining of the explants after 3 weeks implantation (macrophages membrane 

in brown) and close-ups highlighting hydrogel (#) and macrophage presence (orange arrows). 

Giant cells were also visible (green arrows).  EPHs formulated with 1.33:1 Gaa:KC molar ratio, 

3.3 % Pluronic® F-68, injected inside a tube to be cut and implanted in sub-cutaneous pockets. 
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Supplementary information 9: C2C12 cells and primary human myoblasts (pHMs) 6 days 

post differentiation on 3D effervescent porous hydrogels (EPH) of the same condition or on 

matrigel coatings. The figure shows a particular alignment of pHMs inside 3D EPH not visible 

when cultured in 2D on matrigel.  
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2 Encadrement pédagogiques d’étudiants ingénieurs  

- Stage de 6 mois assistant ingénieur : « Formulation et caractérisation d’hydrogels 
poreux injectables par effervescence pour l’ingénierie tissulaire » Février-Juillet 2019 

par Clémence Drouglazet, Université de technologie de Troyes (UTT), spécialité 

Matériaux technologie et environnement Troyes, France  

 

- Stage de 6 mois à mi-temps, projet de fin d’étude : « Formulation et caractérisation 

d’hydrogels pour application en ingénierie tissulaire » Septembre-Janvier 2019-2020 

par Baptiste Robbiani, Institut national des sciences appliquées (INSA), spécialité 

Sciences et génie des matériaux, Lyon, France 

 

- Stage de 6 mois assistant ingénieur : « Hydrogels poreux injectables : développement 

et évaluation biologique » Février-Juillet 2020 par Héloïse Le Goff, Université de 

technologie de Troyes (UTT), spécialité Matériaux technologie et environnement 

Troyes, France  
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3 Communication  

  Oral communications  

 National  

L.Griveau, E.Christin, A.Berthier, V.Gache,R Debret, J. Sohier : “Injectable, porous and 

haemostatic hydrogel for guiding functional muscle repair” Flash presentation at the ‘GDR 
Réparer l’humain’ French national research consortium on cellular-microenvironment 

interfaces – Lyon France – December 2018 

L.Griveau, E.Christin, C.Drouglazet, A.Berthier, R.Debret, V.Gache, J.Sohier:  “Design of an 
injectable and porous hydrogel for biomedical applications”. Third French national BIOMAT 
congress - Materials for Health - La Grande Motte, France - June 2019 

 International 

L.Griveau, E.Christin, C.Drouglazet, A.Berthier, R.Debret, V.Gache, J.Sohier: “Design of an 
injectable and porous hydrogel as a support for skeletal muscle repair”. Tissue Engineering 
and Regenerative Medecine International Society (TERMIS-EU) Rodos Greece - May 2019 

L.Griveau, E.Christin, H.Le-Goff, R.Debret, V.Gache, J.Sohier: “An injectable and porous 

hydrogel with potential as a support for functional skeletal muscle regeneration”. World 
biomaterial Congress (WBC 2020) – virtual December 2020 

L.Griveau, H.Le-Goff, C.Drouglazet, B.Robbiani, M.Lafont, C.Le-Visage, P.Weiss, R.Debret, 

J.Sohier: “Design and characterization of an injectable and porous hydrogel for biomedical 
applications”. World biomaterial Congress (WBC 2020) – virtual December 2020 

     Poster Presentations   

L.Griveau, C.Drouglazet, R.Debret, J.Sohier. “Design of an injectable and effervescent porous 
hydrogel as support for tissue regeneration”. 30th Annual Conference of the European Society 
for Biomaterials (ESB) Dresden Germany – September 2019 

L.Griveau, C.Drouglazet, R.Debret, J.Sohier. “Design of an injectable and effervescent porous 
hydrogel as support for tissue regeneration”. Twenty-fourth scientific day of doctoral School 

(EDISS) – Villeurbanne, France - November 2019 

L.Griveau, E.Christin, J. Sohier, R.Debret, V.Gache. “Design of an innovative hydrogel as 
support for functional skeletal muscle regeneration”. Seventeenth congress of the French 
society of myology – Marseille France – November 2019 

     Awards 

Award for the best flash presentation – ‘GDR Réparer l’humain’ French national research 
consortium on cellular-microenvironment interfaces – Lyon France – December 2018 

Award for the best poster presentation at the 24th Doctoral school (EDISS) scientific day - 

Lyon France – November 2019 

Award for the best microscopic picture (IBCP photo contest 2019, 25th doctoral school 

scientific day, 2020 and ibidi photo contest for 2021 calendar) 
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4  Poster presentations  
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5 Scientific articles   

1. ‘Versatile lysine dendrigrafts and polyethylene glycol hydrogels with inherent 

biological properties: in vitro cell behavior modulation and in vivo 

biocompatibility’. Carrancá M, Griveau L, Remoué N, Lorion C, Weiss P, Orea V, 

Sigaudo-Roussel D, Faye C, Ferri-Angulo D, Debret R, Sohier. J.Biomed.Mater.Res.A, 

2020.  

 

2. ‘An in situ injectable and effervescent porous hydrogel for regenerative medicine 
applications’. Griveau L, Lafont M, Le Goff H, Drouglazet C, Robbiani B, Sigaudo-

Roussel D, Latif N, Le Visage C, Weiss P, Gache V, Debret R, Sohier J. – Under 

submission 

 

3. ‘Myoblasts behaviour towards an innovative hydrogel: new perspectives for 

skeletal muscle tissue engineering’. Griveau L, Christin E, Le Goff H, Robbiani B, 

Berthier A, Debret R, Gache V, Sohier J. – in preparation 
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