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Résumé

Dans le cadre de la chaîne d’acquisition et des dispositifs construits par I2S,

l’objectif de cette thèse est de fournir des algorithmes efficaces capables de fusion-

ner différentes images acquises correspondant à de légers déplacements de translation

spatiale pour obtenir une image super-résolue plus large. Par conséquent, cette thèse

s’inscrit dans le cadre général de la super-résolution. Dans cette thèse, la super-résolution

est réalisée à l’aide de différentes acquisitions. Nous proposons l’utilisation du capteur

de déplacement au sein des caméras d’I2S. Nous proposons un schéma pour obtenir une

image avec une résolution jusqu’à deux fois plus élevée en utilisant cette technique. En

outre, nous proposons également un algorithme de déconvolution d’image supplémen-

taire qui aide à améliorer davantage la qualité de l’image et à résoudre les problémes de

dégradation pouvant survenir via le schéma de super-résolution. Notre algorithme de

déconvolution d’image est basé sur le fractionnement variable et tire parti de l’opérateur

proximal et de la transformée de Fourier. Nous introduisons également de nouvelles

fonctions potentielles qui peuvent être utilisées comme information préalable dans les

problémes inverses qui sont utilisés pour la premiére fois en traitement d’image. Les

résultats expérimentaux montrent des capacités prometteuses de l’algorithme proposé.

L’algorithme est mis en œuvre avec succès dans diverses caméras et appareils d’I2S. Les

expériences pratiques sur des données du monde réel prouvent l’efficacité et la flexibilité

de notre méthode de déconvolution. Des expériences ont été menées sur des cartes

d’observation de Herschel, et des résultats prometteurs ont été obtenus sur de telles

données d’imagerie. Dans la dernière partie de la thèse, l’idée de priors plug-and-play

pour le débruitage et la déconvolution des images est présentée. Cette thése propose

l’implémentation de priors plug-and-play dans un schéma de minimisation alternée. Le

premier résultat a montré un potentiel adéquat pour l’application de débruitage/décon-

volution d’image.

Mots clés: Traitement d’image, Traitement du signal, Optimisation, Méthodes parci-

monieuses, Super-résolution, Problémes inverses, Plug-and-play, Opérateur proximal,



Déconvolution d’image, Débruitage d’image, Cartes d’observation de Herschel, Dé-

coupage variable, Fonction potentielle
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Abstract

In the framework of the acquisition chain and devices built by i2S, the objective

of this PhD is to provide efficient algorithms able to merge different acquired images

corresponding to slight spatial translational displacements to get a wider super-resolved

image. Consequently, this PhD takes place within the general subject of super-resolution.

In this thesis, super-resolution is performed using different acquisitions. We propose the

use of sensor displacement within the cameras of I2S. We propose a scheme to achieve

an image with up to two times higher resolution using this technique. Furthermore,

we also propose an additional image deconvolution algorithm that helps to improve the

image quality further and to address any degradation problem that may occur through

the super-resolution scheme. Our image deconvolution algorithm is based on variable

splitting and takes advantage of the proximal operator and Fourier transform. We also

proposed the use of new potential functions that can be used as prior information in

image inverse problems for the first time used in image processing. Experimental results

show promising capabilities of the proposed algorithm. The algorithm is successfully

implemented within various cameras and devices of I2S. The practical experiments on

real-world data prove the effectiveness and flexibility of our image-deconvolution. Ex-

periments were conducted on Herschel observation maps, and promising results were

obtained on such imaging data. In the last part of the thesis, the idea of plug-and-play

priors for image denoising and deconvolution is presented. This thesis proposes the im-

plementation of plug-and play-priors in an alternating minimisation scheme. The early

result has shown potential to be adequate for image denoising/deconvolution application.

Keywords: Image processing, Signal processing, Optimization, SparseMethods, Super-

resolution, Inverse problems, Plug-and-play, Proximal operator, Image deconvolution,

Image denoising, Herschel observation maps, Variable splitting, Potential function



Résumé étendu en Français

Les images et le traitement des images jouent un rôle important dans le monde

moderne. Les caméras peuvent être trouvées partout; c’est devenu l’outil le plus courant

pour créer des données sous forme d’image. Avec le développement des smartphones et

des tablettes, la capture d’images est devenue une habitude dans la vie de tous les jours.

De nombreuses entreprises et recherches se consacrent au développement de nouveaux

logiciels etmatériels pour produire des images de haute qualité. I2S est un leadermondial

dans le domaine du traitement d’image. Ses produits comprennent des scanners de livres,

des microscopes, la construction d’images 3D, des algorithmes de traitement d’image et

des caméras pour diverses applications. Notre objectif principal est de concevoir et de

mettre en œuvre une technique de super-résolution qui permettra aux scanners d’I2S de

capturer des images avec une résolution et une qualité d’image supérieures. Ce travail

est une thèse CIFRE, et l’objectif principal est de fournir des solutions logicielles par la

recherche scientifique en tenant compte des demandes et des besoins de l’industrie. La

super-résolution (SR) est un domaine en plein essor, et la nouvelle caméra développée

par I2S est conçue pour intégrer des méthodes de super-résolution pour les scanners

de livres. Cette technique permettra á I2S de produire des images avec une résolution

jusqu’á 2 fois supérieure avec une qualité et une précision supérieures. Dans cette

thèse, nous proposons d’implémenter la SR en concevant un mécanisme d’imagerie

avec des techniques matérielles. Selon cette méthode, les capteurs peuvent acquérir

des images avec des déplacements de sous-pixels connus. Nous utilisons quatre images

basse résolution où chaque image basse résolution a un déplacement d’un demi-pixel de

la scène. L’image résultante produit une image avec une résolution allant jusqu’á 800

DPI.

Dans le premier chapitre, nous avons commencé par introduire le concept de super-

résolution et son application dans divers domaines. La nécessité d’avoir une technique de

super-résolution est présentée. Un bref historique et une revue de la super-résolution sont

présentés. La super-résolution peut être classée en fonction du nombre de données de

basses résolutions impliquées. En général, la super-résolution est modélisée comme un



problème inverse. Ce problème inverse est abordé soit dans le domaine fréquentiel, soit

dans le domaine spatial. Les deux méthodes ont leurs avantages et leurs inconvénients.

La méthode de régularisation dans le domaine temporel a gagné en popularité parmi les

diverses approaches. Nous utilisons les appareils d’I2S pour implémenter une super-

résolution: nous avons proposé le déplacement du capteur d’un demi-pixel qui nous

permettra de capturer des images en basse résolution pour construire une image en plus

haute résolution. Pour améliorer encore la qualité des images, puisqu’elles souffrent

d’un effet de flou mineur, nous proposons un algorithme de déconvolution débruitage

d’image en complément conçu sur mesure pour un usage industriel.

Dans le chapitre 2, nous discutons des problèmes inverses en traitement du signal

et des images. Le concept d’un problème inverse mal posé et les conditions pour qu’un

problème inverse le devienne sont présentés. La déconvolution d’image est considérée

comme un problème inverse où elle ne peut être résolue par des méthodes simples. Dans

cette thèse, nous considérons la déconvolution/débruitage d’image non aveugle. Dans

ce cas, la matrice PSF est supposée connue. Dans le chapitre 2, nous donnons un aperçu

de la PSF et de ses propriétés. Tout au long de cette thèse, nous supposons que la PSF

est gaussienne. Nous parlons en détail de la parcimonie. La parcimonie est désormais au

centre de l’attention dans diverses applications de traitement du signal/image, de vision

par ordinateur et d’apprentissage automatique. Elle peut être largement utilisée comme

information préalable pour la restauration d’image régularisée. Ensuite, nous parlons

de l’optimisation des problèmes inverses. La notion d’opérateur proximal est introduite,

et cette notion est utilisée pour résoudre des problèmes d’optimisation convexe, ce

formera la socle fondamental de notre voie d’approache. Nous passerons en revue trois

algorithmes couramment utilisés pour résoudre des problèmes d’optimisation. Nous

décrirons brièvement l’algorithme de fractionnement de Douglas-Rashford, le forward-

backwards splitting et l’algorithme ADMM.

Dans le chapitre 3 nous introduisons notre approche du probléme de déconvolu-

tion d’image. Dans notre cadre, nous utiliserons l’opérateur proximal avec technique

de découpage variable pour réduire la complexité de notre algorithme et obtenir un

algorithme efficace. Malgré les bonnes performances de CNN ou d’autres algorithmes



d’apprentissage, ces algorithmes ne sont pas adaptés en pratique et á de nombreuses

applications industrielles. Ces méthodes nécessitent une grande quantité de données

d’entraînement pour bien fonctionner, ce qui n’est pas disponible chez I2S. Étant donné

que cette thèse et ses algorithmes sont destinés á des fins pratiques et á la mise en œuvre

dans des dispositifs I2S, nous avons recherché des méthodes et des algorithmes qui

conviendraient le mieux dans un tel contexte. L’utilisation principale de l’algorithme

vise les scanners CopiBook d’I2S. En raison de facteurs expliqués dans le texte, nous

avons considéré les méthodes d’optimisation classiques pour notre algorithme de décon-

volution d’image pour la première étape de notre implémentation. Pour résoudre notre

problème d’optimisation, nous utilisons la technique de séparation des variables avec

la méthode de minimisation alternée. Avec ces techniques, nous pouvons minimiser

deux fonctions séparément et utiliser des techniques différentes pour chacune d’elles.

Après avoir appliqué le découpage des variables, notre algorithme de minimisation se

compose de deux sous-problèmes principaux. Nous utilisons pour la première fois de

nouveaux régularisateurs (General Framework) comme information a priori pour notre

problème inverse. Ces nouvelles fonctions potentielles impliquent de nombreuses fonc-

tions convexes et non convexes. Chaque fonction potentielle peut être utilisée selon le

type de données d’image utilisé. Nous utilisons l’opérateur proximal pour résoudre notre

premier sous-problème. Pour le deuxième sous-problème, nous utilisons la transformée

de Fourier rapide. Les deux solutions sont rapides et moins complexes. Les opérateurs

proximaux approchés des fonctions potentielles sont précis et proches de leurs solutions

exactes. Nous fournissons le cadre de notre algorithme et les paramètres utilisés. A

travers diverses expériences, nous donnons une analyse approfondie des paramètres et de

leur effet sur l’efficacité de la déconvolution de l’image. Avant la mise en œuvre pratique

de l’algorithme, nous évaluons d’abord l’algorithme avec des images et des métriques

standard. Nous menons diverses expériences visuelles et évaluations quantitatives pour

prouver l’efficacité de l’algorithme. Trois métriques de qualité d’image : MSE, PSNR

et SSIM sont utilisées pour mesurer la qualité des résultats. Nous avons utilisé Lena,

Cameraman et une image constante par morceaux comme ensemble de données en ce

sens que chacune de ces images rentre dans le cadre de divers signaux à différents types



et caractéristiques. Les résultats visuels et quantitatifs ont montré l’efficacité de notre

algorithme proposé dans diverses circonstances. De plus, nos résultats se sont avérés

solides á la fois quantitativement et visuellement. Il a été prouvé que la fonction po-

tentielle pouvait surpasser les régularisateurs classiques qui ont été largement étudiés

auparavant. Il a également été démontré que notre algorithme résiste aux changements

et aux altérations des paramètres et des conditions des données.

Après l’évaluation quantitative de notre algorithme, le chapitre 4 fournit des in-

formations sur les résultats pratiques de la mise en œuvre du schéma de déconvolution

d’image et de super-résolution dans les scanners d’I2S. L’objectif principal de notre

développement vise le CopyBook OS d’I2S, qui est proposé avec les caméras EAGLE et

E-XTRA. De plus, outre les scanners, nous cherchons á adapter l’algorithme pour divers

produits tels que les microscopes et autres types de caméras. C’est toujours un défi de

concevoir un algorithme flexible qui peut être efficace selon divers types de contextes

pratiques. Nous testons notre algorithme proposé avec des images de scanners pour

évaluer ses performances. Dans un premier temps, nous passons brièvement en revue

les objectifs de la numérisation de livres et les dispositifs utilisés á cette fin. Ensuite,

nous présenterons la mesure MTF ou FTM, une mesure standard pour l’analyse de la

qualité d’image dans l’industrie. Il s’agit d’une mesure de qualité d’image importante

pour évaluer les performances afin que les produits puissent obtenir le certificat pour une

utilisation dans le monde réel. Notre algorithme a d’abord été développé avec le langage

de programmation MATLAB pour les expériences scientifiques présenté au chapitre 3:

en effet MATLAB est rapide, facile á utiliser et idéal pour l’expérimentation. En ce

qui concerne l’implémentation pratique, nous avons utilisé C++ comme base de pro-

grammation pour l’implémentation dans les caméras et les ordinateurs d’I2S. Outre le

code, nous avons construit une interface utilisateur compatible avec le code C++, ce qui

permet á l’utilisateur d’accéder plus facilement aux paramètres de l’algorithme. Nous

démontrons visuellement les résultats de la déconvolution d’image avec des exemples

d’images capturées avec des caméras EAGLE et E-XTRA. Ensuite, nous passerons en

revue le processus de mise en œuvre de notre algorithme de MATLAB au langage de

programmation C++. Le chapitre 4 présente des expériences pratiques et des résultats



sur des échantillons recueillis á partir des caméras EAGLE et E-XTRA d’I2S. Nous

présentons nos résultats tnat en terme de représentation visuelle que des cotes de qualité

d’image en utilisant la norme MTF. Pour divers échantillons d’images et de données, la

déconvolution proposée fonctionne très bien. Nous présentons également le résultat du

schéma de super-résolution combiné á la déconvolution. Nous sommes en mesure de

fournir des images de haute qualité en 800 DPI et 600 DPI. Auparavant, I2S ne pouvait

proposer des images qu’en 400DPI avec leurs scanners. La mesure FTM obtient une

note de 4 étoiles pour tous nos résultats. Puisque notre objectif principal est de dévelop-

per un algorithme flexible, nous examinerons ensuite les résultats de l’implémentation

de l’algorithme de déconvolution sur des caméras microscopiques et Terahertz d’I2S.

Dans les deux cas, nous sommes en mesure d’améliorer considérablement la qualité des

images.

Pour tester davantage les capacités de notre algorithme, dans le chapitre 5, nous

fournissons le résultat de nos travaux en cours sur les cartes d’observation de Herschel.

Nous essayons d’utiliser la nouvelle fonction de potentiel proposée et la déconvolution

d’image rapide pour améliorer la qualité des cartes d’observation deHerschel. Notre ap-

proche de réduction du bruit Gaussien dans les donnés d’observationHerschel démontre

l’efficacité de notre approche à base de déconvolution parcimonieuse.

Le chapitre 6 introduit la deuxième phase de notre algorithme de déconvolution

d’image basé sur des méthodes d’apprentissage. Tout d’abord, nous passons en revue les

recherches récentes et les algorithmes d’apprentissage profond dans diverses applications

de traitement d’image telles que le diagnostic médical, la détection et les problèmes in-

verses. Nous présentons le concept de priors plug-and-play utilisé dans notre algorithme

de déconvolution d’image. Le plug-and-play est un schéma qui tente de combiner les

méthodes d’apprentissage modernes avec les méthodes d’optimisation classiques pour

bénéficier simultanément des avantages des deux approches. Nous présenterons notre

motivation et notre intuition d’utiliser de tels a priori dans notre schéma. Notre approche

plug-and-play proposée utilise des mélanges gaussiens car ils sont de bons représentants

des priors d’image. Notre thèse est, à notre connaissance, la première à utiliser des priors

plug-and-play dans un schéma de minimisation alternée. Nous montrons les résultats



sur différentes images capturées avec le scanner d’I2S. Les résultats montrent que les

priors plug-and-play fonctionnent raisonnablement bien dans le cadre du débruitage.

Cependant, l’algorithme ne donne pas, en dc̈onvolution, des résultats aussi performants

que ceux obtenus au chapitre 3.
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Chapter 1: General Introduction

This chapter gives a brief introduction and information on the super-resolution

technique. In this chapter, we present our super-resolution framework as the basis of our

main work and contribution.

1.1 Motivation

Images and image processing play an important role in this modern era. Cameras

can be found everywhere; it has become the most common tool to create data in the

form of an image. With the development of smartphones and tablets, it has become

both fun and practical to capture images. I2S1 is a world-leading company in the field

of image processing. The products consist of book scanners, microscopes, 3D image

construction, image processing algorithms and cameras for various applications. Our

main goals and objectives are to design and implement a super-resolution technique

that will allow the scanners of I2S to capture images with higher resolution and image

quality. Thiswork is a CIFRE thesis, and themain goal is to provide software solutions by

scientific research considering industry demands and needs. The CIFRE (Conventions

Industrielles de Formation par la Recherche) system allows French companies, local

authorities or associations to entrust a doctoral candidate with an assignment in the

framework of a research collaboration with an academic research laboratory affiliated to

a doctoral school 2.

Super-resolution is a new area that has been considered to be implemented within

the new camera developed by I2S with the intention of integrating it into various book

scanners. This technique will allow I2S to produce images with up to 2 times higher

resolution with higher quality and accuracy. In the beginning, the idea and structure of

super-resolution will be presented.

1https://www.i2s.fr/fr
2https://www.anrt.asso.fr/fr



1.2 Super-resolution

The digital images acquired have a restricted spatial resolution due to the limitations

of solid-state sensors such as CCD or CMOS in the camera, which reduces their practical

value. Furthermore, since the information each pixel records are easily polluted during

the acquisition and transmission process, digital images can be degraded by blurring

or noise due to lens limitations, electronics and photonic noise. Super-resolution is a

technique that considers both resolution limitations and normal image degradation. The

super-resolution technique can create a higher-resolution image or sequence by using

redundant information between multi-frame images with relative sub-pixel motion. It

has been widely used with medical images (Liu et al. (2013)), remote sensing images

(Zhang et al. (2012a,b)) and video surveillance (Cheng et al. (2013); Shen et al. (2007)).

Imaging techniques have been rapidly developed and expanded in the last decades,

and image resolution has reached a new level. The question is, therefore: are image

resolution enhancement techniques still meaningful?

Although the high-definition displays in recent years have reached a new level of

resolution (e.g., 1920×10804 pixels for HDTV, 3840×2160 pixels for some ultra-HDTV,

and 2048× 1536 pixels for some mobile devices), the need for resolution enhancement

is still a key component in many applications (Takeda et al. (2009)).

For instance, to guarantee the long-term stable operation of the image capturing

devices and the appropriate frame rate for dynamic scenes, digital image systems tend to

sacrifice resolution to some extent. A similar situation exists in the remote sensing field:

there is always a trade-off between a captured image’s spatial, spectral, and temporal

resolutions; an image can not have all the resolutions at the highest level at once. In

the case of medical imaging, within each imaging modality, specific physical laws are in

control, defining the meaning of noise and the sensitivity of the imaging process. How

to extract 3D models of the human structure with high-resolution images while reducing

the level of radiation remains a challenge (Greenspan (2009a); Kennedy et al. (2006)).

Based on these facts, the current techniques cannot satisfy the demands. Resolution

enhancement is therefore still necessary, especially in fields such as video surveillance,

2



medical diagnosis, and remote sensing applications. Considering the high cost and

the limitations of resolution enhancement through "hardware" techniques, especially

for large-scale imaging devices, signal processing methods which are known as super-

resolution (SR), have become a potential way to obtain high-resolution (HR) images.

With SR methods, we can go beyond the limit of the low-resolution (LR) observations,

rather than improving the hardware devices with difficulties such as limited space of

sensor for an embedded solution and obstacles of reducing the cell size for a sensor.

SR is a technique that reconstructs a higher-resolution image or sequence from the

observed LR images. Technically, SR can be considered as multi-frame or single-frame

based on the input LR images (Borman and Stevenson (1998); Elad and Feuer (1999);

Farsiu et al. (2004a); Park et al. (2003)). Suppose multiple images of the same scene

with sub-pixel misalignment and misplacement can be obtained. In that case, we can

reconstruct a higher-resolution image or image sequence by using the complementary

information between them, as Figure (1.1) shows. By developing SR using software

solutions, we have the advantage of not needing to produce a new, more prominent and

more expensive sensor. Furthermore, we can use an existing sensor (generally low cost).

Another constrain is that we can not reduce the size of sensor cells indefinitely (due to

physical limitation). SR with software solution needs only a few images from existing

acquisition hardware.

1.3 A Brief Review of Super-resolution Methods

In this section, we tend to review the strategies and current issues for SR with

multiple observations. The key problem is how to use the supplementary data among

the non-inheritable low-resolution pictures. In 1964, Harris (Harris (1964)) established

the theoretical foundation for the SR problem by introducing the theorems to solve the

diffraction problem within an optical system. Twenty years later, Tsai and Huang (Tsai

(1984)) first used the idea of SR to improve the spatial resolution of Landsat TM images.

Since then, several researchers have started to concentrate on SR, either in theoretical

analysis or practical applications (Altunbasak et al. (2002); Elad and Hel-Or (2001);

Farsiu et al. (2003, 2004b); Greenspan (2009a); Keren et al. (1988); Liu and Sun (2013);

3



Figure 1.1: The concept of multi-frame super-resolution. The images on the left side represent
the LR images of the same scene with sub-pixel displacement thus the HR image (the picture on
the right side) can be acquired by fusing the complementary information with SR methods.

Nguyen et al. (2001); Shen et al. (2009a); Takeda et al. (2009); Yuan et al. (2010a); Yue

et al. (2014a); Zhang et al. (2014, 2015, 2010a, 2007); Zhuang et al. (2007)).

The number of input and output photos involved in the SR pipeline can characterize

SR methods. Single-image single-output (SISO) super-resolution occurs when a single

high-resolution (HR) image is created from a single low-resolution (LR) image. The

SISO is not really regarded as a super-resolution technique. It is more like an up-

sampling with a blur prevention algorithm (which is better than simple interpolation).

The capacity to achieve resolution and quality increase is a potential use of SISO super-

resolution. Other SR methods use numerous LR frames to estimate a distinct HR image:

Multiple-input single-output (MISO) super-resolution is the term for this situation. An

example application area is license plate recognition from a video stream to increase the

alphanumeric recognition rates. Recent research has been conducted at reconstructing a

set of HR images from an equivalent set of LR frames. This approach takes the name of

4



Super-resolution class Number of inputs Number of outputs Applications

SISO One One Object recognition
Image quality restoration

MISO Multi One
Medical imaging
Industrial imaging
Astronomy imaging

MIMO Multi Multi Video enhancement
Video surveillance

Table 1.1: Categories of SR algorithms - Classification of SR algorithms (SISO, MISO, and
MIMO) and some potential applications for each class.

multiple-input multiple-output (MIMO) super-resolution, commonly known as video-to-

video SR. A typical application of these techniques can be to enhance a video sequence

captured by video cameras. A brief summary of the classification of the super-resolution

techniques with potential applications is presented in Table 1.1.

As discussed, SR techniques can be classified by the number of the LR images

involved, the actual reconstruction method, and the employed domain (spatial or fre-

quency). Many survey papers on SR algorithms havemostly considered these parameters

in their classification. In a primary taxonomy, SR algorithms can be classified based

on their domain, i.e., the spatial domain or the frequency domain. Despite having the

very first SR algorithms emerging from signal processing techniques in the frequency

domain, it can be seen in many survey papers that the majority of these algorithms have

been developed in the spatial domain.

In the beginning, most of the methods concentrated on the frequency domain

(Aizawa et al. (1991); Kim et al. (1990); Nguyen and Milanfar (2000b); Rhee and

Kang (1999b); Tsai (1984)). Frequency domain algorithms can use the relationship

between the HR image and the LR observations based on a simple theoretical basis with

high computational efficiency. However, the methods have notable limitations, such as

being sensitive to model errors and facing difficulty to handle more complicated motion

models. As a result, this has prevented them from further development and progress.

Due to the drawbacks of the frequency domain algorithms, spatial domain methods

have become the main trend (Park et al. (2003).) The famous spatial domain methods

can be categorized as: non-uniform interpolation (Nguyen et al. (2001)), iterative back-
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projection (IBP) (Irani and Peleg (1991)), projection onto convex sets (POCS) (Patti

et al. (1994); Stark and Oskoui (1989); Tekalp et al. (1992)), the regularized methods

(Farsiu et al. (2003, 2004b); Liu and Sun (2013); Ng et al. (2007); Ng and Yip (2001);

Schultz and Stevenson (1994); Shen et al. (2007); Takeda et al. (2007)), and a number of

hybrid algorithms (Elad and Feuer (1997)). Early review papers have provided specific

descriptions, and explanations of those methods (Nasrollahi and Moeslund (2014); Park

et al. (2003); Tian and Ma (2011)). Among them, the regularized methods are the

most popular due to their effectiveness and flexibility. Therefore, most of the recent

representative articles about SR have focused on regularized frameworks (Babacan et al.

(2010); Liu and Sun (2013); Ng et al. (2007); Su et al. (2011); Takeda et al. (2007, 2009);

Yuan et al. (2010b); Zhang et al. (2015)).

1.3.1 Observation Model

The imagingmodel, which corresponds to the observationmodel, is essential to SR,

especially when using a regularized scheme. Before reconstruction, we need to observe

the process by which the observed images have been gained. The image acquisition

process is confronted with a set of degrading factors, such as optical diffraction, under-

sampling, relativemotion, and system noise. Consequently, the following imagingmodel

can be introduced:

yk = OkDkBkMkx+ nk (1.1)

where there are k LR images participating in the reconstruction. As N1k ×N2k is

defined as the size of the kth input LR image, L1kN1k × L2kN2k is set as the size of the

reconstructed HR data, which is determined by the horizontal and vertical magnification

factors L1k and L2k. In Equation (1.1), x is the vector form of the reconstructed image

with a constant size of L1kN1kL2kN2k× 1, yk is the vector form of the kth input dataset.

Dk is the down-sampling matrix of sizeN1kN2k×L1kN1kL2kN2k. Bk is the blur matrix

of size L1kN1kL2kN2k × L1kN1kL2kN2k. Mk is the warp matrix describing the motion

information (e.g. translation, rotation, etc.), nk (N1kN2k × 1) represents additive noise.

Ok is the operator excluding the unobservable pixels from the kth image (Shen et al.

6



(2015a)). We can obtain the observation model for single-frame SR when k = 1 in

Equation (1.1). If Dk and Mk are excluded, it is a model for image restoration, only

dealing with the problems of noise, blurring, or missing information:

yk = OkBkx+ nk (1.2)

1.3.2 Frequency Domain Approach

A group of multi-frame SR methods use a frequency domain formulation for the

SR problem. The main idea is that indications about high frequencies are spread across

the numerous LR images in the form of aliased spectral frequencies. The first frequency-

domain SR method can be traced back to Tsai and Huang (Tsai (1984)), who studied SR

reconstruction from noise-free LR images. Their method consisted of first transforming

the LR image data into theDiscrete Fourier Transform (DFT) domain and then combining

them following the relationship between the aliased DFT coefficients of the observed

LR images. The approach is based on the following factors:

1. The shifting property of the Fourier transform.

2. The aliasing relationship between the continuous Fourier transform (CFT) and the

DFT of observed LR images.

3. The assumption that an original HR image is band-limited.

These factors make it possible to formulate an equation to express the relationship

between the aliased DFT coefficients of the observed LR images to a sample of the CFT

of an unknown HR image.

To reduce memory requirements and to bring down the computational costs, Rhee

and Kang (Rhee and Kang (1999a)) exploited the Discrete Cosine Transform (DCT)

instead of DFT.Woods et al. (Woods et al. (2005)), on the other hand, offered an iterative

expectation-maximization (EM) algorithm (Dempster et al. (1977)) for simultaneously

performing the registration, blind deconvolution, and interpolation operations.

The frequency-domain-based SR approaches have two main advantages. The first

advantage is their theoretical simplicity: the relationship between the LR input images

and the HR image can be clearly demonstrated. Consequently, frequency-domain-
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based SR approaches represent an intuitive way to enhance the details of the images by

generalizing the high-frequency information presented in the LR images. Secondly, these

approaches have low computational complexity and enable parallel implementations.

However, frequency-domain-based SR methods are insufficient to handle real-

world practical applications since these methods assume that there only exists a global

displacement between the observed images and the linear space invariant blur during the

image acquisition process (i.e. Bk is supposed to be the same for all the LR images).

Lately, researchers have begun to investigate the use of the wavelet transform to

target the SR problem to recover the detailed information (generally the high-frequency

information) lost or degraded during the image capturing process. The rationale behind

this is the fact that the wavelet transform provides a powerful and efficient multi-scale

representation of the image to recover the high-frequency information (Nguyen and

Milanfar (2000a)). These approaches usually consider the observed LR images the low-

pass filtered sub-bands of the unknown wavelet-transformed HR image. The aim is to

estimate the finer scale sub-band coefficients, then apply the inverse wavelet transform

to produce the HR image.

In (El-Khamy et al. (2006)), El-Khamy et al. recommended to first register multiple

LR images in the wavelet domain, afterwards fuse the registered LR wavelet coefficients

to attain a single image, and in the final stage to perform interpolation to have a higher-

resolution image.

Ji and Fermüller (Ji and Fermuller (2006); Ji and Fermüller (2008)) proposed a

robust wavelet SR approach to handle the error encountered in both the registration com-

putation and the blur identification computation process. Chappelli and Bose (Chappalli

and Bose (2005)) incorporated a denoising stage into the conventional wavelet-domain

SR framework to develop simultaneous denoising and SR reconstruction methodology.

1.3.3 Regularization-based approach

Based on the observation model explained above in Equation (1.1), the target is

to reconstruct the HR image from a set of warped, blurred, noisy, and under-sampled

measured images. As the model in (1.1) is ill-conditioned, SR turns out to be an ill-posed
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inverse problem due to the insufficient number of LR images and ill-conditioned blur

operators. For undefined image x given its ill conditioned observed version y, Bayesian

estimation uses the posterior conditional probability, p (x|y), to infer x. Maximum a

posteriori probability (MAP) is the famous estimator for finding x. Using Bayes’s rule,

and (MAP) theory, the problem we need to solve can be transformed to the minimization

problem as in (Bouman and Sauer (1993); Shen et al. (2007)):

x̂ = argmax
x

p (x|y)

= argmax
x

p (y|x) p(x)
p(y)

= argmax
x

p (y|x) p(x)

= argmin
x
− log {p (y|x)} − log {p (x)}

= argmin
x

k∑
k=1

ρ(yk −Hkx) + λU(x)

= F (x) + λU(x)

(1.3)

In the above formulation we used the fact that p(y) is not a function of x, and

therefore it can be omitted. The term ρ(y, x) = − log {p (y|x)} is a modeling choice to

expresses the probabilistic relationship between the desired image x and the measure-

ments y. U(x) = − log {p (x)} brings in the influence of the statistical nature of the

unknown into the formula. In (1.3), the first term, F (x) , is the data fidelity term, the

second term; λU(x), is referred to as the regularization term, withU(x) being the energy

function. The two terms are chosen to model the probabilities as energy functional. λ is

the regularization parameter balancing these two terms. More information on this type

of formulation will be provided in chapter 2. This approach of SR is in general known as

the general variational regularized SR framework. The formulation is equivalent to max-

imum likelihood (ML) estimation without the regularisation term. The MAP methods

incorporate the prior constraints of the image and obtain the results by maximizing the

cost function of the posterior probability. Regularization methods are popular because of

their flexibility with edge-preserving priors and joint parameter estimation. Relatively,

Bayesian estimation is used when the posterior probability distribution of the unknown

parameters, instead of the specific parameters, is estimated.
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The data fidelity term, ρ(yk −Hkx), in the Equation (1.3) is used to constrain the

residuals between the real LR images and the simulated ones obtained, and it is usually

associated with the noise model. As an example, the `2 norm based linear least-squares

term is widely used (Bouman and Sauer (1993); Molina et al. (2003); Shen et al. (2007);

Song et al. (2010); Yuan et al. (2010b)), as p = 2 in (1.4). One of the key advantages

of the `2 norm problem is that it is easy to solve and, in this regard, many efficient

algorithms exist (Farsiu et al. (2004b); Shen et al. (2015b)). The result solved by the `2

model would be optimal, as checked experimentally, when the model error is Gaussian

distributed (Song et al. (2010)). Recalling the form of data fidelity in Equation (1.3), let

us define a lp data fidelity term:

F (x) =
k∑
k=1
‖yk −Hkx‖pp (1.4)

On the other hand, there has been some attention in choosing the `1 norm as

the function ρ in (1.3) for image SR and restoration, where p = 1 in (1.3). The `2

norm corresponds to Gaussian distributed errors, the `1 norm mainly corresponds to the

Laplacian error model. According to Farsiu, et al. (Farsiu et al. (2004b)), p = 1 results

in a pixel-wise median, and p = 2 leads to a pixel-wise mean of all the measurements

after motion compensation in the SR model. It has been proven that the `1-norm fidelity

can be more effective than the `2-norm fidelity when the images contain non-Gaussian

errors (Cho et al. (2011); Farsiu et al. (2004b)).

For complicated types of noise model error, both the `1 norm and the `2 norm

have their advantages and disadvantages. Some researchers have therefore employed

improved techniques for the data fidelity term (Shen et al. (2015c); Suo et al. (2011);

Yue et al. (2014b); Zeng and Yang (2013); Zhang et al. (2013)). In cases with mixed

error modes, the `p norm function (1 6 p 6 2) is sometimes employed as the constraint

function because of its convex property, and its applicability for the imaging model

errors (Shen et al. (2015d).) When 1 6 p 6 2, it results in a weighted mean of the

measurements. If the value of p is close to one, the solution is calculated with a more

significant weight around the measures near the median value. In the case that the value

of p is near two, the solution is approximated to the average value (Farsiu et al. (2004b)).
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The regularization term plays a significant role in the regularized variational frame-

work. As SR is a classical ill-posed inverse problem, regularization is therefore utilized

to stabilize the inversion process (Ng et al. (2007); Park et al. (2003); Sun et al. (2008)).

Regarding the Bayesian theorem, the regularization term represents the prior imagemod-

elling, providing the prior knowledge about the desired image (Babacan et al. (2010);

Beal (2003)). Over the past ten years of dynamic development, there have been a large

number of studies of various regularization for image restoration, and SR (Bertaccini

et al. (2011); Osher et al. (2005); Shen et al. (2015b); Yuan et al. (2011, 2013)).

In the early years, the smoothness of natural images was mainly studied, which

results in the quadratic property of the regularizations (Tikhonov and Arsenin (1977)).

Tikhonov-based regularization is the representative smoothing constraint, whose energy

function is usually defined as:

U(x) = ‖Γx‖2
2 (1.5)

where Γ is commonly an identity matrix or high-pass operator (e.g. a difference

operator or a weighted Fourier operator), laplacian regularization is one of the famous

regularizations used in SR and was developed from Tikhonov regularization by choosing

the smoothing operator as the discrete 2-D operator.

The smoothing prior models are in contrast with the nature of images, where sharp

details in images are always desirable for human beings in many applications, including

remote sensing imaging, medical diagnosis and object recognition (Greenspan (2009b);

Shen et al. (2009b); Zhang et al. (2010b)). Thus, `1-norm based regularization are often

a preference for their edge-preserving properties (Goldstein and Osher (2009); Pan and

Reeves (2006)). The Total Variation (TV) regularization was first proposed by Osher et

al. (Rudin et al. (1992)), based on the notion that an image is naturally “blocky” and

discontinuous. The standard TV function is given as:

U(x) =
√

∂

∂x1
x+ ∂

∂x2
x (1.6)

where ∂
∂x1

and ∂
∂x2

are the first-order image gradients in the horizontal and vertical
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directions respectively. Unlike the quadratic regularizations, edge information can be

better preserved using TV regularization, with the `1-norm to deal with the image

information rather than the `2-norm (Bioucas-Dias et al. (2006); Zhu and Chan (2008)).

Therefore, the TV prior model has been the most popular model for image processing in

the last two decades and has been applied in fields such as image denoising, deblurring,

segmentation, and SR (Chan and Wong (1998); Huang et al. (2009)).

1.4 I2S Super-resolution Framework

The basic principle to increase the spatial resolution in SR techniques is to have

multiple LR images captured and available from the same scene. In SR, the LR images

typically characterise different “glances” of the exact location or scene. That is, LR

images are subsampled (aliased) and shifted with subpixel accuracy. If the LR images

are shifted by integer units, for example, 1-pixel, then each image contains the same data;

thus, there is no new information that can be useful to reconstruct a HR image. If the LR

images have non-integer subpixel shifts with aliasing included, then each image cannot

be obtained from the other LR images. In this way, the new information contained in

each LR image can be used to get a HR image. To ensure different glances or captures

of the same scene, some relative scene motions must exist from one frame to the other

via multiple scenes or video sequences. It is feasible to gain various scenes from one

camera with several captures or from numerous cameras located in distinctive positions.

These scene motions can occur due to the controlled motions in imaging systems, e.g.,

images acquired from orbiting satellites.

To implement SR in a real application at I2S, we have acquired the images for SR

through hardware control by designing an imagingmechanismwith hardware techniques.

In this method, the sensors can acquire images with known sub-pixel displacements. We

capture four LR images with the translational shifts being (0, 0), (0, 0.5), (0.5, 0),

and (0.5, 0.5). Our low-resolution images each have a half-pixel displacement of the

scene. By doing so, we have achieved the goal of having low-resolution images, with

each having new information which can be used to construct a HR image. The visual

representation of our sub-pixel shift is shown in Figure (1.2).
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Figure 1.2: Visual demonstration of 0.5-pixel displacement of the scene captured

In the next step, four LR images are assembled together to form the high-resolution

image. Each corresponding pixel from each LR image is taken to create the new fused

pixel for the high-resolution image. A summary of the implementation is shown in

Figure (1.3). As shown, the pixels marked (1) of the LR images are assembled to form

the big pixel (1) of the high-resolution image. The resulting pixel will contain more

information in comparison to each of the corresponding LR pixels.

The resulting image will produce an image with up to 2 times higher resolution.

As a result of this resolution enhancement, we come across a negative effect on the final

image. The final image visually does not bear the best quality and has the downside

of a blurry effect on the image; this effect is the result of the fusion of the pixels from

the four low-resolution images into one super image. This effect is displayed in simple

formation in Figure (1.4). In this example, we only demonstrate two LR images where

the second image is the 0.5-pixel displacement of the original image. In (1.4), picture (a)

is the original image and picture (b) is the image captured from the scene with 0.5-pixel

displacement. The result shown in picture (c) shows that since we consider the 0.5-pixel

movement of the sensor between two images, there are shared data and signals in which,

after fusion, we get overlapped regions in the pixels. This fusion effect represents itself

as a blurry effect.

A supplementary deconvolution algorithm is needed to improve the quality and

accuracy to overcome this phenomenon. It is essential to attach a deconvolution algo-

rithm after the super-resolved image to help it benefit from clear and visible quality.

The whole structure of our super-resolution scheme is depicted in Figure (1.5). We
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Figure 1.3: I2S implementation of super-resolution
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Figure 1.4: Reconstruction of the super-resolved image: by interlacing the original pixels and
the shifted image
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La super résolution à 4 images RGB.
Sensor displacement

Rearranging pixels
(adds blur) Desired picture

Deconvolution

A Super-resolved image with up 
to 2 times the resolution

Figure 1.5: Super-resolution scheme of this thesis with 4 RGB images.

use four low-resolution images, where each image has 0.5-pixel displacement from the

other. Next, we interpolate the pixel together to form a super-resolved image with up to

2 times higher resolution than the original image. Finally, we add a custom-designed

deconvolution algorithm to overcome the blurry effect of the pixel interpolation. It is

worth noting that the deconvolution algorithm has to be fast and accurate since the main

application of this algorithm is for cameras mounted on the scanners of I2S to be used

in practical application.

The following chapter will briefly review some of the famous optimization problems

used for inverse problems, such as image denoising and image deconvolution. Later on,

we will introduce the custom-designed and implemented deconvolution for our super-

resolution technique.

1.5 Structure of the thesis

In this chapter, we began by introducing the concept of super-resolution and its

application in various areas. The necessity of having a super-resolution technique was

discussed. Following on, a brief history and a review of the super-resolution was

presented. It was shown that, in general, super-resolution is modelled as an inverse

problem. Commonly, this inverse problem is tackled either in the frequency domain
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or spatial domain. Both methods have their advantage and disadvantage, and recently

regularization method in the time domain has gained popularity. The super-resolution

framework of I2S was demonstrated as the last topic. Despite being very effective in

achieving a high-resolution image, this method lacked a significant setback in quality.

To solve this problem, we will introduce a deconvolution/denoising algorithm as a

supplement in the next chapter.

In chapter 2, we will introduce inverse problems in signal and image processing.

We will describe the concept of an ill-posed inverse problem and the conditions for an

inverse problem to become ill. Next, we will present image deconvolution as an inverse

problem, and we will give a brief description of the point spread function or the kernel

used in our algorithms. We will then provide background on sparsity and review the

literature. Next, wewillmove on to the optimisation of inverse problems. Wewill present

the definition of the proximal operator, where it is used to solve convex optimisation

problems, and it will be the basis of our proposed algorithm. We will review three

algorithms that are used commonly to solve optimisation problems. We will briefly

describe the Douglas-Rashford splitting Algorithm, forward-backwards splitting, and

ADMM algorithm.

Chapter 3 will provide our proposed image deconvolution algorithm. First, we will

begin by giving an introduction of our motivation and why we prefer to use classical

methods rather than new learning methods. Next, we will provide our problem formula-

tion. We will review the variable splitting algorithm used in our proposed method and

then demonstrate our proposed approach and general framework. Moving on, we will

give an in-depth analysis of the parameters used in our image deconvolution algorithm

and discuss their effect on the performance of the algorithm. At the end of the chapter,

we will present our scientific experiments. We will evaluate the performance of image

deconvolution and various images and measure the results with different image quality

metrics.

Chapter 4 will provide information about the practical results of implementing the

image deconvolution and super-resolution scheme in the scanners of I2S.We will shortly

review the objectives of book scanning and the devices used for this purpose. Next, we
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will introduce MTF or FTM measurement, a standard measurement for image quality

analysis in the industry. Moving on, we will review the implementation process of our

algorithm from MATLAB to C++ programming language. The fifth section of chapter

4 will provide practical experiments and results on samples gathered from EAGLE and

E – XTRA cameras of I2S. We will demonstrate the results in visual representation and

also the image quality ratings using the MTF standard. Since our main objective is

to develop a flexible algorithm, we will then examine the results of implementing the

deconvolution algorithm on microscopic and Terahertz cameras of I2S.

In chapter 5, we will demonstrate the results obtained by applying our image deon-

colution algoirhtm on Herschel observation maps. It will be shown that our algorithm

provides better quality images with recently studied methods.

In chapter 6,we will demonstrate the second phase of our image deconvolution

algorithm based on learning methods. First, we will review recent research and deep

learning algorithms in various image processing applications such as medical diagnosis,

detection and inverse problems. We will provide the concept of plug-and-play priors

used in our image deconvolution algorithm. Wewill present our motivation and intuition

of using such priors in our scheme. Our proposed plug-and-play approach uses Gaussian

mixtures since they are good representatives of image priors. In the last section of this

chapter, we will examine the experiments on various images captured with the scanner

of I2S.

We will conclude the thesis in chapter 7, where we will summarize the main

contributions and aspects. We will also talk briefly about the ongoing work extending

our thesis.
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Chapter 2: Inverse problems in signal and

image processing

Before we give details of our frameworks and main contributions, we will discuss

and review inverse problems in image and signal processing. Some background of

optimization algorithms for inverse problems will be provided. We will introduce the

proximal operator theory as the primary solution for our proposed method.

2.1 Introduction

This chapter will explain the mathematical formulation used in solving the problem

of image deconvolution. It was shown in the previous chapter that our super-resolution

problem could be modelled as an inverse problem. This chapter aims to formulate a

deconvolution problem to tackle the blurring effect, which is encountered as an inverse

problem.

In a simple form, inverse problems are the opposite of direct problems. In a direct

problem, we intend to find an effect from the cause of phenomena, whereas in the inverse

problem, we are faced with the effect, and we pursue to find the cause. The most popular

and common practical case is when interpreting physical measurements of an unknown

object of interest. In image processing, the direct problem is finding out how a given

sharp photograph looks if the camera were incorrectly focused. The inverse problem of

this example is well known as deblurring which is to find the sharp and clear image from

a given blurry image.

In this example, the cause is the clear image, and the effect is the blurred image.

It is famously known that the Hubble telescope suffered a blurring problem after just

starting to work where a deblurring had to be used as a correction algorithm.

In this thesis, we focus on the ill-posed inverse problems. In such circumstances, the

inverse problem is much more difficult than solving the direct problem. To understand

the ill-posed problem, we need to get familiar with the notion of a well-posed problem



Direct Problem

Inverse problem

Figure 2.1: Demonstration of an Inverse problem application in image processing.

and its conditions, which was originally introduced by Jacques Hadamard (1865-1963)

as follows:

C1 : Existence. There has to be at least one solution.

C2: Uniqueness. There has to be at the most one solution.

C3: Stability. The solution depends continuously on the data.

We define H as the forward map, which is conceptually defined as H(cause)= effect.

The direct problem must be well-posed, which means H should be a well-defined,

single-valued and continuous function. The inverse problem is ill-posed ifH−1 does not

exist or it is not continuous. Therefore, one of the three conditions fails for H−1. Ill-

posedness is related to interpretation tasks that are extremely sensitive to measurement

and modelling errors. As a result, a successful inversion algorithm must be devised

to be robust against measurement noise, computationally effective and mathematically

justified by the appropriate analysis.

2.2 Image deconvolution as an inverse problem

Throughout this thesis, we denote vectors by lowercase letters, such as x and denote

matrices by uppercase letters, such as X . We assume that vectors and matrices consist

of real-valued elements. For instance, x ∈ Rm represents a vector with m real-valued

elements, and X ∈ Rm×n represents a matrix with m rows and n columns that consists

of real-valued elements. As introduced in chapter 1, in the case of discrete image
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deblurring, we consider the formulation below:

y = Hx+ n (2.1)

In most cases,H is not very well known or is just an assumption. Also, in the case

of deblurring, H does not depend on the data, and it is dependent on the acquisition

system. Based on this fact, image deblurring (also known as image deconvolution) is

considered an ill-posed inverse problem.

It is very tempting to try to solve the inverse problemof (2.1) by naive reconstruction:

x ≈ H−1(y − n) (2.2)

However, since we are dealing with an ill-posed inverse problem, the approach (2.2)

will fail. As described in section 1.3.3 regularization is needed for a successful and

noise-robust solution of our linear inverse problem. We will explain the concept of

regularization in the coming sections; however, before this, we will briefly explain the

blur matrix H , which is also regarded as Point Spread Function (PSF).

2.2.1 Point spread function

The PSF kernel H models the intrinsic camera characteristics, such as diffraction

when the light goes through a finite aperture, light averaging within the sensor itself,

lens aberration, etc. The experimental procedure will minimize other blur sources like

motion, atmospheric turbulence or defocus blur that may change from one snapshot to

another. In this thesis, we do not seek to estimate these parameters. The diffraction

kernel is determined by factors such as the shape, the size of the aperture, the focal

length, and the wavelength of the monochromatic light.

Besides the diffraction kernel, other blur sources inherent in the camera’s optical

system are present in real-world cameras. These are mainly optical aberrations and

anti-aliasing filters (that reduce aliasing but do not completely cancel these effects)

introduced in the system prior to sampling (Williams and Becklund (2002); Zhao et al.

(2006)). The sampling process also introduces blur.
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(a)

(b)
Figure 2.2: 3D demonstration of a sample PSF and its matrix value.

With regards to the formulation of (2.1), image deconvolution is mainly divided into

two categories: blind and non-blind deconvolution (Campisi and Egiazarian (2017)).

Blind image deconvolution seeks to estimate the proper image, assuming the blur is

unknown. In this thesis, we consider our deconvolution to be non-blind. The point

spread function may arise from a mathematical model of the blurring process or actual

measurements of the point spread function, despite having the freedom of changing the

PSF, i.e. H and being regarded as an input, for the time being; we estimate the PSF to

be a 5×5 Gaussian normalized matrix as shown in Figure (2.2).

Dimensions of the computed or measured PSF array are often much smaller than

N , size of the image, due to the fact that the spreading of the light takes place in a small

region around the pixels. We can always conceptually augment such a small array with

zeros to make the PSF array as large as needed in the equations above.

21



2.3 Background on sparsity

Parsimony is regarded as the representation of a phenomenon with the fewest

elements possible. In signal processing, sparse representations intend to represent

signals with as few as possible significant coefficients. This "parsimony" principle

and the tendency of having "few elements", a.k.a. sparsity, is now a principal focus

of attention in diverse signal/image processing, computer vision and machine learning

applications. A matrix or a vector is said to be sparse if it has only a few (compared to

the total size) non-zero entries.

In the case of a vector, its l0 norm, ‖x‖0, is simply the number of non-zero entries

in the vector. From sparsity point of view, l0 is the most appropriate norm, while l2 says

almost nothing. On the other hand, finding the sparsest solution is an optimization from

the point of view of mathematical analysis.

Compressed sensing permits to sense signals directly with few samples going

beyond the classical Nyquist rate. By using sparsity as a prior in an optimization

framework, exact recovery can be achieved from a small set of linear non-adaptive

measurements (Baraniuk (2007); Candès et al. (2006);Donoho (2006); Romberg (2008)).

Compressed sensing is mainly known for finding exact or approximate solutions for

underdetermined linear systems of equations, which could not be solved using traditional

linear algebra techniques. It showed that sampling under the Shannon–Nyquist rate is

no longer impossible.

Sparsity is also used enormously in image restoration. Primary work of sparsity-

based image restoration used thresholding wavelet coefficients. The motivation behind

wavelet shrinkage is twofold. First, it is to be noted that the regularity of transient events

can be observed across different scales — such an idea originated from Marr’s vision

theory and is at the basis of scale-space theory (Lindeberg (2013)). Wavelets have offered

a principled method of decomposing signals in the scale space with specific desirable

properties (Champagnat et al. (1993); Ruder (2016)). Second, despite the difficulty

of conducting signal-noise separation for a single sample or coefficient (microscopic

level), the ensemble (macroscopic level) property of a signal is in most cases sufficient
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to distinguish itself from that of noise.

Later on modern sparsity-based image processing and restoration algorithms try to

use various dictionary learning methods for compact representation.

As mentioned in the previous chapter, prior information in the formulation plays an

important role in providing information about the reconstructed image; sparsity can be

used extensively as prior information for regularized image restoration. A comprehensive

study of sparse methods in image processing is done in (Badri (2015)).

2.3.1 Norms

Just in the phrases above, the term “norm” has been taken with somewhat excessive

license. Let X be a real or complex vector space. A function ‖.‖ : X → R+ is called a

norm if ∀x ∈ X:

(a) ‖x‖ = 0 if and only if x = 0.

(b) ‖λx‖ = |λ| ‖x‖ for all λ and x.

(c) ‖x+ y‖ ≤ ‖x‖ + ‖y‖ for all x and y (triangle inequality). If only (b) and (c) hold

the function is called a semi-norm. And if only (a) and (b) hold the function is called a

quasi-norm.

Let us introduce the lp norms. Define, for x ∈ Rn:

‖x‖p = (
n∑
i=1
|xi|p)1/p (2.3)

if 1 ≤ p < ∞ this function is a norm. However, if 0 < p < 1 this function is a

quasi-norm.

Note that ‖x‖0 = lim
p→0
‖x‖p. It is neither a norm or a quasi-norm.

To understand the relationship between sparsity and the lp norm, one can consider

the case n = 2 and the various shapes of the lp unit ball in function of p (see Figure (2.3)):

if ‖x‖2 ≤ 1, the components of x can take all values uniformly between -1 and 1. if

‖x‖p ≤ 1 the components of x are constrained by the shape of the ball. The more

p −→ 0, the stronger is the constraint. The less p, the more x is sparse.
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Figure 2.3: Relationship between sparsity and lp norm

2.4 Optimization of inverse problem

In this section, wewill briefly explain some of the standard optimizationmethods for

regularized image reconstruction. Before we continue to demonstrate the optimization

methods, we have to note that in our work, we concentrate primarily on proximal

algorithms since we desire to have fast and accurate results due to our practical goals.

As mentioned in previous sections of this thesis, many constrained convex opti-

mization problems are in the following form:

Minimize H(x) = f(x) + g(x) (2.4)

where f is convex and differentiable, g is a convex function (differentiable or not),

x ∈ Rn. We also mention some generalizations where g can be non-convex (Parikh and

Boyd (2014)). The formulation of the form (2.4) appears in many machine learning,

dictionary learning and image processing applications.

Proximal operators are among the popular methods to solve the problem of the

form (2.4). Various methods to solve problems of the form (2.4) have emerged in the

literature based on proximal operators.

Definition 2.1
Definition: Let X = Rn equipped with the standard norm ‖‖2 and f : X →

R ∪ {+∞} a convex function. The proximal operator (Moreau (1965)) (also

known as the proximal mapping (Beck (2017))([Ch. 6]) of f is the function

24



Figure 2.4: Evaluating a proximal operator at various points.

♣

proxf : X → X defined by:

proxf (y) 4= argmin
x

1
2 ‖x− y‖

2
X + f(x) (2.5)

Note that since f is supposed to be convex, the existence and the uniqueness of the

minimum is guaranteed. Note that:

proxλf (y) = argmin
x

1
2 ‖x− y‖

2
X + λf(x) (2.6)

For a general reference on proximal operators see Figure (2.4). Using Equa-

tion (2.4), we start at the blue points, we aim to reach the minimum of f not globally. we

keep on finding a minimum while staying inside a ball i.e. we stay close to y in relation

to the constraint, blue point moves to the corresponding red points. This is continued

until the blue points reach the minimum of f .

Themain theorem about proximal operators comes from theminimumof the convex

function f and the fixed points of its associated proximal operator (Parikh and Boyd

(2014)). The point ?x minimizes f if and only if :

?
x = proxf (

?
x) (2.7)
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i.e., if ?
x is a fixed point of proxf . The proximal operator can be computed analytically

for many important f functions. The notion of a proximal operator is not restricted

to convex functions. Indeed, it can been generalized for some proper (not necessarily

convex) function f (Urruty and Lemaréchal (1993)). As a famous example in the popular

casewhen f is the l1-norm, the solution reduces to the soft-thresholding (Donoho (1995))

that is given as follows: let X = R and f(x) = ‖x‖1.

proxλf (y) = max(0, |y| − λ)sign(y) (2.8)

Many algorithms in the literature rely on proximal splitting, which entails intro-

ducing an intermediate variable and breaking the primary problem into subproblems

corresponding to proximal operators. These algorithms are very popular in image pro-

cessing because they deliver a high-quality result and scale well to large-scale issues

while remaining efficient. It’s also worth noting that the proximal operator is a pointwise

operator, which means that the shrinkage is applied to each element separately, allowing

proximal solvers to be implemented in parallel. In chapter 3, we will demonstrate the use

of the proximal algorithm, which is the basis of our image deconvolution algorithm used

in this thesis. The following part will briefly review some of the popular proximal-based

algorithms for solving inverse problems.

2.4.1 Douglas–Rachford splitting algorithm

Considering the formulation of Equation (2.4) and with the assumption that f and

g are closed convex functions, the Douglas–Rachford (Combettes and Pesquet (2007))

iteration can be defined as follow:

Start at any y0 and repeat for k = 0, 1, ...,:

xk+1 = proxf (yk)

yk+1 = yk + proxg(2xk+1 − yk)− xk+1

(2.9)

This method is very handy when f and g have inexpensive proximal operators. The

important point is that f , and g do not need to be smooth, and one only needs them

to be "proximable". This algorithm was introduced in (Lions and Mercier (1979)) as

a generalization of an algorithm introduced by Douglas and Rachford in the case of
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quadratic minimization (which corresponds to the solution of a linear system).

2.4.2 Forward-backward splitting

In many situations and applications, the function g is neither differentiable nor even

finite-valued. Faced with this challenge, problem Equation (2.4) cannot be minimized

using normal and simple gradient-descentmethods, which exist inmany literature (Ruder

(2016)). Forward-backward splitting uses the proximal operator, proxτg(z), and finds a

point close to the minimizer of g without straying too far from starting point z and is

often referred to as a backward (or implicit) gradient-descent step with stepsize τ . If

the proximal operator can be estimated, then it is feasible to solve (2.4) efficiently using

the Forward-Backward Splitting (FBS) method (also known as the proximal gradient

method). In simple terms, FBS can handle non-differentiable objectives and convex

constraints while maintaining the simplicity of gradient-descent methods.

Due to the vast applications of FBS and its utility for sparse coding and regression,

many variants of FBS have been developed to improve performance and ease of use. In its

raw form, FBS requires the user to choose several convergence parameters that strongly

affect the algorithm’s performance and reliability. These include step sizes, stopping

condition parameters, acceleration schemes, stability conditions, and initialization.

Forward-Backwards Splitting is a two-stagemethod that addresses each term in (2.6)

separately. The FBS method is listed in Algorithm 1.

Algorithm 1: Forward-backward splitting
while not converged do
1: x̂k+1 = xk − τ k∇f(xk)
2: xk+1 = proxg(x̂k+1, τ k) = argmin

x
τ kg(x) + 1

2

∥∥∥x− x̂k+1
∥∥∥2

3: end while ;

Algorithm 1 interchanges between forwarding gradient descent on f and backward

gradient descent on g. Using a backward step for g can be advantageous in several

ways. On the other hand, it is shown that step (2) always has a unique, well-defined

solution (Combettes and Wajs (2005)). The backward step has an important effect on

the convergence of FBS.
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The exact detail of the FBS algorithm can be found in numerous articles and books.

However, here we have just given a simple explanation of the algorithm in summary to

provide a general idea.

2.4.3 Alternating Direction Method of Multipliers (ADMM)

ADMM is designed to solve the problem of the following type:

minimize f(x) + g(z) subject to Ax+Bz = c (2.10)

with x ∈ Rn and z ∈ Rm, where A ∈ Rp×n and c ∈ Rp. In most cases the

assumption is that f and g are convex functions. The optimal value of the problem (2.10)

will be denoted by:

p? = inf {f(x) + g(z)|Ax+Bz = c} (2.11)

Note that the objective is separable into two sets of variables. To solve the problem,

one considers the Augmented Lagrangian:

Lρ(x, z, y) = f(x) + g(z) + yT (Ax+Bz − c) + (ρ/2) ‖Ax+Bx− c‖2
2 (2.12)

where ρ is the step length. The original ADMM algorithm was proposed by Gabay

and Mercier (Gabay and Mercier (1976)), and Glowinski, and Marrocco (Glowinski and

Marroco (1975)). Many further findings in ADMM were discovered by Eckstein and

Bertsekas (Eckstein and Bertsekas (1992)). At iteration k, we minimize for x, then z,

and finally, update y, keeping the other variables constant during each minimization.

This gives us the ADMM algorithm as below:

xk+1 = argmin
x

Lp(x, zk, yk)

zk+1 = argmin
x

Lp(xk+1, z, yk)

yk+1 = yk + ρ(Axk+1 +Bzk+1 − c)

(2.13)

The constraint variables (A, B, and C) play an important role in the algorithm’s

effectiveness. A detail to consider is that the algorithm decouples the objective function

on variables x and z and minimize them independently. It consists of an x-minimization
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step, z-minimization step, and a dual variable update. The dual variable update uses a

step size parameter ρ. In ADMM, x and z are updated in an alternating or sequential

fashion, accounting for alternating directions. The first two expressions in (2.13) can

also be expressed in the proximal form.

Apart from the algorithm reviewed here, there also exists a popular algorithm so-

called Alternating Minimization Algorithm (Tao et al. (2009)), which is used for image

reconstruction. We will mainly use this algorithm in our deconvolution algorithm.

This method is presented in depth in chapter 3, introducing our Tools and problem

formulation.

2.5 Chapter conclusion

In this chapter, we began by introducing the fundamentals of modelling the image

deconvolution problem as an inverse problem application and optimization of mini-

mization problems. We explained the phenomenon of sparsity and its application on

compressed sensing and image restoration. Later on in the chapter, we reviewed famous

algorithms and optimization methods used for image reconstruction. The proximal oper-

ator was explained as an essential tool for optimization algorithms. We briefly examined

three algorithms frequently used to solve inverse problems in various applications. In

the next chapter, we will present our tools and problem formulation used for image

deconvolution algorithms throughout our work. We will also introduce our work and

approach. We will talk about our modelling and solution based on variable splitting

and proximal operator to develop a general framework for a flexible and robust image

deconvolution algorithm.
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Chapter 3: Proposed method and

experiments

3.1 Introduction

This chapter will explain the mathematical formulation and tools we have used for

our image deconvolution algorithm. In our framework, we will use the proximal operator

with variable splitting technique to reduce our algorithm’s complexity and to have a fast

algorithm.

In general, inverse problems have been tackled with either "classical methods of

optimisation" or learning methods such as Convolutional Neural Networks(CNN). We

would approach our deconvolution inverse problem using classical methods in our work,

and this is due to some factors which make the classical methods favourable.

Despite the good performance ofCNNor other learning algorithms, such algorithms

are not always suitable in practice. These methods demand a large amount of training

data to perform well, which may not always be available. Additionally, the performance

of learning methods can be only guaranteed for a specific kind of data; changes in

the nature of data may lead to loss of performance (McCann et al. (2017)). Learning

methods such as CNN’s work like a black box without tuning. Since the image quality

will be measured with international standards at I2S, which will be explained in chapter

4, it is essential for I2S to have an algorithm tuned with parameters and does not act as

a black box with no flexibility.

Since this thesis and its algorithms are for the practical purpose and implementation

in I2S devices, it is essential to look for methods and algorithms that would best suit

the practice. The primary usage of the algorithm will be for CopiBook scanners of I2S.

These scanners are designed for scanning books posters of various sizes for digitalisation.

Therefore, the algorithm must be as fast as possible since the scanner can not bear being

slow to scan a book with many pages. Also, in our case, we do not have access to many



images or training data for the Deep Neural Network (DNN) scheme. Because of the

sensibility and practical nature of the scanners, any available database which is open

source can not be used. Detailed training data needs to be gathered for scanners. From

another point of view, the scanners are used in various applications at different locations.

Therefore, we do not have exact information about the experimental data. Suppose we

use precise training data for a special neural network. In that case, the algorithm will

probably produce faulty results upon presenting the network with new data that is not

compatible with the training data.

Most DL-based algorithms are designed for precise usage and practical application;

these algorithms do not offer much flexibility. In other words, Convolutional Neural

Networks (CNNs) have been proposed to learn a parametric model from a massive

amount of data, i.e., hundreds of thousands of triplets of sharp images, blurry images

and uniform blur kernel, that can be used as a learned prior (Zhang et al. (2017)) or to

directly apply deblurring on a picture (Schuler et al. (2015)) but may fail if a test image

is blurred by a kernel different from the ones in the training set. One of the primary

key purposes of our deconvolution is to design an algorithm that can be flexible and can

be used for various products, applications and circumstances at I2S. As shown in the

coming chapters, thanks to our algorithm, I2S could use the algorithm not just for their

scanners but also for their microscopes and terahertz camera. We have also applied our

algorithm for astronomy images known as "observational maps", presented in a separate

chapter.

Due to the explained factors, we will consider classical optimisation methods for

our image deconvolution algorithm for the first stage of our implementation. One of

the goals of our thesis is to develop a fast and low complex algorithm by preserving

the accuracy for practical application in industry for products like connected image

acquisition systems and embedded systems with limited computation capability. In the

past decade, many papers have been published for non-blind image deconvolution either

based on classical or learning methods without considering this practical limitation.

Most of these applications do not prove to be practical or feasible in computationally

constrained conditions where complexity, accuracy and speed are essential. Our new
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algorithm, based on proximal operators, proves to be accurate and effective. It also

considers a broad family of sparsity inducing functions which increases the flexibility of

our algorithm.

3.2 Problem Formulation

As mentioned in chapter 2, we will consider Equation (3.2) as our formulation for

image deconvolution modelling. In digital image processing, the general, discrete model

for a linear degradation caused by blur and additive noise is formulated as:

y(k) =
∑
s∈ΩH

H(k, s)x(s) + n(k) k = (k1, k2) ∈ Ω (3.1)

where x(k) represents the original image, y(k) is the observed image, H(k, s) is

the blur or PSF, and n(k) observation noise, respectively, Ω ⊂ R2 is the support of the

image, and ΩH ⊂ R2 is the support of the PSF. The additive noise process n(k) may

originate during image acquisition, processing, or transmission. Common types of noise

are electronic, photoelectric, film grain, and quantization noise.

Equation (3.1) is very commonly represented in terms of a matrix-vector formu-

lation of reconstructing an image, x from an indirect blurred and noisy observation y

as:

y = Hx+ n (3.2)

where H denotes a known convolution operator in matrix form and n additive

Gaussian noise with zero mean and known variance σ2, for some of our experiments,

we will considerH to be a 5×5 Gaussian matrix as shown on Figure (2.2). Typically, as

discussed, these inverse problems are ill-posed; therefore, there is no exact solution, or

the solution is not unique becauseH is not invertible or is extremely ill-conditioned. One

of the effective methods of approaching this problem is using regularization methods

(Liu et al. (2013)). In this case, we will consider the following optimization problem:

argmin
x

µ

2 ||Hx− y||
2
2 + φ(Dx) (3.3)
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In Equation (3.3), for simplicity we write φ(Dx) instead of: φ(Dx1x) + φ(Dx2x),

which are respectively the matrix form of the first order gradients in both directions:

dx1 = [1,−1] and dx2 = [1,−1]T . As discussed in depth in chapter 1, the first term of

the equation measures the closeness of solution to the observation y, it is known as data

fidelity term. The second term φ(u), the regularizer, enforces a prior knowledge about x

into the solution. The parameter µ > 0 assigns a trade-off between the two assumptions.

Our thesis proposes a new fast image deconvolution algorithm using approximated

proximal operators. It combines the idea of variable splitting with new sparsity inducing

regularizers introduced in (Gholami and Hosseini (2011)). To the best of our knowledge,

this has not been considered for image deconvolution applications. The motivation

behind this is twofold: first, some functions have been shown to have better sparsity

inducing performance relative to other regularizers such as `p. Second, a quadratic

penalty approach requires low computational complexity.

3.3 Tools and Proposed method

In this part, we will begin to explain the tools used for our optimization. First, we will

explain variable splitting, a well-known method for optimization. Next, we will present

the general framework that we have used for image deconvolution, and also, we will

provide the proximal solution of the general framework.

3.3.1 Variable Splitting

In this section, we will give a demonstration of variable splitting, which has been utilized

in several image processing applications. Here we consider an unconstrained optimiza-

tion problem where the objective function consists of two functions:

x̂ = argmin
x
{f(x) + g(x)} (3.4)
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In the context of the thesis and our problem we assume the following:

f(x) = µ
2 ||Hx− y||

2
2

g(x) = φ(Dx)
(3.5)

In this point we will take the unconstrained optimization of (3.4) and we will split the

variables into two variables x and u under the constraint that x = u. As a result the new

problem is given by

(x̂, û) = argmin
x=u

{f(x) + g(u)} (3.6)

The question is why this method is favoured to the latter unconstrained problem?

The answer is that we canminimize two functions separately and use different techniques

for each one of them. A penalty function is added to Equation (3.6) to attack and penalize

the difference between x and u.

(x̂, û) = argmin
x

{
f(x) + g(v) + β

2 ‖x− u‖
2
2

}
(3.7)

The constant parameter β controls the magnitude of the penalty function. It is

important to note that the choice of β will affect the rate of convergence of the algorithm.

As the value of β increases, the constraint of x = u is more aggressively enforced.

However, as β becomes large, the problem becomes stiffer. The choice of β falls into

the so-called Goldilocks Principle :

i) If β is too big then the algorithm becomes too stiff i.e ill conditioned.

ii) If β is too small, the algorithm will converge slowly.

The proper value of β is always a trade-off between (i) and (ii). In our work, as will

be thoroughly explained later, β is constant β = 256. The variable splitting idea has

been recently used in several image processing applications. The method was used in

(Wang et al. (2008)) to achieve a fast algorithm for TV-based image enhancement. It

was also used in (Bioucas-Dias and Figueiredo (2008)) to ease the problem of involving
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compound (multiple) regularizers; i.e., instead of a single regularizer g(x) = φ(Dx)

in (3.5), a linear combination of two (ormore) regularizers g(x) = φ1(Dx)+φ2(Dx)+...

are implemented.

Similar usage of variable splitting approach underlies the proposed split-Bregman

methods (Goldstein and Osher (2009)). On the other hand, instead of using a quadratic

penalty technique, those methods attack the constrained optimization problem directly

with a Bregman iterative algorithm (Yin et al. (2008)). It has been proven that, when g

is a linear function, i.e., g(u) = Gu, the Bregman iterative algorithm is equivalent to the

augmented Lagrangian method (Yin et al. (2008)).

3.3.2 Proposed Approach

As mentioned before we begin by considering the following model:

argmin
x

µ

2 ||Hx− y||
2
2 + φ(Dx) (3.8)

By using variable splitting, we introduce a new variable, say u, to serve as the

argument of φ(.) under the constraint that u = Dx. A quadratic function to penalize

the difference, needs to be added. After applying the modification we consider the

constrained problem:

argmin
x,u

µ

2 ||Hx− y||
2
2 + φ(u) s.t u = Dx (3.9)

Given the constraint, it must be that u = Dx, so the solution to Equations (3.8)

and (3.9) must be the same or very close. In order to enforce the constraint, we will add

an additional term to the cost function that penalizes large differences between u and

Dx. This then results in the unconstrained optimization problem given by

argmin
x,u

µ

2 ||Hx− y||
2
2 + φ(u) + β

2 ||Dx− u||
2
2 (3.10)

where β is a constant that controls the gain of the penalty term. It also enforces the

difference between Dx and u to be as small as possible.

The problem formulated in the form of Equation (3.10) can be solved by an al-
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ternating minimization scheme, i.e. solving two sub-problems iteratively. It is easy to

minimize the objective function in (3.10) with respect to either u or x.

(S1) argmin
u

φ(u) + β
2 ||Dx− u||

2
2

(S2) argmin
x

µ

2 ||Hx− y||
2
2 + β

2 ||Dx− u||
2
2

(3.11)

The algorithm decouples the objective function on variables u and x and mini-

mizes them independently. It consists of an u-minimization step and an x-minimization

step (3.11). The solution of Equation (S1) is calculated using shrinkage operators, which

will be explained later on.

For a fixed u, (S2) is quadratic in x, and the minimizer x is calculated by taking

the derivative of the Equation (S2) and setting it to zero to get:

(DTD + µ

β
HTH)x = DTui + µ

β
HTy (3.12)

After splitting the discrete gradient operator we get:

(DT
x1Dx1 +DT

x2Dx2 + µ

β
HTH)x = DT

x1ux1 +DT
x2ux2 + µ

β
HTy (3.13)

Under the periodic boundary condition for u, DT
x1Dx1 and DT

x2Dx2 are all block

circulant. In this case, the Hessian matrix on the left-hand side of (3.13) can be

diagonalized by 2D discrete Fourier transform F . Using the convolution theorem of

Fourier transforms, we can write:

x = F−1

 F(Dx1)�F(ux1) + F(Dx2)�F(ux2) + (µ
β
)F(H)�F(y)

F(Dx1)�F(Dx1) + F(Dx2)�F(Dx2) + (µ
β
)F(H)�F(H)

 (3.14)

where F denotes the Fourier Transform, “ ¯ ” denotes complex conjugate and

“�” component-wise multiplication, the division is computed component-wise. An

advantage of this formulation is that Fast-Fourier will reduce computational complexity

and simplify the algorithm.

In the following section, wewill introduce the general regularization functionwhich

is used in this article and also we will show how we use the proximal operator as the

solution of (S1).
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3.3.3 General Framework

In this section, we will review some well-known sparsity-inducing regularizers

and introduce a family of regularizers which have shown to provide better sparsity-

enhancing performance. The `1 norm, φ(u) = ||x||1 =
∑
i

|ui|, is probably the most

popular regularizer. For this regularizer, (S1) has a closed-form solution: the soft

threshold operator (Donoho (1995)). It has been shown that non-convex penalties can

achieve better performance to promote sparsity (Kochenderfer andWheeler (2019)), e.g.

φ(u) = ||x||p =
∑
i

|ui|p (the `p quasi-norm, 0 < p < 1). However, analytic solutions

are available only for some values of p, i.e.1/2 and 2/3 (Krishnan and Fergus (2009)).

Only numerical methods exist for other p values (Nguyen et al. (2001)).

As mentioned and discussed in chapter 2, closed-form solutions for (S1) using non-

smooth regularizers can be derived by the theoretical framework presented in (Parikh

and Boyd (2014)). Nevertheless, many regularizers do not have an analytic expression.

Due to the lack of closed-form solutions, some approximate methods have been

studied for particular regularizers. As an example, a proximal first-order approximation

for edge preservation has been studied in (Badri et al. (2015)).

In our thesis, we will take a broader approach. We will consider multiple sparsity-

inducing regularizers (general framework), including `p. The proximal operators of

these functions have been explained in detail in (Gholami and Hosseini (2011)). The

general framework regularizers for p ∈ (0, 2] and q ∈ [−1,∞) are formulated as:

ϕpq(x) =


1
q
(1− (|x|p + 1)−q) q 6= 0

loge(|x|
p + 1) q = 0

(3.15)

Depending on the value of p and q, Equation (3.15) defines a potential function,

each potential function has its own characteristic and can be used as prior information

in second term of Equation (3.8). For instance, non-convex penalties can achieve better

performance to promote sparsity [12], e.g. φ(u) = ||x||p = ∑
i |ui|p (the `p quasi-norm,

0 < p < 1).

The potential function defined in Equation (3.15) for some different choices of p
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and q leads to some known potential functions as presented in Table 3.1.

p q Expression of ϕpq(x)
p -1 |x|p

1 1 |x|
|x|+1

1 3 1
3(1− 1

(|x|+1)3 )

Table 3.1: Potential function and its corresponding functions according to the values of p and q.

Also, in Figure (3.1), we have depicted various forms of ϕpq(x) presented in table

1. Each of the potential functions can be a prior information for any image denoising

and deconvolution problem according to the criteria of the application being used. As

mentioned before, it is the first time that a wide variety of image priors are being

considered in an image deconvolution scheme. This allows us to use various functions

according to practical circumstances, which is ideal for I2S scanners and datasets.

A&A proofs: manuscript no. debeam-deconvolution-denoise-arash

Fig. 2: PSNR values after deconvolution using the regularizer
'

p
qpxq as a function of p and q. The region around p=1.35 and

q=-1 provides the best performance.
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Fig. 3: Potential function for di↵erent values of p and q.
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Figure 3.1: Potential function for different values of p and q.

Closed-form solutions for (S1) using non-smooth regularizers (potential functions)

can be derived by proximal operators defined in definition 2.1. The approximate proximal

operators of (3.15) are provided as shrinkage/thresholding operators :

prox 1
β
ϕpq(u) =


(
1− p

β

(
|u|p−2

(|u|p+1)q+1

))
+
u if |u| > η 1

β

0 otherwise
(3.16)

Here (x)+denotes the positive part of x. As shown by this equation, it is computed
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by a simple closed-form expression for values bigger than η 1
β
and set to zero if smaller.

The proposed general regularization and its approximation induce sparsity in the sense

that several values, depending on the strength of regularization, will be exactly equal to

zero.

To assess the accuracy of the approximated proximal operators for the case of `p,

we carry out a comparison to see how close the proximal operators are to the exact

numerical solution. Although the `p norms are not differentiable, the precise solution

of this particular function has been studied in detail in (Lorenz (2007)). As it is

demonstrated in Figure (3.2), The exact solution is represented in solid line with its

corresponding approximation in dashed line. It is evident that the accuracy of proximal

operators is high for all cases. It is worth mentioning that in some cases, the accuracy

depends on the value of p: accuracy increases as p→ 0. In general, this slight difference

is so small that it can be neglected.

3.3.4 Proposed Algorithm

We now give the overall algorithm using the general framework for the sub-problem

(S1). As outlined in Algorithm 2 below, we minimize Equation (3.10) by solving the

u and x sub-problems separately until the algorithm converges. We keep β constant

(β= 256) for our academic experiments, making our algorithm simpler and reducing

computational complexity. In step 2 of the algorithm, the solution of subproblem (S1) of

Equation (3.11) is calculated using the approximate proximal operator of Equation (3.16)

In step 3, the u obtained from step 2 is used to calculate the x of sub problem (S2) of

Equation (3.11) with Equation (3.14). This process is repeated until the algorithm is

converged.

The algorithm can be controlled either by the number of iterations it needs or the

cost function. It will be shown that thanks to our model of implementation, many

iterations are not required for the algorithm to converge.

In many papers and articles, peak signal-to-noise ratio (PSNR) is used to measure

the convergence of an algorithm. In this thesis, wewould instead use Equation (3.3) itself

tomeasure how effective the algorithm is in terms of deconvolution and also convergence.
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Nevertheless, many regularizers do not have an analytic expres-
sion for their associated proximal operator. There are many rea-
sons to use proximal operators, first, they work under extremely
general conditions, including cases where potential functions are
non-smooth. Second, they can be fast, since simple proximal op-
erators are available for functions that are otherwise challenging
to handle in an optimization problem. The approximate proximal
operators of (10) are provided as shrinkage/thresholding opera-
tors [10]:

prox �
� '

p
q puq “

#´
1 ´ �p

�

´ |u|p´2

p|u|p`1qq`1

¯¯
`

u if |u| ° ⌘ �
�

0 otherwise
(13)

Here pxq`denotes the positive part of x. As shown by this
equation, it is computed by a simple closed-form expression for
values bigger than ⌘ �

�
and set to zero if smaller. The proposed

general regularization and its approximation induce sparsity in
the sense that a number of values, depending on the strength of
regularization will be exactly equal to zero. For a visual demon-
stration, in figure (1), we have depicted the shrinkage threshold-
ing operators for the case of `p, we carry out a comparison with
the exact numerical solution provided in [12] which is displayed
in figure 1. The exact solution is represented in solid line with its
corresponding approximation in dashed line. We point out that
the accuracy of the approximation is very high. In the follow-
ing section, we will present our proposed methods with a brief
explanation of the algorithm scheme.

3.4. Proposed Method

We now give the overall algorithm using the general framework
for the sub-problem (S1). As outlined in Algorithm 1 below,
we minimize Eq.(3) by solving the u and x sub-problems sep-
arately until the algorithm converges. We keep � constant (�=
256) which makes our algorithm simpler and reduces compu-
tational complexity. In step 2 of the algorithm, the solution of
subproblem (S1) of equations (6) is calculated using the approx-
imate proximal operator of equation (10). On step 3 the u ob-
tained from step 2 is used to calculate the x of Sub problem (S2)
of equation (7) with equation (8). This process is repeated until
the algorithm is converged.

Algorithm 1: Image deconvolution using Approximate
Proximal Operators

Input: initialize x, H, � ° 0, �, i “ 0, j “ 0
1: while not converged do
2: Compute u j according to (4) for fixed x;
3: Compute x j using u j according to (5) ;
4: Compute Cost (j) ;
5: j – j ` 1
6: end while
7: return xi;
8: return Cost;

3.5. The choice of Potential function

To identify the best potential function for the Herschel image
deconvolution, we conduct an experiment in which we evaluate
the performance of all possible potential functions and measure
their performance in terms of Peak signal-to-noise ratio (PSNR).
In this experiment, we take a sample from simulation data and
convolve the image with beam e↵ect, H. Next, we use our
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Fig. 1: (Top) Exact and approximate Proximal Operator of
'

p
´1pxq “ |x|p with � “ 1. The approximation has great ac-

curacy in comparison with exact solution. Only small variations
can be observed around the threshold value. (Bottom) Zoom at
the threshold region.

algorithm with various potential function configuration to obtain
di↵erent results based on the corresponding regularizer. To
illustrate the variation in performance, we in figure 2 show
PSNR values for q P r´1, 3s and p P r0.1, 2s with each range
divided into 64 equally spaced points. For this experiment, we
have used one 1024 ˆ 1024 sample with additive Gaussian noise
(� “?). We can observe that the best 'p

qpxq function lies around
the region where p=1.35 and q=-1.

Article number, page 3 of 5

Figure 3.2: Top) Exact and approximate Proximal Operator of ϕp−1(x) = |x|p with β = 1. The
approximation has great accuracy in comparison with exact solution. Only small variations can
be observed around the threshold value. (Bottom) zoom at the threshold region.
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Algorithm 2: Image deconvolution using Approximate Proximal Op-
erators

Input: initialize x, H , β, i = 0, j = 0
Output: x̂
1: while not converged do
2: Compute uj according to (S1) of Equation (3.11) for fixed x;
3: Compute xj using uj according to (S2) of Equation (3.11) ;
4: Compute Cost ( j ) ;
5: j ← j + 1
6: end while
7: return xi;
8: return Cost;

In this manner, we define the cost function of our algorithm in the following:

Definition 3.1. definition of cost function

♣

Definition: In algorithm 2, for a given y ∈ R, H ∈ R and recovered x̂ ∈ R at

iteration j, the cost is defined as :

Cost(j) = µ

2 ||Hx̂j − y||
2
2 + φ(Dx̂j) (3.17)

At Iteration j + 1 the Cost(j + 1) will be calculated and compared with the cost

at Iteration j: If Cost(j + 1) − Cost(j) 6 ε then: the algorithm will continue. Else "

x̂j will be returned as the result". This approach of defining the cost function is more

effective since we are using the problem itself as means of measuring how close and

effective the x̂ is to the real x that we are trying to recover. In the rest of the thesis, we

will only consider the approximated solution proposed in Equation (3.16).

3.4 Scientific Experiments

Themain purpose of this algorithm is for the scanners of I2S in a real-world scenario

and application. However, before we move into practical experiments and tests, which

will be presented in the next chapter, we need to verify the capabilities of the algorithm

using scientific experiments with scientific data. In this section, we will provide various

experiments conducted on three images, and we will examine how the algorithm works

in diverse conditions.
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We begin by conducting a numerical experiment to quantify the loss in accuracy by

using approximated proximal operators for image deconvolution/denoising application

for the caseϕ(u) = ‖u‖p. For comparison, the solution is computed by twomethods: the

exact solution, as proposed in (Lorenz (2007)), and its approximation in Equation (3.16)

for some `p quasi-norms. Although (Lorenz (2007)) provides the exact solution, this ap-

proach has very high computational complexity in comparison to approximated proximal

operators, and the solutions take a few minutes.Whereas in our case, the approximated

solutions are calculated within seconds. Since the difference cannot be assessed visually,

in table 3.2, we show the Mean Squared Error (MSE) values for various values of p. The

MSEs considered here are computed:

i) Between the approximated solution and the original image.

ii) Between the exact solution and the original image.

As the results show, the approximation provides a very close solution to the exact solution

with less complexity and less time. The closeness of solutions supports the claim made

previously: the use of approximated thresholding operators is almost indistinguishable

from exact solutions.

Lena Cameraman Piecewise Constant
`p Exact Approx Exact Approx Exact Approx
`3/4 0.0024 0.0024 0.0035 0.0035 0.0014 0.0014
`1/2 0.0025 0.0025 0.0036 0.0036 0.0011 0.0011
`1/3 0.0027 0.0027 0.0041 0.0040 0.0016 0.0017

Table 3.2: Accuracy of approximation.The difference between approximated and exact solutions
is negligible.

3.4.1 Notes on parameter β and µ algorithm

As mentioned in section 3.3.1, the parameter β plays a crucial role in the variable

splitting technique. However, this role has not been entirely understood (Wang et al.

(2008)) and not many papers have been dealing with this matter in detail. To gain some

perspective of the importance of the subject, here we provide some comments and some

empirical observations on β in which we have observed with our experiments. The

authors of (Wang et al. (2008)) propose two minimization algorithms as shown below:
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Algorithm 1 of (Wang et al. (2008))-keeping β fixed with large values: In this

scheme, the authors use large values of β for the algorithm to converge faster. However,

as discussed before and also mentioned in (Afonso et al. (2010)), large values of β

may cause the problem to become ill-conditioned and create problems to assess the

performance of deconvolution following the evolution of β. To verify the claim, we

have conducted an experiment. In our test, we have used two images of Lena and

the Cameraman. For this experiment we have used 3 different φ(u). Illustrated in

Figure (3.3), it is evident that the quality of the reconstructed image is maintained once

β has reached a certain value, i.e. β ∈ [27, 28] for 3 different regularizers (i.e. ϕ3/4
−1 (x)

and ϕ2
1(x) ). This proves that for any φ(u), a constant β will provide a sufficient result.

It is worth mentioning that an intermediate value of β can avoid numerical problems of

the penalty method mentioned in section 2. A of (Afonso et al. (2010)).

Algorithm 2 of (Wang et al. (2008))- continuation scheme, i.e. gradually increas-

ing β to large values 1: Algorithm 2 was proposed to tackle the difficulty arising due to

the value of µ. In (Wang et al. (2008)), µ was chosen according to the level of noise,

which is not optimal in terms of peak signal-to-noise ratio (PSNR). This assumption led

to small values of µ in the experiments and tests. In this context, it is necessary to have

many iterations for the optimization problem to converge, and an algorithm that requires

a high number of iterations is not efficient. To tackle this problem, the authors of (Wang

et al. (2008)) propose algorithm 2 to speed the algorithm. In algorithm 2, the value of

β is multiplied by a factor at each iteration. In the next iteration, the optimization will

be done with a larger β so that the algorithm can converge faster. We have discovered

that this method may not be effective to accelerate the algorithm. Moreover, in higher

iterations, β may become too large, i.e. β ≥ 2024, which may cause the algorithm to

become too stiff. To tackle this problem, in our method, we choose µ according to opti-

mal PSNR. In this case, the values of µ will have big values (see table 2 of next section).

Under this context, it is unnecessary to use the continuation scheme of algorithm 2 if

µ is large. For this reason, our algorithm keeps β fixed. This reduces computational

1For more information about the algorithm please refer to sections 2.1 and 4 of Wang article.
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Fig. 6: PSNR of images recovered in experiment 3.1 for different �,
Lena (above) and Cameraman (below). The performance does not
improve once � reaches a certain value.
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ing to deblur. IEEE transactions on pattern analysis and ma-
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Willett R. Deep learning techniques for inverse problems in
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Figure 3.3: PSNR of images recovered in experiment 3.1 for different β, Lena (above) and
Cameraman (below). The performance does not improve once β reaches a certain value.
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complexity.

We have conducted an experiment to show our claim. We used the Cameraman

image and deconvolution in this experiment using our proposed algorithm with large µ

and constant β. We also performed deconvolution under the circumstances of algorithm

2 of (Wang et al. (2008)) for the same image. At each iteration the value of β is increased

with factor of κ .i.e βi = κ ∗ β(i−1). Three different values of κ were considered for this

experiment. The results are presented on the right-hand side diagram of Figure (3.4).

Upon comparing the results of the two experiments, we can see that fixed β provides a

level of accuracy comparable with that of a continuation scheme approach of algorithm

2.

deconvolution. In Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR), 2017.
[28] Schuler CJ, Hirsch M, Harmeling S, Schölkopf B. Learn-
ing to deblur. IEEE transactions on pattern analysis and ma-
chine intelligence. 2015 Sep 23;38(7):1439-51.
[29]Ongie G, Jalal A, Metzler CA, Baraniuk RG, Dimakis AG,
Willett R. Deep learning techniques for inverse problems in
imaging. IEEE Journal on Selected Areas in Information The-
ory. 2020 May 1;1(1):39-56.
[43]A. Beck and M. Teboulle, “A fast iterative shrinkage-
thresholding algorithm for linear inverse problems,” SIAM
Journal on Imaging Sciences, vol. 2, pp. 183–202, 2009.
[44]J.M. Bioucas-Dias and M.A.T. Figueiredo, “A new TwIST:
two-step iterative shrinkage/thresholding algorithms for image
restoration,” IEEE Transactions on Image Processing, vol. 16,
pp. 2992–3004, 2007.
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Fig. 6: (Left) Evolution of the cost function for deblurring Cameraman,
µ “ 300, p “ 2{3. Different values of fixed �. (Right) Comparison between
fixed beta and dynamic beta. �i “  ˚ �pi´1q, i: iteration value. We note
that larger � values converge slower than small ones. Fixed � can provide
comparable performance to dynamic if µ is large.

Figure 3.4: (Left) Evolution of the cost function for deblurring Cameraman, µ = 300, p = 2/3.
Different values of fixed β. (Right) Comparison between fixed beta and dynamic beta. βi =
κ ∗ β(i−1), i: iteration value. We note that larger β values converge slower than small ones.
Fixed β can provide comparable performance to dynamic if µ is large.

Another note concerns the work done in (Krishnan and Fergus (2009)). This paper

considers an extension of the algorithm 2 of (Wang et al. (2008)). It considers replacing

l1 with lp regularizers in the anisotropic case. Closed form solutions are applied for

particular values of p (p = 1
2 and p = 2

3 ). For other values of p they propose a lookup

table (LUT) which is inefficient and impractical. In this work (Krishnan and Fergus

(2009)), the following claims are made which do not match our observations:
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i) One iteration per value of β can be enough.

ii) Smaller values of β might require more iterations. To assess the correctness of the

claims, we have performed the deconvolution on the Cameraman image with µ = 300

and for the case of ϕ(u) = ‖u‖p. We repeated the experiment with five different values

of fixed β. As illustrated in Figure (3.4) left, we can observe different results in contrast

with the claims made in (Krishnan and Fergus (2009)). Our observations provide the

following results:

i) Several iterations per value of beta are necessary.

ii) More iterations are needed when β is large instead of small.

In this section, we tried to give an analytical observation of the parameters of

new and better. These parameters play an important role in optimising deconvolution

and denoising problems. However, although they may seem not so important, these

parameters are vital to be understood according to the application. The observations

that we have provided in this section have not been discussed and analysed thoroughly

in recent papers and research. We have tried to provide meaningful insight on these

parameters to gain a comprehensive understanding of the role of such parameters in

similar optimisation problems.

3.5 Experiments of deconvolution performance

In this part, we will perform numerous experiments on scientific data to observe

the performance of the deconvolution algorithm. Our proposed algorithm uses various

regularizers as prior information for image deconvolution application. It will be shown

that we can find new functions and regularizers that outperform previous methods of the

image to deconvolution. It will be the first time such new regularizers are considered for

image denoising/deconvolution. We will also prove that our algorithm is flexible to be

used in various applications under extreme conditions. To begin with, in the following

section, we will discuss the measurement parameter that we have used to assess the

quality of the images we have obtained through our proposed algorithm.
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3.5.1 Image quality metrics

Here we will talk about three main image quality metrics used to assess image

quality. Unfortunately, no general quality metric is commonly used. The performance

of a quality metric is typically evaluated by its prediction accuracy, monotonicity and

consistency. It is also anticipated to reflect the quality grades appointed by indepen-

dent human viewers. Researchers and scientists are increasingly becoming involved in

defining a well defined and accepted image quality metric.

Humans are ultimately the judges of image quality. Moreover, human beings have

an inherent ability to determine what “good” or “poor” quality is. The human visual

perception system is highly capable of identifying structural information from a scene

and hence identifying the differences between the data extracted from a reference and a

sample scene. Naturally, it is expected from a machine or computer to provide a similar

assessment and perform better on tasks that involve differentiating between a sample

and a reference image. For this purpose, various quality metrics have been studied and

suggested as a tool for computers to assess the quality of signal and image as close as

possible to human criteria. These approaches are primarily based on research and our

current understanding of the Human Visual System (HVS).

Mean-Squared Error (MSE):

The MSE quantifies the global difference between a discrete signal and an original

(reference) signal; in this sense, MSE is a full-reference metric. It is formulated by:

MSE = 1
N

N−1∑
0

(xi − x̂i)2 (3.18)

where xi is the i-th pixel/sample of the original image/signal, x̂i is the i-th pixel/sample

of the given image/signal and N is total number of pixel/sampled points. This approach

is popularly used because of its simplicity. MSE bears a few drawbacks. It effectively

considers only global/general variations and neglects localized errors which may happen

in a certain region or area of an image. In addition, it is unable to detect structured or

patterned errors. Structured/patterned errors include artefacts (an object or pattern that
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is not originally part of the original image) and distortions that possess a particular,

not arbitrary pattern. More specifically, there is an interdependent relationship among

adjacent pixels. MSEmisses this type of error because themetric examines only absolute

differences.

Peak Signal-to-Noise Ratio (PSNR):

Another commonly used and a close relative of the MSE metric is peak signal-to-

noise ratio (PSNR). The PSNR is given by:

PSNR = 10 log10
L2

MSE
(3.19)

In this formulation, L is the highest possible pixel value in the image, for example,

255 in the case of an 8-bit image. PSNR is a ratio that influences the quality of a

signal’s representation by comparing its maximum achievable strength to the power of

corrupting noise. A higher PSNR value provides a higher image quality. PSNR is a

metric that is frequently used to assess digital signal transmission quality. Since PSNR

is a variation of the MSE, it still concentrates on pixel-by-pixel comparison and bears

the same drawbacks of MSE. PSNR is also more sensitive to additive Gaussian noise.

Structural Similarity Index Measure (SSIM):

Natural image signals are highly structured and patterned: in these images, pixels

exhibit strong dependencies; these dependencies carry essential information and data

about the structure/pattern of the objects in the visual scene. SSIM was developed to

provide a more reliable tool to assess the quality of various types of images. The SSIM

is a famous quality metric used to measure the similarity between two images. It was

developed by Wang et al. (Wang et al. (2004)) and is regarded to be in correspondence

with the quality of the perception of the human visual system (HVS).

The SSIM is defined as:

SSIM(x, x̂) = [l(x, x̂)]α . [c(x, x̂)]δ . [s(x, x̂)]γ (3.20)

where α > 0, δ > 0, γ > 0 are parameters to adjust the relative importance of each
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component. The luminance comparison function is formulated as:

l(x, x̂) = 2µxµx̂ + C1

µ2
x + µ2

x̂ + C1
. (3.21)

The luminance comparison l function measures the closeness of the two images

mean luminance (µx and µx̂). The constantC1 is added to avoid instability when µ2
x+µ2

x̂

is very close to zero.

The contrast comparison function is formulated as:

c(x, x̂) = 2σxσx̂ + C2

σ2
x + σ2

x̂ + C2
. (3.22)

The contrast comparison function c measures the closeness of the contrast of the

two images. Here the contrast is measured by the standard deviation σx and σx̂. Here

also C2 is used to avoid singularity error.

The structure comparison function is formulated as:

s(x, x̂) = σxx̂ + C3

σxσx̂ + C3
. (3.23)

The structure comparison function s measures the correlation coefficient between

the two images x and x̂. σxx̂ is the covariance between the two images. The positive

values of the SSIM index are within the range of 0 and 1 i.e SSIM ∈ [0, 1]. A value of

0 means no correlation between images, and 1 means that x = x̂.

Figure (3.5) below shows the diagram flow of the structural similarity measurement

system. Signal X and signal Y refer to the reference and sample images. Signal Y is the

same as x̂ of our formulation. For image quality assessment, it is usually recommended

to apply the SSIM index locally rather than globally.

There are no precise rules for choosing between the SSIM or the PSNR in evaluating

the image quality. Some studies have revealed that the MSE and so the PSNR perform

poorly in discriminating structural content of images since different types of degradations

applied to the same image can result in the same values of the MSE (Wang and Bovik

(2009)). On the contrary, some studies have shown that the MSE, and consequently the
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PSNR, exhibit the best performance in assessing the quality of noisy images (Avcibas

et al. (2002)).604 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 13, NO. 4, APRIL 2004
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Fig. 3. Diagram of the structural similarity (SSIM) measurement system.

and contrast can vary across a scene, we use the local luminance
and contrast for our definition.

The system diagram of the proposed quality assessment
system is shown in Fig. 3. Suppose and are two nonnegative
image signals, which have been aligned with each other (e.g.,
spatial patches extracted from each image). If we consider
one of the signals to have perfect quality, then the similarity
measure can serve as a quantitative measurement of the quality
of the second signal. The system separates the task of similarity
measurement into three comparisons: luminance, contrast and
structure. First, the luminance of each signal is compared. As-
suming discrete signals, this is estimated as the mean intensity

(2)

The luminance comparison function is then a function
of and .

Second, we remove the mean intensity from the signal. In
discrete form, the resulting signal corresponds to the
projection of vector onto the hyperplane defined by

(3)

We use the standard deviation (the square root of variance) as an
estimate of the signal contrast. An unbiased estimate in discrete
form is given by

(4)

The contrast comparison is then the comparison of
and .

Third, the signal is normalized (divided) by its own standard
deviation, so that the two signals being compared have unit stan-
dard deviation. The structure comparison is conducted
on these normalized signals and .

Finally, the three components are combined to yield an
overall similarity measure

(5)

An important point is that the three components are relatively
independent. For example, the change of luminance and/or con-
trast will not affect the structures of images.

In order to complete the definition of the similarity measure
in (5), we need to define the three functions , , and

, as well as the combination function . We also would
like the similarity measure to satisfy the following conditions.

1) Symmetry: .
2) Boundedness: .
3) Unique maximum: if and only if (in

discrete representations, for all ).
For luminance comparison, we define

(6)

where the constant is included to avoid instability when
is very close to zero. Specifically, we choose

(7)

where is the dynamic range of the pixel values (255 for 8-bit
grayscale images), and is a small constant. Similar
considerations also apply to contrast comparison and structure
comparison described later. Equation (6) is easily seen to obey
the three properties listed above.

Equation (6) is also qualitatively consistent with Weber’s law,
which has been widely used to model light adaptation (also
called luminance masking) in the HVS. According to Weber’s
law, the magnitude of a just-noticeable luminance change is
approximately proportional to the background luminance for
a wide range of luminance values. In other words, the HVS is
sensitive to the relative luminance change, and not the absolute
luminance change. Letting represent the size of luminance

Figure 3.5: Visual demonstration of the structural similarity (SSIM)measurement system (Wang
et al. (2004)).

Since there are no exact rules and regulations about how to assess the quality of the

images in scientific papers, also to benefit from the positive aspects of the two image

quality metrics; in this thesis, we will use both SSIM and PSNR matrix to evaluate the

quality of the images obtained from our deconvolution algorithm. The following section

will provide the results of image deconvolution experiments on Lena and Cameraman

images to model complex images and signals. Also, we will consider a piecewise

constant image to resemble the sparse image and signal.

3.5.2 Experiments

To begin with, we will present a notion of the dataset that we have used in our

experiments. It is vital to understand that each image has its unique characteristics. In

other words, if we take a look at the signal of each image, they would represent a unique

property of their own. To better understand we have depicted the signal representation

of three sample images without noise or blur in Figure (3.7)(a). For example, the

piecewise constant image has very close characteristics to a sparse signal.The piecewise

constant image is used for image quality assessment for industrial applications such as
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a ) Camera man b ) Lena c ) piecewise constant

FIGURE 3.6 – Data set used for Experiments

constant image is used for image quality assessment for industrial applications such as

scanners. The piecewise constant image characteristic is highly similar to text images.

The usage and application of this particular image will be described in the next chapter.

The images of Lena and the Cameraman contain a more complex signal. Since the

Lena image has more structure and pattern, its signal is more complicated than the

Cameraman. Figure (3.7)(b) shows the same signals with blur and some added white

Gaussian noise. The original signals show a different characteristic in the presence of

noise and blur. For example, the piecewise constant signal behaves as a complex signal

compared to its original version. Also, the signal for the Lena image has changed so

much that it looks very different from its original counterpart. By looking at the blurred

noises signals, it’s apparent that the inverse problem of denoising/deconvolution is

very ill-posed. This demonstration shows the importance of the prior information

that has to be introduced to the optimization problem. From another point of view,

the simple observation proves that regular classical regularizers are not sufficient

for all image deconvolution/denoising applications. Consequently, our new proposed

potential function will provide new functions to better recover the signals following the

prior information needed to recover its original property.
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Figure 3.6: Data set used for Experiments.

scanners.The piecewise constant image characteristic is highly similar to text images.

The usage and application of this particular image will be described in the next chapter.

The images of Lena and the Cameraman contain a more complex signal. Since the

Lena image has more structure and pattern, its signal is more complicated than the

Cameraman. Figure (3.7)(b) shows the same signals with blur and some added white

Gaussian noise. The original signals show a different characteristic in the presence of

noise and blur. For example, the piecewise constant signal behaves as a complex signal

compared to its original version. Also, the signal for the Lena image has changed so

much that it looks very different from its original counterpart.By looking at the blurred

noises signals, it’s apparent that the inverse problem of denoising/deconvolution is very

ill-posed. This demonstration shows the importance of the prior information that has

to be introduced to the optimization problem.From another point of view, the simple

observation proves that regular classical regularizers are not sufficient for all image

deconvolution/denoising applications. Consequently, the new potential function will

provide new regularizers to better recover the signals following the prior information

needed to recover its original property.

To better assess the capability of the proposed algorithm, we perform deconvolution

on our dataset using various regularizers.We report the PSNR and structural similarity

index measure (SSIM) obtained with different regularizers after deconvolving for three

images: Lena, Cameraman and the piecewise constant. The result of this experiment

is presented in Table (3.3).As mentioned before, we perform deconvolution according
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3.5. EXPERIMENTS OF DECONVOLUTION PERFORMANCE
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FIGURE 3.7 – (a) Signal representation of original Images. (b) Representation of the
original signals in the presence of blur and noise.
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Figure 3.7: Two demonstration of signals: (a) Signal representation of original Images. (b)
Representation of the original signals in the presence of blur and noise.
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Blurred p=1 µ p=3/4 µ p=2/3 µ p=1/2 µ ϕpq(x) µ

Lena
PSNR 25.463 27.75 500 27.55 775 27.39 1000 27.22 1500 27.836 - ϕ1.08

3 (x) 325

SSIM 0.5760 0.8038 350 0.8053 725 0.8052 825 0.8021 1250 0.8055 - ϕ0.92
2.95(x) 275

Cameraman
PSNR 25.9141 26.78 500 26.996 1000 26.970 1000 26.869 1775 27.0667 - ϕ0.92

3 (x) 500

SSIM 0.5112 0.7900 350 0.7987 775 0.7948 1000 0.7838 1225 0.7978 - ϕ1
3.15(x) 325

Piecewise Constant
PSNR 17.8474 34.099 325 34.368 500 34.092 750 33.480 1225 34.6055 - ϕ0.92

3 (x) 325

SSIM 0.6515 0.9593 225 0.9563 500 0.9487 500 0.9364 500 0.9629 - ϕ1
3.1(x) 225

Table 3.3: Comparison of PSNR and SSIM of reconstructed images using regularizers: l1 ,lp
and ϕpq(x). The optimal value of µ is also reported. There exists one ϕpq(x)) able to provide
better performance in both scales.The values in bold correspond to the best performance.

to optimal PSNR and SSIM. Therefore, we have used grid search for each regularizer

to find the optimal value of µ. It is important to note that the value of µ for each

regularizer,ϕpq(x), differs according to the quality measurement matric; this is because

each quality matric considers different properties for scoring. The values of µ are re-

ported accordingly in the table. The PSNR and SSIM values of the blurred image are

also included. When compared to the PSNR and SSIM values of restored images, the

algorithm’s effectiveness is evident. In this experiment, we have used the kernel from

(Zhang et al. (2012a)) and additive Gaussian noise with σ = 0.02. This kernel is par-

ticularly interesting since it is a very complex blur. This kernel destroys the information

on the original image/signal extensively, therefore, making it harder for the algorithm to

restore the data. This helps to evaluate ther robustness of the deconvolution. According

to the results in table 2, One of the key results is that we see that it is possible to find

a function among all ϕpq(x) regularizers that can outperform regularizers such as l1

(Afonso et al. (2010); Wang et al. (2008)) and lp norm (Krishnan and Fergus (2009);

Zuo et al. (2013)). A grid search was conducted to find the optimal values of p and q

for ϕpq(x). This grid search will be explained shortly. Our experiments show that the

variation in performance (PSNR) across values of p and q is similar for different images,

convolution kernels and levels of noise. However, some minor variations are observed

in each case.
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To effectively observe the variation of PSNR for different types of signals and im-

ages, we analyzed a colour map to better understand this phenomenon. As mentioned

at the beginning of this section, various images exhibit different properties and charac-

teristics. Some photos tend to be sparse, some Hyper-Laplacian and others are complex

signals. To illustrate this variation, we have used two 256 × 256 images: Lena and

the piecewise constant image. We conduct image deconvolution for various values of

p and q. As shown in Figure (3.8), PSNR values of deconvolution can be observed for

q ∈ [−1, 3] and p ∈ [0.1, 1.5] with each range divided into 64 equally spaced points.

In other words, for each image, the deconvolution was done 4096 times, according to

optimal µ, each time concerning a different ϕpq(x) function. The additive Gaussian noise

(σ = 0.02) is considered for this experiment. It can be seen that the pattern of PSNR

varies from one image to the other. The observation also proves our theory that one

general regularizer can not be used for extensive photos and images. The results show

that the best ϕpq(x) function for Lena lies around the region where p = 1.1 and q = 2.9,

whereas the best function forCameraman lies around the regionwhere p = 0.9 and q = 3.

Color Map: To benefit the appropriate ϕpq(x) that fits a particular condition of

image deconvolution/denoising, we propose a general scheme: The colour map can be

acquired once according to the set of images or conditions that the user wants to use

the algorithm. Once the appropriate values of p and q are found, the optimal ϕpq(x) can

be used for further experiments and usage. This scheme will guarantee that the images

acquired bear the maximum achievable quality.

Visual Demonstration: Our CIFRE PhD aims to implement the algorithms

within the scanners and cameras of I2S for the use of clients. In the end, the judge of the

quality of scanned images will be the clients. They always prefer to have a product that

visually looks good, is sharp and contains as much detail as possible. In consequence,

one of the primary purposes of deconvolution is to provide a reconstructed image that

can have the optimal quality perception of the human visual system (HVS); therefore, at

any stage, aside from the image quality metrics, it is crucial to assess the results visually
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3.5. EXPERIMENTS OF DECONVOLUTION PERFORMANCE

a Lena. b piecewise constant.

FIGURE 3.8 – PSNR values after deconvolution using the regularizer 'p
qpxq as a function

of p and q. The best 'p
qpxq function for Lena lies around the region where

p “ 1.1 and q “ 2.9. The best function for Cameraman lies around the
region where p “ 0.9 and q “ 3.

to the results in table 2, One of the key results is that we see that it is possible to

find a function among all 'p
qpxq regularizers that can outperform regularizers such as

l1 [WYYZ08, ABDF10] and p norm [KF09, ZMZ`13]. A grid search was conducted to

find the optimal values of p and q for 'p
qpxq. This grid search will be explained shortly.

Our experiments show that the variation in performance (PSNR) across values of p and

q is similar for different images, convolution kernels and levels of noise. However, some

minor variations are observed in each case.

Color Map :

To effectively observe the variation of PSNR for different types of signals and images,

we analyzed a colour map to better understand this phenomenon. As mentioned at the

beginning of this section, various images exhibit different properties and characteristics.

67

Figure 3.8: PSNR values after deconvolution using the regularizer ϕpq(x) as a function of p and
q. The best ϕpq(x) function for Lena lies around the region where p = 1.1 and q = 2.9. The best
function for Cameraman lies around the region where p = 0.9 and q = 3

with the human eye.

We used Lena and the piecewise constant image for a visual demonstration of

deconvolution. We convolved the images with the kernel in previous experiments

with additive Gaussian noise with σ = 0.04. The results of deconvolution are shown

in Figure (3.10). For both sets of images, the top left is the original, the top right

represents the blurred image, the bottom left is the result for the regularizer proposed

in (Krishnan and Fergus (2009); Zuo et al. (2013)) with p : 3/4 and the bottom right is

the regularizer of our method: ϕ3
1.08(x)( for Lena), ϕ3

0.92(x)( for piecewise constant). A

significant enhancement can be visually assessed in both cases. The details are much

apparent in our proposed regularizers, and the texture in the face of Lena is more visible

in comparison to other regularizers. In the case of a piecewise constant, the lines,

especially the diagonal lines, are clear and detectable. It will be presented that this will

achieve a high TFM score.

It is vital for an algorithm to be flexible and to perform in various circumstances. For

the deconvolution to be effective, our algorithm should survive suboptimal conditions.
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Figure 3.9: (a) Visual illustration of 19 × 19 kernel used inexperiment of Figure(3.10) of
(Krishnan and Fergus (2009)) The kernel used.

The scanner of I2S will be used in various unknown conditions; we have to test if

the algorithm is resistant to changes. One of the main alterations occurs when the

image’s capturing conditions are varied; these factors include luminance, vibrations of

the camera or scanner, and poor data. These alterations can be modelled by changing

the properties of noise and the blur of the algorithm and examining how it performs.

To model such practical conditions and variations, we perform deconvolution with a

uniform kernel of varying size; Table (3.4) reports the PSNR obtained by deblurring

Lena. The result shows that as the conditions worsen, our proposed method and ϕpq(x)

function outperforms the other classical regularizers significantly. For example, in the

case of the kernel size eleven by eleven, ϕ1.1
3.2(x) provides a considerable improvement.

We see that for all kernel sizes, there is a ϕpq(x) that offers better performance than

previous regularizers. However, the optimal value of p and q may vary along with the

size of the kernel.
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(a) Deconvolution Test.

Fig. 6: (a) Visual illustration of deconvolution for Lena and a piecewise
constant image. (top-left) Original, (top-right) blurred, (bottom-left) `3{4 and
the proposed regularizer (bottom-right) 'p

qpxq with 19 ˆ 19 kernel of [3] .
For both images, an improvement can be assessed visually. The PSNR values
for all images have been provided in Table 2. (b) The kernel used.

Figure 3.10: (a) Visual illustration of deconvolution for Lena and a piecewise constant image.
(top-left) Original, (top-right) blurred with 19 × 19 kernel, (bottom-left) `3/4 and the proposed
regularizer (bottom-right) ϕpq(x) . For both images, an improvement can be assessed visually.
The PSNR values for all images have been provided in Table 3.3
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Blurred `1 `3/4 `2/3 `1/2 ϕpq(x)
3x3 30.546 32.3178 31.8101 31.6554 31.3471 32.2679, ϕ1.08

3 (x)
5X5 27.99 29.2531 28.8506 28.6622 28.1661 29.36, ϕ1.15

3 (x)
7X7 26.357 27.5210 27.1622 27.0161 26.4904 27.54, ϕ1.15

3.3 (x)
9x9 25.22 26.5394 26.2691 26.1272 25.5365 26.56, ϕ1.15

3.3 (x)
11x11 24.387 25.9967 25.72 25.5860 24.7593 26.01, ϕ1.1

3.2(x)

Table 3.4: PSNR for different kernel sizes for different regularizers. The proposed regularizer
ϕpq(x) provides a modest PSNR enhancement. The values in bold correspond to the best
performance.

3.6 Chapter conclusion

This chapter provided an extensive review and study of our proposed algorithm

that we have used for our image deconvolution/denoising application. We first began

by explaining the objectives and motivation for developing a fast and accurate image

deconvolution algorithm. We then provided the formulation that we have used in our

thesis. We proposed a method that relies on the variable splitting technique; this allows

us to solve our optimization problem more effectively and efficiently. It also allows us

to separate the problem into two main sub-problems, which can be solved alternatively.

This proposition reduces the complexity of our algorithm. It will be shown in chapter 5

that it increases the modularity of our algorithm and allows us to run the algorithm using

various parallel computing, which will make the algorithm very fast. We then proposed

the general framework that we have used as the main regularizer term in our inverse

problem. The potential functions that we have used in this thesis have never been used

for any image denoising/deconvolution algorithm before. The potential function allows

our algorithm to be flexible and to be able to be used in various applications. To reduce

the complexity of our algorithm we have used the proximal operator as an approximation

to the potential functions. It was shown that the approximations are very close to the

exact solutions and, at the same time, are very fast. We gave an extensive analysis on the

parameters of µ and β to provide a general view on the role of these parameters in solving
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the optimization problem by various experiments and providing the results with plots.

We also demonstrated new claims and observations, which will help better understand

the parameters and the role for optimization. Later on, we evaluated three image quality

metrics that are popularly used to evaluate the quality of restored images. All three

metrics have their pros and cons in which we can benefit according to an application.

In our work to better evaluate our algorithm, we have used all three metrics to evaluate

the performance of the image deconvolution algorithm. In the end, we demonstrated

the results of various experiments of image deconvolution. The results showed the

effectiveness of our proposed algorithm under various circumstances. Furthermore, our

results proved to be solid both numerically and visually. It was proven that the potential

function could outperform the classical regularizers, which have been extensively studied

previously. It was also shown that our algorithm is resistant to changes and alterations

in the parameters and conditions of the data. In the next chapter, we will move on to the

actual implementation of the algorithm within the scanners and cameras of I2S. We will

further provide simulations on real data in a real-world application.
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Chapter 4: Practical Results

4.1 Introduction

In the previous chapter, we analysed the efficacy of our proposed algorithm with the

scientific data. The results showed a good performance of the algorithm both visually

and analytically. Previous results were based on scientific data and analysis. However,

the main goal of this thesis is to be able to provide a well-defined algorithm for practical

purposes. The main objective of I2S is to use our algorithm not just for the CopyBook

OS scanner but also to adapt the algorithm for various products such as microscopes

and other types of cameras. It is always challenging to take a developed algorithm or

idea from a scientific domain and use it in a practical application. Researchers and

engineers are constantly trying to build the gap between industry and science. In this

regard, from the beginning of the development of scientific ideas, it is important to bear

in mind the criteria and objective of a practical application so that from the beginning

to the end of implementation, the bridge between science and industry could be built

efficiently. Bearing this in mind, we have also aimed to develop our algorithm to be

implemented within the scanners of I2S and other products. After verifying scientific

data, it is essential to move on to the next step and evaluate the algorithm in real-world

conditions. The algorithm may work within simulation software such as MATLAB,

but it will face new challenges and obstacles when appropriately and fully implemented

within a computer and faced with real-world data. In this chapter, we will begin by

explaining the transformation of the algorithm from MATLAB to C++ software and the

steps taken to optimise the algorithm. Next, we will provide the experiments by using

the empirical data and images taken with the scanners of I2S. It will be shown that our

deconvolution proved to be very effective in practice, and also it works for scanners.

We can also implement the algorithm with some adaptation and adjustments in other

applications and devices at I2S.



4.2 Book Scanning and Scanners of I2S

We live in a digital world, and almost all data is available through digital files with

digital devices such as mobile phones, laptops and tablets. One of the main areas that

has gained much attention for digitalization is book scanning. Many organizations and

companies seek to create a digital archive of their records and documents. For example,

organizations such as a university or libraries are looking to preserve vital documents.

Book scanning or digitization is the procedure of converting physical books, magazines,

maps, painted pictures into digital media such as images, electronic text, or electronic

books (e-books) by using an image scanner with a special camera. Image scanners can

be both manual and automated. In a conventional commercial image scanner, the book

or the picture is placed on a flat surface, a light is transmitted to the book from above

to produce enough luminance for the camera. A glass plate is extended on top of the

book to the edge of the scanner, this helps to line up the book’s spine easier, keep the

book firm in its position and flatten the page for better acquisition. Pages may be turned

by hand or by automated paper transfer devices. Once the book has been scanned, a

dynamic quality check ensures that every single image is acquired to the highest possible

standards. Various books and pages with different conditions are used in the scanning

process. In most cases, digitalization deals with fragile, faded and old books which need

special handling and care. In this case, it is widespread that specific passages and areas

in the image can be hard to read. Therefore, in the background and post-processing,

image processing and restoration algorithms, such as our proposed methods, are used

to preserve or recover the missing information. Commercial book scanners differ from

regular scanners; these book scanners are usually equipped with a high-quality digital

camera with light sources on top. The camera is mounted on an extended frame or arm

to provide easy access for the user or machine to flip through the pages. Figure (4.1)

shows a sketch of a typical book scanner.

Our thesis is aimed at this type of scanner at I2S named CopiBook OS presented in

Figure (4.2). This model is designed as A2 format book scanner with a 400×400 DPI

resolution. The camera on this particular model is a 71 Mpixels commercially named
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Figure 4.1: Graphical demonstration of a typical manual book scanner scheme

“EAGLE camera”. The CopiBook OS also comes with another type of camera called

“E-XTRA camera”.

Our proposed deconvolution algorithm will be implemented on the “EAGLE cam-

era”, and the super-resolution schemewith the deconvolution at its side will be integrated

into the E-XTRA camera. In the following sections, we will provide the results of our

method for images captured with both cameras. In the next section, we will sum-

marise the standard image quality metrics widely used in industrial image processing

applications and product verifications.

4.3 The Modulation Transfer Function (MTF or FTM)

In many industrial image processing applications, a measurement known as MTF

is used to assess the quality of the images captured with various image capturing devices

such as cameras. MTF measurements aim to estimate the resolution achieved by an

optic system (Burns and Williams (2007)). Resolution is a measure of how well spatial

details are preserved. Measuring two factors as follow is required to define it,: 1)

spatial detail and 2) preservation. These spatial detail and preservation parameters

are not single measurements but rather a continuum of measurements; this is why

a functional curve quantifying them, i.e., the MTF, can be depicted to measure the
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Figure 4.2: CopiBook OS scanner of I2S

resolution parameters. Themodulation transfer function (MTF) is a precisemeasurement

made in the frequency domain. MTF is the spatial frequency response (SFR) of an

imaging system or component; it is the contrast relative to low frequencies at a given

spatial frequency. MTF is also a frequency response, except that it involves spatial

frequency-cycles (line pairs) per distance (millimetres or inches) instead of time. The

mathematical calculation is the same as calculating the frequency response of a signal.

Spatial frequency response is used since:

It is compatible with engineering descriptions of data.

Simplifies some forms of system analysis bullet.

Compatible with several visual image quality descriptions.

The spatial frequency response (SFR) diagram is a curve that characterizes how

an imaging system conserves the relative contrast (spatial detail) of increasing spatial

frequency detail.

MTF is a metric quantifying the sharpness of the reconstructed image. The input

variable in the horizontal axis of the SFR curve is spatial frequency, which increases to

the right. Higher spatial frequencies are interpreted to more finely spaced details. The

output response in the vertical axis is the preservation of contrast from an object to a

digital image by camera or scanner.
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measures of camera resolution under ISO 12233 edition 2. 4 
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Figure 1: SFR plots (top) and associated images demonstrating image 
sharpness and limiting resolution 

Though limiting resolution is a reasonable summary metric for 
objectively reporting spatial resolution, it does have limitations, 
particularly in predicting image sharpness. 

For instance, using a 10% SFR criterion, all of the images in 
Fig. 1 have the same limiting visual resolution. This is indicated 
by the loss of text visibility at the fourth text grouping from the top 
in each case. Notice, however, the remarkable differences in image 
sharpness between the three images. The rightmost clearly has the 
best image quality. The higher SFR values at all of the spatial 
frequencies in the companion graph predict this. This is followed 
by the middle and left most images with decreasing image 
sharpness, but equivalent limiting resolution. 

Figure 1 illustrates the importance of focusing on the low to 
middle spatial frequency range for the measuring and predicting of 
perceived image sharpness and overall quality.  This fact has not 
been lost on the image processing community and is the region 
where digital sharpening operations are generally beneficial, when 
applied in moderation. 

Sharpness vs. Sharpening 
It is often said of digital imaging that sampling is not 

resolution. 5 Image sampling indicates the interval between pixels 
on a particular plane in the scene (camera), or on the object 
(scanner). Limiting resolution refers to the ability of an imaging 
component or system to distinguish finely spaced details. Although 
image sampling (e.g. 300 ppi vs. 600 ppi scanning) can enable a 
level of detail in a digital image, it is not the same as, and does not 
guarantee, the capture of a particular level of limiting resolution. 
High image sampling is a necessary but insufficient condition for 
resolving detail. 

 Likewise, high (perceived) limiting resolution does not 
guarantee an overall impression of high sharpness in a displayed 
image. This was shown recently in Fig. 3 of Ref. 5, part of which 
is reproduced in Fig. 2. This graph shows the measured spatial 
frequency response, of the two image capture paths from digital 
still cameras. The results are based on the standard analysis of an 
edge feature in a sample image from each camera. The differences 
in the solid and dashed black lines at high frequencies help explain 
the perception of limiting resolution for the two systems. The 
frequency at which the SFR falls to 10% is indicated as the 
measure of limiting resolution. The system responses in the lower 
frequency range, 0.1-0.2 cy/pixel correspond to the differing 
impression of image sharpness from the two systems. 

 

 
Figure 2: Measured spatial frequency responses for two digital camera 
paths. Unsharp capture followed by digital sharpening (solid line), and  
well-focused optical capture without sharpening (dashed). From Ref. [5]. 

As indicated by the caption for Fig. 2, the camera image 
corresponding to the solid line had been subjected to an image 
sharpening operation. Many digital cameras and scanners apply 
such image processing operations as a routine part of image 
capture. These operations can take many forms, but all aim to 
enhance certain important image content. Sharpening image 
processing operations operate on a digital image after capture, and 
so do not completely compensate for, e.g., poorly focused optics, 
but can be useful in improving the appearance of an image after 
capture. Sharpness is a visual attribute of a displayed image, and 
there are image quality models which attempt to predict the level 
of sharpness that a viewer would perceive. Understanding both 
image sharpening operations and sharpness models can be done 
using the spatial-frequency description provided by the system 
SFR.  
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Figure 4.3: SFR plots of three images with different resolutions taken from (Williams and Burns
(2008))

Figure (4.3) demonstrates the SFR curve for three images with various resolutions

and sharpness. The red curve belonging to the middle picture represents a clean SFR

curve response. The black curve corresponds to the blurry image on the far left-hand

side where the details and edges are not sufficiently visible. The blue curve corresponds

to an image that has been over-sharpened with an image processing algorithm. Though

most of the character is readable, their degree of discernability is not the same. This

difference is reflected in the shape of the MTF.

MTF is significantly popular in the industry since it is very practical. With a single

measurement, it is able to measure parameters at the same time, and it is also very

simple. It is one of the most important benchmarks for imaging performance in the
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Figure 4.4: The meaning of different SFR curves.

scientific/industrial community because it is fundamental.

General scheme for MTF usage:

To use the MTF measurement effectively, we would like to provide a general guide-

line that we have used to measure the effectiveness of our algorithm using the MTF

measurement. We have depicted the scenarios with the SFR curve measurement in Fig-

ure (4.4). The green curve shows a perfectly standard SFR curve that we would like to

achieve after applying our image processing (denoising, deconvolution, interpolation).

If the resulting image bears low contrast and low visibility with blur, the curve would be

similar to the red curve in Figure (4.4). In this case, for example, we need to apply the

algorithm with more vigorous parameters to be able to move the red curve towards the

green. The purple curve is the scenario when the resulting image has been sharpened

too much; in this case, the curve needs to move towards the green curve with less intense

parameters so that the image will have a standard resolution. The overshooting at the low

frequencies of the purple curve is a good demonstration of either over a sharpened image

or an artificial sharpening that is not desirable in industrial/scientific applications. We

have used this simple but effective scheme in our experiments which will be presented

in the coming sections.
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(1)

(2)

(3)

(4)

Figure 4.5: Slant Edge Target also known as QA62.

How to measure SFR in Practice? MTF measurement is also defined as the

magnitude of the Fourier transform of the line spread function (LSF), where the LSF

can be viewed either as the response of an imaging system to a line function. With this

property, a common way to measure the spatial frequency response (SFR) of digital still

cameras and scanners is by Slant Edge Target, as shown in Figure (4.5). As a small

reminder, we have used a similar image as a target for our experiments in chapter 3 called

piecewise-constant image. The MTF target is placed on the sample image, and an image

is captured with the camera or the scanner. The exact equation and properties of the

diagonal lines are pre-defined in special software; this software analyses the MTF target

and extracts the diagonal lines from the sample image, in other words, the red regions,

as shown in Figure (4.5). After the comparison, the SFR curve off the MTF target is

calculated and presented. The software of the I2S takes the image regardless of being

greyscale or colour. If the sample image is a colour image, the SFR curve is depicted for

four red, green, blue and grey channels. Apart from the SFR curve, a star rating system

is also included in the MTF software. This system scores the image on a scale of one star

to four stars. The sampling image will gain four stars if the SFR curve is very close to

the standard perfect SFR curve compared to, and it will gain one star SFR for the curve

is far from the usual criteria.
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4.4 Practical Implementation

This section will begin to present the practical experiments with the images cap-

tured with I2S scanners. The images were captured with copybook OS scanners, as

mentioned before. Two different data sets were gathered; the first sample of images

was collected with the EAGLE camera. The images involved books, texts, newspapers

and pictures. The same kind of images was later captured using the E-XTRA camera.

Before presenting the results of deconvolution and super-resolution, we will give a brief

explanation of the programming language used for experiments.

4.4.1 Programming Languages

In this thesis, we have used MATLAB and C++ programming languages for our

simulations. As shown in chapter 6, we have also used python for some parts of our

simulations.

MATLAB programming language:

MATLAB (also regarded as matrix laboratory) is a fourth-generation high-level

programming language. It has an interactive environment for numerical computation,

visualization and programming. MATLAB programming language is more straight-

forward than most programming languages. It is regarded as a high-level language

because it is closer to the human language than the computer or machine language.

Matlab is beneficial for matrix calculations. We have used MATLAB programming

language for scientific experiments presented in chapter 3 since it is rapid and easy to

use. It will help us speed the validation of our algorithm. Also, some of the func-

tions were already defined in Matlab libraries. The programming of our algorithm was

done in a modular way which makes it easy to understand and easy to use for further

modifications. Although MATLAB is very effective for validating calculations and

mathematics, it cannot be used for communicating with machines such as computers

and microprocessors. Therefore, another programming language such as C or C++ has

to be used to implement the algorithm in devices. We have used C++ as the basis of

programming ask our algorithm to be implemented in the cameras and computers of I2S.
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C++ programming language:

The main goal of our algorithm is for practical application in industry for products

like connected image acquisition systems and embedded systems with limited compu-

tation capability. C++ is a great tool to help develop a solution that needs fast machine

performance. C++ allows the user to program from the base level. This may seem very

difficult and complex. However, it will provide the freedom to manipulate the algorithm

commands for the machine quickly and efficiently. In C++, the user has to explain

everything they intend to do and manipulate the source code; this provides a deeper

understanding of how all the parts of the algorithm work. C++ is closer to the hardware

level. Because of these reasons, it is used in many compilers as a backend programming

language. Some of the benefits of C++ are listed below:

Portability.

Object-Oriented.

Memory Management.

Fast and Powerful.

Similar to other languages.

Huge Community.

We will use Microsoft Visual Studio IDE for our C++ software development. It

is a very powerful IDE widely used for software development applications such as web

services, mobile apps and software. It contains completion tools, compilers, and other

features to facilitate the software development process. In our programming, We have

benefited from the functions of theOpenCV library to develop our algorithm. OpenCV is

an open-source computer vision library, Originally developed by Intel, publicly available

for computer vision researchers and engineers1. It is widely used for computer vision

applications in Artificial Intelligence, Machine Learning algorithms, and any tasks that

need image processing. Some of the main applications of OpenCV are as follow:

Image processing

Face detection / face recognition

1http://opencv.org.
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Figure 4.6: Screenshot of the Image watch user interface.

Object detection

Motion tracking

Medical image analysis

Robot and automated car navigation and control

Another main reason for using Microsoft Visual Studio IDE is the Image Watch

Plugin. This software is beneficial for image processing applications. It is specifically

designed to help image processing researchers and engineers to evaluate images in each

step of the algorithm and code in debug mode. It gives a perspective of what is exactly

happening to each pixel visually. The visual demonstration helps the researchers and

engineers gain an idea of the process and effects applied at each step to an image. As we

mentioned, apart from analysing the results of image processing algorithms analytically,

it is vital for the results to be acceptable for the human visual system. With the image

watch plugin, we can easily observe the changes and variations of an image generally and

pixel-wise view. Images can be seen in 4 channels explicitly; this helps analyse colour

images. A sample screenshot of the Image watch software is presented in Figure (4.6).
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ImGui:

Apart fromdeveloping the proper algorithm code inC++with optimization, we have

to build a user interface that will be compatible with the code, making it easier for the user

to access the algorithm’s parameters easily. The image watch software can only be used

in debug mode, which is not very efficient when the user is only interested in viewing the

results of the image deconvolution algorithm. As mentioned in chapter 3, our algorithm

has three main parameters,µ, β and the potential function ϕpq(x). After considering

these factors, we have designed a user interface compatible with C++ called ImGui

(also known as Dear ImGui). ImGui is a graphical user interface library for C++. It is

designed to enable fast iterations of an algorithm or code and enable the programmers to

create content creation tools and visualization tools (https://github.com/ocornut/imgui).

It is particularly suited for fullscreen and embedded applications. A demonstration of

our image deconvolution algorithm user interface is given in Figure (4.7).

The user interface is divided into different sections. The values of µ and β are set

in the parameter sections. We have a dedicated region to set the parameters of the H or

PSF. The initial size, σ values and the shape of the PSF kernel can be selected in this

part. Below the parameter selection region, some buttons are set to adjust the view of the

image in the window underneath. The original image and the result are depicted at the

user interface’s bottom part. The user can access the resulting image at any point once

the parameters are set. At each moment, by moving the mouse over a particular region

of images, a zoomed comparison of the regions is shown as a small pop up window to

better evaluate the result (the yellow region in Figure (4.7)). By making a left-click, the

pop up can be fixed at any desired position on the page.

The main challenge of programming proposed algorithm:

Even though the OpenCV image processing library and MATLAB provide many

functionalities for image processing algorithms, we have faced a particular problem in

our programming. Our image deconvolution/denoising and super-resolution techniques

are custom-designed with new functions and formulas. For the initial programming of

our algorithm in MATLAB, although we benefited from functions already developed in
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MATLAB, many other Functions had to be written explicitly for our algorithms. On the

other hand, we faced a significant challenge in transitioning the codes and functions of

MATLAB to C++ language. Most of the functions that we have used in MATLAB or

defined in MATLAB did not exist in the OpenCV library. We had to write the equivalent

of functions from scratch in the C++ programming language for the transition. Although

this proved to be a difficult task, in the end, we were able to provide a fully developed

function and C++ for image deconvolution Denoising and super-resolution. In this

process, once a new function was developed in C++, it had to be analytically compared

to its counterpart in MATLAB to ensure that the results were the same and the function

worked adequately. This challenge was one of the most time-consuming processes of

implementing our algorithm to be practically used in the industry. Once the initial

functional code was developed, the code was optimized and reviewed to make to code

less complex and fast. The next part will demonstrate the practical experiments under

developed C++ code using the dataset captured with the scanners.

4.5 Practical Experiments and Results

This section will demonstrate the results of the image deconvolution algorithm

applied to the captured images from the CopiBook OS scanner. We will present the

results of images captured using an EAGLE camera for the first part. We will compare

the results visually, and we will also evaluate the results with MTF measurement. As

discussed previously, scanners face different images from books to newspapers, from

maps to pictures; therefore, we need to simulate the same conditions for our image to

convolution algorithm. To ensure that our algorithm works for a variety of images, we

have included different kinds of images with varying properties of the signal. Suppose

the algorithm performs as well for all images. In that case, we can be confident that it

will work for different signals, and it will be a robust algorithm to be used under various

conditions and circumstances.
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Figure 4.7: Custom designed user interface of proposed deconvolution.
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4.5.1 EAGLE Camera Samples

Before capturing the images, the EAGLE camera was calibrated according to the

standards so that captured images would have the maximum quality possible. This

is done to avoid any additional and unwanted parameters affecting the images, which

may alter the exact performance evaluation of the deconvolution algorithm. Due to the

confidentiality of the calibration system, the method of calibration cannot be explained

in this chapter. Also, due to confidentiality, we could not disclose the parameters and

the ϕpq(x) used for the results. We will only present the visual results. Therefore, in the

following parts, we will only show the screenshot of the green region of the Figure (4.7).

The result of deconvolution on various samples are shown on Figure (4.8) and (4.9).

The images with stars represent the results of deconvolution.

In Figure (4.8), we have shown the results of images with sparse properties. These

images represent data such as book texts, newspaper texts, and simple figures. In region

(1), the space between the lines are well distinguished, and the numbers are more visible.

In region (2), the text is more explicit and much easier to read than the original version.

The noise in both regions and other parts are reduced noticeably.

In Figure (4.9), we have shown the results of images with complex properties. In

region (1), the patterns on the hair and face of the women are more visible. In region

(2), the lines, structure of cloth and the curved lines have been well recovered. In region

(3), small details of the hand such as dots and spots are better observed and visible.

In region (4), The handwritten text is clearer to read. The pattern and structure of the

background paper have been recovered. In all retrieved results, the image contrast and

sharpness have been significantly improved. The boundaries and edges between shapes

and characters are more detectable. The results in both figures presented above show

the effectiveness of the algorithm. The image quality has been enhanced for all types of

data which proves the robustness of our proposed deconvolution algorithm.

The sizes of the images captured with CopiBook scanners with EAGLE camera

are 10000 × 7096 pixels. These are huge images carrying a lot of information from

the captured image. In Figures (4.8) and (4.9), we have shown zoomed regions of

the large image because the effects of the image restoration can be better observed in
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Figure 4.8: Result of deconvolution on EAGLE camera sparse images.
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Figure 4.9: Result of deconvolution on EAGLE camera complex images.
75



Figure 4.10: Slant edge target as input image

this way. The Runtime of the experiment for images of 10000 × 7096 pixels for two

different configurations is 1.5 seconds and 2.2 seconds, respectively (The configurations

are confidential ). The experiments were carried out on C++ with a computer of CPU:

Intel(R) Core i7 3.2 GHz and 16 gigabytes of RAM.

Now we move on to the MTF measurement of the deconvolution results on the EA-

GLE camera. As described before, we place a slant edge target next to our experimental

images Figure (??). The captured image will be used as input for MTF software, and

it detects the target automatically and provides the SFR curve for three RGB channels.

The scoring is provided in a separate table. The result of the MTF curves is shown in

Figure (4.11). The result for the score is given in Figure (4.12).

The MTF curve results show that we are able to improve the last result of MTF

for all channels. The Deconvolution curves are almost close to the ideal SFR curve

presented in section 4.3. In the latest MTF measurement I2S was able to achieve a 3-star

scoring, we are able to improve the scoring and achieve the maximum score, 4-star, with

our deconvolution algorithm.

In summary, we have shown the results of our image the convolution algorithm

applied to the images captured with the EAGLE camera of I2S. We conducted our

experiment on a variety of image samples with different properties. The visual results
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Figure 4.11: MTF curve for EAGLE camera samples.

showed that the images proved significantly; they had a better sharpness, contrast and

visibility. The algorithm performed well for all types of data. We also evaluated our

results with the well-known MTF measurement.

We were able to improve the latest MTF results of I2S in all four channels of an

image. Previously I2S had achieved a three-star scoring for their MTF measurement.

With our algorithm, we have achieved a four-star rating, the maximum achievable score.

In the next section, we provide the results of our experiment on the super-resolved image

according to the pipeline that we had shown in chapter 1. It will be shown that the

deconvolution also works very well for the new images obtained with E-XTRA camera.

4.5.2 E-XTRA Camera Samples

Just like the EAGLE camera, the E-XTRA camera was calibrated according to

the standards so that captured images would have the maximum quality possible. In

capture process, we capture four LR images with the translational shifts being (0, 0),

(0, 0.5), (0.5, 0), and (0.5, 0.5). According to the implementation explained in section

1.4 and presented in Figure (1.3), the images are put together. In our work, we refer
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Figure 4.12: Scoring table for MTF measurement for EAGLE camera
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to the achieved high-resolution image as super-resolved image. After this step, the

deconvolution algorithm is applied with its specific parameters to enhance the quality

of the super-resolved image. We will also refer to the super-resolved image before

deconvolution as a raw-super-resolved image.

Once again, due to the calibration system’s confidentiality, the calibration method

cannot be explained in this chapter. For the same reason, we could not disclose the

parameters and the ϕpq(x) applied on the super-resolved image. Only visual and MTF

results are presented. The result of deconvolution on various samples of raw-super-

resolved images are shown in Figures (4.13) and (4.14). The images with stars represent

the results of deconvolution.

In Figure (4.13), we have shown the results of images with sparse properties. As it

can be observed, the space between the lines are well distinguished, and the numbers are

more visible. For example, the parallel lines in the image with the number "8.0" have

been explicitly recovered. In the raw-super-resolved image, the number of parallel lines

could not be counted easily, whereas the quantity of the lines could be estimated easily.

This is a significant enhancement of image quality.

In Figure (4.14), we have shown the results of imageswith complex properties. In all

results, the patterns, the lines and the structure of images are appropriately restored. For

instance, considering the face of the girl, the tiny spots on the skin are distinctly visible

with detail. The pattern on the eye and eyebrows areas is noticeably visible compared

to its raw counterpart. As another example, the boundaries on the structure of the leaf

image is enhanced and extracted. Image contrast and sharpness have been significantly

improved in all retrieved results, and the borders and edges are more detectable. The

results in both figures presented above show that our proposed deconvolution is efficient

for recovering raw-super-resolved images. Once again, the algorithm performs well for

all types of samples proving the robustness of the algorithm in a different applications.

The sizes of the images captured with CopiBook scanners with E-XTRA camera are

20000× 14192 pixels. These images are double the size (thanks to our super-resolution

technique) of the images taken with the EAGLE camera. The Runtime of the experiment

for images of 20000× 14192 pixels for two different configurations is 10.5 seconds and
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Figure 4.13: Result of deconvolution on raw-super-resolved images with sparse property.
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Figure 4.14: Result of deconvolution on raw-super-resolved images with complex property.
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Figure 4.15: Slant edge target as input image for E-XTRA camera.

11.7 seconds, respectively (The configurations are confidential ). The experiments were

carried out on C++ with a computer of CPU: Intel(R) Core i7 3.2 GHz and 16 gigabytes

of RAM.

Next, we test the MTF measurement of the deconvolution results on the E-XTRA

camera. We place slant edge target next to our experimental images Figure (4.15), and

we obtain a super-resolved image of the target. The MTF software detects the target

automatically and provides the SFR curve for three RGB channels and the grayscale

version of the image. The scoring is provided in a separate table. The result of the MTF

curves is shown in Figure (4.16) for two modes of 800 DPI and 600 DPI. The result for

the score and noise is given in Figure (4.17).

TheMTFcurve for the raw-super-resolved image shows a very poor result. However,

the result changes significantly after applying the deconvolution algorithm in 800 DPI.

After the competition, the curves are very close to the ideal desired MTF curve. The

curve improves further once the image is considered in 600 DPI. We have achieved the

best MTF curve possible for the new super-resolved image, and this achievement is the

first in the industry and the applications of I2S. Furthermore, when we look at the MTF

score in Figure (4.17), we have gained a four-star rating for both 800 and 600 DPI cases.

The amount after the noise has been reduced by 33% for 800 DPI and 66% for 600

DPI. These results show the significant effect of our deconvolution algorithm on the
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Figure 4.16: MTF curve for E-XTRA camera samples for two mode of 800 DPI and 600 DPI.

super-resolution scheme. We have been able to meet the industrial standards of image

quality. We will now present the image quality and the resolution achieved through

our super-resolution scheme compared to the images used at I2S before implementing

the scheme. In Figure (4.18), image (a) shows the classic images of I2S before the

super-resolution scheme. The same image is shown after the super-resolution scheme

for 800 DPI,(b), 600 DPI,(c), cases. Their results speak for themselves; we can see an

outstanding improvement in image quality. To be more precise, none of the numbers

and the lines corresponding to them are visible in the classic image (a). Also, in the

traditional image, (a), the quality is not so well, and each individual pixel is visible.

We cannot see any individual pixels in the results obtained through the super-resolution

scheme (deconvolution included). The number itself can be seen clearly for both numbers

of "7.1" and "8.0", and the parallel lines can be distinguished easily. We have to note

that the space between the lines has been recovered ideally, which is representative of

the accuracy of our algorithm. Background noise has also been reduced drastically, and

artefacts have been removed.

4.5.3 Microscopic camera sample

Developing a robust and flexible deconvolution algorithm has always been a critical

factor from the beginning of this thesis. This is why we have used the potential function
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Figure 4.17: Scoring table for MTF measurement for E-XTRA camera
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Super-resolution result at 800 DPI
(Deconvolution included)

Résultats 800 dpi et 600dpi

Super-resolution result at 600 DPI
(Deconvolution included)

Classique image  

Figure 4.18: Quality comparison of classical images of I2S and new super-resolved Image

to allow the algorithm to use various prior information relative to the practical application

of the algorithm. After the successful integration and testing of the convolution on the

CopyBook OS scanners on two different cameras, we pursued the use of the algorithm

in the application of medical imaging such as microscopic images. ATLIS Modulo is a

microscope that I2S has developed for cell analysis. This imaging system provides high-

quality images to help biologists or pathologists diagnose. Normal light or fluorescent

light is emitted with LEDs through a microscope slide (specimen) containing a medical

sample, and the image is captured with a camera. A sample of this product is shown in

Figure (4.19).

The properties of medical images, such as microscopic images, are different from

sparse or complex signals that we had analysed before; therefore, several tests with

different conditions were conducted on different samples to find the optimal parameter

value µ. We obtained the colour map for microscopic images as explained in section

3.5.2. We conducted image deconvolution for various values of p and q. PSNR values of

deconvolution were observed for q ∈ [−1, 3] and p ∈ [0.1, 1.5] with each range divided

into 32 equally spaced points. In otherwords, for each image, the deconvolutionwas done
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Figure 4.19: ATLIS Modulo microscope for cell analysis

1024 times, according to optimal µ, each time concerning a different ϕpq(x) function.

The additive Gaussian noise (σ = 0.04) is considered for this experiment. Usually, the

noise is high for microscopic images. The parameters, the PSF kernel and exact ϕpq(x)

function for this experiment could not be disclosed because of confidentiality. The result

of image deconvolution/denoising od different samples is displayed in Figure (4.20).

The results for both samples show a significant enhancement in image quality.

According to our medical collaborators for the ATLIS project, it is imperative for

practitioners to be able to see the patterns in the samples clearly. The cells should be

visible clearly for better diagnosis. Our proposed algorithm distinguishes the patterns

with detail. It is also able to recover the smallest cells. Noise in both samples has been

removed or reduced.

4.5.4 Terahertz imaging

Terahertz (THz) spectroscopy and imaging is a contactless, non-invasive technol-

ogy emerging as a tool for analyzing material’s characterization. It has been used for

contact-free measurements of metals, semiconductors, 2D materials, and superconduc-

tors, pharmaceutical analysis, making it a popular research area for fundamental science,

security, and medical applications.

Terahertz imaging has been developing very fast recently. Among various imaging
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4.5. PRACTICAL EXPERIMENTS AND RESULTS

a )Sample 1.

b )Sample 2.

FIGURE 4.20 – Deconvolution/denoising result for two samples of microscopic imaging
accquired with optimal 'p

qpxq potential function.
103

Figure 4.20: Deconvolution/denoising result for two samples of microscopic imaging accquired
with optimal ϕpq(x) potential function.
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Figure 4.21: TZcam terahertz camera of i2S

techniques, camera technology has advantages in terms of speed, bandwidth, and ease

of use. I2S TZcam camera, shown in Figure (4.21), is based on CEA-LETI 320×240

antenna-coupled bolometer array and has demonstrated state-of-the-art performances

for real-time imaging at 0.1-5 THz (Meilhan et al. (2018)). However, the resolution

of the images is often limited by the characteristics of the material traversed and the

wavelength of the THz illumination. For a visual demonstration of deconvolution, we

used various images at different frequencies acquired with TZcam of I2S. The results of

deconvolution on THz images at 0.97 THz and 2.5 THz is shown in Figure (4.22).

The Runtime of the experiment for ten iterations is 54 milliseconds on C++ (CPU:

Intel(R) Core i7 3.2 GHz). A significant enhancement can be visually assessed. In the

enhanced images, shapes and lines can be distinguished easily, and the noise level is

reduced notably. Special software is used in THz applications to measure the lines of

elements within a device from the images captured. For example, PCB manufacturing

companies use THz and software to look at the PCB boards within a completed device to

ensure the safety and functionality of the PCB. Here in images (a) and (b), we have tried

to measure the distances between the lines by using red and blue lines. The results are

plotted respectively in Figure (4.22)(c) and (d). we can see the signal is restored without

noise to ease the software to measure the distance between the lines. PCB boards were

placed inside a box, and images were captured with THz came. The images are depicted

in figures (e), Figure (4.22)(f) and (f). The circuits and the space between the traces are

visible for quality evaluation of the product in the image (f).
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Figure 4.22: (a) THz image of a 1951 USAF resolution test chart at 0.97 THz acquired with
TZcam and x0.25 magnification lens. (b) Deconvolved image (c) Plots of the Line Pairs pixel in
grey values of the group-1 element 2 of the chart of original THz image(d) deconvolved image.(e)
Sample industrial application at 2.5THz. (f) Deconvolved image of (e)

4.5.5 Commercialization of Super-resolution and Deconvolution

As shown in previous sections, the deconvolution algorithm and the super-resolution

scheme showed promising effectiveness for various applications of I2S. For the first step,

the deconvolution algorithm was considered a software upgrade for the EAGLE camera.

The results are validated with international standards of image quality and analysis,

and after the validation, our deconvolution algorithm was commercially presented to

customers under the commercial name “BOOSTPIC”2. The algorithm was presented

in conferences and workshops to clients and partners as a newly developed feature

for CopiBook OS scanners. A screenshot of the commercial advertisement of the

“BOOSTPIC” algorithm is presented in Figure (4.23). Up to the point of writing this

thesis, the integration of the super-resolution scheme with deconvolution is at the final

stage, and the new method will be mounted on the E-XTRA camera and later on, it will

be commercially presented to customers and clients as a new product of I2S.

2https://www.i2s.fr/fr/page/digisolution
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Figure 4.23: Commercial representation of BOOSTPIC

4.6 Chapter conclusion

This chapter provided the practical results of implementing the deconvolution and

the super-resolution scheme on real-world data. We first began by introducing the

I2S book scanner currently being used at I2S, which was the subject of our scientific

research. We are considering two different cameras off I2S in our study; the EAGLE

camera and the E-XTRA camera. We briefly described how book scanners work, their

applications, and why it is vital to have good quality image processing algorithms

for such devices. We then provided the MTF as a standard metric for measuring

the quality of images in various image processing applications and imaging devices

for industrial. The scientific experiments of our algorithm were implemented in the

MATLAB programming language. However, to implement the algorithms in computers

and devices, we transferred the codes to the C++ language. This caused a particular

challenge since most of the codes and functions we were using were not developed

in the standard libraries of C++ and also OpenCV library. We used special libraries

designed for OpenCV to build a friendly user interface to help the operator use the

algorithm efficiently. In section 4.5, we provided our practical experiments on four

different devices of I2S. We first began with the EAGle camera, which was currently
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being used in scanners of I2S. For this particular camera, we have only implemented the

deconvolution algorithm. Visual results represented a significant enhancement in the

quantity of the images captured. The FTM measurement gave a four-star rating for the

classical EAGLE camera images deconvolution. Moving on, we provided the results of

the super-resolution scheme on the images captured with the E-XTRA camera of I2S.

The proposed super-resolution scheme allowed the camera to produce images up to 800

DPI resolution. The visual assessment of the images showed significant achievement

in quality. It was shown that we could produce images with more substantial details

and accuracy with our super-resolution scheme. The MTF measurement presented a

four-star grading for the 800 DPI and 600 DPI images; this is the first in the industry.

Our deconvolution, with parameter adaptation, can also be implemented on Microscopy

and Terahertz cameras. For both cases, the algorithm represented a notable improvement

in image quality. The proposed deconvolution algorithm has been commercialised for

clients, and the super-resolution scheme is integrated and commercially presented as a

new product. This chapter proved we have been able to achieve our main objective goals

of developing an effective algorithm for various practical and industrial uses.
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Chapter 5: Results on Herschel observation

maps

This chapter will show the results of applying our deconvolution algorithm in

Herschel observation maps. This is ongoing work, therefore. We will briefly review

the results. The Herschel Space Observatory (aka Herschel) is an ESA facility available

for the worldwide astronomical community1. Herschel is opening a new opportunity to

study how the universe has evolved into the universe we observe today. In this chapter,

we will pursue to examine the effect of our new deconvolution algorithm on such image

datasets and the improvements it may bring.

5.1 Introduction

Observations with Herschel space observatory have highlighted the ubiquity of

filamentary structures at different spatial scales in the molecular clouds of the Milky

way, which raised the question of their supposed role in star formation process a central

one (André et al. (2010); Arzoumanian et al. (2011); Cox et al. (2016); Hacar et al. (2016,

2017); Hill et al. (2011); Palmeirim et al. (2013); Peretto et al. (2012); Roy et al. (2019);

Schuller et al. (2021)). Indeed it is strongly believed that these filaments are involved in

the process of star formation in the following manner: in a first step turbulence is thought

to provide a complex intrication of filamentrary structures, while in a second step gravity

takes over on the densest filaments (André (2017)). Moreover, it has been pointed out

that the filaments all exhibit similar widths while only the densest ones contain prestellar

cores (see André (2017); André et al. (2014); Roy et al. (2019) and Suri et al. (2019))

In ((Yahia et al., 2021)) it has been shown that to accurately access the multiscale

properties of an Herschel observation map like the Musca SPIRE 250µm of the Gould

Survey program, it is necessary to operate a reduction of the Gaussian noise present in

an observation map; such noise comes from the cosmic infrared background (CIB) and

1https://www.cosmos.esa.int/web/herschel/home



the cosmic microwave background, among other disturbances. This noise, of a Gaussian

nature, tends to "log-normalize" the singularity spectrum of an observation map, thus

concealing the statistics coming from the filamentary structures at small scales, and

consequently making it almost useless to interpret a singularity spectrum in terms of

underlying dynamics. In addition, the reduction of Gaussian noise makes it possible

to visualize, via the geometric distribution of singularity exponents on an observation

map, the extraordinary complexity of the spatial distribution of filamentary structures at

small scales, i.e. structures which are responsible for the non-log-normal character of

the obtained singularity spectra. In ((Yahia et al., 2021)) the problem of noise reduction

was solved by considering a sparse noise-reduction algorithm which tends to eliminate

Gaussian noise while keeping the coherent gradient information at small scales. This

was done by solving the L1-L1 optimization problem. In other words, both F (x) and

U(x) in Equation (1.3) are L1 norms.

In this chapter, we will slightly change the notation of the problem. However, the

overall method of optimization and minimization are analogous to the Equations and

method explained in chapter 3. In this chapter we will consider the following problem:

y = Hs+ n (5.1)

with: H matrix representation of a convolution operatorH (PSF); if this convolution

is periodic, H is then a (block) circulant matrix. In this chapter, the beam effect in the

images is modeled in the matrixH . The goal is to recover s from the observational map

y. In this case, we will consider the following optimization problem:

ŝ = ‖Hs− y‖2
2 + λφ(Ds) (5.2)

In the chapter, we will bring considerable improvements to the Gaussian noise

reduction problem by considering other types of priors, which are more parameterizable

and allow finer control over the preservation of filamentary structures. We will show on

the one hand the spectacular improvements in visualization of these filamentary struc-

tures at different scales, thus exposing all the complexity of the geometric organization
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of the interstellar medium as accessible in the Herschel data, and study the quality of the

singularity spectra obtained on filtered and de-beamed data. Since the inverse problem

is the same as in chapter 3, we will exclude explaining the minimisation algorithm based

on the approximal operator and the Fourier transform. Considering that the dataset is

changed, it is essential to discover which values of p and q are optimal for this particular

dataset.

5.2 Choice of the potential function

To identify the best potential function for Herschel image deconvolution (beam

effect reduction), we conduct an experiment in which we evaluate the performance of all

possible potential functions and measure their performance in terms of PSNR. In this

experiment, we take a sample from simulation data and convolve the image with beam

effect, H . Next, we use our algorithm with various potential function configurations to

obtain different results based on the corresponding regularizer. To illustrate the variation

in performance, we show in Fig. 5.1 PSNR values for q ∈ [−1, 3] and p ∈ [0.1, 2] with

each range divided into 64 equally spaced points. For this experiment, we have used

one 1024 × 1024 sample with additive Gaussian noise (σ = 0.005). We can observe

that the best ϕpq(x) function lies around the region where p = 1.35 and q = −1. It

should be noted however, that such an "optimal" value of p = 1.35 is resulting from a

PSNR computation using a fixed additive Gaussian noise and that, for real observation

maps, there is an interval interval of acceptable p values, typically in the range [1.3, 1.6]

as will be shown in the experiments. For some maps, a value of p too close to a low

value of p = 1.2 may result in oversmoothing small-scale gradients. Consequently, in

the following sections, all our experiments on Herschel maps and simulation data are

conducted setting q = −1 and p in the interval [1.3, 1.6].

5.3 Herschel data and results

In this experiment we consider observation maps from theHerschelGould Belt Sur-

vey ((André et al., 2010; Pilbratt et al., 2010)), acquired by the SPIRE instrument (Griffin

et al. (2010)) at high spatial resolution and dynamical range. We focus on the 250 µm
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Figure 5.1: PSNR values after deconvolution using the regularizer ϕpq(x) as a function of p and
q. The region around p=1.35 and q=-1 provides the best performance.

SPIRE images to study the interstellar medium and their embedded stellar cores (Bon-

temps et al. (2010); Könyves et al. (2010); Men’shchikov et al. (2010)). The observation

maps are pre-processed using the HIPE version 2.0 and modified pipeline scripts. The

acquisition is performed under the parallel mode of the Herschel SPIRE instrument.

5.3.1 Processing

To evaluate the results obtained in noise reduction and de-beaming as contemplated

in this study, we use the methodology presented in detail in (Yahia et al. (2021)) from

which we use the notations and to which we refer the reader. In particular, the statistics

of turbulence in the ISM are obtained by the computation of the singularity spectrum

in a microcanonical formulation as developped in the mentioned reference, and the

complexity of the ISM is studied through the display of the singularity exponents,

computed with the help of a local correlation measure; the core of the approach is based

on the notion of reconstructibility of a complex signal which is shown to be computed

locally though the hypothesis of the identity of two sets: the most singular manifiold and
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the most unpredictable manifold. The former is defined as the set of the most singular

points in an observation map, and the latter is defined as the set of points which lead to a

perfect reconstruction. If s is an observation map acquired at minimal spatial resolution

r0 = 2−n, we define a local correlation measureH(µn, x, r0) according to formula (B.7)

in (Yahia et al. (2021)) with µn referring to a discrete gradient measure, and x is a 2D

point location in the domain of the observation map s. The singularity exponent at x

is the quantity defined by Equation (B.5) of the previous reference. The singularity

spectrum is then shown to be given by the relation:

D(h) = 2− log(ρn(h)/ρ0)
log(r0) . (5.3)

with ρn being the probability distribution function of the singularity exponents

h(x) at resolution r0 = 2−n and ρ0 is the most probable event i.e. the maximum of ρn.

The singularity spectrum h 7→ D(h) appears in the limiting behavior of the probability

distribution functions:

ρn(h) ∼ cnr
−D(h)
0 (n→ +∞) (5.4)

with cn > 0. As long as the singularity spectrum is computed with enough precision, it is

possible to distinguish different physical processes responsible for the turbulent statistics

in the observation map s such as log-normal or log-Poisson processes. Besides, it

is fundamental to notice that before the application of the multifractal formalism, scale

invariance of the observationalmapmust be checked, as described in section 4.2 of (Yahia

et al. (2021)). Such scale invariance has been checked for the observation maps studied

in this work.

5.3.2 Musca

We start by showing, on the Musca observation map, the superiority of noise

reduction methodology presented in this work over the L1-L1 algorithm introduced

in (Yahia et al. (2021)). We refer to (Yahia et al. (2021)) and the references therein

for a presentation of the Herschel 250 µm observation map of the Musca filament. In

Figure (5.2) we first recall, in the top panel, the map of the singularity exponents of the

unfiltered observation map and, in the below panel, the resulting singularity exponents

after having applied the noise reduction with p = 1.5, q = −1, λ = 0.1.
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Figure 5.2: Singularity exponents of the Musca observation Herschel at 250 µm. Top: Display
of the singularity exponents of the raw, unfiltered map. Below: after noise reduction, p = 1.5,
q = −1, λ = 0.1.
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Figure 5.3: Singularity exponents of the Musca observation Herschel at 250 µm, zoom on
subregion, after noise reduction, p = 1.5, q = −1, λ = 0.1. Compare with (Yahia et al. (2021)),
fig. 7.

Figure (5.3) displays the map of the singularity exponents of a sub-region of the

main filament. Comparing to (Yahia et al. (2021)), Fig. 7, the extremely complex

intrication of striations and sub-filaments at lower scale is now becoming even more

evident. The values displayed in Figure (5.3) are the singularity exponents h(x) coming

from formula (B.7) in (Yahia et al., 2021) defined by a local correlation measure as

explained in that reference.

Since these singularity exponents display the transitions within a signal, one could

raise the question whether the filamentary coherent structures shown could equally be

rendered by the gradient’s norms of the Musca map. It turns out that the gradient’s

norms themselves possess a high dynamical range in such a way that the logarithm of

the gradient’s norms must be considered instead: if s is the signal of an observational
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map, log(‖∇s‖(x)) can indeed be considered as a simple local correlation measure and

consequently, an approximation of a singularity exponent at x = (x, y). In practice we

compute the gradient of the observationmap s atx = (x, y),∇s(x) =
(
∂s

∂x
(x), ∂s

∂y
(x)

)
in Fourier space in the usual manner:

−ix
∂s

∂x
= F−1

(
if1

∂F
∂f1

(s)
)

−iy
∂s

∂y
= F−1

(
if2

∂F
∂f2

(s)
) (5.5)

with f = (f1, f2) is the frequency vector, (x, y) denotes spatial coordinates, F is

the Fourier transform, F−1 the inverse Fourier transform and i is the imaginary unit.

The log of the gradient’s norm can then be considered as a local correlation measure by

defining:

h(x) =


log

(
‖∇s(x)‖
〈‖∇s‖〉

)
/log(l) : if ‖∇s(x)‖

〈‖∇s‖〉
> ε

log(ε)
log(l) : else,

(5.6)

with l = (lxly)−
1
2 , lx, ly are the x and y lengths, in pixel units, of the array of values

associated to the observational map s, 〈‖∇s‖〉 is the average of the gradient’s norms

over the spatial domain of the observation map and ε is a threshold value, chosen here

ε = 10−30.

In Figure (5.4) we display the resulting gradient’s norms, as defined by Equation 5.6.

The resulting striations and coherent filamentary structures resemble a lot those of

Figure 5.3 but it turns out that these values do not encode the same statistics of turbulence.

Indeed, if we use Equation 5.6 to compute the corresponding singularity spectrum as

defined by Equation (5.3) on Musca raw and with noise reduction, we obtain the two

curves shown in Figure (5.5), right. The resulting curves are too dissimilar to be labelled

as correct singularity spectra. In the same figure, left, we show in blue and red the

singularity spectra computed using the values of h(x) from formula (B.7) in (Yahia

et al., 2021) and in green the curve computed with h(x) defined by 5.6 from the data of

Musca with noise reduction (p = 1.5, q = −1, λ = 0.1). Consequently although the log

of gradient’s norms reveal interesting filamentary structures on observation maps with
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noise reduction, wemust keep the values of the singularity exponents given formula (B.7)

in (Yahia et al., 2021) for both visualization and the computation of correct statistics of

turbulence.

Figure 5.4: Visualization of the log of gradient’s norms, Musca observationHerschelmap, after
noise reduction, p = 1.5, q = −1, λ = 0.1. Although the log of gradient’s norms enhances
the striations, the resulting spectrum, shown in Figure 5.5 is very different than the one obtained
with the correlation measure.

5.4 Chapter conclusion

This chapter tried to extend the deconvolution algorithm to the astronomical data set.

We conducted primary experiments onHerschel observationmaps to improve the quality

and reduce the noise of the images for better observation. We found a new potential

function that could provide better results than other related work. Although this work

is in the preliminary stages, it has shown true potential for this type of image for better

image analysis. More experiments and simulations are underway to further develop and

adapt our image deconvolution/denoising algorithm for Herschel observation maps.
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Figure 5.5: Left: comparison of obtained singularity spectra for Musca observation map: raw
data, log of gradient’s norms, correlation measure. The red and green curves are generated
from the filtered observation map, the blue spectrum is generated from the raw map.The green
spectrum has been computed from the values of h(x) given by Equation (5.6). The two other
spectra (blue and red) make use of the values h(x) from formula (B.7) in (Yahia et al., 2021).
Right: comparison between the singularity spectrum of Musca unfiltered (blue) computed with
h(x) given byEquation (5.6) and the singularity spectrumofMuscawith noise reduction p = 1.5,
q = −1, λ = 0.1 computed with h(x) given by Equation (5.6).
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Chapter 6: Plug-and-Play Priors

In this chapter, we will begin the second phase of our thesis. The first part involved

the classical method of solving inverse problems such as deconvolution and denoising.

As mentioned before, other than classical methods, recently, much research has been

conducted for learning methods such as CNNs. In the second part, we discuss a pipeline

known as Plug-and-Play, which has recently gained much attention.

6.1 Introduction

The key objective of the first part of the thesis was to develop an efficient denoising

algorithm and an effective super-resolution scheme to be implemented in cameras and

products of I2S. Due to the limitations of available hardware, the main solution was to

use the classical methods, which can be fast, less complex and easily used in practical

applications. Chapters 2 to 4 provided an in-depth analysis of our algorithm and the

results obtained through scientific and practical experiments. This chapter turns our

attention to recently developed learning algorithms. Since 2016 learning methods such

as CNNs, DNNs and, on a smaller scale, machine learning algorithms have gained much

attention throughout research and industry. Day-to-day learning methods are finding

their way into new applications. Various famous applications are autonomous driving,

facing and object recognition, 3D reconstruction, medical diagnosis and image process-

ing. Many researchers and engineers from different backgrounds and specialities are

developing new research with learning methods. There has been a lot of work on image

processing using learning algorithms; more conferences now include neural networks

and learning methods in their scope. Despite all the advances and improvements, the

constraints mentioned in the previous chapters about learning methods still exist. These

methods demand a large amount of training data to perform well, which may not always

be available. Additionally, the performance of learning methods can be only guaranteed

for a specific kind of data; changes like data may lead to loss of performance. In addi-

tion, neural networks require significant hardware since they have high computational



complexity; for example, most CNNs and DNNs require powerful GPUs and CPUs,

which are not always available in many practical applications. There have been two

major branches in recent years in dealing with optimisation and inverse problems. The

first branch solely considers solving the optimisation problem with classical methods, as

discussed in chapter 2, while the other considers learning methods to be more effective.

A third branch has been emerging since 2018. This branch tries to consider combining

learning methods with classical methods simultaneously. It tries to take advantage of

both branches and implement them in one technique. Plug-and-play, originally pro-

posed in 2015, is among the third branch. In this chapter, we are trying to give a brief

understanding of plug-and-play and the benefits of this method. It will be shown that

learning methods can be used and implemented within the technique and structure of a

classical optimisation problem. Before we dig into plug-and-play, we will first provide

a general overview of deep learning techniques for inverse problems and the advances

deep learning methods have achieved in image processing. We will then present the

idea of plug and play and consider using this technique in our proposed deconvolution

algorithm.

6.2 Short review of Deep learning methods

Deep learning (LeCun et al. (2015)) approach has been known as a state-of-the-art

tool in artificial intelligence with applications in face recognition (Schroff et al. (2015)),

machine translation (Wu et al. (2016)) andmedical image analysis (Gulshan et al. (2016)).

Researchers have reported improvements in applying CNNs to sparsity-based techniques

such as compressed sensing. In contrast to the evolution of signal processing techniques

around the classical theories, the connection between deep learning and the classical

signal processing approaches, such as wavelets, nonlocal processing, and compressed

sensing, are yet to be fully understood (Ye et al. (2018)). Deep neural networks have

been considered to solve image inverse problems (Adler and Öktem (2018); Jin et al.

(2017); McCann et al. (2017); Ongie et al. (2020); Schlemper et al. (2017)). These

methods directly learn a mapping from the distorted image to the high-quality image

taking advantage of the nonlinearity and high capacity of deep neural network. Vari-
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ous neural networks have been studied for image super-resolution, denoising (Xie et al.

(2012)), inpainting (Xie et al. (2012)), medical image reconstruction (Pelt and Batenburg

(2013)). In the last six years, deep learning has demonstrated good potential for solving

various imaging inverse problems (Lucas et al. (2018)). Some deep learning approaches

with multiple network architectures have improved notably over classical iterative recon-

struction methods in various image processing applications. Deep learning techniques

are currently being used in diverse image reconstruction methods and provide results

for applications ranging from geophysical, microscopy, medical imaging and low light

image processing. We will provide a brief overview of these evolving aspects.

Medical imaging:

The applications of Machine Learning (ML) has been increasing fast in the medical

imaging field (Erickson et al. (2017); Suzuki et al. (2012)) such as: computer-aided

detection (CADe) and diagnosis (CADx) (Doi (2007)), radiomics, and medical image

analysis. Reconstructing images from projective measurements occur in MRI, CT, PET,

SPECT. Classical methods perform extremely well but can be computationally com-

plex. Recent work shows that using training data to improve the reconstruction process

can help achieve better image quality faster than reconstructions with classical iterative

methods. As a practical example, GE’s “TrueFidelity” deep learning image reconstruc-

tion for CT imaging (GE (2019)) has FDA (Food and Drug Administration) approval.

Nevertheless, still, numerous open questions remain on the use of deep learning in such

applications.

Computational photography:

The purpose of computational photography is to create visually engaging images

that are as credible as possible to the scenes captured. These factors make deep learn-

ing a good candidate for computational photography reconstruction applications. For

example, deep learning provides suitable solutions for extreme low-light imaging (Chen

et al. (2018)). Deep learning also helps to estimate the depths of different objects

in an observed scene from a picture (Godard et al. (2017)). Currently, deep learning
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is used in industry to perform white balancing, for example, the production version of

Google’s latest smartphone imaging systems (Barron and Tsai (2017); Liba et al. (2019)).

Microscopy:

In digital pathology and cell biology, many image data have been collected for im-

age analysis assessment. The rate of data gathering has increased recently. Microscopy

image analysis provides supportive methods for improving characterizations of various

diseases, such as breast cancer, lung cancer, brain tumour. Deep learning has recently

emerged as a practical tool that attracts considerable interest in microscopy image anal-

ysis. Accordingly, there has been an increase in motivation in applying deep learning to

microscopic applications. DL has been involved in developing new techniques to recon-

struct images and other applications such as nuclei detection, cell segmentation, tissue

segmentation and image classification (Horstmeyer et al. (2017); Kamilov et al. (2015);

Kellman et al. (2019); Pinkard et al. (2019); Rivenson et al. (2017); Schmidhuber (2015)).

Geophysical imaging:

Seismic inversion and imaging is the application of reconstructing the Earth’s

interior activities by modelling the physical reproduction of seismic waves. Comparing

simulated synthetic measurements to actual acoustic recordings of reflected waves can

be used to parametrize the models of ill-posed inverse problems. Some of these DL

methods (Hansen and Cordua (2017)) include techniques that use generative models

(Mosser et al. (2020)), which are constrained by partial differential equations (Yang

et al. (2020)).

Other computational imaging applications:

Although still in the development stages, deep learning has shown extensive promise

in several other inverse problems, including lensless imaging (Sinha et al. (2017)),

holography (Rivenson et al. (2018); Wu et al. (2018)), ghost imaging (Lyu et al. (2017)),

imaging through scattering media (Borhani et al. (2018); Li et al. (2018); Sun et al.

(2018)), and non-line-of-sight imaging (Metzler et al. (2020)).
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6.3 Plug-and-Play Priors

In this section, we talk about the idea of Plug-and-Play (PnP), a framework for

the incorporation of advanced prior models. The principal goal of PnP is to allow the

cost minimization models in classical minimization methods to be fused with learning

models, such as DNNs, that are designed to generate outputs from inputs. First, we begin

by giving the motivation and introduction to plug-and-play, then we will talk about how

we use this method in our deconvolution algorithm.

6.3.1 Motivation and Intuition

As we have previously talked, inverse problems represent a very broad class of

important problems in imaging in which the goal is to recover some unknown , x, from a

set of noisy and degraded measurements, y. The classical formulation of this problems

is:

y = Hx+ n (6.1)

where y ∈ Rm is the observed data, x ∈ Rn is the (vectorized) underlying image

to be inferred, H is the observation (blur) matrix, and n is assumed to be Gaussian

zero-mean with known variance σ2. The maximum a posteriori (MAP) estimate (under

prior p(x)) and regularized ML estimate are general methods for solving such inverse

problems. Let p(y|x) be the conditional probability density function (pdf) of the mea-

surements y given x, and p(x) be the pdf of the unknown, then the MAP estimate of x

can be expressed in the form:

x̂ = arg max
x

p(y|x)p(x) (6.2)

x̂ = argmin
x
{− log p(y|x)− log p(x)} (6.3)

which is written in the form:

x̂ = argmin
x
{f(x) + h(x)} (6.4)

In regularized based approach inversion, f(x) can be any data fitting expression
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such as the potential function introduced in chapter 3, and h(x) can be any stabilizing

function that penalizes irregular behaviour in the solution. This optimization framework

for regularized approach has performed well. However, this approach is not modu-

lar. So the optimization of both terms must be done together. Image denoisers such

as block-matching and 3D filtering and convolutional neural network denoisers have

demonstrated promising improvements in image denoising performance.This is possible

due to increasing complex image operations.

Question. Is there a way to fuse the traditional models of regularized inversion

with modern denoising algorithms?

Plug-and-play (PnP) methods try to answer this question by providing a framework

for fusing traditional iterative algorithms for imaging inverse problems with modern

image denoisers, used in a black-box fashion.

Image denoising:

The special case of image denoising occurs whenH = I . In this case the observa-

tion y consists of x plus additive Gaussian white noise. The MAP cost function is given

by:

f(x, y) = argmin
x

1
2 ||x− y||

2
2 + φ(x) (6.5)

Recall definition of proximal operator from definition 2.1 assuming λ = 1, we get:

proxf (y) 4= argmin
x

1
2 ‖x− y‖

2
2 + f(x) (6.6)

When comparing Equation (6.6) with (6.5), the proximal operator could be seen

as the MAP solution of a denoising problem. In this context, the argument of proxf is

the noisy data; the noise is Gaussian i.i.d. with unit variance. The prior is p(x) ∝=

exp(−f(x)). This interpretation is at the root of the method plug-and-play. Here, the

denoiser acts as a regularizer for the reconstruction scheme and ensures good image

reconstruction quality at each iteration of the algorithm. The final reconstructed image

matches the measurements and satisfies the prior defined by the denoiser. In simple
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words, the key idea behind plug-and-play is to use denoisers, such as BM3D (Dabov

et al. (2007)) or any other denoiser, in place of proximal operators in iterative traditional

optimization algorithms. As mentioned before, this idea considers combining learning

methods with classical methods simultaneously. One of the key advantages of this

method is modularity. It will enable us to use any type of denoiser suitable for our

application in the place of the proximal operator. This method is not superior to the

proximal operator. It only provides the freedom of using a learned denoiser that,

according to the application, may perform better than the proximal operator. Since it is

modular, not many changes are necessary to be made for the classical algorithm. Any

denoiser is plugged into the algorithm, and the whole algorithm is played so that the

optimal result is obtained. This is how this particular method gets the name plug-and-

play.

The idea of plug-and-play was first proposed in (Venkatakrishnan et al. (2013)).

Since 2016 it has gained much attention in different applications. Most of the plug-

and-play methods are built on the classical ADMM algorithm (Teodoro et al. (2019)),

however has never been considered in the classical alternating minimization method. We

will use plug-and-play in our alternating minimization image deconvolution algorithm

for the first time.

6.3.2 Proposed plug-and-play approach

In this part, we will demonstrate how we use the plug-and-play approach in our

deconvolution scheme. Recall that for the deconvolution problem of Equation (6.1), we

have the following optimization problem:

argmin
x

µ

2 ||Hx− y||
2
2 + φ(Dx) (6.7)

we introduced a new variable, u, to serve as the argument ofφ(.) under the constraint

that u = Dx. A quadratic function was added to penalize the difference:

argmin
x,u

µ

2 ||Hx− y||
2
2 + φ(u) + β

2 ||Dx− u||
2
2 (6.8)

The problem formulated in the formof Equation (6.8) can be solved by an alternating
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minimization scheme, i.e. solving two sub-problems iteratively. It is easy to minimize

the objective function in (6.8) with respect to either u or x as formulated in Equation

(3.11). As discussed in the previous part, subproblem (S1) could be seen as the MAP

solution of a denoising problem. Therefore we will replace this step with a GMM based

denoiser: u will be calculated with the GMM denoiser. Among the many state-of-the-

art denoising methods, we opted for a GMM-based, patch-based denoiser proposed in

(Teodoro et al. (2015)). The reasons for this particular choice can be described in three

factors:

Several authors have shown that a GMM is a good prior for clean image patches

(Teodoro et al. (2015); Yu et al. (2011); Zoran and Weiss (2011)).

A GMM prior can be effectively learned from any external dataset of clean images

(Yu et al. (2011); Zoran andWeiss (2011)), or directly from noisy patches (Teodoro

et al. (2015)).

By learning the GMM prior from an external dataset of clean images, we can

develop class-specific priors/denoisers (Luo et al. (2015)).

Sub-problem (S2) will be calculated as follow:

x = F−1

 F(Dx1)�F(ux1) + F(Dx2)�F(ux2) + (µ
β
)F(H)�F(y)

F(Dx1)�F(Dx1) + F(Dx2)�F(Dx2) + (µ
β
)F(H)�F(H)

 (6.9)

6.3.3 Denoising and using Gaussian mixtures

This part will briefly describe the function of the GMM based denoiser that we

have used in our plug-and-play implementation. In summary, we start by extracting

all the patches from the training images. Next, we use the expectation-maximization

algorithm to determine the parameters of the GMM, i.e. the GMM is learned using the

expectation-maximization (EM) algorithm. Then, this GMMmodel is used as a prior to

denoise the observed patches. Under this assumption, it can be done by computing the

minimum mean squared error (MMSE) estimate in closed form (Teodoro et al. (2015)).

In this subsection, unlike the other parts of the thesis, x and y they refer to an

arbitrary individual patch.
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Assume the additive Gaussian noise model for each image patch :

y = x+ n (6.10)

with :

n ∼ N
(
0, σ2I

)
(6.11)

The GMM prior is defined as:

p(x) =
K∑
r=1

ωrN (x;µr,Cr) (6.12)

In this formulation, ω1, ..., ωK are the mixing weights for GMM and N (.;µ,C)

represents a Gaussian density of mean µ and covariance matrix C. We will assume

that the components have zero-mean i.e µr = 0 and the cross-covariance,Cxn is also

zero. The sum of two independent zero-mean Gaussians is a zero-mean Gaussian with

covariance equal to the sum of the covariances. Under this condition and according to

Equation (6.10) we have:

p(y) =
K∑
r=1

ωrN
(
x;µr,Cr + σ2I

)
(6.13)

Recall Bayes’ theorem stated mathematically as the following equation:

p(x|y) = p(y|x)p(x)
p(y) (6.14)

Applying the Bayes’ theorem with p(x) defined in Equation (6.12), we get :

p(x|y) = 1
p(y)

K∑
r=1

ωrp(y|x)N (x; 0,Cr) (6.15)

p(x|y) = 1
p(y)

K∑
r=1

ωrpr(y)p(y|x)N (x; 0,Cr)
pr(y) (6.16)

We have multiplied and divided Equation (6.15) with pr(y) to have Equation (6.16).

pr(y) = N (y; 0,Cr + σ2I). The Minimum Mean Square Error (MMSE) of x from an

observation y can be defined as the posterior expectation:

x̂ = E[x|y] =
∫
xp(x|y)dx (6.17)
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We insert p(x|y) from Equation (6.16) into Equation (6.17):

x̂ = 1
p(y)

K∑
r=1

ωrpr(y)
∫
x
p(y|x)N (x; 0,Cr)

pr(y) dx (6.18)

Within Equation (6.18) we define x̂r as follow:

x̂ = 1
p(y)

K∑
r=1

ωrpr(y)
∫
x
p(y|x)N (x; 0,Cr)

pr(y) dx︸ ︷︷ ︸
x̂r

(6.19)

x̂r is theMMSE estimate of x from y, using a single Gaussian prior (the m-th component

of the GMM).

Lemma 6.1. Linear MMSE estimator for linear observation process

♥

In observation of a linear process: y = Hx+ n, where H is a known matrix and

n is random noise vector with zero mean, E {n} = 0. with the assumption that

cross-covariance matrix is zero, CXN = 0. We have the following:

E {x} = x̄

E {y} = Hx̄

CXY = CXH
T

CY = HCXH
T + CN

(6.20)

The expression for linear MMSE estimator of x is as follow:

x̂ = CXY C−1
Y (y − ȳ) + x̄ (6.21)

Using the information above we get:

x̂ = CXH
T
(
HCXH

T + CZ

)−1 (
y −HX̄

)
+ x̄ (6.22)

For more information about Linear MMSE estimator please refer to ECE 830

Course Notes of John A. Gubner. 1 We take Equation (6.22) of Lemma 6.1. In our case

H = I, we have :

x̂r = Cr

(
Cr + σ2

)−1
y (6.23)

Inserting GMM prior for y and pr(y) = N (y; 0,Cr + σ2I) into Equation (6.18) we

1https://gubner.ece.wisc.edu
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have:

x̂ =

K∑
r=1

ωrN
(
y;µr,Cr + σ2I

)
x̂r

K∑
r=1

ωrN
(
y;µr,Cr + σ2I

) (6.24)

We use Equation (6.24) to obtain a clean x patch from noisy observations y. It can

be written in packed form:

x̂ =
K∑
r=1

ψr(y)sr(y) (6.25)

where:

sr(y) = Cr

(
Cr + σ2

)−1
y (6.26)

ψr(y) =
ωrN

(
y;µr,Cr + σ2I

)
K∑
r=1

ωrN
(
y;µr,Cr + σ2I

) (6.27)

In this formulation, ψr(y) is the posterior probability that (noisy) patch y belongs to

the r th component of the GMM and sr(y) is the MMSE estimate of that patch; if it

was known that it had been generated by the r th component. It is evident that sr(y)

and ψr only depend on the noisy y. Although sr(y) is a linear function of y and the

MMSE estimate x̂ is a nonlinear function. After computing the MMSE patch estimates,

x̂1, ..., x̂N whereN is the total number of patches, they are returned to their location and

combined by averaging.

6.4 Experiments

This section will present the results of image deconvolution based on the plug-and-

play approach. We will use the dataset generated with I2S images captured with an

EAGLE camera for the test.

Our proposed algorithm in chapter 3 will become as follow after the modifications:

The cost criteria are the same as in chapter 3. One of the advantages of this

algorithm is modularity. We have shown that sub-problem (S1) can be interpreted as a

denoiser. In this regard, step (2) of the algorithm can be replaced by any black box. The
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Algorithm 3: Image deconvolution using Plug-and-play priors
Input: initialize x, H , β, i = 0, j = 0
Output: x̂
1: while not converged do
2: Compute uj with GMM denoiser according to (6.24);
3: Compute xj using uj according to (6.9) ;
4: Compute Cost ( j ) ;
5: j ← j + 1
6: end while
7: return xi;
8: return Cost;

number of iterations may differ according to the type and application of the denoiser

being used. In a simple scheme, the algorithm performs denoising and deconvolution

simultaneously. Most denoising is done with step 2 with the GMM denoiser, and step 3

performs deconvolution.

We now present the visual results of the results obtained with the methods described

above. In order to simplify the analysis, in all experiments and tests, we use GMMs

with 20 components per class and patches of size 8×8.The initial programming of the

plug-and-play method was done in MATLAB. Later, the algorithm was transformed

into the python programming language. Recently, most machine learning and CNN

algorithms have been developed in python. Special libraries such as Scikit-learn, Numpy,

TensorFlow, etc., are designed for python, making it easy and fast to implement learning

algorithms.

Sparse data set: For the first part tests, we used the EAGLE camera of I2S,

and we took pictures of piecewise-constant sample images. Few samples are shown in

Figure (6.1) For this test, we used 16 images for training. These pictures had different

orientations. For the first experiment, all training images were clean without noise and

blur. So in this case H = I and n = 0.

Test 1: We chose a piecewise constant image for the test image, and we added

noise with σ = 0.03. The result of denoising is shown in Figure (6.2). We calculated the

PSNR value of the noisy image, (a), and denoised image, (b), with the original image

without noise. The PSNR value for the noisy image is 30.2 and for the denoised image

is 36.4. The result shows that the denoiser performs reasonably well when the training
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Figure 6.1: Sample of training images for sparse data set

image represents the original image. Some small noise still remains in the resulting

image.

Test 2: For the second experiment, 25% of images were kept clean, for 25% we

added noise with σ = 0.01, for 25% we added noise with σ = 0.02 and for the rest we

added noise with σ = 0.03. We used the same piecewise constant image for the test

image as the previous experiment. For this test image we added with σ = 0.05. The

result of denoising is shown in Figure (6.3). We calculated the PSNR value of the noisy

image, (a), and denoised image, (b), with the original image without noise. The PSNR

value for the noisy image is 26.017 and for the denoised image is 33.99. The result

shows that the denoiser performs reasonably well when the training image represents the

original image and noisy image. More noise remains in comparison with the result in

Figure (6.2). This is because some of the training images have deteriorated with noise.

Still, the recovery is noticeable. We have also shown the zoomed version of the signals

for the original, noisy and recovered image in Figure (6.4). We can see that the GMM

based deconvolution/denoising algorithm has recovered the signal well; the black curve

is close closer to the blue curve compared to the red curve. The restored image’s signal

representation shows that although the signal is recovered, some noise remains. This

can be solved with more algorithm iterations or more training data.
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Figure 6.2: Result of denoising using clean training images

Complex data set:
For the second part tests, we used the EAGLE camera of I2S, and we took pictures

of various complex images such as pictures, texts and patterns. Few samples are shown

below in Figure (6.5). For this test, we used 20 images for training. For the first

experiment, all training images were clean without noise and blur. So in this caseH = I

and n = 0.

Test 1: A sample of the complex image is chosen as a test. The test image is not

included in the training. We added noise with σ = 0.05 to the test image. The result

of denoising is presented in Figure (6.6). We calculated the PSNR value of the noisy

image, (b), and denoised image, (c), with the original image without noise (a). The

PSNR value for the noisy image is 26.03, and the denoised image is 33.98. The result

shows that the denoiser performs reasonably well when the training image represents a

set of clean complex images. Some minor noise is recognizable in the resulting image.

Test 2: For the second experiment, 25% of images were kept clean, for 25% we

added noise with σ = 0.015, for 25% we added noise with σ = 0.025 and for the rest

we added noise with σ = 0.035. We used the same complex test image as the previous

experiment. For this test image we added with σ = 0.06. The result of denoising is
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Figure 6.3: Result of denoising using mixture of noisy and clean training images

Figure 6.4: Result of denoising using mixture of noisy and clean training images - zoomed
signal view
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Figure 6.5: Sample of training images for complex data set

Figure 6.6: Result of denoising using clean training complex images - zoomed view
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Figure 6.7: Result of denoising using mixture of noisy and clean complex training images

shown in Figure (6.7). We calculated the PSNR value of the noisy image, (b), and

denoised image, (c), with the original image without noise. The PSNR value for the

noisy image is 24.43 and for the denoised image is 29.12. The result shows that the

denoiser performs reasonably well when the training image represents the original image

and noisy image. More noise remains in comparison with the result in Figure (6.6). This

is because some of the training images have deteriorated with noise and the denoiser

tries to recover the patches as close as possible to the training data. Still, the recovery is

quite well.

Test 3: In this experiment, we will evaluate the deconvolution performance of

the proposed algorithm on the complex images. We used only clean images for the

training, and for this test, we used another sample complex image. We convolve a

sample of complex images with a 5×5 Gaussian kernel with additive gaussian noise

with σ = 0.03. The result of deconvolution is shown in Figure (6.8). Compared with the

noisy image, the recovered image has less blur and noise. The plug-and-play can reduce

the noise and blur simultaneously to some extent. The performance of the deconvolution

depends on many parameters such as the number of training, the kernel, values of µ

and β and the number of iterations. The problem becomes difficult for the algorithm to

handle once the image bears noise and blur simultaneously. Moreover, the performance

of the deconvolution is not comparable to the classic method demonstrated in chapter 3.
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Figure 6.8: Result of deconvolution using a mixture of noisy and clean complex training images

We have also shown the zoomed version of the signals for the original, noise+blur

and recovered images in Figure (6.9). The plug-and-play approach is able to recover the

signal as close as possible to the original signal. Overshoots in the recovered signal have

been reduced. The recovered signal shows that the plug-and-play approach performswell

for denoising, but the ability to perform deconvolution is not as profound as denoising.

We have to know that the training process is time-consuming despite not usingmany

training images. This is one of the main drawbacks of using learning methods. Also, as

seen in the results, to make the algorithm more flexible, we need to extend the range of

training images used, which will add to the time for training. The number of patches and

GMM components also play a role in the processing time of the algorithm. The higher

the number of these parameters, the more time it will take for the algorithm to perform

deconvolution. Since we are using Fourier transform in our (S2) sub-problem, it was

observed experimentally that our proposed algorithm is faster than other plug-and-play

schemes based on ADMM. Due to confidentiality, the exact parameters and the timer

processing cannot be disclosed. The plug-and-play scheme is still under experimental

evaluation at I2S.

Notes on the performance:

The performance of the deconvolution depends on several items and parameters.

As we saw, the plug-and-play scheme works quite well for denoising because the training
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Figure 6.9: Signals of deconvolution using a mixture of noisy and clean complex training images

images are either clean, noiseless, or noisy, so the learning-based denoiser performs well

according to the training data given to it. Here we would like to provide some points

according to the conditions where the deconvolution performance can be improved:

1-if the significance of deconvolution is not visible enough, a more substantial and

bigger PSF can be chosen to help the deconvolution. This parameter shows its effect on

the subproblem (S2), where we try to recover the x using the Fourier transform. 2-if the

significance of deconvolution is not visible more iterations could be needed to allow the

algorithm to perform the deconvolution. Please note this will add to the processing time

of the algorithm, which is not always desirable. 3-large values of µ can help improve

the deconvolution’s performance. µ is used in sub-problem (S2); if a more significant

value is chosen, more weight will be put to this sub-problem, enhancing the effect of the

kernel and deconvolution.

In general, this is the first time that the idea of plug-and-play is used in alternating

minimisation the scheme; therefore, more experiments and exercises are needed to define

how we can approach denoising and deconvolution more efficiently.
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6.5 Chapter conclusion

This chapter introduces the idea of plug-and-play priors for image denoising and

deconvolution algorithms. Plug-and-play is a branch of recently developed learning

methods in inverse problems. We briefly reviewed deep learningmethods and algorithms

such as CNNs and DNNs. Since 2015, many deep learning methods have become the

focus of research and development in various applications such as medical imaging,

computational photography, microscopy, and image processing. We gave our motivation

and intuition of plug and play priors. We show that this algorithm can be used within the

classical iterative methods. One of the key points of the plug and play is its modularity.

In a classical, alternative method, the proximal minimisation term could be replaced

by a black box such as an image denoiser. In the next step, we gave the idea of the

GMM based denoiser used in our algorithm. In the last section of this chapter, we

provided various examples and experiments of applying plug-and-play in our classical

image deconvolution/denoising scheme provided in chapter 3.

The results show that the plug-and-play priors can perform reasonably well for

denoising. However, the algorithm does not perform notably well for deconvolution

compared to the classical results obtained in chapter 3. Moreover, supplementary ex-

periments and tests should be carried out to precisely examine the role of parameters

such as training data, the Kernel, µ and β in alternating minimisation scheme. Our

thesis was the first time that plug-and play-priors were used in an alternating minimi-

sation scheme. The results showed a promising potential for plug-and-play in classical

approaches for deconvolution/denoising. This part of the thesis is still under integration

to be implemented within the devices of I2S.
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Chapter 7: Conclusion and prospects

In this chapter, we conclude the thesis by summarizing our main contributions and

results. We also highlight the ongoing works we are conducting as an extension.

7.1 Summary of the contributions

This thesis has presented the framework of developing a super-resolution scheme

and image deconvolution algorithm for various cameras and products. The main objec-

tive of this thesis was to develop a practical algorithm that can be fast, accurate, and

flexible. We presented the framework of developing a super-resolution scheme with the

help of sensor displacement of the camera to achieve high-resolution images with up to

2 times the resolution of the original ones. To enhance the quality of the images, we

proposed an image deconvolution algorithm with an alternating minimization scheme

to be used aside and the super-resolution scheme. We considered classical optimization

methods for our image deconvolution algorithm for the first stage of our implementation.

One of the goals of our thesis was to develop a fast and low complex algorithm by

preserving the accuracy for practical application in the industry.

We can summarize our work in the following items:

We proposed the super-resolution scheme to capture low-resolution images, each

image having half-pixel displacement. We assembled the low-resolution images

to capture a higher resolution image, which will allow us to capture images of 800

DPI.

We proposed an image deconvolution/denoising algorithm based on variable split-

ting and proximal operators. Our proposed method proved to be fast, accurate and

less complex, which made it ideal to implement in practical applications for prod-

ucts like connected image acquisition systems and embedded systems with limited

computation capability.

For the first time, we propose the use of new potential functions to be used as prior

information in imaging inverse problems. The scientific experiments proved that



we could offer new functions that outperform the classical regularizers used in

previous studies. Potential functions performed well for different kinds of images,

such as sparse and complex. We used various image quality metrics to evaluate

our scientific experiments, and all results showed an enhanced improvement in

image quality.

We have successfully transitioned the algorithm to practical implementation. For

the implementation of deconvolution, we have used C++ programming language.

We developed new libraries and functions which did not exist before for image

deconvolution/denoising algorithms. We have successfully implemented the al-

gorithm on two cameras of I2S used for book scanners.

The image deconvolution/denoising algorithm proved effective for other products

and cameras of I2S. The algorithms were implemented for microscopic and Tera-

hertz cameras, and the results showed improved quality and resolution in images

captured with such cameras with parameter adaptation.

In an ongoingwork, we also adopted the deconvolution/ denoising algorithm on the

Herschel observation maps. With the new potential function, we have improved

the denoising and deconvolution of observational maps.

For the second step of the thesis, we proposed plug-and-play priors for image

inverse problems. This method provides the ability to use a learned denoiser

within the structure of a classical optimization scheme. We suggested using

plug-and-play priors in the alternating minimization scheme for the first time.

The denoising results were promising. However, the algorithm does not perform

deconvolution as good as the classical method.

7.2 Future work and prospects

One of the main challenges we faced in our work consisted of modelling the PSF or

H . The captured image goes through various steps and systems during the acquisition

of images in image capturing devices such as cameras, microscopes, and scanners.

These systems include the interpolation, the lens, the A/D chip, and the digital image

processing unit. Each system leaves its effect on the resulting image. These effects are
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modelled with the PSF matrix. It is always difficult to define a general and global PSF

for each image deconvolution application, especially in industry. To better model the

PSF, it would be interesting to design a PSF estimation to be implemented before the

deconvolution, which is specifically designed for the application. A lot of blind image

deconvolution algorithms have been studied before. However, not many are considered

for industrial use. In the user interface, the user can define the PSF before running the

program. Would it be possible to improve the PSF selection using non-blind image

deconvolution techniques?

We would like to use Expectation Propagation for further development of our

proposed image deconvolution/denoising algorithm. Using this technique, we pursue to

convert our proposed algorithm into a non-blind image deconvolution scheme.

The plug-and-play approach has been recently developed, and still, more evaluations

are needed to understand this scheme. Our proposed plug-and-play can be further

experimented with to improve the quality of image deconvolution. Various quantities of

training data can be studied to further understand its effect on the resulting image.
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