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RÉSUMÉ - ABSTRACT

SIMULATION NUMÉRIQUE ET QUANTIFICATION D’INCERTITUDES POUR LE REFROIDISSEMENT

PAR IMMERSION DES BATTERIES LITHIUM-ION

Résumé Pour promouvoir une utilisation plus large des véhicules électriques, les batteries

Lithium-ion (Li-ion) se doivent de supporter des courants électriques importants, générant

ainsi de fortes contraintes thermiques qui dégradent leurs performances et leur durée de

vie. La gestion thermique des packs de batteries est donc un élément crucial pour répondre

à ces nouvelles contraintes industrielles. La technologie de refroidissement par immersion

est une solution prometteuse en termes de performances thermiques. Ces systèmes sont

gouvernés par des phénomènes multi-physiques, allant de la chimie interne des batteries

jusqu’au transfert thermique à l’échelle du pack de batteries alimentant le moteur électrique.

Cette thèse a pour objectif de développer des modèles numériques pour le refroidissement par

immersion des batteries Li-ion, tout en considérant les incertitudes provenant des paramètres

physiques en jeu.

Cette problématique est abordée en proposant deux modèles de fidélités croissantes.

D’abord, un modèle dit basse fidélité est développé, incluant la modélisation des phéno-

mènes thermiques et électriques du problème. Des méthodes de quantification d’incertitudes

(calibration Bayésienne et analyse de sensibilité) couplées avec des données expérimentales

originales offrent ainsi des éléments de compréhension et d’analyse sur le comportement glo-

bal du système. Ensuite, une approche plus spécifique est présentée à l’aide d’un code de

calcul CFD haute fidélité. Le calcul du transfert thermique conjugué sous régime transitoire

en deux dimensions d’un pack de batteries immergées est ainsi réalisé. Cet outil est utilisé

pour évaluer la précision d’un modèle construit a priori, représentant la résistance interne

des batteries Li-ion. Les incertitudes provenant de la résistance sont prises en compte grâce

à la paramétrisation de ce modèle et calibrées en utilisant un cas test expérimental de la lit-

térature. Enfin, pour obtenir une meilleure compréhension de la physique de ces problèmes

de refroidissement par immersion, la fidélité de l’outil CFD est augmentée en considérant des

calculs de transferts thermiques en 3D, ainsi qu’un modèle de résistance interne amélioré.

Mots clés Batteries Lithium-ion; Refroidissement par immersion; Simulation numérique;

Quantification d’incertitudes; Transfert thermique conjugué; Calibration Bayésienne; Méta-

modèles.
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NUMERICAL SIMULATION AND UNCERTAINTY QUANTIFICATION FOR IMMERSION COOLING OF

LITHIUM-ION BATTERIES

Abstract To encourage a wider use of electric vehicles, Lithium-ion (Li-ion) batteries are

required to handle high electric currents, generating great heat loads which deteriorate their

performances and lifespan. The thermal management of the battery packs is a key element to

fulfill these industrial demands. Immersion cooling technology stands as a promising solution

in terms of heat transfer performances. Multi-physics processes govern those systems, from

the internal chemistry of Li-ion cells to the heat transfer at the battery pack scale powering the

electric engine. This thesis aims to develop numerical models of immersion cooling systems

for Li-ion batteries considering the uncertainties coming from the physical parameters.

This issue is addressed by proposing two models of increasing fidelity. Firstly, a low

fidelity model is developed, including the thermal and electrical phenomena of the immersion

cooling problem. Uncertainty quantification methods (Bayesian calibration and sensitivity

analysis) coupled with original experimental data provide a deeper knowledge on the overall

behavior of the system. Secondly, a more specific approach is performed using a high fidelity

Computational Fluid Dynamics (CFD) model solving the transient conjugate heat transfer in

an immersed battery pack in two dimensions. This CFD tool is used to assess the accuracy of

a constructed model for the internal resistance of Li-ion batteries. Uncertainties coming from

the internal resistance are taken into account thanks to the parameterization of this model

and calibrated using an experimental test case from literature. Furthermore, for a better

understanding of the immersion cooling physics, the fidelity of the CFD model is increased

by considering 3D simulations and an enhanced internal resistance model.

Keywords Lithium-ion batteries; Immersion cooling; Numerical simulation; Conjugate heat

transfer; Uncertainty quantification; Bayesian inverse problem; Surrogate models.
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RÉSUMÉ ÉTENDU EN FRANÇAIS

Contexte

L’augmentation des émissions de gaz à effets de serre est une menace réelle pour le bien être

de l’Humanité sur Terre dans le futur. Dans ce contexte, le secteur des transports est respon-

sable de 30% des émissions totales [47]. Les véhicules électriques propulsés par des batteries

Lithium-ion (Li-ion) sont une solution prometteuse pour aller vers des modes de transports à

faibles émissions. Les industriels produisent des efforts conséquents pour développer de tels

véhicules.

Pour atteindre des parts de marché suffisantes, l’enjeu est de développer des véhicules avec

une puissance moteur suffisante et une bonne autonomie. En somme, les véhicules élec-

triques doivent montrer qu’ils sont capables de reproduire les performances des véhicules à

propulsion thermique. Ces performances impliquent que les batteries doivent fournir une

puissance suffisante sur des longues périodes de fonctionnement. De plus, le temps néces-

saire pour une recharge du pack batteries ne doit pas excéder une dizaine de minutes. Les

batteries Li-ion sont une solution prometteuse pour atteindre de telles performances, étant

donné que ces dispositifs présentent une forte densité de puissance et d’énergie (voir Fig.

II.1). Dans les véhicules électriques, des milliers de cellules sont assemblées dans des mo-

dules, formant ainsi le pack batterie. C’est ce pack qui fournit l’énergie nécessaire au moteur

électrique et fait ainsi avancer le véhicule.

Les performances citées ci-dessus se traduisent en pratique par des courants électriques

forts qui sont appliqués aux batteries, pour les séquences de charge ou de décharge. Les

réactions électrochimiques produisant l’énergie délivrées par les batteries produisent de la

chaleur [121]. Cette génération de chaleur est d’autant plus forte que les courants électriques

appliqués sont élevés. Les fortes températures atteintes par les batteries endommagent les

batteries à court ou moyen termes, réduisant ainsi leurs durées de vie et leurs performances.

La gestion thermique des batteries pendant leur fonctionnement est donc un élément clé

pour atteindre les performances permettant de réaliser des trajets longs à vitesse satisfaisante,

toute en réduisant les temps de recharge.

Pour résoudre ces problématiques thermiques liées au fonctionnement des batteries Li-

ion, les industriels tentent de développer des systèmes capables de refroidir les batteries

pendant leur fonctionnement. Ce sont les systèmes de gestion thermique des batteries, ou

Battery Thermal Management System (BTMS) en anglais. La technique d’intérêt dans le cadre

de cette thèse est le refroidissement par immersion. Le rôle de ces systèmes est de (i) main-

tenir les batteries dans une plage de température garantissant leur sécurité pendant le fonc-

tionnement, (ii) assurer une bonne homogénéité de températures entre toutes les batteries

du pack, (iii) assurer une bonne homogénéité de température pour une seule batterie. Dans

les systèmes de refroidissement par immersion, les batteries stockées dans un module sont
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immergées au contact d’un fluide (de l’air ou un liquide diélectrique). Le fluide circule à tra-

vers un circuit de refroidissement, dissipant ainsi la chaleur produite par les batteries pendant

leur fonctionnement par transfert thermique convectif.

Simulation des systèmes de refroidissement par immersion pour

batteries Li-ion

La simulation des systèmes de refroidissement par immersion, depuis l’échelle du comporte-

ment électrochimique interne dans les batteries, jusqu’au transfert thermique entre les bat-

teries et le fluide, consiste en pratique à résoudre un problème multi-physique. Plusieurs

approches existent dans la littérature pour réaliser la simulation des BTMS.

Les auteurs dans [125] identifient les méthodes de modélisation permettant de repré-

senter les comportements thermiques et électriques des batteries Li-ion. L’approche usuelle

consiste à représenter les batteries et le système de refroidissement avec une géométrie en

1D, 2D ou 3D. Plusieurs types de modèles sont disponibles dans la littérature pour représenter

les comportement thermiques et électriques des batteries.

Des modèles 0D et 1D développés dans certaines études ont montré des bonnes capacités

à reproduire les prédictions de températures vis à vis de données expérimentales [67, 4].

Cependant, l’approche la plus répandue dans la littérature est d’utiliser les outils de la

CFD (Computational Fluid Dynamics) pour la simulation des systèmes de refroidissement par

immersion. L’approche CFD permet d’obtenir plus d’informations sur le comportement des

systèmes, puisque la résolution du système d’équations aux dérivées partielles en 2D ou 3D

permet d’obtenir les champs de températures dans le fluide et le solide, ainsi que les champs

de vitesse et pression pour le domaine fluide. En se plaçant à l’échelle du pack batterie, le

transfert de chaleur entre les batteries et le fluide de refroidissement est usuellement calculé

en utilisant l’approche du transfert thermique conjugué. Dans la plupart des études proposant

cette approche, les équations de Navier-Stokes sont résolues dans le fluide. L’équation de la

chaleur est résolue dans le domaine solide représentant les batteries [144, 88]. Le couplage

est réalisé en appliquant la continuité des flux et températures à l’interface.

Les principaux objectifs des études réalisant la simulation des systèmes de refroidissement

par immersion peuvent se résumer ainsi: calculer l’évolution de température à des positions

spécifiques du pack batteries, suivant des conditions de charge/décharge, estimer le coef-

ficient de transfert thermique pour comparer les performances de refroidissement selon la

configuration considérée, le fluide utilisée ou la géométrie de la disposition des cellules dans

un pack.

Les études CFD de la littérature sont variées et se focalisent sur différents aspects de

la physique des systèmes de refroidissement par immersion. Les études numériques de ces

systèmes remplissent un des deux objectifs suivants. Le premier objectif consiste à utiliser les

modèles CFD pour caractériser et analyser des processus typiques de transfert thermique dans

des cas tests présentant une configuration simplifiée. Le second objectif consiste à utiliser cet

outil pour évaluer les performances d’une méthode de refroidissement innovante ou d’un

dispositif existant afin de le dimensionner.
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La simulation numérique de ces systèmes présente certaines problématiques. Première-

ment, comme vu ci-dessus, les packs de batteries sont composés d’un très grand nombre de

cellules, des centaines voire des milliers. Peu d’études réalisent la simulation de si grandes

configurations. Représenter les transferts thermiques pour un pack complet peut s’avérer très

complexe. De plus, simuler ces configurations de façon exhaustive, en incluant les phéno-

mènes se produisant dans la structure interne des batteries peut s’avérer prohibitif avec des

modèles CFD.

Le maillage utilisé pour ces simulations peut être également difficile à réaliser. En effet,

les industriels visent à disposer autant de batteries que possible dans un volume donné, ren-

dant l’espace entre les batteries très étroit, parfois inférieur au millimètre. La résolution des

équations régissant l’écoulement du fluide peut s’avérer donc très complexe dans ces zones.

De plus, le fluide de refroidissement est en général un fluide complexe, au comportement

thermique non classique. Enfin, la chaleur produite par les batteries résulte des réactions

chimiques dans la structure interne des batteries. C’est pourquoi, représenter la physique au

niveau chimique jusqu’à l’échelle des transferts thermiques au niveau du module demande

de développer un modèle multi-physique couplant l’information provenant de ces différentes

échelles. Seulement quelques études, par exemple [133, 69], réalisent de telles approches.

Enfin, les problématiques décrites ci-dessus peuvent expliquer la difficulté à trouver des

études avec une description complète du problème multi-physique. La reproduction des ré-

sultats de la littérature peut s’avérer parfois difficile en raison du manque d’information dis-

ponibles dans ces études sur les divers paramètres physiques mis en jeu.

Quantification d’incertitudes pour le refroidissement par immer-

sion des batteries Li-ion

Les systèmes de refroidissement par immersion présentent un nombre considérable de para-

mètres incertains à considérer. Premièrement, selon l’échelle considérée, des lois physiques

doivent être mises en places pour des paramètres essentiels, régissant les comportements

thermique et électrique des batteries.

Plus précisément, les auteurs dans [144] identifient les principales échelles à considérer

pour représenter ces systèmes, en allant des batteries jusqu’au système complet. Premiè-

rement, le comportement interne des batteries peut être résolu au niveau électrochimique.

Il peut être aussi représenté de manière plus macroscopique en considérant les paramètres

électriques des batteries. Ici la génération de chaleur est calculée avec des lois phénoménolo-

giques mettant en jeu ces paramètre électriques, comme par exemple l’effet Joule [13]. Enfin,

le transfert thermique entre les batteries et le fluide peut être résolu pour une batterie ou au

niveau d’un module complet, impliquant de considérer plusieurs batteries et une résolution

d’écoulements complexes. Selon l’échelle sélectionnée, des hypothèses doivent être réalisées

pour représenter un phénomène physique qui ne sera pas calculé directement.

Toutes ces approches utilisent des modèles plus ou moins distant de la physique interne

des batteries, et mettent en jeu des paramètres présentant des incertitudes [74]. Autrement

dit, il est difficile de choisir des valeurs pour ces paramètres avec un bon niveau de confiance

vii



si aucune information supplémentaire n’est apportée.

Lorsqu’il s’agit d’évaluer les performances des systèmes de refroidissement, les inconnues

sur les paramètres vont potentiellement impacter fortement les prédictions obtenues pour

les quantités d’intérêts. D’un point de vue de la simulation, ces incertitudes vont impacter

fortement les valeurs calculées et prédites par les modèles. La prédiction de ces quantités

se montrera plus robuste et informative si la variabilité de ces paramètres d’entrée peut être

quantifiée.

Une approche Quantification d’incertitudes permet de résoudre ces problématiques dans

le cadre de la simulation numérique. Dans ce cadre, les résultats des simulations ne sont

plus vus comme ayant une seule valeur déterministe, mais comme une prédiction avec une

probabilité associée qu’il s’agira alors de quantifier. La précision des modèles est alors évaluée

en termes de distributions et statistiques (moyenne, variance, quantiles,...) sur les quantités

calculées.

Quelques références ont appliqué une approche quantification d’incertitudes pour la si-

mulation des batteries Li-ion. La plupart des études se focalisent sur les équations régis-

sant le comportement électrochimique dans une batterie [43, 52, 82, 6]. Quelques auteurs

seulement étudient le couplage entre les équations au niveau électronique avec les équations

thermiques pour calculer la chaleur produite par les batteries, en considérant les incertitudes

à ces deux échelles [138, 23]. Peu de références étudient les effets des incertitudes sur le

transfert thermique entre les batteries et le fluide de refroidissement.

Motivations et contributions de la thèse

Collaboration industrielle avec Exoes

Dans ce contexte industriel, le projet de cette thèse est issu de la collaboration avec l’entreprise

Exoes située à Gradignan en France [44]. Exoes développe des modules batteries avec un

système de refroidissement par immersion à destination des constructeurs de véhicules élec-

triques. La solution proposée par Exoes est un pack batterie répondant aux besoins des clients

en terme d’espace disponible dans le véhicule, de puissance requise par le moteur et de limi-

tations des coûts. Leur expertise est portée sur la construction et l’analyse de ces systèmes de

refroidissement.

La collaboration avec l’Inria vient naturellement du besoin exprimé par Exoes de déve-

lopper des outils numériques avancés pour réaliser des analyses plus poussées de ces sys-

tèmes. La complexité des systèmes de refroidissement par immersion nécessite le dévelop-

pement de solveurs haute-fidélité ainsi que d’un traitement rigoureux des différentes source

d’incertitudes. De plus, les données expérimentales produites par Exoes permettront une

validation systématique des différents modèles numériques.

Motivations

Considérant tous les aspects revus ci-avant, partant de la conception des systèmes de refroi-

dissement par immersion jusqu’au traitement des incertitudes, les objectifs de cette thèse
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peuvent être déclinés ainsi:

Simulation numérique des systèmes de refroidissement par immersion pour les bat-

teries Li-ion Le premier objectif de la thèse est de développer des modèles numériques

pour réaliser des simulations des systèmes de refroidissement par immersion des batteries

Li-ion. Les modèles devront permettre de prédire l’évolution de quantités thermiques comme

l’évolution de la température sous différentes conditions. Un compromis entre coûts de cal-

culs et précision sera exploré: deux modèles à différents de niveaux de fidélité seront consi-

dérés. La nature des résultats produits par les deux modèles sera mis en perspective avec les

ressources de calcul requises.

Identifier et caractériser les incertitudes provenant des systèmes de refroidissement

par immersion pour les batteries Li-ion Ces systèmes multi-physiques nécessitent de trai-

ter les incertitudes afin de réaliser des simulations informatives et prédictives. Cet objectif

consiste à produire une analyse physique du processus de refroidissement par immersion

pour identifier quels paramètres seront considérés incertains.

Basée sur une revue de la littérature et d’expertises d’ingénieurs d’Exoes, ces paramètres

seront sélectionnés. La collaboration avec Exoes permet d’apporter une quantité d’information

significative pour caractériser avec précision les incertitudes de ces systèmes. Les incertitudes

considérées (plage de variation et distribution) seront définies à ce stade pour les paramètres

concernés.

Validation robuste et calibration des modèles vis à vis de données expérimentales Une

fois que les modèle numériques seront mis en place et les incertitudes proprement caracté-

risées, l’objectif final est de produire des résultats de simulation pour obtenir des éléments

d’analyse sur les systèmes de refroidissement par immersion.

Tout d’abord, les modèles devront être validés vis à vis de données expérimentales.

L’utilisation directe de ces données permettra ensuite de calibrer les modèle dans un cadre

probabiliste (calibration Bayésienne). Les résultats de telles analyses conduiront à des va-

leurs sur les paramètres incertains, permettant d’obtenir des réponses du modèle proches des

données expérimentales. En ce sens, les incertitudes sur les prédictions numériques seront

aussi réduites.

Contributions

En suivant les objectifs décrits, les contributions de ces travaux de thèse peuvent se décliner

selon les quatre points suivants.

Solveur basse-fidélité à faible coût de calcul Premièrement, un modèle numérique ra-

pide, dénommé ICExo, développé chez Exoes, a été adapté pour simuler des batteries immer-

gées dans un fluide. Le modèle numérique permet de prédire l’évolution de température et

de quantités électriques (tension, état de charge) des batteries en suivant des conditions de

charge et décharge variables.
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Ce solveur est vu comme un modèle basse-fidélité étant donné qu’il ne résout pas l’ensemble

des équations de la thermique comme cela serait réalisée dans une approche purement CFD.

Solveur CFD haute-fidélité appliqué aux systèmes de refroidissement par immersion

Deuxièmement, le code TrioCFD, développé au CEA de Saclay, a été utilisé pour la première

fois sur une application de refroidissement de batteries. Basé sur la méthode éléments finis,

le modèle a montré des bonnes capacité pour simuler les systèmes de refroidissement par

immersion. Une partie significative de cette contribution réside dans la validation de ce

solveur sur des cas-tests numériques et expérimentaux issus de la littérature.

Propagation d’incertitudes et calibration avec le solveur basse-fidélité Une étude de

quantification d’incertitudes a été réalisée en utilisant les prédictions du solveur basse-fidélité.

Des paramètres multi-physiques ont été considérés comme incertains. La caractérisation des

incertitudes repose sur la revue de la littérature et l’avis d’experts chez Exoes. Des méthodes

de quantifications d’incertitudes (analyse de sensibilité, propagation d’incertitudes) ont été

appliquées. Enfin, une calibration Bayésienne des paramètres incertains a été réalisée pour

valider le modèle numérique vis à vis de données expérimentales. Grâce à cette approche, les

incertitudes sur les données d’entrée et sur les prédictions de températures ont été réduites

de façon significative.

Evaluation de la précision d’un modèle de résistance interne avec le solveur haute-

fidélité Pour cette contribution, l’accent est placé sur la modélisation plus fine du paramètre

de résistance. Le cas-test utilisé pour cette étude est un cas d’échauffement de batteries,

soumises à un courant constant et immergé dans de l’air. Le problème du transfert thermique

conjugué est résolu. Un modèle spécifique est construit pour le paramètre de résistance

interne, qui dépend alors du champ de températures dans les batteries.

Ce modèle permet de traiter les incertitudes sur ce paramètre de résistance. Une pro-

pagation d’incertitudes permet d’évaluer l’impact de ces incertitudes sur les prédictions de

température. Enfin, une calibration Bayésienne est réalisée à partir de données expérimen-

tales issues de ce cas-test. Les valeurs de résistance interne conduisant à une réponse du

modèles proche des données expérimentales sont apprises à l’issue de cette calibration. Les

incertitudes sur les prédictions de températures sont également considérablement réduites.

D’un point de vue pratique, cette approche constitue une méthode permettant de recons-

truire le comportement de la résistance à partir de mesures de température sur les batteries

Li-ion.

Plan du manuscrit

Chapitre II Ce chapitre introduit le fonctionnement des batteries Li-ion, les paramètres et

différents processus physiques en jeu. Les problématiques thermiques relatives au fonction-

nement des batteries sont décrites. Les différents types de systèmes de refroidissement sont

x



décrits, en mettant l’accent sur le refroidissement par immersion. Les approches de modélisa-

tion existant en littérature utilisées pour simuler les batteries et les processus de génération

de chaleurs sont aussi revues. Enfin le processus de transfert thermique conjugué est briève-

ment décrit à ce stade.

Chapitre III Ce chapitre est dédié à la description du solveur basse fidélité ICExo. Le fonc-

tionnement global du modèle est présenté, incluant la simulation des parties thermique et

électrique. Un cas-test expérimental original réalisé par Exoes est présenté. Les données

issues de ce cas-test sont utilisées pour valider les prédictions du modèle numérique dans

différentes conditions.

Chapitre IV Ce chapitre vise à présenter le fonctionnement du modèle CFD. Les équations

résolues dans le cadre de cette thèse sont décrites. Le comportement du code est d’abord

comparé avec un calcul FLUENT sur un cas de convection forcée. Ensuite, le code est validé

avec des données expérimentales de la littérature. Cette dernière étude montre l’importance

de la sélection du terme source et de l’impact de la géométrie (2D ou 3D) sur le prédiction

de températures pour ces batteries immergées dans de l’air.

Chapitre V Ce chapitre pose le cadre théorique relatif aux problèmes de quantification

d’incertitudes. D’abord, le point de vue global d’une approche quantification d’incertitudes est

donné. Les outils mathématiques nécessaires dans ce cadre sont présentés. Ensuite, les dif-

férentes méthodes utilisées dans cette thèse pour les études de quantifications d’incertitudes

sont décrites.

Chapitre VI Dans ce chapitre, les étapes et les résultats de la contribution relative à l’étude

d’incertitudes basée sur le modèle basse-fidélité sont détaillées. Les principaux résultats

de ce chapitre concernent la calibration des paramètres multi-physiques, la propagation

d’incertitudes issue de cette calibration et l’analyse de sensibilité sur un cas de course réaliste.

Chapitre VII Ce chapitre décrit la dernière contribution à propos de la calibration du mo-

dèle de résistance interne. La méthode pour construire le modèle de résistance interne est

décrite. Ensuite, la calibration Bayésienne permet d’obtenir une considérable réductions

d’incertitudes, en comparant les prédictions de température issues de la propagation des

incertitudes a priori et a posteriori. Enfin, un test numérique exploratoire est réalisé en

considérant l’effet de l’état de charge dans le modèle de résistance interne, ajouté à la dépen-

dance en température précédemment considérée. La méthode proposée ici permet d’évaluer

l’impact de l’état de charge sur l’évolution de température.

Chapitre VIII Ce chapitre présente de façon résumée les principaux résultats obtenus dans

cette thèse. Des perspectives pour des travaux à court et moyens termes sont données afin

de dessiner les étapes permettant d’avoir une analyse plus profonde des résultats actuels et

explorer de nouvelles pistes.
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CHAPTER I

INTRODUCTION

Chapter abstract
This chapter gives the essential elements to the whole work presented in this
thesis manuscript. The industrial and scientific contexts are described to draw
the main objectives addressed in this thesis. The main contributions outcoming
of this work are summarized. Finally, the content of each chapter composing
this manuscript is briefly described so the reader can better understand how the
contributions are presented all along the manuscript.

Outline
I.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

I.1.1 Clean mobility and challenges with Li-ion batteries for Electric Vehicles . . 1

I.1.2 Battery thermal management systems . . . . . . . . . . . . . . . . . . . . . 2

I.2 Immersion cooling of Li-ion batteries: state of the art and challenges . 3

I.2.1 Challenges in battery thermal management systems . . . . . . . . . . . . . 3

I.2.2 Simulation of immersion cooling systems for Li-ion batteries . . . . . . . . 4

I.2.3 Uncertainty quantification for immersion cooling of Li-ion batteries . . . . 7

I.3 Motivations and contributions of the thesis . . . . . . . . . . . . . . . . . 8

I.3.1 Industrial collaboration with Exoes . . . . . . . . . . . . . . . . . . . . . . 8

I.3.2 Thesis motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

I.3.3 Scientific contributions of the thesis . . . . . . . . . . . . . . . . . . . . . . 9

I.4 Outline of the manuscript . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

I.1 Context

I.1.1 Clean mobility and challenges with Li-ion batteries for Electric Vehicles

The rise of greenhouse gas emissions is a concerning threat to humankind’s well-being on

Earth in the future. In this context, for instance, in France, the transport activities are re-

sponsible for 30% of the total greenhouse gas emissions [47]. More precisely, Fig. I.1 shows

that in the EU, the primary source of greenhouse gas emissions is coming from road trans-

port. Electric vehicles (EV) powered by Lithium-ion (Li-ion) batteries stand as a promising

solution for zero-emission transportation. Industrials put a lot of efforts on developing such

cars: in 2020, the electrical vehicles represented a share of 24.5% of the new cars in EU [94].

The challenge towards a mass-market adoption of electric vehicles is to develop vehicles with
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EU (Convention) — Share of transport greenhouse gas emissions

Other Transportation
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Maritime

Railways

13.9%13.4%

71.7%

Figure I.1: Share of greenhouse gas emissions by transportation type. Figure extracted from
[104].

sufficient power and a good range of autonomy. In other words, electric cars should present

performances similar to the current internal combustion engine cars. Significantly, the last

barrier to large usage of EVs is to prove their capacity of performing long travels across a

country [32]. It means that the batteries should produce enough power over long periods

to allow individuals to travel distances similar to cars with internal combustion engines. As

stated in [5], the coming generations of electrified vehicles would be required to travel 500
kilometers to reach a significant share of the automotive market. Also, the full charging time

of the battery pack should not exceed around 15 minutes if one wants to compete with the

time required to refill a fuel tank.

Li-ion batteries are the most promising solution to reach such performances, as these

devices show excellent energy and power density, being the amount of energy (resp. power)

produced by the battery divided by its mass (see Fig. II.1 from chapter II for more details).

Thousands of Li-ion batteries are assembled in modules in electric vehicles, composing the

so-called battery pack. This battery pack powers the electric engine, moving the vehicle.

The capabilities required by electric cars stated just above are traduced in practice by high

electric currents submitted to the Li-ion batteries for the discharging or charging sequences.

The internal electrochemical reactions producing the power in the batteries generate heat

[121]. This heat generation increases as the electrical currents going through the batter-

ies present higher values. The high temperatures can damage the batteries by causing fire

hazards, or with less gravity, reducing their lifetime or performances [142, 3]. The thermal

management of the batteries during the whole vehicle operation is then a key element to

reach the demands of industrials and reach the performances allowing long and fast travels.

I.1.2 Battery thermal management systems

Tackling the thermal issues related to the Li-ion batteries operation requires a lot of effort to

develop systems capable of cooling the batteries during the car operation. These systems are

called Battery Thermal Management Systems (BTMS). Several technologies coexist in the EV
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market: phase change materials, indirect cooling, direct or immersion cooling (IC) or finally,

two-phased liquid cooling. The role of the BTMS is threefold during the vehicle operation:

keep the batteries in a safe range of temperatures, ensure a good temperature homogeneity

between all the batteries in the pack and inside each battery.

So far, the immersion cooling technology seems to be the most effective solution in terms

of heat transfer performances [53]. Also, the number of patents related to immersion cooling

techniques rose significantly in the past years, as illustrated in Fig. I.2. This trend illustrates

the interest of industrials in the development of this cooling system. The Li-ion batteries

are directly immersed in a cooling fluid flowing in the module in this technique. The fluid

goes through an entire cooling circuit, retrieving and exhausting the heat produced by the

numerous batteries by conjugate heat transfer.

Figure I.2: Rise of patents families related to liquid immersion cooling technology over the
last 70 years, presenting a compound annual growth rate (CGAR) around 40%. Data ex-
tracted and plotted from the European Patent Office database by the company Capax Infinity.

I.2 Immersion cooling of Li-ion batteries: state of the art and

challenges

I.2.1 Challenges in battery thermal management systems

Since we have presented the main constraints that the electric vehicles and BTMS must fulfill,

we review here the challenges induced by the physics occurring in such systems. Those

systems feature complex physical behaviours during a normal operation of the vehicles.

First, the heat generated by the batteries during the operation of the vehicles, constituted

by the alternation of charging and discharging sequences, can lead to the overheating of the
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batteries. The overheating hazard is more likely to occur as the battery pack is submitted to

high electric currents. The fast charging and operation at high speeds of the cars typically

require such values of the current. Then, with that usage, the batteries in the pack do not

have much time to decrease their temperature.

As stated above, the batteries can reach high temperatures due to the heavy electrical

currents submitted to the pack. By contrast, the cooling fluid entering the battery pack

at the ambient temperature can provoke thermal shocks when the outside temperature is

significantly lower. Also, the cooling fluid flow can present complex patterns due to packs

arrangement geometry and the small cell spacing. In this perspective, the focus can be on the

pressure of the cooling fluid inside the module by limiting the power consumption of pumps

generating the flow. Then, the heat transfer can also be hard to assess because of the complex

flow patterns and high-temperature gradients between the domains.

Furthermore, more extreme events can occur in the BTMS. In some cases, the overheating

can get so intense that it provokes thermal runaway [90]. In such an event, one of the pack’s

battery reaches such a high temperature that it generates smoke and fire. As numerous cells

are packed together, the heat spreads quickly through all the packs, igniting the other cells.

This phenomenon features high-temperature gradients and occurs in a short time interval.

Finally, some BTMS use immersion cooling technology with a two-phased liquid-gas coolant

flowing in the battery pack [146]. This technique implies dealing with the pack’s local phase

changes and induced pressure variations.

A good representation of these physical processes is crucial to ensure a good design of

the cooling systems. The numerical simulation stands as a powerful tool to tackle these

challenges.

I.2.2 Simulation of immersion cooling systems for Li-ion batteries

Performing the simulation of immersion cooling systems, from the internal behavior of the

Li-ion batteries to the heat transfer at a macroscopic scale, requires in practice to address

a multi-physics problem. Several modeling approaches exist to perform the simulation of

BTMS. The authors in [125] identify the modeling methods to represent the thermal and

electrical behavior of the Li-ion batteries in immersion cooling systems. They state that the

usual approach is to consider the batteries and cooling system in either a 1D, 2D, 3D geom-

etry or use a so-called lumped model. Then, different types of models can be found in the

literature to represent the thermal and electrical behavior of the batteries.

For instance, the authors in [67] developed a 1D electro-thermal model to couple the

electrical parameters of the battery, such as voltage and resistance, among others, with the

temperature prediction of heated Li-ion batteries. The lumped body approach consider the

temperature uniformly distributed in the battery. For example, [4] apply a lumped thermal

model to compute the heat generation in the battery and heat transfer between the battery

surface and surrounding fluid. The lumped and 1D model developed in these studies featured

a good representation of the temperature evolution with respect to experimental data.

On the other hand, the most common approach in the literature is to use Computational

Fluid Dynamics (CFD) solvers to simulate the immersion cooling systems. At the scale of
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the battery pack, the heat transfer between the heated batteries and the cooling fluid, being

either liquids or gas, is usually computed using Conjugate Heat Transfer (CHT). For most

studies performing this approach, the Navier-Stokes equations are solved in the fluid do-

main. The heat equation is solved in the solid domain representing the batteries [144, 88].

These equations are coupled through temperature and heat flux continuity at the interface

between both domains. The unknowns of interest are the temperature fields in fluid and

solid domains, the fluid flow and pressure in the whole setup. The primary outcomes of

studies performing the numerical simulation of immersion cooling systems can be summed

up as follows: compute the temperature evolution at specific locations of the battery pack for

given charging or discharging conditions, estimate the heat transfer coefficients to compare

the cooling performances of some configurations depending on the type of coolant or the

geometry of the arrangement of the cells.

The CFD studies in the literature are diverse and focus on different physical aspects of

the immersion cooling systems. The numerical investigations of immersion cooling systems

with CFD tools usually fulfill one of the two following objectives. The first objective consists

of using the CFD models to characterize and analyze immersion cooling systems’ typical heat

transfer features in easy test case configurations. The second objective is to employ this

numerical tool to directly assess the performances of some innovative cooling method or

device from a pure design perspective.

For the first objective, the studies usually focus on the physical features listed in the fol-

lowing. Geometries of the arrangement of the cells in the modules are expected to affect

the flow of the cooling fluid and heat transfer performances. The work performed in [145]

consists of a comprehensive investigation of this feature on the cooling efficiency. They assess

the impact of the flow direction with respect to cylindrical cells set up in aligned, staggered or

bunched geometries. In the same spirit, the study from [68] consists in finding the location of

hot spots generated by their selected geometry in the system cooled by air. With small config-

urations, it is also easier to study the impact of the flow regime on the cooling. The authors

in [57] evaluate the temperature evolution, experimentally and with a 2D CFD model, at

specific locations of the cell, in natural and forced convection regimes. For instance, in work

from [16], they use CFD simulations of a bunch of cylindrical cells cooled with a high heat

transfer coefficient liquid and compute the temperature for flow regimes featuring increasing

Reynolds numbers. Finally, the type of fluid is also of importance. The difference is often

made between air or liquid cooling systems in the literature. For further comparison, [20]

uses a small and straightforward geometry of the cooling system to perform CFD simulations

with two fluids and assess the difference directly in terms of temperature resulting from the

heating. The purpose of the above works is to represent heat transfer patterns in a small

configuration and guess how the heat transfer would behave in larger configurations.

The second objective, on the opposite, considers more realistic immersion cooling devices

represented numerically to assess the cooling efficiency of the whole set-up. Here, the CFD is

used for the direct design of the systems. In this kind of studies, the geometry of the set-up is

usually more complex or, at least, involves the representation of more numerous Li-ion cells.

The authors in [93] assess the performances of their reciprocating flow cooling system thanks
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to CFD simulation of the conjugate heat transfer. In this study, a complete battery pack is rep-

resented, even if some simplifications and symmetries alleviate the computational costs. The

study’s outcome stands in the assessment of the overall configuration thermal performances.

In [123], the authors built a whole battery module. The originality of their simulation ap-

proach is that they represent the full geometry, including the structural components of the

battery pack. Their computation gives the temperature field for all those elements and pro-

vides a good overview of the system’s behavior for engineers addressing its practical design.

An other example in [133] shows an innovative method, mixing immersion and tab cooling

(see section II.3.2 in chapter II for more details on cooling techniques). Even if the geometry

comprises fewer cells, the CFD tool allowed the authors to test different configurations of

their cooling device and assess the performances directly by evaluations of the temperature

fields. Also, in [12] the authors try a new type of cooling module mixing air and indirect

tab cooling. The thermal performances are investigated experimentally. The 3D CFD model

developed to represent the battery module is also used to perform further investigations by

virtually changing the experimental geometry on cell spacing, ambient temperature or inlet

air velocity on the heat transfer performances. This kind of studies presents a good merge of

the two objectives stated above.

The review of these studies highlights some challenges usually encountered in the simulation

of immersion cooling systems. First, as said earlier, real-life battery packs are composed of

thousands of cells. Few studies address the simulation for such large geometries in immersion

cooling configurations despite the objectives cited above. Representing the heat transfer in a

real battery pack, at full scale with the thousands of cells and the complex induced structure,

is still a challenge. The simulation of comprehensive configurations with precision, including

the internal electrochemical process in the batteries, can be prohibitive with CFD models.

Also, the meshing for these simulations can be challenging to realize. Industrials seek to

set as many battery cells as possible in a given volume, making the spacing between them

often tiny compared to the characteristic size of these devices, sometimes lower than the

millimeter. The resolution of flow equations can be very challenging in these areas. Also,

many of these studies used air as the cooling liquid. The coolant is usually a complex fluid

with non-trivial thermal behavior in industrial applications. Also, the heat produced by the

batteries comes from the internal chemical reactions occurring inside. So, representing the

whole physics from the chemical level up to the module level’s heat transfer would require

setting up a multi-physics model coupling several levels. Only few studies, like for instance

in [133, 69], performed such a comprehensive approach.

Furthermore, the simulation of the immersion cooling systems with a two-phase fluid

(liquid boiling) remains a difficult task. To all the constraints cited above, the model should

represent the local phase changes in the whole geometry by capturing the moving boundary

between the two phases.

Finally, the issues stated above can also explain the difficulty to find studies with a com-

plete description of the multi-physics problem. The reproduction of results from literature

can sometimes suffer from the lack of comprehensive information for the various parameters
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involved in such problems.

I.2.3 Uncertainty quantification for immersion cooling of Li-ion batteries

The immersion cooling systems come with a lot of uncertain parameters to consider. First,

according to the scale considered to represent the heating of the batteries, some laws have to

be set up for some key parameters governing the batteries’ electrical and thermal behavior.

More specifically, the authors in [144] identified the main scales that can be considered to

represent these systems, from the batteries to the cooling system as a whole. First, the in-

ternal behavior of the batteries can be solved at the electrochemical level by solving electric

charge conservation equations and the resulting heat production. The electrical behavior can

also be computed at the macroscopic level of the cell by representing the electrical features

of the cells. The heat generated is computed using phenomenological laws (such as Joule

heating etc...) involving those electrical parameters [13]. Finally, the heat transfer between

the batteries and the surrounding fluid can be solved for one cell or at the level of a whole

module of batteries, involving many cells and complex flow resolution. Depending on which

scale the models start from, assumptions have to be made to represent the physical behavior

which would not be solved directly. All of these approaches consider models more or less

distant from the internal physics of the cells. They are either constructed from experimental

observations or physical considerations. Most importantly, they are defined through param-

eters coming with some epistemic uncertainty [74], meaning that it is hard to choose values

for these coefficients with strong confidence if no further information is provided.

These unknowns are expected to substantially impact the outcoming quantities of interest

(QOI) when assessing the performances of the cooling systems. From the simulation per-

spective, these uncertainties should impact strongly the values predicted by the models. The

predictive character of the numerical codes can be made more robust by dealing with those

uncertainties. The forecasted quantities can lead to more insightful analysis and learnings

when all these variabilities can be quantified.

An Uncertainty Quantification (UQ) approach can address these issues in numerical sim-

ulation problems. In this framework, simulation outcomes are not seen as a single determin-

istic output, but they give predictions in a given interval with an associated probability, which

one aims to quantify. The accuracy of the models is assessed in terms of distributions and

statistics (mean, variance, quantiles...) on these outputs. Specific mathematical tools need to

be implemented and coupled to the numerical solvers to perform such an approach.

Once one can represent the uncertainties of the input parameters, some standard methods

are performed in literature to quantify the uncertainties on the numerical model’s responses.

The statistics resulting from the uncertainties can be computed using numerous samples of

the inputs. This is called the Monte Carlo (MC) method adapted to computer models [15,

77]. Each sample corresponding to an evaluation of the solver, surrogate models, are usually

employed to alleviate the computational costs associated with numerical models, which are

often expensive in practice [130]. Further analysis on the model’s behavior can be assessed

with methods such as Global Sensitivity Analysis (GSA) [126]. Here, the impact of the un-

certain inputs on the variability of quantities of interest can be estimated [115]. Finally, an
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inverse problem can be solved to infer some uncertain inputs, using the information pro-

vided by some trustful data, such as experimental measurements. This way, the models can

be calibrated under a probabilistic framework, following the Bayes paradigm, and the prior

uncertainties on the inputs are reduced. This method can be used to reconstruct values and

distributions of inputs, using the knowledge brought by the observation of some output data

[73, 27].

Some references have employed uncertainty quantification approaches in the simulation

of Li-ion batteries. Most of these authors focus on the equations governing the electrochem-

ical behavior within a Li-ion cell [43, 52, 82, 6]. Some authors [138, 23] focus on coupling

electronics partial differential equations to the thermal equation to compute the heat pro-

duced within a single Li-ion cell. Not many references are studying the effects of uncertainties

for the heat transfer between the batteries and cooling fluid in immersion cooling systems.

I.3 Motivations and contributions of the thesis

I.3.1 Industrial collaboration with Exoes

In this industrial context, this thesis project has emerged from the collaboration with the

company Exoes in Gradignan, France [44]. Exoes develops battery modules with immersion

cooling systems for car manufacturers. Exoes provides a battery pack solution responding to

customer needs in terms of space available in the car, power required by the engine, and cost

limitations. They propose the suitable shape and type of Li-ion batteries and the integrated

immersion cooling system. Then, their expertise is about the construction and the analysis of

these cooling systems.

The collaboration with Inria comes naturally from the need of Exoes to develop advanced

numerical tools to perform more profound analysis of these systems and support the design

of new systems. The complexity of the immersion cooling systems requires the development

of high-fidelity solvers dedicated to the simulation of these systems and rigorous treatment

of uncertainties, which are the main focus of this thesis. Moreover, the experimental data

generation from Exoes allowed a systematic validation of the numerical models.

I.3.2 Thesis motivations

Considering the aspects described above, from the industrial design of immersion cooling

systems to their simulation and the treatment of the uncertainties, the objectives of this

thesis project can be described as follows.

Numerical simulation of immersion cooling systems for Li-ion batteries The first ob-

jective of the thesis is to develop numerical models to perform the simulation of immersion

cooling systems for Li-ion batteries. Models should predict thermal quantities, such as the

transient evolution of temperature under different conditions. A trade-off between compu-

tational cost and fidelity of the models will be explored: two models of different levels of
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fidelity will be considered. They will be designated in the following, respectively, as low fi-

delity (LF) and high fidelity (HF) solvers. The nature of the results produced by these models

can be put in perspective with the respective numerical resources involved.

Identify and characterize the uncertainties coming from immersion cooling systems for

Li-ion batteries The multi-physics system requires dealing with uncertainties to perform in-

formative and predictive simulations. This objective consists of producing a physical analysis

of the immersion cooling systems to identify which parameters should be considered uncer-

tain. Based on literature reviews and experts analysis from Exoes, the list of such parameters

can be established. The collaboration with Exoes allows bringing much information for this

particular task and is essential to characterize precisely system’s uncertainties. The uncer-

tainties to be considered (including range of variation and distribution) should be defined

for the selected parameters at this point.

Robust validation and calibration of the models with experimental data Once the nu-

merical models are set up, and the uncertainties are well characterized, the final objective is

to produce simulation results to get analysis elements and design the cooling system, includ-

ing more profound knowledge of its behavior. First, the numerical models should be validated

against experimental data. Using experimental data directly can permit calibrating the model

under a probabilistic framework (Bayesian calibration). The outcomes of such analysis will

lead to informative values of the uncertain parameters, allowing model responses close to

the experimental data. In this way, uncertainties in the numerical prediction can also be

reduced. Overall, the design of the immersion cooling can be addressed with robust analy-

sis elements, merging information provided from trustful experimental data and numerical

predictions quantifying the level of the unknown in the model’s responses.

I.3.3 Scientific contributions of the thesis

According to the objectives mentioned just above, the contributions of the PhD project to

tackle these issues can be listed under the four following points.

Fast and low fidelity solver adapted from Exoes’ solution First, a fast numerical model,

called ICExo, developed originally at Exoes, was modified to simulate batteries immersed

in a cooling fluid. The numerical model allows the prediction of temperature and electrical

quantities such as voltage and state of charge of the batteries under varying charging and

discharging conditions. This solver is seen as a low fidelity model as it does not solve the

complete set of thermal and flow equations as it would be done in a pure CFD approach.

The contribution of this solver stands in its low computational cost and still good predictive

character. From a practical point of view, the first version of the model developed at Exoes

was not adapted for a suitable usage in an uncertainty quantification framework and to be

run with multiple input conditions in parallel on the cluster PlaFRIM [111]. A part of the

work was to start from the initial version of the code and adapt it to reduce the computational
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costs. In the end, the code was able to run with fewer resources, featuring a reduced amount

of required data and an optimization of the elementary operations.

High fidelity open-source CFD solver applied to immersion cooling systems Secondly,

an open-source CFD model, TrioCFD [140], developed at CEA Saclay, France, was selected

to be used for the first time in battery cooling applications. Based on the Finite Element

Method (FEM), the model showed good capabilities to simulate immersion cooling systems.

The numerical solver was used to solve the coupled problem, constituted by the transient

conjugate heat transfer between the heated solid batteries and the cooling fluid. As this code

was used for the first time for this application, a significant part of the work consisted in

selecting immersion cooling test cases and adapting the CFD code to the references’ setups.

Usually, the nuclear applications present significant differences in the order of magnitudes

for the physical processes compared to Li-ion batteries immersion cooling problems. Then

the reproduction of results from the literature represented a large part of the investigations

performed during the thesis. The model’s accuracy was demonstrated by comparing it with

commercial software and experimental data.

Uncertainty propagation and calibration with low fidelity solver A comprehensive un-

certainty quantification study was performed, relying on the predictions of the low fidelity

solver. The perspective offered by this model allowed us to consider various multi-physics

parameters as uncertain involved in the estimation of temperature. The characterization of

uncertainties was based on literature review and the knowledge brought by Exoes experts.

Uncertainty quantification methods such as surrogate-based construction and global sensitiv-

ity analysis were performed. Finally, Bayesian calibration of the uncertain input parameters

was addressed to validate the numerical model with respect to experimental measurements

conducted directly by Exoes. Thanks to this process, the uncertainty in the inputs values and

the temperature prediction are reduced significantly. Overall, the numerical model and the

uncertainty approach gave some informative insights on the immersion cooling behavior and

the values of the involved physical parameters.

Internal resistance model accuracy assessment based on CFD simulations and experi-

mental measurements The last contribution of the work is about an uncertainty quantifi-

cation approach performed using the data provided by the high fidelity CFD solver. The focus

is set here on the internal resistance of the batteries, being one of the most important pa-

rameters when modeling the heat produced by Li-ion cells. The test case addressed consists

of the heating of batteries, submitted to a constant electrical current and cooled with the

surrounding air. While solving the conjugate heat transfer problem, a model is constructed to

represent the behavior of the internal resistance, respecting physical constraints taken from

literature. The constructed model allowed to deal practically with the uncertainties inherent

to the resistance parameter. The forward propagation of the uncertainties allows assessing

the impact of the input uncertainties on the CFD model’s temperature prediction. Finally,

a Bayesian calibration is performed using experimental data from the test case. Values of
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the internal parameters leading to a numerical response close to the experimental data are

learned from this process. The uncertainty in the temperature prediction was also consid-

erably reduced in that configuration. From a practical point of view, this overall approach

constituted a method to reconstruct the behavior of the resistance from measurements of the

temperature of the heated Li-ion batteries.

I.4 Outline of the manuscript

The present manuscript is structured as follows.

Chapter II introduces the Li-ion batteries operation, the parameters used to characterize

their behavior and the main physical processes at stake. Thermal issues related to batteries’

operation are also covered, highlighting the need of using BTMS in Electric vehicles applica-

tions. The different types of BTMS are described, emphasizing the system of interest in this

work, the immersion cooling technique. The modeling approaches existing in literature to

simulate the batteries and their heat production are also covered. The usual approach for

the simulation of conjugate heat transfer in this configuration is also briefly described at this

point.

Chapter III is devoted to the description of the LF solver from Exoes, called ICExo. The

full operation of the model is provided, including the simulation of thermal and electrical

features. An original experimental test case conducted at Exoes is presented. The data

outcoming of this experimental case is used to validate the behavior of the numerical model

under different conditions.

Chapter IV consists of the presentation of the CFD solver. The equations solved in the

framework of this thesis are fully described and given according to the corresponding physical

justifications. The code behavior is first validated with a comparison against FLUENT on a

test case of forced convection. Then the code is further validated against experimental data.

This study highlights the importance of the source term selection and the impact of 2D or

3D computations in the immersed batteries temperature prediction submitted to a constant

discharging current.

Chapter V covers the theoretical framework to address uncertainty quantification prob-

lems. First, the overall point of view of uncertainty quantification approaches is given. The

mathematical tools required in the usual UQ framework are briefly described. Then we focus

on the description of the methods used in the applied UQ studies performed in this work.

Chapter VI details the steps and the results of the contribution mentioned above about the

uncertainty quantification study using the data provided by the LF model. The main results

of this chapter are the calibration of the uncertain multi-physics parameters, the resulting
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uncertainty propagation and the outcomes of the Global Sensitivity Analysis performed in a

realistic racing case.

Chapter VII describes the last contribution about the internal resistance model accuracy

assessment. After briefly recalling the test case, the process to construct the internal model

is given. Next, the Bayesian calibration shows the uncertainty reduction capabilities of this

approach from the propagation of prior and then posterior distributions of the resistance

model parameters. The overall process shown in the chapter constitutes the method for

reconstructing the internal resistance model from the measurements of temperature on the

Li-ion cells surface. Finally, an exploratory numerical test is performed considering the effect

of the state of charge (SOC) in the internal resistance model, added up with the temperature

dependency. The proposed method allows assessing the impact of the low state of charge on

the temperature evolution.

Chapter VIII provides some concluding remarks on the results of the thesis. Perspectives

for short and long term actions are given to draw a roadmap of the work required to go

deeper in analyzing the current results and explore new directions.
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CHAPTER II

LITHIUM-ION BATTERIES AND IMMERSION COOLING

Chapter abstract
This chapter covers the physics of Li-ion batteries and cooling technologies. First,
the different components and characteristics of batteries are reviewed. The elec-
trochemical phenomena governing the operation of Li-ion batteries are described
from a physical perspective. Particular attention is paid to the thermal issues re-
lated to the operation of the Li-ion cells. A review of the models used in literature
to represent these systems’ electrical and thermal behavior is presented. Secondly,
the existing cooling techniques for battery thermal management are introduced.
Physical explanations of the processes attempt to illustrate the good performances
offered by immersion cooling. The physics of the immersion cooling technology
is detailed, and the equations used to solve the conjugate heat transfer problem
are expressed.
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Chapter II – Lithium-ion batteries and immersion cooling

II.1 Lithium-ion batteries

II.1.1 Generalities and definitions

A battery is a device capable of converting chemical energy, stored in its active materials, into

electric energy thanks to electrons transfer generated by oxidation-reduction reactions [89].

A Lithium-ion battery is a battery producing electricity by a transfer of electrons e− induced

by chemicals reactions occurring at positive and negative electrodes and involving Lithium

under the ionic form: the ions Li+, evolving in an electrolyte solution. They are pretty

light energy storage devices, with a voltage around 4 [V ] and specific energy (expressed in

watts-hours by kilos) around 100 [W · h · kg−1] [124]. They are rechargeable devices, as the

oxidation-reduction reactions occurring at each electrode are reversible. The electrons and

Lithium ions transfer is possible in both ways between the electrodes.

As stated in the introduction, the automotive industry has shown a growing interest in

these systems for a few years. To widespread the use of Electric Vehicles (EV), the Li-ion

batteries are required to produce high power during a long time of operation. The electric

automotive industry seeks to develop vehicles capable of reaching high speeds while widen-

ing the autonomy range of the vehicles. The capabilities of storage systems in this perspective

can be compared in Ragone diagrams, like the one in Fig. II.1. This type of diagram plots

the specific energy against the particular power for different battery systems. According to

many Ragone diagrams available in the literature, Li-ion batteries stand as a promising so-

lution to reach such objectives. This can be seen in Fig. II.1 which shows the graph of the

specific energy [W · h · kg−1] against the specific power [W · kg−1] in a log scale. On the

graph are plotted the capabilities of different batteries system regarding these two quantities.

High specific power means that the car can make strong accelerations and reach high speeds.

These batteries are capable of delivering and receiving high electric currents. The high spe-

cific energy is traduced by a great range of autonomy for the vehicles. The following diagram

highlights the good performances of Li-ion batteries. The red beam concerning Li-ion batter-

ies lives between high specific energy and high specific power range. This technology is the

closest to the capabilities currently offered by internal combustion engines (IC Engine in the

figure).

They also present other advantages than the energy and power density, which makes

them practical to use: a great shelf life, with a relatively low rate of capacity loss over time.

Also, the temperature range of these batteries is extensive, usually from −40oC to 70 oC ,

making them a practical choice when designing vehicles for diversified applications.

The following paragraphs detail the main components of these systems. A Li-ion battery is

composed of: a positive and negative electrodes, a separator, an electrolyte [3, 155]. These

components are disposed in a layered structure under various existing geometries, which are

detailed later within this manuscript. Fig. II.2 shows the typical structure of a Li-ion cell and

its components for the case of a cylindrical battery. Let’s review the role and a description of

each of these components.
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Figure II.1: Ragone diagram including several types of batteries and combustion engines.
Figure courtesy of [29].

Negative electrode The active material of this electrode is often made of graphite carbon.

The material composing the anode should present physical features as a minimal volume

expansion and stress. Also, it should be chemically stable under an extensive range of tem-

peratures during the charging and discharging sequences of the battery [155]. The chemical

structure of the graphite material allows the insertion of the Lithium during the charging pro-

cess [3]. It is associated with a copper (Cu) plate to collect the electric current. The active

material hosting the Li elements is dropped on the copper collector.

The surface of the electrodes are covered with a film called SEI for Solid Electrolyte

Interface [142, 78]. This last one is the anode during the discharge sequence.

Positive electrode The active material is usually metal oxide. The electrical current collec-

tor is made of aluminium (Al). The active material capable of letting the ions Li+ to insert in

is dropped on this collector. This one is the cathode during the discharge sequence.

Note that the choice of materials for cathode and anode will have a direct impact on the

energy storage capacity of the cell, depending on the compactness of their chemical structure

[3].

Electrolyte The electrolyte is the aqueous solution allowing the ions Li+ to flow from an

electrode to each other. It is carefully chosen depending on the materials of the electrodes

as it should not provoke chemical reactions aside from the reduction-oxidation. The most

commonly used salt materials are LiPF6, LiBF4. The electrolyte should also present a high

dielectric constant [155].
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Separator The separator is a porous membrane disposed between the electrodes. Its role

is to prevent the electric contact between the electrodes and allow the ionic flow in the

meantime. The microporous membranes are usually made of polyethylene or polypropylene,

or both.

Figure II.2: Jelly-roll layered structure of a cylindrical 18650 Li-ion cell. Figure courtesy of
[122].

II.1.2 Electrochemical reactions

As we just detailed the role and chemistry of the structural elements composing a Li-ion

battery, let’s review the chemical equations on both electrodes. The operation of a Li-ion

battery is governed by the oxidation-reduction equations, generating the electric current and

flow of Li+ ions in the electrolyte. For the discharge, the half-chemical reactions occurring

between the graphite carbon C from negative electrode, and the metal oxide LixMO2 of the

positive electrode reads [3]:

DISCHARGE REACTION (II.1)

anode - deintercalation LixC6 → 6C + xLi+ + xe−

cathode - intercalation Li1−xMO2 + xLi+ + xe− → LiMO2 (II.2)

A schematic representation of these electro-chemical equations is given in Fig. II.3. They

traduce the physical process occurring in the battery [78]. The lithium cations travel in the

electrolyte during discharge and intercalate into the positive insertion electrode. The positive

electrode is then an electron acceptor, and the negative electrode is an electron donor. The

cell voltage is a function of the concentration of the cation in the electrodes. The end of

discharge is reached when the negative electrodes are emptied from Lithium cations.
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Figure II.3: Operational scheme of a Li-ion battery during discharge. Figure courtesy of
[155].

II.1.3 Electrical characterization

It is possible and sometimes more relevant to see the Li-ion batteries from a broader per-

spective than the electro-chemical scale. Then the batteries can be fully characterized by

parameters describing the electrical state of the whole chemical structure.

Open circuit voltage (OCV) This one is the nominal potential of the cell, expressed in volts,

often denoted as OCV. It represents the electrical potential difference between the positive

and negative electrodes when nothing is connected to the battery. It is the equilibrium voltage

of the cell at rest. Each Li-ion cell is characterized by its open-circuit voltage. This parameter

is directly linked to the state of charge of the battery, following non-trivial relationship to

assess in practice [153, 152].

State of charge (SOC) Usually denoted SOC, the state of charge indicates how much the

battery is still capable of delivering electrical current. It is a unitless number, often expressed

in percentage. A SOC equal to 100% means the battery is fully charged. When the SOC is at

0, the battery is said empty. As said above, the OCV and SOC are related: during the battery

operation, when the OCV is at its maximal value, the SOC is 100%, and the battery is full.

On the opposite, when the voltage of the battery drops to its minimal value, the SOC is 0%,

and the battery is fully discharged. Many research works investigate the link between these

two quantities and then address the issue of giving a reliable method to compute the state

of charge [22]. However, an agreement on the typical relationship between the OCV and

the SOC seems to be established in the literature, similar to the one provided by [33] and

illustrated in Fig. II.4.
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If a battery is fully discharged at a constant C-rate, the SOC will decrease
linearly with time while the voltage will decrease following a non-linear
shape. (Fig. II.4)

Figure II.4: Relationship between OCV and SOC. Figure courtesy of [33].

Capacity (C) This parameter, often denoted C, defines the amount of electrical current that

the Li-ion cell is able to deliver for a given duration. It can be seen as the size of the energy

tank’ left in the battery. Practically, it gives the quantity of electric charges still stored by

intercalation within the electrodes. It is expressed in ampere-hour [A · h].

State of health (SOH) This parameter is used to quantify the age of the battery. First, the

batteries present deprecated performances over time, even if not used. Also, Li-ion batteries

are given to operate for a fixed number of charge/discharge cycles throughout their life.

The capacity of the batteries decreases with time and the number of performed cycles (see

Fig. II.5). Different chemicals phenomena occurring within the batteries are causing this

loss [78]. Some molecules composing the solvent intercalate into the electrode materials,

preventing the Li+ ions from being stored in the molecular structure. The surface film on the

electrodes may be modified, consuming some Lithium ions. The state of health is then used

to consider how much battery capacity has been lost over time compared to day one.

Discharge and charge rate (C-rate) This unitless quantity, commonly written C-rate, is

used when regarding the operation of the battery and does not characterize its state. Depend-

ing on its original capacity C, it gives the intensity of the electrical current used to charge or

discharge a battery. This quantity is helpful to compare under which intensity batteries are

used, even if they are not of the same type and present different characteristics. For instance,
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Figure II.5: Capacity of the battery against cycles. Figure courtesy of [78].

discharging a battery at a 2 C-rate means that the submitted electric current is such that the

full discharge of the battery will occur in 30 minutes. Charging a battery at 0.5 C-rate means

that a full discharged battery would be filled up in 2 hours. The capacity C of the battery

is then stated as the 1 C-rate. The link between the time of charge/discharge expressed in

hours, here denoted τ , and the C-rate Cr is:

τ = 1
Cr

(II.3)

Knowing the capacity C of the battery, the applied C-rate Cr allows to retrieve the associ-

ated electrical current I using:

I = Cr · C (II.4)

This parameter is often used to compare the evolution of some quantities of interest

related to the battery characterization (voltage, capacity,...) under different discharging con-

ditions, as illustrated in Fig. II.6.

Internal resistance (R) The layered physical elements composing the cell structure are

crossed by electrons during the cell operation. Each of these presents an inherent electric

resistivity and obstruct the electrons transfer. As for every ohmic electrical device, the resis-

tance directly relates to the voltage. Due to the composition and the chemistry of the cell,

the internal resistance depends on parameters such as the internal temperature, the state of

health, the state of charge and the employed C-rate during operation. The internal resistance

also depends on the electric current submitted to the batteries. These parameters govern

many phenomena occurring during a battery operation, as it is responsible for voltage drop

and energy loss.
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Figure II.6: Voltage evolution with SOC variation at different C-rates. Figure courtesy of
[78].

II.1.4 Types of Li-ion batteries

There is a wide range of applications where Li-ion batteries are used; many geometries and

types of batteries coexist in the market. The differentiation is based on the geometries and

the materials used for the positive electrode. The most common geometries used in the

automotive industry are: prismatic, pouch, and cylindrical cells [144]. A specific geometry

is used depending on the design of the electric vehicle under development. Each of these

geometries, visible in Fig. II.7, presents advantages and drawbacks, primarily related to

thermal management issues.

The difference between batteries are also characterized by the material used for the pos-

itive electrodes, as most of them are made with a graphite negative electrode. In [144] the

authors sum up the commonly used types of batteries regarding this characteristic. The types

of batteries are listed with their positive electrode chemistry in Tab. II.1.

Type of battery Abbrev. Chemical formula Voltage Capacity
[V] [W · h · kg−1]

Li. cobalt oxide LCO LiCoO2 3.7-3.9 150
Li. nickel oxide LNO LiNiO2 3.6 150
Li. Ni. Co. aluminium oxide NCA Li(Ni0, 85Co0, 1Al0, 05)O2 3.65 130
Li. Ni. manganese Co. oxide NMC Li(Ni0, 33Mn0, 33Coo33)O2 3.8-4.0 170
Li. manganese spinel LMO LiMn2O4 4.0 120
Li. iron phosphate LFP LiFePO4 3.3 / 2.5 - 3.6 [19] 130

Table II.1: Types of batteries by positive electrode materials. Extracted from [144].
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(a) Pouch Li-ion batteries. Figure cour-
tesy of Flash Battery Srl. (b) Prismatic Li-ion batteries. Figure courtesy

of DNK Power Co., Ltd.

(c) Cylindrical Li-ion batteries. Figure courtesy of Shenzhen Himax Electronics Co., Ltd.

Figure II.7: Geometries of Li-ion batteries.

As highlighted in Tab. II.1, most of the battery types present similar voltage and capaci-

ties. Other more practical characteristics are then considered when choosing the materials,

such as the power delivered by the cell, safety, cost and lifetime. Lithium Iron phosphate

LiFePO4 seems to show the best behavior considering these aspects [144]. This chemistry

also presents characteristics slightly different than the others as a significant hysteresis and a

lower open-circuit voltage range, as stated in [19]. The advantages and drawbacks of each

chemistry are reviewed in detail in [78].

II.1.5 Thermal issues

II.1.5.1 Heat generation processes

The heat is generated by the electrochemical reactions between all the different layered el-

ements composing the Li-ion cells. Several phenomena are mainly responsible for the heat

generation in a Li-ion battery, considering the usual time scales of the study. There are two

types of heat generation occurring in the battery: reversible heat and irreversible heat.

First, the reversible heat is caused by the entropy changes coming from the electrochemi-
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cal reactions. This heat accounts for the absorbed energy when the lithium ions intercalate in

the negative electrode during charge. This reaction is endothermic during charge. During the

discharge, the opposite reaction occurs and is exothermic [71]. The exact amount of energy

is released or absorbed by the battery, during discharge or charge respectively [121].

The irreversible heat sources are coming from the ohmic heating and polarization reac-

tions. First, the ohmic heat source is generated by the internal ohmic resistance of the battery.

It’s caused by the ions and electrons transport across the solid and electrolyte phases [39].

As it is explained in [121], this heat generation is dependent on the internal resistance of the

battery. And the overall internal resistance is caused by the materials composing the layered

structure of the battery: the current collectors, the active electrode materials, the separator

and the electrolyte. When submitted to an input current, the transfer of charged particles

in the battery is obstructed by these materials and the energy losses are released under heat

form. This phenomenon is the Joule heating.

Secondly, the polarization heat generation is caused by energy losses during the irre-

versible electrochemical reactions [39]. Those reactions are irreversible as they represent the

degradation of electrodes surface due to the motion of ions [121]. Then, this heat is directly

related to the potential of the electrodes, as seen later in the electrochemical model of heat

generation.

II.1.5.2 Effects of temperature

The temperature has a substantial impact on the batteries’ performances. Indeed, all of the

electrical parameters described above in the manuscript significantly depend on tempera-

ture. The temperature impacts two main features of the Li-ion batteries: ageing and thermal

runaway.

The ageing is impacted at both high and low temperatures [142, 3]. Dendrites can form

between the negative electrode and the electrolyte at very low temperatures. This fact might

increase the resistance at the interface between those two media. The electrolyte presents

a drop of ionic conductivity for such temperatures, slowing the electric charge transfers be-

tween the layered structure. On the opposite, at high temperatures, the solid electrolyte

phase might melt within the electrolyte, and the negative electrode reacts again with the

electrolyte. An additional heat source is created from these reactions. Also, the separator is

susceptible to melt at high temperatures. The high temperatures also damage the structure

of the electrodes.

The thermal runaway is reached when the cell’s temperature is so high that heat dissi-

pation is not possible anymore. It can have several causes, such as mechanical, electrical or

thermal abuses [46]. This temperature is generally the fusion temperature of the Lithium

elements. When such an event occurs, the gases released by the chemical reactions described

above increase the pressure within the battery structure. Smokes are released through the

safety exit valve together with the ejected electrolyte. Then, the battery explodes because

of the highly reactive elements composing its structure. The triggered fire burns all the left

materials.

The author in [3] proposes an informative summary of the temperature effects on the
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battery structure, summed here in Tab. II.2.

Temperature [oC ]

-40 to 0 Derating performances, dendrites formation, metallic deposit on negative electrode.
25 Comfort region, best performances, highest lifespan.
50 First impairments, calendar ageing.
100 Electrolyte decomposition, solid electrolyte interface melting
135 Separator melting.
150 Thermal runway, explosion.

Table II.2: Effect of temperature on Li-ion cells structure. Extracted from [3].

This brief review of the various and undesirable thermal effects on the batteries’ compo-

sition underlies the need for a thermal management system to control the batteries’ temper-

ature during operation. The battery thermal management systems are reviewed in II.3.

II.1.5.3 Parameters governing the temperature field evolution

Since we have reviewed the main physical mechanisms of heat generation within the Li-

ion batteries, we can focus on the parameters governing the temperature distribution and

evolution. They depend on the inherent chemistry and structure of the batteries. The two

parameters governing the temperature evolution and distribution within the cells are the heat

capacity, and the thermal conductivity [37].

The heat capacity will govern at which rate a volume is heated or cooled. The more

significant the heat capacity, the more energy needs to be supplied to change the body’s

temperature. This parameter impacts the temperature evolution in transient heat transfer

problems. The thermal conductivity rules the temperature distribution within a volume. It

governs the temperature homogeneity of a medium subject to heat transfer. If the thermal

conductivity is high, the temperature field tends to be more homogeneous, as the heat is

well-spread thanks to the excellent conductivity of the material.

Due to the reactions occurring in the porous media of the battery, the thermal properties

of the components are changing during operation and life of Li-ion cells. The proper way

to evaluate those properties is to consider the ’effective’ thermal conductivities and heat ca-

pacity, depending on the volume fraction of each chemical component living in the porous

layers.

For the heat capacity, the authors from [38] proposed an original approach mixing exper-

imental and analytical methods to assess the value of this parameter in some Li-ion batteries.

They measured the heat capacity of a cylindrical battery, heated with a known source term,

axially and radially with respect to the cylindrical geometry. The heat capacity in the ax-

ial test appeared to be lower than in the radial test. For cylindrical batteries of type 26650

(radius of R = 26 [mm] and height L = 65 [mm]) the radial test gave a heat capacity of

1605 J · kg−1 ·K−1 and the axial test 1895 J · kg−1 ·K−1. Finally, the heat capacity resulting
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from the axial test appeared to be the most accurate regarding the structural composition of

the battery.

Furthermore, the thermal conductivity of Li-ion cells presents an anisotropic behaviour.

This property comes from the structural composition of electric Li-ion cells [122]. As seen

earlier, all existing geometries of Li-ion cells (cylindrical, prismatic and pouch cells) present

a layering of positive/negative electrodes, separator and electrolyte. As it can be understood

from the figure II.2, the thermal conductivity of a Li-ion cell depends on the materials which

compose the layering and their arrangement. It has been observed that the thermal con-

ductivity is low in the direction crossing the layers and higher in the direction along a layer.

Many researchers has presented innovative methods, including experimental and numerical

simulations, to evaluate this parameter [37, 148, 63, 102, 91]. Regardless of the battery

geometry considered, the conductivity in the cross direction of the layers is much lower than

the one in the parallel direction of the layers. Indeed, these studies show that the cross layers

thermal conductivity is around ten times smaller than the axial thermal conductivity. [148]

recently proposed a method to compute the thermal conductivities, considering the geome-

try of the layering and the volumetric fraction of the chemical components and highlighting

differences between cross plane and axial conductivities. The values are sorted according to

the choice of the negative electrode material and presented in Tab. II.3.

Battery type Axial thermal cond. Cross layers thermal cond.
W ·m ·K−1 W ·m ·K−1

LiFePO4 10.09− 45.06 0.66− 1.04
LiCoCO2 10.3− 45.65 0.75− 1.47
LiMn2O4 10.09− 45.06 0.66− 1.04
Li(NiCoMn)O2 10.37− 45.83 0.77− 1.55

Table II.3: Thermal conductivities obtained with the methodology proposed by [148].

II.2 Modeling approaches for Li-ion batteries and heat source

II.2.1 Modeling the characteristics of Li-ion batteries

There are several approaches to simulate the batteries’ internal electric behavior and char-

acteristics, depending on the scale considered. First, we detail the principles of modeling at

an electro-chemical scale. Then, the approach with a larger scale is detailed to represent the

main parameters involved in the electrical phenomena.

II.2.1.1 Electro-chemical scale

The behaviour of the battery can be represented at the chemical level by solving the partial

differential equations governing the electrons and ions transfer within the layered structure

of the battery [36, 11]. In [144] a summary of the essential equations and variables at this
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scale is presented. This approach consists of a set of partial differential equations to solve,

which represent the following physical processes:

• Electrochemical kinetics: the Butler-Volmer equation describes the interface between

the electrodes particles (positive and negative) and the electrolyte [39]. It gives the

local current density ([A · m−2]) function of the transfer coefficient for anodic and

cathodic currents and the potentials of each electrode.

• Phase transition and ion transport

– Solid-phase conservation of ions Li+: diffusion equation solving the concentration

of Li+ species in the solid phase.

– Electrolyte phase conservation of ions Li+: diffusion equation solving the con-

centration of Li+ species in the electrolyte phase. A term is added to represent

the transfer of Li+ ions due to the flow of solvent and the transfer current, de-

noted jLi, coming from the insertion (or de-insertion) of the Li+ ions in the elec-

trode/electrolyte interface.

• Energy dissipation

– Charge conservation in solid phase: Fick’s law linking the transfer current and the

electrical potential through the effective conductivity.

– Charge conservation in electrolyte phase: Fick’s law of the ionic transport in elec-

trolyte.

II.2.1.2 Equivalent circuit models

Another way, coming with a lower fidelity in the representation of the internal physics of

the cell, is to represent the battery using an equivalent electrical circuit model. The battery

operation is approximated with a suitable connection of classical electric components. This

approach is preferred by electrical engineers who need simpler models and are more used

to thinking in terms of voltage and current than chemical equations [19]. It gives the rela-

tionship between input and output parameters of interest related to the battery operation.

Modeling the behavior of the battery is then reduced to the representation of the electrical

behavior of those components and their connections. Several electrical circuits are proposed

to simulate the battery behavior based on empirical observations. Here, we review the most

common networks used to represent the electrical behaviours of Li-ion batteries.

Four main equivalent circuit models have been considered: the internal resistance model

(Rint model), the resistance capacitor model (RC model), the Thevenin model, the PNGV

(Partnership for New Generations of Vehicles) model [144, 58]. They are based on different

hypothesis and then represent the behavior of the battery at a different level of fidelity as

reviewed hereafter. They are illustrated in Fig. II.8: panel (a) is the Rint model, (b) the RC

model, (c) the Thevenin model and (d) the PNGV model.

The main features of these models are reviewed in [58] as follows:
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Figure II.8: Equivalent circuit models. Figure courtesy of [144].

a) The Rint model (Fig. II.8-a) consider an ideal voltage source for the OCV. The resistance

and OCV are functions of the SOC, SOH and temperature.

b) The RC model (Fig. II.8-b) consists of two capacitorsCC , Cb and three resistorsRe, Rt, RC .

The capacitor CC represents the surface effects of the battery. It is usually taken very

small compared to Cb. Indeed, the capacitor Cb illustrates the actual ability of the bat-

tery to store a large amount of energy under chemical form. The state of charge is then

computed using the voltage to the terminals of Cb.

c) The Thevenin model (Fig. II.8-c) connects the Rint model with a parallel RC circuit,

in series. The RC network is supposed to represents the dynamic characteristics of

the battery. The internal resistance is composed of the ohmic resistance of the circuit

R0 and the polarization resistance Rth. In practice, the value of the ohmic resistance

R0 is much larger than Rth. The capacitance Cth represents the transient response of

the battery during the charging/discharging sequences. This approach is used in the

numerical code developped at Exoes, named ICExo, for the modeling of the electrical

features. The simulation method with this model is described in chapter III.

d) The PNGV model (Fig. II.8-d) is constructed adding a capacitor in series on the Thevenin

model. This term is supposed to represent the change in the OCV when electric load

current is accumulating.
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II.2.2 Heat source term

The internal thermal behavior of the battery is represented through the heat equation solved

in the domain, seen as a homogeneous or multi-phase medium. Depending on the modeling

scale considered, the heat source term will result from different physical processes.

II.2.2.1 Heat generation at electro-chemical scale

At the electro-chemical scale (see II.2.1.1), the variables involved in the system of equations

consider the transfer of species between the layers of the battery. The heat source term then

depends on those variables and allows to compute the heat generation locally in the domain.

According to this approach, the heat source term is usually the result of three contributions

[11, 39]:

q = Qrev +Qp +Qohm (II.5)

The expressions of these source terms involve the following unknowns and quantities: is,

ie are the current density in solid and electrolyte phases, respectively, in is the transfer current

connecting the electrolyte and solid phases, as is the specific surface of the solid phase. Also,

φs, φe and Eeq are the potentials in the solid, electrolyte phases and at equilibrium. x is the

vector containing the plan coordinates of the location considered within the domain. T is the

temperature field in the battery, function of space coordinates and time.

As seen in II.1.5.1, Qp is the polarization heat generation due to over potential or the

voltage loss caused by the degradation of electrodes surfaces [39].

Qp = asin(φs − φe − Eeq) (II.6)

Qrev stands for the reversible heat generation, due to the exothermic or endothermic reac-

tions (charge or discharge) caused by the entropy variation.

Qrev = asinT
∂Eeq
∂T

(II.7)

Qohm is the Ohmic heat generation due to the resistance to the electronic transport in the

solid phase, and the resistance to ionic transport in the electrolyte phase.

Qohm = −ie
∂φel
∂x
− is

∂φs
∂x

(II.8)

This approach allows us to understand the heat generation process with its spatial depen-

dency within the battery as the variables involved in the heat source are computed at each

location of the domain. As exposed in Fig. II.9, one can observe the link between the current

density, the heat generation and then the temperature distribution within the cell structure.

This method is seen as the highest-fidelity level, as it represents most of the electrochemical

processes occurring in the battery and computes the outputs of interest with space and time

dependency. The induced computational cost is then very high, and this approach might be

prohibitive when one seeks to simulate a configuration with many batteries and surrounding
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fluid, as detailed later in this chapter.

Figure II.9: 3D fields of current densities, resulting volumetric heat and temperature distri-
butions in the case of a cylindrical Li-ion cell. Figure courtesy of [11].
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II.2.2.2 Heat generation at cell scale

Following the philosophy of the equivalent circuit model scale, the heat source can be com-

puted directly using the electrical parameters’ macroscopic values. The heat generation is

seen at the level of the entire cell. With this point of view, the parameters involved are not

computed from the electro-chemical reactions but seen as physical parameters playing a role

in the whole solid cell. The fidelity of this approach is decreased as the microscopic phe-

nomena are represented by more general terms in the heat generation equation. However,

it turns out to be more practical when addressing the simulation of heated batteries from a

larger perspective.

A model taking into account two main electro chemical phenomena was first proposed

by [13] and widely used in thermal analysis of Li-ion batteries [17, 150, 72, 68, 57, 30, 75].

According to this approach, the heat source is seen as the sum of two contributions. The first

one is the heat generated by the entropy changes caused by the electrochemical reactions,

denoted here as qe. This is the reversible heat described earlier in the manuscript.

The second contribution is the heat generated by the Joule effect, qJ . It is caused by the

electrons transfer across the layers composing the battery. Each layer presents an inherent

electric resistivity and obstructs the electrons motion. The induced energy loss is then re-

leased in the form of heat. The expression from [13] in simplified form and commonly used

reads:

q = qJ + qe = I(Eoc − U)︸ ︷︷ ︸
ohmic heating

− IT
dEoc
dT︸ ︷︷ ︸

entropic heating

(II.9)

where Eoc is the open circuit voltage of the battery, U its voltage, I the current load, T

the temperature within the battery. Then, these terms can be computed using one of the

equivalent circuit model. We will see in next chapters that the ohmic heating is usually

computed through the product of the internal resistance R of the battery and the squared

electrical current I:

qJ = R · I2 (II.10)

Deeper discussions are given on the choices for the parameterization of the internal resistance

in the chapters describing the numerical solvers (see chapter III and applications in chapter

IV).
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II.3 Immersion cooling of Li-ion batteries

II.3.1 Li-ion batteries in electric vehicles

Li-ion cells are gathered in modules to provide enough power to propel electric vehicles.

Each module is in a bunch of connected batteries. Usually, a module contains hundreds of

cells. Then, several modules are connected and compose the whole battery pack powering the

electric engine. The cells are connected following a pattern of series and parallel connections.

When designing a battery pack, the issue is to ensure a good energy density. The goal is to

put the batteries close enough to each other to keep the overall volume as small as possible

while respecting a minimal spacing, essential for thermal reasons explained thereafter.

Figure II.10: Cell, module and pack levels for prismatic (a) and cylindrical (b) cells. Figure
courtesy of [156].

From a general perspective, the widespread use of electric vehicles for daily consumers

impose specific constraints on the cars and battery packs manufacturers. The two main in-

dustrial objectives to meet are:

1. Provide high power engines capable of propelling normal size vehicles at high speeds.

2. Enable the fast charging of the battery pack. Encouraging the use of electric vehicles

requires ultra-fast charging of batteries to close the gap between the time needed for

filling the tank of a petrol car and charging an electric vehicle [137].

These two capabilities induce a high electric current submitted to the packs. As seen

earlier in the manuscript, these electric currents will provoke considerable heat loads on the

batteries. Then, it is necessary to develop systems that allow the batteries to manage and

retrieve the heat produced. The response to these constraints is the development of Battery

Thermal Management Systems (BTMS).

During a classical operation of an electric vehicle, which consists of an alternation of

charge and discharge sequences, the main thermal objectives to meet with the BTMS are:

1. Keep the batteries in a safe range of temperatures. The good operating range of values

is commonly around 20 and 45 oC [144].
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Figure II.11: Battery pack in an immersion cooling battery thermal management system.
Figure provided by e-Mersiv (Exoes branch). The batteries are the stacked orange cylinders.

2. Ensure a good temperature homogeneity between all the cells. The temperature of each

cell should be as uniform as possible across the whole pack.

3. Inside a cell, keep a good temperature homogeneity. The temperature field inside a

single cell should not present too significant variations and gradients.

Meeting those objectives is the solution to prevent the problems related to ageing and safety

caused by temperature variations. Objective 1 tries to prevent the risk of the thermal runaway

(maximal temperature) and not degrade the batteries’ performance (minimal temperature).

For a given electric vehicle, it is preferable that the batteries age at the same rate and then

present characteristics as homogeneous as possible. This fact is the primary motivation of

objectives 2 and 3.

II.3.2 Battery thermal management systems (BTMS)

This section will describe the BTMS technology and review the different existing configura-

tions. As stated above, the batteries are set up in modules and packs, really close to each

other. A typical module of Li-ion batteries is illustrated in Fig. II.11. Several modules are

assembled together to compose the whole battery pack powering the vehicle, as shown in Fig.

II.12. As the batteries are producing some heat during operation, it is easily understandable

that disposals as in Fig. II.11 would favour hot spots formation.
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BTMS are systems directly integrated with the battery pack in the vehicle, and they are

usually designed simultaneously. Aside from the battery pack, a circuit is integrated into the

vehicle to release heat retrieved by the cooling medium. As one can see in Fig. II.12, the

BTMS usually includes a cooling element (liquid, gas, phase change material), conduct or

enclosure to store the cooling element, a pump, a radiator and an expansion vessel (for fluid

systems). BTMS are fully integrated into the vehicles, so the weight and volume of the whole

system have to be considered in order not to penalize the power/weight ratio of the car.

Let’s review more precisely the principle of the four leading technologies [1] available in

the market.

Cooling Circuit Battery Module

Modules

Figure II.12: Battery module and associated cooling circuit for immersion cooling technology.
Figure provided by Exoes and adapted.

Phase change materials A phase change material (PCM) can present a phase change be-

tween solid/liquid within a narrow range of temperatures. The principle of BTMS using PCM

is to insert the batteries within the specific material, which stores the heat produced by the

batteries. It is seen as a passive technique, as no external energy has to be provided to the

cooling medium to perform the heat transfer.

The batteries first generate the heat, the PCM retrieves this energy thanks to the phase

change. Then the heat is diffused to the battery case by convection (natural or forced), in

contact with ambient air cooling channels [144]. The heat transfer process is illustrated in

Fig. II.13. We can visualize the process: the heat transfer between the cell and the PCM is

made by conduction between the two materials (Fig. II.13-c). The heat is stored in the PCM

while the phase is changing. The energy accumulated in the PCM is retrieved by convection

with the surrounding fluid, for instance, by forced air convection in Fig. II.13-b.

The advantage provided by the phase change is that the energy transfer operates at a

quasi-steady temperature, the latent phase change temperature. Then this technique helps

to get a good temperature uniformity between the cells in the pack [83]. Practically, the

material used is often paraffin. It presents adequate properties such as a narrow melting
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temperature range (between 30 and 60oC ), a high latent heat, small volume variation during

phase transition, stability, non-flammable and non-explosive [54, 113].

c

Figure II.13: PCM cooling system with air channels and heat transfer principle at the cell
level. Figure adapted from [118] and [83].

The following techniques are seen as active methods, involving the flow of a cooling fluid

(liquid or air) within the battery pack. The flow is usually generated by a pump providing

the energy necessary to ensure the forced convective heat transfer.

Indirect liquid cooling In the indirect cooling BTMS, the cooling fluid is not in direct

contact with the pack’s batteries. Usually, a small channel meandering through the whole

battery pack is used to ensure the flow of the coolant. Several configurations exist [108]:

tubes can be directly attached to cells or cooling plates can be disposed around the modules.

The plates are usually composed of several channels with a coolant flowing in each channel.

In Fig. II.14 we show several types of indirect cooling configurations.

The route of heat exchange in such configurations is the following: the heat is generated

in the batteries. Then, the heat is spread through the channel material through conduction.

The liquid flowing in the channels is retrieving the energy by forced convective heat transfer.

One of the advantages of indirect cooling is its practicability to implement in electric

vehicles configurations. The system presented by [17] in Fig. II.14c has a quite complex

shape, but it integrates well in the overall car design. The necessary amount of coolant is not

that large to fill the total volume of the channels. It is interesting regarding the weight of the

whole system and thus the car’s weight.
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(a) Channels attached to the battery sur-
face. Figure from [150].

(b) Cold plate composed of channels ensuring
the flow of coolant. Figure from [40].

(c) Channels meandering around the batteries. Figure from [17].

Figure II.14: Types of indirect liquid cooling systems.
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The indirect cooling approach presents some drawbacks, especially for the temperature

uniformity criteria. The circuit of the cooling channels across the pack is a determinant on the

thermal performance of the system. The computations performed by [40] and illustrated in

Fig. II.15 highlight this issue. Following the coolant path allows here to perfectly understand

the difficulties of obtaining a good temperature homogeneity with this system. In Fig. II.15a

and Fig. II.15b, the fluid is entering the channel at the inlet temperature of 25 oC . As

the fluid is flowing through the channel, its temperature increases because it retrieves the

heat generated by the battery cells above. Then, when it reaches the end of the circuit, its

temperature is too high to ensure an excellent convective heat transfer with the channel wall

and then the batteries. That’s why the cells near the exit are hotter than the cells at the

beginning of the circuit.

Also, in this case, the heat transfer is performed at the bottom of the cells. Thus, a signif-

icant gradient of temperature is visible in every cell of the pack, as shown in Fig. II.15c. The

batteries are producing heat in the whole volume. However, only the bottom part is properly

cooled in this configuration. The axial thermal conductivity of the cell is not sufficient to

homogenize the temperature in the whole cell, and we observe this temperature rise from

the bottom to the top. Other configurations exist and aim at limiting this problem. How-

ever, if the cell is cooled at ’discrete’ positions around their body only, a suitable temperature

uniformity will necessarily be difficult to obtain.
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(a) (b)

(c)

Figure II.15: Temperature field of the batteries, cooling plate and fluid in the channel.
Figures from [40].
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Immersion cooling (direct cooling) In this technology, the battery pack is directly im-

mersed in the cooling fluid. The batteries are in direct contact with the coolant. The en-

closure containing the batteries has to be designed to handle the fluid permeability with the

other external parts of the vehicle. The Fig. II.11 and Fig. II.16 illustrate an example of a

battery module under immersion cooling configuration.

More precisely, following the illustration from Fig. II.16, a fluid is entering the module

at a temperature Tinlet. The batteries, prismatic cells in this case, are producing heat during

their operation. The heat is directly dissipated by the fluid filling the enclosure. Then the

fluid is exited at the outlet with a higher temperature Toutlet. In many configurations, the

fluid is then cooled using a closed-circuit as illustrated in Fig. II.12. Usually, a radiator is

used to cool the fluid and bring it down to Tinlet. External heat exchanger devices can also

be used to manage extreme ambient temperature conditions [108].

Fluid inlet

Fluid outlet

(a) (b)

Figure II.16: Immersion cooling module developed by Exoes and e-Mersiv.

Immersion cooling systems can be used with air or dielectric liquids as fluid performing

the heat transfer. The cooling performances of systems using liquids are better than air [144,

109]. However, using air allows to reduce the technical issues: the air can be exhausted di-

rectly out of the vehicle and replaced by fresh air using existing technologies in conventional

thermal cars.

Immersion cooling systems are also promising to ensure a good temperature homogeneity

in the modules and each cell. Still, the flow path of the coolant should also be carefully

designed. Practically, on the one hand, the goal is to maximize the contact area between

the fluid and the surface of the cells. Thus the heat transfer between the fluid and solid is

maximized. On the other hand, the time spent between the inlet and outlet of the module

should be reduced for a given particle of fluid. The fluid should meander between the pack

cells to retrieve as much heat as possible. But when its temperature reaches a specific value,

the fluid should be exhausted and replaced by ’new’ and cold fluid.

To fulfill these two constraints, two parameters can be considered for a given fluid. First,

the flow rate of the fluid crossing the module could be increased significantly. This would

be efficient, but in practice, the energy consumed by the external pump can deprecate the
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energy balance of the whole system. Focus can also be set on the geometry of the module,

fluid intake and exhaust, and the cells arrangement. A setup like the one in Fig. II.17 from

[123] is interesting in that sense. The cooling air is entering the module above the aligned

battery cells (Fig. II.17a). Then it travels the module from the bottom to the top before

being exhausted in the superior conduct. This geometry and flow route ensures an excellent

thermal homogeneity: i) in the whole pack, ii) within each cell. Indeed, for condition i), each

cell receives inlet air at the same temperature as the flow is entering by the bottom uniformly.

For condition ii), the air is performing the convective heat transfer only along with the height

of one cell. This short path for the traveling air does not spend too much time around the

warm cells, and an even cooling has more chance to be achieved.

(a) Geometry of the immersion cooling BTMS.

Intake plenum

Exhaust plenum

(b) Velocity field

Figure II.17: Air immersion cooling device investigated in [123].

The immersion cooling systems are also efficient to prevent thermal runaway. An experi-

ment has been conducted at Exoes [116] for a pack of eight cells closely spaced, immersed in

a high heat transfer coefficient dielectric fluid. One of the cells has been mechanically abused

to initiate the thermal runaway. The experiment showed that the damaged temperature has

considerably increased, as expected. However, the presence of the fluid between the cells

prevented the temperature from spreading towards the other cells. Thus thermal runaway

propagation in the battery pack has been avoided.

The drawbacks of immersion cooling systems are mostly related to their practical imple-

mentation in vehicles. They induce heavy machinery, and the design of a pack capable of

handling the coolant flow with its pressure variations is technically challenging to address.

Exoes company aims to develop battery packs as the ones shown in Fig. II.11 and Fig. II.16,

cooled with fluids presenting good thermal performances. Different battery modules have

been developed with various geometries and options for the flow path.

We recall that this configuration is under development at Exoes, which we simulate with

the two solvers presented later in this thesis.
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Two phased liquid immersion cooling Innovative and recent technology has received a

growing interest to improve the thermal performances of immersion cooling. This technique

is the two-phase (boiling) liquid immersion cooling.

The configuration is the same as the liquid immersion cooling. However, the difference

stands in the fluid utilized. The goal is to setup the temperature and pressure conditions

in the module such that the fluid is near its boiling point. Thus, in the zone of hot spots,

either due to inadequate flow circulation or overheating a battery, the temperature increases,

and the fluid evaporates. As vaporization is an endothermic reaction, the heat transfer is

increased significantly, and the fluid retrieves a lot of the heat released by the batteries in a

two-phase state. Like in the one phase immersion cooling technology, an external circuit is

added to ensure the flow of the coolant. A condensation sink can be added with the heat

exchangers to make sure the fluid is re-entering the module in a pure liquid form [2].

Some authors studied numerically, and experimentally the thermal performances of this

technique [146]. The general conclusion is that the two-phase cooling ensures a good tem-

perature uniformity inside the battery pack, even when discharging at high C-rates. How-

ever, performances regarding the maximal temperature reached during operation are highly

affected by the fraction of vapor in the module. This fact is illustrated by a CFD simulation

which results are visible in Fig. II.18. The temperature (left) and volume fraction of vapor

(right) fields in a battery pack are plotted for a case of discharging at 5C. Comparing these

two fields highlights the high-temperature spots formation where vapour volume fraction

gets close to 0.6 (a value of 1 corresponds to saturated vapor and 0 to pure liquid). Then,

such systems are challenging to manage in practice as the volume fraction of each phase

needs to be carefully controlled during the charging/discharging cycles of the pack.

Figure II.18: Temperature and volume fraction of vapor in a battery pack submitted 5C
discharging current. Figure courtesy of [146].
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To summarize the lastly reviewed thermal management systems, the Tab. II.4 gathers

the advantages and drawbacks of PCM, indirect liquid, air immersion and liquid immersion

cooling systems.

BTMS Advantages Drawbacks

PCM
zero external energy consumption
good safety capabilities

low thermal conductivity
ensure good ratio thermal conductivities
of PCM vs cell

Air immersion cooling

no secondary cooling loop
low cost and design
no leak potential
suitable for all type of cells

low heat transfer
bad temperature homogeneity
risk of thermal runaway
high space required

Indirect liquid cooling
better heat transfer
low volume

low charging rate
electric conductive fluid
risk of thermal runaway
bad temperature uniformity

Liquid immersion cooling

best heat transfer
uniform temperature
ultra fast charging
limits thermal runaway

higher density fluid
design complexity
require heat sink

Table II.4: Advantages and drawbacks of BTMS. Adapted from [144],[1] and [116].

II.3.3 Physics of immersion cooling

To address the simulation of immersion cooling systems, the physical problem to solve is

the case of conjugate convective heat transfer. This section will cover the physics and equa-

tions governing the conjugate heat transfer process between a fluid and a solid. Both forced

and natural convective heat transfer are of interest in the study of immersion cooling sys-

tems. Forced convection is known to show increased cooling performances for Li-ion batter-

ies thermal management perspectives. Also, the natural convection is studied for scenarios

of thermal runaway, to assess the cooling capabilities of the system when the pump does not

generate the flow rate anymore.

II.3.3.1 Conjugate heat transfer

The conjugate heat transfer consists of the coupling of the heat equation in a solid with the

energy and mass conservation equations in the fluid domain surrounding the solid [62]. It

is used to compute the convective heat transfer between the heated solid (volumetric heat

source term) and the fluid flowing around. This approach can be seen as an extension of the

convective heat transfer computation using Newton’s law of cooling [18].
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Convective heat transfer with law of cooling The convective heat transfer can be rep-

resented using this phenomenological law. Then the heat transfer q̇conv in [W · m−2], is

computed using:

q̇conv = h(Ts − T∞) (II.11)

where h is the convective heat transfer coefficient, Ts the temperature on the solid surface,

T∞ the temperature of the fluid, following the notations of Fig. II.19. But there are some

limitations to using this approach. The heat transfer coefficient h is not trivial to assess in

practice, and this calculation considers the temperature evaluated in only some points in the

domains.

Figure II.19: Cooling of a hot solid by forced convection. Figure adapted from [18].

However, this first approach can be seen as a low fidelity way to compute the heat transfer

between the solid and the fluid. It uses a phenomenological law of cooling and omits spatial

dependencies in the fluid and solid domain. The first solver presented in this thesis (in chap-

ter III), which is developed at Exoes, offers a similar vision to compute the heat exchanged

between the solid and the fluid.

Conjugate heat transfer with CFD The conjugate convective heat transfer approach has

become practically possible with the rise of computational methods and resources [107]. This

model allows substituting the latter linear relationship between the temperature and the heat

transfer rate. The temperature field of both fluid and solid domains and the associated heat

transfer can be computed by skipping the evaluation of the heat transfer coefficient h. Each

medium is seen as an independent domain, where the physical processes occurring in fluid,

and solid subdomains are computed in each domain respectively, and coupled through con-

tinuity conditions. The heat transfer between the two media is reproduced by the conjugate

conditions applied at the interface of the two objects. It comes to enrich the approach de-

scribed by Newton’s law of cooling as the temperature fields can be explicitly computed. The
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convection heat transfer rate can also be assessed at every point of the domain.

The conjugate heat transfer problem can be fully represented through partial differential

equations in the fluid and solid domains. Let’s write down the equations used to solve the

conjugate heat transfer, in the case of a laminar and incompressible fluid flowing around

a solid submitted to a volumetric heat source (Fig. II.20). To stick with the applications

covered in this thesis, we consider that the fluid does not receive heat from a volumetric heat

source. Note that further explanations are given in chapter IV on the physical assumptions

and depending expression of the equations. However, we write already the equations here to

facilitate the explanations on the physics at stake.

The unknowns are the temperature in the fluid and solid domains, the fluid velocity and

pressure, denoted in Tab. II.5. The position in the domains is given by the coordinates stored

in the vector x and the time is denoted t.

Ts ≡ Ts(x, t) Temperature field in solid domain
Tf ≡ Tf (x, t) Temperature field in fluid domain
u ≡ u(x, t) Velocity field of the fluid
p ≡ p(x, t) Pressure field of the fluid

Table II.5: Notations of the unknowns in the conjugate heat transfer problem.

In the fluid domain Ωf , the equations to solve are given in Eq. (II.12). The mass conser-

vation is ensured through the incompressible Navier-Stokes equations. The temperature field

of the fluid Tf (x, t) is computed using the heat equation. Here ρf is the density of the fluid,

Cp,f the specific heat, νf the kinematic viscosity of the fluid and λf the vector of thermal

conductivities. Fv represents the external forces applied to the fluid.



∇ · u = 0
∂u
∂t

+ (u · ∇)u = ∇ · (νf∇u)− 1
ρf
∇p+ Fv

ρfCp,f

(
∂Tf
∂t

+ u∇Tf
)

= ∇ · (λf∇Tf )

(II.12)

In the solid domain Ωs the temperature field Ts(x, t) is computed through the unsteady con-

duction equation Eq. (II.13). ρs is the density of the solid, Cp,s its specific heat and λs the

vector of thermal conductivities. The volumetric source term heating the solid is denoted qg.

ρsCp,s
∂Ts
∂t

= ∇ · (λs∇Ts) + qg (II.13)

At the interface, denoted Γi, the conjugate coupling conditions traduce the temperature

and heat flux continuity between the two domains. The conditions are expressed in Eq.

(II.14), involving the temperature evaluated on the interface, the vector normal to the inter-
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face n and the thermal conductivities in each medium.

Tf,i = Ts,i

λf
∂Tf (x, t)
∂n

= −λs
∂Ts(x, t)
∂n

(II.14)

We illustrate schematically the process in Fig. II.20. Physically, the heat is produced in

the solid domain through the source term qg. The heat is spread through the solid by the

thermal conductivity λs. Then, the heat transfer occurs between the fluid and solid thanks

to the coupling conditions: the fluid layer around the solid edge retrieves the produced heat.

The behavior of the velocity field depends on the convective heat transfer regime considered:

forced or natural convection.

Forced convection In the case of forced convection, a velocity is imposed at some bound-

aries of the fluid domain. The fluid flows around the heated object by respecting the no-slip

condition at the interface. This method is very effective in terms of cooling performance.

Most of the immersion cooling systems mentioned earlier in this chapter use this process.

In a forced convection regime, the fluid layer next to the solid walls is

heated by the solid through conduction and coupling conditions. Thanks

to the imposed velocity, this layer is regularly evacuated. A new one re-

places the ’old’ heated layer with a lower temperature (usually imposed

at inlet boundaries). Then heat transfer is improved as the solid is con-

stantly facing cold temperatures [18].

Natural convection In this case, no velocity is externally imposed on the fluid. The heated

solid creates temperature gradients in the fluid domain following the conjugate heat transfer

process. Those temperature variations cause density gradients in the fluid domain. Those

gradients generate hydrostatic disequilibrium and create a flow around the solid. According

to Boussinesq’s approximation, the vertical components of the flow are predominant in this

case. However, the fluid moves at a significantly slower speed, or with a lower flow rate,

around the solid compared to forced convection. So the ’hot’ layer around the solid might

not be evacuated as rapidly, and the temperature difference between the two domains is

decreased, which deteriorates the heat transfer rate.

II.3.3.2 Heat transfer and flow characterization

As mentioned just above, the performances of the heat transfer in a conjugate heat transfer

configuration will depend on parameters coming from physical processes occurring in the

fluid and the solid domains. Regarding the forced convective heat transfer, the following di-

mensionless numbers are helpful to have insights into the predominant physical phenomena.

The following explanations are given in the case where the solid produces internal heat and

the fluid around is cooler.
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Figure II.20: Scheme of the conjugate convective heat transfer process in two dimensions.

Reynolds number The Reynolds number Re characterizes the flow regime of the fluid:

laminar or turbulent. In a laminar flow, the fluid moves in an ordered structure of layers

moving relatively to each other. When the velocity of the flow increases, or if it encounters

an obstacle of significant size, or if the kinematic viscosity is sufficiently low, the flow regime

can present a disordered structure. Due to the fluid’s viscosity, each moving layer starts to

exercise a force on the adjacent ones. Velocity components perpendicular to the flow direction

increase, which induce velocity fluctuations. These perpendicular velocities generate eddies,

and the fluid evolves in a disordered motion.

The transition from laminar to turbulent flow comes from the ratio variation between

inertia forces and viscous forces involved in the current flow regime. The Reynolds number

gives the ratio of forces applied onto an elementary volume of fluid. It is expressed as follows

for an external flow around an obstacle:

Re = inertia forces
viscous forces

= u0L

ν
(II.15)

L is the characteristic dimension of the obstacle perpendicular to the flow direction. u0 is the

velocity of the incoming flow away from the obstacle. ν is the kinematic viscosity of the fluid.

It is given by ν = ρ
η with ρ the density and η the viscosity of the fluid.

Prandtl number Considering the conjugate heat transfer of a flow around a heated object,

we can expect variations in the heat transfer rate depending on the flow regime as detailed

in [18]. For a laminar regime, the fluid layers in contact with the solid will retrieve the heat

produced and diffuse it by conduction through the so-called thermal boundary layer. The

thermal boundary layer is the region over the obstacle’s surface where the temperature gra-

dient normal to the surface is significant. The convective heat transfer coefficient is higher

in a turbulent regime as the fluid particles are more ’mixed’ than in a laminar regime. Fluid

particles with significant temperature differences are more likely to encounter and then ex-

change heat, which increases the overall heat transfer coefficient.
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"The random eddy motion of a group of particles resembles the random
motion of molecules in a gas - colliding with each other after traveling
a certain distance and exchanging momentum and heat in the process.",
Yunus A. Çengel in [18].

Depending on the flow regime, these energy dissipation processes are characterized by the

Prandtl number Pr. This dimensionless number gives the ratio of the molecular diffusivity

of momentum and the molecular diffusivity of heat. It allows comparing the temperature

profile with the velocity profile in the thermal and velocity boundary layers.

Pr = molec. diffusivity of momentum
molec. diffusivity of heat

= ηCp
λ

(II.16)

η is the viscosity of the fluid in [N · s · m−2]. Cp the specific heat capacity and λ the

thermal conductivity, both defined earlier in the manuscript.

Very small values of the Prandtl number (Pr � 1) indicates that the thermal diffusivity

dominates over the momentum diffusivity. The energy transfer in the fluid occurs mostly

due to heat dissipation controlled by the thermal conductivity. On the opposite, large values

(Pr � 1) show that the fluid dissipates its energy mainly by the momentum dissipation,

caused by a significant viscosity value.

For instance, in oils that are usually really viscous fluids, the heat diffuses more slowly

than momentum. They are efficient to transfer energy through convection compared to con-

duction. The heat diffuses much more quickly than the momentum in liquid metals, as these

materials usually present a high thermal conductivity. The energy transfer occurs mostly due

to the conduction within the thermal boundary layer. In this case, the temperature profile is

almost independent of the velocity profile as the heat diffuses much more quickly as the fluid

flows.

Nusselt number Back to heat transfer perspective only, the Prandtl number is helpful to

assess the Nusselt number Nu value. In forced convective heat transfer, this dimensionless

quantity compares the predominant heat transfer between the fluid and a solid layer: con-

vection or conduction. Locally at a point on the surface, it is expressed as:

Nu = hL

λ
(II.17)

h is the coefficient of heat transfer. L is the characteristic length of the object, as used for the

Re number computation. λ is the thermal conductivity of the fluid.

If the Nusselt number has great values (Nu� 1), the heat transfer by convection is more

important than the conduction. The heat exchange is mostly due to the flow of the cold fluid

retrieving the heat produced by the solid. When the Nusselt number presents small values

(Nu� 1), the heat transfer between the solid and the fluid is mainly due to conduction. For

instance, in the case of natural convection, the velocity of the fluid around the obstacle is low.

The heat is retrieved in the thermal boundary and dissipated through the fluid with thermal

conductivity.
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Practically, the Nusselt number can be used to compute the actual heat transfer coeffi-

cient of the fluid. In forced convection, for steady flow and fluid with constant thermal and

mechanical properties, it can be linked to the Prandtl and Reynolds numbers with the Hilpert

correlation [95, 64]:

Nu = cReαPrβ (II.18)

The coefficients c, α, β are determined empirically depending on the specific case considered.

The common objective in thermal and fluid dynamics study is to assess the value of the

Nusselt number through the computation of Re and Pr, to finally get the value of the global

(integrated on the surface of the object) or local value of the heat transfer coefficient h.

In natural convection, the Nusselt number can be assessed using the Rayleigh number Ra,

computed through the Grashof numberGr under the Boussinesq’ approximation. The Grashof

number characterizes the intensity of the free convection occurring around the heated solid.

Nu = cRaγ (II.19)

The choice of the coefficients c and γ depends on the type of flow generated by the convec-

tion, laminar or turbulent [64]. The Rayleigh number is given by:

Ra = Pr ·Gr

The Grashof number is computed with:

Gr = gβ 4 TL3

ν2

The Grashof number is expressed through the temperature difference 4T along the surface

of a vertical solid of height L, the acceleration of gravity g, the kinematic viscosity ν and the

thermal expansion coefficient of the fluid β.

II.4 Chapter conclusion

This chapter has covered the main elements composing the Li-ion batteries. The physical

parameters involved in the electrical characterization of batteries were detailed. The thermal

issues related to batteries operation and the associated hazards were explained with physical

considerations. The link between the heat generation and the electrical behaviour of the

batteries was stated at this point. More details on this physical phenomenon were given by

covering the modeling approaches commonly used in literature to represent the electrical

processes in the batteries. The different scales considered could show the advantages and

drawbacks of each strategy.

We also highlighted the need for Battery Thermal Management Systems for electric vehi-

cles operation by detailing the thermal issues. The different systems existing in the industry

were covered with their advantages and drawbacks. Specific attention was paid to the im-
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mersion cooling systems, being the physical case studied in the scope of this thesis.

Finally, narrowing the aim to the outcomes of the present work, we focused on the heat

transfer modeling strategy selected in this thesis. First, the phenomenological approach, used

in the low fidelity solver, was explained with the law of cooling. Then, regarding the high

fidelity solver, the conjugate heat transfer approach was described by presenting the involved

equations along with relevant physical considerations and parameters.

Overall, this chapter drew the landscape to motivate the scientific issues addressed in this

work: develop accurate numerical models to represent the heat transfer of Li-ion batteries

under immersion cooling heat transfer and take into account the uncertainty on physical

parameters involved in the electrical and thermal behaviors of the batteries.
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CHAPTER III

LOW FIDELITY SOLVER FOR IMMERSION COOLING: ICEXO

Chapter abstract
This chapter presents the first model, denominated ICExo. We first describe the
equations solved by the thermal and electrical model. Then the model’s perfor-
mances are illustrated by comparison with an experimental test case. Using this
test case, we illustrate the ability of the model to reproduce the measurements
of temperature. Finally, some concluding remarks cover the advantages and the
limits of the approach proposed with this numerical model.
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Chapter III – Low fidelity solver for immersion cooling: ICExo

III.1 Introduction

This first solver, called ICExo, was initially developed by Exoes. The idea behind this model

was to get a numerical tool able to give comprehensive insights into the thermal behavior of

Li-ion batteries in immersion cooling systems. Also, the evolution of electrical features is of

interest to answer Exoes’ customer’s needs, as they ask for battery packs able to respect some

constraints corresponding to specific usage of the vehicles.

The solver is seen as a low fidelity (LF) solver as it is based on significant simplifications in

solving the conjugate heat transfer between the batteries and the fluid. The electrical param-

eters of the battery are computed using an Equivalent Circuit Model (ECM, see II.2.1.2). The

originality of the present method is that the electrical parameters of the ECM are dependent

on pressure and temperature, set as environmental conditions and computed by the model

during the operation. The link between these quantities is made thanks to the interpolation

of tables provided by battery manufacturers.

The heat transfer part is based on the resolution of the heat equation using the finite

difference in a cylindrical battery seen in a 2D geometry. The thermal exchange between the

fluid and the solid is computed, solving the equations of enthalpy balance through a conduct.

This approach allows considerable computational cost as the flow equations are not solved.

The model’s accuracy is still ensured, as shown later in the chapter.

In Fig. III.1, the general process of the model is illustrated. The electrical equations

representing the ECM are coupled to the heat equation in the battery. Heat transfer between

the solid and the fluid domains is computed through the balance of specific enthalpy in a

conduct.

III.2 Thermo-electrical solver: ICExo

The model presented in this paper computes the transient heat transfer between a Li-ion

battery, the surrounding fluid and the evolution of electrical parameters for the case of a

battery submitted to unsteady input electric currents. The approach chosen was to develop

a model allowing insights on some parameters of interest evolution in immersion cooling

configuration. For the thermal part, the variables computed by the model are the Li-ion

battery’s temperature and the surrounding fluid’s temperature. The voltage and the state

of charge of the battery are computed in the electrical part. The description of the whole

numerical model has been summed up in Alg. 1.

III.2.1 Thermal equations

In this section, we describe the equations representing the heat transfer between the coolant

(fluid domain) and the Li-ion cell (solid domain), both pictured in Fig. III.3.

First, the solid domain Ωs represents half of the cylindrical Li-ion battery in a 2D geometry.

The battery’s diameter is d and its radius d/2, and the height is denoted L. The temperature

T (xs, t), for a given position xs ∈ Ωs and a time t ∈ [t0, tf ], is obtained by solving the heat
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Figure III.1: Scheme of the ICExo model

equation:

ρCp
∂T (xs, t)

∂t
= λ∆T (xs, t) + qg, (III.1)

where ρ is the density of the Li-ion cell, Cp its specific heat capacity and λ = (λr, λz) is the

vector of thermal conductivities in radial and axial directions respectively. qg is the volumetric

source term representing the heat generated within the Li-ion cell by the Joule effect and is

computed as follows

q ∝ R0 · I2(t) (III.2)

where R0 stands for the internal resistance of the cell, and I(t) is the electric current sub-

mitted to the batteries at a given time t. The heat is generated in the battery through the

volumetric source term in Eq. III.2 and then is spread in the domain through Eq. III.1. As the

computational domain represents only half of the Li-ion cell, a symmetry condition is applied

for the temperature at the center of the battery Γsym. At the interface Γint between the fluid

and solid domains, a Neumann condition is applied, giving the heat flux generated by the

temperature difference between these domains:

∂T (xΓint , t)
∂n

= −hfSΓint

(
T (xf , t)− T (xs, t)

)
(III.3)

where SΓint is the surface of the whole boundary, T (xf , t) the temperature in the fluid domain
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and T (xs, t) the temperature in the solid domain at the other side of the interface. In practice,

the solid domain is meshed, and a finite differences scheme is used for space and time to solve

the heat equation Eq. (III.1). The mesh containing 100 cells is visible in Fig. III.2. It is meshed

using a cartesian grid with the same number of cells in both radial and vertical directions.

The mesh is then more refined in the radial direction.

Figure III.2: Mesh of solid domain with temperature unknowns in the center of each mesh
cell

The energy transfer between the fluid and the solid domains is computed through the

specific enthalpy of the fluid h(xf , t). The fluid layer around the battery is seen as conduct.

The heat balance for a control volume in the conduct is established, allowing to compute

the specific enthalpy difference due to the heat produced by the Li-ion battery. Referring to

Fig. III.3, let’s consider the control volume V in the fluid layer. The coolant flow is assumed

steady, incompressible and the effects of gravity are neglected. Also, no mechanical power

is brought to the fluid in this case. According to the first law of thermodynamics, for two

locations of the fluid domain xf and x′f defining the control volume V , the heat balance for

any time t reads:

ṁ
(
h(x′f , t)− h(xf , t)

)
= ϕth (III.4)

where ṁ is the mass flow rate of the fluid in the conduct. The heat flux ϕth defined in

following represents the heat exchanged between the battery and the surrounding fluid in
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the control volume V :

ϕth = hf · SV
(
T (xf , t)− T (xs, t)

)
(III.5)

where hf is heat transfer coefficient of the fluid. SV is the surface of the interface between

the solid domain and the control volume.

At the fluid inlet boundary Γinlet, a Dirichlet condition is applied for the specific enthalpy:

h(xΓinlet , t) = hini. (III.6)

At the fluid outlet boundary Γoutlet, an homogeneous Neumann condition is applied:

∂h(xΓoutlet , t)
∂n

= 0 (III.7)

The temperature of the fluid is obtained by interpolation of tables linking the specific

enthalpy, the pressure, and the temperature using the REFPROP database [84]. In the fol-

lowing, the interpolation operator of 2D gridded data for an output quantity u is written

as:

u = Interp2(xq, yq, [T1,T2,TU])

With this notation, the table [T1,T2,TU] contains the values of the quantity to compute

u ∈ TU, depending on the values in the vectors T1 and T2. The value u is computed for the

query points xq ∈ T1 and yq ∈ T2, by interpolation on the values in TU corresponding to

the query points. Numerically speaking, the Interp2 function utilized is the Matlab ’interp2’

routine (table lookup). The value u is obtained via linear interpolation of the data available

at the neighborhood of the query point (xq, yq).
The temperature of the fluid is then linked with the pressure and enthalpy in the table

written [h,P,Temp]. Then, temperature of the fluid at a location xf and a time t is given as

follows:

T (xf , t) = Interp2
(
h(xf , t), P0; [h,P,Temp]REFPROP

)
(III.8)

Note that the query points for the 2D interpolation are the enthalpy h(xf , t) and the

pressure of the fluid P0, which is known and assumed steady in this study. The pressure is

set to P0 = 100 [mBar]. The range of possible values in the temperature table Temp goes

from −34.6oC to +120.5oC. The most significant discrepancy between two consecutive data

is 0.67oC.

The specific enthalpy hini at the inlet fluid boundary is given by the following interpola-

tion:

Tini = Interp2
(
hini, P0; [h,P,Temp]REFPROP

)
(III.9)

where Tini is the temperature at the beginning of the simulation t0 and also stands for the

steady temperature outside the computational domains.

The equation system formed by Eq. (III.1), Eq. (III.4), Eq. (III.8) and the boundary

conditions allows to compute the three unknowns of the problem: the temperature in the
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solid domain T (xs, t), the specific enthalpy of the fluid h(xf , t) and the temperature in the

fluid domain T (xf , t), at any time t.

The model’s specific output of interest is the mean of temperature within the battery on the

right side, near the solid-fluid interface, as shown in Fig. III.3. This zone is denoted Ωright
int

and its surface SΩrightint
. This temperature is chosen to simulate the battery’s skin temperature

as if it was located within a gap between two cells in a more extensive pack configuration.

This choice has been encouraged by comparing the numerical results with the experimental

data, shown later in this chapter. To get a scalar quantity, the mean of the temperatures in

this area is computed, giving at any time t the temperature denoted Tqoi(t). At any time t,

the temperature of interest Tqoi(t) is computed using

Tqoi(t) = 1
SΩrightint

∫
Ωrightint

T (x, t)dx. (III.10)

Figure III.3: Computational domains: solid domain and fluid layer, control volume scheme
for the specific enthalpy computation.

III.2.2 Electrical equations

Along with the thermal equations, electrical parameters of the Li-ion cells are also computed

during the simulated time. This study focuses on the computation of the voltage and state of

charge evolution of the Li-ion battery.

The state of charge SOC of the cell is computed at each time t of the simulation using

the relation:

SOC(t) = 1 · SOH − I(t)
C · 3600 · t (III.11)

54



III.2. Thermo-electrical solver: ICExo

where C stands for the capacity of the cell in [A ·h]. SOH is the state of health of the battery,

expressed with a percentage. The capacity C is given at the beginning of the simulation by a

1D interpolation in tables linking the temperature and the capacity as follows:

C = Interp1
(
Tini; [Temp,CAh]

)
. (III.12)

Similarly to the 2D interpolation function, Interp1 is based on the ’interp1’ function from

Matlab. Interp1 performs a 1D linear interpolation between data in the neighborhood of the

query point, by comparison with Interp2, which takes two inputs x, y. The table CAh is a

vector containing values of capacity from 2.88 to 3 [A · h] multiplied by the SOH parameter.

The query point is the temperature at t = 0, knowing Tini. The data in the table CAh are

provided by the cell constructor, which one aims to simulate (Murata™ in the case of the

experiment presented in the next section).

To compute the voltage of the battery, the Li-ion battery is approximated with an adapted

Thevenin model [58]. It is represented in Fig. III.4 with all the notations of the involved

electrical parameters. A parallel RC circuit, with resistance R1 and capacity C1, is connected

to the voltage source of the battery Em and its internal resistance R0. Following this approx-

imation, the full voltage V of the battery is given by the following relation:

V (t) = Em(t) + Z(t) · I(t). (III.13)

The voltage source of the circuit is the electromotive force denotedEm. Z is the impedance

of the RC circuit representing the battery. Em represents the no-load voltage of the open cir-

cuit. It is computed at each time t of the simulation using the following relation:

Em(t) = Ei(t)− ET (t). (III.14)

Note that Ei is the voltage of a cell with no input electric current, and its value is obtained

by interpolation of tables linking the electrical current, the state of charge and the voltage,

as follows

Ei(t) = Interp2
(
I = 0, SOC(t); [I,SOC,Ei]

)
. (III.15)

Note also that ET is the voltage of the cell dependent on the initial temperature and

is obtained by interpolation of tables linking the temperature, the state of charge and the

voltage, computed as follows

ET (t) = Interp2
(
Tini, SOC(t); [Temp,SOC,ET ]

)
. (III.16)

The table Ei and ET contain values of the voltage with average discrepancy of 0.2 [V] between

two consecutive data.

Following the RC circuits wiring in Fig. III.4, the impedance Z of the battery is then

expressed:

Z(t) = R1(t)
1 +R1(t)C1(t) +R0, (III.17)

where R1 and R0 are the internal resistance of the RC circuit. R0 represents the main
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contribution to the resistance of the battery. A constant value is chosen for this parameter.

The resistance R1 is obtained by interpolation of tables linking the temperature, the state of

charge and the resistance:

R1(t) = Interp2
(
Tini, SOC(t); [Temp,SOC,R1]

)
(III.18)

The table R1 contains values of resistance from 0.5 to 10 [mΩ] with a maximum discrepancy

of 4 [mΩ] between two values.

The query points are the initial temperature Tini and the state of charge SOC(t). Note

that the capacity C1 is the internal capacitance of the battery. It is interpolated from tables

linking the temperature, the state of charge and the capacitance, computed as follows

C1(t) = Interp2
(
Tini, SOC(t); [Temp,SOC,C1]

)
(III.19)

The table C1 contains values of capacitance with a maximum discrepancy of 2.7 · 10+3 Farads

between two values.

Note that in practice, R0 is assumed much more significant than R1. To simplify the

thermal model behavior and in the perspective of performing the calibration of the internal

resistance parameter, the choice was made to consider only the contribution from R0 for the

internal resistance in the heat generation of the Li-ion battery in Eq. (III.1). The battery

manufacturer provides all the data tables used in the previous equations.

Figure III.4: Adapted Thevenin equivalent model of the Li-ion battery.

In addition, this model allows simulating the electrical parameters for an equivalent bat-

tery module rather than a single cell. In this context, the type of connections in the battery

pack is considered, i.e. the parallel and serial configuration of the connections between all

Li-ion cells. The equivalent input electrical current and voltage can be computed using Kir-

choff’s laws. For the thermal part, the values of the parameters involved in the heat transfer,

like the flow rate, are usually given for the whole module. To go from the vision of the

whole pack to one equivalent cell, these parameters are divided by the number of cells in the

module considered.
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Algorithm 1 Numerical model operation
t = 0

Init. thermal and flow parameters: [ρ Cp λr λz ṁ hf P0]
Init electrical parameters: [SOH C R1 C1 R0]
Init. conditions:

T (xs, t = 0) = T (xf , 0) = Tini
h(xf , t = 0) = hini
SOC(t = 0) = 1 · SOH
V (t = 0) = V0

while t < tf do
Read electrical current input I(t)
thermal model

q ← R0 · I2(t)
Compute T (xs, t) through Eq. III.1. Apply the BC at Γint,Γsym
Compute h(xf , t) through Eq. III.4. Apply the BC at Γinlet, Γoutlet
Compute T (xf , t) through Eq. III.8
Compute the temperature of interest Tqoi(t)

electrical model
Compute SOC(t) through Eq. III.11
Compute Em(t), R1(t), C1(t) through Eq. III.14,III.15,III.16,III.18,III.19
Compute Z(t) through Eq. III.17
Compute V (t) through Eq. III.13

t← t+ δt
end while
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III.3 Validation of the model with an experimental test case

In this section, an original experimental test case conducted by Exoes is presented. It aims to

study the thermal behavior of a small pack of batteries immersed in a coolant. The batteries

are heated under various charging/discharging conditions. The purpose of the study is to

produce trustful and reliable experimental measures of temperature, voltage and current

for this small immersion cooling configuration. This kind of data interests anyone trying to

calibrate numerical models for such problems. The experimental results are provided in a

dataset available on a Mendeley Data repository [128].

Once the full details on the experimentation are given, we illustrate the accuracy of the

model ICExo with the reproduction of the experimental test case.

III.3.1 A review of experimental setups for immersion cooling

Many experiments of immersion cooling configurations have been conducted in the literature.

While experimental facilities and methods can differ, measurements are often related to the

temperature evolution of Li-ion cells under various conditions. Notably, most references

study the effect of charge and discharge rates on the batteries temperature evolution. These

facilities usually feature a pack composed of few cells, going from a lonely cell as in [132]

up to larger configurations as in [45] with 32 cells. The packs are immersed in the fluid

within a tank or enclosure. The fluid utilized is either air or coolants with better thermal

performances. Cells temperatures are usually measured by thermocouples placed on the skin

of the cells. Using thermocouples on each cell allows evaluating the temperature uniformity

within the packs. These setups focus on different parameters of interest, such as maximum

temperature, maximum spatial temperature deviation and temperature uniformity, giving

informative insights on the behavior and performances of immersion cooling systems. Let’s

review some results from the literature provided by such experimental investigations.

The immersion cooling experimental setups usually allow studying the impact of the ge-

ometry and the arrangement of the cells. The references [134, 147, 45] studied the influence

of arrangement geometries on the cooling effectiveness. Indeed, [45] showed experimentally

that an aligned arrangement in straight rows of cells displays the best cooling capabilities,

based on temperature measurements within the pack. The thermal regimes cooling perfor-

mances are also studied through those experimental setups. [86] assess the performances

of a newly developed cooling system, a thermoelectric cooler, by comparing it against nat-

ural and forced convection cooling using the same facility. [139] also assess capabilities of

their innovative oil impingement cooling technique. Some authors use experimental setups

to build or calibrate numerical models. For instance, [57] assess the heat generated by the

batteries from temperature measurements and include it as a source term in the model to

ensure good numerical reproducibility of the experimental data. Many cited experiments use

steady discharge rates in each investigated experimental condition. Only a few references

perform temperature measurements while alternating charge, discharge, and rest cycles at

different rates. In [132, 139] the temperature evolution the cells are investigated during such

cycles.
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The present experiment gathers many of the above features, providing novel experimental

data. Precisely, the setup consists of a lab-scale battery pack of eight 18650 cylindrical cells

immersed in a coolant and under a forced convection regime. The spacing between each

cell and with the enclosure walls is narrow. In that sense, the current setup gets closer to

realistic geometries of manufactured battery packs. Thermocouples measure temperatures at

cathode and anodes locations for some of the eight cells. The experiment aims to measure the

temperature evolution of the batteries submitted to different charging and discharging cycles.

In addition, electrical characteristics such as voltage and electrical current are monitored and

put in perspective with the temperature evolution. The several cycles investigated present

various charging rates within the same experiment. The experimental measurements allow

quantifying the effect of charging rates in a transient regime and how the cooling capabilities

are affected by such variations.

III.3.2 Experimental test case: lab-scale immersion cooling

The experimental case setup is represented in Fig. III.5. It is made of a representative batch

of eight cylindrical cells. The batteries used are the cylindrical cells 18650-VTC6 from Murata

with 3 [Ah] capacity. They are stored in an enclosure, a cube with sides of 150 [mm]. The

cells have a diameter of d = 18 [mm] and a height of L = 65 [mm]. They are spaced 0.5
[mm] from each other and staggered in a hollow shape that also lets a 0.5 [mm] spacing

from the walls. A dielectric fluid loop circulates bottom-up in direct contact with the cells.

The flow goes axially along with the cells within the enclosure, from the bottom to the top.

The fluid is entering the enclosure at a speed of 0.04 m.s−1. Temperature sensors are placed

on the busbars, at the bottom and above sides of the cells. The position of the sensors in the

battery pack is detailed in Fig. III.5. The working fluid used in this experiment is the CFX70

from Chemours™ company. The physical properties of the fluid are detailed in Tab. III.1.

Temperature sensors

Li-ion cells

Figure III.5: Experimental set up. Position of the temperature sensors (left), computer aided
design (middle) and real set up (right).

Li-ion cells are submitted to different charging and discharging electric current cycles.

The experimental cycles define the amplitude of the electric current inputted to the cells and

the duration of charging and discharging sequences. In this study, two cycles conditions are
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Property Units CFX70

Boiling point oC 70.6
Freeze point oC < −80
Density at 25 oC g · cm−3 1.63
Viscosity at 25 oC cP 0.75
Heat of vaporization kJ · kg−1 98
Liquid conductivity W · (m ·K)−1 0.093
Liquid specific heat at 25 oC kJ · (kg ·K)−1 0.75
Coefficient of expansion K−1 0.0014
Dielectric strength, 0.1" gap kV 37
Volume resistivity Ω · cm 2.10 · 1015

Dielectric constant 1.82
Ozone depletion potential (ODP) 0
Global warming potential (GWP) < 20

Table III.1: Physical properties of CFX70 fluid.

applied: the first one named Datasheet cycle (DS) and the second Racing Cycle (RC). For

one Li-ion cell, the DS cycle comprises a sequence of I = −30 [A] discharging current during

242 [sec] followed by a sequence of I = 5 [A] charging current during 1468 [sec]. The RC

cycle comprises an alternation of 10 [sec] discharging at I = −30 [A] and 10 [sec] charging

at I = 30 [A] sequences, during 672 [sec]. Then, a rest sequence with I = 0 [A] during 400
[sec] is applied. The nominal conditions of the experiment parameters are detailed in Tab.

III.2. The circulating fluid cools the heated batteries at a steady flow rate. The purpose of the

experiment is to monitor the temperature evolution of the Li-ion cells using the temperature

sensors shown in Fig. III.5. The flow rate of the cooling fluid, the voltage and the electric

current of the batteries are also monitored. This experimental setup allows investigating the

effect of various input electric currents on the temperature behavior of the Li-ion cells, cooled

by immersion at a steady flow rate.

As stated at the beginning of this section, the whole experimental data for both DS and RC

cycles are available at the link provided in [128]. The dataset includes the measurements of

the inlet and outlet fluid temperatures. Also, three cathodes temperatures at three different

locations and two anodes temperatures at two other locations within the pack are available.

Finally, measurements of the voltage for one cell and the electric current going through the

battery pack are provided. The provided measurements cover four cycles for the DS case and

one cycle for the RC cycle.

The results of the experiment for the DS and RC cycles are shown in Fig. III.6 and Fig.

III.7 respectively. Note that the electric current is measured for the whole pack of batteries.

Thus, the values obtained in the plots for the electrical current are eight times higher than

the values specified in Tab. III.2 (given for one cell), according to the wiring of the pack.

For both cycles, the temperature discrepancy between the cathode and the anode temper-

atures is explained by their respective enclosure locations. The cathode of Li-ion cells is at

the entrance of cooling fluid in the enclosure, while the anode is at the exit. Consequently,

the cooling fluid retrieves some heat while flowing around the cells. Also, from t ≈ 50 [sec]
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Mass flow rate Electrical current Sequences Init. voltage Init. fluid temp
[L ·min−1] [A] [sec] [V] [oC]

Datasheet cycle (DS) 1.0 I = −30 t = [0; 242] 4.16 45.22
I = 5 t = [242; 1468]

Race cycle (RC) 1.0 I = ±30 in 10 [sec] periods t = [0; 672] 3.58 45.28
0 t = [672; 1045]

Table III.2: Nominal experimental conditions for DS and RC cycles.

in RC cycle and the beginning of the DS cycle, the fluid temperature at the inlet is lower than

the temperature at the outlet, which agrees with the cooling process taking place within the

enclosure.

Overall, the flow rate measurements show that the steady condition is fulfilled, even if

the rate presents some small noisy variations.

(a) Temperature and mass flow rate evolution (b) Voltage and electric current evolution

Figure III.6: Experimental measurements for the Race cycle.

For the RC cycle results in Fig. III.6, heat is mainly produced during the alternation of

charging and discharging sequences. Then, while the electric current is set to I = 0 [A],

the fluid is cooling the batteries, decreasing the temperature as they are not producing heat

anymore. For the anode, the temperature increases quickly during the first 400 seconds of the

experiment. The slope of the temperature curve is significantly decreasing after t = 500 [sec].

The cathode temperature increases at a more regular rate during the charging/discharging

sequence. Furthermore, the curve of the anode temperature shows a quick increase during

the first 150 seconds of the experiment, which might appear to be uncorrelated with the

following part of the curve. A plausible explanation can be drawn by considering that the

internal resistance of a Li-ion battery can vary a lot at the beginning of its solicitation, notably

because the stationary regime of chemicals reactions within the battery can be quite long to

reach. During this period, the thermal behavior of the battery might not be as predictable as
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it would be on an established steady-state regime.

(a) Temperature and mass flow rate evolution (b) Voltage and electric current evolution

Figure III.7: Experimental measurements for the Datasheet cycle.

III.3.3 Numerical results

The thermal prediction capabilities of the model are shown in Fig. III.8 and Fig. III.10. The

temperature evolution computed by the numerical model is compared against the experimen-

tal data (Anode 1 temperature, see Fig. III.5) and measurement error envelope. The same

values of input parameters are taken for both cases, so it is possible to compare the model’s

performances quantitatively in each situation. The values of the thermal input parameters

used in these simulations are given in Tab. III.3. Those values were obtained after the cal-

ibration process detailed later in the manuscript (see chapter VI). Especially the range of

values for the thermal conductivities and the specific heat capacity to initiate the calibration

procedure was inspired from the references [148, 38].

Parameter Symbol Value Units

Mass flow rate ṁ 2.925 · 10−3 kg · s−1

Heat transfer coefficient hf 2.140 · 10+2 W.m−2.K−1

Internal resistance R0 3.253 · 10−3 Ω
State Of Health SOH 9.975 · 10+1 %
Radial thermal conductivity λr 9.101 · 10−1 W.(mK)−1

Axial thermal conductivity λz 3.391 · 10+1 W.(mK)−1

Specific heat capacity Cp 1.157 · 10+3 J.(kg.K)−1

Table III.3: Values of input thermal parameters.

For the Datasheet cycle in Fig. III.8, the model underestimates the discharging sequence’s

battery temperature. However, the cooling period occurring during the charging sequence

seems well captured by the model, and the final temperature is close to the experimental
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Figure III.8: Temperature computed by the numerical model for the Datasheet cycle case.

measurements. Several hypotheses could explain this temperature discrepancy during the

discharging sequence. The temperature probes position in the experimental setup could

induce overheating, which the model might not compute. Indeed, the cells arrangement of

the experimental setup generates variations in the coolant flow, and overheating zones are

expected to appear at some locations. It could be the case for the thermocouple position

of Anode 1. The low order of the model for the fluid equations could limit its capability

in reproducing such a phenomenon. Also, the voltage of the battery drops rapidly in this

sequence (see Fig. III.7b). The low SOC at this point might provoke a higher heating rate

from the cell and is omitted by the model.

The Fig. III.9 illustrates the code behavior for two consecutive DS cycles. The temperature

measured experimentally and computed with the numerical model are overlapped during the

two cycles. In this case, the numerical model is run for a longer time to cover two cycles,

using the same input values at the initial time (Tab. III.3). The plot of temperature evolution

is consistent through time, as the code seems to produce the same temperature curve for

the two consecutive cycles. This gives confidence in the ability of the code to reproduce

consistent results when the conditions are repeated over time.
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Figure III.9: Temperature computed for two DataSheet cycles.

For the Race cycle in Fig. III.10, the temperature predicted by the model gets close to the

experimental data at the end of the heating sequence. The almost steady temperature regime,

observable from the experimental measurements, seems also well represented by the model.

From a physical perspective, in the Race cycle case, the experimental curve of temperatures

in Fig. III.10 shows a heating behavior in the first 150 seconds which seems not correlated to

the shape of the curve after 200 seconds. A plausible explanation can be drawn by considering

that the internal resistance of a Li-ion battery can vary a lot at the beginning of its solicitation,

notably because the stationary regime of chemicals reactions within the battery can be quite

long to reach. During this period, the thermal behavior of the battery might not be easy to

be predicted by the model.

III.3.4 Discussion on the numerical results

As shown above, the numerical model can reproduce the physical process of heat transfer

between the heated batteries and the fluid in a forced convection regime. The heating rate

change with respect to the cooling is also well captured (see results of DS cycle). Finally, the

way the model was developed allows the simulations at a low computational cost.

However, the modeling approach performed in this model is based on significant assump-

tions and simplifications. There are features and aspects of the real physics occurring that

the model is, by nature, not able to reproduce. In particular, the coolant flow is represented

only by the mass flow rate. There is no data given by the model allowing to evaluate the

coolant’s velocity field. Also, the geometry is not really represented. The heat transfer is

computed with an ’averaged’ cell, and the energy balances between the relevant quantities.
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Figure III.10: Temperature computed by the numerical model for the Race cycle case.

It is not possible to assess geometry effects on heat transfer. As stated in the first chapter,

the conjugate heat transfer is dependant also on the velocity field. The need for a model

including the resolution of full equations in the fluid domain to understand the impact of the

arrangement of the cells and thus of the flow patterns on the heat transfer result is necessary.

The spatial and temporal dependency of the temperature is expected to be impacted strongly

by these effects. The next chapter addresses the latter issues using a CFD model solving the

full system of partial differential equations to represent the conjugate heat transfer.

III.4 Chapter conclusion

In this chapter, we presented a fast and accurate model to simulate the thermal behavior of

heated batteries immersed in a cooling fluid. The electrical parameters of the battery are

also computed using this model. The originality of the approach proposed in this model,

performing energy balances instead of solving the flow equations, computing parameters

through tables interpolation, allows to save considerable computational resources, compared

to what would be done in a more classical CFD approach.

An original experimental setup of immersion cooling was described, and the experimental

results were analyzed, trying to correlate the observed electrical and thermal phenomenon.

These data were used to validate the code behavior under different physical conditions. Over-

all, the code showed an excellent capability to reproduce the physical behavior in the present

test case. However, the assumptions made to construct the model presented some limitations

when assessing the code predictions. The comparison with the experimental data allowed

some hypotheses on the discrepancy between the numerical and experimental results.
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This final discussion highlighted the need to go with a higher fidelity solver, using CFD,

to reproduce with better accuracy the thermal behavior of Li-ion batteries under immersion

cooling.
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CHAPTER IV

COMPUTATIONAL FLUID DYNAMICS SOLVER: TRIOCFD

Chapter abstract
This chapter focuses on the description of the CFD solver used in this thesis,
the code TrioCFD. We state the hypothesis to address the simulation of immer-
sion cooling of Li-ion batteries, the set of governing equations and the numerical
methods. Two test cases are presented to assess the code capabilities and to study
the thermal behavior of immersion cooling of batteries. The first test case is a
comparison code to code on forced convective heat transfer simulation. The sec-
ond test case deals with the simulation of the natural convection heat transfer
and the validation with respect to experimental data available in the literature.
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IV.1 CFD model for conjugate heat transfer of Li-ion batteries

IV.1.1 TrioCFD

The second code used in this thesis is TrioCFD, seen as a high fidelity (HF) solver compared to

the numerical model of the previous chapter. TrioCFD is a open source Computational Fluid

Dynamics code developed at CEA since 1995 [140]. It is based on the Finite Element Method

(FEM). Its applications are the simulation of incompressible and quasi-compressible flows

and the heat transfer associated with nuclear applications. It is massively parallelized through

the use of MPI libraries. In the framework of this thesis, the code is used for the first time

in applications related to the conjugate heat transfer of Li-ion batteries in immersion cooling

configurations. Nuclear applications and the immersion cooling of Li-ion batteries have a

lot in common regarding the heat transfer problem definition. However, the magnitudes of

velocity fields or temperature reached are significantly different in these two domains. This

solver has been chosen to perform the simulations in the framework of this thesis, as it is

open source and new developments would have been easier to implement if needed. Also,

one development objective of this code is to represent multi-phase flows, being a technology

of interest for immersion cooling systems.

Addressing the simulation of immersion cooling of Li-ion batteries with this model re-

quires a specific approach described in the following. The meshing of the solid (batteries)

and fluid (surrounding gas coolant) is performed with unstructured grids. The full system of

partial differential equations is solved in the solid and fluid domains. The electrical behavior

of the cell is not solved directly as it is done in the model ICExo. However, the electrical fea-

tures of the batteries are represented by considering laws for some relevant parameters, as

the approach in section II.2.2.2 from chapter II. Then those electrical parameters are directly

coupled to the set of equations for the fluid and the heat transfer. The electrical parameter

considered is the internal resistance R and the electrical current I, playing a role in the heat

source term of the solid domain. Thus, the full model allows linking the electrical features

with the thermal response of the batteries. A general overview of the model operation as

used in this thesis is schematized in Fig. IV.1.

IV.1.2 CFD for immersion cooling: technical literature review

For a deeper understanding of the modeling approach performed with TrioCFD on immersion

cooling systems, let us review the typical outcomes and interesting technical issues addressed

in some literature references.

A 2D CFD conjugate heat transfer model is validated with experimental results for an

original thermal management method using reciprocating airflow in [93]. The module they

try to simulate is significant as it includes more than 20 Li-ion cells. In practice, only eight

cells were represented with the CFD solver thanks to many symmetries in the geometry along

flow channels. The heat generation is computed at the battery level, using the source term as

described in section II.2.2.2. They also consider a model for the internal resistance, depend-

ing on temperature, playing a role in the Ohmic heating part of the source term. Besides,

a lumped thermal model is also employed to represent this cooling facility. They compared
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Figure IV.1: High-fidelity CFD model

the results of both models, which gave similar maximum temperature predictions under the

specified charging and discharging conditions. The authors from [16] use a CFD solver to

assess the heat transfer coefficient resulting from their configuration (direct cooling with

oil), depending on the arrangement of the cell (aligned or staggered) and the flow regime.

They consider a bunch of nine cylindrical cells but simulate only the spacing (fluid domain)

between four of these cells and a quarter of each of these batteries. So with this geometry

representation, the evaluation of the heat transfer coefficient is very localized but expected to

represent the heat transfer process accurately. The heat transfer coefficient doubles between

flows featuring Reynolds numbers from 50 to 150.

Also focusing on the local features of the heat transfer, in [68] they use 3D CFD compu-

tations to predict the location of hot spots formation in the fluid domain, for heated batteries

submitted to a forced convection regime with air. They identify the hot spots by showing the

resulting temperature fields in solid and fluid domains, resulting in the heat transfer between

the batteries submitted to a constant electrical current and an imposed air velocity at the

entrance of the domain. The localization of hot spots also allows assessing the temperature

homogeneity in the pack and inside batteries, primarily thanks to the 3D computation. Those

characteristics are important criteria for an efficient BTMS. A comprehensive description of

the test case is given in section IV.3.

By using simpler geometries, analytical models can be developed for immersion cooling

configuration as it is done in [20]. The results of their analytical model present a good

comparison with the finite element simulations. The use of the analytical model allows to
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investigate with small computational effort the link between the temperature of the batteries

and geometry arrangement. Also, they can assess the impact of the C-rate on the temperature

in the domain. So they compare the numerical and analytical results under this perspective

in steady-state cases.

Regarding the geometry of the arrangement of the cell, the authors from [145] perform

a comprehensive study on this characteristic using a 3D CFD solver. A flow of incoming air

cools the batteries. The position of the fan generating the flow is also investigated. They

represent a significant amount of cells (around twenty) immersed in the airflow and then

highlight some typical heat transfer patterns depending on the geometries considered. The

cooling performances were demonstrated to be intensely dependent on the airflow direction

and path. A deterministic optimization problem was also conducted to obtain the best inter-

cell distance in cooling efficiency.

Regarding the impact of the source term on the thermal response, some authors, such as

[123] and [57] use the information provided by experimental data to adjust the CFD model

and get the temperature response close to the measurements. More specifically, [123] tried

different heating regimes and assessed the rate of temperature rise for the batteries.

As covered in the section II.2.2 from chapter II, the scale considered to represent the

heating processes due to electrochemical reactions is of relative importance to the simulation

accuracy and the involved models and resources. All the studies presented above consider a

heat source term at the cell scale (see section II.2.2.2). The model presented in this thesis

uses this approach too. Only a few studies present a more comprehensive vision, solving the

partial differential equations at the electrochemical level, coupled with the heat generation

in the cell and finally with the heat transfer with the surrounding fluid. Such an approach

can be found in these work [133, 69], using the so-called NTGK model.

Finally, note that the CFD solver used in the above studies for the thermal and fluid

equations is Fluent for most cases.

Our approach with TrioCFD In this chapter, we first recall the complete set of equations

to solve the conjugate heat transfer problem. The equations from chapter II are detailed by

considering all the physical hypotheses stated in the following test cases. Then, the employed

numerical methods are described. The turbulence model choice is also detailed when it is

integrated.

The code is compared with other numerical and experimental results using two different

test cases. First, the solutions of TrioCFD are compared to Fluent on a case of a 3D simulation

of immersion cooling of a pack composed of 9 Li-ion batteries [68]. We illustrate the code’s

mesh and time step convergence in this case. The purpose of the test case is to validate the

overall behavior of the model, i.e. the choice of the heat generation, the resolution of flow

and energy equations in all domains, on a configuration of forced convective heat transfer.

Then, the code is compared against an experimental test case of literature [57]. Here the

attention is focused on the natural convective heat transfer, and thus the focus is set on the

importance of the heat source model in the batteries. The results of 2D and 3D simulations

on the same test case are compared with the experimental data. This comparison allows a
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deeper understanding of the physical processes at stake and draws a roadmap for the next

simulation under uncertainties tasks addressed further in this thesis.
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IV.2 Governing equations and numerical methods in TrioCFD

IV.2.1 Description of the physical problem

In this section, the equations written in the brief description of the Conjugate Heat Transfer

approach in II.3.3.1 are further detailed. The equations solved in the solid and fluid domains

are described considering the physical assumptions and simplifications. More precisely, the

simulations addressed with the CFD code TrioCFD in this thesis consider the features and

hypothesis listed in Tab. IV.1:

1 Transient conjugate heat transfer between a heated solid and a surrounding fluid.

2 Newtonian fluid.

3 Incompressible flow.

4 Homogeneous viscosity, density, specific heat, thermal conductivity.

5 Isotropic thermal conductivity unless specified otherwise.

6 Natural or forced convection.

7 Heat source from the solid domain and no heat source from the fluid domain.

8
Turbulence model added to RANS equations if needed. Otherwise a laminar
flow is considered.

9 Simulations in 2D or 3D geometries.

10 In 3D simulations with natural convection: Boussinesq approximation.

11
Perfect thermal contact between solid and fluid: continuity for temperature and heat
flux at the interface.

Table IV.1: Physical and simulation features of the CHT problem.

In the following, equations are expressed locally for a position x in the solid domain Ωs, in

the fluid domain Ωf or at the interface between the media Γ, for a time t ∈ [t0, tf ] of the

transient simulation.

IV.2.1.1 Solid domain: heat equation

In the solid domain denoted Ωs, the energy conservation is solved, in each location x ∈ Rd

(d = 2 or 3) and time t. In its more general form, the balance of internal energy e reads:

∂ρse

∂t
+∇ · (ρsu) = −∇ · F− p∇ · u + τ : ∇u + qg (IV.1)

The left-hand side represents the variation of energy by volume unit. The right-hand side

represents the heat flux by volume unit (first term). The two other terms stand for the power

of the pressure and viscous forces. The last term qg stands for volumetric heat source coming
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from external phenomena. The domain is solid in this specific case, so the local velocity u is

null. Similarly we have ∇ · (ρsu) = 0.

The variation of the internal energy can be expressed in terms of temperature in the do-

main, denoted as Ts ≡ Ts(x, t) and considering the specific heat capacity at constant pressure,

Cp,s. Also, the heat flux in the domain is expressed with the local Fourier’s law, considering

the uniform and isotropic thermal conductivity (λs ∈ R ): F = −λs∇Ts The density ρs is also

homogeneous and constant. Finally, the heat equation in the solid domain reads :

ρsCp,s
∂Ts
∂t

= λs∆Ts + qg (IV.2)

Physically, this equation states that the internal variation of energy with time is equal to

the heat flux dissipated through the domain added to an internal heat generation (qg > 0) or

reduction (qg < 0). In the present work, we consider that the Li-ion batteries are producing

heat, and the internal heat source term will be taken positive.

IV.2.1.2 Fluid domain: Navier-Stokes and energy conservation equations

The equations solved in the fluid domain give the velocity u and pressure p at a location x

and a time t.

u ≡ u(x, t)

p ≡ p(x, t)
(IV.3)

The first equation is the local mass conservation in the fluid domain Ωf .

∂ρf
∂t

+∇ · (ρfu) = 0 (IV.4)

As stated in the hypothesis above, the flow is assumed incompressible in the present work so

this equation reduces to:

∇ · u = 0 (IV.5)

Also, the conservation of momentum is ensured in the fluid domain. Under its local and

conservative form it reads:

∂(ρfu)
∂t

+∇ · (ρuu) = −∇p+∇ · τ + Fv (IV.6)

In this case, we consider a constant density ρf and viscosity ηf and the tensor for the rate of

pure deformations is symmetric. Then the constraints tensor τ reduces to:

τ = 2ηf
(1

2(∇u +∇Tu)
)

= 2ηf∇u
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As the flow is considered incompressible (∇ · u = 0) we finally obtain:

∇ · τ = ηf∆u

Finally, the momentum equation to solve in the fluid domain is expressed as:

ρf

(
∂u
∂t

+ (u · ∇)u
)

= ηf∆u−∇p+ Fv (IV.7)

For the external forces, the gravity is considered in the 3D simulations and then we have

Fv = −ρfg

The gravity is expressed through g = −gez with ez the basis vector in the vertical direction. In

the case of 3D computations with natural convection, the Boussinesq approximation induces

another term for the external volumetric forces. Following this approximation and consider-

ing incompressible flow, the density is dependent on the temperature of the fluid only. The

buoyancy effects are accounted only due to the gravitational forces. The Boussinesq approx-

imation applies if the variation of density |δρ| is really small compared to the real density:

|δρ| � ρf . Then the external forces are expressed using the thermal dilatation coefficient of

the fluid βT as:

Fv = −ρfgβT (Tf (x, t)− T0) (IV.8)

Tf being the local temperature of the fluid and T0 a reference temperature to define. Other-

wise, no external force is applied to the fluid.

Energy conservation in the fluid domain Similarly to IV.2.1.1, the energy conservation

principle is applied to the fluid domain. The energy conservation equation with the variables

related to the fluid domain reads:

∂ρfe

∂t
+∇ · (ρfu) = −∇ · F− p∇ · u + τ : ∇u + qf (IV.9)

The flow is incompressible (p∇ · u = 0), the heat generated by viscous effect are neglected

(τ : ∇u = 0) and there is no internal heat generation in the fluid domain (qf = 0). Fur-

thermore, the internal energy is expressed through the temperature of the fluid Tf using the

density ρf and the heat capacity at constant pressure Cp,f . In the same way, the heat flux

within the fluid domain is expressed through Fourier’s law: F = −λf∇Tf Finally, the energy

conservation in the fluid to solve reduces to:
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ρfCp,f

(
∂Tf
∂t

+ u∇Tf
)

= ∇ · (λf∇Tf ) (IV.10)

Turbulence modeling For some cases, we add a turbulence model to the Navier-Stokes

equations. The lastly described momentum conservation equation is modified. The Unsteady

Reynolds Averaged Navier-Stokes (URANS) equations are solved. Under the RANS frame-

work, the velocity and pressure fields are seen as the sum of a statistically averaged term and

fluctuations.

u(x, t) = u(x, t) + u′(x, t) (IV.11)

p(x, t) = p(x, t) + p′(x, t) (IV.12)

The averaged terms u, p represent the statistical mean of the velocities and pressure at each

location and time. The fluctuating terms u′, p′ stand for the deviations to this mean. Averag-

ing the previous Navier-Stokes equations allows to get rid of the local fluctuations, and the

system of equations considering the average and fluctuating variables now reads:

∇ · u = 0 (IV.13)

ρf

(
∂u
∂t

+ (u · ∇)u
)

= ηf∆u−∇p− ρfu′u′ + Fv (IV.14)

This formulation induces an additional term: the Reynolds tensor ρfu′u′ representing the

turbulent agitation. To express this tensor, a low Reynolds (low-Re) turbulence model is

chosen based on the k − ε approach: the Jones and Launder model [70]. Following the

Boussinesq’s hypothesis on turbulence, the Reynolds tensor is expressed as:

u′u′ = µT
ρf

(∇u +∇Tu) + 2
3kI (IV.15)

I is the identity matrix. This expression of the Reynolds tensor introduces the turbulent

viscosity µT . This viscosity is expressed by integrating the turbulent kinetic energy k and ε

the dissipation rate of turbulent kinetic energy. Following the Jones and Launder model, the

turbulent viscosity is given by:

µT = cµf fµfρf
k2

ε
(IV.16)

After including those two variables, the system is finally closed by solving additional transport

equations for the averaged k and ε:
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ρf

(
∂k

∂t
+ u∇k

)
= ∂

∂y

[(
µf + µT

σk

)
∂k

∂y

]
+ µT

(
∂u

∂y

)2
− ρfε− 2µf

∂k1/2

∂y

2

(IV.17)

ρf

(
∂ε

∂t
+ u∇ε

)
= ∂

∂y

[(
µf + µT

σε

)
∂ε

∂y

]
+ c1f1µT

ε

k

(
∂u

∂y

)2
(IV.18)

−c2f2ρf
ε2

k
+ 2µfµT

(
∂2u

∂y2

)

The values of the constant coefficients cµf , c1, c2, σε, σk and f1, f2, fµf are given according to

the original reference of the Jones-Launder model in [70].

IV.2.1.3 Coupling conditions at the interface

We assume the thermal contact is perfect at the interface between the solid and fluid domains.

So the temperature and heat flux are continuous. These coupling conditions ensure the heat

transfer between the two media. So for each location on the interface x ∈ Γ and a time of

the simulation t ∈ [t0, tf ], the coupling conditions are expressed with:

Tf (x, t) = Ts(x, t)

Φf (x, t) = Φs(x, t)⇐⇒ λf
∂Tf (x, t)
∂n

= −λs
∂Ts(x, t)
∂n

(IV.19)

The flux continuity is computed using the above formula, involving the solid and fluid thermal

conductivities λs, λf and the vector normal to the interface n.
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IV.2.2 Numerical methods

Let’s detail the methods used for the spatial and time discretization to solve the transient

conjugate heat transfer problem.

IV.2.2.1 Spatial and time discretization

Spatial discretization The CFD simulations presented in the framework of this thesis are

performed using an original Finite Element Method, introduced by [42]. This method uses

elements derived from the Crouzeix-Raviart element [28, 59, 136]: nonconforming Crouzeix-

Raviart elements. The method is employed on triangular meshes in 2D and tetrahedra in 3D.

The elements are described in [8]: the pressure is discretized on the primary grid while the

velocity is defined on a staggered dual grid. The degrees of freedom for the velocity are

located at the center of the faces for each element. This element is convenient as it directly

ensures the null divergence for the velocity. For the energy equations, degrees of freedom for

the temperature are also located in the center of the faces. An illustration of the elements

and the unknown location in 2D is given in Fig. IV.2.

Figure IV.2: Element in two dimensions and location of the degrees of freedom

Time schemes Either for the RANS or laminar transient simulations, the Euler backward

implicit scheme is used for the time integration. Note that explicit schemes are also available

in the code, such as Forward Euler, Runge-Kutta, Adams-Bashforth or Crank-Nicholson, but

were not used here. We use the implicit solver based on the PISO method (Pressure Implicit

with Split Operator) [51]. The solver is running with the GMRES method and a Cholesky

matrix preconditioner to solve the full linear system.
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IV.2.2.2 Numerical coupling for conjugate heat transfer

Numerically, using the discretization described above, the coupling conditions ensuring the

conjugate heat transfer are implemented by imposing the temperature equality on the center

of the faces for the mesh cells at each side of the interface Γ. Considering this methodology,

the mesh cells must be coincident all along the interface boundary.

Considering the time schemes, a parallel coupling strategy is employed [112]. The strat-

egy is summed up in Fig. IV.3. The solver for the fluid and solid domains present different

time steps, respectively δtf and δts. Each solver runs independently in parallel for a cycle of

duration ∆t, once the boundary condition at the interface has been updated. The coupling

time step ∆t is global, linked to the coupled problem. The physics of the problem governs

the choice of ∆t according to a trade-off between accuracy and precision.

Following the notations of Fig. IV.3, at the coupling step tN = N∆t the equality of flux is

assumed along the interface Γ. This assumption allows to compute the contact temperature

on the interface boundary, denoted TI(x, tN ), by integrating the flux equality expression over

the interface:

λf
∂Tf (x, tN )

∂n

∣∣∣∣
Γ

= −λs
∂Ts(x, tN )

∂n

∣∣∣∣
Γ

(IV.20)

Once the temperature at the interface is obtained, it is applied as a boundary condition on

the interface boundary for both fluid and solid domain. Then the resulting temperature fields

are computed in parallel until the next coupling step (N + 1)∆t.

Figure IV.3: Parallel coupling strategy. Figure courtesy of [112].
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IV.3 Simulation of 3D forced convective heat transfer

This section aims to show the capabilities of the code TrioCFD on an immersion cooling

problem with forced convective heat transfer. This test case is reproduced from the reference

[68]. More precisely, the results of this test case try to show the three following features. First,

prove the numerical convergence of the code (mesh and time discretization). Then using the

test case, we try to get insights into the physical phenomenon occurring in the immersion

cooling configuration. Finally, we compare the results of TrioCFD with the present reference.

This code to code comparison highlights the specificities and the important features of this

type of problem.

The problem covered here is a simplified representation of a Battery Thermal Manage-

ment System. This study represents only a battery module composed of nine cells immersed

in an airflow to make computational experiments affordable. Each cell generates heat due to

the galvanostatic discharge current and its internal resistance. The forced convection regime

then allow the airflow to retrieve the energy generated by the cells. Here, the battery module

is represented as a part of a bigger battery pack containing more cells. The reader can refer

to [68] to see more precisely the geometry reduction that has been made here.

First, we describe the geometry, the test case’s physical properties, and the hypothesis

made for the resolution. Then the results present first the mesh and time step convergence.

Then some plots of the velocity and temperature fields show the typical patterns of conjugate

heat transfer problems. Finally, the results of TrioCFD are added to the plots of the current

reference to give a proper code to code comparison.

IV.3.1 Test case description

IV.3.1.1 Geometry

The battery module is composed of nine cylindrical cells. The radius of each cell is R = 21.2
[mm] and the height is L = 97.7 [mm]. Each cell is equally spaced from the other by a

distance of 3R. Then those nine cells are immersed in the battery module filled with air. The

module dimensions are 10R × 10R × (L + R). The small cylindrical part is also modeled on

the top of each cell. The dimensions of this part are : r = 0.4R and l = 0.08L. The geometry

with the relevant dimensions is shown in Fig. IV.4.
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1
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8
9

Figure IV.4: The 9 electric cells (solid domain Ωs ) and surrounding box representing the
fluid domain Ωf

IV.3.1.2 Physical parameters

An inlet velocity is imposed at the entrance of the fluid domain to generate the flow of air and

then the forced convective heat transfer. Then we solve the conjugate heat transfer here as

described in the previous section of this chapter. Note that here no turbulence is added to the

Navier-Stokes equations to reproduce the approach performed by [68]. Based on the physical

data described right after, the Reynolds number for this test case is around Re ≈ 2.7 · 102.

The physical parameters of the batteries and the air are given in Tab. IV.2.

IV.3.1.3 Source term in the heat equation

The principle of the test case is to heat the Li-ion cells with a galvanostatic current during a

finite time of 500 seconds. Each cell is submitted to a constant electric current of 23.36 [A]
from t0 = 0 up to tf = 500 sec. The simulation starts with an initial temperature in fluid and

solid domains of Tini = 295.1[K].
In [68] the authors have chosen a specific model for the heat generation in the equation

IV.2 which aims to represent the thermal behavior of heated Li-ion cells. Then, the heat
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Parameters Values Units

Battery properties
ρs 2007.7 kg.m−3

Cp,s 837.4 J.kg−1.K−1

λs 1 W.(mK)−1

Air properties
ρf 1.2 kg.m−3

Cp,f 1.0047 · 10+3 J.kg−1.K−1

λf 0.0262 W.(mK)−1

ηf 1.8426 · 10−5 kg.(m.s)−1

Table IV.2: Geometric and physical properties of the battery cells

generation source term qg is divided into two terms. It is precisely the approach described in

the section II.2.2.2. One term represents the heat generation due to current transfer across

the internal resistance induced by the electrochemical reactions in the cell. This term is

the so-called Ohmic heating, denoted here qJ . To this term is added the entropic heating,

denoted qe. This heat source comes from the entropy changes caused by the electrochemical

reactions during the simulation time.

Then the expression of heat source term for the heat equation Eq. (IV.2) reads:

qg = a (qJ + qe) = a

I(Eoc − U)︸ ︷︷ ︸
ohmic heating

− IT
dEoc
dT︸ ︷︷ ︸

entropic heating

 (IV.21)

a is a coefficient to match the physical dimensions between the source term and the heat

equation (surface or volume normalization).

For the joule heating, a more applicable expression related to the known parameters of the

Li-on cells is given by:

qj = R · I2 (IV.22)

The internal resistance of the cell is expressed through the parameter R. In this study, an

explicit dependence of R with the temperature T of the Li-ion cell is given by the relation:

R(T ) = −1.0 · 10−4 · T 3 + 1.34 · 10−2 · T 2 − 5.345 · 10−1 · T + 12.407 (IV.23)

where the temperature T = Ts(x, t) is the temperature solved in the solid domain, expressed

in Kelvins. In this relation the resistance is in [mΩ]. This formula was proposed by [106]

based on experimental measurements and has been used in several references.
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IV.3.1.4 Boundary conditions

The boundary conditions applied to the solid and fluid domains are given in Tab. IV.3. The

reader can refer to the Fig. IV.4 to match the boundary names to the geometry.

The air flow is entering by the whole surface of the boundary ∂Ωinlet at a speed of 0.1
m.s−1 along the x axis. The flow rate is imposed as a Dirichlet condition on the air velocity

field, as specified in table Tab. IV.3. Then the air exits freely the domain by the boundary

∂Ωoutlet. The bottom and top wall boundaries present a no-slip condition. As this computa-

tional domain represents only a fraction of a bigger pack, symmetry conditions are applied in

the boundaries ∂Ωsides to simulate the interaction with the cells and flow on the sides of this

domain.

Ωf Ωs

Ωcylinders coupled condition Ωcylinders coupled condition
∂Ωtop wall - adiabatic Ωbottom-cylinders adiabatic
∂Ωbottom wall - adiabatic
∂Ωsides symmetry
∂Ωinlet u = (0.1; 0; 0) m.s−1

∂Ωoutlet p = 0

Table IV.3: Boundary conditions

IV.3.2 Results

IV.3.2.1 Numerical convergence

Mesh convergence First of all, we want to ensure the grid convergence of the present com-

putation. Six meshes composed of an unstructured grid of tetrahedra have been generated.

No specific refinement criteria have been applied at the solid and fluid domains interface.

This decision is made to stick with the reference settings used for the comparison. The mesh

is generated uniformly regardless of the domain considered (fluid or solid). The simulation is

unsteady, so the quantity of interest to assess the convergence is the temperature evolution of

cell number 5 measured at the mid-height and in the center of the cell. The different meshes

can be observed partially in Fig. IV.5. This figure displays the above view of the mesh, cut at

mid-height for cell number 5. The number of tetrahedra corresponds to the size of the full

mesh.
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(a) 9.84E+4 (b) 2.79E+5

(c) 3.96E+5 (d) 9.33E+5

(e) 3.06E+6 (f) 4.14E+6

Figure IV.5: Meshes and number of tetrahedras. View from above of the cell 5
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The results of the mesh convergence study are shown in Fig. IV.6. A zoom on the last

seconds is shown for better visualization. The sensitivity to the final temperature with respect

to the mesh used is bounded in a 0.5 [K] width interval. The two biggest meshes present very

similar final temperatures, and the mesh with 3.06E + 6 will be used for the next simulation

to keep a reasonable computational cost.

It is interesting to note also that the different temperature predictions overlap for the first

200 seconds. Then, as the time increases and the cells continue to produce heat at a steady

rate, the numerical prediction of temperature features a slope change depending on the mesh

considered.

(a) Temperature transient evolution for different meshes. (b) focus on the last seconds

Figure IV.6: Temperature convergence with increasing mesh refinement (number of tetrahe-
dra).
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Time step convergence The simulation in the mesh convergence was performed using a

time step for the coupled problem of δt = 1E − 2 sec. To ensure the convergence with

respect to the time discretization, we perform a simulation with the converged mesh of 3E+6
tetrahedra with δt = 5E−3 sec. The results are visible in Fig. IV.7. They show the simulation

with the initial time step δt = 1E − 2 sec ensures a good convergence. For this case, the time

step of the energy equation in the fluid domain is δtf ≈ 4E − 6 sec. The time step for the

heat equation in the solid domain is δts ≈ 1.2E − 5 sec.

(a) Temperature transient evolution for different time steps. (b) Focus on the last seconds

Figure IV.7: Temperature convergence with decreasing time step.
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IV.3.2.2 Physical analysis of the results

First of all, we visualize the transient temperature response of the cells. In Fig. IV.8, we plot

the evolution of the temperature at the center of each cell. The temperature is plotted for

cells 2, 4, 5 and 8 (refer to Fig. IV.4 for the position of the numbered cells). Cells 4 and 5 are

behind each other with respect to the flow direction. Cell 4 presents a final temperature lower

of 0.5 degree. We can then assume that cell 4 is better cooled than the 5. It can be explained

that the cells upstream of the flow receive air that has not exchanged energy with any cells

yet. However, by plotting the temperature of the cells 2, 5, and 8, which are in the same row

perpendicular to the flow direction, we can assess a good temperature homogeneity between

the cells in the cross direction of the flow.

Figure IV.8: Evolution of the temperature at the middle of the cells.

More precisely, we can discuss the temperature homogeneity inside each cell. In Fig. IV.9, the

temperature field in the solid domain is plotted together with the velocity vector field. About

the airflow, the air velocity is very low behind each cell. There is a recirculating area behind

the cells. In these zones, the cells present hot spots with higher temperatures. For instance,

the temperature on the surface of cell 5 shows a difference of around 1 degree between the

bottom and top of the cell.
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Figure IV.9: Temperature field [K] of solid domain and velocity vector field [m · s−1]
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To get further insight on the link between the speed of air and the temperature hot spots,

we show in 2D plots the temperature fields of solid domain and vector fields of air velocity, in

Fig. IV.10. From the above view plot, we can see that the temperature presents a significant

gradient in the flow direction for the cells in the front row. Again, the air is entering the inlet

boundary at the low inlet temperature, and the front face of the cells can present a higher

heat transfer. Also, the temperature gradients due to the recirculating area are visible in the

profile view. Note that the top of the cells presents lower temperatures. Due to the geometry,

the airflow presents high speeds at the top of the domain, and we can expect a good heat

transfer in this area.

To confirm the fact that the heat transfer is decreased in the low air velocity zones, we plot

the two temperature fields in Fig. IV.11. Note that the temperature scales are different from

solid and fluid domains to see the temperature gradients in the solid domain more precisely.

The zones where the velocity is near zero in Fig. IV.10 match with the zones presenting the

higher temperatures in the fluid domain. As in these areas, the temperature of the solid and

fluid are closer, the convective heat transfer rate decreases and the solid domains present

the hot spots. Similarly, the zones with high-speed velocity match with the low-temperature

zones.

(a) Above view (mid height) (b) Profile view (middle row)

Figure IV.10: Temperature and air velocity relationship
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(a) Above view (mid height) (b) Profile view (middle row)

Figure IV.11: Temperature fields [K] in the fluid and solid domains.

Heat transfer characterization From the velocity field results, let us compute the relevant

dimensionless numbers to characterize the heat transfer occurring within this pack of batter-

ies. First, we can estimate a general Reynolds number for the overall setup by using the inlet

velocity of the air, 0.1 m.s−1. Considering the physical parameters of air and the diameter of

a cell, in the present case, the Reynolds number is around Re ≈ 2.8 · 102. The estimation of

the Prandtl number gives Pr ≈ 0.7.

Then following the Hilpert correlation at such flow regime (40 ≤ Re ≤ 4000) , the Nusselt

number is computed with the following relation [95]:

Nu = 0.683 ·Re0.466 · Pr1/3

We obtain in this case Nu = 8.4. Then, we can consider the heat transfer by convection is

more significant than conduction in this configuration.

IV.3.2.3 Code to code comparison

To get a better insight into the quality of the results reproduction, the authors of [68] show

the temperature values along some lines within the fluid domain (Fig. IV.12, Fig. IV.13,

right). In Fig. IV.12, the temperature plots along the cross flow direction are shown. The
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precise location of the monitored temperature is specified by the line in the geometry scheme

on the right. The temperature is monitored at three different heights in the z direction. The

direct comparison of FLUENT and TrioCFD is made by overlapping the temperature curves.

Be aware that the temperature is plotted in Celsius degrees to stick with the reference results

in these figures.

First, this way of presenting the results supports the previous observations about the

hot spots. From figure Fig. IV.12 one can quantify the amplitude of those hot spots in the

zone behind the cells where the air velocity is relatively low. Notably, in the figure IV.12 a

temperature rise from the inlet air around 3oC can be observed in the zone behind the middle

row of cells, at z = 50 mm.

With a similar approach, Fig. IV.13 allows getting specific knowledge about the airflow

characteristics within the fluid domain. The norm of the velocity vector is plotted in the cross-

flow direction. The link between the temperature hot spots and air velocity can be assessed

through those different plots. By comparing the figures Fig. IV.12 and Fig. IV.13, one can see

that the location of the hot spots match exactly with the location where the velocity is almost

null.

About the direct comparison between the codes, the temperature rise in Fig. IV.12 is a bit

overestimated by TrioCFD for a given height. However, this discrepancy between the codes

is consistent with the velocity plots. FLUENT seems to underestimate the flow speed, which

could explain the higher temperatures predicted.
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(a) (b)

Figure IV.12: Variation of temperature at three heights in cross-flow direction, downstream
(t=500 sec)

(a) (b)

Figure IV.13: Velocity variation at three heights in cross flow direction (t=500 sec)
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IV.3.3 Discussion

This simulation highlights that this configuration can present some local hot spots due to

a bad efflux of the coolant fluid. Specific attention should be paid to these zones when

designing a BTMS. The cells arrangement should be designed to maximise the liquid velocity

throughout the battery module. For instance, this objective can be achieved by spacing the

cells as much as possible or by using a staggered geometry like it is explicitly studied in some

references numerically [145] or experimentally [45].

Both of the codes presented results with a good overall agreement. Some variations

stand in the temperature predictions at some specific locations. The difference in the flow

predictions can explain these variations in the temperature predictions. To gain confidence

in the capabilities of TrioCFD to address this type of simulation, we present in the next

section a comparison with experimental measurements of batteries temperature. This next

case focuses on results by natural convection to simplify the thermal problem, reducing the

velocities of air involved in the resulting thermal predictions.
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IV.4 Simulation and validation of natural convection heat trans-

fer

In this section, we validate the results of TrioCFD using experimental data. The comparison

with the experimental data should allow us to understand the heat transfer process of im-

mersed Li-ion batteries. Unlike the previous section, the test case treated here consists of

heat transfer with natural convection. In terms of flow resolution, this simple configuration

should allow addressing the following issues. First, assess the accuracy of the model for the

heat source of solid domain equations, supposed to represent the heating patterns of Li-ion

batteries. The purely numerical comparison couldn’t provide such validation in the previ-

ous test case. The experimental measurements of transient temperature evolution should

validate or not the behavior of this source term model. Second, a better understanding of

the heat transfer process between the fluid and the solid would be featured in this case of

natural convection. The experimental test case is reproduced using 2D and 3D simulations.

The comparison of these numerical predictions, coming with their respective assumptions

with respect to the experimental data, may highlight the physical processes occurring in this

configuration.

IV.4.1 Experimental test case

The experiment reproduced in this study is taken from He at al. in the International Journal
of Heat and Mass Transfer [57]. The setup consists in two parallel rows of four Li-ion cells

each (see Fig. IV.14). The Li-ion cells used in the experiment are cylindrical 26650 cells

with LiFePO4 chemical composition. The battery pack, composed of two rows of cells, is

set inside an enclosure made of plexiglass walls. Each cell present a diameter of d = 25.85
[mm] and height of L = 62.5 [mm], with a given spacing between cells illustrated in Fig.

IV.14. A constant discharging electric current is applied to the Li-ion cells during the whole

experiment. According to the discharge rate of 1.5C, the current across the entire battery pack

is set to I = 6.9 [A]. This steady discharge current is applied to the cells from the beginning

of the experiment, at time t0 = 0 [sec] until the final time tf = 1600 [sec].

The experiment aims to monitor the temperature evolution of the heated Li-ion cells

measured at key locations of each cell surface. The black cross represents the positions

of the probes in Fig. IV.14b. The probes are situated at the mid-height of the batteries.

In this experiment, the temperature evolution of the cells is studied under various airflow

conditions. Here we focus only on the results provided by the natural convection case, with

no inlet velocity imposed at the inlet of the enclosure.

IV.4.2 2D simulation

IV.4.2.1 Equations and computational domain

A two-dimensional simulation of the transient conjugate heat transfer is performed to sim-

ulate the experimental case. The full set-up is represented in two dimensions, considering

the horizontal plane of the real geometry. The computational domain Ω is divided into two
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(a) (b)

Figure IV.14: Experimental set up. Figure courtesy of He et al. (2014) in the International
Journal of Heat and Mass Transfer, vol. 72 [57].

sub-domains: the fluid domain and the solid domain. Because of the symmetry of the ex-

perimental set-up, the full domain Ω represents only half of the physical setup, namely, one

plexiglass wall and only one row composed of four cells, like shown in Fig. IV.15.

In the fluid domain Ωf , the URANS equations are solved along with the energy equation.

A turbulence model is added, as described earlier in this chapter. The solid domain Ωs rep-

resents the four heated cells. The heat equation is solved in this part of the domain. At the

interface γi between the two domains Ωf and Ωs, the coupling conditions related to conju-

gate heat transfer are applied: temperature and heat flux continuity. The physical parameters

involved in the equations are detailed in Tab. IV.4. The air parameters are the same as in the

previous test case.

Parameters Values Units

Battery properties
ρs 2227.7 kg.m−3

Cp,s 837.4 J.kg−1.K−1

λs 0.488 W.(mK)−1

Table IV.4: Physical properties of the batteries

The source term in the solid domain Ωs represents the heat generated by the cells. Unlike

the previous application case, only the term accounting for the Joule effect is considered here.

When using this type of model, it is a common assumption to neglect the term related to the

entropic heating, assumed to be negligible in front of the ohmic heating. The expression of

the source term in the heat equation is then:

qg ∝ R(T ) · I2 (IV.24)
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meshed solid
domain

meshed fluid 
domain

1

4
3
2

Figure IV.15: Mesh, computational domains and boundary labels for the CFD simulation

qg being a volumic source term, it is applied to each mesh element of the solid domain. The

resistance term R(T ) follows a cubic polynomial form as in the previous test case. More

information is given on its expression later. The resistance depends on the temperature

evaluated in each mesh element of the discretized solid domain. The boundary conditions

for the boundaries in Fig. IV.15 are given in Tab. IV.5. TrioCFD provides the predicted

temperature evolution at the probes locations shown in Fig. IV.14b.

As the vertical dimension is not considered in this 2D computation, the effects of gravity

are not considered and the heat transfer by natural convection turns into a pure conduction

problem between the air and the batteries here.

Γ1 imposed temperature and velocity
Γ2 symmetry and adiabatic for thermal equations
Γ3 free outlet
Γ4 symmetry
Γ5 wall condition
γi coupling conditions (fluid/solid interface)

Table IV.5: Boundary conditions
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IV.4.2.2 Mesh convergence for 2D simulations

First, we perform a mesh convergence study for the unstructured grids representing the fluid

and solid domains. The mesh is refined using an attractor operator near the cells wall, i.e.

the solid/fluid interface, and in proximity to the plexiglass wall. Five meshes are constructed

to assess the convergence. They are represented in Fig. IV.17, with a focus on cell 1 and the

plexiglass wall. For each mesh, the corresponding number of triangles of the whole mesh is

indicated. The monitored quantity for the convergence is the temperature at the solid/fluid

interface of cell 1, at the position represented by the white cross in Fig. IV.15. We treat the

case of natural convection with a null inlet velocity, using the CFD configuration described

just above. For the mesh convergence only, the simulation is performed with a constant source

term in the heat equation qg = cte. The simulation is performed for the whole experimental

time of 1600 seconds. The maximal time step authorized for the implicit Euler scheme is

δt = 5E − 2 sec.

The results are shown in Fig. IV.16. The convergence is reached for the meshes containing

2.8E + 4 triangles or more. In the following, results presented on this test case in 2D are

obtained using the mesh with 3.4E + 4 triangles, in Fig. IV.17d. The simulations with this

mesh took 40 minutes to run in parallel on 36 cores.

Figure IV.16: 2D meshes convergence (number of triangles). Temperature on the cell 1.
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(a) 3.3E + 3 (b) 1.2E + 4

(c) 2.8E + 4 (d) 3.4E + 4

(e) 4.4E + 4

Figure IV.17: 2D meshes - number of triangles
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IV.4.2.3 Code-to-code validation of a forced convection case

A comparison with Fluent was performed on a case of forced convection to get further insight

into the behavior of the TrioCFD code. A constant source term has been applied in the

heat equation of the solid domain. The velocity at the inlet boundary was set as a Dirichlet

condition, u = 1 m · s−1 , in the direction showed in Fig. IV.14b. The turbulence model

described just earlier is added here too. The validation is assessed with the temperature

evolution at the four probes locations shown in Fig. IV.14b.

Figure IV.18: Temperature evolution for the four probes location.

The results show that TrioCFD reproduces well the predictions of Fluent. Significantly, the

temperature for cells 1 and 2 (two first cells in flow direction) overlap well between the two

codes. A slight difference between is to note for cells 3 and 4. The temperature difference

between the two codes is slightly higher for cell 4 than for cell 3. Cell 4 is the last in the

flow direction, and one can guess that there might be some difference in the velocity field

prediction, leading to this temperature discrepancy.
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IV.4.2.4 Deterministic temperature prediction

Here the results of the simulation in the case of pure heating and natural convection are

presented, i.e. with air velocity set to u = 0 [m · s−1] at inlet boundary. A Dirichlet boundary

condition is applied to the temperature of the inlet boundary: Tinlet = 295.2 [K]. The same

value is used for the initial condition in the whole domain.

Discussion on the source term expression A specific polynomial expression was chosen

for the resistance model R(T ) in the source term qg to reproduce the experimental results.

The present reference [57] used a source term constructed from the fitting with their exper-

imental measurements. This approach considers the dependency of the source term directly

with the time of the experiment. First, this expression for the source was not explicitly given

in the reference. Also, considering the time as input to traduce the temperature values would

be equivalent to doing a backward problem and does not match the present work’s objectives.

Indeed, this method is not consistent if we want to find a model of heat source representing

the processes governing the actual heating of Li-ion cells. Especially, the approach described

in the first chapter (see section II.2.2.2) is based on observations on the Li-ion cells behavior.

As performed in the last application and shown in literature, the resistance is often taken

depending on the temperature. To use the present model from a pure design perspective, it

has to consider the temperature of the cells as input, which results from the heat transfer in

the immersed configuration.

Now that the physical assumptions have been stated, the issue is to choose an expression

of this R(T ) polynomial. Following literature considerations (as also seen in the last section),

we consider a third-degree polynomial for the internal resistance:

R(T ) = α3T
3 + α2T

2 + α1T + α0 (IV.25)

The choice of the source term is then reduced to a choice on the four coefficients of the

polynomial expression. The construction of the polynomial expression is covered with further

details in chapter VII. To assess the accuracy of the CFD model, an L2 error was computed

between the transient prediction of temperature and the experimental data at some given

times. Several CFD computations are performed, and the errors are compared. Then the

polynomial used in the simulation presenting the smallest error was selected to conduct the

simulations in this section. We denote this polynomial RCL2(T ).
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Results First, let us focus on the resulting temperature fields during the whole simulation.

They are represented in Fig. IV.19 for different times, using a color scale covering the range

of temperatures from t0 to tf . This figure highlights the process of transient conjugate heat

transfer. The heat is generated in the solid domain Ωs with the volumetric heat source qg
from the heat equation. Then the heat is spread through the solid domain. The fluid in Ωf

surrounding the solid domain is retrieving the heat generated through the coupling condi-

tions.

This kind of thermal behavior is expected regarding the geometry of the experimental

setup. Then, this simple configuration underlies the issues of thermal distribution in real bat-

tery packs where several Li-ion cells are arranged close to each other. The present numerical

model can illustrate the difficulty of evacuating heat from the inner part of the pack, where

the cells are in a confined zone.
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(a) t = 400 sec (b) t = 800 sec

(c) t = 1200 sec (d) t = 1600sec

Figure IV.19: Temperature fields evolution, in [K]
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We focus the attention briefly on the solid domain with a more narrow color scale, in Fig.

IV.20. One can see that the cells 2 and 3 at the middle present higher temperatures. Because

of the cell arrangement and the wall on the left side, the air around those cells is in a con-

fined zone, and the thermal diffusion seems less important in that area. Physically, the heat

exchange between the fluid and solid is less important as it is performed with temperatures

close to each other around these cells. Then some hot spots appear in these cells. This fact is

even more visible in cell 1, which is in contact with air from the inlet. The bottom part of the

cell seems better cooled than the part facing the confined area. The temperature field inside

this cell presents then a more important gradient along the vertical direction.

Figure IV.20: Temperature field at t = 1600 sec, in [K]

Now let’s compare the transient temperature evolution and experimental measurements

at the probe position on cell 1. The plot of the temperature computed with the CFD using

RCL2(T ) is overlapped with the measurements and error envelope. The error envelope tra-

duces the thermocouple measure accuracy of 0.3oC according to the test case reference. The

results are visible in Fig. IV.21. The CFD model reproduces well the overall heating pro-

cess. Indeed, the final temperature predicted by the model is pretty close to the experimental

data. Also, the temperature given by the CFD overlaps with the measurements error enve-

lope systematically. However, some slopes changes are occurring in the experimental data

after t = 300 sec, again after t = 600 sec and at the end after t = 1400 sec. Even if the CFD

stands in the error envelopes, the current model does not seem capable to capture these slope

changes. The CFD solution looks like a pure heating problem with poor cooling capability.

Indeed, no airflow was generated under the current assumptions and this 2D geometry. The
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conjugate heat transfer turns into a pure conduction problem between the two media. In the

next section, a simulation in 3D with the according hypothesis is performed to observe if the

thermal behavior will change from the 2D results.

Figure IV.21: Temperature predicted by the 2D CFD model and experimental measurements.

IV.4.3 3D simulation

Here the same conditions as for the 2D simulation are considered. The full geometry in

3D is represented in Fig. IV.22. A notable difference with the 2D is the presence of the

wall above the cells. Additional boundary conditions must be considered accordingly: the

above plexiglass wall is also taken as adiabatic and with the no-slip condition. The coupling

conditions are also applied on the top of the cells in contact with air under the plexiglass

wall. The top of the full domain is a free outlet, and the bottom an adiabatic wall with a

no-slip condition.

The Boussinesq approximation is considered to observe the flow generated by the heat

transfer in natural convection. In the vertical direction, the volumetric external force de-

scribed in Eq. (IV.8), accounting for the gravity and the dependence on temperature for the

density under the Boussinesq approximation, is considered. Then the mechanical disequilib-

rium due to temperature variations can be represented. The reference temperature for this

term T0 is the initial temperature at t = 0, which is also the temperature used for the Dirichlet

condition at the inlet boundary, knowing T0 = 295.2 [K].
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Figure IV.22: Geometry and mesh in 3D
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IV.4.3.1 Mesh convergence for 3D simulation

Before assessing the performances of the code in 3D, we perform a mesh convergence study

for this geometry. Like in the previous section, the 3D geometry is meshed with an unstruc-

tured grid of tetrahedra. Three meshes contain respectively 6.8E+4, 1.03E+5 and 2.21E+5
tetrahedra. The convergence is assessed with the temperature evolution in the probe position

as in the 2D case. In the vertical direction, the probes are located at the mid-height of the

batteries.

We can see the convergence is reached for those meshes. The following simulations will

be performed with the mesh containing 1.03E + 5 tetrahedra. This mesh is visible through

the few boundaries represented in Fig. IV.22. The simulations, which results are presented

in the next section, were run on 180 cores during 6 hours, using this mesh.

Figure IV.23: 3D meshes convergence (number of tetrahedra). Temperature on the cell 1.

IV.4.3.2 Results of natural convection

Velocity and temperature fields (Fig. IV.24) First, let us visualize the resulting temper-

ature and velocity fields at the final time of the simulation. In Fig. IV.24 we represent the

temperature field of the solid domain and the vector field of velocities in the fluid domain at

the final time t = 1600 sec. First, this plot highlights the flow generated by the heat transfer

between the solid and the fluid. The velocity field shows a flow moving from the bottom

to the top of the domain. The fluid temperature near the solid cells is higher than the inlet

temperature T0. Then, near the interface boundary γi the difference Tf (x, t) − T0 is positive

and the force Fv in the z direction is then positive according to Eq. (IV.22). This behavior

drives the flow from the bottom to the top of the cells.
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From this observation, we can also assess the impact of this flow on the temperature

fields. It is visible that gradients of temperature occur in the cells’ surface. For instance,

on the first cell’s surface (view from inlet side), there is almost a 0.7 degree temperature

difference between the bottom and top of the battery. Same for cell 4 (view from outlet

side). The convective heat transfer cools the bottom due to the flow of air. This hot air goes

up and retrieves the heat produced by the cells. The top of the batteries is facing hotter air

which has traveled along the whole surface of the battery. This zone presents a less efficient

heat transfer and results in hotter temperatures.

Temperature fields (Fig. IV.25) Having observed this behavior about the flow generated

and the resulting heat transfer, comparing the temperature fields in the solid and fluid do-

main between the 3D and 2D simulations would be interesting. In Fig. IV.25, we show the

temperature fields in the solid and fluid domains, with a sliced view at mid-height of the

cells. The temperature scale is the same for both domains. Focusing on the temperature in

the solid domain, the overall behavior seems not much different than the results of the 2D

simulation Fig. IV.19. A quite good homogeneity is visible between the temperature of the

four cells during the whole experiment. The 3D simulation presents, however, small gradi-

ents of temperatures for the external cells (1 and 4) for the observations after t = 1200 sec.

As we watch the temperature field cut at mid-height, the external parts of these batteries are

cooled by the natural convection highlighted earlier.

The main difference between 2D and 3D results is the behavior of the temperature field

in the fluid domain, far away from the batteries. The 2D results showed clearly the process

of heat diffusion within the air medium. But in 3D, probably because of the generated flow

of air, making it exiting the domain through the top wall, the temperature field of the fluid is

close to the inlet temperature. Also, there is no this big hot area with significant temperature

gradients around the module as it was observed in Fig. IV.19. Here, the temperature gradient

in the air domain is significant just around the cell, but the diffusion of heat seems negligible

in the other parts of the domain.

From what we’ve seen with the slight cooling process occurring with natural convection, and

the resulting behavior in the far airfield, we can expect that the 2D simulation overestimates

the temperature prediction compared to the 3D results.
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(a) View from the inlet side

(b) View from the outlet side

Figure IV.24: Temperature [K] and velocity [m · s−1] fields
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(a) t = 400 sec (b) t = 800 sec

(c) t = 1200 sec (d) t = 1600 sec

Figure IV.25: Temperature fields [K], above view sliced at mid-height.
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Heat transfer characterization From the velocity and temperature fields results, we can

estimate the Nusselt number related to this specific case. The formula of the Nusselt com-

putation is given in the chapter II for the case of free convection, through the Grashof and

Rayleigh numbers (see Eq. (II.19)). In this case, we take the characteristic length as the

height of the battery L. From the bottom to the top of the first cell, the temperature dif-

ference is estimated at 4T = 0.6[K]. The associated Grashof number reads Gr = 2.0 · 104.

The Rayleigh number is computed using the same Prandtl number as the previous test case.

We have Ra = 1.4 · 104. Given the Ra number, the flow around the cylinder is considered

laminar. Then, the resulting Nusselt number is computed with

Nu = 0.59 ·Ra1/4

And in this case, we have Nu = 6.5. So for the first cell, the convective heat transfer is

dominant compared to the conduction.

Let’s perform the same computation for the cells inside the pack, which are supposed

to be less cooled due to the slower air velocities in this zone. For cell 2, the temperature

difference from bottom to top is estimated approximately to 4T = 0.1 [K] (if we consider a

surface facing the inner pack). The resulting Nusselt number is lower than in the previous

case but still above 1. We find Nu = 4. The convective heat transfer is still dominant but

with less importance.

IV.4.4 Comparison 2D/3D and experimental data

Now we compare the temperature prediction at the probe position on cell 1 between the

2D and 3D simulations and with respect to the experimental measurements. The results are

shown in Fig. IV.26. We overlap the last 2D CFD results and the experimental measurements

with the 3D results. Both simulations were run with the same source term computed through

the polynomial RCL2(T ).
The first observation is about the shape of the temperature predicted by the 3D CFD

simulation. For the first 300 seconds, the temperature of the 2D and 3D solutions overlaps

pretty well. However, as time increases, the slope of the 3D solution decreases slightly. This

behavior could be explained by the convective heat transfer between the solid and fluid due

to the flow generated around cell 1. The comparison with the curve of the 2D simulation,

which is a straight line, supports this explanation. More precisely, we notice also that the

curve of the 3D CFD presents slope changes similar to the experimental data. The slope

break after t ≈ 600 sec is visible on those two curves. It seems the 3D computation allows

reproducing a richer physics occurring in the experiment and taking into account the cooling

effects due to natural convection.

However, on the other hand, the values of temperature predicted in 3D go out of the

measurement errors envelope after t = 500 seconds. The final temperature prediction in 2D

appears closer to the experimental data than in 3D. However, the previous section’s plots

of temperature velocity vector fields showed that the 2D simulation would overestimate the

temperature prediction by omitting the natural cooling. The source term is expected to be
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the most responsible for the temperature evolution slope. The behavior of the model se-

lected for the source term in the solid domain qg, through the polynomial RCL2(T ) seems not

accurate enough with respect to the experimental data if used with the 3D computation. In-

deed, the RCL2(T ) model was calibrated using the 2D configuration. Calibration with the 3D

computations would be necessary to fit the temperature evolution on the experimental data.

However, the runs with the 3D geometry are quite expensive in terms of computational cost,

and a proper calibration process turns out to be prohibitive with this configuration. Further

discussion on the calibration of the source term, including uncertainties, and the choice of

the computation geometry is given in the chapter VII.

Figure IV.26: Temperature at the probe position for the cell 1.
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IV.5 Chapter conclusion

In this chapter, we described the CFD approach for the simulation of Li-ion batteries immersed

in air. The set of equations solved is detailed by considering the physical and modeling

assumptions. The numerical methods employed in the code TrioCFD are described to give an

overview of the code capabilities.

The model is applied to two different applications. The first test case is a code-to-code

comparison on a forced convective heat transfer with air. The results allow us to assess the

convergence of the TrioCFD code on such a configuration. Also, the mechanisms of convective

heat transfer are observed thanks to this simulation. The link between the cooling fluid flow

and the temperature is shown. Poor heat transfer performances occur where the flow present

recirculating or low-velocity zones.

The second test case is the validation of the code with experimental measurements of

temperature in natural convection, using a test case from literature. The comparison between

2D and 3D simulations highlights some of the important physical processes to consider when

predicting the batteries’ temperature evolution. Besides, this configuration is also used to

perform another comparison with Fluent on a forced convection regime. More importantly,

the transient temperature predictions are compared with 2D and 3D models and experimental

data. Finally, using this more straightforward physical configuration (natural convection),

we assess the ability of the code to reproduce the heating of Li-ion batteries. We learn that

both the effects of the pure heat transfer between the media and the way we represent the

heating source of the batteries will affect the temperature prediction. Regarding the absolute

value of the temperature, for instance, the maximal temperature reached at the end of the

simulation, the heat source term from the solids seems to be the most important parameter.

In the following chapters, further analysis methods, including uncertainties and statistical

observations, allow addressing these assumptions.
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CHAPTER V

UNCERTAINTY QUANTIFICATION APPROACH

Chapter abstract
In this chapter, we illustrate some uncertainty quantification approaches with
computer models. Especially, we define the uncertainty quantification problems
of interest in this thesis. Then, the methods used in the thesis are described under
a theoretical and practical perspective.
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V.1 Uncertainty Quantification for computer models

V.1.1 Issues and goals of Uncertainty Quantification (UQ)

So far, this manuscript has covered the main physical issues related to the cooling of Li-ion

batteries and numerical approaches to address the deterministic simulation of such problems.

The objective of numerical simulation is to show that the constructed models can reproduce

experimental measurements of the quantities of interest. Indeed, the experimental mea-

surements are usually seen as the data presenting the highest level of fidelity regarding the

physical phenomena under investigation. The simulation’s required work consists of setting

up a model the closest to the real world experimentations and physical processes. The quality

of a model is assessed with respect to its ability to reproduce the experimental data. This is

the validation step of the so-called Verification and Validation process of a computer model,

illustrated by [105] in Fig. V.1.

However, taking the example of simulation for Li-ion batteries, we have seen in the first

chapter that the accuracy of the models would depend on the scale considered to represent

the physics of the immersion cooling problems. There are many different multi-physics pa-

rameters involved in the immersion cooling problem. Those parameters are a function of the

inner chemical phenomena at stake in the structure of the batteries. It is a complex challenge

to give reasonable confidence values for these parameters. Choices for these parameters rely

on models close as much as possible to reproduce experimental data. On the other hand,

the experimental results are an outcome of real-world physics, and are intrinsically uncertain

due to the tolerance of the measurement tools.

Figure V.1: Validation process. Figure extracted from [105].

In many engineering and real-world applications, it turns out that some of the involved

parameters are pretty difficult to estimate. Often, there is a lack of experimental data to

evaluate the relevant parameters. When available, the experimental measurements come

with errors too. Also, sometimes the choice of the modeling approach forces us to make
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assumptions to represent the physical process. So, it is crucial to select values and models

relevant to the physical phenomenon to be reproduced.

These considerations highlight the need of taking into account uncertainties in the sim-

ulations. As it is impossible to alleviate completely the unknowns related to some problem,

the answer to these issues is to deal with the uncertainties. The challenge of Uncertainty

Quantification (UQ) is then to answer the following questions: How can we incorporate the

uncertainties in the physical input parameters to increase the predictive character of the sim-

ulations? What are the impacts of the uncertainties of input parameters on the predicted

quantities of interest? Can we use the experimental data to learn the model’s behaviour and

reduce the uncertainty on the inputs?

The uncertainties may arise from many different sources and then be of different natures:

model or experimental measurement errors, modeling errors due to simplifications/assumptions,

inherently variable parameters[74]. However, it is common to draw two distinct categories

of uncertainties: aleatoric or epistemic uncertainty.

Aleatoric uncertainty represents the intrinsic randomness of a phenomenon. These un-

certainties cannot be reduced by the knowledge brought by experts or any supplementary

investigations. The studied process is random, and its outcome can only be assessed with a

certain probability.

Epistemic uncertainty refers to a lack of knowledge in the investigated phenomenon. This

uncertainty originates from a complex physical process not fully understood yet. The amount

of unknown information can be reduced by further experimental or numerical investigations,

improved conceptual models or by the experience of some experts on specific matters.

As further explained in [74], the type of uncertainty considered depends mainly on the

perspective chosen by the modelers. However, it is still relevant to define it correctly with

respect to the problem to evaluate which parameters uncertainty can be reduced.

Naturally, the UQ methods rely on a mathematical framework based on probability theory

and statistics to tackle these issues.

"Uncertainty Quantification is the coming together of probability and
statistics with the real world.", T. J. Sullivan in [131].

Probability theory is the way to deal with the uncertainty related to some parameters. In

the UQ framework, no parameter or simulation outcome is determined ’surely’, but with an

associated probability as the values of parameters vary in some range, infinite or finite. The

parameters are random variables, taking their values according to a given probability density

function (PDF). The quantities of interest are estimated by evaluating statistical moments

such as mean, variance, quantiles and so on, which are quantifying the variability of the

studied model.

V.1.2 Some objectives in Uncertainty Quantification

From a general point of view, let us assume we study a physical process represented by a

numerical model M. The model F maps a set of m inputs X = (X1, ..., Xm) into a set of p
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quantities of interest Y = (Y1, ..., Yp) such that

Y =M(X) (V.1)

The two main objectives addressed in this thesis are described in the following. Note that a

consistent mathematical notation is provided in the next section.

Forward propagation Let us assume that some uncertainties are associated with the vector

of inputs X. Then, how much will the uncertainty on the inputs impact the outputs’ variability

in Y? Practically, the objective is to compute statistics of the quantities of interest in Y such

as mean, variance or probability density functions, to understand the behavior of the model

M under the considered uncertainties on the inputs X.

Model calibration Knowing some outputs Ytrue taken for granted as the ’true’ output values

of the physical process (for instance experimental data), and assuming the modelM is able

to reproduce the real data with an accepted discrepancy ε, i.e.

Ytrue = Y + ε (V.2)

We are interested to find out which values of inputs denoted Xcalib would lead to a response

from the modelM the closest to this data in some norms.

This chapter aims to explain the methods and tools used to perform UQ studies. For compre-

hensiveness, the required probabilistic tools mentioned earlier are described formally. Then

each of the following sections corresponds to deeper explanations on the methods employed

to tackle the UQ problems: sampling, Monte Carlo methods for forward propagation, surro-

gate modeling approach, global sensitivity analysis and finally Bayesian calibration.

V.2 Some mathematical definitions and UQ workflow

For further details on the definitions and properties of the mathematical objects defined in

the following, the reader can refer to [131].

Let Ω be a set called sample space, F a σ-algebra on Ω, i.e. a collection of subsets of Ω
including the empty set ∅. The elements of Ω are called measurable sets or events and the

space defined by (Ω,F) is a measurable space. We define a signed measure µ as a function

on the measurable space (Ω,F) such that:
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µ : Ω→ R ∪ {+∞ OR −∞} (V.3)

and µ(∅) = 0

µ is called a probability measure if µ(Ω) = 1 and we denote it P. Then we define the space

(Ω,F ,P) as a probability space.

V.2.1 Random variables and vectors

Let (Ω,F) and (X ,G) measurable spaces. A function f : Ω → X generates a σ-algebra on Ω
by:

σ(f) := σ
(
{f ∈ E|E ∈ G}

)

f is called a measurable function if σ(f) ⊆ F . If we define such a function X on a probability

space (Ω,F ,P), and if we take X ⊂ R, X is a real valued random variable defined by:

X : Ω→ X

ω 7→ X(ω) (V.4)

We note x = X(ω) a realization of the random variable X from an event ω ∈ Ω. X induces a

probability space (X ,B(X ),PX) where B(X ) is a Borel σ-algebra of the event space X . The

probability measure PX on this space is defined by:

PX(ω ∈ E) := P(X ∈ E), for E ∈ G (V.5)

PX is the distribution or law of the random variable X. It is defined by a so-called

Cumulative Density Function (CDF) FX or Probability Density Function (PDF) πX given by

the following expression, for a realization x:

FX(x) = PX(X ≤ x) (V.6)

πX(x) = dFX(x)
dx

(V.7)

In the following, we suppose that the output of random variables have a finite variance and

belong to the Hilbert space of square integrable functions.
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The PDF πX is used to get the probability of some events I ∈ X by computing:

PX(X ∈ I) =
∫
I
πX(x)dx (V.8)

It can be seen as the continuous sum of the realizations x on the subset I defining an event

of X . Similarly, the statistical moments associated to the random variable X are defined as

follows. The first order moment is the mean. In the following we denote it by the operator E
and it is given by:

E[X] =
∫
X
x · πX(x)dx (V.9)

The second order moment is the variance written with the operator V and computed by:

V[X] =
∫
X
x2 · πX(x)dx (V.10)

In the field of statistics it is common to use the information provided by the variance through

the so-called standard deviation defined as:

σX =
√
V[X] (V.11)

It is useful for the analysis of any process as its physical dimension is the same as the mean

and the outputs of the random variables itself.

Random vectors In a similar fashion, we can define random vectors. They are vectors

containing a finite collection of random variables.

X : Ω→ X ⊆ Rm (V.12)

ω 7→ X(ω) = (X1(ω), ..., Xm(ω))

where each Xi is a random variable. The Cumulative Density Function for the random vector

can be defined by:

FX = P(X1 ≤ x1, ..., Xm ≤ xm) (V.13)

where the xi are realizations of each random variables Xi.

The first and second order statistics coming from the random vectors are given by the follow-

ing:

E[X] =
∫
X

x · πX(x)dx (V.14)

where x = (x1, ..., xm) is the vector containing the realizations of the random variables

X1, ..., Xm.
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The second order moment is the variance written with the operator V and computed by:

V[X] =
∫
X

x2 · πX(x)dx (V.15)

The joint probability density function πX of the random vector is defined by:

πX = πx1,...,xm(x1, ..., xm) (V.16)

In the following of the manuscript, the bold capital letters will designate random vectors (X).

The random variables will be designated by normal font capital letters (X). The realization

of random vectors is designed by small bold letters (x) and normal font for random variables

(x).

Covariance For a set of two random variables X1 and X2, the covariance measures the

simultaneous variation of the two random variables. The covariance is defined by:

Cov(X1, X2) = E[(X1 − E[X1])(X2 − E[X2])] (V.17)

Note that, by definition we have Cov(X1, X1) = V[X1]. This notion is generalized to a larger

set of m random variables X = (X1, ..., Xm), using the covariance matrix K. The covariance

matrix is used to represent the variance of the full vector of random variables. The expression

of the matrix is:

K =


V (X1) Cov (X1, X2) · · · Cov (X1, Xm)

Cov (X2, X1) . . . · · ·
...

...
...

. . .
...

Cov (Xm, X1) · · · · · · V (Xm)

 (V.18)

It is a symmetric matrix so KT = K and the diagonal contains the variance of each random

variable.

Correlation matrix The correlation between two variables X1 and X2 is given by:

Cor(X1, X2) = Cov(X1, X2)
σ1σ2

(V.19)

We define the correlation matrix for m random variables X = (X1, ..., Xm) as:

R =


1 Cor (X1, X2) · · · Cor (X1, Xm)

Cor (X2, X1) . . . · · ·
...

...
...

. . .
...

Cor (Xm, X1) · · · · · · 1

 (V.20)
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V.2.2 Workflow of a typical UQ problem

Considering the previous defined mathematical tools, let us describe more in detail the stan-

dard steps to go through when solving a UQ problem [154]. The workflow is summarized

in Fig. V.2 with the relevant notations described in this chapter. Note that what follows is

only one of many different ways of sketching the different UQ steps in the literature. From a

numerical perspective, the software UQLab has been used in the framework of this thesis, to

perform all the UQ steps described here [141].

Step 0: Construction of the numerical model The physical process is usually approxi-

mated with a numerical modelM, solving a set of discretized equations. This model is seen

as representing reality with a discrepancy from the real process. This discrepancy can be

explained by experimental measurements uncertainties, model errors, imprecise calibration,

numerical errors ...

Step 1: Uncertainty characterization A fundamental step is to identify and characterize

system uncertainties. This step is problem-dependent and requires expertise both in the

modeling and experimental aspects. More specifically, it is crucial to identify the structure

of the inherent uncertainties in terms of distribution, potential correlation, and confidence

intervals. Note that this analysis impacts both inputs and outputs of the numerical model.

This aspect can seem contradictory with respect to what is indicated in Fig. Fig. V.2, where

we prefer to focus on the uncertainty characterization of the inputs to simplify the sketch of

the workflow.

As explained earlier, uncertain inputs are then represented by random variables. Uncer-

tainties will be characterized by some probability density functions, relying on specialists in

the related field. The choice of the so-called prior distribution is expected to impact the

variability of the output.

Step 2: Forward propagation of the uncertainties Once the uncertainties on the inputs

are formally represented through the random variables and their associated probability den-

sity functions, the problem is to compute statistics on the output variability. Given an un-

certain input, represented by the random vector X = (X1, ..., Xm), we consider the scalar

quantity of interest (QOI) given by a random variable Y ∈ Y (resp. vector of QOI) such that

Y =M(X). The forward propagation consists in computing the statistics, for instance, mean

and variance, of the output Y .

There are two main families of approaches denoted as intrusive and non-intrusive meth-

ods. The intrusive methods consist in inserting random variables inside the model M and

making its output random [79]. This methodology requires making supplementary imple-

mentations in the numerical model, as stochastic processes represent the unknown of the

system equations. Non-intrusive techniques consider the model M as a black box. Specifi-

cally, the computation of the model is seen as deterministic: for a given input, the output will

always be the same. The variability comes from the uncertainty of the input values. The non-

intrusive techniques present a lot of advantages in UQ problems with numerical models [27].
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The model can be used as it is, regardless of its internal complexity, to perform a UQ analysis.

However, the non-intrusive approach can increase the computational resources considerably

because of the so-called curse of dimensionality [35]. In this work, only non-intrusive uncer-

tainty quantification techniques have been performed. In V.3, we detail sampling methods

and especially the most common one based on Monte Carlo (MC) sampling [77].

The mathematical methods for steps 1 and 2 used in this work are described in V.3.

For practical reasons, essentially related to computational costs (as one sample is an actual

evaluation of the computational model), the model M can be replaced by an accurate and

fast to compute surrogate model [130]. The construction of such model is covered in V.4.

Step 3: Sensitivity analysis This step provides further insights on the behavior of the

model M. The sensitivity analysis objectives are to assess the impact of some input on the

variability of the model’s output.

Among many approaches possible, we focus here our attention on global sensitivity anal-

ysis [110]. The global approach assesses the variability of the outputs on the whole inputs

space. As the PDF and the above variance of the outputs are observed, it is possible to draw

a hierarchy of which input Xi has the most significant impact on the model’s output vari-

ability [65]. This hierarchy can be established by using Sobol Sensitivity Analysis[126]. The

methodology to tackle this step is described in Section V.5.

Step 4: Inverse problem and calibration Once uncertainties on the inputs are modeled

and related statistics on the output are known, a question is associated with validating the nu-

merical solution. The numerical error coming from the forward propagation can be directly

compared with experimental measurements and their error bars. Still, using experimental

data directly could permit to infer some input parameters and improve the prediction capa-

bility of the solver.

In this context, a common calibration problem would be to assess which values of the

input parameters reduce the error between the model and the data by minimizing a L2 er-

ror nom of the discrepancy. In the studies presented here, a Bayesian calibration approach

is followed [101]. The mathematical and numerical tools to perform such calibration are

described in Section V.6.

Uncertainties defined in Step 1 are called the prior uncertainties, and the calibration

outcome is the posterior uncertainties.

Step 5: Forward propagation of the posterior distributions As the posterior distributions

are provided from the Bayesian calibration process, step 3 can be repeated using the learned

distributions. This way, we can close the loop of the uncertainty quantification problem,

as we can expect the output variance to be reduced using the posterior distributions. This

overall process stands as an uncertainty reduction approach for the whole problem.
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Figure V.2: Uncertainty quantification workflow.

V.3 Uncertainty forward propagation by sampling

As stated just above, the goal of uncertainty forward propagation is to compute the statis-

tics on the output random variable, and obtain its distribution. The random variable is an

outcome of the modelM and these statistics could be written as:

E[M(X)] =
∫
X
M(x)πX(x)dx (V.21)

V[M(X)] =
∫
X
M(x)2πX(x)dx (V.22)

Sampling techniques have been widely used to compute these integrals. The advantages

of sampling methods are their versatility. However, they present a quite slow convergence

rate. More precisely, in the framework of UQ with computer models, the sampling is made

from the input random variables.

The step 1, uncertainty characterization, consists in giving a PDF πXi (defining the probability

distributions) for each random variable Xi of the random vector X = (X1, ..., Xm). Then

computation of the above integrals is made as follows:

1. Sampling each random variable Xi. That is, for each variable Xi, draw a number N of

samples according to its PDF πXi . This gives a set of values (X(k)
i )k=1,...,N defining the

sample set. The sample set of the random vector is similarly written (X(k))k=1,...,N .

2. For each sampled input X(k), evaluate the numerical model. This leads to a sampled set
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of output values
(
M(X(k))

)
k=1,...,N

3. Compute the PDF of the resulting output quantities. The PDF can be approximated by

Kernel density estimation methods using the output samplesM(X(k)) [41].

4. Then the statistics are approximated using:

E[M(X)] ≈ 1
N

N∑
k=1
M(X(k)) (V.23)

V[M(X)] ≈ 1
N

N∑
k=1

(
M(X(k))− E[M(X)]

)2
(V.24)

The question is now to determine how to choose the number of samples N for the inputs

X to reach a proper convergence of these quantities. Efficiency of the sampling can be char-

acterized by some criteria such as the space-filling and the convergence rate [10, 135]. An

optimal sampling should explore at best the space with a minimum amount of samples. In

this work, two sampling approaches have been used following different perspectives.

Monte Carlo sampling The most classical approach is to use the so-called Monte Carlo

method. It is a robust approach because its convergence rate is independent of the input

dimension m. This approach consists in sampling NMC values of the variables Xi follow-

ing their respective PDFs in a purely random fashion. This method presents no bias in the

sampling process. However, the convergence is slow and requires a considerable number of

samples, following a O(N−1/2) rate [15].

Latin Hypercube Sampling Optimal sampling techniques have been developed in the liter-

ature [31] to accelerate the convergence rate. Here, we focus on Latin Hypercube Sampling

(LHS) [61], but many others possibilities exist, such as for example Sobol sequences [127],

Halton sequences [55], among others.

The LHS method works as follows. Consider a random vector X = (X1, ..., Xm) taking its

values in the product space I =
∏m
i=1[ai, bi]. To sample N points from these variables, the

principle is to divide each of the intervals [ai, bi] in N sub-intervals of equal probability. Note

that the width of each sub-interval may vary in each ith direction depending on the PDF πXi
associated to each variable Xi. Then, within each sub-interval, one single sample is drawn

randomly according to the PDF πXi as it would be done in MC sampling. The advantage

of the method is to ensure that each component of the random vector is sampled in a fully

stratified way, ensuring a good space exploration, independently of the dimension m of the

inputs [98].
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Let us compare for a couple of random variables X = (X1, X2) how the LHS and MC

present different space-filling performances for the same number of samples. The two vari-

ables are following a uniform law in [0, 1]2: X ∼ U([0, 1]2). We draw N = 20 samples of the

random vector X. For each sample X(k) we plot the resulting point (X(k)
1 , X

(k)
2 ). The result-

ing points using the LHS sampled are the black crosses and their corresponding sub-intervals

with dotted black lines in both directions. The points with the MC method are the red crosses.

It is visible in Fig. V.3 that the LHS sampling technique with the sub-intervals decomposition

(dark dotted lines) can cover a larger area of the square than the MC samples.

Figure V.3: Sampling of a random vector using LHS and MC techniques.

124



V.4. Kriging surrogate model

V.4 Kriging surrogate model

The sampling method requires numerous evaluations of the modelM to estimate the statis-

tics of the outputs. However, in real-life applications and especially in CFD-based applica-

tions,M is usually a numerical model expensive to evaluate in terms of computational costs.

The evaluations of the statistics turn out to be prohibitive if we need to run thousands of

simulations with the model. A possibility is then to replace the model M with a so-called

surrogate model (or metamodel), which is a mathematical representation permitting to pre-

dictM. This thesis focuses on a specific methodology based on the so-called Kriging method.

Note that others interpolation and regression methods exist in the literature, as detailed in

[130]: Polynomial Chaos Expansion, Support Vector Machine etc... We use Kriging since one

of the most used techniques to build surrogates efficiently by requiring a limited number of

samples.

In what follows, we describe the necessary mathematical features to describe the surro-

gate modeling technique known as Kriging. First, we recall a formal definition of random

processes. Then, details on Gaussian processes are stated. Finally, we describe the necessary

elements to build Kriging surrogate models.

V.4.1 Random process

A random process, or stochastic process, is a collection of random variables defined in the

same probability space (Ω,F ,P). In particular, a continuous random process is indexed by a

variable x ∈ X ⊆ Rm. We then define a scalar random process Y as:

Y : X× Ω → Y ⊆ R

(x, ω) 7→ Y (x, w) (V.25)

For a ω0 ∈ Ω, a realization of the stochastic process is every function x 7→ Y (x, ω0) associated

to an event ω0 ∈ Ω. In Fig. V.4 is illustrated a typical random process in a one dimensional

case: a collection of random variable indexed by x: {Y (ω)}x∈X defined on the same proba-

bility space. A realization Y (ω) of the stochastic process is drawn and two evaluations of this

process Y (x, ω) and Y (x′, ω) are visible.

We define similarly a vector random process Y as the application mapping the inputs (x, ω)
into a multi-dimensional space Rp such that Y = (Y1(x, ω), ..., Yp(x, ω)).
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Figure V.4: Illustration of a 1D stochastic process Y , indexed by x ∈ R. Figure courtesy of
[14].

V.4.2 Gaussian Process

Gaussian processes (GP) are a particular type of random process. A Gaussian process is

a collection of random variables {Y (x)}x∈Rm indexed by x, where each variable follows a

Gaussian distribution. For a finite collection of p random variables Y (x1), ..., Y (xp), we write:

(Y (x1), ..., Y (xp)) ∼ N (µ,K) (V.26)

and in particular:

∀i = 1, ..., p , Y (xi) ∼ N (µi, σ2
i )

Where µ = (µ1, ..., µp) is the vector containing the means of each random process. K is the

covariance matrix associated to the Gaussian process such that:

K =


σ2

1 Cov (Y (x1), Y (x2)) · · · Cov (Y (x1), Y (xp))

Cov (Y (x2), Y (x1)) . . . · · ·
...

...
...

. . .
...

Cov (Y (xp), Y (x1)) · · · · · · σ2
p

 (V.27)
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From a practical point of view, the Gaussian character of the generated random variables

coming from the stochastic process can be visible in the example illustrated in Fig. V.5. We

consider the one dimensional Gaussian process Y (x) indexed by a variable x ∈ [−4, 4] ⊆ R.

For a fixed index x0, represented by the vertical dark line, points formed by the intersection

of the realizations of GP and the line x = x0 (left) are distributed following a Gaussian

distribution (right), which the mean is given by µ0 = Y (x0) and the variance by σ2
0. As

the number of realizations increases (the number of MC samples), the sampled Gaussian

distribution becomes more accurate and representative of a ’true’ Gaussian distribution.
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(b) 500 realizations of the GP

Figure V.5: Plot of GP with increasing number of realizations and PDF associated to the
realizations in x = x0. Example adapted from [117].
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V.4.3 Gaussian process regression - Kriging

The use of GPs for interpolation/regression and classification problems is comprehensively

introduced in [114]. Two properties make the Gaussian distributions and then GPs useful for

regression and interpolation of mathematical models:

1. For a Gaussian random process X = (X1, ..., Xn), we have for a matrix A ∈ Rp×n:

X ∼ Nn(µ,K) ⇐⇒ AX ∼ Np(Aµ, AKAT )

It means that in practice, the sum of Gaussians is still Gaussian, and the marginal

distributions of multivariate Gaussians are Gaussian.

2. The conditional distributions between two Gaussian variables are still Gaussian.

The Kriging technique was first developed by Krige in [76] as a spatial interpolation tool.

The theory behind this tool was formalized by [97]. It consists of a stochastic algorithm that

relies on Gaussian processes, giving the unknown evaluation of a function at some location

from already known estimations of the function [48].

In the following, we describe the key elements constituting the Kriging models, inspired from

the full explanations given in [80]. As the objective here is to construct a model being able

to replace the true numerical model M, the Kriging model is denoted MK . Note that the

Kriging models developed in this thesis considered noise-free data, and then the models act as

interpolation functions rather than regression functions. The Kriging computes an outcome

of the modelMK , from a vector input x ∈ Rm by the following expression:

MK(x) = βT f(x) + σ2Z(x, ω) (V.28)

The terms of the Kriging expression decompose as:

• βT f(x) is the mean of the Kriging, also called the trend. β = (β1, ..., βb) is a vector of b

constant coefficients. f = (f1, ..., fb) is a set of arbitrary functions.

• σ2 is the constant variance.

• Z(x, ω) is a stationary Gaussian process, indexed by x. A stationary stochastic process

means that the random variables Z(x, ω) and Z(x′, ω), indexed in x and x′ have the

same distributions.

• The probability space (Ω,F ,P) is represented through the parameter ω and defined by

the correlation function R defined as R : (x, x′) 7→ R(x, x′;θ) . θ is a vector containing

some of the so-called hyperparameters defined just later.

Now, in the interpolation perspective, let’s define the Kriging predictor, i.e. the expression
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defining the evaluation of the Kriging model on a new point x :M̂K(x). The goal is to

predict the value of the Kriging model at a new input x, based on a set of observations of the

true model. The observations are contained in the so-called Design of Experiments (DOE).

This terminology is widely employed in the framework of approximating complex computer

models. This set is defined as follows, for a number NDOE of observed data:

TDOE = {(XDOE ,YDOE)} ⊆ RNDOE × RNDOE (V.29)

More precisely , the DOE TDOE contains the pairs composed by the input and the correspond-

ing value of the true model, for each observation:

XDOE =
{

x(i) , i = 1, ..., NDOE

}
(V.30)

YDOE =
{
M(x(i)) , i = 1, ..., NDOE

}
(V.31)

From the assumptions provided by the Gaussian processes properties, the vector formed by

the prediction M̂K(x) on the new input x and the set of observed values with the model

YDOE is Gaussian. The corresponding mean and variance are given by:

{
M̂K(x)
YDOE

}
∼ NNDOE+1

({
fT (x)β

Fβ

}
, σ2

{
1 rT (x)

r(x) R

})
(V.32)

The newly introduced terms are defined as follows:

• F is a matrix containing the values of the functions defining the trend at the observed

points: Fi,j =
(
fj(x(i))

)
i=1,...,NDOE ,j=1,...,b

• r(x) is the vector containing the evaluations of the correlation function between x and

all the construction points: r(x) =
(
ri = R(x, x(i);θ)

)
i=1,...,NDOE

• R is the correlation matrix defined by: Ri,j =
(
R(x(i), x(j);θ)

)
i,j=1,...,NDOE

The expression of the mean and variance of random variable defining the predictor M̂K

reads:

µM̂K (x) = f(x)T β̂ + r(x)TR−1(YDOE − Fβ̂) (V.33)

σ2
M̂K

(x) = σ2
(

1− rT (x)R−1r(x) + uT (x)
(
FTR−1F

)−1
u(x)

)

with β̂ =
(
FTR−1F

)−1
FTR−1YDOE and u(x) = FTR−1r(x)− f(x).

129



Chapter V – Uncertainty Quantification approach

Finally, the Kriging predictor in x is a Gaussian random variable defined by:

M̂K(x) ∼ N
(
µM̂K (x), σ2

M̂K
(x)
)

(V.34)

From a practical point of view, evaluating the Kriging modelMK on a new point is reduced

to compute the expressions in Eq. (V.34). It just consists of some matrix-vector product

computations. From this perspective, one can easily see why Kriging is a convenient tool for

surrogate modelling to replace the expensive modelM. Now the question is to ensure that

the Kriging model can reproduce well the results of the true model, based on the observations

in TDOE . In other words, how are determined the hyperparameters β, θ and σ2 involved in

the above expressions and given the choice made for the functions f.

V.4.3.1 Trend of the Kriging

First, the choice to be made is about the trend of the Kriging model, i.e. the parameters in

β and the form of the functions in f. Three main approaches are considered for the trend,

defining in the mean time the type of Kriging used:

Simple Kriging Here the trend is assumed known with constant parameters and known

functions. The parameters are all equal and βi = 1, i = 1, ..., b. The trend reads then:

βT f(x) =
b∑
i=1

fi(x) (V.35)

Ordinary Kriging Here, the trend is constant, so βi = β0 and fi = 1 for i = 1, ..., P . But it’s

needed to determine the value of the parameter β0.

βT f(x) = β0 (V.36)

Universal Kriging This is the most versatile and general formulation. The values of the

coefficient are to determine, and the functions are usually polynomials which coefficients are

also to be found.

βT f(x) =
b∑
i=1

βifi(x) (V.37)

The trend is called linear when the functions fi are linear, e.g. first, degree polynomials for

each input xi.

V.4.3.2 Correlation functions

The next really important feature of the Kriging model to define is the correlation function

R :7→ R(x, x′;θ) leading to the construction of the correlation matrix R. The correlation

function will determine how much the model should consider the close presence of known

data points in predicting the new outcome in x. In other words, it quantifies the similarity

130



V.4. Kriging surrogate model

between observations and new points, depending on the distance between them. They are

expressed as functions of the distance between the two considered points: |x − x′|. Also, to

get the best model possible, the behavior of the model for two close points x, x′ needs to be

traduced by the behavior of the covariance function [135]. Many covariance functions are

used in literature. We write here the expression for the most common ones: linear, Matérn,

exponential and Gaussian.

Note that the correlation functions need to respect some conditions to be suitable for

Kriging: the function is symmetric, and the correlation matrix induced by the evaluations of

the function is positive semi-definite. For the sake of simplicity and illustration, we consider

in this specific section a model taking a scalar x as input: x is no longer a vector in Rm, and

we write x = x ∈ R. Also, the vector of hyperparameters θ becomes a scalar θ in this specific

case. Note that we can define a correlation function for vector input variables, as detailed in

the last paragraph of this section.

So we consider two distinct points x, x′ ∈ R and a hyperparameter θ. The expressions of

the correlation functions are given in Tab. V.1:

Linear R(x, x′; θ) = max
(
0, 1− |x−x

′|
θ

)
Exponential R (x, x′; θ) = exp

(
− |x−x

′|
θ

)
Gaussian R (x, x′; θ) = exp

[
−1

2

(
|x−x′|
θ

)2
]

Matérn 3/2 R(x, x′; θ) =
(
1 +
√

3 |x−x
′|

θ

)
exp

[
−
√

3 |x−x
′|

θ

]
Matérn 5/2 R (x, x′; θ) =

(
1 +
√

5 |x−x
′|

θ + 5
3

(
|x−x′|
θ

)2
)

exp
[
−
√

5 |x−x
′|

θ

]
Table V.1: Expression of correlation functions.

The plot of these functions against the distance |x− x′| can be found in many references

such as [114, 80]. The hyperparameter θ is often called the length scale. Relying on the

expressions of the above functions, these parameters can be seen as the quantification of

how much the response of the process should vary from one point to the other. If θ is small,

the correlation functions present strong gradients in the |x − x′| direction, and the Gaussian

process might vary a lot between those two indexes. On the opposite, a large θ will produce

a smooth Gaussian process. An example from [80] is shown in Fig. V.6 with a Gaussian

correlation function.

For processes with vector inputs, we can similarly define multi-dimensional correlation func-

tions. Then the vector of hyperparameters θ contains the lengthscales θi for each function.

Two families of function are considered: separable or ellipsoidal correlation functions.
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Figure V.6: Gaussian correlation function and resulting GP for different θ.

The separable function reads:

R
(
x, x′;θ

)
=

m∏
i=1

R
(
xi, x

′
i, θi

)
(V.38)

The ellipsoidal functions are expressed with:

R
(
x, x′;θ

)
= R(h), h =

[
m∑
i=1

(
xi − x′i
θi

)2]0.5

(V.39)

V.4.3.3 Estimation method for the hyperparameters

The construction of the Kriging model interpolating the observed data with true model is

reduced to find the values of the hyperparameters, which minimize an objective function. The

Kriging model’s construction consists of solving an optimization problem of a given objective

function. Here, we present only the function used for the Kriging models constructed in this

thesis: the maximum likelihood. Other methods, such as cross-validation, are widely used

too, and the reader can refer to [120] for more details.

This estimation method is based on the maximization of the likelihood function. This

function is dependent on the parameters of a statistical model (here the hyperparameters)

and computed from some observed data (here the data in TDOE). In other words, for a

random variable X following a PDF parametrized by a scalar u, the likelihood L is a function

of u given an observation of the process x = X, and it is written:

L(u|x)

It gives the probability of observing x if the parameter was u.

In the case of the Kriging, the expression of the likelihood is given in Eq. (V.40). It is
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expressed in function of the hyperparameters: β, σ2,θ and the observed data YDOE .

L
(
β, σ2,θ;YDOE

)
= (det R)−1/2

(2πσ2)N/2
exp

[
− 1

2σ2 (YDOE − Fβ)TR−1(YDOE − Fβ)
]

(V.40)

The expression of the vector parameters maximizing the likelihood function, β and σ are

written in Eq. (V.41). Full details on the calculation to obtain these expressions are given in

[120]:

β̂ = β(θ) =
(
F TR−1F

)−1
F TR−1YDOE

σ̂2 = σ2(θ) = 1
N

(YDOE − Fβ)TR−1(YDOE − Fβ). (V.41)

These expressions still show the dependency on the length scales of the correlation function

θ. The hyperparameters θ are obtained by minimizing the log of the Likelihood:

θ̂ = arg min
θ∈Dθ

[− logL(θ;Y)] (V.42)

Constructing the Kriging model is then reduced to solve this optimization problem.

V.4.3.4 Quality assessment

Here, we describe the common tools used to assess the quality of the constructed Kriging. In

other words, how well it is capable of fitting the true modelM.

Validation error This technique is used when other data are available aside from the DOE.

This other set of data is called validation set denoted Tval. The validation set is constructed

as the DOE: we sample Nval inputs Xval =
{

x(i)
val , i = 1, ..., Nval

}
. Then we evaluate the true

modelM on these inputs. The supplementary computational cost is Nval evaluations of the

true model. Once the Kriging model MK is constructed, the idea is to evaluate it on the

inputs from the validation set Xval. Several quantities can be computed from this analysis

with the validation plot. For instance the error εval between the values computed by the

Kriging and the true models can be estimated using the coefficient of determination [66]

such as:

εval = 1−
∑Nval
i=1

(
M(x(i)

val)−MK(x(i)
val)

)2

∑Nval
i=1

(
m̄−M(x(i)

val)
)2 (V.43)

where m̄ is the mean of the true model responses on the validation set: m̄ = 1
Nval

∑Nval
i=1 M(x(i)

val).
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A value close to one means that the Kriging model can reproduce the data from the true model

in the validation set.

The validation set has to be chosen with caution to avoid bias in the validation procedure.

A good practice is to build Tval using an independent sampling set. As in practice, the evalua-

tions of the true model are expensive, a small sample set using a space-filling technique such

as LHS is constructed. However, the risk is that some sampled points could be too close to the

ones used in the construction, and the overall error might be underestimated. A way around

to enforce the validation is also to compute a cross-validation error, and more particularly

the one called Leave-one-out error [66].

Leave-one-out error This technique is a handful as it does not require new evaluations of

the true model. Based on the initial DOE, the idea is to compute the error between the true

model values and a Kriging model, which was constructed removing one point in the DOE.

The Leave-one-out error εLOO is computed as:

εLOO = 1
NDOE

·
∑NDOE
i=1

(
M(x(i))−MK

{−i}(x
(i))
)2

V[YDOE ] (V.44)

where V[YDOE ] is the statistical variance of the model observations and MK
{−i} the Kriging

model constructed on a DOE deprived of the point x(i). The drawback of this technique is

that it is required to construct as many Kriging models as points in the DOE, which could be

costly in some cases (see section V.4.3.5).

Physically, for each input x(i), we sum up the deviations between response from the true

model and a Kriging model constructed without this input. If the Kriging is well constructed,

it is expected thatMK
{−i}(x

(i)) is not too far fromM(x(i)) and the error computation is a sum

of terms close to zero. Then we want the overall error εLOO to be as close to zero as possible.

V.4.3.5 A word on multiple outputs Kriging

So far, we have discussed the theory of Kriging models with output scalar values. However, in

the physical applications covered in this thesis, the quantities of interest are time-dependent.

As seen in the chapters showing the performance of the numerical models, the quantities

outputted by the code are the temperature evolution. A common practice to represent time

dependant processes with Kriging models is to consider the output of the model MK as a

vector containing the evaluations of the quantity of interest at different times. We consider

here a numerical model which output vector values such that:

M : Rm → Rp

X 7→ Y =M(X) (V.45)

The overall process for the Kriging construction stays the same. However, the predictors

given by the Kriging model are no more scalar values but vectors. Then, each predictor is
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defined as for a single output Kriging, independently of the others.

It is required to have a set of p vectors for each type of hyperparameter.

µM̂K (x) = (µ1(x), ..., µp(x)) (V.46)

σ2
M̂K

(x) =
(
σ2

1(x), ..., σ2
p(x)

)
(V.47)

where the µi(x) and σ2
i (x) are the mean and variance of each predictor as defined in Eq.

(V.34). Therefore, the construction of the Kriging with p outputs is made by solving p opti-

mization problems as in Eq. (V.42) to get values of each hyperparameter vector.

V.5 Global sensitivity analysis

The global sensitivity analysis aims to quantify the effect of each uncertain input and their

correlated effect on a given scalar quantity of interest computed by the model [25]. The

analysis is performed using a variance-based decomposition of the black box model known

as Analysis of Variance (ANOVA) decomposition [131]. Here, we consider the model M
giving a single scalar y as output, from the evaluation of the m inputs x = (x1, ..., xm). The

ANOVA decomposition of the modelM evaluated in a realization x can be written as follows:

M(x) ANOVA:= M0︸︷︷︸
mean

+
m∑
i=1
Mi(xi)︸ ︷︷ ︸

first order

+
m∑
i1=1

m∑
i2=i1+1

Mi1i2(xi1 , xi2)︸ ︷︷ ︸
second order

+ · · ·+M1,...,m(x1, ..., xm)︸ ︷︷ ︸
m−th order

.

(V.48)

The numerical model is seen as a sum of functions, representing the contribution from each

input variable xi (the functions Mi) and their correlations (Mij etc) up to the m-th or-

der. This decomposition allows to perform a sensitivity analysis based on the evaluation of

the so-called Sobol indices [126]. Each input is seen as a realization of the random vector

X = (X1, ..., Xm). The Sobol indices compute the ratio of the conditional variance over the

variance of full model response. More specifically, the first order Sobol index S1
i for an input

variable Xi is defined by:

S1
i = V [E[M(X)|Xi]]

V [E[M(X)]] (V.49)

The first order index quantifies the effect of the variable Xi only on the variability of the

quantity of interest Y by computing the variance ratio in Eq. (V.49). The conditional variance

E[M(X)|Xi] express the variability of the mean of the model response conditioned to the

parameter Xi.

135



Chapter V – Uncertainty Quantification approach

The total Sobol index STi for the variable Xi is computed as follows:

STi = 1− V [E[M(X)|X∼i]]
V [E[M(X)]] (V.50)

where X∼i represents the set of all input variables and their combinations except Xi. The

total Sobol quantifies the impact of the variable Xi and its correlation with all other variables

on the variability of Y .

For a given inputXi, a Sobol index close to 1 means that this variable significantly impacts

the variability of the quantity of interest Y . On the opposite, a Sobol index close to 0 means

that the quantity Y is almost independent of the variability of Xi. Note that for a given

quantity of interest, all the Sobol indices sum to 1.

To compute those indices, here are the expression of the involved variances. The total

variance of the model output V [E[M(X)]] is computed using:

V [E[M(X)]] =
∫
X
M(x)π(x)dx−M0

2 (V.51)

This expression involves the multidimensional integration of the product between the model

M and PDFs π(x).

The conditional variance for the first order index are given by:

V [E[M(X)|Xi]] =
∫
X∼i
M(x)π(x∼i)dx∼i −M0

2 (V.52)

where the notation ∼ i designates all the input variables except the ith one:

x∼i = (x1, ..., xi−1, xi+1, ..., xm)

Note that for vector outputs of the model, i.e. the vector quantities of interest Y = M(X) ∈
Rp, total and partial Sobol index are defined for each of the scalar quantities of interest Yj
composing Y.

In practical applications, the MC methods seen in the forward propagation section V.3 are

used to compute those integrals. Then, the results of the Sobol analysis has to be converged

with respect to the number of Monte Carlo samples. Also, for computational cost reasons,

a surrogate Kriging model can replace the model to perform the computation of the Sobol

index.

Finally, one can note that the Sobol indices values might vary with the PDF π(x) against

which are integrated the model responses. The choice of these distributions is discussed

comprehensively in the next section by considering the notions related to model calibration.
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V.6 Bayesian inverse problem

Let us consider again the numerical model M mapping a m-dimensional input x in a p-

dimensional output y:

M : X ⊆ Rm → Y ⊆ Rp

x 7→ y =M(x) (V.53)

V.6.1 Model calibration

In the framework of model calibration, as seen in the introduction of the chapter, the valida-

tion of the numerical model M goes through the comparison of its outputs with respect to

some experimental data in a vector yexp. In this work, experimental data is constituted of sin-

gle observations for each of the p quantities of interest, so yexp ∈ Rp. From this perspective,

the relation between the model and the observation can be seen as:

yexp =M(x) + ε (V.54)

ε is called the discrepancy. It accounts for the deviation between the observed measurements

and the predictions of the numerical model [143], as every model is a simplification of the

real physics.

Input uncertainties are represented by the random vector X = (X1, ..., Xm) as done earlier

in this chapter. The PDF associated with this random vector is denoted π(x). Also, for most

real-life applications, the discrepancy ε is not known. A random vector denoted E is used

to represent the uncertainties of this additional variable, which is now considered as input

of the problem in the sequel. The PDF associated to this random vector is defined by some

parameters in a vector xε and denoted π(xε). The covariance matrix associated to this random

vector is written K(xε).
The PDFs π(x) and π(xε) represent the information known about the unknowns, before

having observed the data yexp. They are called the prior distributions. Also, in the Bayesian

paradigm, the experimental data are realizations of the random variable Yexp representing

the data in yexp.

We denote xI the vector containing the realizations of the model inputs and the discrep-

ancy variable, and XI the associated random vector:

xI = (x, xε)

The goal of the Bayesian calibration is to find the probability of the input variables XI , con-

ditioned to the information provided by Yexp. In other words, it is to find the PDF associated

with the random variable:

XI |Yexp
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The Bayes theorem using these distributions is expressed as:

π(xI |yexp) = L(xI ; yexp)π(xI)∫
XI L(xI ; yexp)π(xI)dxI

(V.55)

The desired distribution π(xI |yexp) is called the posterior distribution. It gives the information

about the unknowns xI after being conditioned to the observed data yexp. L(xI ; yexp) is the

likelihood function computing the probability of having observed the measurements yexp

given the realizations of inputs xI . The denominator term Z is a normalization constant:

Z =
∫
XI
L(xI ; yexp)π(xI)dxI

It is the likelihood integrated over the prior distribution.

Note that the uncertain inputs X of the model and the discrepancy ε are treated indepen-

dently. So we have for the PDFs of both random vectors:

π(xI) = π(x, xε) = π(x)π(xε)

Then the expression of the posterior distribution is given by:

π(x, xε|yexp) = 1
Z
π(x)π(xε)L(x, xε; yexp) (V.56)

This expression depends on the likelihood function which is computed by:

L(x, xε; yexp) = 1√
(2π)p det(K−1(xε))

exp
(
− 1

2 (yexp −M(x))T K−1(xε) (yexp −M(x))
)

(V.57)

V.6.2 Solution and posterior predictions

One can compute the so-called point estimates to summarize the posterior distribution. The

statistics usually observed are the mean of the posterior distributions and the maximum a

posteriori (MAP). The mean of the distribution is expressed by:

E(XI |Yexp) =
∫
XI

xIπ(xI |yexp)dxI (V.58)

The MAP gives the mode of the posterior distribution. In short, it gives the values of inputs
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parameters, denoted xMAP
I , maximizing the likelihood function:

xMAP
I = arg max

xI
L(xI ; yexp) (V.59)

In practical problems, the posterior distribution is used to compute the expectation of the

quantities of interest given by the model. Let’s consider a scalar QOI yj ∈ y = M(x) for

j = 1, ..., p, and note Mj the evaluation of the model corresponding to this sole QOI. Then

we can evaluate the expectation of the model response from the posterior distribution:

E[Mj |yexp] =
∫
XI
Mj(xI)π(xI |yexp)dxI (V.60)

Also, the amount of uncertainty related to the posterior estimation of the input parameters

can be estimated with the covariance matrix of the random vector X, or with the variance of

each scalar input parameter Xj . The variance of such random variable is expressed by:

V(Xj |Yexp) =
∫
Xj
x2
jπ(xj |yexp)dxj (V.61)

By computing the ratio of variances of the prior distribution π(XI) and the posterior, one can

assess the amount of uncertainty reduction that has been made with the Bayesian calibration.

Such results are given for the application in chapter VII.

Finally, the process of forward propagation described in V.3 can be repeated by integrating

along the posterior distribution. Then the statistics such as mean and variance of the model

predictions are given with a sampling made following the posterior distribution. The distribu-

tions of the modelM outputs can be computed using both prior and posterior distributions.

V.6.3 Numerical resolution: MCMC algorithms

In real applications problems, the computation of the posterior distribution as described in

Eq. (V.56) is intractable in practice. The way around is to use sampling methods. Based

on the Glivenko-Cantelli theorem, one can approximate the (unknown analytically) posterior

π(xI |yexp) by sampling a large numbers T of realizations xtI for t = 1, ..., T [34]. The distri-

bution of these sampled realizations converges towards the desired posterior distribution.

V.6.3.1 Markov Chain Monte Carlo

The most common approach is to use Markov Chain Monte Carlo algorithms to simulate

this desired posterior distribution. This method constructs a Markov chain of the inputs

realizations (x1
I , x

2
I , ...), with an invariant distribution being the sought posterior distribution.

Markov chains are defined by their transition probability to move from the step t to t + 1,

denoted:

K(x(t+1)
I |x(t)

I )
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The invariant distribution of the chain is the posterior one if the Markov Chain is reversible,

i.e. if it fulfills the condition:

π(x(t)
I |y

exp)K(x(t+1)
I |x(t)

I ) = π(x(t+1)
I |yexp)K(x(t)

I |x
(t+1)
I ) (V.62)

The probability to move from the iteration t to t+ 1 is equal to the probability to move back

from t+ 1 to t. Then, the distribution at iteration t+ 1 is given by:

π(x(t+1)
I |yexp) =

∫
XI
π(x(t)

I |y
exp)K(x(t+1)

I |x(t)
I )dx(t)

I (V.63)

V.6.3.2 Metropolis-Hastings and Adaptive Metropolis algorithms

Several algorithms allow to construct Markov Chains with this property: Metropolis-Hastings,

Adaptive Metropolis [60], Hamiltonian Monte Carlo [103], Affine invariant ensemble algo-

rithm [49], among others. A comprehensive list is available at [99]. The most classical is the

Metropolis-Hastings algorithm (MH) [100, 56]. The other algorithms rely on the principle

of the MH algorithm with some enhancements. In the applications of this thesis, the MCMC

algorithm used was the Adaptive Metropolis. Here we describe first the MH algorithm and

then detail the specificities brought by the AM approach.

Metropolis-Hastings The basic principle of the method is to explore the posterior distribu-

tion with a random walk of T iterations. Each iteration consists in drawing a candidate x(c)
I

using a proposal distribution to move from iteration t to t + 1 [34]. The new candidate is

accepted with a probability computed based on the proposal distribution. The operation of

the algorithm is given in Alg. 2.

Algorithm 2 Metropolis-Hastings algorithm

Initiate Markov chain with seed x(0)
I ∈ XI .

for t = 1, ..., T
• Draw a candidate sample x(c)

I from a proposal distribution π(x(c)
I |x

(t)
I )

• Compute the acceptance probability:

α(x(c)
I , x(t)

I ) = min
(

1, π(x(c)
I |yexp)π(x(t)

I |x
(c)
I )

π(x(t)
I |yexp)π(x(c)

I |x
(t)
I )

)

• Draw a sample v from a uniform distribution U([0, 1]).
• Perform an acceptance test for the candidate:

if v ≤ α(x(c)
I , x(t)

I )
accept the candidate: x(t+1)

I = x(c)
I

else (i.e. v > α(x(c)
I , x(t)

I ))
reject the candidate and x(t+1)

I = x(t)
I

The MH algorithm calls evaluations of the unnormalized posterior density which can be

140



V.6. Bayesian inverse problem

given directly by the evaluation of the likelihood function and the prior:

π(xI |yexp) ∝ L(xI ; yexp)π(xI) (V.64)

Now, we can approximate the model response for the QOI yj from the posterior distribution.

That is the integral in Eq. (V.60), by using the T samples of the Markov Chain:

E[Mj |yexp] ≈
1
T

T∑
k=1
Mj(x(k)

I ) (V.65)

The difficulty in this algorithm is to choose properly the proposal distribution π(x(c)
I |x

(t)
I ). The

issues related to the choice of the proposal distribution is discussed in the next paragraph,

allowing us to introduce the advantages of the Adaptive Metropolis algorithm.

Adaptive Metropolis A good proposal distribution is close to the searched posterior distri-

bution. However, in practical problems, we do not have any expectations of the shape of this

distribution.

A common approach is to choose a Gaussian distribution for the proposal, centered and

with a covariance matrix K. If the variance is too large, the next candidate will often be

rejected, and the chain will not move. Conversely, a too-small variance could lead to too

many accepted candidates. The chain can be stuck in a region and not explore well the

support of the posterior [34, 27].

The AM algorithm was proposed by [60]. The idea is to adapt the parameters of the

covariance matrix of the proposal during the sampling procedure. For the first t0 iterations,

the algorithm starts as a classical MH algorithm, with a Gaussian proposal and covariance

matrix K0. After the starting period t0, the covariance matrix is modified using:

K(t+ 1) =
{

K0, t+ 1 ≤ t0
s(MI)K̃(t), t+ 1 > t0

(V.66)

The new covariance matrix K̃(t) is computed with: K̃(t) = 1
t−1

(∑t
i=1(x(i)

I − x̄(t)
I )(x(i)

I − x̄(t)
I )T

)
.

s(MI) is a tuning parameter depending of the number of inputs considered (size of MI =
size of x + size of xε). x̄(t)

I is the statistical mean of the t first candidates.

V.6.3.3 Convergence assessment

Regardless of the MCMC algorithm used, the generated chain will converge towards the

posterior distribution for an infinite number of iterations. However, in practice, we run many

steps and assess the convergence with some empirical criteria.

First, the generated chain will visually present a distribution that doesn’t present any

variations after some steps. This visual criterion can be used to stop the algorithm and

accept the shape of the current posterior. Quantified criteria such as acceptance rate (ratio
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of accepted candidates over the whole chain length) and Gelman-Rubin diagnosis [7] can be

used to strengthen the stopping decision.

Finally, a good practice is to consider a burn-in period Tb. The first Tb iterations of the

chain are discarded. Indeed, as the previous algorithms start from a seed x(0)
I , this method

allows neglecting the influence of the beginning of the chain and a possibly miss-tuned pro-

posal distribution in the case of the AM algorithm.

V.6.4 Use MCMC algorithms with a surrogate model

The MCMC algorithms rely on the generation of thousands of candidate samples x(c)
I and

the computation of acceptance probabilities. These computations require the evaluation of

the modelM, through the likelihood function involved in the acceptance probability. When

working with expensive computer models, as in CFD, it is intractable to run MCMC algo-

rithms. Then surrogate models, as the Kriging models (section V.4), can be used to replace

the true model and generate the Markov Chains. For a comprehensive example for such an

approach, the reader can refer, for instance, to [96]. Before doing this, one has to ensure

that the error generated by the approximation of the true model withMK can be neglected

in front of the error ε.

V.7 Chapter conclusion

In this chapter, the goals and issues of uncertainty quantification approaches have been cov-

ered, including the required notions on probability theory. Then, the steps of a typical UQ

workflow have been described.

The methods have been described so the reader can know the necessary implementations

to perform such studies. First, we covered the sampling methods and the forward propaga-

tion of uncertainties using this technique. This section stresses the need for surrogate models

in UQ problems dealing with complex numerical models. The methodology to construct a

Kriging model has been comprehensively reviewed. The global sensitivity analysis method

using ANOVA decomposition was detailed. Finally, the goals of the Bayesian inverse problem

were described, allowing us to understand the difference between deterministic and Bayesian

optimizations. We finally explained the MCMC methods to address Bayesian inversion in real-

life problems numerically.

Overall, this chapter depicted in a general and practical way the mathematical tools and

methods to perform the uncertainty quantification analysis on the immersion cooling prob-

lems of the following chapters.
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CHAPTER VI

CALIBRATION OF THERMO-ELECTRICAL PARAMETERS

UNDER UNCERTAINTIES

Chapter abstract
In this chapter, we apply the LF numerical model on the experimental test case
from Exoes, presented in the chapter III. Uncertainties coming from the input
multi-physics parameters of the model are considered. First, we assess the im-
pact of the uncertainties on the temperature evolution by considering the prior
input distributions. Then, we directly perform a Bayesian calibration of these
parameters using the experimental measurements. The informative distributions
outcoming of this process are used to validate the model on the two experimental
conditions available. The uncertainty in the model’s temperatures prediction is
significantly reduced from this process. Finally, for a pure design purpose, the
learned distributions of inputs and the numerical model are used to simulate the
system under conditions representing a realistic racing car operation. A Sobol
indices based sensitivity analysis is performed to get further analysis elements
on the behavior of the BTMS. The results presented in this chapter have been
submitted for publication in a journal.
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Chapter VI – Calibration of thermo-electrical parameters under uncertainties

VI.1 Introduction

This chapter applies the low fidelity solver ICExo to an uncertainty quantification approach.

As we’ve seen in the chapter III, the model is performing the simulation of both electrical and

thermal features of an immersion cooling configuration. In this previous chapter, the model

was described, and its performances regarding the reproduction of original experimental

data was illustrated. Briefly, the overall capabilities of the model comprise the simulation

of immersion cooling BTMS by solving thermal and electrical equations to estimate the tem-

perature, voltage and state of charge evolution of the Li-ion cells under given discharging or

charging conditions. The model’s capabilities were assessed by comparing its results to an

original experimental test case.

VI.1.1 Reminder of the experimental setup and conditions

Before setting the mathematical framework and notations of the UQ approach for this study,

let’s recall the different conditions of the experimental test case reproduced with the nu-

merical model described earlier in the chapter III. The experimental set is a pack of 8 cells

immersed in a coolant flowing through an enclosure. Unsteady electrical currents are submit-

ted to the cell under two different cycles conditions: the Datasheet cycle and the Race cycle.

The experiment aims to monitor the evolution of the temperature and voltage of the cell.

The numerical results of this section focus on the temperature prediction following those two

cycles. For the reading convenience, the table describing the two cycles is shown again here:

Mass flow rate Electrical current Sequences Init. voltage Init. fluid temp
[L ·min−1] [A] [sec] [V] [oC]

Datasheet cycle (DS) 1.0 I = −30 t = [0; 242] 4.16 45.22
I = 5 t = [242; 1468]

Race cycle (RC) 1.0 I = ±30 in 10 [sec] periods t = [0; 672] 3.58 45.28
0 t = [672; 1045]

Table VI.1: Nominal experimental conditions for DS and RC cycles.

VI.1.2 Simulation under uncertainties

The contribution of this chapter is to consider the uncertainties of the immersion cooling

system and assess the predictive character of the numerical model accordingly. Indeed, the

immersion cooling BTMS are multi-physics systems involving various uncertain parameters.

From the description of the physical features and parameters characterizing the electrical

and thermal behavior of Li-ion batteries, which was given in chapter II, we list here the

parameters considered uncertain. In the framework of this chapter, seven input parameters

of the model were seen as uncertain. In the next section, more physical details are given to

explain the origin of the uncertainty for these parameters.
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First, thermal parameters, namely the radial and axial thermal conductivities and the spe-

cific heat of the Li-ion cells involved in the energy equation, are in practice challenging to

evaluate due to the complex chemical structure of the Li-ion cells [38, 148, 21]. Furthermore,

electrical parameters such as the internal resistance and state of health of the cell feature also

complex behaviors. It is commonly agreed in the literature that the heat generated by the

Li-ion cells is, for the most part, due to the Joule effect, coming from the internal resistance

and the electric current going through the cells [106, 121]. Consequently, the internal resis-

tance parameter is expected to significantly influence the temperature evolution of the Li-ion

cells when solving the heat equation. Finally, parameters related to the fluid domain present

as well some uncertainties. The mass flow rate of the cooling fluid is given indirectly by the

operation of the pump generating the convective heat transfer. Due to the geometry of the ar-

rangement of the Li-ion cells within the pack, it is hard to assert a value of the mass flow rate

from the pump input instructions. Overall, uncertainties from those multi-physics parame-

ters will generate considerable variability in the numerical model’s temperature, voltage, and

state of charge prediction.

In this context, the contribution of this chapter is to use this numerical model to reduce the

computational constraints inherent to CFD models and illustrate the interest in a UQ-driven

approach to assess the model predictivity. Including uncertainties coming from the Li-ion bat-

teries’ thermal and electrical parameters permits assessing the impact of those multi-physical

parameters uncertainties on the temperature predicted by the numerical model. Experimen-

tal data are directly used to reduce these uncertainties and learn about the parameter values

and the model behaviour thanks to the resolution of a Bayesian inverse problem. Finally, a

sensitivity analysis is performed to get further insights into the whole system’s behaviour.

VI.2 Treatment of uncertainties

In this section, firstly, we give some elements about the physical reasons that lead to consider

some parameters as uncertain. Then, having covered the uncertainty quantification math-

ematical framework in the last chapter, we describe these tools for the UQ analysis for the

scope of this chapter.

VI.2.1 Source of uncertainties

As described in previous sections, solving the heat transfer in an immersion cooling configu-

ration is a multi-physics problem involving physical parameters of different natures. Unfortu-

nately, some of these parameters are hard to assess with good accuracy and confidence. Here,

we propose an Uncertainty Quantification approach to address this problem. This section is

devoted to characterizing each uncertainty, i.e. considering a physically sound range of vari-

ation for each parameter and associating a prior distribution. Let’s review which parameters

are considered uncertain in this specific case of the Li-ion batteries immersive heat transfer

problem.

First, the thermal parameters, λr, λz, Cp, are uncertain in the heat equation in the Li-ion

cells, namely the thermal conductivities and the specific heat. The Li-ion cell is a "jelly-roll"
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Chapter VI – Calibration of thermo-electrical parameters under uncertainties

layered structure of positive and negative electrodes, separator and electrolyte. A Li-ion bat-

tery generally comprises a positive electrode made of lithium cobalt oxide, manganese oxide,

or nickel oxide. The negative electrode is made of hard carbon or graphite. An electrolyte of

a non-aqueous solvent is intercalated between the electrodes. This structure is responsible for

the anisotropic thermal behavior of the batteries [123]. Due to the complex chemical struc-

ture of Li-ion cells and electrochemical reactions occurring between the "jelly-rolled" layers

composing the cells, the radial and axial thermal conductivities and the specific heat capacity

parameters are dependent on the electrochemical state of these layers [38, 148]. The highest

fidelity models used to evaluate the axial and radial thermal conductivities of the batteries

solve the electrochemical reactions within the layers of the cell, seen as porous media [148].

Even using this approach, it remains challenging to assess the thermal conductivity of all the

layers in the structure.

Also, the heat generated by the Li-ion cells is mainly due to the Joule effect, coming

from the electric current going through the cells and its inherent internal resistance [121,

57, 68, 106]. The above-described complex structure of a Li-ion cell is responsible for the

obstruction of electrons transfer between the anode and cathode materials of the Li-ion cells.

The behavior of the internal resistance parameterR0 plays a crucial role in the healing process

of the Li-ion cells. Then, to represent the heat transfer in a BTMS, it is essential to obtain an

accurate model or value for the resistance parameter. The internal resistance depends mainly

on the temperature of the Li-ion battery and its state of charge (SOC). In practice, it is costly

to assess the effects of the temperature and the state of charge on the resistance, especially

for an extensive range of temperatures. Most of the models include dependency either on

temperature [106, 68, 57] or on both temperature and state of charge, but often for sparse

values of these parameters [72, 87, 147]. Then it is practically challenging to assess a value

for the internal resistance and its behavior in a wide range of temperatures with reasonable

accuracy.

The battery’s state of charge quantifies using a unitless number the amount of electric

current that the battery can still deliver during a given time. It is computed from its nominal

capacity expressed in [A ·h] and the capacity at a given time during a charging or discharging

sequence. The state of charge is a percentage of the state of health (SOH) of the battery,

which is the actual value of its capacity when considered fully charged. The state of health

is a way of quantifying the age of the battery. Many parameters could influence its values

for a given battery, and various research efforts are focused on forecasting the evolution of

this parameter [85, 92]. Considering the simulation of a battery pack with numerous cells,

it seems a reasonable approach to admitting a range of variation for the state of health, in

percentages, to track its influence when modeling a BTMS.

Finally, the model representing the BTMS used in this case simulates the heat transfer

between the Li-ion cell and the cooling fluid flowing around. The convective heat transfer

performances between the solid and fluid domains, in this case, depends on the mass flow

rate ṁ and heat transfer coefficient of the fluid hf . Those parameters are also hard to as-

sess with reasonable accuracy in practice. The coolant used in this application is a complex

fluid presenting excellent heat transfer performances. However, this fluid’s heat transfer co-
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efficient depends on temperature and pressure during operation and the flow speed used in

the experiment, in a non-linear relationship. Besides, the value for the mass flow rate used

during the operation of the BTMS is given indirectly through a pump generating the flow,

which drives the forced convective heat transfer. Then, the value of the mass flow rate is

never known precisely.

Overall, the seven following parameters are considered as uncertain: the mass flow rate

ṁ, the heat transfer coefficient of the coolant hf , the internal resistance R0, the state of

health of the cell SOH, the radial and axial thermal conductivities of the Li-ion cell λr,λz,

the specific heat capacity Cp.

VI.2.2 Uncertainty quantification problem

Let us define the mathematical framework allowing us to deal with the uncertainties previ-

ously described. The uncertain inputs are stored in a vector X = [X1, ..., X7]. To represent

the uncertainties, each input parameter Xi is seen as a random variable, taking its values

according to a given distribution πi. From the physical description of the uncertainty given

above, there is no prior information on the behavior of the parameter. So we consider uni-

form distributions for all of the seven parameters, with a range of variations detailed in Tab.

VI.2, based on the user experience and the references mentioned above.

X Parameter Symbol Lower bound Xmin
i Upper bound Xmax

i Units

X1 Mass flow rate ṁ 2.64 · 10−3 3.96 · 10−3 kg · s−1

X2 Heat transfer coefficient hf 200 600 W.m−2.K−1

X3 Internal resistance R0 1 · 10−3 18 · 10−3 Ω
X4 State Of Health SOH 98 102 %
X5 Radial thermal conductivity λr 0.77 1.55 W.(mK)−1

X6 Axial thermal conductivity λz 10.37 45.83 W.(mK)−1

X7 Specific heat capacity Cp 800 1200 J.(kg.K)−1

Table VI.2: Uncertain parameters and bounds of their respective range of variation.

The full numerical model, described in the chapter III, is from now on seen as a black box

functionM, giving the output from its evaluation at some input X. Here, the purpose of the

study is to estimate the cell’s temperature at given times of the simulation. The output of this

black box computational modelM is a vector of the temperatures of interest Tqoi(t) evaluated

at several times. Let us define the output vector of p elements as T = [T1, ..., Tp] with Ti the

temperatures at the times ti, such that Ti = Tqoi(ti). The numerical model evaluation on the

input X results in the output vector T according to

T =M(X). (VI.1)

One Uncertainty Quantification objective aims to compute some statistics on the outputs of

interest. The current study sets the attention on the first and second-order statistical moments
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of the output vector components, namely the mean and variance. For each component Ti of

the vector of interest T those quantities are denoted as:

Statistical mean: E[Ti]

Statistical variance: V[Ti] (VI.2)

Practically, the Monte Carlo method is used to compute those statistics on the outputs of

interest. From a large number NMC of input samples X(k), k ∈ [1, NMC ], the numerical

model is evaluated through samples of the output:

T(k) =M(X(k)) = [T (k)
1 , ..., T (k)

p ] (VI.3)

Then, the statistical mean and variance of each output Ti are evaluated using:

E[Ti] = 1
NMC

NMC∑
k=1

T
(k)
i

V[Ti] = 1
NMC

NMC∑
k=1

(
T

(k)
i − E[Ti]

)2
(VI.4)

To perform these computations, each input variable Xi is sampled according to a uniform

distribution π[Xi] described in Tab. VI.2:

Xi ∼ π[Xi] = U
(
Xmin
i , Xmax

i

)
, i = 1, ..., 7 (VI.5)

VI.2.3 Surrogate model construction

To reach a proper convergence of these statistics, the number of samples NMC should be high

enough. The convergence requires numerous evaluations of the computational model, which

turns out to be costly. The way around consists in building a mathematical function MK ,

mapping the output T with the input X:

MK : R7 → Rp

X 7→ T (VI.6)

Here, we build this function using a Kriging surrogate model. To construct the model, we

build a set ofNLHS points called the Design of Experiments (DOE). The Design of Experiment

is obtained by sampling NLHS vectors of inputs and by running the numerical model for each

of these inputs. The Design of Experiments is the set of points denoted as

TDOE =
{(

X(i),T(i)
)
, i = 1, ..., NLHS

}
(VI.7)
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To generate the Design of Experiments, the inputs points are sampled using the Latin Hy-

percube Sampling technique [61]. Here the Design of Experiments is made of NLHS = 170
samples, chosen after a convergence study on a quantity of interest. Regarding this conver-

gence study, the quantity of interest to assess the convergence of the design of experiment

is the maximal temperature taken from the p values of the output vector. Two Design of Ex-

periments are built constructed using respectively 170 and 420 samples. Then two surrogate

models are constructed from these Design of Experiments, and this scalar quantity of inter-

est is propagated using both models. We assess the convergence by examining the resulting

distribution of the quantity of interest. The distributions computed from both models are

illustrated in Fig. VI.1. The two distributions overlap over their full support, and then we can

consider that the surrogate model has converged. We stick then to the Design of Experiments

containing 170 samples for the surrogate models constructed later in this chapter.

Figure VI.1: Convergence assessment of the surrogate models, for the scalar quantity maxi-
mal temperature.

Now that the convergence of the surrogate modelMK has been shown, its accuracy with

respect to the numerical modelM is assessed by evaluating both models on an independent

set of Nval = 60 input points. Values of both models are plotted against each other. As shown

in Fig. VI.2, the values are close to the y = x straight line for most input points. These

results give reasonable confidence in the ability of the surrogate model to represent the true

numerical model.
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Figure VI.2: Plot of the values of temperatures computed by the surrogate model (YKriging)
against the values from the numerical model (YNumerical model), evaluated on an independent
validation set of input points.

Finally, to compute the statistics on the quantities of interest, Monte Carlo sampling is applied

usingNMC = 4.2·104 evaluations on the surrogate modelMK instead of the actual numerical

modelM.

VI.2.4 Bayesian calibration problem

One problem when doing Uncertainty Quantification is the formulation of appropriate prior

distributions of the input parameters. The issue is to obtain more informative distributions

for the input parameters, which give a model response close to the experimental data and

with reduced variability in the output predictions.

The experimental measurements of temperatures Texp can directly be used to learn more

informative distributions of the inputs by solving a Bayesian Inverse problem [73]. Following

the Bayes paradigm, the objective is to compute the distributions of the inputs by taking

into account the information provided by the experimental data. It is called the posterior

distribution, and it can be computed using the Bayes theorem as seen in the section V.6.

Taking the notations of the current chapter, the Bayes formulation reads:

π[X|Texp] = π[Texp|X] · π[X]
π[Texp] (VI.8)

π[Texp|X] stands for the likelihood and π[X] is the prior distribution defined in the previous

section. π[Texp] is seen as a normalization constant called the marginal likelihood. The
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posterior distribution π[X|Texp] is computed using a Markov Chain Monte Carlo algorithm.

VI.2.5 Global sensitivity analysis

Specifically, in the framework of the sensitivity analysis study, we are not interested anymore

in vector outputs of the black box model but scalar outputs. Then, in this part, the black-box

model is a function mapping the seven inputs in X into a scalar quantity. The according model

is denoted MY . Considering those notations, the ANOVA decomposition of the model MY

can be written as follows:

MY (X) ANOVA:= MY
0︸︷︷︸

mean

+
7∑
i=1
MY

i (Xi)︸ ︷︷ ︸
first order

+
7∑

i1=1

7∑
i2=i1+1

MY
i1i2(Xi1 , Xi2)︸ ︷︷ ︸

second order

+ · · ·+MY
1,...,7(X1, ..., X7)︸ ︷︷ ︸
seventh order

.

(VI.9)

Let’s write here the definition of the Sobol indices seen in chapter V, with the notations of

this section. The first order Sobol index S1
i for an input variable Xi is defined by:

S1
i =

V
[
E[MY (X)|Xi]

]
V [E[MY (X)]] (VI.10)

The total Sobol index STi for the variable Xi is computed as follows:

STi = 1−
V
[
E[MY (X)|X̄\i]

]
V [E[MY (X)]] (VI.11)

where X̄\i represents the set of all input variables and their combinations except Xi.

VI.3 Results

VI.3.1 Posterior distributions calibrated from the Datasheet cycle case.

The Bayesian inverse problem is solved using the Datasheet cycle case (Tab. VI.1) which the

experimental results are described in III.3.2. In this section, the simulation is performed only

on the first 250 seconds of the cycle during the discharging sequence. The experimental data

Texp selected to learn the distributions is constituted of six measurements of temperatures at

different times texp = [49, 99, 129, 159, 199, 239] seconds. For computational reasons re-

lated to the performances of the MCMC algorithm, the choice has been made to compute the

posterior distributions with only six measurements of the discharging sequence. In Fig. VI.3

are shown the posterior distributions of the seven uncertain inputs parameters obtained after

running the MCMC algorithm. The units for each of the parameters are given in Tab. VI.2.

The first consideration from these results is that the supports of the posterior probability den-

sity functions are significantly more narrow than the prior uncertainties arbitrarily defined in
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section VI.2. The MCMC simulation allowed us to detect which values of the inputs are more

likely to give a numerical response close to the experimental data, i.e. the values close to the

peak of each distribution.

Figure VI.3: Posterior distributions of the input parameters after the calibration.
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Because of narrower shapes of inputs’ distributions, the variance of predicted tempera-

tures is expected to be reduced. In Fig. VI.4, distributions of the temperatures computed

by the surrogate model are shown, using the prior (blue) and posterior (red) distributions

as inputs. The uncertainty in the predicted temperature is significantly decreased. When

sampling the surrogate model from the posterior distributions, the values of the inputs X are

more likely to be closer to each other compared to a sampling from the broad prior distribu-

tions. This fact might be an interpretation to explain why the model’s response comprises a

narrow range of values.

In addition, one can note that the distributions of the posterior predictions embrace well

the experimental data and its measurement error envelopes. Then, an outcome of the MCMC

simulation stands as a validation of the numerical model ability to reproduce the experimen-

tal data through its accurate representation with the surrogate model.

Figure VI.4: Distributions of the prior and posterior predictions for the six quantities of
interest. Comparison with experimental measurements and error envelopes.

The approach can be extended to more than six quantities of interest, i.e. to many output

temperatures at times covering the whole discharging sequence. In a similar way to section

VI.2.3, a surrogate model is constructed mapping the inputs X ∈ R7 to a vector of 49 tem-

peratures of interest T = [T1, ..., T49]. The mean and variance of each temperature of interest

153



Chapter VI – Calibration of thermo-electrical parameters under uncertainties

are computed using Monte Carlo estimations and the surrogate model. These statistics are

computed by sampling the surrogate model from the prior and posterior distributions of the

inputs. The comparison’s results between the prior and posterior sampling are shown in Fig.

VI.5. The blue and red crosses represent the mean of the estimated temperature of interest

with the prior and posterior distributions, respectively. The blue and red areas represent the

95% confidence interval, computed with prior and posterior distributions, respectively.

This plot of the statistics on the whole simulation cycle sampled from the posterior and

prior distribution strengthen the results from Fig. VI.4. The uncertainty reduction in the

numerical prediction is highlighted by comparing the standard deviation envelopes. The

standard deviation and mean sampled from the posteriors compare well to the experimental

measurements, which gives reasonable confidence in the ability of the numerical model to

reproduce the experimental temperature measurements.

Figure VI.5: Posterior and prior predictions of the surrogate model mean and 95% confidence
interval. Comparison with experimental measurements and error envelope.
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VI.3.2 Propagation of the calibrated distributions on the experimental Race
Cycle case

Distributions calibrated from the experimental Datasheet cycle can be used to reproduce

another experimental cycle, the Race cycle. The cycle reproduced here consists of the dis-

charging sequence of 672 [sec] and the rest sequence, with no electric current submitted for

400 [sec]. The surrogate model is constructed from a set of numerical simulations repre-

senting these experimental conditions. In the present case, the surrogate model outputs 53
temperatures of interest covering the full simulated time of 1072 [sec]. The posterior distri-

butions calibrated from the DS experimental conditions, obtained in VI.3.1 are directly used

to sample the inputs and estimate the mean and variance of each temperature of interest

through the surrogate model evaluations. The results are shown in Fig. VI.6, with the mean

and envelope of the 95% confidence interval.

The plot of the mean values and standard deviation envelopes are close to the experi-

mental measurements. These results show that the values and the distributions of the inputs

learned from the Datasheet cycle are reproducible with other conditions. This trend ensures

further confidence in the numerical model behavior and the learned values of the inputs.

Figure VI.6: Posterior predictions in the Race Cycle case, surrogate model mean and 95% CI
interval. Comparison with experimental measurements.
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VI.3.3 Forward propagation of calibrated distributions on a simulated race
cycle and sensitivity analysis

This section aims to use distributions and associated probabilities for the input parameters

from the previously described experimental conditions in a pure design perspective. Here, the

input conditions for the electric current simulate an actual race cycle, composed of numerous

alternating charge and discharge sequences. These sequences represent a real usage of the

vehicle submitted to racing conditions. The simulated time is 1115 [sec].

The discharging sequences stand for the short and numerous accelerations of the car.

The charging sequences represent the regenerative braking that loads the battery pack when

the car slows down. The alternation of these sequences responds to some Exoes’ customer

needs. The customer, a car manufacturer, plans to operate a racing car on the circuit for a

given duration and desires to assess if the BTMS can maintain the batteries in safe ranges of

temperatures during the whole racing program. Note that an additional pre-processing part

is added in the numerical model in this perspective. The electrical current submitted to the

batteries is computed directly from the power instructions of the electrical engine, fulfilling

the manufacturer specifications for the race program. This part is off the scope of the current

study. The contribution here starts from the resulting electrical current values, depending on

time, which is inputted in the model as previously described in the manuscript.

The electrical part of the numerical model is adapted to represent the voltage and state of

charge of a full battery pack composed of thousands of Li-ion batteries. The equations used

are Eq. III.13 and Eq. III.11. The cells’ connections within the battery pack allow computing

the equivalent voltage and electric current, using Kirchoff’s laws. For the thermal part, the

heat transfer is still computed for an equivalent single-cell Li-ion representing the battery

pack as described in the section III.2.1 (chapter III).

A surrogate model is built to map the inputs X to 56 temperatures of interest covering

the simulated time. We use the same procedure as in sections VI.3.1 and VI.3.2. Then,

inputs are sampled according to the calibrated distributions, and Monte Carlo evaluations

give the mean and variance of the temperatures of interest. Fig. VI.7 shows the mean and

standard deviation envelopes of the surrogate model temperature predictions by sampling

from the prior (blue) and posterior (red) distributions. As in Fig. VI.5, the sampling from

the posterior shows a significant variance reduction in the model predictions. The calibration

process is essential when designing the system, as the temperature interval of 95% confidence

is much narrower than sampling from the priors.

Besides, the mean for each of the temperatures of interest presents periodic and local

slopes switch while having a global rising trend. This trend results from the high-frequency

alternation of charging and discharging sequences, while the temperature of the Li-ion cell is

slightly rising during the simulation.

To further analyze elements on the BTMS’s behavior under these real racing conditions,

a global sensitivity analysis is performed by computing the Sobol’ indices. In this section,

we focus on both the electrical and thermal behaviors of the system. Hence, the quantities

of interest are the minimal value of the state of charge, the minimal value of voltage and

the maximal value of temperature reached during the simulated time. These quantities are
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Figure VI.7: Posterior and prior predictions of the surrogate model mean and 95% confidence
interval, for the real racing case.

denoted:

Y1 = min
t∈[t0,tf ]

SOC(t)

Y2 = min
t∈[t0,tf ]

V (t) (VI.12)

Y3 = max
t∈[t0,tf ]

Tqoi(t)

Practically, another surrogate model is constructed to map the inputs X to the three scalar

quantities of interest. The total Sobol’ indices and first order Sobol’ indices for each quantity

of interest are shown in Fig. VI.8 and in Fig. VI.9 respectively and detailed in Tab. VI.3 and

Tab. VI.4.

ṁ hf R0 SOH λr λz Cp

Y1 0.0000 0.0000 0.0098 0.9879 0.0000 0.0000 0.0000
Y2 0.0000 0.0000 0.1360 0.8581 0.0000 0.0000 0.0000
Y3 0.1955 0.1668 0.5937 0.0148 0.0029 0.0220 0.0002

Table VI.3: Total Sobol’ indices for the three quantities of interest.

The total and first-order Sobol’ indices underly the same conclusions about the model’s

behavior. There is no significant difference between the results from the total and first-order
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Figure VI.8: Total Sobol’ indices for the three quantities of interest.

ṁ hf R0 SOH λr λz Cp

Y1 0.0021 0.0021 0.0114 0.9901 0.0021 0.0021 0.0021
Y2 0.0046 0.0046 0.1383 0.8636 0.0046 0.0046 0.0046
Y3 0.2053 0.1748 0.5978 0.0236 0.0123 0.0313 0.0096

Table VI.4: First order Sobol’ indices for the three quantities of interest.

indices for all three quantities of interest. Then, input parameters do not feature a strong

correlation effect.

About the minimum of SOC, the parameter showing the most significant impact on its

variability is the battery’s state of health with a total and first-order Sobol index value close

to one. For the minimum voltage, the state of health has the most significant influence on its

variability. The battery’s internal resistance has a non-negligible impact as well, with Sobol’

indices around 0.13. Physically, the state of charge of the Li-ion cell is directly related to its

voltage, so it was expected to see the SOH having the most considerable influence on this

parameter. In the same way, the internal resistance is also physically directly related to the

voltage. However, the Sobol analysis shows that the impact of the resistance is smaller than

the state of health on the voltage variability.

Finally, the thermal parameters influence the maximum temperature computed during the

simulations. The first lesson is that the internal resistance presents the most significant impact

on the variability of the maximal temperature. Another consideration from first-order Sobol’

indices in Fig. VI.9 is that the parameters related to the convective heat transfer, namely the

mass flow rate ṁ and the heat transfer coefficient of the fluid hf have indices around 0.2.

The impact of these parameters is considerably more important than the parameters playing

a role in the heat equation within the battery, namely λr, λz and Cp. In conclusion, through
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Figure VI.9: First order Sobol’ indices for the three quantities of interest.

the internal resistance R0, the Joule effect seems to be the critical element governing the

thermal behavior of the battery.

VI.4 Chapter conclusion

In this chapter, based on the model and the experimental test case described in chapter III, a

simulation under uncertainties of the immersion cooling system was performed. Uncertainty

quantification methods, such as Kriging surrogate models and Monte Carlo evaluations, al-

lowed treating the uncertainties coming from the model’s physical parameters. Experimental

data were used directly to compute posterior distributions of the input parameters by solv-

ing the Bayesian inversion problem. Posterior learned distributions significantly reduced the

uncertainty in the model prediction of temperatures. The model and calibrated distribu-

tions showed good reproducibility capability when comparing the numerical results to the

experimental data under different conditions. Specifically, the support of the posterior dis-

tributions is significantly reduced with respect to the prior. The propagation of the posterior

distributions showed a good ability to match the experimental data, with a very narrow 95%
confidence interval in both Datasheet and Race cycles. Finally, the posterior distributions and

the numerical model were used to assess the temperature response of a BTMS under realistic

racing conditions.

The Sobol sensitivity analysis showed the role of each uncertain input in the variability

of the several quantities of interest considered. First, the total and first-order Sobol indices

showed very similar values for the three quantities of interest. Then the uncertain param-

eters considered don’t show a strong dependency between each other in the variability of

the outputs. Also, the sensitivity analysis showed that the SOH is the most influential pa-

rameter for the variability of the minimum voltage and SOC with values around 0.9 and 0.8,
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respectively. For the maximum temperature, the internal resistance R0 is the most important

parameter with a total index close to 0.6. The mass flow rate and heat transfer coefficient

show a significant influence with total indices around 0.2.

This sensitivity analysis gives further insights related to a battery thermal management

system simulation. For the thermal part, it is crucial to have an accurate model to represent

internal resistance because of its impact on the battery temperature evolution. Also, repre-

senting the conjugate heat transfer by developing 2D or 3D CFD models for the fluid domain

could provide more information about assessing the value of the heat transfer coefficient

and guess the effect of the mass flow rate. Finally, for the electrical parameters, the state

of health parameter should be simulated with reasonable accuracy to correctly represent the

effects induced by the ageing of the batteries. As shown in this chapter, the SOC of the bat-

tery depends strongly on its SOH. And some references as [87, 26] claims the impact of the

SOC on the internal resistance parameter. Developing enhanced models for these parameters

should allow representing the thermal and electrical behavior of Li-ion batteries with higher

fidelity.
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CHAPTER VII

INTERNAL RESISTANCE MODEL CALIBRATION UNDER

UNCERTAINTIES

Chapter abstract
This chapter is devoted to the application of UQ techniques to the test case pre-
sented in section IV.4 with the CFD solver. We propose an innovative way to
deal with the uncertainties related to internal resistance. A model for the internal
resistance dependent on temperature is constructed, allowing the treatment of
the uncertainties coming from this parameter. Prior uncertainties on the inputs
are first propagated thanks to a surrogate model. The prior distributions lead to
a considerable variation in the temperature prediction. Then, Bayesian calibra-
tion of the internal resistance model parameters using experimental temperature
measurements is performed. The uncertainty in the inputs is significantly reduced
in the outcoming posterior distributions. These posterior distributions are propa-
gated, and we obtain a much more narrow confidence interval in the temperature
predicted by the numerical model. Finally, an exploratory action is conducted to
construct an internal resistance model dependent on both the state of charge and
the temperature. This model is implemented in the CFD solver, and we can assess
the impact of low SOC on temperature evolution. The results presented in this
chapter have been submitted for publication in a journal.
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VII.1 Introduction

From the last chapter, we have shown that the transient temperature prediction was strongly

dependent on the internal resistance parameter through the sensitivity analysis using the

low fidelity model. The internal resistance plays an important role in the source term of

the heat equation within the batteries. This chapter aims to concentrate the efforts on a

comprehensive description of this parameter. The CFD model is used here to accurately

predict the immersion cooling configuration temperature. A model for the internal resistance

is constructed following physical constraints and literature references. In this chapter, the

test case presented in the section IV.4 from chapter IV is used to perform this analysis on

the resistance model. Specifically, the test case measures the temperature at the surface of

batteries immersed in air, heated by a constant electrical current.

Using an uncertainty quantification approach, the main objective of this chapter is to

represent with reasonable precision the uncertainties inherent to the internal resistance pa-

rameters and evaluate their impact on temperature prediction. Also, the experimental tem-

perature measurements provided in the present test case will reduce the uncertainties on the

resistance model parameters and the resulting temperature prediction by solving the Bayesian

calibration problem.

From a more practical point of view, the methodology proposed here allows reconstruct-

ing the shape of the internal resistance model indirectly from measurements of temperatures,

with confidence intervals resulting from the uncertainties on the parameters. This approach

might be of interest for battery systems designers as temperature measurements in battery

packs are more feasible in practice than direct measurements of resistance on the batteries.

Finally, going back to a deterministic framework, we enrich the internal resistance model

by considering its dependency on the state of charge. A model is constructed directly from

resistance measurements at different SOC and temperature values by interpolating the data

using Kriging. However, this simple approach allows assessing with small implementation

effort the impact of the SOC on the resulting temperature of the heated batteries through the

CFD solver.
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VII.2 CFD model and source term definition

VII.2.1 Choice of the CFD configuration

In Section IV.4, we illustrate the comparison of the temperature prediction between the 2D

and 3D solvers. Specifically, we focus on the transient temperature evolution at the surface

of the cell 1, where the position of the computed temperature is shown in Fig. VII.1.

We observe in Section IV.4 that the 3D configuration permits to represent the effects due

to natural convection, contrary to the 2D. On the contrary, we expect that the temperature

prediction will be more influenced by the wide range of values taken by the resistance model,

due to uncertainties, than the slope changes caused by the natural convection represented

in 3D. Furthermore, as stated earlier in this manuscript, the uncertainty forward propaga-

tion approach requires numerous runs of the CFD solver. Running the simulations in 2D

represents a significant reduction in computational costs than in 3D. The construction of the

Design of Experiment with the 3D simulations was then considered too costly. Finally, the

2D configuration is selected to compute the transient temperature evolution and perform the

uncertainty quantification study presented in this section.

meshed solid
domain

meshed fluid 
domain

1

4
3
2

Figure VII.1: Recall of the test case configuration and location of the temperature of interest
(white cross)

VII.2.2 Construction of the internal resistance model

Let us now focus on the construction of the internal resistance model, which is input of the

source term for the heat equation in the solid domain. As described earlier, we recall that the

source term represents the ohmic heating of the batteries through the internal resistance and
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input electric currents evaluations:

qg ∝ RI2

So here, we want to construct a mathematical function representing the internal resistance

R. When dealing with experiments not reaching very low values of state of charge for the

batteries, the sole temperature dependence stands as a reasonable assumption. Several refer-

ences studying properties of Li-ion batteries assume that the internal resistance is dependent

on the temperature, in a cubic polynomial form [106, 68, 57]. The objective here is then to

build a direct relationship between the resistance of the cell and its temperature, following

some physical constraints, i.e. T 7→ R(T ). Specifically, the built model R(T ) is imposed

to be strictly decreasing within the temperature range of the experiment following several

works [106, 72, 87, 57]. These works constructed their model from direct internal resistance

measurements at different temperatures.

A Bezier parametrization is chosen to model the resistance, requiring the definition of

some control points. Note that the expected monotonic behavior of the resistance can be

naturally imposed with a suitable choice of the control points. Within the range of rele-

vant temperatures with respect to usual Li-ion cells problems, four values of temperature

are selected, equally spaced, as input values. Then, four corresponding internal resistance

values are taken for these selected temperature values. This choice yields four temperature-

resistance control points. Then, the model is built using a Bezier curve parametrization. The

four points {(T0, R0), ...(T3, R3)} define the Bezier curve representing the R(T ) model. An

illustration of the Bezier parametrization in modelling the resistance R(T ) is given in Fig.

VII.2 with five curves and their associated control points (corresponding to the same colour),

within the range of temperature of the experiment represented by the vertical red dotted

lines. Note that the mathematical behavior of each model is controlled through the vari-

ability of the control points. Practically, a direct relationship is established from the selected

Bezier points and the explicit expression of the polynomial model R(T ). The relation be-

tween the control points coordinates and the coefficients of the R(T ) polynomial is explicitly

implemented, based on the formula given in [119].

VII.2.3 Uncertainty representation through the internal resistance model

Uncertainties of the internal resistance can be represented by modelling the distribution of

the control points variability using the Bezier parametrization. Using the probabilistic frame-

work defined in chapter V, a random variable Ri is introduced, giving the resistance value at

the temperature abscissa Ti, i ∈ [0, 3] of each control point.

The random variables Ri map the event ω from a probability space into a value of resistance

in [mOhm]: Ri : ω 7→ Ri(ω). Then we construct the random vector composed by the four

resistance values:

R : ω 7→ R(ω) = (R0, R1, R2, R3) (VII.1)

The uncertainty coming from the internal resistance parameter is then represented through
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Figure VII.2: Five samples of the Bezier control points and corresponding R(T ) curves
(matched by colors). The red dotted lines represent the temperature range of the experi-
ment. The four abscissa of the control points are: T0 = 290 [K]; T1 = 294.8 [K]; T2 = 299.5
[K]; T3 = 304.1 [K]

the random vector giving the Bezier construction points of the R(T ) curve. We will discuss

later the choice for the distributions associated with the random vector R and then to each of

the random variables Ri.
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VII.3 Uncertainty forward propagation

Now that we can represent the uncertainties from the internal resistance model, it is time to

assess their impact on the transient temperature prediction. As described in previous chapters

of the manuscript, we perform an uncertainty propagation with a Kriging surrogate model

to replace the expensive CFD simulations. The definition of the model and its validation are

covered in the following.

VII.3.1 Definition of the surrogate model

Formally, the problem under consideration here is the computation of mean and variance for

the quantities of interest, resulting from the uncertainties modeled by the random vector R

defined just earlier. The quantity of interest outputted by the model is a vector of p temper-

atures, at p times of the transient simulation: t0 ≤ t1 ≤ ... ≤ tp ≤ tf . They are stored in a

vector denoted: T:

T = (T1, ..., Tp) (VII.2)

The statistics of interest are the mean and variance of the temperatures Tj at fixed times

tj of the experiment. Their computation from the Monte Carlo samples leads to the following

expressions for the mean E[·] and variance V[·] for each output Tj:

E[Tj ] = 1
NMC

NMC∑
k=1

T
(k)
j

V[Tj ] = 1
NMC

NMC∑
k=1

(
T

(k)
j − E[Tj ]

)2
(VII.3)

The evaluation of many samples NMC to make the statistics converge properly corre-

sponds to as many runs of the CFD model, each corresponding to an evaluation of the com-

putational model with an internal resistance model R(k)(T ) as input. It turns out to be

prohibitive with the present CFD model, which presents a high computational cost.

Then we build a surrogate model of the vector quantity of interest as a function of the

input parameters, which can be used instead of evaluating the CFD model. Practically, let’s

define for the surrogate model the input as a vector of four sampled values of resistance

R = [R0, ..., R3]. The output is represented by the vector T of p temperature of interest values

T̃k, at different times of the experiment, as defined just above. To represent the full simulated

time tf = 1600 sec, we choose to use p = 81 values in the vector of output temperatures.

MK : R4 → Rp

R 7→ T (VII.4)

The Kriging model is constructed from a Latin Hypercube Sampling design of experi-

ments. The LHS method was used to sample NLHS = 153 models for the internal resistance

R(i)(T ), i ∈ [1, NLHS ]. Then, a CFD simulation is performed for each input R(i), providing the
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output vector of temperature values T(i). The points obtained after this process, constituting

the Design of Experiments TDOE are denoted as:

TDOE =
{(

R(i),T(i)
)
, i = 1, ..., NLHS

}
(VII.5)

The expensive part in terms of computational cost is the construction of the Design of

Experiments: each of the NLHS simulations was performed in parallel on an HPC cluster

PlaFRIM, using 36 CPU cores, for a computational time of around 40 minutes. So the overall

cost for the Design of Experiments construction involved 153× 36 cores ×40 minutes.

Once the surrogate model is built, we should assess that it represents the numerical model

accurately. The Fig. VII.3 illustrates the evaluation of temperatures by the surrogate model

for some inputs R(i) versus the one evaluated with CFD. All the points overlap close to the

y = x line, showing an excellent accuracy of the surrogate model. In practice, an other

validation Design of Experiments T valDOE containing Nval = 82 points, was used to perform

this validation.

Figure VII.3: Comparison of surrogate model evaluations of temperatureMK with the CFD
modelM for given inputs R(i). The red line represents the first bisector curve.
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VII.3.2 Choice of the prior distributions

Excepted the physical constraints detailed above on the shape of the resistance model, no

a priori information is known on the behavior of the resistance model. For this reason, the

introduced random variables Ri are assumed to follow a uniform distribution. A physically

sound interval of variation is considered from which the resistance values can be obtained by

sampling the random variables following the uniform distribution:

Ri ∼ U([Rmini , Rmaxi ]) for i = 0, ..., 3 (VII.6)

The amplitude of these intervals was determined from several trial runs on the CFD simula-

tion, with different expressions of R(T ) models. As described earlier in the chapter IV in the

test case description, the L2 error between the experimental measurements and the predicted

temperature was assessed for those different trial runs. The source term expression leading

to a sufficient small L2 error was selected. This so-called candidate polynomial is denoted

RcandL2(T ). Supports of uniform distributions were chosen such that the CFD runs can over-

lap with the experimental data at all times of the simulation. More precisely, this approach

led to selecting a 30% amplitude around the candidate polynomial for each of the four Bezier

points. So, we have then fully defined the prior distributions for the input random vector

R = (R0, R1, R2, R3).

VII.3.3 Results of forward propagation

From these prior distributions, we sample using Monte Carlo large numbers of realizations

of the random vector R. For each of these samples, a run with the surrogate model MK is

performed. Then, we compute the mean and variance of the temperatures as described in

Eq. (VII.3). The mean and variance envelope, corresponding to the 95% confidence interval

of the surrogate model response, is represented by the blue dots and envelope in Fig. VII.4.

The CFD run with the polynomial RcandL2 is also overlapped.

This forward propagation result shows that our choice of prior distributions covers the

experimental measurements and error envelopes for the full simulated time. Also, the mean

of the surrogate response from the prior distribution overlaps well with the CFD model re-

sponse. Then, we can assess that this modeling approach is quite satisfying regarding the

ability of the model to reproduce the experimental data. The prior uncertainties assumed for

the internal resistance seem consistent with the problem’s physics and the CFD response.

Here we highlighted the interest of taking into account the input uncertainties from the

resistance, compared to a deterministic approach using the CFD model and a single input

resistance model. Indeed, the surrogate model response variability is non-negligible when

the prior uncertainties on the internal resistance model are considered. Furthermore, if the

mean response of the surrogate model seems to be in fair agreement with the experimen-

tal measurements, the response variability increases with time as the temperature reaches

higher values. Indeed, one can note that the confidence interval amplitude increases with

the simulation time. The prior distribution covers a quite extensive range of resistance values

taken by the different sampled R(T ) models. The values of resistance taken by the model
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are quite variable. Then the source term evaluations present significant differences from one

sample run to another. These differences are traduced in the temperature prediction by sig-

nificant slopes changes between all the samples. As time increases, the range of predicted

temperatures gets bigger.

So the current results could be not satisfying for a robust design, as the amount of in-

formation provided by the prior distributions increases the uncertainty significantly on the

temperature with the simulated time. The following section performs the calibration process

to maintain this uncertainty in a smaller range over time.

Figure VII.4: Mean and 95% CI with the prior distributions

VII.4 Calibration of the resistance model using experimental data

In this section, the approach considered consists of using the experimental data directly to

reduce this variability in the temperature prediction. We illustrate two methods to incorpo-

rate the information brought by the experimental measurements to correct the temperature

prediction. The difference between a deterministic and Bayesian calibration is shown, from

the implementation to the results and resulting analysis that can be done accordingly.
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VII.4.1 Deterministic calibration with the L2 error

This section sets the attention on the deterministic calibration of the resistance model input

parameters, i.e. the four values R1, ..., R3 defining the Bezier curve. Here the approach is

to perform a deterministic optimization by minimizing the L2 error between the temperature

predictions from the CFD model and the experimental measurements. The L2 error, denoted

here EL2 for a CFD run with a given input model R(T ) is defined by the sum of discrepancies

between the temperature evaluated by the CFD model and temperature measured experi-

mentally at each time tj where a data is available. The computation of the error is illustrated

in Fig. VII.5. It corresponds to the sum of the distances (materialized by the black lines)

between the CFD values and experimental points at each time ti where a data is available.

EL2(R(T )) =
Nexp∑
j=1

(
TCFD(R(T ), tj)− T expj

)2
(VII.7)
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Figure VII.5: Computation of the error between CFD and experimental data

From the many CFD simulations in the plan of experiment, another Kriging surrogate model

fK defined in Eq. (VII.8) is built, mapping the values of resistance R with the corresponding

L2 error EL2.

fK : R4 → R

R 7→ EL2 (VII.8)

To build this surrogate model, the considered Design of Experiments is denoted as:

T EL2
DOE =

{(
R(i), E(i)

L2

)
, i = 1, ..., NLHS

}
(VII.9)
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Then a deterministic optimization problem is solved to get the values of input R which

minimizes the function fK . This outcomes in an optimized vector called RL2 defining a model

RL2(T ) which gives the CFD response the closest to the experimental measurements, in Fig.

VII.6 (green). The temperature prediction resulting from the CFD computation using this

input resistance model can be seen in Fig. VII.7 (green).

VII.4.2 Bayesian calibration

The second approach is to consider a Bayesian calibration of the parameters [73]. The ob-

jective is to compute the distribution of the input parameters R = [R0, ..., R3] conditioned to

the experimental data Texp. Practically, this is the distribution of inputs leading to the model

response the closest to the experimental data in a Bayesian sense. Following Bayes theorem,

the relation between the posterior distribution, the likelihood, the marginal likelihood and

the prior distribution reads:

π[R|Texp] = π[Texp|R] · π[R]
π[Texp] (VII.10)

where π[R|Texp] is the posterior distribution, π[Texp|R] the likelihood and π[R] the prior dis-

tribution. π[Texp] is the marginal likelihood used essentially as a normalization constant.

The objective of the Bayesian calibration is to compute the posterior distribution. In this

case, the prior distribution of the input parameters was defined in section VII.2.3. There is no

a priori information on the input values, except an acceptable range of variation, and then a

non-informative prior (uniform distribution) was chosen. The posterior distribution is com-

puted using a Markov Chain Monte Carlo algorithm, the Adaptive Metropolis, as described in

section V.6.3.

For computational costs reasons when running the MCMC algorithm, the experimental

data selected for the calibration is constituted of only 12 points. The 12 points also cover the

full simulated time from t0 to tf , but with sparser data. Then a specific surrogate similar to

MK is built, mapping the four values of resistance to 12 temperature evaluations.

The resulting posterior distributions are represented in Fig. VII.6. The first outcome of

the calibration is that the posterior distributions (red) present a narrower shape than the

uninformative priors (blue). The Bayesian inverse problem allowed us to determine which

interval of the input values are likely to give a model response close to the experimental

data. Indeed, for all four parameters, the posterior distributions present a single posterior

mode (known as maximum a posteriori) and a low probability region (queue of the skewed

distributions).

The posterior and prior distributions can be used to sample the input values and com-

pute the statistics of interest defined in section VII.3.1. The uncertainty propagation of the

input prior distributions (Fig. VII.6 - blue) leads to a considerable variation on the numerical

prediction of temperature (Fig. VII.7 - blue), which envelops experimental data systemati-

cally. Considering the posterior distributions (Fig. VII.6 - red), the uncertainty on the input

parameters has been reduced by 73%, 76%, 75%, 47% for the parameters R0, R1, R2, R3
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Figure VII.6: Prior (blue) distributions and posterior (red) distributions of input parame-
ters after Bayesian calibration. In green, resulting values of resistance after deterministic
calibration.

respectively. These reductions are computed as the ratio of the variance of the prior and

posterior distributions of the inputs.

Also, the outcomes of the deterministic calibration are illustrated in this figure. The dif-

ference between the two methods is visible here. The L2 error minimization process gives

deterministic values of resistance for the four points (green squares). Running the CFD sim-

ulation with such inputs should lead to a temperature prediction close to the experimental

data, in the sense of the L2 error we have defined. On the other hand, the Bayesian calibra-

tion gives the distributions of the input values. Rather than selecting a deterministic values

for each best Ri, one can compute probabilities using these posterior distributions. We can

then affirm that the values of the input resistance parameters will occur in a certain range,

with a probability that we are now able to assess. In that sense, the Bayesian calibration is a

more robust approach.

Furthermore, the Bayesian inference allows gaining knowledge on the numerical model re-

sponse. The Fig. VII.7, shows the temperature distributions (red) predicted by the surrogate

model used in the calibration, resulting from the propagation of posterior input distributions

in Fig. VII.6. The posterior predicted distributions are more narrow than the priors. The pre-

dicted variance from prior and posterior distributions, together with the associated variance

reduction, are given in Tab. VII.1. For instance, the uncertainty for the predicted temperature

at t = 1517 [sec] (Fig. VII.7) is reduced by 98% using the posterior distributions of input

parameters. Also, one can note that the variance reduction gets more significant as time in-
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creases. Indeed, the predicted variance computed from the prior increases significantly as the

temperature increases. On the other hand, the calibrated posterior distributions allow main-

taining a very small rise of the predicted variance through time. Thus, even if the variance

computed from the posteriors increases slightly, the variance reduction increases as time and

temperature rise. From a design point of view, this behavior is interesting since the gain of

confidence in the temperature prediction increases over time.

Output temperature at: t = 178 t = 377 t = 577 t = 778 t = 1158 t = 1517

Prior predicted variance 0.001745 0.007332 0.016109 0.027687 0.057450 0.094950
Posterior predicted variance 0.000077 0.000263 0.000470 0.000667 0.001072 0.001789
Relative variance reduction [%] 95.6097 96.4173 97.0825 97.5918 98.1342 98.1154

Table VII.1: Predicted variance using prior and posterior distributions for some temperatures
of interest at given times.

Figure VII.7: Prior (blue) and posterior (red) predicted distributions of the quantities of
interest. In green, result of the CFD model with the RL2(T ) input model.

By including knowledge from experimental data, the uncertainty on the model response

has been reduced, and the quality of the numerical model prediction can be assessed from a

more relevant perspective. The surrogate model computing all the 81 temperatures of interest

is finally used to compute the mean and variance of temperature in more points of the simu-

lated time. Similarly to the forward propagation process in Fig. VII.4, the mean and variance

are computed using the posterior distributions instead. Those results are illustrated in Fig.

VII.8. The resulting mean and 95% confidence interval overlapped with priors’ computation.

First, one can notice that the mean of the model response is slightly different from the prior
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predictions. The calibration changed then the bias of the prediction by the model. The aver-

age response of the model was then deviated due to the posterior distributions learned from

the experimental data. Furthermore, the 95% confidence interval plots highlight the uncer-

tainty reduction outcomes stated earlier with the distribution plots. Indeed, the interval still

gets wider as the time increases, but in a significantly reduced fashion than the predictions

with the priors. We can assess the temperature prediction with reasonable accuracy from this

calibration process as the uncertainty is maintained in a small range for the whole simulation

time.

Figure VII.8: Mean and 95% CI with prior and posterior distributions
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VII.5 Effect of SOC on the Li-ion cells temperature evolution

So far, only the temperature has been considered, which is the input variable of the internal

resistance. This assumption yields convincing results in predicting temperature for experi-

ments where a very low state of charge (SOC) is not reached. Although, the state of charge

might still significantly affect the resistance value when performing full discharge cycles. This

impact on the resistance value is expected to change the shape of the temporal temperature

response from the heated Li-ion batteries. Many studies have proposed methods or experi-

mental investigations to represent the effect of SOC in the model for the internal resistance

[87, 9, 149, 151, 129, 24]. The techniques used in these references mainly measure the

values of resistance at different SOC and temperature points. However, examining these ref-

erences, it is hard to claim a general behavior of the internal resistance depending on the SOC

dependency. Some studies show decreasing trends, as others illustrate a strong dependency

but more complex relationships.

This section proposes a method to consider the effect of SOC and build an internal re-

sistance model accordingly, also based on experimental measurements. The present method

makes easy the implementation of the constructed model in the CFD solver and allows to

predict the temperature response of the heated batteries.

VII.5.1 Construction of an internal resistance model from experimental data

Unlike the previous methodology, where we tried to reconstruct the shape of the internal

resistance model indirectly from temperature measurements, here we start from internal re-

sistance measurements. We try to construct an internal resistance model accounting for the

effect of SOC and temperature based on direct measurements on internal resistance depend-

ing on those two parameters. In this part, we consider a pure deterministic framework, where

the model’s coefficients are not resulting anymore from a stochastic process.

From a number Nexp of available experimental measurements of internal resistance at

different SOC and temperature values, the internal resistance model is constructed using a

Kriging parametrization. The experimental points, materialized by the crosses in Fig. VII.9

and Fig. VII.10, used to construct the Kriging are denoted:

Texp =
{(
SOC(k), T (k), R(k)

)
, k = 1, ..., Nexp

}
(VII.11)

Here the Design of Experiment is the set containing these experimental points. The Kriging

is not used to replace a computational model but as a pure interpolation tool to construct a

model based on given data.

We obtain a Kriging predictor R̂ which depends on the inputs z = (SOC, T ). The

parametrization of this function relies on the definition of correlation functions, describing

the correlated effect of two input points z and z′ on the output R̂. Then, the construction of

the Kriging model consists of optimizing the coefficients (the hyperparameters) by maximiz-

ing the likelihood of observing the construction points with the model. The Kriging predictor

is a random variable indexed by z following a Gaussian distribution of mean µR̂(z) and vari-
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ance σ2
R̂

(z).

R̂(z) ∼ N
(
µR̂(z), σ2

R̂
(z)
)

(VII.12)

Once the Kriging model is constructed, it is evaluated on a large set of test points Xtest.
This set contains N = 1 · 104 points, sampled following a uniform distribution over the range

of variations considered for each input variable. In Fig. VII.9, the mean and variance of the

Kriging predictor R̂(z) are plotted. The locations where the variance is high corresponds to

areas where no experimental data were available. Hence, these locations present a significant

uncertainty on the resistance value, quantified by the variance.

The obtained resistance values from Xtest are also visible in Fig. VII.10 in a 3D shape. In

a nutshell, the parametrization of the internal resistance model allowed to obtain a smooth

surface even with only sparse experimental data available. Also, the probabilistic perspective

inherent to Kriging gives a confidence interval on the values taken by the constructed model

between the construction points.

Figure VII.9: Mean and variance of the Kriging predictor and experimental points used for
construction.

In terms of computational and implementation efforts, it is not convenient to input the

Kriging predictor directly in the CFD model. Indeed, supplementary matrix operations would

be necessary to evaluate the Kriging function R̂(SOC, T ) and compute the source term in

the heat equation at each time step. For this reason, the surface generated by the Kriging

estimator on the N points from Xtest is fitted with bi-variate polynomials, using least square

regression. The polynomial structure is chosen a priori: a maximal degree 5 is considered

for the SOC dependency, and degree 3 for the temperature. The bi-variate polynomial fitting

the Kriging predictor surface is denoted P53. The quality of the fit is assessed, and the final
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Figure VII.10: Kriging surface interpolating the original construction points.

analytical expression of the polynomial reads:

P53(x, y) = a00 + a10x+ a01y + a20x
2 + a11xy + a02y

2 (VII.13)

+ a30x
3 + a21x

2y + a12xy
2 + a03y

3 + a40x
4

+ a31x
3y + a22x

2y2 + a13xy
3 + a50x

5 + a41x
4y

+ a32x
3y2 + a23x

2y3

with x = SOC and y = T

In practice, the SOC is computed using the time variable and the capacity of the cell, as

it is performed in the low fidelity solver ICExo. The reader can refer to section III.2.2 from

chapter III to see the explicit formula (see Eq. (III.11)) linking the value of SOC with the time

input and the electrical current I submitted to the cells. Here the SOH of the cell is 1 and
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the capacity C is taken as the nominal capacity of the cells under study. The time variable

used is the time computed by the CFD solver during the transient simulation.

VII.5.2 Resulting temperature evolution

The resistance model just constructed is used as a source term in the CFD solver. A simulation

similar to the previous one is performed for a longer time tf = 2400 [sec]. The objective is

to discharge the Li-ion cells more than in the previous case with tf = 1600 [sec] and try to

observe a more significant effect of the SOC in the temperature prediction by the solver.

The results of the simulations are shown in Fig. VII.11. The black temperature curve is the

temperature computed with the model RL2(T ), i.e. the model outcoming of the deterministic

optimization performed in section VII.4.1. The purple curve is the temperature computed

with the model R(SOC, T ) using the P53 polynomial.

Because of the parametrization with polynomial P53, the temperature evolution follows

the trend of the curve with RL2(T ). Indeed the resistance field is ’flat’ when the SOC is still

above 50%, and the effect of SOC is not significant in this zone (Fig. VII.10). After t = 1000
[sec], when the SOC goes under 55%, the slope of the temperature curve is increasing. One

can notice that the temperature curves corresponding to RL2(T ) and R(SOC, T ) models

show different slopes from this point. After t = 1600 [sec], when the SOC goes under 30%,

the slope is increasing even more. At the end of the simulation, when the SOC approaches

10%, the curve presents a local and high increase. The resistance value is in the steep and

high-value zone of the field from Fig. VII.10. Then we highlighted the modified behavior of

the temperature response when including the effect of SOC.

Physically, we know from data that the battery’s internal resistance is degrading (signifi-

cant increase) when the SOC is low. Thus, the model R(SOC, T ) allows assessing the impact

of this degradation on the temperature evolution, which was not observable with a model

depending on the temperature only.

VII.6 Chapter conclusion

In this chapter, we illustrated a method for developing an internal resistance model, mainly

responsible for heat generation. A methodology based on Bezier parameterization was pro-

posed to build an internal resistance model dependent on the temperature only, fulfilling

physical constraints acknowledged in the literature.

An accurate and fast to compute surrogate model was built to consider the uncertainties

associated with the parameters driving the internal resistance model. A Bayesian inverse

problem is solved using the experimental measurements of temperature directly. Informative

and narrow posterior distributions are obtained for the uncertain resistance input parameters.

Thus, the uncertainty coming from these parameters is considerably reduced compared to the

prior distribution assumed a priori. For the input parameters, this process allows a maximum

of 76% uncertainty reduction. These posterior distributions are propagated through the nu-

merical model, using the surrogate model. With these informative distributions, uncertainty

on temperature prediction is reduced by at least 95% all along the simulated time.
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Figure VII.11: CFD temperature response with RL2(T ) and R(SOC, T ) models.

Overall, we have illustrated a method to assess the behavior of an internal resistance

model with reasonable accuracy, indirectly from measurements of temperatures of the heated

batteries. Then this accuracy was also quantified as we could assess the according to uncer-

tainty in the temperature prediction.

Finally, an approach to enhance the internal resistance model fidelity is proposed. A resis-

tance model considering the state of charge and temperature’s combined effect is constructed

based on sparse experimental data. The Kriging parametrization allows assessing the rele-

vance of the model regarding the available data while keeping a smooth and realistic shape

of the bi-variate function. The model is propagated through the CFD code, and transient sim-

ulations are performed for longer physical times. The model taking into account the effect

of SOC shows a significant slope increase in the temperature prediction when the Li-ion cells

reach low SOC values at the end of the discharge.

Enhancing the predictive character of this approach would require the use of the Bayesian

framework, and the methodology presented here should be used to calibrate the parameters

governing the bi-variate polynomial resistance model. Additional experimental measure-

ments of batteries’ temperature in full discharge cases would also be required to obtain the

distributions of parameters representative of the overheating induced by the state of charge.
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CHAPTER VIII

CONCLUSION AND PERSPECTIVES

Chapter abstract
This thesis addressed the issue of numerical simulation under uncertainties of
immersion cooling systems for Li-ion batteries. This concluding chapter covers
at a glance the contributions of this work. Then, some perspectives are given to
illustrate some potential future developments.

Outline
VIII.1 Summary of the contributions . . . . . . . . . . . . . . . . . . . . . . . . 181

VIII.1.1 Numerical simulation for the immersion cooling of Li-ion batteries . . . . . 181

VIII.1.2 Uncertainty quantification methods applied to the immersion cooling of
Li-ion batteries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

VIII.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

VIII.1 Summary of the contributions

VIII.1.1 Numerical simulation for the immersion cooling of Li-ion batteries

The first objective of the thesis was to develop numerical tools to address the simulation of

immersion cooling systems of Li-ion batteries. Two main contributions have allowed address-

ing this issue.

Fast and low fidelity solver for immersion cooling (chapter III) First, in close collab-

oration with Exoes, a fast and accurate numerical model (ICExo) has been developed to

simulate the heat transfer for Li-ion batteries immersed in a cooling fluid. The main novelty

of this model is its original approach. The modeling strategy for the heat transfer resolution

significantly reduced computational costs compared to a complete conjugate heat transfer

approach. Here, the heat equation is solved in the solid domain, and the heat transfer be-

tween the fluid and the solid is computed through enthalpy balances along a conduct. The

solver still presents a good ability to reproduce experimental results in terms of temperature

prediction. Also, this model can simulate some electrical parameters evolution (voltage and

state of charge).

Practically, the versatility of this numerical solver allowed us to study the thermal and

electrical behavior of the simulated battery pack for complex input conditions, i.e. unsteady

input electrical currents representing realistic operation conditions of electric vehicles.

This low fidelity solver gives a good overview of the general operation of a battery pack

immersed in a flow of cooling fluid in terms of thermal and electrical performances. In that
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sense, it represents a valuable simulation tool for one who seeks to design an immersion

cooling system and assess its performances from an overall perspective.

High fidelity CFD solver for transient conjugate heat transfer (chapter IV) While the

low fidelity solver showed good predictive capabilities, it cannot solve some of the physical

processes involved in the conjugate heat transfer problems applied on the immersion cooling

of Li-ion batteries. The numerical simulation for this application was then addressed with an

open-source CFD solver, TrioCFD. Based on the Finite Element Method, this code was strongly

validated in the past at CEA on nuclear applications. It was used for the first time on battery

cooling problems during this thesis. The code was validated against another commercial

software, FLUENT, on two different test cases.

Also, the comparison with experimental data from literature showed the good capabilities

of the code to solve this kind of conjugate heat transfer problem. The analysis of the results

compared to the experimental measurements highlighted the importance of the source term

selection and calibration. Also, a comparison of the 2D and 3D simulations on the same test

case showed which features can be represented under these two approaches.

VIII.1.2 Uncertainty quantification methods applied to the immersion cooling
of Li-ion batteries

After performing the deterministic simulations of the immersion cooling problems, uncertain-

ties related to the physical unknowns involved in such systems have been considered. Clas-

sical uncertainty quantification methodologies, described in chapter V, have been applied to

both low and high fidelity numerical solvers.

Overall uncertainty propagation analysis with LF solver (chapter VI) The low fidelity

solver ICExo features various multi-physics modeling parameters, which are uncertain in-

puts. Parameters related to the thermal and electrical physics of the battery and the coolant

flow have been considered uncertain. The effect of the variability of these parameters on

the quantities of interest has been assessed by performing forward uncertainty propagation

assisted with a surrogate model. Based on the input uncertainty, the confidence intervals and

the statistical mean of the temperature evolution have been computed. These statistics on

the quantities of interest have been computed for different experimental conditions.

Also, the sensitivity analysis allowed drawing a hierarchy of the importance of these var-

ious parameters concerning the thermal and electrical performances of the system. For the

maximal temperature reached during the simulated race of the vehicle, the internal resistance

is the most influential parameter. Heat transfer coefficient and mass flow rate of cooling fluid

feature also non-negligible importance on the variability of this quantity. Regarding the first

electrical quantities of interest, the minimum of voltage, the battery’s state of health is the

most determinant parameter. The internal resistance also comes into play but with less im-

portance. Then, the minimum state of charge for the battery is the second electrical quantity

under study. For this characteristic, the battery’s state of health was predominant by far

compared to the others. In a nutshell, the electrical quantities of interest are influenced by
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the battery’s internal resistance and state of health. The thermal parameters influence the

quantity related to temperature: mass flow rate, heat transfer coefficient, thermal conductiv-

ities, and specific heat but with less importance. The most critical parameter is the internal

resistance, which governs the heat source produced in the batteries.

Bayesian calibration of the multi-physics parameters and uncertainty reduction (chap-

ter VI) In parallel to the uncertainty propagation approach, the original experimental data

from Exoes allowed calibrating the low fidelity solver while considering the uncertainties

on the input parameters. Prior uncertainties have been assumed for the input parameters,

based on literature review and the knowledge brought by Exoes experts. The distributions

characterizing these uncertainties were quite large and gave model responses with a large

variability (see the previous contribution). The Bayesian calibration process gave more nar-

row and informative distributions on the inputs values. Also, the forward propagation of

these posterior distributions significantly reduced the width of the 95% confidence intervals

of temperature prediction. These distributions were also used on different physical condi-

tions, and the model’s predictions showed a good comparison with the experimental mea-

surements after the calibration process. Finally, we showed that the information brought by

the experimental data allowed us to reduce the uncertainty on the inputs parameters and the

temperature predicted by the low fidelity solver. Note that the sensitivity analysis previously

stated was performed using these distributions, giving much more informative results on the

estimation of the Sobol indices.

Accuracy assessment of an internal resistance model (chapter VII) Finally, using the

CFD solver for the conjugate heat transfer problem, we proposed a method to construct an

internal resistance model involved in the source term of the heat equation. The methodology

allowed to build an internal resistance model dependent on temperature. The Bezier param-

eterization eased the control of its shape to follow physical constraints. Uncertainties related

to the resistance parameter were represented using this model construction. Prior uncertain-

ties were assumed for each model parameter based on the CFD solver’s temperature response.

Uncertainties were propagated using sampling methods through a surrogate model. The 95%
confidence interval with prior uncertainties embraced the experimental measurements and

error envelopes well. However, as the simulation is transient, the uncertainty traduced by

the width of the confidence interval showed a significant increase over time.

A Bayesian calibration was performed to reduce the prior uncertainties assumed on the

parameters of the resistance model. Based on the experimental measurements of tempera-

ture, the posterior distributions were computed. The posterior distributions of the resistance

values showed a significant variance decrease compared to the priors. The shape of the dis-

tributions also showed a much more peaky shape. Also, the propagation of the posterior

distributions gave a 95% confidence interval on the temperature prediction with a quasi-

steady width over time while embracing the experimental data systematically. Experimental

measurements allowed gaining significant information on the behavior of the resistance pa-

rameter and the resulting temperature prediction.
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VIII.2 Perspectives

We draw here some perspectives for future works.

Calibration of internal resistance model applied on an industrial-scale immersion cool-

ing problem The process performed for the calibration of the internal resistance model

(chapter VII) can be done on a test case closer to a real industrial application. Exoes ex-

pressed some needs in the simulation of natural convection for batteries set up in a realistic

module of immersion cooling. TrioCFD showed good abilities to reproduce the natural con-

vection for such configurations (section IV.4).

The idea of this contribution would be to gather the experimental data of temperature

provided by Exoes from this module, the UQ framework of Bayesian calibration for the in-

ternal resistance model developed during this thesis, and the CFD solver applied on this

geometry. Then we would be able to calibrate the internal resistance model parameters using

experimental data and the simulations, considering the uncertainties on the resistance input

parameters. Finally, after the calibration, we can generate a robust temperature prediction.

Then, one can assess if the CFD predictions, including the reduced uncertainty, match the

industrial constraints the BTMS has to fulfill.

Calibration of internal resistance model including the SOC effect In the section VII.5

(chapter VII), we proposed a method to include the dependence of the state of charge in the

internal resistance model and assess the effect of this parameter on the temperature evolution

of the heated batteries. This enhanced resistance model in the source term was set up as

a bi-variate polynomial to take account of the dependency from temperature and state of

charge. This enhanced internal model could also be calibrated, solving the Bayesian inverse

problem, similarly to Chapter VII. Obtaining meaningful results from calibration requires a

full discharging sequence of the batteries during the experimental measurements. In this

way, we could observe the effect of the low state of charge on the resistance values and then

on the resulting temperature response. We recall that in the present work, the experimental

temperature measurements were available for a discharging sequence going down only to a

state of charge of 30%. Yet, experimental data of resistance supporting the construction of

this enhanced model showed that the effect of state of charge gets significant under 30%. We

can expect that the Bayesian calibration process would also lead to narrow distributions for

all the resistance control points parametrizing the bivariate polynomial.

Anisotropic thermal conductivity of Li-ion batteries in the CFD solver In the Chapter

II (see section II.1.5.3) we have stated the strong anisotropy of the thermal conductivity in

the Li-ion batteries. When computing the conjugate heat transfer between the batteries and

the cooling fluid, this anisotropy can be taken into account in the heat equation in the solid

domain. The thermal conductivity parameter in this equation is no longer a scalar but an

asymmetrical matrix giving the thermal conductivity value in each direction of the domain.

This anisotropic operator has been implemented in TrioCFD by collaborators at CEA.
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During the thesis, a part of the work not covered in this manuscript has been dedicated

to validating this new operator’s behaviour in TrioCFD. This operator was validated on an

experimental test case presented in [38]. It is the case of cylindrical batteries heated radially

with a steady heat source. The experimental results were reproduced with TrioCFD by solving

only the heat equation in a cylindrical battery represented in a 2D geometry. In this case, as

stated in the chapter II, the radial conductivity is much lower than the axial one. The code

gave results that compare well with the experimental data and the analytical model provided

in this reference. The results of this comparison with TrioCFD are provided in Fig. VIII.1.

We show the temperature evolution of the battery measured at mid-height on its surface, in

Fig. VIII.1a, The heat source is applied on the whole surface of the battery along the radial

axis ~er. The temperature field resulting from the radial and constant heating is shown in Fig.

VIII.1b.

From these results, we can expect that the anisotropic behavior can impact the temper-

ature prediction in the resolution of full conjugate heat transfer problem. Significantly, the

temperature field in the solid domain seems strongly impacted by the anisotropy. Then, the

choice of the battery arrangement (aligned, staggered, etc...) in a larger battery pack could

be designed considering this temperature distribution. To obtain a better heat transfer be-

tween the batteries and the coolant, the flow path of the fluid or the position of the batteries

could be adjusted by considering the influence of anisotropy on the resulting temperature

field in the solid domain.

(a) Temperature evolution at cell surface (b) Temperature field in K

Figure VIII.1: Anisotropic thermal conductivity test case

Multi-fidelity based surrogate models Two numerical solvers have been adapted, used

and validated during this thesis. They present significant differences in their respective ap-

proach for the heat transfer simulation between the batteries and the fluid. However, it is

possible to produce results of a similar nature with the two models. The objective of this
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potential contribution would be to merge the information provided by the two models. The

low fidelity solver presents a small computational cost compared to the high fidelity solver.

Then, merging the predictions of both models could be interesting in terms of computational

resources while keeping a high level of fidelity overall.

In practice, this would be implemented using the same approach as the work presented

in [50]. Firstly, the idea is to set up both models as a black box, taking the same inputs and

producing the same nature of outputs. Here, the approach performed with the CFD solver

in chapter VII would be reproduced with the low fidelity solver. The inputs are the four

resistance values parametrizing the internal resistance model, and the outputs are a vector

of temperatures evaluated at different times of the transient simulation.

Then, we build two designs of experiments using both solvers. The Design of Experiments

built with the high fidelity solver will naturally contain fewer points than the Design of Ex-

periments of the low fidelity solver to keep a good computational cost accuracy trade-off.

Then a Kriging surrogate model can be built, merging the information learned from those

two Design of Experiments. Indeed, as presented in [81], a so-called hierarchical Kriging can

be setup. First, we build a Kriging model from the evaluations of the low fidelity solver. Then,

another Kriging model is constructed using the evaluations of the high fidelity solver, but its

trend would be the Kriging response from the low fidelity model. In this way, the hierarchical

surrogate model incorporates the information provided by the two solvers. Most importantly,

the overall computational cost would have been reduced as this construction requires many

evaluations of the low fidelity solver and fewer evaluations of the high fidelity one. The lack

of information coming from the small Design of Experiments of the high fidelity model could

be compensated by the numerous data from the Design of Experiments of the low fidelity

solver.
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SIMULATION NUMÉRIQUE ET QUANTIFICATION D’INCERTITUDES POUR LE REFROIDISSEMENT PAR IMMERSION DES BATTERIES

LITHIUM-ION

Résumé
Pour promouvoir une utilisation plus large des véhicules électriques, les batteries Lithium-ion (Li-ion) se doivent de sup-

porter des courants électriques importants, générant ainsi de fortes contraintes thermiques qui dégradent leurs performances
et leur durée de vie. La gestion thermique des packs de batteries est donc un élément crucial pour répondre à ces nouvelles
contraintes industrielles. La technologie de refroidissement par immersion est une solution prometteuse en termes de per-
formances thermiques. Ces systèmes sont gouvernés par des phénomènes multi-physiques, allant de la chimie interne des
batteries jusqu’au transfert thermique à l’échelle du pack de batteries alimentant le moteur électrique. Cette thèse a pour ob-
jectif de développer des modèles numériques pour le refroidissement par immersion des batteries Li-ion, tout en considérant
les incertitudes provenant des paramètres physiques en jeu.

Cette problématique est abordée en proposant deux modèles de fidélités croissantes. D’abord, un modèle dit basse fidélité
est développé, incluant la modélisation des phénomènes thermiques et électriques du problème. Des méthodes de quantification
d’incertitudes (calibration Bayésienne et analyse de sensibilité) couplées avec des données expérimentales originales offrent
ainsi des éléments de compréhension et d’analyse sur le comportement global du système. Ensuite, une approche plus spécifique
est présentée à l’aide d’un code de calcul CFD haute fidélité. Le calcul du transfert thermique conjugué sous régime transitoire
en deux dimensions d’un pack de batteries immergées est ainsi réalisé. Cet outil est utilisé pour évaluer la précision d’un modèle
construit a priori, représentant la résistance interne des batteries Li-ion. Les incertitudes provenant de la résistance sont prises
en compte grâce à la paramétrisation de ce modèle et calibrées en utilisant un cas test expérimental de la littérature. Enfin,
pour obtenir une meilleure compréhension de la physique de ces problèmes de refroidissement par immersion, la fidélité de
l’outil CFD est augmentée en considérant des calculs de transfert thermiques en 3D, ainsi qu’un modèle de résistance interne
amélioré.

Mots clés Batteries Lithium-ion; Refroidissement par immersion; Simulation numérique; Quantification d’incertitudes;
Transfert thermique conjugué; Calibration Bayésienne; Méta-modèles.

NUMERICAL SIMULATION AND UNCERTAINTY QUANTIFICATION FOR IMMERSION COOLING OF LITHIUM-ION BATTERIES

Abstract
To encourage a wider use of electric vehicles, Lithium-ion (Li-ion) batteries are required to handle high electric currents,

generating great heat loads which deteriorate their performances and lifespan. The thermal management of the battery packs
is a key element to fulfill these industrial demands. Immersion cooling technology stands as a promising solution in terms of
heat transfer performances. Multi-physics processes govern those systems, from the internal chemistry of Li-ion cells to the
heat transfer at the battery pack scale powering the electric engine. This thesis aims to develop numerical models of immersion
cooling systems for Li-ion batteries considering the uncertainties coming from the physical parameters.

This issue is addressed by proposing two models of increasing fidelity. Firstly, a low fidelity model is developed, including
the thermal and electrical phenomena of the immersion cooling problem. Uncertainty quantification methods (Bayesian cali-
bration and sensitivity analysis) coupled with original experimental data provide a deeper knowledge on the overall behavior
of the system. Secondly, a more specific approach is performed using a high fidelity Computational Fluid Dynamics (CFD)
model solving the transient conjugate heat transfer in an immersed battery pack in two dimensions. This CFD tool is used to
assess the accuracy of a constructed model for the internal resistance of Li-ion batteries. Uncertainties coming from the internal
resistance are taken into account thanks to the parameterization of this model and calibrated using an experimental test case
from literature. Furthermore, for a better understanding of the immersion cooling physics, the fidelity of the CFD model is
increased by considering 3D simulations and an enhanced internal resistance model.

Keywords Lithium-ion batteries; Immersion cooling; Numerical simulation; Conjugate heat transfer; Uncertainty quantifi-
cation; Bayesian calibration; Surrogate modeling.
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