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vraiment super bien placé.
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écouté – envers et contre tout, notamment le bon sens – parler de vérification de logiciel embarqué
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Amina, merci de m’avoir permis de goûter à l’enseignement, je ne sais pas si j’aurais eu le courage
de m’y lancer sans toi. Merci également pour ton accueil l’accueil de Denis à Lyon.
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du MPRI n’aient cherché à vous récupérer, et je suis ravi que nous ayons gagné les enchères. Un
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de maths peut être à la fois terriblement précis et merveilleusement humain, et pour Timo Jolivet
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dialoguer ; ce n’est pas juger, mais chercher, formuler des hypothèses tout en se méfiant de ses
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comme si j’en avais toujours fait partie, mais aussi et surtout de m’avoir fait découvrir les fouées.
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General-audience abstract

A 1995 Wired article titled ”How Anarchy Works” states that ”Part of what has made the
Net successful is precisely that: it works”. This is a good reflection of the general philosophy
behind network engineering, which is much more built via concrete experimentations than
formal reasoning.

Although efficient, this approach did not scale with the exponential digitalization of the last
decades. Network failures, which are bound to happen with the level of care historically put
into network design, are becoming more and more costly, if not critical.

This situation led to the introduction of complex, but much sounder methods – generally
refered to as formal methods – to networking ten to fifteen years ago. However, even the tools
brought by this line of thought sometimes contain gaping holes that need to be addressed.
This thesis identifies a tool that reaches a reasonable efficiency thanks to dubious shenanigans,
and presents a formally defined and verified alternative.
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Résumé pour le grand public

Un article publié par Wired en 1995 intitulé ”Comment marche l’anarchie” explique que
”l’une des raisons du succès de l’internet est simplement le fait que ça marche”. Cette
phrase reflète bien la philosophie générale derrière internet, qui s’est bien plus construit via
l’expérimentation que le raisonnement formel.

Bien qu’efficace, cette approche n’a pas suivi l’exponentielle numérisation des dernières
décennies. Les pannes réseaux, qui ne peuvent qu’arriver avec le niveau de soin historique-
ment mis dans la conception de réseaux, sont de plus en plus coûteuses et critiques.

Cette situation a mené à l’introduction de méthodes – généralement appelées méthodes
formelles – plus complexes, mais également plus sûres dans le monde du réseau. Cepen-
dant, même les outils issus de cette philosophie peuvent contenir des angles morts. Cette
thèse identifie un outil qui atteint une efficacité raisonnable grâce à de douteux procédés, et
présente une alternative formellement définie et vérifiée.

Cette thèse est écrite en anglais, mais l’annexe C en propose un résumé en français.
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Part I

Introduction

Donc si vous décidez d’écrire cet article, je vous colle au violon pour
incitation à l’émeute, mensonge, trouble de l’ordre public, folie
paranöıaque, tentative de suicide et prose pitoyable

Lewis Trondheim, Les formidables aventures de Lapinot (tome 3, Walter)
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Context and motivation

Over the last decades, the world has gone more and more digital. This trend was not refuted
in 2020 or 2021, as professional and personal services are increasingly provided and accessed
through computers, tablets and mobile devices. This intense digital shift means that network
failures are more costly and prejudicial than ever1, let alone critical in many instances2. We
emphasize that the failures we mention and are interested in do not result from external
attacks – which do occur on a weekly, if not daily basis and in industrial proportions –, but
are to be seen as bugs.

These bugs stem, first and foremost, from the extremely high complexity of network design,
which in turn comes from the intrinsically distributed nature of networks. Moreover, net-
working has run for a long time on a duct tape culture, in the sense that it lacked formal
foundations, and the possibilities that the existence and study of such foundations unlock.

Over the last ten to fifteen years, researchers with a background in programming language
theory have started to take an interest in networking, and how they could apply their theoret-
ical tools and approaches to this field. Combined with the critically increased need for safety
(and security), this situation led to the introduction of formal methods for networks. This
trend is also fostered by the latest advances in formal methods, both in terms of modeling
techniques and computational efficiency (e.g. the existence of fast solvers such as Z3).

One such tool that was introduced is Network Optimized Datalog (NoD), a Datalog engine
developed at Microsoft and tailored to handle programs that describe, in the form of Horn
clauses, the behavior of a particular network. Although an interesting step in the desired
direction, using this engine requires engineers to manually write encodings of each analyzed
network, which in itself is a complex and error-prone process.

Moreover, NoD does not scale with naive translations of real-size networks. In practice, the
authors work with programs that contain many inlined values, using manual, convoluted,
undocumented and unjustified Datalog-level program transformations. This gap in an oth-
erwise remarkable tool led us to work on the design and automatization of such program
transformations, this time with a full formalization.

However, having a formalization of non-trivial operations is not enough to trust them. The
aim of our work has then been the formal verification of these transformations in the Coq
proof assistant, using (and slightly extending) an existing Coq implementation of Datalog.

Although inspired by network verification, our work is not circumscribed to it. Concretely, the
analyses and rewritings we provide can be used – and relevant – in other contexts. Moreover,
we believe that this works brings a new insight into the semantics and formal study of Datalog
programs, which may serve as the basis of future works in other contexts.

1https://techcrunch.com/2020/07/17/cloudflare-dns-goes-down-taking-a-large-piece-of-the-internet-with-it/
2https://www.reuters.com/business/media-telecom/orange-blames-network-outage-software-failure-audit-2021-06-11/
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Contribution(s)

Questions and results

The starting point of this thesis was the identification and analysis of a caveat in the Network
Optimized Datalog engine in the presence of primitive predicates with multiple variables.
To address this issue, we designed a static analysis for Datalog, as well as two program
transformations that leverage it. Both the static analysis and the transformations have been
verified in the Coq proof assistant, using a previously introduced Coq formalization and
implementation of Datalog.

Our work required and led to the extension of some tools, mainly the introduction of a trace
semantics for Datalog and its verified implementation in the aforementioned Coq formaliza-
tion of Datalog. We also develop some new finite types for the Mathematical Components
library, upon which this formalization relies.

Finally, we present a tighter version of our static analysis and show that it is not fit for every
Datalog program. This leads us to try to caracterize the precise class of Datalog programs
that supports it, but our intuition is yet to be formally verified.

List of publications

The work on this thesis resulted in the following contributions to the scientific discussion:

• a talk at the 2020 Coq workshop on the development of new finite types for the Math-
Comp library [Bégay et al., 2020a]

• a paper at the 19èmes journées approches formelles dans l’assistance au développement
de logiciels (AFADL 2020) conference [Bégay et al., 2020b]

• a paper at Certified Programs and Proofs (CPP) 2021 [Bégay et al., 2021]
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Toolkit

The work presented in this dissertation has been performed using a variety of existing tools.
The details of some (e.g. Datalog, Network Optimized Datalog, DatalogCert) play an impor-
tant part in the rest of this document, meaning that they are fully introduced in subsequent
chapters.

On the other hand, some tools are either too rich and well-known (i.e. Coq or Z3) or secondary
(i.e. OpenStack) to require such a detailed presentation, and will be considered strictly from
a user-perspective. In particular, we will not delve into their theoretical foundations or
implementations, although some references are provided. These tools and the part they
played in our work are outlined below.

Building theorems and proofs – Coq & MathComp

Coq is a well-established proof assistant, that contains a functional programming language
as well as logical tools to reason about the developed programs and, more generally speak-
ing, formaly defined systems. It has been used with much success in the development
and verification of compilers [Appel and Blazy, 2007, Chlipala, 2010, Kumar et al., 2014,
Letan and Régis-Gianas, 2020, Bodin et al., 2018], most notably the verified C compiler
CompCert [Leroy, 2009, Appel et al., 2014]. It is also the framework in which we develop
and verify the contributions presented in this document.

Another area where Coq has shined is the formal proof of more traditional mathe-
matical results [Cruz-Filipe et al., 2004, O Connor, 2005, Bauer et al., 2017, Zsidó, 2013,
Makarov and Spitters, 2013, Beeson et al., 2018, de Rauglaudre, 2017]. One of the main
achievements in this field is the formal and verified proof of the four colour theorem
[Gonthier, 2007], which led to the development of a new library, called Mathematical Com-
ponents, or MathComp [Gonthier et al., 2016], which we used extensively in the course of
our work.

This dissertation assumes some familiarity with Coq, or at least another proof assistant, but
not MathComp. In the eventuality that it should find its way into the hands (or screen) of
someone with no prior knowledge of a proof assistant, Appendix A provides an introduction
to Coq, from a very practical and user’s perspective. This light introduction may not be
exhaustive enough to follow the full details of our work, but should be sufficient to get the
grasp of the main ideas behind it. A much more complete presentation of Coq, including the-
oretical foundations, can be found in [Castéran and Bertot, 2004]. The subset of MathComp
relevant to this work will be introduced in Section 3.1.

Coq is not the only proof assistant or theorem prover available, as it coesxists with
the HOL family (Isabelle/HOL [Nipkow et al., 2002], HOL-Light [Harrison, 2013]),
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PVS [Owre et al., 1992], Agda [Norell, 2008], Nuprl [Constable et al., 1986] or
Matita [Asperti et al., 2011]. It is however a mature tool, with strong – and familiar
– theoretical foundations (the Curry-Howard correspondence), a vast community and a
remarkable track record of formalizations and certifications. Moreover, we saw the recent
introduction of a Coq formalization and implementation of Datalog [Dumbrava, 2016] as an
opportunity to build our work upon solid bases, and possibly make it part of an ongoing,
larger project3. This formalization is formally introduced in Chapter 3.

Solving first-order riddles – Z3

Z3 [de Moura and Bjørner, 2008] is a Satisfiability Modulo Theory (SMT, [Monniaux, 2016])
solver developed at Microsoft. Basically, it expects a theory T expressed as a set of first-order
logic formulae as well as a formula φ, and tries to check the satisfiability of φ w.r.t. T . Z3 relies
on many heuristics, sometimes domain-specific [Hoder et al., 2011, Hoder and Bjørner, 2012,
Bjørner et al., 2015, Wintersteiger et al., 2013], which make it one of the most efficient SMT
solvers available [Weber et al., 2019].

First-order logic is one of the building blocks of theoretical computer science, it is then natural
that a practical tool which handles it efficiently would serve as a backend for many other
projects. Such examples include the Boogie intermediate language for imperative programs
[Barnett et al., 2005] (upon which other tools are in turn built), the verification-oriented
functional programming language F ⋆ [Swamy et al., 2013], or the symbolic execution engine
Klee [Cadar et al., 2008]. It is also the backend of the Network Optimized Datalog engine
[Lopes et al., 2015], which is the topic of Chapter 5.

Managing a network – OpenStack & Neutron

OpenStack [Sefraoui et al., 2012] is a cloud platform, i.e. a set of tools that abstract the
resources used for some service (e.g. computing, storage or network). A classical, general-
audience example of cloud platform is Dropbox, which provides storage to users who do not
have to worry about the actual handling of their files (e.g. which physical drive they are on,
how they are spread and so on), and are supplied a simple, minimalistic interface.

This notion of abstraction is also found in networking, where a physical network, also called
underlay, is a physical infractructure upon which multiple overlay networks can be layered
simultaneously. For example, a virtual private network (VPN) is built upon another, existing
network, using tunneling protocols to work in isolation from the latter.

Concretely, OpenStack can be used to configure, deploy and maintain such virtual networks.
It is a popular, open-source and extensible tool, meaning that, in practice, it comes with a
very high combinatorics of configurations – one can think of them as a matrix of features and
implementations.

On one hand, the abstraction layer introduced by OpenStack opens the way to automatic
verification, but on the other hand, the modelization must be able to handle the many
supported configurations. The Network Oriented Datalog verification tool, which computes
the properties of a specific network using its low-level description, rather than the specification
of higher-level network properties such as reachability, lacks this genericity.

3http://datacert.lri.fr/
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This led Pierre Crégut, R&D engineer at Orange Labs and co-advisor of this work with
Jean-François Monin, to work on a higher-level network verification tool built upon Network
Optimized Datalog, called Octant. Unlike NoD, Octant separates the specification of general
network properties and the description of specific networks, in the sense that it expects the
former and checks it against the latter.

Octant uses a compotent of OpenStack called Neutron, which defines its mission as
”provid[ing] on-demand, scalable, and technology-agnostic network abstraction”4. More con-
cretely, Neutron can be used to easily extract low-level informations about the network, such
as the forwarding tables of switches, in an structured manner. Octant uses it to fetch the
implementation of the analyzed network, and provides these informations to the deduction
engine.

The work described in this dissertation has been integrated to Octant, which is described
more in-depth in Chapter 6.

4https://wiki.openstack.org/wiki/Neutron



Outline

This dissertation is split into four parts, excluding the introduction (Part I) and conclusion
(Part VI). The work presented being at the intersection between two different research areas
(network verification and programming language theory), the first two parts are dedicated to
the introduction of relevant tools and concepts from both. The other two parts then introduce
and discuss our contributions.

Part II addressses the networking component of this work. First, it provides some context
by outlining existing approaches in network verification. It then focuses on the Network
Optimized Datalog (NoD) and Octant tools, which were the starting points of our work. In
particular, we explain how the latter builds upon the former to provide more genericy, but is
limited in doing so by the internals of NoD.

Part III first recalls the building blocks of first-order logic, and then uses them to formally
define the Datalog logic programming language. Finally, it outlines a previously existing ver-
ified implementation of Datalog within the Coq proof assistant. This in-depth formalization
of Datalog will serve as the reference specification and implementation for the rest of our
work.

Part IV discusses why we had to extend some tools, and how it was done. More concretely,
we introduce a trace semantics for Datalog and certify it in Coq, and develop some new finite
types for the MathComp library.

Finally, Part V presents the static analysis and the two rewritings we designed, as well as
their verification. It also contains a general discussion on these points, including the lessons
learned from the Coq certification process.
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Part II

Verified implementation of a logic
programming language: Datalog

This thesis being about the logic programming language Datalog, we need to formally define
it. To do so, we first recall the inner workings of first-order logic, upon which Datalog is
built, in Chapter 1. We then move on to the pen and paper definition of Datalog in Chapter
2. Since our work is developed on top of a Coq formalization of Datalog [Dumbrava, 2016],
we reuse their definitions – which are themselves based upon [Lloyd, 1987b] –, although some
minor modifications are made. We finally present in Chapter 3 the core of [Dumbrava, 2016],
i.e. their Coq formalization of Datalog [Benzaken et al., 2017b].
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Chapter 1

First-order logic

La vie serait tout de même beaucoup plus simple si tout le monde
s’exprimait en logique du premier ordre

Zeinab Galal, conversation privée

In his leçon inaugurale at the Collège de France [Leroy, 2019], Xavier Leroy emphasizes on
the central and paramount role of logic throughout computer science1. Most logical tools are
built upon first-order logic, which is also fundamental in database theory.

The core feature of databases is to combine informations it stores to answer queries provided
by a user. In traditional database theory, the dialog between user and database, in particular
the formulation of query, relies on the logic-based relational calculus [Codd, 2002] – although
it should be noted that some modern approaches to databases, such as NoSQL, shift away
from logic to focus on graph-based or object-oriented methods [Dean and Ghemawat, 2008,
Abiteboul et al., 2011] –, as well as unification mechanisms that can be traced back to the
early works of Jacques Herbrand [Herbrand, 1930].

The combination of informations is akin to logical deduction, and in par-
ticular relevance of the resolution principle [Robinson, 1974] was early noted
[Minker, 1988, Kuhns, 1967, Levien and Maron, 1965, Green and Raphael, 1967]. Going
further, [Van Emden and Kowalski, 1976] introduced the foundations of logic programming,
which mechanized even further the use of logic in database settings. This line of work
eventually produced the Datalog programming language, which will be studied in this
document after the basics of first-order logic are recalled.

Sections 1.1 and 1.2 formalize its syntax and semantics, respectively. Then, Section 1.3
introduces the technical but useful concept of normal form, and Section 1.4 presents some
inference systems within first-order logic.

1.1 Syntax

This Section formalizes the syntax of first-order logic. To do so, we first go over the way
first-order logic formulae are built, and then how they are manipulated and transformed to
be reasoned about.

1”La logique ! On y revient encore et toujours ! C’est le leitmotiv de cette leçon”
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1.1.1 Building blocks

First-order logic (FOL) usually brings to mind its well-known quantifiers, but a thorough
study of the topic starts with the atomic, non-logical elements of the language. These are
defined in the framework of so-called signatures.

Definition 1.1. A first-order Signature is a triple (F ,P, ar). F is a set of function symbols,
that are used to build the arguments for the predicates. The predicate symbols are found in
P, and these two sets are disjoint. The good use of these function and predicate symbols is
insured by the ar : F ∪ P → N function, which assigns an arity to every symbol.

Notation 1.2. For clarity, the function and predicate symbols can be augmented with their
arity. For example, given the f and p symbols with ar(f) = n and ar(p) = m, we can replace
f and p by f/n and p/m. In that setting, the signature is simply defined as Σ ≡ (F ,P).

Notation 1.3. A function symbol f such that ar(f) = 0 is called a constant, and the set
of constants is written C. A predicate symbol p such that ar(p) = 0 is called a propositional
variable.

Example 1.4. Peano arithmetic is defined upon signature (F = {0/0, s/1,+/2,×/2},P =
{=/2}). In that setting, an expression such as (1 + 2) × 3 is translated as
×(+(s(0), s(s(0))), s(s(s(0)))), which does enforce the arity constraints.

On top of the vocabulary – i.e. predicate and function symbols, as well as constants – of our
first-order language L, we can introduce the grammar of first-order logic via the additional
symbols:

• a countable set of variables X ;
• the existential and universal quantifiers, respectively denoted as ∃ and ∀;
• the connectives ∧ (conjunction), ∨ (disjunction), ¬ (negation), ⇒ (implication) and ⇔

(equivalence), as well as the (nullary) truth symbols ⊤ (true) and ⊥ (false);

• parentheses and punctuation.

Now that we have all the relevant symbols, we can build up to the actual first-order formulae,
starting with the words of the language, called terms:

Definition 1.5. The set of L-terms is the minimal set TΣ(X ) that contains the variable set
X , and satisfies

for any f/n in F , if t1, ..., tn are in TΣ(X ), then so is f(t1, ..., tn)

In other words, the terms are the constants, the variables, and the function symbols applied
using a number of terms corresponding to their arity.

Example 1.6. Reusing the signature of Example 1.4 with the variables X = {x, y},

• x, a variable, is a term;

• 0, a constant, is a term;
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• s(0),×(y, s(0)), and +(x,×(y, s(0))), via three successive applications of the recursive
rule, are terms.

The terms are then used in conjunction with predicate symbols to build so-called atoms,
which are then enriched to form the set of base sentences of the language, called atomic
formulae.

Definition 1.7. An atom is a predicate symbol applied to a number of terms corresponding
to its arity, i.e. p(t1, ..., tar(p)) with p ∈ P and ti ∈ TΣ(X ) for all i.

Definition 1.8. An atomic formula is either an atom, or one of the two special symbols
⊤ and ⊥, also called true and false, respectively.

We now have all the building blocks that can be combined with the logical symbols to build
the actual first-order formulae.

Definition 1.9. The set of L-formulae is the minimal set FΣ(X ) that contains the atoms
built upon P and TΣ(X ) and satifies the two following rules:

• the L-formulae are stable under binary logical connectors, i.e. if φ1 and φ2 ∈ FΣ(X ),
then φ1�φ2 ∈ FΣ(X ), with � ∈ {∧,∨,⇒,⇔}.

• the L-formulae are stable under negation and quantification, i.e. if φ ∈ FΣ(X ), then
¬φ, ∀x, φ and ∃x, φ ∈ FΣ(X ), where x ∈ X

Example 1.10. Using X = {x, y}, P = {=/2} and F = {0/0, s/1,+/2,×/2}, the following
two sentences are first-order logic formulae:

• ∀x,∃y,= (+(x,×(y, s(0))), 0)

Using infix and standard integer notations: ∀x,∃y, x+ (y × 1) = 0

• ∀x,∀y,⇒ (= (x,×(s(s(0)), y)),= (s(s(x)),×(s(s(0)), s(y))))

Using infix and standard integer notations: ∀x,∀y, x = 2× y ⇒ x+2 = 2× (y+1)

The previous definitions are summed up in the following grammar:

Terms t ::= x ∈ X | c ∈ C | f(t1, ..., tn), f ∈ F & ar(f) = n

Atomic Formulae A ::= ⊥ | ⊤ | p(t1, ..., tn), p ∈ P & ar(p) = n

Complex Formulae φ ::= A | φ1�φ2, � ∈ {∧,∨,⇒,⇔} | ¬φ | ∀x, φ | ∃x, φ

This thesis focuses on the logic programming language Datalog, which only relies on a subset
of first-order logic. One of the main restrictions is the exclusive use of clausal formulae.

Definition 1.11. A literal is a positive or negated atomic formula.

Definition 1.12. A clause is a disjunction of literals.

Remark 1.13. A clause L1 ∨ ... ∨ Ln can be written in an implicative but semantically
equivalent form (¬L1 ∧ ... ∧ ¬Li−1 ∧ ¬Li+1 ∧ ... ∧ ¬Ln)→ Li
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One of the main restrictions of Datalog is its exclusive use of such clauses. Another restriction
is the absence of function symbols, i.e. F = ∅. The syntax of Datalog will be formally
introduced in Section 2.1.

1.1.2 Manipulating formulae

The variables appearing in a first-order logic formula are a stand-in for many potential val-
ues. Reasoning about such formulae will then require tools to perform the replacement, or
substitution, of variables by terms.

We build up to that concept, starting with a categorization of variables based on their quan-
tification.

Definition 1.14. The set FV (t) of free variables of a L-term t is defined as:

• FV (x) = {x}, where x is a variable;

• FV (f(t1, ..., tn)) =
n⋃

i=1
FV (ti), where all ti are terms and f a function symbol.

Definition 1.15. A L-term t is ground, or closed, if FV (t) = ∅, i.e. if the term contains
no variable. The set of ground terms is written TΣ.

Definition 1.16. The set of free variables of a first-order logic formula φ, written FV (φ)
is defined with the following rules:

• The free variables of an atom are the variables appearing in it

– FV (⊥) = FV (⊤) = ∅
– FV (p(t1, ..., tn) =

n⋃
i=1

FV (ti), where all ti are terms and p is a predicate symbol

• The free variables are propagated by the logical connectives

– FV (φ�ψ) = FV (φ) ∪ FV (ψ), where � ∈ {∧,∨,⇒,⇔}
– FV (¬φ) = FV (φ)

• The free variables are canceled by the quantifications

– FV (∀x, φ = FV (φ)\{x}
– FV (∃x, φ = FV (φ)\{x}

In other words, the free variables of a formula φ are the variables that do not appear directly
under (in a syntactic sense) a quantification.

Definition 1.17. The bound variables of a L-formula φ, written BV (φ), are the variables
which appear directly under a quantification. They are computed using the following rules:

• There are no bound variables in an atomic formula, as there is no quantification either

– BV (⊥) = BV (⊤) = BV (p(t1, ..., tn) = ∅

• Just like free variables, the bound ones are propagated by the logical connectives
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– BV (φ�ψ) = BV (φ) ∪BV (ψ), where � ∈ {∧,∨,⇒,⇔};
– BV (¬φ) = BV (φ)

• The bound variables are introduced by the quantifications:

– BV (∀x, φ = BV (φ) ∪ {x}
– BV (∃x, φ = BV (φ) ∪ {x}

Definition 1.18. The set of variables of a formula φ, written V AR(φ), is the set union
of FV (φ) and BV (φ).

Definition 1.19. An L-formula is called ground if V AR(φ) = ∅, i.e. if it contains no
variable.

Definition 1.20. An L-formula is called closed, or a sentence if FV (φ) = ∅, i.e. if any
variable appearing in the formula is bound (to a quantification). Intuitively, it means that
there is no loose variable, i.e. a variable whose instantiation is not dictated by a quantifier,
so that the meaning of the formula does not depend on the meaning of unbounded variables.
In practice, terms and formulae will be interpreted by assining a value to each such variable.
The set of L-sentences is written SENL.

Now that we can reason about the different types of variables in a formula, we can move on
to the actual substitutions and their application.

Definition 1.21. A (partial) substitution σ is a mapping from the set of variables X to
the terms TΣ(X ). A substitution is represented as a list of the individual variable / term
mappings, i.e. [x1 7→ t1, ..., xn 7→ tn].

Definition 1.22. Given a variable x and a substitution σ = [x1 7→ t1, ..., xn 7→ tn], the
instantiation of x with σ, written σ(x), or σx, is defined as

σ(x) =

{
ti if x = xi for some i ∈ [1, n]

x otherwise

In other words, if x appears in σ, then the associated term is returned. Otherwise, the result
is the variable itself.

Definition 1.23. The domain, or support, of a substitution σ = [x1 7→ t1, ..., xn 7→ tn] is
the set {x ∈ X | σ(x) 6= x}, i.e. the set of variables that appear (and are associated to a
different term) in σ.

Remark 1.24. A substitution σ can also be extended to operate on terms, in which case
the constants are left untouched and the complex terms are treated inductively. Such a
σ : TΣ(X )→ TΣ(X ) can then be defined as





σ(c) = c with c ∈ C
σ(v) = σ(v) with v ∈ X
σ(f(t1, ..., tn)) = f(σ(t1), ..., σ(tn)) with f ∈ F and ti ∈ TΣ(X ) for any i ∈ [1, n]

We can now lift the notion of instantiation to first-order logic formulae.
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Definition 1.25. The instantiation of a first-order logic formula using a substitution
σ is defined inductively as





σ(⊥) = ⊥
σ(⊤) = ⊤
σ(t) = σ(t) where t ∈ TΣ(X )
σ(φ1�φ2) = σ(φ1)�σ(φ2) where � ∈ {∧,∨,⇒,⇔}
σ(¬φ) = ¬σ(φ)
σ(�x, φ) = �x, σ\[x 7→ σ(x)](φ) where � ∈ {∀,∃}

In other words, the substitutions work inductively on the formulae. Moreover, a quantifica-
tion over a variable x removes any mapping of x that may have been present in the used
substitution.

Finally, we introduce a notion of order over substitions.

Definition 1.26. Let us consider a signature without function symbols of non-zero arity, i.e.
∀f ∈ F , ar(f) > 0. In that setting, the terms are restricted to variables and constants. We
can now define a partial order on substitutions as:

σ1 � σ2 ≡ ∀x, σ1(x) ∈ C ⇒ σ1(x) = σ2(x)

In other words, σ2 is compatible with, and more precise than σ1.

1.2 Semantics

As previosuly stated, a first-order language L is built over a signature Σ = {F ,P, ar}, where
F is a set of function symbols used to build terms, P is a set of predicate symbols used to
build atoms, and ar is an arity function for both kinds of symbols. We first assume such a
signature.

We need to specify the elements we are talking and reasoning about. This set is called the
domain of discourse, or universe, and written UM. Once we have such a universe, we can
interpret in it the (syntactical) symbols of Σ using a Σ− structure.

Definition 1.27. A Σ-Structure M = (UM, I) consists of a non-empty universe UM and
an interpretation function I : Σ→ UM ∪ {⊤,⊥}, such that

• for every f ∈ F , I(f) : Uar(f)
M → UM

• for every p ∈ P, I(p) : Uar(p)
M → {⊤,⊥}

A Σ-structure is sometimes called Σ-interpretation or Σ-algebra.

In Chapter 2, the semantics of Datalog will be defined using a specific type of universe and
Σ-structures, called Herbrand, where the syntactic part of the language is directly used for
its interpretation.
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Definition 1.28. Given a signature Σ, the Herbrand Universe UH is the set of ground
terms of the language, i.e. TΣ.

Definition 1.29. A Herbrand Σ-structure H = (UH, IH) is a Σ-structure based on a
Herbrand universe.

A Σ-structure M is used to evaluate the veracity of a first-order logic formula, i.e. assign a
boolean value. To do so, we need to be able to assign values to variables.

Definition 1.30. A valuation ι over M is a partial function X → UM.

Remark 1.31. In Section 1.1.2, we defined the similar notion of substitution. However,
unlike valuations, substitutions work on a strictly syntactic level, and are total functions –
they associate a value to every variable.

Definition 1.32. The extension of a valuation ι, written ι[x 7→ u] where x is a variable
and u an element of the universe, works like ι with a special case when applied to x. More
formally, given a variable y,

ι[x 7→ u]y =

{
u if x = y

ι(y) otherwise

The interpretation now works homophorphically (or recursively) to assign an element of the
universe to each term, and then a binary valuation to formulae.

Definition 1.33. The interpretation of L-terms in M under a valuation ι : X → UM is
defined as a mapping J·KI,ι : TΣ(X )→ UM:

• JxKI,ι = ι(x)

• Jf(t1, ..., tn)KI,ι = I(f)(Jt1KI,ι, ..., JtnKI,ι)

Definition 1.34. The evaluation of L-formulae in M under a valuation ι : X → UM is
defined as the mapping J·KI,ι : SENL → {0, 1}, using the following rules.

• ⊥ and ⊤ correspond to 0 and 1, respectively:

– J⊥KI,ι = 0

– J⊤KI,ι = 1

• The evaluation of an atom is done homophorphically, using ι:

– Jp(t1, ..., tn)KI,ι =
{
0 if I(p)(Jt1KI,ι, ..., JtnKI,ι) = ⊥
1 if I(p)(Jt1KI,ι, ..., JtnKI,ι) = ⊤

• The conjunction ∧ (resp. the disjunction ∨) returns 1 iff both (resp. at least one of
the) sub-formulaes are (is) equal to 1:

– Jφ1 ∧ φ2KI,ι = min(Jφ1KI,ι, Jφ2KI,ι)
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– Jφ1 ∨ φ2KI,ι = max(Jφ1KI,ι, Jφ2KI,ι)

• The implication ⇒ returns 1 iff the left sub-formula is evaluated to 02 or the right one
is evaluted to 1:

– Jφ1 ⇒ φ2KI,ι = max(1− Jφ1KI,ι, Jφ2KI,ι)

• The equivalence symbol ⇔ checks that the two sub-formulae behave similarly:

– Jφ1 ⇔ φ2KI,ι = 1− |Jφ1KI,ι − Jφ2KI,ι|

• The negation simply switches an evaluation from 0 to 1, and the other way around:

– J¬φKI,ι = 1− JφKI,ι

• The universal quantification ∀ (resp. existential quantification ∃) returns 1 iff the
subformula is evaluated to 1 for any (resp. at least one) extension of the valuation wrt
the quantified variable:

– J∀x, φKI,ι = min
u∈UM

JφKI,ι[x 7→u]

– J∃x, φKI,ι = max
u∈UM

JφKI,ι[x 7→u]

One does not need to be writing his or her doctoral thesis to know that logic, broadly speaking,
revolves around the notion of truth. The truthness of a formula, called validity, is formally
defined using the following notions.

Definition 1.35. A formula φ ∈ FΣ(X ) is satisfiable if and only if there exists a
Σ-structure M = (UM, I) and a valuation ι : X → UM such that JφKI,ι = 1, which is written
M, ι |=I φ.

Definition 1.36. A formula φ ∈ FΣ(X ) is valid in M iff JφKI,ι = 1, for all valuations
ι : X → UM. This is denoted as M |=I φ, and M is called a model of φ.

Definition 1.37. A formula φ ∈ FΣ(X ) is valid in general iff M |=I φ for all Σ-structures
M. This is written |= φ.

The notion of validity is also used to define that of logical consequence.

Definition 1.38. Let φ1 and φ2 be two formulae in FΣ(X ). φ1 ∈ FΣ(X ) entails, or implies,
iff, for all Σ-structures M = (UM, I),

M |=I φ1 implies that M |=I φ2

In that setting, φ2 is said to be a semantic consequence, or logical implication, of φ1,
which is written φ1 |= φ2.

Definition 1.39. Formulae φ1 and φ2, both in FΣ(X ), are equivalent to each other iff
φ1 |= φ2 and φ2 |= φ1. This is denoted as φ1 ≡ φ2.

2Intuitively, if the precondition is false, the rest does not matter.
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Example 1.40. The following, well-known equivalences can be verified using the formulae
of Definition 1.34.

• φ ∧ ⊤ ≡ φ; φ ∧ ⊥ ≡ ⊥; φ ∨ ⊤ ≡ ⊤; φ ∨ ⊥ ≡ φ
• φ1 ⇒ φ2 ≡ ¬φ1 ∨ φ2
• φ1 ⇔ φ2 ≡ (φ1 ⇒ φ2) ∧ (φ2 ⇒ φ1)

• ¬(φ1 ∧ φ2) ≡ ¬φ1 ∨ ¬φ2
• ¬(φ1 ∨ φ2) ≡ ¬φ1 ∧ ¬φ2

– These last two rules are known as the De Morgan’s laws

• φ1 ∨ (φ2 ∧ φ3) ≡ (φ1 ∨ φ2) ∧ (φ1 ∨ φ3)
• φ1 ∧ (φ2 ∨ φ3) ≡ (φ1 ∧ φ2) ∨ (φ1 ∧ φ3)

– These last two rules are the distributivity of ∨ over ∧, and ∧ over ∨, respectefully

• ¬¬φ ≡ φ
• ¬(∀x, φ) ≡ ∃x,¬φ
• ¬(∃x, φ) ≡ ∀x,¬φ

Given a signature and an interpretative structure, the set of sentences that are satisfied by
that framework is called a theory.

Definition 1.41. The first-order theory of a Σ-structure M = (UM, I) is defined as
Th(M) = {φ ∈ FΣ(X ) | FV (φ) = ∅ and M |=I φ}

Notation 1.42. In the rest of this document, M |=I φ will simply be written M |= φ.

Many first-order theories are studied and used, such as Peano arithmetic, Presburger arithmic,
equality and so on. Datalog, which will be presented in Section 2, is also formalized as a
first-order theory.

1.3 Normal forms

Like many other mathematical structures (e.g. matrices), first-order logic formulae are most
efficiently used when in some so-called normal forms. One of them, the Horn clauses, are a
key concept of Datalog. The following definitions build up to them, starting with a normal
form that gathers all the quantifications at the beginning of a new, quantifier-free formula.

Definition 1.43. Any formula φ can be converted into a (semantically) equivalent formula in
Prenex Normal Form. The prenex formula is of the form �1x1...�nxnψ, with �i ∈ {∀,∃}
for i, and ψ is quantifier-free. In that setting, �1x1...�nxn is called the quantifier prefix, and
ψ the matrix. This transformation is denoted as ⇒∗P .

The next transformation, called skolemization, erases the existential quantifications in the
quantifier prefix.
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Definition 1.44. Skolemization converts any prenex formula φ into an equally satisfi-
able skolem formula ∀x1...∀xnψ. The transformation embeds every (previously) existentially
quantified variable into an explicit choice function that depends on every previously quan-
tified variable. More formally, it applies the following transformation until all existential
quantifications have been eliminated:

∀x1...∀xn∃yφ⇒Sk ∀x1...∀xn[y 7→ f(x1, ..., xn)]ψ

The skolem formulae can then be transformed into conjunctive normal form.

Definition 1.45. A formula in Conjunctive Normal Form (or Clausal Normal Formal,
CNF in both cases) is a conjunction of clauses, i.e. a formula of the form

m∧

i=1

ki∨

j=1

Lij

where all Lij are atomic literals. Any skolem formula can be transformed into a CNF via
a procedure found in [Russell and Norvig, 2009]. Basically, it gets rid of any unnecessary
negation using some of the equivalences shown in Example 1.40, puts the conjunctions above
the disjunctions using the equivalence A ∨ (B ∧ C) ≡ (A ∨ B) ∧ (A ∨ C), and then simply
erases the quantifications.

We finally introduce a subclass of CNF, which is used extensively in Datalog, and thus in
Section 2.

Definition 1.46. A clause with at most one positive literal is called a Horn clause.

Definition 1.47. A CNF first-order logic formula φ =
m∧
i=1

Ci, where every Ci is a Horn

clause, is called a Horn formula.

Remark 1.48. Using equivalences in Example 1.40, we can show that ¬L1∨ ...∨¬Ln∨Lp is
equivalent to (L1 ∧ ... ∧Ln)⇒ Lp. A Horn clause can then be seen as a list of preconditions
leading to (at most) one result. Lifting this to full formulae, a Horn formula is then akin to a
list (conjunction) of rules which can be interpretated as ”if L1 and ... and Ln are true, then
so is Lp”.

1.4 Inference

We have seen first-order logic as a way to formalize and manipulate statements, but we also
need to be able to relate them.

Definition 1.49. An inference system is a set of judgements, or rules describing how to
deduce new facts from a previously established set of formulae. They are presented as

J1 . . . Jn
Jn+1

R
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where Jn+1 is the (syntactical) consequence of the hypotheses J1 to Jn, and R is the label,
or name, of the rule. This can also be written J1, ..., Jn ⊢R Jn+1. If n = 0, i.e. there is no
required hypothesis, the judgement is called an axiom.

Definition 1.50. The hypotheses in an inference can themselves be the result of another
inference, and so on. In that sense, the inference rules can be applied iteratively, which is
called a derivation. When F can be deduced from the set of base hypotheses ∆ using such
a derivation in the inference system I, it is denoted as ∆ ⊢I F .

These inference rules are purely syntactical, in the sense that they need to be related to the
semantics of the used language. We now introduce the most important concepts.

Definition 1.51. Let I be an inference system for a language L. If, for any set of closed
formulae ∆ ⊆ SENL and F ∈ SENL:

• ∆ ⊢I F implies ∆ |= F , then I is sound;

• ∆ |= F implies ∆ ⊢I F , then I is complete;

• ∆ 6|= F implies ∆ ∪ {F} ⊢I ⊥, then I is refutationally complete.

In other words, an inference system is complete if there exists a syntactical deduction for
every semantic implication (the syntax covers the semantics), sound if a syntactical deduction
corresponds to a semantic implication (the syntax does not step out of the semantics), and
refutationally complete if adding as an axiom a statement that is not a semantic implication
can lead to the deduction of ⊥, i.e. the false statement.

Remark 1.52. In practice, refutational completeness is used in deduction systems by first
adding the negation of the statement one wants to prove to the set of hypotheses, and then
showing that the false statement can be derived.

We skim over the historic and fundamental examples of inference systems, e.g. natural
deduction, Hilbert or sequents, to focus on a specific, more computation-oriented family
of techniques. The resolution based inference techniques work with clausal formulae, as
illustrated in the following example.

Example 1.53. The Binary Resolution Inference system consists of two rules:

A ∨C B ∨ ¬C ′
σ(A ∨B)

Binary resolution

where σ is the most general unifier (mgu) of C and C ′, i.e. the smallest substitution such
that σ(C) = σ(C ′). Intuitively, this rule looks for a substitution (which can be seen as
constraints) such that C and C ′ match, meaning that C and ¬C ′ become incompatible.
Given the hypotheses, at least one of the left compotents, also subjected to the substitution,
must be true.

The second rule is

A ∨B ∨ C
σ(A ∨B)

Factoring
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where σ is the mgu of B and C. In other words, this rule tries to collapse two atoms in a
disjunction.

As previously stated, resolution is not an inference system in itself, but rather a family of
similar techniques [Bachmair et al., 2001]. In Section 2.2, we will revisit hyperresolution,
introduced in [Robinson, 1974].

Definition 1.54. The hyperresolution rule is formulated as

A1 ∨C1 . . . An ∨ Cn B ∨ ¬C ′1 ∨ · · · ∨ ¬C ′n
σ(A1 ∨ ... ∨An ∨B)

where σ is the mgu of Ci and C
′
i, for every i ∈ [1, n].

Remark 1.55. Hyperresolution is a generalization, or rather iteration, of the binary resolu-
tion rule introduced in Example 1.53. Its implementation can be augmented with multiple
heuristics, regarding ordering and selection.

Theorem 1.56. Hyperresolution is sound and refutationally complete.

Proof. See [Bachmair et al., 2001].



Chapter 2

Datalog

Rien ne dépasse la beauté simple et froide de la logique. Si Galilée pouvait
prétendre que la Nature est un livre écrit en langage mathématique, c’est
qu’il n’existe rien de plus élégant qu’un système parfaitement ordonné, où
chaque conséquence est le fruit d’une clause, où chaque élément est
imbriqué dans un tout plus grand que la somme de ses parties.

Emmanuel Denise, Canard PC 396

Datalog is a simple and declarative language, based on first-order logic and tuned to data-
centric applications, usually described as ”Prolog without function symbols” [Liu, 1999]. The
author of [Greenman, 2017] tracks its origins in the sixties and seventies, when mathematical
logic was first considered as a lens through which databases could be seen.

More concretely, relational algebra is proposed as the fundational bases for the relational
model of databases in 1970 [Codd, 1970], the first Prolog interpreter is developed in 1973 by
Colmenaur and his students, and a programming language semantics of predicate logic, i.e.
of Datalog, is introduced in 1976 [Van Emden and Kowalski, 1976].

Originally designed as a powerful query language on databases, Data-
log has since then gained interest thanks to domain-specific extensions
[Abiteboul et al., 1995, Ramakrishnan and Ullman, 1995]. The introduction of
[Benzaken et al., 2017a] gives a comprehensive list of languages built upon
Datalog [Lu and Cleary, 1999, Loo et al., 2005, Grumbach and Wang, 2010,
Cal̀ı et al., 2009, Seo et al., 2013, Aref et al., 2015] and applications, in both academic
[DeTreville, 2002, Whaley et al., 2005, Hellerstein, 2010, Huang et al., 2011] and industrial
[Chin et al., 2015, Gottlob et al., 2004, log, 2020, dat, 2020, sem, 2020] settings.

As a first approximation, Datalog is a fragment of Prolog without function symbols. A
program is then a set of Horn clauses. Some of these clauses have no tail, or precondition,
and constitute a first set of facts. The semantics of a program is this set of initial facts as well
as those that can be deduced in any number of steps using the other clauses, called rules. A
key feature of Datalog is recursivity, which makes it possible to compute transitive closures,
e.g. accessibility in graphs, in a simpler and more complete way than other query languages,
such as SQL, XPath and SPARQL.

In contrast to Prolog, the evaluation mechanism of Datalog follows a bottom-up strategy
which guarantees termination even in the presence of recursive rules [Abiteboul et al., 1995].

26
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The key idea is that, without function symbols, the set of derivable facts is always finite.

Section 2.1 and 2.2 formalize the syntax and semantics of Datalog, then Sections 2.3 and 2.4
discuss how Datalog can be augmented with negation and runtime computations.

2.1 Syntax

We first present the rules and constraints upon which Datalog programs are built.

2.1.1 Building blocks

As previously stated, a Datalog program is a set of Horn clauses (Definition 1.46), split into
facts and rules. We build up the syntax, starting with the different kinds of symbols.

Definition 2.1. Datalog symbols are either arity bound predicates, constants or variables.
We fix P as the set of predicates together with an arity function ar : P → N, C as the set of
constants and V as the set of variables.

These symbols are used to build the expressions, i.e. terms, atoms, clauses and programs.

Definition 2.2. A term t is either a constant or a variable.

t ::= x | c, where x ∈ V, c ∈ C

Definition 2.3. Let p be a predicate and
#»
t a term sequence with | #»t | = ar(p). An atom A

is an expression of the form

A ::= p(
#»
t )

Notation 2.4. The terms t1, t2, ..., tn are the arguments of the atom. The predicate of an
atom is accessed with function sym.

Definition 2.5. A clause C is defined as

C ::= A0 ← A1, ..., Am.

Notation 2.6. The atom A0 is called the head of C, whereas the atom list A1, ..., Am is its
body. In the rest of this document, the writing convention will be to use H for the head of
a clause, and B1, ..., Bm for the atoms of the body.

Definition 2.7. As stated in Remark 1.48, a Horn clause can be understood as ”if B1 and
B2 ... and Bm, then H”. In that spirit, when m = 0, i.e. C ≡ H ← (or simply H), the clause
represents a fact. Otherwise, when m ≥ 1, a clause is called a rule.

Definition 2.8. A program P is a finite set of clauses.

P ::= C0, ..., Ck, where the commas denote conjunction.
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path(X,Y )← edge(X,Y ).
path(X,Y )← path(X,Z), edge(Z, Y ).

edge(1, 3).
edge(2, 1).
edge(4, 2).
edge(2, 4).

Figure 2.1: Directed graph connectivity in Datalog

Example 2.9. Figure 2.1 shows a textbook Datalog program that computes the (non-empty)
paths in a directed graph. The first two lines are rules, whereas the last four are facts.

The Datalog programs are however not built entirely à la carte, as they must enforce two
contraints.

2.1.2 Extensional vs. intensional predicates

Definition 2.10. In any Datalog program, the involved predicates must be split into two
classes: extensional (or base) predicates, that are only defined using facts, and intensional
(or derived) predicates, that are defined only via rules.

Corollary 2.11. In any Datalog program, a predicate can not appear as the head of both a
rule and a fact.

Example 2.12. In the program of Figure 2.1, the path predicate is intensional (defined by
the two rules), whereas edge is extensional (defined by the four facts), and Corollary 2.11 is
respected.

Remark 2.13. From a database standpoint, the extensional predicates correspond to
the relations actually stored in the database, whereas the intensional predicates are virtual,
computed relations, usually called views. In that setting, the facts of a program P form the
extensional database, written edb(P ), the rules are the intensional database idb(P ),
and the program schema is sch(P ) = edb(P ) ∪ idb(P ).
Although Datalog programs are formalized as a mix of rules and facts in this section, the
(usually) huge preponderance of facts over rules makes it convenient and more efficient to
view them as two separate components. As discussed in Chapter 3, this is actually done in
the aforementioned Coq formalization of Datalog [Dumbrava, 2016].

Notation 2.14. In the rest of this document, the considered programs will be clearly iden-
tified and the set of base facts shall be denoted as simply EDB, rather than edb(P ).

Remark 2.15. Surprisingly, this constraint does not mitigate the expressivity of Datalog.
Assume an invalid program, where a predicate p is used both in an intensional and extensional
manner. We can introduce a purely extensional predicate pEDB, which contains the same
facts as p, and a rule p(X) ← pEDB(x). Then, we can remove p from the EDB, making it a
purely intensional predicate, while preserving the originally intended semantics.
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2.1.3 Program safety

On the other hand, the second constraint does limit the expressivity of Datalog. To formalize
it, we first need the following definition, which will also be used extensively when introducing
the semantics of Datalog.

Definition 2.16. The variable-free expressions of Datalog are called ground expressions.
The sets of ground atoms, clauses and programs are written A,C and P , respectively.

Definition 2.17. A clause is safe if all the variables in its head also appear in its body.

Remark 2.18. Since it has no body, a fact is safe iff it is ground.

Definition 2.19. (Program safety condition) A program P is safe if all the clauses it
contains are safe.

Example 2.20. The program in Figure 2.1 is safe. Note that the last four clauses, or facts,
are an illustration of Remark 2.18.

Example 2.21. The program of Figure 2.2a is invalid in Datalog, as variable X appears in
the head of the only rule but not the body (note that the safety constraint more generally
forbids rules with empty bodies). On the other hand, the program of Figure 2.2b, where
element(X) is an extensional predicate that contains every constant of the EDB, is a hacky
but valid program. Finally, note that in practice, equality is seen as a primitive predicate
(see Section 2.4).

equal(X,X)← .

(a) Invalid definition

equal(X,X)← element(X).

(b) Valid definition

Figure 2.2: Expressing equality in Datalog

Remark 2.22. The safety conditions may seem arbitrary at first, but they bound the
semantics of any given Datalog program and guarantee the termination of the bottom-up
evaluation strategy. This is discussed more in-depth hereafter.

Example 2.23. Datalog can be used for many access control policies or rule-based processes.
For example, [Dougherty et al., 2006] presents a Datalog formalization of the access to con-
ference review scores. As an alternative real life situation, Figure 2.3 translates into Datalog
a simplified version of the access to the parisian MK2 Bibliothèque movie theater.

can watch(P, M, D)← showing(D, M), cost(P, D, C), pays for(F, P, C).

cost(P,D, 4.90)← child(P ), any(D).
cost(P,D, 4.90)← young(P ), week(D).
cost(P,D, 7.90)← young(P ), weekend(D).
cost(P,D, 7.90)← student(P ), any(D).

Figure 2.3: Buying a ticket at the MK2 Bibliothèque

Although the semantics of Datalog has not been formally introduced at this point of the
document, the sharp-eyed reader will probably infer the informal meaning of the rules. The
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first one states that a person P can go see a movie M on day D if

• M is shown on D

• seeing a movie on D will cost C to P

• a person F (which in practice can be P him/herself, or maybe a friend) pays C for P

The other rules encode a fragment of the pricing table1. Note that the program safety
condition in enforced using the any predicate, which contains every day constant. This trick
can be used because there is only a finite number of possible values, i.e. seven days.

2.2 Semantics

We introduce two semantics for Datalog: the Minimal Model Semantics, which roughly views
Datalog as a first-order logic theory, and the Fixpoint Semantics, which is more akin to an
execution engine. These two semantics stem from the key result of fixpoint theory, called the
Knaster-Tarski theorem [Tarski, 1955].

Theorem 2.24. (Knaster-Tarski theorem) Let us assume a complete lattice 〈L,≤〉 and
an operator f on L. If f is monotonic, then it has a least fixpoint, denoted as lfp(f).

The original proof establishes that pre-fixpoint are closed by min, meaning that the least
fixpoint is the inf over all pre-fixpoints. This is the theoretical background of the Minimal
Model Semantics detailed in Section 2.2.1.

If the lattice is finite, this original proof provides an algorithm to compute the least fixpoint.
However, enumerating every pre-fixpoints is obviously not always feasible in practice. Another
proof, attributed to Kleene, provides a more efficient algorithm. This algorithm iterates the
f operator, starting from the bottom of the lattice, until a fixpoint is reached. This fixpoint
is shown to be the least fixpoint. This second proof is the theoretical background of the
Fixpoint Semantics detailed in Section 2.2.2.

Remark 2.25. Calling only the second semantics the (and not ”a”) fixpoint semantics may
be misleading, as both are about fixpoints.

As expected given the fact that these two semantics are inspired by two different proofs of
the same theorem, they are equivalent, as shown in [Van Emden and Kowalski, 1976].

2.2.1 Minimal Model Semantics

As previously seen, a Datalog program P is a set of Horn clauses, meaning that it can easily
be translated into an actual first-order logic formula P ∗ using the following rules:

Atom An atom A can simply be represented as a first-order logic formula A∗

1At the time of writing, the full pricing specification of the MK2 Bibliothèque can be found at
https://www.mk2.com/sites/default/files/grille tarifaire bibliotheque2.pdf. A complete Datalog implemen-
tation is of course left as an exercice to the reader.
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Clause A clause C ≡ H ← B1, ..., Bm can then be translated into

C∗ ≡ ∀X1, ...,∀Xq((∃Xq+1...∃Xl, (B1 ∧ ... ∧Bm))⇒ H)

with {X1, ...,Xq} = V AR(H)

and {Xq+1, ...,Xl} =
⋃

k∈[1,m] V AR(Bk)\V AR(H)

In other words, given an instantiation [X1 7→ c1, ..., Xm 7→ cm] of the variables in
the clause’s head, H(c1, ..., cm) can be deduced if the rest of the clause’s variables
can be instantiated so that the resulting ground atoms are all true.

Program As a program P is a set of clauses, P ∗ is simply
∧

C∈P
C∗

Example 2.26. (Graph Transitive Closure) Using these rules to translate the program
of Figure 2.1 returns the following formula, where the first line contains the facts, and the
other two correspond to the two rules of the program.

e(1, 3) ∧ e(2, 1) ∧ e(4, 2) ∧ e(2, 4)
∧ (∀X,∀Y, (edge(X,Y )⇒ path(X,Y )))

∧ (∀X,∀Y, (∃Z, (edge(X,Z) ∧ path(Z, Y )))⇒ path(X,Y ))

Now that Datalog programs can be translated to first-order logic, we can define their seman-
tics in this framework. To do so, we provide the interpretation (cf. Definition 1.27) of the
fragment of FOL corresponding to the translation.

Definition 2.27. Let us assume a program P and the signature Σ = (C,P, ar). As in Section
2.1.1, C is the set of program constants, and ar the arity function for the set of predicates
P. A Σ-structure I comes in the form I = (U, I : Σ′ → U ∪ {⊤,⊥}), where Σ′ = C ∪ P.
The codomain of interpretation I is the union of the non-empty universe U and the boolean
set, the former being used for the interpretation of constants and the latter for atoms. More
formally,

• for every c ∈ C, I(c) ∈ U
• for every p ∈ P, I(p) is a mapping Uar(p) → {⊤,⊥}. In other words, the interpretation

expects a number of arguments as specified by the arity function for the given predicate
and returns a boolean evaluation.

Definition 2.28. We can now define the actual interpretation function. Assuming a signa-
ture Σ, a set of variables V and a valuation ι : V → U , the interpretation JeKI,ι of a Datalog
expression e is defined by structural induction on e using the following rules.

• JxKI,ι = ι(x)

• JcKI,ι = I(c)

• Jp(t1, ..., tn)KI,ι = I(p)(Jt1KI,ι, ..., JtnKI,ι) =
{
⊤ if I(p)(Jt1KI,ι, ..., JtnKI,ι) = ⊤
⊥ otherwise

• JH ← B1, ..., BnKI,ι =
{
⊤ if ∃i ∈ [1, n], JBiKI,ι = ⊥ ∨ JHKI,ι = ⊤
⊥ otherwise
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• JH ← B1, ..., BnKI =
{
⊤ if ∀ι, JH ← B1, ..., BnKI,ι = ⊤
⊥ otherwise

Definition 2.29. An interpretation I is a model for a clause C if the latter is evaluated
to ⊤ wrt the former, i.e. JCKI = ⊤. Such an interpretation is also a model for a program P
if it is for every clause of the program, i.e. ∀C ∈ P, JCKI = ⊤.

We now give a FOL view of the deduction of new facts in Datalog. To do so, we rely on
Herbrand Semantics (cf. Section 1.2).

Definition 2.30. A fact F is a logical consequence of a program P , written P |= F , iff
any interpretation I satisfying P also satisfies F , i.e. I |= P implies I |= F .

Notation 2.31. The set of all logical consequences of a program P is denoted as
cons(P ).

Definition 2.32. We express the logical consequences of a Datalog program P using
the Herbrand Semantics of P , the building blocks of which are:

• as Herbrand Universe, the set of all program constants, written adom(P ).

• as Herbrand Base, the set of all ground atoms that can be built from predicates (in P)
and constants in adom(P ), written BP .

• as Herbrand Interpretation, IH (cf. Definition 1.29), i.e. the symbols are their own
interpretation.

Remark 2.33. As seen in the definition of the Herbrand Universe, the only constants which
need to be considered are those that actually appear in the studied program. This stems
from the safety condition (see Section 2.1.3) and the absence of terms, meaning that Datalog
programs only pass around values rather than introducing or computing new ones, as can be
done in Prolog for example.

Definition 2.34. In that setting, the grounding of a program P is defined as a valuation
(cf. Definition 1.30) ι : BV (P )→ adom(P ) as

with ι(P ) =
⋃

C∈P
ι(C)

with ι(p0(~t0)← p1(~t1), ..., pm( ~tm)) = p0(ι(~t0))← p1(ι(~t1)), ..., pm(ι( ~tm))

Definition 2.35. Applying this definition to the satisfaction of a clause wrt a Herbrand
interpretation IH,

IH |= ι(C) iff {p1(ι(~t1)), ..., pm(ι( ~tm))} ⊆ IH implies that p0(ι(~t0)) ∈ IH

We can now define, as a special case of Definition 1.36, the notion of Herbrand model.

Definition 2.36. A Herbrand interpretation IH is a Herbrand model of a program P iff
IH |= ι(P ), for all ι : BV (P )→ adom(P )

Example 2.37. Let P be the program {p(a), q(a), r(X) ← p(X)}. The set of predicates P
is {p, q, r}, and that of constants, adom(P ) = {a, b}. They can be used to build the set of
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ground atoms BP = {p(a), p(b), q(a), q(b), r(a), r(b)}.
Now consider the following Herbrand interpretations:

• I1 = ∅

• I2 = {p(a), q(a)}

• I3 = {p(a), q(a), r(a)}

• I4 = {p(a), q(a), r(a), p(b), r(b)}

• I5 = {p(a), q(a), r(a), q(b)}

• I6 = BP

I1 is not a Herbrand model of P as it does not even contain the facts of the program. I2 does
have them, but the r(X) ← p(X) rule is not enforced, as it contains p(a) and not r(a). On
the other hand, I3, I4, I5 and I6 are Herbrand models of P .

Theorem 2.38. If M1 and M2 are Herbrand models of a definite program P , then M1 ∩M2

is also a model of P . This theorem is called the Model intersection property.

Proof. Let C be a Horn clause in P and ι a valuation. C is either a fact or a rule. In the
first case, M1 and M2 must both contain ι(C) to be models of P , which means that M1 ∩M2

does too.

If C ≡ p0(~t0)← p1(~t1), ..., pm( ~tm) is a rule, then M1 and M2 both either contain ι(p0(~t0)), or
do not contain a ι(pi(~ti)) with ti ∈ [1,m]. If M1 and M2 indeed both have ι(p0(~t0)), then so
does M1 ∩M2. If M1 or M2 does not contain a ι(pi(~ti)), then M1 ∩M2 does not either. In
both cases, M1 ∩M2 satisfies C.

Definition 2.39. Using set inclusion as a partial order, a Herbrand model is called minimal
if none of its proper subsets are also models.

Definition 2.40. As a consequence of Theorem 2.38, any program P has a unique minimal
model M(P ), the intersection of all its Herbrand models.

Example 2.41. In Example 2.37, I3 is the minimal model of P . Although all models of the
program are not listed, the reader can note that I3 = I4 ∩ I5 ∩ I6.

The unique minimal model is the intended semantics of Datalog. In other words, given a
Datalog program P , cons(P ) =M(P ).

Remark 2.42. This choice, as explained in Chapter 12.2 of [Abiteboul et al., 1995], is a
consequence of a philosophical hypothesis fueling database theory, called the closed world
assumption. It basically states that dabases should be considered to be complete, although
they obviously do not contain every fact about the world in practice. In that setting, any
fact which can not be derived (or proved) from a program should be considered false. The
minimal model semantics enforces this philosophy.
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2.2.2 Fixpoint Semantics

We now give an alternative, more computation-oriented but equivalent semantics of Datalog.
This semantics being based upon fixpoint theory, we first recall its basics.

Definition 2.43. A complete lattice is a pair 〈L,≤〉, where L is an ordered set wrt to
the partial order ≤ and any set A ⊆ L has a greatest lower bound

⋂
A, and a lowest upper

bound
⋃
A.

Definition 2.44. Given a set L equipped with a partial order ≤, an operator f : L → L

• is monotonic, if x1 ≤ x2 implies f(x1) ≤ f(x2) for all x1, x2 ∈ L, i.e. f preserves the
partial order ≤

• has a pre-fixed point p if f(p) ≤ p
• has a fixpoint x if f(x) = p

We can now apply the Knaster-Tarski theorem (see Theorem 2.24) to the interpretation of
Datalog. The partially ordered set here is the set of Herbrand interpretations P(BP ), i.e.
the different combinations of ground atoms. The operator is introduced in the following
definition.

Definition 2.45. Given a program P , the immediate consequence operator TP works
on interpretations, i.e. TP : P(BP )→ P(BP ), and is defined as

TP (I) = I ∪ {head(ι(C)) | C ∈ P ∧ ι a grounding of P ∧ body(ι(C)) ⊆ I}

In other words, TP preserves the ground atoms in its argument (F ∈ I), and adds the heads
of clauses in the program instantiated with valuations such that the ground atoms in the tail
are all in the argument (right side of the ∨). Any ground atom F produced by the operator
is called an immediate consequence of the program.

Lemma 2.46. TP is monotonic.

Proof. Let us assume I1 and I2 ⊆ BP such that I1 ⊆ I2, and F ∈ TP (I1). Either F ∈ I1, or
there exists a C ∈ P and a valuation ι such that body(ι(C)) ⊆ I1. In both cases, since I1 is
a subset of I2, the former can be replaced by the latter in the assertion, showing that F is
also in TP (I2).

Theorem 2.47. TP has a least fixpoint, lfp(TP ). In practice, it is computed by iterating
TP , starting with the minimal, i.e. empty interpretation.

Proof. Combination of Theorem 2.24 and Lemma 2.46.

Definition 2.48. The powers of the immediate consequence operator are defined as

{
TP ↑ 0 = ∅
TP ↑ (n+ 1) = TP (TP ↑ n)

As previously stated, there exists some ω ∈ N such that TP ↑ ω =
⋃
n≥0

TP ↑ n = lfp(TP )



2.2. SEMANTICS 35

Example 2.49. Let P be the graph connectivity program from Example 2.9, then

• TP ↑ 0 = ∅
• TP ↑ 1 = TP (∅) = ∅ ∪ {edge(1, 3), edge(2, 1), edge(4, 2), edge(2, 4)}
• TP ↑ 2 = TP (∅) = TP ↑ 1 ∪ {path(1, 3), path(2, 1), path(4, 2), path(2, 4)}
• TP ↑ 3 = TP (TP ↑ 2) = TP ↑ 2 ∪ {path(2, 3), path(4, 1), path(4, 4), path(2, 2)}
• TP ↑ 4 = TP ↑ 3 ∪ {path(4, 3)}
• TP ↑ 5 = TP (TP ↑ 4) = TP ↑ 4.

It then appears that TP ↑ ω = TP ↑ 4 = lfp(TP ).

Lemma 2.50. Given a Datalog program P and a Herbrand Structure H = (UH, I), I is a
pre-fixed point of TP iff I |= P .

Proof. secret

⇒ Let I be a pre-fixed point of TP , i.e. TP (I) ⊆ I, H ← B1, ..., Bn a clause in P and
ι a valuation. If {ι(B1), ..., ι(Bn)} ⊆ I then ι(H) ∈ TP (I) (second condition in the
definition of TP ). Since TP (I) ⊆ I, ι(H) ∈ I, and thus I |= ι(H ← B1, ..., Bn).

⇐ Let A be a ground atom in TP (I), we need to show that A ∈ I. Then, based on TP ’s
definition, A was either already present in I, or there exists a rule H ← B1, ..., Bn ∈ P
and a valuation ι such that A = ι(H) and {ι(B1), ..., ι(Bn)} ⊆ I. Since I |= P ,
ι(H) = (A) ∈ I.

Remark 2.51. Since TP (I) preserves the elements of I, I ⊆ TP (I). With that in mind,
Lemma 2.50 can be re-stated as I is a fixpoint of TP iff I |= P .

We can now relate the fixpoint and minimal model semantics.

Theorem 2.52. The unique minimal Herbrand Model M(P ) of a Datalog program P is
lfp(P ) = TP ↑ ω.

Proof. See [Van Emden and Kowalski, 1976].

We end this section with a more operational view on the fixpoint semantics. Indeed, con-
cretely, the consequence operator is equivalent to the following inference rule, called the
Elementary Production Principle [Ceri et al., 1989].

H ← B1, ..., Bn {F1, ..., Fn} ⊆ I ∃σ, σ(B1) = F1 ∧ ... ∧ σ(Bn) = Fn

σ(H)
EPP

Remark 2.53. The EPP rule is an implementation of hyperresolution, (see Section 1.54).

Theorem 2.54. Given a Datalog program P , the semantics of the program cons(P ) can be
obtained by iterating the EPP rule until a fixpoint is reached. This algorithm is indeed both
sound and complete.
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Proof. Corollary of the completeness and soundness properties of hyperresolution established
in [Bachmair et al., 2001].

2.3 Adding and handling negation

So far, we have introduced the so-called standard Datalog. It can however be augmented
with various features, most notably negation. As explained in Chapter 6, this thesis, and
the Datalog optimizations it introduces, were inspired by a network verification tool, called
Octant, which did not initially scale. These performance issues were brought by the use of
negation, meaning that we need to get an idea of how it is added and handled.

As always, we first discuss the syntactic side, before moving to the so-called stratified seman-
tics. This semantics of Datalog with negation serves as the theoretical foundation for the
implementation of negative Datalog in [Dumbrava, 2016] and will provide a good intuition
of what happens during the execution of Octant. For the sake of being exhaustive, we will
finally overview some alternative semantics of this extension.

2.3.1 Syntax

The first step is, unsurprisingly, to add a negation unary operator to Datalog’s vocabulary.
We shall write it ¬, as illustrated by the following example.

Example 2.55. The program of Figure 2.4 is similar to the one shown in Figure 2.1, which
defined graph connectivity, with the addition of a rule. This (third) rule defines disjoint, the
predicate, or set, of pairs of edges which are not connected.

path(X,Y ) ← edge(X,Y ).
path(X,Y ) ← path(X,Z), edge(Z, Y ).
disjoint(X,Y )← ¬path(X,Y )

edge(1, 2).
edge(2, 1).
edge(2, 3).

Figure 2.4: Directed graph disconnectedness in Datalog augmented with negation

Integrating this operator into Datalog requires a slight extension of its formal syntax, as
defined in Section 2.1. Concretely, we add a new layer on top of the atoms, called literals
(see Definition 1.11), and adapts the notion of clause.

Definition 2.56. A literal L is either a positive or a negated atom:

L ::= A | ¬A

Definition 2.57. A clause C has a positive atom head and a body of literals:

C ::= A0 ← L1, ..., Lm
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Notation 2.58. The set of positive and negative atoms in the body of a clause C are written
body+(C) and body−(C), respectively.

Remark 2.59. Section 6.1 of [Dumbrava, 2016] discusses the adaptation of the safety con-
dition (see our own Section 2.1.3) to this new setting, as the use of negation opens the door
to considering and computing an infinity of facts. However, it is stated that the previous
notion is sufficient when the domain of values is restricted to the constants appearing in
the program’s database. Since this is the approach taken by the associated development
[Benzaken et al., 2017b], and then by us as well, we do not dwelve into these considerations
in this document.

While the changes to the syntax are minor, defining a semantics for Datalog augmented with
negation is more involved. We first focus on a semantics called stratified semantics, and then
overview some alternative approaches.

2.3.2 Stratified Semantics

The presentation of the stratified semantics will itself be stratified, as we first present a
semantics for Datalog programs which use negation in a very limited way. Then, we will see
how the idea behind this semantics can be lifted to unrestriced programs, by introducing a
new logical consequence operator and an associated new iteration, as well as the notion of
stratification of Datalog programs.

2.3.2.1 Semipositive Datalog

We start with a restricted use of negation in Datalog, which provides a simple intuition that
will then serve as the bedrock of a generalization to more generic programs.

Definition 2.60. A semipositive Datalog program is a program where negation is only
applied to atoms built with extensional predicates (see Section 2.1.2), i.e. predicates only
defined by the EDB.

Example 2.61. The program shown in Figure 2.4 is not semipositive, since a negation is
applied to path, which is an intensional predicate.

This restriced setting is simply dealt with, as such negated atoms can be replaced by their
complement w.r.t. the program’s Herbrand base, i.e. the set of relevant facts that can be
built using constant appearing in the EDB. Then, the semantics of standard Datalog can be
reused. The following example illustrates this mechanism.

P (X,Y )← R(X,Y ), ¬R(Y,X).

R(1, 2).
R(2, 2).

(a) A semipositive program...

P (X,Y )← R(X,Y ), nR(Y,X).

nR(1, 1).
nR(2, 1).
R(1, 2).
R(2, 2).

(b) and an equivalent standard Datalog program

Figure 2.5: Interpretation of semipositive Datalog programs
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Example 2.62. Figure 2.5 shows a semipositive Datalog program P . Considering the set
of constants that appear in the EDB, the only ground atoms about R in BP , the program’s
Herbrand base, are R(1, 1), R(1, 2), R(2, 1) and R(2, 2).

This program is then equivalent to Figure 2.5b, where a new predicate nR, is introduced to
replace the negation of R. It is also an extensional predicate, whose definition in the EDB is
the complement of R w.r.t. BP .

2.3.2.2 Logical consequence

We now move up to the general setting, where negation may be applied to any predicate,
may it be extensional or intensional. The heart of the operational semantics for standard
Datalog previously defined was the TP operator (see Definition 2.45), which of course needs
to account for the negated atoms.

Definition 2.63. Given a program P , the extended immediate consequence operator
T̃P works on interpretations, i.e. T̃P : P(BP )→ P(BP ). The definition is similar to the previ-
ous one, but now only captures extensional predicates in the given (or previous) interpretation
(I|EDB) and checks that the instances of negated atoms have not been deduced:

T̃P (I) = {F ∈ P(BP ) | F ∈ I|EDB ∨ F = head(ι(C)), C ∈ P
∧ body+(ι(C)) ⊆ I
∧ body−(ι(C)) ∩ I = ∅}

Remark 2.64. Unlike the standard TP , this new T̃P operator is not inflationary, i.e. it is
not the case that I ⊆ T̃P (I) for every I ⊆ BP (note that I is not restricted to facts about
extensional predicates). Still unlike TP (see Lemma 2.46), it is not monotonic either.

This remark on the monotonicity of T̃P is at the heart of the intricacies brought by the
negation, as illustrated by the following example.

Example 2.65. We use a program P which only contains a single rule p ← ¬q and no
variable. Several properties of the minimal model semantics (see Section 3.3.1) are violated
when trying to apply it to P :

Uniqueness I1 = {p} and I2 = {q} are both minimal Herbrand models, i.e. they are both
compatible with the only rule of P , whereas ∅ is not (the absence of q would imply
the presence of p).

Models closed by intersection As explained just above, I1 ∩ I2 = ∅, unlike I1 and I2,
is not a model of P .

Monotonicity T̃P (∅) = {p} (not decreasing) and T̃P ({q}) = ∅ (not increasing)

Beyond these fundamental infringements of the model-theoretic approach we previously relied
on, a more immediate and practical issue arises with the use of negation, as shown by the
following example.

Example 2.66. Consider the two-rule program P = {p← ¬q, q ← ¬p}. Using the extended
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consequence operator of Definition 2.63 and iterating it using Definition 2.48, the results
alternate between ∅ and {p, q}, indefinitely.

The immediate consequence operator has already been altered to account for the use of
negation, but the way it is iterated has not. This is the heart of the solution developed by
[Apt et al., 1988], which introduces the notion of stratified semantics.

The idea is that the programs are split into strata, defined by the use of negation (the
construction of these strata is addressed in Section 2.3.2.3), and that the results of the
computation of a stratum are preserved when moving on to the next. This way, the iterations
are performed on a stable fact base and monotonicty is ensured, which clearly appears in the
following definition.

Definition 2.67. Given a complete lattice 〈L,⊆〉 and a Datalog program P , the powers of
the extended immediate consequence operator are defined as





T̃P ↑ 0 = ∅

T̃P ↑ (n+ 1) = T̃P (T̃P ↑ n) ∪ T̃P ↑ n

T̃P ↑ ω =
⋃
n≥0

T̃P ↑ n

Example 2.68. Going back to Example 2.66, but using the new iteration of T̃P , we obtain
T̃P ↑ 0 = ∅ and T̃P ↑ 1 = T̃P ↑ ω = {p, q}. In particular, a fixpoint is now reached.

As stated above, for this method to work, the programs need to be stratified.

2.3.2.3 Stratifying a Datalog program with negation

To formally define the notion of stratified program, we need the notion of predicate definition,
i.e. the set of clauses of a program that define a given (extensional or intensional) predicate.

Definition 2.69. Given a Datalog program P , the definition of a predicate p is

def(p) ≡ {C ∈ P | sym(head(C)) = p}

Definition 2.70. Let P be a Datalog program with negation. A stratification is a mapping
σ : P → [1, n] that indexes the predicate symbols of P – and can be lifted to atoms – such
that, for any clause of the form

H ← B1, . . . , Bk,¬C1, . . . ,¬Cm

in P , we have

• σ(Bi) ≤ σ(H), for every i ∈ [1, n]

• σ(Ci) < σ(H), for every i ∈ [1,m]
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In other words, a stratification indexes the positive and negative atoms of any clause such that
they are bounded and strictly bounded, respectively, by the index of the predicate symbol at
the clause’s head. This way, we obtain an order in which the different layers, or strata, of
the program can be computed.

Definition 2.71. Given a program P and a stratification σ, we call Pi a stratum, where

Pi = {p ∈ P | σ(p) = i} and Pi 6= ∅

A program P is then partitioned into P1 ⊔ · · · ⊔ Pn, where ⊔ is the disjoint set union.

Remark 2.72. Given a clause C that appears in the Pi stratum, lifting Definition 2.70, we
obtain that any predicate symbol which appears positively (resp. negatively) in the body of
C is fully defined by strata which are below or at the same level as (resp. strictly below) Pi.
Concretely, for any predicate symbol p ∈ P,

• if p ∈ ⋃
L ∈ body+(C)

sim(L), then def(p) ⊆ ⋃
j≤i

Pj

• if p ∈ ⋃
L ∈ body−(C)

sim(L), then def(p) ⊆ ⋃
j<i

Pj

Notation 2.73. Such a stratification of P into {P1, . . . , Pn} is denoted as P̄n. Each stratum
Pi may also be refered to as a program slice.

Remark 2.74. Given a stratification P̄n, every program slice Pi is a semipositive Datalog
program w.r.t. the lower strata. In other words, assuming we have computed slices P1 to
Pi−1, and seeing the result as a new EDB, Pi can be dealt with using the method of Section
2.3.2.1.

Remark 2.75. Some Datalog programs, such as the one in Example 2.66, are not stratifiable.
We do not go into details in this document, as the technicities of the actual stratification of
Datalog programs does not come into play in our work, its justification or explanation. The
curious reader will find a synthesis and illustration in Section 6.2.3 of [Dumbrava, 2016], and
a more complete version in [Ullman, 1990].

We now have all the tools and notions required to formally define a first semantics of Datalog
programs using negation.

2.3.2.4 Iterated Fixpoint Models

As previously intuited (see Remark 2.74), the stratification of a program splits it into a series
of components, which will be executed in a sequential manner and on top of one another, i.e.
using the semantics of the previous slice(s) as the initial interpretaion.

Definition 2.76. Let P be a Datalog program with negation, stratified as P1⊔· · ·⊔Pn. The
model of P is defined iteratively, using the following relation:

{
M1 = T̃P1 ↑ ω (∅)
Mi = T̃Pi ↑ ω (Mi−1)
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Is that setting, the intended semantics of P is Mn.

Example 2.77. We reuse the program of Example 2.55, which defined graph disconnected-
ness. In that context, the edge and path predicate symbols can be the first stratum, whereas
disjoint should go to the second one. The computation of the first stratum returns the set
M1 = {edge(1, 2), edge(2, 1), edge(2, 3), path(1, 2), path(2, 1), path(1, 1), path(2, 3), path(1, 3)}

Using this set as the EDB for the second stratum, the semipositive method returns the set
M1 ∪ {disjoint(2, 2), disjoint(3, 1), disjoint(3, 2), disjoint(3, 3)} =M2.

It might be surprising to compute disjoint(2, 2) and disjoint(3, 3). This is because path(X,Y )
is defined as the existence of a non-empty path between vertices X and Y . One might be
tempted to add a reflexivity using a trick similar to what is shown in Example 2.21.

Remark 2.78. A program may admit more than one stratification (e.g. by using multiple
strata for a set of compatible predicates). It is however shown in [Apt et al., 1988] that the
semantics of a program is independent from its stratification.

As stated and proved in Chapter 15.2 of [Abiteboul et al., 1995], the stratified semantics is
adequate w.r.t. the previously introduced interpretation of Datalog:

Theorem 2.79. For each stratifiable Datalog program P and instance I over edb(P ):

• The stratified semantics of P w.r.t. I is a minimal model of P ∗, the first-order logic
translation of P (see Section 2.2.1), and its restriction to edb(P ) equals I

• The stratified semantics of P w.r.t. I is a minimal fixpoint of TP , and its restriction to
edb(P ) equals I

Proof. See Section 9.6.1 of [Dumbrava, 2016], also implemented in Coq in [Benzaken et al., 2017b].

2.3.3 Alternative semantics

The stratified semantics is used as a reference point in [Dumbrava, 2016], but alternative
semantics are introduced and quickly discussed.

Perfect model semantics The perfect model semantics [Przymusinski, 1988] generalizes
the notion of stratification introduced above, as it is defined on the level of atoms rather than
predicates. The computation of the semantics of a locally-stratified program is then similar
to the process seen just above.

Stable model semantics The stable model semantics [Gelfond and Lifschitz, 1988], rather
than dealing with the negation at the level of the iterated logical consequence operator, trans-
forms the Datalog program. After it has been grounded, rules containing negated facts that
appear in the original interpretation I are deleted, as their body can not be satisfied. On the
other hand, negated facts which do not appear in I are also deleted, as they are considered
satisfied.
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This leads to a negation-free program, whose semantics can be computed using the standard
tools. If this unique minimal model of the transformed program is the original interpretation
I, then it is also the unique minimal model of the initial program, called a stable model.
Given a stratifiable program, this model is the same as the iterated fixpoint model.

Well-founded model semantics The well-founded model semantics [Van Gelder et al., 1991]
uses a logical setting that introduces a third, intermediate truth value [Przymusinski, 1990].
The interpretation is then split into two components, founded and unfounded facts, and the
logical consequence operator combines the usual immediate consequence with the negation
of elements in the greatest unfounded set. For locally stratified programs, the (iterated)
well-founded and perfect model semantics are equal, whereas for Datalog programs with
unstratified negation, the total well-founded model is the same at the unique stable one.

The takeaway of this section on Datalog extended with negation is that, in practice, reasoning
about the negation of a predicate requires a saturation of its definition. More concretely,
this means that the use of negation may introduce bottlenecks in the execution of Datalog
programs, as we will see in Section 6.2.

2.4 Adding on-the-fly constraints

As defined above, Datalog passes around values rather than buidling (using complex terms)
or introducing new ones, which ensures its finiteness. However, this setting is also a strong
limitations for the implementation of many real-life scenarios and problems. Another practical
extension of Datalog, which is lighter than negation but also comes into play in our work, is
the use of non-strictly symbolic predicates.

Definition 2.80. A primitive predicate is a predicate which is not defined by rules or the
EDB (meaning that it is neither intensional nor extensional), but by actual computations
within the Datalog engine.

Example 2.81. Assume we have an EDB filled with people represented as facts of the form
p(N,H), where N is the person’s name (or id) and H his or her height, and we want to use
Datalog to compute the set of heightest people in this EDB. This can be done within the strict
frame of Datalog, for example with the rules of Figure 2.6, with a new extensional predicate
greater. This approach then requires the addition to the EDB of every fact greater(x, y)
where x is indeed greater than y and x and y appear as the second argument of a fact about
p in the EDB.

taller(N1, N2)← p(N1, H1), p(N2, H2), greater(H1, H2).
tallest(N1) ← ¬taller(N2, N1).

Figure 2.6: Computing the tallest people in strict Datalog

This method relies on the finite nature of Datalog programs, and in particular of the set of
relevant constants. However, the domain of such a program is usually an almost infinite set,
in the sense that they can not be naively enumerated in practice – let alone in a quadratic
way, as in Figure 2.6. Purely symbolic Datalog, as introduced in this chapter, are then not
fit to handle some use cases.
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In contrast, individual Datalog engines may support primitive predicates, e.g. efficient im-
plementations of = or ≥. Such an engine could run the program of Figure 2.7, which does
not require the introduction of new predicates or facts.

taller(N1, N2)← p(N1, H1), p(N2, H2), H1 ≥ H2.
tallest(N1) ← ¬taller(N2, N1).

Figure 2.7: Computing the tallest people in Datalog with primitive predicates

Remark 2.82. The addition of primitive predicates should not be at the cost of breaking the
finite nature of the execution of Datalog programs. To avoid this caveat, the safety constraint
defined in Section 2.1.3, does not take into account the occurrences of arguments in primitive
predicates. This way, they can be seen as additional, very convenient constraints added at
the level of the engine rather than the actual language.



Chapter 3

Datalog in Coq

Et maintenant, je me demande : quand vient la nuit, est-ce que
la Machine pleure, elle aussi ? Est-ce qu’elle hurle dans un
oreiller, comme moi, depuis le fond de sa solitude ?

Emmanuel Denise, Canard PC 396

In her thesis [Dumbrava, 2016], Stefania Dumbrava developed a formalization of Datalog
within the Coq proof assistant, called DatalogCert [Benzaken et al., 2017b]. It contains two
engines, one for standard Datalog, implementing and certifying the TP operator as presented
in Section 2.2.2, and one for Datalog extended with negation, using the semantics introduced
in Section 2.3.2.

Remark 3.1. This chapter introduces the version of DatalogCert corresponding to the paper
[Benzaken et al., 2017a] and found at [Benzaken et al., 2017b]. Some of its authors have since
developed more complete or alternative versions (see for example [Bonifati et al., 2018]). The
work presented in this thesis should be adapted to such newer versions, which should serve
as the basis of potential future works.

Our work is also formalized in Coq, using the development of the positive Datalog engine.
Although we formally defined the computation of Datalog programs using negation above,
it was only to give an intuition of the way Datalog engines work in practice, and how it can
raise performance issues, as explained in Section 6.2.

As these Datalog engines are heavily based on the Mathematical Component (MathComp)
library, Section 3.1 first introduces the relevant basics with a simple, user-oriented overview.
We then present in Sections 3.2 and 3.3 the core syntactic and semantic components of the
positive Datalog engine found in DatalogCert, to provide context and tools for our own work.

3.1 Finite types and notations in MathComp

MathComp introduces a type hierarchy for algebra, where refined structures inherit properties
and structural functions of their ancestors [Garillot et al., 2009]. Figure 1 of [Sakaguchi, 2020]
shows the hierarchy of structures found in version 1.10.0 of MathComp. As an illustration,
an algebra enthusiast may notice a ring type (ringType), which can be refined into the

44
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types of commutative rings (comRingType), or rings whose units have computable inverses
(unitRingType). These two types can then be specialized into the type of commutative rings
whose units have computable inverses, comUnitRingType.

However, both [Benzaken et al., 2017b] and the work we built upon it do not venture far into
the algebraic types introduced in MathComp. They rather use – and, in our case, extend –
the generic types which form the backbone of MathComp. We then first need to introduce
these types and the possibilities they unlock.

3.1.1 eqType

The basis of this backbone is a type called eqType. It consists of another type packaged with
a decidable equality, denoted as ==. More concretely, given an eqType and two elements of
this type, their equality can be computed as a boolean, as shown in Figure 3.1

Variable A : eqType.

Variable x y : A.

Check x == y.
x == y : bool

Figure 3.1: Using the decidable equality of an eqType

Conversely, to build an eqType, the base method is to provide a boolean equality relation
e, and show that it enforces the axiom of Figure 3.2, i.e. that its behavior follows the
propositional equality.

Definition axiom T (e : rel T) := forall x y, reflect (x = y) (e x y).

Figure 3.2: eqType axiom

Remark 3.2. To the best of our understanding, the general methodology of MathComp is to
fit structures into constrained types such as eqType, or the following subtypes, which unlocks
many definitions and notations. In particular, DatalogCert relies heavily on this approach
by leveraging the decidable and finite nature of Datalog.

3.1.2 choiceType and countType

The next two types are choiceType and countType. The first is the interface of types with
a choice operator, i.e. a function that takes a predicate and a witness of its non-emptiness,
and returns a standard element of the type satisfying the predicate.

The second type, countType, is an interface for countable types, i.e. types which are indexed.
More concretely, a countType is packaged with an injective function that associates a nat

index to any element of the type, as well as its partial (if the type contains finitely many
elements) inverse.
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Remark 3.3. All the types presented in this section form a strict hierarchy, in the sense that
a countType is a choiceType, which in turn is an eqType. The most precise and interesting
type, which inherits the properties of all the others, is finType.

3.1.3 finType

The final interface, finType, describes types with finitely many elements. This setting unlocks
new possibilities, as having only a finite number of elements in a type allows for terminating
iterations. We introduce some Examples of finTypes and associated notations which will be
used in the rest of this document.

Example 3.4. Given an integer n, one can define the finType of nats strictly lower than
n, called Ordinal n and written 'I_n. To build a 'I_n from an integer x, one needs a proof
that x < n. Conversely, such a proof can be extracted from an ordinal.

Example 3.5. Functions with a finite domain, i.e. from a finType A to a (generic) type
B form a type called finfun, and written {ffun A -> B}. If B is also a finType, then
{ffun A -> B} is a finType itself.

Example 3.6. Given a type A and an integer n, n.-tuple A is the type of lists over A with
exactly n elements. If A is a finType, so is n.-tuple A.

Example 3.7. Given a finite type A, MathComp provides the finType of sets over A, written
{set A} (which, by transitivity, allows the definition of {set {set A}}, and so on).

Definition 3.8. Such types, along with related operations are axioms, are packed within
dependent records usually called mixins (see Section 2.1 of [Garillot et al., 2009]). Chapter
7 will show how we define and fit some types into such structures.

3.1.4 Using MathComp types

One of the benefits of MathComp is the introduction of some ”paper-like” notations for lists
and sets. These notations, which rely on straightforward definitions, allow for much more
readable and higher-level definitions and proofs, and are used in Parts IV and V of this thesis.

Remark 3.9. A list is called a ”seq” in MathComp. Both terms will be used interchangeably
in this thesis.

Variable A : eqType.

Variable B : Type.

Variable y : A.

Variable f : A -> B.

Variable s : seq A.

Check [seq f x | x <- s & x != y].
[seq f x | x <- s & x != y] : seq B

Figure 3.3: Browsing, filtering and transforming a list with MathComp notations
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Example 3.10. Figure 3.3 shows a notation on lists which mixes filter and map. All
occurrences of y are filtered out, using the decidable (in)equality packed within the eqType

(filter expects a bool predicate), and a function f is applied.

Definition 3.11. The seq module in MathComp contains many useful notations and func-
tions. In particular, x \in s is the boolean membership of x in sequence s, and the all and
has functions check that all or at least one element of a seq enforce(s) a given predicate.
The associated lemmas of these functions, allP and hasP, are used throughout the rest of
this thesis.

Variable A : eqType.

Variable s : seq A.

Variable P : pred P.

Variable x : A.

Check x \in s.

Check all P s.

Check has P s.

Check (@allP A P s).

Check (@hasP A P s).

x \in s : bool

all P s : bool

has P s : bool

(* forall x, x \in s -> P x *)

allP : reflect {in s, forall x : A, P x} (all P s)

hasP :

reflect (exists2 x : A, x \in s & P x) (has P s)

Figure 3.4: Enforcing predicates in sequences

Example 3.12. The set interface includes many definitions and notations, such as

• set union, intersection, difference and complement, respectively :|:, :&:, :\: and ~:.

• ”big operators” notations, such as \bigcup_{x in X} f x (for
⋃

x ∈ X

f(x))

• comprehension notations, such as [set f x | x in X & p x]

• the notions of subset and partitions, with the associated lemmas

• decidable quantifications, such as [forall x in X, P x] and [exists x in X, P x]

where X is a {set A} and P a predicate over A, which are defined as booleans

Now that we have reviewed the relevant subset of MathComp, we can introduce the positive
Datalog engine of [Benzaken et al., 2017b, Dumbrava, 2016].

3.2 Datalog syntax

We proceed as in Section 1.1, i.e. we first present the construction of Datalog programs, and
then their manipulation with groundings and substitutions.
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3.2.1 Building blocks

Just like the paper syntax, the formalization first assumes sets, seen as finTypes, for constants
and predicate symbols, as well as an arity function.

Variable constype : finType.

Variable symtype : finType.

Variable arity : {ffun symtype -> nat}.

Figure 3.5: Constants, predicate symbols and arity

As for the variables, they are encoded using ordinals. To do so, the formalization assumes a
number of variables:

(* the type of variables will be 'I_n *)

Variable n : nat.

Figure 3.6: Defining variables in DatalogCert

These parameters are used to build atoms. The formalization separates ground and normal
atoms at the type level. In both cases, they define a raw type, and on top of it the actual,
dependent atom type. This type enforces the well-formedness condition, i.e. that the number
of arguments in the atom matches the arity of the involved predicate.

(* ground atoms *) (* predicate / arguments *)

Inductive raw_gatom := RawGAtom of symtype & seq constant.

Definition wf_gatom ga := size (arg_gatom ga) == arity (sym_gatom ga).

Structure gatom : Type := GAtom {uga :> raw_gatom; _ : wf_gatom uga}.

(* generic atoms *)

Inductive raw_atom := RawAtom of symtype & seq term.

Definition wf_atom a := size (arg_atom a) == arity (sym_atom a).

Structure atom : Type := Atom {ua :> raw_atom; _ : wf_atom ua}.

Figure 3.7: Defining (ground) atoms

With the atoms, clauses and programs can now be defined as well. Note that normal clauses
and ground clauses are again separated at the type level. Also note that a program is defined
as a sequence (MathComp’s nomenclature for list) of clauses rather than a set, as in Definition
2.8, because atoms, and thus clauses, are not defined as a finTtype. This point is discussed
in Section 7.3.
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Inductive clause : Type := Clause of atom & seq atom.

Inductive gclause : Type := GClause of gatom & seq gatom.

Definition program := seq clause.

Figure 3.8: Lifting to full Datalog programs in DatalogCert

DatalogCert introduces straightforward functions, seen in Figure 3.9, to collect variables in
terms, atoms and clauses.

Definition term_vars t : {set 'I_n} :=

if t is Var v then [set v] else set0.

Definition raw_atom_vars (ra : raw_atom) : {set 'I_n} :=

\bigcup_(t <- arg_atom ra) term_vars t.

Definition atom_vars (a : atom) : {set 'I_n} :=

raw_atom_vars a.

Definition tail_vars tl : {set 'I_n} :=

\bigcup_(t <- tl) atom_vars t.

Definition cl_vars (cl : clause) : {set 'I_n} :=

tail_vars (body_cl cl).

Figure 3.9: Collecting variables in DatalogCert

These functions are for example used to implement of the safety condition described in Section
2.1.3, as shown in Figure 3.10.

(* clause safety: all head variables should appear among the body variables *)

Definition safe_cl cl :=

atom_vars (head_cl cl) \subset tail_vars (body_cl cl).

(* program safety: all clauses should be safe *)

Definition prog_safe p := all safe_cl p.

Figure 3.10: Datalog safety in DatalogCert

3.2.2 Manipulating formulae

A grounding is defined as a finfun (see Example 3.5) from variables to constants. Since the
codomain is defined as a finType, groundings are finite themselves.

Definition gr := {ffun 'I_n -> constant}.

Figure 3.11: Groundings as finite functions
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Like the rest of the syntax, groundings are built inductively, starting with their application
to terms. If the given term is already a constant, then it is left unchanged. Otherwise, i.e. if
it is a variable, the associated constant w.r.t. the grounding is returned.

Definition gr_term (g : gr) (t : term) :=

match t with

| Var v => g v

| Val c => c end.

Figure 3.12: Defining term groundings in DatalogCert

The next steps of the definition are straightforward but illustrate the need to work with the
well-formedness proofs carried by the atoms, i.e. show that applying the grounding to an
atom does not break the property on the number of arguments.

(* raw atom grounding *)

Definition gr_raw_atom g ra :=

RawGAtom (sym_atom ra) [seq gr_term g x | x <- arg_atom ra].

(* lift to full atoms *)

Definition gr_atom_proof g a : wf_gatom (gr_raw_atom g a).

(* Building an atom with a well-formedness proof *)

Definition gr_atom g a := GAtom (gr_atom_proof g a).

(* clause grounding *)

Definition gr_cl g cl :=

GClause (gr_atom g (head_cl cl)) [seq gr_atom g a | a <- body_cl cl].

Figure 3.13: Lifting groundings to atoms and clauses

Definition sub := {ffun 'I_n -> option constant}.

Definition sterm s t : term :=

match t with

| Val d => Val d

| Var v => if s v is Some d

then Val d

else Var v end.

Definition sraw_atom ra s :=

RawAtom (sym_atom ra) [seq sterm s x | x <- arg_atom ra].

Lemma satom_proof a s : wf_atom (sraw_atom a s).

Definition satom a : sub -> atom := fun s => Atom (satom_proof a s).

Figure 3.14: Defining substitutions in DatalogCert
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The substitutions work similarly, the difference being that a variable is not necessarily mapped
to a constant, i.e. the codomain is an option type and the term substitution may leave a
variable untouched if it is mapped to None. The concrete changes in the application of
substitutions are found at the level of terms, i.e. function sterm.

Another change is the fact that substitutions can be compared in a more fine-grained man-
ner than groundings. Figure 3.15 introduces the s1 \sub s2 notation, which checks that
substitution s2 extends s1, i.e. contains at least the same mappings to constants.

Definition sub_st s1 s2 :=

[forall v : 'I_n, if s1 v is Some b1 then (v, b1) \in s2 else true].

Notation "A \sub B" := (sub_st A B).

Figure 3.15: Comparing substitutions in DatalogCert

The functions of Figure 3.14, due to the potentially incomplete nature of substitutions and
unlike gr_atom, return atoms rather than ground atoms. Datalogcert also provides an appli-
cation of a substitution, shown in Figure 3.16, that expects a constant def to fill the blanks,
and returns a ground atom.

Definition gr_term_def s t : constant :=

match t with

| Val c => c

(* odflt d x returns x if it is of the form Some y, d otherwise *)

| Var i => odflt def (s i)

end.

Definition gr_raw_atom_def s ra : raw_gatom :=

RawGAtom (sym_atom ra) (map (gr_term_def s) (arg_atom ra)).

Lemma gr_atom_def_proof s a : wf_gatom (gr_raw_atom_def s a).

Definition gr_atom_def s a : gatom := GAtom (gr_atom_def_proof s a).

Figure 3.16: Grounding with a substitution

3.3 Semantics

Like the paper definition of Datalog (see Section 2.2), DatalogCert contains and implements
both the Minimal Model and Fixpoint semantics. The former, more abstract, is used as a
reference in the certification of the latter, more applicative one, which is ultimately extracted
and exported as the actual Datalog engine.

3.3.1 Minimal Model Semantics

With the formalization of substitutions, the minimal model semantics as defined in Section
2.2.1 is implemented in a concise and clear manner, shown in Figure 3.17. The authors first



52 CHAPTER 3. DATALOG IN COQ

define the satisfaction of a clause w.r.t. a Herbrand Interpretation (denoted as interp), then
the notion of Herbrand model at the level of clauses and programs.

The implementation of minimal model semantics is itself rather minimal, which reflects its
fundamental aspect. In comparison, the translation of the fixpoint semantics requires more
work.

(* Head and body of a ground clause *)

Definition head_gcl gcl := let: GClause h b := gcl in h.

Definition body_gcl gcl := let: GClause h b := gcl in b.

(* An interpretation is a set of ground atoms *)

Notation interp := {set gatom}.

(* If every ground atom in the body is in the interpretation,

then so is the head *)

Definition gcl_true gcl (i : interp) : bool :=

all (mem i) (body_gcl gcl) ==> (head_gcl gcl \in i).

Definition cl_true cl i := forall g : gr, gcl_true (gr_cl g cl) i.

Definition prog_true p i :=

forall g : gr, all (fun cl => gcl_true (gr_cl g cl) i) p.

Figure 3.17: Minimal model semantics in DatalogCert

3.3.2 Fixpoint Semantics

The implementation of the Fixpoint Semantics can be split into two components. In Definition
2.45, the TP operator tries out every possible substitution to build new facts. This method
would be easy to define in Coq using MathComp’s set notations and the finiteness of the
substitution or ground types, but the efficiency of the extracted Datalog engine would then
be seriously impacted.

In consequence, rather than actually matching any substitution, the engine builds the minimal
set of substitutions that, by construction, match the given clause and interpretation. Since
this constructive matching will be used and discussed in our own work, we first introduce all
the relevant definitions.

For shortness and clarity, the completeness and soundness results are mentioned but we do
not show or discuss their formalization and proof (you may find these informations in Section
8.5.1 of [Dumbrava, 2016]). We then quickly outline how the certification of the fixpoint
semantics, i.e. its relation to the minimal model one, is stated.

3.3.2.1 Constructive matching of clause bodies

The constructive matching is developped in a bottom-up fashion. The first step, at the level
of terms, has three arguments: a term t, an expected constant d against which t is matched,
and a substitution s that will (potentially) be enriched to store the result of the match.

If t is the same as d, then no addition to s is required, and the substitution is returned. On
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the other hand, if t is a constant but not the same as d, the match fails and None is returned.
If t is a variable v that is already mapped to a constant by s, a similar equality check occurs.
Finally, if s does no associate v to a constant, the substitution is enriched with its mapping
to the expected constant d and returned.

(* matching a term [t] against a constant [d],

starting from an initial substitution [s]. *)

Definition match_term d t s : option sub :=

match t with

| Val e => if d == e then Some s else None

| Var v => if s v is Some e then

(if d == e then Some s else None)

else Some (add s v d)

end.

Figure 3.18: Constructive term matching in DatalogCert

This role of the expected constant appears more clearly in the next function, which defines the
matching between an atom and a gatom. The two lists of arguments (terms for the atom and
constant for the gatom) are zipped, meaning that they are browsed in parallel. At each step,
the constant from the gatom is used as the expected constant for the match_term function.
The substitution is enriched step by step, using a fold. Although it is called match, this
operation may then be better understood as a unification procedure between an atom and a
ground atom.

Definition match_raw_atom s ra rga : option sub :=

match ra, rga with

| RawAtom s1 arg1, RawGAtom s2 arg2 =>

if (s1 == s2) && (size arg1 == size arg2)

then foldl (fun acc p => obind (match_term p.1 p.2) acc)

(Some s) (zip arg2 arg1)

else None

end.

Definition match_atom s a (ga : gatom) := match_raw_atom s a ga.

Figure 3.19: Constructive atom matching in DatalogCert

The matching between an atom and a ground atom can be lifted to atom and interpretation,
i.e. set of ground atoms. To do so, match_atom is called on each pair, and the substitutions
which were successfuly computed are collected.

Definition match_atom_all (i : interp) a s :=

[set x | Some x \in [set match_atom s a ga | ga in i]].

Figure 3.20: Constructive matching of a set of atoms in DatalogCert

This way, match_atom_all i a s returns the set of substitutions built upon s such that,
when applied to a, produce a ground atom in i. The next step is to define the matching of
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a full clause’s tail, still w.r.t. an interpretation.

To do so, a join and a monadic fold for the set monad are defined. Concretely, function bindS

applies f : A -> {set B} to each element of a set i and flattens the result (cover is the
union amongst a set of sets). The monadic fold applies f to all elements of the l list, using
the s0 value for its first iteration.

Definition bindS {A B : finType} (i : {set A}) (f : A -> {set B}) : {set B} :=

cover [set f x | x in i].

Fixpoint foldS {A : Type} {B : finType}

(f : A -> B -> {set B}) (s0 : {set B}) (l : seq A) :=

if l is [:: x & l] then bindS s0 (fun y => foldS f (f x y) l)

else s0.

Figure 3.21: Folding and flattening sets

This special fold is applied to match_atom_all, starting with a set only containing the empty
substitution. This way, at each new atom, every substitution computed so far is (potentially)
expanded into a new set of enriched substitutions, and the result is flattened.

Definition match_body i (tl : seq atom) : {set sub} :=

foldS (match_atom_all i) [set emptysub] tl.

Figure 3.22: Constructive tail matching in DatalogCert

The match_body function returns the set of substitutions which, when applied to the provided
tail (i.e. list of atoms), results in a list of ground atoms that all appear in the considered
interpretation. This function is also generalized by match_pbody, which expects an initial
set of substitutions rather than using a singleton with the empty substitution. Section 9.3
discusses how we tried to use it for inductions which could not be performed on match_body.

Definition match_pbody tl i ss0 := foldS (match_atom_all i) ss0 tl.

Figure 3.23: Generalization of tail matching

The constructive matching being fully defined, it can be used in the definition of the actual
TP operator.

3.3.2.2 Certified TP operator in Coq

DatalogCert splits TP into two functions. The first, cons_clause, computes the deductive
part of the operator.

Definition cons_clause (def : constant) (cl : clause) i : {set gatom} :=

[set gr_atom_def def s (head_cl cl) | s in match_body i (body_cl cl)].

Figure 3.24: Deduction of new facts with a clause
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Remark 3.13. Note that the matching of the computed substitutions is not checked. As
previously stated, match_body builds a set of substitutions that, by construction, match
clause cl and interpretation i.

Remark 3.14. The def argument is here simply for typing purposes, i.e. to compute a set of
ground atoms rather than normal atoms (see the end of Section 1.1.2). Its value is irrelevant,
as match_body cl i produces substitutions that actually associate a value to each variable
appearing in clause cl, meaning that def will never be used in practice.

The cons_clause function is then encapsulated into fwd_chain, which both enforces the
preservation of the interpretation and applies the deduction to every clause in the program.

Definition fwd_chain def p i : {set gatom} :=

i :|: \bigcup_(cl <- p) cons_clause def cl i.

Figure 3.25: Iterating deduction over a program

Although we do not recall the lemmas certifying every component of Datalogcert’s imple-
mentation of the fixpoint semantics, we do state the most general result, which relates both
semantics, in Figure 3.26.

Lemma incr_fwd_chain_complete (s0 : {set gatom}) :

{ m : {set gatom} &

{ n : nat | [/\ prog_true p m

, n = #|bp|

, m = iter n (fwd_chain def p) s0

& forall (m' : {set gatom}), s0 \subset m'

-> prog_true p m' -> m \subset m']}}.

Figure 3.26: Adequacy of the fixpoint semantics

This lemma states that iterating TP BP times, i.e. as many times as there are possible atoms,
captures the whole semantics m of the program while being minimal.



Part III

Network Verification

The introduction of this thesis discusses the increasing need for safety and security in the
design and maintenance of networks, and the resulting introduction of formal methods in the
field of networking.

Chapter 4 unboxes the concept of network verification and outlines existing tools. Then,
Chapter 5 focuses on a Datalog-based tool called Network Optimized Datalog (NoD). Finally,
Chapter 6 introduces a tool built on top of NoD, and explains how its development led us to
work on optimizations for the Datalog language.

Overall, this aim of this part is simply to familiarize the reader with the notion(s) of network
verification, the various approaches from formal methods that have been leveraged so far,
and the way they challenge traditional Datalog engines. The many intricacies and details
of networking are then left out for shortness and clarity, and their knowledge should not be
required.
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Chapter 4

Approaches to network verification

Et la causerie, descendant des théories élevées sur la tendresse,
entra dans le jardin fleuri des polissonneries distinguées

Guy de Maupassant, Bel-Ami

Historically, the design and implementation of networks has not relied on the use of formal
methods. As an illustration, the authors of [Doenges et al., 2021] recall the words of internet-
pioneer David D. Clark: ”we believe in rough consensus and running code”, which they
analyze as a reflection of the notion of robustness upon which networking is built. Basically,
robustness is not seen as a formal specification coupled with a proof that the analyzed system
does not deviate from it, but rather a system which may contain small deviations from its
general design, as long as they do not threaten the intended behavior.

As another illustration of the way priorities are established within the networking community,
the seminal paper [Clark, 1988] states ”While tools to verify logical correctness are useful,
[...] they do not help with the severe problems that often arise related to performance”.

The bottom-up philosophy described just above has been challenged over the last ten to fifteen
years, with the introduction of Software-Defined Networking, or SDN [Hu et al., 2014]. This
framework separates the forwarding plane, i.e. the switches and their forwarding rules, from
the control plane, i.e. the higher-level routers which establish these local rules to implement
a network-wide policy. As the name indicates, this approach roughly aims at designing
networks like software, i.e. with programming languages rather than at the hardware level.

As a side note, in his talk at PEPM’201, Nate Foster presents SDN as a form of partial
evaluation, in the sense that the network-wide program that eventually computes the actual
configuration of all devices is specialized for the underlying topology. This notion is not
completely disjoint from the ideas we design and implement in Part V.

This top-down approach of networking opens the way to more traditional, higher-level verifi-
cation tools, and even to the synthesis of network configurations. Section 4.1 first outlines the
specificities of networking with which researchers struggle. Then, Sections 4.2, 4.3 and 4.4
introduce the three main types of network verification problems, i.e. dataplane verification,
control plane verification and network synthesis, as well as some tools and techniques they
harness.

1https://www.youtube.com/watch?v=dHLa1SMILik
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4.1 The difficulty of network verification

The field of network verification is inherently difficult. One of the most obvious reasons is
what networks fundamentally are, i.e. highly distributed systems, the complexivity of which
is well-known. However, there are also some specificities in the way networks are designed
and built, which we quickly outline for context.

4.1.1 A distributed and opaque development

The internet, like numerous other systems, relies on many protocols. These protocols,
such as BGP, GRE or MPLS, are defined in documents called Request For Comments
[rfc, 1989, Li et al., 2000, Viswanathan et al., 2001], or RFCs, which are published by the
Internet Engineering Task Force. At the time of writing, there are over 8,500 RFCs, which
are all informal [Doenges et al., 2021].

On the other hand, some documentations try to be exhaustive, but lack the theoretical tools
(or habit) to provide an efficient formalization of both the actual systems and their semantics.
Moreover, many such systems are developped iteratively, leading to an inflation in the sheer
size of the documentation. These two caveats are illustrated by the documentation of the
OpenFlow protocol [McKeown et al., 2008], which grows from 44 pages2 to 1653, and then
to a rather obstruse set of 283 pages4, where the protocol is fundamentally presented in the
form of C code – which makes it de facto the language used to describe its semantics.

The points discussed so far in this Section are very elegantly summarised in [Shenker et al., ],
which first recalls that mastering complexity and extracting simplicity are two very different
tasks, which do not rely on the same abilities. It then states that networking never made the
distinction, and historically focused strictly on mastering complexity. Overall, it advocates
for the development of the intellectual foundations and capacity of abstractions required to
shift from complexity to simplicity.

This absence of solid and clear foundations led to the existence of many protocols, which
are hard to study and justify in the absence of formalization, and whose implementation
is subject to interpretation. These implementations then vary across vendors and internet
providers, meaning that verification tools must be flexible in the specifications they check or
enforce, but at the same time be as automatic and precise as possible.

4.1.2 Packet-level combinatorics

This matrix of heterogeneous implementations is built on top of another combinatorics issue
in networking, which is the size of packet headers.

Each packet contains not only the pure data it is supposed to carry around, but also a
header, whose content roughly encodes where the packet is coming from, where it is going,
some informations on the actual content and so on (in that sense, at the level of said content,
this header is akin to meta-data, whereas it could be thought of as a type at the protocol
level). This header is used by the various protocols, e.g. some bit is set to 1 when the packet
goes through some required network component, to store the information.

2https://opennetworking.org/wp-content/uploads/2013/04/openflow-spec-v1.0.0.pdf
3https://opennetworking.org/wp-content/uploads/2014/10/openflow-spec-v1.3.3.pdf
4https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
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In other words, whereas the actual data carried by a packet is of no interest to determine its
behavior, the entierity of the header must be taken into account throughout its flow in the
analyzed network, rewritings included. An IPv6 packet header has at least 40 bytes, i.e. 320
bits, which can be extended by the various protocols involved. This means that, in practice,
a naive representation of packet headers will lead to a state explosion of the tool’s underlying
model. This precise point is crucial for network verification in general, Sections 5.3 and 6.2
discuss it in-depth in the context of the Network-Optimized Datalog and Octant tools.

4.1.3 A variety of questions

So far, we have used the phrase network verification without explaining what are the prop-
erties one may want to check and enforce. There is a multitude of such questions, among
which

• Can a packet flow from A to B?

• Are sub-networks X and Y strictly isolated?

• Are packets efficiently shared across the different possible paths?

• Will my network still be operational if up to n links fail?

• Do all packets from sub-network X go through a network component which performs
operation P?

• Do two networks have the same behavior?

The questions in network verification are then very diverse in nature, meaning that a (the-
oretical or practical) tool may be relevant for some of them, but not all, which complicates
matters. As a sidenote, Section 5.2 discusses how the expressivity and flexibility of Datalog
allow it to formalize and efficiently answer many of such questions.

With the exception of the last one, the questions above belong to the field of dataplane
verification, which the next section discusses. Then, Section 4.3 introduces control plane
verification, which includes the last question of the list and can roughly be seen as a kind
of a priori verification process. Finally, Section 4.4 discusses the synthesis of correct-by-
construction networks.

4.2 Dataplane verification and testing

In networking, the dataplane – sometimes also called forwarding plane – is the set of low-level
mechanisms that define the way packets are forwarded and transformed. For example, the
authors of [Fayaz et al., 2016] see it as a function of the form (paquet, port)→ (paquet, port).

More concretely, it is the topology and the forwarding tables contained in the switches spread
across the network. These forwarding tables (very) roughly contain rules of the form ”if a
packet has a header that matches pattern t, it should rewrite its ith and jth bits to 0 and go
through port p”, which are assigned priority levels. The sum of these very local rules, along
with other specialized components (firewall, network functions and middleboxes), define the
behavior of the full network.
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Dataplane verification covers any task that analyzes the properties of such a given configured
network. This section outlines some tools that address these questions.

4.2.1 Finding a counterexample

One of the earlier works on network verification is [Xie et al., 2005], which tries to formalize
and give a higher-level view of network reachability. After that, part of the research efforts
focused on encoding networks into existing verification engines to automatically perform such
analyses. Since these engines were not designed to handle networks and their specificities,
the encodings had to be carefully chosen to allow scalability – eventually, specific engines
were introduced, as discussed in the rest of this Chapter and the next two.

Such an example is found in FlowChecker [Al-Shaer et al., 2009, Al-Shaer and Al-Haj, 2010],
a model-checking tool that uses Computation Tree Logic [Clarke et al., 1986] as the specifica-
tion language, and NuSVM [Cimatti et al., 2000] as its backend engine. Flowchecker has only
been used in small experiments and, despite smart encodings such as the use of Binary Deci-
sion Diagrams [Bryant, 1986] to perform the matching mechanism within forwarding tables,
it does not scale to industrial-size uses.

The Z3 SMT-solver [de Moura and Bjørner, 2008] is another classical verification tool used for
network verification. Its use as a backend for a specific Datalog-based verification tool is dis-
cussed in-depth in Section 5.3, but it had previously been used more directly in [Zhang et al., ,
Zhang and Malik, 2013]. In that setting, the network is encoded as a formulaN and the nega-
tion of the property to enforce is encoded as ¬P . Then, the satisfiability of N∧¬P is checked,
and Z3 provides a counterexample to P w.r.t. N if it is valid.

This work is optimized by focusing on the behavior of a single packet on a single path, hence
the return of a single counterexample. A very similar method is used in [Mai et al., 2011].
On the other hand, some tools use abstraction to handle at once a set of packets to cover all
the possible paths.

4.2.2 Finding all counterexamples

Although finding a counterexample to a specification or having a proof that there is none is,
in itself, a valuable information, this approach has some limitations. The main one is that a
single counterexample is not always very helpful – and even sometimes misleading – to fix a
system as complex and intricate as a network configuration.

For example, computing the set of all counterexamples rather than a single one fosters in-
cremental verification. When two versions of a configuration are checked, the singular coun-
terexamples computed may have nothing in common, whereas sets of counterexamples are
comparable, e.g. if one is a subset of the other, we may deduce that one of multiple problems
has been fixed (or introduced). Network Optimized Datalog [Lopes et al., 2015] belongs to
this category, but is discussed in length in Chapter 5.

Moving from a computation of one to all counterexamples changes the underlying problem,
which goes from SAT to AllSAT. Modern SAT solvers are not optimized for AllSAT, meaning
that smart representation of the domain (mainly packet headers) must be leveraged.

The prime example of this approach is Header Space Analysis [Kazemian et al., 2012]. This
tool relies on the observation that reachability verification is more efficient when performed on
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equivalence classes rather than individual packets [Yousefi et al., 2020]. To represent a group
of packet headers, ternary bit vectors (e.g. 1 ⋆ ⋆0) are used. Networking boxes (switches,
firewalls etc) are seen as functions that take a packet pattern and an entry port, and return a
set of pairs of packet and output port, i.e. T : (h, p)→ {(h1, p1), ..., (hn, pn)}. The behavior of
a network is then seen as the composition of (lifted) routing functions, e.g. T3(T2(T1(h, p))).

According to its own authors, this approach worked terribly until they used a better repre-
sentation of packet headers called Differences of Cubes [Bjørner and Varghese, 2015], which
are formally introduced and discussed in Section 5.3. This representation roughly allows an
efficient definition of mechanisms of the form ”if a packet header matches shape s, but not
exceptions e1, e2 and e3, then...”.

Other optimizations have been introduced. NetPlumber [Kazemian et al., 2013] computes
a dependency graph that relates forwarding rules to allow incremental updates and par-
allelization, SecGuru [Jayaraman et al., 2014, Bjørner and Jayaraman, 2015] tries to detect
locally that different nearby routers will forward clusters of packets the same way rather
than relying on costly propagated analyses, VeriFlow [Khurshid et al., 2013] observes and
leverages the fact that the number of header equivalence classes is small in practice, and
[Plotkin et al., 2016] eliminates redundancy and reasons up to network symmetry (quotients
parallelizable processes) to work on a simplified model of the analyzed network.

Finally, like traditional program analysis, recent research in dataplane verification dwelve in
probabilistic territory. For example, Netter [Zhang et al., 2021] translates a dataplane into
a probabilistic network (which itself encodes a finite discrete Markov chain) and harnesses
existing model-checking tools such as PRISM [Kwiatkowska et al., 2011].

4.2.3 Testing

Although exhaustive verification is much more powerful, testing can provide a first, easier
analysis of the correctness of a program. One of the main measures by which a test set
is evaluated is coverage, i.e. the fact that these tests at least go through every line of the
analyzed program, although not with every possible configuration.

Symbolic execution is a technique that maximizes coverage. To do so, a program is seen as a
decision tree, where the nodes are its conditionals. Then, the constraints across all paths are
collected, and solvers generate test values for each set of constraints. The main tool that uses
symbolic execution is Klee [Cadar et al., 2008], which has been developed for LLVM. This
technique has been used for dataplane testing [Zeng et al., 2012, Dobrescu and Argyraki, 2014],
by replacing program lines with rules and test cases by packet headers.

4.3 Control plane verification and testing

In networking, the control plane is the set of routers and protocols that set up the dataplane.
Roughly, they explore and learn the (physical) topology and paths, compute the actual
forwarding rules that are installed in the different switches to enforce the given configuration,
implement dynamic updates and so on. Even more informally, if the data plane is the
muscle of the network, the control plane is its brain. In that setting, the goal of control
plane verification is ensuring that, given a collection of router configurations, the resulting
dataplane will enforce a given property [Beckett et al., 2018].
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Formal analysis and verification of networking protocols is actually older than the notion
of SDN – as are networks themselves –, but the problems and techniques have significantly
changed since, following the evolutions of telecommuncations and formal methods. Let us
only jestingly mention two lines of research pursued at CNET Lannion, now Orange Labs
Lannion, a few decades ago. The first is a mix of model-checking techniques à la Sifakis
[Queille and Sifakis, 1982] and the simulation tool Véda [Jard et al., 1987, Monin, 1989],
which was developed using Prolog. The second, led by our other PhD advisor, applies Coq
to the verification of distributed protocols [Heyd, 1997].

Going back to SDN, first research works focused on pen and paper, non-automated analysis
of the highly complex BGP protocol [Rekhter et al., 2006]. For examples, works such as
[Chang et al., 2003, Griffin and Wilfong, 1999] study the instability and possibility of loops,
[Gao and Rexford, 2001] develops criterias to avoid loops in the computation of forwarding
tables, [Le et al., 2008] showed that the route redistribution technique (allowing routes to be
imported from one routing process into another process on the same router) may cause loops.

As for the automated tools, they can be split into two categories [Beckett et al., 2018]. The
first category is verification not based on formal semantics model, such as checking configura-
tions against a set of good practices and syntactic patterns [Feamster and Balakrishnan, 2005].
In a more modern fashion, [Bauer et al., 2011] uses machine learning to find such dubious
configurations.

Regarding semantics-based approaches, one of the main examples is BatFish [Fogel et al., 2015].
This tool uses Datalog to specify and check the dataplane that would be generated by a set
of router configurations w.r.t. a given environment or scenario. However, Batfish can only
check the control plane for a single context, meaning that checking the robustness of a control
plane w.r.t. a realistic set of possible environments and scenarios is not feasable in practice.

Subsequent tools have tried to address a higher-level verification problem, i.e. checking prop-
erties about many or all dataplanes that may emerge from a given control plane, although
often at the cost of network design coverage. For example, Bagpipe [Weitz et al., 2016]
performs a symbolic execution of the message-passing semantics of BGP in all possible envi-
ronments, but makes strong assumptions about the underlying network.

Another example is ARC [Gember-Jacobson et al., 2016], which abstracts the configurations
as weighted graphs, allowing the consideration of many failure scenarios at once. However,
this abstraction is only possible if some features of BGP are not used.

Vericon [Ball et al., 2014], in the spirit of (traditional) program verification, analyzes SDN
programs à la Floyd-Hoare-Dijkstra using (partially manual) deductive reasoning and first-
order logic, with Z3 as a back-end. However, it only checks safety properties and requires
manual invariants for the proofs. More recently, Minesweeper [Beckett et al., 2017] and Crys-
talNet [Liu et al., 2017] both introduce various heuristics to avoid performing eager compu-
tations, or work on circomscribed spaces and infer the effects of propagations.

Finally, the control plane may also be subject to testing rather than verification. Klee remains
a major tool in this context, and is used to uncover latent bugs in BGP configurations before
they appear in the dataplane. On the other hand, the dataplane testing tools introduced
in Section 4.2.3 can not handle the level of complexity of control plane models. As another
example, NICE [Canini et al., 2012] avoids the state-space explosion described in Section
4.1.2 by analyzing the routing code within the control plane to extract practical equivalence
classes on the packet headers.
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4.4 Synthesis of correct-by-construction networks

The introduction of Section 4.1 quickly mentions the inherently distributed nature of networks
as a general difficulty for verification. It is also true at the stage of development, as a high-
level, network-wide behavior has to be manually implemented as a collection of interacting
local systems (the forwardings tables in the switches) which communicate using catch-all
stacks (packet headers) rather than ad-hoc, clearer structures.

This hard and error-prone process is reminiscent of very low-level programming, e.g. in an
assembly language, where the stack is used to encode in a sometimes obstruse way high-level
concepts. The solution to this situation is also similar, as the introduction of Software-Defined
Networking (SDN, see the introduction of this Chapter) is, in part, the research community’s
advocacy for the introduction of abstraction layers [Casado et al., 2007].

Some early, lightweight abstractions are found outside of the setting of SDN, for example
in the introduction of templates and vendor-neutral configuration languages, e.g. RPSL
[Kessens et al., 1999], Yang [Björklund, 2010] and Netconf [Enns et al., 2011]. These tools
provide some notion of consistency and mitigate one of the difficulties of networking, i.e. the
diversity of hardware vendors and associated implementations. However, these languages are
not fundamentally different from previous configurations languages and do not address the
gap between hardware and high-level intents.

On the other hand, the Frenetic project5 aims at the development of declarative network
programming languages that would allow reasonning about the behavior of the network at
a suitably high level of abstraction, and even formally establishing the correctness of the
associated compiler and run-time system.

The people behind this project first introduced the homonymous language [Foster et al., 2011].
The two main features of the Frenetic language are the introduction of constructs to read the
state of the network and specify forwarding policies, and the modularity allowed by the intro-
duction of policy combinators, e.g. parallelization. It is then refined in [Monsanto et al., 2012],
which introduces an actual policy language called NetCore, allowing more expressiveness and
modularity. The run-time system is also extended and leveraged to handle features that can
not be translated efficiently into forwarding tables, such as intricate packet classifications
that could only be encoded in a switch using billions of prefix matching rules.

NetCore is then refined again in [Monsanto et al., 2013], which notably introduces sequential
composition, as well as a Python implementation of these abstractions called Pyretic. As
a sidenote, Pyretic serves as a basis for Kinetic [Monsanto et al., 2013], which leverages its
compositional features to express network policies as finite-state machines, which allows the
use of previously existing verification methods.

Finally, [Guha et al., 2013] provides a network-wide semantics to NetCore and a Coq proof
of the compiler and run-time system. The results of the first real deployment of this language
are also presented.

Although definitely a step in the right direction (i.e. importing programming language theory
into networking), the Frenetic project has been built in an iterative fashion, meaning that
it lacks a clear metatheory and direction. Moreover, although modular and equipped with
theoretical foundations, the languages of this collection define the behavior of the switches,
meaning that an analysis of the network-wide behavior must be extracted from a low-level

5http://frenetic-lang.org/
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specification.

To build more solid foundations for network synthesis, the same authors introduce NetKat
[Anderson et al., 2014], a network programming language that relies on Kleene Algebra with
Tests (KAT, see [Kozen and Smith, 1996]). In practice, the behavior of a network is then
specified as regular expressions augmented with a packet algebra that encodes packet match-
ing and rewritings.

This well-studied theory comes with some results and algorithms, such as the decidabil-
ity of equivalence between two programs (seen as automata). Many of the usual network
questions (see Section 4.1.3) can then be encoded into equivalences between the analyzed
program and specific, minimal programs. For example, isolation between X and Y in net-
work N can be stated as the equivalence between a packet that goes from X to Y (or the
other way around) in N , and the empty program. Since then, NetKat has received various
optimizations [Foster et al., 2015, Smolka et al., 2015], been enriched with Linear Temporal
Logic [Beckett et al., 2016], and gone into probabilistic territory [Foster et al., 2016].

However, over the years, the tool that has gained the most attention is the P4 domain-specific
language. P4 combines high-level abstractions (packet parsers, match-action contructs) with
an efficient compiler [Bosshart et al., 2014]. However, like many other networking tools, it
has been largely developped within the industry without much consideration for theoretical
or formal foundations, as illustrated by its current 163-page documentation that leaves many
aspects of the semantics unspecified6.

Since its introduction, there have been multiple enhancements to P4, the most notable being
the recent development of fully formal foundations [Doenges et al., 2021]. More precisely, this
work presents a full definitional interpreter for the language as well as a simple core calculus
with formal syntax, typing and operational semantics. Moreover, the type soundness and
termination of the calculus are proved, and an implementation is developed and tested.

This last and, again, very recent work on a highly popular networking programming language
allows one to hope that this field will continue to take inspiration from more traditional lan-
guage theory and harness decades of research to build safer networking tools and foundations.

6https://p4.org/p4-spec/docs/P4-16-v1.2.1.pdf



Chapter 5

Network Optimized Datalog

On ne doit rien croire sans preuve dans ce monde, il faut
tout pouvoir prouver ! [...] C’est désespérant !

Kohi Kumeta, Sayonara Monsieur Désespoir (tome 3),
traduit du japonais par Vincent Zouzoulkovsky

This Chapter focuses on Network Optimized Datalog, or NoD, a dataplane verification tool
tuned to check reachability properties of dynamic networks expressed à la Datalog us-
ing the Z3 SMT-solver [de Moura and Bjørner, 2008, Hoder et al., 2011] as a back-end. It
models network policies at a higher-level of abstraction than other tools (e.g., VeriFlow
[Khurshid et al., 2013]) and handles dynamicity, in the sense that it is resilient to vari-
ous changes in the modeled network without requiring changes to internals. This Chap-
ter tries to convey the main ideas behind NoD, and is based heavily on [Lopes et al., 2013,
Lopes et al., 2015].

We first discuss in Section 5.1 the choice of Datalog as a specification language, and outline in
Section 5.2 the modelization of various network policies with Datalog. We finally introduce
in Section 5.3 the modifications made to the underlying Datalog engine for NoD to scale,
focusing on a specific component that will be of importance in the next Chapter.

5.1 Datalog as a specification language for network behavior

The authors of [Lopes et al., 2015] identify five features that should be provided by an ideal
network verification tool. Three of these features are natively found in Datalog, whereas the
other two require some more work.

The first identified feature is that, when computing reachability, one wants to find all packet
headers that can go from a network element A to B. Classical model checkers and SAT
solvers [Biere et al., 2009, Jhala and Majumdar, 2009] can go from existential to universal
answers by adding the negation of the provided solution and iterating, but the performances
would not be satisfactory. In contrast, once reachability has been encoded into it (see Section
5.2.1), and given a set of starting packets and locations, Datalog will natively compute the
set of all reachable configurations (packet header h at port p).

The second desired feature offered by Datalog is the availability of higher-level constructs,
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basically boolean operators. More concretely, the use of multiple rules to define a single
predicate is akin to disjunction and can be used for example to combine reachability sets (”a
packet can access location L1 from L2 using path P1 or path P2”), whereas the bodies of
Datalog rules are conjunctive in nature, which notably allows the expression of forwarding
rule priorities (”A packet P can follow this switching rule if it matches it and there is no
higher priority matching rule”) – although not necessarily in the best and clearest fashion,
as we will discuss in Section 6.1.

Finally, the authors underline that, using predicate arguments, Datalog can encode a notion
of state. This can in turn be used to model evolving networks (zone failures, packet format
changes) and protocols. The next section will emphasize these three benefits of Datalog by
showing how it is used to specify the semantics of a network in [Lopes et al., 2015].

In contrast, Datalog does not handle natively the last two desired features: the ability to
model the rewriting of large packet headers. Checking the semantics of a network implies
reasoning about headers of around 80 bytes, whose rewritings impact the general behavior
of the network. Concretely, the gigantic header space requires a compact representation that
still allows dynamic rewriting. Section 5.2 illustrates how the rewriting is modeled at the
level of Datalog specifications.

Although one can leverage the fact that many of the bits in a header do not matter to
determine the way the packets moves through the network, the amount of information to
track and account for remains important, where handling as much as 3 or 4 bytes leads to
a state explosion. The authors of [Lopes et al., 2015] then introduce modifications to the
Datalog engines, which are presented in Section 5.3.

5.2 Datalog modelization of network beliefs

We re-introduce the core example of [Lopes et al., 2015], which shows how Datalog can be
used to specify and verify network reachability, the cardinal problem of network verification.
We will then overview some other examples of the paper, which illustrate – still from a very
high-level point of view – the main ideas behind the modelization of various network policies
one may want to enforce and check.

5.2.1 Reachability

We use the topology of Figure 5.1a, where R1, R2 and R3 are routers, whereas A, B and D
are end-points. For simplicity, the example assumes that packets carry only two attributes
in their headers, dst and src, which are both encoded over 3-bit vectors.

The industry standard in terms of memory management within routers and switches is
Ternary Content-Addressable Memory, or TCAM [Lakshminarayanan et al., 2005]. This
hardware-level consensus has driven the design choices in forwarding, notably having the
possibility to match only a subset of the bits of a packet header. Concretely, such matchings
rules can then contain an ”any” bit denoted as ⋆.

Figure 5.1b displays the forwarding table of the example, which contains rules such as de-
scribed above. Routers and switches may also rewrite some bits, as illustrated by the last
rule of the table: when matched and processed, it rewrites the central bit of the dst vector
to 0. Finally, some rules are mutually compatible, e.g. a packet can match the first two
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simultaneously. To deal with such cases, rules are assigned priorities. Given a packet, these
rules are tried out in decreasing order until one matches, meaning that when a packet can
match multiple rules, only the highest-priority one is enforced. In the case of Figure 5.1b,
the higher the rule in the table, the higher its priority.

A R1 R2

R3 D

B

(a) A simple network topology ...

in dst src rewrite out

R1 10⋆ 01⋆ R2
R1 1 ⋆ ⋆ ⋆ ⋆ ⋆ R3

R2 10⋆ ⋆ ⋆ ⋆ B

R3 ⋆ ⋆ ⋆ 1 ⋆ ⋆ D
R3 1 ⋆ ⋆ ⋆ ⋆ ⋆ dst[1] := 0 R2

(b) ... and its configuration

Figure 5.1: Example network

The authors of [Lopes et al., 2015] show how they translate to Datalog reachability from A
to B and compute the set of packets that flow this way. Although it is not a requirement
to understand the encoding, we invite the reader to try to compute this set by hand, and
realize that even such a minimal and extremely simplified problem is actually non-trivial and
error-prone. The details of these computations are found, for readability, in Appendix B.

The surpising complexity of this modest example justifies the use of automatic method for
actual cases. Figures 5.2 and 5.3 show the Datalog translation of this example. The first
figure contains syntactic sugar that encodes the various relevant guard conditions and effects
of the routing table, whereas the second uses them to define the actual routing rules.

G12 := dst = 10⋆, src = 01⋆.
G13 := ¬G12(dst, src), dst = 1 ⋆ ⋆.
G2B := dst = 10⋆.
G3D := src = 1 ⋆ ⋆.
G32 := ¬G3D(src), dst = 1 ⋆ ⋆.
Id := src′ = src, dst′ = dst.
Set0 := src′ = src, dst′ = dst[2] 0 dst[0].

Figure 5.2: Encoding routing constraints and effects

Remark 5.1. Figure 5.2 uses a primitive predicate (cf. Section 2.4) denoted as =. However,
the authors of [Lopes et al., 2015] do not comment on this predicate. On the other hand, they
explicitely state that the only fact they put in the EDB is a symbolic packet, i.e. B(⋆⋆⋆ ⋆⋆⋆).
In that setting, if x = y is the syntactical equality, the third rule of Figure 5.3 can never be
used. It should be interpreted as x is compatible and at least as precise as y.

The modelization goes backwards. For example, the third rule of Figure 5.3 can be read as
”if a packet with header dst′ src′ can reach B, and it can be specialized as 10⋆ src, then this
specialization can reach R2”. Note that the priorities between rules are manually encoded at
the level of guards (cf. the second and fifth rules of Figure 5.2).
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R1(dst, src)← G12(dst, src), Id(dst, dst
′, src, src′), R2(dst′, src′).

R1(dst, src)← G13(dst, src), Id(dst, dst
′, src, src′), R3(dst′, src′).

R2(dst, src)← G2B(dst), Id(dst, dst
′, src, src′), B(dst′, src′).

R3(dst, src)← G3D(src), Id, (dst, dst′, src, src′) D(dst′, src′).
R3(dst, src)← G32(dst, src), Set0(dst, dst

′, src, src′), R2(dst′, src′).
A(dst, src) ← R1(dst, src).

Figure 5.3: Datalog translation of the packet flows

Given these rules and an EDB containing the fact B(⋆ ⋆ ⋆ ⋆ ⋆⋆), a Datalog engine can be
asked to compute the set of deductible facts about A, i.e. the set of packet headers that,
starting from A, can reach B in any form.

5.2.2 Various policies

Although reachability is the backbone of network verification, one may want to check more
intricate properties in practice. The authors of [Lopes et al., 2015] introduce the Datalog
formalizations of such problems, which we quickly overview.

Example 5.2. (Protection sets) It can be checked that some parts of the network are
not reachable by specific elements (e.g., fabric managers are not reachable from guest virtual
machines) by looking for a counterexample using the previously introduced method.

Example 5.3. (Reachability sets) Still using the search of a counterexample and the
reachability encoding, one can check that all network elements of a given set are reachable
from another set (e.g., all fabric managers are reachable from jump boxes (internal manage-
ment devices)).

Example 5.4. (Equivalence of load balanced paths) In general, traffic from A to B
does not follow a single path, but is balanced across multiple paths. The way packets are
split between the available paths is usually determined by a hash function, which associates
an index (within the number of paths) to every packet header.

A more complex question is then to check whether reachability across load balanced paths
is identical regardless of other variables such as hash functions. This question can also be
translated into Datalog, by encoding a hashing scheme as a bit vector h which determines the
hashing choices made at every routers, and have a primitive predicate Select that selectively
enables a rule given a hashing and a packet header. This Select predicate can then be added
as an extra guard to the translation of the routing. Such rules would then look like those of
Figure 5.4.

R2(dst, h)← G12(dst, h), R1(dst, h), Select(h, dst).
R3(dst, h)← G13(dst, h), R1(dst, h), Select(h, dst).

Figure 5.4: Accounting for load balancing in Datalog formalization

With these new rules in hand, one can issue a query of a node that can receive a packet using
one hash assignement, but would not be reached by the same packet under another hash
assignement. Such a query, illustrated by Figure 5.5, would then detect inconsistent hashing.
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?A(dst, h1) ∧ ¬A(dst, h2)

Figure 5.5: Looking for load balancing inconsistencies

The authors of [Lopes et al., 2015] state that network verification tools of the time, such as
[Kazemian et al., 2012, Kazemian et al., 2013, Khurshid et al., 2013], were not able to answer
this kind of query.

Example 5.5. (Locality) Another belief one may want to check, is whether, in a data
center, traffic within a rack does not leave it. In other words, when a packet in a rack is
meant for another place of the same rack, it should not leave the top-of-rack switch. One can
easily define a set of places which should not be reached (e.g., using a ”forbidden” predicate
and a rule for each such place) and check that a packet is meant for a specific subnetwork
(e.g., using equality modulo a mask). A counterexample can then be queried.

Example 5.6. (Dynamic packet headers) Whereas some network verification tools such
as [Kazemian et al., 2013, Kazemian et al., 2012] require a priori definitions and implemen-
tions to support various protocols, Datalog is flexible enough to only require such work at
the level of the definition of the analysis, or even the query.

The authors of [Lopes et al., 2015] illustrate this possibility with an outline of the Datalog
encoding of the MPLS protocol [Viswanathan et al., 2001], which relies on label stacking,
i.e. the use of packet headers as a stack to store labels as it enters each new layer of the
protocol, and unstack them when these layers are exited. Datalog does not support terms,
and in particular lists, but it can encode within the predicate the number of stacked labels,
and use one argument for each.

Remark 5.7. In that sense, the expressivity of Datalog is similar to that of finite automata,
where the problem needs to be bounded a priori in the absence a dynamic structure such
as a stack. The main difference between these two tools in this case are the simplicity and
efficiency in which such problems can be formulated and solved. The use of automata for
network verification is explored in NetKat (see Section 4.4).

Given a router R, we denote as Ri the forwarding state with a stack of i MPLS labels. This
is illustrated by the rules of Figure 5.6, which encode the stacking when going from a router
R5 to R2. The first rule adds an arbitrary label (2018) when there is none. The second rule
expects that a such label is already present and stacks another on top, and so on. The last
rule states that the stack overflows when trying to stack more than three labels.

R1
2(dst, src, 2018) ← G(dst, src), R0

5(dst, src)

R2
2(dst, src, l1, 2019) ← G(dst, src), R1

5(dst, src, l1)

R3
2(dst, src, l1, l2, 2020) ← G(dst, src), R2

5(dst, src, l1, l2)

Ovlf(dst, src, l1, l2, l3) ← G(dst, src), R3
5(dst, src, l1, l2, l3)

Figure 5.6: Encoding label stacking in Datalog

Finally, the authors of [Lopes et al., 2015] also mention two subtle bugs they encountered



70 CHAPTER 5. NETWORK OPTIMIZED DATALOG

when working with middleboxes traversal (i.e. ensuring that some class of packets goes some
networking component such as a firewall or a load balancer) and the use of backup routers.
Both examples require the introduction of too many technicalities to be consistent with the
rest of this document, but can be easily and elegantly formalized within Datalog.

Although these various examples illustrate how convenient Datalog can be to model and
specify network behaviors, actually verifying them requires the aforementioned programs to
scale, which is not the case natively. NoD has been designed with that objective in mind, i.e.
with modifications made to the Datalog engine, which are discussed in the next section.

5.3 Modifying a Datalog engine for network verification

The authors of [Lopes et al., 2015] build their tool upon a Z3 implementation of Datalog,
called µZ [Hoder et al., 2011]. Their modifications can be split into two main components:
a packing of two operations in the algebraic preprocessing of the queries, which avoids the
very costly representation of the intermediate step, and the choice of data structures for the
packets and their rewriting. The first point is not addressed in this document, as it has no
impact on our work. The representation of packets, on the other hand, was decisive in the
reasoning which led to the developments presented in this thesis.

Relations are one of the key ingredients of Datalog. They are used to model the routers,
which, unlike switches, handle some complex network behaviors, such as multicast (a packet
gets duplicated into multiple copies which are all sent on their own path) or load balancing.
Datalog encodes relations as tables, where each row represents a value tuple.

In the context of network verification, the naive approach is to represent a set of packet
headers as a relation, and this relation as a table. However, doing so would result in a table
with a number of rows that would be exponential in the number of bits used in the packet
headers. For example, assuming we use 128-bit packet headers, accounting for all source
addresses that start with a 1 would amount to a table of 2127 rows. This approach obviously
does not scale.

The authors of [Lopes et al., 2015] mention that they first encoded the Datalog tables using
Binary Decision Diagrams [Bryant, 1986]. However, they do not focus on this approach, as
they show in [Lopes et al., 2013] that the results are significantly weaker than those of their
second representation, which they call difference of cubes.

Definition 5.8. A difference of cubes, or DoC, is a set of packet patterns modulo exceptions.
More precisely, they are of the form

⋃

i

(νi\
⋃

j

νi,j)

where νi and νj are bit vectors. In the setting of NoD, it can be understood as, for example,
”every packet of the form ν1 except those matching ν1,1 or ν1,2, as well as the packets of the
form ν2 with the exception of those matching ν2,1”.

Example 5.9. We do not use the outer set union, which requires no illustration, to focus
on the exception mechanism. The relation on 4-bit integers

∗ ∗ ∗0 \ {∗11∗, ∗00∗, 1010}
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represents the set of naturals that are even (the binary representation must end with a 0),
do not have identical ”middle bits” (first two exceptions) and different from 6 (hard-coded
special case).

The point of this representation lies in the handling of priority among rules. For example, in
Figure 5.1, the second rule is used for a packet only if it does not match the first, meaning that
the underlying formula for this possibility is of the form φ ∧ ¬ψ. Having a set of exceptions
means that this can be used to model the n+ 1th rule as

φ ∧ ¬φ1 ∧ · · · ∧ ¬φn

where φ is the criteria of the rule and φ1 to φn are those of the first n rules.

Although very efficient in the context of NoD, where the Datalog programs are tailored
for each analyzed network, this representation does not always fare well with more generic,
abstract programs, as discussed in the next Chapter.



Chapter 6

Octant

Lorsqu’elle est pratiquée dans les règles de l’art, la prospective
permet de repérer les principales métamorphoses qui couvent à bas
bruit dans la société avant qu’elles ne s’expriment au grand jour, ce
qui nous permet d’anticiper les grandes évolutions à venir.

Jean-Philippe Toussaint, Les émotions

Octant is a tool to formalize virtual network models and implementation in Datalog and
check properties of those formalizations. It is based on the previously introduced Network
Optimized Datalog engine. We justify the need for tools like Octant and show some examples
of network and policy formalizations in the context of Openstack in Section 6.1, and discuss
in Section 6.2 how the generic description of networking mechanisms triggers a state space
explosion issue in NoD.

6.1 A higher-level Datalog model

Network Optimized Datalog, introduced in Chapter 5, allows the specification and efficient
verification of network behaviors. However, the Datalog programs have to be tailored for
each network and belief to check (see the example of Section 5.2.1, where the rules of the
forwarding table are hard-coded into the program). Scaling this proof of concept result as
it is to real-world, industrial level would then require either a kind of expertise that is not
common amongst network engineers and architects, or a formally introduced and justified
program transformation process. Moreover, such specialized programs are more complicated
to write, understand and maintain than we could expect or require.

Octant works on networks that were deployed using the OpenStack [Sefraoui et al., 2012]
cloud computing platform. In that setting, Octant can fetch the network’s configuration and
service databases through the REST APIs of the relevant services, i.e. mainly Neutron. This
way, the specificities of such analyzed network can be abstracted away at the Datalog level,
resulting in simpler and more generic programs.

OpenStack’s back-end is based on relational databases, which makes this modelization process
relatively straightforward. The two following examples, displaying the Octant detection of
multi-attachment and of (a simplified version of) reachability (which does not handle security
groups and firewalls), highlight the higher-level nature of this tool w.r.t. NoD.
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In both examples, we consider the following extensional predicates: server(id), router(id),
network(id), which denote the existence of an homonymous device associated to the provided
id, and port(id, net id, device id, ip), that relates a port to network and a server or router.
OpenStack uses many options to define networks, meaning that Neutron tables usually have
many columns themselves. Arguments of extensional predicates are then named explicitly,
so that those not used in a rule can be omitted (see the program of Figure 6.1, where two
or one arguments of the port predicate are associated to a variable, depending on the rule).
Note that this also helps to quickly distinguish extensional and intensional predicates.

Example 6.1. The program of Figure 6.1 detects virtual machines connected to a network
through a chain of routers and other networks. The linked predicate is defined as the set of
pairs of ports appearing in the same router. Then, cnt (connectivity) is akin to the graph
reachability specification of Example 2.9. Finally, we say that a server X is connected to a
network Z when it contains a network Y which is connected to Z.

linked(X,Y ) ← port(net id = X, device id = T ), router(id = T ),
port(net id = Y, device id = T ).

cnt(X,X) ← port(net id = X).

cnt(X,Z) ← linked(X,Y ), cnt(Y, Z).

cntVM(X,Z)← server(id = X), port(net id = Y, device id = X), cnt(Y, Z).

Figure 6.1: Connectivity in Datalog

This program fragment can be used as a basis to check that a virtual machine does not have
a double attachment on networks with different security levels. For example, given the EDB
shown in figure 6.2, we can deduce cntVM(′M1′,′ test′) and cntVM(′M1′,′ prod′).

port(id =′ p1′, device id =′ M1′, net id =′ test′).
port(id =′ p2′, device id =′ M1′, net id =′ inter′).
port(id =′ p3′, device id =′ R1′, net id =′ inter′).
port(id =′ p4′, device id =′ R1′, net id =′ prod′).
server(id =′ M1′).
router(id =′ R1′).

Figure 6.2: Sample EDB

The rule of Figure 6.3 will then be able to detect the multi-attachment of M1.

doubleAttach(X)← cnt(X,Y ), cnt(X,Z), not Y = Z.

Figure 6.3: Catching multi-attachment

Example 6.2. To check if traffic can actually reach a given virtual machine, we need to
model forwarding rules in routers and network appliances (security groups, firewalls) along
the paths. Routing in network also relies on subnet masks, i.e. bitmasks that are used
with a bitwise AND to project IP addresses to the relevant slice. For example, address
111.112.113.114 masked with 255.255.255.0 returns the 111.112.113.0 prefix.
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Let route(id, router id, prefix,mask, port id) represent an explicit rule on a router that
identifies every packet whose destination attribute matches prefix projected over mask, and
sends them to the router port denoted by port id. Figure 6.4 extends the linked predicate
for a given IP address. The & and > primitive predicates stand respectively for the bit-wise
AND and comparison on bit vectors.

linked(X,Y, IP )←
port(net id = X, device id = T ),
router(id = T ),
match route(T, M, IP, P ),
not better route(T, IP, M),
port(id = P, net id = Y, device id = T ).

match route(T, M, IP, P )←
router(router id = T, prefix = S, mask =M, port = P ),
IP & M = S.

better route(T, IP,M)← match route(T,M2, IP, P ), M2 > M.

Figure 6.4: Simple network reachability in Datalog

This program fragment represents a typical use of a rule selection mechanism, as the linked
predicate requires not only that the selected route matches (match route), but also that
it has the highest priority possible (or, equivalently, that there exists no matching higher-
priority rule, cf. not better route). In this context, priority is indexed on the length of the
mask, i.e. the longest matching routing rule is selected.

Even though it is omitted for clarity and conciseness, the security layer, i.e. firewalls and
security groups, is also modelized in Octant. Just like the core of forwarding, its specifica-
tion is both generic and abstract. Overall, Examples 6.1 and 6.2 display much higher-level
specifications than what is done within NoD, for example in Section 5.2.1.

We emphasize that NoD and Octant, although closely related, do not address the same
problems. A NoD program checks properties over a given network by mixing the descriptions
of these general network properties (e.g. accessibility) and the specificities of the given
network (e.g. topology, forwarding tables). On the other hand, an Octant program abstracts
the aforementioned specificities to focus on the description of network properties, which can
then be checked against a variety of concrete networks. Although highly beneficial, this lift
in abstraction and clarity comes at a cost, which is discussed in the next section.

6.2 The cost of genericity

Octant is executed using Network Optimized Datalog [Lopes et al., 2015], a choice made for
its efficency with the representation of routing rules and packet rewriting (see Section 5.3
of this document). Natively, NoD is simply not able to execute a program such as the one
seen in Figure 6.4, as it does not come with DoC representations for primitives such as <.
Section 6.2.1 first discusses the difficulties with the implementation of said primitive in DoC,
then Section 6.2.2 explains how these difficulties blow up with the use of negation in Octant
programs – two factors that would probably be harmless taken separately, but become a
significant bottleneck when in conjunction.
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6.2.1 Need and implementation of generic primitives

Handling in practice the new level of abstraction brought by Octant introduces the need for
the addition and efficient implementation of primitive predicates, such as bitwise conjunction
(&), equality and comparison, which all appear in Figure 6.4. NoD encodes everything
using the difference of cubes (DoC) representation, introduced in Section 5.3. Many usual
primitives, such as the comparison with a constant, equality and bitwise operations can be
encoded very efficiently using DoCs, as illustrated by the following examples.

Example 6.3. Given a variable v typed as a four-bit integer, the v ≥ 1101 comparison can
be encoded in DoCs as

⋆ ⋆ ⋆ ⋆ \ {0 ⋆ ⋆⋆, 10 ⋆ ⋆, 1100}

In general, any comparison of a variable and a constant will be encoded by a similar mecha-
nism, where a linear number of prefixes are enough to eliminate any irrelevant value.

Example 6.4. Given two variables v1 and v2 representing four-bit integers, the equality
relation v1 = v2 can be encoded linearly in DoCs by forbidding the existence of a dissonant
pair of values, as illustrated by the following eight-bit DoC:

⋆ ⋆ ⋆⋆︸ ︷︷ ︸
v1

⋆ ⋆ ⋆⋆︸ ︷︷ ︸
v2

\ {1 ⋆ ⋆⋆︸ ︷︷ ︸
v1

0 ⋆ ⋆⋆︸ ︷︷ ︸
v2

, 0 ⋆ ⋆⋆︸ ︷︷ ︸
v1

1 ⋆ ⋆⋆︸ ︷︷ ︸
v2

, ⋆1 ⋆ ⋆︸ ︷︷ ︸
v1

⋆0 ⋆ ⋆︸ ︷︷ ︸
v2

, ...}

Example 6.5. The encoding of bitwise operations is slightly more twisted but linear as well.
The idea is simply to harness the binary nature of bits and forbid the opposite of the given
operation’s logical table, as illustrated by the DoC formalization of bitwise conjunction shown
in Figure 6.5.

v1 v2 v1&v2 v1 v2 v1&v2 v1 v2 v1&v2 v1 v2 v1&v2
⋆ ⋆ ⋆ ⋆ \ { 0 ⋆ ⋆⋆ 0 ⋆ ⋆⋆ 1 ⋆ ⋆⋆, ⋆0 ⋆ ⋆ ⋆0 ⋆ ⋆ ⋆1 ⋆ ⋆, ⋆ ⋆ 0⋆ ⋆ ⋆ 0⋆ ⋆ ⋆ 1⋆, ⋆ ⋆ ⋆0 ⋆ ⋆ ⋆0 ⋆ ⋆ ⋆1,
⋆ ⋆ ⋆⋆ 0 ⋆ ⋆⋆ 1 ⋆ ⋆⋆ 1 ⋆ ⋆⋆, ⋆0 ⋆ ⋆ ⋆1 ⋆ ⋆ ⋆1 ⋆ ⋆, ⋆ ⋆ 0⋆ ⋆ ⋆ 1⋆ ⋆ ⋆ 1⋆, ⋆ ⋆ ⋆0 ⋆ ⋆ ⋆1 ⋆ ⋆ ⋆1,
⋆ ⋆ ⋆⋆ 1 ⋆ ⋆⋆ 0 ⋆ ⋆⋆ 1 ⋆ ⋆⋆, ⋆1 ⋆ ⋆ ⋆0 ⋆ ⋆ ⋆1 ⋆ ⋆, ⋆ ⋆ 1⋆ ⋆ ⋆ 0⋆ ⋆ ⋆ 1⋆, ⋆ ⋆ ⋆1 ⋆ ⋆ ⋆0 ⋆ ⋆ ⋆1,

1 ⋆ ⋆⋆ 1 ⋆ ⋆⋆ 0 ⋆ ⋆⋆, ⋆1 ⋆ ⋆ ⋆1 ⋆ ⋆ ⋆0 ⋆ ⋆, ⋆ ⋆ 1⋆ ⋆ ⋆ 1⋆ ⋆ ⋆ 0⋆, ⋆ ⋆ ⋆1 ⋆ ⋆ ⋆1 ⋆ ⋆ ⋆0, }

Figure 6.5: Inverse truth table in differences of cubes

We use twelve-bit vectors, which represent the two values of the two variables, and the result
of the bitwise conjunction, on four bits each. This difference of cube uses the binary nature
of bits to encode the conjunction by specifying what should not be produced, e.g. two 0 at
the same index in v1 and v2, and a 1 at the same index in the result.

However, not every primitive can be handled in an efficient way with the difference of cubes
representation.

Example 6.6. When representing the relation v1 ≥ v2, we need to compare prefixes rather
than isolated bits, as illustrated by Figure 6.6. This means that the tricks seen in the previous
examples do not apply to this case, and end up with a representation that is exponential in
the number of bits the integers use.
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⋆ ⋆ ⋆⋆︸ ︷︷ ︸
v1

⋆ ⋆ ⋆⋆︸ ︷︷ ︸
v2

\ {0 ⋆ ⋆⋆︸ ︷︷ ︸
v1

1 ⋆ ⋆⋆︸ ︷︷ ︸
v2

, 00 ⋆ ⋆︸ ︷︷ ︸
v1

01 ⋆ ⋆︸ ︷︷ ︸
v2

, 10 ⋆ ⋆︸ ︷︷ ︸
v1

11 ⋆ ⋆︸ ︷︷ ︸
v2

,

000⋆︸︷︷︸
v1

001⋆︸︷︷︸
v2

, 010⋆︸︷︷︸
v1

011⋆︸︷︷︸
v2

, 100⋆︸︷︷︸
v1

101⋆︸︷︷︸
v2

, 110⋆︸︷︷︸
v1

111⋆︸︷︷︸
v2

...}

Figure 6.6: Encoding the v1 ≥ v2 relation

As seen in Figure 6.4, optimality is a key component of the definition of forwarding, which
itself is a building block of the other components. However, optimality can only be expressed
using comparisons, whose representations using differences of cubes are exponential. One
might expect that this exponential representation1 is not really a problem in practice, as we
intuitively do no want to compute the full set of v1 < v2 pairs in Octant, but rather the set
of addresses which are greaters than the one corresponding to the given M variable.

6.2.2 Effects of the use of negation

As discussed in Section 2.3, negation in Datalog is dealt with by stratifying the program and
saturating each intermediate stratum. Having a full and complete definition of what is true
being the requirement to define something as false.

This is also the mechanism used in µZ, as indicated in Section 2.2 of [Hoder et al., 2011].
This means that, when executing the forwarding program of Figure 6.4, the rule defining
linked requires the whole table of better route to be computed. Combined with the ineffi-
cient representation of the comparison between two variables, the overall result is extremely
inefficient and unusable in practice.

However, as intuited above, the mechanism in practice does not match the behavior that one
might first expect without knowing the handling of negation in Datalog. Indeed, from a more
operational point a view, the better route rule is used whenever we need to check that the
currently considered route is not surpassed in priority by another.

More concretely, seeing Datalog as a more traditional programming language with func-
tions that are called in a top-down fashion, one may consider that the M parameter in the
better route rule is fully defined at run-time, which does not match the bottom-up, stratified
bevahior of µZ. The core of this document, and the work it represents, was then to introduce
optimizations which provide clues to the Datalog engine and, somehow, help it simulate a
top-down behavior to avoid the performance caveat just described. This is the topic of Part
V, whereas Part IV first extends the tools at our disposal.

1The program of Figure 6.4 uses a strict comparison whereas it was broad in Example 6.6. That is because
< is even harder to directly implement and is easier described as the negation of ≥.



Part IV

Extension of tools

Some of the tools previously introduced have been extended for the purpose of our work. This
part introduce some new sequence and tree finTypes that we built upon the Mathematical
Components Coq library, and then present the Datalog trace semantics we developed, with
both the paper and (certified) Coq definitions.
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Chapter 7

New sequence and tree finTypes

On ne peut pas entrer deux fois dans le même fleuve

Héraclite, Fragments recomposés, traduit du grec ancien par Marcel Conche

Mathematical Components (MathComp) is a Coq library that contains types and tools to
define and formally prove traditional, pen and paper mathematical results within Coq. It
notably contains a hierarchy of types with the following properties: having decidable equality
(eqType), having a choice function (choiceType), being countable (countType), and finite-
ness (finType). These types are properly introduced in Section 3.1.

Our main focus here is finType, of which DatalogCert [Benzaken et al., 2017b, Dumbrava, 2016]
already made an extensive use (see Chapter 3). Some of our additions could not fit in the
different structures provided by finType, meaning that we had to develop our own sequence
and tree finite types. We first introduce these new types, and then present some changes
we make to DatalogCert. The uses of the tree finTypes will be shown when discussing the
relevant definitions, i.e. in Sections 8.3 and 10.4.4.

7.1 Bounding sequences

We first introduce two types of sequences, the finiteness of which comes from syntactic or
semantic criteria.

7.1.1 Syntactically bounded sequences

MathComp already contains a type for sequences of exactly a given length, called tuple,
which inherits the finiteness property of any finType used for the elements. We introduce
Wlist, the type of lists (sequence, or seq, in MathComp’s nomenclature) bounded by a given
nat.

The definition of Wlist can be found in Figure 7.1. Unlike tuple, it is not implemented
using a signature type, but an inductive. Its definition follows that of traditional lists, with
the addition of a bound of the number of elements within the type. The empty list case
introduces any bound, meaning that precision can be lost at this level, whereas the addition
of an element simply increments the bound.
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Inductive Wlist (X: Type): nat -> Type :=

Bnil : forall n, (Wlist X n)

| Bcons : forall n, X -> (Wlist X n) -> (Wlist X n.+1).

Figure 7.1: Definition of syntactically bounded sequences

The finiteness of Wlist A n, where A is a finType and n a nat, is shown via induction. Figure
7.2 displays the base case of the proof, i.e. showing that Wlist A 0 – which only contains
Bnil 0 – is equivalent to the unit type.

Definition g (_: unit) := (Bnil A 0).

Definition f (x: Wlist A 0) := tt.

Lemma nil0 : forall (x: Wlist A 0), x = (Bnil A 0).

(* forall x. g (f x) = x *)

Lemma cancelfg : cancel f g.

Figure 7.2: Base case for the finiteness proof of Wlist

Figure 7.3 shows the inductive case, in which an element of type Wlist A n+1 is simply
transformed as an element of type unit + (Wlist A n * A). The right side of the sum
type is the normal situation, where the original element was the result of the addition of
something to the list using Bcons. On the other hand, a Wlist A n+1 may also be an empty
list, produced by Bnil, hence the presence of the unit type in the sum.

Definition gg (n: nat) (x: unit + A * Wlist A n) : (Wlist A n.+1) :=

match x with

| inl _ => Bnil A n.+1

| inr (a, l) => Bcons a l

end.

Derive Signature for Wlist.

Equations ff (n : nat) (x : Wlist A n.+1) : (unit + A * Wlist A n) :=

ff (Bnil _) := inl tt ;

ff (Bcons a l) := inr (a,l).

Lemma cancelffgg: forall n, cancel (@ff n) (@gg n).

Figure 7.3: Inductive case for the finiteness proof of Wlist

Notation 7.1. In MathComp, S n is usually denoted as n.+1.

Remark 7.2. The straightforward implementation of ff failed to deal with the n argu-
ment without adding return unit + A * Wlist A (pred n) to the match. Before thinking
about this addition, we have been advised to use the Equations library [Sozeau, 2010], which
does work and remained in the code.
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The sum or product of two finTypes is a finType itself, and the finiteness of Wlist A n is
the induction hypothesis. Figure 7.4 shows how these facts are combined to end the proof
and fit Wlist within the finType framework, or mixin (see Definition 3.8).

Variable A: finType.

Definition wlist0_finMixin :=

@CanFinMixin (wlist0_countType A) unit_finType (@f A) (@g A) (@cancelfg A).

Definition wlist0_finType := FinType (wlist0_countType A) wlist0_finMixin.

Fixpoint wlistn_finMixin (n:nat): Finite.mixin_of (wlistn_countType A n).

elim n.

rewrite cteq. (* wlistn_countType 0 = wlist0_countType *)

exact wlist0_finMixin.

intros n0 EF.

apply (@CanFinMixin

(wlistn_countType A n0.+1)

(sum_finType unit_finType

(prod_finType A (FinType (wlistn_countType A n0) EF)))

(@ff A n0) (@gg A n0) (@cancelffgg A n0)).

Defined.

Definition wlistn_finType n :=

Eval hnf in (@FinType (wlistn_choiceType A n) (wlistn_finMixin n)).

Figure 7.4: Wrapping-up the finiteness proof of Wlist

Remark 7.3. The proof is shorter and simpler than the one for the finiteness of tuple. This
probably stems from the fact that it is less precise, as we do not explicitely state or prove
the cardinal of Wlist.

Using this type in practice can be cumbersome, as adding an element to a Wlist bounded by
nat m returns an element of type Wlist m+1, even though there may actually be much less
than m+1 items in the list. We wrote functions that map elements of type Wlist to usual
sequences, and the other way around. In the second case, elements from the list can be lost
if it was too long for the bound of the returned Wlist.

However, we also wrote cancellation lemmas, shown in Figure 7.5, relying on properties about
a given sequence’s length. This controlled back and forth allowed us to use Wlist in practice,
at the reasonable cost of tracking the size of the studied lists explicitly.

Lemma wlist_seqK (l : Wlist X m) : (seq_to_wlist m (wlist_to_seq l)) = l.

Lemma seq_wlistK (l : seq X) (H : size l <= m) :

(wlist_to_seq (seq_to_wlist m l)) = l.

Figure 7.5: Relating sequences and Wlists

Remark 7.4. In retrospect, this type would have been much more usable in practice had it
been defined as a signature type, such as the one of Figure 7.6.
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Variable A : Type.

Structure Wlist (w : nat) := {ws :> seq A; Hw : size ws <= w}.

Figure 7.6: Signature version of Wlist

We used Inductive instead as it allowed us to rely on traditional proof methods. Showing
the finiteness of such a signature type would be similar to what is done for the next type.

7.1.2 Sequences bounded by unicity

The second type of bounded sequences we introduce is a signature type called uniq seq,
shown in Figure 7.7. It uses the uniq predicate already defined in MathComp to circumscribe
the seq type to lists that do not contain the same element multiple times.

Fixpoint uniq s := if s is x :: s' then (x \notin s') && uniq s' else true.

Structure uniq_seq {A : eqType} := {useq :> seq A ; buniq : uniq useq}.

Figure 7.7: Definition of lists with unicity

To prove the finiteness of uniq_seq over a finite type A, it is injected into a tuple of length
bounded by #|A|, i.e. the cardinal of A. The injection is shown in Figure 7.8.

Lemma size_useq {A : finType} (d : @uniq_seq A) : size d < #|A|.+1.

Definition tag_of_uniq_seq {A : finType} (d : @uniq_seq A)

: {k : 'I_#|A|.+1 & k.-tuple A} :=

@Tagged _ (Sub (size d) (size_useq d))

(fun k : 'I_#|A|.+1 => k.-tuple A) (in_tuple d).

Figure 7.8: Injecting uniq seq into tuples

Tuples over a finType being finite types themselves, this injection shows that any uniq_seq

over a finType A is as well. Figure 7.9 displays the technicalities for MathComp enthusiasts.

Definition uniq_seq_of_tag {A : finType} (t : {k : 'I_#|A|.+1 & k.-tuple A})

: option (@uniq_seq_countType A) :=

insub (val (tagged t)).

Lemma tag_of_dbranchK {A : finType} :

pcancel (@tag_of_uniq_seq A) uniq_seq_of_tag.

Definition uniq_seq_finMixin {A : finType} :=

PcanFinMixin (@tag_of_dbranchK A).

Canonical uniq_seq_finType {A : finType} :=

Eval hnf in FinType (@uniq_seq A) uniq_seq_finMixin.

Figure 7.9: Finiteness of uniq seq
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We provide two functions that add an element x at the head of an uniq seq l. The first,
shown in Figure 7.10, requires a proof of the absence of the element in the list, – x \notin
l – to build a new proof of unicity for the result – uniq (x::l).

Lemma andP_to_uniq {A : eqType} {t : A} {b : uniq_seq}

(H : t \notin (useq b) /\ uniq b) :

uniq (t::b).

Definition ucons {A : eqType} (t : A) (b : uniq_seq)

(H : t \notin (useq b)) : uniq_seq :=

{| useq := t :: b; buniq := (andP_to_uniq (conj H (buniq b))) |}.

Figure 7.10: Adding an element to a uniq seq

The \notin predicate being of boolean type, i.e. decidable, the second version of the function
simply checks whether the given element is absent from the list and, if it is the case, extracts
the relevant proof to build the new, enriched uniq seq. If the element was already in the
list, the latter is simply returned, as shown in Figure 7.11.

Definition pucons {A : eqType} (t : A) (b : @uniq_seq A) : @uniq_seq A :=

match Sumbool.sumbool_of_bool (t \notin (useq b)) with

| left H => ucons H

| in_right => b end.

Figure 7.11: Trying to add an element to a uniq seq

Finally, we also provide in Figure 7.12 a definition of the empty list seen as an uniq_seq.

Definition unil {A : eqType} : @uniq_seq A :=

{| useq := [::]; buniq := is_true_true |}.

Figure 7.12: Empty sequence with unicity

7.2 Bounding trees

The second family of types we introduce are trees. Like the sequence types of Section 7.1,
there are two finite tree types, one of them being bounded purely syntactically, whereas the
other partially relies on a semantics criterion. Also note that, in this instance, the former is
used as a backbone to the latter.

7.2.1 Generic trees in MathComp

MathComp contains an unbounded, variable-arity tree type, called tree, which is shown to
be a countType. However, the nodes of this type can only contain nat elements1, whereas
we need to use other types for our work. If these types are shown to be countable themselves,

1For no particuliar reason, according to a member of the MathComp team.
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we could use the nat encoding of their elements, but that seemed like an unnecessary layer
of technicality. We then start by introducing our own generic, unbounded variable-arity tree
type, called ABtree, show in Figure 7.13.

Inductive ABtree: Type :=

ABLeaf : B -> ABtree

| ABNode : A -> seq ABtree -> ABtree.

Figure 7.13: Generic tree type

We needed to develop several functions around this type. A core tool to reason about any
recursive type is an induction principle, but the principle automatically generated by Coq did
not handle properly the sequence of descendents, so we introduced ours, the boolean version
of which is shown in Figure 7.14. The base case scenario requires that the given property is
enforced by leaves, whereas recursion ensures that a property enforced by a list of trees will
be preserved when the same list is used as the descendents of a new node.

Lemma abtree_ind : forall (P : ABtree -> bool),

(forall x : B, P (ABLeaf x))

-> (forall h : A, forall l : (seq ABtree),

((all P l) -> P (ABNode h l)))

-> forall t : ABtree, P t.

Figure 7.14: Induction principle for generic trees

A first definition we require later (cf. Section 7.2.3) is tree membership. Figure 7.15 shows
its definition as a boolean predicate. Note that having the returned type as a boolean implies
the use of the decidable equality ==, which in turn requires the node type A to be defined at
least as an eqType.

Notation 7.5. The ~~ notation is a boolean negation defined in MathComp (and not a
double propositional one).

Notation 7.6. Predicates all and has, which were formally introduced in Definition 3.11,
are roughly the decidable versions of forall and exists for sequences over eqTypes.

Fixpoint ABin {A : eqType} {B : Type} (x : A)

(t : @ABtree A B) : bool :=

match t with

| ABLeaf _ => false

| ABNode y l => (x == y) || (has (ABin x) l) end.

Definition ABnotin {A : eqType} {B : Type} (x : A)

(t : @ABtree A B) : bool := ~~ ABin x t.

Figure 7.15: Generic tree membership

Another notion that comes into play in this document (cf. Section 8.3.2) is that of subtrees,
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which is defined in Figure 7.16. The strict_subtree predicate does not accept cases where
the two given subtrees are equal.

Fixpoint subtree {A B : eqType} (t1 t2 : @ABtree A B) : bool :=

match t2 with

| ABLeaf _ => t1 == t2

| ABNode y l => (t1 == t2) || has (subtree t1) l end.

Definition strict_subtree {A B : eqType} (t1 t2 : @ABtree A B) : bool :=

match t2 with

| ABLeaf _ => false

| ABNode y l => has (subtree t1) l end.

Figure 7.16: Implementing the notion of (strict) subtree

Our end goal is the definition of a tree type where the finiteness comes from a bound on the
number of descendants (syntactic width bound) and unicity across branches (semantic height
bound). This type will be defined as a signature type over ABtree, but we first introduce
another finType, which will be used in the finiteness proof.

7.2.2 Syntactically bounded trees

We define in Figure 7.17 the type of trees with bounded height and number of successors,
called Htree. The bound on the number of successors w is enforced using the Wlist type,
whereas the bound on the height n is incremented each time a root is added.

(* Max width of the trees *)

Variable w: nat.

Inductive Htree: nat -> Type :=

BLeaf : forall n, B -> (Htree n)

| BNode : forall n, A -> (Wlist (Htree n) w) -> (Htree n.+1).

Figure 7.17: Definition of syntactically bounded trees

Lemma leaf0 : forall (x: Htree 0), { y & x=(BLeaf 0 y)}.

Definition fl_aux n (x: (Htree n)): (n = 0) -> B.

case x; [ intros n0 x0 H; exact x0

| intros; contradict H; auto ].

Definition fl x := (@fl_aux 0 x (@refl_equal nat 0)).

Figure 7.18: From leaves to actual objects

The finiteness is shown similarly to that of Wlist, with an induction on the height (the finite-
ness of the width bounding is already encapsulated in Wlist). In the base case, we show that
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trees with height 0, i.e. leaves, are equivalent to the leaf type B. We first introduce in Figure
7.18 the transformation from trees to B. Figure 7.19 then shows the reverse transformation,
and the cancellation lemma.

Definition gl (x: B) := (BLeaf 0 x).

Lemma cancelflgl : cancel fl gl.

Figure 7.19: Equivalence between Htree of height 0 and leaves

The cancellation lemma can then be used to prove the finiteness of Htrees of height 0, as
shown in Figure 7.20.

Definition htree0_finMixin :=

@CanFinMixin (htree0_countType A B) B (@fl A B) (@gl A B) (@cancelflgl A B).

Definition htree0_finType :=

FinType (htree0_countType A B) htree0_finMixin.

Figure 7.20: Base case for the finiteness proof of Htree

For the recursive case, we decompose an element of type Htree n.+1 into an element of B if
the tree was a leaf, or an element of A (the node) and a Wlist of Htree n (the descendants).
The reconstruction is done in the same way and cancellation is also proved, as shown in
Figure 7.21.

Definition ffl_aux n m (x: Htree m): (m = n.+1) -> B + (A * (Wlist (Htree n) w)).

case x; [

intros n0 wit E; exact (inl wit)

| intros n0 hd tl E; rewrite <- (eq_add_S _ _ E); exact (inr (hd, tl))].

Definition ffl n (x: Htree (n.+1)) : B + (A * (Wlist (Htree n) w)) :=

(@ffl_aux n (n.+1)) x (@refl_equal nat n.+1).

Definition ggl n (x: B + (A * (Wlist (Htree n) w))) : (Htree n.+1) :=

match x with

| inl y => (BLeaf n.+1 y)

| inr p => (BNode (fst p) (snd p))

end.

Lemma cancel_fflggl : forall n, (cancel (@ffl n) (@ggl n)).

Figure 7.21: Inductive case for the finiteness proof of Htree

Finiteness is preserved by Wlist (cf. Figure 7.4), as well as the type product and sum.
Assuming finite types A and B, we can then propagate their finiteness with the induction, as
shown in Figure 7.22.
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Fixpoint htreen_finMixin (n:nat): Finite.mixin_of (htreen_countType A B n).

elim n.

rewrite cteql. (* htreen_countType 0 = htree0_countType. *)

exact htree0_finMixin.

intros n0 EF.

apply (@CanFinMixin

(htreen_countType A B n0.+1)

(sum_finType B

(prod_finType

A

(wlistn_finType (FinType (htreen_countType A B n0) EF) w)))

(@ffl A B n0) (@ggl A B n0) (@cancel_fflggl A B n0)).

Defined.

Definition htreen_finType n :=

Eval hnf in (@FinType (htreen_choiceType A B n) (htreen_finMixin n)).

Figure 7.22: Wrapping-up the finiteness proof of Htree

Remark 7.7. Just like Wlist (cf. Remark 7.4), this type could have been defined more in
MathComp’s spirit, i.e. as a signature type over ABtree.

7.2.3 Semantically bounded trees using unicity

Having two different syntactic bounds makes the use of Htree quite tedious. Bounding the
number of successors of nodes was not a problem in our use case, so we only had to deal with
the height. Our trick is again to use unicity, to define – as a signature type – trees with at
most n successors and unicity across paths, i.e. forbidding an element to appear twice in any
branch.

Reusing tree membership (cf. Figure 7.15, the definition of unicity across branches in a tree
as a boolean predicate – so it can be used in a signature type – is straightforward, as shown
in Figure 7.23.

Fixpoint ABuniq {A : eqType} {B : Type} (t : @ABtree A B) : bool :=

match t with

| ABLeaf _ => true

| ABNode x l => ((all (ABnotin x) l) && (all ABuniq l)) end.

Figure 7.23: Unicity across branches

The unicity property will be used to bound the height of our trees. We also need an horizontal
bound, for which we define the width of a tree in Figure 7.24.
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Fixpoint ABwidth {A B : Type} (t : @ABtree A B) : nat :=

match t with

| ABLeaf _ => 0

| ABNode _ l => (foldr maxn (size l) (map ABwidth l)) end.

Figure 7.24: Tree width

Unicity and width are finally tied together to define our bounded tree type, called WUtree

(for ”Width and Unicity bounded tree”) and shown in Figure 7.25.

Definition wu_pred {A : eqType} {B : Type} {w : nat} (t : @ABtree A B) :=

((ABuniq t) && (ABwidth t <= w)).

Structure WUtree {A : eqType} {B : Type} (w : nat) :=

Wht {wht :> @ABtree A B ; Hwht : @wu_pred A B w wht}.

Figure 7.25: Definition of trees bounded by width and unicity

It remains to show that WUtree is, or can be seen as a finite type. Our strategy is to use Htree
as a backbone, i.e. show that unicity across branches enforces a height bounded by the car-
dinal of the node type, meaning that WUtree A B w can be injected into Htree A B w #|A|.

We do not go after this result directly, but rather demonstrate a more general lemma, stating
that a tree with unicity and elements forming a subset of E has a height bounded by |E|.
This allows us to reason about and isolate the ”unused element” (the root of the tree) in the
recursive part of the proof, whereas a type is set in stone. The formalization of these lemmas
in shown in Figure 7.26.

Lemma uniq_ab_size {A B : eqType} (t : @ABtree A B) (s : seq A) :

ABuniq t

-> all (fun x => x \subset s) (ABbranches t)

-> ABheight t <= size #|s|.

Figure 7.26: Core lemma in the proof of finiteness of WUtree

Replacing set E by the full type A, the subset condition stated in uniq_ab_size is trivially
true, which provides the height bound of any WUtree, as shown in Figure 7.27. It can then be
shown that WUtree A B w is indeed a subtype of Htree A B w #|A|, and thus a finType.

Lemma height_WUtree {A B : finType} {w : nat} (t : @WUtree A B w) :

ABheight (wht t) < #|A|.+1.

Figure 7.27: WUtree have a bounded height

As for uniq seq, we developed two insertion functions. The first one takes as an argument
a proof of the absence of the inserted root in the provided subtrees, whereas the other
dynamically checks this (boolean) criteria. The code of these functions is omitted here for
succinctness but very similar to Figures 7.10 and 7.11.
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7.3 Adding new finite structures to DatalogCert

These new types were designed for additions to DatalogCert (namely, a trace semantics and a
static analysis), which are subsequently introduced and discussed in this document. However,
their development required some changes in the definitions presented in Chapter 3, the main
goal being to define Datalog clauses as a finType.

The base ingredient of clauses, i.e. the set of atoms, is not defined as a finite type in
DatalogCert, meaning that the first step is to encapsulate it within a finType. Figure 7.28
shows how we encode them, i.e. triples consisting of number of arguments bounded by max_ar,
the predicate symbol, and the tuple of arguments. All these types are finite, meaning that
such triples are as well.

Notation atom_enc :=

({x : 'I_(max_ar.+1) & (symtype * x.-tuple term_finType)%type}).

Figure 7.28: Atoms as finite types

Lifting finiteness to clauses leverages the trick already used to bound the variable type in
DatalogCert (see Example 3.4), in the sense that we introduce a program-specific bound for
the lengths of bodies across clauses in the program. Just like n, the number of variables in
the program, this value is defined abstractly rather than computed. This value can then be
used in conjunction with Wlist to define clauses as a finType, as shown in Figure 7.29.

Parameter bn : nat.

Definition tail := wlistn_finType atom_finType bn.

Inductive clause : Type := Clause of atom & tail.

Inductive gclause := GClause of gatom & wlistn_finType gatom_finType bn.

Figure 7.29: Defining clauses as a finite type

(* head predicate of a clause *)

Definition hsym_cl cl := sym_atom (head_cl cl).

Definition safe_cl_hd cl :=

predtype (hsym_cl cl) == Idb.

Definition prog_safe_hds p := all safe_cl_hd p.

Definition safe_edb i :=

[forall ga in i, predtype (sym_gatom ga) == Edb].

Figure 7.30: Formalization of the extensional vs. intensional predicates constraint

We make other minor changes to DatalogCert. The most notable one, shown in Figure 7.30,
is the formalization and addition of the constraint to Datalog’s syntax described in Section
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2.1.2, which was originally missing in DatalogCert. As stated in Remark 2.15, this constraint
does not change Datalog’s expressivity, but is a crucial hypothesis of the static analysis we
introduce in Chapter 10.



Chapter 8

A trace semantics for Datalog

- Tu veux être immortel ?
- En tout cas que mon passage laisse une trace à jamais.
- Ouais mais bon... De là à faire n’importe quoi.

Lewis Trondheim, Les formidables aventures de Lapinot
(tome 4, Amour & Intérim)

As stated in Section 1.2, a Datalog program consists of a set of base facts, called the EDB,
and a set of Horn clauses, called rules. During the execution of a program, some rules are
first used to deduce new facts from the EDB, then the newly enriched set of facts is used to
compute new facts, and so on. The semantics of a Datalog program is a set of facts, meaning
that the series of rules used in any deduction of one of these facts is lost in the process.

A program can contain multiple rules, the heads of which are atoms built with the same
predicate, which implies that a fact can be deduced using different series of rules. If we want
to be able to reason on the full deduction process leading to a fact, we need to introduce a
richer semantics for Datalog.

Section 8.1 introduces the notion of collecting and trace semantics, and discusses some forms
a Datalog trace semantics may take. Then, Sections 8.2 and 8.3 formalize on paper and in
Coq respectively the semantics we introduce, as well as its certification, and discuss its use
in DatalogCert.

8.1 Trace semantics and Datalog

Whereas a traditional semantics aims at giving a short and (relatively) simple meaning to a
long series of computations, which can then be used to define program properties, which in
turn will be determined by static analyses. A collecting semantics defines the strongest static
property of interest, i.e. a class of static analyses [Hoare, 1978, Cousot, 2002].

Such semantics include transitive closures of a program’s transition relation, state or predicate
transformers, forward or backward reachability relations and so on [Cousot, 2005]. However,
the basic example is that of computation traces, i.e. semantics that not only contain the
meaning, or result, of a program, but also the computations that led to this result.

90
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Remark 8.1. Although it might be an unorthodox use of the term, we denote this special
case of collecting semantics, to which the semantics we introduce belongs, as trace semantics.

A basic example of trace semantics in the context of transition systems is a trace that corre-
sponds to the (ordered) sequence of visited states. In the same spirit, a collecting semantics
for an imperative language may typically take the form of an ordered sequence of program
location / memory state couples. In comparison, the semantics we introduce is closer to what
is done for a functional programming language in [Perera et al., 2012], where the trace takes
the form of a tree that unrolls the execution of the program.

However, the trace semantics we introduce only provides a partial order of the different steps
of the execution. In that sense, it focuses less on the computation itself, but rather more
on the logical structure of the deduction. An alternative, more traditional approach would
have been to formalize the trace semantics as a transition system where the states are sets of
available facts, and the transitions are labeled with rule / substitution pairs. In that setting,
the traces would have been paths, the ordering of the program’s execution would have been
complete, and the logical structure would have been recomputable.

The choice of a lighter form of trace semantics stems from the use of the traces in the
certification of the static analysis we introduce (see Chapter 10.4), where the logical structure
is needed. We then chose to go with a formalism in which this structure was explicit.

Finally, we reckon that this idea of is not entirely novel, at least in presentation. For example,
[Halevy et al., 2001] uses derivation trees (cf. their Figure 1), which look a lot like our traces.
What we claim to introduce is rather the formalization and verified mechanization of such
structures.

8.2 Definition

Programs tend to be defined and computed in a linear way, meaning that a classical form of
trace semantics is a series of states in a transition system representing the program. On the
other hand, the order in which the rules of a Datalog program are used and the new facts
are deduced is of no importance, semantics-wise, as long as each predicate is saturated.

This is reflected by our trace semantics, which represents computations as trees that store
the logical structure of the program’s execution, i.e. which rules were used to deduce which
facts. The high-level idea is that the leaves are the starting points of the deductions, i.e.
facts taken from the EDB, whereas internal nodes represent a deduction via a clause and a
substitution, both stored in the node as a couple. The ground atoms of the instantiated body
of the clause required for the deduction are (recursively) defined as the descendants of the
node.

Definition 8.2. (Datalog trace semantics) More formally, a trace t is recursively defined
using the following rules.

t ::= Leaf(ga), where ga is a ground atom

| Node(〈C, ν〉, [t]), where C is a clause, ν is a substitution,
and [t] is a list of elements of some type t

Notation 8.3. In definition 2.32, the set of ground atoms relevant to a program P was
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denoted as BP . In that spirit, the set described above is denoted as BT (P ).

Example 8.4. Consider again the graph reachability program of Example 2.9. Denoting the
first and second rules of the program C1 and C2, Figure 8.1 displays the construction of the
trace corresponding to the deduction of path(4, 3).

More precisely, in Figure 8.1a, the first rule is used with the substitution that maps X to
4 and Y to 2. The instantiated body only contains ground atom edge(4, 2), which is in the
EDB of the program, meaning that it can used as a leaf.

Then, Figure 8.1b shows the deduction of path(1, 4). Using the second rule requires two sub-
trees, corresponding to deductions of the instantiated two atoms of the tail. The substitution
used at the root requires as a first child a trace for the deduction of path(4, 2), so we reuse
the previous one. On the right, we need edge(2, 1), which is in the EDB. Finally, Figure 8.1c
builds upon Figure 8.1b in a similar manner.

〈C1,

{
X 7→ 4

Y 7→ 2
〉

edge(4,2)

(a) Deduction of path(4, 2)

〈C2,





X 7→ 4

Y 7→ 1

Z 7→ 2

〉

edge(2,1)〈C1,

{
X 7→ 4

Y 7→ 2
〉

edge(4,2)

(b) Deduction of path(4, 1)

〈C2,





X 7→ 4

Y 7→ 3

Z 7→ 1

〉

edge(1,3)〈C2,





X 7→ 4

Y 7→ 1

Z 7→ 2

〉

edge(2,1)〈C1,

{
X 7→ 4

Y 7→ 2
〉

edge(4,2)

(c) Deduction of path(4, 3)

Figure 8.1: Building a Datalog trace
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Remark 8.5. Such trees can be seen as proof trees w.r.t. the theory given by a Datalog
program and an EDB. The fact that we call them traces stems from our computational
approach of Datalog, in the sense that our goal was to study and optimize the execution of
Datalog programs, rather than see them as deduction systems.

We can now introduce the various functions that lead to an operational view of this trace
semantics. We first need a function that maps a trace to the corresponding deduced fact.

Definition 8.6. (ded – Erasing function from trees to facts)

ded(x) =

{
f if x = Leaf(f)

ν(head(C)) if x = Node(〈C, ν〉, descendants)

Example 8.7. The deduced fact in Figure 8.1c is path(4, 3), i.e. ded(t) = path(4, 3), where
t is the trace of the figure.

Our implementation of the trace semantics also starts with the initial interpretation, which
needs to be seen as a set of traces rather than facts. The tb function simply lifts these facts
to leaves.

Definition 8.8. (tb – Interpretation to trees)

tb(I) = {Leaf(f) | f ∈ I}

In the spirit of Section 2.2, the trace semantics is implemented via an operator called T tP .
Also like TP , it is iterated to build new traces on top of the previously deduced ones. When
deducing a new fact with a clause C and a substitution ν, the previous iteration must contain
traces for the body of ν(C). The relation between traces and facts is specified using ded.

Definition 8.9. (T tP – Consequence operator on traces)

T tP (It) = It ∪ {Node(〈C, ν〉, [F1 , ..., Fn]) ∈ BT (P )

| C = A0 ← A1, · · · , An ∈ P
∧ ∀i ∈ [1..n], (Fi ∈ It ∧ ded(Fi) = ν(Ai))}

Since this is our own semantics, we need to relate it with the usual one, i.e. show its adequacy.
Given a program P with interpretation I, this result is expressed in the following lemmas,
which are both proved by induction on the number of steps k.

Lemma 8.10. (Datalog trace semantics completeness)
For any number of steps k,∀x ∈ (TP ↑ k)(I), ∃t ∈ (T tP ↑ k)(tb(I)), ded(t) = x.
In other words, for any deduction using the fixpoint semantics, the trace semantics contains
a tree representing a deduction of the same fact.

Proof. Let x ∈ (TP ↑ k)(I). We need to expose a t in (T tP ↑ k)(tb(I)) such that ded(t) = x.

If k = 0, then (TP ↑ k)(I) = I and (T tP ↑ k)(tb(I)) = tb(I) = {Leaf(f) | f ∈ I}. Since
x ∈ I, tb(I) contains Leaf(x). From the definition, ded(Leaf(x)) = x.

If k = n+ 1, then
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• (TP ↑ k)(I) = {head(ι(C)) | C ∈ P ∧ body(ι(C)) ⊆ (TP ↑ n)(I)} ∪ (TP ↑ n)(I)
(definition)

• (T tP ↑ k)(tb(I)) = (T tP ↑ n)(tb(I)) ∪ {Node(〈C, ν〉, [F1 , ..., Fn]) ∈ BT (P )

| C = A0 ← A1, · · · , An ∈ P
∧ ∀i ∈ [1..n], Fi ∈ (T tP ↑ n)(tb(I)) ∧ ded(Fi) = ν(Ai)}

(definition)

• ∀y ∈ (TP ↑ n)(I),∃t ∈ (T tP ↑ n)(tb(I)), ded(t) = y (induction hypothesis)

Ground atom x is either on the left or right side of the ∪ in the definition of (TP ↑ k)(I). In
the second case, we apply the induction hypothesis, which provides us a t in (T tP ↑ n)(tb(I))
such that ded(t) = x. Since t is in (T tP ↑ n)(tb(I)), it is also in (T tP ↑ k)(tb(I)) (left side of
the definition). If x is in the left side of the definition of (TP ↑ k)(I), we can extract a clause
C ∈ P and a substitution ι such that

(H1) x = head(ι(C))

(H2) body(ι(C)) ⊆ (TP ↑ n)(I)

We now use the right-hand part of the definition of (T tP ↑ k)(tb(I)), with C and ν. The
condition is true thanks to (H2) and the induction hypothesis, whereas (H1) shows that the
tree just built has the right shape.

Lemma 8.11. (Datalog trace semantics soundness)
For any number of steps k,∀t ∈ (T tP ↑ k)(tb(I)), ded(t) ∈ (TP ↑ k)(I).
In other words, any trace corresponds to a deduction of a fact that is actually part of the
fixpoint semantics.

Proof. If k = 0, then (TP ↑ k)(I) = I and (T tP ↑ k)(tb(I)) = tb(I) = {Leaf(f) | f ∈ I}.
Since t ∈ tb(I), there exists a f ∈ I such that t = Leaf(f), meaning that ded(t) = f .

If k = n+ 1, then

• (TP ↑ k)(I) = {head(ι(C)) | C ∈ P ∧ body(ι(C)) ⊆ (TP ↑ n)(I)} ∪ (TP ↑ n)(I)
(definition)

• (T tP ↑ k)(tb(I)) = (T tP ↑ n)(tb(I)) ∪ {Node(〈C, ν〉, [F1 , ..., Fn]) ∈ BT (P )

| C = A0 ← A1, · · · , An ∈ P
∧ ∀i ∈ [1..n], Fi ∈ (T tP ↑ n)(tb(I)) ∧ ded(Fi) = ν(Ai)}

(definition)

• ∀t ∈ (T tP ↑ n)(tb(I)), ded(t) ∈ (TP ↑ n)(I) (induction hypothesis)

The trace t is either in the left or right part of the definition of (T tP ↑ k)(tb(I)). In the first
case, we apply the induction hypothesis, which shows that ded(t) is in (TP ↑ n)(I), meaning
that it is also in (TP ↑ k)(I) (left-hand part of the definition).

If t is found on the right side of the definition of (T tP ↑ k)(tb(I)), we can extract a clause
C ∈ P and a substitution ν such that
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(H1) C = A0 ← A1, · · · , An ∈ P
(H2) ∀i ∈ [1..n], Fi ∈ (T tP ↑ n)(tb(I)) ∧ ded(Fi) = ν(Ai)

We now use the left-hand part of the definition of (TP ↑ k)(I), with C and ν (for ι). C is in
P (H1), and the body of ν(C) is in (TP ↑ n)(I) (induction hypothesis and (H2)).

Remark 8.12. Section 2.3 recalls how Datalog handles negation, basically by dividing the
program into multiple strata which are computed on top one of another. The T tP operator
can then be used within each stratum, the same way the fixpoint semantics is.

Now that our trace semantics is shown adequate, we can move on to its Coq implementation.

8.3 Coq implementation and certification

This section introduces the core definitions and lemmas of the Coq implementation of our
Datalog trace semantics. In particular, we discuss how the finiteness of the trace type impacts
the completeness proof shown in Section 8.2.

8.3.1 Definitions

The leaves of the traces are facts, or ground atoms, which are already defined in Figure
3.7. The node elements, which form a type called rul_gr, are pairs with a clause and a
substitution, as shown in Figure 8.2.

Inductive rul_gr := | RS : clause -> sub -> rul_gr.

Figure 8.2: Node type for the trace semantics

Remark 8.13. Defining this node type as an Inductive rather than a simple pair is more of
a personal taste than an actual need.

(** Conversion to and from pair so that we have a cancellable *)

Definition rul_gr_rep l := match l with

| RS c g => (c, g) end.

Definition rul_gr_pre l := match l with

| (c, g) => RS c g end.

Lemma rul_gr_repK : cancel rul_gr_rep rul_gr_pre.

Definition rul_gr_finMixin :=

(@CanFinMixin rul_gr_countType (prod_finType clause_finType sub) _ _ rul_gr_repK).

Canonical rul_gr_finType := Eval hnf in FinType rul_gr rul_gr_finMixin.

Figure 8.3: Redefining rul gr as a finite type
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Clauses and substitutions being now both defined as finite types, this node type is then simply
proved to be a finType itself, as shown in Figure 8.3.

As for the actual traces, we want them to form a finType so that the trace semantics can
be expressed as a set (of traces rather than ground atoms), similarly to the usual Datalog
semantics. To do so, we use the Wutree type, as defined in Section 7.2.3. The provided width
bound is bn, the maximal size for the body of a clause (see Figure 7.29). The use of Wutree
requires a default value for the leaf type, so we assume one, as shown in Figure 8.4.

Variable gat_def : gatom.

Definition trace_sem_trees :=

(@WUtree_sf rul_gr_finType gatom_finType bn gat_def).

Figure 8.4: Definition of the trace type

Functions ded and tb, which respectively relate a trace to a ground atom and map an inter-
pretation to a set of leaves (cf. Definitions 8.6 and 8.8) are easily translated to Coq, as shown
in Figure 8.5.

Definition ded def (t : trace_sem_trees) := match (val t) with

| ABLeaf f => f

| ABNode (RS (Clause h _) s) _ => gr_atom_def def s h end.

(* my_tst_sub enforces typing *)

Definition base_sem_t (i : interp) : {set trace_sem_trees} :=

[set my_tst_sub (wu_pred_leaf x) | x in i].

Figure 8.5: Coq implementations of ded and tb

The implementation of the trace semantics still relies on match_body, which expects the set
of ground atoms deduced so far, meaning that we need the ability to see a set of traces as an
interpretation. The ded is also lifted to sequences of traces, as we will need to compare the
ground atoms represented by a list of traces to instantiated bodies of rules. Both lifts are
shown in Figure 8.6.

Definition sem_tree_to_inter def (ts : {set trace_sem_trees}) : interp :=

[set ded def x | x in ts].

Definition ded_sub_equal (def : syntax.constant) (lx : seq trace_sem_trees)

(s : sub) (ats : seq atom) : bool :=

(map (ded def) lx) == (map (gr_atom_def def s) ats).

Figure 8.6: Lifting ded to sets and sequences of traces

Our implementation of the trace semantics leverages on a function that takes a set over an
option type, e.g. option A, and filters out all the None elements to return a set over A. The
implementation of this function, called pset, is discussed in Section 12.3.1, but Figure 8.7
shows its specification.
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Lemma pset_spec {A : finType} (x : A) (s : {set (option A)}) :

Some x \in s <-> x \in pset s.

Figure 8.7: Specification of pset

We can now implement T tP . As the TP operator (see Section 3.3.2.2), the Coq definition is
split into two parts. First, cons_clause_t computes the deductive part, i.e. the traces that
are actually added to the semantics. The function, shown in Figure 8.8 expects a default
ground atom def, a clause cl and a previously deduced set of traces k.

Definition cons_clause_t def (cl : clause) (k : {set trace_sem_trees})

: {set trace_sem_trees} :=

let b := (body_cl cl) in

let subs := match_body (sem_tree_to_inter def k) b in

pset [set (wutree_option_fst

(@wu_pcons_seq rul_gr_finType gatom_finType bn gat_def (RS cl s) lx))

| lx : (size b).-tuple trace_sem_trees,

s : sub in subs &

(ded_sub_equal def lx s b &&

all (mem k) lx)].

Figure 8.8: Computing new traces

We first compute the set of relevant substitutions by applying match_body to the body of the
clause, with k seen as an intepretation. Then, we use MathComp’s set notations to iterate
over every substitution s in subs and – using the tuple type for finiteness – any sequence of
traces lx that matches the instantiated body (ded_sub_equal). For any such pair, we try to
build a tree with root RS cl s and lx as children. If RS cl s was already in a trace of lx,
wu_pcons_seq fails, None is returned and filtered out by pset. Otherwise, the actual tree is
returned and preserved.

The second part of T tP , shown in Figure 8.9, is similar to function fwd_chain from Figure
3.25, as it applies cons_clause_t to every clause of the program and adds the original
interpretation k, here as a set of trees.

Definition fwd_chain_t def (k : {set trace_sem_trees}) : {set trace_sem_trees} :=

k :|: \bigcup_(cl <- p) cons_clause_t def cl k.

Figure 8.9: Forward chain step for the trace semantics

Finally, the sem_t function, shown in Figure 8.10 simply iterates T tP m times, starting with
the trace translation of interpretation i.

Definition sem_t (def : syntax.constant) (m : nat) (i : interp) :=

iter m (fwd_chain_t def) (base_sem_t i).

Figure 8.10: Iterating T tP
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Now that the trace semantics is fully defined in Coq, we can move on to its formal certification.

8.3.2 Adequacy proofs

The certification of the trace semantics and its use in other proofs led to the development of
various technical, very specialized lemmas which are not all listed here for conciceness and
clarity. The most important two, shown in Figure 8.11, are about the reverse-monotonicity,
i.e. the fact that all subtrees of a deduced trace are also part of the trace semantics. Note
that the second lemma is about strict subtrees, which means that we can add some precision
to the number of iterations needed for the capture of t1.

Lemma trace_sem_prev_trees nb_iter def init :

forall (t1 t2 : trace_sem_trees), t2 \in (sem_t def nb_iter init)

-> subtree (val t1) (val t2)

-> t1 \in (sem_t def nb_iter init).

Lemma trace_sem_prev_trees_m1 nb_iter def init :

forall (t1 t2 : trace_sem_trees), t2 \in (sem_t def nb_iter init)

-> strict_subtree (val t1) (val t2)

-> t1 \in (sem_t def nb_iter.-1 init).

Figure 8.11: (Reverse-)Monotonicity of the trace semantics

With such technical results in hand, the adequacy Lemmas 8.10 et 8.11 are simply translated,
as seen in Figure 8.12.

Lemma trace_sem_completeness nb_iter def i :

prog_safe p

-> [forall x in (sem p def nb_iter i),

exists y in (sem_t def nb_iter i), ded def y == x].

Lemma trace_sem_soundness nb_iter def i:

prog_safe p

-> [forall t in (sem_t def nb_iter i),

ded def t \in (sem p def nb_iter i)].

Figure 8.12: Coq implementation of the trace semantics adequacy

Remark 8.14. The proof of Lemma 8.10 needs to be adjusted, because of the type used to
define trace_sem_trees. Indeed, we do not need to show that there exists a trace t represent-
ing a deduction of the fact x, but that there is a trace twith unicity representing a deduction
of the fact x. This unicity constraint is not stated explicitely in trace_sem_completeness,
as it is implied by the use of the WUtree type. In that sense, this completeness lemma does
not state that every deduction is captured by the trace semantics of a program, but that a
sufficient and representative subset is.

Proof. The proof is modified in its final case, i.e. when a fact x has just been deduced using
TP , from which we extract a clause C and a substitution ι. Instead of directly building
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a tree with 〈C, ι〉 as its root, we need to check that it does not already appear in one of
the descendants (provided by the induction hypothesis and hypothesis (H2)). If it does
not, we can build the tree and proceed as in the previous proof. Otherwise, we extract the
incriminated tree with 〈C, ι〉 as its root. Thanks to Lemma trace_sem_prev_trees and the
monotonicity of T tP , it is captured by k iterations of T tP .



Part V

Optimizations

Section 6.2 discussed how the use of some primitive predicates with multiple variables leads
to performance issues within the Network Optimized Datalog engine. The core of this thesis
is then to introduce program analyses and rewritings that transform a Datalog program into
a semantically equivalent one that is free of such constructs.

Chapter 9 introduces a first program transformation that aims at the reduction of variables
in a Datalog program by trading them for more rules. This rewriting requires an overap-
proximation of the behavior of the variables to be removed, which may be provided by the
static analysis we introduce in Chapter 10. Then, Chapter 11 presents a second rewriting
that reduces the encodings of some predicates within Network Optimized Datalog.

These developments are all implemented and certified in Coq, using the formalization pre-
sented in Chapter 3 and the extensions introduced in Part IV. Chapter 12 reflects on this
process, in particular discussing the lessons we learned along the way, as well as related works.
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Chapter 9

Partial program instantiation

Pour un probabiliste, c’est un rêveur, il a des yeux verts qui le feraient
prendre pour un théoricien des nombres, même s’il porte les cheveux aussi
longs qu’un théoricien des jeux, de petites lunettes d’acier trotskisantes de
logicien et de vieux T-shirts troués d’algébriste

Hervé Le Tellier, L’anomalie

Section 6.2 discussed how seriously – i.e. exponentially – the number of variables in the
instances of some primivite predicates impacts the performances of the Network Optimized
Datalog engine. This Chapter introduces a first program transformation that aims at the
reduction of the number of such variables, by duplicating and partially instantiating clauses.

We first provide the intuition behind this rewriting in Section 9.1, then introduce and justify
the paper definitions in Section 9.2. We finally dive into the Coq definitions and certfication in
Section 9.3. The rewriting assumes some information about the behavior of the transformed
program. The next chapter introduces a static analysis that computes this requirement.

9.1 Intuition

In theory, each iteration of the TP operator (see Definition 2.45), considers every pair of rule
and substitution, and deduces new facts using only pairs that match the available facts. In
practice, Datalog engines try to be smarter and more optimal. For example, the Coq formal-
ization of Datalog introduced in Chapter 3 produces the minimal set of relevant substitutions
using function match_body (see Section 3.3.2.1).

Let us now assume we have an efficient way to statically compute an overapproximation
of these substitutions, i.e. a set S of n-tuples of values representing instantiations of a set
of variables V1, ..., Vn that all appear in a single rule. The idea behind our rewriting is to
provide these value sets to the engine, roughly saying ”you do not have to actually take these
variables into account, consider only the value tuples in S”.

However, we do not want to actually modify any Datalog engine, as it is a tricky and error
prone process. It would also obviously be engine-specific, whereas our goal is to build and
validate a method that may ultimately be used on top of existing tools (cf. Remark 12.2).
Our idea is then to work at the level of the executed program, i.e. to rewrite it so that the
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value overapproximations are passed on as clues.

To do so, a simple and surprisingly effective way is to duplicate the rules, instantiating
the targeted variables with the provided value tuples. This both eliminates variables and
preserves the semantics as, at any point of the computation, the available facts act as a
safeguard, in the sense that the instantiated bodies of the clauses must indeed still be checked
against them.

s(X,Y, Z)← q(X), p(X,Y, Z).

Figure 9.1: Defining s(X,Y, Z)

Example 9.1. Consider the program fragment in Figure 9.1, equipped with the interpreta-
tion {q(1), q(2), p(1, 3, 4), p(1, 3, 5), p(1, 7, 8), p(3, 4, 5)}. Figure 9.2 shows the minimal set
of substitutions that would be built – for example by function match_body – to use the rule
in that setting.

{





X 7→ 1

Y 7→ 3

Z 7→ 4

,





X 7→ 1

Y 7→ 3

Z 7→ 5

,





X 7→ 1

Y 7→ 7

Z 7→ 8

}

Figure 9.2: Minimal set of substitutions to compute s

and the semantics amounts to F = {s(1, 3, 4), s(1, 3, 5), s(1, 7, 8)}. Assume we want to get rid
of variables X and Y , which would then correspond to V1 and V2 in the second paragraph of
the section. In that setting, the set of instantiations S should contain at least the projections
on X and Y of the substitutions given shown in Figure 9.3.

{
{
X 7→ 1

Y 7→ 3
,

{
X 7→ 1

Y 7→ 7
}

Figure 9.3: Substitutions for s projected over X and Y

Finally, let us assume that S is complete but not correct, in the sense that it contains another
partial substitution is not relevant w.r.t. the rule and the provided interpretation, such as a
mapping from X to 3 and Y to 4. Figure 9.4 sums up the overapproximation – i.e. set of
partial substitutions – we consider.

{
{
X 7→ 1

Y 7→ 3
,

{
X 7→ 1

Y 7→ 7
,

{
X 7→ 3

Y 7→ 4
}

Figure 9.4: Overapproximation S of variables X and Y

We can use the S set to replace the rule from Figure 9.1 by the three found in Figure 9.5. The
first two rules can be used – in conjunction with the projections on Z of the substitutions of
Figure 9.2 – to deduce the facts in F . On the other hand, the third rule can not be used,
as q(3) does not match any fact in the EDB, or that will be subsequently deduced. In that
sense, although it comes from a strict and incorrect overapproximation, this rule is harmless.
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s(1, 3, Z)← q(1), p(1, 3, Z).
s(1, 7, Z)← q(1), p(1, 7, Z).
s(3, 4, Z)← q(3), p(3, 4, Z).

Figure 9.5: New, partially instantiated definition of s(X,Y, Z)

Remark 9.2. Example 9.1 is of course particularly simple, in particular as the code snippet
used for illustration does not make use of recursion. However, the argument made at the
end of the example can be adapted to this setting. The idea is that the first, recursion-free
iteration of TP on the considered rule does not change the deduced intermediate set of facts.
Then, the second iteration will be based on the right interpretation, thus preserving again
the deduced facts, and so on. The next section formalizes both the transformation (including
the hypothesis on the provided set of substitutions) and justification.

9.2 Definition and proof

The partial program instantiation first assumes a program P and an initial interpretation
– or EDB – I. As stated in the previous section, we may want to focus on a subset of the
variables appearing in the program. This set, written V1, ..., Vn at the beginning of Section
9.1, shall be denoted as R here. Finally, the instantiation requires a set of substitutions S
that captures the actual computation for the program w.r.t. the variables in R. To formally
define this hypothesis, we first need to define the restriction over a substitution.

Definition 9.3. (Restriction of a substitution) Given a substitution σ and a set of
variables X, the restriction of σ over X, written σ|X , is defined as

σ|X(x) =

{
σ(x) if x ∈ X
x otherwise

We can now express the completeness condition over the set of substitutions S. The idea is
to state that, whenever a clause C contains at least one variable to instantiate, the restric-
tion over the relevant variables of any substitution that can match C after some number of
iterations of TP appears in S.

Since both the match relation and TP operator are monotonic, w.r.t. the given interpretation
and number of steps respectively, a substitution matches C after some number of iterations of
TP iff it matches C w.r.t. the full semantics of the program. This fact justifies the following
definition of the completeness of S, where vars(C) returns the set of variables that appear
in clause C.

Definition 9.4. (Completeness of S)

∀C ∈ P, |vars(C) ∩R| > 0⇒ (∀ν,match(ν,C, (TP ↑ ω)(I))⇒ ν|R ∈ S).

Remark 9.5. Any method that takes a program and computes a set of substitutions which
satisfies the previous criteria, such as the static analysis introduced in the next chapter, can
then be used in conjunction with this rewriting, to fuel it.

Now that we introduced the context of the rewriting, we can define the actual transformation.
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Using function dom, that returns the domain of a substitution (see Definition 1.23), any clause
can be instantiated using the inst function.

Definition 9.6. (inst – clause-level instantiation)

inst(C) =





{ν(C) | ν ∈ S ∧ dom(ν) = R ∩ vars(body(C))}
if |vars(C) ∩R| > 0

{C} otherwise

Overloading the inst notation, the previous definition can naturally be lifted to full programs.

Definition 9.7. (inst – program-level instantiation)

inst(P ) =
⋃

C∈P
inst(C)

Remark 9.8. The |vars(C)∩R| > 0 hypothesis in Definitions 9.4 and 9.6 is rather inelegant,
but was required to work with clauses that do not contain any variables of R. An alternative
way to deal with them would have been to always manually add the empty substitution to
S. Since we did not think this solution was much more satisfactory, we went for the one
that felt more efficient in practice. We indeed expect that, in real use cases, many rules will
not contain variables to instantiate, meaning that we should quickly take them out of the
instantiation process rather than vainly go over the entirety of S for each of them.

Now that the transformation and its hypothesis have been defined, we need to prove that it
is semantics-preserving. We first need the following technical result.

Notation 9.9. Given a set X, we denote as X the set complement (within the type of the
elements). Note that, in particular, for any substitution σ and set of variables V , σ|V is the
restriction of σ to the variables which are not in V .

Lemma 9.10. For any substitution σ and clause C such that σ matches C, then, for any
subset of the program variables X, then σ|X matches σ|X(C). In other words, when part of
σ is used to instantiate the clause, then the rest of the substitution matches the result.

Proof. First proved at the level of atoms by induction on the arguments, then for clauses
using an induction as well, on the body this time.

The actual adequacy results are broken down into completeness and soundness. Our reference
point is the Datalog fixpoint semantics introduced in Section 2.2.2. Intuitively, we show that
the same facts are actually deduced in the same number of steps.

Theorem 9.11. (Transformation completeness) For any program P , initial interpre-
tation I and number of steps k, the transformed program deduces in k iterations of TP
every fact that was computed after the same number of steps in the original program, i.e.
(TP ↑ k)(I) ⊆ (Tinst(P ) ↑ k)(I).

Proof. We proceed by induction on the number of steps k. In the base case, the definitions
imply that (TP ↑ 0)(I) = (Tinst(P ) ↑ 0)(I) = I, which is even more general than our goal.

In the recursive case, let f be a fact in (TP ↑ k + 1)(I). Then, f was either already in
the previous iteration (TP ↑ k)(I), or it has just been deduced and added. In the first
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scenario, the induction hypothesis gives us that f is also in (Tinst(P ) ↑ k)(I), and thus in
(Tinst(P ) ↑ k + 1)(I) by definition.

In the second scenario, we can extract a clause C from P and a substitution ν such that ν
matches C w.r.t. (TP ↑ k)(I) and f is the head of ν(C). If C has no relevant variable, i.e.
|vars(C)∩R| = 0, we reuse the same clause and substitution. The atoms in the body of the
instantiated clause being in (Tinst(P ) ↑ k)(I) (induction hypothesis), we can indeed deduce f
in inst(P ).

Otherwise, we use the completeness hypothesis on S to show that inst(P ) contains ν|R(C).
We also use Lemma 9.10 to show that, using (Tinst(P ) ↑ k)(I) as an interpretation, this
partially instantiated clause matches ν|R to produce f .

Theorem 9.12. (Transformation soundness) For any program P , initial interpretation
I and number of steps k, any fact deduced by the transformed program in k iterations
of TP was already computed after the same number of steps in the original program, i.e.
(Tinst(P ) ↑ k)(I) ⊆ (TP ↑ k)(I).

The proof of this lemma works in a both similar and dual way w.r.t. that of Theorem 9.11,
as we get two substitutions (one for the clause instantiation, one matching the transformed
clause) that need to be combined to retrieve the substitution used in the original program.
The combination operator between two functions to be used is the following.

Definition 9.13. (Union of substitutions) Given two substitutions σ1 and σ2, the union
of σ1 and σ2, written σ1 ∪ σ2, is defined as

σ1 ∪ σ2 (x) =

{
σ1(x) if σ1(x) is a constant

σ2(x) otherwise

Remark 9.14. Despite the first case of the definition, the union of two substitutions returns
a term, i.e. a constant or a variable. A mapping to a constant will be prioritized over one to
a variable, but if σ1(x) and σ2(x) are both variables, then so will σ1 ∪ σ2 (x).

Remark 9.15. If σ1(x) and σ2(x) are both variables or both constants, this operation defines
different priorities between the two given substitutions. More concretely, if σ1 and σ2 both
map x to different constants c1 and c2, then σ1 ∪ σ2 will map x to c1, whereas if they map x
to variables v1 and v2, the latter will be returned by the union.

In that sense, calling it ”union” might be slightly misleading, as it is not a commutative
function. However, in practice, the domains of the two substitutions are disjoint wherever
we use this notion in our work, meaning that defining the priority either way has no impact.

Proof. The soundness of the transformation is proved using an induction on the number of
steps k. In the base case, the definitions again imply that (TP ↑ 0)(I) = (Tinst(P ) ↑ 0)(I) = I,
which is more general than our goal.

In the recursive case, let f be a fact in (Tinst(P ) ↑ k + 1)(I). Then, f was either already
in the previous iteration (Tinst(P ) ↑ k)(I), or it has just been deduced and added. In the
first scenario, the induction hypothesis gives us that f is also in (TP ↑ k)(I), and thus in
(TP ↑ k + 1)(I) by definition.

In the second scenario, we can extract a clause C from inst(P ) and a substitution ν such
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that ν matches C w.r.t. (Tinst(P ) ↑ k)(I) and f is the head of ν(C). Clause C is the result
of applying inst to a clause Co of the original program, i.e. C = inst(Co). Just like in the
definition of inst, we need to consider whether Co contains variables to instantiate.

If Co has no relevant variable, i.e. |vars(Co) ∩ R| = 0, C = Co. We then deduce f in P
reusing C, ν. The atoms in the body of the instantiated clause being in (TP ↑ k)(I) (induction
hypothesis), we can indeed do so.

Otherwise, there is a substitution σ such that C = σ(Co), with dom(σ) = R∩vars(body(Co)).
To deduce f in P w.r.t. (TP ↑ k)(I), we use the Co clause with the ν ∪ σ substitution. Since
ν and σ have disjoint domains, we can easily show that ν ∪ σ(Co) = ν(σ(Co)) = ν(C). We
then obtain the same instantiated clause as in the transformed program inst(P ). Thanks
to the induction hypothesis, (Tinst ↑ k)(I) ⊆ (TP ↑ k)(I), the intermediate interpretation
for the original program contains at least the facts that were used for the deduction in the
transformed program. We use them, with the aforementioned instantiated clause ν ∪ σ(Co),
to deduce f .

Now that the partial program instantiation is defined and justified on paper, we can formalize
and certify it within Coq and MathComp.

9.3 Coq implementation and certification

We first assume the variables introduced earlier: a safe (in the sense defined in Section 2.1.3,
cf. Figure 3.10) program, an initial interpretation, a default constant (used to transform
substitutions into groundings, cf. Figure 3.16), the set of variables to instantiate Rv (pre-
viously R) and the provided substitutions subs (previously S). Figure 9.6 sums up these
assumptions.

Variable p : program.

Hypothesis psafe : prog_safe p.

Variable i : interp.

Variable def : syntax.constant.

Variable Rv : {set 'I_n}.

Variable subs : {set sub}.

Figure 9.6: Coq hypotheses the partial program instantiation

Surprisingly, the original development of DatalogCert does not provide a boolean substitution
matching function. The closest thing is gcl_true (which is lifted to cl_true and prog_true,
see Figure 3.17), used to implement the model-theoretic semantics. However, it only relies on
groundings rather than (partial) substitutions, and is not explicitely related (i.e. via lemmas)
to the other components of the formalization.

This led us to focus on the constructive matching mechanism, using match_pbody (cf. Figure
3.23) to define the substitutions involved in the proofs. However, proving results stated with
this function was much harder than expected. Even trying to prove a simple, technical result
such as Lemma 9.10 with a classical induction on the atom list required us to find non trivial
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formulations and abstractions. This is because match_pbody collects contraints as it goes
through the atom list, meaning that we have to relate the constraints collected on both sides
of the implication.

Using this constructive matching, we were able to (painstakingly) prove most of the technical
lemmas needed for the adequacy proofs, but not all of them. Even if we had managed to do
so, the effort required felt uncorrelated to the intrinsic difficulty of the targeted results. We
eventually completed the adequacy proof after introducing a boolean matching predicate.

This predicate, shown in Figure 9.7, first checks that the variables of the given clause all
appear in the domain of the given substitution. If it is the case, the substitution can safely
be made into a grounding using function to_gr and the def constant, as it will not be used in
the instantiation of the clause. Function gr_tl simply maps a given grounding to a sequence
of atoms, here the body of the clause to instantiate.

Definition bmatch i cl s : bool :=

(cl_vars cl \subset dom s)

&& all (mem i) (gr_tl (to_gr def s) (body_cl cl))

Figure 9.7: Coq version of the boolean matching

Figure 9.8 shows how this boolean matching was related to its constructive counterpart, and
thus to the fixpoint semantics. The first lemma simply states that any built substitution
indeed matches the given clause. The second lemma, given a boolean match, ensures that
the constructive match would succeed on the given clause w.r.t. the interpretation, and that
the result would be a subsubstitution, i.e. be sound w.r.t. the first one (cf. Figure 3.15).

Lemma match_body_bmatch def (cl : clause) i s :

s \in match_body i (body_cl cl) -> bmatch def i cl s.

Lemma bmatch_match_body def (cl : clause) i s:

bmatch def i cl s -> exists2 r : sub, r \in match_body i (body_cl cl) & r \sub s.

Figure 9.8: Relating the two kinds of matching

To implement the completeness hypothesis over the provided set of substitutions, we also
need the full semantics of the program. We adapt the proof of incr_fwd_chain_complete
(cf. Section 3.3.2.2) to define it as |BP | iterations of TP and characterize its maximality w.r.t.
match_body, as shown in Figure 9.9.

Definition sem (m : nat) := iter m (fwd_chain def p) i.

Definition ffp := sem #|bp|.

Lemma nomega_fp :

forall (cl : clause) (m : nat), cl \in p

-> match_body (sem p def m i) (body_cl cl) \subset match_body ffp (body_cl cl).

Figure 9.9: Definition and absorption of a program’s semantics
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Finally, we need the restriction of a substitution to a given set of variables (cf. Definition
9.3). Figure 9.10 shows its implementation with finfun notations.

Definition sub_filter (s : sub) (t : {set 'I_n}) :=

[ffun v => if v \in t then s v else None].

Figure 9.10: Restricting a substitution in Coq

With all these definitions in hand, the hypothesis on subs can be defined as shown in Figure
9.11.

Hypothesis subs_comp :

[forall cl in p,

(#|tail_vars (body_cl cl) :&: Rv| > 0) ==>

[forall s : sub, (bmatch def ffp cl s) ==> (sub_filter s Rv \in subs)]].

Figure 9.11: Coq implementation of the completeness hypothesis on the overapproximation

The implementation of the actual instantiation, shown in Figure 9.12, is straightforward as
well, thanks to MathComp’s set comprehension features.

(* [stv] returns the to-be-replaced variables of a clause *)

Definition stv cl := Rv :&: tail_vars (body_cl cl).

Definition inst_rule (cl : clause): seq clause :=

(* s is only about interesting variables *)

if (#|tail_vars (body_cl cl) :&: Rv| > 0) then

[seq scl s cl | s <- enum subs & dom s == stv cl]

else [:: cl].

(* [tprog] is obtained by instantiating all the rules of [p] *)

Definition tprog : program :=

flatten [seq (inst_rule cl) | cl <- p].

Figure 9.12: Coq implementation of the partial program instantiation

Figure 9.13 shows the Coq definition of Theorems 9.11 and 9.12, whose proofs are fundamen-
tally similar to the paper versions above. The reasoning is actually quite recognizable when
reading the proof script, which is always very satisfactory when working with Coq. The main
difficulty was the use of substitutions and matchings, which we already discussed.

Lemma ccompleteness (m : nat) : (sem p def m i) \subset (sem tprog def m i).

Lemma csoundness (m : nat) : (sem tprog def m i) \subset (sem p def m i).

Theorem cadequacy (m : nat) : (sem tprog def m i) = (sem p def m i).

Figure 9.13: Coq definition of the adequacy of the partial program instantiation
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This rewriting requires – both on the paper and Coq levels – an overapproximation of the
transformed program’s behavior. The next chapter introduces, formalizes and discusses a
static analysis that provides one.



Chapter 10

Static analysis

- Peux-tu expliquer correctement la différence entre le présent et
le passé du conditionnel en anglais ? me demanda-t-elle soudain.
saut à la ligne caché
- Je crois que oui, lui répondis-je.
saut à la ligne caché
- Je voudrais bien savoir à quoi cela te sert dans ta vie
quotidienne.
saut à la ligne caché
- C’est vrai que cela ne m’est pas très utile, mais je crois que,
plutôt que d’en chercher l’utilité concrète, il faut le considérer
comme un exercice destiné à vous faire appréhender les choses
avec méthode.

Haruki Murakami, La ballade de l’impossible,
traduit du japonais par Rose-Marie Makuno-Fayolle

In this chapter, we introduce a new static analysis for Datalog. This analysis approximates
the behavior of a variable in a program, i.e. the set of values it will be instantiated with
during the program’s execution, by simulating a more local and less constrained version of
the fixpoint semantics for Datalog introduced in Section 2.2.2.

Section 10.1 first introduces some (harmless) assumptions made by the analysis about the
studied program. Then, Section 10.2 outlines via an example the main ideas behind the anal-
ysis. These ideas are formalized in Coq in Section 10.3, and certified in the same framework
in Section 10.4. This work led us to design another, stronger version of the analysis, whose
introduction and discussion are relagated to Chapter 12.

10.1 Hypotheses and notations

The first hypothesis slightly simplifies the analysis by restricting the syntax of Datalog, but
not its expressivity.

Hypothesis 10.1. (Constant-free heads) We first assume that the heads of rules in the
program do not contain constants, but only variables.

Lemma 10.2. Hypothesis 10.1 is harmless, i.e. any Datalog program can be rewritten into

110
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an equivalent program that enforces it.

Proof. The proof of Theorem 12.5.2 of [Abiteboul et al., 1995] provides a transformation that
eliminates any given constant from a program. Roughly, the idea of this transformation is
to introduce an extensional predicate Ca for each constant a that appears in a head of the
program, and transform any rule of the form

H(..., a, ...) ← B1(...), ..., Bn(...)

into

H(..., x, ...) ← B1(...), ..., Bn(...), Ca(x)

where x is a fresh variable. The only fact about Ca found in the EDB is Ca(a), meaning that
x will be constrained to be instantiated to a during the program’s execution.

Our other hypothesis on the analyzed programs is even simpler but also helps keeping the
formalization of the analysis minimal.

Hypothesis 10.3. (Unicity of variables across rules) We only consider programs where
individual variables may only appear in a single rule.

Lemma 10.4. Hypothesis 10.3 is a harmless assumption, i.e. any Datalog program can be
rewritten into an equivalent program where no variable is shared across multiple rules.

Proof. The property can be enforced by indexing the variable names w.r.t. the rules. For
example, Figure 10.1 shows how an arbitrary program (Figure 10.1a) is transformed (Figure
10.1b) so that a variable does not appear in two different rules.

P (X,Y )← Q(X,Y ).
Q(X,Y )← Q(Y,X).
Q(X,Y )← f(X,X, Y ).

(a) A program with shared variables...

P (X1, Y1)← Q(X1, Y1).
Q(X2, Y2)← Q(Y2, X2).
Q(X3, Y3)← f(X3, X3, Y3).

(b) ...and with unicity across rules

Figure 10.1: Indexing variable names

Finally, we introduce two notations that will be used throughout the rest of this document.

Notation 10.5. (Predicate index) Given a predicate P and an integer i, we denote as P.i
the ith index, or argument position (starting at 0) of P .

Notation 10.6. (tocc – Term body occurrences) We denote as toccs (for term occur-
rences) the occurrences of terms within the bodies of rules. These occurrences are 3-tuples
in N3, where the components are the indexes of, respectively, the rule, the atom (within the
body of the rule) and the argument (within the atom), starting at 0.

Example 10.7. In the program of Figure 10.1a, the toccs for the occurrences of X within
the f atom are 〈2, 0, 0〉 and 〈2, 0, 1〉 .
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10.2 Intuition and Example

We first introduce, via an example, the general principle of the static analysis. We then focus
on a specific aspect, i.e. the way it deals with Datalog recursion. Finally, we outline how we
extract a set of substitutions from the analysis results.

10.2.1 General principle

The work on this static analysis started by noticing that the TP operator can be split into
three distinct constraints, and realizing that implementing a subset of these constraints could
lead to an overapproximating but much faster analysis. We first use the program of Figure
10.2, where s, q and r are intensional predicates, and f1 to f3 extensional, to illustrate the
three properties TP must fullfil. We will then give an intuition of the static analysis itself,
and finally provide a detailed example of its application, using once again the program of
Figure 10.2.

1. Given any EDB, the set of values with which X1 can be instantiated in practice is a
subset of the intersection of the sets of values that go through its instances within the
body of the rule, i.e. the values of toccs q.0 and f1.0.

2. Focusing on the first, the set of values with which q.0 can be instantiated is a subset of
the union of the values returned by the second and third rules.

3. Given a value for X1 and another for Y1, they must be compatible, i.e. form a valid
tuple of arguments for f1.

s(X1, Y1) ← q(X1), f1(X1, Y1).
q(X2) ← r(X2, X2).
q(X3) ← f2(Y3, Y3, Z3), f3(Y3, X3, Z3).
r(X4, Y4) ← f2(X4, Y4, X4), f3(Z4, X4, Z4)

Figure 10.2: Defining s(X,Y)

Unlike the third constraint, the first two deal with variables and toccs individually, meaning
that they involve much less computation than the entirety of TP , while hopefully still pro-
viding interesting constraints. Our idea is then to design an analysis that fulfills the first two
constraints.

Since these two constraints fundamentally are intersections and unions of value sets (or, from
a logical standpoint, conjunction and disjunction), the idea is to build, for any chosen variable,
a tree with nodes labeled with ∩ and ∪. The leaves, which correspond to the starting points
of any series of deduction, represent columns in the EDB tables, e.g. f1.0 or f2.1. This way,
the tree represents the way values flow from the EDB to a variable during the execution of
the program, without enforcing the unification across different variables.

The branches are annotated with the index of the corresponding clause (for the descendants of
∪-nodes) or atom (descendants of ∩-nodes). Although this helps understanding and relating
the tree with the analyzed program, the main point of these annotations is that they can be
used to simulate a weaker version of the third constraint of TP on top of the actual analysis,
as we will discuss in Section 12.2.
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Example 10.8. The flow of X1 in the program of Figure 10.2 is shown in Figure 10.3. Let
us relate it to the actual program, using the annotations.

Variable X1 has two occurrences in the body of the first rule. The set of possible values for
X1 is a subset of the intersection of those for the two occurrences, meaning that the root of
the tree has to be labeled with ∩. The first occurrence is in the q atom, which itself is the
first element of the body, and the second occurrence is in the f1 atom, second element of the
body. This means that the node must have two children, annoted 0 (for the occurrence in
q) and 1 (occurrence in f1). Since f1 is an extensional predicate, the second child is a leaf
annotated with the corresponding EDB table. Let us now focus on the left child.

∩

f1.0∪

∩

f3.1

1

∩

∪

∩

f2.1

0

3

∪

∩

f3.1f2.2f2.0

0
0

1

3

0 0

1 2

0 1

Figure 10.3: Analysis of a variable

Since the first occurrence of X1 was as the first (and only) argument of an atom of an
intensional predicate (namely q) the subtree should represent the different ways to obtain
values for q.0. This implies that the root will be annotated ∪ (in general, there will be a
strict alternation between intersections and disjunctions throughout the analysis), and will
have one child for each rule defining q.

We then have two descendants, annotated 1 and 2, which refer to the second and thrid rules
of the program, respectively. We first focus on the latter. This rule defines q(X3) using two
atoms. However, only the second one, defined with the extensional predicate f3, contains an
occurrence of X3, at its second argument. We then return a ∩ node, which only leads to a
leaf that refers to the f3.1 column of the EDB.

As for the left child, annotated with 1, it refers to a rule that contains only one atom in its
body, but two occurrences of the relevant variable, X2. We then have two descendants, both
annotated 0, which compute overapproximations of the values for r.0 and r.1. Since the only
rule defining r is the fourth one, the roots of both subtrees start are a ∪-node and have only
one successor, labeled with 3.

The left subtree is an analysis of r.0, and thus of the first argument of the head of the last
rule, X4. This variable has three occurrences in the body, meaning that there are just as
many descendants. On the other hand, the second argument, Y4, has only one occurrence.
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10.2.2 Dealing with recursion

The general principle introduced in Example 10.8 will obviously not fare well (i.e. loop
indefinitely) in the presence of recursion, which happens to be a core feature of Datalog. To
circumvent this issue, the analysis stores all previously visited toccs when recursively calling
itself, to avoid having a program location twice in a branch of the returned tree. This bounds
the derivations despite potentially recursive programs.

The rationale behind this fix is that, to find an approximation of the values going through
some tocc, one should not look at the recursive part of the corresponding predicate, but
rather the other predicates that ”ground” it. This idea is formalized is Section 10.4, but let
us provide a first intuition.

Example 10.9. Figure 10.4b shows the analysis of variable X1 in the program of Figure
10.4a, where f is an extensional predicate. The analysis starts with the p atom in the body
of the first clause. It then considers two different ways to deduce a p fact, i.e. the two clauses.
When looking at the first clause, the analysis moves on to the variable matching p.1, i.e. Y1.
It also occurs in the p atom, so we could expect to have again two children, one for each rule.

However, going through the first clause once again would require analyzing p.0. Since this is
precisely what we are doing, all occurrences of X1 have already been visited and stored. We
then drop this possibility, meaning that the ∪-node we were considering only has one child.
The analysis eventually captures the fact that values of p can be permuted, and that the set
of values of X1 is a subset those of q.0 and q.1.

p(X1, Y1)← p(Y1,X1) .
p(X2, Y2)← f(X2, Y2) .

(a) Program Prec
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(b) Analysis of X1
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(c) Analysis of Y1

Figure 10.4: Analysis of a recursive program

Example 10.10. Let us consider the program of Figure 10.5.

p(X1, Y1, Y1)← p(Y1, X1, X1).
p(X2, Y2, Z2)← q(X2, Y2, Z2).

Figure 10.5: Shifting variables
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The first rule contains two occurrences of variable Y1 in its head, and two occurrences of
X1 in its body, not at the same indexes. The static analysis does handle this program, and
returns the analyses shown in Figure 10.6. In both trees, the nodes in red are those where a
cut happens to avoid looping.
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(a) Analysis of X1
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(b) Analysis of Y1

Figure 10.6: Another program analysis

Replacing the occurrences by the predicate and index they correspond to, the tree of Figure
10.6a represents

(f.0 ∪ f.1) ∩ (f.0 ∪ f.2) = f.0 ∪ (f.1 ∩ f.2)

The other tree corresponds to the same formula, and, in both cases, the result corresponds
to the actual behavior of the analyzed variable.

Now that the actual analysis of a variable has been fully introduced, we can discuss how
the returned trees are used to extract a set of substitutions, as required by the program
transformation presented in Chapter 9.

10.2.3 From trees to values

Given a tree representing the flow of a variable, we can easily extract a set of values with a
structural induction. Intuitively, the ∩ and ∪ nodes are treated as set intersection and union,
respectively. The leaves return the values in the corresponding column of the EDB tables,
i.e. the extraction of a f.i leaf will return the set of constants appearing at the ith position
of a f fact in the EDB.

Given the analyses of multiple variables appearing in the same rule, partial substitutions
can be built as the cartesian product of the value sets extracted from the different trees.
This simplistic procedure is not entirely satisfactory, as it may produce many irrelevant value
tuples. Section 12.2 discusses how a more complex extraction process can use the annotations
of multiple trees to circumvent this issue.
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10.3 Formalization

There is usually a gap in clarity and simplicity between a paper definition and its concrete
implementation. However, thanks to MathComp’s set notations, both versions are actually
very similar. We then reckon that presenting both would make for a rather redundant read,
and restrict ourselves to the latter, i.e. the Coq/MathComp formalization.

10.3.1 From trees to DNF

Replacing ∪ and ∩ with ∨ and ∧, the trees produced by the analysis can be seen as proposi-
tional formulae, where the EDB columns are atomic elements. With that in mind, the Coq
formalization works with Disjunctive Normal Forms (DNF). In this form, the relation with
the actual computation seems less natural, as we lose the alternation between intersections
and disjunctions, but is surprisingly much easier to prove.

Intuitively, the intersections in the DNF encode the different paths values can take, i.e. which
rule is used to deduce an element of a predicate that is defined by multiple clauses. This
way, one of the core lemmas of the certification process will state that every such possibility
is indeed captured by the returned DNF.

Building a DNF requires the computation of every combination of propositional formulae
across different disjunctions – here, sets. MathComp already provides a cartesian product
between two sets, which is shown in Figure 10.7.

Definition setX := [set u | u.1 \in A1 & u.2 \in A2].

Figure 10.7: Cartesian product between two sets in MathComp

Figure 10.8 shows our generalization to any finite number of sets. It takes a sequence of sets,
denoted as ss, and returns a set of tuples, the size of which is the length of ss. Each tuple
contains an element of each set, these elements being ordered the same way as their original
sets within ss. Using tuples on a finType rather than sequence types allows having them in
a set (cf. Example 3.6).

Notation 10.11. tnth x j, where x is a n.-tuple and j is a 'I_n, returns the jth element
of x, and in_tuple s returns sequence s seen as a (size s).-tuple.

Definition gen_setX {A : finType} (ss : seq {set A})

: {set (size ss).-tuple A} :=

let m := size ss in

[set x : m.-tuple A | [forall j : 'I_m, tnth x j \in tnth (in_tuple ss) j]].

Figure 10.8: Cartesian product between an arbitrary number of sets

Remark 10.12. Figure 10.8 leverages finTypes to use set notations, but the resulting def-
inition, like setX, is not very constructive. In fact, the cartesian product is defined here
using its specification. Thanksfully, such universal and useful constructs are easily found in
traditional programming languages.
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10.3.2 Handling occurrences

Implementing the static analysis requires a precise definition of toccs, i.e. program occur-
rences, as well as some related technical results. We present the main definitions, both as
for exhaustivity, and to illustrate how, in the spirit of DatalogCert, the focus on finTypes
sometimes implies a heavy, potentially cumbersome use of dependent types to bound the
manipulated objects.

First, we need to define and bound the occurrence type. As shown in Figure 10.9, the
coordinates are encoded as ordinals. The rule index is simply bounded by the number of
rules. The index within the body of the rule uses the bn parameter introduced in Section 7.3.
Finally, the index of the term within the arguments of an atom is bounded by the maximal
arity within all the available predicates, max_ar, which was already defined in DatalogCert.

Notation max_ar := (\max_(s in symtype) arity s).

Record t_occ p :=

T_occ {r_ind : 'I_(size p) ; b_ind : 'I_bn ; t_ind : 'I_max_ar}.

Definition tocs p := {set (t_occ p)}.

Figure 10.9: Bounding program occurrences

The t_occ type was easily shown finite using CanFinMixin. This finiteness results then allows
the definition of sets of occurrences, called tocs.

We can now easily define functions that return the atom or predicate corresponding to a given
program occurrence. As seen in Figure 10.10, we use the nth_error function, which does
not require a default element like nth but returns an option type1. Functions at(om)_at and
p(redicate)_at then do as well.

Definition at_at (o : t_occ) : option atom :=

match nth_error p (r_ind o) with

| None => None

| Some cl => nth_error (body_cl cl) (b_ind o) end.

Definition p_at (t : t_occ) :=

match (at_at t) with

| None => None

| Some ato => Some (sym_atom ato) end.

Figure 10.10: Computing an occurrence’s predicate

Remark 10.13. The use of an option return type generates some frustration during the
proofs, as in practice we make sure to use these fonctions only with occurrences that actually
correspond to something in the program, and have to care about irrelevant cases in matches
and such. However, these functions being technically partial, there was probably no way to
circumvent this – using a default return value rather than an encapsulation within an option
type would have led to the same problem.

1https://coq.inria.fr/library/Coq.Lists.List.html#nth_error
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We also need functions that collect the set of occurrences of a given variable within the
program. However, due to the bounding of occurrences as seen above, this process requires a
surprising quantity of machinery. In particular, after trying, we will argue that writing this
function ex nihilo seems illusory. We then build up to it, starting with the minimal relevant
structures, i.e. lists of terms of atoms, as seen in Figure 10.11. Within these structures, the
occurrences only contain an index, bounded by the maximal predicate arity.

Definition occsInTermList (v : 'I_n) (l : seq term) : {set 'I_max_ar} :=

[set i : 'I_max_ar | nth_error l i == Some (Var v)].

Definition occsInAtom (a : atom) (v : 'I_n) : {set 'I_max_ar} :=

@occsInTermList v (arg_atom a).

Lemma occsInAtomV occ a v :

occ \in occsInAtom a v -> nth_error (arg_atom a) occ = Some (Var v).

Figure 10.11: Finding occurrences in an atom

We then lift this to lists of atoms. To do so, we add a second ordinal (in the sense of
MathComp, see Example 3.4) to the occurrences, corresponding to the index of the atom
containing the variable occurrence. When exploring a new atom, this (atom) index is set to
0, and those of the previously seen atoms are incremented.

Figure 10.12 first shows how we define the increment of an Ordinal. Lemma ord_shift1

shifts a bound on x, ord_shift uses it to build the actual ordinal, and shift1 simply lifts
it to sets of pairs.

Lemma ord_shiftl {i : nat} : forall x : 'I_i, x.+1 < i.+1.

Definition ord_shift {i : nat} (x : 'I_i) : 'I_i.+1 :=

Ordinal (ord_shiftl x).

Definition shift1 {k : nat} {A : finType} (l : {set ('I_k * A)%type})

: {set ('I_k.+1 * A)%type} := [set ((ord_shift x.1), x.2) | x in l].

Figure 10.12: Incrementing an ordinal

This function can then be used in the actual collection of occurrences of a variable in a
sequence of atoms, shown in Figure 10.13. For each new atom a, we compute the set of
occurrences it contains and assign it 0 seen as an ordinal (Ordinal (ltn0Sn _)), whereas
the previously computed indexes are shifted by one on the left component.

Fixpoint occsInAtomList (al : seq atom) (v : 'I_n)

: {set ('I_(size al) * 'I_max_ar)} :=

match al with

| [::] => set0

| a::al => ([set (Ordinal (ltn0Sn _), x) | x in (occsInAtom a v)]

:|: (shift1 (@occsInAtomList al v))) end.

Figure 10.13: Finding occurrences in an atom list
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Figure 10.14. shows the certification of occsInAtomList, w.r.t. t_at. We use Lemma
wlist_to_seq_size, which takes an element l of type Wlist A m and returns size l < m.
Then, wlist_to_seq_size (body_cl cl) states that the size of the body of cl is less than
bn, which widen_ord uses to widen the body index from 'I_(size (body_cl cl)) to 'I_bn.

Lemma occsInAtomListV {p} (cl : clause) (cln : 'I_(size p)) v aton termn :

Some cl = nth_error p cln

-> (aton, termn) \in occsInAtomList (body_cl cl) v

-> @t_at p {| r_ind := cln;

b_ind := widen_ord (wlist_to_seq_size (body_cl cl)) aton;

t_ind := termn |} = Some (Var v).

Figure 10.14: Certification of occsInAtomList

Function occsInRule, shown in Figure 10.15, simply lifts the previous definition from lists
of atoms to a rule. The size of the first component of the returned occurrences then has to
be harmonized, meaning that the ordinal widening is also used here to extend all computed
body bounds to bn. The associated lemma is also similar to occsInAtomListV, although
more straightforward.

Definition occsInRule (v : 'I_n) (cl : clause) : {set ('I_bn * 'I_max_ar)} :=

[set ((widen_ord (wlist_to_seq_size (body_cl cl)) (fst x)), (snd x))

| x in (occsInAtomList (body_cl cl) v)].

Lemma occsInRuleV {p} cl v aton termn :

((aton, termn) \in occsInRule v (tnth (in_tuple p) cl))

-> t_at {| r_ind := cl;

b_ind := aton;

t_ind := termn |} = Some (Var v).

Figure 10.15: Finding occurrences in a rule

Finally, Figure 10.16 lifts these definitions to full programs. To do so, occsInRule is applied
to every rule of the program, and the clause index is added to the returned set of coordinates.
Lemma occsInProgramV is the final, straightforward specification of the set of functions
introduced in this Section.

Definition attach_cl_nb p (cl_nb : 'I_(size p))

(occs : {set ('I_bn * 'I_max_ar)}): tocs p :=

[set @T_occ p cl_nb (fst x) (snd x) | x in occs].

Definition occsInProgram p (v : 'I_n) : tocs p :=

\bigcup_(cln in 'I_(size p))

attach_cl_nb cln (@occsInRule v (tnth (in_tuple p) cln)).

Lemma occsInProgramV {p} v (xocc : t_occ p) :

xocc \in occsInProgram p v

-> t_at (xocc) = Some (Var v).

Figure 10.16: Finding occurrences in a program
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Remark 10.14. The machinery used to return finite types is specific to Coq, and would
not appear in a natural implementation. Although it may hurt the performances of the
extracted program, especially considering how heavily these functions are used, they are so
fundamentally simple and easy to implement that one may safely consider recoding them in
an actual programming language. We had to implement them in Coq for the analysis, but
the verification of these definitions is not an earth-shattering contribution.

Finally, we will need the functions shown in Figure 10.17. Given default variable and terms,
term_to_var cl j returns the jth term in the head of clause cl. Since Hypothesis 10.1
states that there are no constants in the heads of rules, we can add a safe cast to variables
for typing purposes. In particular, the dv and dt default variable and term assumptions are
only introduced for the exhaustiveness of pattern matching and use of the nth function.

With these tools in hand, we can move on to the definition and verification of the actual
program analysis.

Variable dv : 'I_n.

Variable dt : term.

Definition term_to_var (t : term) :=

match t with | Val c => dv | Var v => v end.

Definition get_cl_var (cl : clause) (j : nat) : 'I_n :=

term_to_var (nth dt (arg_atom (head_cl cl)) j).

Figure 10.17: Fetching head variables and body predicates

10.3.3 Analysis implementation

As stated in Section 10.3.1, an analysis result comes in the form of a Disjunctive Normal Form.
Although there are infinitely many DNF formulae, the leaf type (pairs with a predicate symbol
and an ordinal bound by the maximal predicate arity) being a finType and the absence of
repetition across branches in the trees produced by the analysis allow us to encode the
formulae in a finite structure, namely a set of sets.

In that setting, the main, or outer set represents the disjunction, implying that the inner sets
are the multiple intersections. These intersections contain the full branches as uniq_seqs
(cf. Section 7.1.2) rather than simply the leaves, as it will help us relate the structure to
the analyzed program’s behavior. As previously intuited, using DNFs is akin to having an
unfolding of the different possible behaviors of the studied program, which simplifies the core
certification lemmas.

Figure 10.18 shows the Coq definition of the static analysis, analyze_var, which is broken
down in the following paragraphs.

Arguments The actual implementation is (obviously) found in the analyze_var_prev

function, which is parametrized by the set of previously visited toccs prev. Along with prev

and the studied variable v, the function uses an argument count, which is used to ensure
termination in a simple way. The analyze_var_prev function first checks whether it has
reached 0 and, if it is the case, returns the empty set. In Section 10.4, when discussing the
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verification of the analysis, we will show how count can be instantiated by a program-specific
bound while retaining compleness.

Fixpoint analyze_var_prev (prev : {set tocc p}) (v : var)

(count : nat) : {set {set (uniq_seq tocc)}} :=

(* Ensuring termination *)

match count with | 0 => set0 | count.+1 =>

(* Computing non-visited occurrences of v *)

let occs := occsInProgram p v :\: prev in

(* Analysis of a predicate and index pair *)

let analyze_pi (prev : {set tocc}) (o : tocc) :=

match p_at o with

| None => set0

| Some f =>

match predtype f with

| Edb => [set [set unil]]

| Idb => let arec :=

[set (analyze_var_prev prev (get_cl_var cl (t_ind o))) count

| cl in p & head_predicate cl == f]

in \bigcup_(x in arec) x end end in

(* Adding the current tocc on top of a DNF *)

let all_add_o (dt : {set {set (uniq_seq tocc)}}) (o : tocc)

{set {set (uniq_seq tocc)}} :=

[set [set o::br | br in ct] | ct in dt] in

(* Recursive call *)

let arec := [seq all_add_o (analyze_pi (occ |: prev) occ) occ

| occ <- enum occs] in

bigcup_cart (gen_setX arec) end.

(* Version used in practice, with prev set to empty set for maximal precision *)

Definition analyze_var (v : var) (count : nat) : {set {set (uniq_seq tocc)}} :=

analyze_var_prev set0 v count.

Figure 10.18: The static analysis in Coq

Fetching occurrences Once it has checked that count has not reached 0, the function
computes the set of occurrences of the v variable that are not in the prev argument, i.e.
occurrences that have not been previously visited (:\: is the MathComp notation for set
difference). Then, for each occurrence, we need to both make recursive calls over the corre-
sponding predicate and index par, and store the current tocc on top of the result. Finally,
we will have to combine the results over all occurrences.

Recursive calls Function analyze_pi focuses on a single tocc, o. It then computes the
predicate corresponding to the occurrence, written f (due to the definition of occsInProgram,
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the None case is never used in practice, and is only here for the matching’s exhaustivity). We
then take a look at the kind of predicate, i.e. intensional or extensional, that f is.

If it is extensional, then we actually do not want to perform a recursive call, and just return
a leaf. Since the addition of the currently studied occurrence is performed later in the code
(in the case where it has to be put on top of multiple branches), we simply return an empty
uniq_seq (cf. Figure 7.12) encapsulated in two layers of sets.

If f is intensional, we go over the program, looking for clauses whose head is an occurrence
of the predicate. For each of these clauses, we compute the variable corresponding to the
currently studied occurrence o, i.e. the variable in the head whose index is the same as
the argument index (t_ind) of o. We then perform the analysis on these variables, using
a prev argument enriched with the current occurrence (cf. the call of analyze_pi). The
results, which are all sets of sets representing DNFs, must be merged. Since the different
rules defining a predicate correspond to multiple ways to deduce a fact, we want a disjunction
over all these possibilities. We then unify all the disjunctions into a single one, by merging
the outer sets using a bigcup notation.

Storing the current occurrence Now that we have a flow leading to the currently studied
occurrence, we need to put it on the top of the different branches. This is done, as seen with
function all_add_o, with a simple set notation.

Definition bigcup_tup {m} {A : finType} (t : m.-tuple {set A}) : {set A} :=

\bigcup_(x <- tval t) x.

Definition bigcup_cart {m} {A : finType}

(s : {set m.-tuple {set A}}) : {set {set A}} :=

[set bigcup_tup y | y : m.-tuple {set A} in s].

Figure 10.19: From cartesian product to set of sets

Merging analyses across occurrences We now have a DNF, seen as a set of sets, for
each occurrence of the studied variable v. All these occurrences are from the same rule
(thanks to the assumption that a variable does not appear in two different clauses), so we
want to return an intersection of these results. To do so, we perform a cartesian product over
them (gen_setX, defined in Figure 10.8), followed by some technical manipulations found in
Figure 10.19 for type coherence. We illustrate this process via a semi-formal example, where
DNFs and their implementation as sets of sets are interchangeable.

Figure 10.20 shows two DNFs to merge – the atomic elements, which are sequences in the
analysis, are abstracted as their actual nature does not impact the process – whereas Figure
10.21 shows the expected result. The cartesian product, as implemented above, will return
a set of tuples of conjunctions when applied to a sequence containing the two DNFs. This
structure is shown in Figure 10.22.

We then need to get rid of the tuple layer to be left with sets. Function bigcup_tup shown
in Figure 10.19 merges the sets contained in a tuple. Function bigcup_cart, found in the
same figure, uses it to return a set of sets as shown in Figure 10.23, which happens to be the
encoding of the expected result.
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Figure 10.20: Two DNFs to merge
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Figure 10.21: Expected results
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Figure 10.22: Result of the cartesian product

{{a, b, e, f}, {a, b, g, h}, {c, d, e, f}, {c, d, g, h} }
Figure 10.23: Flattening the cartesian product

Figure 10.24 shows how the analysis is called. Arguments def and dv are default constants
and variables, introduced only for typing purposes, whereas p and v are the analyzed program
and variable. Finally, #|rul_gr_finType| is the fuel with which the count argument is
instantiated. The use of this value is discussed in Section 10.4.4.

Now that we have defined an analysis, we need to be able to extract a set of substitutions
from it.

Definition analysis := analyze_var p (Val def) dv v #|rul_gr_finType|.

Figure 10.24: Storing the analysis

10.3.4 From analyses to sets of values

The analysis being formalized as a set of sets of lists (or branches), we define the extraction
at all these levels, starting with the lists.

These branches represent, from right to left, paths taken by values from the EDB to the
analyzed variable. Before going through the EDB to look for facts, we need to figure out
which predicate and argument index to use, i.e. those that correspond to the extensional
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predicate at the start of the path. More concretely, we need to be able to extract the
predicate and argument index of the last element of the occurrence list, which is done by the
functions of Figure 10.25.

(* Predicate to which branch [br] leads *)

Definition branch_pred (br : seq (t_occ p)) :=

match br with

| [::] => df (* default predicate symbol *)

| a :: l => match p_at (last a l) with

| None => df

| Some f => f end end.

(* Argument index of the last occurrence in the branch *)

Definition branch_t_ind (br : seq (t_occ p)) :=

match br with

| [::] => 0

| a :: l => t_ind (last a l) end.

Figure 10.25: Fetching predicate and argument index from analysis branch

Remark 10.15. By construction, the cases than return the assumed default predicate value
df are never used. Similarly, the last function expects a default value to return in case the
provided list is empty, but it will not be the case in practice.

Notation 10.16. The functions of Figure 10.25 are defined on sequences of toccs. However,
they will be used in practice on the type of branches the analysis returns , i.e. uniq_seqs
rather than simple lists. As shown in Figure 10.26, we call this type dbranch.

Once we have the predicate and argument index of the last element of a branch, we go
through the EDB, looking for any fact defined with the predicate, and extract the relevant
constant argument, as shown in Figure 10.26. Default constant and predicate values def and
df, introduced above, are once again irrelevant in practice but required.

Definition dbranch := (@uniq_seq_finType (t_occ_finType p)).

Definition extract_vals_br (br: dbranch p) : {set syntax.constant} :=

[set (nth def (arg_gatom f) (branch_t_ind br))

| f : gatom in i & sym_gatom f == branch_pred df br].

Figure 10.26: Extracting values from a branch

Finally, and as previously stated, the inner sets are seen as set intersections, whereas the
outer set is a union. These are simply translated using the bigcap and bigcup notations of
MathComp. Figure 10.27 shows this step and how, once we have extracted the variables of
an extraction, we build a set of singleton substitutions, i.e. substitutions that only map the
studied variables to the different values.
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Definition extract_vals_conj (cj : {set dbranch p}) : {set syntax.constant} :=

\bigcap_(br in cj) extract_vals_br br.

Definition extract_vals_disj (disj : {set {set dbranch p}}) : {set syntax.constant} :=

\bigcup_(cj in disj) extract_vals_conj cj.

Definition extract_vals_sub : {set sub} :=

[set (add emptysub v c) | c in extract_vals_disj analysis].

Figure 10.27: From branches to substitutions

Although small in size and despite the heavy use of set notations, the definition of the static
analysis, and especially the implementation of the analysis itself, might seem surprisingly
convoluted to the reader, considering how simple the base idea driving it is. This oddity –
which appeared to us early on – motivated us to verify the whole optimization process in
Coq. The next section introduces the certification of the static analysis.

10.4 Certification

The certification of the static analysis requires the introduction and formalization of a new
tool we call the no-recursion trace. This section first explains why it is required and provides
an intuition of its nature. We then formalize it, which allows its use in the verification of the
static analysis. After discussing that general process, we focus on a specific aspect, namely
the certification of the termination of the analysis.

10.4.1 Another angle on traces

As previously stated, the analysis does not consider the same program point twice, allowing
a fast and terminating analysis of recursive programs. However, it also makes it harder to
relate the produced tree and the actual deduction of facts, i.e. traces. To do so, we introduce
an intermediate layer, which we call the no-recursion trace. The idea is, given a deduction,
to identify a truncated version of the trace that is closer to the analysis while still preserving
enough information to be related to the actual trace semantics – a problem already tackled
in other verification contexts [Jeannet and Serwe, 2004, Shivers, 1991].

The truncation of the trace is done at the level of branches. More concretely, given a de-
duction trace and a variable, we look at the branches of the former, which all correspond
to a path followed by a value from the EDB to the variable, and transform them into trun-
cated, repetition-free sequences of toccs that approximate the aforementioned path. The
no-recursion trace is then presented as a set of uniq_seqs, as introduced in Section 7.1.2.

Example 10.17. We reuse the graph connectivity program from Example 2.9 and the trace
of Figure 8.1c, which represents a deduction of path(4, 3). Let us compute the no-recursion
trace of X in the second rule. X has only one occurrence in the body of the rule, at index
0 of the path atom. We then look at the child corresponding to the atom – the left child –
of the actual trace, which contains the same clause. The corresponding term, i.e. the one at
index 0 of the head of the clause, is again X, which only occurs in the path predicate.

Since this tocc, 〈1, 0, 0〉, has already been visited, it is not added again to the sequence. In
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a sense, we ignore this step and keep exploring the trace, which leads us to the first clause.
We add the tocc of X in the edge predicate, i.e. 〈0, 0, 0〉. The next child in the trace is a leaf
(the edge predicate is extensional), so we stop here and return a set that only contains the
sequence [〈1, 0, 0〉, 〈0, 0, 0〉]. This sequence indeed is a truncated, repetition-free version of
the flow taken by values from the EDB to the variable w.r.t. the actual deduction, or trace,
of path(4, 3).

Remark 10.18. In spite of its name, and as seen in Example 10.17, the no-recursion trace
can capture executions which do use recursive rules. Moreover, the returned lists have the
unicity property, but can contain multiple toccs which refer to the same clause. Example
12.3 will illustrate this point.

10.4.2 Formalization of the no-recursion trace

The Coq definition of the no-recursion trace is shown in Figure 10.28. The tr argument is the
trace to be truncated, prev is the set of previously visited program locations, v the variable
to focus on, and count is used to ensure the termination of the function. Given a strictly
positive value of count, we take a look at the shape of the trace. If tr is a leaf, we return a
set only containing an empty list, which will be enriched at the level of nodes.

Fixpoint unrec_trace_gen (prev : {set tocc}) (tr : trace) (v : var)

(count : nat) : {set (uniq_seq tocc)} :=

(* Ensuring termination of the funciton *)

match count with | 0 => set0 | count.+1 =>

(* If tr is a leaf, the empty list encapsulated in a set is returned *)

match tr with

| ABLeaf _ => [set unil]

| ABNode (RS cl s) descs =>

(* Unfolding the next call *)

let unrec_b (o : t_occ p) : {set dbranch} :=

match (nth_error descs (b_ind o)) with

| None => set0 (* None case not used in practice *)

| Some (ABLeaf _) => [set unil]

| Some (ABNode (RS clb sb) descsb) =>

(* recursive call, with o added to prev *)

unrec_trace_gen (o |: prev)

(ABNode (RS clb sb) descsb)

(get_cl_var dt dv clb (t_ind o))

count end

in

(* Computing non-visited occurrences of v *)

let occs := (occsInProgram p v) :\: prev in

(* adding occ on top of the returned set of sequences *)

\bigcup_(occ in occs) [set pucons occ l | l in unrec_b occ]

end end.

Figure 10.28: The no-recursion trace in Coq
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Indeed, given a node storing a clause cl and a substitution s, and whose children are stored
in the descs list, we first compute the occurrences of v that have not been visited yet. Then,
for each such occurrence o, we perform a recursive call on the ith child, where i is the atom
index within the body (b_ind) of the given occurrence. However, since the function takes the
currently variable as an argument, we need to be able, when performing the recursive call,
to provide it, and thus to have access to the next clause the trace leads us to.

To circumvent this issue, we partially unfold the recursion in the unrec_b function. If the ith

child is a leaf, then, in concordance the general definition, we return a singleton containing
the empty list. Otherwhise, we get access to the new clause stored in the child node, called
clb. We then get the variable at the jth position of its head, where j is the argument index
of o. After that – and adding o to prev, the recursive call is performed.

When recursion w.r.t. an occurrence returns a set of uniq_seqs, we add that occurrence on
top of all of them, using the pucons function defined in Figure 7.11. Finally, the set union
of all such sets is returned.

We can now use this no-recursion trace to bridge the gap between the actual traces and the
analyses we produce.

10.4.3 Relating executions and analyses

The first step of the certification is to state, and prove, the completeness of the no-recursion
trace. More concretely, for every trace and involved variable, every branch in the no-recursion
version of the trace must lead to a fact in the EDB that is relevant to the execution.

(* Characterization of the adequacy of a dbranch w.r.t.

a substitution, a variable and an interpretation *)

Definition br_adequate def (br : dbranch) (s : sub)

(v : 'I_n) (i : interp) : bool :=

[exists c : syntax.constant, (s v == Some c) &&

[exists ga in i, (sym_gatom ga == branch_pred br)

&& (nth def (arg_gatom ga) (branch_t_ind br) == c)]].

Theorem no_rec_needed tr v (i : interp) (m : nat)

(cl : clause) (s : sub) :

(* tr is a trace obtained with interpration i *)

tr \in sem_t p def m i

(* whose root is cl,s *)

-> ABroot tr = inl (RS cl s)

(* v is a variable of cl *)

-> v \in tail_vars (body_cl cl)

(* each dbranch of the no-recursion trace

is adequate w.r.t. s, v and i *)

-> [forall br in unrec_trace tr v (height tr).+1,

br_adequate def br s v i].

Figure 10.29: Completeness of no-recursion traces

Even more concretely, for every trace tr leading to a deduction combining a clause C with a
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substitution σ, and every variable v occurring in C, any branch in the no-recursion version
of tr w.r.t. v leads to a tocc 〈x, y, z〉 that corresponds to an extensional predicate p such that
the EDB contains a fact f whose zth argument is the σ(v) constant. Figure 10.29 shows the
Coq definitions and the exact formulation of the completeness.

In other words, the no-recursion trace is used to compute the bounded part of the constraints
which the actual semantics enforces, and, in that sense, it is complete. Another interpretation
is that, as intuited by the theorem’s name, dealing with recursion (see Remark 10.18) is not
necessary to get a first approximation of the semantics of a program.

Now that we related the actual traces and their no-recursion counterparts, we need to do the
same with the latter and the static analysis. This is where the encoding of the analyses as
sets of sets of branches comes in handy, as the core lemma simply states that the no-recursion
trace is actually and simply an element of the analysis, meaning that it is captured. This
lemma is shown in Figure 10.30.

Combining the results of Figures 10.29 and 10.30 would obviously be the key ingredient to
prove that the static analysis captures (and may approximate) the semantics of Datalog.
However, doing so would leave a blindspot, which is the termination of the analysis.

Lemma no_rec_capt prev tr i m cl s v :

tr \in sem_t p gat_def def m i

-> ABroot (val tr) = inl (RS cl s)

-> v \in tail_vars (body_cl cl)

-> unrec_trace_gen prev tr v (height tr).+1

\in analyze_var_prev prev v (height tr).

Figure 10.30: No-recursion trace capture

10.4.4 Termination of the analysis

Lemma no_rec_capt uses analyze_var_prevwith its fuel argument, count, set to the height
of the considered trace. However, the height of traces is theorically not bounded (see for
example the program of Figure 10.4a, where one may use the first rule an arbitrary number
of times), meaning that this lemma does not provide a satisfiable guarantee that the analysis
is usable in practice. We then need to find a bounded value for count and show that its use
preserves the completeness result.

Our first intuition for its concrete value was the cardinal of the tocc type, i.e. the number
of arguments positions within the bodies of the given program. Although it probably could
have easily been shown to be an adequate value, a different, potentially surprising answers
emerges from no_rec_capt and our development of finite tree types.

Indeed, as stated in Section 8.3, we implement the traces as WUtree rul_gr gatom. Lemma
height_WUtree, defined in Figure 7.27, then implies that the height of any trace we con-
sider is bounded by #|rul_gr_finType|, the cardinal of the rul_gr type. Morever, Lemma
trace_sem_completeness stated in Figure 8.12 shows that restricting ourselves to these
bounded traces is sufficient to capture the full semantics of Datalog. Thanks to these results,
and after showing the monotonicity of the analysis w.r.t. its count argument, we can de-
fine and certify an execution of the static analysis with a program-specific bound, as seen in
Figure 10.31.
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Lemma analyze_incr prev v (m1 m2 : nat) :

m1 <= m2

-> analyze_var_prev prev v m1 \subset analyze_var_prev prev v m2.

Theorem no_rec_capt_nf tr i m cl s v :

tr \in sem_t p gat_def def m i

-> ABroot (val tr) = inl (RS cl s)

-> v \in tail_vars (body_cl cl)

-> unrec_trace p tr v (height tr).+1

\in analyze_var v #|rul_gr_finType|.

Figure 10.31: No-recursion trace is captured by a bounded analysis

Remark 10.19. The actual value of #|rul_gr_finType| is the number of rules of the
considered program multiplied by the cardinal of the substitution type, i.e. (c + 1)v , where
c and v are the number of constants and variables, respectively (the +1 takes into account
the fact that substitutions are partial functions, and thus may associate no value to some
variables). This number is obviously much higher than the number of toccs in most programs2,
but it is actually irrelevant. In practice, the analysis will stop when there is no new tocc to
explore in each branch. What Theorem no_rec_capt_nf shows is that this will happen at
some point.

Remark 10.20. Some alternative strategies can be used to show the termination of complex
functions without the use of fuel – which happens to pollute the extracted code –, such as
the Braga method [Larchey-Wendling and Monin, 2018]. However, the goal of our work was
simply to validate an optimization scheme before implementing it in a Python-based project
(see Chapter 6), rather than extract it in the form of OCaml code. Due to this point, and
timing issues, we did not consider these more complex methods.

10.4.5 Value and substitution extraction

We showed in Section 10.3.4 how we implement the extraction of substitutions from a given
analysis. The certification of this code is in three steps. First, we provide an alternative
definition of the extraction, shown in Figure 10.32. This definition, although de facto com-
putable, is rather used as a specification.

Definition extract_subs_spec : {set sub} :=

[set s : sub | (dom s == [set v])

&& [exists ct in analysis,

[forall br in pred_of_set ct,

@br_adequate p df def br s v i]]].

Figure 10.32: Specification of the extraction

The use of br_adequate in this definition makes it easier to relate it to the results introduced
in Section 10.4.3. More concretely, the second step of the proof is to combine this new

2In fact, the unicity of variables across rules makes that inequality hold in general. Without this hypothesis,
one can come up with programs where it is reversed
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definition with Theorem no_rec_needed (cf. Figure 10.29) to show that the analysis can in
theory be used to extract a set of substitutions that overapproximates the semantics of the
studied program, w.r.t. Definition 9.4, as shown in Figure 10.33.

Lemma static_extract_spec :

[forall cl in p,

(0 < #|tail_vars (body_cl cl) :&: [set v]|)

==> [forall s, bmatch def (ffp p i def) cl s

==> (sub_filter s [set v] \in extract_subs_spec)]].

Figure 10.33: Completeness of the specification of the extraction

The third and final step is to show the equivalence of the two definitions – the specification
and the actual implementation – of the extraction. Once we have this result, it can be
combined with static_extract_spec to show that the program partial instance described
in Chapter 9 used with the static analysis indeed preserves the semantic of the program.
These results are shown in Figure 10.34.

Lemma extract_vals_sub_adequate :

extract_vals_sub = extract_subs_spec.

Theorem static_extraction_adequacy (m : nat):

(sem (@tprog p [set v] extract_vals_sub) def m i) = (sem p def m i).

Figure 10.34: Adequacy of the partial instance with the static analysis

Remark 10.21. The reader may notice a discrepancy between the analysis and the rewriting,
as the former fundamentally provides values for only one variable, and the latter assumes a
set of substitutions, i.e. potentially instantiates multiple variables at once. The extraction of
values from an analysis does return a set of substitutions (see function extract_vals_sub

in Figure 10.27), but they map only one variable to an actual value, meaning that this is an
artificial step to fit into the formalism used by the partial program instance of Chapter 9.

In practice, to instantiate multiple variables in a single rule using the previous definitions,
one can either apply the analysis and rewriting multiple times with a substitution on a single
variable, or generate substitutions using a cross product of the different value sets. These two
methods produce the same programs, as well as the same (still) inefficient results. Section
12.2 adresses this performance issue, by proposing and discussing an improved version of the
static analysis from which one can actually extract actual, multi-variable substitutions.



Chapter 11

Predicate specialization

C’est en 1776 que survint la dernière
métamorphose de Joseph Curwen

H.P. Lovercraft, L’affaire Charles Dexter Ward,
traduit de l’anglais par Arnaud Demaegd

The second program transformation we introduce aims at the reduction of the sizes of the
tables used in a Datalog engine. To do so, it introduces new predicates to partition existing
relations into smaller ones. Section 11.1 first presents the general idea of the transformation,
then Section 11.2 formalizes and justifies it. Finally, Section 11.3 presents the implementation
of the rewriting in Coq.

11.1 Intuition

The transformation assumes an intensional predicate p such that one of its arguments is
always a constant in the rules defining it. This is a very simple and syntactic criteria to
determine a subset – technically an overapproximation – of the constants that can be found
during the execution of the program in deduced facts about p at the corresponding predicate
and index.

Example 11.1. Figure 11.1 shows a program fragment. The first two rules define a predicate
p of arity 3, and the third and fourth rules use it. Assuming the full program contains no
other rule defining p, and considering the separation between extensional and intensional
predicates (see Section 2.1.2), we can be sure that the first argument of any deduced p fact
will be 1 or 2.

p(1, Y, Z)← q(Y, Z).
p(2, Y, Z)← r(Z,Z, Y ).
t(X) ← p(1, X,X).
u(X) ← p(X,X,X).

Figure 11.1: Defining and using p

131
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Assuming such a setting, the predicate with a clearly bounded argument can be replaced by
a set of specialized versions, one for each identified relevant value. We introduce two new
predicates, called p1 and p2, of arity 2. These predicates are meant to be specialized version
of p, where the first argument does not explicitely appear but is implicitely considered to be
1 or 2. The rules of Figure 11.1 can then be replaced by those of Figure 11.2.

p1(Y, Z)← q(Y, Z).
p2(Y, Z)← r(Z,Z, Y ).
t(X) ← p1(X,X).
y(X) ← p(X,X,X)

Figure 11.2: Specialized program

This requires another modification to work, as we no longer deduce facts about p, and yet
still have an occurrence of p in the body of the fourth rule. To allow the use of rules that
contain non-specialized p atoms in their body, we need to add the rules of Figure 11.3 to the
new program. The reverse rules (normal to specialized version) are not required, as all the
relevant specialized versions of the predicate are already defined by the transformed rules.

p(1, Y, Z)← p1(Y, Z).
p(2, Y, Z)← p2(Y, Z).

Figure 11.3: Relating normal and specialized definitions

Remark 11.2. As previously stated, looking for predicates with arguments that are stati-
cally defined is a very simple, if not simplistic, way to determine a set of values that overap-
proximates the behavior of a predicate’s argument. It might even feel suspicious to rely on
this shallow method when the previous chapter introduced a static analysis that computes a
similar information in a less trivial way.

As discussed in Section 12.1, Octant uses the predicate specialization on top of the partial
program instance of Chapter 9, which relies on the static analysis of Chapter 10 to pro-
duce predicates with arguments that are statically defined. In other words, in practice, the
predicate specialization leverages the static analysis via the partial instance.

11.2 Formalization and justification

The building block of this program transformation is the following definition.

Definition 11.3. (spec – atom specialization) Given a predicate symbol p, an index i,
and an atom a, the spec atom specialization function is defined as

spec(a, p, i) =





pc(t1, ..., ti−1, ti+1, ..., tarity(p))

if a is of the form p(t1, ..., ti−1, c, ti+1, ..., tarity(p)) with c a constant

a

if a is of the form q(t1, ..., ti−1, ti, ti+1, ..., tarity(q)) with ti a variable or q 6= p
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Notation 11.4. In the rest of this section, we assume a Datalog program P where the ith

argument of an intensional predicate p of arity m is always defined and no predicate of the
form pc appears. The spec function is lifted to clauses (heads and bodies) and programs, and
the transformed program will be denoted as spec(P, p, i). Although it is not formally implied
by the definition of spec, for clarity purposes (i.e. reduce notations), we will consider that
the rules such as those of Figure 11.3 are packaged in spec(P, p, i).

To certify the transformation, we first need to address the formulation of the targeted ade-
quacy results. Theorem 11.5 shows the targeted completeness result. The number of steps
used in the transformed program is doubled, to allow the use of rules such as those shown in
Figure 11.3.

Theorem 11.5. (Predicate specialization completeness)
For any number of steps k, (TP ↑ k)(I) ⊆ (Tspec(P,p,i) ↑ 2k)(I).

The transformed program produces specialized facts that did not appear in the original
program, which is not a concern for the completeness theorem, as the new facts are on the
right side (both literally and figuratively). In comparison, the soundness must be formulated
modulo those new facts, as in Theorem 11.6.

Theorem 11.6. (Predicate specialization soundness)
For any number of steps k, {x ∈ (Tspec(P,p,i) ↑ k)(I) | x is not specialized} ⊆ (TP ↑ k)(I).

Remark 11.7. One might expect that, in Theorem 11.6, the number of steps used in the
transformed program might again be doubled compared to the original one, as in Theorem
11.5, but that would not account for the normal, not specialized part of the program.

The strategy is of course to prove these results by induction on the number of steps k.
However, given the formulations above, the induction hypotheses would not be strong enough.
For example, the completeness theorem does not say anything about the new, specialized
facts, which may be required in the execution of the new program. We then first prove the
two following alternative lemmas.

Lemma 11.8. (Strong predicate specialization completeness)
For any number of steps k,
(TP ↑ k)(I) ∪ {spec(a, p, i) | a ∈ (TP ↑ k)(I)} ⊆ (Tspec(P,p,i) ↑ 2k)(I).

Remark 11.9. When applied to a ground atom whose predicate symbol is not p, spec(a, p, i)
simply returns a. It is then safe to apply the spec function to the entirity of (TP ↑ k)(I)
rather than specifically the relevant facts.

Proof. We proceed by induction on the number of steps k. In the base case, the definitions
imply that (TP ↑ 0)(I) = (Tspec(P,p,i) ↑ 0)(I) = I. The goal then becomes

I ∪ {spec(a, p, i) | a ∈ I} ⊆ I

Since p is assumed to be an intensional predicate, there is no fact about it in the EDB I. We
then have {spec(a, p, i) | a ∈ I} = I, which makes the goal for the base case trivial.

In the recursive case, let f be a fact in (TP ↑ k + 1)(I) ∪ {spec(a, p, i) | a ∈ (TP ↑ k + 1)(I)}.
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We split the proof in three cases, depending on the predicate symbol of f . This disjunction
determines which side of the union f belongs to.

f is a p fact newline
The spec function transforms any ground atom about p into a pc fact, meaning that
{spec(a, p, i) | a ∈ (TP ↑ k + 1)(I)} does not contain such an atom. This in turn
implies that f , in the current hypothesis, has to be in (TP ↑ k + 1)(I). In that
setting, f was either already in the previous iteration (TP ↑ k)(I), or it has just
been deduced.

f previously deduced newline
In this scenario, f is also in (Tspec(P,p,i) ↑ 2k)(I) (induction hypothesis), and
thus in (Tspec(P,p,i) ↑ 2(k + 1))(I) by monotonicity of the TP operator.

f just deduced newline
We can extract a clause C from P and a substitution ν such that ν matches
C w.r.t. (TP ↑ k)(I).
Let us write f = p(c1, ..., cm), where every ck is a constant (f is a ground
atom). Since f is a fact about p, we know that C is headed the same
predicate symbol. Then our hypothesis on p implies that its head is of
the form p(t1, ..., ti−1, ci, ti+1, ..., tm). In that setting, f is deduced at step
2(k + 1) of the transformed program using the added rule

p(X1, ...,Xi−1, ci,Xi+1,Xm)← pci(X1, ...,Xi−1,Xi+1, ...,Xm).

newline
with a substitution that maps Xk to ck for every k. We then need to show
that pci(c1, ..., ci−1, ci+1, ..., cm is deduced at step 2k + 1.

newline
This deduction is performed using rule spec(C, p, i) with substitution ν.
The recursion hypothesis ensures that every ground atom in the body of
ν(spec(C, p, i)), even those of the form pc′(...)

1, is in (Tspec(P,p,i) ↑ 2k)(I).

f is a pc fact newline
Predicates of the form pc are assumed not to appear in the original program. In
this configuration, ground atom f can not be in (TP ↑ k + 1)(I), meaning that
it is in {spec(a, p, i) | a ∈ (TP ↑ k + 1)(I)}. Then we can extract a fact g from
(TP ↑ k + 1)(I) such that f = spec(g, p, i), which implies that g is of the form
p(c1, ..., ci−1, c, ci+1, ..., cm).

newline
This new fact g was either just deduced or already present. In the second scenario,
the recursion hypothesis and the monotony of the fixpoint operator show our goal.
Otherwise, it was deduced in the original program P using a clause C ∈ P with a
substitution ν.

newline
Fact f is then deduced in the transformed program at step 2k + 1 using the clause
spec(C, p, i) with the same substitution. The recursion hypothesis ensures that every
ground atom in the body of this clause is in (Tspec(P,p,i) ↑ 2k)(I). The fact is then
preserved from (Tspec(P,p,i) ↑ 2k + 1)(I) to (Tspec(P,p,i) ↑ 2(k + 1))(I).

1This is where the induction hypothesis of the lemma’s straightforward but weak formulation falls short.
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f is a fact about another predicate symbol newline
The predicate symbol of atom f is different from p, meaning that spec(f, p, i) = f .
Then, our working hypothesis f ∈ (TP ↑ k+1)(I)∪{spec(a, p, i) | a ∈ (TP ↑ k+1)(I)}
is equivalent to simply f ∈ (TP ↑ k + 1)(I).

The rest of the proof is familiar: if f was already in (TP ↑ k)(I), we obtain our goal
with the induction hypothesis and monotonicity of the fixpoint operator. Otherwise,
we extract a clause C and a substitution ν, and use spec(C, p, i) with ν to deduce f .

Theorem 11.5 is then a corollary of Lemma 11.8.

As for the soundness, the formulation of Theorem 11.6 considers the specialized facts in
a negative way, in the sense that it removes them from the semantics of the transformed
program, whereas we need to reason about their presence. We then introduce the following
soundness result.

Lemma 11.10. (Strong pred. specialization soundness) For any number of steps k,
(Tspec(P,p,i) ↑ k)(I) ⊆ (TP ↑ k)(I) ∪ {spec(a, p, i) | a ∈ (TP ↑ k)(I)}.

Proof. We proceed by induction on the number of steps k. In the base case, the definitions
imply that (TP ↑ 0)(I) = (Tspec(P,p,i) ↑ 0)(I) = I. The goal then becomes

I ⊆ I ∪ {spec(a, p, i) | a ∈ I}

which is automatically true.

In the recursive case, let f be a fact in (Tspec(P,p,i) ↑ k + 1)(I). We split the proof in three
cases, depending on the predicate symbol of f .

f is a p fact newline
Due to the hypothesis on the rules defining p in the P program, every corresponding
rule in inst(P, p, i) is headed by a predicate of the form pc. The only rules of the
transformed program that can deduce facts about p are the ”specialized to general”
rules, such as those of Figure 11.3. This means that f has been deduced via a rule
of the form

p(X1, ...,Xi−1, ci,Xi+1, ...,Xm)← pci(X1, ...,Xi−1,Xi+1, ...,Xm)

Writing f as p(c1, ..., cm), this means that pci(c1, ...ci−1, ci+1, ..., cm) ∈ (Tspec(P,p,i) ↑
k)(I). Combined with the induction hypothesis, we obtain that

pci(c1, ...ci−1, ci+1, ..., cm) ∈ (TP ↑ k)(I) ∪ {spec(a, p, i) | a ∈ (TP ↑ k)(I)}

The original program P does not deduce facts about predicates of the form pc,
meaning that

pci(c1, ...ci−1, ci+1, ..., cm) ∈ {spec(a, p, i) | a ∈ (TP ↑ k)(I)}
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We can extract a fact g ∈ (TP ↑ k)(I), st pci(c1, ...ci−1, ci+1, ..., cm) = spec(g, p, i),
which means that g = p(c1, ...ci−1, ci, ci+1, ..., cm) = f ∈ (TP ↑ k)(I). By monotonic-
ity of TP , f is preserved in (TP ↑ k + 1)(I).

f is a pc fact newline
Any deduction in the transformed program of a fact whose predicate is of the form
pc is done via a rule of the form spec(C, p, i), with C a rule of the original program
P , a substitution ν, and every ground atom in the body of ν(spec(C, p, i)) is in the
interpretation (Tspec(P,p,i) ↑ k)(I).
Consider C and ν in the original program. We want to show that every ground
atom in the body of ν(C) is in (TP ↑ k)(I). Since we are considering a clause of the
original program, none of these atoms carries a predicate symbol of the form pc.

Given such an atom a ∈ body(C), if it is defined using a predicate symbol that is
not p, or its ith argument is a variable rather than a constant, then spec(a, p, i) = a.
Since body(ν(spec(C, p, i)) ∈ (Tspec(P,p,i) ↑ k)(I), so is ν(a). Using the induction
hypothesis, we then obtain that ν(a) ∈ (TP ↑ k)(I).
On the other hand, if a is of the form p(t1, ..., ti−1, c, ti+1, ..., tm) and ν(tj) = cj for
every j between 1 and m, then

spec(ν(a)) = pci(c1, ..., ci−1, ci+1, ...cm) ∈ (Tspec(P,p,i) ↑ k)(I)

and (recursion hypothesis)

(Tspec(P,p,i) ↑ k)(I) ⊆ (TP ↑ k)(I) ∪ {spec(a, p, i) | a ∈ (TP ↑ k)(I)}

Since (TP ↑ k)(I) does not contain ground atoms about predicates of the form pc,
we know that spec(ν(a)) ∈ {spec(a, p, i) | a ∈ (TP ↑ k)(I)}, which in turns shows
that ν(a) ∈ (TP ↑ k)(I).
Every ground atom in the body of ν(C) is in (TP ↑ k)(I), meaning that we can use
C and ν in the original program to deduce the non-specialized version of f at step
k + 1. Then, f ∈ {spec(a, p, i) | a ∈ (TP ↑ k + 1)(I)}, which implies our goal.

f is a fact about another predicate symbol newline
In this case, f is deduced in the transformed program using a rule spec(C, p, i), whose
head did not change after the application of the spec function, and substitution ν.
We use in the original program the C rule and the same substitution. The reasoning
regarding the availability of the body of ν(C) is the same as in the previous case,
but the deduced fact is directly f and in (TP ↑ k + 1)(I).

Theorem 11.6 is easily proved using the previous lemma. We can now move on to the formal
definition and proof of these results.

11.3 Coq implementation

The idea behind this optimization is rather simple, and although the adequacy proofs require
the consideration of many technical cases, they do not contain any fundamental difficulty. In
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comparison, the Coq implementation is not as straightforward. In particular, the introduction
of new, specialized predicates and the use of the relating rules, such as seen in Figure 11.3,
require some hypotheses and machinery, as presented in this section.

11.3.1 Hypotheses on the program and specialization

Let us assume a safe (see Figure 3.10) Datalog program P , which contains an intensional
predicate f whose indth argument of a predicate is always a constant. Figure 11.4 shows the
Coq implementation of these hypotheses.

Variable p : program.

Hypothesis psafe : prog_safe p.

(* [i] is an initial interpretation with only extensional predicates *)

Variable i : interp.

Hypothesis isafe : safe_edb i.

(* default constant, required throughout the formalization *)

Variable def : syntax.constant.

(* [f] is an intensional predicate whose [ind]th index is always a constant *)

Variable f : symtype.

Hypothesis ftype : predtype f = Idb.

Variable ind : 'I_(arity f).

Hypothesis always_cons :

[forall cl in p, ((hsym_cl cl) == f) ==>

[exists c:syntax.constant,

nth_error (arg_atom (head_cl cl)) ind == (Some (Val c))]].

Figure 11.4: Hypotheses on the transformed program

We need a mechanism to build the new, specialized predicates. To do so, we assume a
function, named pclone, that associates a predicate to any constant. Figure 11.5 shows its
type and a characterization of the newly introduced predicates.

Variable pclone : syntax.constant -> symtype.

Definition is_clone_pred (g : symtype) : bool :=

[exists c, g == pclone c].

Definition is_clone_ga (ga : gatom) : bool :=

is_clone_pred (sym_gatom ga).

Figure 11.5: Building and identifying the new predicates

We also need some assumptions on the cloning function. The introduced predicates must
be new, in the sense that they do not already appear in the rules or EDB. It must also be
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different from f2, and the cloned predicates must all be different. Finally, we need to relate
their arity with that of f . Figure 11.6 shows the Coq definitions of these hypotheses.

(* Cloned predicates are entirely fresh *)

Hypothesis pfresh : [forall c, pclone c \notin sym_prog p].

Hypothesis ifresh : ~~ [exists x in i, is_clone_ga x].

(* Cloned predicates are different from [f] and one another *)

Hypothesis pnotf : [forall c, pclone c != f].

Hypothesis pinj : injective pclone.

(* The arity of cloned predicates is [f]'s minus one *)

Hypothesis parity : [forall c, arity f == (arity (pclone c)).+1].

Figure 11.6: Hypotheses on the specialized predicates

Remark 11.11. These hypotheses only concern our Coq formalization, and their enforce-
ment by an implementation of this transformation still has to be checked.

We can now use the predicate specialization function to rewrite the rules of the program.

11.3.2 Rewriting the rules

We proceed incrementally, starting with atoms. Figure 11.7 shows the core function. It takes
as arguments an atom a, as well as a (bounded) index j. This index generalizes ind, to allow
inductions on atoms, or rather the list of arguments of an atom.

Definition raw_atom_clone (j : 'I_(arity f)) (a : raw_atom) : raw_atom :=

match a with

| RawAtom pr args =>

if (pr == f) then

match nth_error args j with

| Some (Val c) => RawAtom (pclone c) (sremove args j)

| _ => RawAtom pr args end

else RawAtom pr args end.

(* try to remove the [i]th element of [s] *)

Fixpoint sremove {A : Type} (s : seq A) (i : nat) : seq A :=

match i with

| 0 => behead s

| i.+1 => match s with

| [::] => [::]

| a::l => a::sremove l i end end.

Figure 11.7: Specializing a raw atom

2Theoretically, the hypothesis that no cloned predicate appears in the rules implies that they are all different
from f . However, Due to Coq’s thoroughness, we need to consider the case where f does not appear in the
studied program, in which case we lose the implication. We deemed it simpler and more elegant to add the
hypothesis of inequality between the cloned predicates and f .
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If the atom is an occurrence of f and has a constant c as its jth argument, we substitute f
by fc and remove the incriminated argument.

As explained in Section 3.2.1, DatalogCert defines raw and ground atom types, and builds the
actual atom and ground atom types on top of them, by adding the well-foundeness condition,
i.e. ensuring that the number of arguments in the atom matches the arity of the involved
predicate. Figure 11.8 shows the additional steps required to lift the specialization from raw
atoms to actual atoms and clauses.

Lemma wf_clone (j : 'I_(arity f)) (a : atom) :

wf_atom (raw_atom_clone j a).

Definition atom_clone (j : 'I_(arity f)) (a : atom) : atom :=

Atom (wf_clone j a).

(* wmap is map for Wlist *)

Definition tail_clone (j : 'I_(arity f)) (tl : tail) : tail :=

wmap (atom_clone j) tl.

Definition cl_clone (j : 'I_(arity f)) (cl : clause) : clause :=

match cl with Clause h tl

=> Clause (atom_clone j h) (tail_clone j tl) end.

Figure 11.8: Specializing atoms and clauses

The program is not the only place where atoms have to be specialized, as we will need to
reason on the semantics of the transformed program, and thus specialize ground atoms. For
the sake of exhaustivity, Figure 11.9 shows the simple adaptation of the previously seen
functions to this type.

Definition raw_gatom_clone (j : 'I_(arity f)) (a : raw_gatom) : raw_gatom :=

match a with

| RawGAtom pr args =>

if (pr == f) then

match nth_error args j with

| Some c => RawGAtom (pclone c) (sremove args j)

| None => RawGAtom pr args end

else RawGAtom pr args end.

Lemma wf_gclone (j : 'I_(arity f)) (ga : gatom) :

wf_gatom (raw_gatom_clone j ga).

Definition gatom_clone (j : 'I_(arity f)) (ga : gatom) : gatom :=

GAtom (wf_gclone j ga).

Figure 11.9: Specializing a ground atom

As explained in Example 11.1, on top of the specialization of relevant occurrences of f , we
need to add rules that relate them to the original definition. As shown by the next few pages,
formalizing and using these rules turned out to be more of a challenge than one might have
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expected.

11.3.3 Writing new generic rules

We add one f ← fc rule for each constant c used – at the indth index – in the definition of
f . We then first need to collect the values used to define the indth term of f . This is done
using the functions shown in Figure 11.10.

Definition ind_terms :=

pmap (fun cl => nth_error (arg_atom (head_cl cl)) ind)

[seq cl <- p | hsym_cl cl == f].

Definition ind_vals :=

pmap (fun t => if t is Val c then Some c else None) ind_terms.

Figure 11.10: Computing the approximation of f

Function ind_terms filters the clauses that are headed by f (hsym_cl is defined in Figure
7.30) and fetches the indth arguments of the head within an option type using nth_error.
Since ind is defined as being at most the arity of f , this will only return Some elements in
practice, meaning that we can safely extract the terms using pmap. Then, ind_vals performs
another fictional job for typing purposes, i.e. filtering out the variables which do not happen
in practice thanks to the hypothesis on the definition of f .

We now have to manually add the rules to the produced program. As explained in Section
3.2, the atoms carry a proof that their number of arguments is the arity of the associated
predicate, and the variables are encoded as ordinals, meaning that we need to deal with a
lot of dependent types. This is illustrated by Figure 11.11, which shows how we define the
sequence of variables that will serve as a building block of the added rules.

Once again, we generalize ind to allow usable inductions in the proofs. Also note that we
must ensure that n is at least the arity of f , i.e. that there are enough available variables
(see Section 3.2.1) to build the rules.

Definition dep_iota (m k : nat) : seq ('I_(m+k)) :=

pmap insub (iota m k).

(** [X_1, X_2, ..., X_j] *)

Definition gen_vars_j (j : 'I_n.+1): seq term :=

map (fun x => Var x)

(map (fun x : 'I_j => widen_ord (ltn_ord j) x)

(dep_iota 0 j)).

Hypothesis arity_vars : arity f < n.+1.

(** [X_1, X_2, ..., X_(arity f)] *)

Definition gen_vars : seq term :=

gen_vars_j (Ordinal arity_vars).

Figure 11.11: Manually defining a sequence of variables
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We need to either take away (for the instances of the specialized predicates) or replace by
a constant (for the left side of the added rules) a variable in these sequences. Figure 11.12
shows how it is done.

(* [X_1, X_2, ..., X_(k-1), X_(k+1), ..., X_(j)] *)

Definition gen_vars_rem_j (j : 'I_n.+1) (k : 'I_n) : seq term :=

rem (Var k) (gen_vars_j j).

(* [X_1, X_2, ..., X_(j-1), X_(j+1), ..., X_(arity f)] *)

Definition gen_vars_rem (j : 'I_(arity f)) : seq term :=

gen_vars_rem_j (Ordinal arity_vars) (@widen_ord (arity f) n arity_vars j).

(* [X_1, X_2,... X_(ind-1), c, X_(ind+1), ..., X_(arity f)] *)

Definition gen_vars_c_f (j : 'I_(arity f)) (c : syntax.constant) :=

set_nth (Val c) gen_vars j (Val c).

Figure 11.12: Modifying sequences of variables

We can now build the raw and full atoms, showing that the well-foundedness is preserved, as
seen in Figures 11.13 and 11.14.

(* raw f(X_1, X_2,... X_(j-1), c, X_(j+1), ..., X_(arity f)) *)

Definition raw_gen_c_f (j : 'I_(arity f)) (c : syntax.constant) : raw_atom :=

RawAtom f (gen_vars_c_f j c).

Lemma raw_gen_f_c_wf (j : 'I_(arity f)) (c : syntax.constant) :

wf_atom (raw_gen_c_f j c).

(* f(X_1, X_2,... X_(j-1), c, X_(j+1), ..., X_(arity f)) *)

Definition gen_f_c (j : 'I_(arity f)) (c : syntax.constant) : atom :=

Atom (raw_gen_f_c_wf j c).

Figure 11.13: Building generic atoms with a constant argument

(* raw f_c(X_1, X_2,... X_(j-1), X_(j+1), ..., X_(arity f)) *)

Definition raw_gen_f_c (j : 'I_(arity f)) (c : syntax.constant) : raw_atom :=

RawAtom (pclone c) (gen_vars_rem j).

Lemma raw_gen_c_f_c_wf (j : 'I_(arity f)) (c : syntax.constant) :

wf_atom (raw_gen_f_c j c).

(* f_c(X_1, X_2,... X_(j-1), X_(j+1), ..., X_(arity f)) *)

Definition gen_c_f_c (j : 'I_(arity f)) (c : syntax.constant) : atom :=

Atom (raw_gen_c_f_c_wf j c).

Figure 11.14: Building generic atoms with a constant in the predicate symbol

Moving on to the rules, we need to explicit that bn, the maximal length of the bodies of rules,
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is strictly positive. As shown in Figure 11.15, this finally allows the definition of our custom
clauses, and ultimately, the full tranformation of the program.

Hypothesis bn_not_zero : 0 < bn.

Lemma gen_c_f_c_size (j : 'I_(arity f)) (c : syntax.constant) :

size [:: gen_c_f_c j c] <= bn.

Definition c_to_gen (j : 'I_(arity f)) (c : syntax.constant) :=

Clause (gen_f_c ind c) (seq_to_wlist_uncut (gen_c_f_c_size j c)).

(* Potentially transformed clauses ++ new specialized to generic rules *)

Definition proj_prog :=

(map (cl_clone ind) p) ++ [seq c_to_gen ind c | c in ind_vals].

Figure 11.15: Building generic rules

Function seq_to_wlist_uncut expects a proof that a sequence l has a length lower than k,
and returns l seen as a Wlist k. It is then used in c_to_gen to fit the generic rules into the
framework of clauses in DatalogCert.

We can now discuss the certification of this transformation. The biggest challenge lied in the
use of the generic rules we just defined, so let us first focus on this point.

11.3.4 Using the generic rules

The point of DatalogCert is the verification of a Datalog engine, i.e. ensuring that iterating an
implementation of the TP operator on any given program will compute the expected semantic.
In that sense, the matching mechanism is verified, not used (see Section 3.3.2.1)). However,
to show that the predicate specialization preserves the semantics, we need to manually trigger
the f ← fc rules defined in Figure 11.15, i.e. explicitely provide the substitutions they are
instantiated with.

(* Enriches [s] to map the variables of [args] to the values of [gargs] *)

Fixpoint extract_sub_seq_c (args : seq term) (gargs : seq syntax.constant)

(s : sub) : sub :=

match gargs with

| [::] => s

| x::l =>

match args with

| [::] => s

| Val x'::l' => (extract_sub_seq_c l' l s)

| Var x'::l' => add (extract_sub_seq_c l' l s) x' x end end.

(* [extract_sub_seq_c] in practice *)

Definition extract_sub_ga (a : atom) (ga : gatom) :=

extract_sub_seq_c (arg_atom a) (arg_gatom ga) emptysub.

Figure 11.16: Computing substitutions for the generic rules
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These substitutions are computed by a function, shown in Figure 11.16, that takes a list of
variables and a list of terms, and creates a substitution that maps each variable to the value
at the corresponding index. In practice, this function is used with deduced specialized facts.

The main difficulty in the certification of this method is that a shift in the list of variables fully
changes the extracted substitution, meaning that lemmas on matching using this function
could not be proved using straightforward inductions. The multiple technical lemmas then
had to be proved using an abstraction of the list of variables.

Figure 11.17 shows some of the main lemmas, and the hypotheses encoding the [X1, ...,Xk ]
list of variables. These lemmas all make use the unicity property, which ensures that
extract_sub_seq_c does not overwrite itself. They also enforce that the elements of the
provided list list of terms are all variables, to capture the full provided ground atom. Finally,
Lemma extract_sub_seq_rem_map uses find to relate a variable and constant.

(* The extraction of [lc] via [lt] applied to [lt] returns [lc] *)

Lemma extract_sub_seq_map (lt : seq term) (lc : seq syntax.constant) :

uniq lt

-> size lt = size lc

-> [forall t in lt, exists v, t == Var v]

-> lc

= [seq gr_term_def def (extract_sub_seq_c lt lc emptysub) i0 | i0 <- lt].

(* Extraction s(a2) via a1 applied to a1 returns s(a2) *)

Lemma extract_gr_v (s : sub) (a1 a2 : atom) :

sym_atom a1 = sym_atom a2

-> [forall t in (arg_atom a1), exists v:'I_n, t == Var v]

-> uniq (arg_atom a1)

-> gr_atom_def def s a2 =

gr_atom_def def (extract_sub_ga a1 (gr_atom_def def s a2)) a1.

(* Similar to the previous lemmas, but handles the

removal/addition of constant c *)

Lemma extract_sub_seq_rem_map (lt : seq term) (v : 'I_n) (lc : seq syntax.constant)

(j : 'I_n) (c : syntax.constant) :

j < size lt

-> size lt = size lc

-> uniq lt

-> [forall t in lt, exists vb, t == Var vb]

-> find (fun y => y == Var v) lt = j

-> nth_error lc j = Some c

-> lc = [seq gr_term_def def

(extract_sub_seq_c (rem (Var v) lt) (sremove lc j) emptysub) i

| i <- set_nth (Val c) lt j (Val c)].

Figure 11.17: Certification of the use of the generic rules

Due to the heavy use of dependent types, the actual proofs of these lemmas are rather
technical, and their statements remain quite circumvoluted. Defining and certifying this
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part of the rewriting felt like working against DatalogCert rather than with it. It is unclear
whether our method – both the computation of substitutions or the abstractions used in its
certification – can be made simpler. However, in its current state, these functions and results
can be used if other program transformations that add rules are to be introduced and verified
in the future.

Now that we have the definitions and technical lemmas for all the components of the trans-
formation, we can conclude the adequacy proof.

11.3.5 Combining the pieces

As explained in Section 11.2, the formulation of Theorems 11.5 and 11.6 does not allow
a powerful enough induction principle, which led us to introduce Lemmas 11.8 and 11.10.
Figures 11.18 introduces the Coq formalization of these intermediate lemmas.

Lemma proj_completeness_u (m : nat) :

sem p def m i :|: [set gatom_clone ind ga | ga in sem p def m i]

\subset sem proj_prog def m.*2 i.

Lemma proj_soundness_u (m : nat) :

sem proj_prog def m i \subset

sem p def m i :|: [set gatom_clone ind ga

| ga in sem p def m i & sym_gatom ga == f].

Figure 11.18: Intermediate completeness and soundness results

Remark 11.12. The soundness one introduces a & sym_gatom ga == f filter that was not
present in the paper version above. This condition is theoretically useless, as ground atoms
not headed by f are not transformed by gatom_clone and already appear on the left side of
the set union :|:. However, it makes easier the use of one of our technical lemmas, hence its
addition.

With these new inductions and the previously presented results, we prove the results of Figure
11.19.

Theorem proj_completeness (m : nat) :

sem p def m i \subset sem proj_prog def m.*2 i.

Theorem proj_soundness (m : nat) :

[set x in sem proj_prog def m i | ~~ is_clone_ga x ] \subset sem p def m i.

Figure 11.19: Final completeness and soundness results



Chapter 12

Discussion and related works

J’ai souvent l’impression que c’est là le principal travail du
détective : effacer les faux départs et toujours recommencer

Agatha Christie, Mort sur le Nil,
traduit de l’anglais par Elise Champon et Robert Nobret

Il lui fallait en tout cas agir comme un enquêteur, c’est-à-dire
récapituler, déduire, induire, déceler des logiques souterraines,
laisser les lignes de force émerger. S’il y en avait.

Christian Garcin, Le bon, la Brute et le Renard

The contributions introduced in this thesis are the results of three years that have been filled
with surprises, errors and doubts – and, every now and then, a suitable idea. This chapter
dwelves a bit into this process, as it tries to convey some questions raised by the work on this
thesis and explain the answers we provide.

Octant, the network verification programs it contains and the limitations of the underlying
Datalog engine are the starting point of our work, as well as our reference point. It is
then fitting that we open this chapter with Section 12.1, which outlines the effects of our
optimizations in the context of Octant. Then, Section 12.2 introduces an alternative definition
of the extraction process within our static analysis, which leads to more precise but unsafe
results for the analysis of multiple variables in a single rule. Then, Section 12.3 discusses
various modelization choices, both at the paper and Coq levels. Finally, Section 12.4 tries to
quantify the general proof effort, and Section 12.5 discusses related works, focusing on static
analyses of logic programs, dealing with recursion in the analysis of programs in general, and
the certification of static analyses.

12.1 Effects of the rewritings in the context of Octant

As explained in Sections 5.3 and 6.2, the Network Optimized Datalog engine uses a represen-
tation called Differences of Cubes, which does not fare well with some primitive predicates.
We did not come up with a formal characterization of this class of primitives, but Section
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6.2.1 should give the intuition that the Differences of Cubes representation does not handle
well dependencies across the encodings of multiple variables. Focusing on Example 6.6, one
might want to be able to write

⋆ ⋆ ⋆⋆︸ ︷︷ ︸
v1

⋆ ⋆ ⋆⋆︸ ︷︷ ︸
v2

\ {0 ⋆ ⋆⋆︸ ︷︷ ︸
v1

1 ⋆ ⋆⋆︸ ︷︷ ︸
v2

, f10 ⋆ ⋆︸ ︷︷ ︸
v1

f11 ⋆ ⋆︸ ︷︷ ︸
v2

, f20⋆︸︷︷︸
v1

f21⋆︸︷︷︸
v2

, f3 ⋆ 0︸ ︷︷ ︸
v1

f21⋆︸︷︷︸
v2

, }

where fi is a factor of size i, or even

⋆ ⋆ ⋆⋆︸ ︷︷ ︸
v1

⋆ ⋆ ⋆⋆︸ ︷︷ ︸
v2

\ {fp1fs1︸ ︷︷ ︸
v1

fp0fs2︸ ︷︷ ︸
v2

}

where a f is a factor of any size.

The complexity of the computation of these predicates grows exponentially in the number of
(bits across) cubes, i.e. variables, in their instances. The goal of our optimizations is then to
minimize both the number of variables and sizes of cubes in any given program.

The clause specialization introduced in Chapter 9 reduces the number of variables occuring
in primitive predicates, but also specializes the head of rules that, in fine, depend on facts
from the EDB. This allows and fosters the use of the predicate specialization introduced in
Chapter 11, which reduces the sizes of the cubes used in NoD.

An intuition of the effect of this transformation in our setting, network verification, is that it
unrolls the topology and replaces predicates on the global states of all the network elements
by local predicates on the state of, for example, a given switch. Then, the state of the ports
or the packets received by the other switches will not be considered to compute the output of
the switch. This processing emulates the style found in the examples provided with Network
Optimized Datalog, such as shown in Section 5.2.1 or found in [Lopes, ].

Example 12.1. Applying the partial instance and the predicate specialization to the pro-
gram of Figure 6.4 transforms the definition of linked(X, Y, IP) into a set of specialized
predicates linked_X_Y(IP) for each pair of linked locations X and Y. These new predicates
are then described independently of the rest of the topology.

Remark 12.2. The analysis and optimizations introduced in this thesis have been designed
with Network Optimized Datalog and Octant in mind, but their use is not limited to this
context. In particular, we emphasize that the Coq formalization and proof of these tools are
completely independent of the considered Datalog engine – actually, DatalogCert is a Datalog
engine itself.

12.2 Towards a stronger static analysis

The analysis introduced in Chapter 10 overapproximates the behavior of a variable. To
instantiate multiple variables in a single rule, the best we can do so far is to use a cross-
product of the results of the different analyses (see Remark 10.21). The section sketches
out a more precise but unsafe value extraction mechanism for such cases. Section 12.2.1 first
makes an observation about the dependencies across value flows in Datalog, and how ignoring
them entirely may lead to efficiency issues. We then relate it in Section 12.2.2 to the analysis
as it has been formalized. Finally, Section 12.2.3 presents the limitations of this approach.
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12.2.1 Minding dependencies across values

In Section 10.2.1, we identified three constraints of the TP operator. The first two, conjunc-
tion and disjunction of candidate values, are enforced by the static analysis we introduced.
However, some fundamentally different programs can only be distinguished using the third
constraint, i.e. the unification of value tuples across atoms.

Example 12.3. Figure 12.1 shows two different definitions of a predicate p. In the program
of Figure 12.1a, the number of deduced facts about p will be the same as the number of facts
about q, whereas in Figure 12.1b, the former will be (up to) quadratic in the latter. However,
the static analysis and extraction mechanism, as introduced in Chapter 10, are not able to
distinguish both cases.

p(X,Y )← q(X,Y ).

(a) Linear definition of p

p(X,Y )← q(X,Z1), q(Z2, Y ).

(b) Quadratic definition of p

Figure 12.1: Two definitions of p

Concretely, both definitions would be treated as the quadratic one, meaning that a program
containing a similar construction could be instantiated using many irrelevant rules, which
would hurt performances (Section 12.1 discusses this point in the context of our use case,
Octant). Moreover, this dichotomy between dependent or independent values can be harder
to determine, as illustrated by Figure 12.2, where the dependency between the values of s is
lost at a deeper level than those of q were in Figure 12.1b.

p(X1, Y1)← q(X1, Y1).
q(X2, Y2)← r(X2, Z), r(Z

′, Y2)
r(X3, Y3)← s(X3, Y3)

Figure 12.2: Deep quadratic definition of p

We can add an intermediate step, between the actual analyses and the extraction of values,
that tries to take into account such dependencies.

12.2.2 Overlapping for better precision

This is where the annotations in the trees produced by the analysis come into play. The idea
is to overlap the trees resulting from the analyses of multiple variables in a single clause,
using the annotations to exclude incompatible flows, e.g. an atom being instantiated with
different rules defining the corresponding predicate.

Example 12.4. In Example 10.9, variables X1 and Y1 appear in the same clause. The roots
of their respective analyses (Figures 10.4b and 10.4c) have only one descendant, annotated
with 0 in both cases. This implies that the two trees represent deductions that go through the
same atom, i.e. p in the first rule. Then, we have ∨-nodes, and two descendants, annotated
with 0 and 1. The left (resp. right) subtree represents in both cases a use of the first (resp.
second) clause.
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Mixing the values extracted from the left branch of one of the trees and the right branch of
the other tree would amount to consider a program execution where the p atom in the body
of the first clause is instantiated with both the first and second clause at the same time. This
possibly can then be excluded.

Figure 12.3 shows what the overlapping of the two analyses using annotations would look
like. The leaves are now pairs of value origins, as the idea of merging trees is to extract from
the EDB tuples of values rather than individual values. The tree itself states that the values
for X1 and Y1 can be extracted from the q facts of the EDB, either directly (left branch)
or after permutation (right branch). More formally, X1 and Y1 can be instantiated using
the values in {〈x, y〉 | q(x, y) ∈ EDB ∨ q(y, x) ∈ EDB}, which matches exactly the actual
behavior of the program.

∧

∨

∧

〈q.1, q.0〉
0

∧

∨

∧

〈q.0, q.1〉
0

1

0

0 1

0

Figure 12.3: Merged analyses

This example shows how the annotations in the trees produced by the analysis can be used
to avoid extracting many irrelevant values, where a quadratic – or worse, depending on the
number of instantiated variables in a single rule – number of rules can be circumscribed to a
linear process. However, although engaging, this process is not entirely safe.

12.2.3 Limitations

When applied to some programs, this limited extraction will drop relevant value tuples, as
illustrated by the following example.

p(X1, Y1, Z1)← p(Y1, X1, Z1).
p(X2, Y2, Z2)← q(X2, Y2, Z2).

Figure 12.4: Mixing some values

Example 12.5. Consider the program in Figure 12.4. The analysis returns the trees shown
in Figure 12.5. Let us now focus on the analyses of X1 and Z1, i.e. Figures 12.5a and 12.5c.
If we try to merge them, things do not go as smoothly as before. Indeed, the ∨-node of the
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first tree, just under the root, has one more child than its equivalent node in the tree of Z1.
There are two ways to approach this: either drop the branch (indexed by 0) that has no
counterpart, or consider it in the merger with a wild card ⊤ indicating an absence of related
values. Figure 12.6 illustrates these two options.

∧

∨

∧

q.1

0

∧

∨

∧

q.0

0

1

0

0 1

0

(a) Analysis of X1

∧

∨

∧

q.0

0

∧

∨

∧

q.1

0

1

0

0 1

0

0

(b) Analysis of Y1

∧

∨

∧

q.2

0

1

0

(c) Analysis of Z1

Figure 12.5: Analysis of a heterogeneously recursive program

In Figure 12.6a, we rule out the possibility for a value to flow from q.0 to X1, although it is
clearly part of the semantics of the analyzed program, meaning that this method loses the
completeness of the analysis. On the other hand, Figure 12.6b does not provide any more
precision compared to what the naive process of Remark 10.21 would, as the ⊤ wild card
should be replaced by the analysis of Z1. In other words, this method, in this case, would only
provide a circumvoluted unfolding of the normal one. Moreover, even though it is harmless
in this example, there is currently no evidence that it would retain completeness when used
on any program.

∧

∨

∧

〈q.1, q.2〉
0

1

0

(a) Dropping the lonely branch

∧

∨

∧

〈q.1, q, 2〉
0

∧

∨

∧

〈q.0,⊤〉
0

1

0

0 1

0

(b) Keeping the lonely branch

Figure 12.6: Attempts at a difficult merger
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This has not been explored yet, as we chose to focus on the branch-dropping path. Indeed, the
program of Figure 12.4 is highly artificial, and actual Datalog programs, in our experience,
do not contain this kind of mechanism. They rather tend to simply carry around full or
partial value tuples without such local, partial permutations. In particular, this is exactly
what Octant does, as illustrated by Figure 6.4.

Moreover, a preliminary implementation and certification of the analysis partially validated
this form of the extraction. We indeed first designed an analysis, introduced in Section
12.3.4, that only considered non-recursive programs. In that setting, the no-recursion trace
introduced in Section 10.4 was unnecessary, as we could prove that any trace directly matched
a subtree of any analysis, in the sense that it could be properly overlapped. This way, the
completeness results on traces could be imported in the certification of the mix of analyses.

When analyzing multiple variables in a given clause, the returned trees then all contained a
subtree that fully matched the same trace. We were able to prove that there is no inconsis-
tency between trees that match the same trace, thus ensuring that excluding incompatible
branches did not break the completeness property, which provides a certification of this pro-
cess in the context of non-recursive programs.

Recursion happens to be a core feature of Datalog, meaning that this result is encouraging
but not satisfactory. However, we expect that there is a class of Datalog programs, strictly
larger than non-recursive ones, where recursion is only used in a way that allows this more
precise version of our analysis.

Our first intuition is that a program is homogeneously recursive if, for any given rule, all
argument cycles have the same length. The idea behind this notion, which we do not define
formally, is to see a rule as a graph whose nodes are the different atom arguments, and the
edges relate head variables to their body occurrences, as well as the body arguments to the
variables at the same index in the head.

Example 12.6. Figure 12.7 shows the argument cycle of variable X1 in the head of the
first rule of Figure 12.4. There is one occurrence of X1 in the body, so we add an edge (→)
between these two occurrences.

p(X1, Y1, Z1) ← p( Y1, X1, Z1)

Figure 12.7: Argument cycle of X1

This body occurrence is the second argument of the p atom, so we add an edge (←) between
the X1 in the body and the Y1 in the head. This head occurrence then leads us to the Y1 in
the body (→), which gets us back to the X1 in the head (←). The result is a cycle of length
4. The same figure also shows that the cycle of Y1 is of size 4 as well.

On the other hand, the argument cycle of Z1 is of length 2, as shown by Figure 12.8. Our
intuition is that the discrepency between the sizes of these argument cycles characterizes –
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and possibly explains – the fact that the new extraction introduced in this section is not
appropriate for the program of Figure 12.4.

p(X1, Y1, Z1 ) ← p(Y1, X1, Z1)

Figure 12.8: Argument cycle of Z1

The rule studied in Example 12.6 contains only one head and one body occurrences for every
variable. The next examples outlines how this notion deals with more occurrences.

Example 12.7. Let us consider the program of Example 10.10, which is replicated in Figure
12.9 for clarity. Like the program of Figure 12.4, it mixes values, but in a slightly different
way.

p(X1, Y1, Y1)← p(Y1, X1, X1).
p(X2, Y2, Z2)← q(X2, Y2, Z2).

Figure 12.9: Shifting variables

Figure 12.10 shows the argument cycles of the rule. We start with X1. Since it has two
occurrences in the body, we add two transitions (→) from the head occurrence of X1. The
other way around, i.e. from body to head, there can never be two edges from the same node,
since these edges map a variable to the corresponding index in the head.

p(X1, Y1, Y1 ) ← p Y1, X1, X1)

Figure 12.10: Argument cycles with multiple occurrences of a variable

We are left with two cycles of length 4. And, true to our intuition, the mix of the analyses of
variables X1 and Y1 – which can be found in Figure 10.6 – works well. The result is shown
in Figure 12.11, with the occurrences replaced by the corresponding predicate and index for
clarity.
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0 0

0 1

0

Figure 12.11: Mix of the analyses of X1 and Y1

These examples strengthen our intuition that our alternative, more precise extraction mech-
anism can be safely used on Datalog programs where all argument cycles within each rule
are equal. However, this remains to be formally verified, in a proof assistant of course, but
also on paper, as we do not even provide a core argument.

12.3 Modelization choices

Many modelization choices were made in the course of this work, both at the design and
certification levels. This section discusses some of these choices, which have been more
complex, surprising or critical than one could expect.

12.3.1 Implementation of pset

Figure 8.7 introduces the specification of a function called pset, which takes a set over an
option type, e.g. option A, and filters out all the None elements to return a set over A. We
provide two implementations of this pset, both of which leave us unsatisfied.

Figure 12.12 introduces a definition that roughly translates the given set into a list, which
allows the use of the pmap function found in MathComp1, which is very simply defined by
induction on the list argument – a technique that, to the best of our knowledge, can not be
used in the context of sets. The result in then translated back into a set.

Definition pimset {A B : finType} (f : A -> option B)

(s : {set A}) : {set B} :=

[set id x | x in (pmap f [seq y | y in s])].

Definition pset {A : finType} (s : {set (option A)}) : {set A} :=

pimset id s.

Figure 12.12: Defining pset using pmap

1https://github.com/math-comp/math-comp/blob/master/mathcomp/ssreflect/seq.v#L2626
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We reckon that this implementation is rather inelegant, and somewhat reminiscent of what
can be seen in some imperative programming languages. We introduce another formulation,
which does not rely on another function. The idea is simply to go through every element of
the provided set and only keep the inner elements of Some objects.

However, this approach requires us to name these inner elements. The top of Figure 12.13
shows the notation we wish we could use, which is not handled by Coq and MathComp. The
bottom of the same figure displays the actual definition we use, where the inner element is
universally quantified in the set definition.

(* Not accepted by Coq/MathComp *)

Definition pset_alt_target {A : finType}

(s : {set option A}) : {set A} :=

[set y | x in s & x is Some y].

(* Used in practice *)

Definition pset_alt {A : finType} (s : {set option A}) : {set A} :=

[set y | x in s, y in A & x == Some y].

Figure 12.13: Defining pset using set notations

The introduction of this quantification feels like a cheap trick, which moreover may impact
the extraction of the function very inefficient in practice if the process is too naive. we
do not know enough about the inner workings of MathComp to comment further on this
precise point, but wanted to mention how surprised we were by the discrepency between the
straightforward definition of pmap, and the fact that we could not find a simple and satisfying
adaptation to the set type.

12.3.2 Introducing new (specialized) predicates

Chapter 11 introduces an optimization that rewrites a program where the indth argument
of an intensional predicate f is always defined. The rewriting introduces new specialized
predicates fc for each constant c that appears at the indth index of the occurrences of f as
the head of a rule.

To use these new specialized predicates in Coq, we assume a function of type constant

→ symtype (see Figure 11.5) and some associated hypotheses (Figure 11.6). Behind this
approach, there are two Coq modelization choices we would like to discuss.

12.3.2.1 Where are the new symbols?

First, this method comes with an implicit, which is the presence a priori of those specialized
predicates in the type of predicate symbols, symtype. DatalogCert [Benzaken et al., 2017b]
defines symtype as a finType, and justifies it by recalling that the underlying model of a
Datalog program is finite (see Section 8.1.1 of [Dumbrava, 2016]). More concretely, symtype
is seen as a component of the program signature (Section 8.2.1 of [Dumbrava, 2016]), meaning
that it corresponds to the set of predicates which appear in a given program.

In that setting, assuming that the set of fc predicate symbols, which do not appear in the
original program (see Figure 11.6), is in symtype is slightly contradictory. A more natural,
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less tricky way to introduce those new predicates would have been to define a new finType,
e.g. spec_preds, and define the signature of the new program as the union of symtype and
spec_preds.

However, the atoms and ground atoms are defined strictly using symtype, meaning that this
approach would have required to rework a lot of definitions. It may have been manageable
if DatalogCert had split the predicate symbols into a type for the symbols themselves, and a
set of such objects in the program signatures. This would nonetheless raise another problem,
which is the definition of the type for predicate symbols not with respect to a given program.
In that setting, it seems that there is no way or criteria to bound these symbols and obtain
the finType required to define a finset over it.

In conclusion, assuming that the specialized predicate symbols are in symtype is not fully
satisfactory, but it would seem that there is no simple and cleaner alternative to circumvent
an issue that is specific to the Coq formalization.

12.3.2.2 When genericity leads to troubles (bis)

The new predicates are introduced via the pclone function (see Figure 11.5), whose only
argument is a constant, because it is implicitely applied to function f at index ind. It might
have seemed more natural and general to have a specialization function that can be applied
to any predicate symbol and argument index, but this may have led to a paradox in the
hypotheses, or a least some needless troubles.

As explained just above, in Section 12.3.2.1, the new specialized predicates are packaged
with the original ones in symtype. Having a more general version of pclone would then
have meant that it could have been applied recursively to the new predicates. This would
have not been compatible with the hypotheses we introduce (see Figure 11.6). In particular,
hypothesis parity (on the arity of these new predicates) implies that a predicate that has
been specialized until it reaches the absence of arguments should stay at this level when the
specialization is applied again.

However, we also need the specialization to be injective (cf. hypothesis pinj in Figure 11.6),
meaning that we could not simply map an empty predicate P () to itself. A workaround would
be to create a hierarchy of predicates P () 7→ P1() 7→ P2()..., but that would contradict the
finiteness of symtype. A more valid but less natural fix would be to have a circle of benign
specializations, such as P () 7→ Q() 7→ P (). This method illustrates how, in the setting
of a generalized pclone, paradoxes may be avoided, but still lead to convoluted, abstruse
problems. On the other hand, limiting the use of the specialization to a given predicate (f)
at a given index (ind) makes these very questions irrelevant.

This is in constrast with our general experience with Coq, where introducing genericity may
lead to much more flexibility and convenience, in particular for the use of inductions. Such
an example is also found in the definition and certification of the predicate specialization.
See for example the Coq snippets of Section 11.3.3), where the j argument is fundamentally
a stand-in for ind that allows proofs via induction.

12.3.3 Bound of the traces

The proof introduced by Remark 8.14 basically states that having a repetition of a clause and
substitution couple in a trace would amount to proving a fact x as an intermediate step in the
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proof of x, which we can do without. However, different couples of clause and substitution
can represent the same (head) fact, meaning that even with the WUtree type, a same fact
can be deduced multiple times in a single trace.

Although this bounded form of repetition is harmless, as it is already finite and functional, it
may feel a bit awkward and unsatisfying. We then considered the possibility to define a type
of trees with unicity across branches modulo a function (here, λC.λι.head(ι(C))). However,
we dropped this idea due to its lack of actual benefit, but would like to highlight that it would
change (and lower even further) the surprising bound discussed in Section 10.4.4.

12.3.4 Implementation of the static analysis

Section 6 of [Tristan and Leroy, 2008] states that ”generally speaking, there are two ways
to specify an algorithm in Coq: either as inductive predicates using inference rules, or
as computable functions defined by recursion and pattern-matching over tree-shaped data
structures”. Even if Datalog programs are not naturally seen as trees, both from syntax2

and semantics standpoints, the version of the static analysis introduced in Chapter 10, is a
computable function.

However, this development is the result of many reworks and adjustements, and used to be
defined using an inductive. We outline this preliminary version, and explain why we departed
from it.

12.3.4.1 Original paper definition

In our first approach, the analysis was defined on paper in the form of a typing system, and
already returned trees encoded by Disjuncted Normal Forms. The types are built using the
following rules, which preserve the DNF.

• ⊤ is a wildcard type, which provides no information on the analyzed variable or predi-
cate argument. It was introduced in this version to modulate the thoroughness of the
analysis.

• tInit
def
= {{[::]}}, the base type for extensional predicates.

• tInsert : tocc → Types → Types adds a tocc at the top of each path under the root.
Given tocc a and Disj d, it returns

{{a :: b | b ∈ c} | c ∈ d}

If the input type is ⊤, then ⊤ is also returned.

• tDisj : Types→ Types→ Types is simply set union, corresponding to the aggregation
of possible sources of values. If one of the input types is ⊤, then ⊤ is returned as well.

2Although they implement them as lists in the formalization, Datalog programs are even defined as sets of
clauses in [Dumbrava, 2016].
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• tConj : Types→ Types→ Types. Given input Disjs d1 and d2, it returns

{x ∪ y | x ∈ d1 ∧ y ∈ d2}

This operation is equivalent to putting d1 and d2 under a Conj, while preserving the
DNF. If one of the input types is ⊤, the other type is returned.

These constructs are then used by the typing rules shown in Figure 12.14, where P is the
analyzed program and the list of toccs already visited (prev in Figure 10.18) is formalized as
the typing context Γ.

p is an extensional predicate

Γ ⊢ p.i : tInit predb

newline
∀(C : p(−→v )← · · · ) ∈ P, Γ ⊢ vi : τC aa p intensional

Γ ⊢ p.i : tDisj
(C:p(−→v )←··· )∈P

τC ∅
predr

newline
∀〈x, y, z〉 ∈ occs(v)\Γ, Γ ∪ {〈x, y, z〉} ⊢ (p at(〈x, y, z〉)).z : τ〈x,y,z〉

Γ ⊢ v : tConj
〈x,y,z〉∈occs(v)\Γ

(tInsert 〈x, y, z〉 τ〈x,y,z〉) ⊤
var

Figure 12.14: Core typing rules

We do not detail these rules, but they should be reminiscent of the algorithm introduced in
Section 10.2, although presented in a circumvoluted (and somewhat inelegant) manner.

12.3.4.2 Original Coq implementation

Figure 12.15 shows the Coq formalization of these typing rules. They are encoded as four
mutually-defined inductives, which are supposed to emulate a loop-based implementation.
We do not dwelve into this code, or introduce every definition it relies on, as a simple look
at it should be enough for a comparison with the implementation shown in Chapter 10.

12.3.4.3 From Inductive to sets

We have been working on and with this version of the static analysis for approximately a
year and a half. During this interval, there were some technical difficulties, mainly the fact
that the induction principle required four manually-defined invariants and produced many,
sometimes abstruse proof obligations. Moreover, this presentation did not allow us to reason
about the termination of the analysis, which we felt was really missing. As a corollary, there
was also something awkward about defining what is supposed to be a deterministic function
as an inductive predicate.

A posteriori, we reckon that these elements would and should have been reason enough for
us to erase the inductive definition of the analysis and start working on another version.
However, the reason that changed our mind was realizing that the inductive definition is
actually flawed: whenever it is used on a recursive program, it returns the trivial type ⊤.
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Inductive predTyping : forall p v (ctxt : (tocs p)) (f : symtype),

'I_max_ar -> (DDtype ctxt) -> Prop :=

| pt_base : forall p v (ct : tocs p) f j,

(predtype f = Edb) ->

@predTyping p v ct f j (mk_DDtype (@tInitDDtype p ct))

| pt_rec : forall p v (ct : tocs p) pred (j : 'I_max_ar) typs,

predtype pred = Idb ->

@progPredTyping p v ct p pred j typs ->

@predTyping p v ct pred j (fold_type_alg DtDisj typs DEmpty)

with

varTyping : forall p (ctxt : tocs p), 'I_n -> (DDtype ctxt) -> Prop :=

| vt : forall p (ct : tocs p) (tot : 'I_(bn*max_ar).+1) v occsTypes,

(* getting rid of stuff that has already been typed *)

@OccsToTypes p v ct (seq_to_enotin (occsInProgram p v) ct) occsTypes ->

@varTyping p ct v (fold_type_alg DtConj occsTypes (mk_DDtype (@TrivDDtype p ct)))

with

(* full prog -> context -> intermediate prog -> pred -> ind -> intermediate types *)

progPredTyping : forall p v (ctxt : tocs p) (ip : program)

(f : symtype) (ind : 'I_max_ar),

seq (DDtype ctxt) -> Prop :=

| ppt_base : forall fp v ct pred j, @progPredTyping fp v ct [::] pred j [::]

| ppt_rec_no : forall p v (ctxt : tocs p) ip pred new_cl j typs,

@progPredTyping p v ctxt ip pred j typs ->

(pred <> (hsym_cl new_cl)) ->

@progPredTyping p v ctxt (new_cl :: ip) pred j typs

| ppt_rec_yes : forall p v (ctxt : tocs p) ip new_cl j typs ntyp v',

@progPredTyping p v ctxt ip (hsym_cl new_cl) j typs ->

(nth_error (arg_atom (head_cl new_cl)) j) == Some (Var v') ->

@varTyping p ctxt v' ntyp ->

@progPredTyping p v ctxt (new_cl :: ip)

(hsym_cl new_cl) j (ntyp :: typs)

with

OccsToTypes : forall p (v : 'I_n) (ctxt : tocs p), {set (enotin ctxt)}

-> seq (DDtype ctxt) -> Prop :=

| colt_base : forall p v (ct : tocs p),

@OccsToTypes p v ct (seq_to_enotin set0 ct) [::]

(* The set l has (recursively) been typed as the list typs. Adding occurrence

tocc to the set triggers a call to predTyping, with tocc added to the context *)

| colt_rec : forall p v ct tocc l typs

(dt : DDtype (ct :|: [set (elnotin tocc)]))

pato rul_ind body_ind aind,

@OccsToTypes p v ct l typs ->

(elnotin tocc) = (T_occ rul_ind body_ind aind) ->

p_at (val tocc) = Some pato ->

@predTyping p v (ct :|: [set (elnotin tocc)]) pato aind dt ->

@OccsToTypes p v ct ([set tocc] :|: l)

((@DtInsert p ct (elnotin tocc) dt (Helnotin tocc)

(@ddtextract p ct (val tocc) dt))::typs).

Scheme varTyping_mrec := Induction for varTyping Sort Prop

with occsToTypes_mrec := Induction for OccsToTypes Sort Prop

with predTyping_mrec := Induction for predTyping Sort Prop

with progPredTyping_mrec := Induction for progPredTyping Sort Prop.

Figure 12.15: Original Coq implementation of the static analysis
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This bug comes from the use of ⊤ as the ”base case” of the fold of tConj in rule var, when
occs(v)\Γ is empty, which infects the whole return type through tDisj.

The point of certification is of course to avoid this kind of subtle and technical but critical
error. We had written and proved a completeness lemma, roughly stated as ”if the analysis
returns an actual result (or type), it does capture an overapproximation of the behavior of
the analyzed variable”. We were sure – and wrongfully so – that the analysis would always
return a non-trivial result, so we thought we could safely add the hypothesis on the returned
type to help with the technicalities of the proof, which in fact were legit safeguards.

We eventually understood that something was wrong thanks to our work on the smarter
extraction mechanism introduced in Section 12.2. Concretely, after formalizing it in Coq, we
could certify it with a lemma roughly stating that ”any trace directly matched a subtree of
any analysis, in the sense that it could be properly overlapped. This way, the completeness
results on traces could be imported in the certification of the mix of analyses” (cf. Section
12.2.3).

Both the traces and analyses are trees bounded in height, but by different values (number
of rules times the cardinal of the substitution type for the traces, number of toccs for the
analyses). In particular, the bound for the analysis is tighter, meaning that our lemma
probably contained a contradiction.

We investigated the problem by reflecting on the proofs, and noticed that Datalog recursion
was actually not dealt with in the certification of the inductive version of the static analysis.
One of the reasons we had not realized that when actually writing the proofs is quantity and
very technical – sometimes obscure – nature of the proof obligations generated by the four
mutually-defined inductives. In comparison, working with the set-based version was much
clearer and allowed easier high-level reasoning.

We eventually switched to the set-based definition seen in Figure 10.18. Since we had no
experience with MathComp prior to this project, and could not even find a satisfactory
paper definition of the analysis, we first hoped little of the Coq version. MathComp fin-
Types and set notations had already been noted particularly relevant to formalize Datalog
[Benzaken et al., 2017a], and it was as well for our static analysis. Although the definition
is not completely straightforward, the intricacy seems inherent to the analysis rather than a
consequence of the formalization itself.

The authors of [Tristan and Leroy, 2008] also recall that defining a function, such as our
analysis, in a computational way rather than as an inductive also allows its extraction as an
Ocaml program (which we have not experimented with this development yet). Alternatively,
numerous non-functional programming languages (e.g. Python) now support set notations.
Another advantage of this version of the analysis is then its simplified translation in many
languages, which reduces the gap between formalization and implementation, making the
latter more trustworthy.

In summary, even in the context of machine-aided verification, the mix of an error in a minor
definition – which would have been spotted with correct lemmas – and lacking formulations of
completeness properties – which would have been benign with correct definitions – could lead
to a broken result. Computational definitions, higher-level tools (both provided by Math-
Comp in our case), not adding ”apparently free hypotheses which help with the technicalities
of proofs”, and a more introspective view should help avoid this kind of situation.
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12.4 General proof effort

Although the use of finite types and set notations was eventually most beneficial to us, our
proof style remained more classical. This is in contrast to [Benzaken et al., 2017b], which
uses the tactic language SSReflect extensively. Combined with the heavy use of dependent
types to obtain finite types, it resulted in a development that was probably longer than what
could be expected, i.e. approx. 7000 lines of code. In comparison, the positive Datalog engine
within DatalogCert we use consists of approx. 1500 lines of code.

Our development can be found at https://orange-opensource.github.io/octant-proof/,
and its 7000 lines of code are roughly split as follows:

• 1000 loc. for a general-purporse library used throughout our development (file utils.v)

• 400 and 1200 loc. for the finite sequence and tree types introduced in Chapter 7 (files
finseqs.v and fintrees.v)

• 1000 loc. for the design and certification of the Datalog trace semantics introduced in
Chapter 8

• 300 loc. for the definition and certified collection of variable occurrences, as presented
in Section 10.3.2 (file occurrences.v)

• 300 loc. for the design and certification of the partial program instance introduced in
Chapter 9 (file rinstance.v)

• 450 loc. for the no-recursion traces introduced in Section 10.2.2 (file norec_sem.v)

• 450 loc. for the design and high-level certification (many technical results are found in
other files) of the static analysis introduced in Chapter 10 (file static.v)

• 200 loc. for the extraction of values from a static analysis (file extract_static.v)

• 1500 loc. for the design and certification of the predicate specialization introduced in
Chapter 11 (file projection.v)

• 300 loc. for a preliminary implementation of the alternative value extraction mechanism
introduced in Section 12.2 (file dep.v)

Finally, some additions to DatalogCert have been made in situ, and are flagged with
-- added.

12.5 Related works

The work presented in this thesis is at the interface of various domains, which can roughly
be abstracted as network verification, logic programming, and (certified) program analysis
and transformation. The network verification component is fundamentally a background that
explains how and in what context we started this work, so we introduced it earlier, in Part
III. On the other hand, this section discusses research works that are related to the concrete
questions we addressed and the answers we provided.
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12.5.1 Static analysis for logic programs

The vast majority of static analyses for logic programming languages are developed for Prolog.
For example, [Jacobs and Langen, 1992, Marriott et al., 1994] introduces a general abstract
framework for the static analysis of Prolog programs, and provides an example that focuses
on the groundness and sharing of variables across terms to set up parallelism in the program’s
execution.

Prolog was extended into λProlog [Nadathur and Miller, 1988], which contains a typing sys-
tem. As a side note, the static analysis we introduce could very easily be leveraged to
determine the type of variables in a Datalog program, as it relates those variables to values
in the EDB which are available at compile time, although it probably would not be the most
efficient typing method.

Such typing systems for Datalog can be found in [Zook et al., 2009] and [de Moor et al., 2008].
The latter also introduces two type-based optimizations: type erasure, which removes dy-
namic type tests once a program has been shown to be type-safe, and type specialization,
which specializes predicate definitions to the type contexts in which they are called, e.g.
removing clauses which are shown to contain type inconsistencies.

There has been some work [Chaudhuri, 1993, Chaudhuri and Kolaitis, 1994] that aims at
approximating potentially recursive predicates via a set of nonrecursive, simpler rules. How-
ever, this line of research has not produced many usable results, as many classes of predicates,
such as transitivity closure, are not approximated in a satisfying manner by these methods
[Duschka, 1998].

The domain of a program can be leveraged by static analyses and transformations. For
example, [Campagna et al., 2011] introduces a source-to-source transformation of Datalog
programs handling arithmetics, that relies on propagation techniques from constraint pro-
gramming.

The work introduced in [Miller, 2006, Miller, 2008] views Horn clauses as instances of a higher-
order logic (e.g. Simple Theory of Types), which makes it possible to see the execution of
programs as cut-free sequent calculus proofs, which in turn allows the presentation of these
executions through the lens of linear logic. λProlog is then used to implement a successful
prototype tool that approximates the content of multiple data-structures (lists, sets...) within
logic programs.

The authors of [Mesnard and Neumerkel, 2001] introduce a static analysis that tries to infer
the termination of Prolog programs, using an abstraction of the terms by their height and
the computation of numerical relations between the values in rules. The vigilant reader may
notice that Definition 3 of this paper, which describes the cornerstone of their analysis, is
reminiscent of the one we introduce in Figure 8.9. In a sense, we both try to capture the
variable-level logical structure of the analyzed program, although with a different approach
and problem in mind (Datalog programs do not contain terms and terminate by construction).

The closest work to our own is probably found in [Halevy et al., 2001]. This paper introduces
a static analysis of Datalog programs that represents as a (set of) tree(s) not only the dataflow
of a variable, but the whole program. Another similarity is that they also limit the recursion
of Datalog in their analysis to be able to encode in a finite manner an infinite (or rather
sufficient, see Remark 8.14 of the present document) number of deductions, although with
different criteria and implementation: they do not allow to have in a branch two rules whose
heads have the same predicate and variable pattern.
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This may sligthly echo the approach we propose in Remark 12.3.3, although their formalism
does not account for the substitutions (or as an abstract and simplified form they call labels).
This is due to the fact that their analyses do not try to convey the same information as
ours, as they aim less at the actual behavior of the analyzed program than the decidability
of properties such as satisfiability (existence of an EDB such that at least one fact about
a predicate is decidable) or equivalence, for which they provide instances of their general
method and a characterization of the relevant class of Datalog programs.

In the same spirit, the authors of [Caballero et al., 2008] introduce a debugging method for
Datalog programs that focuses on semantics rather than actual computation mechanisms.
Concretely, they introduce a structure called computation graphs, that finitely represents
relations between predicates and is used to investigate discrepencies between the expected
and actual semantics of a given program.

They oppose their approach to computation trees, which have for example been used for
Prolog (SLD-trees, cf. [Lloyd, 1987a]) or Java [Caballero et al., 2007], claiming that tree-like
structures are not fit to handle the always-terminating recursion of Datalog. We did introduce
a trace semantics for Datalog in Chapter 8, but its aim was only to be able to reason about
full deductions at the proof level, and not be used as an actual debugging tool. We however
believe that our trace semantics can be used as a simple, off-the-shelf tool to investigate the
deduction of an unexpected ground atom. On the other hand, unlike [Caballero et al., 2008],
it would not help with the absence of an expected fact.

Soufflé [Scholz et al., 2016] is a static analysis tool using Datalog as a specification language.
It performs Datalog-level optimizations, such as magic sets (specialization of a program w.r.t.
a query [Balbin et al., 1991]) and user-directed rule inlinings. The Datalog code is translated
into a relational algebra via the Futamura projection, where the interpreter is the semi-naive
evaluation [Abiteboul et al., 1995]. Although a form of specialization, this transformation –
not discussed or illustrated – does not seem to produce an explicit analysis of the program
value flows.

Apart from the aforementioned papers, there has not been much research in the field of static
analysis for Datalog. Ironically, it has recently been used as a framework to build static anal-
ysis tools, such as Soufflé, but also [Whaley et al., 2005, Arntzenius and Krishnaswami, 2016,
Madsen et al., 2016]. The rationale is that Datalog, as a language, is close to the logic usually
underlying the specification of a static analysis [Greenman, 2017].

12.5.2 Dealing with recursion for static analyses

The main difficulty we faced in this work is the development and certification of a finite
representation for an infinite set of behaviors. This challenge is found in the development of
the analysis (Section 10.2.2), the implementation of our trace semantics (see Remark 8.14),
and the proof of their connection (Section 10.4.1). In all these cases, the name of the game
is to truncate our representations enough to make them finite, while retaining the required
information.

This general process is reminiscent of earlier works in the field of verification, such as
[Shivers, 1991], which introduces the k-CFA family of static analyses. This work tackles
the problem of dynamic dispatch for the design of static analyses for higher-order, functional
languages, i.e. the fact that the flow of values has an impact on the call-target resolution
procedure [Might et al., 2010]. The k integer parameter of k-CFA, called context-sensitivity,
is the number of previously visited call sites which are considered. This truncated notion
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of trace ensures finiteness. Note that this work linearly abstracts the traces, in the sense
that the last k steps are all considered and the rest is left out, whereas we fundamentally
ensure finiteness by allowing the analysis or trace semantics to drop multiple, not necessarliy
contiguous set of steps.

As another example, [Jeannet and Serwe, 2004], introduces an abstract semantics for imper-
ative programs that roughly abstracts the sequence of intermediate contexts (i.e. values
associated to global variables) in a trace by any such sequence that would have led to the
final context. Note that, in this case, the semantics is not truncated into a technically finite
representation, but still a more manageable one.

12.5.3 Certified static analyses

David Pichardie and his colleagues work on the development and certification of static anal-
yses within Coq [Cachera et al., 2004, Besson et al., 2006], which are then extracted using
Letouzey’s method [Letouzey, 2008]. The main application area of this work is the analy-
sis of Java [Barthe et al., 2013] but is also notably used in the development of CompCert
[Leroy, 2009, Barthe et al., 2017].

Chapter 3 presents a Coq formalization of Datalog, called DatalogCert. It is part of a lager
project, called DataCert3, which aims at building a fully and deeply verified environment
for data intensive management tools, the same way CompCert [Leroy, 2009] and CakeML
[Kumar et al., 2014] provide verified realistic C and ML compilers. As a side note, Kriener et
al. used Coq in [Kriener et al., 2013] to prove the equivalence of different Prolog semantics.

As far as we know, our work is the first formally proved implementation of non-trivial static
analyses and rewritings for a declarative and popular language, Datalog. It is also the first
full-blown application of DatalogCert. Although we had to slightly extend the formalization,
our work shows that it can concretely be used to prove concrete and non-trivial results on
the use of Datalog, giving credits to the ambition of DataCert to provide a full environment
for Datalog, among other aspects of data intensive applications.

12.5.4 Exploring Datalog subclasses

In Section 12.2, we introduce a stronger static analysis and lay out the hypothesis that there
exists a subset of Datalog programs, strictly greater than the set of recursion-free programs,
on which the analysis is complete. The idea of restricting Datalog to a viable or more efficient
fragment is found in other works.

For example, [Reutter et al., 2015] identifies Regular Datalog, i.e. the class of programs using
binary predicates with recursion limited to transitive closures, as a suitable Datalog fragment
for graph queries. The Regular Datalog theory and an efficient, incremental engine for this
fragment have then been implemented and certified in Coq [Bonifati et al., 2018]. Due to
timing constraints, we did not investigate this side of research about Datalog, but such works
would obviously be a natural and strong starting point for a precise characterization of a
Datalog fragment that could handle our stronger static analysis.

3http://datacert.lri.fr/



Part VI

Conclusion

La route suivie jusque-là était comme un rêve dont la trace
s’effaçait au fur à mesure qu’elle avançait

Hwang Sok-Yonh, Shim Chong, fille vendue,
traduit du coréen par Choi Mikyung et Jean-Noël Juttet
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Summary and perspectives

The work presented in this document is, as it is often the case in research, the adventitious
result of the proverbial two-week side project. More concretely, this thesis was supposed to be
about the NetKat language (see Section 4.4), but we have been asked to take a quick look at
the Network Optimized Datalog engine (Chapter 5) to help with the performances of Octant
(Chapter 6). The result is, as outlined in the introduction, the identification of a caveat
in the aforementioned engine, the design of a static analysis, two program transformations
and a trace semantics for Datalog, their certification within an existing Coq/MathComp
formalization of the language and the introduction of new finite types for MathComp.

We strongly believe that one of the key features of the present thesis is the fact that it
leverages DatalogCert (see Chapter 3) and provides a nontrivial proof-of-concept and strong
argument for its reusability and scalability (which are quickly discussed in the conclusion of
[Dumbrava, 2016]). Moreover, understanding the design and implementation choices behind
this engine, which led us to propose some additions or modifications, was a very interesting
and enjoyable intellectual journey. It goes without saying that we are very grateful to the
authors of DatalogCert – Ştefania-Gabriela Dumbravă, Véronique Benzaken and Evelyne
Contejean –, without whom our work would clearly have lacked strong foundations and
justifications.

On a more concrete level, the static analysis and transformations we introduce (usually)
clear and short specifications into a network-specific form closer to NoD programs. Doing
so by hand is obviously possible, but also lengthy, complex and error-prone, meaning that
our certified optimizations conciliate performances and safety. The rewritten programs are
computed orders of magnitude faster than the original ones, but remain significantly slower
than their hand-written NoD counterparts in some instances. This justifies the work on a
smarter static analysis (see Section 12.2), which tries to trade a bit more safety (it becomes
inadequate for some Datalog programs) for much more efficiency. The key question is then
to determine precisely what programs are excluded – in particular provide a simple syntactic
criteria – and if the remaining programs are relevant. We outline answers to these questions,
but they remain to be formalized and verified.

Moreover, we emphasize the fact that the static analysis and the two rewritings we introduce
are all defined and certified independently. In particular, should someone find a better static
analysis for Datalog than ours (Chapter 10) – may it be the alternative version mentioned
just above or an entirely different approach –, it could very easily be plugged into the par-
tial program instantiation of Chapter 9, notably thanks to the very broad definition of the
completeness hypothesis on the provided set of substitutions (see Definition 9.4).

The other way around, the work presented in this document has been designed with Network
Optimized Datalog and network verification in mind, but may be helpful in other contexts.
This possiblity remains to be investigated.
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Lessons learned

During the course of this thesis, we attended a summer school where Andrei Paskevich stated
that ”Roughly speaking, the formal certification of a system is an order of magnitude more
complex and time-consuming than the actual design of said system”. This result, which may
sound abstract to some, has ended up feeling very real to us. In particular, we were baffled
by how very simple and straightforward ideas, such as those behind the static analysis we
introduce, can be implemented in intricate and error prone – sometimes misleading – ways,
and require complex, layered reasonings to be certified.

This brings us back to the conclusion of [Benzaken et al., 2017a], which underlines that the
justification of many foundational and ”intuitively clear” database results had always been
treated with a high-level persective rather than ”scrupulous proofs”, meaning that ”low-level
details were either glanced over or left to the reader”. Knowing that there is a continuity
and coherence in terms of such difficulties and motivations between the implementation of
DatalogCert and our own work has been of great comfort to us.

The other core lesson (or rather set of lessons) we learned during this work is more qualitative
than quantitative, and found in Section 12.3.4. This section basically explains that

1) our first implementation of the static analysis contained a bug

2) and was designed in a way that made the proofs much harder and less clear

3) which led us to write a deficient completeness statement that allowed the bug to go
unnoticed for a long time.

We have been through many formal methods classes – and have been told roughly as many
times about the crash of Ariane 5 Flight 501 –, so we were not entirely surprised by 1). This
kind of ”the devil is in the detail” situation is, after all, why we need formal methods.

The lesson of 2), like the statement of Andrei Paskevich discussed above, was already the-
oretically known but not concretely experienced by us. The choice of adequate models and
formulations is of course discussed, or at least introduced, in formal methods classes, but
the systems and algorithms which are verified in such settings are usually defined a priori.
This means that we never had to work on the certification of an inadequately formulated
component and did not expect this aspect to be as critical as it has been to us.

Finally, the issue that taught us the most was undoubtedly 3). We have been raised – in
an academic sense – to think that the specification and verification of algorithm or program
properties was an extremely powerful process. This intense promotion of certification may
have led us to believe in the all mightiness of the existence of a verification pipeline, and thus
not put enough care into its foundations, i.e. the statements that are checked. Throughout
the rest of our life as a formal methods enthusiast and practitioner, we will remember this
experience to help us reach and maintain a high level of self-criticism and perspective.
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Appendix A

Coq basics

This document presents a research work that has been designed, developed and certified using
the Coq proof assistant. As such, Parts IV and V contain a lot of Coq code, and assume
some familiarity with it. In case this document would ever find its way into the hands or
screen of anyone who has strictly no experience with Coq or a similar proof assistant, this
appendix provides a very simple, high-level and usage-oriented introduction.

This introduction does not dwelve into the theoretical foundations of proof assistants, and it
is not designed to replace a proper academic course1. It should, however, convey the spirit of
Coq and help a confused reader get a grasp of what is going on in the aforementioned parts
of this document, if not the full details.

Section A.1 introduces the interactive nature of Coq. Then, Section A.2 illustrates it with
two simple proofs in first-order logic. Finally, Section A.3 discusses the use of Coq in the
development of verified programs and compilers.

A.1 Interactive theorem proving

A proof assistant is, as the name suggests, a tool designed to help people prove results. To do
so, the user must be able to define objects (logics, algebras, programs...) and state properties
about them.

In the introduction of his PhD thesis [Winterhalter, 2020], Théo Winterhalter provides a
great discussion on proof assistants, in which he compares them to chatbots. Apart from the
fact that it is sometimes surprisingly hard and frustrating to make oneself understood by a
proof assistant, the main similarity is the ”feedback loop” working environment it sets up.

Once the user has formally defined an object and a statement he or she wants to prove, called
the goal, the proof assistant awaits a step of the proof. Each time the user provides one, the
proof assistant checks that it indeed can be applied, computes the new goal, i.e. what is now
left to prove, and expects a new proof step. This process terminates once all these steps form
a full proof of the initial statement.

1See https://wikimpri.dptinfo.ens-cachan.fr/doku.php?id=cours:c-2-7-1 for the foundations and
https://wikimpri.dptinfo.ens-cachan.fr/doku.php?id=cours:c-2-7-2 for a comprehensive presentation
of Coq as a tool.
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Notation A.1. This document tries to reproduce the interface used by Coq during proofs.
Figure A.1 displays the general shape. The left side shows a list of instructions, or proof
steps, entered by the user. On the right is the list of current (i.e. after the execution of the
list of instructions) hypotheses and the current goal, i.e. the formula that still needs to be
proved to obtain the original statement.

instruction 1.

instruction 2.

instruction 3.

Hypothesis 1

Hypothesis 2

-----------------

Goal

Figure A.1: Feedback in Coq

This process and the associated notation are illustrated by the next Section, which introduces
the base use of Coq, i.e. the manipulation of first-order logic.

A.2 Playing with first-order logic

We provide two detailed examples, introducing first some propositional-level proof, and then
how first-order quantifiers are handled.

Example A.2. We start with a proof of the commutativity of conjunction in formal logic,
which we state as ∀A,∀B, ((A ∧ B) → (B ∧ A)). Assuming for simplicity that A and B are
already defined elsewhere as logical propositions, this lemma, which we name and_comm, is
easily translated in Coq, as shown in Figure A.2.

Lemma and_comm: A /\ B -> B /\ A.

Figure A.2: Commutativity of ∧ in Coq

Telling Coq that we want to prove this statement would trigger the display of Figure A.3.

A, B : Prop

-----------------

A /\ B -> B /\ A

Figure A.3: Starting a proof

So far, the list of proof steps is empty, and the only hypotheses are the existence of (abstract)
propositions A and B. The goal is of course the statement of and_comm. Figure A.4 shows the
first step: moving the A /\ B proposition from the goal to the hypotheses, naming it H.
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intro H. A, B : Prop

H : A /\ B

-----------------

B /\ A

Figure A.4: Moving a precondition to the hypotheses

As shown, we now need to prove B /\ A, with the hypothesis A /\ B. To do so, we break
down H into two smaller hypotheses A (named HA) and B (HB), as shown by Figure A.5.

intro H.

destruct H as [HA HB].

A, B : Prop

HA : A

HB : B

-----------------

B /\ A

Figure A.5: Breaking down an hypothesis

Since the goal, B /\ A is two-fold, we (literally) split it into two subgoals in Figure A.6.

intro H.

destruct H as [HA HB].

split.

A, B : Prop

HA : A

HB : B

----------------- (1/2)

B

----------------- (2/2)

A

Figure A.6: Splitting a goal into subgoals

This opens two new branches in the proof, which we keep track of with indentation. Since
the new subgoals directly correspond to one of the hypotheses, we simply apply them, as
shown in Figures A.7 and A.8.

intro H.

destruct H as [HA HB].

split.

- apply HB.

A, B : Prop

HA : A

HB : B

-----------------

A

Figure A.7: Applying an hypothesis matching the goal
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intro H.

destruct H as [HA HB].

split.

- apply HB.

- apply HA.

No more subgoals.

Figure A.8: Ending the proof

This closes all open subproofs, and thus marks the end of the proof. Figure A.9 shows the
full code as it is input by the user, where Proof. triggers the proof mode of Coq, and Qed.

indicates that a proof is finished.

Lemma and_comm : A /\ B -> B /\ A.

Proof.

intros H.

destruct H as [HA HB].

split.

- apply HB.

- apply HA.

Qed.

Figure A.9: Full Coq proof of the commutativity of ∧

Note that this is a verbose version, as Coq provides both more syntactic sugar, which reduce
the quantity of text used, and tactics, which automate part of the proof. For example, Figure
A.10 shows a shorter and more natural version of the same proof.

Lemma and_comm : A /\ B -> B /\ A.

Proof.

intro [HA HB].

split;assumption.

Qed.

Figure A.10: Full but shorter Coq proof of the commutativity of ∧

Here, the A /\ B hypothesis is directly broken down into HA and HB. Just after the B /\ A

goal is split, each generated branch calls a tactic, called auto. A tactic is roughly tactic,
which detects that the subgoal exactly matches one of the hypotheses.

Example A.3. We now illustrate how quantifications are handled in Coq, by building a proof
of (∃x,∀y, P (y, x)) → (∀x,∃y, P (x, y)). The logic behind this seemingly abstruse statement
is easier understood by replacing P (x, y) with ”y is at least as tall as x” and considering
a universe of people, as it becomes If someone is at least as tall as everyone, then, when
considering any given person, you can find someone who is at least as tall as him or her.
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In Coq, we first assume an arbitrary type A, a binary predicate P over A, and translate our
statement in Figure A.11.

Variable A : Type.

Variable P : A -> A -> Prop.

Lemma quant_comm : (exists x, forall y, P y x) -> (forall x, exists y, P x y).

Figure A.11: Writing quantifiers in Coq

We start by introducing the hypothesis. This leads us to a universally quantified statement,
forall x, exists y, P x y. As shown in Figure A.12, we also introduce the x variable,
meaning that we need to prove the rest of the statement with no information on the value of
x.

intros H x. H : exists x : A, forall y : A, P y x

x : A

-----------------

exists y : A, P x y

Figure A.12: Moving a universally quantified variable to the hypotheses

Figure A.13 shows how, from the H hypothesis, we can extract a witness w that satisfies the
rest of the property, which we denote as Hw.

intros H x.

destruct H as [w Hw].

w : A

Hw : forall y : A, P y w

x : A

-----------------

exists y : A, P x y

Figure A.13: Extracing a witness from an existentially quantification

Coq now requires us to provide an explicit value for the existentially quantified y in the goal.
We try with w, Coq then provides the same goal where y has been replaced by w, as shown
in Figure A.14.

intros H x.

destruct H as [w Hw].

exists w.

w : A

Hw : forall y : A, P y w

x : A

-----------------

P x w

Figure A.14: Instantiating an existentially quantified variable
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The goal is now a special case of the Hw hypothesis. Figure A.15 shows how we then can
finish the proof, i.e. by applying the rule with the right instance2 of y.

intros H x.

destruct H as [w Hw].

exists w.

apply (Hw x).

No more subgoals.

Figure A.15: Using a universally quantified hypothesis

These examples illustrate the most simple and basic use of Coq, which also has more practical
uses, such as the verification of actual algorithms and programs.

A.3 Certified programming using Coq

Coq contains a full functional programming language, called Gallina. This language, oriented
towards recursion and pattern-matching, is very similar to OCaml, as illustrated by the
function defined in Figure A.16.

Fixpoint max_in_list (l : seq nat) : nat :=

match l with

| [::] => 0

| h::tl => max h (max_in_list tl) end.

Figure A.16: Extracting max from a list of integers in Coq

The max_in_list function expects a list of integers (seq nat, in Coq/MathComp notations)
and returns the maximal integer found in that list (or 0 if the list is empty). The Fixpoint
construct indicates that the function is recursive, like let rec in OCaml.

Such functions and programs can then be caracterized using the logic language of Coq. For
example, an intuitive specification of a function that extracts the maximal integer from a list
would be that 1) the extracted element does appear in the list and 2) there is no greater
example in the list. Figure A.17 shows how this specification would be written in Coq.

Lemma max_in_list_bad_spec :

forall l,

(max_in_list l \in l

/\ forall x, x \in l -> max_in_list l <= x).

Figure A.17: Incorrect Coq specification of max extraction from a list

Once such a specification has been stated, it of course has to be proved, in a fashion similar
to what was shown in A.2. Trying to do so for max_in_list_bad_spec would help the user

2Actually, Coq can figure it out by itself, using unification, but explicitely providing unnecessary arguments
in Coq generally helps a lot understanding the high-level reasoning of a proof.
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realize that he or she wrote a deficient specification, as it does not capture the case where
the list is empty. Figure A.18 shows the correct specification, which would easily be proven
using an induction on l.

Lemma max_in_list_spec :

forall l, size l > 0 ->

(max_in_list l \in l

/\ forall x, x \in l -> max_in_list l <= x).

Figure A.18: Correct Coq specification of max extraction from a list

Remark A.4. Both max_in_list and max_in_list_spec are about lists of integers for
simplicity, but could be generalized over the type of the list. In that case, the function would
expect a specialized max function with the type and list, as well as a default element for the
empty case. The specification would start by a universal quantification over the type, and its
verification would require a proof that the provided default element is indeed minimal w.r.t.
the provided max, just like 0 w.r.t. ≤.

Once the max_in_list_spec specification has been proved, it can be used in the certifica-
tion of more complex functions built upon max_in_list, and so on. This way, very com-
plex programs can be written and certified in a modular manner, as illustrated by Chapter
3, which implements a verified engine for the logic programming language Datalog. Mor-
ever, Coq allows the extraction of such verified (or even unverified) programs into OCaml
[Letouzey, 2008].

Finally, Coq only considers functions which are shown to terminate. Informally, in the
framework of the Curry-Howard isomorphism upon which Coq is built, a non-terminating
function is a proof of the false statement, ⊥, which should of course not be accepted.

Coq can infer for itself that the program of Figure A.18 does, but some recursions are much
more complex. Section 10.4.4 discusses how we had to tackle this issue for our own work.



Appendix B

Computing (very simplified)
network reachability

This Appendix details the computations discussed in Section 5.2.1. The point of introducing
them is to familiarize the reader with the example network, and show that even an extremely
simplified, high-level view of network reachability is a surprisingly tricky problem.

The analyzed network is replicated in Figure B.1 for readability. We want to compte by hand
the set of packets that will go from A to B. To do so, we will denote the dst and src attributes
as a single, 6-bit vector. The first three bits represent dst, whereas the last three are src.

A R1 R2

R3 D

B

(a) A simple network topology ...

in dst src rewrite out

R1 10⋆ 01⋆ R2
R1 1 ⋆ ⋆ ⋆ ⋆ ⋆ R3

R2 10⋆ ⋆ ⋆ ⋆ B

R3 ⋆ ⋆ ⋆ 1 ⋆ ⋆ D
R3 1 ⋆ ⋆ ⋆ ⋆ ⋆ dst[1] := 0 R2

(b) ... and its configuration

Figure B.1: Example network

A packet flowing from A to B must first go through R1, which can be done via the first or
second rule. In the first case, the packet header must be of the form 10 ⋆ 01⋆. Then, once it
has reached R2, it can only go directly to B. The only relevant rule in the routing table first
checks that the packet header matches 10 ⋆ ⋆ ⋆⋆, which is more general than the form of all
packets going straight from R1 to R2. In a sense, we compute a conjunction, but it does not
explicitely appear in the result.

We then know that all packets matching the 10 ⋆ 01⋆ pattern will go from A to B, using the
R1 → R2 link. Another possibility is to go through R3. The first step is then to leave R1
using the R1 → R3 link, which requires using the second rule rather than the first. The set
of relevant packets is those of the form 1 ⋆ ⋆ ⋆ ⋆⋆ but not 10 ⋆ 01⋆. This set is denoted as
1 ⋆ ⋆ ⋆ ⋆ ⋆ \ 10 ⋆ 01⋆.

We then want to use the R3 → R2 link rather than the R3 → D one. This has two conse-
quences: 1) the leftmost bit of src must be 0 rather than 1 and 2) the leftmost bit of dst
must be 1. Requirement 2) is already enforced by the R1 → R3 rule. We add 1) and obtain
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the 1 ⋆ ⋆ 0 ⋆ ⋆\10 ⋆ 01⋆ pattern.

The 0 on the fourth position of the right side is made obselete by the 0 just added, so we can
take it off. Moreover, the central bit of dst is set to 0 by the rule. We add this fact and get
10 ⋆ 0 ⋆ ⋆\10 ⋆ ⋆ 1⋆, which can be simplified as 10 ⋆ 0 ⋆ ⋆\⋆⋆ ⋆ ⋆ 1⋆. Since there is now only
one bit defined on the right side on the pattern, we can invert it and put it on the left side,
which gives us 10 ⋆ 00⋆. This pattern matches the (only) rule of R2, which leads to B.

Putting the two possibilities together, we can denote the set of packets going from A to B as

10 ⋆ 01 ⋆ ∪ 10 ⋆ 00⋆ = 10 ⋆ 0 ⋆ ⋆

Remark B.1. The authors of [Lopes et al., 2015] denote their result as 10 ⋆ 01 ⋆ ∪ (10 ⋆ ⋆
⋆ ⋆ \ ⋆ ⋆ ⋆ 1 ⋆ ⋆). The two results are equivalent, as shown by the following equalities:

10 ⋆ 01 ⋆ ∪ (10 ⋆ ⋆ ⋆ ⋆ \ ⋆ ⋆ ⋆ 1 ⋆ ⋆)
= 10 ⋆ 01 ⋆ ∪ 10 ⋆ 0 ⋆ ⋆ (integrating negation)
= 10 ⋆ 0 ⋆ ⋆ (right side is more general)

We believe that the authors wanted to provide the intuition of the use of the negation \, and
had to make it appear in the result since they provide it directly and do not show the details
of the computation.
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Résumé français
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Contexte et motivations

Au cours des dernières décennies, le monde est devenu de plus en plus numérique. Cette
tendance ne s’est pas inversée en 2020 ou 2021, les services professionnels et personnels étant
de plus en plus fournis et utilisés au travers d’ordinateurs, tablettes ou téléphones portables.

Cet intense basculement numérique implique que les pannes réseaux sont plus coûteuses
et nuisibles que jamais1, voire parfois critiques2. Nous insistons sur le fait que les pannes
mentionnées et auxquelles nous nous intéressons ne sont pas le résultat d’attaques externes
– qui par ailleurs arrivent toutes les semaines, sinon tous les jours et dans des proportions
industrielles –, mais sont simplement des bugs.

Ces bugs sont avant tout dus à l’incroyable complexité de la conception de réseaux, qui elle-
même vient de la nature hautement distribuée de ces derniers. De plus, la communauté
réseau s’est longtemps basée sur une culture bricolo, dans le sens où elle ne disposait pas de
fondations formelles, et donc des possibilités que l’existence et l’étude de telles fondations
permet.

Durant les dix à quinze dernières années, des chercheurs et chercheuses avec un passif en
théorie des langages de programmation ont commencé à s’intéresser au réseau, et à la façon
dont ils pourraient appliquer leurs outils et approches théoriques à ce domaine. Com-
binée à l’augmentation critique des besoins en sûreté (et sécurité), cette situation a mené
à l’introduction de méthodes formelles pour le réseau. Cette tendance a également été ren-
forcée par les dernières avancées en méthodes formelles, à la fois en termes de techniques de
modélisation et d’efficacité concrète (voir par exemple les solvers rapides comme Z3).

Parmi les outils créés, on trouve Network Optimized Datalog (NoD), un moteur Datalog
developpé chez Microsoft conçu pour gérer des programmes qui décrivent, sous la forme de
clauses de Horn, le comportement d’un réseau donné. Bien qu’étant un pas dans la bonne
direction, utiliser ce moteur demande aux ingénieurs réseaux d’écrire manuellement un codage
de chaque réseau analysé, ce qui est en soi un processus complexe et risqué.

De plus, NoD ne passe pas à l’échelle en utilisant des traductions näıves de réseaux de taille
industrielle. En pratique, les auteurs se basent sur des programmes qui contiennent beaucoup
de valeurs en dur, en utilisant des transformations (au niveau Datalog) manuelles, pas totale-
ment claires et non-documentées. Cet angle mort dans un outil par ailleurs remarquable nous
a poussé à travailler sur la conception et l’automatisation de transformations de programme
similaires, cette fois avec une formalisation complète.

Cependant, avoir une formalisation d’opérations non-triviales n’est pas suffisant pour avoir
confiance en elles. Le but de notre travail a donc été la vérification formelle de cette
transformation dans l’assistant de preuve Coq, en utilisant (et étendant légèrement) une

1https://techcrunch.com/2020/07/17/cloudflare-dns-goes-down-taking-a-large-piece-of-the-internet-with-it/
2https://www.reuters.com/business/media-telecom/orange-blames-network-outage-software-failure-audit-2021-06-11/
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implémentation Coq de Datalog préexistante.

Bien qu’inspiré par le cadre de la vérification réseau, notre travail n’y est pas circonscrit.
Concrètement, les analyses et réécritures que nous proposons peuvent être utilisées – et
pertinentes – dans d’autres contextes. De plus, nous pensons que ce travail apporte un nouvel
éclairage concernant la sémantique et l’étude formelle de programmes Datalog, éclairage qui
pourrait servir comme base de travaux futurs, potentiellement dans d’autres contextes.



Contribution(s)

Questions et résultats

Le point de départ de cette thèse fut l’identification et analyse d’un angle mort dans le moteur
Network Optimized Datalog en la présence de prédicats primitifs avec plusieurs variables.
Pour s’attaquer à ce problème, nous avons conçu une analyse statique pour Datalog, ainsi
que deux transformations de programme sur laquelle elles se basent. L’analyse statique et
les transformations ont été vérifiées dans l’assistant de preuve Coq, en se basant sur une
formalisation et implémentation de Datalog dans Coq préexistante.

Notre travail a requis et mené à l’extension de certains outils, principalement l’ajout d’une
sémantique de trace pour Datalog et son implémentation vérifiée dans la formalisation Coq
de Datalog susmentionnée. Nous avons aussi développé des nouveaux types finis pour la
bibliothèque Mathematical Components, sur laquelle la formalisation s’appuie.

Enfin, nous présentons une version plus fine de notre analyse statique, et montrons qu’elle ne
marche pas sur tout programme Datalog. Ce résultat nous pousse à essayer de caractériser la
classe précise de programmes Datalog sur lesquels elle peut être utilisée, mais notre intuition
reste à vérifier formellement.

Liste de publications

Le travail sur cette thèse a mené aux contributions qui suivent :

• Une présentation au Coq workshop 2020 sur le développement de nouveaux types finis
pour la bibliothèque MathComp [Bégay et al., 2020a]

• Un papier aux 19èmes journées approches formelles dans l’assistance au développement
de logiciels (conférence AFADL 2020)[Bégay et al., 2020b]

• Un papier à la conférence Certified Programs and Proofs (CPP) 2021 [Bégay et al., 2021]
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Contenu des différents chapitres

First-order logic

On rappelle les fondations de la logique du premier ordre (syntaxe et sémantique), ainsi que
certains points utilisés par ailleurs dans la thèse (formes normales et systèmes d’inférence).

Datalog

Introduction formelle du langage de programmation logique Datalog, dont on définit formelle-
ment la syntaxe et deux sémantiques (dont une opérationnelle) équivalentes. On discute de
plus comment traiter la négation dans Datalog, ainsi que l’utilisation de prédicats primitifs
pour ajouter des calculs ”non-symboliques” au langage.

Datalog in Coq

On présente d’abord succintement la bibliothèque Mathematical Components de Coq. On
introduit ensuite la modélisation de Datalog en Coq intitulée DatalogCert, sur laquelle notre
propre travail de formalistion et vérification s’appuie.

Approaches to network verification

On discute d’abord des difficultés inhérentes à la vérification réseau, puis on en présente les
différents types : vérification et test du dataplane (d’un réseau déployé), du control plane (la
partie automatique du déploiement d’un réseau), et enfin la synthèse de réseaux corrects par
construction.

Network Optimized Datalog

Introduction de l’outil de vérification réseau NoD. On discute en particulier de l’intérêt de
Datalog pour modéliser le comportement d’un réseau, et les modifications qui sont faites à
un moteur Datalog prééxistant pour passer à l’échelle.
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180 APPENDIX C. RÉSUMÉ FRANÇAIS

Octant

On présente des limites de Network Optimized Datalog en termes de généricité, puis on
introduit l’outil Octant qui s’y attaque. On discute ensuite du coût que le nouveau niveau
de généricité a en termes d’efficacité.

New sequence and tree finTypes

On présente les nouveaux types de listes et arbres finis que nous développons dans MathComp.
Les listes sont bornées soit syntaxiquement (type des listes contenant au plus x éléments),
soit sémantiquement (type des listes sur un type fini ne contenant pas deux fois le même
élément). Les arbres suivent un principe similaire (arbres bornés syntaxiquement en largeur
et hauteur, ou syntaxiquement en largeur et par unicité en hauteur). Les preuves de ces types
– ou plutôt de leur caractère fini – sont également présentées.

A trace semantics for Datalog

Nous introduisons une nouvelle sémantique, dite de trace pour Datalog. Au lieu de considérer
le résultat de l’exécution d’un programme comme un ensemble de faits, nous le voyons comme
un ensemble d’arbres détaillant les calculs de chacun de ces faits. Nous décrivons également
la formalisation de cette sémantique dans Coq, et comment nous l’avons rendue finie pour
l’intégrer au cadre de DatalogCert.

Partial program instantiation

Ce chapitre introduit notre première réécriture, qui requiert une surapproximation des sub-
stitutions calculées in fine par l’exécution d’un programme Datalog et s’en sert pour produire
une instance partielle – et en générale beaucoup plus longue – du programme, où une partie
des résultats des calculs apparâıt d’office dans les règles. Le chapitre discute également de la
formalisation et justification Coq de cette réécriture.

Static analysis

Nous intoduisons une analyse statique qui fournit une surapproximation du comportement
de n’importe quelle variable d’un programme Datalog, et peut donc être utilisée en conjonc-
tion avec la réécriture du chapitre précédent. Fondamentalement, cette analyse représente
le chemin parcouru par une variable lors de l’exécution comme un arbre étiqueté par des
conjonctions et des disjonctions, et dont les feuilles sont des colonnes dans la base de données
extensionnelles du programme analysé. Nous présentons également la formalisation et justifi-
cation Coq de cette analyse statique, en particulier la difficulté liée à la preuve de terminaison.
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Predicate specialization

Ce chapitre introduit notre deuxième transformation de programme, qui analyse des pro-
grammes partiellement instanciés – elle s’utilise donc en conjonction avec la première – et en
spécialise les prédicats pour diminuer le nombre d’arguments manipulés. Encore une fois, la
formalisation et preuve Coq sont présentées dans le chapitre.

Discussion and related works

Nous discutons certains points de notre travail sur lesquels il nous semblait intéressant de
revenir. En particulier, nous commentons les effets et l’efficacité de l’optimisation dans Oc-
tant, présentons les contours d’une analyse statique plus fine qui reste à étudier plus finement,
revenons sur certains choix de modélisations et erreurs faites pendant ces trois années, com-
mentons l’effort général représenté par l’ensemble des preuves, et introduisons des travaux
qui nous semblent liés à cette thèse.



Conclusion et perspectives

Le travail présenté dans ce document est, comme souvent en recherche, le résultat fortuit du
petit projet de deux semaines proverbial. Plus concrètement, cette thèse était initialement
censée s’intéresser au langage NetKat (voir la section 4.4), mais il nous a été demandé de jeter
un oeil au moteur Network Optimized Datalog (chapitre 5) pour améliorer les performances
d’Octant (chapitre 6). Le résultat est, comme souligné dans l’introduction, l’identification
d’un angle mort dans le moteur susmentionné, la conception d’une analyse statique, deux
transformation de programme et une sémantique de trace pour Datalog, leur certification
dans une formalisation Coq/MathComp préexistente du langage et l’introduction de nouveaux
types finis pour MathComp.

Nous pensons fortement qu’une des caractéristiques clefs de cette thèse est le fait qu’elle
utilise DatalogCert (voir le chapitre 3), en fournissant un exemple d’utilisation non-trivial,
et donc une illustration de son utilisabilité. De plus, comprendre les choix de conception
d’implémentation de ce moteur, ce qui nous a mené a proposer quelques additions ou mod-
ifications, fut un exercice intellectuel très satisfaisant. Il va sans dire que nous sommes très
redevables aux auteurs de DatalogCert – Ştefania-Gabriela Dumbravă, Véronique Benzaken
et Evelyne Contejean –, sans qui notre travail aurait clairement manqué de fondations et
justifications solides.

A un niveau plus concret, l’analyse statique et les transformataions que nous introduisons
dans ce document peuvent réécrire des spécifications génériques, réutilisables, (généralement)
courtes et claires en une forme spécifique à un réseau plus proche d’un programme NoD typ-
ique. Le faire à la main est bien sûr possible, mais aussi long, complexe et risqué, nos
optimisations certifiées ont donc pour but de concilier performances et sûreté. Les pro-
grammes réécrits s’exécutent plusieurs ordres de grandeur plus rapidement que les originaux,
mais restent parfois significativement plus lents que leurs équivalents écrits à la main dans
NoD. Cette situation justifie notre travail sur une analyse statique plus fine (section 12.2),
qui essaie d’échanger un peu de sûreté (il devient inadapté à certains programmes Datalog)
pour beaucoup plus d’efficacité. La question clef devient alors de déterminer précisément
quels programmes sont exclus – en particulier en trouvant un critère syntaxique simple –, et
si les programmes restants sont pertinents. Nous donnons une esquisse de ces réponses, mais
nos intuitions restent à formaliser et vérifier.

L’analyse statique et les deux réécritures que nous intoduisons sont toutes définies et certifiées
indépendamment. Si une meilleure analyse statique pour Datalog que la nôtre (chapitre 10) –
que ça soit la version alternative mentionnée plus haut ou une approche entièrement différente
– apparaissait, elle pourrait être facilement branchée dans l’instance partielle de programmes
du chapitre 9, notamment grâce à la très large définition de l’hypothèse de complétude de
l’ensemble de substitutions fourni (voir la définition 9.4).

A l’inverse, le travail présenté dans ce document a été conçu pour Network Optimized Data-
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log et la vérification réseau, mais pourrait être utilisé dans d’autres contextes. Cette possi-
bilité reste à étudier.



Leçons

Pendant cette thèse, nous avons assisté à une école d’été durant laquelle Andrei Paskevich a
expliqué que ”La certification formelle d’un système est en général un ordre de grandeur plus
complexe et longue que la conception du système en question”. Ce résultat, qui pourrait au
premier abord sembler abstrait, nous a finalement semblé très réél. En particulier, nous avons
été étonné de constater combien des idées très simples, par exemple celles derrières l’analyse
statique que nous proposons, peuvent être implémentées de façons inutilement absconses et
risquées, et nécessiter un raisonnement complexe et abstrait pour les certifier.

Ces reflexions nous ramènent à la conclusion de [Benzaken et al., 2017a], qui souligne que
la justification de nombreux résultats centraux et ”intuitivement clairs” à propos des bases
de données ont toujours été traités ”de loin” plutôt qu’avec des ”preuves scrupuleuses”,
impliquant que ”des détails de bas niveaux étaient soient ignorés, soit laissés au lecteur ou la
lectrice”. Savoir qu’il y a une continuité et une sorte de cohérence en termes de motivations
et difficultés entre l’impleméntation de DatalogCert et notre propre travail fut d’un grand
réconfort.

L’autre grande leçon (ou plutôt ensemble de leçons) que nous avons apprise(s) durant ce
travail est d’ordre plus qualitatif que quantitatif, et détaillée dans la section 12.3.4. Fonda-
mentalement, nous y expliquons que

1) notre première implémentation de l’analyse statique contenait une erreur

2) et été conçue d’une façon qui rendait les preuves bien plus dures et moins claires

3) ce qui nous a mené à écrire un résultat de complètude incorrect qui a permis pendant
très longtemps à une erreur de ne pas être repérée.

Nous avons suivi de nombreux cours de méthodes formelles – durant lesquels on nous a
presque systématiquement raconté le crash du vol 501 d’Ariane 5 –, donc nous n’avons pas
été surpris par 1). Cette situation à la ”le diable est dans les détails” est, après tout, ce qui
justifie les méthodes formelles.

Le leçon de 2), comme la citation de Andrei Paskevich discutée plus haut, nous la connaissions
théoriquement mais n’en avions jamais fait l’expérience concrète. Les cours de méthodes
formelles discutent bien sûr du choix de modèles et formulation appropriés, mais les systèmes
et algorithmes qui y sont vérifiés sont généralement définis a priori. Nous n’avions donc
jamais eu à travailler sur la certification d’un système mal défini ou implémenté, et ne nous
attendions donc pas à ce que cet aspect soit aussi critique qu’il l’a été dans notre travail.

Enfin, le problème qui nous a le plus enseigné aura sans l’ombre d’un doute été 3). Nous
avons été élevé – dans un sens académiquee – dans la croyance que la spécification et la
vérification de propriétés d’un algorithme ou programme était un processus extrêmement
puissant. Cette très forte mise en avant de la certification nous a fait croire en la toute-
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puissance de la simple existence d’un processus de vérification, et donc nous pousser à ne pas
mettre assez de soin dans ses fondations, i.e. les lemmes et théorèmes qui sont vérifiés. Tout
au long du reste de notre vie en tant qu’admirateur et professionnel des méthodes formelles,
nous nous souviendrons de cette expérience, afin d’atteindre et maintenir un haut niveau
d’auto-critique et de perspective.
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[Castéran and Bertot, 2004] Castéran, P. and Bertot, Y. (2004). Interactive theorem proving
and program development. Coq’Art: The Calculus of inductive constructions. Texts in
Theoretical Computer Science. Springer Verlag. Traduction en chinois parue en 2010.
Tsinghua University Press. ISBN 9787302208136. (Cited on page 9.)

[Ceri et al., 1989] Ceri, S., Gottlob, G., and Tanca, L. (1989). What you always wanted to
know about Datalog (and never dared to ask). IEEE transactions on knowledge and data
engineering, 1(1):146–166. (Cited on page 35.)

[Chang et al., 2003] Chang, D.-F., Govindan, R., and Heidemann, J. (2003). The temporal
and topological characteristics of BGP path changes. In 11th IEEE International Con-
ference on Network Protocols, 2003. Proceedings., pages 190–199. IEEE. (Cited on page
62.)



190 BIBLIOGRAPHY

[Chaudhuri, 1993] Chaudhuri, S. (1993). Finding nonrecursive envelopes for Datalog pred-
icate. In Proceedings of the Twelfth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, PODS ’93, page 135–146, New York, NY, USA. Associa-
tion for Computing Machinery. (Cited on page 160.)

[Chaudhuri and Kolaitis, 1994] Chaudhuri, S. and Kolaitis, P. G. (1994). Can Datalog be
approximated? In Proceedings of the Thirteenth ACM SIGACT-SIGMOD-SIGART Sym-
posium on Principles of Database Systems, PODS ’94, page 86–96, New York, NY, USA.
Association for Computing Machinery. (Cited on page 160.)

[Chin et al., 2015] Chin, B., von Dincklage, D., Ercegovac, V., Hawkins, P., Miller, M. S.,
Och, F., Olston, C., and Pereira, F. (2015). Yedalog: Exploring knowledge at scale. In
1st Summit on Advances in Programming Languages (SNAPL 2015). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik. (Cited on page 26.)

[Chlipala, 2010] Chlipala, A. (2010). A verified compiler for an impure functional language.
ACM Sigplan Notices, 45(1):93–106. (Cited on page 9.)

[Cimatti et al., 2000] Cimatti, A., Clarke, E., Giunchiglia, F., and Roveri, M. (2000). Nusmv:
a new symbolic model checker. International Journal on Software Tools for Technology
Transfer, 2(4):410–425. (Cited on page 60.)

[Clark, 1988] Clark, D. (1988). The design philosophy of the DARPA internet protocols.
In Symposium proceedings on Communications architectures and protocols, pages 106–114.
(Cited on page 57.)

[Clarke et al., 1986] Clarke, E. M., Emerson, E. A., and Sistla, A. P. (1986). Automatic
verification of finite-state concurrent systems using temporal logic specifications. ACM
Transactions on Programming Languages and Systems (TOPLAS), 8(2):244–263. (Cited
on page 60.)

[Codd, 1970] Codd, E. F. (1970). A relational model of data for large shared data banks.
Commun. ACM, 13(6):377–387. (Cited on page 26.)

[Codd, 2002] Codd, E. F. (2002). A relational model of data for large shared data banks. In
Software pioneers, pages 263–294. Springer. (Cited on page 14.)

[Constable et al., 1986] Constable, R. L., Allen, S. F., Bromley, H. M., Cleaveland, W. R.,
Cremer, J. F., Harper, R. W., Howe, D. J., Knoblock, T. B., Mendler, N. P., Panangaden,
P., Sasaki, J. T., and Smith, S. F. (1986). Implementing Mathematics with the Nuprl Proof
Development System. Prentice-Hall, Inc., USA. (Cited on page 10.)

[Cousot, 2002] Cousot, P. (2002). Constructive design of a hierarchy of semantics of a tran-
sition system by abstract interpretation. Theoretical Computer Science, 277(1-2):47–103.
(Cited on page 90.)

[Cousot, 2005] Cousot, P. (2005). Abstract interpretation. MIT course 16.399,
http://web.mit.edu/16.399/www/. (Cited on page 90.)

[Cruz-Filipe et al., 2004] Cruz-Filipe, L., Geuvers, H., and Wiedijk, F. (2004). C-corn, the
constructive Coq repository at Nijmegen. In International Conference on Mathematical
Knowledge Management, pages 88–103. Springer. (Cited on page 9.)

[de Moor et al., 2008] de Moor, O., Sereni, D., Avgustinov, P., and Verbaere, M. (2008).
Type inference for Datalog and its application to query optimisation. In Proceedings of the



BIBLIOGRAPHY 191

Twenty-Seventh ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS ’08, page 291–300, New York, NY, USA. Association for Computing Ma-
chinery. (Cited on page 160.)

[de Moura and Bjørner, 2008] de Moura, L. and Bjørner, N. (2008). Z3: an efficient SMT
solver. In Tools and Algorithms for the Construction and Analysis of Systems, 14th In-
ternational Conference, TACAS 2008, Held as Part of the Joint European Conferences on
Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6,
2008. Proceedings, pages 337–340. (Cited on pages 10, 60, and 65.)

[de Rauglaudre, 2017] de Rauglaudre, D. (2017). Formal Proof of Banach-Tarski Paradox.
Journal of Formalized Reasoning, 10(1):37–49. (Cited on page 9.)

[Dean and Ghemawat, 2008] Dean, J. and Ghemawat, S. (2008). Mapreduce: simplified data
processing on large clusters. Communications of the ACM, 51(1):107–113. (Cited on page
14.)

[DeTreville, 2002] DeTreville, J. (2002). Binder, a logic-based security language. In Proceed-
ings 2002 IEEE Symposium on Security and Privacy, pages 105–113. IEEE. (Cited on
page 26.)

[Dobrescu and Argyraki, 2014] Dobrescu, M. and Argyraki, K. (2014). Software dataplane
verification. In 11th USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 14), pages 101–114. (Cited on page 61.)

[Doenges et al., 2021] Doenges, R., Arashloo, M. T., Bautista, S., Chang, A., Ni, N., Parkin-
son, S., Peterson, R., Solko-Breslin, A., Xu, A., and Foster, N. (2021). Petr4: formal
foundations for p4 data planes. Proceedings of the ACM on Programming Languages,
5(POPL):1–32. (Cited on pages 57, 58, and 64.)

[Dougherty et al., 2006] Dougherty, D. J., Fisler, K., and Krishnamurthi, S. (2006). Specify-
ing and reasoning about dynamic access-control policies. In International Joint Conference
on Automated Reasoning, pages 632–646. Springer. (Cited on page 29.)

[Dumbrava, 2016] Dumbrava, S.-G. (2016). Formalisation en Coq de Bases de Données Re-
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