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Abstract

This thesis concerns the development of analytical condensed models to predict the vibro-

acoustic responses of planar multi-layer structures. Typical structural components in,

e.g., aerospace applications involve multi-layer composite panels and evaluation of vibro-

acoustic indicators (for example, transmission loss) of these multi-layer structures through

finite element analysis would result in expensive computational power and time. This is

due to an increase in the total number of degrees of freedom which results from a com-

plete description of each different layer in the multi-layer system. This challenge could be

tackled by employing a condensed and equivalent single layer that simulates the vibro-

acoustic behaviour of the multi-layer system which would require lesser computational

storage that effectively reduces the computation time. In addition, condensed models

enable us to understand the physical behaviour of the multi-layers at different frequency

regimes. The existing equivalent plate models describe the propagation of bending and

shear waves in multilayers, giving a useful prediction for vibroacoustic indicators across

the range of audible frequencies if the multilayer structure does not contain soft mate-

rial in terms of longitudinal compression. As the compressional (or dilatational) wave

propagation is not employed in current models, they are applicable only to relatively thin

multilayer systems.

In this context, this doctoral thesis addresses the four major research advancements

made to these models. The first advancement focuses on the limits of applicability of plate

theories, which are commonly employed in many vibroacoustic applications. As there are

no clear-cut analytical expressions available in the literature for the frequency limits of

plate theories, these expressions are obtained for an elastic solid layer of isotropic nature,

through wavenumber and admittance analysis. Refined expressions for exact coincidence

and critical frequencies are also provided by comparing the propagative wavenumbers in

the single-layer plates. The Transmission Loss (TL) computations using plate theories are

compared to the TL computed using the Transfer Matrix Method (TMM) for a variety

of thin/thick and soft/stiff materials, to validate these frequency limits.

A simple condensed (or equivalent) plate model is developed as a second advancement,

for three-layer sandwich structures made of isotropic materials. Even though the existing

condensed plate models provide matched response with that of the principles of elasticity,
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these models would consume considerable time for implementation processes. Therefore,

to overcome this challenge, a simpler and easier version of the equivalent plate model is

developed by observing the physical behaviours of a three-layer structure. The model

requires only four key parameters that are sufficient to describe the natural behaviour

of the three-layer structure at all frequencies. Validation of this simple model has been

done by comparing its response with the existing equivalent plate model as well as the

experimental data, which are observed to be well-matched.

In the third advancement, an advanced vibro-acoustic condensed model is developed

for symmetric multi-layer structures including its dilatational effects. The novelty of

this model lies in capturing both symmetric and anti-symmetric motions of the multi-

layers while the existing condensed plate models could handle only the anti-symmetric

motions. The condensed layer obtained through the presented model will have three

dynamic mechanical properties by describing two decoupled admittances correspond to

symmetric and anti-symmetric motions. The model is validated with the transmission

loss responses obtained from the TMM for different multi-layer configurations.

As a final advancement of this thesis, a Finite Element (FE) scheme is proposed, to

compute vibro-acoustic indicators from the novel condensed model that is developed as

the third advancement of this thesis. The FE scheme consists of two decoupled condensed

plates with corresponding dynamic intrinsic properties that are obtained from the new

condensed model. Through multiple validation cases, the computational efficiency of the

proposed condensed FE scheme has been shown, in comparison with the conventional

three-dimensional FE approach.

Keywords: Condensed models, Equivalent plate models, Plate theories, Multi-layer

structures, Flexural rigidities, Wavenumbers, Finite element analysis, Dilatational motion
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Résumé

Cette thèse concerne le développement de modèles analytiques condensés pour prédire

les réponses vibro-acoustiques de structures multicouches planes. Le premier chapitre

présente le contexte général suivi des objectifs de la thèse. Les composants structurels

typiques des applications aérospatiales, par exemple, nécessitent l’utilisation de panneaux

composites multicouches et l’évaluation des indicateurs vibro-acoustiques (par exemple,

la perte par transmission) de ces structures multicouches par le biais d’une analyse par

éléments finis entrâınerait une puissance et un temps de calcul coûteux. Ceci est dû

à une augmentation du nombre total de degrés de liberté résultant d’une description

complète de chaque couche dans le système multicouche. Ce défi pourrait être relevé

en utilisant une couche unique condensée équivalente qui simule le comportement vibro-

acoustique du système multicouche, ce qui nécessiterait moins de stockage informatique

et réduirait efficacement le temps de calcul. De plus, des modèles condensés nous per-

mettent de comprendre le comportement physique des multicouches à différents régimes

fréquentiels.

Le deuxième chapitre présente la revue de littérature détaillée des modèles vibro-

acoustiques couramment utilisés pour analyser et caractériser les structures multicouches.

Les publications clés concernent les modèles analytiques, y compris les modèles condensés

(ou équivalents), et les méthodes expérimentales sont rassemblées pour fournir l’état de

l’art du sujet d’étude.

Le troisième chapitre détaille l’arrière-plan théorique d’une méthode vibro-acoustique

générique appelée ”Méthode des Matrices de Transfert (TMM)”, qui est traitée comme

une méthode de référence pour comparer les modèles développés dans cette thèse. Une

procédure de condensation préliminaire est présentée à partir de la matrice globale obetnue

par la TMM.

Dans le quatrième chapitre, des expressions analytiques pour les limites fréquentielles

de validité des théories des plaques couramment utilisées sont dérivées. Ces expressions

sont obtenues pour une couche solide élastique de nature isotrope, par analyse du nombre

d’onde et de l’admittance. Des expressions affinées pour les fréquences de cöıncidence

et critiques sont également fournies en comparant les nombres d’onde de propagation
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dans les plaques monocouches. Les calculs de perte par transmission (TL) utilisant les

théories des plaques sont comparés au TL calculé à l’aide de la TMM pour une variété de

matériaux minces/épais et souples/rigides, afin de valider ces limites fréquentielles.

Le cinquième chapitre présente un modèle simple de plaque condensée (ou équivalente)

pour des structures sandwich à trois couches constituées de matériaux isotropes. Même si

les modèles de plaques condensées existants sont déjà très robustes, ces modèles peuvent

prendre un temps considérable à implémenter. Par conséquent, pour surmonter ce défi,

une version plus simple de modèle de plaque équivalente est développée en observant les

différents comportements physiques d’une structure à trois couches.

Le sixième chapitre présente un modèle condensé vibro-acoustique avancé pour les

structures multicouches symétriques épaisses, incluants les effets de dilatation. La nou-

veauté de ce modèle réside dans la capture des mouvements symétriques et antisymétriques

des multicouches alors que les modèles de plaques condensées existants ne consideraient

que les mouvements antisymétriques. La couche condensée obtenue grâce au modèle

présenté aura trois propriétés élastiques dynamiques en décrivant deux admittances découplées

correspondantes à des mouvements symétriques et antisymétriques.

Dans le septième chapitre, un schéma d’éléments finis (FE pour Finite Elements en

Anglais) est proposé, pour calculer des indicateurs vibro-acoustiques à partir du nouveau

modèle condensé donné par le sixième chapitre de cette thèse. Le schéma FE se com-

pose de deux éléments de plaques condensées découplées avec des propriétés intrinsèques

dynamiques correspondantes qui sont obtenues à partir du nouveau modèle condensé.

Grâce à plusieurs cas de validation, l’efficacité de calcul du schéma FE condensé proposé

est démontrée, en comparaison avec l’approche FE tridimensionnelle usuelle.

Mots clés: Modèles condensés, Modèles de plaques équivalentes, Théories des plaques,

Structures multicouches, Rigidités en flexion, Nombres d’onde, Analyse par éléments finis,

Mouvement de dilatation
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Nomenclature

Symbol Unit Definition
rKs, rM s, rCs Stiffness, mass and coupling matrices respectively

r qKs, r|M s Stiffness and mass matrices of anti-symmetric condensed
plate respectively

rKs, rM s Stiffness and mass matrices of symmetric condensed
plate respectively

rHs, rQs Kinetic and compression energy matrices respectively
tW u, tP u Nodal vectors of solid and fluid phases respectively

t|W u, tW u Nodal vectors of anti-symmetric and symmetric con-
densed plates respectively

twnu Nodal displacement vector of air layer
rBs Coupling matrix of anti-symmetric and symmetric con-

densed plates
rBbs, rBss Strain-displacement matrices of bending and shear con-

tributions respectively
rDbs, rDss Constitutive stiffness matrices of bending and shear con-

tributions respectively
rN s, rN˚s Shape function matrices of solid and fluid phases respec-

tively
rIms Inertial matrix
V State vector
rT s Transfer matrix
t s Time
toblique s Transmission loss computation time for oblique wave ex-

citation
tdiffuse s Transmission loss computation time for diffuse field ex-

citation
ux, uy, uz m Displacement along x, y and z directions respectively
u0x, u

0
y, u

0
z m Mid-plane displacement along x, y and z directions re-

spectively
vx, vy, vz m s´1 Velocities along x, y and z directions respectively
σxz, σzz Pa Shear and normal stresses respectively
ϕx, ϕy rad Rotations about x and y directions respectively
ϕ Open porosity
ρ0 kg m´3 Air density
ρ kg m´3 Density
ρeq kg m´3 Equivalent density
ρ̃eq kg m´3 Equivalent dynamic density
ρ̃ kg m´3 Dynamic density
qρA kg m´3 Dynamic anti-symmetric density
ρS kg m´3 Dynamic symmetric density
E Pa Young’s modulus

Ẽ Pa Dynamic Young’s modulus

Ẽeq Pa Equivalent dynamic Young’s modulus
Eref Pa Young’s modulus of the reference layer
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Symbol Unit Definition
p Pa Dynamic pressure
P0 Pa Air equilibrium pressure
c0 m s´1 Speed of sound in air
c m s´1 Wave speed
c̃ m s´1 Dynamic wave speed
h m Thickness of a layer
ht m Total thickness of the multi-layer
bi,eff m Transformed width of the i´th layer
ms kg m´2 Total or equivalent mass per unit area
M kg m´2 Mass per unit area of the skin
ν Poisson’s ratio
νeq Equivalent Poisson’s ratio
ν̃ Dynamic Poisson’s ratio
νref Poisson’s ratio of the reference layer
η Damping or loss factor
η̃ Dynamic loss factor
η̃eq Equivalent dynamic loss factor
η0 Pa s Dynamic viscosity of air
D N m Complex bending stiffness

D̃eq N m Equivalent dynamic bending stiffness
Dlow N m Low-frequency asymptote of dynamic bending stiffness
Dhigh N m High-frequency asymptote of dynamic bending stiffness
DT N m Bending stiffness at transition frequency
G Pa Shear modulus

G̃eq Pa Equivalent dynamic shear modulus
G˚ Pa Corrected shear modulus
K Pa Bulk modulus

K̃ Pa Dynamic bulk modulus

K̃eq Pa Equivalent dynamic bulk modulus
λ, µ Pa Lamé coefficients
Π0 m2 Static viscous permeability
Π1

0 m2 Static thermal permeability
κ Shear correction factor
κ0 W m´1 K´1 Air thermal conductivity
k rad m´1 Wavenumber
k0 rad m´1 Wavenumber of the incident air
keq rad m´1 Equivalent wavenumber
kt rad m´1 Transverse wavenumber of the incident air
kp rad m´1 Propagating wavenumber
kb rad m´1 Bending wavenumber
km rad m´1 Membrane wavenumber
ks rad m´1 Corrected shear wavenumber
kRM rad m´1 Reissner-Mindlin plate wavenumber
A0 rad m´1 Lamb wavenumber of zeroth-order anti-symmetric mode
S0 rad m´1 Lamb wavenumber of zeroth-order symmetric mode
δl, δs rad m´1 Longitudinal and shear wavenumber respectively
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Symbol Unit Definition
ω rad s´1 Angular frequency
f Hz Frequency
fcomp Hz Compressional frequency
fcut-on Hz Cut-on frequency
fthin/thick Hz Frequncy limit of thin plate theory
fcoincthin Hz Coincidence frequency of thin plate
fcoincthick Hz Coincidence frequency of thick plate
fcrithin Hz Critical frequency of thin plate
fcrithick Hz Critical frequency of thick plate
fplate{solidoi Hz Frequency limit of plate theories for oblique incidence
fplate{soliddf Hz Frequency limit of plate theories for diffuse field
fT Hz Transition frequency
θ rad Incident angle of the plane wave
θ1
x, θ

1
y rad Rotations of thin plate about x and y directions respec-

tively
Z0 N s m´3 Characteristic impedance of air
Zs N s m´3 Surface impedance
Zc N s m´3 Characteristic impedance
ZA N s m´3 Anti-symmetric impedance
ZS N s m´3 Symmetric impedance
Zep N s m´3 Plate impedance
Zthin N s m´3 Thin plate impedance
Zthick N s m´3 Thick plate impedance
Zeq N s m´3 Anti-symmetric impedance from equivalent plate model
ZS,eq N s m´3 Equivalent symmetric impedance
ZA,eq N s m´3 Equivalent anti-symmetric impedance
YA m3 N´1 s´1 Anti-symmetric admittance
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Chapter 1

Introduction

The global transport industries are leading worldwide in the advancement and pro-

duction of structural products. In spite of that, the transport industries are facing three

important challenges namely a) Oil dependency , b) Emission control and c) Competition

[1]. Continuous technological developments is inevitable and crucial to overcome these

challenges and to maintain a healthy success rate against its competitors. From the struc-

tural perspective, efficiency of the structure depends on the high strength to weight ratio

of the materials used, especially in aeronautical and automotive industries. In the modern

transport applications, multi-layer structures are of the relevance in this regard and this is

achieved by reducing the structural mass without affecting the structural integrity which

will greatly lead to low operation costs, fuel costs and consumption of energy.

Composites are materials made of at least two or more constituent materials with

significantly different physical and chemical properties. As an example, a fibre reinforced

composite will have two different materials called (a) fibre (typically glass or carbon)

and (b) matrix (typically epoxy resin). When these two constituents are combined, they

exhibit good or improved structural performance compared to their individual material

characteristics. For example, in civil engineering applications, reinforced concretes and

composite wood (plywood) are widely used. Although composites are good to improve

the structural performance, they are not preferred candidates for the vibro-acoustic ap-

1
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Figure 1.1: An illustrative example of a complex layered and composite panel, coupled
with a metal foam layer (a), combining high structural rigidity, high acoustic attenuation,
high structural damping and low mass. An illustration of the typically anti-symmetric
layering for the composite face sheet (b), as well as of the acoustic transmission phe-
nomenon through the modelled multi-layer structure (c) is also shown.

plications. As they are lightweight structures, they result in lower transmission loss at

lower frequencies. Due to their higher stiffness along different directions, they often result

in a valley of lower critical frequencies. Further, they lower the transmission loss after

this critical valley as they are low dissipative in nature.

Comfort is the key factor which affects the quality and competitiveness of the struc-

tural products. Affecting the lives of humans worldwide, noise is the major form of the

environmental pollution which has severe effects on the socio-economic relations. Though

composite materials exhibit superior structural characteristics, they are found to be per-

forming poor in vibration and acoustic isolation levels. Also, due to the increasing thick-

ness, a very well known lightweight sandwich structure (made of composites Fig. 1.1)

allows multiple number of vibration and acoustic waves propagating within them that

affects their overall vibro-acoustic performance [2].

Increase in noise levels up to 7 dB (within certain frequency ranges) has been observed

in the composites from replacing the conventional aerospace metallic structures. To im-

prove the mechanical efficiency, passenger safety and comfort, vibro-acoustic isolation is

unavoidable and important. Active noise control and visco-elatic damping mechanisms

are usually employed, but this often leads to complex and heavy systems. While offering
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Figure 1.2: Multi-layered structure with composite materials and poro-elastic foams.

improved vibro-acoustic behaviours, these “sound packages” compromise the lightweight

benefits that comes from employing composite materials.

An exciting new alternative to these conventional sound packages is the employment

of poro-elastic materials within these multi-layered composites. These porous materials

can be coupled with existing multi-layer composite segments either as an additional poro-

elastic layer, or as poro-elastic inclusions within a single layer. Poro-elastic materials are

comprised of at least two phases: a solid phase constituted of the pore skeleton, and a

fluid phase constituted of the interstitial pore fluid. This fluid is quite often assumed

to be air, for acoustic studies. Multi-layers formed by combining layers of different na-

ture (composites stacked with porous sound packages as shown in Fig. 1.2) offer many

advantages over the conventional materials. In general, multi-layer structures have very

high vibration damping capacity when compared to metallic structures, and they are far

lighter than the active noise control mechanisms.

Multi-layers are also widely employed in the building industry, where sound insula-

tion is a critical criterion. While using the traditional materials, such as concrete walls,

increasing the thickness of a homogeneous layer increases the surfacic mass but also the

bending stiffness. However, the usage of thick walls is not financially feasible. Another

type of multi-layered material, known as a sandwich, was then used to attain performance

comparable to or greater than traditional materials while having reduced wall thicknesses

and costs. Sandwiches are also employed in transportation (for example, vehicle glazing)

and personal protection (helmets, vests by ball).
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Multi-layer materials are primarily appreciated for their versatile mechanical charac-

teristics, which traditional homogeneous materials do not provide. Knowledge of their

dynamic behaviour, on the other hand, is required to fully leverage their potentials. The

characterization of the structure then appears as a fundamental aspect of the design

process.

Objectives and structure of the thesis

As different types of materials are used in the multi-layer system, modelling of this

system often requires suitable mesh types for the material used and increases the total

mesh count in the classical Finite Element modelling. Additionally, it would lead to

high computation time due to these complexities. On the other hand, for particular

frequency bands, it is still a significant challenge to design sandwich structures (multi-

layered system) having optimized damping properties along with good sound insulation

performances. Therefore, in many engineering cases, it is of high interest to condense

the behaviour of a multi-layer system to a single layer material. This aims at reducing

the mesh size of the Finite Element (FE) model, which will lead to less computation

time.

Although the existing condensed (or equivalent) plate models are widely used, they

make certain assumptions about the types of waves propagating in the structures. For

example, if a multi-layer structure contains any soft layer which is sensitive to longitudinal

compression, the breathing (or compressional) mode needs to be accounted in the theoret-

ical formulation of the condensed models to correctly predict the vibro-acoustic behaviour

of the system. Since the current condensed models assume constant normal displacement

along the multi-layer thickness (thereby ignoring the thickness stretching motions of the

structure), they restrict their applicability to only relatively thin multi-layer structures.

Further, the existing models can be applied only if the layers are thin and made of either

isotropic or orthotropic in nature. This means that, in cases of soft or thick layers and

poro-elastic inclusions in the multi-layer system, these models cannot be applied. On the
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similar line, since the commonly employed plate theories for vibro-acoustic applications

do not include compressional motion of the structure, estimating an upper frequency limit

of these theories is necessary for the safe application of them. Additionally, the existing

condensed models often lead to considerable time for the implementation due to their

complex approaches. This doctoral thesis will attempt to tackle the above-mentioned

challenges by developing robust, accurate and efficient tools for predicting sound and

vibration transmission through layered media comprising poro-elastic materials. An ad-

vanced condensed model would be developed which can be applied to thick multi-layer

systems including poro-elastics by capturing possible types of propagating waves in the

structure.

Develop limiting frequency expressions for plate theories 

Reason: No clear-cut expression of limiting frequency is available 
in the literature for plate theories

Develop a simple equivalent plate model

Reason: Existing models require challenging 
implementation process

Develop a condensed model with dilatational effects

Reason: Existing models do not include dilatational motions
of the multi-layer structures

Develop a finite element scheme for the novel condensed model

Reason: A finite element framework need to be developed for the novel 
condensed model to reduce the computational time  

Thesis

objectives

Figure 1.3: Objectives of the thesis.

In line with this context, as shown in Fig. 1.3, the scientific objectives of this thesis

are:

1. Develop analytical expressions for the frequency limits of commonly employed plate

theories in vibro-acoustic applications;
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2. Develop a simple condensed (or equivalent) plate model for three-layer structures

to facilitate the implementation processes;

3. Develop a condensed model for the multi-layer system which could simulate the

compressional behaviour of the soft/thick and poro-elastic materials used in the

layup;

4. Develop a finite element scheme to implement the novel condensed model to simu-

late all fundamental wave propagations including dilatational motion of multi-layer

structures.

As the existing vibro-acoustic models typically
use thin and thick plate theories, this chapter
provides analytical expressions of upper
frequency limits to apply these theories.

This chapter presents a simple condensed plate
model, applicable for three-layer structures, to
have easier implementation process than the
existing condensed plate models.

Chapter 4

Accuracy limits of 
plate theories

Chapter 5

A simple condensed 
plate model

An advanced condensed model is presented in
this chapter, which includes both symmetric
and anti-symmetric motions of the structure,
while the existing models account only the anti-
symmetric motions.

Chapter 6

Condensed model 
with dilatational

effects

A finite element scheme for the condensed
model presented in Chapter 6 is proposed in
this chapter. Through multiple examples, it is
showed that the proposed approach is quite
faster than the conventional 3D FE approach.

Chapter 7

FE scheme for 
condensed model

Thin plate

Thick plate

frequency

TL

Simple model
Implementation process

Existing models
EasierComplex

Anti-symm.
effects

Symmetric
effects

Existing
models
New
model

Computational time

3D finite element
approach

Condensed finite
element approach

Advancements made in this thesis

Chapter 3
Condensed model
from the Transfer
Matrix Method

State-of-the-art of relevant vibro-acoustic
models is presented in this chapter. Although
many types of vibro-acoustic models available
in the literature, this thesis is focused on the
condensed models.

Chapter 2

Literature review

Summary of the subsequent chapters

Fundamental principles of the TMM and a
simple version of the condensed model for
symmetric multi-layer systems, obtained from
the TMM, are presented.

Figure 1.4: Organization and summary of the subsequent chapters of this thesis.
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Regarding the structure of this thesis, along with the comprehensive review of the

existing literature, each of the above-mentioned objectives is addressed in a dedicated

chapter as shown in Fig. 1.4.

Publications and conference presentations

The scientific articles and conference presentations produced from the outcomes of

this thesis are listed below:

Published articles

• Arasan, U., Marchetti, F., Chevillotte, F., Tanner, G., Chronopoulos, D., Gour-

don, E. (2021). “On the accuracy limits of plate theories for vibro-acoustic predic-

tions”. Journal of Sound and Vibration, 493, 115848.

• Arasan, U., Marchetti, F., Chevillotte, F., Jaouen, L., Chronopoulos, D., Gourdon,

E. (2021). “A simple equivalent plate model for dynamic bending stiffness of three-

layer sandwich panels with shearing core”. Journal of Sound and Vibration, 500,

116025.

• Marchetti, F., Arasan, U., Chevillotte, F., Ege, K. (2021). “On the condensation

of thick symmetric multilayer panels including dilatational motion”. Journal of

Sound and Vibration, 502, 116078.

Submitted for review

• Arasan, U., Sreekumar, A., Chevillotte, F., Triantafyllou, S. P., Chronopoulos, D.,

Gourdon, E. (2021). “Condensed finite element scheme for symmetric multi-layer

structures including dilatational motion”. Journal of Sound and Vibration.
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Conference presentations

• Arasan, U., Chevillotte, F., Jaouen, L., Chronopoulos, D., Gourdon, E. (2019).

“Comparison of transmission loss prediction using condensed equivalent plate mod-

els”. 23rd International Congress on Acoustics (ICA 2019).

• Arasan, U., Chevillotte, F., Chronopoulos, D., Gourdon, E., Marchetti, F., Ege,

K., Bécot, F.-X. (2020). “Comparison of equivalent plate models using wavenumber

approach”. e-Forum Acusticum (FA2020).



Chapter 2

Literature review

2.1 Introduction

In recent years, multi-layered partitions have been used widely for better sound comfort

and noise attenuation. Advanced composite structures are one type of multi-layered

systems which are being used increasingly in various industries such as aerospace and

aircraft industries. Sandwich composites which exhibit high stiffness with light weight

are widely used in the transportation and construction industries. As the acoustic and

vibration behaviours are related, the characterization of materials and some special models

are essential to study the acoustic phenomena. Since the interactions between the different

layered materials affect the acoustic performance of the multi-layered system, it is not

always optimized by assembling only the best materials.

With various different damping configurations and testing methods [3–6], viscoelastic

layers in the multi-layer system are employed to control the resonance response of the

structures. In this direction, theoretical model of damped thin structures was introduced

by Kerwin Jr [7]. Further, this had been extended [8–11] for general beam and plate

boundary conditions. A more accurate theory [9] was developed, accounting for shear and

rotational inertia in the skins and discrete displacement field for the layers. An analytical

method considering flexural, longitudinal, rotational and shear deformations in all layers

9
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of sandwich beams with multiple constrained layer damping patches is proposed by Kung

and Singh [12]. For general multi-layer structures with unlimited number of layers, general

laminate models were developed [13, 14] which demonstrated the requirement of high

computational effort.

Since there are various types of vibro-acoustic methods available in the literature, this

chapter is divided into four main sections to discuss the state-of-the-art on the analy-

ses of the multi-layer structures: 1) Section 2.2 provides an overview of generic vibro-

acoustic methods, that are commonly employed across various industrial applications,

such as Transfer Matrix Method (TMM), Finite Element (FE) models and Statistical

Energy Analysis (SEA), 2) Section 2.3 presents the experimental methods to assess the

vibro-acoustic response of multi-layer structures, 3) Section 2.4 details various analytical

multi-layer models that focus on specific configurations of multi-layers and 4) Section 2.5

presents the condensed (or equivalent) plate models which aim to reduce the computa-

tional effort compared to other methods.

2.2 General vibro-acoustic methods for multi-layer

structures

2.2.1 The Transfer Matrix Method (TMM)

The Transfer Matrix Method (TMM), also known as the Thomson-Haskell method

[15–17], is a highly thorough analytical approach because of its capacity to simulate

acoustic fields in multi-layered media such as fluid, plates, elastic solid and poro-elastic

layers. Each layer is assumed to have infinite lateral dimensions and its wave propagation

is described through the transfer matrices. Due to the generality nature of the TMM, it

covers the whole range of structures: single-walls of thin and thick types, double-walls,

and sandwich structures. Because of its versatility, this approach is highly convenient:

wave propagation through a layer is accomplished using matrix multiplication, and layers

of different kinds (fluids, elastic solids, visco-elastic and poro-elastic materials, etc.) could
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be coupled via interface matrices. When the multi-layer sound packages comprise poro-

elastic materials, the TMM approach to handle the poro-elastic layer and its interface

conditions with other types of layers are described by several researchers [18–21]. It may

be worth to mention that the sound propagation inside the poro-elastic layer and its

associated transfer matrix are defined by the Biot theory [22, 23].

Due to the assumption of infinite lateral directions, few extensions are proposed [24–28]

to increase the ability of TMM to calculate the response of finite-sized structures. These

theories aim to correct the low frequency response of the TMM, as the finite dimensions

of the structure mostly affect the vibro-acoustic response in low frequencies. Even though

the method is mathematically exact, divergences in its results are observed by several

authors [29–33]. This is especially true for high frequency computations and/or thick

layers. Therefore, Dazel et al. [34] have proposed a numerical method that is stable at high

frequencies using Stroh formalism [35]. This strategy differs from the TMM by expressing

the wave propagation inside a layer through non-redundant state variables, while the

TMM describes the same with both redundant and non-redundant state variables. Despite

this key difference between these two methods, the stable numerical method is shown to

be equivalent to the TMM.

As the TMM uses the principles of elasticity to define the transfer matrices, it is

considered to be complete and can be treated as reference for planar structures, for the

purpose of comparison, to many other analytical models. Since the models presented

in this thesis are also compared against the TMM for validation, the next chapter is

dedicated to describe the principles of the TMM and ways to compute vibro-acoustic

quantities.

2.2.2 FEM/BEM models

Analytical and statistical models show well behaviour in medium and high-frequency

ranges. This may not be the case in the low-frequency region, when factors such as the

panel’s finite size and boundary conditions are significant. Numerical methods such as
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finite and boundary element methods are usually employed to solve for the vibro-acoustic

problems in such situations. For sound transmission loss problems in building acoustics

and transportation, the Finite Element Method (FEM) and Boundary Element Method

(BEM) have been widely employed. These approaches need volume discretization, which

results in a large number of degrees of freedom and a high calculation time at higher

frequencies. The benefit of these techniques is that all aspects of interest in the structure

may be represented and incorporated in the model while taking into consideration the

finite size effects of the real structure. As a result, the FEM and BEM were employed

to tackle sound transmission loss problems of complicated structures incorporating poro-

elastic materials [36, 37]. Since poro-elastic materials fall under absorbing media, the

finite element techniques to handle the absorbing materials have been developed through

various approaches. Among them, few simple approaches [38–40] and some sophisticated

displacement approaches [37, 41–44] using Biot’s theory are commonly used. These dis-

placement approaches are generally called as pu, Uq formulation (where u and U denote

the displacement vectors of the solid and fluid phases of the poro-elastic material, respec-

tively) in the literature.

Although the pu, Uq formulation is shown to be accurate, it has disadvantages of

huge computational storage and solution time due to heavily loaded frequency dependant

matrices [37, 44]. Therefore, to overcome these issues, a mixed pu, pq formulation (where

p denote the pressure vector of the fluid phase of the poro-elastic material) has been

proposed [45–47] which is also shown to be accurate. As this particular method would

be utilized in the later chapters, for the purpose of validating the novel analytical models

developed in this thesis, few necessary details of this approach are presented next. It may

be noted that this numerical approach leads to an additional advantage of converting the

problem into the classical form of fluid-solid interaction, as shown below:

¨
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´rCsT
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Figure 2.1: Schematic representation of a plate element embedded between the fluid
elements.

where tW u and tP u denote the global nodal variables of solid and fluid phases respectively

and ω is the angular frequency. rKs and rM s represent the stiffness and mass matrices

of the solid phase respectively, while rHs and rQs represent the kinetic and compression

energy matrices of the fluid phase respectively. The matrix rCs serves as a coupling

between the solid phase displacement variables and fluid phase pressure variables. In

other words, rCs can be a fluid-solid coupling for poro-elastic media or between a fluid

and a solid domain. As an example, the finite element setup of a solid layer surrounded

by the air layers to compute transmission loss is shown in Fig. 2.1. The solid layer is

meshed with elements containing nodal displacement variables (tW u) and the air layers

are meshed with elements containing nodal pressure variables (tP u). Depending on the

nature of these three layers, Eq. (2.1) would take the following forms:

• If all layers are solid, then the global matrix would be,

prKs ´ ω2
rM sqtW u “ t0u, (2.2)

which turns into a pure vibration problem.
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• If all layers are fluid, then the global matrix would be,

ˆ

rHs

ω2
´ rQs

˙

tP u “ t0u, (2.3)

which turns into a pure fluid dynamics problem governed by the Helmholtz equation.

• If there are solid and fluid layers, then the nodal displacement variables of the solid

part and the nodal pressure variables of the fluid part are coupled through the

coupling matrix, rCs which results into the Eq. (2.1).

• In case of poro-elastic layer (which contains both solid and fluid phases), the global

matrix still takes the form given in Eq. (2.1) while the element matrices are governed

by the frequency dependent (or equivalent) properties [48, 49].

A note on the fluid-solid coupling: When the fluid phase and solid phase are met

at an interface, the normal displacement of solid phase and fluid phase must be equal

to ensure the continuity, and this continuity condition creates the coupling between the

two different phases. Since the fluid phase has only pressure degrees of freedom, the

coupling condition could be formulated by relating the fluid particle pressure (p) and

normal displacement (wn) through Euler’s equation as shown below.

d2wn
dt2

“ ´
1

ρ0

Bp

Bn
ñ wn “

1

ρ0ω2

Bp

Bn
, (2.4)

where t represents time and ρ0 is the density of air. The weak form of the above relation

can be written as,

ρ0ω
2

ż

Γ

wnδp dΓ `

ż

Γ

p∇p ¨ nqδp dΓ “ 0, (2.5)

where δp is the admissible variation of the pressure p and Γ is the surface of the fluid-solid

interface. If the field variables are discretized with shape functions as,

wn « ⟨Nf⟩ tW u; δp « ⟨Np⟩ tP u (2.6)
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then the following integral would be expressed in terms of a fluid-solid coupling matrix

which couples the solid displacement and the fluid pressure as,

ż

Γ

wnδp dΓ « ⟨P ⟩ rCstW u. (2.7)

In the case where a thin structure is surrounded by air cavities and a single mesh is used

for both solid and fluid domains, Lagrange multipliers could be introduced in Eq. (2.1)

to create the coupling between the fluid and solid phases [50].

In another class of finite element methods for computing the vibro-acoustic response

of the multi-layer structures, Alimonti et al. [51] developed a hybrid-FE method which

approximates the effect of sound packages as a Green function which behaves as a locally

reacting system. This will be then applied as an impedance condition onto the main

structure (which is modeled with finite elements). Although the goal of this approach is

to reduce the computational burden that arises from modeling the sound package (poro-

elastic material, for example) with 3D finite elements, it does not account for all types

of structural and elastic responses (like bending and shear) of the sound package. Other

researchers [52–54] have developed modal methods to simulate the acoustic response of

automotive structures. For example, Acher et al. [54] computed the vibro-acoustic re-

sponse of a trimmed truck cabin by condensing the impedance matrix of the acoustic

treatments and projected it on the modal space of the complete system.

On the limitations side, in general, numerical methods suffer from huge computational

time and storage requirements for high-frequency range computations. In few situations,

it may lead to complex implementation processes as well, especially when full three-

dimensional modelling is employed [55]. Few approaches such as multi-scale FEM [56],

Schur’s complement method [57], Craig-Bampton method [58] etc., are some reduction

methods which help to reduce the computational costs of the finite element method.
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2.2.3 SEA models

Usually, Statistical Energy Analysis (SEA) are employed to solve vibro-acoustic prob-

lems involving finite-length rooms and buildings. SEA divides the system under study

into components or modal subsystems, and the response of each subsystem is character-

ized in terms of its mean energy. Energy balance equations are constructed as a function

of modal densities, internal loss factors, and coupling loss factors to explain the energy

transfer between two subsystems. The technique is valid only when the modal density of

all systems (cavities, rooms, plates etc.) is sufficiently high, limiting its applicability to

the medium and high-frequency ranges. The response of the subsystems is governed by

resonant modes, which means that only resonant transmission can be modelled. This is

considered as a key assumption of SEA. The readers may refer to [59] for comprehensive

description of SEA method. Forced or non-resonant transmission, which results in the

mass-law for single walls, could only be considered artificially. Similarly, the mass-spring

mass resonance process in double-wall partitions must be explicitly considered.

Crocker and Price [60] were the first to utilize SEA to forecast the transmission loss

of a single wall separating two rooms. The panel radiation resistance is used to describe

the connection between room and plate modes. The model was later modified to in-

clude double walls by taking into account a room-plate-cavity-plate-room system [61].

The compressional frequency or mass-spring-mass resonance frequency of double walls

could not be estimated since the cavity is represented as a resonant system. Brekke [62]

investigated the transmission loss of triple partitions using SEA and incorporated the

non-resonant coupling condition between the panels via the air stiffness in the cavity.

Craik [63] provided an overview of the usage and potential of SEA in acoustical applica-

tions. Sound transmission via metal connections in masonry hollow walls [64] or studs

in lightweight constructions [65] was included into SEA models of double walls. While

the paths of structure-borne transmission could be accurately predicted, SEA models

struggled to predict transmission into and out of cavities. In general, SEA would require

inputs (such as energy carrying waves through the structure, transmission factor etc.)
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from other methods like TMM, FEM and/or experimental measurements to calculate the

sound transmission loss across the multi-layer structures of finite size [66–68].

2.3 Experimental methods

This section gives the summary of the experimental techniques used in the vibro-

acoustic field to identify the mechanical properties of the structural system. With respect

to other vibro-acoustic models which could be used to compare the experimental data,

different approaches are available to model the multi-layer systems [14, 69–75].

2.3.1 Fourier transform methods

Among the methods for assessing fields at medium and high frequencies, the Discrete

Fourier Transform (DFT) may be distinguishable, which assumes homogenous material

characteristics in the structure. This technique, which is popular due to its speed, assumes

that the field is known on a uniform grid and is 2D-periodic on the outside. In the case

of anisotropic structures, spatial changes in mechanical characteristics may be detected

through this method. DFT offers several advantages, including speed and bijectivity. The

reader may remind that bijectivity is the property of a method that ensures not missing

any field information if reverse transformation is performed between two different domains

(for example, the transformation between spatial and wavenumber domains). DFT does

not, however, identify the imaginary component of the wave number and is susceptible

to aliasing and edge effects. As a result, the investigated wavenumber domain is exactly

proportional to the dimension and resolution of the measuring grid.

Ferguson et al. [76] use the Continuous Fourier Transform (CFT) to overcome the lim-

itation posed by DFT. It allows increasing the discretization of the wavenumber domain,

and therefore it increases the precision of the results. According to Berthaut [77], this

transformation is no longer bijective. Berthaut further notes how flexible this approach

is, since it may be used on a non-uniform measuring grid. However, mastering the folding

with such a grid is challenging. Furthermore, CFT is still limited to recognizing only the
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real part of the wave number.

2.3.2 Inhomogeneous Wave Correlation (IWC) approach

In order to estimate the damping of the structure, Ferguson’s method introduced

the concept of correlation of the measurement field with a virtual field. This principle

has already been observed in the work of Hillström et al. [78] where the virtual field is

composed of two plane waves (forward and backward propagative) of different amplitude.

McDaniel et al. [79] used the method of Hillström et al. [78] by adding the evanescent

waves in the virtual field. The different amplitudes of each wave are identified by the least

squares method, whose error between the reconstructed field and the real field is calculated

for different complex wave numbers. An optimal correlation is obtained when this error

is minimal. Berthaut et al. [80] propose a similar method called IWC for Inhomogeneous

Wave Correlation, where the virtual field is only composed of a propagating plane wave

defined by a complex wave number. A correlation index is calculated for each frequency

and direction as a function of the wave number and the damping of the plane wave.

Berthaut et al. [80] applied their technique to isotropic plates as well as plates pro-

vided with stiffeners. Subsequently, Ichchou et al. [81] modeled honeycomb sandwiches

from a thin Love-Kirchhoff plate, whose parameters were identified using the method

IWC. Finally, Cherif et al. [82] used the IWC method to characterize a composite struc-

ture.

2.3.3 Wave correlation by Hankel’s functions

An experimental method to estimate the equivalent material properties of a multi-

layer plate (sandwich structure) by adopting a complex wavenumber fit using Hankel’s

functions and the image source method, was recently developed by Roozen et al. [83]. A

multi-layer plate is initially excited with a point load and the measured field is correlated

to the analytical or “virtual” field obtained from the Hankel’s functions. The complex

valued wave number is fitted with the experimental vibration field obtained, from which
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the equivalent material properties are found by assuming the thin plate model.

2.3.4 Corrected Force Analysis Technique (CFAT) approach

In the recent years, an experimental technique called Force Analysis Technique (FAT)

has attracted many researchers for the purpose of identifying the unknown material pa-

rameters of the structures. It was initially developed by Pezerat and Guyader [84] to

identify the point sources (forces or moments) on the beams from vibration measure-

ments and its equation of motion. Later, this approach was extended to plates [85] as

well. Since this is an inverse experimental approach, this method is very sensitive to the

uncertainties in the measurement. To overcome this problem and regularize the method,

a corrective method called CFAT (Corrected FAT) was suggested by Leclere and Pézerat

[86]. This section intends to provide the summary of the CFAT method that is used to

find the equivalent properties of the multi-layer plate.

By considering x and y as in-plane directions and z as the thickness direction, the

complex bending stiffness of the thin homogeneous plate is related to normal displacement

(uz) by the equation of motion as:

D∇4uzpx, yq ´ msω
2uzpx, yq “ qpx, yq. (2.8)

In the above equation, D is the complex bending stiffness of the plate, ms “ ρh is the

mass per unit area, uzpx, yq is the normal displacement and qpx, yq is the applied load.

For the source identification in the homogeneous plate (where usually the structural pa-

rameters are known), the normal displacement uzpx, yq is measured on a regular sampling

mesh. From the corrected finite difference scheme suggested by CFAT, the fourth order

displacement derivative can be estimated. Knowing all the terms on the left side of the

Eq. (2.8), the unknown quantity qpx, yq (vibration source) can be estimated.

The same approach has been extended for the identification of unknown structural

parameters [87, 88]. The method is applied in an area far from the source, where the
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loads can be neglected (qpx, yq « 0). In this area, the Eq. (2.8) can be rewritten as

follows:

D “ ms
ω2uzpx, yq

∇4uzpx, yq
. (2.9)

As mentioned earlier, the displacement field is measured and CFAT is used to estimate

the fourth order derivative. ms is measured using weighing machine and caliper. Finally,

the Young’s modulus and loss factor can be obtained as follows:

E “
12Dp1 ´ ν2q

h3
; η “

ℑpDq

ℜpDq
. (2.10)

Note that the Poisson’s ratio must be known beforehand to get the Young’s modulus. Usu-

ally, ν “ 0.3 is assumed, as it is valid for classical isotropic materials. For the multi-layer

plate, the above methodology can be adopted to get the equivalent material properties

(Deq, Eeq, ηeq) by satisfying the assumption that the equivalent homogeneous plate with

same ms and h would yield the normal displacement field at a given frequency.

2.4 Analytical multi-layer models

A multi-layer structure is initially characterized as an equivalent plate. Then a multi-

layer model has to be employed to identify the properties of a given layer. Two paths

can be adopted to model these structures. The first is to use a complete model, allowing

to describe the three-dimensional behavior of the structure using a very large number

of degrees of freedom and parameters [89, 90]. These models are often developed for a

specific type of structure, loading case or limiting conditions [91]. The second approach

is to use a reduced or condensed model to reduce the number of degrees of freedom and

parameters of the structure, which are to be identified. In addition to this, condensed

models would serve as useful tools to understand the physical behaviours of the multi-layer

structures in different frequency ranges.

This section deals with only the reduced models of continuous multi-layer plates made

up of viscoelastic or isotropic layers. Discontinuous shapes of some materials, such as,
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for example, honeycombs or porous materials (poro-elastic layers) will not be considered.

The reduced models differ essentially by the choice made on the kinematics to describe the

behavior of the multi-layer structure. Different types of kinematic fields are considered

to describe the behaviour: 1) displacement formulation, 2) stress formulation and 3)

mixed field formulation, i.e. both displacement and stress at the same time. This last

formulation is particularly interested in the case of multi-layer because it allows to apply

the continuity conditions on both displacements and stresses at the interfaces between the

layers. Carrera [92] refers to these conditions by giving them the name C0
z requirements.

These conditions also imply that the layers are well bonded to each other.

The large number of multi-layer models existing in the literature have led some authors

such as Reddy and Robbins Jr [93] or Carrera [69, 94] to develop few classifications. Three

main categories of multi-layer models emerge from these classifications: 1) Equivalent Sing

Layer (ESL), 2) Layer-Wise (LW) and 3) Zig-Zag (ZZ). The following sections detail each

one of these classifications with various examples.

2.4.1 Equivalent Single Layer (ESL) models

The Equivalent Single Layer (ESL) models group all the layers together and describe

the displacement response of the multi-layer as a homogeneous plate at low-frequency.

The dynamics of the multi-layer is then governed by the kinematic field of the ESL

plate. This treatment of multi-layer plate is advantageous as the number of kinematic

variables does not depend on the number of layers, and therefore it considerably reduces

the number of degrees of freedom and the complexity of the model. Thus, the ESL models

were easily adopted by the community for their ease of implementation and their speed

of computation for any number of layers. The reader is advised not to get confused

between ESL models using static equivalent properties and another class of models called

‘condensed (or equivalent) plate models’ where the natural response of the multi-layer

structure is condensed into an equivalent layer defined with frequency-dependant material

properties. This type of models is the subject of this thesis, and a particular focus is given

in Section 2.5 to discuss its background.
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However, since the description of the multi-layer is global, the individual behaviour

of each layer cannot be modelled with this approach. As ESL models describe the dis-

placement field with constant material parameters, they are limited to compute only

low-frequency behaviour of the multi-layer structure. The order of expansion (for the

displacement field) of the model is also an important criterion. A high order brings a

more detailed description of the behaviour in thickness, giving access to the identification

of higher order modes.

Thin plate model

The equivalent single layer models of order one refer to classical plate theories such as

the Love-Kirchhoff [95, 96] or Classical Lamination Theory (CLT) for composite laminates.

As this model assumes the plane sections remain straight and normal to the neutral

axis of the plate, it ignores the effects of rotational inertia and transverse shear. These

assumptions lead us to the definition of the following displacement field:
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where u0x, u
0
y, u

0
z are the mid-plane displacements.

The above displacement field is more suitable for thin structures, as it is reasonable to

assume the propagation of only bending waves in those structures. Therefore, the Love-

Kirchhoff model is often called as the thin plate model as it is suitable for modelling thin

plates (such as thin aluminium, steel, carbon fibre composites etc.) in a domain where

the frequency-thickness product remains relatively low. Thick plate models were then

suggested to model thicker structures such as sandwiches in high frequency domains.

Thick plate model

Reissner [97], Hencky [98] and Mindlin [99] developed as a First order Shear Defor-

mation Theory (FSDT) for thick plates. Unlike Love-Kirchhoff’s model, the rotation of
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Figure 2.2: Dispersion curves obtained from two fundamental plate theories for a plaster-
board layer (thickness: h “ 12.5 mm, Young’s modulus: E “ 3 GPa, density: ρ “ 700 kg
m´3, Poisson’s ratio: ν “ 0.3).

the cross-section is taken into account and this results in generation of a transverse shear

in the structure through the thickness. Fig. 2.2 shows the difference in the propagat-

ing wavenumbers obtained with thin and thick plate theories for a plasterboard layer of

12.5 mm. As the thick plate model accounts for both bending and transverse shear, it

deviates from the thin plate theory after 5000 Hz.

Two new kinematic variables (ϕx and ϕy) are used to describe this shear, in the

displacement field of the structure:
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where ϕx and ϕy are the rotations about x and y directions which the normal to the

mid-plane makes with the z´axis.

Although it accounts for transverse shear, the strain and stress fields associated with

this transverse shear are constant across the thickness. This approximation does not allow

the condition of zero stresses to be applied to the lower and upper surfaces of the plate

(σzzpz “ ˘h{2q “ 0, where h is the total thickness of the structure) which is an essential
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condition in the modelling of the dynamic response of thick plate [100]. Consequently,

the dispersion curves obtained from the FSDT theory are different from that of three-

dimensional models such as Lamb [101] or higher orders such as Reddy’s model et al.

[102]. This subject is also treated by Margerit [103] using a comparison between the

FSDT theory and the finite element model of Shorter [14].

Note on the shear correction factor: The shear correction factor (κ) is introduced

in the thick plate theory to correct the approximation made on the transverse shear. As

Margerit [103] underlines, this correction factor can be calculated in different ways. The

first and best known consists in equalizing the cut-off frequency of the first shear mode

given by the FSDT model with the three-dimensional models, leading to κ “ π2{12 in

the isotropic case. We can also note that κ “ 5{6 in the static case [104]. A second

way to calculate this correction factor is by equalizing the asymptotic value of the phase

velocity of the bending mode. This possibility is much more complex as it depends on the

Poisson’s ratio and remains quite close to the results of κ “ π2{12 for classical Poisson’s

ratio. In the case of anisotropic materials, the correction factor is applied independently

to each of the stiffnesses of the Hooke’s matrix connecting the transverse shear stresses to

the deformation field [105]. In this manuscript, the value of κ is taken as 5/6 for further

calculations.

Higher order plate models

Mindlin’s theory has inspired several authors [106–111] on the choice of displacement

field order (greater than one) to best describe the shear behaviour in the thickness di-

rection. These theories are commonly called as High order Shear Deformation Theory

(HSDT). These models are developed with a high-order description of membrane dis-

placements in order to describe the behaviour due to transverse shear. Despite this, the

normal displacement is each time considered to be constant through the thickness and

thus neglecting any deformation along the thickness axis. Note that the ‘normal displace-

ment’ means normal to the surface and refers to the displacement along the thickness

direction or wave propagation direction. When dealing with thin structures, it is some-



2.4. Analytical multi-layer models 25

times called as out-of-plane displacement. There are, however, several theories called as

High Order Theory (HOT) where the three components of the kinematic field are of high

order. Such a description of the transverse component of displacement provides access

to the identification of “breathing” modes (symmetrical Lamb modes). Among these

models, we can notably refer to the work by Whitney and Sun [112] of order 1 on the

transverse displacement. On the same line, we can also refer to the theory by Zenkour

[113], developed for beams.

2.4.2 Layer-Wise (LW) models

Layer-Wise (LW) models are sometimes referred to as piece-wise models because,

unlike ESL models, each layer is interpreted as a plate with its own kinematics and its

own number of kinematic variables. Continuity equations of the displacements and the

constraints at the interfaces between the layers are then added to the model. Therefore,

the total number of kinematic variables depends on the number of layers of the multi-layer

structure. Due to this reason, LW models fall into the category that is opposite to ESL

models, with higher accuracy but longer computation time. The complexity and precision

of the model depend on the order of expansion of each of the layers, which ultimately

decides the computation time (see Figure 2.3).

x

y
z

1st order 2nd order 3rd order

Figure 2.3: Examples of displacement fields of different orders postulated by the Layer-
Wise models for a multi-layer composed of four layers.

We can, for example, refer to the model of Ghinet and Atalla [71] postulating a Mindlin

kinematics for each layer of a three-layer structure. The number of kinematic variables

specific to each layer is five, while the interlayer forces are three per interface. Therefore,

this model has a total of p5ˆ3q `3p3´1q “ 21 independent variables. Ghinet and Atalla



26 Chapter 2. Literature review

also introduced the possibility of studying the dilation mode of a sandwich composed of

a soft core and stiffer skins. The dilatation mode, usually governed by the sandwich core,

cannot be represented by a Mindlin kinematics. Consequently, Ghinet and Atalla use a

complementary displacement field for the core, where the transverse displacement is linear,

and the shear distribution is defined by trigonometric functions. A kinematics similar to

that of Ghinet has also been observed in Srinivas model [114]. Reddy [115] extended this

formulation to a higher order by adding a linear description of the normal displacement

for each layer. Subsequently, Nosier et al. [116] used Reddy’s model to determine the first

eigen frequencies of composite plates and compare them with the results of an accurate

model as well as other theories like ESL models.

2.4.3 Zig-Zag (ZZ) models

We have seen so far that the ESL and LW models have opposite characteristics. The

former is quick and easy to use, but the individual behavior of each layer is not taken

into account. The second offers better precision but has significant computation times.

The Zig-Zag (ZZ) theory brings a compromise between these two models. Like the LW

formulation, the main idea of Zig-Zag models is to postulate a kinematic field for each

layer. The continuity conditions are, however, formulated to relate the kinematic variables

of one layer to the other layer. Therefore, ZZ models fall into the category of ESL

models, since their number of kinematic variables also does not depend on the number of

layers.

Zig-Zag models are introduced by Lekhnitskii [117] whose stress field formulation was

developed for beams, and later it was extended to orthotropic and anisotropic structures

by Ren [118]. The shear stresses are described by four independent kinematic variables

whose associated expansion orders are parabolic. A similar formulation has been proposed

by Ambartsumian [119] with two kinematic variables for the shear and therefore preserving

the same number of variables as the FSDT theory. This model was extended to anisotropic

structures by Whitney [120]. Subsequently, Murakami [121] applied the mixed formulation

of Reissner [122] in the case of multi-layer plates. The displacement field proposed in this
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model consists of a refinement of the FSDT theory by the addition of a Zig-Zag function,

while the stress field remains independent and parabolic in each layer. A higher order

extension was then proposed by Toledano and Murakami [123] and more recently by

Demasi [124].

Guyader and Lesueur’s model [125, 126], for orthotropic laminates, falls into the cate-

gory of Zig-Zag models. This theory, based on the assumptions of Sun and Whitney [127],

considers a kinematic similar to that of Mindlin for each layer. The continuity relations

at the interfaces make it possible to reduce the total number of kinematic variables to

the five degrees of freedom of the first layer. An energy method based on the Hamilton

functional is then used to write the equations of motion as a function of these five kine-

matic variables. A particular solution of plane wave type is then suggested to identify

the dispersion curves of the structure. Guyader and Lesueur’s model was extended to

the anisotropic case by Woodcock [128]. Subsequently, Loredo et al. [74] gave a general

formulation of the displacement field whose Zig-Zag effect was defined by four functions

called warping functions. Castel [129] used different definitions of these functions and

few years later, Loredo [130] extended his model by taking into account the deformation

along the thickness direction of the structure. The notion of warping functions has al-

ready been used in the work of Pai [104], where their expressions have been determined

from the continuity conditions of displacements and constraints at the interfaces.

2.5 Condensed (or equivalent) plate models

All the previous models are generally used to compute the natural propagating wavenum-

bers of the multi-layer structure, or the Transmission Loss (TL). Other methodologies such

as condensed (or equivalent) models aim to identify an equivalent single layer that de-

scribes the behaviour of the multi-layer by means of dynamic intrinsic properties. The

readers are warned not to be confused with ESL models, described in Section 2.4.1.

The ESL models are used to describe the behaviour of the multi-layer structure at low-

frequency with constant material properties, whereas the condensed models are defined
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dynamic material properties which could compute behaviours at all frequencies. This

kind of models would serve as a handy tool to reduce the computational time significantly

in the finite element modelling, as the multi-layer structures are modelled as single layer

with dynamic properties. This section details about a few existing condensed (or equiva-

lent) plate models in the literature. It may be noted that the main focus of this thesis is

to improve these existing models to be able to apply them on wide applications.

2.5.1 Guyader model

By employing classical plate theory on the multi-layer viscoelastic plate, Guyader and

Cacciolati [125, 131] developed an analytical model to determine the equivalent complex

bending stiffness as a function of frequency. In this model, each layer is assumed to

have Mindlin type displacements or in other words each layer is modelled by considering

bending, membrane and shear effects as proposed by Sun and Whitney [127]. Displace-

ment and shear stress continuity conditions are applied to obtain the equations of motion

of the multi-layer plate, which are interestingly expressed as a function of displacement

field of the first-layer only. Under the assumption that the transverse displacement is the

same for both equivalent single layer and the multi-layer plate, this model determines the

equivalent bending stiffness by using Love-Kirchhoff (thin plate) theory with the following

characteristic equation.

A4D
3{2

` A3D ´ A1A4D
1{2

´ A1A3 ` A2 “ 0, (2.13)

where A1 “ λ1 ´
λ25
λ3
, A2 “ ω

?
ms

ˆ

λ4 ´
λ5λ6
λ3

˙2

, A3 “ ω
?
ms

ˆ

λ2 ´
λ26
λ3

˙2

, A4 “ λ37.

ms “
ř

ρihi is the total mass per unit area and the constants λi are defined in the

Appendix B.

After computing the equivalent bending stiffness (D̃eq) as a function of frequency, the

other equivalent homogeneous material properties are obtained as given below.

Ẽeq “ D̃eq

12p1 ´ ν2eqq

h3t
, (2.14a)
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νeq “

řn
i“1 νihi

řn
i“1 hi

, (2.14b)

ρeq “

řn
i“1 ρihi

řn
i“1 hi

“
ms

ht
, (2.14c)

η̃eq “
ℑpD̃eqq

ℜpD̃eqq
“

ℑpẼeqq

ℜpẼeqq
, (2.14d)

where Ẽeq, νeq, ρeq, η̃eq are the equivalent Young’s modulus, Poisson’s ratio, mass den-

sity and loss factor of the multi-layer plate respectively. Also, ht “
řn
i“1 hi is the total

thickness of the plate and the subscript ‘i’ denotes the i´th layer of the n´layer struc-

ture. As the equivalent complex bending stiffness depends on frequency, the equivalent

Young’s modulus and loss factor are also functions of frequency. After obtaining D̃eq from

Eq. (2.13), the following expression is used to find the equivalent bending wavenumber of

the multi-layer structure:

keqbending “

g

f

f

eω

d

ms

D̃eq

. (2.15)

.

2.5.2 RKU model

Ross, Kerwin and Ungar (RKU) developed a simplified dynamic model for a three

layer system to find the equivalent material properties. The model is initially developed

for beams, which was later used for plates as well. The complete derivation can be found

in the articles [7, 132–134] as well as in the book by Beranek and Ver [135]. Following is

the short summary of the RKU model.

Let us consider a three layer system as shown in the Figure 2.4. The plate is unbounded

in the x and y directions. If the second layer is considered to be visco-elastic in nature

compared to the top and bottom stiff layers, the RKU model provides the following
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Figure 2.4: Cross-section of a three-layer structure.

expression for the equivalent bending stiffness of the plate:

D̃eq “ pD1 ` D3qp1 ` XY {p1 ` Xqq, (2.16)

where

D1 “
E1h

3
1

12p1 ´ ν21q
; D3 “

E3h
3
3

12p1 ´ ν23q
; (2.17a)

X “
G2S

h2

1

k2
; Y “

12h213
SpE1h31 ` E3h33q

; S “
1

E1h1
`

1

E3h3
. (2.17b)

The usual material property notations are followed here. In the above equations, X and

Y are called as shear parameter and structural geometric parameter, respectively. As

mentioned in the book by Beranek and Ver [135], the shear parameter X is a measure of

how well the viscoelastic layer (layer 2) couples the flexural motions of the two structural

components (layer 1 and layer 3). Also, the maximum value of the equivalent loss factor

is given by the following relation.

ηeq,max “
η2Y

2 ` Y ` 2{Xopt

; Xopt “
1

a

p1 ` Y qp1 ` η22q
, (2.18)

where η2 is the loss factor of the layer 2. Since D̃eq is the function of the propagating

wave number, the bending wave number from the thin plate theory is replaced for k, that

finally forms a non-linear equation in D̃eq from Eq. (2.16). Due to this non-linearity, an

iterative procedure shown below is followed to compute the equivalent bending stiffness
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D̃eq. The equivalent material properties mentioned in the final block of Figure 2.5 are

Let

Compute (Eq. 2.15)

Is
close to X?

Compute
Eq. (2.18)

Yes

No

Figure 2.5: Iterative procedure of the RKU model to find equivalent material properties

expressed as:

Ẽeq “ D̃eq

12p1 ´ ν2eqq

h3t
; ρeq “

ř3
i“1 ρihi

ř3
i“1 hi

; νeq “

ř3
i“1 νihi

ř3
i“1 hi

; (2.19a)

ηeq “
η2XY

1 ` p2 ` Y qX ` p1 ` Y qp1 ` η22qX2
. (2.19b)

Throughout this manuscript, the complex number
?

´1 is denoted by the letter ‘j’.

2.5.3 Added stiffness model

This model is based on computing the equivalent properties just by adding the respec-

tive individual layer properties. The material property of each layer (for example, the

bending stiffness) is obtained with respect to the neutral axis of the multi-layer plate. It

may be noted that the bending stiffness computed from this model is valid only at the

low-frequency. The summary of the procedure to be followed is explained below.

Let us consider a multi-layer system as shown in Figure 2.6. The plate is considered

to be infinitely extended in the x and y directions. First, the neutral axis of the multi-

layer plate is computed based on the similar approach followed for composite beams [136].
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For this purpose, two assumptions are made to facilitate the calculation. The width of

the multi-layer plate is initially assumed to be of unit distance, and the first layer is

assumed to act as a reference layer to calculate the transformed widths of the remaining

layers.

Except the reference layer, transformed widths bi,eff of the all other remaining layers

are computed based on the modified transformation factor for plates, as given by the

Eq. (2.20).

bi,eff “
Ei
Eref

1 ´ ν2ref
1 ´ ν2i

. (2.20)

The neutral axis of the modified system with transformed widths is computed from:

z̄ “

ř

zibi,effhi
ř

bi,effhi
, (2.21)

where zi is the z´distance from the origin to the mid-section of the i´th layer. The

flexural rigidities of all the layers are added to get the equivalent bending stiffness of the

multi-layer plate as,

Deq “

n
ÿ

i“1

Ei
1 ´ ν2i

pzui ´ z̄q3 ´ pzli ´ z̄q3

3
, (2.22)

where zui and zli are measured from the origin as shown in the Figure 2.7. The remaining

equivalent properties are calculated as it is done in the Guyader model (from Eq. (2.14a)

to Eq. (2.14d)). It may be noted that the Deq from added stiffness model is the low

frequency asymptote of Guyader or RKU models. As described by Boutin and Viverge

[72], Deq computed from this model is used to explain the situation where all the layers in

the multi-layer structure behave as a monolithic plate, which is governed by the “global

bending”.

2.5.4 Recently developed condensed models

Since the RKU model is mainly applied to three-layer sandwich structure with soft

core, Zarraga et al. [137, 138] developed a model to find the equivalent properties of a
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Figure 2.6: Multi-layer structure of n layers

Neutral axis
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Figure 2.7: Multi-layer structure with transformed width on each layer

three-layer structure by considering both bending and shearing stiffness of all the three

layers. Although the three-layer model [138] performs well at low and mid-frequencies, it

does not correspond to the correct behaviour at higher frequencies, as the inner bending

of skins is not considered in the model. With a similar approach described by Guyader

and Cacciolati [131] for multi-layer plate consisting of only isotropic layers, Marchetti

et al. [139] recently developed an equivalent plate model for multi-layer thin plates made

of orthotropic layers with arbitrary ply orientations.

One may observe that all these condensed models allow only anti-symmetric modes

to propagate in the multi-layer structure. This is because, the normal displacement or

velocity is assumed to be constant throughout the thickness which results in only bending,

shear and membrane modes to propagate. In the majority of the industrial applications,

the multi-layer system would have softer or thicker layer that allows symmetric mode (or

dilatational mode) to propagate even at low frequencies (50-500 Hz). For this kind of

applications, the existing condensed models cannot be used as they do not capture the

symmetric mode of the multi-layer structure.
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2.6 Conclusion

In this chapter, literature review of the commonly used vibro-acoustic methods for

multi-layer structures are discussed. Initially, the generic methods such as the Trans-

fer Matrix Method (TMM), Finite Element Method (FEM), Statistical Energy Analysis

(SEA) are summarized. Experimental methods to find the condensed plate properties of

the multi-layer structures are also discussed, along with detailed summaries of relevant

analytical approaches. Finally, existing condensed plate models, which is the topic of this

thesis, are detailed to compute the condensed (or equivalent) plate properties of the multi-

layer structure. It is observed from the literature review that the condensed plate models

capture the effect of anti-symmetric motions such as bending, shear and membrane but

lack in capturing symmetric motions of the multi-layer structures.



Chapter 3

Condensed model from the Transfer

Matrix Method (TMM)

This chapter presents the principles of the Transfer Matrix Method (TMM) which is a

general method for modelling acoustic fields in layered media which include fluid, elastic

and poro-elastic layers. The method assumes planar multi-layer structure with infinite

lateral dimensions of the layers and represents the plane wave propagation in different

media in terms of transfer matrices. Interface matrices describe the continuity conditions

between different layers, depending on the nature of the two layers. Since this method has

its foundation from the theory of elasticity, it is complete and considered as a reference

method to validate many vibro-acoustic models. As the new models developed in this

thesis are applicable to various kind of materials (such as fluid, solid and poro-elastic),

transfer matrices for these materials are presented in this chapter. Further, the method

to compute vibro-acoustic indicators such as transmission coefficient, absorption etc., are

also presented. Finally, a simple version of the condensed model for symmetric multi-layer

systems is presented from the condensed transfer matrix obtained from TMM.

35
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3.1 Principle of the TMM

A semi-infinite multi-layered system with homogeneous isotropic layers (Fig. 3.1) can

be considered as a bi-dimentional system, taking z ´ x the plane as the incident plane.

On the schematic representation of the multi-layer system shown in Fig. 3.1 which has ‘n’

layers, a fluid is enclosing (in this case air) on both sides, a plane acousic wave is excited

at an incident angle θ. Various wave types can propagate in the layers, according to their

nature. The x-component of the wave number (or transverse component) for each wave

propagating in the infinite medium is equal to,

kt “ k0 sin θ, (3.1)

where k0 “ ω{c0 is the wave number in free air, ω “ 2πf is the angular frequency, f is

Air Air

OM1 M2 M3 M4 M5 M6 M2n-1 M2nN

(1) (2) (3) (n)

z

y

x

Figure 3.1: Oblique plane wave incidence on a multi-layer structure with infinite lateral
dimensions.

the excitation frequency and c0 is the speed of sound in air. Sound propagation in the

i´th layer is represented by a transfer matrix, rT s such that

VpM2i´1q “ rT isVpM2iq. (3.2)
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The components of the vector VpMq are the variables which describe the acoustic field

at a point M of the medium.

3.2 Transfer matrices of fluid and elastic solid lay-

ers

3.2.1 Fluid layer

Ideal fluids cannot resist changes in shape, but only changes in volume. As a result,

only a longitudinal wave can propagate in a fluid layer, with a wave number k “ ω{c. c

is the speed of sound of the fluid. The acoustic field in a fluid layer is completely defined

in each point M by the vector,

Vf
pMq “

„

ppMq vfz pMq

ȷT

, (3.3)

where p and vfz are the acoustic pressure and the velocity component of the fluid in the

z-direction, respectively. It may be noted that each propagative wave is defined by two

state variables: pressure (or stress) and velocity. It enables to have its intensity (i.e., its

level and its direction). Another way to describe the propagative wave is to use incident

and reflected components. A 2 ˆ 2 transfer matrix rT f s relates the pressure and velocity

at the right-hand and left-hand side of the layer,

rT f s “

»

—

–

cospkzhq j
ωρ

kz
sinpkzhq

j
kz
ωρ

sinpkzhq cospkzhq

fi

ffi

fl

, (3.4)

with kz “
a

k2 ´ k2t , the z-component of the wave number in the fluid, ρ the density of

the fluid and h the thickness of the layer.

In case of a dissipative fluid layer (where the properties of the fluid are dependent on

the frequency), the transfer matrix still takes the form given by Eq. (3.4), but density

and speed of sound in the fluid takes the following form due to the dissipative nature of
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the layer.

ρ Ñ ρ̃, c Ñ c̃ “

d

K̃

ρ̃
, (3.5)

where K̃ is the frequency dependent bulk modulus of the dissipative fluid layer. The

reader may recall that the symbol „ represents the dependency with frequency.

3.2.2 Isotropic elastic solid layer

In an elastic solid layer, two types of waves can propagate: a longitudinal wave and

a transverse wave. The wave numbers of the longitudinal and shear waves in the elastic

solid layer, δl and δs respectively, are given by:

δl “ ω

c

ρ

λ ` 2µ
; δs “ ω

c

ρ

µ
, (3.6)

where ρ is the density of the elastic solid and the Lamé coefficients (λ and µ) are calculated

from the Young’s modulus E and the Poisson ratio ν as follows,

λ “
Eν

p1 ` νqp1 ´ 2νq
; µ “ G “

E

2p1 ` νq
. (3.7)

Based on the type of backing at the rear end, the frequency of the first compressional

mode of an elastic layer is given as

fcomp “
1

γh

d

λ ` 2µ

ρ
, (3.8)

where γ takes on the values 2 (half-wave frequency) and 4 (quarter wave frequency) for

anechoic and rigid backing respectively.

A set of four variables is used to define the physical state of the isotropic elastic solid

layer [140].

Vs
pMq “

„

vsxpMq vszpMq σszzpMq σsxzpMq

ȷT

, (3.9)
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where vsx and vsz are the x and z-components of the velocity, respectively. σszz and σsxz

are the normal and shear stresses at point M . One may note that the physical behaviour

along x and y directions would be the same, as the layer under consideration is isotropic

in nature. Then, a 4ˆ4 transfer matrix rT ss that relates the state vector at both sides of

the layer can be obtained. The elements of rT ss can be found in the Appendix A.

3.3 Transfer matrices of porous layer

A simple representation of the procedure to obtain the transfer matrix of the porous

material (with and without heterogeneities) is given by Fig. 3.2. If the porous layer does

not have heterogeneities (for example, double porosity, porous composite etc.), then the

acoustic characteristics are used to get equivalent density (ρeq) and bulk modulus (Keq)

of the layer from a suitable fluid dissipation model. In the presence of heterogeneities, the

equivalent density and bulk modulus would be modified to account for their effects on the

dissipation mechanisms. Then the specific skeleton nature of the porous layer (rigid or

limp) can be taken into account to describe the inertial effects of the porous layer through

ρeq and Keq. The detailed explanations on each of the models and procedure in the Fig.

3.2 are discussed in this section.

3.3.1 Fluid dissipation models

Based on the porous material morphology, fluid dissipation models explain the vis-

cous and thermal dissipation mechanisms occurring in the fluid phase of the material.

The following models provide the equivalent fluid properties (typically density and bulk

modulus as functions of frequency) which would be used to obtain the transfer matrices

of the porous material.

Delany-Bazley (DB) model

Based on numerous experiments conducted by Delany and Bazley for fibrous materi-

als with porosity approximately equal to 1, empirical relations for the characteristic
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Figure 3.2: Methods to obtain transfer matrix of poro-elastic layer with and without
heterogeneities.

impedance and wave number are given as [141]:

Zc “ ρ0c0

«

1 ` 9.08

ˆ

103
f

σ

˙´0.75

´ j11.9

ˆ

103
f

σ

˙´0.73
ff

; (3.10)

keq “
ω

c0

«

1 ` 10.8

ˆ

103
f

σ

˙´0.70

´ j10.3

ˆ

103
f

σ

˙´0.59
ff

. (3.11)

Note that Zc “

b

ρ̃eqK̃eq and keq “ ω

b

ρ̃eq{K̃eq. In the above equations, ρ0 is the density

of the fluid medium (air) and σ is the air flow resistivity of the porous layer in the prop-

agating wave direction.

Delany-Bazley-Miki (DBM) model

Miki [142] observed negative values for the characteristic impedance at low frequencies. As

a result of this observation, Miki modified the expressions for the characteristic impedance
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and wavenumber as follows:

Zc “ ρ0c0

«

1 ` 5.50

ˆ

103
f

σ

˙´0.632

´ j8.43

ˆ

103
f

σ

˙´0.632
ff

; (3.12)

keq “
ω

c0

«

1 ` 7.81

ˆ

103
f

σ

˙´0.618

´ j11.41

ˆ

103
f

σ

˙´0.618
ff

. (3.13)

The boundaries of validity for the DBM model is 0.01 ă pf{σq ă 1.

Johnson-Champoux-Allard (JCA) model

The Johnson-Champoux-Allard model is based on the dissipative mechanisms due to

visco-inertial [143] and thermal effects [144]. The dynamic density and bulk modulus are

given as follows:

ρ̃ “
α8ρ0
ϕ

«

1 `
σϕ

jωρ0α8

d

1 ` j
4α2

8η0ρ0ω

σ2Λ2ϕ2

ff

, (3.14)

K̃ “
γ0P0{ϕ

γ0 ´ pγ0 ´ 1q

»

–1 ´ j
8κ0

Λ12Cpρ0ω

d

1 ` j
Λ12Cpρ0ω

16κ0

fi

fl

´1 , (3.15)

where ϕ is the open porosity, α8 is the high frequency limit of the tortuosity, η0 is the

viscosity, Λ is the viscous characteristic length, Λ1 is the thermal characteristic length,

P0 is the fluid equilibrium pressure, γ0 “ Cp{Cv is the specific heat ratio and κ0 is the

thermal conductivity. It must be noted that the low frequency limit of the real part of

the dynamic mass density expression of this model is not exact [145, 146] and there is

lack of information at low frequencies for thermal effects [147].

Johnson-Champoux-Allard Lafarge (JCAL) model

In this model, the dynamic density is kept the same, but the expression for dynamic bulk

modulus is modified by Lafarge et al. [147] where the limitations in the low frequencies
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for thermal effects were highlighted.

K̃ “
γ0P0{ϕ

γ0 ´ pγ0 ´ 1q

»

–1 ´ j
ϕκ0

Π1
0Cpρ0ω

d

1 ` j
4Π12

0Cpρ0ω

κ0Λ12ϕ2

fi

fl

´1 . (3.16)

It must be noted that a new parameter, the static thermal permeability, Π1
0 is added in

the above expression compared to JCA model.

Johnson-Champoux-Allard Pride Lafarge (JCAPL) model

JCA model was refined by Pride et al. [145] to account for pores with possible constric-

tions between them. Further, it was corrected by Lafarge [146] and the final expression

of dynamic density is given as follows:

ρ̃ “
ρ0α̃

ϕ
; (3.17)

α̃ “ α8

„

1 `
1

jω̄
F̃

ȷ

; F̃ “ 1 ´ P ` P

c

1 `
M

2P 2
jω̄; ω̄ “

ωρ0Π0α8

η0ϕ
; (3.18)

M “
8Π0α8

ϕΛ2
; P “

M

4

ˆ

α0

α8

´ 1

˙ ; (3.19)

K̃ “
γ0P0

ϕ

1

β̃
; (3.20)

β̃ “ γ0 ´ pγ0 ´ 1q

„

1 `
1

jω̄1
F̃ 1

ȷ´1

; F̃ 1 “ 1 ´ P 1
` P 1

c

1 `
M 1

2P 12
jω̄1; (3.21)

ω̄1
“
ωρ0CpΠ

1
0

κ0ϕ
; M 1

“
8Π1

0

ϕΛ12
; P 1

“
M 1

4 pα1
0 ´ 1q

, (3.22)

where Π0 is the static viscous permeability, α0 is the static viscous tortuosity and α1
0 is

the static thermal tortuosity.

Wilson model

Since the models by Johnson, Koplik and Dashen for visco-inertial effects and models

by Champoux-Allard or Champoux-Allard-Lafarge for thermal effects are developed to
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match the low and high frequency behaviours of materials, Wilson [148] developed a model

to match the medium frequency behaviour (or transition behaviour, when the viscous and

thermal boundary layers are of the order of the pore size).

ρ̃ “ ρ8

p1 ` jωτvorq
1{2

p1 ` jωτvorq1{2 ´ 1
; (3.23)

K̃ “ K8

p1 ` jωτentq
1{2

p1 ` jωτentq1{2 ` γ0 ´ 1
, (3.24)

where ρ8, τvor, K8 and τent are the 4 parameters of Wilson’s model and γ0 is the ratio of

specific heats.

3.3.2 Elastic models

Structural dissipation models are used to capture the vibrational behaviour of the

porous material, which primarily depend on the material characteristics. These models

account for the effects of mechanical properties of the skeleton material, for example, the

effects of elasticity, visco-elasticity, anisotropy, orthotropy etc. These elastic models are

then added with fluid dissipation (acoustic) model for the dissipation due to viscous and

thermal effects [149] to finally compute the vibro-acoustic indicators.

For elastic isotropic frames of porous materials, according to Biot-Allard model [21],

three different kinds of waves can propagate in the porous medium: a compressional

and a shear wave in the solid phase and a compressional wave in the fluid phase. A

transfer matrix could be formed from these types of wave propagation combining with

visco-thermal dissipation (acoustic) models. For a complete description and derivation of

the transfer matrix, the reader is referred to [21, 150]. By following the similar method for

transversely isotropic medium, Khurana et al. [151] provided the description to obtain the

transfer matrix, which could be extended for elastic orthotropic medium as well. Using

the Stroh formalism, Parra Martinez [152] derived the transfer relations between the state
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vectors for anisotropic poro-elastic media. As material properties of viscoelastic isotropic

materials are frequency dependent, transfer matrix of elastic isotropic is used for further

calculations. But it is to be noted that the material properties like Young’s modulus

(Ẽ) would be rewritten as Ẽ˚ “ Ẽp1 ` jη̃q where η̃ represents the structural damping

factor. In general, Young’s modulus (Ẽ), damping factor (η̃) and Poisson’s ratio (ν̃) are

the three material properties which are functions of frequency in a viscoelastic isotropic

material.

3.3.3 Inertial models

If the fluid-structure interaction occurring between the saturating fluid and the porous

skeleton is negligible, the entire porous material can be considered as an equivalent fluid.

This situation is encountered either in the case the deformation energy governed by the

stiffness is much higher than the inertial energy or vice-versa. These two situations cor-

respond respectively to Rigid body or Limp behaviours.

Rigid body model

If the porous material moves as a whole without deforming or in a situation where the

ratio of the Young’s modulus to volumetric mass density is high, the porous material is

assumed to be a rigid body. This situation may be encountered for stiff materials, though

with a low mass density. In this case, the porous frame does not deform, but inertial

effects may occur because the porous material is allowed to move in a rigid body mo-

tion [149]. For this rigid body model, expression of the equivalent density (ρ̃eq) may be

modified to improve the description of inertial effects [149]:

1

ρ̃RBeq

“
1

ρ̃eq
`
γ12 ` p1 ´ ϕqγ1

ρ̃
; (3.25)

K̃eq “ K̃f{ϕ; keq “ ω

b

ρ̃eq{K̃eq, (3.26)
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where ϕ, γ1, ρ̃ and K̃f are porosity, coupling factor, modified Biot’s density and bulk mod-

ulus of saturating air respectively. It may be noted that Eq. (3.25) is presented in the

correct form after removing the typos in [149]. Detailed description of each of these pa-

rameters can be found in [149]. The equivalent parameters ρ̃RBeq and keq are used in the

fluid matrix given in Eq. (3.4) in places of ρ and k respectively.

Limp model

Limp model corresponds to situations where the ratio Young’s modulus to volumetric

mass density is small. Typical examples of limp materials are soft, highly porous fibrous

materials. In this case, the bulk modulus and the shear modulus are assumed to have

zero values. The modified equivalent mass density expression for the limp model is [153]:

1

ρ̃limp
eq

“
1

ρ̃eq
`
γ12

ρ̃
. (3.27)

For the majority of the porous materials, the bulk modulus of the porous material is

much larger than that of the fluid medium. In such cases, the effective density for the

limp model is given as [153]:

ρ̃limp «
ρtρ̃eq ´ ρ20

ρt ` ρ̃eq ´ 2ρ0
; ρt “ ρ1 ` ϕρ0, (3.28)

where ρ0 and ρ1 are the densities of the fluid medium and porous material, respectively.

Again, using these effective properties, the matrix representation of the limp frame limit

is given by Eq. (3.4).

3.3.4 Models for poro-elastic material with heterogeneities

For the elaborated porous materials like double porosity materials with deformable

skeleton [154] and porous composites [149], the equivalent fluid properties (obtained from

fluid dissipation models) can be modified to correctly capture effects of heterogeneities.

These modified equivalent fluid properties are then used in either structural or inertial

dissipation models to compute the vibro-acoustic indicators of the poro-elastic material.
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An illustration on the ways to obtain transfer matrix for poro-elastic layer is presented in

the Fig. 3.2 whose state vector is given by,

Vp
pMq “

„

vsxpMq vszpMq vfz pMq σszzpMq σsxzpMq pf pMq

ȷT

. (3.29)

3.4 Transfer matrices of elastic plate layer, septum

layer and impervious screen

3.4.1 Elastic plate and septum layers

In case of elastic plate layer, the wave propagation is assumed to be controlled by

bending and shear motion of the plate. One may remind that the elastic solid layer (see

Section 3.2.2) allows compressional, bending and shear waves to propagate, whereas the

elastic plate layer allows only bending and shear waves of the layer. In thin plates, bending

wave is the only mode of wave propagation (follows thin plate theory by Love-Kirchoff

[95]) whereas both bending and shear waves are the mode of wave propagation in thick

plates (follows thick plate theory by Reissner-Mindlin [97, 99]). A set of two variables is

needed to model the wave propagation in the elastic plates.

Vep
pMq “

„

vepz pMq σep
zzpMq

ȷT

, (3.30)

where vepz and σep
zz are the z-component of the velocity and normal stress at the point, M

respectively. A 2ˆ2 transfer matrix rT eps gives the relation between these quantities at

both sides of the layer,

rT ep
s “

»

—

–

1 0

´Zep 1

fi

ffi

fl

. (3.31)
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Here, Zep is the mechanical impedance of the plate, and it is expressed as below based on

the theory adopted.

Zep “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

Zthin “ jωms

ˆ

1 ´
Dk4t
ω2ms

˙

Zthick “

k4tD ´ msω
2 `

ˆ

Izms

G˚h
ω2 ´ k2t

Dms

G˚h

˙

ω2 ´ k2t Izω
2

jω

ˆ

1 `
k2tD ´ Izω

2

G˚h

˙

, (3.32)

where ms is the mass density per unit area, D “
Ep1 ` jηqh3

12p1 ´ ν2q
is the bending stiffness,

G˚ “ Gκ with G as the shear modulus of the plate, κ is the shear correction factor and

Iz “
ρh3

12
is the mass moment of inertia.

If one wants to express the state vector with pressure, then Vep
pMq takes the following

form,

Vep
pMq “

„

peppMq vepz pMq

ȷT

, (3.33)

which in turn results into the following transfer matrix form,

rT ep
s “

»

—

–

1 Zep

0 1

fi

ffi

fl

. (3.34)

A layer is called as septum (mass layer) when the bending stiffness is negligible. In

this case, the mechanical impedance in Eq. (3.32) is reduced to Zsm “ jωms.

3.4.2 Impervious screen

Impervious screens are generally used to protect acoustic materials. For the imper-

vious screen bonded onto a porous material, the following set of variables is needed to

characterize the acoustic field in the screen, as the modelling needs to account for the

interface forces.

Vimp
pMq “

„

vimp
x pMq vimp

z pMq σimp
zz pMq σimp

xz pMq

ȷT

, (3.35)
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where vimp
x and vimp

z are the x and z-components of the velocity, respectively. σimp
zz and

σimp
xz are the normal and shear stresses at point M . Then, a 4ˆ4 transfer matrix rT imps

that relates these quantities at both sides of the layer is given by,

rTimps “

»

—

—

—

—

—

—

—

–

1 0 0 0

0 1 0 0

0 ´Zimp 1 0

´Z 1
imp 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (3.36)

where Zimp “ jωms

ˆ

1´
Dk4t
ω2ms

˙

, Z 1
imp “ jωms

ˆ

1´
Sk2t
ω2ms

˙

and S is the membrane stiffness

of the screen.

3.5 Coupling interface matrices

The transfer matrices of various types of layer were evaluated in the previous section.

Following the work by Brouard et al. [19], the interface continuity conditions between two

adjacent layers i and j are described as:

rIijsV
i
pMiq ` rJijsV

j
pMjq “ 0. (3.37)

As the continuity conditions depend on the nature of the two layers that are in contact,

the matrices rIijs and rJijs also depend on the same.

If the two layers are of the same nature, and they are not porous, the global transfer

matrix is simply equal to the product of the transfer matrices of the two layers.

3.5.1 Porous-Porous interface

If two poro-elastic layers are in contact, the interface continuity conditions are influ-

enced by the porosities of those two layers as shown below:

vsxpMiq “ vsxpMjq; v
s
zpMiq “ vszpMjq;
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ϕipv
f
z pMiq ´ vszpMiqq “ ϕjpv

f
z pMjq ´ vszpMjqq;

σfzzpMiq{ϕi “ σfzzpMjq{ϕj; σ
s
xzpMiq “ σsxzpMjq. (3.38)

In this case, the global transfer matrix rT ps is written as:

rT ps “ rT p1 srIppsrT
p
2 s. (3.39)

Here, rT p1 s and rT p2 s are the transfer matrices of the two porous layers, and rIpps is repre-

sented as shown from the Eq. (3.38):

rIpps “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 0 0 0 0 0

0 1 0 0 0 0

0 1 ´
ϕ2
ϕ1

ϕ2
ϕ1

0 0 0

0 0 0 1 0 1 ´
ϕ1
ϕ2

0 0 0 0 1 0

0 0 0 0 0 ϕ1
ϕ2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (3.40)

It is to be noted that rIpps will be unit matrix if porosities of the two porous layers are

equal.

3.5.2 Fluid-Solid interface

For a fluid and a solid in contact, the continuity conditions are,

vfz pMiq “ vszpMjq; 0 “ σsxzpMjq; ´ppMiq “ σszzpMjq. (3.41)

The corresponding interface matrices are,

rIfss “

»

—

—

—

—

–

0 ´1

1 0

0 0

fi

ffi

ffi

ffi

ffi

fl

; rJfss “

»

—

—

—

—

–

0 1 0 0

0 0 1 0

0 0 0 1

fi

ffi

ffi

ffi

ffi

fl

. (3.42)
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3.5.3 Fluid-Porous interface

For a fluid and a poro-elastic layer in contact, the continuity conditions are,

vfz pMiq “ p1 ´ ϕjqv
s
zpMjq ` ϕjv

f
z pMjq; 0 “ σsxzpMjq;

´ϕjppMiq “ σfzzpMjq; ´p1 ´ ϕjqppMiq “ σszzpMjq. (3.43)

The corresponding interface matrices are,

rIfps “

»

—

—

—

—

—

—

—

–

0 ´1

ϕj 0

1 ´ ϕj 0

0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

; rJfps “

»

—

—

—

—

—

—

—

–

0 1 ´ ϕj ϕj 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (3.44)

3.5.4 Solid-Porous interface

For a solid and a poro-elastic layer in contact, the continuity conditions are,

vszpMiq “ vszpMjq; v
s
xpMiq “ vsxpMjq; v

s
zpMiq “ vfz pMjq;

σsxzpMiq “ σsxzpMjq; σ
s
zzpMiq “ σfzzpMjq ` σszzpMjq. (3.45)

The corresponding interface matrices are,

rIsps “

»

—

—

—

—

—

—

—

—

—

—

–

1 0 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

; rJsps “

»

—

—

—

—

—

—

—

—

—

—

–

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (3.46)
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rIijs and rJijs matrices must be interchanged if the order of the layers are interchanged.

For example, in case of porous-solid interface, rIpss “ rJsps and rJpss “ rIsps.

3.6 Assembling the global transfer matrix

By combining all the transfer and interface matrices in the correct order, the multi-

layered structure can be described. The following relations are formulated for the multi-

layered structure of Fig. 3.1,

rIf1sV
f
pOq ` rJf1srT p1q

sVp1q
pM2q “ 0; (3.47a)

rIi,i`1sVi
pM2iq ` rJi,i`1srT

pi`1q
sVpi`1q

pM2pi`1qq “ 0, i “ 1, n ´ 1. (3.47b)

The above equations can be written in matrix form as,

rD0sV0 “ 0, (3.48)

where

rD0s “

»

—

—

—

—

—

—

—

–

rIf1s rJf1srT
p1qs 0 . . . 0 0

0 rI12s rJ12srT p2qs . . . 0 0

...
...

...
. . .

...
...

0 0 0 . . . rIn´1,ns rJn´1,nsrT pnqs

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (3.49)

and

V0 “

„

V f pOq V p1qpM2q V p2qpM4q . . . V pnqpM2nq

ȷT

. (3.50)

As the solution of the problem depends on boundary conditions on the left and right-

hand side of the structure, the impedance at a point N is written as follows by assuming
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Rear BC a b
Anechoic 1 ´Z0{ cos θ
Open end 1 0
Rigid backing 0 1

Table 3.1: Values for a and b in Eq. (3.52) with respect to the rear boundary condition.

a semi-infinite air layer on the right-hand side,

ppNq ´
Z0

cos θ
vfz pNq “ 0, (3.51)

with Z0 “ ρ0c0 being the characteristic impedance of air. In the cases of open end and

rigidity backing at point N , the boundary conditions would be ppNq “ 0 and vfz pNq “ 0,

respectively. Therefore, to accommodate all these three types of boundary conditions, the

Eq. (3.48) is rewritten in the general form with this impedance equation as: rD1sV “ 0,

where

rD1
s “

»

—

—

—

—

—

—

—

—

—

—

—

–

0

rD0s
...

0

0 . . . 0 rInf s rJnf s

0 . . . 0 0 a b

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, (3.52)

and

V “

„

V0 V f pNq

ȷT

. (3.53)

The values of a and b are listed in Table 3.1 with their respective boundary conditions

(BCs) at point N . For transmission loss computations, the rear boundary condition would

be defined by Eq. (3.51).
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3.7 Calculation of the acoustic indicators

3.7.1 Surface impedance, reflection and absorption coefficients

The left-hand side boundary condition is expressed as a function of the surface impedance

(Zs) of the system as follows,

ppOq ´ Zsv
f
z pOq “ 0. (3.54)

A set of linear equations can be written as given below by considering the above equation,

»

—

—

—

—

–

1 ´Zs 0 . . . 0

rD1s

fi

ffi

ffi

ffi

ffi

fl

V “ 0. (3.55)

For non-trivial solution, the determinant of this matrix (nˆ n dimension) must be equal

to zero. Therefore, Zs can be calculated by,

Zs “ ´
|D1

1|

|D1
2|
, (3.56)

where |D1
1| and |D1

2| are the determinant of the matrix obtained by removing the first

and second columns respectively from rD1s. Finally, the reflection coefficient (R) and the

absorption coefficient (α) are calculated by the following equations,

R “
Zs cos θ ´ Z0

Zs cos θ ` Z0

; α “ 1 ´ |R2
|. (3.57)

The main advantage of this method is to compute only determinants of matrices

instead of a full inversion.
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3.7.2 Transmission coefficient

The transmission coefficient (T ) is defined as the ratio of the pressure of the transmit-

ted wave to that of the incident wave.

T “ p1 ` Rq
ppNq

ppOq
“ p1 ` Rq

|D1
n´1|

|D1
1|
, (3.58)

where |D1
n´1| is the determinant of the matrix obtained by removing the (n´1)th column

from rD1s. For a plane wave of incidence angle θ, the transmission loss is defined by,

TL “ ´10 log10 τpθq, (3.59)

where τpθq “ |T 2pθq| is the transmission factor for the angle of the incidence θ.

3.7.3 Acoustic indicators for diffuse field

In case of a diffuse field excitation with θmin and θmax being the selected diffuse field

integration limits (usually 0 and π{2 respectively), the absorption coefficient and trans-

mission loss are calculated as,

αd “

şθmax

θmin
αpθq cos θ sin θdθ

şθmax

θmin
cos θ sin θdθ

; (3.60)

TLd “ ´10 log10

«
şθmax

θmin
|τpθq|2 cos θ sin θdθ

şθmax

θmin
cos θ sin θdθ

ff

. (3.61)

3.8 A short description of finite size correction by

FTMM

The TMM considers structures of infinite lateral dimensions to calculate the acoustic

response. This methodology corresponds well with studies at mid to high frequencies for a

wide variety of flat panels for transmission loss applications. On the other hand, discrep-



3.8. A short description of finite size correction by FTMM 55

ancies are seen at low frequencies, particularly for small finite-sized panels. Therefore,

Finite Transfer Matrix Method (FTMM), also called spatial windowing technique, is em-

ployed to account for the finite lateral dimensions of the multi-layer system. This method

is rationalized by replacing the radiation efficiency in the receiving area with the radiation

efficiency of an analogous baffled window. As a result, this method is only applicable to

planar structures, by expressing the sound transmission coefficient as,

τfinite “ τinfiniteσpktq cos θ, (3.62)

where τinfinite is the sound transmission coefficient when the structure is considered to be

infinite. The radiation efficiency (σ) is expressed as follows:

σpktq “
jk0
S

ż 2π

0

ż

S

ż

S

e´jktpx cosϕ`y sinϕqGpM,M 1
qe´jktpx1 cosϕ`y1 sinϕqdxdydx1dy1, (3.63)

where S is the area covered by the finite size of the rectangular structure of dimensions

Lx ˆ Ly and G is the Green’s function. One could observe that the above expression

requires 5 integrals to estimate the value of the radiation efficiency (6 integrals in the

diffuse field). Few popular FTMM models used in the industries are listed in [24–28]. All

these models attempt to solve the same radiation equation (3.63) which uses 5 integrals

while using different simplifications. Most of the models use 1D approximation considering

Lx « Ly. Out of these five models, Rhazi and Atalla [26] model is the most accurate and

applicable to all types of excitations since it solves the full equation while solving some

integrals analytically without approximation. But this model attracts more computational

time for the same reason. The model given by Bonfiglio et al. [28] is also applicable for

all types of excitations and, absorption and transmission loss calculations. This model

gains its advantage over other models since it is a good compromise between accuracy

and computational time, but it uses 1D approximation.



56 Chapter 3. Condensed model from the Transfer Matrix Method (TMM)

3.9 Preliminary condensation using TMM

As discussed in Section 2.5, condensed models would serve as handy tools to under-

stand the physical behaviour of the multi-layer structures and to reduce the computational

time by reducing the total degrees of freedom during numerical simulations. One of the

major shortcomings of the existing condensed models is excluding the symmetric motion

(or compressional/dilatational/breathing motions) of the multi-layer structure. This is

due to the assumption that the multi-layer is defined with constant displacement along

the thickness direction, which prevents the stretching motion. Since large number of

industrial multi-layer applications exhibit symmetric motion even at the low-frequencies

p100 ´ 500 Hzq, the existing condensed models need to be extended further to include

the symmetric motions into the formulation. As a first step towards this goal, a simple

condensation procedure through TMM is explained in this section.

3.9.1 Global matrix into 2 ˆ 2 condensed transfer matrix

Since the multi-layer is surrounded by two fluid domains, its response is assumed to

be condensed into 2 ˆ 2 transfer matrix as shown below.

$

’

&

’

%

ppOq

vzpOq

,

/

.

/

-

“

»

—

–

T11 T12

T21 T22

fi

ffi

fl

$

’

&

’

%

ppNq

vzpNq

,

/

.

/

-

“ rTeqs

$

’

&

’

%

ppNq

vzpNq

,

/

.

/

-

. (3.64)

Nevertheless, this 2 ˆ 2 condensed matrix is not intrinsic, since it has to be recomputed

for each transverse wavenumber (or each incident angle).

In order to find the transfer matrix coefficients, two loads are applied on the above equa-

tion. When ppNq “ 0 (corresponds to open end condition), the following transfer matrix

coefficients are computed from the rD1s matrix (see Eq. (3.52)):

ppOq “ T12vzpNq ñ T12 “ ´
|D1

1|

|D1
n|
; (3.65a)



3.9. Preliminary condensation using TMM 57

vzpOq “ T22vzpNq ñ T22 “
|D1

2|

|D1
n|
. (3.65b)

Similarly, when vzpNq “ 0 (corresponds to rigid backing condition), the following transfer

matrix coefficients can be computed:

ppOq “ T11ppNq ñ T11 “
|D1

1|

|D1
n´1|

; (3.66a)

vzpOq “ T21ppNq ñ T21 “ ´
|D1

2|

|D1
n´1|

. (3.66b)

It may be noted that the condensed 2ˆ2 transfer matrix can also be derived by a Schur’s

complement method [57] as follows. Let us express the global assembled matrix rD1s

without the boundary condition as,

rDs “

»

—

—

—

—

—

—

—

–

0

rD0s
...

0

0 . . . 0 rInf s rJnf s

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

V f pOq

V p1qpM2q

...

V f pNq

,

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

-

“ 0, (3.67)

The matrix rDs of size n ˆ n is rearranged and expressed as follows to have the external

state variables of ‘O’ and ‘N ’ adjacent to each other,

»

—

–

A2ˆ4 B2ˆpn´4q

Cpn´4qˆ4 Epn´4qˆpn´4q

fi

ffi

fl

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

V f pOq

V f pNq

V p1qpM2q

...

V pnqpM2nq

,

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

-

“ 0 ñ

»

—

–

A B

C E

fi

ffi

fl

$

’

&

’

%

Vext

Vint

,

/

.

/

-

“ 0, (3.68)
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where Vext “ rV f pOq V f pNqsT and Vint “ rV p1qpM2q . . . V
pnqpM2nqsT . From the second

row of the above equation, Vint can be written as,

Vint “ ´rEs
´1

rCsVext. (3.69)

Substituting for Vint in Eq. (3.68), the equation given by the first row can be written as,

prAs ´ rBsrEs
´1

rCsqVext “ 0 ñ rT 1
p2ˆ2q | T p2ˆ2qsVext “ 0. (3.70)

As Vext “ rV f pOq V f pNqsT “ rpf pOq vfz pOq pf pNq vfz pNqsT , Eq. (3.70) can be

rewritten as,

rT 1
s

$

’

&

’

%

pf pOq

vfz pOq

,

/

.

/

-

` rT s

$

’

&

’

%

pf pNq

vfz pNq

,

/

.

/

-

“ 0 ñ

$

’

&

’

%

pf pOq

vfz pOq

,

/

.

/

-

“ ´rT 1
s

´1
rT s

$

’

&

’

%

pf pNq

vfz pNq

,

/

.

/

-

. (3.71)

From comparing Eq. (3.71) to Eq. (3.64), the 2 ˆ 2 condensed matrix (rTeqs) can be

expressed as,

rTeqs “ ´rT 1
s

´1
rT s (3.72)

One may note that the elements of rTeqs given by Eqs. (3.65) and (3.72) are the same.

Therefore, the two-loads method presented in this section can be considered as an al-

ternative strategy to the Schur’s complement method to compute the condensed matrix

without matrix inversions.

After obtaining the transfer matrix coefficients, the surface impedance can be calcu-

lated using the following relation:

Zs “
T12 ` T11Z0{ cos θ

T22 ` T21Z0{ cos θ
. (3.73)

The reflection and absorption coefficients can be computed using Eq. (3.57). Then, the
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Plasterboard Soft layer
ρ (kg m´3) 700 55
E (Pa) 3ˆ109 43ˆ103

ν 0.22 0.4
η 0.08 0.3

Table 3.2: Mechanical properties of the isotropic layers used in this chapter.

transmission coefficient is obtained from

T “
1 ` R

T11 ` T12
cos θ

Z0

ñ T “
2

T11 ` T22 `
T12 cos θ

Z0

` T21
Z0

cos θ

. (3.74)

For the transmission loss computations, under plane wave and/or diffuse field, Eqs. (3.59)-

(3.61) can be used with transmission coefficient from Eq. (3.74). As an example, for a

three-layer sandwich structure with sequence plasterboard/soft layer/plasterboard (ma-

terial properties can be referred from Table 3.2), the transmission loss obtained from this

approach can be compared against that of the TMM. From the comparison plot of trans-

mission loss (see Fig. 3.3), it can be seen that the condensed matrix approach results in

the same response as that of the TMM.

Figure 3.3: Transmission loss computations from the TMM and condensed matrix ap-
proaches for three-layer sandwich plasterboard (12.5 mm)/soft layer (3 mm)/plasterboard
(12.5 mm). The calculation is done for plane wave excitation with 60˝ incidence. Material
properties can be referred from Table 3.2.
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Another useful relation can be obtained for the transmission factor of a single layer

plate using the Eq. (3.74). Since the plate layer has state vector with pressure and velocity,

by comparing the transfer matrices from Eqs. (3.34) and (3.64), transmission factor for

plates can be written as,

τ pθq “ |T 2
pθq| “ 1{

ˇ

ˇ

ˇ

ˇ

1 `
Zep cos θ

2Z0

ˇ

ˇ

ˇ

ˇ

2

. (3.75)

3.9.2 Intrinsic properties of the condensed layer

Intrinsic or characteristic properties of the condensed layer are the properties which

describe the natural response of the structure and do not depend on the incident angle of

the plane wave. Since the multi-layer is condensed into the layer whose transfer matrix

relation is defined by Eq. (3.64), the intrinsic properties of the condensed layer could be

found by comparing the transfer matrix rTeqs to either the transfer matrix of the fluid

layer (rT f s) or that of the plate layer (rT eps). If the condensed (or equivalent) layer is

assumed to be of fluid nature, then the intrinsic properties would be ρ̃eq and K̃eq. But

this may be not be always possible, as it requires at least the symmetry of rTeqs. On

the other hand, in case of thin multi-layer structure, the transfer matrix rTeqs could be

compared to the plate transfer matrix rT eps which would yield D̃eq and ρeq as intrinsic

properties. Again, this approach requires T11 “ T22, and additionally T11 “ T22 « 1 and

T21 « 0 conditions also need to be met. All of these conditions are difficult to be satisfied

for many multi-layer applications and further, the elements of rTeqs are angle dependant

which result in the angle dependency of the condensed layer properties. This is considered

to be the limitation of the present condensation approach.

3.9.3 Condensation approach for symmetric multi-layers

According to Dym and Lang [155], the anti-symmetric and symmetric motions are

decoupled for the physically symmetric multi-layer system and two types of impedances

corresponding to these motions can be defined. This assumption holds true since the
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coupling components of each symmetric layer are balanced and therefore can be ignored

when computing the system’s kinematic and deformation energies. As a result, the sys-

tem’s symmetric (ZS) and anti-symmetric (ZA) impedances may be used to describe both

behaviors independently.

Air Air

O N

Neutral axis

Figure 3.4: Schematic representation of the symmetric multi-layer structure subjected to
plane wave incidence.

For the symmetric multi-layer system shown in Fig. 3.4, Dym and Lang [155] define

symmetric and anti-symmetric impedances, in terms of pressure (p) and velocities (v) at

points ‘O’ and ‘N’, as:

ZS “ ´
ppOq ` ppNq

vz
“ 2

ppOq ` ppNq

vzpOq ´ vzpNq
, (3.76)

ZA “
ppOq ´ ppNq

qvz
“ 2

ppOq ´ ppNq

vzpOq ` vzpNq
, (3.77)

where vz and qvz denote the symmetric and anti-symmetric normal velocities. The above

equations are rearranged to formulate the following transfer matrix in terms of the anti-
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symmetric pYA “ 1{ZAq and symmetric pYS “ 1{ZSq admittances:

$

’

&

’

%

ppOq

vzpOq

,

/

.

/

-

“

»

—

—

—

–

YA ` YS
YA ´ YS

1

YA ´ YS

4YAYS
YA ´ YS

YA ` YS
YA ´ YS

fi

ffi

ffi

ffi

fl

$

’

&

’

%

ppNq

vzpNq

,

/

.

/

-

. (3.78)

From Eq. (3.64) and Eq. (3.78), the symmetric and anti-symmetric admittances are

expressed in terms of the transfer matrix elements as:

YS “
T11 ´ 1

2T12
, (3.79)

YA “
T11 ` 1

2T12
. (3.80)

For thin multi-layer structures where the anti-symmetric motions like bending and shear

contribute more than the symmetric motions, YS « 0. This would result to simplify the

Eq. (3.78) as follows:

$

’

&

’

%

ppOq

vzpOq

,

/

.

/

-

“

»

—

–

1 1{YA

0 1

fi

ffi

fl

$

’

&

’

%

ppNq

vzpNq

,

/

.

/

-

“

»

—

–

1 ZA

0 1

fi

ffi

fl

$

’

&

’

%

ppNq

vzpNq

,

/

.

/

-

. (3.81)

The above transfer matrix is in the same form as the plate transfer matrix (rT eps) and

therefore, the condensed layer properties (D̃eq and ρeq) given by the existing condensed

plate models [7, 131, 133, 138, 156] would be indeed the intrinsic properties. If symmetric

motions also give important contribution to the resulting motion, the intrinsic parameters

corresponding to the symmetric motion need to be derived. Chapter 6 addresses the ways

to obtain the symmetric intrinsic parameters for symmetric multi-layer structures.

3.10 Conclusion

Vibro-acoustic Transfer Matrix Method (TMM) approach that is used to compute the

acoustic indicators of the multi-layer system has been recalled in this chapter. Transfer
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matrices corresponding to fluid, elastic solid, plate, impervious layer and poro-elastic

layer are presented as they would be used in the subsequent chapters of this thesis. A

preliminary condensation procedure is presented to condense behaviour of the mutli-layer

structure into a simple 2 ˆ 2 transfer matrix relation with only pressure and velocity

states. Nevertheless, this condensed matrix is not intrinsic since it has to be recomputed

for each transverse wavenumber (or each incident angle). Finally, intrinsic properties can

be characterized if one is able to identify a known 2 ˆ 2 transfer matrix (fluid or thin

plate). Although this condensation procedure is still limited for most of practical cases,

it provides some possible directions in which the methodology could evolve to include

compressional motion. Further, in Chapter 6, it serves as a handy tool to develop a

novel condensed model to include compressional motion of the multi-layer structure and

to compute vibro-acoustic indicators using 2 ˆ 2 transfer matrix.

As the existing condensed plate models use thin plate theory to model the natural

behaviour of the multi-layer structure, these models would be typically limited up to

certain frequency. Also, in the literature, no clear-cut expression is available for the

plate theories. Therefore, in the next chapter, frequency limit expressions of commonly

employed plate theories are derived using the wavenumber and admittance analyses.
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Chapter 4

Accuracy limits of plate theories

In this chapter, analytical expressions for the applicability limits in the spectral domain

for thin and thick plate theories are derived for the first time. As these plate theories

are widely used in many acoustic applications, applicability limits of these theories gain a

particular interest, to avoid any mistakes in the design of acoustic packages which might

arise from not satisfying the assumptions of these theories in a particular frequency range.

Qualitative and approximate frequency limits are given in the literature, but it is often a

tedious task to find an analytical expression for applicability limits. Through analysis of

the propagating wavenumbers and admittances of the investigated panels, the expected

accuracy of each theory is quantified.

Most of the contents presented in this chapter has been taken from the published article [157]:

Arasan, U., Marchetti, F., Chevillotte, F., Tanner, G., Chronopoulos, D., Gourdon, E.

(2021). “On the accuracy limits of plate theories for vibro-acoustic predictions”. Journal of

Sound and Vibration, 493, 115848.

Regarding the contributions made to the above-mentioned article, the author of this thesis has

done the following tasks: methodology, investigation, validation, article writing and review.

Note

65
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The chapter is organized as follows: Section 4.2 describes the dispersion behaviour of

thin and thick plates. As mentioned in the earlier chapters, the theory of elastic solids

is treated as a reference for comparing the plate theories, since it describes the complete

motion of an infinite layer [158]. In Section 4.3, expressions for the limits of applicability of

thin plate theories are discussed by comparing propagating wavenumbers of thin and thick

plate theories. Additionally, refined expressions for the coincidence and critical frequencies

are also presented. In Section 4.4, an expression for the frequency limit of applicability

of plate theories is derived by comparing the order of magnitudes of both symmetric and

anti-symmetric admittances of the plate. In Section 4.5, analytical expressions for the

frequency limits of different plate theories are presented along with sound transmission

loss computations for classical industrial materials for validation purposes.

4.1 Background

When studying the sound insulation of a wall, the main acoustic indicator is the

transmission loss (TL) which is controlled by the combination of several fundamental

vibrating modes of the wall. For example, a typical sound transmission problem encoun-

tered in building applications is presented schematically in Fig. 4.1 along with its vibrating

modes as the acoustic energy transmitted through the wall depends on its vibro-acoustic

behaviour. Although the wall vibrates in a complex manner for the given acoustic ex-

citation, this complex motion can be obtained by superposing the fundamental motions

(bending, shear and compressional/dilatational motions). Generally, looking at the TL

characteristics of a single wall as a function of frequency, three regions can be identified

which are controlled by the mass, damping and stiffness of the wall respectively. The

mass and stiffness control zones are separated by a critical region where strong reduction

of transmission loss is observed. This critical zone is characterized by its frequency, which

is called the critical frequency. Various vibro-acoustic models of varying complexity have

been developed to predict the sound insulation properties of plate structures, especially

with regard to noise attenuation problems. An early model was developed by Cremer

[159] which was applied to the computation of the TL across infinite, thin walls. Related
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Complex motion Fundamental motions

Bending Shear Compressional

Figure 4.1: Schematic representation of vibrating motion of a single wall subjected to
acoustic excitation.

work approaching the same problem of computing the acoustic insulation indicators of a

thin wall are presented in [25, 60, 160–162]. In Cremer’s model, it is assumed that the

motion of the plate is described only by the bending wave equation, which is based on

the classical plate theory [163].

Critical
region

Stiffness
controlled
region

Mass
controlled
region

Figure 4.2: Three regions of transmission loss curve for a plasterboard layer of 12.5 mm
under diffuse field. Material properties can be referred from Table 4.1.

Davy [164] argues that Cremer’s model can only be used below the critical frequency,

since most of the approximations are not valid within and above the critical region. Im-

proving on Cremer’s theory, Heckl and Donner [165] developed a model based on the first

order shear deformation theory (FSDT) [97–99] which could be applied to thicker walls

to compute sound TL. In this model, motion due to the transverse shear is also included
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along with the flexural motion of the plate. The corrected TL expression accounting for

shear deformation of the plate can be found in [166]. Heckl and Donner [165] point out

that their model is valid only at frequencies well below the first dilatational or compres-

sional frequency of the plate. This is due to the fact that the FSDT does not account

for the thickness stretch motion of the plate, as it assumes constant velocity at all points

through the thickness direction. Consequently, the symmetric motion of the plate is not

taken into account in zero, first and higher order plate theories. This may lead to devi-

ations between the predictions and the actual motion of the plate at higher frequencies,

especially when the material is soft. In the work published by Ljunggren [166, 167], the

general expression to compute the TL of an infinite wall with arbitrary uniform thickness

is given, accounting for both anti-symmetric and symmetric motions of the plate.

In recent years, instead of single wall structures, multi-layered structures have been

used widely for better sound comfort and noise attenuation. These structures provide

the designers with more choices for tuning the vibro-acoustic performance, leading to

better sound insulation characteristics. Advanced composite structures are one example

of multi-layer systems that are progressively used in different fields such as the space,

energy and aeronautical industries. In transport and construction industries, sandwich

structures are widely used as they provide high stiffness with significantly low weight. In

most cases, two face sheets are bonded with a viscoelastic layer to improve the overall

damping response of the structure. There exist many theoretical models dedicated to the

analysis of the behaviour of multi-layer structures. Since industrial multi-layer structures

are manufactured with a diversity of materials, they naturally increase the computational

burden for detailed finite element modelling, and it is therefore of interest to condense the

behaviour of the multi-layer system into a single layer. A detailed summary on these kinds

of different analytical models is given in Chapter 2 (literature survey) of this manuscript.

Concerning the condensed (or equivalent) plate models, the goal of these models is to

find the frequency dependent mechanical parameters of the equivalent thin plate that

incorporates the bending and shear motions of the multi-layer structures. Since plate

theories do not account for the dilatational or compressional motion of the structure,
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finding a frequency domain of validity is necessary to safely use these equivalent plate

models.

The reader may note that the words ‘frequency limit’ of a theory refer here to the

frequency up to which the theory can be applied within pre-defined accuracy intervals for

computing the desired acoustic indicators. Although in structural mechanics and dynam-

ics, thin and thick plates are distinguished based on the thickness to lateral dimensions’

ratio [168, 169], such rules may not be sufficient for vibro-acoustic calculations as they

depend on the material properties of the plate as well. Additionally, although plate the-

ories (both for thin and thick plates) are commonly employed in computing the acoustic

indicators of infinite and finite walls, there is currently no clear-cut frequency limit to re-

strict the applicability of these theories. In the following sections, these frequency limits

are derived from the wavenumber and admittance analyses of both thin and thick plate

theories.

4.2 Dispersion relations from plate theories

This section starts by analysing the dispersion relations of some commonly used the-

ories such as the Love-Kirchoff [96, 163] or the Reissner-Mindlin [97–99], to describe the

vibro-acoustic behaviour of isotropic, single wall structures. In subsequent sections, these

theories are compared, and their limitations are discussed.

Let us consider a structure with only one infinitely extended elastic plate layer with

thickness h. For this case, Fig. 3.1 will be modified and represented schematically as

shown in Fig. 4.3. The reader may recall that the transfer matrix of a plate layer is

given by Eq. (3.34) and the state vector is defined with pressure and velocity at points

‘O’ and ‘N’. The mechanical impedance of the plate layer, with respect to thin and thick

plate theories, can be referred from Eq. (3.32). Given the mechanical impedances of the

structure, dispersion relations are often obtained by setting the impedance to zero. In

other words, dispersion relations are used to understand the wave propagation in the

structure under natural or free vibration conditions.
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Air Air

O N

z

y

x

Figure 4.3: An oblique plane wave impinging on an infinitely extending elastic isotropic
plate layer with incident angle θ.

For Love-Kirchoff plates (or thin plates), by setting the mechanical impedance equal

to zero, it can be observed that only one type of wave propagation is possible, that is,

Zthin “ 0 ñ k4pD ´ msω
2

“ 0 ñ kp “ kb “

d

ω

c

ms

D
, (4.1)

where kb corresponds to the bending wavenumber and kp is the natural propagating

wavenumber of the plate.

For Reissner-Mindlin plates (or thick plates), the dispersion relation is obtained as

Zthick “ 0 ñ k4pD ´ msω
2

`

ˆ

Izms

G˚h
ω2

´ k2p
Dms

G˚h

˙

ω2
´ k2pIzω

2
“ 0. (4.2)

There are four solutions possible for the above quartic equation, that is,

kp “ ˘

g

f

f

e

msω2

2G˚h
`
Izω2

2D
˘

d

msω2

D
`

ˆ

msω2

2G˚h
´
Izω2

2D

˙2

. (4.3)

Out of the four solutions, two correspond to outgoing waves, that is, the real part of the

wavenumber is positive; these are

kp “ kRM1,2 “

g

f

f

e

msω2

2G˚h
`
Izω2

2D
˘

d

msω2

D
`

ˆ

msω2

2G˚h
´
Izω2

2D

˙2

. (4.4)
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It is observed from the above equation that the propagating wavenumber (kRM1) has

Figure 4.4: Propagating wavenumbers of a Reissner-Mindlin plate (50 mm plasterboard
with mechanical properties mentioned in Table 4.1) and its asymptotic behaviours. It is
observed that the main natural propagating wavenumber kRM1 is approaching bending
(kb) and corrected shear wavenumbers (ks) at low and high frequencies, respectively.

different asymptotic behaviour with respect to low and high frequencies as shown in

Fig. 4.4, here for the example of a 50 mm plasterboard with mechanical properties listed

in Table 4.1. One finds in particular:

´ At low frequency (or ω Ñ 0), we have

ms

D
"

ˆ

ms

2G˚h
´

Iz
2D

˙2

ω2 (4.5)

which results in kRM1 tending to kb
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´ At high frequency (or ω Ñ `8), we find

ms

D
!

ˆ

msω
2

2G˚h
´

Iz
2D

˙2

ω2 (4.6)

which results in kRM1 tending to ks “ ω

c

ms

G˚h
with ks, the corrected shear wavenum-

ber.

´ kRM2 is evanescent until the cut-on frequency given by Eq. (4.8) after which it

becomes propagating and reaches the membrane wavenumber km “ ω

c

Iz
D

at high

frequency.

´ ks is always greater than km since
ks
km

“

c

2

κp1 ´ νq
ą 1,

where κ and ν are the shear correction factor and Poisson’s ratio, respectively. Note that

the ratio ks{km is simplified to the above form by employing the relations between the

isotropic material properties.

Based on the above observations, Eq. (4.4) is rewritten in a compact form as,

kRM1,2 “

d

1

2

„

k2s ` k2m ˘

b

4k4b ` pk2s ´ k2mq2

ȷ

. (4.7)

The cut-on frequency can be obtained by considering kRM2 “ 0, that is,

k2s ` k2m “

b

4k4b ` pk2s ´ k2mq2 ñ k4b “ k2sk
2
m,

and thus

fcut-on “
1

2π

c

G˚h

Iz
. (4.8)

Further, it is observed that the high frequency asymptote given by Ghinet and Atalla [71]

as

kG&A “ ω

c

4Izms

G˚hIz ` msD
. (4.9)

differs from the correct estimation of the high frequency asymptote ks. It may be noted
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that Eq. (4.2) can be obtained from two of the three equilibrium equations (derived by a

Newtonian approach) for thick plates [170]. For the sake of completeness, the dispersion

relation resulting from third equilibrium equation [71] is presented here. The natural

wavenumber from the third equilibrium equation is given by,

kp “ kRM3 “

d

2

1 ´ ν

Izω
2 ´ G˚h

D
“

d

δ2s ´
2

1 ´ ν

k4b
k2s
, (4.10)

where δs “ ω

c

ρ

G
is the pure shear wavenumber of the isotropic elastic layer (refer

Section 3.2.2). Similar to kRM2 , kRM3 is also evanescent until a cut-on frequency (fcut-on)

but reaches the asymptote δs at higher frequencies as

δ2s "
2

1 ´ ν

k4b
k2s

when ω Ñ `8.

Table 4.1: Material properties of few typical elastic isotropic layers used in this chapter

Aluminium Plasterboard Concrete Soft layer
ρ (kg m´3) 2780 700 2150 8
E (Pa) 71ˆ109 3ˆ109 33ˆ109 16ˆ104

η 0.01 0.08 0.1 0.1
ν 0.3 0.22 0.23 0.44

Fig. 4.4 illustrates these asymptotic behaviours of the solutions of kRM for a plaster-

board of thickness 50 mm. Mechanical properties of the materials used in this chapter

can be obtained from Table 4.1. It must be realized that both thin and thick plate the-

ories neglect the compressional mode (also called the symmetric or dilatational mode)

and allow only anti-symmetric modes (i.e, bending and/or shear modes), since the plate

velocity is assumed to be constant through the thickness direction.

Since the motion both of the anti-symmetric and compressional mode of an infinite

layer of finite thickness can be expressed based on the theory of elasticity, calculations

of the transfer matrix for elastic solids are considered here as reference to the analysis

using plate theories. By referring to the two fundamental wavenumbers (δl and δs) of the
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elastic isotropic solid, it can be understood that the bending wavenumber is a complex

combination of these fundamental wavenumbers. It is, however, not straightforward to

see this relation from the above equations for elastic isotropic solids.

4.3 Comparison between thin and thick plate theo-

ries

4.3.1 Frequency limit of thin plate theory in comparison with

thick plate theory

In this section, natural propagating wavenumbers of thin and thick plate theories are

used to find the frequency limit of the thin plate theory. From the Fig. 4.4, it can be seen

that the thick plate wavenumber (kRM1) clearly deviates from the bending wavenumber

(kb) after certain frequency. It may be noted that, though there are totally three outgoing

waves characterized by wavenumbers (kRM1 , kRM2 & kRM3), kRM1 is considered for the

present analysis as it is the only wavenumber that is always propagative. Additionally,

since the deviation between kRM1 and kb starts well before the cut-on frequency (fcut-on),

kRM1 would be appropriate to derive the frequency limit of thin plate theory. By defining

Ck “
kb
ks
, the ratio between bending and shear wavenumbers, error percentage (ϵ) between

the propagating wavenumbers of the thin and thick plate theories is expressed as

ϵ “

ˆ

1 ´
1

kRM1{kb

˙

100%, (4.11)

where,

kRM1

kb
“

1

2

g

f

f

e

2 ` κp1 ´ νq

C2
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`

d

16 `

„

2 ´ κp1 ´ νq

C2
k

ȷ2

, (4.12)

which is obtained using Eq. (4.7).

The thin plate theory will be valid, while ks is negligible compared to kb (kb ě Ckks).

The value for Ck can be chosen such that ϵ is below an accepted error percentage, and the
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frequency range of validity for thin isotropic plate can be expressed as given by Eq. (4.13).

kb ě Ckks ñ f ď fthin/thick “
G˚h

2πC2
k

c

1

msD
“

κ

4πhC2
k

d

12E

ρ

1 ´ ν

1 ` ν
, (4.13)

where fthin/thick is the frequency limit of the ‘thin’ plate theory by keeping the ‘thick’ plate

theory as reference. For instance, choosing Ck “ 4 for typical isotropic layer corresponds

to an error percentage (ϵ) around 2% between kRM1 and kb (see Fig. 4.5).

Figure 4.5: Relation between Ck “ kb{ks and error percentage (between the propagating
wavenumbers from thin and thick plate theories) for κ “ 5{6 and ν “ 0.33.

4.3.2 Coincidence and critical frequencies of thick plate

As discussed in the earlier sections, thin plate theory allows only bending waves to

propagate in the elastic plate and shear wave propagation is included by thick plate

theory to correctly capture the anti-symmetric motion of the plate. Due to this additional

anti-symmetric motion in the plate, the coincidence and critical frequency expressions

obtained from thin plate theory need to be rewritten with terms corresponding to shear

and rotational inertia.
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The coincidence frequency between a plate and an acoustic wave incident on the plate

at an angle θ is defined as the frequency at which the transverse component of the incident

wavenumber is equal to the natural propagating wavenumber of the plate. In the case

of thin plates, the natural propagating wavenumber is the bending wavenumber and the

coincidence frequency is expressed as,

kb “ k0 sin θ ùñ fcoincthin “
1

2π

´ c0
sin θ

¯2
c

ms

D
. (4.14)

For thick plates, as the natural propagating wavenumber is given by kRM1 , the coincidence

frequency is expressed as,

kRM1 “ k0 sin θ ùñ fcoincthick “
pc0{ sin θq2

2π

d

ˆ

D

ms

´
c20

sin2 θ

Iz
ms

˙ ˆ

1 ´
c20

sin2 θ

ms

G˚h

˙

. (4.15)

In case of diffuse field excitation, the elastic layer is subjected to all coincidence frequencies

corresponding to θ “ r0, π{2s and the lowest coincidence frequency is called the critical

frequency. In other words, it is the frequency at which the speed of sound is equal to

the speed of natural propagating waves of the plate. This can be computed by letting

sin θ “ 1 in the coincidence frequency expression. The critical frequency obtained from

thin plate theory is given by kb “ k0, that is,

fcrithin “
c20
2π

c

ms

D
. (4.16)

From the Eq. (4.15), the critical frequency for thick plate is obtained from kRM1 “ k0,

that is,

fcrithick “
c20

2π

d

ˆ

D

ms

´ c20
Iz
ms

˙

´

1 ´ c20
ms

G˚h

¯

. (4.17)

It may be noted that the Eqs. (4.15) and (4.17) tend to coincidence and critical frequencies

obtained from thin plate theory as Iz Ñ 0 and G˚ Ñ 8. As an illustration, for 12.5 mm

plasterboard, the coincidence frequencies computed from both plate theories are indicated
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Figure 4.6: Transmission loss for the infinitely extent plasterboard of thickness 12.5 mm
(properties are mentioned in Table 4.1) under plane wave excitation with θ “ 60o with
coincidence frequencies computed from thin & thick theories, and it can be observed that
the estimation of coincidence frequency from thick plate theory is in good agreement with
theory of elasticity computation.

in the Fig. 4.6. It is observed from the Fig. 4.6 that the coincidence frequency computed

from Eq. (4.15) is in good agreement with elasticity theory. One may note that the

incidence angle 60˝ is randomly chosen to illustrate the good agreement on the coincidence

frequency estimation given by Eq. (4.15). However, the expression has been tested and is

valid for any angle of incidence. Therefore, it is worth noting that Eqs. (4.14) and (4.16)

are indeed limited to thin plates only, where the transition from thin to thick plates is

given by the frequency fthin/thick in Eq. (4.13).
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4.4 Frequency limit of plate theories in comparison

with theory of elasticity

When the thickness of the layer is small compared to the lateral dimension and the lon-

gitudinal wavelength (λl “ 2π{δl) is large compared to thickness, a plate theory, controlled

by the anti-symmetric motion, is generally considered. On the contrary, when the thick-

ness of the plate is of the order of magnitude of longitudinal wavelength, due to the vari-

ation in velocity through the thickness of the layer, both symmetric and anti-symmetric

motions contribute to the resulting motion of the plate after a certain frequency (Fig. 4.7).

This implies that plate theories might not be able to predict the correct vibro-acoustic

(a) Symmetric mode (b) Anti-symmetric mode

Figure 4.7: Vibrating modes of an infinitely extent elastic layer. While the symmetric
mode corresponds to the thickness stretch motion of the layer where the particle velocity
varies through the thickness, the anti-symmetric motion corresponds to the bending and
shear motions of the layer where the particle velocity is constant through the thickness.

behaviour of the elastic layer after this frequency, as they assume only anti-symmetric

motions in the plate. Therefore, finding this frequency limit of plate theories is necessary

and in this section, based on the symmetric and anti-symmetric motions of the plate, the

analytical expression of the frequency limit of plate theories is derived.

Contributions of symmetric and anti-symmetric motions of an isotropic layer can be

quantified by the impedances or admittances, by following Dym and Lang [155]. Sec-

tion 3.9.3 describes the transfer matrix relationship of symmetric multi-layer structure

in terms of anti-symmetric and symmetric admittances. Since the single layer is also a

structure of symmetric type, the transfer matrix given by Eq. (3.78) holds true for the

single layer as well. As demonstrated in Section 3.9.3, it can be checked from Eq. (3.78)

that, when the anti-symmetric admittance is larger than the symmetric admittance (or

YA " YS), the transfer matrix in Eq. (3.78) reduces to the transfer matrix of the plate



4.4. Frequency limit of plate theories in comparison with theory of elasticity 79

given by Eq. (3.34). Thus, the ratio between YA and YS could be a good criterion to

obtain the frequency limit of plate theories. Comparing the longitudinal wavelength (λl)

to the thickness of the plate seems less accurate, as it does not compare the symmetric

motion to the anti-symmetric motion. One may also analyse the propagating wavenum-

bers (dispersion curves) of the structure to get the frequency limit using Lamb waves [101]

for a planar structure or Wave Finite Element Method (WFEM) [171] for more complex

structures. Nevertheless, these methods would be cumbersome and quite challenging for

analytical and/or numerical computations.

Since the symmetric motion is controlled by the longitudinal wave of the layer, the

transfer matrix for elastic solid layer (refer Appendix A) is reduced at normal incidence,

as
$
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One may note that the above transfer matrix is in the similar form of the fluid transfer

matrix given by Eq. (3.4). By equating the above equation with Eq. (3.78), the symmetric

admittance is obtained as

YS “
hδlpcoshδl ´ 1q

2jmsω sinhδl
“ ´

hδl
2jmsω

tan
hδl
2
. (4.19)

Approximating the tangent function by a Taylor series expansion (up to first order), the

symmetric admittance can be written as,

tan
hδl
2

«
hδl
2

ùñ YS « ỸS “ ´
phδl{2q2

jωms

“
jωh

4C
, (4.20)

where C “ λ ` 2µ is the compressional modulus of the elastic solid.

Since the anti-symmetric motion is controlled by the transverse wavenumber of the

incident wave and plate theories capture this type of motion, anti-symmetric admittance

is computed from plate theories as given by Eq. (3.32).
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The minimum value of the absolute ratio between the anti-symmetric and symmetric

admittance, denoted by Cy, is used to find the frequency limit of plate theories. Expressing

the anti-symmetric admittance (YA) from thin plate theory and the symmetric admittance

(ỸS) from Eq. (4.20), the frequency limit of plate theories is expressed as,

ˇ

ˇ

ˇ

ˇ

YA

ỸS

ˇ

ˇ

ˇ

ˇ

ě Cy ñ f ď fplate{solidoi
“

c20
2π sin2 θ

g

f

f

e

ms

2D
˘

d

´ms

2D

¯2

˘
4C

hCyD

sin4 θ

c40
. (4.21)

The above expression is valid for oblique incidence whereas in case of diffuse field ex-

citation, the following expression may be used to compute the frequency limit of plate

theories.

ˇ

ˇ

ˇ

ˇ

YA

ỸS

ˇ

ˇ

ˇ

ˇ

ě Cy ñ f ď fplate{soliddf
“
c20
2π

g

f

f

e

ms

2D
˘

d

´ms

2D

¯2

˘
4C

hCyD

1

c40
. (4.22)

The above frequency limits are computed by keeping the loss factor (η) to be zero. The

subscript ‘plate/solid’ in the above equations means that the frequency limit is for ‘plate’

theories in general (as even higher order plate theories also do not account for symmetric

motion) by keeping as a reference the theory of ‘elastic solids’. Further, the sub-subscripts

‘oi’ and ‘df’ correspond to ‘oblique incidence’ and ‘diffuse field’ respectively. It may be

observed that the relation

ˇ

ˇ

ˇ

ˇ

YA

ỸS

ˇ

ˇ

ˇ

ˇ

ě Cy yields four positive roots for the frequency. Out

of these four roots, only the minimum of pure real roots is considered for fplate{solidoi
and

fplate{soliddf
. It may also be noted that the expression for fplate{soliddf

can be modified in two

ways. First, by including higher order terms for the tangent function to get ỸS. Second,

by using the anti-symmetric mechanical admittance from thick plate theory. Though

these two ways might improve the frequency limit, the final expression for fplate{soliddf

would become more complex. Further, as discussed in the next section, the frequency

limits given by Eqs. (4.21) and (4.22) are sufficient for typical single layer walls used in

industry. A concrete layer of 140 mm is taken to illustrate the nature of the symmetric

and anti-symmetric admittances of the elastic layer and presented in the Fig. 4.8.

From the Fig. 4.8, it can be seen that the anti-symmetric admittance is larger compared
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Figure 4.8: Admittances of a concrete layer of thickness 140 mm (properties are mentioned
in Table 4.1) under plane wave excitation with θ “ 60o. It is observed that, from low
frequencies till the limiting frequency (fplate{soliddf

), the symmetric admittance is lesser
compared to the anti-symmetric admittance which supports the applicability of plate
theories till fplate{soliddf

.

to the symmetric admittance at low frequency range. The symmetric admittance is seen

to become of the same order of magnitude or larger compared to the anti-symmetric

impedance at around 2000 Hz. By letting the factor Cy be 10, the frequency limit of plate

theories is computed from Eq. (4.22). This means that the anti-symmetric admittance is

one order of magnitude larger than the symmetric admittance and from this frequency

onwards use of plate theories is not recommended to compute the acoustic indicators.

Therefore, it is advisable to adopt the theory of elasticity for computations after this

frequency limit. One may note that although the frequency limit expressions given by

Eqs. (4.13), (4.21) and (4.22) include the effect of loss factor through the Young’s modulus

of the layer, the influence of the loss factor on these frequency limits is observed to be

smaller compared to that of other material properties.
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4.5 Numerical examples

In this section, transmission loss (TL) of different material layers (with properties

listed in Table 4.1) are presented to illustrate the frequency limits obtained in sections 4.3

and 4.4. The readers are referred to Section 3.7 for TL computations by the TMM.

Further, the TL from plate theories can be computed using the transmission coefficient

given by Eq. (3.75). Both, oblique plane wave incidence of 60˝ and diffuse fields, are

used to compute TL. Since fplate{soliddf
is the minimum of all the possible coincidence

frequencies obtained from fplate{solidoi , in this section, fplate{soliddf is indicated as the limit

of plate theory. Though elasticity theory is considered as reference to analyse the plate

theories, additional validation from finite element method (FEM) is also presented in

some TL plots in this section.

FEM simulations are computed using Comsol Multiphysics© software. The acousti-

cal variables (pressure, velocity fields...) are computed in the coupled system (PML-air-

material-air-PML) (Fig. 4.9) using the “Comsol Pressure Acoustics” interface (Helmholtz

equation) for air and “Structural Mechanics branch” for the material (elastic material in

“Solid Mechanic”). The interface between air and the material is modelized using “fluid-

structure interface”. The dimensions of each material are 60 cm ˆ 60 cm (the thickness is

the real thickness) and periodic lateral conditions are chosen. The domain is adjusted (in

particular the dimensions of the air domains) and meshed with respect to a 10 elements

per wavelength (of the incident plane wave excitation) criterion based on the maximal

frequency. For example, at 125 Hz, the number of resolved degrees of freedom is 444675,

the complete mesh consists of 29889 domain elements, 8802 boundary elements and 812

edge elements. Linear hexahedral elements are used to mesh the structure, and the mean

computational time is 3 minutes per incidence per frequency. This translates to a mean

computational time of 1.5 - 2 hours for an oblique incidence for 30 frequencies. Addition-

ally, the maximum frequency is limited to 5000 Hz to reduce the total computational time

as it would be expensive for computation due to mesh refinement at higher frequencies.
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Figure 4.9: Schematic representation of the finite element system to calculate transmission
loss of an elastic layer.

In Figs. 4.10 and 4.11, TL computed from different theories (discussed in sections 3.2.2

and 3.4.1) are presented for comparison along with frequency limits expressed in sec-

tions 4.3 and 4.4. It is observed from these plots that, for stiff material like aluminium

(with typical value of thickness used in industries), the thin plate theory would be suffi-

cient to model the vibro-acoustic behaviours as both fthin{thick and fplate{soliddf are spotted

near the maximum audible frequency.

In the next example, an industrial plasterboard layer of 12.5 mm is chosen to see

the influence of shear on the TL response. For this layer, it is seen from the Figs. 4.12

and 4.13 that TL computed from thin plate theory is beginning to deviate from the

elasticity theory computation whereas thick plate theory is still in good agreement with

the elasticity theory until the limiting frequency fplate{soliddf (despite the closer responses

between different theories due to the averaging effect in diffuse field). This explains the

need to include the effect of shear into the anti-symmetric motion via thick plate theory.

Therefore, for this kind of materials, thick plate theory would be appropriate to compute

the acoustic indicators.

In the next example, a concrete layer with 140 mm thickness is presented to see the

validity of thin plate theory even for thicker structures. For this case, it is noted from

Figs. 4.14 and 4.15 that a similar trend is observed as for the plasterboard, that is, thin
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Figure 4.10: Transmission loss for an aluminium layer of thickness 5 mm (properties
mentioned in Table 4.1) under plane wave excitation with θ “ 60o. It is seen that
thin plate theory is adequate to compute the vibro-acoustic indicators, as both limiting
frequencies (fthin{thick & fplate{soliddf ) are in the high frequencies.

and thick plate theories are starting to deviate from the elasticity theory computation

at frequencies above fthin{thick and fplate{soliddf , respectively. One might also observe two

notable points from the TL plots of concrete and plasterboard. First, the coincidence fre-

quency occurs after the limit frequency of thin plate (fthin{thick) in plasterboard, whereas

it can be spotted before fthin{thick in concrete. This implies that even for thicker material,

the thin plate theory might be still valid after the coincidence frequency. The second no-

table point is that the symmetric motion (or compressional motion) effect clearly appears

in concrete.

In Fig. 4.15, the second minima in the TL computed from the theory of elasticity cor-

responds to the compressional frequency (fcomp « 15 kHz) given by Eq. (3.8). Therefore,

it is inferred that the compressional mode can still be neglected for plasterboard whereas

it has to be taken into account for the concrete layer and this is possible via employing

the theory of elasticity. The same is observed in the TL plot (Fig. 4.16) of soft layer

(melamine foam with only elastic properties is taken to see the effect of compressional

motion) with 20 mm thickness. It can be seen that TL of soft layer is greatly influenced

by the symmetric motion after the frequency limit fplate{soliddf .
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Figure 4.11: Transmission loss for an aluminium layer of thickness 5 mm (properties
mentioned in Table 4.1) under diffuse field excitation. It is seen that thin plate theory is
adequate to compute the vibro-acoustic indicators, as both limiting frequencies (fthin{thick

& fplate{soliddf ) are in the high frequencies.

Figure 4.12: Transmission loss for a plasterboard layer of thickness 12.5 mm (properties
mentioned in Table 4.1) under plane wave excitation with θ “ 60o. Deviations of thin and
thick plate theories from the elastic solid theory (or FEM) are observed after fthin{thick

and, fplate{soliddf respectively.
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Figure 4.13: Transmission loss for a plasterboard layer of thickness 12.5 mm (properties
mentioned in Table 4.1) under diffuse field excitation. Deviations of thin and thick plate
theories from the elastic solid theory are observed after fthin{thick and, fplate{soliddf respec-
tively.

One can also observe from Eq. (4.13) that, for different materials of infinitely extending

layers with the same thickness, the frequency limit fthin{thick would result in different

values despite thicknesses being the same. Therefore, it can be inferred that the use

of thin plate theory requires proper combination of thickness and material properties

(as given by Eq. (4.13)) rather than comparing the thickness to the lateral dimensions.

Similar argument holds for fplate{soliddf as well. In the previous TL plots, the choice of

the values of Ck “ 4 and Cy “ 10 are further confirmed by the TL variation of plate

theories from the elasticity theory and the TL difference between the elasticity theory

and plate theories are observed to be below 1 dB at the frequency limits. Of course,

one can conveniently choose the appropriate value of Ck and Cy based on the tolerance

accepted for the particular acoustic design.
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Figure 4.14: Transmission loss for a concrete layer of thickness 140 mm (properties men-
tioned in Table 4.1) under plane wave excitation with θ “ 60o. Deviations of thin and
thick plate theories from the elastic solid theory (or FEM) start to appear after fthin{thick

and, fplate{soliddf respectively.

Figure 4.15: Transmission loss for a concrete layer of thickness 140 mm (properties men-
tioned in Table 4.1) under diffuse field excitation. Deviations of thin and thick plate
theories from the elastic solid theory start to appear after fthin{thick and, fplate{soliddf re-
spectively.
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Figure 4.16: Transmission loss for a soft layer of thickness 20 mm (properties mentioned
in Table 4.1) under diffuse field excitation. Deviations of plate theories from the elastic
solid theory (or FEM) start to appear after fplate{soliddf .

Figure 4.17: Transmission loss, computed from spatial windowing method by Rhazi and
Atalla [26], across a finite size (3 m ˆ 4 m) plasterboard of thickness 12.5 mm (properties
are mentioned in Table 4.1) under diffuse field excitation. It is observed that limiting
frequencies computed for infinite plate are still valid for the finite plates, as the size
correction effects minimal near the critical frequency of the plate.

4.5.1 Further observation

In the case of finite sized plates, generally, the acoustic indicators computed from the

infinitely extent layer theories would yield some discrepancies in the low to mid-frequencies
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compared with experimental tests. Therefore, there are some work in the literature [25,

26] which focus on correcting the acoustic indicators by introducing correction factors that

account for geometrical size effect. Since the radiation efficiency (which accounts for size

correction in sound transmission problems) is reaching unity near the critical frequency

of the plate [172], the effects due to finite size are mainly visible at low frequencies below

the critical frequency. Since the frequency limits (fthin{thick and fplate{soliddf ) of typical

industrial materials fall near and/or after the critical frequency, these limiting expressions

obtained from infinite plate theories are applicable to the finite size plate as well. For

example, this can be observed from the transmission loss computed from the finite size

correction model by Rhazi and Atalla [26] for the plasterboard of 12.5 mm thickness under

diffuse field excitation in Fig 4.17. One may refer to Section 3.8 for the summary of the

finite size correction models.

4.6 Conclusion

The assumptions used in thin and thick plate theories limit their employability in

commonly used industrial materials after a certain frequency. Thin plate theory attains

the limitation since it does not account for the shear effect in the anti-symmetric motion

of the plate, whereas this is taken care off in thick plate theories. Nevertheless, both

types of plate theories are approximations, since they neglect symmetric motion of the

plate completely in their theoretical formulation. By analysing the wavenumbers and

admittances of plate theories, two frequency limits are presented in this chapter: 1) from

the wave propagation analysis of the thick plate model, based on the Reissner-Mindlin

plate hypothesis, the analytical expression for the limiting frequency of the thin plate

model is derived, 2) from comparing the symmetric and anti-symmetric admittances,

an analytical expression for limiting frequency of plate theories is derived. These two

simple analytical expressions for computing the limit of thin and thick plate theories can

be useful to choose the appropriate model in each case. Deviations of transmission loss

curves obtained from different models are observed above these two limiting frequencies.

It is also shown that, although the limiting expressions are derived from infinite layer
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theories, it can be applied to finite sized layer as well. Due to the omission of shear effect

in thin plate theories, the refined coincidence and critical frequencies are derived from

thick plate theories. Finally, it is observed that plate theories quickly fail for materials

that are too soft in terms of longitudinal compression.

It is observed from the dispersion analysis that a single layer plate has two asymptotic

characteristics i.e, low-frequency region controlled by bending and high-frequency region

controlled by shear and this information is useful to understand the involved physical

behaviour in a given frequency range. Similar to this, different regimes of a three-layer

system are observed by Boutin and Viverge [72] and based on these asymptotic behaviours,

a simple equivalent plate model is developed in the next chapter, for a three-layer sandwich

structure.



Chapter 5

Equivalent plate model for

three-layer panels

In Chapter 2, many analytical models including the category of condensed or equiva-

lent plate models have been discussed in details. In particular, the equivalent plate models

are being used in various industries to reduce the computation time in Finite Element

(FE) modelling. Out of the available equivalent plate models, the model developed by

Guyader [131] exhibits high agreement with Lamb wave theory but it requires consider-

able time for implementation. Therefore, in this chapter, a simple model is developed

to quickly compute the dynamic equivalent parameters of a three-layer sandwich panel.

Although the simple model is formulated from only four parameters, which could be eas-

ily computed via the asymptotic and transition behaviours of the sandwich panel (as

described by Boutin and Viverge [173]), it is shown to be able to capture the equivalent

dynamic response for the entire frequency range.

91
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Most of the contents presented in this chapter has been taken from the published article [174]:

Arasan, U., Marchetti, F., Chevillotte, F., Jaouen, L., Chronopoulos, D., Gourdon, E.

(2021). “A simple equivalent plate model for dynamic bending stiffness of three-layer sand-

wich panels with shearing core”. Journal of Sound and Vibration, 500, 116025.

Regarding the contributions made to the above-mentioned article, the author of this thesis has

done the following tasks: methodology, investigation, validation, article writing and review.

Note

This chapter is organized with two main sections: first, development of a simple

model to find the dynamic equivalent bending stiffness of a three-layer sandwich panel is

presented; then the results obtained using this new model are compared with the model

developed by Guyader [131] for validation.

5.1 Background

As mentioned in earlier chapters, multi-layered partitions have been commonly used

in recent years to enhance sound comfort and noise attenuation. Sandwich composites

which can exhibit high stiffness and damping with lightweight are widely employed in the

transportation and building industries. This type of multi-layer is also called laminate

and is often made up of three layers. One soft layer embedded between two hard skins.

This kind of laminate enables to ensure a bending rigidity while increasing the dissipa-

tion by forcing the shear of the viscoelastic core. Automotive [175] and aerospace [176]

industries also use sandwich structures as a passive way to reduce the structure-borne

noise. Constrained layers are typically used in automobile, aircraft and railway indus-

tries to improve the damping response of the vibrating systems. In civil applications,

acoustic plasterboards (with high-density core) are used to improve the sound insulation

performance.
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Equivalent methodologies are often applied to condense the behaviour of the multi-

layer structure into an equivalent single-layer governed by frequency-dependent properties

(refer Section 2.5). The equivalent methodology consists in assuming that the multi-

layer behaves as a thin plate under Love-Kirchhoff’s theory. As a result, an equivalent

parameter corresponding to the flexural rigidity of the thin plate can be identified as a

function of frequency. It may be noted that, even though the equivalent plate models

assume the multi-layer plate as equivalent Love-Kirchhoff plate, they account for both

bending and shear motions of multi-layer plate (but not necessarily in each layer) through

the frequency dependent flexural rigidity. Since Guyader’s model describes two anti-

symmetric motions (bending and shear) in each layer, it exhibits high agreement with an

exact model based on Lamb waves [177] until the frequencies where symmetric motions

are no longer negligible.

Among the existing condensed (or equivalent) plate models available in the literature,

Guyader’s model might be more appropriate to analyse the vibro-acoustic performance

of a three-layer system of isotropic materials which are commonly used across various

industries. Although Guyader’s model performs better compared to the other equivalent

plate models, it often requires some initial work for implementation as it requires many

constant coefficients to be defined. Additionally, it also requires the symbolic computation

of solutions from a non-linear equation, which further requires solution tracing techniques

to correctly capture the physically meaningful solution for the dynamic bending stiffness.

Therefore, in this chapter, a simple dynamic model for sandwich structure based on its

asymptotic behaviours is presented to reconstruct the dynamic response of the structure

in a similar manner of the principles used for the modelling of porous media [143] or the

length correction of perforated plates [178].
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5.2 Development of a simple model to compute equiv-

alent bending stiffness of a three-layer sandwich

panel

5.2.1 Dynamic behaviour of a three-layer sandwich panel

For the theoretical development of the proposed model, Fig. 5.1 is used to schematically

represent a generic three-layer sandwich panel of infinite extent in x and y directions. The

x

y
z

h1

h2
h3

Figure 5.1: Schematic representation of the cross-section of a generic three-layer sandwich
panel.

i´th layer of the sandwich panel is assumed to be made of isotropic material with thickness

hi, Young’s modulus Ei, mass density ρi, Poisson’s ratio νi and loss/damping factor ηi. It

is further assumed that only anti-symmetric motions (i.e, bending, shear and membrane

motions) are considered for the analysis. Different configurations of layers are considered

in this work using the materials (aluminium, steel, plasterboard, shear layer and polymer)

listed in Table 5.1. The shear layer corresponds to a layer that is sufficiently soft to exhibit

shearing effects but still rigid enough to avoid compressional or dilatational effects.

The asymptotic behaviours on the natural propagating wavenumber of the sandwich

panel for different configurations are observed. If all three layers are of the same material,

the sandwich could be considered as a homogeneous isotropic single layer. For this con-

figuration, the natural propagating wavenumber is computed from the first-order shear

deformation plate theory [97–99] and it is observed from Fig. 5.2a that the natural propa-

gating wavenumber has low and high frequency asymptotes corresponding to the bending
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(a) (b)

Figure 5.2: Natural propagating wavenumbers for (a) plasterboard of 25 mm (b) alu-
minium (5 mm)/shear layer (10 mm)/aluminium (3 mm) sandwich structure of infinite
extent (material properties are listed in Table 5.1).

and shear motions of the panel. Few more information on the dispersion behaviour of

the homogeneous plate are given in Section 4.2. In case of a sandwich panel made of

Table 5.1: Material properties of few typical elastic isotropic layers used in this chapter

Aluminium Steel Plasterboard Shear layer Polymer
ρ (kg m´3) 2780 7800 700 200 580
E (GPa) 71 210 3 0.1 0.25
η 0.01 0.005 0.08 0.5 0.05
ν 0.3 0.3 0.22 0.33 0.33

two stiff skins (5 mm aluminium each) bonded together with a shear layer of thickness

10 mm, the asymptotic behaviour of the natural propagating wavenumber is observed to

be different from that of the isotropic single layer as shown in Fig. 5.2b. Furthermore,

the natural propagating wavenumber of a three-layer sandwich panel could be character-

ized by the properties of three zones namely low-frequency, transition and high-frequency

regions [179].

The low and high frequency asymptotes correspond to the global and inner bending be-

haviours, respectively [173]. The term “global bending” describes the bending behaviour

of a three-layer sandwich panel, where each layer contributes to the total bending. This
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(a) (b)

Figure 5.3: Equivalent bending rigidity profile obtained from Guyader’s equivalent plate
model for (a) aluminium (5 mm)/shear layer (10 mm)/aluminium (5 mm) (b) steel
(1 mm)/shear layer (10 mm)/aluminium (5 mm) sandwich structures of infinite extent
(material properties are listed in Table 5.1).

particular behaviour is described by “added stiffness model” which is detailed in Sec-

tion 2.5.3. In case of “inner bending”, only the outer layers (i.e, skins) contribute to

the bending behaviour. One could note that the natural propagating wavenumber of the

sandwich panel in Fig. 5.2b is computed from the equivalent plate model by [125, 126, 131]

and this can also be computed from other models [7, 71, 133, 156] in the literature.

5.2.2 Sigmoid model for equivalent properties

One can observe that the equivalent bending stiffness, computed from Guyader’s

model, has the shape of a sigmoid function for both symmetric and asymmetric sandwich

structures of different configurations (Fig. 5.3). Thus, the goal of this chapter consists in

describing the equivalent parameter using this function. The sigmoid function is defined

by four characteristic parameters (Dlow, Dhigh, fT and R̂) as shown in Fig. 5.4. Hence,

the following expression is proposed for the equivalent bending stiffness of a sandwich

structure made of isotropic layers,

log10 D̃eqpfq “
f R̂T log10Dlow ` f R̂ log10Dhigh

f R̂ ` f R̂T
, (5.1)
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1

2

3

4

Low-frequency asymptote (Dlow)

High-frequency asymptote (Dhigh)

Transition frequency ( fT)

Slope factor at transition frequency (R)

Figure 5.4: Schematic representation of the bending stiffness profile of the sigmoid model
and its four characteristic parameters to describe equivalent bending stiffness of a sand-
wich structure made of isotropic layers.

where Dlow, Dhigh, fT and R̂ are low-frequency and high-frequency dynamic bending stiff-

ness asymptotes, transition frequency and slope factor at transition frequency respec-

tively.

In the following subsections, these characteristic parameters will be derived based on

the relationship (refer Eq. (2.13)) between the equivalent bending stiffness and material

properties of the sandwich panel, given by Guyader and Cacciolati [131] to compute the

equivalent bending stiffness of a multi-layer structure.

5.2.3 Low-frequency asymptote

The lower frequency asymptote of the equivalent bending stiffness could be obtained

by letting ω Ñ 0 in the Eq. (2.13). This results as

A4D
3{2

´ A1A4D
1{2

“ 0 ñ D “ Dlow “ A1. (5.2)

One may note that A1 is equal to the sum of bending stiffness contribution from each

layer with respect to the neutral layer position of the multi-layer structure, which is given

by the added stiffness model described in Section 2.5.3.
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Therefore, Dlow is computed by adding the flexural rigidities of all the layers (recalled

from Eq. (2.22)):

Dlow “

n
ÿ

i“1

Ei
1 ´ ν2i

pzui ´ z̄q3 ´ pzli ´ z̄q3

3
, (5.3)

where zui and zli are the upper and lower coordinates respectively of i´th layer along

z´direction. Readers are referred to see “added stiffness model” described in the Sec-

tion 2.5.3 for the detailed explanation of the Eq. (5.3).

In case of a symmetric sandwich panel, Dlow would reduce to the form:

Dlow “ D1

ˆ

8 `
12h2
h1

`
6h22
h21

˙

` D2, (5.4)

where Di represents the bending stiffness of the i´th layer. If the core layer of the

sandwich is soft compared to the skins (or outer layers), then D1, D3 " D2 which gives the

following form for the low-frequency asymptote (Dlow) of the equivalent bending stiffness

(D̃eq) of the sandwich panel.

Dlow “ D1

ˆ

8 `
12h2
h1

`
6h22
h21

˙

pfor soft coreq. (5.5)

It may be noted that this asymptotic limit can be deduced from the work by Boutin and

Viverge [173] and Dlow can be understood as the result due to a phenomenon where all

the layers in the sandwich panel behave as a monolithic plate governed by the global

bending.

5.2.4 High-frequency asymptote

The high-frequency asymptote of the equivalent bending stiffness could be obtained

by letting ω Ñ 8 in the Eq. (2.13). This results in

A3D ´ A1A3 ` A2 “ 0 ñ D “ Dhigh “ A1 ´
A2

A3

. (5.6)
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If the core layer of the sandwich is soft compared to the skins (or outer layers), then

D1, D3 " D2 and this gives the following form for the high-frequency asymptote (Dhigh)

of the equivalent bending stiffness (D̃eq) of the sandwich panel:

Dhigh “ D1 ` D3. (5.7)

Dhigh can be understood as the result due to a phenomenon where all three layers in the

sandwich panel slide on each other and the value of Dhigh is governed by the intrinsic

bending of each skin layers [173].

5.2.5 Transition frequency

Since the sigmoid curve in Eq. (5.1) changes its sign of curvature at the geometric

mean value (DT ) of the curve (or arithmetic mean value in the log-log scale (Fig. 5.3)),

log10DT “
log10Dlow ` log10Dhigh

2
ñDT “

a

DlowDhigh, (5.8)

the transition frequency (with respect to the curvature sign of the sigmoid) is computed

by substituting D “ DT in Eq. (2.13) as,

fT “
1

2π

A4
4

?
DT p

?
DT ´ A1q

A1
3DT ` A1

2 ´ A1A1
3

, (5.9)

where A1
2 “

?
ms

ˆ

λ4 ´
λ5λ6
λ3

˙2

andA1
3 “

?
ms

ˆ

λ2 ´
λ26
λ3

˙2

. The constants λi are given

in Appendix B.

For softer core (D1, D3 " D2), the transition frequency takes the following form.

fT “
1

2π

G2

12h2

Dlow
?
msDT

ˆ

h21
D1

`
h23
D3

˙

. (5.10)

In case of symmetric sandwich panel, Eq. (5.10) can be written as,

fT “
1

2π

G2h
2
1

3h2

Dlow

Dhigh

1
?
msDT

. (5.11)
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From the wavenumber analysis of the sandwich panel with a thicker core (h2 " h1, h3),

an alternate and simpler expression for the transition frequency could be derived. From

Fig. 5.5a and 5.5b, it is observed that both equivalent bending (Eq. (2.15)) and shear

wavenumbers (Eq. (5.12)) are equal at the transition zone when the core thickness is

greater than that of the skins.

keqshear “ ω

c

ms

G2ht
. (5.12)

On the contrary, it is also observed that this may not be valid when the core thickness

is lower or equal to that of the skins. For example, from Fig. 5.5c, it is seen that both

equivalent bending and shear wavenumbers do not have the same values at the transition

zone. From the parametric study, it is further observed that the influence of the material

properties of the core is less significant than the influence of the core thickness to have the

equal values of equivalent bending and shear wavenumber at the transition zone. This is

also complying with impedance and wave speed analysis of symmetric sandwich panel by

Kurtze and Watters [180].

Hence, for a thicker core, the transition frequency takes the following simpler form.

keqbending “ keqshear ñ

d

ωT

c

ms

DT

“ ωT

c

ms

G2ht
ñ f̃T “

1

2π

G2ht
?
msDT

. (5.13)

It may be noted that, for a typical sandwich panel with a soft core, the deviation per-

centage of Eq. (5.13) from Eq. (5.10) would serve as an indicator on the influence of the

core layer in determining the transition frequency.

5.2.6 Slope factor at the transition frequency

The slope of the sigmoid curve at the transition frequency is given by (from Eq. (5.1)),

dD̃eq

df

ˇ

ˇ

ˇ

ˇ

f“fT

“ R̂

„

DT

4fT
ln

ˆ

Dhigh

Dlow

˙ȷ

(5.14)
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(a)

(b) (c)

Figure 5.5: Equivalent bending and shear wavenumbers for a sandwich panel of infinite
extent with steel skins of 1 mm and shear layer as core with thickness (a) 10 mm (b)
3 mm (c) 0.5 mm (material properties are listed in Table 5.1). Influence of core thickness
on the transition zone can be observed from these plots.
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Since we are not able to analytically compute the slope ,
dD̃eq

df

ˇ

ˇ

ˇ

ˇ

f“fT

, from the Guyader’s

model, a parametric study is preferred to compute the slope factor (R̂). The following

range of values are used for this parametric study (with symmetric case) for Young’s

modulus and density of the core respectively: 1ˆ10´5Es ă E2 ă 0.1Es, 0.2ρs ă ρ2 ă 2.4ρs

where Es and ρs are the reference values for Young’s modulus and density for the skin

respectively and Gamma distribution is considered for each parameter. The Gamma

distributions are built in a usual way with two parameters (α, β) as,

fpx|α, βq “
xα´1e´βxβα

ş8

0
xα´1e´xdx

. (5.15)

The mean (µ) and standard deviation (σ) values are assumed for each material property

and two parameters (say α and β) of the Gamma distributions are then computed as,

α “ σ2{µ; β “ pµ{σq2. As an example, the mechanical properties of aluminium could

be taken for the skin to decide the range of values for the mechanical properties of the

core.

Figure 5.6: Envelope of R̂ and its mean against the ratio between thicknesses of core and
skins.

From the parametric study, the envelope of the values of R̂ and its mean value are

plotted in the Fig. 5.6 and for the practical values of core to skin thickness ratio, the
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mean curve of R̂ is fitted into the following polynomial.

R̂ “ 1.16 ´
27φ6 ´ 52φ5 ´ 189φ4 ` 275φ3 ` 995φ2 ` 291φ

104
, (5.16)

where φ “ log10

ˆ

h2
h1 ` h3

˙

. Contrary to the assumption that R̂ would be influenced by

both geometric and material properties, it is observed that only geometric dependence

is significant on the R̂ values. It is due to the fact that the distance between the skins

(i.e, thickness of the core) strongly affects Dlow and thus the ratio Dlow{Dhigh. It is

to be noted that the parametric study is also conducted for the asymmetric case by

varying the material and geometric parameters of the core and skin layers (for example,

0.5h1 ă h3 ă 3h1 which includes possible practical configurations). On the range of values

of φ, the low-end value is chosen to include practical core thicknesses of thin film or glue

and the high-end value is chosen to have a logarithmic symmetry. It is also observed that

reducing the high-end value does not lead to reduction in the order of the polynomial

fit. The optimum values of R̂ are computed in the least square sense with the nonlinear

equation (Eq. (5.1)) to have a good correspondence with those of the Guyader’s model.

The mean curve for R̂-value obtained for asymmetric case results in maximum deviation

to be lower than 1.5% to that of the symmetric case. The maximum deviation in Deq

due to these R values are observed to be lesser than 2% between the Guyader and the

sigmoid models. Therefore, the polynomial fit for R̂-value given by the Eq. (5.16) could

be applied for asymmetric configurations as well, and this R̂ value is the representative

of most of the practical configurations.

5.3 Numerical examples

In this section, numerical examples of the sigmoid model to compute equivalent bend-

ing stiffness (from Eq. (5.1)) of a sandwich panel and the corresponding equivalent bending

wavenumber (from Eq. (2.15)) are presented. Since Guyader’s model exhibit equally good

response compared to Lamb wave model [101] below the zeroth-order symmetric mode

[181], Guyader’s model [131] is taken as a reference to compare the results of the sigmoid
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(a) (b)

Figure 5.7: (a) Equivalent bending rigidity and (b) equivalent wavenumbers obtained
from the sigmoid model for aluminium (5 mm)/shear layer (10 mm)/aluminium (5 mm)
symmetric sandwich panel of infinite extent (material properties are listed in Table 5.1).
Guyader’s model is taken as reference to compare the sigmoid model.

model.

In Fig. 5.7, for a symmetric sandwich panel made of aluminium (5 mm)/soft core

(10 mm)/aluminium (5 mm), D̃eq and keqbending computed from the sigmoid model are

presented for comparison, along with the transition frequency computed from Eq. (5.10).

It can be seen from these plots that, the sigmoid model is in high agreement with the

Guyader’s model throughout the frequency range and the observed maximum error per-

centage is 4.9% in comparison with Guyader’s model. Furthermore, it is observed from

Fig. 5.7b that the transition frequency zone is controlled by the shear of the sandwich

core, as the core has double the thickness of the skin. Due to this reason, the simpler

expression from Eq. (5.13) estimates the transition frequency as 237 Hz, which is devi-

ated around 14% from the value (276 Hz) computed by Eq. (5.10). One may note that

this percentage of deviation would be further reduced if the thickness of the core layer is

increased.

In Fig. 5.8, for an asymmetric sandwich panel made of steel (1 mm)/shear layer

(0.5 mm)/aluminium (5 mm), D̃eq and keqbending computed from the sigmoid model are

presented for comparison, along with the transition frequency computed from Eq. (5.10).
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From these plots as well, it can be seen that the sigmoid model is in high agreement with

the Guyader’s model throughout the frequency range and the observed maximum error

percentage is 2.1% in comparison with Guyader’s model. Unlike the previous sandwich

configuration, it is observed from Fig. 5.8b that the transition frequency zone is not con-

trolled by the shear of the sandwich core, as the core has a lesser value of thickness to

that of the skins. This also reflects with a greater percentage of deviation (around 83%)

for the simpler expression of transition frequency from Eq. (5.13) with that of the same

from Eq. (5.10).

(a) (b)

Figure 5.8: (a) Equivalent bending rigidity and (b) equivalent wavenumbers obtained from
the sigmoid model for steel (1 mm)/shear layer (0.5 mm)/aluminium (5 mm) asymmetric
sandwich panel of infinite extent (material properties are listed in Table 5.1). Guyader’s
model is taken as reference to compare the sigmoid model.

5.4 Experimental validation and further observation

In this section, the sigmoid model is compared with the experimental data, measured

by Ege et al. [181], for the purpose of validation. A symmetric sandwich plate made of steel

(0.18 mm)/polymer (0.69 mm)/steel (0.18 mm) with in-plane dimensions 300ˆ400 mm2, is

considered for the experimental study and the data are measured through the contactless

measurements (scanning laser vibrometer). Further, the CFAT (Corrected Force Analysis

Technique) [86] methodology is used to estimate the bending stiffness of the structure. The
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dynamic bending stiffness can be quickly constructed, through the sigmoid model, using

only four parameters from Eqs. (5.3), (5.7), (5.10) and (5.16) which are substituted in

Eq. (5.1). Finally, the equivalent Young’s modulus, Ẽeq, is computed from Eq. (2.14a) and

compared against experimental data as shown in Fig. 5.9. A high agreement is observed

between the estimation by equivalent plate models and the measured data which validates

the applicability of the sigmoid model.

Figure 5.9: Comparison of equivalent plate models (sigmoid model and Guyader’s model)
with experimentally measured data of the equivalent Young’s modulus for the steel
(0.18 mm)/polymer (0.69 mm)/steel (0.18 mm) sandwich panel with in-plane dimen-
sions 300 ˆ 400 mm2 (material properties are listed in Table 5.1).

Through these numerical examples discussed in this work, on the implementation side,

the sigmoid model has its advantage of using only five equations (i.e, Eqs. (5.1), (5.3),

(5.7), (5.10) and (5.16)) whereas Guyader’s model requires to define seven constants and

few other matrix definitions to compute the equivalent bending stiffness (see Appendix B).

Further, in the Guyader’s model, Eq. (2.13) need to be solved symbolically to obtain the

solutions and solution tracing techniques have to be applied to correctly capture the

physically meaningful solution for D̃eq. Such complexities do not present in the sigmoid
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model, and it gives a straightforward solution for D̃eq. On an additional note, although the

sigmoid model focuses on reconstructing the equivalent dynamic bending stiffness values of

Guyader’s model, it is observed from the Figs. 5.10 and 5.11 that the new model captures

the equivalent dynamic loss factor of the system with the high agreement with Guyader’s

model and experimental data. It may be noted that the noise in the measured data of

Fig. 5.11 may be due to the instability of the experimental method at low frequencies.

Further, it is also observed that a slightly different Young’s modulus (300 MPa) is used

for the polymer by Ege et al. [181] to improve their fit on the damping loss factor. The

reader may note that, although equivalent plate models account for both bending and

shear motions of the multi-layer structures through dynamic bending stiffness, they may

overestimate the equivalent loss factor when the dynamic of the multi-layer is controlled

by the shear motion. Nevertheless, it can be corrected by the ratio between the phase

and group velocities of the structure [139].

(a) (b)

Figure 5.10: Equivalent loss factor for (a) symmetric aluminium (5 mm)/shear
layer (10 mm)/aluminium (5 mm) (b) asymmetric steel (1 mm)/shear layer
(0.5 mm)/aluminium (5 mm) sandwich panel of infinite extent (material properties are
listed in Table 5.1). Guyader’s model is taken as reference to compare the sigmoid model.
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Figure 5.11: Comparison of equivalent plate models (sigmoid model and Guyader’s
model) with experimentally measured data of the equivalent loss factor for the steel
(0.18 mm)/polymer (0.69 mm)/steel (0.18 mm) sandwich panel with in-plane dimen-
sions 300 ˆ 400 mm2 (material properties are listed in Table 5.1).

Considering all the observations made in this work, the sigmoid model has its following

advantages over the existing models in the literature: first, this model can be quickly

implemented compared to the other equivalent plate models to compute the equivalent

parameters of a three-layer sandwich panel (symmetric and asymmetric configurations);

second, since the model is based on the asymptotic behaviours at different frequency

regimes (low, high and transition), it can be used to understand the physics behind the

response of a three-layer sandwich system at those frequency regimes and to identify

the corresponding governing parameters; third, the new model will be a handy tool to

optimize the layer parameters to achieve the desired damping performance of the three-

layer sandwich panel due to its straightforward formulation. On the limitation side,

similar to RKU model [7, 133, 156], this model also would be applicable only to three-

layer structures where the core is softer than the skins. Usually, this may not be a problem,

as most of the practical applications would fall under this assumption. The reader may

refer to Table 5.2 for the summary of all the expressions for the sigmoid model.
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Table 5.2: Summary of the expressions used in the sigmoid model

Param. Generic (D2 ă D1, D3) Symmetric (D2 ă D1) Symmetric (D2 ! D1)

Dlow

řn
i“1

Ei
1 ´ ν2i

pzui ´ z̄q3 ´ pzli ´ z̄q3

3
D1

ˆ

8 `
12h2
h1

`
6h22
h21

˙

` D2 D1

ˆ

8 `
12h2
h1

`
6h22
h21

˙

Dhigh D1 ` D3 2D1

fT

1

2π

G2

12h2

Dlow
?
msDT

ˆ

h21
D1

`
h23
D3

˙

1

2π

G2h
2
1

3h2

Dlow

Dhigh

1
?
msDT

1

2π

G2ht
?
msDT

pfor thicker core, h2 " h1, h3q

R̂ 1.16 ´
27φ6 ´ 52φ5 ´ 189φ4 ` 275φ3 ` 995φ2 ` 291φ

104
, whereφ “ log10

ˆ

h2
h1 ` h3

˙

Equivalent properties : log10 D̃eqpfq “
f R̂T log10Dlow ` f R̂ log10Dhigh

f R̂ ` f R̂T
; η̃eqpfq “

ImpD̃eqq

RepD̃eqq

z̄ “

ř

zibihi
ř

bihi
; bi “

Ei p1 ´ ν2refq

Eref p1 ´ ν2i q
; ms “

řn
i“1 ρihi; DT “

a

DlowDhigh; ht “
řn
i“1 hi

5.5 Conclusion

A simple equivalent plate model is presented to compute the dynamic equivalent prop-

erties of a three-layer sandwich panel of infinite extent and made of isotropic materials.

Though the formalization of the presented model is based on the physical behaviours at

only three frequency regimes (low, high and transition), described by Boutin and Viverge

[173], it is showed that the simple model is indeed valid for the entire frequency range. In

comparison with other existing equivalent plate models, the new model will be easier to

implement and would serve as a tool to quickly optimize the sandwich panel parameters

to obtain the desired performance.

As the condensed models account for only anti-symmetric motions (bending, shear

and membrane), they are limited to thin multi-layers where longitudinal compression is

avoided. If the multi-layer structure is thick and/or includes a soft core, then the dilata-

tional motion cannot be ignored. Therefore, in the next chapter, a novel condensed model

is developed to include the dilatational motion of the thick multi-layer structures.
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Chapter 6

Condensed model for thick

symmetric multi-layers including

dilatational motion

In the previous chapters, the advantages of the condensed plate models have been

discussed and one of the key benefits is saving the computational power during Finite

Element (FE) simulations of the multi-layer structures. Although, they have the potential

to be utilized in multiple applications, the condensed plate models have some limitations

as well. Since condensed plate models assume constant normal displacement of the multi-

layer structure, they allow only anti-symmetric motions (bending and shear) and omit

the symmetric motion (dilatational or compressional). Applicable frequency limits for

such kind of assumption are described in Chapter 4. However, in many applications, the

symmetric motions can happen even at low frequencies. For example, in the classical

double wall partition widely used in building applications, the compressional mode could

be excited at low frequencies. This brings a necessity to improve the equivalent plate

models [7, 131, 133, 138, 156, 174], to allow symmetric motions along with anti-symmetric

motions. Therefore, in this chapter, a novel condensed model based on the symmetric and

anti-symmetric admittances of the multi-layer structures is presented.

111



112 Chapter 6. Condensed model for symmetric multi-layers

Most of the contents presented in this chapter has been taken from the published article [182]:

Marchetti, F., Arasan, U., Chevillotte, F., Ege, K. (2021). “On the condensation of thick

symmetric multilayer panels including dilatational motion”. Journal of Sound and Vibration,

502, 116078.

Regarding the contributions made to the above-mentioned article, the author of this thesis has

done the following tasks: formal analysis, article writing, editing and review.

Note

In line with this point, this chapter is divided into three major sections: 1) in Section

6.1, limitations of the condensed (or equivalent) plate models are discussed, 2) in Sec-

tion 6.2, an advanced vibro-acoustic condensed model, including symmetric motion, for

physically symmetric multi-layer structures is presented, 3) in Section 6.3, transmission

loss computations of multi-layer structures made of elastic and/or poro-elastic layers,

which experience compression motions, are presented for the purpose of validating the

new condensed model.

6.1 Limitations of condensed (or equivalent) plate

models

This section discusses the limitations of the equivalent plate models when it comes to

account for the symmetric motion. The reader may note that different authors use other

terminologies for the symmetric motion, such as compressional, breathing or dilational

motion. To illustrate the exclusion of symmetric motion in the condensed plate models,

few observations can be made on the transmission loss and the admittances of the multi-

layer structures that are obtained from the condensed plate models. Guyader’s model is

considered as a representative example of the condensed approaches which consider only

the anti-symmetric motions. Computations obtained using the Transfer Matrix Method
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Skins (steel) Stiff core Soft core
ρ (kg m´3) 7800 1000 55
E (Pa) 210ˆ109 0.2ˆ109 43ˆ103

ν 0.3 0.48 0.4
η 0.03 0.05 0.3

Table 6.1: Mechanical properties of the isotropic layers used in this chapter.

(TMM) will be used as a reference, as this model is based on a full field approach which

inherently includes both the anti-symmetric and symmetric motions (see Fig. 6.1 for a

schematic representation of these motions). Computation of vibro-acoustic quantities us-

ing TMM and its theoretical background are detailed in the Chapter 3 of this manuscript.

(a) (b)

Figure 6.1: Anti-symmetric (a) and symmetric (b) waves propagating in a plate.

6.1.1 Transmission Loss (TL)

Two sandwich configurations are considered to demonstrate the limitations of con-

densed plate models. Typically, sandwich plates with a stiff core layer or soft layer would

be ideal candidates to apply these models. This is demonstrated with the first sandwich

configuration type, which has steel layers as skins and a core that is thin and stiff enough

so that the compression mode is shifted after the maximum audible frequency. The elastic

properties of the materials used in this chapter are listed in Table 6.1.
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As mentioned in the previous chapters, condensed plate models yield the intrinsic

dynamic bending stiffness (D̃eq) parameter of the multi-layer structure, assuming a ho-

mogenized equivalent thin plate. The impedance of an equivalent thin plate (Zep) which

is required to compute the transmission coefficient from Eq. (3.75) can be taken from

Eq. (3.32). For the sake of readability, the expression is recalled here:

Zep “ Zthin “ jωms

ˆ

1 ´
D̃eqk

4
t

ω2ms

˙

. (6.1)

Then, the Transmission Loss (TL) may be calculated from Eq. (3.59) for oblique incidence

and from Eq. (3.61) for diffuse field.

Similar to Fig. 4.2, the expected behaviour of the sandwich structure is observed

from Fig. 6.2 for both models: the low frequency is controlled by the mass and can be

approximated with a good accuracy using the mass law and the high frequency range

controlled by the stiffness. The transition between the two regimes occurs at the so-called

coincidence frequency (the frequency at which the transverse wavenumber is equal to the

bending wavenumber). In this region, the transmission loss is controlled by the structural

damping inside the structure. One could also observe that, for this type of sandwich

configuration, the Guyader’s model gives the same response as that of TMM up to f ă

10 kHz, and it also estimates the correct coincidence frequency at f « 5.2 kHz.

In the second sandwich configuration, a soft core is sandwiched by the two steel skins

and a similar transmission loss comparison is shown in Fig. 6.3. Two important ob-

servations are made from the response given by the equivalent plate models. The first

observation is that this sandwich exhibits two singularities in the transmission loss, un-

like Fig. 6.2 where only one singularity exists. At a lower frequency around f « 260 Hz,

the multi-layer resonates like a mass-spring-mass system, which leads to the singularity

at that frequency. This frequency is commonly termed as breathing frequency or com-

pressional frequency of the system. Since the equivalent plate models assume a constant

normal velocity all through the thickness of the multi-layer system, they would not be

able to capture this compressional motion and, therefore, deviates after 150 Hz. Due to
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Figure 6.2: Transmission loss of the steel (3 mm)/stiff core (3 mm)/steel (3 mm) sandwich
estimated using the TMM and Guyader’s equivalent plate model for the 60˝ plane wave
incidence. Material properties are listed in Table 6.1.

Figure 6.3: Transmission loss of the steel (3 mm)/soft core (3 mm)/steel (3 mm) sandwich
estimated using the TMM and Guyader’s equivalent plate model for the 60˝ plane wave
incidence. Material properties are listed in Table 6.1.
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this, the transmission loss computed by the Guyader’s model (or similar equivalent or

condensed plate model) is underestimated after the compressional frequency. The second

observation is that, though it missed predicting the compressional frequency, it correctly

computes the coincidence frequency as it is captured by the anti-symmetric motion of the

multi-layer structures which is well described by the equivalent plate models.

6.1.2 Admittances

As stated earlier, the existing condensed plate models do not account for dilatational

or breathing motion of the multi-layer structure, since they assume constant deformation

through the thickness. Similar to the admittance analysis carried out for a single layer in

Section 4.4, this section focuses on the study of the anti-symmetric and symmetric motions

of the multi-layer structure, by comparing the admittances of both motions, in order to

understand the differences between the condensed model and the complete modelling of

multi-layers with the TMM.

For the first sandwich configuration (steel/stiff core/steel), the admittances are calcu-

lated using the TMM and are presented in Fig. 6.4, considering a plane wave at 60˝ of

incidence using Eq. (3.79) and Eq. (3.80). It is observed that the anti-symmetric admit-

tance computed from the equivalent plate model is in good agreement with the TMM at all

frequencies. It also predicts the coincidence frequency correctly, as it is already seen from

the TL plots. On the other hand, the symmetric admittance has lower order compared to

anti-symmetric admittance at low frequencies and reaches the same value after 10 kHz.

This means that the multi-layer structure is mainly controlled by the anti-symmetric mo-

tions below 10 kHz, and both motions are equally contributing to the resulting motion of

the structure beyond this frequency. Fig. 6.4 also shows the response from the Guyader’s

model, and it is seen that Yeq “ 1{Zeq follows the anti-symmetric admittance calculated

from the TMM for all the frequencies. Further, it also confirms that the condensed plate

models account only for the anti-symmetric motions and neglect the symmetric motion.

Due to the same reason, the differences are appeared in Fig. 6.2 after 10 kHz, since the

symmetric admittance (YS) is no longer negligible after this frequency. It may be noted
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that this frequency limit for the condensed plate models can be derived by observing the

symmetric and anti-symmetric admittances, similar to the one presented in Section 4.4 for

a single layer. This corresponds to the limit between plate and full elasticity theories, and

Eq. (4.22) should be modified to account for the frequency dependent bending stiffness

and the modified symmetric admittance of the multi-layer structure.

Fig. 6.5 shows the admittances plot for the second type of sandwich configuration

(steel/soft core/steel). For this case, the symmetric admittance has its first peak at the

compressional frequency (around 250 Hz) while the anti-symmetric admittance has its

peak around the coincidence frequency. Further, once the symmetric admittance reaches

the anti-symmetric admittance, it also starts to have its peak around coincidence fre-

quency. The reason for this phenomenon can be explained by the theory of Lamb waves.

Although, both TMM and Lamb wave theory are formulated from the principles of elas-

ticity, an acoustic wave with transverse wavenumber (kt) is imposed by the TMM whereas

Lamb wave theory finds the natural wavenumbers by assuming that the multi-layer struc-

ture is in vacuum. The readers are referred to [101, 177] to know more on the theory

of Lamb waves. For the purpose of completeness, Appendix C describes shortly on how

the wavenumbers of a multi-layer structure are obtained using Lamb waves. The zeroth-

order dispersion curves correspond to two types of motions, i.e. anti-symmetric (A0) and

symmetric (S0) motions, of the second sandwich configuration are shown in Fig. 6.6 as

determined by the Lamb waves model. Two key observations from this plot are:

• While the anti-symmetric wave pA0q is propagative at all frequencies, the symmetric

wave pS0q has a cut-on frequency around 250 Hz and reaches the anti-symmetric

wavenumber at higher frequency. This would explain the reason for the coincidence

frequencies of anti-symmetric and symmetric motions being the same, as both curves

are closer to each other at higher frequencies.

• The transverse wavenumber (kt), imposed by the TMM at 60˝, cuts the zeroth-order

Lamb waves at two frequencies. The breathing mode of the structure occurs when

it cuts S0 wave at around 250 Hz, and the coincidence mode of the structure occurs
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Figure 6.4: Admittances of the steel (3 mm)/stiff core (3 mm)/steel (3 mm) sandwich
estimated using the TMM and Guyader’s equivalent plate model for the 60˝ plane wave
incidence. Material properties are listed in Table 6.1.

Figure 6.5: Admittances of the steel (3 mm)/soft core (3 mm)/steel (3 mm) sandwich
estimated using the TMM and Guyader’s equivalent plate model for the 60˝ plane wave
incidence. Material properties are listed in Table 6.1.
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Figure 6.6: Dispersion curves of the steel (3 mm)/soft core (3 mm)/steel (3 mm) sand-
wich estimated using the Lamb wave model. The dashed black line corresponds to the
transverse wavenumber of the plane wave incidence at 60˝. Material properties are listed
in Table 6.1.

Figure 6.7: Admittances of the steel (3 mm)/soft core (3 mm)/steel (3 mm) sandwich
estimated using the TMM and Guyader’s equivalent plate model for the normal incidence.
Material properties are listed in Table 6.1.
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when it cuts both A0 and S0 at around 5000 Hz. One may note from the Figs. 6.3

and 6.5 that, the singularities in the TL and admittances occur at these breathing

and coincidence frequencies.

These observations would serve as important information to formulate the new condensed

model in the following sections. It is also observed from the Fig. 6.5 that the equivalent

admittance is again in high agreement with the anti-symmetric admittance computed

from the TMM. This means that the equivalent plate model provides a correct response

of the anti-symmetric motion of the sandwich even though the core is soft in nature.

Finally, it is noted that the symmetric motion should not be neglected after 150 Hz,

which corresponds to the frequency where the TL computed from the Guyader’s model

begins to deviate from that of the TMM (see Fig. 6.3).

Another important observation on symmetric admittance can be drawn from Fig. 6.7,

in the case of normal incidence. It reveals that the symmetric admittance still has its

peak around the same breathing or compressional frequency (around 250 Hz), which is

computed for 60˝ incidence. While the mass law mainly controls the anti-symmetric

motion, the symmetric motion is controlled by the compressional effect of the multi-

layer system (or by the mass-spring-mass resonance). Therefore, it is realized that the

compressional effect does not depend on the angle of incidence.

From these transmission loss and admittance observations, it can be understood that

the condensed/equivalent plate models correctly capture the anti-symmetric motion of

the multi-layer structure while they fail to predict its behaviour with symmetric motions.

It is due to the assumption of constant deformation along the thickness direction.

6.2 Advanced vibro-acoustic condensed model

In this section, an advanced condensed model is developed which accounts for both

symmetric and anti-symmetric motions of physically symmetric mutli-layer structures.

Fig. 6.8 presents the schematic representation of the condensed model discussed in this
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section.

Air Air
O N

Condensed layer of the
multi-layer structure

Air Air

O N

Symmetric multi-layer structure

Neutral axis

Figure 6.8: Schematic representation of the novel condensed model, applied to physically
symmetric multi-layer structure.

6.2.1 Equivalent admittances of the condensed model

Equivalent symmetric admittance

We know that the anti-symmetric impedance of an equivalent thin plate by Love-

Kirchhoff is defined as (refer Eq. (3.32)),

Zeq “ jωms

˜

1 ´
D̃eqk

4
t

ω2ms

¸

“
1

jω

´

D̃eqk
4
t ´ ρeqhtω

2
¯

. (6.2)

The idea here is to formulate a similar form for the symmetric impedance to capture

the behaviour of symmetric motions. As it is observed in the previous section, both

anti-symmetric and symmetric admittances exhibit same coincidence frequencies. Since

the stiffness-controlled term (D̃eqk
4
t ) affects the position of the coincidence frequency,

this term is kept in the symmetric impedance as well. Additionally, we observed from

the Figs. 6.5 to 6.7 that the estimation of the breathing frequency is unaffected by the

transverse wavenumber (kt). This means that the breathing effect is controlled by an

intrinsic property of the system, and such property can be attributed to the mass density of

the equivalent thin plate. Therefore, the frequency-independent parameter ρeq (theoretical

mass density of the structure) of Eq. (6.2) is changed to a frequency-dependent parameter
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ρS to include the breathing or dilatational effect of the multi-layer structure. Due to

this change, the Eq.(6.2) takes the following form to define the equivalent symmetric

impedance:

ZS,eq “
1

jω

´

D̃eqk
4
t ´ ρShtω

2
¯

. (6.3)

The equivalent symmetric admittance is then calculated using,

YS,eq “ 1{ZS,eq. (6.4)

Equivalent anti-symmetric admittance

It is observed from the previous sections that the equivalent anti-symmetric admittance

estimated by the condensed/equivalent plate models provides similar response to the anti-

symmetric admittance of the multi-layer structure computed by the TMM. This means

that the equivalent anti-symmetric impedance still takes the same form as in Eq. (6.2), but

the mass density is replaced with a dynamic intrinsic parameter to improve the accuracy

of the new condensed model. Therefore, the equivalent anti-symmetric impedance is

redefined as,

ZA,eq “
1

jω

´

D̃eqk
4
t ´ qρAhtω

2
¯

. (6.5)

The reason and advantages of using the newly introduced density qρA over the theoretical

mass density (ρeq) will be discussed in Sections 6.2.2 and 6.2.3. Finally, the equivalent

anti-symmetric admittance is then calculated using,

YA,eq “ 1{ZA,eq. (6.6)

Since the coefficients qρA, ρS and D̃eq do not depend on the angle of incidence of the

acoustic wave, they correspond to the dynamic intrinsic properties of the proposed con-

densed layer.
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6.2.2 Identification of the three dynamic parameters of the con-

densed model

As the coincidence frequency is correctly captured by the existing condensed/equivalent

plate models, the dynamic parameter D̃eq can be computed from any equivalent plate

model [7, 131, 133, 138, 156, 174]. For the other two dynamic mass densities, ρS and qρA,

two strategies are proposed as explained in the following subsections.

Transfer matrix at normal incidence

In this first strategy, the two dynamic mass densities are derived from computing the

condensed transfer matrix at normal incidence (see Section 3.9.2 for the similar approach).

At first, the symmetric and anti-symmetric admittances are computed using the Eq. (3.79)

and Eq. (3.80). Then by substituting kt “ 0 (as it corresponds to normal incidence) in

Eq. (6.3) and Eq. (6.5), the dynamic mass densities are computed as follows:

qρA “
1

jhtω

1

YA

ˇ

ˇ

ˇ

ˇ

θ“0

; ρS “
1

jhtω

1

YS

ˇ

ˇ

ˇ

ˇ

θ“0

. (6.7)

Compared to the next strategy, this one provides more advantages as it applies to

symmetric systems comprising any type of materials (fluid, solid, poro-elastic) and for an

arbitrary number of layers.

Mass-spring-mass system at normal incidence

The second strategy follows the description of symmetric motion defined for sandwich

structures by a mass-spring-mass system [183]. In this approach, the skins are considered

as masses with surface mass M “ ρ1h1 “ ρ3h3 and the core is considered as a spring with

a compliance C. For this system, the transfer matrix relation can be expressed as:
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It may be noted that if the core is solid, the compliance is Csolid “ h2{pλ2 ` 2µ2q

where λ2 “ E2ν2{ pp1 ` ν2qp1 ´ 2ν2qq and µ2 “ E2{ p2p1 ` ν2qq are the Lamé coefficients

of the core. In case of poro-elastic core, the compliance can be calculated by the model

proposed by Biot [22, 23] or can be obtained by adding the fluid phase and solid phase

stiffnesses in parallel. In the latter case, the compliance is Cporous “ CfluidCsolid{pCfluid `

Csolidq, where Cfluid is the compliance of the fluid and this could be approximated by

Cfluid “ h2{P0 at low frequency for materials having a porosity close to 1, with P0 being

the atmospheric pressure. Then, the symmetric mass density (ρS) is computed as follows

from the symmetric admittance computed at normal incidence (given by Eq. (3.79)).

ρS “ ´
4M ´ 2ω2CM2

htω2CM
“ 2

M
ht

ˆ

1 ´
2

ω2CM

˙

. (6.10)

For the anti-symmetric motion, the theoretical mass density is taken as the dynamic

mass density: qρA “ ρeq which results in the same anti-symmetric admittance as computed

by other equivalent plate models, i.e, ZA,eq “ Zeq.

It may be noted that this method could be used on a multi-layer system of any number

of layers, with each i´th layer defined by the mass Mi and the compliance Ci. In this

case, the transfer matrix relation can be expressed as:
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Figure 6.9: Absolute values of the dynamic mass densities qρA and ρS of the steel
(3 mm)/soft core (3 mm)/steel (3 mm) sandwich estimated using the TMM and mass-
spring-mass assumption. Material properties are listed in Table 6.1.

6.2.3 Comparison between theoretical and dynamic mass den-

sities

The absolute values of the dynamic mass densities, estimated on the steel/soft core/steel

sandwich using the two strategies discussed in the previous section, are compared in

Fig. 6.9. We could see that the anti-symmetric mass density (qρA) is almost constant

and close to the theoretical mass density (ρeq) for the full frequency range. At low fre-

quencies, the symmetric mass density (ρS) decreases and reaches its minimum value at

the breathing frequency, after which, it increases again and reaches the theoretical mass

density at higher frequencies. Although the two different strategies yield similar results of

the symmetric mass density, few differences are observed at higher frequencies. Since the

mass-spring-mass assumption do not consider the higher-order modes of the symmetric

motion, this method produces a slight deviation in the symmetric mass density when it

is compared to the TMM strategy.
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6.3 Validation cases of the advanced condensed model

In this section, two sandwich configurations with soft elastic core and poro-elastic core

are taken for the purpose of validating the condensed model. As explained earlier, for

any symmetric multi-layer configurations, the dynamic bending stiffness D̃eq is computed

from any equivalent plate models. The remaining two mass densities, qρA and ρS, are

computed from any of the two strategies discussed in Section 6.2.2. It may be recalled

that these three dynamic parameters do not depend on the incident angle, and therefore

they are intrinsic parameters of the studied multi-layer structure. In the following vali-

dation cases, the TL values of the sandwich structures are calculated for the diffuse field

excitation.

For the sandwich made of steel/soft elastic solid/steel layers, the TL computed from

the condensed models and TMM (considered as the reference) are presented in Fig. 6.10.

It is observed that both strategies correctly captures the compressional and coincidence

frequencies. While the first strategy is in high agreement with the reference at all fre-

quencies, the second approach (mass-spring-mass at normal incidence) starts to deviate

after the coincidence frequency, as it does not account for the higher-order resonances.

Further, the TL contributions from symmetric and anti-symmetric motions are also plot-

ted in Fig. 6.10. This reveals that both contributions need to be considered together to

compute the TL accurately.

Acoustic properties (JCA model)
Open porosity ϕ (-) 0.97
Airflow resistivity σ (N.s.m´4) 50 000
Viscous characteristic length Λ (µm) 60
Thermal characteristic length Λ1 (µm) 160
High frequency limit of the tortuosity α8 (-) 1.1

Table 6.2: Acoustic properties of the polyurethane layer. Elastic properties of
polyurethane layer are the soft layer properties listed in Table 6.1.

In the second validation case, the soft elastic solid core is replaced by a poro-elastic

material (polyurethane) and its acoustical properties are assumed to be described by the

Johnson-Champoux-Allard [143, 144] model for the visco-thermal dissipation. It may
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Figure 6.10: Transmission loss of the steel (3 mm)/soft core (3 mm)/steel (3 mm) sand-
wich estimated using the TMM and new condensed model for the diffuse field excitation.
Material properties are listed in Table 6.1.

Figure 6.11: Transmission loss of the steel (3 mm)/polyurethane (3 mm)/steel (3 mm)
sandwich estimated using the TMM and new condensed model for the diffuse field exci-
tation. Material properties are listed in Tables 6.1 and 6.2.
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be noted that different porous models can be used to correctly describe the dissipation

mechanisms of the porous material. Section 3.3 of this manuscript may be referred to

look for the different porous models used in the literature. Table 6.2 lists these acoustical

properties of the polyurethane material. For this sandwich structure, the TL plot given

in Fig. 6.11 shows the similar correspondences that were described previously for the

sandwich structure with soft elastic core. It is also observed that the mass-spring-mass

strategy results in poor results when the core is considered only elastic (i.e, only elastic

properties are considered and acoustic properties are ignored) but gives much better

correspondence with the TMM when the core is considered as poro-elastic (i.e, both

elastic and acoustic properties are considered).

A few additional remarks may be noticed as well. Since the dynamic bending stiffness

(D̃eq) is computed from the existing condensed/equivalent plate models, it is independent

of the acoustical properties of the multi-layer structures. If the multi-layer is symmetric,

the equivalent mass densities presented in this chapter are still valid irrespective of the

nature of layers in the structure. But the equivalent bending stiffness needs to be com-

puted correctly, which depend on the nature of the layers and bonding conditions. For

example, in a double-wall partition case where the nonhomogeneous core layer is typically

not bonded to the skins, the equivalent bending stiffness is controlled by the skins and

thus, the condensed model is still applicable for this multi-layer configuration. In case of

orthotropic layers, the model by Marchetti et al. [139] can be used to compute the equiv-

alent bending stiffness. Combining this bending stiffness with the two equivalent mass

densities provided in this chapter, one would still be able to compute the vibroacoustic

quantities. Further, the breathing frequency and its higher-order modes may vary with

respect to the angle of incidence if the multi-layer structure comprises layers with low

resistivity (σ ă 1000 N s m´4). Therefore, the proposed model may not be suitable for

these low resistivity values.
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6.4 Conclusion

In this chapter, a condensed model for a physically symmetric multi-layer that con-

siders both anti-symmetric and symmetric motions is developed. The admittances of

two equivalent thin plates are used to characterize both motions independently. The

anti-symmetric (primarily bending, shearing) and symmetric (compressional or dilata-

tional) motions may be represented by three intrinsic properties: a dynamic bending

stiffness, which corresponds to the equivalent parameter found from the existing con-

densed/equivalent plate models, and two dynamic mass densities. In order to find the

dynamic mass densities, two alternative techniques are established. The first describes

the system’s breathing frequency and resonances using the TMM method at normal in-

cidence. In comparison to complete multi-layer modelling with the TMM in diffuse field,

this approach, which may be used with any kind (fluid, solid and poro-elastic) and num-

ber of layers, produces excellent results. The multi-layer excited at normal incidence is

described as a mass-spring-mass system in the second method. This technique provides

a straightforward explanation of the breathing frequency while ignoring higher-order res-

onances. Using the dynamic intrinsic properties of the developed condensed model, the

transfer matrix connecting the pressure and velocity on both sides of the multi-layer may

be calculated at various angles of incidence. Finally, the suggested condensed model pro-

vides an accurate calculation of the transmission loss while simultaneously characterizing

the structure anti-symmetric and symmetric motions.

In the next chapter, the developed condensed model will be used in a finite element

framework as the initial application of this research. Using the identified dynamic intrinsic

properties, a new finite element approach will be formulated to characterize the anti-

symmetric and symmetric motions of the multi-layer structure.
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Chapter 7

Condensed finite element scheme for

thick symmetric multi-layer

structures

One of the main aspects of the condensed models is to reduce the computational

effort during Finite Element (FE) simulations of vibro-acoustic problems. As the con-

densed models fill in the natural response of a multi-layer system into a single layer with

dynamically varying mechanical properties, they result in less number of degrees of free-

dom in the FE setup. Due to this, the overall computational time required to complete

a simulation will be much less with condensed model properties, than the conventional

three-dimensional FE approaches that are discussed in Chapter 2. In the previous chap-

ter, a condensed model that includes both anti-symmetric and symmetric motions of

thick symmetric multi-layer structures is presented. In line with this, the main objective

of the present chapter is to develop a FE framework to implement this condensed model.

One may understand from the previous chapter that the symmetric and anti-symmetric

motions are decoupled for the physically symmetric multi-layers and therefore, the new

condensed model allows condensing the structure into two equivalent thin plate models,

corresponding to symmetric and anti-symmetric motions. This important takeaway is

131
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considered to be the foundational information for the development of the condensed FE

scheme presented in this chapter.

Contents presented in this chapter has been submitted as an original article for review [184]:

Arasan, U., Sreekumar, A., Chevillotte, F., Triantafyllou, S. P., Chronopoulos, D., Gourdon,

E. (2021). “Condensed finite element scheme for symmetric multi-layer structures including

dilatational motion”. Submitted to the Journal of Sound and Vibration.

Regarding the contributions made to the above-mentioned article, the author of this thesis has

done the following tasks: methodology, investigation, implementation, validation, article writing

and review.

Note

The chapter is divided into two major sections. In the first section, the plate and

shell element schemes are reviewed and a condensed FE scheme is proposed to include

both symmetric and anti-symmetric motions of the multi-layer system. Secondly, three

multi-layer cases (including a structure with poro-elastic layers) are chosen to compare

the results of the proposed approach against the TMM and conventional 3D FE ap-

proaches.

7.1 Proposal of the finite element scheme for the con-

densed model

In this section, the Finite Element (FE) scheme for the condensed model, discussed

in Chapter 6, is described. As most of the condensed models are based on the equivalent

Love-Kirchhoff plate theory [96, 163], thin plate elements are suitable to model the con-

densed layer of the multi-layer structure for the FE computations. Due to its complexities

involved in the thin plate FE implementation (as it requires dedicated higher-order poly-

nomial shape functions with respect to order of the element), other elements such as thick
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plate/shells are also investigated with necessary modifications to retrieve the thin plate

behaviour.

7.1.1 Plate and shell elements

In order to study the effects due to different plate/shell element formulations, two

types of plate elements are chosen in this section: 1) Love-Kirchhoff (thin) plate elements

and 2) Reissner-Mindlin (thick) plate elements.

Thin plate elements

For thin plate elements, three degrees of freedom per node are assumed: the normal

displacement (wn) and the two rotations (θ1
x and θ

1
y). Unlike Reissner-Mindlin plates, the

two rotations are coupled to the normal displacement under the Kirchhoff’s hypothesis as

follows:

θ1
x “

Bwn
Bx

; θ1
y “

Bwn
By

. (7.1)

One may refer to Eq. (2.11) for the displacement field of Love-Kirchhoff plates. Due

to the relations given in Eq. (7.1), the Love-Kirchhoff plate is characterized by the sin-

gle displacement (wn) which leads to the advantage of having less challenges than the

Reissner-Mindlin plate, in deriving the governing equations.

On the contrary, it possesses extra difficulty in FE implementation due to the necessity

to satisfy continuity requirements for the normal displacement (wn) and its derivatives, as

it requires the computation of fourth-order derivatives to calculate the element matrices.

Therefore, 3 dofs (normal displacement and two rotations) per node are still required

for thin plate implementation. Additionally, a C1 continuity (displacement and slope

continuity ensured) has to be considered for thin plate elements. Since there are 12

unknowns (4 nodes ˆ 3 dofs) for a first order element, a quartic polynomial is assumed

for the normal displacement. A detailed derivation for the element matrices of this type of

thin plate element can be found in [185, 186] with the shape functions derived by Melosh

[187]. It may be noted that for higher order elements (8-nodes or higher), the formulation
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and derivation of element matrices become cumbersome and not straightforward, as the

Lagrange or isoparametric shape functions cannot be used for thin plate elements.

Thick plate elements

In case of moderately thick plates, the shear deformation also contributes along with

the bending deformation to the resulting motion of the plate. Therefore, Reissner-Mindlin

theory [97–99] decoupled the rotations and lateral deflections by introducing the shear

deformations. Due to this reason, Eq. (7.1) is not valid for thick plates. This provides

an advantage of using C0-continuity (continuity ensured only on the nodal variable and

not necessarily on its derivatives) plate element with 3 dofs per node (wn, θ
1
x and θ1

y).

Further, this allows in using the isoparametric concept into the analysis of moderately

thick plates, which results in developing 4-node and 8-node quadrilateral plate bending

elements without much difficulty.

The element stiffness matrix for the thick plate elements consists of both bending and

shear contributions as follows:

rKe
splate “ rKe

sbending ` rKe
sshear. (7.2)

Although this type of plate element provides appreciable results for moderately thick

plates, they behave erratically in case of thin plates due to excessive influence of terms

corresponding to transverse shear deformation. It is well observed in the literature [188–

192] that the thick plate elements become stiffer when the plate is relatively thin. This

is due to having spurious shear strains arising from the thick plate element formulation,

which should not be appearing as per Kirchhoff’s assumptions for thin plates. This

situation is referred to as ‘shear locking’ in the literature, and it could be avoided by

employing a reduced integration scheme on the shear stiffness matrix (rKesshear). For the

first order element, Hughes et al. [189] have shown the use of one-point integration for the

computation of shear stiffness matrix and 2 ˆ 2 integration for bending stiffness matrix,

and it is observed that the element behaves well even for the thin plate situations. It is
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also observed that the ‘shear locking’ could be avoided if higher-order thick plate element

is used.

Shell elements

Thin structures that carry loads in all directions (for example, lightweight structures

like aircraft fuselages) experience bending, shear, twisting along with membrane or in-

plane deformations. This kind of structures are commonly called as shell structures and

shell elements need to be employed for modelling these structures to handle all types

of possible deformations. Shell elements are commonly applied to model the structures

with curved geometry. Since this type of elements needs to handle various types of

motions and curvature effects, this often results in more complexities for the formulation

as well as implementation. Due to these challenges, a more popular approach to model

the shell structures is to use a series of flat shell elements that is simpler and easier to

implement.

Flat shell elements are constructed simply by combining the plate elements and mem-

brane elements, which results in 6 dofs per node (u, v, w, θ1
x, θ

1
y and θ1

z).

rKe
sflat shell “

»

—

—

—

—

–

rKesmembrane 0 0

0 rKesplate 0

0 0 ϵ1

fi

ffi

ffi

ffi

ffi

fl

, (7.3a)

rM e
sflat shell “

»

—

—

—

—

–

rM esmembrane 0 0

0 rM esplate 0

0 0 0

fi

ffi

ffi

ffi

ffi

fl

. (7.3b)

It may be noted that membrane terms correspond to the in-plane displacements degrees

of freedom and plate terms correspond to degrees of freedom for transverse displacement

and rotations. In case of modelling the curved structures with flat shell elements, each

element will have stiffness and mass element values computed with its local coordinate

system. Since the normal direction of an element might be different from that of the
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other element, for the purpose of assembling the matrices, the stiffness and mass values

need to be transformed to global coordinate system. Therefore, the degrees of freedom

corresponding to the out of plane rotation also needs to be added in the element matrices

(as seen in Eq. (7.3)) and a fictitious stiffness value (ϵ1) is added to avoid the singularity

during the solving process.

Like Reissner-Mindlin plate elements for thin structures, it is observed that the Reissner-

Mindlin shell elements also exhibit shear locking effect in thin shell structures. Further-

more, they display membrane locking as well that significantly affects the nodal solution

[192]. Recently, Pillai et al. [193] developed a shell element of degenerated solid type

(MITC4+ elements) to overcome these locking effects.

7.1.2 Selection of the element type for the condensed model

Since the condensed models assume the condensed layer as a Love-Kirchhoff plate, it

is necessary to use the element types which support the Love-Kirchhoff hypothesis. Thin

plate and shell elements are the candidates which satisfy these conditions inherently, due

to the assumptions involved in their formulation, but they also add some complexities

during the implementation compared to other element types. For example, it is simpler

and straightforward to implement Reissner-Mindlin plate/shell elements than the Love-

Kirchhoff elements, especially when higher-order elements need to be used. It is due to

the reason that the classical isoparametric shape functions can be used for thick plates

but not for the thin plates. Further, the Reissner-Mindlin plate/shell elements could also

be used to simulate thin plate behaviour, by applying the penalty factor only on the shear

modulus and by lowering the erroneous results due to shear locking through reduced order

integration on shear terms for 1st order elements.

Aluminium Shear layer Plasterboard Soft layer Glasswool
ρ (kg m´3) 2700 200 700 55 18
E (Pa) 70ˆ109 0.1ˆ109 3ˆ109 4.3ˆ104 3ˆ103

ν 0.3 0.33 0.33 0.4 0.21
η 0.08 0.5 0.08 0.3 0.1

Table 7.1: Elastic properties of the layers used in this chapter.
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Figure 7.1: Natural propagating wavenumbers for aluminium (5 mm)/shear layer
(15 mm)/aluminium (3 mm) sandwich structure of infinite extent (material properties can
be referred from Table 7.1). Equivalent plate properties are computed from Guyader’s
model [131]. The penalty factor is chosen as ϑ “ 100.

Multi-layer
material

properties

Dispersion
relation

Propagating wavenumber

Equivalent thin plate
wavenumber ( )

(Penalty on )

Equivalent flexural wavenumbers

(Eq. thin plate)

(Eq. thick plate)

(Eq. thick plate with penalty 
on the shear modulus)

Figure 7.2: Schematic representation for computing equivalent wavenumbers from thin
and thick plate theories.
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For the purpose of illustrating this particular point, the propagating wavenumber for

a three-layer aluminium (5 mm)/shear layer (15 mm)/aluminium (3 mm) sandwich (with

properties mentioned in Table 7.1), computed from the anti-symmetric condensed plate

model, is compared against the anti-symmetric Lamb wave solution (Fig. 7.1). Guyader’s

model [131] is chosen here to compute the equivalent bending wavenumber, and it is

seen that the Guyader’s model is in high agreement with the Lamb wave solution. One

may recall from Chapter 5 that the propagating wavenumber of a three-layer sandwich

system comprises three zones controlled by: 1) global bending, 2) core shear, and 3) inner

bending. The dynamic properties are then used to recompute the response using thin

and thick plate theories, with and without the penalty on the shear modulus, as shown

in Fig. 7.2. The idea of the penalty procedure is to remove the shear contribution from

the frequency range of interest and to keep only the equivalent bending contribution (see

Figs. 4.4 and 5.2a).

The efficiency of the penalty procedure can be checked from the dispersion curve

observation. It is seen from Fig. 7.1 that the wavenumber computed from thick plate

theory matches with that of the Lamb wave and thin equivalent plate models, in the

zones controlled by global bending and core shear, but has poor match with the zone

controlled by inner bending. Further, it is also observed that the thick equivalent plate

wavenumber computed with penalty on the shear modulus is in good agreement with

the wavenumbers from the Lamb wave and thin equivalent plate models. It is worth to

mention that, practically, this can be achieved with the penalty factor ϑ “ 100 for most

of the multi-layer configurations. Similarly, this penalty factor (ϑ) is applied to the shear

stiffness matrix of the thick plate element in the FE scheme as,

rKe
splate “ rKe

sbending ` ϑrKe
sshear. (7.4)

It may be noted that this value for the penalty factor is sufficient to reduce the effect of

shear in the thick plate elements while avoiding ill-conditioning of the stiffness matrices.

As a result, it can be seen from Fig. 7.3 that the transmission loss (for a plasterboard of
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Figure 7.3: Transmission loss computed from FEM using thin and thick plate elements
for the plasterboard of 12.5 mm under oblique plane wave incidence of 60˝. Material
properties can be referred from Table 7.1.

12.5 mm under 60˝ plane wave incidence) computed from the thick plate elements with

penalty factor corresponds well to that obtained from the thin plate elements.

Acoustic properties
Open porosity ϕ (-) 0.96
Airflow resistivity σ (N.s.m´4) 11500
Viscous characteristic length Λ (µm) 108
Thermal characteristic length Λ1 (µm) 138
High frequency limit of the tortuosity α8 (-) 1.01
Static thermal permeability k1

0 (m2) 4 ˆ 10´9

Table 7.2: Acoustic properties (JCAL model) of the glasswool layer used in this chapter.

Since the thick plate element with penalty on the shear modulus matches response

with that of the thin plate element and as it is simpler and easier for FE implementation,

it is practical to use this element for the condensed layer to compute the response of

the multi-layer system. It is recalled that a thin plate formulation is required, since the

equivalent bending stiffness D̃eq is computed according to this model. Additionally, as

the scope of this chapter is limited to planar structures, the membrane effects would be

negligible. Thus, the use of shell elements is unnecessary at this stage, and it is time-

consuming due to 6 degrees of freedom per node whereas the thick plate element requires
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Air layer
(emission side)

Air layer
(reception side)

Condensed layer
(anti-symmetric)

z
y x

Figure 7.4: Schematic representation of the meshed layers to compute the sound trans-
mission loss of a planar multi-layer structure (represented as anti-symmetric condensed
layer).

only 3 degrees of freedom per node.

7.1.3 Finite element equations to compute vibro-acoustic quan-

tities of multi-layer structures

Finite element matrices for condensed model with anti-symmetric motion

As many of the condensed models consider only the anti-symmetric motions (bending

and shear) of the multi-layer structure to provide dynamic or equivalent properties, the

stiffness and mass matrices of the condensed layer are written in terms of these equivalent

properties. Fig. 7.4 shows the schematic representation of the meshed layers of the FE

setup with an anti-symmetric condensed plate. The global matrices to solve for the

acoustic problem with this condensed plate are,

rKs “ r qKs “ rKpD̃eqqs, rM s “ r|M s “ rMpρeqqs, (7.5a)
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rHs “

»

—

–

rHOs 0

0 rHNs

fi

ffi

fl

, rQs “

»

—

–

rQOs 0

0 rQNs

fi

ffi

fl

, (7.5b)

where ‘O’ and ‘N’ represent the emission and reception sides, respectively.

t|W u “ r qwn1, qθ1
x1,

qθ1
y1
, ..., qwnr, qθ1

xr,
qθ1
yr

sT , tP u “ rpO1 , p
O
2 , ..., p

O
r , p

N
1 , p

N
2 , ..., p

N
r sT are the nodal

variables of the anti-symmetric condensed plate (solid phase) and air layer (fluid phase)

respectively. The symbolq on top of the variables represents the anti-symmetric contribu-

tion of the plate, r denotes the number of nodes on the air/condensed layer and conformal

meshing (same number of elements with same dimensions for all the layers) is used in this

chapter. Finally, the generic fluid-solid interaction relation (Eq. (2.1)) presented in Sec-

tion 2.2.2 is recalled here for substituting these FE matrices to obtain the nodal solution.

¨

˚

˝

rKs ´ ω2rM s ´rCs

´rCsT
rHs

ω2
´ rQs

˛

‹

‚

$

’

&

’

%

tW u

tP u

,

/

.

/

-

“

$

’

&

’

%

0

0

,

/

.

/

-

. (7.6)

Acoustic loads: Excitations can be imposed through incident pressure or displacement

at the emission side of the system. In this chapter, the incident pressure field condition

is applied on the emission side air layer to solve for the vibro-acoustic problem:

pO “ pe´ik0px sin θ cosψ`y sin θ sinψ`z cos θq, (7.7)

where the superscript ‘O’ represents the emission side, k0 “ ω{c0 is the wavenumber in

air, θ is the incident angle and ψ is the azimuthal angle of the incident wave measured

from the x´axis. If the emission side air layer is placed at z “ 0 and ψ “ 0, then the

incident pressure would simply be,

pO “ pe´ik0x sin θ. (7.8)
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Air layer
(emission side)

Air layer
(reception side)
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Figure 7.5: Schematic representation of the meshed layers to compute the sound transmis-
sion loss of a planar multi-layer structure (represented as two parallel condensed layers).

Finite element equation for a thick symmetric multi-layer structure

In this section, the modified form of the FE equation (Eq. (7.6)) is proposed to couple

two fluid domains with a condensed layer including both anti-symmetric and symmetric

motions. In this approach, two thin (plate or shell) layers are used to represent the anti-

symmetric and symmetric motion of the multi-layer structure respectively (as shown in

Fig. 7.5), with the dynamic properties obtained from the condensed model presented in

Chapter 6. While the nodal variables of anti-symmetric layer are denoted withq symbol on

top, the symmetric layer nodal variables are represented with a bar symbol .̄ According to

Dym and Lang [155], the displacements corresponding to symmetric and anti-symmetric

motions respectively, of a physically symmetric multi-layer can be defined as,

wn “
wNn ´ wOn

2
; qwn “

wNn ` wOn
2

, (7.9a)

ñ wOn ´ qwn ` wn “ 0; wNn ´ qwn ´ wn “ 0, (7.9b)
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where wOn and wNn are the normal displacements of the fluid-solid interfaces at points ‘O’

and ‘N’ respectively. Note that the above equations are retrieved from Eqs. (3.76) and

(3.77).

In the FE setup, two decoupled plates (correspond to symmetric and anti-symmetric

motions) are meshed at the mid-position of the multi-layer structure (as shown in Fig. 7.5).

The coupling between these two plates can be made through Eq. (7.9) and for this purpose,

the pressure variables are split into two vectors as,

tP u “

$

’

&

’

%

tPOu

tPNu

,

/

.

/

-

(7.10)

. By rewriting the pressure vector as above, two types of coupling matrices are defined

to satisfy the conditions given by Eq. (7.9). Referring to Eq. (2.7),

ż

Γ

wOn δp
O dΓ “

ż

Γ

p qwn ´ wnqδpO dΓ “

ż

Γ

qwnδp
O dΓ ´

ż

Γ

wnδp
O dΓ

« tPO
u
T

rCst|W u ´ tPO
u
T

rCstW u (7.11)

ż

Γ

wNn δp
N dΓ “

ż

Γ

p qwn ` wnqδpN dΓ “

ż

Γ

qwnδp
N dΓ `

ż

Γ

wnδp
N dΓ

« tPN
u
T

rCst|W u ` tPN
u
T

rCstW u (7.12)

Then, the global FE equation in Eq. (7.6) is modified as shown below :

»

—

—

—

—

—

—

—

—

–

r qKs ´ ω2r|M s r0s ´rCs ´rCs

[0] rKs ´ ω2rM s rCs ´rCs

´rCsT rCsT
rHOs

ω2
´ rQOs r0s

´rCsT ´rCsT r0s
rHN s

ω2
´ rQN s

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl
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(7.13)

where tW u “ rwn1, θ1
x1, θ

1
y1
, ..., wnr, θ1

xr, θ
1
yr

sT are the nodal variables of the symmetric con-
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densed plate and twnu “ rwOn1..., w
O
nr, w

N
n1, ..., w

N
nrs

T are nodal variables of the fluid layers

at points ‘O’ and ‘N’ respectively. As per the condensed model presented in Chapter 6,

the stiffness matrices of the anti-symmetric and symmetric condensed plates are equal i.e,

r qKs “ rKs “ rKpD̃eqqs, but the mass matrices of these two plates are defined by the two

dynamic mass densities as,

r|M s “ rMpqρAqs; rM s “ rMpρSqs. (7.14)

Finally, after solving the above finite element system, the transmission loss of the structure

is computed as follows:

TL “ 10 log10

ˆ

ΠOi

ΠN

˙

, (7.15)

where ΠOi “
1

2
p2inc

cos θ

Z0

is the incident power and the incident pressure (pinc) is computed

as, pinc “ pO{p1 ` Rq. The reflection coefficient (R) can be computed using the Eq. (3.57).

The outlet power is computed using the relation, ΠN “
1

2
ℜppNvN˚ q where pN and vN˚ are

the pressure and conjugate velocity at the outlet.

7.1.4 Summary of the proposed FE scheme

This section summarizes the key points of the proposed FE setup to solve the vibro-

acoustic problem of a thick symmetric multi-layer structure. Fig. 7.6 lays out the generic

flow of the FE procedure along with two different approaches (i.e, condensed model and

classical 3D elements approaches) that are used to mesh the multi-layer structure.

In 3D elements approach, the minimum wavelength (λmin) may be computed from

two ways: 1) for the coarse mesh, λmin is from the wavelength of incident air and 2) for

the fine mesh, λmin is from the wavelength set comprised of all possible waves that could

propagate inside each layer of the multi-layer structure and the incident wavelength of air.

From this minimum wavelength, the element side length is determined as λmin{q̄ where q̄

is the number of elements per wavelength. Each layer in the multi-layer structure is then

meshed with 3D elements (hexahedral, for example).
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Figure 7.6: Generic flow of the FE approaches followed in this chapter.

In the proposed condensed model approach, the minimum wavelength is computed

from the equivalent flexural wave and incident wave in the air. It may be noted that

the equivalent flexural wavelength is characterized by the dynamic properties given by

the condensed model (Chapter 6) and the minimum flexural wavelength is computed

from the minimum value of D̃eq, that is estimated at the maximum frequency (fmax) (see

Fig. 5.3). The element side length is determined as λmin{q̄, which decides the mesh char-

acteristics of the condensed layers. In the meshing stage, unlike 3D elements approach,

only two condensed layers (for symmetric and anti-symmetric motions) are meshed, whose

mechanical properties are controlled by the three dynamic properties that are obtained

from the condensed model. It is important to note that these anti-symmetric and sym-

metric condensed layers are meshed as thick plate elements with penalty on the shear

modulus. Although the dynamic or equivalent properties obtained from the condensed

model are obtained using thin plate theory, thin plate elements posses some challenges

in terms of the FE implementation. Therefore, thick plate elements with penalty on the

shear modulus are chosen to ease the implementation process without compromising the

response as that of the thin plate elements (see section 7.1.2).
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7.2 Numerical examples

Three symmetric multi-layer structures are examined to validate the proposed con-

densed FE approach and to compare the computational efficiency with respect to 3D FE

approach. In this chapter, the FE simulations to compute the transmission loss (TL)

of a given multi-layer structure is done under the following conditions: fmin “ 50 Hz,

fmax “ 5000 Hz, q̄ “ 6 and infinite lateral dimensions. The cross-section of the structure

is 20ˆ20 mm2 and periodic boundary conditions along the lateral directions are considered

to mimic the response of an infinitely extended structure. One may note that the damping

of each layer is introduced in their respective Young’s modulus as E˚
i “ Eip1 ` jηiq. Fur-

ther, for the 3D FE approach, the results are presented with the coarse mesh (according to

minimum wavelength in air), since no considerable difference has been observed between

both coarse and fine meshes (for the three cases discussed in this section). The TL com-

putations from the FE simulations are done for both oblique incidence of 60˝ and diffuse

field (with 52 number of Gauss integration points) excitations. Since planar multi-layers

of infinite lateral dimensions are studied, the results from different FE simulations are

compared against the reference solution given by the Transfer Matrix Method (TMM).

The FE computations (in serial implementation) are done with Intel(R) Core(TM) i3-

8100 processor, 3.6 GHz frequency and 8 GB RAM. The material properties of various

layers used in this section can be found in Table 7.1.

7.2.1 Case 1: Three-layer sandwich with thin soft elastic core

A three-layer sandwich structure with skins made of plasterboard material (12.5 mm

each) and a thin soft core (0.05 mm) is considered. It may be noted that as the core is thin

compared to the skins, the structure would normally be controlled by the anti-symmetric

motions and thus, vibro-acoustic response of this kind of structures is usually captured

well by the condensed plate model of only anti-symmetric type [7, 131, 133, 156, 174] (see

Section 2.5).

In the condensed FE simulations, two versions of condensed model are followed (as
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FE approach Order #Nodes #Dofs toblique tdiffuse
Condensed 1 27 45 0.2 s 10 s
(Anti-symm.) 2 75 105 0.4 s 16 s
Condensed 1 27 72 0.3 s 13 s
(Anti-symm. & Symm.) 2 75 168 0.5 s 24 s
3D 1 54 180 1.8 s 100 s

2 275 555 24.4 s 1327 s

Table 7.3: Computational efficiency comparison for three-layer sandwich structure with
sequence: plasterboard (12.5 mm)/soft layer (0.05 mm)/plasterboard (12.5 mm) of cross-
section 20ˆ20 mm2.

discussed in Section 7.1.3): 1) condensed FE approach with anti-symmetric motions only

(for example, Guyader’s model [131]) and 2) condensed FE approach with both symmetric

and anti-symmetric motions (Chapter 6). Table 7.3 lists the total number of nodes, total

number of degrees of freedoms on the meshed setup (see Figs. 7.4 and 7.5 for the schematic

representation) along with the time required (average of five runs) for solving the system

under oblique incidence and diffuse field. The TL results obtained under diffuse field

from different FE approaches are compared against the reference solution from TMM in

Fig. 7.7. Note that, thanks to the periodic BC, the lateral size is relatively small. Of

course, the difference in terms of computational time will increase if the lateral dimension

is increased.

Although the condensed FE approach with only anti-symmetric motion results in

slightly mismatched response before critical frequency, it is observed that the overall

predictions from both condensed FE approaches are in good agreement with the 3D

FE approach and the TMM reference. This shows that the multi-layer structure under

consideration is largely influenced by the anti-symmetric motions of the structure. It is

also noted that the condensed FE with both motions slightly underpredicts the critical

frequency. On the other hand, in the case of stiffer skins (with aluminium, steel etc.),

critical frequencies are predicted well by the proposed condensed FE scheme and this may

be due to neglecting rotational inertia effects of the condensed layer in the theoretical

formulation, which is currently under study. On the computational efficiency side, it can

be seen from Table 7.3 that the condensed FE approaches are more than 50 times faster
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Figure 7.7: Comparison of transmission loss obtained from different FE approaches
(with 2nd order elements) for the three-layer sandwich plasterboard (12.5 mm)/soft layer
(0.05 mm)/plasterboard (12.5 mm) of cross section 20ˆ20 mm2 under diffuse field. Ma-
terial properties can be referred from Table 7.1.

than the 3D FE approach in both excitation types when using 2nd order elements. For

the same mesh, though the first order elements (from all three FE approaches) predict

the correct critical and breathing frequencies, they do not provide well-matched results

when compared to second order elements. Therefore, in this chapter, TL computations

are presented only from second order elements.

7.2.2 Case 2: Three-layer sandwich with thick soft elastic core

Fig. 7.8 shows the TL response of the above discussed three-layer sandwich structure

if the core thickness is increased from 0.05 mm to 3 mm.

It is observed that as the core thickness increases, the symmetric motion or the com-

pressional motion of the structure also governs the resulting response of the structure after

the mass law, along with anti-symmetric motions. The so-called breathing frequency, due

to the mass-spring-mass resonance, is clearly seen around 400 Hz. Fig. 7.8 shows that

this behaviour is not captured by the condensed plate model only with anti-symmetric

motion, although it correctly predicts the value of the critical frequency of the structure.
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Figure 7.8: Comparison of transmission loss obtained from different FE approaches
(with 2nd order elements) for the three-layer sandwich plasterboard (12.5 mm)/soft layer
(3 mm)/plasterboard (12.5 mm) of cross-section 20ˆ20 mm2 under diffuse field. Material
properties can be referred from Table 7.1.

FE approach Order #Nodes #Dofs toblique tdiffuse
Condensed 1 27 45 0.5 s 10 s
(Anti-symm.) 2 75 105 0.4 s 16 s
Condensed 1 27 72 0.3 s 13 s
(Anti-symm. & Symm.) 2 75 168 0.5 s 27 s
3D 1 54 180 1.9 s 93 s

2 275 555 24.3 s 1352 s

Table 7.4: Computational efficiency comparison for three-layer sandwich structure with
sequence: plasterboard (12.5 mm)/soft layer (3 mm)/plasterboard (12.5 mm) of cross-
section 20ˆ20 mm2. Material properties can be referred from Table 7.1.

The condensed FE approach with both anti-symmetric and symmetric motions is in good

agreement with 3D FE solution and the TMM reference (except slight underprediction of

the critical frequency). The high frequency oscillations in TL can be reduced if the number

of Gauss integration points are increased, but at the cost of increasing the computational

time for the diffuse field excitation.
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Figure 7.9: Comparison of transmission loss obtained from different FE approaches (with
2nd order elements) for the double-wall partition structure with sequence: plasterboard
(12.5 mm)/air (1.5 mm)/glasswool (45 mm)/air (1.5 mm)/plasterboard (12.5 mm) of
cross-section 20ˆ20 mm2 under diffuse field. Material properties can be referred from
Table 7.1.

On the computational efficiency front, as seen in the previous case, the proposed

condensed FE approach is more than 50 times faster than the 3D FE approach with 2nd

order elements for both excitation types (see Table 7.4).

7.2.3 Case 3: Double-wall partition with poro-elastic core

A similar comparison plot is presented in Fig. 7.9 for a five layer double-wall parti-

tion with poro-elastic core: plasterboard (12.5 mm)/air (1.5 mm)/glasswool (45 mm)/air

(1.5 mm)/plasterboard (12.5 mm). The glasswool is a poro-elastic material which is de-

scribed with the Biot’s model [22, 23] and the Johnson–Champoux–Allard-Lafarge [143,

144, 147] model (or JCAL model) for the visco-thermal dissipation mechanisms inside the

porous layer. The JCAL model depends on six acoustic properties (open porosity, air-

flow resistivity, viscous characteristic length, thermal characteristic length, high frequency

limit of tortuosity and static thermal permeability). Table 7.2 summarizes the values of

these parameters.
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FE approach Order #Nodes #Dofs toblique tdiffuse
Condensed 1 27 72 0.3 s 13 s
(Anti-symm. & Symm.) 2 75 168 0.5 s 24 s
3D (5 layers including poro-elastic core) 1 108 414 8 s 402 s

2 575 1252 258 s 13216 s
3D (without air layers and 1 81 225 2 s 110 s
core with limp model) 2 425 669 30 s 1539 s

Table 7.5: Computational efficiency comparison for double-wall partition struc-
ture with sequence: plasterboard (12.5 mm)/air (1.5 mm)/glasswool (45 mm)/air
(1.5 mm)/plasterboard (12.5 mm) of cross-section 20ˆ20 mm2. Material properties can
be referred from Table 7.1.

Concerning the TL response of this double-wall partition, the proposed condensed FE

approach (with both anti-symmetric and symmetric motion) results in good agreement

with the TMM reference as well as 3D FE approach by correctly computing the breathing

frequency and with a small difference on the critical frequency of the multi-layer structure.

Regarding the computational efficiency of the proposed FE approach, from Table 7.5, an

interesting computational gain can be observed. If the multi-layer structure has many

layers of different materials and/or has thicker layers, the 3D FE approach would result in

higher number of dofs which is computationally expensive. On the contrary, the proposed

condensed FE approach would always result in same and low number of dofs irrespective

of the number of layers, material types and/or thicknesses of the layers. This is due

to the reason that the condensed model (Chapter 6) converts the physically symmetric

multi-layer system with each layer of any material type (fluid, solid and porous) into a

single condensed layer (see Fig. 6.8) with intrinsic dynamic properties (D̃eq, qρA and ρS).

Therefore, for the present case, it can be seen that the condensed FE approach works 550

times faster than the 3D FE approach.

Additionally, TL response of the double-wall partition without air layers is presented

in Fig. 7.9 (for 3D FE approach), where the glasswool is modelled as a limp layer. It can

be observed that, the TL of this three-layer structure matches with the five-layer structure

with air layers. Since the core is decoupled from the skins by air layers (in the five-layer

system), the influence of the core elastic properties is weak, and the core can be modelled

as a limp model. Due to this reason, it provides the matched vibro-acoustic response to
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that of the three-layer sandwich structure, where the core is considered as limp. Even for

this simplified case, the condensed model runs 60 times faster than the 3D FE approach

(see Table 7.5).

It is worth to mention that the proposed condensed FE scheme would be computa-

tionally far lighter than the conventional 3D FEM simulations, for furthermore complex

practical applications such as cabin flooring of aircraft and trains, windshield of an auto-

motive vehicle etc. As the number of degrees of freedom is quite large for these practical

cases due to the larger size of the structures (compared to the examples presented in

this section), the computational gain with the proposed FE scheme would be significant

compared to other conventional FE methods. Finally, the condensed elements proposed

in this chapter could be easily connected with other element types to perform the com-

putations. This ability of the condensed element comes from the fact that the condensed

element simply uses the thick plate element formulation with a penalty factor on the shear

modulus.

7.3 Conclusion

In this chapter, a FE scheme for the condensed model (presented in Chapter 6) is

proposed by considering the anti-symmetric and symmetric motions of the physically

symmetric multi-layer system. In the FE scheme, the multi-layer structure is converted

into two decoupled condensed plates corresponding to anti-symmetric and symmetric mo-

tions of the structure with three intrinsic dynamic properties (a dynamic bending stiffness,

which corresponds to the equivalent parameter identified from any anti-symmetric con-

densed plate models, and two dynamic mass densities). The coupling between these two

plates are achieved through the definitions of anti-symmetric and symmetric displace-

ments of the structure, which are the functions of the fluid displacements at the emission

and reception sides. Although the three intrinsic dynamic parameters are defined for the

condensed thin plates, thick plate elements with penalty on the shear modulus are used

in the proposed FE approach for the ease of implementation. It is showed that, through
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three cases of multi-layer structures, the proposed condensed FE approach gives high

computational gain over the conventional 3D FE approach as it significantly results in

low number of degrees of freedoms while maintaining good agreement with the reference

(TMM) solution. The condensed multi-layer has to be symmetric but can include solid,

fluid or poro-elastic layers.
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General conclusion and

perspectives

This thesis work concerns the development of advanced vibro-acoustic tools to under-

stand the physical behaviour of the multi-layer structures and thereby efficiently estimate

their vibro-acoustic responses. Usage of multi-layer structures are growing in many indus-

tries including aerospace, automotive and building. They attract considerable attention

due to their interesting mechanical properties in terms of overall weight, stiffness and

damping that classical materials do not provide. On the other hand, they often result in

many challenging complexities while modelling. Although many types of vibro-acoustic

models are available in the literature, condensed models have its peculiar advantage of

converting the multi-layer structure into a single condensed layer while simulating the

same natural response. Therefore, usage of these models offer greater advantage in finite

element modelling since they significantly reduce the computational power and time com-

pared to the conventional three-dimensional finite element approaches. The work carried

out during this thesis is therefore focused on the research, study and improvement of the

condensed models for vibro-acoustic applications. Fig. 8.1 shows the developed models of

the thesis and summarizes the advantages and limitations of each of these models. It may

be noted that the models presented in this thesis are developed for linear elastic materi-
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als. Nevertheless, in the case of nonlinear materials, where material properties changes

in nonlinear sense with respect to the static load or displacement, these models would be

still applicable if the dynamic load is small enough to ignore its effects on the material

properties (result of small deformation hypothesis).

Accuracy

limits of 

plate

theories

✓ Analytical expressions
for frequency limits

✓ Refined expressions
for coincidence and
critical frequencies

× Limited to single layer

A novel

condensed

model

Simple

equivalent

plate

model

✓ Easier implementation

✓ Helps to understand
physical behaviour of
sandwich structures

× Applicable only to three-layer structures
× Dilatational mode is not included

THESIS ADVANCEMENTS

Condensed

FE

scheme

✓ Quite faster than classical 3D 
FE approach

× Not applicable to asymmetric
multi-layer

✓ Includes dilatational mode

✓ Includes layers of any kind
(solid, fluid and poro-elastic)

× Not applicable to asymmetric
multi-layers

× Not suitable for porous materials with 
very low resistivity

× Do not include rotational inertia

PROS AND CONS

✓ Simple FE implementation

Figure 8.1: Advantages and limitations of the developed models.

The literature review provided in the first chapter has allowed to classify the different

types of vibro-acoustic methods that are applied to model and characterize the multi-layer

structures. Several analytical models of multi-layers are generally valid for a given fre-

quency range as well as a particular type of structure. In most of these models, the focus

is given to the bending mode of the structure due to its higher acoustic radiation than

that of the other modes like shear and compression. More precise models introduce the

shearing motion along with bending motion to each individual layer. These descriptions

are valid if the layers are thin and therefore, these models are limited to thin multi-layer

structures. When the thickness of the layer is moderately high or if the layer is sen-

sitive to compression, the resulting behaviour is not only controlled by anti-symmetric

motions (bending, shear and membrane) but modified by the symmetric motion (com-

pressional/dilatational) as well. The equivalent or condensed methodology derived from
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these existing models also possess this limitation. This understanding has aided to iden-

tify the possibilities from which the new improvements can be made to address the current

challenges.

The general principles of an accurate method called “Transfer Matrix Method (TMM)”

to compute vibro-acoustic quantities of planar multi-layers are presented in Chapter 3.

Since this method describes the complete description of propagating waves in a layer, the

computations from this method are used for validating the new developments made in

other chapters. Additionally, an initial condensation procedure is presented based on the

global transfer matrix computation from the TMM. Although this approach suggests a

possible direction towards obtaining the intrinsic properties of an equivalent fluid or thin

plate, it is limited for most of the practical cases of multi-layer structures.

Analytical expressions of frequency limits of plate theories, which are commonly used

in many vibro-acoustic analytical models (including condensed models), are derived in

Chapter 4. Limitations of Love-Kirchhoff [95, 96] and Reissner-Mindlin [97–99] plate

theories come from excluding shear and compressional motions, respectively. Observation

from the dispersion curves of both plate theories lead to find the limiting frequency for

the Love-Kirchhoff theory, whereas, analysis of admittances let to derive the same for

plate theories which assume constant normal displacement. Validation of these frequency

limits are attained by comparing the Transmission Loss (TL) plots obtained from the plate

theories with those from the TMM. In addition, the coincidence and critical frequency

expressions are refined using Reissner-Mindlin plate theory for the correct estimation.

Although analytical expressions for frequency limits are given, these are limited to only

a single layer. However, similar dispersion and admittance analyses could be performed

for equivalent plates to derive frequency limits.

A simplified condensed plate model for three-layer sandwich structures is presented

in Chapter 5, to reduce the challenges in the implementation processes of existing con-

densed plate models. This simple model has its foundation in understanding the physical

behaviour of three-layer system at three frequencies regimes (namely low, transition and
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high) to derive only four key parameters that are sufficient to compute the natural re-

sponse at all frequencies. The dynamic condensed properties obtained from this model

are compared against the existing condensed model as well as the experimental data and

it is showed that the new model gives matched response with both of them. Although the

model is effective in reducing the implementation challenges, it limits its applicability to

only three-layer sandwich systems. Additionally, like other condensed plate models, this

model also accounts only for anti-symmetric motions and not dilatational motion, and

thus, limited to only thin multi-layer structures.

One of the objectives of this thesis is to develop a condensed model that could capture

the effect of compressional/dilatational motion of the multi-layer structure. Therefore,

a novel condensed model is presented in Chapter 6 that could handle both symmetric

(compressional) and anti-symmetric (bending, shear and membrane) motions. The con-

densed properties, dynamic bending stiffness and two equivalent mass densities, are de-

rived by assuming two uncoupled equivalent thin plates corresponding to symmetric and

anti-symmetric motions. This new model has its applicability advantages on multi-layer

structures that contain thick/soft layers of any kind (elastic solid, fluid and poro-elastic).

Although the effects of dilatational mode are included, this model would be limited only

to symmetric multi-layers, as the intrinsic properties are obtained from the assumption

that the anti-symmetric and symmetric admittances are decoupled. Also, the presented

model may not be suitable for the multi-layer structure with porous layers of very low

resistivity values.

An important application of the novel condensed model is to use them in the finite

element framework that aims to effectively reduce the computational time. Therefore, a

dedicated Finite Element (FE) scheme is proposed in Chapter 7 to compute the vibro-

acoustic response of thick symmetric multi-layers. Two decoupled plates are meshed with

three dynamic condensed properties, and they are finally coupled using the anti-symmetric

and symmetric velocity definitions of the layered structure. The computational efficiency

of the proposed FE scheme is demonstrated using several multi-layer configurations and,
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as expected, it is observed that the condensed FE scheme runs quite faster than the

conventional three-dimensional FE approach. On the limitation side, the condensed FE

scheme slightly underpredicts the critical frequency due to negligence of rotational inertia

of the thick multi-layer structure. Therefore, further investigation need to be carried out

in the future to account for an equivalent rotational inertia.
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Perspectives

The condensation approach presented in Chapter 3 can be
extended to get the equivalent fluid properties of heterogeneous
porous media and metamaterials. Equivalent fluid

Similar to the procedure followed to obtain the frequency limit
of an isotropic plate, a frequency limit expression can be derived
for condensed plate theories. This can be done by analysing the
anti-symmetric and symmetric admittances that are obtained
for the multi-layer structure.

Condensed plate

frequency

TL
TMM

Condensed
plate

From the wavenumber analysis, a simple condensed plate has
been developed by observing the asymptotic behaviours for
three-layer structures. Possibilities of extending the similar
approach to any number of layers can be investigated.

Condensed model presented in Chapter 6 could be extended to
asymmetric multi-layer structures. Since the anti-symmetric and
symmetric admittances are coupled for the asymmetric multi-
layers, obtaining the condensed properties requires to account
for this coupling while using intrinsic parameters.

The applicability limits for curved structures could be
investigated using shell element implementation with the
condensed properties obtained from Chapter 6.

The condensed FE scheme presented in Chapter 7 could be
tested with other excitations such as point load, rain fall,
turbulent boundary layer etc.

An interesting aspect would be introducing the bonding
imperfections between the layers in the condensed models. The
current models are based on the condition that the layers are
either perfectly bonded or sliding. Therefore, introducing the
bonding imperfections in the condensed models would make
them even more efficient to estimate the effects of the different
bonding conditions (shear, dissipation) on the resulting vibro-
acoustic response.

Condensed model for
asymmetric multi-layers

Simple model for n-layer plate

Shell element

Other excitations

Condensed model with 
bonding imperfections

Perspectives

Figure 8.2: Possible future work that can be carried out after this thesis.

Several perspectives can be proposed as shown in Fig. 8.2 to extend the application

range of the condensed models. All of these extensions, however, would result in substan-

tial complexity of the model and must thus be chosen with caution in accordance with

the required conditions.
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Acustica 4.4 (1954), pp. 433–444.

[6] H. Oberst. “Werkstoffe mit extrem hoher innerer Dämpfung”. In: Acta Acustica
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[88] Q. Leclère, F. Ablitzer, and C. Pézerat. “Practical Implementation of the Cor-

rected Force Analysis Technique to Identify the Structural Parameter and Load

Distributions”. In: Journal of Sound and Vibration 351 (Sept. 2015), pp. 106–118.

issn: 0022-460X.

[89] A. K. Noor and W. S. Burton. “Three-Dimensional Solutions for the Free Vi-

brations and Buckling of Thermally Stressed Multilayered Angle-Ply Composite

Plates”. In: (1992).



170 BIBLIOGRAPHY

[90] N. J. Pagano. “Exact Solutions for Rectangular Bidirectional Composites and

Sandwich Plates”. In: Journal of composite materials 4.1 (1970), pp. 20–34.

[91] S. Srinivas, C. V. J. Rao, and A. K. Rao. “An Exact Analysis for Vibration of

Simply-Supported Homogeneous and Laminated Thick Rectangular Plates”. In:

Journal of sound and vibration 12.2 (1970), pp. 187–199.

[92] E. Carrera. “CZ Requirements—Models for the Two Dimensional Analysis of Mul-

tilayered Structures”. In: Composite structures 37.3-4 (1997), pp. 373–383.

[93] J. N. Reddy and D. H. Robbins Jr. “Theories and computational models for com-

posite laminates”. In: (1994).

[94] E. Carrera. “Theories and Finite Elements for Multilayered, Anisotropic, Compos-

ite Plates and Shells”. In: Archives of Computational Methods in Engineering 9.2

(2002), pp. 87–140.

[95] A. E. H. Love. The Small Free Vibrations and Deformation of a Thin Elastic Shell,

Philos. Tech. rep. TR Soc. A, 179, 491–546, doi: 10.1098/rsta, 1888.
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Appendix A

Transfer matrix of an elastic

isotropic solid

The transfer matrix of an elastic isotropic layer (defined by the equation Vs
pM2i´1q “

rT ssVs
pM2iq where Vs

pMq “

„

vsxpMq vszpMq σszzpMq σsxzpMq

ȷT

) based on elastic-

ity theory can be written as follows:

rT ss4ˆ4 “
1

D1 ` D2kt
rT spqs where p, q “ 1 to 4.

The matrix elements (T spq) are,

T11 “ T44 “ D1 cosphkszq ` D2kt cosphklzq,

T22 “ T33 “ D1 cosphklzq ` D2kt cosphkszq,

T12 “ T34 “ ´jrD2klzksz sinphkszq ´ D1kt sinphklzqs{klz,

T21 “ T43 “ jrD2kszklz sinphklzq ´ D1kt sinphkszqs{ksz,

T13 “ T24 “ ωktrcosphkszq ´ cosphklzqs,

T31 “ T42 “

ˆ

D1D2

ω2kt

˙

T13,

T14 “ ´jωrklzksz sinphkszq ` k2t sinphklzqs{klz,

T23 “ ´jωrklzksz sinphklzq ` k2t sinphkszqs{ksz,

T32 “ ´jrD2
2klzksz sinphkszq ` D2

1 sinphklzqs{pωklzq,
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T41 “ ´jrD2
2klzksz sinphklzq ` D2

1 sinphkszqs{pωkszq,

where D1 “ µpk2sz ´ k2t q, D2 “ 2µkt, klz “
a

δ2l ´ k2t and ksz “
a

δ2s ´ k2t .



Appendix B

Definitions of constants used in

Guyader model

For n´layer multi-layer structure, the constants used in Guyader model [131] to com-

pute equivalent bending stiffness are,

λ1 “

n
ÿ

i“1

Ci
11

ˆ

h3i
12

` hiβ
2
i

˙

(B.1)

λ2 “

n
ÿ

i“1

Ci
11

ˆ

h3iα
2
i

12
` hiγ

2
i

˙

(B.2)

λ3 “

n
ÿ

i“1

Ci
11hi (B.3)

λ4 “

n
ÿ

i“1

Ci
11

ˆ

h3iα
2
i

12
` hiβiγi

˙

(B.4)

λ5 “

n
ÿ

i“1

Ci
11hiβi (B.5)
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λ6 “

n
ÿ

i“1

Ci
11hiγi (B.6)

λ37 “

n
ÿ

i“1

Ci
55hiα

2
i (B.7)

where Ci
11 “

Ei
1 ´ ν2i

andCi
55 “

Ei
2p1 ` νiq

.

The constants αi, βi and γi are computed as follows:

For i “ 1,
$

’

’

’

’
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(B.8)

For i ě 2,
$
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’

’

&

’
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’
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αi

βi

γi
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Nip2, 2q
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Nip3, 2q

,
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.
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/
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(B.9)

where

Ni “

»

—

—

—

—

–

1 0 0

0 Bi 0

Ci Fi 1

fi

ffi

ffi

ffi

ffi

fl

Ni´1 (B.10)

with N1 being the unit matrix and the constants Bi, Ci and Fi are defined as,

Bi “ Ci´1
55 {Ci

55 (B.11a)

Ci “ ´phi´1 ` hiq{2 (B.11b)

Fi “ ´phi´1 ` Aihiq{2 (B.11c)



Appendix C

Dispersion curves from the theory of

Lamb waves

The Lamb wave model was developed by Lamb [101] and was notably explained well

by Viktorov [177]. Fig. C.1 shows the schematic representation of a multi-layer structure

in vacuum, composed of ‘n’ isotropic layers and the structure has infinite dimensions

along the x and y directions while the z´axis being defined according to the thickness of

the structure. Since Lamb wave theory defines the kinematic relations at each layer, the

number of unknowns depend on the number of layers in the multi-layer structure. It is

due to this reason, the Lamb wave model falls under the category of Layer-Wise models,

discussed in Section 2.4.2 of this manuscript.

Typically, the longitudinal and transverse components of the Lamb waves at an i´th

layer are defined by the two potentials ϕi and ψi, which follows the wave equations:

B2ϕi
Bx2

`
B2ϕi
Bz2

` δ2l,iϕi “ 0; (C.1a)

B2ψi
Bx2

`
B2ψi
Bz2

` δ2s,iψi “ 0, (C.1b)

where δl,i “ ω{cl,i and δs,i “ ω{cs,i are the longitudinal and transverse wavenumbers of an
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Vacuum Vacuum

x

zy

Figure C.1: Schematic representation of the multi-layer structure with infinite lateral
dimensions in vacuum.

i´th layer, respectively, and i “ 1, 2, ..., n. The corresponding longitudinal and transverse

velocities, cl,i and cs,i respectively, are defined as follows:

cl,i “

d

λi ` 2µi
ρi

; cs,i “

c

µi
ρi
, (C.2)

where λi and µi are the Lamé coefficients of an i´th layer. Further, ρi represents the

i´th layer density and ω is the angular frequency.

Since the potentials follow the wave equations as in Eq. (C.1), the displacement (u)

and stress (σ) fields of the i´th layer along the x and z directions can be written as

follows:

ux,i “
Bϕi
Bx

´
Bψi
Bz

; uz,i “
Bϕi
Bz

`
Bψi
Bx

; (C.3a)

σxx,i “ ρi

„

c2l,i
Bux,i
Bx

` pc2l,i ´ 2c2s,iq
Buz,i
Bz

ȷ

; (C.3b)

σzz,i “ ρi

„

pc2l,i ´ 2c2s,iq
Bux,i
Bx

` c2l,i
Buz,i
Bz

ȷ

; (C.3c)

σxz,i “ ρic
2
s,i

ˆ

Bux,i
Bz

`
Buz,i
Bx

˙

. (C.3d)



187

A particular solution of the wave equations (Eq. (C.1)) can be suggested using the

potentials:

ϕi “

´

Aie
´pk2´δ2l,iqz ` Bie

pk2´δ2l,iqz
¯

ejpωt´kxq; (C.4a)

ψi “

´

Cie
´pk2´δ2s,iqz ` Die

pk2´δ2s,iqz
¯

ejpωt´kxq, (C.4b)

where k is the wavenumber of the propagating wave inside the multi-layer, whose am-

plitudes are represented by the constants Ai, Bi, Ci and Di. Further, j “
?

´1 and t

represents the time.

A system of linear equations can be formulated from the interface continuity conditions

(on the normal and transverse components of displacements and stresses) and vacuum

boundary conditions (on the normal and transverse stresses). The interface conditions

are,

ux,ipz “ ziq “ ux,i`1pz “ ziq; uz,ipz “ ziq “ uz,i`1pz “ ziq; (C.5a)

σzz,ipz “ ziq “ σzz,i`1pz “ ziq; σxz,ipz “ ziq “ σxz,i`1pz “ ziq, (C.5b)

and the vacuum boundary conditions are,

σzz,1pz “ 0q “ 0; σxz,ipz “ 0q “ 0; (C.6a)

σzz,npz “ htq “ 0; σxz,npz “ htq “ 0, (C.6b)

where ht is the total thickness of the multi-layer structure.

The system is then composed of 4n equations for 4n unknowns and can be rewritten

in matrix form. The dispersion curves (k as a function of ω) of the structure are then

obtained from forcing the determinant of this matrix to be zero.
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Appendix D

Element matrices of the condensed

finite element scheme

Element stiffness matrix of the condensed thick plate with equivalent bending stiffness

is written as,

rKpD̃eqqs “

ż

Ω

rBbs
T

rDbsrBbsdΩ ` ϑ

ż

Ω

rBss
T

rDssrBssdΩ (D.1a)

where, rBbs and rBss are the strain-displacement matrices of the bending and shear con-

tributions respectively, and Ω is the surface area of an element. The matrices rDbs and

rDss are,

rDbs “ D̃eq

»

—

—

—

—

–

1 ν 0

ν 1 0

0 0
1 ´ ν

2

fi

ffi

ffi

ffi

ffi

fl

, rDss “ G̃eq

»

—

–

1 0

0 1

fi

ffi

fl

.

The mass matrices are written as,

rMpρeqqs “ ρeq

ż

Ω

rN s
T

rImsrN sdΩ; (D.1c)
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rMpqρAqs “ qρApωq

ż

Ω

rN s
T

rImsrN sdΩ; rMpρSqs “ ρSpωq

ż

Ω

rN s
T

rImsrN sdΩ (D.1d)

where,

rN s
3ˆ12

“

»

—

—

—

—

–

N1 0 0 . . . N4 0 0

0 N1 0 . . . 0 N4 0

0 0 N1 . . . 0 0 N4

fi

ffi

ffi

ffi

ffi

fl

and the shape functions are defined as follows.

For the first order (4-node) element:

Ni “ p1 ` ζζiqp1 ` ϱϱiq{4, i “ 1, 2, 3, 4.

For the second order (8-node) element:

Ni “ p1 ` ζζiqp1 ` ϱϱiqpζζi ` ϱϱi ´ 1q{4, i “ 1, 2, 3, 4;

Ni “ p1 ´ ζ2qp1 ` ϱϱiq{2, i “ 5, 7;

Ni “ p1 ` ζζiqp1 ´ ϱ2q{2, i “ 6, 8.

Here, ζ and ϱ are the local coordinate values that vary from ´1 to 1. The inertial matrix

rIms is defined as,

rIms “

»

—

—

—

—

–

ht 0 0

0 0 0

0 0 0

fi

ffi

ffi

ffi

ffi

fl

.

It may be noted that the rotational inertia terms are kept as zero as the condensed model

neglects the inertial effects of the condensed layer due to rotations.

The element matrices correspond to the fluid phase are written as,

rHO
s “ rHN

s “

ż

Ω

1

ρ0
r∇N˚

s
T

r∇N˚
sdΩ (D.1e)

rQO
s “ rQN

s “

ż

Ω

1

ρ0c20
rN˚

s
T

rN˚
sdΩ; rCs “

ż

Ω

rN˚
s
T

rN sdΩ (D.1f)
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where,

rN˚
s “

„

N˚
1 N˚

2 N˚
3 N˚

4

ȷ

; r∇N˚
s

2ˆ8

“

»

—

–

N˚
1,ζ 0 . . . N˚

4,ζ 0

0 N˚
1,η . . . 0 N˚

4,η

fi

ffi

fl

,

and N˚
i “ Ni.
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Appendix E

Objectifs et conclusion de la thèse

Les industries mondiales des transports sont les leaders mondiaux dans le développement

et la production de produits structurels. Malgré cela, les industries des transports sont

confrontées à trois défis importants, à savoir a) la dépendance au pétrole, b) le contrôle

des émissions et c) la concurrence [1]. Des développements technologiques continus sont

inévitables et cruciaux pour surmonter ces défis et maintenir un bon taux de réussite

face à ses concurrents. Du point de vue structurel, l’efficacité de la structure dépend du

rapport résistance/poids élevé des matériaux utilisés, en particulier dans les industries

aéronautique et automobile. Dans les applications de transport modernes, les structures

multicouches sont pertinentes à cet égard et ceci est obtenu en réduisant la masse struc-

turelle sans affecter l’intégrité structurelle, ce qui entrâınera considérablement de faibles

coûts d’exploitation, des coûts de carburant et une consommation d’énergie.

Les composites sont des matériaux constitués d’au moins deux ou plusieurs matériaux

constitutifs ayant des propriétés physiques et chimiques très différentes. A titre d’exemple,

un composite renforcé de fibres aura deux matériaux différents appelés (a) fibre (généralement

verre ou carbone) et (b) matrice (généralement résine époxy). Lorsque ces deux consti-

tuants sont combinés, ils présentent des performances structurelles bonnes ou améliorées

par rapport à leurs caractéristiques matérielles individuelles. Par exemple, dans les appli-

cations de génie civil, les bétons armés et le bois composite (contreplaqué) sont largement
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Figure E.1: Un exemple illustratif d’un panneau stratifié et composite complexe, couplé
à une couche de mousse métallique (a), combinant une rigidité structurelle élevée, une
atténuation acoustique élevée, un amortissement structurel élevé et une faible masse. Une
illustration de la stratification typiquement antisymétrique pour la feuille de parement
composite (b), ainsi que du phénomène de transmission acoustique à travers la structure
multicouche modélisée (c) est également montrée.

utilisés.

Le confort est le facteur clé qui affecte la qualité et la compétitivité des produits struc-

turels. Affectant la vie des humains dans le monde entier, le bruit est la principale forme de

pollution environnementale qui a de graves effets sur les relations socio-économiques. Bien

que les matériaux composites présentent des caractéristiques structurelles supérieures, ils

s’avèrent peu performants en termes de niveaux d’isolation vibratoire et acoustique. De

plus, en raison de l’augmentation de l’épaisseur, une structure sandwich légère très con-

nue (faite de composites Fig. E.1) permet aux multiples nombres de vibrations et d’ondes

acoustiques de se propager en leur sein, ce qui affecte leurs performances vibro-acoustiques

globales. [2].

Une augmentation des niveaux de bruit jusqu’à 7 dB (dans certaines gammes de

fréquences) a été observée dans les composites en remplacement des structures métalliques

conventionnelles de l’aérospatiale. Pour améliorer l’efficacité mécanique, la sécurité et le

confort des passagers, l’isolation vibro-acoustique est incontournable et importante. Des

mécanismes de contrôle actif du bruit et d’amortissement visco-élastique sont généralement

utilisés, mais cela conduit souvent à des systèmes complexes et lourds. Tout en offrant
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Figure E.2: Structure multicouche avec matériaux composites et mousses poro-élastiques.

des comportements vibro-acoustiques améliorés, ces ensembles sonores compromettent

les avantages de légèreté qui découlent de l’utilisation de matériaux composites.

Une nouvelle alternative intéressante à ces ensembles sonores conventionnels est l’utilisation

de matériaux poro-élastiques dans ces composites multicouches. Ces matériaux poreux

peuvent être couplés avec des segments composites multicouches existants soit sous forme

de couche poro-élastique supplémentaire, soit sous forme d’inclusions poro-élastiques au

sein d’une seule couche. Les matériaux poro-élastiques sont constitués d’au moins deux

phases : une phase solide constituée du squelette poreux, et une phase fluide constituée

du fluide interstitiel interstitiel. Ce fluide est assez souvent supposé être de l’air, pour

les études acoustiques. Les multicouches formées en combinant des couches de nature

différente (composites empilés avec des bôıtiers sonores poreux, comme le montre la

Fig. E.2) offrent de nombreux avantages par rapport aux matériaux conventionnels. En

général, les structures multicouches ont une capacité d’amortissement des vibrations très

élevée par rapport aux structures métalliques, et elles sont beaucoup plus légères que les

mécanismes actifs de contrôle du bruit.

Les multicouches sont également largement utilisés dans l’industrie du bâtiment, où

l’isolation acoustique est un critère critique. En utilisant les matériaux traditionnels, tels

que les murs en béton, l’augmentation de l’épaisseur d’une couche homogène augmente

la masse surfacique mais aussi la rigidité en flexion. Cependant, l’utilisation de parois

épaisses n’est pas financièrement faisable. Un autre type de matériau multicouche, connu

sous le nom de sandwich, a ensuite été utilisé pour atteindre des performances comparables

ou supérieures aux matériaux traditionnels tout en ayant des épaisseurs de paroi et des
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coûts réduits. Les sandwichs sont également employés dans les transports (par exemple,

les vitrages des véhicules) et la protection des personnes (casques, gilets par balle).

Les matériaux multicouches sont principalement appréciés pour leurs caractéristiques

mécaniques polyvalentes, que les matériaux homogènes traditionnels ne fournissent pas.

La connaissance de leur comportement dynamique, en revanche, est nécessaire pour ex-

ploiter pleinement leurs potentiels. La caractérisation de la structure apparâıt alors

comme un aspect fondamental du processus de conception.

Objectifs et structure de la thèse

Comme différents types de matériaux sont utilisés dans le système multicouche, la

modélisation de ce système nécessite souvent des types de maillage adaptés au matériau

utilisé et augmente le nombre total de mailles dans la modélisation classique par éléments

finis. De plus, cela conduirait à un temps de calcul élevé en raison de ces complexités.

D’autre part, pour des bandes de fréquences particulières, il reste un défi important de con-

cevoir des structures sandwich (système multicouche) ayant des propriétés d’amortissement

optimisées ainsi que de bonnes performances d’isolation acoustique. Par conséquent, dans

de nombreux cas d’ingénierie, il est très intéressant de condenser le comportement d’un

système multicouche à un matériau monocouche. Cela vise à réduire la taille du maillage

du modèle d’éléments finis (EF), ce qui conduira à moins de temps de calcul.

Bien que les modèles de plaques condensées (ou équivalents) existants soient large-

ment utilisés, ils font certaines hypothèses sur les types d’ondes se propageant dans les

structures. Par exemple, si une structure multicouche contient une couche molle sensible

à la compression longitudinale, le mode de respiration (ou compression) doit être pris en

compte dans la formulation théorique des modèles condensés pour prédire correctement

le comportement vibro-acoustique du système . Étant donné que les modèles condensés

actuels supposent un déplacement normal constant le long de la direction de l’épaisseur

multicouche (ignorant ainsi les mouvements d’étirement de l’épaisseur de la structure),

ils limitent leur applicabilité aux structures multicouches relativement minces. De plus,
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les modèles existants ne peuvent être appliqués que si les couches sont minces et de na-

ture isotrope ou orthotrope. Cela signifie que, dans les cas de couches molles ou épaisses

et d’inclusions poro-élastiques dans le système multicouche, ces modèles ne peuvent pas

être appliqués. Dans le même ordre d’idées, étant donné que les théories des plaques

couramment utilisées pour les applications vibro-acoustiques n’incluent pas le mouve-

ment de compression de la structure, l’estimation d’une limite de fréquence supérieure de

ces théories est nécessaire pour leur application en toute sécurité. De plus, les modèles

condensés existants conduisent souvent à un temps considérable de mise en œuvre en

raison de leurs approches complexes. Cette thèse de doctorat tentera de relever les défis

mentionnés ci-dessus en développant des outils robustes, précis et efficaces pour prédire

la transmission du son et des vibrations à travers des milieux stratifiés comprenant des

matériaux poro-élastiques. Un modèle condensé avancé serait développé et pourrait être

appliqué aux systèmes multicouches épais, y compris les poro-élastiques, en capturant les

types possibles d’ondes se propageant dans la structure.

Développer des expressions de fréquence limite pour les théories des plaques

Raison: Aucune expression claire de la fréquence limite n'est disponible dans la littérature 
pour les théories des plaques

Développer un modèle de plaque équivalent simple

Raison: Les modèles existants nécessitent un processus 
de mise en œuvre difficile

Développer un modèle condensé avec effets de dilatation

Raison: Les modèles existants n'incluent pas les mouvements de 
dilatation des structures multicouches

Développer un schéma d'éléments finis pour le nouveau modèle condensé

Raison: Un cadre d'éléments finis doit être développé pour le nouveau modèle 
condensé afin de réduire le temps de calcul

Objectifs

de la thèse

Figure E.3: Objectifs de la thèse.
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Dans ce contexte, comme le montre la Fig. E.3, les objectifs scientifiques de cette thèse

sont :

1. Développer des expressions analytiques pour les limites de fréquence des théories

des plaques couramment utilisées dans les applications vibro-acoustiques;

2. Développer un modèle de plaque condensé (ou équivalent) simple pour les structures

à trois couches afin de faciliter les processus de mise en œuvre;

3. Développer un modèle condensé pour le système multicouche qui pourrait simuler

le comportement en compression des matériaux souples/épais et poro-élastiques

utilisés dans le drapage;

4. Développer un schéma d’éléments finis pour mettre en œuvre le nouveau modèle

condensé pour simuler toutes les propagations d’ondes fondamentales, y compris le

mouvement de dilatation des structures multicouches.

Concernant la structure de cette thèse, ainsi que la revue complète de la littérature

existante, chacun des objectifs mentionnés ci-dessus est abordé dans un chapitre dédié

comme le montre la Fig. E.4.

E.1 Conclusions générales sur les avancées de cette

thèse

Les expressions analytiques des limites de fréquence des théories des plaques, qui

sont couramment utilisées dans de nombreux modèles analytiques vibro-acoustiques (y

compris les modèles condensés), sont dérivées au chapitre 4. Les limites des théories des

plaques de Love-Kirchhoff [95, 96] et Reissner-Mindlin [97–99] proviennent respectivement

de l’exclusion des mouvements de cisaillement et de compression. L’observation à partir

des courbes de dispersion des deux théories des plaques conduit à trouver la fréquence

limite pour la théorie de Love-Kirchhoff, alors que l’analyse des admittances permet de

déduire la même chose pour les théories des plaques qui supposent un déplacement normal
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Comme les modèles vibro-acoustiques existants
utilisent généralement des théories de plaques
minces et épaisses, ce chapitre fournit des
expressions analytiques des limites de fréquence
supérieures pour appliquer ces théories.

Ce chapitre présente un modèle de plaque
condensée simple, applicable aux structures à
trois couches, pour avoir un processus de mise en
œuvre plus facile que les modèles de plaques
condensées existants.

Chapitre 4
Limites de précision 

des théories des
plaques

Chapitre 5

Un modèle simple de
plaque condensée

Un modèle condensé avancé est présenté dans ce
chapitre, qui comprend à la fois les mouvements
symétriques et antisynétiques de la structure,
tandis que les modèles existants ne
comptabilvent que les mouvements
antisynétiques.

Chapitre 6

Modèle condensé
avec effets

dilatationnels

Un schéma d’éléments finis pour le modèle
condensé présenté au chapitre 6 est proposé dans
ce chapitre. À travers de multiples exemples, il
est démontré que l’approche proposée est assez
rapide que l’approche FE 3D conventionnelle .

Chapitre 7

Schéma FE pour
modèle condensé

Plaque mince

Plaque épaisse

fréquence

TL

Modèle simple
Processus de mise en œuvre

Modèles existants
FacileComplexe

Anti-sym.
effets

Symétrique
effets

Modèles
existants
Nouveau
modèle

Temps de calcul

Élément fini
3D approcher

Condensé fini
approche par éléments

Avancées réalisées dans cette thèse

Chapitre 3
Modèle condensé de 
la méthode Transfer

Matrix

L’état de l’art des modèles vibro-acoustiques
pertinents est présenté dans ce chapitre. Bien
que de nombreux types de modèles vibro-
acoustiques soient disponibles dans la littérature,
cette thèse est axée sur les modèles condensés.

Chapitre 2

Revue de la
littérature

Résumé des chapitres suivants

Les principes fondamentaux du TMM et une
version simple du modèle condensé pour les
systèmes multicouches symétriques, obtenus à
partir du TMM, sont présentés.

Figure E.4: Organisation et résumé des chapitres suivants de cette thèse.

constant. La validation de ces limites de fréquence est obtenue en comparant les tracés

de perte de transmission (TL) obtenus à partir des théories des plaques avec ceux du

TMM. De plus, les expressions de cöıncidence et de fréquence critique sont affinées à

l’aide de la théorie des plaques de Reissner-Mindlin pour une estimation correcte. Bien

que des expressions analytiques pour les limites de fréquence soient données, celles-ci

sont limitées à une seule couche. Cependant, des analyses de dispersion et d’admittance

similaires pourraient être effectuées pour des plaques équivalentes afin de dériver des

limites de fréquence.
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Un modèle de plaque condensée simplifié pour les structures sandwich à trois couches

est présenté dans le chapitre 5, afin de réduire les défis dans les processus de mise en

œuvre des modèles de plaques condensées existants. Ce modèle simple a pour fondement

la compréhension du comportement physique du système à trois couches à trois régimes de

fréquences (à savoir bas, transition et haut) pour dériver seulement quatre paramètres clés

qui sont suffisants pour calculer la réponse naturelle à toutes les fréquences. Les propriétés

dynamiques condensées obtenues à partir de ce modèle sont comparées au modèle condensé

existant ainsi qu’aux données expérimentales, et il est montré que le nouveau modèle donne

une réponse adaptée avec les deux. Bien que le modèle soit efficace pour réduire les défis

de mise en œuvre, il limite son applicabilité aux seuls systèmes sandwich à trois couches.

De plus, comme d’autres modèles de plaques condensées, ce modèle ne prend également

en compte que les mouvements antisymétriques et non les mouvements de dilatation, et

est donc limité aux structures multicouches minces.

L’un des objectifs de cette thèse est de développer un modèle condensé qui pourrait

capturer l’effet du mouvement de compression/dilatation de la structure multicouche.

Par conséquent, un nouveau modèle condensé est présenté dans le chapitre 6 qui pour-

rait gérer à la fois les mouvements symétriques (compression) et antisymétriques (flex-

ion, cisaillement et membrane). Les propriétés condensées, la rigidité à la flexion dy-

namique et deux densités de masse équivalentes, sont dérivées en supposant deux plaques

minces équivalentes non couplées correspondant à des mouvements symétriques et anti-

symétriques. Ce nouveau modèle a ses avantages d’applicabilité sur les structures mul-

ticouches qui contiennent des couches épaisses/molles de toute nature (solide élastique,

fluide et poro-élastique). Bien que les effets du mode dilatationnel soient inclus, ce modèle

serait limité uniquement aux multicouches symétriques car les propriétés intrinsèques sont

obtenues à partir de l’hypothèse que les admittances antisymétriques et symétriques sont

découplées. De plus, le modèle présenté peut ne pas convenir à la structure multicouche

avec des couches poreuses de très faibles valeurs de résistivité.
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Une application importante du nouveau modèle condensé est de les utiliser dans le

cadre des éléments finis qui vise à réduire efficacement le temps de calcul. Par conséquent,

un schéma d’éléments finis (EF) dédié est proposé au chapitre 7 pour calculer la réponse

vibro-acoustique de multicouches symétriques épaisses. Deux plaques découplées sont

maillées avec trois propriétés dynamiques condensées et elles sont finalement couplées

en utilisant les définitions de vitesse antisymétrique et symétrique de la structure en

couches. L’efficacité de calcul du schéma FE proposé est démontrée à l’aide de plusieurs

configurations multicouches et, comme prévu, on observe que le schéma FE condensé

s’exécute plus rapidement que l’approche FE tridimensionnelle conventionnelle. Du côté

de la limitation, le schéma FE condensé sous-estime légèrement la fréquence critique en

raison de la négligence de l’inertie de rotation de la structure multicouche épaisse. Par

conséquent, une enquête plus approfondie doit être menée à l’avenir pour tenir compte de

l’inertie de rotation équivalente.


