N
N

N

HAL

open science

Combinatorial and Algorithmic aspects of
Reconfiguration

Valentin Bartier

» To cite this version:

Valentin Bartier. Combinatorial and Algorithmic aspects of Reconfiguration. Computational Com-

plexity [cs.CC]. Université Grenoble Alpes [2020-..], 2021. English. NNT: 2021GRALMO55 .

03643495

HAL Id: tel-03643495
https://theses.hal.science/tel-03643495

Submitted on 15 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-03643495
https://hal.archives-ouvertes.fr

UGA

Université

THESE Grenoble Alpes

Pour obtenir le grade de

DOCTEUR DE L'UNIVERSITE GRENOBLE ALPES

Spécialité : Mathématiques et Informatique
Arrété ministériel : 25 mai 2016

Présentée par

Valentin BARTIER

These dirigée par Myriam PREISSMANN,CR
et co-encadrée par Nicolas BOUSQUET, CNRS

préparée au sein du Laboratoire Laboratoire des Sciences pour
la Conception, I'Optimisation et la Production de Grenoble
dans I'Ecole Doctorale Mathématiques, Sciences et
technologies de lI'information, Informatique

Aspects combinatoires et algorithmiques de
la reconfiguration

Combinatorial and Algorithmic aspects of
Reconfiguration

Thése soutenue publiquement le 29 novembre 2021,
devant le jury composé de :

Madame MYRIAM PREISSMANN

DIRECTEUR DE RECHERCHE EMERITE, CNRS DELEGATION ALPES,
Directrice de thése

Monsieur JEAN CARDINAL

PROFESSEUR, Université Libre de Bruxelles, Rapporteur

Monsieur SEBASTIAN SIEBERTZ

PROFESSEUR, Universitat Bremen, Rapporteur

Madame NADIA BRAUNER

PROFESSEUR DES UNIVERSITES, UNIVERSITE GRENOBLE ALPES,
Présidente

Monsieur FLORIAN SIKORA

MAITRE DE CONFERENCES, UNIVERSITE PARIS 9 - DAUPHINE,
Examinateur

Monsieur FREDERIC HAVET

DIRECTEUR DE RECHERCHE, INRIA- SOPHIAANTIPOLIS-
MEDITERRANEE, Examinateur

Contents

1 Introduction

1.1
1.2
1.3

Preliminaries L
A brief introduction to reconfiguration
Outline of this thesis

I Graph recoloring

2 Introduction to graph recoloring

2.1
2.2
2.3
2.4
2.5

An example: the frequency assignement problem
Definitions

From statistical physics to graph theory: Glaubers dynamic.

Diameter of the reconfiguration graph and Cereceda’s conjecture

Linear transformations between colorings and our contributions.

3 Proof techniques for graph recoloring

3.1
3.2
3.3
3.4
3.5

Induction based techniques
Identification technique
List recoloring
Proof techniques for linear bounds

Our techniques o

4 Linear transformations between colorings of chordal graphs

4.1
4.2
4.3
4.4
4.5
4.6
4.7

Outline of proof: a warm-up on interval graphs.
The algorithm on chordal graphs
Overview of the four steps
Step 1: proof of Lemma 4
Step 2: proof of Lemma 5o
Step 3: proof of Lemma 6
Step 4: proof of Lemma 7o

5 Recoloring graphs of treewidth 2

5.1
5.2

Reduction to chordal graphs 0L

Best choice algorithm o0

11
15
24
28

31

33
33
34
36
40
44

47
47
48
o1
54
55

57
58
67
72
76
80
83
90

II Independent set reconfiguration 103
6 Independent set reconfiguration 105
6.1 Definitions 107
6.2 Basic results and complexityo 000, 108
6.3 Independent set reconfiguration on graph classes 112
6.4 Parameterized complexity oL 117
7 Independent set reconfiguration in H-free graphs 121
7.1 An Alekseev type theorem for reconfiguration 122
7.2 MISR in fork-free graphs oo o 126
7.3 A short discussion on the non-maximum case 132
8 On girth and the parameterized complexity of Token Sliding and
Token Jumping 135
8.1 Positiveresults L 137
8.2 Hardnessresults L 146
9 Galactic Token Sliding 167
9.1 Galacticgraphs L 168
9.2 Graphs of bounded degree L. 173
IIT Conclusion 175
10 Conclusion 177
10.1 Graph recoloring and independent set reconfiguration 177
10.2 Other problems we investigated 178
A Proof techniques for graph recoloring 181
A.1 Graphs with bounded maximum average degree 181
A.2 Weakly chordal graphs and OAT graphs 182

Bibliography 185

Acknowledgements

Je tiens tout d’abord a remercier mes encadrants de these. Et pour beaucoup de choses!
En premier lieu, merci de m’avoir fait initialement confiance pour cette these alors
que je n’avais pas forcément le parcours idéal, et pour avoir maintenu cette confiance
tout au long de ma theése. Merci Nicolas pour ta pédagogie, j’ai énormément appris (a
peu prés tout ce que je sais sur les graphes, en fait) en bossant avec toi et toutes les
personnes que tu m’as fais rencontré, ces trois années durant. Merci également pour ta
patience (je t’en ai fais répéter pas mal, mais en général ¢a a fini par rentrer!), pour ta
présence et ton suivi sans faille! Et pour avoir su me remotiver, toujours sereinement,
dans les moments ou ¢a allait moins bien. Un gros merci & Myriam pour avoir toujours
été 1a dans les moments ou ¢a compte, méme si on a moins eu l'occasion de travailler
ensemble. En bref, j’espére sincérement que de nombreux étudiants auront la chance
de faire une these avec vous, de bénéficier de votre encadrement, vos connaissances,
votre gentillesse. Merci ensuite a tous mes co-auteurs et a ceux avec qui j’ai eu la
chance de travailler. Tout d’abord & Amer et Clément (et Nicolas bien entendu, mais
tu as déja eu un paragraphe plus haut!), pour cette collaboration qui dure depuis
CoRE 2019, donc depuis le presque tout début de ma these! Et qui, je 'espere, se
prolongera. Pourquoi pas en présentiel, apres toutes ces visios de la période covid?
Ensuite, a tous les membres de PGW 2020, Laurine, Marthe, Jonathan, Hoang, (sans
oublier Peppie) pour cette semaine fructueuse et cette super ambiance. A tous les
membres de notre équipe PACE, Gabriel, Nicolas, Marc, Théo et Ulysse. Et & Julien
(on va le publier, cet article!). Je remercie tous les membres de mon jury, pour avoir
accepter relire et/ou participer a la soutenance de ma these. Je souhaite également
un gros merci & tous les potes du G-SCOP, ceux de mon années, les plus anciens, et
les nouveaux. Vous étes trop nombreux pour que je vous cite tous sans en oublier.
Mais je souhaite tout de méme vous dire a quel point les moments passés ensembles
et les bonnes tranches de rigolade ont été important pour moi! Mention spéciale a
toutes nos pauses a la cafet’ et aux fins d’aprés-midi (et parfois fin de soirées) passées
au Sun, qui nous a acceuilli par temps clair comme par temps gris. Sans ces moments
de respirations, terminer cette these aurait été autrement plus difficile. J’espere qu’on
aura encore de nombreuses occasions de se retrouver tous ensemble, se remémorer
nos bonnes blagues et en faire des nouvelles. Bien évidemment, merci également a
tous les copains de Marseille (comprenez, également ceux qui ont déménagés) pour
votre soutient et pour m’avoir écouté patiemment quand j’essayais maladroitement de
vulgariser ma these! Pour vous, pas besoin de grandes promesses de retrouvailles, je
sais qu’on ne se lachera pas. Un énorme merci a toute la famille également! A mes
parents, grand-parents et a Léo, pour votre soutient, votre confiance, vos conseils. J’ai
de la chance de vous avoir! Enfin, merci & Marie pour cette derniere année passée
ensemble et pour celles qui arrivent, pour tes rires, ton écoute patiente et nos longues

discussions sur la vie, et pour tout le reste..

Résumé en francais

Cette these traite de ce que nous appelons aujourd’hui problémes de reconfiguration.
Presque chacun d’entre nous a déja essayé - si ce n’est réussi - de résoudre un tel
probleme. En effet, de nombreux jeux trés célebres tels que le jeu du taquin, Rush
Hour, ou le plus célebre de tous, le Rubik’s cube, sont dans leur essence des problémes
de reconfiguration. Ainsi, toute personne ayant déja joué a 'un de ces jeux, que ce
soit récemment ou dans son enfance, a déja été confrontée a certaines des questions
que nous abordons dans cette these.

Rappelons brievement le fonctionnement du Rubik’s cube a titre d’exemple introductif.
Dans ce jeu, un seul joueur recoit un cube en trois dimensions, chaque face de ce cube
étant elle-méme divisée en neuf cubes plus petits, également appelés cubelets. Chaque
cubelet est coloré soit en rouge, jaune, orange, vert, bleu ou blanc et sa couleur ne
peut jamais changer. Les cubelets sont initialement placés de maniére apparemment
aléatoire sur le cube (nous verrons plus tard pourquoi ce n’est pas "vraiment" aléatoire).
Un positionnement de tous les cubelets sur le cube est appelé une configuration du
Rubik’s cube. A chaque étape du jeu, le joueur est autorisé a faire tourner une des
faces du cube d’un quart de tour, et donc a transformer la configuration actuelle en
une autre. Le but est d’obtenir la configuration ou chaque face contient des cubes de
la méme couleur. Une premiere chose a noter est que tout probléme de reconfiguration
peut en fait étre énoncé de maniére similaire : Etant donné une configuration initiale
d’un systeme (ici le Rubik’s cube), le but est d’atteindre une configuration cible
(chaque face contient des cubelets de la méme couleur) en appliquant successivement
une opération atomique pour transformer une configuration en une autre (rotation
d’une face du cube). Une opération qui modifie la configuration d’un systéme est
appelée une opération de reconfiguration.

Revenons a 'exemple particulier du Rubik’s cube. Théoriquement, on pourrait attein-
dre cette configuration cible en faisant tourner les faces du cube de facon aléatoire
a chaque étape. Cependant, cela pourrait obliger le joueur a passer en revue les
42252003274489856000 (environ 43 quintillion, pour faire court) configurations dif-
férentes qui peuvent étre atteintes par des rotations successives des faces, ce qui
n’est évidemment pas humainement possible. Supposons donc que vous ayez & votre
disposition un ordinateur moderne équipé d’une unité centrale de 3, 0GHz capable de
faire tourner une face du Rubik’s cube a chacune de ses opérations. Il faudrait encore
(avec un certain nombre d’hypotheses simplificatrices) environ 13943161080 secondes,
soit environ 442 années, pour que cet ordinateur visite toutes les configurations du
cube. En d’autres termes, I’énumération de toutes les possibilités pour résoudre le
probléme est hors de portée. Le fait qu’il existe un nombre incroyablement élevé de
configurations atteignables, que ’on appelle souvent 1’explosion combinatoire, est I'une
des principales difficultés auxquelles on est confronté lorsqu’on étudie les problémes
de reconfiguration. La premiere question qui se pose face a un Rubik’s cube est alors

la suivante : comment atteindre cette configuration cible en aussi peu d’étapes que

possible ?

Revenons sur un point que nous avons éludé précédemment. Comme dit dans le
paragraphe précédent, la configuration initiale du cube est "apparemment" aléatoire.
Cependant, une chose est cachée pour le joueur : avant de vendre le cube, le fabricant
sélectionne une configuration initiale de telle sorte que vous puissiez effectivement
atteindre la configuration cible en faisant tourner les faces, en partant de celle sélec-
tionnée. Qu’est-ce que cela signifie? Supposons que 1’on soit capable de détacher
chaque cubelet un par un, et qu’on les rattache ensuite au hasard sur le cube. En
procédant ainsi, il y a de tres fortes chances que la configuration cible ne puisse plus
étre atteinte, quel que soit le nombre de mouvements que vous effectuez. En d’autres
termes, la configuration obtenue apres avoir rattaché les cubelets se trouve dans un
"espace de configuration" différent de celui de la configuration cible. Une deuxieme
question se pose alors, qui cette fois ne vient probablement pas a ’esprit du joueur :
comment le fabricant peut-il s’assurer que la configuration cible peut étre atteinte a

partir de la configuration initiale qu’il choisit pour son cube ?

Ces deux questions que nous avons posées a propos du jeu du Rubik’s cube peuvent
étre généralisées et sont au coeur de ’étude des problemes de reconfiguration. Le

dernier, de nature combinatoire, est généralement appelé le probleme de l’accessibilité

Question 1 (Accessibilité). Etant donné une configuration initiale et une configuration
cible d’un systéme et une opération de reconfiguration, est-il possible d’atteindre la
configuration cible a partir de la configuration initiale en appliquant successivement

lopération donnée ?

Le premier, de nature algorithmique, est généralement appelé le probleme du plus

court chemin

Question 2 (Plus court chemin). Etant donné une configuration initiale et une
configuration cible d’un systéme et une opération de reconfiguration, comment puis-je
atteindre la configuration cible a partir de la configuration initiale en appliquant le

moins d’opérations possible ?

Nous définissons formellement ces deux problemes, qui constituent le fil rouge de

cette these, ainsi que les questions connexes dans le premier chapitre.

Notion de graphes. Dans cette thése, nous étudions le cas particulier des problemes
de reconfiguration sur les graphes. Un graphe est un objet mathématique qui représente
des relations entre les éléments d’un ensemble appelé sommets. Notez qu’un sommet
peut étre n’importe quoi : un lieu, une personne, une machine ou méme une notion
abstraite. En d’autres termes, un graphe relie les sommets deux a deux pour représenter
une relation entre eux. Un lien entre deux sommets est appelé une aréte. Deux sommets
reliés par une aréte sont dits adjacents. Un graphe peut, par exemple, représenter un

réseau routier, ou chaque sommet représente une ville, deux villes étant adjacentes s’il

existe une route pour aller de I'une a I'autre. Les graphes sont en particulier des outils
tres pratiques car ils peuvent étre facilement dessinés et visualisés, comme l'illustre la
figure 1.1. Mais surtout, ils permettent d’extraire les informations essentielles d’un
probléme : reprenons ’exemple d’un réseau routier et supposons que nous voulions
trouver le chemin le plus court entre la ville A et la ville B. Il y a beaucoup de
parameétres différents & prendre en compte : la position des feux de signalisation, la
densité du trafic, les travaux routiers en cours entre les villes, et bien d’autres encore.
Cependant, avant de pouvoir prendre en compte toutes ces informations, nous devons
résoudre une question essentielle : comment choisir le chemin le plus court, parmi le
nombre probablement énorme de chemins allant de A & B 7 Le modeéle apparemment
simple que donne un graphe capture déja une partie importante du probléme et permet
de concevoir un premier algorithme de haut niveau pour trouver le plus court chemin
entre deux points. Cela ne signifie pas que ce premier algorithme soit nécessairement
simple. Au contraire, de nombreux problémes sur les graphes sont difficiles dans leur
essence. Nous en citerons quelques-uns dans les sections suivantes.

Soulignons également le fait qu’étant des objets purement mathématiques, les graphes
peuvent étre étudiés en tant que tels sans nécessairement modéliser des situations
ou des systemes du monde réel. Ils sont au carrefour de nombreux domaines des
mathématiques discrétes (algorithmique, combinatoire, topologie..) et permettent de
développer des notions complexes, souvent nécessaires a la conception d’algorithmes
efficaces.

Une grande variété de problémes peut étre représentée par des graphes. En outre, il
arrive souvent que des problemes apparemment tres différents se raménent en fait a
la méme question lorsqu’ils sont modélisés sous forme de graphes. Considérons par

exemple les problemes suivants :

1. Un certain nombre d’examens doivent étre organisés dans des salles de classe.
Le probléeme consiste a trouver une répartition des examens dans les salles de
classe, de telle sorte que deux examens n’aient pas lieu en méme temps dans la

meéme salle.

2. Un certain nombre d’antennes sont placées sur un territoire. Le probléeme
est d’attribuer une fréquence a chaque antenne, de maniere a ce que deux
antennes proches 'une de 'autre n’aient pas la méme fréquence, afin d’éviter les

interférences.

Donnons la représentation de ces problémes en tant que problémes de graphes. Pour le
probleme 1, chaque examen est représenté par un sommet du graphe. Deux examens
sont reliés par une aréte si et seulement si leurs créneaux horaires se superposent.
Chaque salle de classe est représentée par une couleur unique : le probléme se réduit
alors a trouver une assignation des couleurs aux sommets du graphe, de telle sorte que
deux sommets adjacents ne partagent pas la méme couleur. Il n’est alors pas difficile
de voir que le second probléeme est en fait le méme : chaque sommet représente une

antenne, et chaque couleur représente une fréquence. Deux antennes sont adjacentes

FIGURE 1: Exemples de graphes. Les sommets sont représentés par

des points noirs et les arétes par des lignes noires pleines. De gauche a

droite : le cycle sur trois sommets C5 (également appelé triangle), le
graphe complet sur 6 sommets C§, et le graphe de Petersen.

si elles sont proches 'une de 'autre et doivent avoir une fréquence différente.

Le probleme consistant a trouver une affectation de couleurs aux sommets d’un graphe
telle que deux sommets adjacents ne partagent pas la méme couleur est sobrement
intitulé le probléeme de coloration. C’est I'un des problémes les plus célebres et les plus
étudiés en théorie des graphes, et il présente également un intérét particulier dans cette
these. Plus particulierement, nous nous concentrons sur la variante reconfiguration
du probléeme de coloration, le probléeme de recoloration que nous décrivons dans le

paragraphe suivant.

L’autre probleme qui nous intéresse dans cette these est le probleme de 1’ensemble
indépendant. Expliquons-le a travers un autre exemple. Supposons que vous organisiez
une féte pour votre anniversaire. Vous disposez d’une liste d’amis que vous voulez
inviter et vous savez que certains d’entre eux s’entendent bien et que d’autres ne
s’entendent pas. Votre objectif est d’inviter le plus grand nombre de personnes possible
sans créer de conflit. Ce probléme peut étre modélisé comme un probleme de graphe
comme suit : chaque sommet représente une personne, deux personnes étant reliées
par une aréte s’il y a un conflit entre elles. Votre objectif est donc de sélectionner
le plus grand ensemble de sommets qui ne sont pas deux & deux adjacents dans ce
graphe. Un tel ensemble est appelé un ensemble indépendant (maximum). Comme
pour le probleme de coloration, nous considérons la version de reconfiguration du
probléme des ensembles indépendants, le probléme de la reconfiguration des ensembles

indépendants que nous décrivons ci-dessous.

Graphes et reconfiguration. Rappelons briévement la définition (informelle) d’un
probleme de reconfiguration que nous avons donnée en utilisant ’exemple du Rubik’s
cube. On nous donne un systéme (le cube), une configuration initiale et une configu-
ration cible (les couleurs des cubelets sur chaque face du cube) et une opération de
reconfiguration (tourner une face du cube d’un quart de tour). Le but est de trouver
une séquence d’opérations de reconfiguration qui transforme la configuration initiale
en la configuration cible. Dans notre cas, le systeme sera un graphe. Les configura-

tions et les opérations de reconfiguration dépendent du probléme que nous considérons.

La premiére partie de cette these étudie le probleme de recoloration de graphes.

Dans ce probleme, une configuration est une coloration des sommets du graphe.

10 Contents

Rappelons que pour qu’une telle coloration soit valide, deux sommets adjacents
doivent avoir des couleurs différentes. Une coloration qui respecte cette propriété est
appelée une coloration propre du graphe. L’opération de reconfiguration que nous
considérons consiste a changer la couleur d’un unique sommet a chaque étape. Nous
avons de plus deux contraintes : le nombre de couleurs que nous pouvons utiliser est
limité, et les colorations successives que nous obtenons doivent rester propres. Nous

pouvons maintenant définir le probleme d’accessibilité pour les colorations :

Problem 1. Etant donné deuz colorations propres d’un graphe utilisant au plus k
couleurs, est-il possible de transformer ['une en l'autre en changeant la couleur d’un

sommet d la fois, tout en maintenant toujours une coloration correcte ?

La deuxiéme partie de cette thése étudie le probléme de reconfiguration d’ensembles
indépendants. Dans ce probléme, une configuration est un ensemble indépendant
du graphe. Rappelons qu’un ensemble indépendant est un ensemble de sommets du
graphe deux a deux non adjacents. On nous donne ensuite un ensemble de jetons
qui sont placés sur les sommets de la configuration actuelle (ensemble indépendant).
Dans cette these, nous considérons différentes opérations de reconfiguration pour
le probléme de reconfiguration d’ensemble indépendant. Cependant, afin de garder
ce résumé concis, nous n’en présentons qu’une seule ici. La description des autres
opérations de reconfiguration que nous considérons est donnée dans le Chapitre 6.
L’une des opérations que nous considérons consiste a déplacer un jeton le long d’une
aréte du graphe. En d’autres termes, un jeton peut glisser d’un sommet a un autre
sommet si les deux sommets sont adjacents. Nous avons de plus la contrainte qu’a
chaque étape, I’ensemble des sommets sur lesquels se trouvent les jetons doit étre un
ensemble indépendant. Définissons maintenant le probléeme d’accessibilité pour les

ensembles indépendants :

Problem 2. Etant donné deuz ensembles indépendants d’un graphe, est-il possible de
transformer 'un en l’autre en faisant glisser un jeton le long d’une aréte a chaque

étape, de telle sorte que les jetons soient toujours placés sur un ensemble indépendant
?

Des exemples de séquences de recoloration et de reconfiguration d’ensembles in-
dépendants sont donnés dans la figure 1.2 et la figure 1.3. Soulignons enfin le fait que
les problemes de reconfiguration trouvent leurs applications dans différents domaines,
allant de la résolution de jeux & un seul joueur, a - de fagons plus surprenante - la
physique statistique. Les connexions des problémes de recoloration de graphes et de
reconfiguration d’ensembles indépendants avec ces domaines sont décrites respective-

ment dans les chapitres 2 et 6.

11

Chapter 1

Introduction

This thesis deals with what we call today reconfiguration problems. Almost anyone of
us has already tried - if not succeeded - to solve such a problem. Indeed, many very
famous games such as the 15-puzzle game, Rush Hour, or the most famous of them
all, the Rubik’s cube, are in their essence reconfiguration problems. Thus, anyone who
has ever played to one of these games, be it recently or as a child, has already faced
some of the questions that we tackle in this thesis.

Let us briefly recall how the Rubik’s cube works as an introductory example. In this
game, a single player is given a three dimensional cube, each face of this cube being
itself divided in nine smaller cubes, also called cubelets. Every cubelet is colored either
red, yellow, orange, green, blue or white and its color can never change. The cubelets
are initially placed in a seemingly random manner on the cube (we will see later on
why it is not "really" random). We call a positioning of all the cubelets on the cube a
configuration of the Rubik’s cube. At each step of the game, the player is allowed to
rotate one the faces of the cube a quarter turn, and hence to transform the current
configuration into another one. The goal is to obtain the configuration where every face
contains cubelets of the same color. A first thing to note is that any reconfiguration
problem can actually be stated in a similar way: Given an initial configuration of a
system (here the Rubik’s cube) the goal is to reach a target configuration (every face
contains cubelets with the same color) by applying successively an atomic operation to
transform a configuration into one another (rotating a face of the cube). An operation
that modifies a configuration of a system is called a reconfiguration operation.

Let us go back to the particular example of the Rubik’s cube. Theoretically, one could
reach this target configuration by rotating the faces of the cube randomly at each step.
However, doing so may require the player to go through the 42252003274489856000
(about 43 quintillion, for short) different configurations that can be reached by succes-
sive rotations of the faces, which is obviously not humanly possible. Suppose then that
you have at your disposal a modern day computer equipped with a 3.0GHz CPU that
can rotate a face of the Rubik’s cube during each one of its operations. This would
still require (with a number of simplifying assumptions) about 13943161080 seconds,
or about 442 years, for this computer to visit all the configurations of the cube. In
other words, enumerating all the possibilities to solve the problem is out of reach. The

fact that there is an amazingly huge number of reachable configurations, which we

12 Chapter 1. Introduction

often refer to as the combinatorial explosion, is one of the main difficulties one faces
when studying reconfiguration problems. The first question that arises when faced
with a Rubik’s cube is then the following: how can one reach this target configuration
in as little steps as possible?

Let us come back to a point that we previously eluded. As said in the previous para-
graph, the initial configuration of the cube is "seemingly" random. However, one thing
is hidden: before selling the cube, the manufacturer selects an initial configuration in
such a way that you can indeed reach the target configuration by rotating the faces,
starting from the one selected. Suppose that you are able to detach each cubelet
one by one, and that you then reattach them randomly on the cube. By doing so,
there are very high chances that the target configuration cannot be reached anymore,
no matter how many moves you make. In other words, the configuration obtained
after reattaching the cubelets is in a component of the configuratin space that is
different from the one of the target configuration. A second question then arises,
which this time probably does not come into the mind of the regular player: how can
the manufacturer ensure that the target configuration can be reached from the initial

configuration selected for its cube?

These two questions that we asked about the Rubik’s cube game can be generalized
and are at the heart of the study of reconfiguration problems. The latter one, of

combinatorial nature, is usually referred to as the reachability problem:

Question 3 (Reachability). Given an initial and a target configuration of a system
and a reconfiguration operation, is it possible to reach the target configuration starting

from the initial one by successively applying the given operation?

The former one, of algorithmic nature, is usually referred to as the shortest path

problem:

Question 4 (Shortest path). Given an initial and a target configuration of a system
and a reconfiguration operation, how can one reach the target configuration from the

initial one by applying as little operations as possible?

We will define formally these two problems, which are the common thread of this

thesis, as well as related questions in the next sections.

Notion of graphs. In this thesis, we investigate the particular case of reconfigura-
tion problems on graphs. A graph is a mathematical object that represents pairwise
relations between elements of a set called vertices. Note that a vertex can be anything:
a location, a person, a machine or even an abstract notion. In other words, a graph
links vertices two by two to represent a relation between them. A link between two
vertices is called an edge. Two vertices that are linked by an edge are said to be
adjacent. A graph can, for instance, represent a road network, where each vertex

represents a city, two cities being adjacent if there is a road to go from one to the other.

Chapter 1. Introduction 13

FIGURE 1.1: Examples of graphs. Vertices are represented by black

dots and edges are represented by plain black lines. From left to right:

the cycle on three vertices Cs (also known as the triangle), the complete
graph on 6 vertices Cg, and the Petersen graph.

Graphs are in particular very handy tools as they can be easily drawn and visualized,
as illustrated in Figure 1.1. But more importantly they allow for the extraction of
essential information of a problem: Consider again the example of a road network
and suppose that we want to find the shortest path between the city A and the city
B. There are many different things to take into account: the position of the traffic
lights, the density of the traffic, the ongoing roadworks between cities, and many more.
However, before we are able to take all these information into account, there is an
essential question we need to solve: how can we choose the shortest path, among the
possibly huge number of paths going from A to B? The seemingly simple model that
a graph gives already captures a hard part of the problem and allows for the design of
a first, high level algorithm to find a shortest path between two points. This does not
mean that this first algorithm is necessarily simple. At the contrary, many problems
on graphs are hard in their essence. We will cite a few in the next sections.

Let us also outline the fact that being purely mathematical objects, graphs can be
studied as such without necessarily modeling real-world situations or systems. They
are at the crossroad of many different fields of discrete mathematics (algorithmics,
combinatorics, topology...) and allow for the development of complex notions, often
needed for the design of efficient algorithms.

A large variety of problems can be represented as graphs. Furthermore, it is often
the case that problems that are seemingly very different actually reduce to the same
question when modeled as graphs problems. Consider for instance the following

problems:

1. A number of exams must be held in classrooms. The problem is to find an
assignement of the exams to the classrooms, such that no two exams are held at

the same time in the same classroom.

2. A number of antennas are placed in an area. The problem is to assign a frequency
to each antenna, in such a way that two antennas that are close to each other

do not have the same frequency, in order to avoid interferences.

Let us give the graph representation of these problems. For problem 1, each exam
is a vertex of the graph. Two exams are linked by an edge if and only if their time
slots intersect. Each classroom is represented by a unique color: the problem then

reduces to finding an assignation of the colors to the vertices of the graph, in such

14 Chapter 1. Introduction

a way that no two adjacent vertices share the same color. It is then not hard to see
that the second problem is actually the same: each vertex represents an antenna, and
each color represents a frequency. Two antennas are adjacent if they are close to each
other and must have different frequency.

The problem of finding an assignation of colors to the vertices of a graph such that
two adjacent vertices do not share the same color is called the coloring problem. It
is one of the most famous and most studied problem in graph theory, and is also of
particular interest in this thesis. More particularly, we focus on the reconfiguration
variant of the coloring problem, the recoloring problem that we describe in the next
paragraph.

The other problem of interest in this thesis is the independent set problem. Let us
explain it through another example. Suppose that you are organizing a party for your
birthday. You have a list of friends you want to invite and you now that between
them, some get along and some do not. Your goal is to invite as many people as
possible without creating any conflict. This problem can be modeled as a graph
problem as follows: each vertex represents a person, two persons being linked by an
edge if there is a conflict between them. Your aim is then to select the largest set of
vertices that are pairwise non adjacent in this graph. Such a set is called a (maximum)
independent set. Just as for the coloring problem, we consider the reconfiguration
version of the independent set problem, the independent set reconfiguration problem

which we describe below.

Graphs and reconfiguration. Le us briefly recall the (informal) definition of a
reconfiguration problem we gave using the example of the Rubik’s cube. We are given
a system (the cube), an initial and a target configuration (the colors of the cubelets
on each face of the cube) and a reconfiguration operation (turn a face of the cube
a quarter turn). The goal is to find a sequence of reconfiguration operations that
transforms the initial configuration into the target one. In our case the system will be
a graph. The configurations and reconfiguration operations depend on the problem

we consider.

The first part of this thesis investigates the graph recoloring problem. In this
problem, a configuration is a coloring of the vertices of the graph. Recall that in
order for such a coloring to be valid, two adjacent vertices must have different colors.
A coloring that respects this property is called a proper coloring of the graph. The
reconfiguration operation we consider consists in changing the color of a unique vertex
at each step. We have furthermore two constraints: the number of colors we can use
is limited, and the successive colorings we obtain must remain proper. We can now

define the coloring reachability problem:

Problem 3. Given two proper colorings of a graph using at most k colors, is it
possible to transform one into the other by changing the color of one vertexr at a time,

while always maintaining a proper coloring?

1.1. Preliminaries 15

FI1GURE 1.2: Example of recoloring sequence. Adjacent vertices never
have the same color.

The second part of this thesis investigates the independent set reconfiguration
problem. In this problem, a configuration is an independent set of the graph. Recall
that an independent set is a set of vertices of the graph pairwise non adjacent. We are
further given a set of tokens that are placed on the vertices of the current configuration
(independent set). In this thesis we consider different reconfiguration operations
for the independent set reconfiguration problem. However, for the sake of keeping
this introduction concise we only introduce one here. The description of the other
reconfiguration operations we consider is given in Chapter 6. One of the operations
we consider consists in the moving of one token along an edge of the graph. In other
words, a token can slide from a vertex to another vertex as long as the two vertices
are adjacent. We have the constraint that, at each step, the set of vertices on which
the tokens lie must be an independent set. Let us now define the independent set

reachability problem:

Problem 4. Given two independent sets of a graph, is it possible to transform one
into the other by sliding a token along an edge at each step, in such a way that the

tokens are always placed on an independent set?

Examples of recoloring sequences and independent set reconfiguration sequences are
given in Figure 1.2 and Figure 1.3. Let us finally outline the fact that reconfiguration
problems find their applications in different domains, going from the resolution of
single player games, to - more surprisingly - statistical physics. The connections of
the graph recoloring and independent set reconfiguration problems with these fields
are described in Chapter 2 and 6 respectively.

In the next section of this chapter, we give definitions about graphs and complexity
that will be useful throughout the manuscript. In Section 1.2 we give a brief and
more formal introduction to reconfiguration. We conclude this chapter by giving an

overview of the work that is presented in this manuscript in Section 1.3.

1.1 Preliminaries

In this section, we introduce the main concepts, definitions and notations that will
be useful all along the manuscript. We refer the interested reader to the classical
textbooks [36, 97] for complete introductions to graph theory and to [5, 34] for complete
introductions to computational complexity theory and parameterized complexity

theory.

16 Chapter 1. Introduction

Wil

FIGURE 1.3: Example of independent set reconfiguration sequence.
Tokens are represented in red and moves by gray arrows. Adjacent
vertices never hold a token at the same time.

1.1.1 Computational complexity

In this section we give a short and informal introduction to complexity theory. In
particular we only consider decision problems in this section. A decision problem is
a question whose answer is either yes or no. An instance of a decision problem is
an input given to an algorithm that solves the problem. We say that an algorithm
A decides a decision problem 7 if algorithm A answers correctly to problem 7 for
any instance of the problem. Such an algorithm is called a decision algorithm. The
coloring reachability problem described in Problem 3 is an example of decision problem,
where the input is a graph along with two colorings of the graph, and the question is
whether one coloring can be transformed into the other as described in the previous
section. One of the aim of computational complexity is to classify decision problems
depending on how efficiently they can be decided. In other words, we want to measure
the efficiency of decision algorithms. There are two main quantities to measure when
trying to assess the efficiency of an algorithm: the amount of time the algorithm takes
to solve the problem, and the amount of space it requires to do so.

A problem 7 belongs to the class P (which stands for polynomial time) if there exists
an algorithm that decides 7 and that terminates in polynomial time (with regards to
the size of the input) on any given instance. Problems that belong to this class are
usually considered to be "easy", as polynomial-time is considered to be a "reasonable"
amount of time (although it completely depends on the degree of the polynomial). A
problem 7 belongs to the class NP (which stands for non-deterministic polynomial
time) if there exists a non-deterministic algorithm that decides m and terminates
in polynomial-time. Very loosely speaking, an algorithm is non-deterministic if it
can explore every possible choice at the same time, every-time a choice has to be
made during its execution. In other words we can consider that it is a deterministic
algorithm that is given a sequence of choices that leads to the solution (if there exists
one). Therefore, a problem belongs to NP if a deterministic algorithm can verify in
polynomial time if a given candidate solution is indeed a solution or not. It is not
hard to see that P C NP. However, whether this inclusion is strict or not is one of the
main open problem in computer science (and is most famously known as the P Z NP
problem).

The classes corresponding to P and NP for space complexity are respectively PSPACE
and NPSPACE. A problem belongs to PSPACE if it can be decided by an algorithm
that uses a polynomial amount of space (with regards to the size of the input). A

problem belongs to NPSPACE if it can be decided by a non-deterministic algorithm

1.1. Preliminaries 17

that uses a polynomial amount of space (with the same definition of non-deterministic
algorithm). Again, it is not hard to see that PSPACE C NPSPACE. In a famous article,
Savitch [85] actually showed that the converse inclusion is also true and hence that
PSPACE = NPSPACE. We also have inclusions between time and space complexity
classes. Indeed, since an algorithm that runs in polynomial time can use at most a
polynomial amount of space, we have NP C PSPACE. Summarizing the known results,
we have the following chain of inclusions: P C NP C PSPACE(= NPSPACE).

There also exists distinctions between problems of the same class. A way to classify
decision problems within a same class is through the use of polynomial-time reduc-
tions. A problem mo can be reduced to a problem 7 if there exists a polynomial-time
algorithm which given an instance Z of the problem 7, outputs an instance Z’ of the
problem 7 in polynomial time, such that the answer to Z is yes if and only if the
answer to Z’ is yes. Hence, if a problem 7 is reducible to a problem 71, any algorithm
that decides 71 can be used to decide 7o (up to paying the "small" polynomial cost of
the reduction). Given a class X, a problem 7 is X -hard if any problem of the class X
can be reduced to 7 in polynomial time. If furthermore the problem 7 belongs to the
class X, then 7 is X -complete. Informally speaking, an X-hard problem is at least
as hard as any other problem in the class X, and being able to solve efficiently an
X-hard problem means that any problem in the class can also be solved efficiently.
Assuming that P # NP, the NP-hardness of a problem 7 shows that there exists no
polynomial-time algorithm that solves w. Cook’s famous theorem [33] shows that the
SAT problem is NP-complete. It is one of the most classical problem to reduce to
when trying to prove NP-hardness.

It’s counterpart (and generalization) for space complexity is the QUANTIFIED BOOLEAN
FORMULA problem (abbreviated as QBF). A quandified boolean formula is a boolean
formula where the variables are quantified with the V and 3 quantifiers. The QBF
problem asks whether there exists a satisfying assignment to a given quantified boolean
formula. A classical result (see for instance [5]) shows that QBF is PSPACE-complete.
Just as the SAT problem, QBF is a classical starting point for reductions proving
PSPACE-hardness.

As a conclusion to this section, let us note that many other complexity classes
exist and that only the one relevant to this thesis have been introduced here. The
interested reader is referred to the classical textbook [5] for a more complete overview

of complexity theory.

1.1.2 Graphs

All along the manuscript G = (V, E) denotes a graph, where the set V' is the vertez
set and the set £ C V x V is the edge set. When the context is clear we denote the
number of elements in V' by n and the number of elements in E by m. Given a graph
G we denote its vertex set by V(G) and its edge set by E(G). We only consider

graphs without loop, where a loop is an edge that links a vertex to itself. Furthermore,

18 Chapter 1. Introduction

the graphs we consider are undirected, meaning that there is no distinction between
the edge (u,v) and the edge (v,u) for any u,v € V. An undirected graph without
loops is called a simple graph. All the graphs we consider in this manuscript are
simple graphs. Given two vertices u,v € V(G) such that (u,v) € E we say that u is
a neighbor of v (and reciprocally that v is a neighbor of w). The set of neighbors of a
vertex u of a graph G is called the neighborhood of u and is denoted by Ng(u). The
closed neighborhood Nglu] of a vertex u is the set Ng(u)U{u}. The degree of u is
the number of neighbors of u is denoted by dg(u). When the graph G is clear from
context we often drop the subscript G' and simply write N(u), N[u], and d(u). The
mazimum degree of a graph G, denoted by A(G) is the maximum degree of a vertex
of G taken over all vertices of G. The complement graph of G denoted by G is the
graph which vertex set is V(G) and such that for every u,v € V(G) where u # v,
(u,v) € E(G) if and only if (u,v) ¢ E(G). In other words, it is the graph on the

same vertex set as G such that each edge of G is a non-edge of G and vice versa.

Subgraphs and induced subgraphs. A graph G' = (V' E’) is a subgraph of
G=(V,E)iftV CV'and E C E'. If furthermore for all u,v € V(G’), we have
(u,v) € E(G) = (u,v) € E(G") then G’ is an induced subgraph of G. In other
words, G’ is an induced subgraph of G if every edge of G with both endpoints in
V(G') is also an edge of G’. Given S C V, the induced subgraph of G' containing the
vertices of S is the graph induced by S in G and is denoted by G[S]. The graph G — S
is the graph induced by V'\ S in G.

Walks, paths and cycles. A walk on a graph G is a subgraph of G with vertices
U1, .., up of G such that u; € N(u;q1) foralli € 1,...,p— 1. If furthermore no other
edges between the vertices of the walk exist in G then the walk is an induced walk.
The length of a walk W is the number of vertices in W minus one. A walk W is a path
if no two vertices in W are the same. A walk W on vertices u,...,u, is a cycle if no
two vertices of the walk are the same except for u; = w,. For the sake of simplicity
we call a path that is an induced walk an induced path and a cycle that is an induced
walk an induced cycle. The induced path on ¢t > 0 vertices is denoted by P; and the
induced cycle on t vertices is denoted by Cj.

If there exists a path between any two vertices of a graph G, then G is connected and
is disconnected otherwise. An inclusion-wise maximal set of vertices of G that induces
a connected subgraph is a connected component of G. A graph G has no cycle as a
subgraph is acyclic.

The distance dg(u,v) between two vertices u, v of graph G is the length of a shortest
path in G between u and v. If no such path exists then we set dg(u,v) = +o00. The
diameter diam(G) of a graph G is the maximum distance between any two vertices of

G. In other words, diam(G) = maz, yev(c){dista(u,v)}.

1.1. Preliminaries 19

Independent sets and cliques. Let G = (V,E) be a graph. A set I C V(QG)
is an independent set of G if the vertices in I are pairwise non-adjacent in G. The
independence number a(G) of a graph G is the size of a maximum independent set of
G. A set C CV(G) is a clique of G if the vertices in C are pairwise adjacent in G.
The clique number w(G) of a graph G is the size of a maximum clique of G. Let us
note that deciding whether the size of a maximum independent set (resp. a clique) of

a graph G is larger that k for some integer k£ is an NP-complete problem.

Coloring and chromatic number. A function ¢ : V(G) — {1,...,k} is a k-
coloring of G. If furthermore the function c satisfies c(u) # ¢(v) for every (u,v) € E(G)
then the coloring is proper. All along the manuscript we only consider proper colorings
and thus omit the term proper. If we consider non-proper colorings then it will be
explicitly specified. We denote the integer in [k]| associated with a vertex u as the
color of u. If a graph G admits a k-coloring for an integer k then it is k-colorable. The
chromatic number x(G) of a graph G is the minimum integer k for which the graph
G is k-colorable. Deciding whether the chromatic number of G is smaller than k for
some integer k is an NP-complete problem. However, note that if G admits a clique of
size k, then at least k different colors are needed to color the vertices of the clique. It

follows that the clique number w(G) is a trivial lower bound on the chromatic number

X(G).

Degeneracy. Let d be an integer. A graph G is d-degenerate if there exists an
ordering vy, ..., v, of the vertices of G such that for every ¢ < n — 1, v; has at most
d neighbors in the subgraph of G induced by {vit1,...,v,}. We refer to such an
ordering as a d-degenerate ordering, or just as a degeneracy ordering when d is clear
from context. Equivalently, a graph G is d-degenerate if every subgraph of G contains
a vertex of degree at most d. All along the manuscript, we denote the degeneracy of a
graph G by d(QG).

Degeneracy has many algorithmic applications, let us give a simple one as an example:
We show below that any d-degenerate graph G admits a (d + 1)-coloring and hence
that x(G) < d+ 1. Consider a degeneracy ordering vi,...,v, of V(G) as defined
above. Then, coloring each vertex v; of G in the reverse order vy, ..., vy with the first
color in {1,...,d 4 1} that does not appear in the neighborhood of v; yields a proper
coloring of G. Indeed, when v; receives a color, only the vertices in {vj11,...,v,} have
already been colored. Since v; has at most d neighbors in this subset of vertices, and
since there are d + 1 colors, there exists a color that is not used in the neighborhood of
v;, and that can therefore be used to color v;. The process terminates when coloring

v1 and gives a proper (d + 1)-coloring of the graph.

Graph classes. A class of graph is a not-necessarily finite set of graphs. A class G

is hereditary if for every G € G every induced subgraph of G also belongs to G. Note

20 Chapter 1. Introduction

that a class of graph is usually defined by a property shared by all the graphs that
belongs to this class. Below we describe a few graph classes, that are among the most

studied and are of particular interest in this thesis.

o Perfect graphs. A graph G is perfect if for every S C V(G) the subgraph
induced by S in G satisfies x(G[S]) = w(G[S]). It contains several graph
classes that are of central importance in this thesis. Perfect graphs have the
particularity that many classical problems such as MAXIMUM INDEPENDENT
SET, MAXIMUM CLIQUE or COLORING that are NP-complete in the general
case become polynomial-time solvable on perfect graphs. The celebrated strong
perfect graph theorem shows that perfect graphs are exactly the graphs such

that neither G nor G contain an induced odd cycle of length at least five.

¢ Chordal graphs. A graph G is chordal if it has no cycle on four vertices or
more as an induced subgraph. In other words, any cycle of length four or more
in G has a chord, which is an edge between two non-consecutive vertices of the
cycle. A graph is chordal if and only if it admits a perfect elimination ordering.
A perfect elimination ordering is an ordering vy, ..., v, of V(G) such that for
every i < n, the neighborhood of v; in {v;11,...,v,} induces a clique. Such an
ordering of the vertices of the graph can be found, if it exists, in linear time [53,
83]. It follows that chordal graphs can be recognized in linear time. Furthermore,
note that every vertex v; has at most w(G) — 1 neighbors in {viy1,...,v,}.
Hence, a perfect elimination ordering is also a (w(G) — 1)-degeneracy ordering.
Since for any graph G we have d(G) > w(G) — 1, it follows that if G is a chordal
graph then d(G) = w(G) — 1. The class of chordal graphs is a subclass of the

class of perfect graphs.

» Bipartite graphs. A graph G = (V, E) is a bipartite graph if its vertex set
can be partitioned into two independent sets V' = AU B called the bipartition
of G. Equivalently, the class of bipartite graphs is exactly the class of graph
that do not contain any cycle of odd length has a subgraph. It is also the class
of graphs that are 2-colorable.

e H-free graphs. Let H be a graph. A graph G is H-free if it does not contain
no induced subgraph of G is isomorphic to H. Many well studied graph classes
can be described this way. For instance, the class of cographs is the class of
P,-free graphs. Given a set ‘H of graph, a graph G is H-free if it does not contain
H as an induced subgraph for every H € H.

o Split graphs. A graph G = (V,E) is a split graph if its vertex set can be
partitioned into an independent set I and a clique C. Split graphs are a subclass

of chordal graphs.

1.1. Preliminaries 21

e Trees. A graph is a tree if it is connected and acyclic. It is not hard to see that
if a graph G is a tree then it satisfies |E(G)| = |V(G)| — 1. Trees are also a
subclass of bipartite graphs and chordal graphs.

Tree decomposition and treewidth. Let G = (V, E) be a graph. A tree decom-
position of G is a pair (T, B) where T'= (W, E’) is a tree and B is a function that
associates to each node U of T a subset of vertices By of V' (called bag) such that: (i)
UuerBu = V(G), (ii) for every edge (u,v) of G there exists a bag By that contains
both w and v and (iii) for every = € V, the subset of nodes whose bags contain x
forms a non-empty subtree in 7.

The width of a tree decomposition is the size of a largest bag By minus one. The
treewidth of a graph G is the minimumm width among all possible tree decompositions
of GG. Informally speaking, the treewidth of a graph measures how close the graph
is to being a tree, where trees are graphs of treewidth exactly 1. The smaller the
treewidth of a graph is, the more "tree-like" is its structure. It follows that a number
of problems that can be solved efficiently on trees such as MAXIMUM INDEPENDENT
SETS can also be solved efficiently on graphs of small treewidth. As we will see in the

next section, treewidth is also of central importance in parameterized complexity.

1.1.3 Parameterized complexity.

In this section, we give a brief and informal introduction to parameterized complexity
in the particular framework of graph theory. The goal of parameterized complexity
is to refine the knowledge we have on the complexity of decision problems, with
respect to parameters depending either on the input (the graph) or on the output (the
solution size, for instance). One of the motivation is the following: Many fundamental
problems (MAXIMUM CLIQUE, MAXIMUM INDEPENDENT SET, VERTEX COVER...) are
NP-complete. Does it mean that when such a problem is encountered, any hope of
finding an efficient algorithm should be abandoned? Or can we, in some cases, still
hope for an efficient resolution? This is one of the questions tackled by parameterized
complexity. Furthermore, parameterized complexity can be seen as the "science of
preprocessing". Often, it is possible to determine a priori that some parts of the
input are unnecessary from an algorithmic point of view, which can be for instance
vertices or edges that belong to either all or no solutions. Such parts can be safely
removed from the input graph which size is then decreased, simplifying the problem.
By systematically applying such a preprocessing, called a reduction, one is able to
isolate the "hard" parts of an instance. Parameterized complexity gives a number of

tools to design these reductions and to assess their efficiency.

In what follows, a parameterized problem denotes a decision problem 7 along with
a parameter (an integer) k. As in the classical computational complexity framework,
parameterized problems can be divided into classes which measure (so to speak) their

hardness. The main difference being that the hardness of a problem also depends

22 Chapter 1. Introduction

on the parameter. Let m be a parameterized problem which takes as input a graph
on n vertices and k be the parameter. The problem 7 is fized-parameter tractable
(abbreviated FPT) with respect to the parameter k, if there exists an algorithm A
and a computable function f such that the algorithm A decides problem 7 in time
f(k)-n°M . Note that in this definition, nothing prevent the growth of f from being
exponential or even super-exponential. However, if the parameter k is small, then the
problem 7 can be solved efficiently since the dependency in the size of the input is
polynomial. Another way to define FPT algorithm is through the notion of kernel. A
kernel for a problem 7 with the parameter k is an algorithm that given an instance
(I,k) of m, works in polynomial time and returns an equivalent instance (I’,k’) of
7 such that the size of I’ is bounded by a computable function of k. Obviously, a
decidable parameterized problem that admits a kernel with respect to a parameter k
is also fixed-parameter tractable with respect to k. More surprisingly, the converse
direction is also true. This leads to the following theorem (see for instance [34] for a

complete proof):

Theorem 1. A decidable parameterized problem admits a kernel with respect to the

parameter k if and only if it is FPT with respect to the parameter k.

Let us illustrate these notions through a simple example. A wvertex cover of a
graph G is a set S of vertices of G such that for every edge (u,v) € E(G), either u or
v belongs to S. Given a graph G and an integer k, the decision problem k-VERTEX
COVER asks whether G admits a vertex cover of size at most k. Let us give a sketch

of the following folklore theorem:

Theorem 2. Let k be an integer. k-VERTEX COVER admits a kernel with at most k?
vertices. Therefore, k-VERTEX COVER is fized-parameter tractable with respect to the

solution size.

Sketch of proof. Let (G, k) be an instance of VERTEX COVER. To avoid cumbersome
notations, we denote an instance equivalent to (G, k) by an equivalent instance.

Let G be the graph obtained by deleting the isolated vertices of GG. Since no isolated
vertex is in a minimum vertex cover, (G1, k) is an equivalent instance.

Suppose that G1 contains a vertex v of degree at least k 4+ 1. Then v is necessarily
in any solution of size k. Indeed, not taking v in the solution implies that all of its
neighbors must be chosen, leading to a solution of size at least k + 1. Hence, v can be
safely removed from the graph and the parameter be safely decreased by 1. Let G2 be
the graph obtained after removing all the vertices of degree at least k + 1 from Gy,
and t be the corresponding parameter. If t < 0, then return a trivial no instance (for
instance the graph K with k£ = 0).

Otherwise t > 0. Every vertex in G has degree at most k. Hence, a vertex set S
of size at most t can be adjacent to at most kt < k2 vertices. It follows that if Gy
contains more than k? vertices, then it is a no instance and we can return a trivial no
instance (constructed as before). Otherwise (Ga,t) is an equivalent instance with at

most k2 vertices, as needed.]

1.1. Preliminaries 23

Let us now give a brief description of the W-hierarchy. The depth of a Boolean
circuit is the maximum length of a path from an input node to the output node. The
weft of a Boolean circuit is the maximum number of gates with at least three entries
on a path from the root of the circuit to a leaf. For ¢,d > 0 let C; 4 be the class of
Boolean circuits with weft at most ¢ and depth at most d. A parameterized problem
7 with parameter k is in the class W[i] if there exists d > 1 such that any instance I
of the problem can be transformed into a Boolean circuit of C; 4 in FPT time, and
such that I is a yes instance if and only if there exists an assignation of the entries of
the circuit with at most k assignations at 1 that satisfies the circuit. Let us note that
we have W[i| C W[j] for every i < j and that FPT = W[0]. The union of the classes
W][i] for every i forms the class W[P]. Let m, w2 be two parameterized problems
with parameter k and k' respectively. A parameterized reduction from m to ms is an
algorithm that given an instance I of m; and the parameter k outputs an instance J

of my with parameter k' such that:
1. (I,k) is a yes-instance of m if and only if (J, k') is a yes-instance of o,

2. k' < g(k) for some computable function g, and

3. the algorithm runs in time f(k) -n°M) where n is the size of the instance I.

As for computational complexity, we can define hard problems as follows: given a class
X, a parameterized problem 7 is X-hard, if there exists a parameterized reduction
from every problem of the class X to . Recall that we have FPT C W[1]|. However,
as for the P = NP problem, whether the converse inclusion also holds is still an open
problem. However, W[1]-hardness of a problem is often interpreted as a strong hint
that no FPT algorithm exists.

Unlike VERTEX COVER, many classical problems such as INDEPENDENT SET or
CLIQUE are W([1]-hard with respect to the solution size. It is also well-known that
DOMINATING SET is W[2]-hard, and hence is in some sense "harder" than the afore-
mentioned problems with respect to the solution size.

Another parameter that is frequently considered in parameterized complexity is the
treewidth of the input graph, which we defined in the previous section. Assuming
that the treewidth of the graph is small, and thus that the input graph has a tree-like
structure, allows for the efficient use of dynamic programming to design FPT algorithm.
In particular, problems such as VERTEX COVER, INDEPENDENT SET or DOMINATING
SET are FPT when parameterized by the treewidth of the input graph. Let us also note
that the treewidth is of central importance in the celebrated Courcelle’s meta-theorem,
which states that any graph problem that can be expressed in monadic second-order

logic is FPT when parameterized by the treewidth.

As a conclusion, let us recall that this section is an introduction to the notion we
need in this thesis. The reader is referred to the classical textbook [34] for a formal

and complete introductory course to parameterized complexity.

24 Chapter 1. Introduction

1.2 A brief introduction to reconfiguration

A combinatorial optimization problem consists in finding a solution that satisfies a
particular set of constraints among a countable set of candidates. Such a solution
is said to be feasible. Graphs are particularly suitable to model a vast variety of
real-life combinatorial problems and a considerable amount of work has been done
to determine whether or not such a solution can be computed in a reasonable time
and to design efficient algorithm to do so. However, finding a feasible solution is
sometimes not enough to deal with the dynamic aspect of a system. It can be because
the problem itself implies that the solution changes over time, or because one wants an
"overview" of the solution space, as it is for instance the case in enumeration problems
or problems involving random sampling.

Combinatorial reconfiguration is closely related to these questions. In this framework,
we are given a problem 7 called the source problem whose feasible solutions are called
configurations. We are also given an operation called the reconfiguration operation
(for 7) that given a configuration and some parameters (that depend on the source
problem) output another configuration of 7, and that can be computed in polynomial
time. Such an operation defines an adjacency relation: two solutions are adjacent if
one can be obtained from the other by applying one reconfiguration operation (in one
step). We can thus define the reconfiguration graph, as the graph whose vertex set is
the set of all configurations and where two configurations are adjacent if they differ
by one reconfiguration operation. Given a source problem 7w and a reconfiguration
operation 7 for m, we denote the corresponding reconfiguration graph as G7-. Note
that by definition of a reconfiguration operation G7- is a simple, undirected graph.
Let us now formally describe the questions that are at the heart of the study of
reconfiguration problems. Let m be a source problem and 7 be a reconfiguration

operation:

e REACHABILITY: Given two solutions S and T of 7, is it possible to find a
sequence of operations 7 that transforms S into 77 Equivalently, is there a
path from S to T in G777

o CONNECTIVITY: Is it possible to find a sequence of operations 7 that transforms
S into T for any two solution S, T of 77 Equivalently, is G’ connected?

e SHORTEST PATH: Given two solutions S and T of 7, what is the shortest sequence,
in terms of number of operations 7, that transforms S into T'?7 Equivalently,
what is the length of a shortest path from S to T" in G7-?

e DIAMETER: What is the maximum length of a shortest sequence, in terms of
number of operations 7T, that transforms .S into T for any two solutions S, T of

7?7 Equivalently, what is the diameter of G7-7

Although the systematic study of reconfiguration counterparts of classical combi-

natorial problems (3-SAT, INDEPENDENT SET, DOMINATING SET, CLIQUE, VERTEX

1.2. A brief introduction to reconfiguration 25

9 |10(11|12
1314|115

FIGURE 1.4: The target configuration of the 15-puzzle game.

COVER and so on) has only been initiated in the past ten to twenty years, some
reconfiguration problems have been studied for much longer than that, even if not
defined as such. The first ones we can think of are single player games, such as
the ones mentioned at the very beginning of this Chapter. Consider for instance
the 15-puzzle game: In this game, the player is given a 4 x 4 board on which 15
labeled tokens of unit size are placed, one place being left empty. The player is
allowed at each step to slide a token on the empty spot, and the goal is to reach the
target configuration illustrated in Figure 1.4. This puzzle, which is approximately 150
years old, has been studied theoretically for almost as many years. Indeed, Jonhson
and Story [66] showed in 1879 that the reconfiguration graph of the 15-puzzle has
exactly two connected components (loosely speaking, one component corresponding
to the even permutations of 1,...,15 and one corresponding to the odd permutations)

therefore showing that some initial configurations of the game are "impossible" to solve.

Although more recent than the 15-puzzle games, some reconfiguration problems
more closely related to our setting have also been studied for decades. We can for
instance mention the case of triangulations and edge flips. A triangulation of a polygon
is a partition of the polygonal area into triangles whose interiors are pairwise non-
intersecting. Consider two triangles of a triangulation sharing an edge, thus forming a
quadrilateral. The edge-flip operation consists in replacing this edge with the other
diagonal edge of the quadrilateral. The edge flip operation is illustrated in Figure
1.5. The flip distance between two triangulations of a convex polygon is the length
of a shortest sequence of edge flips transforming one triangulation into the other. In
1988, Sleator et al. [88] showed that the flip distance between two triangulations of
a polygon with n vertices is at most 2n — 6. However, determining the complexity
of computing the exact flip distance between two triangulations was a longstanding
open-problem in the field. It was shown by Lubiw and Pathak [74] to be NP-complete
in 2012. A combinatorial version of the problem has also been studied for a long time,
where the input is a maximal planar graph, and the edge flip operation is defined as the
replacement of an edge by another edge such that the obtained graph remains maximal
planar. Wagner [96] showed as far back as 1936 that given two maximal planar graphs
G1 and G4 there always exists a sequence of flips transforming 1 into G5. Let us note
that a considerable amount of work has been done toward triangulations and edge
flip on planar graphs, be it from a geometrical or a combinatorial point of view. The

interested reader is referred to [25] for a (although not recent) nice overview of the field.

26 Chapter 1. Introduction

d d

FIGURE 1.5: An example of edge flip in a triangulation of a convex
polygon. The edge (b, d) is replaced by the opposite diagonal (a,c¢) in
the quadrilateral formed by {a,b, c,d}

Another longstanding open question in reconfiguration is the one asked by Vizing
towards edge-colorings of graphs. Given a graph G = (V, F) and an integer k, a
k-edge-coloring of G is a function ¢ : E — [k] that associates a color to each edge of
G, in such a way that no two adjacent edges receive the same color. The chromatic
index x'(G) of a graph G is the minimum & such that there exists a k-edge-coloring
of G. In [95] Vizing showed the following:

Theorem 3. For any simple graph G, X' (G) < A(G) + 1.

Since the maximum degree is a trivial lower bound on the chromatic index, Vizing’s
theorem implies that for any graph G, X'(G) = A(G) or X'(G) = A(G) + 1. A Kempe
chain is an inclusion-wise maximal connected component induced by the edges of two
given colors. A Kempe change is the operation consisting in exchanging the colors
of the edges along a Kempe chain. Two edge-colorings are Kempe-equivalent if one
can be obtained from the other by a sequence of Kempe changes. In 1965 [94], Vizing
asked the following: is it true that any k-edge-coloring of a graph G with k > x/'(G)
is Kempe-equivalent to a x'(G)-edge-coloring of G?

In the proof of Theorem 3, Vizing actually showed that any k-edge-coloring with
k > A(G) + 2 is Kempe-equivalent to a (A(G) + 1)-edge coloring of G, thus an-
swering his question in the case x'(G) = A(G) + 1. Despite an answer for the case
X'(G) = A(G) still has to be found, partial results have been obtained over the years.
Mohar showed in 2006 [77] that all (x'(G) + 2)-edge-colorings are Kempe-equivalent
and conjectured that all (A(G) + 2)-edge-coloring should be Kemp-equivalent. Later
on, Vizing’s question was answered positively in the case A(G) = 3 by McDonald
et al. [75] and in the case A(G) = 4 by Asratian and Casselgren [6]. Very recently,
Bonamy et al. [18] showed that it also holds for any triangle-free graph, without any

restriction on the maximum degree.

All these examples show that even though the name of reconfiguration only emerged
recently as a unifying term, related problems were already studied for a long time.
The first reconfiguration problem we are interested in this thesis is also a coloring
problem: the single-vertex recoloring problem. In what follows we refer to this prob-
lem as the graph recoloring problem to avoid cumbersome notations. In the graph
recoloring problem we are given a coloring of the vertices of the input graph, and the

reconfiguration operation consists in changing the color of a single vertex, in such a

1.2. A brief introduction to reconfiguration 27

way that the obtained coloring remains proper. We give a detailed introduction to

this problem in Chapter 2.

Another number of questions in the field of reconfiguration concerns the set of
problems that we could call the moving tokens problems. Consider a problem 7 that
takes as input a graph G and an integer k, and the goal is to find a subset S of
vertices of V(G) of size k that satisfies a property P. A handy way to consider this
problem in the reconfiguration framework is to view the set S as a set of tokens that
are placed on the vertices of S in G. It is then no hard task to define a reconfiguration
operation as a way to move tokens on the graphs. The additional condition is that the
set of vertices on which the tokens lie must satisfy the property P after each move. In

particular, two rules according to which the tokens can move have been studied:

e The token sliding rule, where a token is allowed to move from a vertex to a
neighboring vertex, or in other words to slide along an edge (as long as property

P remains satisfied).

e The token jumping rule, where a token is allowed to move from a vertex to
any other vertex, or in other words to jump anywhere on the graph (as long as

property P remains satisfied).

e The token addition-removal with threshold £ rule, where £ is an integer that is
either an upper bound or a lower bound on the number of tokens that can lie
on the graph at any time, and where a token can be either added or removed

from the graph at each step.

These reconfiguration problems have been studied for many different source problems
m. We can mention for instance the DOMINATING SET RECONFIGURATION problems
[13, 52, 54, 89], the VERTEX COVER RECONFIGURATION [58, 62, 78] problems, or more
recently the VERTEX SEPARATOR RECONFIGURATION [49] problems. In this thesis, we
investigate the INDEPENDENT SET RECONFIGURATION problems. As we will see in
the introduction to independent set reconfiguration in Chapter 6, it is one of the most
studied reconfiguration problem since the late 2000’s, and is still a very active field of

research today.

As a conclusion to this section, let us note that many more reconfiguration problems
have been studied over the years, making it difficult to give a concise summary of
all the works that has been done in the field. We refer the interested reader to the
very nice surveys of Van den Heuvel [57] and Nishimura [80] for the description of
other classical reconfiguration problems and a more detailed historical overview of

reconfiguration.

28 Chapter 1. Introduction

1.3 Outline of this thesis

This thesis focuses on two particular reconfiguration problems, the graph recoloring

problem and the independent set reconfiguration problem.

The first part of the manuscript is devoted to the graph recoloring problem. In
Chapter 2 we introduce the problem and its motivations. One of the most studied
question in the framework of graph recoloring is the question of the diameter of the
reconfiguration graph. As we will see, the study of this diameter allows to measure
how efficiently we are able to sample at random colorings of the input graph. It is of
particular interest in the field of statistical physics for the study of the behavior of
spine systems at extremal temperatures.

A classical result in the field shown independently by Dyer et al. [38] and Bonsma
and Cereceda [22] (the proof of which will be given in the next section) shows that
for any d-degenerate graph G there exists a transformation (where the color of a
single vertex is modified at each step) between any two k-colorings of G as long as
k > d+ 2. In other words, the reconfiguration graphs whose vertex set corresponds to
the k-colorings of G with k > d + 2 is always connected. The proof of this result is
algorithmic and outputs a sequence between any two colorings given as input. However,
the length of this sequence may be exponential (in the number of vertices of G) and
thus cannot be used to bound the diameter of the reconfiguration graph. A famous
conjecture of Cereceda says that this diameter should be O(n?) when considering
(d + 2)-colorings only. Although still widely open, this conjecture has been shown
to be true for several graph classes, in particular for chordal graphs and graphs of
bounded treewidth. On the other hand, a result of Bousquet and Perarnau [29] shows
that when considering 2d 4 2 colorings, the diameter of the reconfiguration graph
has linear diameter. Informally speaking, combining these two results confirms the
intuition that the more colors are available, the easier it gets to find a sequence
between two colorings. Consider chordal graphs and bounded treewidth graphs: the
diameter of the reconfiguration graphs of (d + 2)-colorings has quadratic diameter.
Increasing the number of colors, we obtain a linear diameter for the reconfiguration
graphs of (2d + 2)-colorings. Hence the following question: how many colors above
the d + 2 threshold are really needed for the diameter to become linear? This is
the question we investigate in this thesis. Before diving into our results, we give in
Chapter 3 an overview of the proof techniques that have been employed to bound the
diameter of reconfiguration graphs, and explain why most of them cannot be used to
obtain linear transformations.

In [19], Bonamy et al. showed that given a chordal graph G, the diameter of the
reconfiguration graph of (d 4 2)-colorings has quadratic diameter. In Chapter 4
we introduce a new proof technique to show that if G has bounded degree, then
the diameter of the reconfiguration graph of (d + 4)-colorings is linear, drastically

improving on the 2d + 2 bound given by the result of Bousquet and Perarnau. Formally,

1.3. Outline of this thesis 29

we show the following:

Theorem 4. Let G be a d-degenerate chordal graph of mazximum degree A. For every
k > d+4, the diameter of Ri(G) is at most Op(n). Moreover, given two colorings

c1,¢2 of G, a transformation of length at most Ox(n) can be found in linear time.

Towards the same question, we consider the case of graphs of treewidth two in
Chapter 5. Due to a result of Bonamy and Bousquet [15], it is known that given a
graph of treewidth tw, the reconfiguration graph of (tw + 2)-colorings has quadratic
diameter. Hence, given a graph of treewidth two, the diameter of the 4-reconfiguration
graph is quadratic. Furthermore, the result of Bousquet and Perarnau shows that it
becomes linear when considering 6-colorings, leaving the case of 5-colorings open. In

Chapter 5 we complete the picture for graphs of treewidth two and show the following;:

Theorem 5. Let G be graph of treewidth at most 2 and k = 5. There exists a constant
c such that, for every pair of 5-colorings o, 8 of G, there exists a transformation from

« to B recoloring each vertex at most ¢ times.

The second part of the manuscript is dedicated to the independent set reconfig-
uration problems. These problems find their origins in the study of single player
puzzle-games which, as explained in the previous sections, have been topics of matter
for mathematician for decades. We give a detailed introduction to independent set
reconfiguration in Chapter 6. As we will see, a great amount of work has been done
toward the reachability problem for both the sliding and the jumping rule in particular
graph classes, as both rules define a PSPACE-complete problem in the general case. In
particular, the case of H-free graphs has been investigated for H being a Py (cographs)
or a claw. In Chapter 7 we give a general result on the complexity of both token

jumping and token sliding in H-free graphs:

Theorem 6. TOKEN JUMPING and TOKEN SLIDING on H-free graphs are PSPACE-

complete, unless H is a path, a claw, or a subdivision of the claw.

Furthermore, we show that when the source and target independent sets are
maximum, token jumping and token sliding reachability are polynomial-time solvable
on fork-free graph (where a fork is a claw with one subdivided edge).

In Chapter 8, we then consider graphs that forbid some cycles to appear as induced
subgraph. In [72], Lokshtanov and Mouawad showed that token jumping reachability
is NP-complete on bipartite graphs and that token sliding reachability is PSPACE-
complete on the same class of graphs. We consider token sliding reachability on
bipartite graphs and related classes from a parameterized point of view and show,

among other results:

Theorem 7. TOKEN SLIDING parameterized by k is W[1]-hard on bipartite graphs

and is fized-parameter tractable on bipartite Cy-free graphs.

Finally, we introduce in Chapter 9 a generalization of the token sliding reachability
problem which we call galactic token sliding as a tool for parameterized reductions.

We make use of this model to show the following:

30 Chapter 1. Introduction

Theorem 8. TOKEN SLIDING is fized-parameter tractable when parameterized by
k+ A(G).

And we give a conclusion to this thesis in Chapter 10.

Part 1

Graph recoloring

31

33

Chapter 2

Introduction to graph recoloring

2.1 An example: the frequency assignement problem

Let us begin this chapter with an introductory example. Consider an area in which
antennas have been placed. Such antennas are used for instance for radio emissions
or for mobile telecommunication networks. Each antenna emits radio waves in every
direction up to some fixed distance on a specific frequency. If two antennas are
close to each other, their emission radius overlap and they must be assigned different
frequencies in order to avoid interferences, which may severely degrade service quality.
Furthermore, the usable frequency range is limited and thus the same frequency may
be reused several times for different antennas. The question is the following: how
to assign a frequency to each antenna in order to minimize the interferences? This
problem is known in the literature as the frequency assignment problem (FAP). As
we explained in the previous chapter, this problem is closely related to graph coloring:
Consider the graph which set of vertices is the set of antennas, two vertices being
linked by an edge if the emission radius of the corresponding antennas overlaps. If each
frequency corresponds to a color, finding an assignment of frequencies to antennas with
no interferences is then equivalent to finding a proper coloring of the corresponding
graph.

Suppose now that such an assignment has been found and that each antenna has been
set to emit on its assigned frequency. Suppose furthermore that at some point, a new
antenna needs to be added on the area. If there exists a frequency that is not used by
neighboring antennas, then the new one can be set to work on this frequency without
causing any interference. Otherwise, the working frequencies of the other antennas
need to be modified to free a frequency. Is it possible to modify the frequencies of the
antennas, so that no interference is ever created, and obtain a state where there is an
available frequency for the new antenna? A trivial solution to this problem consists in
shutting down the whole network, compute a new coloring of the underlying graph
and proceed with the modifications on all the antennas at the same time, causing the
signal to be off in the whole area for the duration of the modifications. A presumably
smarter solution is the following: pick an arbitrary antenna whose frequency range
needs to be modified and modify its range if it creates no interference, and then

proceed with another antenna. By doing so, only a small part of the area is not

34 Chapter 2. Introduction to graph recoloring

covered at every step of the process. Hence the following question: can we find a
sequence of modifications (where each element in the sequence corresponds to the
modification of the frequency of single antenna) such that no interference is caused by
any of these modifications and such that a desired working state (where a frequency is
available for the new antenna) is reached after the last modification of the sequence?
Note that we are allowed to change the frequency of an antenna several times in this
sequence.

This new problem can be restated as follows in terms of graph coloring: starting from
the coloring corresponding to the initial state of the antennas, is it possible to modify
the color of one vertex at a time in such a way that each intermediate coloring remains
proper and that the final coloring corresponds to the final desired state? This is one of
the question at the heart of the graph recoloring problem which we formally define in
the next section. Let us stress the fact that the Frequency Assignement Problem only
comes as a motivation and that the main topic of this chapter is the graph recoloring

problem.

Let us however note that this introductory example is not completely artificial.
Indeed, the problem of handling the installation of new antennas, called the frequency
reassignement problem, was adressed by Han in [55], in the specific case of a mobile
telecommunication network. The problem of finding a sequence of frequency reas-
signment has also been studied in order to solve the classical frequency assignment
problem. The strategy employed is an "error correction" strategy with a local search
approach (see for instance [24]): Start by finding a solution that is not "too bad" (in
terms of number of interferences). Then try to successively reduce the number of
interferences by exploring neighboring solutions, which are solutions that differ from
the current one on the frequency of a single antenna (or equivalently the color of a
single vertex). Other types of local search neighborhood have been studied such has
neighborhood defined by Kempe changes [24], which we described in the previous
Chapter. The interested reader is referred to [1] for a complete survey on the frequency

assignment problem.

2.2 Definitions

In this section, we describe formally the graph recoloring problem along with the
main questions of the field. Let G be a graph and «, 8 be two proper colorings of G.
A reconfiguration sequence S := 7p,71,-..vs| from a to 3 is a sequence of colorings
of G such that 790 = o and 75 = 8. A reconfiguration sequence is valid if for every
i < |S| the coloring ~; is proper and if v; and 7,41 differ on the color of exactly one
vertex for every ¢ < |S|— 1. The problem of deciding if such a valid sequence exists is
trivial if no bound is set on the number of colors that can be used in the sequence.
However, as seen in the introductory example it is natural to ask for a limitation

on the number of colors that can be used. This problem is often referred to in the

2.2. Definitions 35

literature as k-COLOR-PATH [31, 57] or as k-COLORING RECONFIGURATION [80] where

k is an integer that denote the maximum number of available colors:

k-COLOR-PATH
Input: A graph G, an integer k and «, 8 two proper k-colorings of G.

Question: Does there exists a valid reconfiguration sequence of k-colorings of
G from « to 57

As for any reconfiguration problem, graph recoloring problems can be restated in
terms of the reconfiguration graph. In this setting, the reconfiguration graph Ri(G)
is the graph which vertex set is the set of all proper k-colorings of G and where two
vertices are adjacent if and only if the corresponding colorings differ on the color of
exactly one vertex of GG. A valid reconfiguration sequence of k-colorings of G is a path
in Ry(G). The k-COLOR-PATH problem can be restated as follows:

k-COLOR-PATH (restated)
Input: A graph G, an integer k and «, 8 two proper k-colorings of G.
Question: Is there a path from a to 8 in Rg(G)?

A natural question that comes up is the following: for which integer k can we
ensure that the answer to the k-COLOR-PATH problem is always yes? That is, for
which integer & is the reconfiguration graph Ry (G) of the input graph G connected?
The corresponding decision problem is known as k-COLOR-MIXING:

k-COLOR-MIXING
Input: A graph G and an integer k.
Question: Is Ry (G) connected?

One of the first general result on the connectedness of the reconfiguration graph is

due to Jerrum [65]. We include a proof for completeness.

Theorem 9. For any graph G of mazimum degree A and every integer k > A+ 2,
the reconfiguration graph Ry (G) is connected.

Proof. Let GG be a graph of maximum degree A, let £ > A 4 2 be an integer and «, 3
be two k-colorings of G. The proof goes by induction on the number of vertices of G.
The result obviously holds if n = 1. Otherwise, let v be any vertex of G and let o/, 3
be the colorings induced by « and § on G —v. By induction there exists a recoloring
sequence o 1= o/, ay,...,ap, = ' from o/ to " in G —v. Let us show how to extend
this recoloring sequence to a sequence from « to 8 in G. As long as no neighbor of v
gets recolored, or if a neighbor of v is recolored to a color distinct from the current
color of v, the sequence is the same in G — v and G (the initial color of v is a(v) and
does not change). Suppose then that a neighbor u of v gets recolored at step i to
a;(v), the current color of v. Since v has at most A neighbors, there are at most A + 1
distinct colors in the closed neighborhood of v (in «;). Hence there is a color that we
can recolor v with right before recoloring u to «;(v). The obtained coloring is proper

and we can proceed with the rest of the sequence. At the end of the sequence we can

36 Chapter 2. Introduction to graph recoloring

recolor v to its target color 3(v), since all other vertices have their target color and

is proper. This gives a sequence from « to 3, as needed. O

Suppose now that we are given a graph G and an integer k such that Ry (G) is
connected. Then the graph G is said to be k-mizing. Another well-studied question,

which is also central in this thesis, is the one of the diameter of Ry (G):

k-COLOR DIAMETER
Input: A graph G and an integer k such that G is k-mixing.
Question: What is the diameter of Ry(G)?

This last problem can be understood as follows: what is the maximum length of
a reconfiguration sequence transforming a proper k-coloring of G into another, over
all possible pairs of proper k-colorings of G? Note that since the number of such
colorings is exponential, it is often impossible in practice - or at least very difficult -
to give an exact answer to the k-COLORING DIAMETER problem. We focus on finding
bounds for the diameter, usually in terms of the number n of vertices of the input
graph. Obviously we always assume in this chapter that the input graph G and the
integer k satisfy k > x(G). A k-coloring of a graph G is frozen if the k-colors appear
in the closed neighborhood of every vertex of G, such that no valid reconfiguration
operation can be performed starting from this coloring. Note that a frozen coloring is

an isolated vertex of the reconfiguration graph.

2.3 From statistical physics to graph theory: Glaubers

dynamic

In this section we motivate the main questions of the graph recoloring problem
mentioned previously by describing the link between graph recoloring and statistical
physics. More precisely, we explain how the study of a particular Monte-Carlo Markov
Chain, the Glaubers dynamic, lead to the study of the graph recoloring problem from

a purely graph-theoretic point of view.

Anti-ferromagnetic Potts model at zero temperature. The study of graph
recoloring was initially motivated by enumeration and efficient sampling of proper
colorings (even though it is also interesting from a purely combinatorial point of view).
In particular, this latter problem is of interest in statistical physics for the study of
the so-called anti-ferromagnetic Potts model at zero temperature. From a high level
perspective, this model describes interactions between particles in a system whose
temperature tends to 0K. This system is represented as a (not necessarily finite)
graph G = (V| E) where each vertex represents a particle and the presence of an
edge (z,y) € E indicates that the particles and y are close enough to each other to
interact. Furthermore, each particle x € V is in a state o(v), chosen among a finite

set of possibilities @ := {1,2,...,¢}. This state is drawn at random for each particle

2.3. From statistical physics to graph theory: Glaubers dynamic 37

and depends in particular on the states of its neighbors. Given a state o(z) for each

particle z the energy of the system is described by the following formula:

E(U) =-J Z 50(z),a(y) (21)
(z.y)€E(G)

where J < 0 is a constant (the case J > 0 corresponds to the ferromagnetic model
which is outside the scope of this thesis) and 6, (5 o(y) = { Lif U(x)': o)
0 otherwise

To put this equation in words, it means that two neighboring particles contribute
to the increase of the energy of the system if and only if they are in the same state.
Given the temperature T of the system, the probability for the system to be in the
state o is proportional to e%m. Hence, when the temperature 7" tends to 0, the
probability to be in a state where any two particles interact is almost null. At zero
temperature the system is completely "calm" and its energy is minimum. The states
that minimize the energy of the system are the feasible states and each such state o
satisfies E(o) = 0. It follows from the definition of the energy that for every feasible
state o and every two neighboring particles (z,y) € E(G), we have o(z) # o(y). If
we interpret the states of () as colors, the set of feasible states of the system at zero
temperature coincides exactly with the set of all proper ¢-colorings of the graph G
that represents this system. The study of the feasible states is of central importance
for the anti-ferromagnetic Potts model and it is of particular interest for statistical
physicists to be able to sample these states (and hence sample proper colorings) at
random. Indeed, since the number of proper colorings of a graph is usually exponential
in the graph size, computing and enumerating all the feasible states of the system
is too long. Sampling these states can be seen as taking a "snapshot" of the system
and allows for the study of their properties and the transitions between them. A way
to do so is through the use of a seemingly simple stochastic process known as the
Glauber dynamics. In order to properly introduce the Glauber dynamics, we first need

to state a few definitions and basic results about Markov chains.

Markov chains. A (finite, discrete-time) Markov chain (X):>o is a sequence of

random variables over a finite state space () that satisfies the Markov property:
PrX;=z|Xi1=x-1,... Xo=20) = Pr(Xy =2 | X4o1 = 24-1) (2.2)

Equivalently, a discrete-time Markov chain can be seen as a random walk over ()
where the probability of moving to some state at time ¢ > 0 depends only on the state
the walk is in at time t — 1. Such a stochastic process is often described as being
"memoryless": the successive states xg,x1,...,x;—1 reached by the chain before the
state z; have no impact on the probability of the transition at time ¢. Hence the
probabilities of transitions can be described by a single [Q)] x || matrix P. In what

follows we denote the probability to go from the state x to the state y in one step by
P(z,y).

38 Chapter 2. Introduction to graph recoloring

A Markov chain can be equivalently represented as a directed and weighted graph
whose vertex set is () and such that there is an arc from the state x to the state
y if the probability of transitioning from z to y is positive. The weight of the arc
(z,y) is the probability of transition P(z,y). Note that the transition matrix P is
the weighted adjacency matrix of this graph. Let mg denote the initial probability
distribution: for every z € Q, mo(x) is the probability of being in the state x at the
beginning of the walk. Furthermore, we denote by m; the distribution obtained after ¢
steps from mg for t > 0. It is not hard to see that the following holds (see for instance
[70]):

7y = P'mg vt >0 (2.3)

A distribution is stationary if it satisfies m = Pw. In other words, if a Markov chain
reaches a stationary distribution 7 at steps ¢y then it satisfies m; = my, for all ¢ > .
A chain is reversible if it satisfies P(x,y) = P(y,x) for all z,y € Q). A simple example

of stationary distribution is given by the following folklore result:
Proposition 1. The uniform distribution of a reversible Markov chain is stationary.
A Markov chain (X);>¢ is ergodic if it satisfies the following:

o It is drreducible: for any two z,y € Q), there exists ¢t > 0 such that P'(z,y) > 0.

Equivalently, the corresponding graph is strongly connected.

o It is aperiodic: for every x € (), there exists a ty such that for every ¢t > tg we
have P'(z,z) > 0.

Finally, we need the following classical theorem before we can proceed:

Theorem 10. An ergodic Markov chain with transition matriz P has the following

properties:
o it has a single stationary distribution 7 that satisfies w(x) > 0 for every x € Q)

e for any initial distribution my the distribution after t steps converges to the
stationary distribution : tli+moo Pirg=m
Glauber dynamics. Let G = (V, E) be a graph and k > 0 be an integer. In our
setting, the state space () is the set of all proper k-colorings of G (recall that proper
colorings correspond to feasible states defined earlier in this section). The Glauber
dynamics is the algorithm that defines the stochastic process of transition from a

proper coloring «; to another as follows:
1. Choose a vertex v € V and a color ¢ € [k] uniformly at random.

2. Let 8 be the coloring obtained by changing the color of v to ¢. If 3 is a proper

coloring of GG then set ayy1 := 5 and set ay41 = oy otherwise.

2.3. From statistical physics to graph theory: Glaubers dynamic 39

Since at most one vertex is recolored at each step, the Markov chain defined by the
Glauber dynamics corresponds to a random walk on the k-reconfiguration graph of
G Ri(G). Let us denote by P the transition matrix of the corresponding Markov
chain. Note that by step 1 of the process described above, we have P(«,) = ﬁ
for any two proper colorings a, €) and thus the chain is aperiodic (since the
probability of recoloring a vertex with its current color is always strictly positive) and
reversible. In particular this latter property implies by Proposition 1 that the uniform
distribution is stationary. Finally, if Ry (G) is connected then the chain is ergodic:
by Theorem 10 the uniform distribution over the proper colorings of G is the only
stationary distribution and the Markov chain converges to it, starting from any proper
k-coloring. In other words if Ry(G) is connected then by simulating the Glauber
dynamics process "long enough', one can get as close as the uniform distribution as
desired an thus sample the proper colorings of the input graph almost uniformly at
random. Hence the two following questions have been at the center of attention of the

recoloring community for the last decade:

1. For which value of k is Ry (G) connected?

2. How fast can we reach the stationary distribution of the Glauber dynamics

Markov chain?

In order to answer the second question we first need to be able to assess the distance
between two distributions. There are several way to do so but the classical choice
is usually the total variation distance. We refer the interested reader to [70] for
more details about distances. The total variation distance ||u — v||7y between two

distributions g and v over () is defined as follows:

ln = vllrv = mazacalu(A) —v(A)| (2.4)

which simply corresponds to the maximum difference of probabilities between v and
1 among all possible events. Using this measure we can now formally define what
being "close enough" from the stationary distribution means. The mixing time 7 is

the smallest integer ¢ after which 7, is at a distance at most % from m:
. 1
T=min{t >0:||m — 7|y < Z} (2.5)

Note that the constant % is arbitrary and that any constant less than % also yields
a valid definition for the mixing time (any such constant ensures that m; converges
exponentially fast to 7 after time 7). If the mixing time is bounded by a polynomial
in |V| the chain is rapidly mizing and this gives an efficient sampling algorithm.

Early works towards the Glauber dynamics focused on this mixing time and studied
the value of k for which Ry (G) is trivially connected (typically k& > A + 2 as shown
by Theorem 9). Jerrum [65] and independently Salas and Sokal [84] showed that the
Glauber dynamics Markov chain is rapidly mixing for £ > 2A. In the same paper,

Jerrum actually formulated a conjecture that is still widely open today:

40 Chapter 2. Introduction to graph recoloring

Conjecture 1. The Glauber dynamic of a graph G is rapidly mizing for k > A(G) + 2.

The first improvement on the 2A bound was given by Vigoda in [93]. In this paper,
Vigoda studies the flip dynamic, which instead of modifying the color of one vertex at
each step, exchanges the two colors on a Kempe chain of bounded size (the definition
of Kempe chains is given in Section 1.2). He shows that this Markov chain is rapidly
mixing and this implies that the Glauber dynamics mixes in time O(n%klog(n)log(k))
provided that k > (11/6)A. It remained the best known bound for more than ten
years until Chen et al. improved it [32] to (11/6 — €) where € > 0 is a constant
independent from A. This is where the results towards Jerrum’s conjecture in the
general case stand today, still leaving an important gap with regards to the A 4 2
bound.

It is only more recently that the recoloring problem was considered from a purely
combinatorial and graph theoretic point of view, inspired by works of Heuvel [57] and

Bonsma and Cerceda [22, 31] which we describe in the next section.

2.4 Diameter of the reconfiguration graph and Cereceda’s

conjecture

As seen in Section 2.3, the graph recoloring problem was initially mostly studied
with a number k of colors that is large enough compared to A to ensure that the
k-reconfiguration graph is connected (and hence ensure that the Glauber dynamics
Markov Chain is ergodic). It is only in the early 2000’s that the connectedness of the
reconfiguration graph was compared to other graph parameters that are intimately
linked with graph colorings, in particular the chromatic number and the degeneracy.
These new studies raised the following question that used to have a trivial answer
when considering a high number of colors: what is the smallest number of colors
that is needed to ensure that Ry (G) is connected? Which impact does lowering the
number of colors have on the diameter on the reconfiguration graph? If the graph is
not connected what is the "structure" of its connected components? In this section,
we describe the first fundamental results obtained toward these questions and explain
how they lead to Cereceda’s conjecture, which is still one of the main topic of interest
of the recoloring community today. We then focus on the related problem of finding
linear transformations between colorings which is one of the main question studied in
this thesis.

Chromatic number. Since we only consider proper colorings the study of the k-
reconfiguration graph of a graph G only makes sense when we allow at least k > x(G)
colors. Since x is defined as the smallest number of colors needed to properly color a
graph it is not hard to come up with examples for which the connected components
of Ry (G) are "small" and in some extreme cases are single vertices (the most obvious
example being the one of cliques for which any x-coloring is frozen). A maybe more

interesting example given by Cereceda in his thesis [31] is the case of 2-colorable

2.4. Diameter of the reconfiguration graph and Cereceda’s conjecture 41

graphs. Given such a graph G and a proper 2-coloring of GG, the only valid recoloring
that can be applied is to change the color of an isolated vertex. It follows that if G
has p isolated vertices and ¢ non trivial connected components, then Rz(G) has 24
connected components each of which is a hypercube of dimension p. Indeed in each
connected component of the reconfiguration graph, the colorings of the non-trivial
components of G are frozen and there are exactly two proper colorings for each such
component. Furthermore, the colorings of the p isolated vertices of G can be seen as
a vector of dimension p with entry {0, 1}, two colorings being adjacent if they differ
on exactly one coordinate of the corresponding vector (since isolated vertices can be
recolored freely). It follows that each connected component of Ry (G) is a hypercube
of dimension p.

Note that if we allow one more color (if we consider R3(G)), this simple analysis
completely breaks and there is a priori no reason why the reconfiguration graph should
not be connected. Hence the following question: can we find an expression f(x)
such that for any graph G and for any k > f(x), the reconfiguration graph Ry (G)
is connected? Somewhat counter-intuitively, the answer to this question is negative.

Cereceda [31] proved the following:

Proposition 2. For any integer k > 0 there exists a graph G such that x(G) = 2
and Ry(G) is not connected.

Proof. Let L be a complete bipartite graph minus a perfect matching with bipartition
(A, B) such that |A| = |B| = k. Let uq, ..., ux denote the vertices in A and vq,..., v
denote the vertices in B such that for every i < k, v; is the only non-neighbor of w;.
Consider the k-coloring « of Ly such that for every i < k, a(u;) = a(v;) = i. This is
a proper coloring of Ly, and it is frozen since the whole set of color appears in the

closed neighborhood of each vertex. O

Degeneracy. The fundamental parameter that has been considered for the study of
the k-COLOR-PATH and the k-COLOR-MIXING problems is the degeneracy of the input
graph. It is a well-known fact that for any graph G, the chromatic number of G is
bounded by d(G) + 1 (see the sketch of proof in Section 1.1.2). However, unlike the
chromatic number, the degeneracy was proven to be a good parameter to describe the
structure of reconfiguration graphs. The following result was shown independently in
[38] and [22]:

Theorem 11. For any graph G and any integer k > d(G) + 2 the reconfiguration
graph Ri(G) is connected.

Proof. The proof is the same as the the proof of Theorem 9, except that the induction

is applied on G — v where v is a vertex of degree at most d. O

Since the maximum degree of a graph is an upper bound on its degeneracy, it
immediately follows from Theorem 11 that Ry (G) is connected for any k > A(G) + 2.

It is not hard to see that this result is best possible. Consider a clique on n vertices:

42 Chapter 2. Introduction to graph recoloring

such a graph has degeneracy n — 1 and any n coloring of this graph is frozen.

Due to its inductive nature we can easily count the number of recolorings made by
the algorithm described in the proof of Theorem 11. When extending the recoloring
sequence from G-v to G the vertex v is eventually recolored at each step, doubling
the size of the sequence. This simple analysis shows that this algorithm performs at
most 2" recolorings to reach any coloring of GG starting from any other. This yields
the first upper bound on the diameter of R (G). Hence the question that has been at
the center of focus of the recoloring community for the last decade: is it possible to
find a better general upper bound on the diameter of the reconfiguration graph? In

his seminal thesis, Cereceda [31] conjectured the following:

Conjecture 2. For any graph G on n vertices and any integer k > d(G) + 2, the
diameter of Ri(G) is at most O(n?).

Originally this conjecture was first formulated in [22]. In this paper, Bonsma and
Cereceda investigated the complexity of the k-COLOR PATH problem and obtaind tight

results:

Theorem 12. For any 3-colorable graph G, 3-COLOR-PATH can be solved in polynomial

time. Furthermore, the diameter of a connected component of R3(G) is at most O(n?).
As for the negative side, they show that:
Theorem 13. For every integer k > 4, k-COLOR-PATH is PSPACE-complete.

As the graphs constructed in the proof of Theorem 13 are planar and bipartite,
they obtain straightforwardly that k-COLOR-PATH remains PSPACE-complete even for
planar graphs and 4 < k < 6, bipartite graphs and k& > 4 and planar bipartite graphs
when k = 4.

The most obvious certificate for a reconfiguration problem, and more particularly for
the REACHABILITY problem, is the reconfiguration sequence itself as one only has to
check that every configuration in the given sequence is valid and that two consecutive
configurations are indeed adjacent. Hence showing that every reconfiguration sequence
has polynomial length, or in other words that the reconfiguration graph has polynomial
diameter immediately yields that the considered problem belongs to NP. Following
the assumption that NP = PSPACE, Theorem 13 implies that there exist instances
of k-COLOR-PATH for which Ry (G) does not have polynomial diameter. Bonsma and

Cereceda conclude their work by constructing such instances and show that:

Theorem 14. For every k > 4, there exists a class of graph such that Ri(G) has
super-polynomial diameter. Furthermore for 4 < k < 6 these graphs may be taken to

be planar and for k = 4 these graphs may be taken to be planar and bipartite.

In their construction proving Theorem 14, they observe that the main obstacle
for obtaining reconfiguration graphs of planar graphs or planar bipartite graphs with

super-polynomial diameter for larger value of k seems to be the degeneracy of the

2.4. Diameter of the reconfiguration graph and Cereceda’s conjecture 43

considered graph classes (which is 5 and 3 respectively). This led them to conjecture
that for any graph G and any integer k > d(G) + 2 it is not possible to find such
graphs. In other word the reconfiguration graph is connected for such value of &
(following from Theorem 11) and should have polynomial diameter. Let us remark
that Conjecture 2 was initially stated with a cubic bound in [22] and was then stated
as it is known today with a quadratic bound in [31]. The only clue that then led to
conjecture a quadratic bound was another result of the same authors showing that for
any k > 2d(G) + 1 the reconfiguration graph R (G) has diameter at most O(n?) and
the fact that no counter-example was known.

This conjecture has received a considerable amount of attention in the last decade.
Despite much effort it was only proven to be true in the general case for d = 1 (trees)
[19] and then later for d = 2 for graphs of maximum degree three [44]. Hence the
conjecture is still widely open. However, Bousquet and Heinrich [27] recently made a
major breakthrough showing that the diameter of Ry o(G) is at most O(n4!) and
thus is indeed polynomial. They in fact also obtained general results when the number
of allowed color is higher than d + 2:

Theorem 15. Let d, k be integers and G be a d-degenerate graph. Then Ry (G) has

diameter at most:
o Cn? ifk>3(d+1) (where C is a constant independent from k and d),

o ConlVelifk > (14€)(d+2) and 0 < e < 1 (where Ce is a constant independent
from k and d),

o (Cn)*Y for any d and k > d+ 2 (where C is a constant independent from k
and d).

Note in particular that the diameter of Ry (G) indeed becomes quadratic when
k > 2(d(G) +1). Furthermore, Cereceda’s conjecture has been proven to be true for
some particular graph classes such as planar bipartite graphs [27], chordal graphs
[19] and then generalized to bounded treewidth graphs [15] (the proof for the case of
bounded treewidth graphs was recently simplified by Feghali in [40]). Planar graphs
have also been extensively studied in terms of graph recoloring in the last few years:
the first subexeponential bound for the diameter R7(G) was given in [39] and was
improved to a polynomial bound of order O(n%) as a direct consequence of Theorem
15. Note that Theorem 15 also yields that for every k£ > 9 the reconfiguration graph
Ri(G) of a planar graphs G has quadratic diameter. This result on the smallest
known value of k for which reconfiguration graphs of planar graphs have quadratic
diameter was improved in [42] where the author shows that for every planar graph G
and every k > 8, Ry (G) has actually a diameter of at most O(n - polylog(n)). This
gives hope that the bound on the diameter of R7(G) can still be improved: it would
indeed come as a surprise that the diameter of the reconfiguration graphs of planar
graphs undergoes a jump from O(n®) to subquadratic when allowing the use of just

one more color. Some sketch of proofs of results mentioned in this section are given in

44 Chapter 2. Introduction to graph recoloring

Chapter 3.

Let us conclude about results toward Cereceda’s conjecture by underlining the fact
that if the conjecture is true then this result is best possible, in the sense that there
exist (d + 2)-colorings of a d-degenerate graph G which are at distance Q(n?) in
Ri+2(G). Consider the two 3-colorings of a path where vertices are colored from left
to right with respectively colors 1, 2, 3 (and where this pattern repeats) and colors 3,
2, 1. Tt was shown in [19] that at least Q)(n?) recolorings are needed to transform one
into the other.

2.5 Linear transformations between colorings and our

contributions.

As seen in Section 2.4, Cereceda’s conjecture (Conjecture 2) was shown to be true (and
tight) in some particular cases. Bousquet and Heinrich provided the first polynomial
bound O(n?*1) for d-degenerate graphs with d + 2 colors in Theorem 15. Allowing
for more colors above the d 4+ 2 threshold lowers the number of recoloring needed to
go from one coloring to another, as seen for instance in the case of planar graphs.
Hence the following question: what is the minimum number of colors needed to ensure
that the diameter of the reconfiguration graph is linear? Note that one cannot hope
for a smaller diameter, as a linear number of recolorings is always needed to go, for
instance, from a coloring to one of its permutations.

By carefully analyzing and adapting the algorithm of Dyer et al [38], Bousquet
and Perarnau showed in [29] that it also yields a general bound to obtain linear

transformations between colorings:

Theorem 16. Let G be a d-degenerate graph. The diameter of the (2d + 2)-reconfiguration
graph of G is at most (d + 1)n.

It follows that if G is a d-degenerate graph, the diameter of Ry, o(G) is polynomial
and the diameter of Rag42(G) is linear. It has also been shown that there exists some
d-degenerate graphs G for which diam(Rq42(G)) = Q(n?). However, there is no
known example for which the bound given by Theorem 16 is tight. This raises the
following question: how many additional colors are needed above the d 4 2 threshold
to obtain a linear diameter for the reconfiguration graph? As far as we know, the
answer to this question might as well be 1.

Results toward this line of study are relatively sparse and often come as corollaries of
articles concerning Cereceda’s conjecture. Linear transformations were mostly studied
for their own sake for planar graphs. In particular in the last few years, several
papers successively improved the 2d 4+ 2 (i.e 12, since planar graphs are 5-degenerate)
bound for this class. The best result today is due to Feghali and Dvorék [37] who
showed that the diameter of Rio(G) is at most 7n and that R7(G) has diameter

at most 8n if GG is planar and triangle-free, resolving the problem for this class of graphs.

2.5. Linear transformations between colorings and our contributions. 45

Our contributon. The main contribution of this thesis concerning graph recoloring
problems is to continue in this line of work and study other classes of graphs for
which we can prove linear diameter of the reconfiguration graph with few extra colors
above the d + 2 threshold. First, we introduce a new proof technique along with an

algorithm to show the following:

Theorem 4. Let G be a d-degenerate chordal graph of maximum degree A. For every
k > d+4, the diameter of Ri(G) is at most Op(n). Moreover, given two colorings

c1,¢2 of G, a transformation of length at most Op(n) can be found in linear time.

The algorithm is described in Chapter 4. The results presented in Chapter 4 were
obtained with Nicolas Bousquet and were accepted at the 27th Annual European
Symposium on Algorithms (ESA), which was held in Munich in September 2019. The

full paper is available on arXiv [26].

We then make a carefull study of the algorithm of Bousquet and Perarnau given
in Theorem 16 and show that it actually achieves a linear number of recolorings for

graphs of treewidth 2 with 5 colors, closing the problem for this class of graphs:

Theorem 5. Let G be graph of treewidth at most 2 and k = 5. There exists a constant
c such that, for every pair of 5-colorings o, 8 of G, there exists a transformation from

« to B recoloring each vertex at most ¢ times.

The proof of this result is given in Chapter 5. The results presented in Chapter
5 were obtained with Nicolas Bousquet and Marc Heinrich and were accepted for

publication in Discrete Mathematics. The full paper is available on arXiv [7].

Before stating formally our results and diving into the proofs, we describe in the
next chapter the main proof techniques that have been used to obtain results toward
- and sometimes prove - Cereceda’s conjecture in particular cases. As will we see,
most of the recent works make use of similar ideas that revolve around finding a nice
way to "peel" the input graph as one can do with a degeneracy ordering. In the next
chapter, we describe and illustrate these techniques with several examples taken from
the literature. We will see that although these techniques may be very efficient to
prove quadratic bounds for the diameter of reconfiguration graphs with few extra

colors, most tend to fail when one wants to prove linear bounds.

47

Chapter 3

Proof techniques for graph

recoloring

Many existing results toward Cereceda’s conjecture make use of similar proof techniques.
In this Chapter, we identify three different strategies that have been used several
times and describe them through sketch of proofs. We also discuss whether these
techniques can be refined to obtain linear bounds. We conclude this Chapter by a
brief description of the very few existing proofs of linear bounds for planar graphs,

and then describe our techniques.

3.1 Induction based techniques

The idea behind induction based techniques is to refine the algorithm given in Theorem
11 as follows: instead of removing a single vertex (of degree at most d) at each inductive
step, try to remove a subset S of vertices as large as possible. Then recolor the graph
induced by V(G) \ S, and adapt the obtained sequence to a sequence for G. Choosing
the set S as large as possible limits the number of inductive steps, and thus reduces
the total number of recolorings. However, the set S must satisfy several properties:
the vertices in S must have small degree in V(G) \ S to ensure that the recoloring
sequence obtained by induction on G — S can be extended to S, and the graph induced
by S must be sparse (ideally an independent set, as we will see through an example)

so that recolorings of vertices in S do not conflict between each others.

Graphs with bounded maximum average degree. The arguably simplest proof
that makes use of this idea to obtain a polynomial bound is the one of Feghali for the
case of graphs of bounded maximum average degree. The mazimum average degree of
a graph G is the maximum average degree of a graph H taken over all subgraphs of

G, in other words:

mq(G) = maa:HCG{W} — mal‘HCG{ Zve|\;/(€ll);§1’ﬁl(v) }

In [42], Feghali shows the following:

48 Chapter 3. Proof techniques for graph recoloring

Theorem 17. Let myq and k be positive integers, k > mq+ 1. For every e > 0 and
every graph G with n vertices and mazimum average degree mq — €, there exists a
constant ¢ = c(mg, €) such that Ri,(G) has diameter O(n°).

The maximum average degree of a graph is related to its degeneracy. Indeed, it is
not hard to show that for any graph G, d(G) < my(G) < 2d(G) (see for instance [36]).
Note that Theorem 17 was first proved by Bousquet and Perarnau in [29]. Althought
their proof makes use of similar ideas it is quite more intricate, hence we chose only
to sketch Feghali’s proof here. A sketch of the proof of Bousquet and Perarnau can
be found in Appendix A.1.

The idea of Feghali is the following: instead of peeling the graph one vertex at
a time, one can delete an independent set at each step. Let I denote the deleted
independent set. When adapting the recoloring sequence of G — I to a sequence of G,
the recolorings of any two vertices in I are independent from each other (since a a
deleted vertex only needs to be recolored whenever one of its neighbor is). However it
is not possible to take any independent set I of GG: each vertex v € I must have degree
at most myg — 1 in G — I to ensure the existence of an available color to recolor v when
needed. Combining these two ideas leads to the following algorithm: (i) compute
an independent set composed of vertices of degree at most d — 1 of maximum size
and delete it from the graph, and (i) recolor the remaining graph by induction and
adapt the obtained sequence to a sequence of G as done in the proof of Theorem 11.
Since the input graph G satisfies my(G) < mg — €, it contains an independent set [
satisfying the condition in (7) of size at least a - n for some constant a > 0 depending
only of mg and €. Since each vertex in [is recolored only when one of its neighbor is, it
is recolored at most f(n) < (d—1)f((n—an))+ 1 times (the term +1 corresponding
to the last recoloring of the vertex to its target colors). The claim follows by the

master theorem.

Let us now briefly discuss why it would be very difficult to obtain linear bounds
using the same kind of technique: In both cases, the algorithm removes a part of the
graph of linear size, recolor the rest to obtain some desirable properties (actually the
target coloring in Feghali’s case) and then adapt this sequence for the whole graph
(using assumptions on the degree of the deleted vertices). Removing a subgraph of
linear size at each step is best possible, and thus one cannot hope for linear bounds
without more control on the procedure recoloring the remaining graph. However,
combining this idea and a degeneracy ordering, Feghali achieved an almost linear

bound O(n - polylog(n)) for the 8-reconfiguration graph of planar graphs in [42].

3.2 Identification technique

Let G be a graph and u, v be two vertices of G. The graph obtained by identifying u and
v into a new vertex w is the graph G’ on the vertex set V(G') = V(G) \ {u,v} U{w}

3.2. Identification technique 49

and such that for every z,y € V(G') \ {w}, (z,y) is an edge of G’ if and only if it
is an edge of G, and Ng/(w) = Ng(u) U Ng(v). Let a be a coloring of G such that
a(u) = a(v). The coloring induced by « on G’ is the coloring o’ such that for every
r # w, d(x) = a(z), and o/ (w) = a(u) (= a(v)). Note that o/ is a proper coloring
of G'.

With these definitions at hand let us briefly explain the wertex identification
technique. Let G be a graph, a, 8 be two colorings of G and let u,v € V(G) be two
non-neighbors. Suppose that after a number of recolorings, one is able to obtain a
coloring o’ such that o/(u) = o/(v) and a coloring 3’ such that 8'(u) = '(v). Then,
let G; be the graph obtained by identifying v and v into a new vertex w and oy, £1
be the colorings induced by o/ and 3 on G respectively. Since G has one less vertex,
a sequence S of recolorings from a7 to 81 can be found by induction. This sequence
can be turned into a sequence from o’ to 5’ in G as follows: each time the vertex w
is recolored to some color ¢, replace this recoloring by two consecutive recolorings of
the vertices u and v to ¢. Since N(w) = N(u)U N (v) and since every coloring in S
is proper, the sequence obtained for G is also a valid sequence. Since by supposition
there exists a sequence from « to o’ and a sequence from 5’ to 3, we obtain a sequence
from o to 8 in G.

The efficiency of the vertex identification technique relies on two points: first, when
dealing with particular graph classes, the graph obtained after identifying v and v
must stay into the same class to apply induction. Secondly, the number of steps
needed to recolor u and v with the same color must be constant, in order to obtain a
sequence of quadratic length from « to 8. In what follows, we illustrate this technique

by sketching a proof of Bonamy et al. [19] on chordal graphs.

Chordal graphs. The class of chordal graphs is very well-structured and has many
known equivalent definitions and decompositions. In particular, it is well-known that
chordal graphs admit a tree decomposition where every bag is a clique (see for instance
[47]), also called a clique-tree. Let us sketch how Bonamy et al. make use of this

decomposition theorem in order to prove the following in [19]:

Theorem 18. Let G be a d-degenerate chordal graph on n vertices. For any integer
k > d+ 2, the diameter of R,(G) is O(n?). Furthermore, for any integer d > 0
and n > 0 there exists a d-degenerate chordal graph such that Rgi2(G) has diameter
O(n?).

Recall that a chordal graph is d-degenerate if and only if its clique number is d + 1.

The first step consists in proving the theorem for the case where G is a clique:

Lemma 1. Let C be a clique on n vertices and o, 3 be two (n + 1)-colorings of C.
There exists a recoloring sequence from « to B where each vertex is recolored at most

twice.

50 Chapter 3. Proof techniques for graph recoloring

Proof. Let o and 8 denote the initial and target colorings respectively. We construct
a partial orientation of G as follows: if u is a neighbor of v such that a(u) = 3(v),
we orient the edge (u,v) from v to u. In other words, the arc (v,u) indicates that
the vertex u prevents the vertex v to be recolored with its target color. Since G is a
clique, each vertex has out-degree at most one and this orientation of G is a collection
of directed paths and cycles. First consider a directed path P: pick the vertex of
out-degree zero of P and recolor it to its target color, then continue with its unique
in-neighbor. Then consider a cycle C' and pick any vertex of v of C: since v has
degree n — 1 and there are n + 1 colors, there exists a color that v can be recolored
with. Then reconstruct the orientation as before: the in-neighbor of v in the previous
orientation now has out-degree 0. In other words, the set of vertices in C' forms a
path in the new orientation and can be treated as previously. It follows that o can be

transformed into 8 by recoloring each vertex at most twice. O

Let us now sketch the proof of Theorem 18. Let T" be a clique tree of G such that
all the bags of T' are maximal cliques (it can be obtained from any clique tree by
contracting edges between bags with a strict inclusion relation). Let B be a leaf of T’
and P be its parent in 7. By definition of the clique-tree, V(B) NV (P) < d and there
exists u € V(B) \V(P) and v € V(P) \ V(B). If a(u) # a(v) then recolor u with
a(v) if possible. Otherwise, there exists w € V(B) \ V(P) that is colored with a(v)
(v is complete to V(P) NV (B) which then contains no vertices colored with a(v)).
Since there are d 4 2 colors and V (B) induces a clique on at most d + 1 vertices, there
exists a color that does not appear in N[w] and w can be recolored with it. Then u can
be recolored with a(v). Hence, after applying four recolorings, we have a(u) = a(v)
and S(u) = B(v). Now let G’ be the graph obtained by identifying u and v and let
v’ denote the corresponding vertex. It is not hard to check that G’ is a d-degenerate
chordal graph. Let o’ and 8 be the colorings induced by a and 8 in G’ respectively.
By induction on the order of G, there exists a recoloring sequence from o’ to 3’ in
which each vertex is recolored at most n — 1 times. Finally, a recoloring sequence of
G can be obtained by replacing each recoloring of v’ by two consecutive recolorings
of v and w. This is a valid reconfiguration sequence since N¢/(v') = Ng(u) U Ng(v).
Furthermore, each vertex has been recolored at most 2(n — 1) + 2 times (2 recolorings
per vertex are needed to transform a to o and § to ') and the sequence has length

at most 2n2.

Here, the graph is not exactly peeled, but is rather "folded" vertex by vertex up
until a single clique remains (or a union of cliques if G is disconnected). Once a single
clique is obtained and a sequence for this clique is found, one can start to unfold the
graph and extend the recoloring sequence vertex by vertex as done above. Let us
also stress the fact that the proof in [19] is more involved since it holds for a class of
graph that contains chordal graphs. Note that increasing the number of colors cannot
give a subquadratic bound with the same kind of technique. Going from d + 2 to

d + 3 colors lowers the bound on diam(Ry(G))from 2n? to n? (since then no neighbor

3.3. List recoloring 51

of u needs to be recolored prior to changing the color of u to «(u)). Increasing
the number of colors above d + 3 gives no room for a better bound since the whole
graph needs to be recolored when applying induction. Stronger assumptions would

be needed to ensure that only a constant number of vertices are recolored at each steps.

In Appendix A.2 we discuss the cases of weakly chordal graphs studied by Feghali
and Fiala in [43] and OAT graphs studied by Biedel et al. in [12], as further examples
on how to use the vertex identification technique. Both proofs follow the same path,
which is very similar to the one used by the proof for chordal graphs described above.
It can be summarized the following way: the considered class of graphs admits a
suitable decomposition. Furthermore, two vertices u, v satisfying N(u) C N(v) can
be recolored the same color in few recoloring steps. These two vertices can then
be identified, and the decomposition theorem ensures the membership of the newly

obtained graph to the class.

3.3 List recoloring

Another technique that was proven to be successful comes from the more general
list-coloring setting. Let G be a graph. A list assignment L of G is a function that
associates a list of colors L(v) to each vertex v € V(G). A proper coloring ¢ of G
is a L-coloring if for every v € G, ¢(v) € L(v). The graph G is k-choosable if it
admits an L-coloring for every list assignment L such that |L(v)| = k for every v € G.
The choice number ch(G) of G is the smallest integer k such that G is k-choosable.
Problems related to list coloring have been extensively studied in the literature, see
for instance [36] for a good introduction to the field.

As for graph coloring, we can define the reconfiguration counterpart of the list coloring

problem as follows:

k-L1ST-COLOR-PATH

Input: A graph G, a list assignment L of G such that |L(v)| < k for every
v € V(G) and two L-colorings o and (3 of G

Question: Is it possible to transform « into 8 by recoloring one vertex at a

time while always maintaining a L-coloring of G?

This problem was first defined by Bonsma and Cereceda in [22], and similar
definitions can be found for instance in the survey of Van Den Heuvel [57]. Bonsma and
Cereceda initially introduced list recoloring as a tool for simplifying their construction
of graphs that admit colorings at super-polynomial distance from each others. A way to
design such graphs is to apply "constraints" on vertices, or in other words to construct
the graph so that some vertices can only take few colors at each reconfiguration steps.
Bonsma and Cereceda show that up to adding a clique @ of size k to a graph G, they
can obtain such constraints: In any proper k-coloring of G U @, the coloring of @ is

frozen. Now, one can forbid any vertex v € G to be recolored with ¢ by adding an

52 Chapter 3. Proof techniques for graph recoloring

edge between v and the unique vertex g € @ colored with ¢. This defines a list L(v)
of authorized colors for every vertex v € G, and the problem now reduces to the study
of reconfiguration of L-colorings of G.

Even though the list-recoloring problem was introduced more than a decade ago,
it was first used to obtain polynomial bounds for reconfiguration graphs only very

recently. The technique was first used by Feghali in [41] to show the following:

Theorem 19. Let G be a planar graph on n vertices. Then Rio(G) has diameter at

most n?.
The proof is based on the following lemma due to Thomassen [91]:

Lemma 2. Let G be a planar graph and v be a vertex of G. Let L be a list assignement
such that |L(v)| = 1 and |L(u)| <5 for every vertex u # v of G. Then G admits an

L-coloring.
We can know give the full proof of Theorem 19 as done in [41]:

Proof of Theorem 19. Let a and 8 be two 10-colorings of G. Since G is planar it
admits a 5-degenerate ordering, that is an ordering vy, ..., v, of V(G) such that v;
has at most five neighbors in {v1,...,v;—1} for every i < n. Let £ < n be the smallest
integer such that a(vy) # B(ve). Define a list assignment L of Gy := G[{vy, ..., vn}]
as follows: L(v;) = B(ve) and L(v;) = {1,...,10} \ {a(v;)|i < j} for j > ¢. By
definition of the ordering, L satisfies the condition of Lemma 2 with v = v,. Hence
there exists an L-coloring c. By definition of ¢, recoloring each vertex with its color
in ¢ starting from v, up to vy is a valid recoloring sequence, after which v, is colored
with 3(vg). Note that each vertex of G is recolored at most once in this sequence.

Starting from « and repeating this process at most n times gives a recoloring sequence

from a to B of length at most n?, which concludes the proof. O

This result was then successively improved, up until very recently Dvordk and
Feghali showed in [37] that the 10-reconfiguration graph of a planar graph actually

has linear diameter:

Theorem 20. Let G be a planar graph on n vertices. Then R10(G) has diameter at

most 8n.

The proof of Theorem 20 also makes use of list recoloring, although it does not
directly relies on results from list coloring. Instead, it adapts the celebrated proof
of Thomassen showing that planar graphs are 5-choosable. We give a sketch of this

elegant proof in the next section.

Polynomial version of Cereceda’s conjecture. Let us conclude this section by
briefly discussing the proof of Theorem 15 by Bousquet and Heinrich, which we recall

below:

3.3. List recoloring 53

Theorem 15. Let d, k be integers and G be a d-degenerate graph. Then Ryi(G) has

diameter at most:

o Cn?ifk>3(d+1) (where C is a constant independent from k and d),

o ConlVelifk > (14 €)(d+2) and 0 < e < 1 (where C, is a constant independent
from k and d),

o (Cn)4*Y for any d and k > d+ 2 (where C is a constant independent from k
and d).

This theorem not only gives the best general bound on the diameter of the (d + 2)-
3

reconfiguration graphs of d-degenerate graphs, but also shows that the 5(d + 1)-
reconfiguration graphs of such graphs have quadratic diameters, which is the best
known upper bound toward Cereceda’s conjecture known today. Let us explain roughly
how Bousquet and Heinrich make use of lists to prove Theorem 15. For the sake of
simplicity, we only consider the case where there are k = d + 2 colors.

Let G be a d-degenerate graph on n vertices with degeneracy ordering v, va,...,vp
and let d* (v;) be the neighbors of v; in {vi+1,...,v,} which we denote as the out-
neighbors of v;. Let a, B be two (d 4 2)-colorings of G. Furthermore, each vertex v;
has a list assignment L(v;) of colors it can be recolored with, which initially contains
all of the d + 2 colors.

Recall that the classical way to use the degeneracy ordering is to delete a vertex of
small degree and then to recolor the graph that remains. The key idea of Bousquet
and Heinrich, is to proceed in the opposite direction to avoid the recoloring of the
whole graph at each step. They rather delete the vertices {v;t1,...,v,} and consider
the graph induced by {vi,...,v;}. Then, for each vertex v; with j < i they delete
the colors of N(v;) N{vit1,...,v,} in L(v;). In other words the colors of the deleted
neighbors of v; with j < i are also deleted from the list L(v;). Initially each vertex v;
has at least |[d" (vj)| 4 2 colors in its list (since G is d-degenerate). The same goes
after the deletion of {vjt1,...v,}, since for every color deleted in L(v;) for j <1, at
least one out neighbor of v; is also deleted. This allows to recolor {v1,...,v;} only
without changing the color of the other vertices, avoiding the bottleneck of the proof
of Theorem 11. Note however that since they do not have a total control over the
colors that remain in the list of the vertices {v1,...,v;}, they cannot recolor these
vertices directly to their target colorings, and a few more steps are needed in the
complete proof.

These two examples tend to show that seeking for bounds in the more general
list-recoloring setting may be one of the most promising way to prove Cereceda’s
conjecture and obtain linear bounds. It allows to obtain both general results as done
by Bousquet and Heinrich, but also allows for some fine-grained studies as shown
by Dvordk and Feghali when proving that the 10-reconfiguration graph of planar
graphs has diameter at most 8n. Furthermore it also allows to draw results from
the well-studied field of list-coloring, and thus extends the basic tools one has at its

disposal for the study of recoloring problems.

54 Chapter 3. Proof techniques for graph recoloring

3.4 Proof techniques for linear bounds

As mentioned in Section 2.5 there are few results showing linear bounds for the
diameter of reconfiguration graphs. Apart from Theorem 16 of Bousquet and Perarnau
and the results presented in this thesis, the efforts to find such bounds were focused on
planar graphs. In particular, Dvorak and Feghali gave two different proofs of Theorem

20 that we recall below:

Theorem 20. Let G be a planar graph on n vertices. Then R10(G) has diameter at

most 8n.

Both proof begin in the same way, but have very different means to obtain their
conclusion. The first argument used by Dvorak and Feghali is the following: finding
a linear transformation between 10-colorings of a planar graph reduces to finding a
linear transformation that deletes a color from the graph. By deleting a color, we
mean finding a transformation from a 10-coloring v to a coloring 7/ that uses at most
9 colors, in a linear number of steps.

Suppose that we are able to do so. Let o and 3 be the initial and target 10-colorings
of a planar graph G, and let o/ and /3’ be the two colorings that use at most 9 colors
obtained with this procedure. Up to renaming the colors, we can always assume that
neither o/ nor 3’ use color 10. In particular it means that we are free to recolor any
independent set of G with color 10. By a theorem of Thomassen [92], V(G) can be
partitioned into an independent set I and a set D that induces a 3-degenerate graph in
G. Then we can proceed as follows: from both o and /3’, recolor the vertices in I with
color 10. We can then apply Theorem 16 with the 9 remaining colors to transform the
coloring induced by o’ on V(D) into the coloring induced by 8’ on V(D) in a linear
number of steps. This yields a valid recoloring sequence since the color 10 is never
used, which concludes the proof.

We can now briefly sketch the two different ways to delete a color from the graph
designed by Dvordk and Feghali. In both cases, the authors make use of the more

general list recoloring framework.

Discharging argument. The key idea of the proof is the following: The authors
do not directly try to delete color 10 by recoloring each vertex one time, to a color
different from 10. Instead, they show that color 10 can be deleted from any coloring
by recoloring each vertex at most twice, such that if a vertex is recolored twice it is
first recolored with color 10. This is a seemingly counter-intuitive process, since such
a sequence will first maximize the number of vertices colored with 10, and then delete
this color from the graph. However, it also allow them to show that in a minimal
counterexample G with the corresponding coloring «, the color 10 appears in the
closed neighborhood of every vertex. The authors then strongly make use of this
argument to determine the structure of the minimal counterexample. They then show

that such a counterexample does not exists via a discharging argument.

3.5. Our techniques 55

Thomassen type proof. Being in the list recoloring framework, each vertex v of
the graph is given a list assignment L(v). The authors follow the lines of the proof
of Thomassen showing the 5-choosability of planar graphs. Instead of assigning 10
colors to each vertex, they reduce the number of colors available for the vertices of the
outer-face. This essentially allow them to peel the graph of its outerface while setting
colors aside for the deleted vertices: Consider a vertex v of the outerface f. Before
applying induction, first delete the current color of v and one color ¢ € L(v) different
from 10 from the list of the neighbors of v that are not on the outer-face. This allows
to extend any sequence obtained when recoloring G — v to a sequence for G where v
gets recolored with color ¢ (since color ¢ is not used for the neighbor of v on the inner
faces). There are however many different cases to deal with when applying such a
technique, mainly due to the fact that if too many neighbors of an inner vertex u are
deleted during one step, then too many colors are removed from L(u), which prevents
from applying induction.

In his proof, Thomassen shows that if the color of one vertex on the outer-face is fixed,
he is able to extend this coloring to a list-coloring of the whole graph. One of the
arguably most elegant part of the proof of Dvordk and Feghali is the adaptation of
this argument for graph recoloring. Very loosely speaking they show that if they are
given a recoloring sequence for the vertices of a path of the outerface, this sequence

can be adapted to recolor the whole graph to delete color 10.

Despite both proofs of Dvorak and Feghali develop new techniques, they strongly
make use of the planarity of the input graph. In the first case when using the
decomposition Theorem due to Thomassen [92] and in the second case when making
use of the outerface of the graph. Hence, it seems difficult to reuse such arguments
for other classes of graph. However theses tools can most likely be used further to

improve the bounds on the diameter of the reconfiguration graphs of planar graphs.

3.5 Our techniques

As a conclusion to this Chapter, we briefly mention our proof techniques which are
detailed in the next two chapters. The common denominator of all the proofs we
presented in this chapter is that they are "inherently global". Indeed, using induction
on small subgraphs or identifying vertices always require for the whole graph to be
recolored at each step of the algorithm. Although it is not enough to obtain linear
bounds, list recoloring techniques allow to spare some recoloring steps as one can
actually avoid to recolor parts of the graph by applying restrictions on lists, as it is
done by Bousquet and Heinrich in the proof of Theorem 15.

In the next Chapter, we develop a new technique on chordal graphs which is, on the
contrary, completely local. Roughly speaking, we show how to recolor small parts of
the input graph directly to the target coloring, by only doing small modifications on
the coloring of the neighboring parts.

56 Chapter 3. Proof techniques for graph recoloring

Finally, in Chapter 5, we show that the algorithm designed by Bousquet and Perarnau
for proving Theorem 16 is in some particular cases the best possible. Indeed, we show

that it actually outputs a sequence of linear size for graphs of treewidth 2.

o7

Chapter 4

Linear transformations between

colorings of chordal graphs

The results presented in this chapter were obtained with Nicolas Bousquet and were
accepted at the 27th Annual European Symposium on Algorithms (ESA) which was
held in Munich in September 2019. The full paper is available on arXiv [26].

As mentioned in the previous chapter, Bonamy et. al showed in [19] that for
any chordal graph G on n vertices with degeneracy d, the diameter of Ry2(G) is
at most O(n?). Furthermore, they exhibited in the same paper an infinite family of
d-degenerate chordal graphs for which the diameter of Ry 2(G) is at least O(n?),
showing that the quadratic bound is tight for d 4+ 2 colors. Bousquet and Perarnau
showed that the diameter of the reconfiguration graph is linear when k& > 2d 4 2 colors.
Hence, in the case of chordal graphs, it might be true that the diameter of Ry (G)
is linear whenever k > d + 3. In this chapter, we investigate the following question,
raised for instance in [27]: when does the k-recoloring diameter of d-degenerate graphs
become linear? In particular, this chapter is dedicated to the proof of the following

theorem:

Theorem 4. Let G be a d-degenerate chordal graph of mazimum degree A. For every
k > d+4, the diameter of Ri(G) is at most Op(n). Moreover, given two colorings

c1,¢2 of G, a transformation of length at most Op(n) can be found in linear time.

Note that the bound on k is almost the best possible since we know that this result
cannot hold for £ < d+ 2 as mentioned above. So there is only one remaining case
which is the case k = d 4+ 3.

Question 5. Is the diameter of Ray3(G) at most f(A(G)) -n for any d-degenerate
graph G ¢

In some very restricted cases (such as power of paths), our proof technique can be
extended to k = d 4 3, but this is mainly due to the very strong structure of these
graphs. For chordal graphs (or even interval graphs), we need at least d + 4 colors at
several steps of the proof and decreasing k to d 4+ 3 seems to be a challenging problem.

We also ask the following question: is it possible to remove the dependency on A

to only obtain a dependency on the degeneracy? More formally:

58 Chapter 4. Linear transformations between colorings of chordal graphs

Question 6. Is the diameter of Rq+3(G) at most f(d) -n for any d-degenerate chordal
graph G ¢

Again, the best known result related to this question is given by Theorem 16 and
no better bound is known even in the particular case of chordal graph. Is it possible

to generalize this result to bounded treewidth graphs?

Question 7. Is the diameter of Ryy3(G) at most f(A(G))-n for any bounded
treewidth graph G?

Our proof cannot be immediately adapted for bounded treewidth graphs since
we use the fact that all the vertices in a bag have distinct colors. As we saw in the
previous chapter, Feghali [40] proposed a method to reduce the bounded treewidth
case to the chordal case for recoloring problems. However his proof technique does not
work here since it may increase the maximum degree of the graph. We nevertheless
think that our proof technique can be adapted in order to study other well-structured

graph classes.

This proof technique is very different from the one described in the previous
chapter and is rather technical. Numerous definitions are needed before being able to
prove the four main lemmas leading to Theorem 4. In order for this chapter not to
be too tedious to read, we first start with a detailed outline of proof, focusing on the

particular case of interval graphs.

4.1 Outline of proof: a warm-up on interval graphs.

All along this section, G is a d-degenerate interval graph of maximum degree A. We
denote the size of a maximum clique of G by w and we recall that since G is chordal
we have w =d+ 1.

Let v1,v2, ... v, be a perfect elimination ordering of V. A greedy coloring of
Un, ..., ¥1 gives an optimal coloring ¢y of G using only w colors. The coloring ¢y is
called the canonical coloring of G. The colors ¢ € 1,2..., w are called the canonical
colors and the colors ¢ > w are called the non-canonical colors. Note that the inde-
pendent sets X; := {v € V such that ¢o(v) = i} for i < w partition the vertex set V.
These independent sets are called the classes of G.

Since G is an interval graph, it admits a tree decomposition P = (W, E) where each
bag W € W is a maximal clique of GG, and such that the graph P is a path. We also
choose P so that no two bags are included in each other (see for instance [36] on how
to construct such a tree decomposition). Since P is a path, we can order the bags
Wi, ..., W)y, such that Wy and W)y have degree 1 and (Wi, Wit1) € E for every
i < |W|—1. We aim to show that any (d + 4)-coloring of G' can be transformed into

co by performing at most Oa(n) recolorings.

4.1. Outline of proof: a warm-up on interval graphs. 59

| Qi " Qin

FI1GURE 4.1: Example of blocks in the case A = 3. The nodes represent

cliques of G. The vertices v and w belong to ;. The vertex u does

not belong to @; even if it intersects cliques of @);, and the vertex z
belongs to Q;41.-

4.1.1 Notion of blocks

With the basic definitions and notations at hand, we can now introduce two of the
main definitions that are of central importance in our algorithm, namely the blocks
and the regions.

Consider a vertex v of GG that belongs to some bag W; but does not belong to W;_;.
By definition of a tree decomposition, the bags which contains v must be consecutive
and thus v does not belong to any bag W; with j < i. We say that the vertex v starts
in W;. Since no two bags contain each other, at least one new vertex appears in each
bag when we visit the bags of P from left to right starting from W;. It follows that v
belongs to at most A consecutive bags, and in particular that v ¢ W; 5. The set of
vertices that start in A consecutive bags is a block of G. Let us consider a block @
associated with bags W;, W;i1,..., W;1a_1: we outline the fact that any vertex that
is contained in some bags W) with ¢ < j <4+ A —1 but start in a bag W; with ¢t <1
does not belong to the block Q. The following observation follows directly from the
definition of a block:

Observation 1. Every block of G is a separator of G.

Since furthermore each block is associated to A consecutive cliques, we can easily
introduce the notion of consecutive blocks. The block @' associated with the bags
W, ..., Wjia—1 is consecutive to the block @ associated to the bags Wi,... W; a1
if j =4+ A. In other words, Q' is consecutive to @ if the last bag of @ is adjacent to
the first bag of Q'. We can also easily extend this definition for a set of blocks of any
size: the blocks @1, ... Q; are consecutive if ;11 is consecutive to @Q; for every ¢ < s.

The notions of blocks and consecutive blocks are illustrated in Figure 4.1.

Consider now three consecutive blocks @1, Q2, Q3. By Observation 1, the blocks
@1 and Q3 separates Qo from the rest of the graph. In other words, we have
N[Q2] € Q1 UQ2U Q3. This property, which we refer to as the separation property
is very handy when it comes to recoloring: when recoloring a vertex of (2, one only
has to check that the recoloring is valid in the sub-graph induced by @1 U Q2 U Q3 to
ensure that it is valid for the whole graph G. This property will be extensively used
all along the algorithm.

60 Chapter 4. Linear transformations between colorings of chordal graphs

4.1.2 Vectorial colorings and recolorings

Recall that the class of vertex X; for ¢ < w is the set of vertices colored with ¢ in the
canonical coloring ¢y (which we ultimately want to reach). Given a block @, we denote
by (Q,p) the (possibly empty) set of vertices of class p in the block Q. Given a proper
coloring « of G, we say that the block @ is well-colored by « (or simply well-colored
when « is clear from context) if for every class p < w, the vertices of (Q,p) have the
same colors. Note that since « is a proper-coloring, the color of two classes p # ¢ of a

well-colored block are distinct.

X o2 o > o
X2 3 o —3 o —p Xy
X3 — . o

FIGURE 4.2: Example of a well-colored block in the case w = 3.

Vertices are represented as intervals at the left, the color of a vertex

is given above the corresponding interval. The representation of the
well-colored block as a color vector is given at the right.

The coloring of a well-colored block @) can then be entirely described by a single
vector v of size w, which i-th coordinate is the color of the vertices of (Q,%). The
vector v is referred to as a color vector. We introduce this notion as a tool to simplify
the description of the successive recolorings applied by the algorithm. Indeed, the
atomic operation in our framework is not the recoloring of a single vertex, but is rather
the recoloring of a whole class within a block: when we say that we recolor (Q,p) with
color ¢, we mean that we recolor all the vertices of (@, p) one after the other with color
c in an arbitrary order. Note that if a block @ is well colored with color vector vg

and if ¢ ¢ vg, then recoloring any class (@, p) with color ¢ yields a proper coloring of Q.

4.1.3 Regions

Let us finally introduce the notion of region before showing how the algorithm works.
A region R is simply a set of three consecutive blocks (Qa,Qp,Q¢c). In order to
simplify the notations, we often refer to the three blocks constituting a region as A, B
and C. The region R is well-colored for the color vectors v4, vg, vo if A is well-colored
for v4, B is well-colored for vg and C' is well-colored for v~. We can also consider
consecutive regions: Ro is consecutive to Ry if the first block of Ry is adjacent to the
last block of Rj.

Let us now consider a set of 3AN consecutive cliques of G for some N > 0, starting
with some clique W; for some ¢ > 0 and explain how we make use of all the definitions
introduced above. First, we partition this set of cliques into a set of 3N consecutive
blocks. This set of block can be itself partitioned into a set of N consecutive regions
which we denote (from left to right) as Ry,... Ry. Note that the corresponding
sequence of blocks is as follows: Ay, By,C1, As, By, Co, ... up until Ay, By, Cy. Such

4.1. Outline of proof: a warm-up on interval graphs. 61

3A

+—>
Aq B, Cq Ao By Co Ag B3 C3 We

FI1GURE 4.3: A buffer consisting of 3 consecutive regions Rj, Ra, and
R3 in the case A = 3. The black dots represent maximal cliques of G.
The set of vertices E are the vertices starting in the red clique.

FIGURE 4.4: An example of colorings of the rightmost block of the

buffer C'y and of the vertices of E at the beginning of a step (left) and

at the end of a step (right). The vertices of E are u, v, and w, belong

respectively to X1, Xo and X3 and are initially colored with colors 3,
5, and 2 respectively.

a set of regions is called a buffer. Let W, be the first clique at the right of Cy which
does not belong to Cn and let E the set of vertices that start in W,. An example of
such a partitioning is given in Figure 4.3.

Suppose the following: we started from some d + 4 coloring « of G and after a
few steps of the algorithm, the coloring obtained is proper and satisfies the following

properties:

1. Each vertex starting in a clique at the left of R; is colored with its canonical

color. In other words, we are done recoloring the cliques at the left of R;.

2. The current coloring is such that all the regions from R; to Ry (regions of the

buffer) are well-colored.

3. Each vertex in each clique at the right of Ry is colored with its initial color in

a (and in fact has never been recolored yet).

During one step of the algorithm we are only allowed to recolor vertices of the buffer.
We have two objectives to fulfill: First, at the end of the step, the first clique of Ay
must be colored canonically. The second objective is to "integrate" the vertices in
FE to the buffer. We say that the coloring of Cy fits with the coloring of E if Cy is
well-colored and satisfies the following property: for every color ¢ such that E contains
a vertex of class p colored with ¢ we have v, (p) = ¢. Hence, a step of the algorithm
is done once the color of each class is the same in Cy and E. In other words, the
second objective is to modify the coloring of the buffer so that at the end of the step,
the vertices in E belong to a well-colored block. An illustration of the coloring we
aim to obtain for C'y and E after one step of the algorithm is given in Figure 4.4.
Once we obtain such a coloring, one more clique is colored canonically (the first
clique of Ay, in blue on Figure 4.5). We will never recolor this clique again later on
during the algorithm. Furthermore, the vertices of E along with the vertices that start

in the A — 1 cliques at the left of W, form a well-colored block, which we can integrate

62 Chapter 4. Linear transformations between colorings of chordal graphs

into the buffer. In other word, we "slide" the buffer one clique to the right, and we
can proceed with the next step. Note that since at each step one clique leaves the
buffer and one clique enters the buffer, the number of cliques, and thus the number of
blocks and region within a buffer remains the same all along the algorithm.

As we will see, we need for the regions of the buffer to satisfy a few more properties
rather than just being well-colored. In the next subsection we run one step of the

algorithm on a simple example and detail some of these properties.

Buffer at the beginning of the step Buffer at the end of the step

F1GURE 4.5: The clique that belong to the buffer are the cliques in
the dashed rectangle. At the end of the step, the clique W, enters into
the buffer, and the leftmost clique (in blue) leaves the buffer. During
this step, only vertices that start in a clique of the buffer are recolored.

As a side note, we can already explain why the total number of recoloring made
by the algorithm is linear. The buffer slides one clique to the right at each step, and
thus there are at most O(n) steps. During one step, only vertices that start in cliques
of the buffer are recolored. Furthermore, the buffer is of constant size N (in terms of
number of regions), and thus a vertex is in a buffer during a constant number of steps.
It follows that each vertex is recolored a constant number of times, and thus that the

total number of recolorings performed by the algorithm is linear in n.

4.1.4 Example of recolorings for buffer slides

Let us summarize briefly where we stand before diving into the example. Suppose
that we are at the beginning of step ¢t. The leftmost clique of the buffer is the clique
W; for some i > 0 (as we will see later one it is not necessarily the clique Wyy1 due to
the initialization process). The regions of the buffer are denoted by Ri,..., Ry (and
thus the leftmost clique of the block A; is the clique Wj;). Every region of the buffer
is well-colored, and we denote by v4,,vp, and v¢, the three color vectors of the region
R; for 1 <¢ < N. As in the previous sections, we denote by F the vertices that start
in the first clique W, at the right of Cy. We have two objectives during this step:

1. Obtain the canonical coloring for the first clique of A;

2. Recolor vertices of the buffer so that the coloring of Cy fits with the coloring of
E.

The first objective is obtained easily: indeed, we always require the first region of the
buffer to be colored canonically. In other words, at the beginning of the step we have
va, (1) = vp, (i) = ve, (i) for all ¢ < w. This is one of the properties of the buffer that

we will maintain throughout the algorithm:

Property 1. The region Ry of the buffer is colored canonically

4.1. Outline of proof: a warm-up on interval graphs. 63

Therefore we can focus exclusively on the second objective. Let us go back to the
example of Figure 4.4. Here, we have two things to do in order to have colorings that
fit. First, we have to recolor the vertices in (C,1) (which current color is 5) with 3
and the vertices in (Cy,2) (which current color is 3) with 5. In other word, we have
to permute the color of the classes 1 and 2. Then, we need to recolor the vertices of
(Cn,3) with color 2.

Note that here, none of these operations can be done without taking some precautions.
Indeed, we cannot directly recolor the vertices of (Cy, 3) with color 2, since vertices
of (Cn,3) may have neighbors colored with 2 in the preceding block. Furthermore,
permuting the color of the classes 1 and 2 can only be done as follows: recolor vertices
of (Cn,1) with a color ¢ ¢ {1, 3,5} and such that vertices of (Cx, 1) have no neighbor
colored c¢. Then recolor vertices of (Cy,2) with 5 and finally recolor the vertices of
(Cn,1) with 3. However, we do not know if such a color exists. In order to be able to
fulfill objective 2, we need to apply more constrains on the coloring of the buffer.

Recall that each block is a separator of G and thus that given three consecutive blocks
Qi, Qit1, Qi+2 we have N[Q;] C Q; UQi+1 U Q;+2 (and in particular, for any region
R; we have N[B;] C A; UB; UC; = R;. Hence, in order to have some freedom when
recoloring, we need not too many colors to appear on consecutive blocks. We thus

enforce the coloring of the buffer to satisfy the following:

Property 2 (Continuity property). For every i < N — 1 the colorings of C; and A;y1

are the same, or in other words vo, = va,_

This property can be intuitively understood as follows: when looking at the buffer
from the left to the right, the color of a class can only change in the middle block B of
a region. Let us now come back to our example, and consider the coloring of the whole
region Ry rather than just the coloring of its rightmost block C'y. We will consider
different cases for the coloring of Ry. In order to simplify the notation, we denote

the vertices of class a in a set of consecutive blocks Q;, Qit1,...,Q; by (Qi, ..., Qj,a).

Suppose that the coloring of Ry is the one described in Figure 4.6a. A well-colored
region R; satisfying v4, = vp, = v, is a waiting region. We can first remark here
that it is possible to recolor (By,3) and (Cy,3) with color 2. However, for technical

reasons detailed in the full proof, we need the buffer to always satisfy the following;:
Property 3. The last region Ry of the buffer is a waiting region

Then we cannot recolor By and Cy without recoloring Ay, for otherwise we
obtain a recoloring that does not satisfy Property 2. Thus we need to look further
at the left in the buffer to see which block we can recolor. Let us assume that the
region Ry _1 is also a waiting region, as illustrated in Figure 4.6a. Note that by the
continuity property we have vc, , = va, and since Ry_1 and Ry are both waiting

regions, all there blocks share the same color vector. We can then proceed as follows:

1. Recolor (By_1,...,Cn,3) with color 2.

64 Chapter 4. Linear transformations between colorings of chordal graphs

ug u e
v et v e
w 2 2
° we
AN—1 BN—-1 CN-1 BN ©CnN E AN—1 BN—-1 CN—1 E

FIGURE 4.6: Coloring of the regions Ry_1, Ry and of the vertices in
E at the beginning of the step (a) and after recoloring the class 3 (b).

We obtain the coloring illustrated in Figure 4.6b. Let us show that this is a
valid recoloring operation. We only have to check that no neighbors of the vertices
in (By_1,...,Cn,3) are colored with color 2. The blocks By_; and Cy separates
CN_1,...,Bn from the rest of the graph, therefore only vertices in By_1 and Cy can
have neighbors not contained in By_1,...,Cn,and N[By_1] € Ay_1UBN_1UCN_1.
Furthermore, F contains a vertex of class 3: it follows that N[(Cx,3)] € By UCN UE.
In other words, the clique W, is the rightmost clique of the graph that contains vertices
of (Cn,3). We obtain that N[(Byx_1,...,Cn,3)] € Ay_1U,...,UCN U E. Since no
vertex is colored 2 in this set, the recoloring operation is valid.

A region such that the color of exactly one class differs in blocks A and B is a color
region. In Figure 4.6b, after the recoloring, the region Ry _1 becomes a color region and
the region Ry remains a waiting region. Note that after such a recoloring, properties
1 and 2 of the buffer remain satisfied. The operation consisting into changing the
color of unique class over a set of consecutive block is called a color change.

It still remains to permute the colors of the classes 1 and 2 to obtain a coloring of Cn
that fits with the coloring of E. Assume further that Ry_2 is also a waiting region.
Due to the continuity property, we have vc, , = va,_,, and thus the coloring of
Rpn_2 is completely determined by v4,_,. The coloring or Ry_2, Ry—1 and Ry is
illustrated in Figure 4.7a. Recall that we consider d 4+ 4 = 6-colorings of GG, and note
that colors 4 and 6 are not used in the regions Ry_o, Ry_1 and Ry. In order to

permute the two colors we can then proceed as follows:

1. Recolor (By_2,...,Cn,1) with color 6.
2. Recolor (By_2,Cn—_2, AN_1,2) with color 4.
3. Recolor (Cy_2,...,Cn,2) with color 5.

4. Recolor (Cn_2,...,Cn,1) with color 3.

These four recoloring steps are illustrated in Figures 4.7b, 4.7c and 4.7d. Let
us show that these four recoloring steps are valid operations. As before, E' contains
vertices of class 1 and 2 and thus the closed neighborhoods of (By_2,...,Cn,1)
and (By_2,...,CN,2) are contained in Ay_oU...UCy UE. Since none of these
vertices are colored with either 4 or 6, the steps 1 and 2 are valid operations. Let us
now consider step 3: First note that the closed neighborhood of (Cn_2,...,Cn,2) is
contained in By_sU...UCxN U E. After the step 2, no vertex in By_oU...UCy is

4.1. Outline of proof: a warm-up on interval graphs. 65

«ls|[s)[s] [5][s][s] [5[5][5] === =[s5]|[s]|[6] [s][6][6] [6][6][6] =o=—
w333 |3]3[[3] [3||3||3F— e x|3|[4|[4| [4||3]3] [3]/3]|3F e
s][] [u)l2]l2] [2]l2]l2] e w[n[1][1] [1]|2]|2] [2]|2][2] e
An_o By o Cn_2 Ax_q By On_1 TV By Cn B An_2 By_2 On_2 An_1 Byn_1 On_1 Ay By Oy E
(a) (B)
<[51es] [elelfe] [el[el[s] - =[E|[G1E] GEE] EEE]
x[3|[a|5] [5||5|[5] [5||5]5—r e =|3|[a|5] [5||5|[5| [5]|5] 5 —- e
w111 [l 20[2] [202l2] == sl1l[1[1] [1ll2]l2] [2]l2| 2] we=
ANz Byo3 Onoz An-1 Bxoi Ono1 AN By Ox & Aoz Byo2 Onoz An-1 Bxoi Oxo1 An By Oy 5
(c) (D)

FicURrE 4.7: Coloring of the regions Ry_9, Ry_1 and Ry and of the
vertices in E before the first recoloring operation (a) after operations
1) and 2) (b) after recoloring 3) (c) and after recoloring 4) (d).

colored 5. Furthermore, the only vertex in E colored with 5 belongs to class 2. Since
a class is an independent set, recoloring step 3 is valid. The same reasoning applies for
recoloring step 4 since after step 1, 2 and 3, no vertex in By_oU...UCy is colored 3
and the only vertex colored 3 in E belongs to class 1.

A region such that the color of exactly two classes is permuted in block A and C
is a transposition region. In Figure 4.7d, after these recolorings, the region Ry_o is a
transposition region, the region Ry_1 is a color region and the region Ry is a waiting
region. Furthermore, the buffer properties remain satisfied. The operation consisting
in permuting the color of two classes is called a transposition.
Let us outline the fact that all along the algorithm, every region of the buffer is either

a waiting region, a color region, or a transposition region.

Property 4. Every region of a buffer is either a waiting region, a color region, or a

transposition region

After applying one color change and one transposition, we obtain a coloring of
Cn that fits with the coloring of E. Let us consider the buffer at the next step. We
denote its regions by Ry, ... R)y and the block of the region R} by A}, B; and Cj for j
in 1,..., N. Since the leftmost clique of the previous buffer is W;, the leftmost clique
of the new buffer is W; 1. It follows that for every j the leftmost clique of B; belongs
to A;-, and the leftmost clique of C; belongs to B;. Hence we may need to modify
the coloring of vertices starting in these cliques so that the regions of the new buffer

remain well-colored and satisfy properties 1 to 4 mentioned above.

By property 4 there are three cases to consider. If the region R; is a waiting
region, then no recoloring has to be made to keep R;- well-colored. Indeed, in this
case we have vA; = VB, = Vg, and therefore vertices starting in the first clique of B;
and vertices starting in the first clique of C; already have a coloring such that R;-
is well-colored. Suppose now that R; is a color region. Then there exists a unique
p such that v4,(p) # vB,(p) and v, = v¢;. This later equality ensures that since
the leftmost clique of C; belongs to B;-, no vertex has to be recolored in this clique.

Consider then the leftmost clique of B;, which belongs to A;-, but which is currently

66 Chapter 4. Linear transformations between colorings of chordal graphs

FIGURE 4.8: The three blocks A;, B;, C; of the i-th region of the buffer
at the beginning of step ¢, and the three blocks A%, B! and C/ of the
i-th region of the buffer at the beginning of step ¢ + 1. The vertices
starting in the blue cliques and red cliques may need to be recolored
before starting the step ¢ 4+ 1 to maintain well-colored regions.

Ay . By . Cn W

| o

:W2

FIGURE 4.9: Example of the region Ry of a buffer in the case A = 3
and where the clique W, has degree 3 in the tree decomposition. The
blocks are separated by dotted lines.

colored according to the color vector vp,. We claim that recoloring the vertices of
class p starting in the leftmost clique of B; with color v4; (p) is a valid operation.
Indeed, A; and C} separate B; from the rest of the graph and the only vertices to be
colored with v4;(p) in R; belongs to class p. Their only remains to check the case
where R; is a transposition region. For the sake of keeping this example simple we

postpone the proof of this case to the next section.

4.1.5 From interval graphs to chordal graphs

Throughout this section we gave some insights about how the recoloring algorithm
works in the particular case where the input graph G is an interval graph. Let us
briefly explain here how we can generalize this algorithm for chordal graphs, where
the clique-tree of G is not restricted to be a path anymore. We first root the tree at
an arbitrary clique r and start the algorithm at the leaves. Let W, be any leaf of the
tree, and let W, be its first ancestor of degree strictly more than 2 in the path from ¢
to r. The tree induced by the cliques on the path from W, to W, is a path, therefore
the graph induced by the vertices that belongs to these cliques is an interval graph.
We can then apply the algorithm described previously up until the rightmost clique of
the buffer is a child of W,.

Suppose that W, has i children W7y,...,W;. We then obtain ¢ buffers, each of
which contains W; as its rightmost clique. In order to continue, we merge the i buffers
into one as illustrated in Figure 4.9. To do so, we extend the notion of blocks and
regions to clique-trees: a vertex starts at height ¢ if the clique with the largest height
containing this vertex has height 7. Blocks are now constituted of vertices starting
at the same height, and we can consider regions as sets of consecutive blocks, as

previously. The formal definitions are given in the full proof of this algorithm.

4.2. The algorithm on chordal graphs 67

Note however that in order for the merged buffer to be well-colored, we need all
vertices that belong to the same class and start at the same height to have the same
color in each buffer. We therefore need to add a recoloring step to generalize the
algorithm to chordal graphs, in order to ensure that this property remains satisfied.

This recoloring process is formally described in Section 4.6.

4.2 The algorithm on chordal graphs

Throughout this section, G = (V, E) is a chordal graph on n vertices of maximum
clique number w and maximum degree A. Let k > w + 3 be the number of colors
denoted by 1,...,k. Given two integers = < y, [z, y] is the set {z,z+1,...,y}. The
closed neighbourhood of a set S CV is N[S] := SU (UyesN(v)).

4.2.1 Chordal graphs and clique trees

Vertex ordering and canonical coloring. Let vi,v9,...v, be a perfect elimina-
tion ordering of V. A greedy coloring of vy, v,_1,...,v1 gives an optimal coloring ¢y of
G using only w colors. The coloring cq is called the canonical coloring of G. The colors
c€1,2...,w are called the canonical colors and the colors ¢ > w are called the non-
canonical colors. Note that the independent sets X; := {v € V such that ¢y(v) = i}

for 1 < w, called the classes of G, partition the vertex set V.

Clique tree. Throughout this section, ' = (Vp, Er) is a clique tree of G. We
assume that 7' is rooted on an arbitrary node. Given a rooted tree T" and a node W
of T, the height of W denoted by h(W) is the length of the path from the root to .

A clique-tree of G can be found in linear time [48].

Observation 2. Let G be a chordal graph of maximum degree A and T be a clique
tree of G' rooted in an arbitrary node. Let x be a vertex of G and W;, W; be two bags
of T that contain x. Then h(W;) — h(W;) < A.

Proof. We can assume without loss of generality (free to replace the one with the
smallest height by the first common ancestor of W; and W;) that W; is an ancestor of
W; (indeed, this operation can only increase the difference of height). Let P be the
path of T' between W; and W, and (U, W) be an edge of P with h(U) < h(W). By
assumption on the clique tree, there is a vertex y that appears in W and that does
not appear in U. Since this property is true for every edge of T" and since all the bags

of P induce cliques and contain z, the vertex = has at least | P| neighbors. O

4.2.2 Buffer, blocks and regions

Let W, be a clique of T. We denote by Tyy, the subtree of T' rooted in W, and by
hw, (W) the height of the clique W € Ty,. Given a vertex v € Ty, we say that v
starts at height h if the maximum height of a clique of Ty, containing v is A (in Ty,).

68 Chapter 4. Linear transformations between colorings of chordal graphs

3AN
A A A
> > >

- | :
DENDE_E :
N
T Tk
- g i
DENRDS=EE ‘]
Ay 3 3 ANi BNi Cn

FIGURE 4.10: The buffer B rooted at W,. The dots represent cliques
of T and the dashed lines separates the blocks of B.

Let s := 3(5) +2 and N = s+ k —w + 1 where k is the number of colors. The
buffer B rooted in W, is the set of vertices of G that start at height at most 3AN — 1
in Tyy,. For every 0 < ¢ < 3N — 1, the block Q3n—; of B is the set of vertices of G
that start at height h with iA < h < (i +1)A — 1. Finally, for 0 < i < N —1, the
region R; of B is the set of blocks @341, @3i+2, @3(;41)- Unless stated otherwise, we
will always denote the three blocks of R; by A;, B; and Cj;, and the regions of a buffer
B by Ri,...,Ry. Given a color class X, and S C V, we denote by N[S,p| the set
N[SNX,]. By definition of a block and Observation 2 we have:

Observation 3. Let W, be a cliqgue of T' and B be the buffer rooted in Ty, . Let
Qi-1,Qi,Qit1 be three consecutive blocks of B. Then N[Q;] C Qi1 UQ; UQit+1. In
particular for each region R; = (A;, B;, C;) of B, N[B;] C R;.

Proof. Let v be a vertex of @);. By definition of Q;, v starts at height h with
(B3N —i)A <h < (3N —i+1)A—1. Let u be a neighbour of v. By Observation 2,
u starts at height ' with h — A < k' < h+ A, thus we have (B3N —i—1)A < I/ <
(3N —i+2)A —1. Tt follows that u belongs either to Q;_1, Q;, or Q;1. O

We refer to this property as the separation property. It implies that when recoloring
a vertex of ();, one only has to show that the coloring induced on Q;_1, @;, Q;+1 remains

proper.

4.2.3 Vectorial coloring

Let B be a buffer. We denote the set of vertices of class p that belong to the sequence
of blocks Q;, ..., Qj of Bby (Qi,...,Qj,p). A color vector v is a vector of size w such
that v(p) € [1,k] for every p € [1,w], and v(p) # v(q) for every p # g < w. A block
Q is well-colored for a color vector vq if all the vertices of (Q,p) are colored with
vo(p). It does not imply that all the colors are < w but just that all the vertices of a
same class have the same color (and vertices of different classes have different colors).
For brevity, we say that (Q,vq) is well-colored and when v is clear from context we
just say that @) is well-colored. In particular, a well-colored block is properly colored.

Since the set (@, p) may be empty, a block may be well-colored for different vectors.

4.2. The algorithm on chordal graphs 69

However, a color vector defines a unique coloring of the vertices of a block (if (Q,vq)
is well-colored then every vertex of (@, p) has to be colored with vg(p)). The color
vector v is canonical if v(p) = p for every p < w. A sequence of blocks Q1,...,Q; is

well-colored for (v1,...,v,) if (Qq,v;) is well-colored for every i < r.

Definition 1 (Waiting regions). A region R well-colored for vectors va,vp,ve is a

waiting region if vA4 = vp = v¢.

Definition 2 (Color region). A region R well-colored for vectors va,vp,ve is a color
region if there exist a canonical color c¢1, a non-canonical color z and a class p such
that:

1. va(m) =vp(m) =ve(m) € {c1,2} for every m # p.
2. va(p) = 1 and vp(p) = ve(p) = 2.

In other words, the color of exactly one class is modified from a canonical color to
a non-canonical color between blocks A and C. We say that the color ¢; disappears in
R and that the color z appears in R. For brevity we say that R is a color region for

the class X, and colors ¢y, 2.

Definition 3 (Transposition region). A region R well-colored for vectors va,vp,ve
1s a transposition region if there exist two canonical colors ¢y # ca, two non-canonical

colors z # 7' and two distinct classes p,q such that:
1. va(m) =vp(m) = ve(m) & {c1,c2,2,2'} and is canonical for every m ¢ {p,q}.
2. va(p) = c1, vp(p) = 2, vo(p) = co.
3. va(q) = c2, ve(q) = 7, vo(q) = 1.

Note that v4 and vo only differ on the coordinates p and ¢ which have been
permuted. The colors z and 2’ are called the temporary colors of R. Note that,
the coloring induced on R is proper since the separation property ensures that
N[ANR]C AUB, N[CNR] C BNC and no class in B is colored with ¢; nor cj.

Let v be a color vector. The color vector v/ is obtained from v by swapping
the coordinates p,{ < w if for every m ¢ {p,1}, v'(m) = v(m), V'(p) = v(¢), and
V'(¢) = v(p). In other words, v/ is the vector obtained from v by permuting the
coordinates p and /.

Swapping the coordinates p and ¢ in a region R well-colored for (v4,vp,ve) means
that for every block Q € {A, B,C}, we replace vg by the color vector Z/’Q obtained
by swapping the coordinates p and £ of vg. It does not refer to a reconfiguration

operation but just to an operation on the vectors.

Observation 4. Swapping two coordinates in a waiting (resp. color, resp. transposi-

tion) region leaves a waiting (resp. color, resp transposition) region.

70 Chapter 4. Linear transformations between colorings of chordal graphs

A; B; C;
X111 111 15 3
X, |3 :3: 3| [3:5:5| [3 6 1
X |4 4 4 |44 4| |4 4 1
|2 2 2| |2 2 2| |2 2 2
Waiting region Color region Transposition region

FIGURE 4.11: Example of waiting, color, and transposition regions

with w = 4. Each square represents a region, the dotted lines separate

the blocks and the dashed lines separate the classes. The colors 1 to

4 are the canonical colors and the colors 5 and 6 are non-canonical

colors. The underlined colors in the transposition region indicate the
temporary colors.

Using the following lemma, we can assume that all the transposition regions use

the same temporary colors.

Lemma 3. Let R be a transposition region with temporary colors z,z'. Let 2" ¢ {z,2'}
be a non-canonical color. By recoloring the vertices of R at most once, we can assume

the temporary colors are z, 2".

Proof. Let p and ¢ be the coordinates which are permuted in R. By definition of
transposition regions, no vertex of R is colored with z”. As any class is an independent
set and by the separation property, we can recolor (B, ¢) with z” to obtain the desired

coloring of R. O

4.2.4 Valid and almost valid buffers

In what follows, a bold symbol v always denote a tuple of vectors and a normal
symbol v always denotes a vector. Let B = Ry, Rg,..., Ry be a buffer such that
all the regions R; = A;, B;, C; are well-colored for the vectors v4,,vB,,vc,. So B is

well-colored for v = (va,,vp,,Vcy, VAys - - -, Vey). The buffer (B,v) is valid if:
1. [Continuity property] For every i € 1,2,.... N — 1, vg, = va,, -
2. The vectors v4,,vp, and v¢, are canonical (and then R; is a waiting region).

3. The regions Rs,...,Rs_1 define a transposition buffer, that is a sequence of
consecutive regions that are either waiting regions or transposition regions using

the same temporary colors.

4. Theregions Rsy1,. .., Ry_1 define a color buffer, that is a sequence of consecutive

regions that are either color regions or waiting regions.
5. The regions Rs; and Ry are waiting regions.

Note that Property 1 along with the definition of well-colored regions enforce "conti-
nuity" in the coloring of the buffer: the coloring of the last block of R; and the first
block of R;+1 in a valid buffer have to be the same.

4.2. The algorithm on chordal graphs 71

An almost valid buffer (B,v) is a buffer that satisfies Properties 1 to 4 of a valid

buffer and for which Property 5 is relaxed as follows:

5. The region R is a transposition region or a waiting region. Ry is a waiting

region.
Let us make a few observations.

Observation 5. Let (B,v) be an almost valid buffer. For every i < s, the color

vectors va, and ve, are permutations of the canonical colors.

Proof. By induction on i. By Property 2 of almost valid buffers, it is true for every
1 < 7. Suppose now that the property is verified for R; with 2 < 7 < s. By assumption
ve, is a permutation of [1,w] and the continuity property (Property 1 of almost

valid buffer) ensures that va,,, = v¢,. By Property 3 we only have two cases to

i+1
consider, either R;;q is a waiting region and by definition v.,,, = v4, ,, or R;y1is a
transposition region. In the later case, by definition of a transposition region, v¢, , is

equal to v4. , up to a transposition of some classes k, ¢ and thus is a permutation of

i+1
the canonical colors. O

Observation 6. Let (B,v) be an almost valid buffer and ¢ be a non-canonical color.
There exists a unique class p < w such that v, (p) = c. Furthermore, either the class
p s colored with ¢ on all the blocks of Rst1,..., Ry, or the color ¢ disappears in a

color region for the class p.

Proof. By Observation 5, v¢, is a permutation of the canonical colors. Thus there
exists a unique class p < w such that ve,(p) = ¢. Furthermore, by Property 4
of almost valid buffer, the regions Rsy1, ..., Ry are either waiting or color regions.
The continuity property then ensures that either the class p is colored with ¢ on
Rsi1,..., Ry or that the color ¢ disappears in a color region if there exists a color

region for the class p. O

Since only non-canonical colors can appear in a color region, we have the following

observation:

Observation 7. Let (B,v) be an almost valid buffer and z be a non-canonical color.
Either no vertex of Rsy1, ..., RN is colored with z, or there exists a color region R;
with s < i < N for the class p in which z appears. In the latter case, the vertices of

the color buffer of B colored with z are exactly the vertices of (B;,Cy,...,Cn,p).

Finally, since the number of regions in the color buffer is the number of non-

canonical colors, we have:

Observation 8. Let (B,v) be an almost valid buffer. There exists a waiting region in
Rsi1,...,Rn—1 if and only if there exists a non-canonical color that does not appear

mn RS+1, ceey RN—l-

72 Chapter 4. Linear transformations between colorings of chordal graphs

4.2.5 Vectorial recoloring

Let (B,v) be a buffer. The tuple of color vectors v = (vq,,...,VQ,,y) is a (proper)
vectorial coloring of B if for every color ¢ and every ¢ < 3AN — 1 such that c¢ is in both

vg, and vq,, ,, then there exists a unique class p < w such that vg, (p) = vg,., (p) = c

Observation 9. Any proper vectorial coloring (B,v) induces a proper coloring of

G[B].

Proof. Indeed, two different classes in two consecutive blocks cannot have the same
color in a proper vectorial coloring. Since for any block); of B and for any class p,
N[Qi,p] € Qi—1 UQ; UQ;+1, the coloring induced on G[B] is proper. O

Note that if (B,v) is an almost valid buffer then v is a proper vectorial coloring
of B by the continuity property and the definition of waiting, color, and transposition
regions. Since we will only consider proper vectorial colorings, we will omit the term
proper for brevity.

Let v be a color vector. A color vector Vb is adjacent to vq if there exists a class

p and a color ¢ ¢ v such that v, (p) = c and vg(m) = vg(m) for every m # p.

Observation 10. Let Q be a block well-colored for vg and let I/é? be a color vector
adjacent to vq such that v (p) = ¢ # vq(p). Then recoloring the vertices of (Q,p)

one by one is a proper sequence of recolorings of G[Q] after which Q is well-colored

/
for vg.

Let (v,v) be two vectorial colorings of a buffer B. The coloring v/ is a vectorial
recoloring of v if there exists a unique i € [1,3AN] such that vg, is adjacent to vg,

and ubj = v, for j # i. By Observation 10, we have:

Observation 11. Lett > 1 and (v!,v?) be two (proper) vectorial colorings of a buffer
B. If there exists a sequence of adjacent (proper) vectorial recolorings v*,v?, ... V!,
then there exists a sequence of (proper) single vertex recolorings of G|B| after which

the coloring of B is well-colored for vt.

Given a sequence of vectorial recolorings ', 12, ... V!, we say that each coordinate

is recolored at most ¢ times if for every coordinate p < w and every r € [1,3AN],
there exist at most ¢ indices t1,. .., t, such that the unique difference between v and

v'i+1 is the p-th coordinate of the r-th vector of the tuples.

4.3 Overview of the four steps

Let G be a chordal graph of maximum degree A and maximum clique size w, T be
a clique tree of G, and ¢ be any k-coloring of G. We propose an iterative algorithm
that recolors the vertices of the bags of T' from the leaves to the root until we obtain
the canonical coloring defined in Section 4.2.1. Let S be a clique of T'. A coloring «
of G is treated up to S if:

4.3. Overview of the four steps 73

1. Vertices starting at height more than 3AN in Tg are colored canonically, and

2. The buffer rooted at S is valid.

Let W be a clique of T'. We associate a vector v¢ of length w to the clique W as follows.
We set vy (£) = a(v) if there exists v € Xy N W. Then we arbitrarily complete vy in
such a way all the coordinates of vy are distinct (which is possible since vy | < k).
Given two vectors v and v/ the difference D(v,1") between v and v/ is |[{p : v(p) #
V'(p)}|, i.e. the number of coordinates on which v and ¢/ differ. Given an almost valid
buffer (B,v) and a vector v¢, the border error Dp(vc,v) is D(vey, ve).
Let B be a buffer. The class p < w is internal to B if N[Ry,p] € Rny—1 U RN.
We first state the main technical lemmas with their proof outlines and finally

explain how we can use them to derive Theorem 4.

Lemma 4. Let W be a clique associated with vy, . Let S be a child of W, B be the buffer
rooted at S and v be a tuple of vectors such that (B,v) is valid. If Dp(vw,v) > 0,
then there exists a recoloring sequence of UZ-]\LSRZ- such that the resulting coloring v’
satisfies Dg(vw, V') < Dp(vw,v), and (B,v') is almost valid.

Moreover, every coordinate of UZ-]\LSRZ- is recolored at most 3 times and only internal

classes are recolored.

Outline of the proof. Let £ be a class on which vy and vc, are distinct. Then, in
particular, no vertex of X, is in C'y N W thus the class £ is internal. Given an internal
class ¢, if we modify v¢, (¢) and maintain a proper vectorial coloring of the buffer
B, then the corresponding recoloring of the graph is proper. So, if we only recolor
internal classes of Ry, then we simply have to check that the vectorial coloring of B
remains proper. The proof is then based on a case study depending on whether vy (£)

is canonical or not. A complete proof is given in Section 4.4. O

Lemma 5. Let (B,v) be an almost valid buffer. There exists a recoloring sequence
of Ui_yR; such that every coordinate is recolored at most 6 times and the resulting

coloring V' is such that (B,v'") is valid.

Outline of the proof. The proof distinguishes two cases: either there exists a waiting
region in the transposition buffer or not. In the first case, we show that we can "slide"
the waiting regions to the right of the transposition buffer and then ensure that R,
is a waiting region. Otherwise, because of the size of the transposition buffer, then
some pair of colors has to be permuted twice. In this case, we show that these two
transpositions can be replaced by waiting regions (and we can apply the first case). A

complete proof is given in Section 4.5. 0

Note that given a clique W and its associated vector vy, applying Lemma 5 to an
almost valid buffer (B,) rooted at a child S of W does not modify Dp(vw,v) since
the region Ry is not recolored.

Let W be a clique and 57, S3 be two children of W. For every i < 2, let B; be the
buffer of S; and assume that B; is valid for ©*. We say that B; and By have the same

coloring if v! = 2.

74 Chapter 4. Linear transformations between colorings of chordal graphs

Lemma 6. Let W be a clique associated with vyy. Let Sy, 59,...Se be the children of
W, and for every i < e, B; be the buffer rooted at S;. Let V' be a vectorial coloring
such that (B;,v') is valid. If Dp,(vw,v') = 0 for every i < e, then there exists a
recoloring sequence of ij:_QlR;- such that every coordinate is recolored O(w?) times,
the final coloring of all the B;s is the same coloring v', Dp, (vw,v') =0, and (B;,v')

is valid for every i < e.

Outline of the proof. First, we prove that it is possible to transform the coloring of
B; in such a way that all the color buffers have the same coloring, and that v! = v/
for i € [2,€].

We then have to ensure that the vectors of the transposition buffers are the same,
which is more complicated. Indeed, even if we know that the vectors v! and v/¢
are the same, we are not sure that we use the same sequence of transpositions in
the transposition buffers of B; and B; to obtain it. Let 7q,...,7. be the set of
transpositions of B;. The proof consists in showing that we can add to B; the
transpositions 7,..., 7, 7L, ..., 7'1_1 at the beginning of the transposition buffer. It
does not modify v4, since this sequence of transpositions gives the identity. Finally,
we prove that 7,71, ... 7 ! can be cancelled with the already existing transpositions
of B;. And then the transposition buffer of B; only consists of 71,...,7.. A complete

proof is given in Section 4.6. O

Lemma 7. Let W be a clique of T with children S1,Ss,...Se and let o be a k-coloring
of G treated up to S; for every i € [1,e]. Let vy be a vector associated with W and
B; = Ri,..., Ry denote the buffer rooted at S;. Assume that there evists v such
that (B;,v) is valid and satisfies Dp,(vw,v) = 0 for every i < e. Then there exists
a recoloring sequence of Uj-V:ElR;'- such that, for every i < e, every vertex of B; is
recolored at most one time and such that the resulting coloring of G is treated up to C'.

A complete proof is given in Section 4.7.

QOutline of the proof. This proof "only" consists in shifting the buffer of one level. We
simply recolor the vertices that now start in another region (of the buffer rooted at
W) with their new color. We prove that the recoloring algorithm cannot create any

conflict. A complete proof of the lemma is given in Section 4.7. O
Given Lemmas 4, 5, 6 and 7 we can prove our main result:

Theorem 21. Let A be a fized constant. Let G(V, E) be a d-degenerate chordal graph
of maximum degree A and ¢ be any k-coloring of G with k > d+ 4. Then we can
recolor ¢ into the canonical coloring co in at most O(d*A -n) steps. Moreover the

recoloring algorithm runs in linear time.

Proof. Let ¢y be the canonical coloring of G as defined in Section 4.2.1, and T be a
clique tree of G. Let us first show that given a clique W € T' with children 51, ..., S,
and a coloring « treated up to S; for every i < e, we can obtain a coloring of G treated

up to W. Let vy be a vector associated with W. For every i < e, let B; be the buffer

4.3. Overview of the four steps 75

rooted in S; and v; be a vectorial coloring of B; such that (B;, I/i) is valid. For every
i < e, by applying Lemmas 4 and 5 at most Dg, (v, V%) times to (B;, '), we obtain a
vectorial coloring ' such that (B;,v") is valid and Dp, (vw,v") = 0. By Lemma 6, we
can recolor each v into v’ such that for every i, (B;,v') is valid and Dg, (v, v') = 0.
Then we can apply Lemma 7 to obtain a coloring of G such that the buffer (B,v)
rooted in W is valid. Since no vertex starting in cliques U € Ty with hy (U) > 3AN
is recolored, these vertices remain canonically colored and the resulting coloring of G
is treated up to W. Note that only vertices of Ty that start in cliques of height at

most 3AN are recolored at most O(w?) times to obtain a coloring treated up to W.

Let us now describe the recoloring algorithm and analyze its running time. We
root 1" at an arbitrary node W, and orient the tree from the root to the leaves. We
then do a breadth-first-search starting at W, and store the height of each node in a
table h such that h[i] contains all the nodes of T' of height i. Let 5 be the height of
T. We apply Lemmas 4 to 7 to every W € h[i] for i from ij, to 0. Let us show that
after step 4, the coloring of G is treated up to W for every W € h[i]. It is true for
i = iy, since for any W € h[ip,] the sub-tree Ty of T only contains W. Suppose it is
true for some i > 0 and let W € h[i — 1]. Let Si,...,Se be the children of W. For
all j € 1,...,¢e, Sj € h[i] and by assumption the current coloring is treated up to Sj;
after step . Thus we can apply Lemmas 4 to 7 to W. After iteration i;, we obtain a
coloring of GG that is treated up to W,.. Up to adding "artificial" vertices to G, we can
assume that W, is the only clique of T" adjacent to a clique path of length 3AN (in
fact we only need a tuple of 3N color vectors) in T and apply Lemmas 4 to 7 until we
obtain a coloring such that W, is canonically colored, and the algorithm terminates.
A clique tree of G can be computed in linear time [48], as well as building the table
h via a breadth-first-search. Given a clique W, we can access to the cliques of the
buffer rooted at Ty in constant time by computing their height and using the table h.
Furthermore, a vertex of height ¢ is recolored during the iterations ¢ +1,...,i + 3AN
only. As each vertex is recolored at most O(w?) times at each iteration, it follows that
the algorithm runs in linear time. Finally, as N = 3(%) + k —w + 3, each vertex is
recolored at most O(w?A) times, and thus the algorithm recolors ¢ to cp in at most
O(w*A - n) steps. O

The proof of Theorem 4 immediately follows:

Proof of Theorem /. Let ¢ and 1 be two k-colorings of G with k > d + 4 and let ¢
be the canonical coloring of G defined in Section 4.2.1. By Theorem 21, there exists
a recoloring sequence from ¢ (resp. v) to ¢y of length O((d + 1)*A -n). Thus there
exists a sequence of length O(n) that recolors ¢ to 1. Furthermore the recoloring
sequences from ¢ to ¢y and from v to ¢y can be found in linear time by Theorem 21,

which concludes the proof. O

76 Chapter 4. Linear transformations between colorings of chordal graphs

4.4 Step 1: proof of Lemma 4

Recall that in a buffer B, Ry is the region that sits between the transposition buffer

and the color buffer. Before proving Lemma 4, let us first start with some observations.

Observation 12. Let R be a well-colored region that does not contain color c. If
we set vg(p) = ¢ for every block Q of R, then we obtain a waiting region if R was a
waiting region or a color region for the class p, and we obtain a color region if R was

a color region for a class q # p.

Hence, modifying the color of a class on all the blocks of a region R; with j > s of
an almost valid buffer leaves a waiting region or a color region and maintains Property
4 of almost valid buffers. The next lemma ensures that under technical assumptions

the continuity property (Property 1 of valid buffers) can also be kept.

Lemma 8. Let (B,v) be an almost valid buffer and R;, R;j be two regions of B with
1<i<yj. Let X be a block in {B;,C;} and let Y = B; or Y = Cn. Then recoloring
(X,...,Y,p) with ¢ preserves the continuity property.

Proof. Since (B,v) is almost valid, for every p € [1,w] and every ¢t € [1, N — 1], we
have ve, (p) = va,., (p). As the sequence of recolored blocks starts in {B;,C;} and
ends either in B; or in C, after the recoloring we still have v¢, (p) = va,,, (p) for
every t € [1, N — 1] and p € [1,w] since both do not change or both are c. O

Given a color ¢, a class p, and a sequence of consecutive blocks (Q;,...,Q;), we
say that (Qj,...,Qj,p) is c-free if no vertex of N[U{:iQt N X,] is colored with ¢. Note
that a sequence of (proper) vectorial recolorings of a buffer (B, v) that does not recolor
A; and such that all the classes recolored on Cy are internal to B yields a (proper)
sequence of single vertex recolorings of G by Observation 11. With the definition of

clique-tree we can make the following observation:

Observation 13. Let W be a clique associated with vy, S be a child of W, and
(B,v) be the buffer rooted at S. If vey (£) # vw (£) for some € < w, then the class ¢

s internal to B.

Proof. Suppose that the class £ < w is not internal to B. Then there exists a vertex
u € XpN Ry which has a neighbor v that does not belong to Ry_1 U Ry. Thus u
and v must be contained in a clique W’ that is an ancestor of W and then by the
definition of clique tree, v must be contained in W. Then, by definition of vy, it must
be that vy (¢) = ve, (€). O

We also need the following technical lemma:

Lemma 9. Let (B,v) be an almost valid buffer. Let s <i < N, ¢ be a color and p be

an internal class. If one of the following holds:

1. R; is a waiting region, ¢ is a non-canonical color that does not appear in

R, ..., Ry and the class p is not involved in a color region, or

4.4. Step 1: proof of Lemma 4 7

2. R; is a color region for the class p. Moreover c is non-canonical and does not

appear in Rs,..., Ry, or
3. R; is a color region for the class p where ¢ is the canonical color that disappears.

Then changing the color of (B;,...,Cn,p) by c also gives an almost valid buffer and

a proper coloring of G.

Proof. Let V' be the resulting coloring. As the class p is internal and ¢ does not
appears in Ry, ... Ry, Case 1 and Case 2 describe a proper recoloring sequence. As
(B,v) is almost valid, Observation 6 ensures that the only class colored with ¢ in
Rs, ..., Ry in Case 3 is the class p on the set of blocks (As, ..., A;). Since the class p
is internal, case 3 also defines a proper recoloring sequence.

Let us now show that (B,v') is almost valid. First note that no block of Ry, ..., R
is recolored thus Properties 2 and 3 of almost valid buffers are still satisfied. The
recolored blocks (B;,...,Cx) satisfy the condition of Lemma 8 thus Property 1 also
holds. Observation 12 ensures that the regions R;11, ..., Ry remain either waiting or
color regions and, in particular, that Ry remains a waiting region. Along with the fact
that R is not modified, Property 5 is satisfied. We finally have to check Property 4.
By Observation 12, the regions R;;1,..., Ry—1 remain either waiting or color regions
as well as regions Rg1, ..., R;—1 that are not modified. Let us concentrate on R;.
Note that in the three cases, vg(m) = v(m) for every m # p and @ block of R;,
as R; is either a waiting region or a color region for the class p. We now have to

distinguish the three cases:

o In Case 1, let ¢; := v¢,(p). By definition of almost valid buffers, v4,(p) = ¢ and
is canonical. After the recoloring, we have v/y (p) = ¢1 and v (p) = v, (p) = ¢
Thus R; becomes a color region in v/ for the class p where c¢; disappears and c
appears. Since by hypothesis ¢ does not appear in Rs11,... Ry in v and since
there is no color region for the class p in v, there exists exactly one color region

for the class p and colors ¢y, ¢ in v’ and Property 4 follows.

o In Case 2, let ¢ := v/; (p). Since R; is a color region for the class p in v where
c disappears, ¢ is canonical. As c is non-canonical R; becomes a color region
for the class p and colors ¢, ¢ in /. Since v is almost valid, R; is the only color
region for the class p in v. Furthermore, the color ¢ does not appear in v. Thus,
R; is the only color region for the class p and colors ¢, ¢ in v/ and Property 4

follows.

o In Case 3, we have vy (p) = v (p) = v, (p) = c. Since R; is a color region for

the class p in v it becomes a waiting region in v’ and again Property 4 follows.

O

We can now give the proof of Lemma 4:

78 Chapter 4. Linear transformations between colorings of chordal graphs

Xp - |ie— U X, C1: _ { c
Xp G ABG ¢ . Xp — ¢ |
R, R Ry R, Ry
(A) Case 3 (B) Case 4
X, : | et W
X, C A; Bj Cj z
R, R Ry
(c) Case 5

FIGURE 4.12: The initial coloring v for cases 3, 4, and 5 in the proof

of Lemma 4. The rows represent the classes. A blank indicates a color

region for the class, a dashed line indicates that the class may or may

not be involved in a color region. The vertical segment at the end of

the buffer indicates that the class is internal. The dotted vertical lines
separate the different regions.

Proof of Lemma 4. Let W be the clique associated with vector vy and S be a child
of W. Let (B,v) be the valid buffer rooted at S. Assume that Dp(vy,v) > 0. Then
there exists p < w such that v, (p) # vw(p) := ¢ and by Observation 13 the class p
is internal to B.

The following sequences of recolorings only recolor blocks of Rg,..., Ry and all the
recolorings fit in the framework of Lemma 8. Thus Properties 1, 2 and 3 of almost
valid buffers are always satisfied. We then only have to check Properties 4 and 5’ to

conclude the proof. Let us distinguish several cases:

1. No class is colored with c on R,,..., Ry in v. Then c is not canonical since v4,
is a permutation of the canonical colors by Observation 5. Suppose first that
there does not exist a color region for the class p in v. Since ¢ does not appear
in the color buffer, Observation 8 ensures that there exists a waiting region R;
with s < ¢ < N. Then by Lemma 9.1, we can recolor (B;,...,Cn,p) with ¢ and
obtain an almost valid buffer. Suppose otherwise that there exists a color region
R; for the class p in v. By Lemma 9.2, we can recolor (Bj,...,Cn,p) with ¢

and obtain an almost valid buffer. In both cases, the border error decreases.

2. The class p is colored with ¢ on a sequence of consecutive blocks of R, ..., Ry.
As ¢ # vey (p), Observation 6 ensures that ¢ and disappears in a color region
R; for the class p and that ¢ is canonical. By Lemma 9.3, we can recolor
(Bi,...,Cn,p) with ¢ and obtain an almost valid buffer where the border error

has decreased.

3. A class ¢ # p is colored with ¢ and ¢ is not canonical (see Figure 4.12a for
an illustration). Since (B,v) is valid, ¢ appears in a color region R; with
s < j < N for the class ¢ and a canonical color ¢;. By Observation 7, we have
voy (0) = v (p) = ¢, thus vy, (€) # vw (£) which implies by Observation 13 that
the class ¢ is internal. Thus, by Lemma 9.3, we can recolor (Bj,...,Cn,¢) with

c1 and obtain an almost valid coloring '™, Since (B, v) is valid and Rj is not

4.4. Step 1: proof of Lemma 4 79

recolored, (B, v!™P) is valid. Moreover, since vy, (£) # vw (£), Dp(vw,v'™P) <
Dp(vw,v). As no class is colored with ¢ in v we can apply case 1 to
(B, vtmp).

4. A class £ # p is colored with ¢, ¢ is canonical and does not disappear in the color
buffer (see Figure 4.12b for an illustration). Since c is canonical, the class ¢ is
colored with ¢ on Rs,..., Ry by Observation 6. Since vy, (¢) = ¢ = vw(p) #
vy (£) the class ¢ is internal.

Let z, 2’ be two non-canonical colors and let ¢; = v4,(p). Suppose first there
exists a color y that is not contained in B;, Cs, Rs41,..., Ry in v. Then we

apply the following recolorings:

(1) Recolor (Bs,p) with z and (Bs,¢) with 2/,
(2) Recolor (Cs,...,Cn,¢) with y,
(3) Recolor (Cs,...,Cx,p) with ¢,
(4) Recolor (Cs,...,Cn,¢) with ¢;.

If such a color y does not exist then in particular all the non-canonical colors
appear in (B,v). Note that in that transformation we do not assume that y is
not canonical. Since k > w + 3 and every non-canonical color appears in at most
one class of the color buffer, there exists a class ¢ ¢ {p, ¢} and a color region R;
where some canonical color y disappears and the non-canonical color z” appears.
Free to modify z and 2/, we can assume that z” ¢ {z,2'}. Then we can add the

following recolorings to the sequence:

0) Recolor (Bs,...,A;,q) with 2",

(J

5) Recolor (Bs,...,A;,q) with y.
j

And after recoloring 0, the color y is not contained anymore in B, Cs, Rs11, ..., Rn-
So we can apply recolorings 1 to 4. Let us justify that the colorings are proper.
Recoloring 0 is proper since ¢ is the only class that contains 2” in Rs,..., Ry by
Observation 7. Recoloring 1 is proper by the separation property and the fact
that after recoloring 0, the only non-canonical color in region Ry is 2" ¢ {z,2'}
(if exists). Recolorings 2, 3 and 4 are proper since the classes p and ¢ are internal
and, by the separation property, after recoloring 0, (Cs,...,Cn,¥) is y-free,
after recolorings 1 and 2 (Cs,...,Cy,p) is c-free and after recolorings 1 and 3
(Cs,...,Cn,{) is ci-free. Finally recoloring 5 is proper since after recoloring 4,
the only class colored with y on Ry, ..., Ry is the class ¢ on A,.

Let us show Properties 4 and 5’ of almost valid buffers are satisfied. First
note the colorings 0 and 5 cancel each other thus the coloring is only modified
on classes p and ¢. Furthermore recolorings 3 and 4 consist in swapping the
coordinates p and ¢ on the regions Rgsy1,..., Ry. By Observation 4, the regions

Rsi1, ..., Ry remain either waiting or color regions (in particular Ry remains

80

Chapter 4. Linear transformations between colorings of chordal graphs

a waiting region). As furthermore no color region is created Property 4 holds.

Finally note that in v/, R is a transposition region and then Property 5’ follows.

. A class £ # p is colored with ¢, ¢ is canonical, and ¢ disappears in the color

region R; for class ¢ where the non-canonical color z appears (see Figure 4.12c
for an illustration). Let z’ # z be a non-canonical color and let ¢; = va,(p).

We apply the following recolorings:

1) Recolor (Bs,...,A;,{) with z,
2) Recolor (Bs,p) with 2/,

3) Recolor (Cs,...,Cn,p) with ¢,
) (

(
(
(
(4) Recolor (Cs,...,A;,0) with ¢;.

Recoloring 1 is proper since Observation 7 ensures that the only class colored
with z in R, ..., Ry is the class £ on (Bj,...,Cy). By the separation property,
(Bs,...,Aj,0) is z-free in v. Recoloring 2 is proper as the only non-canonical
color in R after recoloring 1 is z # 2’. Recoloring 3 is proper as the class
p is internal and thus after recoloring 1, (Cs,...,Cn,p) is c-free by the sep-
aration property. Finally, recoloring 4 is proper as after recolorings 2 and 3,

(Cs, ..., Aj,0) is ci-free by the separation property.

Let us show that the resulting coloring defines an almost valid buffer. First note
that regions R;j,1,..., Ry are only modified by recoloring 3 and Observation 12
ensures they remain either waiting or color regions. In particular Ry remains a
waiting region. Note that after recolorings 3 and 4, v/ on regions Rsi1,..., Rj_1
is obtained from v by swapping coordinates p and ¢ (on these regions). Thus
the nature of these regions is maintained by Observation 4. Since R; was a
color region for the class ¢ and colors ¢, z in v, B}, C; are not modified and since
uf4j (¢) = c1, Rj is a color region for class ¢ and colors ¢1,z in v/. So the regions
Rsi1,..., Ry remain either waiting or color regions. Furthermore no new color
region is created and colors ¢y, z are involved in exactly one color region thus
Property 4 is satisfied. Finally, R is indeed a transposition region in v’ since v

is a valid buffer and z and 2’ are non-canonical colors, thus Property 5 holds.

Note that by Lemma 3 we can always suppose that up to a recoloring the temporary

colors z, 2" used in Ry are the same than the ones used in the transposition buffer of

(B,v"). So in every case we are able to decrease the border error of (B,v) by one by

recoloring each coordinate of Ry, ..., Ry at most three times and obtain an almost

valid buffer (B,v’), which completes the proof. O

4.5 Step 2: proof of Lemma 5

The proof distinguishes two cases:

Case 1: there is a region of the transposition buffer of 5 that is a waiting region.

The core of the proof is the following lemma:

4.5. Step 2: proof of Lemma 5 81

Lemma 10. Let (B,v) be an almost valid buffer and R;, Ri+1 be two consecutive
regions with 1 < 1 < s such that R; is a waiting region and R;y1 is a transposition
region. Then there exists a recoloring sequence of R; U R;+1 such that, in the resulting
coloring V', R; is a transposition region, R;+1 is a waiting region, and (B,v") is almost

valid. Moreover only coordinates of R; U R;1+1 are recolored at most twice.

Proof. Let p, £ be the classes permuted in R;11. Let ¢; = va,,,(¢) = ve,,,(p) and
c2 =va,,,(p) =ve,,, (0) and z, 2’ be the temporary colors of R;1 . Recall that since
i < s, Observation 5 ensures that R; only contains canonical colors. We apply the

following recolorings:
1. Recolor (B;,C;, Ait1,p) with z,
2. Recolor (B;, C;, Ajy1,¢) with 2/,
3. Recolor (C;, Ai+1, Bi+1,p) with ¢y,
4. Recolor (Cj, Ait1, Bi+1,£) with cs.

Since R; is a waiting region that only contains canonical colors and R;4; is a transpo-
sition region for classes p and £ in v, recolorings 1 and 2 are proper by the separation
property. After the first two recolorings, the color ¢; (resp. ¢3) is only contained in
(A;, 0) and (Cit1,p) in R UR;4q (resp. (A;,p) and (Cit1,£)). Thus the separation
property ensures that recolorings 3 and 4 are proper.

One can easily check that in v/, R; is a transposition region for classes p and £
and that R;;1 is a waiting region. Let us finally prove that (B,7') is almost valid.
Since vy, = va,, vg,,, = Vc,,, and Vo, = Va,,,, the continuity property holds. The
other properties are straightforward since we only recolor the regions R;, R;+1 which

are waiting or transposition regions in v/.]

By assumption there exists a waiting region in Rs,... Rs_1. Amongst all these
regions let R; with 1 < i < s be the one with the largest index. We iteratively
apply Lemma 10 to the regions (R;, Ri11), (Rit+1, Ri+2), ..., (Rs—1, Rs). Each class is

recolored at most four times and the resulting coloring v/ defines a valid buffer.

Case 2: All the regions of the transposition buffer of B are transposition regions.

As there are 3(%) regions in the transposition buffer and only (%) distinct transpositions
of [1,w], there must exist two distinct regions R; and R; with 1 < ¢ < j < s for which
the same pair of colors is transposed (note that the colors might be associated to
different classes in R; and R; but it does not matter). Let us prove the following

lemma:

Lemma 11. Let (B,v) be an almost valid buffer and c1,ca be two canonical colors. If
there exist two transposition regions R; and R; where colors c1 and co are transposed,
then there exists a sequence of recolorings of U{:iRt such that each coordinate is
recolored at most twice, R; and R; are waiting regions in the resulting coloring v', and

(B,v') is almost valid.

82 Chapter 4. Linear transformations between colorings of chordal graphs

Proof. Let p,¢ (resp. p', ') be the classes permuted in R; (resp. R;). Without loss
of generality, we can assume that i < j, va,(p) = v, (£) = va,({') = vo,;(p) = a1
and vy, (¢) = v, (p) = va,; (p') = vc,({) = ca. By Property 3 of almost valid buffers,
all the transposition regions use the same temporary colors. Let z, 2z’ be these colors
and let 2” ¢ {z,2'} be another non-canonical color, which exists since k > w + 3.
Note that z” does not appear in Ry, ..., Rs. Let I (resp. I2) be the set of blocks of
Ci, ..., Aj that contains color ¢; (resp. ¢z). For each block Q € I (resp. Q' € I»),
there exists a class pg (resp. {gr) such that (Q,pq) (resp. (Q’,4q)) is colored with
c1 (resp. c2). We apply the following recolorings:

—_

. For every @ € I recolor (Q,pg) with 2",

[\V]

. For every Q € I recolor (Q,lq) with c1,

w

. For every Q € I recolor (Q pg) with cg,
4. Recolor (B, p) and (Bj,p') with ¢1,
5. Recolor (B;,?) and (Bj, ') with cp.

Let us justify that the recolorings are proper. Recoloring 1 is proper since (Ry, ..., Rs)
is z”-free and all the blocks of) were colored with ¢; in v. After recoloring 1,
(Ci, ..., Aj) is ¢i-free since B; and Bj does not contain ¢; since R; and R; are
transposition regions in v for the color ¢;. Then recoloring 2 is proper. Recoloring
3 is proper since, after recoloring 2, (Cj, ..., A;) is co-free. At this point, the only
class that contains ¢; in R; (resp. R;) is the class p (resp. p’) and the only class that
contains ¢y in R; (resp. Rj) is the class ¢ (resp. ¢'). Thus, the recolorings 4 and 5
are proper. Note that each coordinate of R;, ..., R; is recolored at most twice in this
sequence.

Let us show that (B,v’) is an almost valid buffer. Properties 2, 4 and 5’ are indeed
satisfied since Ry and Ry, ..., Ry have not been recolored. By Observation 5, for every
t € [[i,j — 1], the blocks Cy, A¢+1 contain all the canonical colors, and thus belong to
Iy N I5. As the color ¢ has been replaced by the color ¢ and conversely, and as no
other color is modified on these blocks, the continuity property holds. Let us prove
Property 3 of almost valid buffers holds. For every ¢ such that i < ¢t < j, the coloring
of Ry in V' is obtained from the coloring of R; in v by replacing the color ¢; by the
color co and conversely. One can easily check that since ¢; and ¢y are canonical, R,
remains either a waiting region or a transposition region after this operation. Finally
we have that in R; (resp. R;), the classes p and ¢ (resp. p’ and) are colored with
the same colors ¢; and ¢z on the three blocks of the region. Thus the regions R; and

R; are waiting regions and Property 3 is satisfied. O

The coloring v’ of B obtained after applying Lemma 11 is almost valid and R; is

a waiting region for v/. So case 1 applies, which concludes the proof of Lemma 5.

4.6. Step 3: proof of Lemma 6 83

4.6 Step 3: proof of Lemma 6

Let W be a clique associated with a vector vy and Sy, ..., Se be the children of C.
We denote the buffer of S; by B; = Ri,..., R} and its vectorial coloring by v*). By
assumption, for every i € [1,¢], (B;,v?) is valid and Dg(vw,v*) = 0.

The proof is divided in two main steps. We will first show that there exist sequences
of recolorings such that the color buffer of all the B;s have the same coloring and
match with the coloring of W. We will then show that, after this first step, there exist
sequences of recolorings of the transposition buffers of the B;s such that the buffers

all have the same coloring.

Step 1. Agreement on the color buffers

Let R; be a color region of an almost valid buffer where the color ¢ disappears and z
appears. The following lemma shows that, up to recoloring each coordinate of the
color buffer at most once, we can "choose" the index of the region in which ¢ disappears

and z appears.

Lemma 12. Let (B,v) be a valid buffer and s < i,j < N be such that R; is a color
region for a class p < w and the colors c,z. There exists a sequence of recolorings
of Rsy1,-..,Rn_1 such that each coordinate is recolored at most once and in the
resulting coloring V', the region Rj is a color region for the class p and colors ¢,z and
(B,V') is valid. Furthermore, if R; was a waiting region in v then R; is a waiting
region in V' and if Rj was a color region for the colors ¢,z in v then R; is a color
region for the colors c,z' in v'. Other regions remain either waiting region or color

regions for the same pair of colors.

Proof. We have two cases to consider, either R; is a waiting region or is a color region

for a class ¢ # p.

Case 1. Rj is a waiting region. In that case we simply recolor (B, ..., A;,p) with ¢ if
i < j or we recolor (Bj,...,A;,p) with z if ¢ > j. Since (B,v) is valid, Observation
6 ensures that the class p is the only class colored with ¢ in Rg,..., Ry. So the
recoloring is proper. By Observation 12, the regions R;;1,...,R;_1 are still waiting
or color regions for the same pairs of colors in /. One can then easily check that the
region R; is a waiting region in v/, that R; is a color region for the class p and colors
¢,z in v/ and that (B,v’) is valid.

Case 2. Rj is a color region for the class ¢ # p and colors ¢, 2.

Since the recoloring will be symmetric, we assume that ¢ < j. We apply the following

recolorings:
1. Recolor (B, ..., A;,£) with 2/
2. Recolor (B;,...,Aj,p) with ¢

Since (B, v) is valid, Observations 6 and 7 ensures the class p (resp. /) is the only
class colored with ¢ and z (resp. ¢ and 2’) in Ry, ..., Ry. Thus the two recolorings

are proper. The regions of Rs11,...,R;—1 and Rj;1,..., Ry—_1 are not recolored, and

84 Chapter 4. Linear transformations between colorings of chordal graphs

by Observation 12, the regions R;,1,...,Rj_1 are either waiting or color regions for
the same pairs of colors in /. One can then easily check that regions R; is a color
region for the class £ and colors ¢, 2/, that region R; is a color region for the class p

and colors ¢, z in v and that (B,v') is valid. O

The following lemma will permit to guarantee that the colorings agree on the

vector v¢,.

Lemma 13. Let W be a clique associated with a vector vyy. Let Sy, S be two children
of W and B; be the buffer rooted at S; for i < 2. Assume moreover that (Bi,v) and
(Ba,) are valid and satisfy Dg, (viv,v) = Dg,(vo,u) = 0. Then there exists a
sequence of recolorings of U;y;isi such that in the resulting coloring u' of Ba we have
ve, (p) = ue, (p) for every p < w, and that (Ba, p') is valid. Moreover each coordinate

is recolored at most 12(k — w) times.

Proof. Note that, since D(vy,v) = D(vw,) =0, if vo, (p) is canonical then there
is not color regions for the class p in v or p and we have v, (p) = voy, (p) = poy (p) =
pc, (p). So if they differ on Cy for some class p, there exists a color region for p.
Assume that there exists a class p such that uc, (p) # ve, (p) := ¢. By Observation 5,
pe, an ve, are permutations of {1,...,w}. So there exists £ # p such that uc, (¢) = c.
Since vy, (p) = poy (p) and voy, (£) = ey (£), there exists color regions for the classes
pand £ in (By,v) and (B2, p).

By Lemma 12 we can assume that the color region for the class p and color ¢/, z is Rg11
and that the color region for the class ¢ and colors ¢, 2’ is Rs19. Since k > w + 3, there
exists a non-canonical color 2 ¢ {z,z'} such that 2" does not appear in R2,... R2,,

in p. We apply the following recolorings:

1. Recolor (B2

ERiN

A%, 0) with 27,
2. Recolor (B2,p) with 2/,

3. Recolor (C2, A2, |, p) with c,

S

4. Recolor (C2,..., A%, () with ¢.

R

Let us call p” the resulting coloring. Recoloring 1 is proper since (B2,..., A2,,) is

Z"-free in p. Since (Bz, p) is valid, the only non-canonical color in Ry after recoloring
1 is 2” # z, thus recoloring 2 is proper. After recoloring 1, (C2,..., A2, ,) is c-free
and after recoloring 3, (C2,..., A% ,) is ¢-free thus recolorings 3 and 4 are proper.
Let us show that (Ba, p”) is almost valid. Properties 2 and 3 are indeed satisfied
and Lemma 8 ensures the continuity property holds. Let us check Property 4. The
region R2,; (resp. RZ,,) is a color region for the class p (resp. £) and colors ¢, 2’
(resp. ¢,2) in p and thus becomes a color region for colors (¢, z’) (resp. ¢, z) after
recoloring 3 (resp. 4) in p” and Property 4 follows. Finally one can easily check that
the region R? becomes a transposition region for the classes p and ¢. As the region

R%; is not recolored, Property 5’ follows and (Ba, p”’) is almost valid. By Lemma 3,

4.6. Step 3: proof of Lemma 6 85

we can assume that the temporary colors used in Rs are the same that the ones used
in the transposition buffer of By, free to recolor the coordinates of u; at most twice.
We can thus apply Lemma 5 to (Ba, ") to obtain a coloring p’ such that (B, ') is
a valid buffer.

Let us count how many times a coordinate is recolored. If a class p satisfies
vg (p) # vg,(p), then there exists a color region for the class p in By thus there
are at most (k —w) such classes. So we may have to apply the described sequence
of recolorings and Lemma 5 at most (k —w) times. As this sequence recolors each
coordinate at most 6 times and as Lemma 5 recolors each coordinate at most 6 times
the result follows. O

Now we apply Lemma 13 iteratively for (B, ') and (B;,v*) where we only recolor
vertices in B; \ RZN- By the separation property, it indeed implies that no vertex of
W is recolored. At the end of this procedure, we have recolored vertices of B; for
i > 2 at most 12(k —w) times and the resulting coloring (still denoted by v* for
convenience) is such that (B;,v") is a valid buffer that satisfies v, (p) = v§_ (p) and
I/éN (p) = Z/éN (p) for every p < w. In particular, by Observations 6 and 7, there exists
a color region for class p in v/ if and only if there exists a color region for class p in
v!'. Moreover the colors that appear and disappear are the same. So in order to be
sure that 1/&2 (p) = I/é? (p) for every block @Q in Ry, ..., Ry, we just have to guarantee
that the color change for class p are in regions with the same index in % and v'. We
can guarantee that by iteratively applying Lemma 12. Indeed let R; be the smallest
region of the color buffer where le» and R; do not have the same coloring. If R} is a
waiting region, then there exists a waiting region RJQ-, in {R§+1? ..., R%_,} since the
number of waiting regions is the same. If R} is a color region where z appears, then
by minimality of ¢, there exists j* > j such that z appears in RJZ,. By Lemma 12, we
can assume that the two colorings v' and v* agree up to region j. We will apply at
most (k —w) times Lemma 12. And then in total, we recolor every vertex of the color

buffer at most (k —w) times.

Step 2: Agreement on the transposition buffers.

Let us first remark that since the proof of Lemma 10 is symmetric the following holds:

Lemma 14. Let (B,v) be an almost valid buffer and R;, R;+1 be two consecutive
regions with 1 < 1 < s such that R; is a transposition region and R;i1 is a waiting
region. Then there exists a recoloring sequence of R; U R;+1 such that in the resulting
coloring V', R; is a waiting region, R;+1 is a transposition region and (B,v') is almost

valid. Moreover only coordinates of R;, Ri+1 are recolored at most twice.

A valid buffer (B,v) is well-organized if the first 2(3) regions of the transposition

buffer are waiting regions.

Lemma 15. Let (B,v) be a valid buffer. There exists a sequence of recolorings
of Ra, ..., Rs_1 such that the resulting coloring (B,v') is valid and well-organized.

Moreover each coordinate is recolored O(w?) times.

86 Chapter 4. Linear transformations between colorings of chordal graphs

Proof. By Lemma 11, we can assume that (free to recolor at most O(w?) times each
vertex of the transposition buffer) there are at most (%) transposition regions in the
transposition buffer of (B,r) and at least 2(%)) waiting regions. By Lemma 14, we can
then assume that the first 2(%) regions of the transposition buffer are waiting regions.
Note that performing all these transformations require at most O(w?) recolorings of

each coordinate. O

Lemma 15 ensures that we can assume that (B;,v?) is well-organized for every
i € [1,e]. Let (B,v) be a valid buffer and R; with 1 < j < s be a region of
the transposition buffer. By Observation 5, v4; and v¢; are permutations of [1,w]
and there exists a unique transposition 7; (which might be the identity) such that
ve, = Tjova;. Conversely, va, and 7; define a unique coloring of R; (since the
temporary colors used in a valid buffer are fixed). In what follows, for i € [1, e]] and
jef2,s—1], T; denotes the transposition corresponding to the region R; of (B;, V).
For the ease of notation, let () = (‘2”) Note that after step 1, and since we can assume
that all the buffers (B;,v") are well-organized, we have H?S:_Ql T; = 1/%5 foralli <e
(where the symbol [] denotes the composition).
From now on, we will only recolor the transposition buffers of (B;,v?"), for i > 2 to

make them agree with (By,v!). Let us start with the two following lemmas:

Lemma 16. Let (B,v) be a valid buffer, to,t1 € [2,s — 1] with tg < t1, and p # q be

two integers in [1,w]. Assume that Ry, ..., Ry, are waiting regions. There exists a
Jj=t1
J=to
(and then Ry, and Ry, are transposition regions for the classes p and q), for every

sequence of recolorings of U._, R; such that in the resulting coloring V', T4, = T4, = Tpq
to < i < t1 R; is a waiting region, and (B,v') is valid. Moreover, each coordinate is

recolored at most twice.

Proof. Since (B, v) is valid, v4,, is a permutation of the canonical colors by Observation
5. As Ry, ..., R, are waiting regions, the continuity property ensures that the class
m is colored with the same canonical color in Ry,,..., R, in v. Let ¢ = VA, (p),
c2 = va,(q), and z # 2’ be the (non-canonical) temporary colors used in the

transposition buffer of B. We apply the following recolorings:
1. Recolor (By,, ..., B ,p) with z,

2. Recolor (By,,q) and (By,,q) with 2/,
3. Recolor (Cy,, ..., At ,q) with ¢q,
4. Recolor (Cy, ..., Ay, p) with co.

Recolorings 1 and 2 are proper since Ry, ..., R, only contain canonical colors in v
and z # 2z’ are non-canonical. After recoloring 1, (Cy,, ..., Ay,) is c1-free and after
recolorings 2 and 3, (Cy,, ..., Ay) is co-free, thus recolorings 3 and 4 are proper. The
regions Ry, +1,. .., Ry —1 are waiting regions in v/ by Observation 12. One can then
easily check that in v/, the regions Ry, and Ry, are transposition regions for the classes
p and ¢ and that (B,v') is valid. O

4.6. Step 3: proof of Lemma 6 87

Ry Roy; Rogy1-j Raq+1

FIGURE 4.13: Coloring of regions Ra, ..., Ron+1 of the buffer B, after
iteration j in Lemma 17.

Lemma 17. Let (B,v) be a valid and well-organized buffer and let Ty,...,Tq be
transpositions of [1,w]. There exists a sequence of recolorings of U?SQHRJ- such that
in the resulting coloring V' of B, To4; = Tea+1—j = Ti4; for all j € [0,Q2 — 1] and

(B,v') is valid. Moreover each coordinate is recolored at most 2Q) times.

Proof. For j € [0,Q) — 1] apply the following:
o If T1; = Id, do nothing, else

e Let p # ¢ be the classes that T7; permutes. Apply Lemma 16 to B with
to =247, t1 =20+ 1—j and integers p and q.

As (B,v) is well-organized, the regions Ra, ..., Roni1 are initially waiting regions.
Then, after iteration j, we obtain a coloring of B such that for all ¢ < j, 7944 =
To0+1-t = 11+; and the regions Ronyji2,. .., Ran—; are waiting regions (see figure
4.13 for an illustration). Thus we can iterate and the algorithm terminates with the
desired coloring /. As Lemma 16 maintains a valid buffer, (B, v') is valid. We applied

Lemma 16 at most () times, thus each coordinate is recolored at most 2() times. [J

For every i € [2,w], we apply Lemma 17 to (B;,v") with T4, = TQIQ+2+]~ for
j € [0,Q—1]. Recall that v} = H?Qj_zl) and that (v)7 = j;é0+2 7;. Then
after applying Lemma 17 to B; with i > 2 we obtain a coloring /% such that sz: s—1 T; =
VY o (vy,) P ovh . We will show that we can use this coloring to "cancel" the initial

transpositions 7/ (with j > 20+ 2) of B;. To do so, we need the following lemma:

Lemma 18. Let R;, Riy1 be two consecutive regions of a valid buffer (B,v) with
1 < i < s such that 1,41 # Id and a is a class permuted by T;,11. There exists a
recoloring sequence of R; U R;+1 such that in the resulting coloring V',] is either the
identity or permutes the class a and 7/, does not permute the class a. Moreover,

(B,v') is valid and each coordinate is recolored at most 4 times.

Proof. Let z, 2’ be the temporary colors used in (B,v) and let z” ¢ {z, 2’} be another

non-canonical color. We have different cases to consider:

1. 7, = Id. Then R; is a waiting region. Let b # a be the other class permuted by
Ti+1. We can apply Lemma 10 and obtain a valid buffer (B,v’) such that R; is a
transposition region for classes a and b and R;;1 is a waiting region. Moreover,

the recolorings of Lemma 10 recolors each coordinate at most twice.

88

Chapter 4. Linear transformations between colorings of chordal graphs

2.

7; = T;+1- The regions R; and R;y; are consecutive and permute the same
classes, thus they also permute the same colors. By Lemma 11 we can recolor
R;, R;11 into waiting regions and obtain a valid buffer. Moreover each coordinate

is recolored at most twice.

T;, Ti+1 are transpositions which permute exactly one common class. Let b # ¢
distinct from a be the other classes that are permuted by 7;, 7;+1. Let ¢1 = vy, (a),
¢y = v4,(b) and c3 = v4,(c). As the two transpositions only involve {a, b, c},
one of the three classes is permuted in R; and R;y1, and by Lemma 3 we can
suppose this class is colored with z on B; and B;,1. As 2" is not contained in
the transposition buffer we can recolor this class on (B, ..., Bi+1) with 2”. The
only remaining temporary colors on R;, R;1+1 is z’. Thus we can recolor one of
the two other class with z on (B, ..., Bit+1) and then recolor the third one with
2" on the same set of blocks, and these three recolorings are proper. Let v/
be the coloring we obtain. The colors ¢, ¢z, c3 are not in (B;, ..., Bijy+1) in v™P.
Suppose that l/tCTﬂ (a) = c2. As Cj41 has not been recolored we have necessarily

ngfl (b) = c3 and I/g?ﬁ (¢) = ¢1. We apply the following recolorings:

(a) Recolor (Cy, ..., Bit1,a) with ca,

(b) Recolor (C;, Aij+1,b) with ¢,

(c) Recolor (B;,...,Ait1,c) with cs.
Given that colors cj,c2,c3 are not contained in (B;,...,B;+1) in v and

given VZTP and Vg?i these recolorings are proper by the separation property.

Furthermore, in the resulting coloring v/, R;, R; 1 are transposition regions and

t . .
) = Tap and 7/, = 7. The case Z/Cmp (a) = c3 is symmetrical.

. Ti, Tit+1 involves four different classes a, b, ¢, d < w. We can suppose w.l.o.g that

TiTi+1 = TedTap and by Lemma 3 we can assume that (Bj,c) = (Biy1,a) = 2
and (B;,d) = (Bit+1,b) = 2. Let c1 = va,(a), ca = va,(b), c3 = va,(c),
¢4 = v4,(d). We apply the following recolorings:

(a) Recolor (B, ..., Bit1,a) with 2",
(b) Recolor (Cj, ... ZJrl,c) with z,

(¢) Recolor (Cj, ..., Bit1,b) with ¢,
(d) Recolor (Cj, ..., Bjt1,d) with 2/,
(e) Recolor (Bj,...,Ai+1,c) with cs,
(f) Recolor (B;,...,Ait1,d) with ¢y,
(g) Recolor (Bl,b) with z,

(h) Recolor (Cj, ..., Bit1,a) with co.

Let us justify these recolorings are proper. Recoloring (a) is valid since 2" is not

contained in the transposition buffer in v. Recolorings (b) and (c) are proper

4.6. Step 3: proof of Lemma 6 89

since after recoloring (a), the only class colored with z in R;, R;41 is the class ¢
and the only class colored with ¢ on (B;,...,C;y1) is the class b. Recoloring
(d) is proper since after recoloring (c), the only class colored with 2z’ on R;, R;11
is the class d. At this point the color ¢3 (resp. ¢4) is only contained in (A4;, ¢)
and (Cit1,d) (resp. (4;,d) and (Cit1,¢)) in R;, Ri+1, thus recolorings (e) and
(f) are proper. After recoloring (e), the color z is not contained in R;, thus
recoloring (g) is proper. Finally recoloring (f) is proper, since after recoloring
(g) the only class colored with co on (B, ..., Cit1) is the class a. One can then
easily check that in v/, the region R;, R;1 are transposition regions, 7/ = 7,

)

/ —
and 7—1/_,’_1 — qu.

Note that in each case, Properties 2, 4 and 5 of valid buffers are indeed satisfied.
Furthermore the continuity property holds as all the given recolorings fit in the
framework of Lemma 8. Property 3 is satisfied since all the regions of the transposition
buffer in v/ are either waiting or transposition regions that use the same temporary
colors z and 2’ (up to applying Lemma 3 to R; and R;;1), thus (B,v') is valid.
Moreover each coordinate is recolored at most four times.

O
We can then give the last lemma before concluding:

Lemma 19. Let (B,v) be a valid buffer. Suppose there exists two integers to,t; €
[2,s — 1] with ty < t1 such that Hz():tl 7j = Id. Then there exists a sequence of
recolorings of U?:toRj such that in the resulting colorings V', Ry, ..., Ry, are waiting

regions and (B, V') is valid. Moreover each coordinate is recolored O(w?) times.

Proof. Let I(v) be the number of transpositions equal to the identity in 7, ..., 7,
(that is the number of waiting regions in Ry, ..., R, for the coloring v). If I(v) =
t1 —to + 1 we are done. Otherwise we will show that we can always recolor U?:to R;
and obtain a coloring v’ such that the transpositions 74 ,...,7;, of Ry,,..., Ry, in v/
satisfy H;-‘):tl 7; = Id and I(V') > I(v).

Let tg < r < t1 be the maximum index such that 7. # I'd and a be a class permuted

1

by 7. Let us show that there always exists ig € [0, — to — 2] such that after applying

iteratively Lemma 18 to regions R,_;_1, R,_; and the class a for i € 0,1,...,1ig, we

obtain a coloring v such that the transposition 7,7, 7/ | of Ry, R;,—1 in v" satisfy
no__ N

Tig = Tig—1-

Suppose not. Then, when applying Lemma 18 to regions R,_;_1, R,—; and class a
for i €0,1,...,7 —ty— 1, case 2 of Lemma 18 never occures. Let v/ be the coloring
we obtain after the last iteration and 7/ be the corresponding transpositions. Note

that R;, 41 is never recolored, thus 7' = H?}:tl ij = Id. By Lemma 18, TtJ; is the

only transposition that permutes the class a amongst Tt{), . ,thl and Tt{) # Id. Thus
T(a) # a, a contradiction.

We obtain a coloring v such that the transpositions 7,7’ | of R;,, Rj,—1 in "
!
io—1°

satisfy 7/ = By applying Lemma 18 once more to v, R;,, Rj,—1 become

90 Chapter 4. Linear transformations between colorings of chordal graphs

waiting regions and we obtain a coloring v’ such that I(v’) > I(v). Furthermore,
since Ry, 41 is not recolored, H;‘):tl 7= Id.

We can iterate this process until we obtain a coloring v’ (still called v’ for convenience)
such that I(v') =t; —to + 1. Furthermore, (B,v’) is valid since Lemma 18 maintains

a valid buffer.

Let us justify the number of times a coordinate is recolored. In order to increase
I(v) at each step, we apply Lemma 18 to each region of the buffer at most twice,
thus each coordinate of the transposition buffer is recolored at most 8 times. Since
I(v) < 3(%), each coordinate of the buffer is recolored O(w?) time.

O

L . . . L " . . .
Bi ¢ 2042 o Ts—1 0 Tse1 ¢ T20+2 0 2043 : s—1

Ry Roy1 Rog2 Rogt1 Rooy2 Rg_1

FI1GURE 4.14: Coloring of the transposition buffer of B; with i > 2,
after step 1 and after applying Lemmas 15 and 17 in step 2. The dotted
lines separate the regions.

Let us summarize the step 2 of the proof. By Lemma 15 we can suppose that all

the (B;,v!) are well-organized. Recall that after step 1, Vféls = V}45 for all ¢ > 2, thus

H20+2

o1 T; = V}ls. Then after applying Lemma 17 to B; with ¢ > 2 we obtain a coloring

- that we still denote by v for convenience - such that for every j € [2,Q + 1],

7'; = 7210+j and for all j € [[O,Q—'l]], 7-})+2+]. = Tsl—l—j (see figure 4.14 for an
illustration). Thus we have H]Q:inl =

and obtain a valid buffer coloring of B; such that for all j € [2,Q + 1], T; = 7'210 i

Id and we can apply Lemma 19 to (B;, V")

and for every j € [Q+ 2,5 —1], R;- is a waiting region (7']Z = Id). It just remains to
switch the transpositions up in the buffer using Lemma 15 to obtain a valid buffer
(B%,) such that v* = v! for every i € [2,€].

Finally, note that for the proof of Lemma 6, we applied Lemmas 13, 17 and 19 once to
each B; for i € [2,¢], and we applied Lemma 15 at most twice to each B; for i € [1, e].

Thus every coordinate is recolored O(w?) times, which concludes the proof.

4.7 Step 4: proof of Lemma 7

Let W be a clique of T with children Sy, .55, ... Se and let « be a k-coloring of G treated
up to S; fori € 1,...,e. Let vy be a vector associated with W, B = Ry, ..., Ry be the
buffer rooted at W, and B; = Ri, ..., Rﬁv be the buffer rooted at S;. Suppose that all
the B;s have the same coloring v such that (B;,v) is a valid buffer and Dg, (v, v) = 0.
We will show that there exists a sequence of vertex recolorings of Uj_; U;-V:_Ql R; such
that the resulting coloring of the buffer B rooted at W is well-colored for v.

Let Q1,...,Q3an denote the blocks of B, and Qi,... ,QgAN denote the blocks of

4.7. Step 4: proof of Lemma 7 91

B; for i € [1,w]. Note that if a vertex starts at height h in Ts, then it starts at
height A + 1 in Ty,. In particular if a vertex v starts at height h in T, such that
JA < h < (j+1)A—1 for j € [0,3N — 1], then v € Q?V,j NQn—;. However if a
vertex v starts at height h = jA, then v € Qﬁv_j NEQnN—j—1, thus we may have to
recolor v. Indeed, suppose that Q% _ ; is the block B of a color region for the class
p and colors ¢, z, and that v € (Z]'V_j,p). Then v is colored with vg(p) = 2. As we
want B to be well-colored for v, Qn_;_1 has to be well-colored for v, thus we need
to recolor v with v4(p) = c.

For the ease of notation, we denote by f (Qz) the set of vertices of Q;'» which height in T,
is maximum, and f(;,p) is the set f(Qz) N X, for p <w. Let z, 2’ be the temporary
colors used in the transposition buffers of Sy,...,S.. For every j € N—1,...,2 in

the decreasing order, we apply to each region le-, ... Rj the following recolorings:

1. if R;’ is a waiting region do nothing. By the continuity property and the definition
of waiting regions we have vc, | = v4, = v, = v, thus R; is well-colored for

VA;» VB VC; -

2. if R§» is a color region for the class ¢ where ¢ disappears, recolor f (B;-, q) with
c1.
This is a proper recoloring since by Observation 6, the only class colored with c;
on the color buffer of B¢ is the class q.
For any class m # q, ve;,_,(m) = va,(m) = vp,(m) = ve,(m) by definition of
color regions and the continuity property. Furthermore, ve, ,(q) = va,(q) #
v, (q) = vo;(q). As the vertices f(BY,q) have been recolored with v4,(g) for

every ¢ < p, it follows that R; is well-colored for v4,,vp,, vc;.

3. if R; is a transposition region for the classes p and g with vy, (p) = 1 and

vc;(q) = c2 do in the following order:
(a) Recolor f(C;,p) with z and recolor f(C’;:, q) with 2/, then
(b) Recolor f(B;,p) with ¢; and recolor f(B;:, q) with cs.

By the separation property N [C’JZ] C B; U C’Ji U A; 11- As v defines a valid buffer,

R;- 1 is either a waiting region or a transposition region, thus v 4

canonical colors. The only vertices colored with z (resp. 2’) in N[C}] are thus

.11 only contains
vertices of the class p (resp. ¢), and recoloring (a) is proper.

Furthermore, N (BJ’) - A;- U B; U C’]’ By the definition of transposition regions,
the only vertices colored with ¢; (resp. ¢2) on A% U B; are vertices of the class
p (resp. q). By the separation property, N[f(B})]NC} C f(C}), and after
recoloring (a) no vertex of f(C}) is colored with ¢; nor ¢p. It follows that
recoloring (b) is proper.

For any class m ¢ {p,q}, vc, ,(m) =v4,(m) = vp,(m) = v, (m) by definition
of transposition regions and the continuity property. Furthermore, vp,(p) = 2z

(resp. vp,(q) = #') and the vertices f(C%,p) (resp. f(C%,q)) have been recolored

92 Chapter 4. Linear transformations between colorings of chordal graphs

with z (resp. 2’). Finally, va,(p) = ¢1 (resp. va,(q) = c2) and the vertices
f(B;-,p) (resp. f(B;-, q)) have been recolored with ¢1 (resp. c2). It follows that

the region is well-colored for v4,,vp,, vc,.

Let us finally check for the coloring of regions Ry and Ry. We have Ry C US_; RY U Aj.
As none of these vertices are recolored, and v4, = vp, = Vo, = V4, by the continuity
property and Property 2 of valid buffers, R; is well-colored for v4,,vp,,vc,. We have
Ry C U Ry, UW. None of these vertices are recolored (R, is a waiting region for
all i < e by Property 5 of valid buffers), and by assumption vy = v¢,. Thus Ry si
well-colored for va,,vBy, Vo, - It follows that (B,v) is a valid buffer. As the vertices
of height at least 3AN in Ty are not recolored, they remain colored canonically. We

obtain a coloring of G treated up to W, which concludes the proof.

93

Chapter 5

Recoloring graphs of treewidth 2

The results presented in this chapter were obtained with Nicolas Bousquet and Marc
Heinrich and were accepted for publication in Discrete Mathematics. The full paper is

available on arXiv [7].

In this chapter, we investigate the class of outerplanar graphs and more generally
the graphs of treewidth 2. Since graphs of treewidth 2 are 2-degenerate, Theorem 16
proved by Bouquet and Perarnau in of [29] ensures that there exist linear transforma-
tions between any pair of 6-colorings. We also know that such a result is impossible
for 4-colorings [15] (the diameter is quadratic). So the only open case is when k = 5.

In this Chapter, we answer this question and show:

Theorem 5. Let G be graph of treewidth at most 2 and k = 5. There exists a constant
¢ such that, for every pair of 5-colorings a, B of G, there exists a transformation from

a to B recoloring each vertex at most ¢ times.

Note that since outerplanar graphs have treewidth 2 and the quadratic diameter
for k = 4 obtained in [15] also holds for outerplanar graphs, it also completely
characterizes the recoloring diameter of outerplanar graphs.

One can naturally ask if the results of Theorem 5 can be extended further. In
particular we ask the two following questions, where the second generalizes the first

one:

Question 8. Does there exists a constant C' such that, for every graph G of trecwidth
at most d, the diameter of Ri(G) is linear when k > d+ C?

Question 9. Does there exists a constant C' such that, for every d-degenerate graph
G, the diameter of Ri(G) is linear when k > d+ C?

Outline of the proof. Before going into the details of the proof, let us describe
from a high level point of view how the proof works, and how the chapter is organized.
The first step in the proof of Theorem 5 is to show that it is sufficient to prove the
result for chordal graphs with cliques of size at most 3, instead of graphs of treewidth 2.
This reduction to chordal graphs is done in Section 5.1. Proving that the result holds
for chordal graphs is the main technical part of the paper, and is done in Section 5.2.

The proof for chordal graphs is algorithmic in nature. We first describe the procedure,

94 Chapter 5. Recoloring graphs of treewidth 2

introduced in [29], which builds a recoloring sequence by making greedy choices. We
prove that the recoloring sequences produced by this procedure recolor each vertex of
the graph a constant number of times. This is done by first proving some properties
of the sequences produced by this algorithm in Section 5.2.1, and then showing in
Section 5.2.2 how these properties can be used to bound the number of times that
each vertex is recolored. The core of the proof proceeds by contradiction. Assuming
that a vertex is recolored a large number of times puts some very strong constraints
on the recoloring sequence on its neighbor. This in turn is used to show that the

algorithm would recolor x a much smaller number of times in this sequence.

5.1 Reduction to chordal graphs

In this section, we show how to reduce the problem to the case where the input graph
is a chordal graph of clique number at most three. The following lemma is sufficient

to prove Theorem 5.

Lemma 20. There exists a constant ¢ such that for every chordal graph H with
w = 3, there exists a transformation from any 5-coloring of H into a 3-coloring of H

by recoloring each vertex at most ¢ times.

The proof of Lemma 20 is postponed to Section 5.2.2. Let us explain how we can

use it to prove Theorem 5

Proof of Theorem 5. Let G be a graph of treewidth at most 2 and «, 8 be two 5-
colorings of G. Let T be a tree decomposition G. Recall that such a decomposition
can be found in linear time by [14].

Let us first transform G into a chordal graph H with clique number at most three.
The transformation is based on a trick used in [40]. For every bag B of T, we merge
the vertices of B colored the same in a. We repeat until we obtain a graph H’ such
that no bag contains two vertices of the same color. Note that tw(H') < tw(G) since
we only identify vertices belonging to the same bags. Since we merged vertices colored
the same in «, the coloring o which is the coloring of H' where a vertex receives
the color of its color class in G is proper and well-defined. Note that, in H’, vertices
belonging to the same bag receive distinct colors. So o’ is also a coloring of H which
is the chordal graph whose clique tree is Tx. In other words, H is the graph obtained
from H' by transforming every bag of the tree decomposition of H' into cliques.

By Lemma 20, o/ can be transformed into a 3-coloring of H by recoloring every
vertex at most ¢ times. Feghali observed in [40] that it implies that, in G, we can
transform « into a 3-coloring v; of G by recoloring every vertex of G at most ¢ times.
With a similar argument, we can transform (in a 3-coloring 2 by recoloring every
vertex at most ¢ times. The following claim concludes the proof of Theorem 5 by
taking d = 2.

5.2. Best choice algorithm 95

Claim 1. Let G be a graph of treewidth at most d and ~s,7: be two (d+ 1)-colorings
of G using colors {1,...,d+1}. If k > 2d+ 1, 5 can be transformed into v; by

recoloring every vertex at most twice.

We perform the following recolorings. We denote by X; the subset of vertices
colored with ¢ in . For every i < d, recolor one by one all the vertices of X; with
color d 4+ 1 + 4. Then recolor the vertices of X;,1 with their target colors. Finally
recolor all the vertices of X; for ¢ < d with their target color. The resulting coloring is
¢ and we claim that at every step, the current coloring is proper. Indeed, during the
first phase, the color classes are the same (we simply change the color classes of the
X;s). When X4 is recolored, all the vertices that receive a color in {1,...,d+ 1} in
the current coloring have their final color. The property is kept all along the rest of

the recoloring algorithm, which completes the proof since ¢ is proper. ¢ O

So, in what follows, our goal is to prove Lemma 20.

5.2 Best choice algorithm

Our proof of Lemma 20 is algorithmic and is based on an algorithm already used
n [29]. Our main contribution consists in making a careful analysis of its behavior
for chordal graphs with clique number at most 3, and showing that the recoloring
sequence produced by the algorithm recolors each vertex a constant number of times.
We start by describing the algorithm and its properties.

In the following, given a graph G and two colorings a and 8 of G, a recoloring
sequence S is a sequence $183 ... where each s; is a pair (v,c) describing the vertex
v and the color ¢ which characterize the i-th step of the sequence. All the intermediate
colorings described by this sequence must be proper. The restriction of S to X,
denoted S|, is the recoloring sequence obtained from & by keeping only recolorings
of vertices in X. In particular if X is a single vertex v, then §), denotes the sequence
of colors taken by the vertex v in the recoloring sequence S. With this notation, |S),|
is the number of times the vertex v is recolored in the sequence S.

Part of our proof relies on the identification of patterns in a recoloring sequence S.
Given a sequence of vertices v; ...vy, we say that S contains this pattern if there is
an index ¢ such that for all j </, s;;; recolors the vertex v;. Given an integer r, we
also denote by vizr the pattern where v; is recolored r times in a row (without any
other vertex interleaved in S), and (v1...v)" to denote that the pattern vy ... vy is
repeated r times in a row in the sequence S.

Consider a d-degenerate graph G, two k-colorings «a, § of G with k > d + 2, and
a vertex u of G with degree at most d. Let o’ and 3’ be the restrictions of a and 3
to G —wu and S a recoloring sequence from o’ to 5’. Let us now explain how we can

extend this recoloring sequence to the whole graph.

96 Chapter 5. Recoloring graphs of treewidth 2

Let t1,...,ty be all the steps where the color of any neighbor of u is modified in
S, and let ¢;;, be the new color assigned to the recolored neighbor at step ¢;. A best

choice for u at step t € {t1,...,tp} is:
o the color f(u) if f(u) is distinct from ¢y, ..., ¢z,

o or any valid choice for u at step ¢t which is distinct from {¢;, with ¢; > t}

otherwise;

o or the valid choice for u at step ¢ that appears the latest in the sequence (c,)¢, >¢

otherwise.

The Local Best Choice for u extends the sequence S by recoloring only the vertex
u. When a neighbor v of u is recolored in § with the current color of u, we add a
recoloring for u just before this recoloring and we recolor u with a best choice. We
do not perform any other recoloring for u except at the very last step to give it color
B(u) if needed.

Let G be a graph and vy, ..., v, be a degeneracy ordering of G. The Best Choice
Recoloring Algorithm is the algorithm which consists in making the Local Best Choice
successively on v,,...,v1. We call a best choice recoloring a sequence S which can
be obtained from this procedure for some degeneracy ordering of G. Observe that by
construction, if § is a best choice recoloring for some graph G and some degeneracy
ordering v1, ..., v, then for every index i > 0, if V; = {v;,...,vn}, then Sjy; is a best
choice recoloring for G[V;]. In order to show how the Local Best Choice Recoloring
Algorithm works, and as a warm-up, let us give a proof of Theorem 16 first stated by

Bousquet and Perarnau in [29]. We first recall the theorem:

Theorem 16. Let G be a d-degenerate graph. The diameter of the (2d + 2)-reconfiguration
graph of G is at most (d + 1)n.

Proof. Let o, B be a two 2d 4 2 colorings of G and vy, ..., v, be a degeneracy ordering
of G. Foriel,...,nlet V; = {v;,...v,} and let o, 5; be the colorings induced by «
and 8 on G[V;] respectively.

We show by induction on n that the Best Choice Algorithm outputs a reconfig-
uration sequence transforming «; to 8; such that every vertex is recolored at most
d+ 1 times. It is obviously true for ¢ = 1. Suppose the result holds for ¢ = n — 1 and
let S be a reconfiguration sequence of G[V,,_1] transforming «,,—1 to 8,—1. The Best
Choice Algorithm extends this sequence to a sequence S’ for G' by recoloring v; with a
local best choice when needed. Let t1,...%, be the time at which v; is recolored in S'.
Let us show that for any j < /¢ —2 we have tj;1 —t; > d. Let 7,...,7, be the time
after t; at which a neighbor of v; is recolored and let ¢, ...,cr, be the new color
assigned to the recolored neighbor. Since v; is also recolored at step ¢j41, the local
best choice at step t; is the color that appears the latest in the sequence ¢, , ..., ¢, .

q
Before the recoloring a time ;, the set of distinct colors formed by the color of vy

5.2. Best choice algorithm 97

together with the colors of its neighbors has size at most d + 1. It follows that there
is always a valid choice of color for vy at time ¢; that it distinct from ¢, ..., cs, since
there are 2d + 2 colors in total. Hence, the local best choice assigns some color ¢,
where p > d + 1 to vy at time ¢;. It follows that there are at least d + 1 recolorings of
neighbors of v; before vy gets recolored again at time ¢;1.

Since each vertex is recolored at most (d + 1) times in S, there are at most d(d + 1)
recolorings of neighbors of v; in S. Since v; is recolored only after d 4 1 recolorings
of its neighbors, plus eventually one final time to its color in 3, it follows that v; is

recolored at most d 4+ 1 times, which concludes the proof. O

5.2.1 Properties of the Best Choice Algorithm

In what follows, we always assume that G is a chordal graph with w = 3 and k& = 5.
The ordering vy, ..., v, is a perfect elimination ordering of G, and § = s1...s; is a
best choice recoloring for this ordering between two 5-colorings o and 8 of G. We
denote by V; the set {v;,...,v,}, and G; = G[V;]. The perfect elimination ordering
of G' can be used to construct an acyclic orientation of the graph, with the edge v;v;
oriented towards v; if j > ¢. With this convention, each vertex of the graph has at
most 2 out-neighbors, and for every vertex v of G, we denote by Nt (v) these two
out-neighbors, and N [v] = N*(v) U{v} the inclusive out-neighborhood. Because the
ordering is a perfect elimination ordering, the out-neighbors of a vertex are adjacent.

Given a vertex v, the step ¢ of the sequence S is saved for v if s; recolors a vertex

w € NT(v) and one of the following holds:
e v is not recolored at steps 1,...,1;
e v is not recolored at steps ,...,t;
« the two steps preceding s; in Sjy+[,) do not recolor v.

Informally, in the "worst case" scenario, when we apply the Best Choice Algorithm
to extend a recoloring sequence to a new vertex v, whenever we have to recolor v
because of one of its neighbors there are two possible choice of color to recolor v with.
By choosing the correct color, the algorithm recolors v once every two steps at most.

This is formalized in the following observation:

Observation 14. For every vertex v and w € N1 (v), the patterns vv never occur in
S|N+)» and the pattern vwv can occur at most once, at the very end of the sequence

S|N+u]-

Saved steps quantify how many additional steps are saved by the algorithm
compared to the worst case scenario. More precisely, we will show that every two
saved recolorings for x reduce the number of times x is recolored by one compared
with the worst case scenario. In order to prove this result, we will need one additional
notion. We say that a step i recoloring a vertex v is caused by a vertex w if the

recoloring step following s; in Sy+(,) recolors w. Note that by construction, this

98 Chapter 5. Recoloring graphs of treewidth 2

recoloring step recolors w with the color that v had just before the transformation s;.
Moreover, all the steps recoloring v, except possibly the last one where v is given its
target color, are caused by one of the out-neighbor of v.

Let us start by proving a simple inequality on the number of times that a vertex v

is recolored.

Lemma 21. For every vertex v of, if r is the number of saved recolorings for v, then

the following inequality holds:

Sl < 1= 5o | Ze Bl
Proof. The statement is proved by induction on m := 3 ,c N+ (y) [Sjw|- If v is recolored
at most once during the sequence (which is the case when m = 0, i.e., when its
out-neighbors are not recolored) the conclusion follows immediately. Hence, let us
assume that v is recolored at least twice. If v is not the first recolored vertex of S)yy],
then the first recoloring is saved. If we consider the coloring o/ obtained after this
first recoloring, and &’ the subsequence of S which recolors o’ to 3, then by induction,

(m—1)—(r—1)
2

v is recolored at most + 1 times in &’, and consequently also in S. In this
case the induction step holds, consequently we can assume in the rest of the proof
that v is the first vertex recolored in S|y (-

Let us write S|y+[,] = 57 -..5;. We know that s recolors v, let us write co and ¢;
the colors of v respectively before and after the transformation s}. Since v is recolored
at least twice, this recoloring must be caused by one of its out-neighbors say w, and w
must be recolored in s, with the color ¢g. Consequently, there are still two colors that
did not appeared in N*[v] in the transformation up to step 2. By Observation 14,
either s3 recolors v, and in this case is the last step of S+] (e, £=3); or sh does
not recolor v. In the first case we have 3, y+(y) [Sjw| = 1, and since v is recolored
twice, the inequality holds. In the second case we consider the coloring o/ obtained
after the transformation s4, and let S’ be the subsequence starting after the step s4
recoloring o’ into 5. We know that v is recolored at one less times in &’ than in S.
Moreover, by definition neither s, nor s4 are saved recolorings for v, hence the number
of saved recolorings for v in &' is still equal to r. Using the induction hypothesis on
S’, we know that v is recolored at most W_TQ_T +1in &', and since v is recolored one

additional time in S, the induction step holds.]

Hence in order to prove that a vertex is not recolored to many times, it is sufficient
to show that there exists a sufficient number of saved recolorings. The following lemma

gives a sufficient condition for a saved recoloring to appear.

Lemma 22. Let u be a verter of G and v,w € N¥(u). We write S|y +[,) = 51, - - - 5]
Assume that the step i of S|n+ [u) recolors u and is caused by v, and step i +1 is caused
by w. Then either i +3 > € or the step i + 3 of S|+, is saved for u.

Proof. Let ¢ (resp. ca, resp. c3) denotes the color of u (resp. v, resp. w) just before

step i. By definition, at step ¢ 4+ 1 the vertex u takes the color ¢; (since the step i

5.2. Best choice algorithm 99

is caused by u) and at step i + 2, w takes the color ¢y (since i + 1 is caused by w).
Thus, after step 7 + 2, the only colors which appeared for v and w at steps 7,7+ 1 and
1+ 2 are the colors c1, c2, c3. Since we make the best choice for u and there remain
two valid colors, u is not recolored at step i + 3 (and then is saved for u) except if it

is the last step of S|y+[,) where vy receives its final color. O

Lemma 23. Let u be a vertex of G, and v,w € N (v). If S|N[u contains the
pattern uvvw>u then the initial, intermediate and final colors of w in the subsequence

corresponding to this pattern are pairwise distinct.

Proof. If the three colors are not pairwise distinct then only the initial and final colors
of u can be the same. Let ¢; be the initial color of u. Let s] ... s, be the subsequence
of S| N[v] corresponding to the pattern, then s} is caused by v, which implies that v is
recolored in s), with ¢;. Since v and w are adjacent, all the subsequent recolorings of
w and u use a color different from c¢1, and in particular, the final color of v is different

from c;. O

Lemma 24. Let z,u,v,w be vertices of G such that N (z) = {u,v} and N (u) =
{v,w}. If i is the first index such that x = v;, let us write ¢ = max;~; Spo, |- If x is

recolored at least ¢ — 1 times in S, then:
1. the pattern uwvu appears at least ¢ — 34 times in 8|N+(u);

2. in the sequence of colors of x, there are at most 74 indices where three consecutive

colors are not pairwise distinct.
Proof. Let us prove the two points of the lemma successively.

L. Let us write S|y+(y) = sh,...,8y. Let us start by showing that few recolorings
of u are caused by v. Let i be an index such that the recoloring s} of u is caused

by the recoloring s; ,; of v.

First observe that z is not recolored between s; and s; ;. Indeed, let us denote
by ¢ the color of u before s;. Since the step i is caused by v, this means that v is
recolored with ¢ in s}, ;. Moreover, since z and v are adjacent, x is not colored
c before ;. This implies that x is not recolored between s; and s; ;, as it would
be a recoloring caused by v, which can only happen if v is recolored with the

color of which is not the case here.
If s} is the first recoloring of a vertex in N [z], then it is saved for z. Otherwise,

the recoloring preceding s, in S|N+[2) can be either:

e a recoloring of z, in which case it is caused by u, and by Lemma 22, this
implies that either 7, is the last, or before last, step of S|N+[a]» OF the

step following s} 1 in S|+, is saved for z.

« a recoloring of either u or v, and in this case s}, is saved for x.

100

Chapter 5. Recoloring graphs of treewidth 2

This implies that every time (except once) there is a recoloring of u caused by v,
we can find a saved step for x, and all these saved steps are different. Moreover,
since x is recolored at least ¢ — 1 times, by Lemma 21 there are at most 5 saved
recolorings for x, and consequently by the observation above there are at most 6

recolorings of u caused by v.

Since x is recolored at least ¢ — 1 times, we know by Lemma 21 that u is
recolored at least ¢ — 3 times. At most 6 of these recolorings are caused by v by
the argument above. Hence, except the last one, the other ¢ — 10 recolorings of
u are caused by w. Moreover, since w is recolored at most ¢ times, it also means

that there are at most 10 recolorings of w which do not cause a recoloring of w.

Let us consider ¢ and j such that s, and 39 are two consecutive recolorings of

u in Sy+p,). Our goal is to show that except for a small number of choices of
/

J matches the pattern wwvu. Observe that the

i, we have j =i+ 3,and s}...s

following properties hold:

e By Observation 14, we have j > i+ 2, and j = i + 2 can only happen once

at the end of the sequence.

o If j > i+ 3, ie., if there are at least three recolorings of v or w between
s; and s;, then at least one of these recolorings is saved for . This can
happen at most 9 times since u is recolored at least ¢ — 3 times, and using

Lemma 21.

o If j =i+ 3 and sj,; does not recolor w, then we have a recoloring of
u which is not caused by w, which can happen at most 10 times by the

arguments from the previous paragraph.

o Finally, if j = i+ 3 and s} ; recolors w, and if s, does not recolor v, then
it must recolor w (it cannot recolor u by the assumption that j =i+ 3),
in which case we have a recoloring of w which does not cause a recoloring

of u, which can happen at most 10 times.

Combining all the points above, and since w is recolored at least ¢ — 3 times, the
pattern uwwvu occurs at least c —4 —1—9—10 — 10 = ¢ — 34 times, proving the

first point of the lemma.

. Let us now consider the second point. Since x is recolored at least ¢ — 1 times

while its at most two out-neighbors are recolored at most ¢ times, then by
Lemma 21, there are at most 5 saved recolorings for z. Let us write S)y+[,] =
51 .. .5y, and consider two indices 4 < j such that s{ and s’ are two consecutive
recolorings of z. Again, by Observation 14, we have j > i+ 2, and j = i+ 2 can
occur only once at the end of the sequence. If j > i + 3, then s;_1 is saved for z,
which can happen at most 5 times. In all the other cases, there are exactly two
recolorings of either u or v between s; and s;. By the point 1. above, we know
that the pattern uwwwvu appears at least ¢ — 34 times in S| N+[u]- This implies

that in the sequence Sy, .} there are at most 2 x 34 times where either two

5.2. Best choice algorithm 101

consecutive u or two consecutive v appear as a pattern. Hence, in all but at
most 68 + 5+ 1 = 74 occurrences, the subsequence s; ...s; matches one of the
patterns zuvx or zvuz. By Lemma 23 the three colors taken by x during this
portion of the recoloring sequence are all different, which proves the second point

of the lemma.

5.2.2 Proof of Lemma 20

Let ¢ be a constant equal to 542. In order to prove Lemma 20, we will show that a
best choice recoloring sequence recolors each vertex at most ¢ times. This is proved
by induction on the number of vertices of G. This is clearly true when G contains a
single vertex since the sequence will recolor this vertex at most once. Assume that
the conclusion holds for all the chordal graphs with clique number at most three on
n vertices. Let G be a graph with n + 1 vertices and let x be the first vertex in the
elimination ordering. Assume by contradiction that x is recolored ¢+ 1 times in a
best choice recoloring sequence for this elimination ordering. Using the induction
hypothesis, all the vertices but = are colored at most ¢ times.

If = has a single neighbor, then by Lemma 21, it is recolored at most §+1 < c
times, a contradiction. Hence, we can assume that x has two neighbors y and z.
Again, using Lemma 21, both y and z are recolored at least ¢ — 1 times in S. Since G
is chordal, yz is an edge of GG, and we can assume without loss of generality that z is
an out-neighbor of y. Let y; be the second out-neighbor of y (if it exists).

By the first point of Lemma 24, there are at most 34 recolorings of y in S+
where the subsequence starting at this point does not match the pattern yy;zy.
Moreover, by the second point of Lemma 24 applied to z, there are at most 74 triplets
of consecutive colors of z which are not composed of pairwise distinct colors. Since

both y and z are recolored at least ¢ — 1 times, there exists a subsequence S’ of Sy + [y]

c—2

%55) = 5 and where three consecutive colors of z

of the form (yy;2)¢ where ¢ := |
are always pairwise distinct.

For X € {x,y, 2,11}, let us denote by ¢X the color of X after the i-th recoloring
of X in the sequence &', with the convention that cé(is the initial color of X.

Note that all the recolorings of y are caused by y; in this subsequence, consequently,
¢ty = ¢! for all i < ¢. Since we choose the best color for y when we recolor y from
cfﬂ to C?H, the set of colors ciﬁl,cﬁ?,cf 1 1,Ci o are pairwise distinct. Indeed, if
they were not, the algorithm could have chosen an other color for y, which would
postponed the recoloring of y, a contradiction with the fact that we made a best
choice for y. Using this fact, and the equality ¢}, = ¢/, it follows that ¢ _, is the
unique color which is not in the set {C?,C?H,cf 11,Ciyo}, or stated differently, the
colors cfz’, cz-’ 11> Ciits c?;’ 19, Ci1o are all pairwise disjoint. Writing this property for the
index i + 1 gives that ¢/, |, ¢/ 5, ¢l o, ¢l 5, i 5 are all pairwise disjoint. With the

overlap between these two sets, it follows that we must have {c/,c7 ;} = {c/ 3, ¢} 3}.

102 Chapter 5. Recoloring graphs of treewidth 2

x z Y z Y x z Y z -
y |3 3-4 4-2 2-1 g
z |4 4-2 2-1 1-5 5-3

r |2 25 5-4

FIGURE 5.1: Example for S"{%Z} and the best choices it implies for z.
Initial colors of z, y, and z are 2, 3 and 4 respectively. Recolorings are
ordered from left to right. The recolorings in red are saved for x.

Moreover, since ¢, ; # c7, 3 by assumption on the sequence S’, then we must have
¢ty =/, and ¢f, ;| = ¢/, 5. Hence, we can see from these conditions that the vertex y
takes the colors 1,2,3,4,5 successively (up to a permutation of colors), and similarly
for 41 and z, but with a shift of 1 and 3 respectively compared to .

We can now use the fact that S’ is very constrained to show that there must be a
sufficient number of saved recolorings for x, which will contradict the assumption that
x is recolored at least ¢ + 1 times. Let us first assume that there is a recoloring of
x caused by the recoloring of y from ¢/ to ¢/ ;. This means that z is colored ¢, ;,
and is recolored with a color not in the set {¢!, ¢, 7,7, }. However, we also know
that ¢/, , = ¢f, which implies that the recoloring of y from ¢/, to ¢/, , will be saved
for x. In a similar way, if the recoloring of = is caused by a recoloring of z from c;
to 7, , then the new color of z will not be in the set {c?,c7 i, ¢/ 1, ¢/, 5}. And since
¢ = ¢/, ,, the recoloring of z from 7, to ¢Z_, will also be saved. An example of such
a sequence S’ is given in Figure 5.1.

Hence, in the sequence &', for every recoloring of x, there is at least one recoloring
saved for x. Hence, either x is recolored at most ¢’ — 2 times during &', in which
case there are at least 2 saved recolorings for x, or x is recolored at least ¢ —2 =3
times during &', and by the argument above at least two of these recolorings cause
a recoloring saved for z (the last one might be at the end of §’). In all cases, we
obtain two saved recolorings for x, which is a contradiction of the assumption that x is
recolored at least ¢ + 1 times. Hence x is recolored at most ¢ times and the inductive
step holds.

103

Part 11

Independent set reconfiguration

105

Chapter 6

Independent set reconfiguration

In the first chapter of this thesis, we described the 15-puzzle game as an example
of a reconfiguration problem. Recall that in this puzzle, the player is given a board
along with some blocks that can be slid on the board. The blocks are initially placed
arbitrarily on the board and the goal is to reach a target configuration by sliding the
blocks one after another. This problem can be easily reformulated has a single-player
game on graphs. The board is the n x n grid graph for n > 0, each of the n? — 1 block
is a labeled token that is placed on a vertex of the grid and there is a unique vertex of
the graph with no token on it. We say that this vertex is empty. At each turn, the
player is allowed to move a token which is on a neighbor of the empty vertex to the
empty vertex. In other words, the player is allowed to slide a token along an edge at
each turn as long as no two tokens are on the same vertex. An illustration is given if
Figure 6.1

Starting from this model of the sliding block puzzle as a graph problem, one can
define other games by modifying the input graph, reducing the number of tokens, or
by adding more constraints on the positions that the tokens can have or go to. This is
how Hearn and Demaine [56] first introduced the sliding token problem, which can be
seen as the first formalization of the independent set reconfiguration problem. They
formulate the problem as follows: the player is given a graph G and a set of tokens
positioned on an independent set of G. The player is allowed to slide a token along
an edge at each step, as long as the resulting configuration (set of vertices on which
the tokens are) is also an independent set. The problem is the following: given an
initial configuration and a particular token t of this configuration, is there a sequence
of moves after which the token ¢ can be moved? Since the seminal paper of Hearn
and Demaine, the notations and names of the problems changed and this problem
is today referred to as the RIGID TOKEN problem. Let us outline the fact that the
authors of [56] initially defined this problem as an equivalent formulation of a new
model of computation they designed, the Nondeterministic Constraint Logic or NCL
for short, to prove PSPACE-completeness of reconfiguration problems. As we will see
in the next sections, this model is indeed very powerful and is at the basis of numerous
PSPACE-completeness proofs for reconfiguration problems. Note that when this article
was written the notion of reconfiguration problems had not been formalized yet, and

the authors rather talk of puzzles.

106 Chapter 6. Independent set reconfiguration

FIGURE 6.1: A representation of the 15-puzzle game on the 4 x 4

grid. An initial configuration is represented at the left, the target

configuration is represented at the right. Each token is represented by

its label, and a token can slide to a neighboring vertex if and only if it
contains no token.

In this framework, a natural question arises: given a graph G, two independent
sets I and J of G and a set of tokens positioned on the vertices of I, is it possible to
transform [into J by sliding one token at a time along edges of GG, while maintaining
an independent set all along the transformation? This problem is known as the TOKEN
SLIDING (TS) problem. The paternity of this definition is given to Hearn and Demaine
[56] even if they only define the RIGID TOKEN problem and do not explicitly state the
TOKEN SLIDING problem as it is known today.

However, independent set reconfiguration does not only refer to the TOKEN SLIDING
problem. Indeed, there exist different rules according to which the tokens can be moved
on the graph, sliding a token along an edge being just one of these. Each rule defines
a particular notion of adjacency between the configurations. Hence, independent set
reconfiguration refers to a whole set of problems, each one defined by its rule. Let us
briefly describe here the rules that are the most studied in the literature. The formal
definitions are given in the next section.

Along with TOKEN SLIDING, another well-studied rule is the TOKEN JumpPING (TJ)
rule. In this version of independent set reconfiguration, first introduced by Kaminski et
al. in [68], one is allowed at each step to move a token anywhere on the graph (as long
as the obtained set remains independent). Note that if there exists a reconfiguration
sequence between two independent sets I and J of a graph with the TS rule, then
there also exists one for the TJ rule. The other direction is not true, as illustrated
in Figure 6.2. Finally, the other rule that appears the most in the literature is the
TOKEN ADDITION-REMOVAL (TAR) rule, first introduced by Ito et al. in [63]. In this
version of the independent set reconfiguration problem, the input is a graph G, an
integer k > 0 and two independent sets I and J of size at least k 4+ 1. At each step,
one is allowed to either remove or add a token anywhere on the graph, as long as the
obtained set has size at least k and is independent. As will we see in the next sections,

this rule is actually equivalent to token jumping, as proven by Kamiriski et al. in [67].

Let us note that these three rules can be defined in a much more general setting
rather than just independent set reconfiguration. The TOKEN SLIDING and TOKEN

6.1. Definitions 107

JUMPING problems can be defined equivalently for any optimization problem seeking
for a set S that satisfies some property P (such as VERTEX COVER, DOMINATING
SET, VERTEX SEPARATOR...). Informally, the question is the following: given two
sets S and T satisfying property P, is it possible to move the tokens from S to T" one
after another (by either sliding or jumping) while always having a set that satisfies
the property P?

The same can be done for TOKEN ADDITION-REMOVAL. The only difference being that
the input comes with an integer k which is either a lower bound (if the corresponding
optimization problem is a maximization problem) or an upper bound (if the corre-
sponding optimization problem is a minimization problem) on the number of tokens
present on the graph at all time. Without this threshold, TOKEN ADDITION-REMOVAL
becomes trivial, since one only has to remove all the tokens on S one by one and then
add the tokens on T' (or vice-versa) to find a reconfiguration sequence between the

sets S and T of the input graph.

6.1 Definitions

Let G = (V, E) be a graph and let I, I’ be two independent sets of G. The sets I, I’
are TJ-adjacent if their exists {u,v} C V(G) such that I — I’ = {u} and I’ — I = {v}.
If furthermore (u,v) is an edge of G then I and I" are T'S-adjacent. Finally, I and
I' are TAR-adjacent if either I C I’ and |I’—I|=1or I’ C I and |I —I'| = 1. For
T € {TJ, TS, TAR} we refer to the T-adjacency binary relation as the rule T or
simply as a rule when 7T is obvious from context.

Let now S = I3, ..., I; be a sequence of independent sets of G and T € {T'J,TS,TAR}.
The sequence S is a T -sequence if for every ¢ < s the independent sets I; and I;;1 are
T-adjacent. We say that the sequence S is a T-reconfiguration sequence from I to
I, or equivalently that S transforms I; into I; according to rule 7. When the rule T
is obvious from context, we simply say that it transforms I into I.

In the independent set reconfiguration problems, an independent set is often seen as a
set of tokens that lie on the vertices of the independent set. With this interpretation,
a T-reconfiguration sequence is a sequence of moves of these tokens according to rule
T: In a TJ-sequence, a token can be ’jumped’ anywhere on the graph at each step.
In a T'S-sequence, a token can only be slid along an edge at each step. Finally, a step
in a T AR-sequence consists in either removing or adding a token anywhere on the
graph.

Let us now properly state the main questions of independent set reconfiguration. Let
T e{TJ, TS}

T-REACHABILITY
Input: A graph G and two independent sets S,T of G.

Question: Does there exists a T-sequence that transforms S into 717

108 Chapter 6. Independent set reconfiguration

Given a graph G, two independent sets S, T of G and a rule T € {T'J, TS}, the
notation S «wr(g) T indicates that (G,I,J) is a YES instance for T-reachability.

We sometime only write S «~7 T when the graph G is clear from context.

For the T'AR rule, the problem is defined differently. Indeed, there always exists
a T AR-sequence between any two independent sets of a graph, which consists in
removing all the tokens on the initial independent set and then adding all the tokens
on the target independent set in an arbitrary order. Hence, the input of the TAR rule
comes with an integer k£ which is a lower bound on the number of tokens that must

be present on the graph at any time:

T AR-REACHABILITY

Input: A graph G, an integer k, and two independent sets S, T of G of size
at least k + 1.

Question: Does there exists a T'AR-sequence that transforms S into T such

that every independent set in the sequence has size at least k7

Given a graph G, an integer k, and two independent sets S, T of GG, the notation
S e~pap, T indicates that (G, k,S,T) is a YES instance for T'A R-reachability. In
what follows, we always assume that the TAR rule is given along with a threshold &
and denote this rule as TARj,.

Let G be a graph and I be an independent set of G, and T € {T'J, TS, TAR;}. A
vertex v € I is frozen (with respect to the rule 7 and the independent set I) if for any
independent set I’ that is 7T-adjacent to I, we have v € I'. A vertex v € I is rigid if
for every independent set I’ such that I «~7 I’, we have v € I’. In other words, if a
set of tokens is positioned on the vertices of I, then v is frozen if no sequence moving
the token on v in one step exists, and v is rigid if it belongs to any independent set of
a sequence starting from I. We often mix-up the vertex v and the token that lies on
it and say that the token is frozen or that the token is rigid.

As for any reconfiguration problem, we can define reconfiguration graphs for inde-
pendent set. Given a rule T € {T'J, TS}, a graph G and an integer k we define the
k-reconfiguration graph of G for rule T, and denote by Ti(G) the graph which vertex
set is the set of all independent sets of G of size k, two independent sets being adjacent
in 7¢(G) if and only if they are T-adjacent.

For the sake of simplicity, we will refer to the T-REACHABILITY as the 7 problem.

6.2 Basic results and complexity

In this section, we give some basic properties of the independent set reconfiguration

problem and describe how the three rules mentioned above relate to each other.

6.2. Basic results and complexity 109

A) Example of token jump) Example of token slide

FIGURE 6.2: A TJ-sequence from {a,e} to {a,c} at the left, and a

T'S-sequence from {a, e} to {d,b} at the right. Tokens are represented

in blue. Note that there exists no T'S-sequence from {a,e} to {a,c}

since the vertex c has a token in is neighborhood in any 7'S-sequence
starting from {a, e}.

Let us first begin by sketching the proof of an important result of Kaminski et al.
[67] showing that the token jumping and token addition-removal rules are actually

equivalent:

Theorem 22. Let G be a graph and S,T be two independent sets of G of size
k+ 1. There exists a T'J-sequence transforming S into T if and only if there exists a

T ARy-sequence transforming S into T.

Proof. A move from a vertex x to a vertex y in a T'J-sequence can be simulated in
a T ARy-sequence by first removing the token on x and then adding the token on y.
Hence if there exists a T'J-sequence, then there exists a T'ARg-sequence, and this
sequence only goes through independent sets of sizes k + 1 and k.

Let us now prove the converse part of the statement. Suppose first that there exists a
T ARj-sequence such that every independent sets have size either k£ + 1 or k. Since the
initial and target independents sets have size k + 1, the sequence necessarily alternates
between removal and addition of tokens. Since every two such moves can be replaced
by a single token jump, there also exists a T'J-sequence. Suppose now that there
exists an independent set of size > k + 1 in the T'ARy-sequence S. Since the target
independent set has size k + 1, there must exists two consecutive moves in the sequence
where the first one is an addition and the second one is a removal. Then, it is easy
to see that inverting these two moves yields a valid T'A Rj-sequence transforming S
into T'. By applying this transformation whenever it is possible, we obtain at some
point a sequence S’ from S to T where the maximum size of an independent set in
&' is strictly lower than the maximum size of an independent set in S. Since this
process can be applied as long as the sequence contains an independent set of size
> k + 1, we ultimately obtain a sequence containing only sets of sizes k and k + 1,

which concludes the proof. O

This result shows not only that S «~7; T if and only if S «~r4g, J, but also
that a T'J-sequence can be transformed in T'A Rj-sequence in polynomial-time and
vice-versa. Despite these two models being equivalent, it is sometimes more handy to
make use of one of the formulation rather than the other, and thus both rules are still
studied today (see for instance [16, 21, 71] for the token addition-removal rule and
[23, 63, 67, 98] for the token jumping rule). Indeed, the TAR rule allows for more

flexibility on the moves of the tokens (the operation of moving a token somewhere else

110 Chapter 6. Independent set reconfiguration

C C

A B A B

(A) An OR vertex (B) An AND vertex

FIGURE 6.3: Examples of configuration for AND/OR vertices. Edge C

of the OR vertex cannot be flipped since both blue edges are directed

outward. Edge C of the AND vertex can be flipped since both red
edges are directed inward.

on the graph being split in two moves), but the token jumping rule is often easier to
analyze since the cardinality of two T'J-adjacent independent sets is always the same.
In order to keep this chapter as concise as possible, we only consider from now on the

token jumping formulation of these two equivalent rules.

On the other hand, any T'S-sequence is also a T'J-sequence, but it is easy to come
up with examples where there exists a T'J-sequence and there exists no T'S-sequence,
as illustrated in Figure 6.2. These simple examples show that the problems are not
equivalent. However, they are as hard as each other in the general case, both problems
being PSPACE-complete. As mentioned in the introduction, one major breakthrough
towards this problem is the introduction of the Nondeterministic Constraint Logic
(NCL) model of computation by Hearn and Demaine in [56]. Let us briefly describe
this tool.

A NCL machine is a weighted graph G = (V, E') with weight function w : E — IN given
along with a minimum in-flow constraint function f :V — IN. A wvalid configuration of
the machine is an orientation A of the edges, such that for each vertex v € V(G), the
sum of the weights of the arcs in A pointing toward v is at least f(v). A configuration
A’ is adjacent to A if it is also valid, and if it differs from A by the orientation of
exactly one edge e. The operation consisting in transforming the configuration A
into the configuration A’ is the flipping of the edge e. Note that the definition itself
already yields a reconfiguration problem: given two configurations A and B of an
NCL machine, is it possible to transform A into B via a sequence of edge flips? In
[56], Hearn and Demaine show that this problem is PSPACE-complete by a reduction
from the QUANTIFIED BOOLEAN FORMULA (QBF) problem. To do so, they consider
a particular type of NCL machine which they call the AND/OR constraints graphs.

This machine contains two types of vertices:

e The OR vertices, which have minimum in-flow constraint of 2 and are adjacent

to three edges of weight 2.

e The AND vertices which have minimum in-flow constraint 2 and are adjacent to

two edges of weight 1 and one edge of weight 2.

6.2. Basic results and complexity 111

Edges of weight one are often called the red edges and edges of weight two are
often called the blue edges. The OR and AND vertices are illustrated in Figure 6.3.
The name of the vertices are not chosen at random: an AND vertex v behaves as a
logical AND, since the blue edge can be directed outward of v if and only if the two
red edges point toward v. Similarly, an OR vertex behaves as a logical OR: one of
the three blue edges can be directed outward of v if and only if one of the two others
points toward v. By plugging these two types of vertices together, the authors of [56]
then show how to obtain the universal ¥V and the existential 3 quantifiers as AND/OR
constraints graph. Building on that (and several other gadgets), they ultimately show
how to construct a NCL instance starting from a QBF instance. They furthermore
show by designing uncrossing gadgets that any AND/OR graph can be made planar.

This leads to the following theorem:

Theorem 23. TOKEN SLIDING is PSPACE-complete, even when restricted to planar

graphs of maximum degree 3.

Let us outline the importance of this proof in our framework: the proof of Hearn

and Demaine can be considered to be the first PSPACE-hardness proof of independent
set reconfiguration problems. It is still today the starting point of many reductions
for reconfiguration problems, see for instance [2, 11, 58, 60, 64, 81, 82, 90] (not only
independent set reconfiguration). We will describe these results with more details in
the next sections.
The proof of PSPACE-completness for TOKEN JUMPING had to wait for another
important result: the proof of PSPACE-completness of the SATISFIABILITY RECON-
FIGURATION problem [50]. In this problem, we are given a Boolean formula ¢ in
conjunctive normal form and two satisfying truth assignments s and t of the variables
of ¢. The question is to decide whether one can transform s into ¢t by modifying the
value of one variable at a time, while always maintaining a satisfying assignment. Ito et
al. started from this problem to prove PSPACE-completness of several reconfiguration
problems in [63], among which TOKEN JUMPING. Later on, Ito et al. [64] actually
strengthened this result by proving the following:

Theorem 24. TOKEN JUMPING is PSPACE-complete, even when restricted to planar

graphs of mazimum degree 3.

These two theorems show how hard reconfiguration problems can be, even when
restricted to very particular cases. However, these first results also raise new questions:
do there exist graph classes where the TOKEN JUMPING and TOKEN SLIDING problems
become easy? Where is the border between easy and PSPACE-complete? And to what
extent are both problems equivalent from a complexity point of view? As we will see
in the next section dedicated to the study of the two rules in graph classes, token
jumping and token sliding sometimes behave (somewhat surprisingly) in very different

ways.

112 Chapter 6. Independent set reconfiguration

6.3 Independent set reconfiguration on graph classes

All the results described in this section are summarized in Table 6.1. In the article
introducing the token jumping rule [67], Kaminski et al. show that both token jumping
and token sliding reachability problems remain PSPACE-complete on perfect graphs.
By the Strong Perfect Graph Theorem, perfect graphs are the graphs with no odd
holes (odd-length induced cycles) nor odd antiholes (complements of odd holes). A
natural question then concerns the complexity of the two rules on graph classes that

forbid other induced subgraphs.

6.3.1 Excluding induced subgraphs

In the article proving the PSPACE-completeness of the two rules in perfect graphs
[67], Kaminiski et al. also show that TOKEN JUMPING can be solved in linear time for
even-hole-free graphs. A graph is even hole-free if it has no induced cycles of even
length. The proof is short and elegant: Consider the starting and target independent
sets S and T of an even hole-free graph G. Since S and T are independent sets,
their symmetric difference induces a bipartite graph H. Since furthermore G is even
hole-free, the graph H also is, and is therefore a forest. It follows that there is always
a vertex v € T of degree at most one in SAT (up to switching the roles of S and T'
and considering S as the target independent set). Hence, there always exists a token
that can be jumped to v (the token lying on its unique neighbor if it exists, or an
arbitrary token otherwise) and the size of SAT can be reduced. The proof follows
since such a vertex v can be found in linear time.

Note that this argument cannot work for the token sliding rule since if v is isolated in
SAT, nothing ensures that a token can be slid to v. The TOKEN SLIDING problem in
even-hole-free graphs is actually PSPACE-complete, since it is PSPACE-complete on
split graphs [11], which is a subclass of even-hole-free graphs. The proof of Belmonte
et al. consists in a reduction from the NCL problem described in the previous section.
The case of even hole-free graphs is, to the best of our knowledge, the only case where
the complexity of the maximum independent set problem is still unknown for the
graph class whereas the complexity for both the token jumping and token sliding rules
is known. It is also an interesting case for the difference of complexity between the
two rules, TOKEN JUMPING being linear-time solvable (and actually trivial for the
case of split graphs) whereas TOKEN SLIDING is PSPACE-complete.

In [67], Kaminiski et al. also ask the question of the complexity of independent
set reconfiguration in another well-studied class of graphs, the claw-free graphs. A
claw is a graph on four vertices, with a vertex of degree 3 adjacent to three pairwise
non-adjacent vertices of degree 1. An illustration is given in Figure 6.4a. Bonsma
et al. tackle this problem in [23] and show that both TOKEN JUMPING and TOKEN

SLIDING can be decided in polynomial time for connected claw-free graphs. They in

6.3. Independent set reconfiguration on graph classes 113

(A) A claw
(B) A fork

fact show that any token jump can be simulated by a sequence of token slides, and
thus that the two decision problems are actually the same in this class. Let us briefly
explain how this later proof goes. Let I and J be two independent sets of a connected
claw-free graph G that differ on the position of exactly one token, which lies on v in
I and on v # w in J. Then moving the token from u to v is obviously a valid token
jumping move. Let us sketch the proof that there also exists a sequence of token slides
that transforms I into J. Consider a shortest © — v path in G. If there are tokens on
the paths, then these tokens can switch roles with the token on w: slide these tokens
along the path to put a token on v, then slide the token on u on the path in order to
replace the token that now lies on v. Another problem arises if there is a token on the
neighborhood of the path. Since it is shortest, this path is induced. The authors of
[23] use this property and the claw-freeness of G to show that the neighborhood of
such a token on the path has a particular structure, always allowing for the "switching
roles" argument to work as in the previous case.

Although there are many examples where the complexity of TOKEN JUMPING
and TOKEN SLIDING are the same, it is less common to actually have an equivalence
between the two problems. And as we will see with the case of Py-free graphs (or
cographs), the two rules sometimes behave very differently despite having similar
complexity even on restricted graph classes. It is well-known that a Py-free graph G
can always be recursively constructed from single vertices, or from two Py-free graphs
G and G5 by either joining G1 to G5!, or by taking G to be the disjoint union of
G1 and G9. Kaminski et al. [67] make use of this decomposition theorem to prove
that TOKEN SLIDING can be decided in polynomial time on Py-free graphs. The proof
essentially makes use of the following simple argument: the token sliding problem can
always be solved separately on connected components of a graph. Hence, if G arises
from a disjoint union of two graphs G; and G2, one can simply solve the problems
separately on GG7 and Ga. If G arises from the join of Gy and G, then the problem
is also simple: if there are more than two tokens on one of G or Gs, say Gy, then
the problem can be solved separately on G7: indeed, by definition of the join, every
vertex of Gy sees every vertex of (G1 and thus no token can slide from G to G2 in this
case. Furthermore, if there is at most one token on both subgraphs then the problem

is trivial, concluding the proof.

Such arguments completely fail when trying to tackle the token jumping rule

Lin other words, adding edges between every pair of vertices of G1 and vertices of Go

114 Chapter 6. Independent set reconfiguration

on Pj-free graphs, for the simple reason that tokens can jump from one connected
component to one another. However, Bonsma proved in [21] that this problem can also
be solved in time O(n?), through the design of a very involved dynamic programming
algorithm. His algorithm can be generalized to any class of graph that is obtained
by successive join and disjoint union operations starting from a collection of graphs
on which TOKEN JUMPING can be decided efficiently, and on which a maximum
independent set can be computed in polynomial time. Two major examples of such
graph classes given by Bonsma are the claw-free graphs and the chordal graphs.

Bonamy and Bousquet [16] then completed the picture for Pj-free graphs. They
showed that given a Pj-free graph G, (i) it can be decided in polynomial time whether
TJ,(G) is connected and (ii) given two fixed independent sets I and J of a Py-free
graph, it can be decided in linear time whether I «~sp; J. Their proof makes use of a
classical proof technique: they characterize a unique canonical independent set for
each connected component of the reconfiguration graph that can "easily" be reached
from any other independent set of the same component. Then, deciding whether

I «~7; J boils down to comparing the canonical independent sets of I and J.

6.3.2 Trees, chordal graphs, bounded treewidth graphs and their
relatives

A classical starting point when studying a problem on graph classes is the class of
trees and its generalizations. Let us first recall that the generalization of cographs
introduced by Bonsma in [21] includes chordal graphs, and thus TOKEN JUMPING can
be solved in polynomial time in this class, and hence in trees.

The complexity of token sliding on trees has been settled by Demaine et al. in [35].
They show that deciding whether an independent set S can be transformed into
another independent set T' via token sliding can be decided in linear time. As the
authors of [35] underline, linear-time is remarkable here since there exists an infinite
family of instances of paths which requires Q(n?) slides. Hence, the decision problem
is solvable in time O(n), whereas finding the actual sequence requires time Q(n?). A
large majority of proofs showing that an independent set reconfiguration reachability
problem is in P consists in the design of an algorithm that outputs a sequence of
polynomial length (TOKEN JUMPING on claw free-graphs [23], TOKEN SLIDING and
TOKEN JUMPING on Pj-free graphs [16, 21] , TOKEN JUMPING on even-hole free
graphs [67] are just a few examples among many others). It is then interesting to note
that for trees, no algorithm constructing the sequence in linear time exists.

The fact that TOKEN SLIDING is PSPACE-complete on split graphs [11] implies that
it is also PSPACE-complete on chordal graphs. However, Yamada and Uehara showed
that that TOKEN SLIDING can be solved in polynomial time on proper interval graphs
[99], and this result was later generalized by Bonamy and Bousquet for general interval
graphs in [17]. Their proof is one of the few cases (along with the proof for trees

mentioned previously) where the reachability problem is solved in polynomial time

6.3. Independent set reconfiguration on graph classes 115

Graph Class TOKEN JUMPING TOKEN SLIDING
Planar graphs with A =3 PSPACE-complete [64] PSPACE-complete [56]
Perfect graphs PSPACE-complete [67] PSPACE-complete [67]
Split graphs Linear PSPACE-complete [11]
Even hole-free graphs Linear [67] PSPACE-complete [11]
Claw-free graphs P [23] P [23]
P4-free graphs P [16, 21] P [67]

Trees Linear [35] Linear
Chordal graphs P [21] PSPACE-complete [11]
Interval graphs P [21] P [17]

Bounded bandwidth PSPACE-complete [98] PSPACE-complete [98]
Bipartite graphs NP-complete [71] PSPACE-complete [71]

TABLE 6.1: Complexity of TOKEN JUMPING and TOKEN SLIDING on
several graph classes.

without actually outputting a sequence between the source and target independent
sets. However, Brianski et al. [30] recently showed that if two independent sets S, T" of
an interval graph G belong to the same connected component of T'Si(G), then there
always exists a T'S-sequence of size O(k - n?) between S and T (where k is the size

of S'and T'). They also give a polynomial-time algorithm that outputs such a sequence.

Since the class of forests is the class of graphs of treewidth 1, it is natural to
ask to ask whether a polynomial-time algorithm on trees can be generalized to a
polynomial-time algorithm on bounded treewidth graphs. Wrochna answered this

question by the negative in [98], by proving the following:

Theorem 25. There exists an integer b such that TOKEN SLIDING and TOKEN
JUMPING are PSPACE-complete on graphs of bandwidth at most b.

Since the treewidth of a graph can be bounded by its bandwidth, it follows that
the reachability problems defined by both rules are PSPACE-complete on bounded-
treewidth graphs. We note however that the proof of Wrochna does not explicit b. To
the best of our knowledge, it is only known that b > 1 (by the algorithm designed for

trees). Hence the following question:

Question 10. What are the largest integers b (resp. b') for which TOKEN JUMPING
(resp. TOKEN SLIDING) can be solved in polynomial time on graphs of treewidth at
most b (resp V')?

116 Chapter 6. Independent set reconfiguration

A first step towards answering Question 10 would be to study the case of graphs
of treewidth at most 2 (also known as the class of serie parallel graphs). Hoang and
Uehara gave a partial answer to this question in [59] by designing a polynomial-time
algorithm for token sliding on cactus, a subclass of serie parallel graphs. A graph is a
cactus if it is connected and if every two simple cycles share at most one vertex. Cactus
graphs are themselves a subclass of outer-planar graphs, for which the complexity of

the reachabilty problem remains unknown for both rules:

Question 11. Can TOKEN JUMPING and TOKEN SLIDING be decided in polynomial

time on outerplanar graphs?

6.3.3 A word on bipartite graphs

We conclude this section by briefly mentioning the case of bipartite graphs. In [71],
Lokshanov and Mouawad study both token sliding and token jumping reachability
problems on this class. They obtain the following results: TOKEN SLIDING on
bipartite graphs is PSPACE-complete, whereas TOKEN JUMPING on bipartite graphs
is NP-complete. This later result is rather surprising since there are few natural
reconfiguration problems that belongs to NP. By "natural" we mean here that it is
not specifically designed to belong to this class. Let G be a bipartite graph of size
k. The proof that TOKEN JUMPING belongs to NP actually shows that a connected
component of T'J;(G) has size polynomial in the order of G, therefore showing that
there always exists a certificate that can be checked in polynomial time.

Let us conclude by mentionning a result of Fox-Epstein et al. who showed in [46] that
TOKEN SLIDING is polynomial-time solvable on bipartite permutation graphs. The

complexity of this problem on general permutation graphs remains open.

6.3.4 Our contribution

In this thesis, we study the complexity of TOKEN JUMPING and TOKEN SLIDING in
graphs without a graph H as an induced subgraph, also denoted as H-free graphs.
We adapt a famous proof of Alekseev [4] to the reconfiguration framework and show

the following:

Theorem 6. TOKEN JUMPING and TOKEN SLIDING on H-free graphs are PSPACE-

complete, unless H is a path, a claw, or a subdivision of the claw.

Consider the TOKEN JUMPING problem with the additional constraint that both
source and target independent sets are maximum. Note that in this problem, any
intermediate independent set in a sequence is also maximum, and thus a token can
only jump to one of its neighbors. It follows that with the additional constraint
of having maximum independent sets as source and target, TOKEN JUMPING and
TOKEN SLIDING define the same problem. We refer to this problem as MAXIMUM
INDEPENDENT SET RECONFIGURATION.

As stated previously, Bonsma et al. showed in [23] that both sliding and jumping

6.4. Parameterized complexity 117

reachability problems are solvable in polynomial-time in claw-free graphs. A claw
with one subdivided edge is called a fork (or sometime a chair in the literature). An

illustration is given in Figure 6.4b. We pursue their work and show the following;:

Theorem 26. MAXIMUM INDEPENDENT SET RECONFIGURATION ts solvable in polynomial-

time on fork-free graphs.

The proofs of Theorem 26 and Theorem 6 are given in Chapter 7.

6.4 Parameterized complexity

Independent set reconfiguration problems have also been thoroughly studied from a
parameterized complexity point of view in the past ten years. One of the barriers
for tractability in the classical complexity setting is the existence of reconfiguration
sequences of exponential length. Then, considering "small" independent sets or
restricting the reachability problems to the finding of "short" sequences intuitively
gives room for the design of efficient algorithm for token sliding or token jumping.
Hence, the two natural parameters in the reconfiguration setting are the size k of the
independent set and the length ¢ of the reconfiguration sequence. Let us also note that
since the bandwidth is an upper bound on the treewidth, pathwidth, and cliquewidth,
Theorem 25 shows that no FPT algorithm exists with respect to these classical
parameters. This further explains why most recent work focus on the parameters k
and £.

The study of the parameterized complexity of reconfiguration problems was initiated
by Mouawad et al. in [79]. This seminal article covers a broad range of reconfiguration
problems and we only mention the results obtained by the authors of [79] concerning
independent set reconfiguration in this section. By a reduction to the INDEPENDENT
SET problem parameterized by k, Mouawad et al. show the following:

Theorem 27. TOKEN JUMPING is W[1]-hard when parameterized by k + £.

The proof of theorem 27 being quite involved, we sketch here the proof of a weaker
result due to Ito et al. [64]:

Theorem 28. TOKEN JUMPING is W([1]|-hard when parameterized by k.

The proof of Theorem 28 consists in a reduction from INDEPENDENT SET with pa-
rameter k. Let us briefly sketch this proof. Let (G, k) be an instance of INDEPENDENT
SET. We show how to construct an equivalent instance (G',k +1,5,T) of TOKEN
JUMPING, where S and T are the source and target independent sets respectively. The
graph G’ consists in the disjoint union of the graph G and a biclique of size k + 1.
The source and target independent sets are the two sides of the biclique. If there
exists an independent set I of size at least k in G, then one can jump k tokens from
the biclique to I one by one in an arbitrary order. The last token remaining on the

biclique can then jump to any vertex of T, and the k tokens on [can finally jump to

118 Chapter 6. Independent set reconfiguration

Ku—free

TOKEN SLIDING Unkown

Fdegenerate

TOKEN SLIDING FPT

FIGURE 6.5: Several sparse graph classes and their inclusions. TOKEN

JUMPING is FPT when parameterized by k on all these classes. The

dashed line separates the classes for which we know TOKEN SLIDING

to be FPT from the classes for which the complexity remains unknown
(with respect to the parameter k).

the other vertices of T'. Hence there exists a reconfiguration sequence from S to T’
in G'. Conversely, suppose that there exists a reconfiguration sequence from S to T'
in G’, and consider the independent set I’ of this sequence right after a token first
jumps to a vertex of 7' (which exists by supposition). Since S UT induces a biclique
in G’, no token of I’ belongs to S, and thus there is only one token on 7" in I’. Hence
there are k tokens on the vertices of GG, and therefore G contains an independent set

of size k. This concludes the proof.

Apart from these two general results for token jumping and sliding, most of the
work so far focused on token jumping on sparse graph classes with parameter k. Let us
show through a simple example how many tractability proofs goes for token jumping in
such classes. In [64], Ito et al. show that TOKEN JUMPING is FPT when parameterized
by k on bounded-degree graphs as follows: Let G = (V, F) be a graph of maximum
degree A and S, T be the source and target independent sets. Then, N[SUT] has
size 2kA at most. If the graph induced by V — N[S UT] has size more than f(k,A)
for some well-chosen function f, it has an independent I set of size k (which can be
computed in polynomial time). Jumping the tokens one by one from S to I and then
jumping the tokens one by one from [to T yields a valid reconfiguration sequence,
since I does not intersect the closed neighborhood of S and T. We can thus assume
that the graph has size at most 2kA + f(k,A), which concludes the proof.

More generally, one can use the sparsity of the input graph to find such a "buffer
space" I where the tokens can be jumped, or use the fact that no such set exists
to bound the size of the graph. This simple strategy has been proved several time
to be very efficient for TOKEN JUMPING [28, 61, 73]. Ito et al. first proved the
tractability of TOKEN JUMPING on planar graphs in [61], which was then generalized
to d-degenerate graphs by Mouawad et al. in [73]. Later on, Siebertz showed in [87]
that TOKEN JUMPING is also fixed-parameter tractable on nowhere-dense graphs. A
class of graphs C is nowhere-dense if there are functions N : IN — IN and s : N — IN
such that for all 7,m € IN and all subsets A C V(G) for G € C of size |A| > N(r,m)
there is a set S C V(G) of size |S| < s(r) and a set B C A\ S of size |B| > m
which is r-independent in G — S. Siebertz actually showed that TOKEN JUMPING on

6.4. Parameterized complexity 119

Graph Class TOKEN JUMPING TOKEN SLIDING
{C3,Cy}-free graphs FPT (Chapter 8) Open
Cy-free graphs W([1]-hard (Chapter 8) WT[1]-hard (Chapter 8)
Bipartite graphs Open WI[1]-hard (Chapter 8)
Bipartite Cy-free graphs FPT (Chapter 8) FPT (Chapter 8)
Bounded-degree graphs FPT [64] FPT (Chapter 9)

TABLE 6.2: The results obtained in this thesis (except for TOKEN

JUMPING on bounded-degree graphs) on the parameterized complexity

of TOKEN JUMPING and TOKEN SLIDING on several graph classes with
parameter k.

r-independent sets admits a polynomial kernel for every r > 1, where an r-independent
set is a set of vertices such that every two vertices in the set are at distance at least
r from one another. The results on TOKEN JUMPING were ultimately generalized
by Bousquet et al. in [28], who showed that it is FPT (and admits a kernel of
polynomial size) on K/ -free graphs, a class containing both nowhere-dense graphs
and d-degenerate graphs.

On the other hand, almost nothing is known concerning the tractability of TOKEN
SLIDING on sparse graphs when parameterized by k. Prior to our work, it remained an
open question whether this problem is fixed parameter tractable on bounded-degree
graphs and bounded-treewidth graphs. The results about the parameterized complex-

ity of token sliding and token jumping on sparse graphs are summarized in Figure 6.5.

As explained at the beginning of this section, most work on independent set
reconfiguration focuses on parameters k and ¢. To the best of our knowledge, the only
other parameter that has been considered is the modular-width in [10]. A graph has
modular-width mw if it has at most mw vertices, or if its vertex set can be partionned
into mw sets, each of wich is a module and induces a graph of modular-width at most
muw. The study of this parameter remains interesting since it is incomparable to the
bandwidth, for which we know no FPT algorithm can exist. Belmonte et al. showed
in [10] that both TOKEN JUMPING and TOKEN SLIDING are fixed-parameter tractable

when parameterized by the modular width.

6.4.1 Our contribution

One of the goal of this thesis is to understand better the TOKEN SLIDING problem
from a parameterized complexity point of view, and to try to draw a line between
tractability and intractability. A summary of the results we obtained toward this

question is given in Table 6.2. Among other results, we show the following;:

120 Chapter 6. Independent set reconfiguration

Theorem 7. TOKEN SLIDING parameterized by k is W[1]-hard on bipartite graphs

and is fized-parameter tractable on bipartite Cy-free graphs.

The results presented in Chapter 8 were obtained with Nicolas Bousquet, Clément
Dallard, Kyle Lomer and Amer E. Mouawad. This collaboration started during the
Coombinatorial Reconfiguration 2019 workshop (CoRe 2019) which was held in Aussois
in May 2019. These results were accepted at the 31st International Symposium on
Algorithms and Computation (ISAAC 2020) which was held online on December 2020
and were accepted for publication in Algorithmica. The full paper is available online
on arXiv [9].

This result on Cy-free bipartite graphs shows in particular how to adapt the
"buffer space" argument for the token sliding rule. In particular, a first step to prove
the tractability of TS on bipartite Cy-free graph is to show that it is tractable on
bounded-degree bipartite graphs. In Chapter 9, we generalize this result by showing
the following:

Theorem 8. TOKEN SLIDING is fized-parameter tractable when parameterized by
k+ A(G).

In order to do so, we introduce the notion of galactic token sliding, which we
believe can be used as a starting point to design FPT algorithm for token sliding for

other sparse graph classes.

121

Chapter 7

Independent set reconfiguration

in H-free graphs

The results presented in this chapter were obtained with Nicolas Bousquet and Moritz

Muhlenthaler. These results have not been peer-reviewed yet.

The question of finding a maximum independent set is one of the most studied
optimization problem in graphs and is one of the problem we have the best under-
standing of. Nonetheless, it is still a very active field of research, in particular when it
comes to the study of the complexity of the said problem in H-free graphs. A graph G
is H-free if does not contain H as an induced subgraph, where H is a connected graph.
Before we dive into the reconfiguration counterpart of the problem, let us summarize
where the results stand today toward MAXIMUM INDEPENDENT SET (MIS) in H-free
graphs.

Let G be a graph. A t-subdivision of an edge e = (u,v) of G consists in deleting
the edge e from G and replacing it by a path of length ¢t with endpoints u and v
and where all the intermediate vertices are new vertices (of degree exactly two). The
t-subdivision of G is the graph obtained from G by subdividing every edge exactly
k times. In [3] Alekseev showed that if G’ is the 2¢ subdivision of graph G, then
a(G") = a(G) + t|E(G)|. Informally speaking, it shows that it is as hard to find
the independence number of G as it is to find the independence number of the 2t¢-
subdivision of G. Since a subdivision of G can have arbitrarily large girth and its
two closest vertices of degree at least three arbitrarily far away from each other, it
follows that excluding a graph H that contains a cycle or more that one vertex of
degree at least three cannot make the problem easy. Furthemore, it is well known that
MIS is NP-complete in graphs of maximum degree three. Hence, finding a maximum
independent set in a H-free graph is NP-hard unless H is a path or a tree with a

unique vertex of degree three. In other words, Alekseev [4] showed the following:

Theorem 29. MAXIMUM INDEPENDENT SET in H-free graphs is NP-complete unless

H is a path, the claw, or a subdivision of the claw.

Using the representation of Pj-free graphs as cotrees, it is an easy exercise to see
that a maximum independent set can be computed in linear time in this class. Hence,

the smallest interesting case (for paths) left open by Theorem 29 is the case of Ps.

122 Chapter 7. Independent set reconfiguration in H-free graphs

The problem remained open for three decades, until Lokshtanov et al. showed that
(MIS) is indeed polynomial time solvable in [72]. It was then also shown to be true
for Ps-free graphs by Grzesik et al. in [51], and the problem is still open for P;-free
graphs with £ > 7.

Minty [76] and Sbihi [86] showed independently that MIS is solvable in polynomial-time
in claw-free graphs. Twenty years later, Alekseev generalized this result to fork-free
graphs [3], and this is where the results for MIS stand today. Let us however note that a
tremendous amount of work exists concerning related problems on these graphs classes,
such as the weighted version of the problem, the design of approximation algorithms,
or the design of subexponential and quasi-polynomial time exact algorithms.

Let us now draw a parallel with the independent set reconfiguration problem. As
mentionned in the previous chapter, both TOKEN SLIDING and TOKEN JUMPING were
shown to be solvable in polynomial time in Pj-free graphs [16, 21, 67] and claw-free
graphs [23]. However, prior to our work, no Alekseev type theorem were known for
independent set reconfiguration. Hence, it might as well be true that excluding a
graph containing a cycle or several high degree vertices makes the problems easy. In
this chapter, we show that it is not the case and that Alekseev’s partial dichotomy

also holds for independent set reconfiguration:

Theorem 6. TOKEN JUMPING and TOKEN SLIDING on H-free graphs are PSPACE-

complete, unless H is a path, a claw, or a subdivision of the claw.

The proof of Theorem 6 is given in Section 7.1. Since the complexity of both rules
is known for claw-free graphs [23] we consider the case of fork-free graphs in Section

7.2. In particular, we show the following:

Theorem 30. MAXIMUM INDEPENDENT SET RECONFIGURATION (MISR) is solvable

in polynomial time in fork-free graphs.

Our proof of Theorem 30 consist in a reduction to the claw-free case. We did
not manage to adapt it to the general case, for neither TOKEN SLIDING nor TOKEN

JUMPING. However, we have strong incentives to think that the following is true:

Conjecture 3. TOKEN SLIDING and TOKEN JUMPING are polynomial time solvable
on fork-free graphs.

Although we put both rules in a single conjecture, we also think that, if exist,
polynomial time algorithms for TOKEN JUMPING and TOKEN SLIDING in fork-free
graphs should be radically different. We briefly discuss this question in Section 7.3, as

a conclusion.

7.1 An Alekseev type theorem for reconfiguration

Let G be a graph. An odd subdivision of G is a graph obtained from G by subdividing

all the edges an odd number of times. Given an odd subdivision of G, the additional

7.1. An Alekseev type theorem for reconfiguration 123

A

S2,2.1 S3.1,1 Ps

FIGURE 7.1: The three smallest graphs H for which the complexity of
MISR on H-free graph remains unknown.

cost of a subdivision is equal to the sum for every edge of the original graph of its
length in the subdivision minus one over two. A vertex of a subdivision is an original
vertex if it belongs to V(G) or is a subdivided vertex otherwise.

Let G be a graph and G’ be an odd subdivision of G. Let I be an independent set

of G. A canonical representation J of I in G’ is an independent set such that:
e An original vertex is in J if and only if it is in [I.

o For every edge e € E(G), exactly the length of the edge in the subdivision minus

one over two vertices are in J.

One can easily prove that, if I is an independent set, we can construct such an

independent set J. Actually Alekseev proved the following:

Theorem 31. Let G be a graph and G’ be an odd subdivision of G. The graph G has
an independent set of size k if and only if G' has an independent set of size k plus the
additional cost of G'.

Our goal is now to adapt this statement to the framework of reconfiguration in

the following way:

Theorem 32. Let G be a graph and k be the size of a mazimum independent set of
G. Let G' be an odd subdivision of G and m be the additional cost of G'.

Two independent sets I, J of size k are in the same connected component of the
reconfiguration graph of (G, k) if and only if, canonical representations of I and J are

in the same connected component (in both the TS and the TJ model).

Recall that MISR is PSPACE-complete in graphs of maximum degree three [64].
Hence, just as Aleskseev’s Theorem 31 directly implies Theorem 29, Theorem 32

directly implies Theorem 6.

First note that by Theorem 31 the corresponding independent set is maximum in
G’. And then the token jumping and the token sliding are equivalent model in that
case.

The remaining of this section is devoted to prove Theorem 32. Let p > 0 and
(u,v) be an edge of G. The set Sy, = {s1,2,...,5,} C V(G’) is the set of subdivided
vertices of the edge (u,v). By convention s; is adjacent to u and s, is adjacent to v.
Each vertex of S, has degree two and for every 1 < i < p, the vertex s; is adjacent

to s;41 and s;_1. Note that p is even since G’ is an odd subdivision of G. A left move

124 Chapter 7. Independent set reconfiguration in H-free graphs

on Sy, is a move of a token on s; with 4 > 1 to s;_;. Let I’ be an independent set of
G’ of size k + m. The trace of I' is the set of original vertices of I’. Let us prove the

following:

Claim 2. Let I’ be an independent set of G' of size k +m and (u,v) be an edge of G.
If both u and v belongs to the trace of I' then |I' N Syy| = 252 and |I' N Syy| = 251

otherwise.

Proof. Starting from I’, apply any valid left move on Sy, as long as there exists one
and let I” denote the obtained independent set. Suppose first that {u,v} C I”: then
any ¢ such that s; € I” is even. If not, consider the smallest j odd such that s; € I”.
It satisfies j > 1 since u € I” and by the choice of j it follows that s;_; and s;_o are
I"-free. But then the token on s; can be moved to s;_1, a contradiction. Furthermore,
there must be a token on s,_s since I " is maximum and since sp—1 and sp,_3 are free.
Since no left move is possible, there must be a token on each s; for every 2 < ¢ < p—2
even and thus there are exactly % tokens on Sy, .

Suppose then that |{u,v} N I"| < 1. Without loss of generality we can suppose that
u & I"”. One can easily check that any i such that s; € I"” must be odd. Since p is even
and I” is maximum, there must be a token on s,_1. As no left move is possible, there
must be a token on each s; for every 1 < i < p—1 odd and thus there are exactly %

tokens on Sy, . O]
The following statement is an easy consequence of Claim 2:

Claim 3. Let I',J’ be two independent sets with the same trace, then I' and J' are

in the same connected component of the reconfiguration graph of (G',k+ m).

Proof. Let (u,v) be an edge of G and let T' denote the trace of I’ and J'. If both
uw and v belongs to T we have I' NSy, = J' NSy, = {s2,84,...,5p—2} by Claim
2. If {u,v} NT| = 1, suppose without loss of generality that u ¢ 7. Then Claim
2 ensures that I' N Sy, = J' N Syy = {s1,83...,5p—1}. Finally, if {u,0}NT = 0,
Claim 2 ensures that |T'| = %. By applying any possible valid left move on Sy,
for both I’ and J' we obtain independent sets I” and J” respectively such that
I"N Syy = J"NSyy = {s1,83,...,5p—1}. Note that the trace of I” and J” is still T
since we only move token between subdivided vertices. It is then sufficient to repeat
this process for any edge of G that satisfies {u,v} N'T = 0 to obtain a transformation

between I’ and J'. O
We are now ready to prove the first direction of Theorem 32:

Claim 4. If there is a transformation from I to J then there is a transformation from

a canonical representation of I to a canonical representation of J.

Proof. Let Iy, I be independent sets of G such that I, is obtained from I; by moving
a token from a vertex u to a vertex v. Note that (u,v) € E(G) since I and I are

maximum. Let I{ be a canonical representation of I; and let us show that we can always

7.1. An Alekseev type theorem for reconfiguration 125

reach a canonical representation of I starting from Ij. Let Sy, = {s1,5s2,...,sp} be
the subdivided vertices of the edge (u,v) in G’ and suppose that there exists and
edge (v,w) € E(G) with subdivided vertices Sy, = {q1,-..,¢y} such that ¢; € I].
Note that w ¢ I] since I] is a canonical representation of Iy and Iy = I1 + v —u
is an independent set. It follows that I” = I — Sy + {q2, a, - - - ¢p} is & maximum
independent set of G’ such that I] and I” have the same trace and thus I” can be
reached from I] by Claim 3. So up to applying such a transformation for each edge
(v,w) € E(G) we can suppose that N(v) NI] = {s,} and we can slide the token on
sp to v. Finally, it suffices to slide the token from s; to s;y; for every ¢ such that
s; € I1 (in decreasing order) and then slide the token from w to s in order to reach a
canonical representation of Is.

[

Let us now prove the converse direction. Let I’ be an independent set of G’ of size
k+m.

Claim 5. The trace of I' contains no (non necessarily induced) path on three vertices
n G.

Proof. Suppose otherwise and let u, v, w be such a path. Let Sy, = {s1,...sp} and
Svw = {q1,-..,qp} be the subdivided vertices of (u,v) and (v, w) respectively. By
Claim 2 we have I' N Sy, = {s2,54,...,5p—2} and I' N Sy = {q2, 44, ..., ¢p—2}. But
then we are free to move the token token on u to s, and obtain an independent I”

such that N(q1) NI" = 0, a contradiction since I’ is maximum. O

So the trace of I is the disjoint induced union of isolated vertices and edges. The

size of the trace of I’ is the number of isolated vertices plus the number of edges in it.
Claim 6. The trace of I' has size exactly k.

Proof. Let (u,v) be an edge of G. By Claim 2 we have [S,, NI'| = § if {u,v} is
contained in the trace of I’ and |Sy, NI'| = 1%2 otherwise. Let n. and n, denote
respectively the number of edges and isolated vertices in the trace of I'. We have
I'l = k+|E(G)|2 = 22n. + B(|E(G)| — ne) + 2ne + ny from which we obtain
Ne + Ny = k. O

A subset of V(G) is associated to I’ if it contains all the isolated vertices of I’
plus one endpoint of each edge of I’. The previous claims mainly ensures that the

following holds:
Claim 7. FEvery subset associated to I' is an independent set of G of size exactly k.

Proof. Let A be a subset of V(G) associated to I'. If two vertices u,v € A are
adjacent, then (u,v) is an edge in the trace of I’, a contradiction with the construction
of A. The size of A follows from Claim 6. O

We can now complete the proof of Theorem 2:

126 Chapter 7. Independent set reconfiguration in H-free graphs

Proof. Let I' and J' be canonical representations of I and J respectively and let
In=1,1,...,I._;, Il = J' be a valid transformation. Let us show show by induction
that for every ¢ < s, there exists an independent set I; C V(@) associated to I] such
that Ig, I, ..., Is is a valid reconfiguration sequence from I to J. We start with Iy = I,
which is associated to I’ by definition of a canonical representation. Note that since all
the I's are maximum, each move in the sequence is a sliding move. Furthermore, if u
is an isolated vertex in the trace of I} then the token on u cannot move since by Claim
2 there must be a token on every subdivided vertex sg € Sy, for every (u,v) € E(G).

Three cases remain:

1. A token slides between two subdivided vertices. Then we set I;11 = I;. By
induction I is associated to I;, and since I] and I/, ; have the same trace it

follows that I; is also associated to I ;.

2. Let (u,v) be an edge of G and suppose that a token slides from s, € Sy, to
v. Since I/ is maximum we have u € I/ by Claim 2. Furthermore for every
t € Ng(u) we have t ¢ I] by Claim 5 (since otherwise ¢, u, v is a path of length
3 in the trace of I ;). It follows that u is isolated in the trace of I} and thus
that u € I;. Then we set I;11 = I; —u+v. The set I;1; is an independent set
of G by Claim 2 and it is associated to I, since the traces of I] and I/, only

differs on {u,v}.

3. Let u € V(@) and suppose that a token slides from u to a subdivided vertex
$1 € Syy. Suppose that v € I]: since there can be no token on {si, sa} there
is at most % tokens on Sy, a contradiction with Claim 2. Then either I;
contains u (in which case it does not contain v by definition of an associated
set) and we set I;11 = I; —u+ v or I; does not contain u (in which case it must
contain v since (u,v) is an edge in the trace of I]) and we set I;y1 = I;. The
induction hypothesis and Claim 5 ensure that I;;; is an independent set of G in
both cases. Furthermore, it is associated to I ; since the traces of Ij and I,

only differ on {u,v}.

We obtain a sequence of independent sets Iy, I, ..., Is such that Ip = I, Iy = J and
|I; AT 41| < 1 for every t < s, which concludes the proof. O

7.2 MISR in fork-free graphs

This section is dedicated to the proof of Theorem 30. Note that we can consider the

token sliding rule only since the independent sets are maximum.

Let H be a claw with vertex set {c, x,y, z} such that N(c¢) = {z,y, 2}. The graph
H is called a c-claw, c is the center of H and x, y, and z are the leaves of H. The
center of a fork F is the only vertex of F' of degree 3. Given a graph G = (V, E)
and S C V, the graph G’ obtained by deleting S from G (we just say by deleting S

7.2. MISR in fork-free graphs 127

when G is obvious from context) is the graph G[V — S]. Given an independent set I,
a vertex u of G is exposed if |[N(u)NI| = 1.

Reduction rules. The proof of Theorem 30 consists in a reduction to the maximum
independent set reachability problem in claw-free graphs, which can be decided in
polynomial time [23]. Let G be a fork-free graph and I be a maximum independent

set of G. We consider the following reduction rules:

Reduction rule 1. If {c¢, x,y, z} is a c-claw where {x,y, 2z} C I then delete c.
Reduction rule 2. If {c,z,y, z} is a c-claw where ¢ € I and {z,y,2z} C G — I then
delete {x,y, z}.

Reduction rule 3. If {c,z,y, 2z} is a c-claw where {c,z,y} C G —I and z € I then
delete {c,z,y}.

Reduction rule 4. If {c,z,y, 2z} is a c-claw where {c,z,y,2} C G — I then delete
{¢, 2,9y, z}.

In what follows, we will prove that the reduction rules are safe. We first apply
Reduction rule 1 as long as we can, then apply Reduction rule 2 and so on. Let G be
a fork-free graph and I be a maximum independent set of GG. The i-reduced graph G;
is the graph obtained after applying exhaustively reduction rules 1 to ¢ in that order
to (G, I) with 1 <i < 4. Clearly, [is still a maximum independent set of Gj.

Lemma 25. Let I and J be maximum independent sets in a fork-free graph G
and let Gy be the 1-reduced graph obtained from (G,I). Then I e~qpgayy J if
JNV(G)—=V(Gy) #0 and I ewrg(q) J if and only if I e~rpg g,y J otherwise.

Proof. It I «~pg(qg,) J then indeed I «~pg) J. Let us prove the other direction.
Let {c,z,y,z} be a c-claw of G with ¢ € G — I and {z,y,z} C I. We show that in
any reconfiguration sequence starting from I, none of the tokens on {x,y, z} can leave
N(c). Suppose otherwise and let I’ denote the independent set just before such a
move. Then there exists {2/, v/, 2’} C N(¢) NI’ and from I’ one token from {z',y’, 2’}
moves to some vertex t ¢ N(c). But then {c,z,y, z,t} is a fork in G, a contradiction.
It follows that in any independent set I’ reachable from I, ¢ ¢ I’ (since there are three
tokens in N(c)). In particular if ¢ € J then I «»7g () J and since ¢ ¢ G then clearly
I »1g5(q,) J. Otherwise if ¢ ¢ J and if there exists a sequence from I to .J, then for
any I’ in the sequence we have ¢ ¢ I'. But then this sequence is also a valid sequence
in G — {c} and the result follows. O

By definition of Reduction rule 1 there exists no c-claw in G1 having three leaves
in I. The following lemma shows that in fact, any remaining c-claw in G; has at most

one leaf in 1.

Lemma 26. Let G be a fork-free graph and I be a maximum independent set of G.
Let G be the 1-reduced graph obtained from (G,I). Any claw in G1 has at most one
leaf in I.

Proof. By contradiction let {c,z,y, 2z} be a c-claw in G} such that [{z,y,z} NI| = 2.

Suppose without loss of generality that {x,y} € I. Since [is a maximum independent

128 Chapter 7. Independent set reconfiguration in H-free graphs

set, z must have a neighbor ¢ in I, and since ¢ has at most two neighbors in I we have
t ¢ N(c). It follows that {c,x,y, z,t} induces a fork in Gj. O

So after applying reduction rule 1, there remains three cases to consider if there
is a claw in G1: either one leaf of the claw is in I, or the center of the claw is in I,
or the whole claw is in G — I. We show that, in each case, we can apply one of the
Reduction rules 2, 3 or 4 (and show that they are safe) until we either obtain a graph
G’ such that J € G’ in which case I “71s(q) J, or we obtain a claw-free graph.
Let I be an independent set of a fork-free graph G. A set X C V(QG) is locally frozen
if for all v € X, |[N(v) NI| = 2. Note that since Reduction rule 1 cannot be applied
to G1, we can suppose that for every v € G, |[N(v) N I| < 2. Given a locally frozen
set X, the set By := Uyeq, N(v) NI is the set of X-blocking vertices. It is obvious
that given a set X of locally frozen vertices and its blocking set Bx, no token can
move from Bx to X. Given a vertex u and a set X C V(G1) not containing u, the
vertex v € G — X U{u} is a X-clone of v if (u,v) € E and if N(v)NX = N(u)NX.

Lemma 27. Let I and J be mazximum independent sets in a fork-free graph G and
X be a set of locally frozen vertices. Suppose that for every mazimum independent set
I’ of G reachable from I, X is also locally frozen. Then if JNX # 0, I <»q J and
I «~q J if and only if I «~q J where G is the graph obtained by deleting X from

G otherwise.

Proof. By supposition, any maximum independent set I’ reachable from I satisfies
I'NnX =0soif JNX # () then I <»¢ J. Suppose that JNX =). If there exists a
reconfiguration sequence from I to .J in G, then since any independent set I’ in the
sequence satisfies I’ N X = 0, there also exists a reconfiguration sequence from I to .J
in G'. O

So if there exists a claw C' in G, it is sufficient to find a set of locally frozen
vertices containing some vertices of C that satisfies the condition of Lemma 27. We
can then delete the claw from G while maintaining the reachability. The following
Lemma gives a simple condition to ensure that a locally frozen set of vertices remains

locally frozen in any independent set I’ reachable from I:

Lemma 28. Let I be a maximum independent set of a fork-free graph G, X be a
set of locally frozen vertices of G and Bx be its blocking set. Let I' be the mazximum
independent set obtained by sliding a token from uw € Bx to a vertex v that is a X -clone
of w. Then the set X is locally frozen in I' and blocked by Bx —u + v.

Proof. By definition of a X-clone, N(v)NX = N(u) N X and since I’ is obtained
from I by sliding a token from u to v, every z € X satisfies [N(z) N 1I'| = 2. O

Given a set of locally frozen vertices X of G, it wil be sufficient to show that at
any point in a reconfiguration sequence, a token on the blocking set of X can only
move from a vertex u to a X-clone of u. We need the following claim before discussing

the reduction rules:

7.2. MISR in fork-free graphs 129

T2

Y

FIGURE 7.2: Irrelevant and blocking vertices of Claim 31

Y2

Lemma 29. Let I and J be mazimum independent sets in a fork-free graph G and
let Gy be the 1-reduced graph obtained from (G,I). Then for any verter v € G1 and
any independent set I' of Gy reachable from I, |[N(v)NI'| < 2.

Proof. Since (31 is obtained from G by applying reduction rule 1, I is a maximum
independent set of Gy and every v € G; satisfies [N(v) N I| < 2. Suppose for a
contradiction that there exists a vertex ¢ and an independent set I’ reachable from
I such that |[N(¢) NI'| > 2. Let I; be the first independent set in a sequence from
I to I’ that satisfies [N (c) NI;| = 3 and I;_; be the independent set that precedes
it. By choice of I;_1, we have |[N(c) N I;—1| = {x,y} for some {z,y} C G'. Then I, is
obtained from I;_; by sliding a token from a vertex t ¢ N(c) to a vertex z € N(c¢) and
since I;_1 and I; are independent sets, we have t ¢ N(x) UN(y) and z ¢ N(x) UN (y).

But then {c,x,y, z,t} induces a fork, a contradiction. O

Lemma 30. Let I and J be mazimum independent sets in a fork-free graph G and
let Gz be the 2-reduced graph obtained from (G,I). Then I gy J if JNV(G) —
V(G2) # 0 and I «~spg(qy J if and only if I «~spga,) J otherwise.

Proof. Again, the converse direction is trivial. Let us assume that G contains a c-claw
C :={c,y,z, 2z} such that ¢ € I. Since I is maximum, every leaf of the claw must
have another neighbor in I. No leaf has a private neighbor (regarding {c,z,y,z}))
in I since otherwise there is a fork. It follows that there must exists a vertex u € I
such that u # ¢ and u is a common neighbor to z, y, and z. So X := {x,y,z} is a
set of locally frozen vertices blocked by Bx = {c,u}. Let us show that X and By
satisfy the condition of Lemma 27. By symmetry it is sufficient to show that any
neighbor of u in G — X is a X-clone of u. First note that since we applied reduction
rule 1, ¢ and u are the only neighbors of z, y and z in I. Let v € N(u) — X be an
exposed vertex. Suppose that v has a non-neighbor in {z,y, 2z}, say x without loss
of generality. Then we can move the token on u to v, then move the token on ¢ to
x, and then move the token on v to y. But then z has no neighbor in the obtained

independent set, contradicting the fact that I is maximum. O

Lemma 31. Let I and J be mazimum independent sets in a fork-free graph G and
let G3 be the 3-reduced graph obtained from (G,I). Then I <»pgcy J if JNV(G) —
V(G3) #0 and I «~spgq) J if and only if I «~pg(q,) J otherwise.

130 Chapter 7. Independent set reconfiguration in H-free graphs

Proof. Assume that G contains a c-claw C := {¢,y,z,z} such that z € I and
{z,y} € G—1. Since I is maximum, both z and y have a neighbor in I. Sup-
pose first that = has a neighbor zo € I and that y has a neighbor ys in I such that
x9 ¢ N(y) and yo ¢ N(x). Then both czy and cy, are edges otherwise {c, x,y, z, x2}
or {c,z,y,z,y2} induce forks. But then N(c¢) NI C {x2,ya2, 2}, a contradiction. It fol-
lows that and y have a common neighbor x5 € I (by maximality of I). At least one of
{z,y} has another neighbor in I otherwise I — {z2} U{z, y} is a larger independent set
of Gy. By symmetry, we can assume that there exists yo € N(x) N (I — 22). Suppose
that yo is not in N(y). Then cys and czy are edges since otherwise {c¢, z,y, z,y2} or
{¢,v,2,y,x2} induce forks. Then N(c) NI C {z,x2,y2}, a contradiction with Reduc-
tion Rule 1. So = and y are complete to z2 and ys. Furthermore, ¢ must be a neighbor
of either w9 or yy or there is a fork. By symmetry we can assume that xo € N(c).
Reduction Rule 1 implies that ya ¢ N(c). We obtain a set X := {z,y, 2z} of locally
frozen vertices blocked by Bx := {x2,y2, 2} (see Figure 7.2 for an illustration). Let us
show that these sets satisfy the conditions of Lemma 27. Suppose that at any point
in a reconfiguration sequence one of the token on x2, y2 or z moves. We have three

cases to consider:

a) The token on z moves first. Let 23 € N(z) — X be the vertex to which the token
moves. Since zy is exposed, zo ¢ N(z2) U N(y2). Furthermore, zo ¢ N(x) (resp.
zo ¢ N(y)) otherwise {x, x2,y2, 22,2} (resp. {y,z2,y2, 22,2}) induces a fork. It
follows that 29 € N(c) otherwise {¢,x,y, z, 22} induces a fork. Since ¢ is the

only neighbor of z in H, we obtain that z9 is a X-clone of z.

b) The token on ys moves first. Let v be the vertex on which the token moves.
Then v ¢ N(z2) UN(z). Furthermore v ¢ N(c) as otherwise {c,v,z2, z,y2}
induces a fork. If v ¢ N(z) UN(y) then the move x9 — x is valid and y has no
neighbor in the obtained independent set thus it must be that v € N(x) U N(y).
If v e N(y) and v ¢ N(z) or if v € N(z) and v ¢ N(y) then in both cases
{¢,z,y,2,v} induces a fork. It follows that v € N(z) N N(y) and v is a X-clone
of yo.

c¢) The token on z2 moves first. Let u denote the vertex on which the token moves.
We have u € N(z) U N(y) otherwise the move yo — y is valid and x has no
neighbor in the obtained independent set. Suppose first u € N(z): it implies
that u € N(y) U N(c) otherwise {¢,z,y, z,v} induces a fork. Then if u € N(c)
and u ¢ N(y) (resp. u € N(y) and u ¢ N(c)) then {c,y,y2, z,u} induces a fork
of center ¢ (resp. y). It follows that if u € N(z) then u € N(z) N N(y) N N(c).
Finally suppose that u € N(y). Then v € N(x) U N(c) otherwise {c,z,y, z,v}
induces a fork. If u € N(c¢) and u ¢ N(y) (resp. u € N(y) and u ¢ N(c))
then {c, z,y2, z,u} induces a fork of center ¢ (resp. z). We can conclude that
uw € N(z)NN(y)NN(c) and u is a X-clone of v.

O

7.2. MISR in fork-free graphs 131

x\ | |
w

(A) Case 1 (B) Case 2

FIGURE 7.3: Irrelevant and blocking vertices of Claim 32

The last case to be considered is the case where G contains a claw that is included
inG—-1:

Lemma 32. Let I and J be mazimum independent sets in a fork-free graph G and
let Gy be the 4-reduced graph obtained from (G,I). Then I <»pgcy J if JNV(G) —
V(G4) #0 and I ewrg(q) J if and only if I e~rpgq,) J otherwise.

Proof. Let us suppose that G contains a c-claw C := {¢,y,z,2} C G —I. Since [
is maximum, the center ¢ of C' must have a neighbor w € I. If w is a neighbor of
at most one leaf of C, then we can apply reduction rule 2 and delete three vertices
of C. Furthermore if {z,y,2} € N(w) then we can apply reduction rule 3 and
delete {z,y,z}. So we can suppose without loss of generality that {z,z} C N(w)
and y ¢ N(w) and since I is maximum, y must have a neighbor v # w in I. This
vertex must satisfy v € N(z) UN(y) U N(c) otherwise {¢,z,y, z,v} induces a fork. If
v € N(c)and v € N(z) UN(y) then {¢,z,z,v} induces a c-claw and reduction rule
2 applies, thus we have up to symmetry that v € N(z). It follows that v ¢ N(z)
otherwise {v,z,y, 2z} induces a v-claw and reduction rule 3 applies, and since I is
maximum, z must have a neighbor u ¢ {v,w} in I. Since N(z) NI = {v,w}, 2u ¢ E
and we have u € N(¢) U N(y) otherwise {c,z,y,z,u} induces a fork. If u € N(c)
and u ¢ N(y), then we also have v € N(¢) otherwise {c,y,u,w,v} induces a fork,
but in that case ¢ has three neighbors {u,v,w} in I, a contradiction. It follows that
u € N(y). Finally we have that either u € N(¢) or v € N(¢) otherwise {y, v, u,c, w}
induces a fork (note that is not possible that {u,v} € N(¢) or ¢ would have three
neighbors in I). In both cases we obtain that X := {c, x,y, 2z} is a set of locally frozen
vertices blocked by Bx := {u,v,w} (see figure 7.3 for an illustration). Let us now

show that we can always apply Lemma 2 to delete X from G.

Case 1: v € N(c¢) (& u ¢ N(c)). Suppose that one of the token on w, v or w moves

to an exposed vertex. As for Claim 7.2, we have three cases to consider:

a) The token on v moves first. Let vy be the vertex on which the token moves. Note
that since it is the first token on {u, v, w} to move, we have vy ¢ N(u) U N(w)
and vy ¢ N(z) by Lemma 29. We have va € N(z) U N(y) since otherwise
{v,v2,y,z,w} induces a fork. Suppose first that v € N(z). Then we have

132 Chapter 7. Independent set reconfiguration in H-free graphs

vg € N(¢) UN(y) otherwise {c,z,y, z,v2} induces a fork. Finally if v € N(y)
and vy € N(c) (resp. v2 € N(c) and vy ¢ N(y)) then {y, vs,u,c,w} induces a
fork of center y (resp. c). It follows that vy € N(z) N N(y) N N(c). Suppose
then that vo € N(y), then also v € N(z) U N(c) otherwise {c,z,y,z,v2}
induces a fork. As in the previous case it is not possible to have v € N(x) and
v & N(c) and if vy € N(c) and vy ¢ V(z) then {c,x,ve, z,u} induces a fork, a

contradiction. It follows that vy is a X-clone of v.

b) The token on u moves first. Let us denote the vertex on which the token
moves. Clearly ugs ¢ N(v) UN(w) and us ¢ N(c) UN(x) by claim 29. We have
ug € N(y) UN(z) otherwise {¢,x,y, z,us} induces a fork, and if us € N(y) and
ug & N(z) (resp. ug € N(z) and ug ¢ N(y)) then {c, x,y, ug, 2z} induces a fork.
It follows that ug € N(y) N N(z) and us is a X-clone of w.

¢) The token on w moves first. Let wy be the vertex on which the token moves.
Again wy ¢ N(u) UN(v) and wy ¢ N(y) by claim 29. Then wy € N(z) UN(2)

otherwise {w, x, z, w9, u} induces a fork. Then we have:

o Ifwy € N(z) and wy ¢ N(z) or wy € N(z) and we ¢ N(z) then wy € N(c)

otherwise {c, x,ws,y, 2z} induces a fork in both cases.

o Ifwy € N(z)NN(c)and we ¢ N(z) then {c,v,ws, z,u} induces a fork and
if we € N(2) NN (c) and wy ¢ N(z) then {c, z,y, ws,y} induces a fork.

o Finally if we € N(z) N N(z) and we ¢ N(c), then {z, ¢, u, ws,v} induces a
fork.

It follows that we € N(¢) N N(z) N N(z) and we is a X-clone of w.

Case 2: u € N(¢) (& v ¢ N(c)). One can easily check that up to exchanging

vertices x, z and u, v Case 1 applies.]

We can now give the proof of the main theorem of this section:

Proof of Theorem 30: Let I and J be two maximum independent sets in a fork-free
graph G. Let us show that we can decide whether I «~7g J in polynomial time. A
list of all claws of G can be found in polynomial time (by brute-force). Let G4 be the
4-reduced graph obtained from (G, I). By Lemma 32, the answer is NO if any vertex
of J has been deleted, otherwise both I and J are maximum independent sets of G4
and [e~rpg) J if and only if I «~rgq,) J. Clearly Gy is claw-free, I and J are
maximum independent set of G4, and by the results from [23] it can be decided in

polynomial time whether I evpg(q,) J.

7.3 A short discussion on the non-maximum case

Let us conclude this chapter by discussing Conjecture 3. First, one can easily notice

that when the source and target independent sets are not maximum then TOKEN

7.3. A short discussion on the non-maximum case 133

SLIDING and TOKEN JUMPING in fork free-graphs are not equivalent. Indeed, consider
a claw with two tokens on the leaves: with the jumping rule, the tokens can freely
jump on the leaf containing no token, whereas such a configuration is frozen with the
sliding rule.

A classical approach to design efficient algorithm for independent set reachability
is to find a way to reduce the size of the symmetric difference between the source
and target independent sets in polynomial time. Note that the graph induced by
the symmetric difference of two independent sets is a bipartite graph. A complez is
a complete bipartite graph minus a matching. A complex is trivial if both side of
its bipartition have size at most two. It is not hard to check that a trivial complex
is either a C4, a path, or an induced matching. In [3], Alekseev gives a complete

description of the structure of connected bipartite fork free-graphs:

Theorem 33. A connected bipartite fork-free graph is either a single vertez, a path,

a cycle or a complex.

Let G be a fork free-graph and I and J be the source and target independent set
respectively. By Theorem 33, each connected component of G[IAJ] is either a single
vertex, a path, a cycle or a complex. With this first remark at hand, we can now

discuss the case of TOKEN SLIDING and TOKEN JUMPING separately.

Token Sliding. Let us first show the following Lemma, which is crucial for the

sliding rule:

Lemma 33. Let S be an independent set of G and ¢ € V(G) be a vertex that has
at least three neighbors in S. Then for any independent set S’ containing v we have

S %TS(G) S/.

Proof. Suppose for a contradiction that there exists a T'S-sequence from S to S’ in G.
In such a sequence, a token must slide to ¢ at some point. Right before this move,
there is no token on the neighborhood of ¢ but the one that slides to ¢. In other
words, all the tokens initially on N(¢) NS leave the neighborhood of ¢ at some point.
Consider the first token to do so. Let x be the neighbor of ¢ on which this token lies
and u be the vertex on which the token slides to. By supposition we have u ¢ N(c).
Furthermore, there exists at least two other vertices {y,z} € N(c) NS on which there
are still tokens. Since the sequence is valid, we have {y, 2} ¢ N(u). Since furthermore

u ¢ N(c), the graph induced by {¢, z,y, z,u} in G is a fork, a contradiction.]

Note that Lemma 33 is actually a generalization of Lemma 25 to the non-maximum
case. Lemma 33 immediately implies that if there exists a non-trivial complex in
G[IAJ], then I “r1s(q) J. Hence we can suppose that the connected components of
G[IAJ] are either isolated vertices, paths, or cycles. Paths are easy to deal with since
we can slide the vertices one by one along it to decrease the size of the symmetric
difference. Hence, their remains to consider the case where G[IAJ] contains only

isolated vertices and cycles. This is exactly the problem that Bonsma et al. tackle

134 Chapter 7. Independent set reconfiguration in H-free graphs

BC.J ¢

FIGURE 7.4: Example of a complex K. Plain black lines are edges and
dotted black lines are non-edges. At least two tokens on A must move
before a token can jump to B.

in [23] when showing that TOKEN SLIDING can be decided in polynomial-time in
claw-free graphs. Hence, we believe that a reduction to the claw-free case could be a
good approach to show that TOKEN SLIDING in fork-free graphs can be decided in

polynomial-time.

Token Jumping. Let us now consider the jumping rule. As previously, each
connected component of G[IAJ] is either an isolated vertex, a path, a cycle or a
complex. Isolated vertices are obviously not a problem with the jumping rule: any
token can directly jump on such a vertex and reduce the symmetric difference. Just
as for sliding, paths are also easy to deal with when considering the jumping rule.
Hence, their remains to deal with the case where the connected components of G[IAJ]
are either cycles or complexes. Note that Lemma 33 does not hold for the jumping
rule, and hence complexes in G[IAJ] can be of any size. An example of such a large
complex K is given if Figure 7.4. Let (A, B) be the bipartition of K such that A C I
and B C J. By definition of a complex, every vertex in A sees all but at most one
vertex in B. Hence, finding a reconfiguration sequence from I to J requires to move
almost all the tokens on A to vertices that are not in N(B). In order to do so, we must
be able to find free vertices, which are vertices that have no tokens on their closed
neighborhood. Free vertices can be used as intermediate vertices before jumping the
tokens to B. If no such vertices (or not enough of them) exist, then one can also find
reconfiguration sequences that create free vertices. We believe that this can be done
in polynomial time by exploiting the fact that the source and target independent sets

are not maximum.

Conclusion. As seen in this section, TOKEN SLIDING and TOKEN JUMPING in
fork free-graphs define different problems when the source and target independent
sets are not maximum, and we believe that both of them require a specific approach.
However, we believe that in both cases the structure of the symmetric difference
given by Alekseev and the non-maximality of the source and target independent sets
gives enough room for the design polynomial time algorithms, and hence for proving

Conjecture 3.

135

Chapter 8

On girth and the parameterized
complexity of Token Sliding and
Token Jumping

The results presented in this chapter were obtained with Nicolas Bousquet, Clément
Dallard, Kyle Lomer and Amer E. Mouawad. This collaboration started during the
Coombinatorial Reconfiguration 2019 workshop (CoRe 2019) which was held in Aussois
in May 2019. These results were accepted at the 31st International Symposium on
Algorithms and Computation (ISAAC 2020) which was held online on December 2020
and were accepted for publication in Algorithmica. The full paper is available online
on arXiv [9].

In this chapter we focus on the parameterized complexity of the TOKEN JUMPING
and TOKEN SLIDING problems on graphs where some cycles with prescribed length
are forbidden. Such graph classes contain bipartite graphs (odd-hole-free graphs),
even-hole-free graphs and triangle-free graphs. Our main goal was to understand which
cycles make the independent set reconfiguration problems hard. All the results we
obtain are summarized in Table 8.1. Our main technical result consists in showing that
TOKEN SLIDING is W[1]-hard paramerized by k on bipartite graphs with a reduction
from MULTICOLORED INDEPENDENT SET. We were not able to adapt our reduction
for TOKEN JUMPING and left it as an open question:

Graph Class TOKEN JUMPING TOKEN SLIDING
{C3, Cy}-free graphs FPT (Section 8.1.1) Open
Cy-free graphs WI[1]-hard (Section 8.2.1) W/[1]-hard (Section 8.2.1)
Bipartite graphs Open WI[1]-hard (Section 8.2.2)
Bipartite Cy-free graphs FPT (Section 8.1.1) FPT (Section 8.1.3)

TABLE 8.1: Parameterized complexity of TOKEN JUMPING and TOKEN
SLIDING on several graph classes.

%%apter 8. On girth and the parameterized complexity of Token Sliding and Token
Jumping

Question 12. Is TOKEN JUMPING FPT parameterized by k on bipartite graphs?

On the positive side, we prove that TOKEN JUMPING admits a quadratic kernel (i.e.
an equivalent instance of size O(k?) can be found in polynomial time) for {Cs, Cy}-
free graphs while it is W[1]-hard if we restrict to {Cl4, ..., Cp}-free graphs for a fixed
constant p (the same hardness result also holds for TOKEN SLIDING). Note that the
fact that the problem is FPT on graphs of girth at least 5 also follows from FPT
algorithms for strongly K3 s-free graphs of [61], but even if a polynomial kernel can be
derived from their result, the degree of our polynomial is better. We were no able to
remove the Cy condition in order to obtain a parameterized algorithm for triangle-free
graphs. If an FPT algorithm exists for triangle-free graphs, it would, in particular

answer Question 12.
Question 13. Is TOKEN JUMPING FPT parameterized by k on triangle-free graphs?

We then focus on TOKEN SLIDING. While FPT algorithms are (relatively) easy
to design on sparse graphs for TOKEN JUMPING, they are much harder for TOKEN
SLIDING. As mentionned in the previous chapter, it is still open to determine if
TOKEN SLIDING is FPT on planar graphs or H-minor free graphs while they follow
for instance from [28, 61] for TOKEN JUMPING. Our main positive result is that
TOKEN SLIDING on bipartite Cy-free graphs (i.e. bipartite graphs of girth at least 6)
admits a polynomial kernel. Our proof is in two parts, first we show that TOKEN
SLIDING on bipartite graphs with bounded degree admits a polynomial kernel and
then show that, if the graphs admits a vertex of large enough degree then the answer
is always positive. So TOKEN SLIDING is W[1]-hard on bipartite graphs but FPT on
bipartite Cy-free graphs. In our positive results, Cy-freeness really plays an important
role (neighborhoods of the neighbors of a vertex x are almost disjoint). It would
be interesting to know if forbidding C} is really important or whether it is only
helpful with our proof techniques. In particular, does TOKEN SLIDING admit an FPT
algorithm on bipartite Co),-free graphs for some p > 3?7 In our hardness reduction for
bipartite graphs, all (even) cycles can appear and then such a result can hold. Recall
that we prove that TOKEN JUMPING admits a polynomial kernel for graphs of girth
at least 6. It would be interesting to see if our result on bipartite Cy-free graphs can

be extended to this class.

Question 14. Is TOKEN SLIDING FPT parameterized by k on graphs of girth at least
52 Or, slightly weaker, is it FPT on graphs of girth at least p, for some constant p.

Note that the fact that the girth is at least 5 is needed since TOKEN SLIDING
is W[1]-hard on bipartite graphs (which have girth at least 4). Let us finally briefly
discuss some cases where we forbid an infinite number of cycles. We have already
discussed the case where odd cycles are forbidden. One can wonder what happens if
even cycles are forbidden. It is shown in [67] that TOKEN JUMPING can be decided
in polynomial time for even-hole-free graphs whereas TOKEN SLIDING is PSPACE-
complete as it is PSPACE-complete on split-graphs [11]. More generally, one can

8.1. Positive results 137

wonder what happens when we forbid all the cycles of length p mod ¢ for every pair

of integers p, q.

8.1 Positive results

8.1.1 TOKEN JUMPING on {C3,Cy}-free graphs and bipartite Cy-free
graphs

We say that a graph class G is e-sparse, for some € > 0, if every induced subgraph G’
of a graph G' € G. has at most |V (G")|?~¢ edges. By extension, G is said to be e-sparse.
Given an instance Z = (G, S, T, k) of TOKEN JUMPING, let H = G — Ng[SUT] and
J denote the graph induced by Ng[SUT]. In the remainder of this section, we show

that Z is a yes-instance whenever (at least) one of the following two conditions is true:

1/e

1. H is e-sparse and contains more than k(2k)'/¢ vertices, or

2. J is {C3,Cy}-free and contains a vertex of degree at least 3k.

Lemma 34. Let T = (G,S,T,k) be an instance of TOKEN JUMPING and let H =
G — Ng[SUT)]. If H is an e-sparse graph with more than k(2k)'/¢ vertices then T is
a yes-instance. Moreover, the length of the shortest reconfiguration sequence from S
to T is at most 2k.

1/¢ vertices. We claim that

Proof. First, consider an e-sparse graph H' with n > (2k)
H' contains a vertex with degree less than 7. Assume otherwise, i.e., suppose that
the minimum degree in H' is at least }. Then, |E(H')| > % Moreover, since H' is
e-sparse, it holds that |E(H")| < n?>~¢. However, % < n?7¢ if and only if n < (2k)/°,
a contradiction.

Now, we shall prove, by induction on k, that H contains an independent set of size
at least k. The statement holds for kK = 1 (since H must contain at least one vertex).
Now, consider the case where £ > 1 and let z be a vertex with minimum degree in
H. Following the above claim, z has degree less than 7. Note that the graph H' =
H — N[z] is e-sparse and contains at least (k—1)% > (k — 1)% = (k—1)(2k)V/®
vertices. By the induction hypothesis, H' contains an independent set X of size at
least k — 1. Thus, X U{z} is an independent set in H of size at least k.

Hence, we can tranform S to T by simply jumping all the tokens in S to an
independent set X C V(G)\ (SUT) and then from X we jump the tokens (one by

one) to T'. This completes the proof. O

Lemma 35. Let Z = (G,S,T, k) be an instance of TOKEN JUMPING and let J denote
the graph induced by Ng[SUT]. If J is {Cs,Cy}-free and contains a vertex v of
degree at least 3k, then T is a yes-instance. Moreover, the length of the shortest

reconfiguration sequence from S to T is at most 2k.

Proof. Fix w € SUT. First, observe that for any uw € N(SUT), u is either ajdacent

to w and no neighbor of w (otherwise J would contain a Cs3), or u is adjacent to at

%}éapter 8. On girth and the parameterized complexity of Token Sliding and Token
Jumping

most one neighbor of w (otherwise J would contain a C4). Therefore, every vertex
in N(SUT) has degree at most 2k and a vertex of degree at least 3k in J belongs
necessarily to SUT. As J is Cs-free, Nj(w) is an independent set. Furthermore,
for any u,v € Ny(w), u # v, we have Ny(u) N Ny(v) = {w}, that is, w is the only
common neighbor of w and v in J; otherwise, J would contain C4. Hence, if w has at
least 3k neighbors, then at least k& of them only have w as a neighbor in SUT. Thus,
we can jump the tokens on S to N(w), starting with the token on w, if any. Then, we
can jump the tokens on the vertices in T'. Clearly, the length of such a reconfiguration

sequence is at most 2k. O

Proposition 3. Let Z = (G,S,T,k) be an instance of TOKEN JUMPING, let H =
G — Ng[SUT], and let J denote the graph induced by Ng[SUT|. If H is e-sparse,
e >0, and J is {C3,Cy}-free then T admits a kernel with O(k* 4 k'*1/¢) vertices.

Proof. If H contains more than k(2k)'/¢ vertices then Z is a yes-instance (by Lemma 34).
If J contains a vertex of degree 3k or more then, again, Z is a yes-instance (by
Lemma 35). Putting it all together, we have |[SUT| < 2k, [Ng(SUT)| < 2k(3k—1) =
6k — 2k = O(k?), and |V(G) \ Ng[SUT]| < k(2k)'/e = O(K'*1/¢),

O

Theorem 34. TOKEN JUMPING parameterized by k admits a kernel with at most
O(k?) vertices on {Cs, Cy}-free graphs as well as bipartite Cy-free graphs.

Proof. Let T = (G, S, T, k) be an instance of TOKEN JUMPING such that G is {C3, Cy }-
free. Let H = G — Ng[SUT] and J denote the graph induced by N¢[SUT]. Since
J is {C3,Cy}-free, Lemma 35 implies that if J contains more than 6k? — 2k vertices,
then Z is a yes-instance. Kim showed that the Ramsey number R(3, k) has order of
magnitude Q(k?/(log k)) [69]. Hence, if H contains more than O(k?/(logk)) vertices,
then it contains an independent set of size k and Z is a yes-instance. Thus, G contains
at most O(k?) vertices. The same result holds for bipartite Cy-free graphs since they
are {Cs, Cy}-free. O

8.1.2 TOKEN SLIDING on bounded-degree bipartite graphs

Unlike the case of TOKEN JUMPING, it is not known whether TOKEN SLIDING is
fixed-parameter tractable (parameterized by k) on graphs of bounded degree. In this
section we show that it is indeed the case for bounded-degree bipartite graphs. This
result, interesting in its own right, will be crucial for proving that TOKEN SLIDING is
fixed-parameter tractable on bipartite Cy-free graphs in the next section. We start
with a few definitions and needed lemmas.

For r > 0, the r-neighborhood of a vertex v € V(G) is defined as N [v] = {u |
distg(u,v) = r}. We write B(v,r) = {u | distg(u,v) < r} and call it a ball of
radius v around v; for S C V(G), B(S,r) = U,eg B(v,7). Given a graph G and an
independent set I of G, let R(G,I) be the set of rigid vertices of I (in G). Recall that
R(G,I) ={v]venNy

in any reconfiguration sequence starting from /. An independent set [is said to be

[Tewpgr I'} 18 the subset of tokens of I that can never move

8.1. Positive results 139

unlocked if R(G,I) = (. Given a graph G and r > 1, a set S C V(G) is called an
r-independent set, or r-independent for short, if B(v,r) NS = {v}, for all v € S. Note
that a 1-independent set is a standard independent set and a r-independent set, r > 1,
is a set where the shortest path between any two vertices of the set contains at least r
vertices (excluding the endpoints).

For a vertex v € V(G) and a set S C V(G) \ {v}, we let D(v,S) denote the set
of vertices in S that are closest to v. That is, D(v,S) is the set of vertices in S
whose distance to v is minimum. We say D(v,S) is frozen if |D(v,S)| > 2 and it is
not possible to slide a single token in D(v,S) to obtain S’ such that either v € S’
or |[D(v,S")| = 1. Note that, in time polynomial in n = |V(G)|, it can be verified
whether D(v,.S) is frozen by simply checking, for each vertex u € D(v,S), whether u

can slide to a vertex w which is closer to v (or to v itself if u is adjacent to v).

Lemma 36 ([46]). S e~ T in G if and only if R(G,S) = R(G,T) and (S\
R(G,S)) e~ (T\ R(G,S)) in G— N[R(G,S)]. Moreover, if G is bipartite then
R(G,S) and R(G,T) can be computed in time linear in |V (G)| = n.

Lemma 37 ([46]). Let G = (LUR, E) be a bipartite graph and let S be an unlocked
independent set of G. Then, in time linear in n, we can compute a reconfiguration
sequence (S = Iy, I1,...,I;) where [NL =0 and { =|SNL|.

The next lemma was also proved in [46] but we repeat the proof here both for

completeness and since we will use similar ideas in subsequent proofs.

Lemma 38 ([46]). Let G = (LUR, E) be a connected bipartite graph and let S
be an unlocked independent set of G. Let v € V(G)\ S and let D(v,S) C L (or
symmetrically D(v,S) C R). Then, in time linear in |[V(G)| = n, one can find a
reconfiguration sequence (S = Iy, I1,...,I;) where v € Iy and ¢ is at most |[SNL| —1
(or symmetrically |S N R| — 1) plus the distance between v and a token of D(v,S).

Proof. There are two cases to consider:

(1) If there is a unique token u € D(v,S) C S which is closest to v then the
reconfiguration sequence is constructed by repeatedly moving the token on u to a
vertex which is closer to v. Let w be any vertex in N(u) where some shortest path
from w to v passes through w. Since u is uniquely closest to v, it must be the case that
N(w)NnS = {u}. Hence, we construct Iy = (I\ {u})U{w}; as w is now uniquely
closest to v the process can be iterated. The same strategy can be applied if D(v,S)
is not frozen.

(2) Assume D(v,S) is frozen. Let d denote the distance from v to any vertex
u € D(v,S). Without loss of generality, we can assume that D(v, S) C L (the other
case is symmetric). We apply Lemma 37 which guarantees (in linear time) the existence
of a computable reconfiguration sequence (S = Iy, I1,...,I;) where Iy L = () and
¢ =|SNL|. There exists an index j, with j < £ = |S N L|, where I; has a unique token
u which is closest to v. This follows from the fact that some tokens of D(v,S) will

move to be at distance d 4+ 1 from v (possibly all but one) leaving a vertex u uniquely

1CZ'L}(l)apter 8. On girth and the parameterized complexity of Token Sliding and Token
Jumping

closest to d. Therefore, we can now apply the same strategy as in the previous case.

The reconfiguration sequence will be of length at most j + d, as needed. O

Let Z = (G = (V,E),S,T,k) be an instance of TOKEN SLIDING where G is a
bipartite graph of bounded degree A. We assume, without loss of generality, that G is
connected; as otherwise we can solve the problem independently on each component of
G (and there are at most k components containing tokens). Moreover, given Lemma 36,
we can assume, without loss of generality, that S and T are unlocked. In other words,
we assume that it has been verified that R(G,S) = R(G,T) and N[R(G, S)] has been
deleted from G. We now give a slightly different version of Lemma 38 better suited

for our needs.

Lemma 39. Let G be a connected bipartite graph and let S be an unlocked independent
set of G. Let v be a vertex in V(G)\ S such that Ng[v]NS = 0. Let D(v,S) C L (or
symmetrically D(v,S) C R) such that dist;(u,v) = d, for allu € D(v,S). Then, in
time linear in |V (G)| = n, we can find a reconfiguration sequence (S = Iy, I1,. .., Ip),
where Iy = (S\ {u})U{v} for some vertex u in D(v, S) and ¢ is at most 2(|S| —1) +d.

Proof. Similarly to the proof of Lemma 38, there are two cases to consider:

(1) If there is a unique token u € D(v,S) which is closest to v or D(v,.S) is not frozen
then the reconfiguration sequence obtained by repeatedly moving the token on u to
a vertex which is closer to v gives us the required sequence. Since no other token is
moved, we have I, = (S\ {u}) U {v}.

(2) In the other case, we have D(v,S) > 2 and D(v,S) is frozen. We assume,
without loss of generality, that D(v,S) C L. We apply Lemma 37 which returns a
reconfiguration sequence (S = Iy, I1,. .., Is) where ;N L = () and £ = |SN L|. There
exists an index j, with j < ¢ = |S N L|, where I; has a unique token u € D(v,S)
which is closest to v. Let o = (Io, I, ...,I;). Note that « slides exactly j distinct
tokens (not including u) from L to R. We let M, denote these tokens. Moreover,
o is reversable. Hence, we let a~! denote the sequence consisting of applying the
slides of « in reverse order. Now, we construct a sequence [of slides that moves the
token on w to v. Recall that this is a sequence of exactly d slides that repeatedly
slides the same token. We denote the resulting independent set (after applying « - j3)
by Ig. We claim that v = a3 - a~! is the required sequence that transforms S
to (S\ {u}) U{v}. To see why ~ is a valid reconfiguration sequence, it suffices to
show that Ng[M,] N Ng[v] = 0. Since Ng[v] NS = 0, we know that d > 2 if both v
and D(v,S) are contained in L (or R) and d > 3 otherwise. If {v}, D(v,S) C L (or
{v}, D(v,S) C R) then every vertex in M, is at distance at least three from v, as
needed. Finally, if v € L and D(v,S) C R (or v € R and D(v,S) C L) then every

vertex in M, is at distance at least four from v.]

Lemma 40. If G is a connected graph and S and T are any two 2-independent sets
of G such that SUT is also 2-independent then S «~ T in G.

8.1. Positive results 141

Proof. We proceed by induction on |[SAT| = |(S\T) U (T \ S)]|, i.e., the size of the
symmetric difference between S and T'. If |[SAT| = 0 then S = T" and there is nothing
to prove. Hence, we assume that the statement is true for |SAT| = ¢ > 0. We
compute a shortest path between all pairs of vertices (u,v) in G, where v € S\ T and
veT\S. Welet (u,v) denote a pair where the distance is minimized and we fix a
shortest path between u and v. There are two cases to consider:

(1) If SNT = 0 then we can simply slide u to v along the shortest path and we are
done. To see why, recall that both S and T are 2-independent. Hence, they are both
unlocked and if there is more than one vertex in S\ 7" that is closest to v then we can
simply slide u into one of its neighbors, say w, that is closer to v to obtain a unique
vertex which is closest to v; none of those neighbors are adjacent to a vertex in S
since S is 2-independent. Now, assume that there exists a vertex x along the shortest
path from w to v such that x € N(y), y € S. This contradicts the choice of u since y
is closer to v.

(2) If SNT # 0, then there are two cases. When the shortest path P from u to v
does not contain any vertex in Ng[SNT], then we apply the same reasoning as above.
Otherwise let X := PN (SNT) be the subset of vertices of SNT that lie on P and
Y := (N(P)\ P)N(SNT) be the subset of vertices of SNT that do not lie on P
but have at least one neighbor on P. Note that the tokens on X and Y are the only
tokens that forbid us to directly move the token on u to v along P. Furthermore, each
vertex in Y has at most three neighbors in P and these neighbors are consecutive in
P since it is a shortest path.

We construct from X and Y the sequence A = aq,aq,...,a,: if the shortest path
from u to v visits a vertex in X or visits neighbors of a vertex in Y, then we add the
vertex to A (in the order in which the visits occur when traversing the path from u to
v). Then we let ag := u and ap41 := v. We now proceed iteratively as follows: For
every i € {p,...,0} in decreasing order we consider the token on a;. If it belongs to
Y, then we slide it to one of its neighbor on the path chosen arbitrarily (which is a
valid move since SN T is a 2-independent set) and then slide it along P to the first
neighbor of a; 41 (these are valid moves by definition of a; and a;+1) and then slide it
to a;+1. If it belongs to X, then we simply slide it along P up to the first neighbor of
a;+1 and then slide it to a;+1 (and these are valid moves for the same reasons). Once
the token reaches a;+1 we obtain again a 2-independent set (since S, T, and SUT
are 2-independent set) and thus we can iterate. After the last move from u to a; we
obtain the independent set S’ := S\ {u} U{v}, which concludes the proof. O

Let G be a graph and let X C V(G). The interior of X is the set of vertices in X
at distance at least three from V(G) \ X (separated by at least two vertices). We say
a set X is fat if its interior is connected and contains a 2-independent set of size at
least 2k.

Lemma 41. Let G be a graph of mazimum degree A. Let v € V(G) and r € N. If
B(v,r) contains more than 2k(1 + A + A?)? vertices then B(v,r) is fat.

ﬁ}éapter 8. On girth and the parameterized complexity of Token Sliding and Token
Jumping

Proof. We only need to prove that the interior of B(v,r), that is B(v,r —2), contains a
2-independent set of size at least 2k; as B(v,r — 2) is connected by construction. First,
note that any graph of maximum degree A on more than 2k(1 + A + A?) vertices must
contain a 2-independent set of size at least 2k. So it suffices to show that B(v,r — 2)
contains more than 2k(1+ A + A?) vertices. We divide B(v,r) into layers, where
Ly = {v}, Ly = N(v), ..., and L, = N"(v). Since G has maximum degree A, for
every i > 1, layer L; contains at most (A — 1)i~!A vertices. If B(v,r — 2) contains
more than 2k(1 + A + A?) vertices then we are done. Otherwise, L, _ must contain
at most 2k(1 + A+ A2) vertices. Consequently, L,._1 U L, would contain at most
2kA(1+ A+ A%) +2kA2(1+ A+ A?%) = (1+ A+ A?)(2kA + 2kA?) vertices. Therefore,
B(v,7) contains at most 2k(1+ A + A?) 4+ (1 + A + A?)(2kA + 2kA%) = (1+ A+
A?)(2k + 2kA + 2kA?) which is equal to 2k(1 + A + A?)? vertices, a contradiction. [J

Lemma 42. Let T = (G,S,T,k) be an instance of TOKEN SLIDING where G is a
bipartite graph. If V(G)\ (SUT) contains a fat set X then T is a yes-instance.

Proof. First, recall that we assume that G is connected and both S and 7" are unlocked.
Let I be a 2-independent set of size 2k in the interior of X (at distance at least three
from any vertex outside of X). We prove that S can be transformed into S’ C I.
Similar arguments hold for transforming 7" into 77 C I. Hence, the statement of the
theorem follows by applying Lemma 40 on S’ and T".

We proceed by induction on |SAS’|, i.e., the size of the symmetric difference
between S and S’. If |SAS’| = 0 then S = 5" and we are done. Otherwise, we reduce
the size of the symmetric difference as follows. Recall that initially S NS’ = §; as
X CV(G)\ (SUT). However, the size of the intersection will increase as more tokens
are moved to S’. We pick a pair (u,v) such that u € S\ S’ and v € S and the
distance between v and v is minimized. There are two cases 2 consider:

(1) If v does not contain a token (in other words v € §"\ S) then the shortest path
from u to v does not intersect with Ng[S’ N S]. We therefore invoke Lemma 39 in
the graph G — (N[5’ N S]). This guarantees that the token on u slides to v and every
other token remains in place.

(2) Otherwise, v already contains a token (or v € S’ N.S). We invoke Lemma 40 on
the graph induced by the interior of X and transform C' = S'NS C I into another
2-independent set C’ C I that does not contain v; this is possible since |C| = |C’| < k.

Now we can again invoke Lemma 39 similarly to the previous case. O

Theorem 35. TOKEN SLIDING parameterized by k admits a kernel with O(k*A®)

vertices on bipartite graphs of maximum degree A. Moreover, the problem can be solved
in O*(k2kAF)-time.

Proof. Let T = (G, S, T, k) be an instance of TOKEN SLIDING where G is a bipar-
tite graph of maximum degree A. We assume, without loss of generality, that G is
connected and S and T are unlocked; for otherwise we can solve connected compo-

nents independently and we can return a trivial no-instance if R(G,S) # R(G,T)

8.1. Positive results 143

(Lemma 36). Next, from Lemmas 41 and 42, we know that each connected component
of V(G)\ (SUT) contains at most O(kA*) vertices; otherwise we can return a trivial
yes-instance. Since the number of components in V/(G) \ (SUT) is bounded by 2kA
and |SUT| < 2k, we get the desired bound. To solve the problem, it suffices to
construct the complete reconfiguration graph and verify if S and 7" belong to the same

connected component. This concludes the proof.]

8.1.3 TOKEN SLIDING on bipartite C4-free graphs

Equipped with Theorem 35, we are now ready to prove that TOKEN SLIDING admits
a polynomial kernel on bipartite Cy-free graphs. Our strategy will be simple. We
show that if the graph contains a vertex of large degree then we have a yes-instance.
Otherwise, we invoke Theorem 35 to obtain the required kernel.

We start with a few simplifying assumptions. Let Z = (G, S, T, k) be an instance
of TOKEN SLIDING where G = (LU R, E) is a connected bipartite Cy-free graphs. We
assume that both S and T are unlocked (Lemma 36). Moreover, we assume without
loss of generality, that each vertex in G can have at most one pendant neighbor.
This assumption is safe (for any instance of TOKEN SLIDING) because no two tokens
can occupy two pendant neighbors of a vertex; as otherwise S or T" would be locked.
Moreover, if a token is placed on a pendant neighbor of a vertex v then no other token
can reach v. We can then safely identify pendant neighbors of a vertex.

Let v € V(G) be a vertex of degree at least k* + k + 1 in G. We let u, denote
the pendant neighbor of v (if it exists). We assume, without loss of generality, that
v e L. Welet Ny = Ng(v)\ {up} = {ur,us,...,us}, N2 = N3[v], and N3 = NZ[v].
Since G is bipartite, Ny C R, No C L, and N3 C R. Moreover, since G is Cy-free,
each vertex in Ny has exactly one neighbor in N;. Therefore, we partition No into
sets Ny, Nuy, -+, Ny,, where each set N, contains the neighbors of u; in No, that
is, N(u;) \ {v}. We also partition N3 into two sets Mgman and My;e. Each vertex in
My, contains vertices connected to at least k + 1 sets in No. Note that, because of
Cy-freeness, each vertex in N3 is connected to at most one vertex of any set IV,,,. We
let Mgman = N3 \ My,g. Each vertex in Mgpan has at most & neighbors in Ny. In other
words, each vertex in Mgy is connected to at most k sets, each one of those sets
being the neighborhood of a vertex in Nj.

We now proceed in five stages. We first show how to transform S to S; such
that S1 N B(v,3) C Na. In other words, we can guarantee that all tokens in the
ball of radius three around v are contained in No. We then tranform S; to S5 such
that Sy N B(v,3) C N1 U N3. Next, we tranform Sy to S3 such that S3 N B(v,3) C
N1 U Mgman- Then, we tranform S3 to Sy such that Sy N B(v,3) € Ny and finally to
Sy such that S5 C N;. By applying the same strategy starting from 7', we obtain
T5 C N1. We conclude our proof by showing that S5 can be transformed to T5.

Lemma 43. Let S be an unlocked independent set of G of size k. Then, there exists
S" such that S «~ S" and S'N B(v,3) C Ns.

ﬁ}iapter 8. On girth and the parameterized complexity of Token Sliding and Token
Jumping

Proof. We invoke Lemma 37 and move all tokens in R to L (since S is unlocked).
We denote the resulting set by S’. Consequently, we know that S’ N B(v,3) C L. If
there is no token on v then we are done; as v € L, Ny C R, N C L, and N3 C R.
Otherwise, given that v has degree at least k + 1, there must exist at least one path
P = v,z,y such that Ng[P] NS’ = {v}. Hence, we can slide the token on v to y.
This completes the proof.]

Lemma 44. Let S be an unlocked independent set of G of size k such that SN
B(v,3) € Ny. Then, there exists S’ such that S «~ S’ and S’ N B(v,3) C N; U Nj.

Proof. Since SN B(v,3) C N, we simply have to invoke Lemma 37 and move all
tokens in L to R. Note that no token can reach u, in a single slide and thus every

token that moves from Ny to N(v) necessarily moves to Nj. O

Lemma 45. Let S be an unlocked independent set of G of size k such that SN
B(v,3) € N1 UNs. Then, there exists S’ such that S «~ S’ and S’ N B(v,3) C
N1 U Msmall-

Proof. We make use of the fact that each vertex in My, is connected to at least k + 1
sets in N and hence is connected (via a vertex in Na) to at least k + 1 vertices in
Ni. Let w be a vertex in S N My;g; if SN Mypig = 0 then SN B(v,3) C Ny U Mgpan
and we are done. Recall that |S N Ny|+ SN N3| <k, no two vertices in N3 have two
common neighbors in Na, and no two vertices in N9 have two common neighbors in
Ni. Hence, there exists at least k + 1 vertex-disjoint path connecting v to w. At least
one such path, say P = {w,x,y,v}, satisfies Ng[P] NS = {w}. We slide w to z and
call the resulting set again S for simplicity. This process is repeated as long as there
are tokens in My;s. We let S” denote the resulting set, i.e., where S" N Mypig = 0. O

Lemma 46. Let S be an unlocked independent set of G of size k such that SN
B(v,3) € N1U Mgy Then, there exists S’ such that S e~ S" and S’ B(v,3) C Njy.

Proof. Since SN B(v,3) C N1 U Mgpan, we know that every token not in N7 must be
in Mgnan. We let A denote the subset of M. containing tokens. Note that if A is
empty, then we are done. Otherwise, we know that each token in A is connected to at
most k sets in Ny (by construction) and therefore at most k vertices in Ny. We let
B denote the at most k? subsets of Ny that contain a vertex with a neighbor in A.
We let C denote the at most k? vertices of N; whose neighborhoods are in B. We
proceed in two stages. First we move all tokens in C' to some vertex in N; \ C. To do
so, we invoke Lemma 39 as follows. If there are any tokens originally in N \ C, then
we move them to one of their neighbors in Ny (this is possible since no two vertices in
Ny have two common neighbors in N; and there are no tokens in Mbig). We call the
resulting set S”. Note that since |C| is at most k?, we have |N; \ C| > k. Therefore,
there exists at least one vertex u in Nj \ C such that N[u| NS = N[u|NS" = 0.
Consequently, we have D(u,S”) C C (at distance two) and we can apply Lemma 39

to move one token from C to u and then reverse the slides of the tokens originally

8.1. Positive results 145

in Ny \ C. We repeat this procedure as long as there are tokens in C. In the second
stage, we apply a similar procedure to move all tokens in A to some vertex in C' and
then from C' to a vertex in Nj \ C. This is possible because after sliding the tokens
originally in N7 \ C to their corresponding neighbors in Ny the vertices in A become

closest to vertices in C' (at distance two). O

Lemma 47. Let S and T be two unlocked independent sets of G of size k such that
S C Ny and T C Nyi. Then, S «~ T, all the moves are between vertices of B(v,2),

and this sequence can be computed in polynomial time.

Proof. As long as there exists u € S\ T and w € T'\ S we can slide u to w as follows.
Slide all tokens (except u) to one of their neighbors in No. Then slide u to v and then

slide from v to w. Finally, reverse all the other slides from Ny to N. O

Lemma 48. Let S be an unlocked independent set of G of size k such that SN
B(v,3) C Ny. Then, there exists S’ such that S e~ S" and S C Nj.

Proof. We let X = SN B(v,3). Since SN B(v,3) C Ny, every vertex of S\ X is at
distance at least three from X. We compute the shortest path from every vertex
in S\ X to every vertex in N7 \ X. We let (u,w) denote a pair with the minimum
distance, where v € N1\ X and w € S\ X. If w is uniquely closest to u then there

are two cases to consider:

1.1 When the shortest path from u to w does not intersect with N[X] then we

simply slide u to w.

1.2 Otherwise, if the shortest path P intersects with N[X], then there exists a first
vertex z € X such that PN Ng[z] # 0. Therefore, we apply Lemma 47 in
G[B(v,3)] to transform X into a set X’ such that u € X’ and = ¢ X’. This
yields a valid sequence since Lemma 47 only moves tokens within B(v,2) and
vertices in S\ X are at distance at least four from v. Then we can safely slide

w to x.

Suppose now that w is not uniquely closest to u. Recall that D(u, S\ X) is contained
in V(G)\ B(v,3) (at distance at least three from u). We apply Lemma 37 in
G'=(L/UR E) =G — ({v}UN; UN;) where L' denote the part of the bipartition
that contains D(u, S\ X). This guarantees that all tokens in L' will move to R’ via
a single slide. Hence, there must exists a first index j, in this sequence, where the

corresponding independent set I; falls into one of the following three cases:
2.1 |I; " Mgan| = 1;
2.2 |I; N Myig| = 1; or
2.3 I; N N3 = () and there exists a token in I; which is uniquely closest to w.

In case (2.1), we apply Lemma 46, for case (2.2) we apply Lemma 45, and finally for
case (2.3) we apply either case (1.1) or case (1.2). This completes the proof. O

1CZ'L%apter 8. On girth and the parameterized complexity of Token Sliding and Token
Jumping

Lemma 49. Let Z = (G,S,T,k) be an instance of TOKEN SLIDING where G is a
connected bipartite Cy-free graph and S and T are unlocked. If there exists a vertex
v € V(G) of degree at least k*> + k + 1 then T is a yes-instance.

Proof. Recall that we can always assume that each vertex has at most one pendant
neighbor as stated at the beginning of this section. Using Lemmas 43 to 48 we
transform S to S’ and T to T” such that S’ C Ny and 77 C N;. Then we transform
S’ to T by invoking Lemma, 47. O

Theorem 36. TOKEN SLIDING parameterized by k admits a kernel with O(k'2)

vertices on bipartite Cy-free graphs.

Proof. Let T = (G, S, T, k) be an instance of TOKEN SLIDING where G is a bipartite
Cy-free graphs. We assume, without loss of generality, that G is connected and S and
T are unlocked; we can solve connected components independently and we can return
a trivial no-instance if R(G, S) # R(G,T) (Lemma 36). Next, from Lemma 49, we
know that each vertex has degree at most k2 + k; otherwise we can return a trivial

yes-instance. Finally, we invoke Theorem 35 to obtain the required kernel. O

8.2 Hardness results

8.2.1 TOKEN SLIDING and TOKEN JUMPING on (Cy4-free graphs

In the GRID TILING problem we are given an integer k > 0 and k? sets S; ; C [m] x [m],
for 0 <4,5 < k—1, of cardinality n called tiles and we are asked whether it is possible
to find an element s; ; € 5; ; for every 0 <+i,j < k — 1 such that s7; and sj;; share
the same first coordinate while s7; and sj,, ; share the same second coordinate for
each 0 <i,j < k—1 (including modulo k). It was proven in [34] that GRID TILING
parameterized by k is W[1]-hard. We prove the next theorem via a reduction from
GRID TILING. Following the construction in [20] to give a graph G with the desired
properties and extending it to a {C4,. .., Cp}-free graph G’ which gives a reduction
to TOKEN SLIDING.

Theorem 37. For any p > 4, TOKEN SLIDING is W[1]|-hard on {Cl4,...,Cp}-free
graphs.

Construction of G. Given an instance of GRID TILING, S;; C [m] x [m] (0 <
i,7 < k—1) and an integer p > 4, we use the construction described in [20] to create

a graph G with the following properties:

+ P1- G can be partitioned into 8k%(p + 1) cliques Vi, . .., Vgpz(p11) of size n with

some edges between them.
o P2-Gis {C4,...,Cp}-free.

o P3 - The instance of GRID TILING has a solution if and only if 3 C V(G),
such that I is an independent set of size 8k?(p + 1)

8.2. Hardness results 147

Note that as each V; is a clique, any independent set of G can have at most one vertex

in every V;.

Construction of G'. For k' = 8k*(p+ 1), we construct an instance of TOKEN
SLIDING (G', S, T, k' 4 (3k" 4+ 1)5 4 &) by extending the graph G to a new graph G'.
We label the £’ cliques in G arbitrarily as Vi, ..., V. For each 1 <1 < k' we add two
vertices x; and y; adjacent to all vertices in V;. These will respectively be starting
and ending positions of tokens. Informally, we want to force all the tokens to be in
their respective V; at the same time to obtain an independent set in G of size k. We
do this by creating guard paths, which are paths on p vertices that will be alternating
between starting and target positions of tokens. Note that we can assume p is even,
since if p is odd we can use p + 1 instead to create a graph which is {Cy, ..., Cp}-free.
Let Pg be a guard path with vertices g¢1,..., g, and for each x; let P,, be a guard
path with vertices x;1,...,x;, such that z; is adjacent to z;, and g, is adjacent to x;;.
For each y; let Py, be a guard path with vertices y;1, ..., ¥ such that y; is adjacent
to y;1 and g is adjacent to y;,. Finally, for each 7 let P,, be a guard path between x;
and y; with vertices z;1, ..., 2;p such that x; is adjacent to z;, and y; is adjacent to
2;1. This completes the construction of G’. The source independent set S is the set

containing all of the z; and all of the guard path vertices with odd indices:
S = U{xz’,ﬂj,yz’j,zij,gj | 7 is odd}.
i

The target independent set T' consists of all of the y; and all of the guard path

vertices with even indices:

T= U{yhxijayijazij,gj | 7 is even}.

(2

Lemma 50. For anyp >4, G' is {Cy,...,Cp}-free.

Proof. By P2, G is {Cy,...,Cp}-free. Any cycle which contains a vertex on one of
the guard paths has length greater than p. Thus if a cycle of length ¢ exists for some
4 < ¢ < p it must only have vertices in V(G)U{x;,y; | 1 < i < k’'} and contains at
least one of x; or y;. Assume, without loss of generality, that it contains x;, then the
vertices adjacent to x; in the cycle must be in V;. As V; is a clique the cycle contains

a (3 so is not induced. O

Lemma 51. If there is a solution to the GRID TILING instance then there is a

reconfiguration sequence from S to T in G'.

Proof. By P3, there exists an independent set I containing one vertex v; in every Vj.

This gives the following reconfiguration sequence from S to T

1. Move each token on x; to v;.

1CZ'L}éapter 8. On girth and the parameterized complexity of Token Sliding and Token

Jumping
\. .
Zi(p—1) ® Jp-1
+ 92
® g1

FIGURE 8.1: The construction of G’ for two cliques V;, V; in G.

2. Move the tokens along the guard paths: for all odd j starting with the greatest

J values move the token on each z;; to z;(;;1), then move the tokens on z;; to

Ti(j+1)» 95 t0 gj+1 and finally yi; to y;(;41)
3. Move each token on v; to y;.
This completes the proof.]

Finally let us prove the converse direction. For each i, let W; := {x;,4;} UV;. Let
us first show that in any valid reconfiguration sequence the tokens initially on the
guard paths, P,,, Py, P;,, and Pg are stuck on their respective paths. We first need

the following simple observation.

Observation 15. Let I be an independent set of G' of size k' + (3k' +1)5 such that

for every i <K', |W;NI| = 1. Then for every guard path P of G' we have |[INP| = §.

Proof. We assume there are exactly &’ tokens on Uf/:lwi. Then since for any guard
path P we have |[PNI| < &, there must be exactly & tokens on each of the 3k" + 1
guard paths.]

Lemma 52. Let Iy, 1>,..., 1. be a valid reconfiguration sequence such that Iy = S
and I, =T. For every s < e and for every i < k', |W; NI = 1.

Proof. By construction the statement is true for I;. Consider the smallest integer
s < e such that I, does not satisfy the condition of Lemma 52. By this choice of s we
have |W; N I,| =1 for every 7 < s and every j < k, hence there exists a unique ¢ < &’
such that |W; N Ig| = 0 or |W; N Is| = 2. Let us show that we obtain a contradiction
in both cases:

Case 1: |W; NI = 0. Since |W; N I| =1 for every j # i, there can be no move from

Vi to Vj if there is a token on V; in I;,_;. So there must be a token on one of z;, y;

8.2. Hardness results 149

in I,_; and this token must move on an adjacent guard path P. But then since I;_;
satisfies the condition of Observation 15, we have |[P N I| = & + 1, a contradiction.

Case 2: |W;NI4| =2. If |[V;NI;—1| = 1 then by construction no token can move to V;
between times s — 1 and s. Hence we can suppose w.l.o.g that I,_1 NW; = {z;} and
I;NW; = {z;,y;}. So it must be that a token moves either from y;; to y; or from z;;
to y; at time s — 1 and then either z;1 & I;_1 or y;1 ¢ Is_1. In both case, since I;_4
satisfies the condition of Observation 15, we obtain that there must be a token on
every vertex with even index on the guard paths P,,, P,,, P.; and Pg. In particular

we have {z;,,z;} C I, a contradiction. O

Lemma 53. If there is a reconfiguration sequence from S to T in G’ then there is a

solution to the GRID TILING instance.

Proof. Given the reconfiguration sequence Iy, Io, ..., I, such that [y = S and I, =T
let us consider the last time ¢ — 1 at which a token moves from z; for some ¢ < k’.
Such a time exists since all the tokens must move at least one time in a reconfiguration
sequence from S to 7. By Lemma 52 this token moves from z; to V;. In particular,
there is no token on z;;, in I;_1, and since I;_ satisfies the condition of Observation 15,
there must be a token on g, for every s odd. This in turn implies that for every j
there must be a token on y;s for every s odd and in particular for y;1, so there cannot
be a token on any y;. Thus for every j < k', |V;NI;| =1 by Lemma 52, giving an
independent set of size k' in G. By P3, we know that this implies a solution for the
GrID TILING instance. O

The combination of Lemmas 50, 51 and 53 give us the result of Theorem 37.

Lemma 54. Let I be an independent set of G' of size k' + (3k" +1)5 then I is a

mazimum independent set of G'.

Proof. First note that, by Observation 15, I has g tokens on every guard path and
exactly one token in every W; := {x;,y;} UV;. Assume [is not maximum, so there is
some independent set I’ of G’ with |I’| > |I|. The maximum size of an independent
set on a path of length p is £, so I’ must have 2 tokens in some W; which must be
on z; and y;. However this implies that there can only be £ —1 tokens in I’ on P,.
Thus |I'] < |I]. O

Corollary 1. For any p > 4, TOKEN JUMPING is W[1]|-hard on {C4,...,Cp}-free
graphs.

Proof. G' is a single fully-connected component and by Lemma 54 the starting set S
is a maximum set of G’. Thus the TOKEN SLIDING instance is equivalent to a TOKEN
JUMPING instance and the reduction from GRID TILING holds. O

8.2.2 TOKEN SLIDING on bipartite graphs

This section is devoted to proving the following theorem:

%%apter 8. On girth and the parameterized complexity of Token Sliding and Token
Jumping

Theorem 38. TOKEN SLIDING on bipartite graphs is W[1]-hard parameterized by k.

The proof of Theorem 38 consists in a reduction from MULTICOLORED INDEPEN-
DENT SET which is known to be W[1]-hard parameterized by k (see for instance [34]).
In what follows, Z := (G, k, (Vi,...,V%)) denotes an instance of MULTICOLORED
INDEPENDENT SET. In Section 8.2.2.1, we detail the construction of the equivalent
instance 7' := (G, I, I, 4k + 2) of TOKEN SLIDING, where G’ is a bipartite graph
and I, I. are independent sets of size 4k + 2, and we prove that if 7 is a yes-instance
then 7’ is a yes-instance. The more involved proof of the converse direction is detailed
in Sections 8.2.2.2 and 8.2.2.3.

8.2.2.1 Construction of G’

In what follows, V(G’) := (A, B) denotes the bipartition of G’. For every p €
{1,...,k}, both A and B contain two copies of the set V), denoted as Agp_1, Az, and
Bap,_1, Ba, respectively, plus some additional vertices that will be described in the next
subsection. Two vertices v/, v € V(G') are said to be equivalent and we write u' ~ v’
if and only if they are copies of the same vertex in G. With this definition, every
vertex u € V), has exactly four copies in G’ (one in each copy of V},). Note that the ~
relation is transitive and symmetric. We also define the sets A := U]];:lAgp_l U Agp
and B := U];:lBQp,l U By,. For every vertex u’ of AU B, the corresponding vertex
of v’ denoted as orr(u') is the unique vertex u € V(G) that v’ is a copy of. With
these definitions at hand, we can now explain how the copies of the sets Vi, Vo, ..., Vi
are connected in G’. For every two vertices v’ € A; and v/ € Bj there is an edge

connecting v’ to v’ in G’ if and only if:

1. A; and B; are not copies of the same subset of V(G) and (orr(u'),orr(v')) €
E(G), or

2. A; and B; are copies of the same subset of V(G) and u/ ~ v/,

In other words, if A; and B; are not copies of the same subset, we connect these
sets in the same way there corresponding sets are connected in G. If at the contrary
A; and Bj are copies of the same subset, then G'[A; U B;| induces a complete bipartite
graph minus the matching consisting of every two pairs of equivalent vertices in
A; UBj. The connection between four copies of the same subset of V(G) is illustrated
in Figure 8.2. Let us explain how we make use of such a construction. The following

observation follows directly from the definition of G':

Observation 16. Let I’ be an independent set of G' such that for every p €
1,2,...,k we have I' M Agp—1 = {ugp—1} and I' N Byp—1 = {vop_1}. Then the set

I:={orr(uy),...,orr(ug)} is a multicolored independent set of G.

Proof. For any two 4,5 € 1,2,...,k, ug;—1 and vgj_; are non-neighbor in G’ since
I’ is an independent set. Furthermore, if ¢ # j then Ag;_; and Byj_1 are not

copies of the same subset of V(G) and thus orr(ugi—1) # orr(vej—1), so the set

8.2. Hardness results 151

I contains k distinct vertices of G. Since orr(ugj—1) = orr(vgj—1), we have that
(orr(ugi—1),o0rr(ugj—1)) ¢ E(G) for any two i # j, and since orr(ugi—1) € Vai—1 by

construction, the set I is a multicolored independent set of G. O

Observation 16 ensures that any independent set of a reconfiguration sequence of
G’ having exactly one vertex in Ay, ;1 and one vertex in By,_; for every p € 1,2,... k
corresponds to a multicolored independent set of G. Note that up to that point, we
did not make use of the sets Ay, and Ba,. The following observation explains why we

need two copies of every V), in both sides of the bipartition:

Observation 17. Let I’ be an independent set of G' and p € 1,2,...,k such that
I'N Agp1 = {ugp—1}, I' N Agp = {ugp}, and ugp—1 ~ ugp. Then the tokens on uap—1

and ug, cannot move to B.

Proof. By construction N(ugp—1) N B = N(ugp) N B since these two vertices are

equivalent. It follows that none of the two tokens on ug, nor ug,—_1 can move to B. [

If at some point in the reconfiguration sequence two tokens are positioned on
equivalent vertices in A, then these tokens lock each other at their respective position
in some sense. Note that by symmetry of the construction, the same observation can
be made when two tokens are positioned on equivalent vertices in B. On the contrary,
if two tokens on the same copies of V), in A are positioned on two non-equivalent

vertices we have the following:

Observation 18. Let I’ be an independent set of G' and p € 1,2,...k such that
I’'n Agp_l = {'LLQp_l}, I’'n Agp = {'LLQp}, and U2p—1 7 U2p- Then I' N (BQp_l U BQp) =
0.

Proof. By construction Bg,_1 U Ba, C N(ugp—1) U N (ugp) since these two vertices are

not equivalent.]

This observation not only ensures that Bg,_1 U By, = @ but also ensures that
no other token but the ones positioned on ug, 1 and ug, can move to Ba,_1 U Ba,.
Then, by Observations 17 and 18, either there are two tokens on equivalent vertices in
As,—1 U Ay, and then these tokens cannot move to B (and ensures that if there is a
token on Ba,_1 U By, it must be on an equivalent vertex), or there are two tokens on

non-equivalent vertices forbidding any other token to move to Bay,_1 U By,

Definition of the initial and target independent sets. The initial independent
set I consists in two sets of 2k vertices Agpqrt and Agng plus two vertices sy4,eq
included in A, and the target independent set I. consists in two sets of 2k vertices
Bgtart and Be,gq plus two vertices spg, ep included in B. The two sets Iy and I, are
disjoint from AU B. The graph induced by Agsiart U Beng U {s4, ep} and the graph
induced by Aeng U Bstart U{sB,ea} are complete bipartite graphs. The main goal of
this section is to explain how to connect the set Agqrt U Bstart and the set Aepng U Bend

to AU B in order to ensure that any reconfiguration sequence transforming one into

1C5hQap1;er 8. On girth and the parameterized complexity of Token Sliding and Token
Jumping

JBEA
2;"‘«}« _
v\ AVAN

INGANIN
VTV

FIGURE 8.2: Connections between the four copies of V,, in AU B.

Vertices with the same name are equivalent vertices. The red square

represent tokens: two tokens are positioned on equivalent vertices at
the left, and on non-equivalent vertices at the right.

the other enforces the 2k tokens starting on Agy+ and the 2k tokens starting on
Bstart to switch sides by going through AU B. More particularly, we will show the
existence of an independent set that satisfies the condition of Observation 16 in
any such reconfiguration sequence, giving a multicolored independent set of G. For
p€1,2,...,2k, we denote by as, and by, the vertices of Agiqre and Bgare respectively
and we denote by ac;, and b, the vertices of A.,q and Be,q respectively. These

vertices are connected to AU B as follows:
1. the vertices as;, and ae), are complete to B — Uf;llBi, and
2. the vertices by, and b,) are complete to A — Uf;llAi.

An illustration of the full construction is given in Figure 8.3. By construction, no
token starting on Agqrt U {sa} can move to Benq U {ep} as long as there are at least
two tokens on Agqre U{sa} (and the same goes for Byt U{sp} and AcngU{eal).
Since there are initially 2k + 1 tokens on Agqrt U {sa} and since N(s4) N B = (), the
2k tokens initially on A+ must move to B at some point in the sequence, and the
same goes for Byt and A. The tokens initially on s4 and sp have a special role and
act as "locks": without these token, the last token remaining on Agqre (resp. Bstart)
would be able to move directly to B4 without never going through B (resp. A). Let

us now explain the connections to AU B.

Observation 19. Let I' be an independent set of G’ such that
{aspraspit,-.- 0526} < I' for some p < 2k. Then the tokens on
{aspt1,aspt2,...,0a52K} are frozen. Furthermore the token on as, cannot

move to U%ipHBp.

Proof. Let ¢ > p and suppose there is a token on as,4. This token cannot move to
Bena nor ep since there is a token on as, with p < ¢ and G'[Astart U Benda U {54, en}]
induces a complete bipartite graph. By construction N(as,) € N(asp) hence the
token on a, , cannot move to B and this token is frozen. The second statement follows
from the fact that U2 . 1B, C N(asp) NN (aspsi1). O

8.2. Hardness results 153

Bena B Bstart
f f f : 12 2
By | By By : Bak-1: Bak e oo 5B
—
‘ : : : 2\ 2k
Ay | Ay Ay : Asg—1: Asy, 20 éa
Astart A Aend

FIGURE 8.3: The constructed graph G’. Vertices in red are the vertices
of Is. An arrow between a vertex v and a subset of vertices indicates
that v is complete to this subset. An arrow between a vertex v and a
brace indicates that v is complete to the subsets included in the brace.
A double arrow between two sets indicate these sets induce a complete
bipartite graph. The connections between A and B,,q U Bstart are
symmetric and have been omitted for the sake of clarity.

By symmetry, the same observation can be made for tokens on Bgy¢. This shows
that the tokens initially on A and Bggers must respect a strict order to move
respectively to B and A: the only tokens that can initially move are the tokens on
as,1 and bs 1 and these have no choice but to move to By and A; respectively. After
such a move the tokens on as2 and bs2 are free to move to By and Ay respectively,
and so on. Suppose that after the first 4 moves, there is exactly one token in each of
the four subset Ay, B1, As and By. Then it is not hard to see - but will be formally
proved in the next section - that these tokens lie on equivalent vertices, corresponding
to a unique vertex of G. By Observation 17 these tokens cannot move to the other
side of the bipartite graph and must stay at the same position while the remaining
tokens on Agiert and Bgiers moves to AU B. With the full constructions of G’, I, and

I. at hand we can prove the direct part of the reduction:

Lemma 55. If there is a multicolored independent set of size k in G then there exists

a reconfiguration sequence transforming Is to I. in G'.

Proof. Let u; € Vi,...,ur € Vi be a multicolored independent set of G. For p in
L.k, let ug, q,us, (resp. v, 1,v5,) be the copies of u, in A (resp. B). Consider

the following sequence:

1. For p € {1,...,k} in increasing order, move the token on as 2,1 to u'2p,1, then
move the token on a2, to u’zp. Move the token on bg 2,1 to fu’Qp_l, then move

the token on by 9, to vép.
2. Move the token on s4 to ep then move the token on sp to ey4.

3. For p € k,...,1 in decreasing order, move the token on u’2p to ae,2p, then move
the token on u/2p—1 to ae2p—1. Move the token on vép to be,2p, then move the

token on vép,1 t0 be,2p—1-

%}iapter 8. On girth and the parameterized complexity of Token Sliding and Token
Jumping

The remainder of the section is dedicated to the converse part of the reduction.
More particularly, we formally show that there is an independent set satisfying the
condition of Observation 16 in any shortest reconfiguration sequence transforming I
to I..

8.2.2.2 'Well-organized configurations

To simplify the tracking of tokens along the transformation, we give different colors to
the tokens initially on Agtqr+ and Bgiert. The tokens initially on Agr+ are the blue
tokens and the tokens initially on Byt are the red tokens. We say a vertex v is
dominated by a vertex u in G if v € Ng(u). Similarly, we say a set U is dominated by
W if U C Ng(W). Given a configuration C, M4(C) (resp. Mp(C)) is the maximum
integer p € [1,2k] such that there is a token on A, (resp. Bp). By convention, if there
is no token on X € {4, B}, we set Mx(C) = 0. A configuration C' is well-organized
if there is a token on either s4 or eg and on either sp or e4 and if it satisfies the

following conditions:

1. For every p < M4(C) and every g < Mp(C') there is exactly one token on A,

and exactly one token on B,.

2. If Ma(C) < 2k then for every M4(C) < p < 2k there is a token on agp. If
Mp(C) < 2k then for every Mp(C) < q < 2k there is a token on by 4.

Since both the construction and the definition of well-organized configurations
are symmetric, we can always assume that M4 (C) < Mp(C) for any well-organized
configuration C. Note that the initial configuration is well-organized. We say that
two configurations C' and C’ are adjacent if C' can be transformed into C’ by moving
exactly one token.

Throughout the proof let S := C,...,Cx denote a shortest reconfiguration sequence
from I to I.. We say that a token moves from a set X to a set Y at time t and we
write (¢ : X — Y) if there exists two set X, Y C V(G’) and two vertices x € X,y € Y
such that Cyy1 = Cp —{z} + {y}. When the sets X and Y contain exactly one vertex
we write (¢ : 2 — y) by abuse of notation. A move that transforms a well-organized
configuration into a configuration that is not well-organized is a bad move. We aim to

show the following:
Lemma 56. A shortest reconfiguration sequence from Is to I. contains no bad move.

With Lemma 56 at hand, the proof of the converse part of the reduction easily

follows:

Lemma 57. If there exists a reconfiguration sequence from Ig to I, in G’, then there

exists a multicolored independent set in G.

Proof. Consider a shortest reconfiguration sequence S from I to I., which exists by

supposition. By Lemma 56 this sequence contains no bad moves, therefore all the

8.2. Hardness results 155

configurations of S are well-organized since the initial configuration is. Consider the
configuration C' just before the first token reaches A,q U Beng (which exists since
Aend U Beng € I.). By definition of well-organized configurations there can be no
token on Agqrt U Bstart in C and thus we have My (C) = Mp(C) = 2k. Then by

Observation 16 there exists a multicolored independent set in G. O

The remainder of this section is dedicated to the proof of Lemma 56. Let us begin
with a few observations about well-organized configurations, which will be useful

throughout all the subsections:

Observation 20. Let C be a well-organized configuration. For every p < Ms(C) we
have |[A,NC| = |B,NC| =1, and the unique vertex of Ay NC and the unique vertex
of B,NC are equivalent.

Proof. By definition of well-organized configuration, there is exactly one token on
A, and one token on B, for p < M4(C). Let u be the unique vertex of A, NC: by

construction the only vertex v of B, that is not in N(u) is the copy of w in B,. [

Observation 21. Let C be a well-organized configuration and p < 2k be an odd
integer such that |A,NC| = [Apz1NC| = 1. Then |B,NC| = |Bpt1NC| =1 and

the four vertices in these sets are equivalent.

Proof. Since C'is well-organized, Mp(C) > M4(C') and there is one token on B, and
one token on Bpi1. Let u (resp. u') be the unique vertex of A, NC (resp. B, NC) and
v (resp. v’) be the unique vertex of A,+1 NC (resp. Bpy1 NC). By Observation 20 we
have u ~ «’ and v ~ v'. By construction the only vertex of By, that is not in N(u)
is a copy of u since p is odd (B, and B,y are copies of the same subset of V(G)).

We obtain that u ~ v, and the proof follows by the transitivity of the ~ relation. [

Observation 22. Let C' be a well-organized configuration. For every p < Ma(C)
and every g < Mp(C), the token on A, and the token on By are frozen.

Proof. Let p < Ma(C) and let {v;'} := A, NC. Since p < M4(C), there is a token on
another vertex Uﬁ € A;, such that vz‘ﬁ ~ v]f by Observation 21. Since these two vertices
share the same neighborhood in B, the token on v;l
there is a token on A, for any ¢ < p thus this token cannot move to b, 4 nor b, and

cannot move to B. Furthermore,

since p < M4(C), there is a token on Ap+1 and the token cannot go to b, nor be .
It follows that it cannot move to Bgiqr¢ nor B,,q and that the token on v;;‘ is frozen.
By symmetry, the same goes for the token on B, for p < M4(C). We then have to
be careful about the tokens on By for Ma(C) < ¢ < Mp(C). Let {vf} := B,nC.
Since A;NC = (for any such ¢, we cannot guarantee that vf ~ fo even when A,
and A,y are copies of the same set. However, for any p < M(C) the set A, — v;‘
is dominated by vf and Ul‘;l ¢ N (vcflB) for any ¢ since C' is an independent set, hence
the token on B, cannot move to A,. Furthermore, since b, 7, (c)+1 € C, no token
can move from B to A, for any p > M4(C). It follows that the tokens on B, for

Ma(C) < ¢ < Mp(C) are also frozen. O

%%apter 8. On girth and the parameterized complexity of Token Sliding and Token
Jumping

Observation 23. Let C' be any well-organized configuration reachable from Cy. Fach

token moves at most one time in a shortest reconfiguration sequence from Cy to C.

Proof. We can reach C' by moving the tokens in the following order: for p €
1,...,Mp(C) the token on as, moves to B,NC and for p € 1,..., M4(C) the token
on by, moves to A, NC. Then, if CN{sa,ep} = {ep} (resp. CN{sp,ea} = {ea}),
move the token from sy to ep (resp. from sp to e4). This is a shortest sequence since

it contains exactly |C'\C1| moves, and every token moves at most one time. O

The strategy to prove Lemma 56 is as follows: we show that if there is a bad move
at time ¢, then there exists a time ¢ > ¢ at which this bad move is canceled in the
sense that the configuration obtained a time ¢’ 4+ 1 is, again, well-organized. Such a
reconfiguration sequence contains at least M4 (Cyy1) + Mp(Cp11) + 1 moves since at
least one token moved twice, and then Observation 23 ensures that it is not a shortest
sequence, contradicting our choice of S. The remainder of the proof is organized as
follows. In Section 8.2.2.3 we identify, up to symmetry, three different types of bad
moves and give some observations about the structure of configurations obtained after
such moves. In Section 8.2.2.4 we then show how to cancel (in the sense mentioned

above) bad moves of type 1, and we deal with types 2 and 3 in Section 8.2.2.5.

8.2.2.3 Bad moves

Observation 24. Lett € 1,2,..., N be such that the configuration C; is well-organized
and Cyy1 is not. Then one of the following holds:

1. (t:A—= B) or(t: B— A), or
2. (t: A= Bepg) and Bstart NCy £ 0 or (t : B — Aeng) and Asiart NCy # 0, or
3. (t 1S4 — Bstart) or (t 1S —~ Astart)-

Proof. First, there can be no move from Agtqrt t0 Bepg at time t. Indeed if there is
a token on Ag+ then there must be a token on sy since C; is well-organized and
both of these tokens dominate all of Be,4. By symmetry, the same goes for A.,q and
Bsiart. By construction, the only token that can move from Agiqr¢ is the token on

Qs Mp(C)+1 Which can only go to B Mp(c and such a move leads to a well-organized

+1
configuration and cannot be a bad mov)e. Conversely, the only token that can move
from B is the token on B), () by Observation 22 and the only vertex it can reach
on Astart 18 apr,(c), which also leads to a well-organized configuration. By symmetry,
the same goes for the moves between Bgrr and A. It follows that the only possible

bad moves are the moves of condition 1, 2 and 3. O

We consider the smallest integer ¢ such that the move between C; and C;11 is
a bad move. Since C is well-organized, C; is well-organized by definition of a bad
move. For brevity we set i := M4(C};) and j := Mp(C};). Note that i < j so there

can be no move from B to A unless ¢ = j, in which case the move must be from B;

8.2. Hardness results 157

to A; by Observation 22. By symmetry we can thus always suppose that if the first
bad move is a move between A and B, then it is a move from A to B. Furthermore,
we can suppose that ¢ < 2k for otherwise the configuration C; yields a multicolored
independent set of size k as shown in Section 8.2.2.2 and we are done. Using these
symmetries and Observation 24 we can restrict ourselves to three cases: either the
bad move is a move from A to B, or it is a move from A to Be,q, or it is a move
from s4 to Bepg. We denote these moves as bad moves of type 1, type 2, and type 3
respectively, and we denote the blue token making the bad move at time ¢ as the bad
token. Note that Observation 22 ensures that if the bad move at time ¢ is of type 1 or
2, then the bad token is on A; in C;. Since i < 2k, C} is well-organized, and the move

at time t is the first bad move of the sequence we have:
Observation 25. There is a red token on sg in Cs.

The following observations give some more information about the configurations

C; and Cy41 that we obtain after the first bad move, depending on its type.

Observation 26. If the move at time t is a bad move of type 1, then i := Ma(C}) is
odd. Furthermore, (t : A; — By) with ¢ > i.

Proof. If i is even, ¢ > 2 and A;_1 is a copy of A;. Since ¢ < j, Observation 21 ensures
that there is a token on A;_1, A; and B; on equivalent vertices, in which case the
tokens on A;_1 and A; cannot move to B, proving the first statement. The second

statement is a direct consequence of Observation 22. 0

Observation 27. If the move at time t is a bad move of type 2 or 3, then j :=
Mp(Cy) = 2k.

Proof. If j < 2k then by definition of a well-organized configuration there are some

blue tokens on Agqr+ and no token can move to Bg,q. O

Finally, the two following Observations follow from the fact that C; is well-organized:

Observation 28. If the move at time t is a bad move of type 2, then (t: A; — be;).

Observation 29. If the move at time t is a bad move of type 3, then (t: s4 — bep)
with p > 1.

8.2.2.4 Bad moves of type 1

In this subsection, we suppose that the move at time t is a bad move of type 1.
By Observation 20 we have |4, N Cy| = 1 for every p < M4(Cy) and |B,NCy| =1
for every p < Mp(Cy). In this section v}
|A, N Cy| for p < Ma(C}) (resp. |Bp, N Cy| for p < Mp(Cy). By Observation 26 we

have (t : A; — By) for some ¢ > 4. In the next lemma, we show that as long as no

(resp. vf) denote the only vertex of

token moves from B, after time ¢ 4 1, the blue tokens on B and the red tokens on

Bygiart at time ¢ + 1 remain frozen.

1C5}éap1;er 8. On girth and the parameterized complexity of Token Sliding and Token
Jumping

Lemma 58. Let t' >t + 1 such that no token has moved from By between Cyi1 and

Cy. Then for any configuration between Cyy1 and Cy we have:

1. for every p < q there is a blue token on vf.

2. for every p > i there is a red token on bg,.

Proof. First, note that Cy41 satisfies conditions 1 and 2 since C} is well-organized and
the move between C; and Cyy; is a bad move. Suppose for a contradiction that there
exists a time t + 1 < 7 < ¢’ such that for every t +1 < ¢ < 7 the configuration Cy
satisfies conditions 1 and 2 and that the configuration C;1 does not. Then it must
be that at time 7, either a red token moves from b, , for some p > ¢ or a blue token
moves from vf for some p < q. Let us show that none of these moves is actually
possible since C; satisfies conditions 1 and 2.

Suppose first that a red token moves from by, for p > i. Since C satisfies condition 2
the tokens on by, for x > ¢ + 1 are frozen and we have p = ¢ + 1. By construction the
red token on bs ;41 can only move to A;11. Furthermore, ¢ is odd by Observation 26
and A;;1 is a copy of A;. By the choice of 7 there is a blue token on v” and a red
token on N(vil) since (7 : v, — By). It follows that A;41 is fully dominated at
time 7 and that the red token on b, ;11 cannot move, a contradiction.

Suppose then that a blue token moves from Uf for some p < ¢. Since there are tokens
on B, and p < g, this token cannot move to Agqr¢, and since condition 2 is satisfied
by C, it cannot move to A.,q. Furthermore, since C; also satisfies condition 1, no

blue token can move to A, for x > ¢+ 1. We then have two sub-cases to consider :

1. p < i let B]’D be the other copy of B, in G. By the choice of 7 we have
B,NCr = {vf}, BynC; = {vf,} and by Observation 21 we have v5 ~ 1)5

P
hence the token on v?

, cannot move to A.

2. i+ 1< p < ¢ By the choice of 7 we have B, NC, = {vZ} with vZ ~ v for
every x < i by Observation 21. For such z, v2 is the only vertex that is not
dominated by the blue token on A,, and since C} is an independent set we
have v4 ¢ N (vf). It follows that the blue token on vf cannot move to A, for
x < 1. Since C satisfies condition 2 it cannot move to B, for x < i+ 1, which

concludes the proof.
O

So as long as there are two tokens on B, some tokens remain frozen and cannot
reach the targeted independent set. Hence one of the two tokens on B, has to move
again at some point in the reconfiguration sequence. The following Observation shows

that one of the tokens on B, necessarily moves back to A;.
Observation 30. There exists t' >t + 1 such that (t' : By — A;).

Proof. To reach the target configuration, every token on Bgr+ must move at least one

time. By Lemma 58.1, the tokens on by, for p > i cannot move as long as there are

8.2. Hardness results 159

two tokens on By. It follows that one of these token has to move at a time ' >t+1.
Let u € By be the vertex such that (¢ : v{* — u): note that u ¢ N(v;}) for any p < i.
Then by Lemma 58.1 there can be no move from B, to A, for p < 7 and by 58.2 there
can be no move from B, to A, for p > i+ 1 at time 7. Furthermore, Lemma 58.1 also
ensures that there can be no move from B, to a,, for p < ¢, and since there are two
tokens on By at time 7, none of them can move to b 4. Thus, (7 : By — A;) is the

only possible move at time 7. O

In other words, the bad move at time ¢ is in some sense "canceled" at time t'.
Note that, however, it is not necessarily the red token that moves at time ¢’: in the
particular case where ¢ = j = 4, the blue token on B, can move to A;, switching role
with the blue token. The next lemma shows that in-between ¢ and ¢’ every token has a
very restricted pool of possible moves and remains locked in the closed neighborhood

of the token it lies on in C;.

Lemma 59. Let t' >t + 1 be the first time after t such that (¢ : By — A;). Then
any configuration Cy with t +1 < £ < t’ satisfies the following conditions:

1. For every even p < i, there is either a red token on by, or a red token on U]’;‘ or
a red token on be .
2. For every odd p < i, there is either a red token on bsy, or a red token on vﬁ, or

a red token on N(vz‘?) N B, or red token on be .
3. For every p > q there is either a blue token on asy, or a blue token on By.

Proof. Let us first show that C; 1 satisfies conditions 1 to 3. Since C} is well-organized
and since (¢ : A; — By) there is a red token on vz‘,“ for every p < ¢ thus conditions 1
and 2 are satisfied. Furthermore, there is a blue token on B, for every ¢ < p < Mp(C)
and a blue token on a, for every Mp(C') < p < 2k and condition 3 is satisfied
by Ciy1. Let us now prove that these conditions are satisfied by any configuration
between times ¢ and t'. Suppose otherwise and let 7 be the first time after ¢ + 1 such
that C; does not satisfy one of the three conditions. Note that by Lemma 58.1 ; we
know that for any ¢ + 1 < £ < t/ there is a blue token on vf for every p < ¢ in Cy and

a red token on by, for every p > i.

1. C; does not satisfy condition 1. Since C)_; satisfies the three conditions,

there exist exactly one even integer pg < ¢ for which condition 1 is not satisfied
in C;.

(a) Suppose first there is a token on by, in Cr_;. Since there is a token
on b, for every p > 4, this token cannot move to A.,q nor B, for any
such p, and there is no token on A, for any p > pg in C7_1. Then, since
conditions 1 and 2 are satisfied by C,_1, there must be a red token on
{bs,p bep, v5 } UN (v2') N B for every pg < p < i. The token on b, then

has to move to A,, a time 7 — 1, and since there is a blue token on vfé,

1C'6}(1_)3Lp1;e1r 8. On girth and the parameterized complexity of Token Sliding and Token

Jumping

the only vertex it can move to is vlflo. But then C; satisfies condition 1, a

contradiction.

Suppose then that there is a red token on be p, in Cr—_1: since N (bep,) N A
= N(bsp,) N A, one can easily see that the only vertex this token can move

to is also vﬁ), again leading to a contradiction.

Finally suppose that there is a red token on v in C;_;. Then there can

0
be no token on b p,—1 nor on be py—1. Furtherrflore - recall that since pq is
even Ay, and Ay, _; are copies of the same set - there can be no token in
N (vﬁ)_l) N B in C,_4. Since condition 2 is satisfied for pg — 1, there must
then be a token on v]‘;t_l.
to bs p, Or bep, and condition 1 is satisfied by C, a contradiction.

It follows that the token on A, can only move

2. C; does not satisfy condition 2. As in case 1, there exists exactly one odd

integer py < ¢ for which condition 2 is not satisfied in C;. If there is a token

on b, p, or on b, in Cr_1 we obtain a contradiction using the same arguments

(which do not make use of the parity of pg) than in case 1.a and 1.b respectively.

Two cases remain to be considered:

(a)

Suppose that there is a token on vp‘% in C-_1. Then there can be no token
on by py—1 nor on be ,,,—1 and since Cr_; satisfies condition 1 (pg — 1 is even),
there must be a token on vﬁ)_l in Cr_1. It follows that the token on A,

can either move to by p,, be,p, or to B, and C; satisfies condition 2.

Finally suppose there is a red token on N (vﬁ)) N B in C,_1. Let p; be
such that this red token is on B, . Then by construction there can be no
token on asy, in Cr_1 and since condition 3 is satisfied by C-_; there is
also a blue token on B, in C_1. It follows that there are two tokens on
By, in Cr_1 and that these tokens cannot move to Agqr¢. Furthermore,
since ¢ < 2k we have Byt N Cr # 0, so the red token on B, cannot move
to Aeng and must move to B at time 7 — 1. Let us show it can only move
back to vﬁo. By Lemma 58.1 this token can only move to %4 for some p < 1.
But since C;_; satisfies condition 1 and 2, we have that for any p # po,
there is a red token on {bsp, bep, v } UN (v7') N B. It follows that the only

vertex of A this token can move to is vg) and condition 2 is satisfied by C'

3. C; does not satisfy condition 3. As in the previous cases there exists exactly

one integer pg > g for which condition 3 is not satisfied in C';.

(a)

Suppose first there is a blue token on asp, in Cr_1. If pg = 2k this token
can only move to By, and we are done. Otherwise, there can be no token
on Bp,4+1 in Cr_1 and since this configuration satisfies condition 3, there
must then be a token on as,,+1. It follows that the blue token on as p, can

only move to B, and we obtain a contradiction.

Suppose then that there is a blue token on B, in C-_;. Since there are

still tokens on Bgtqr¢ this token cannot go to Ag,q nor to any A, for p > 1.

8.2. Hardness results 161

Furthermore by Lemma 58.1, the only vertex on A, that is not dominated
by tokens on B is %4 for any p < i. But since C;_; satisfies condition 1
and 2, there is a red token on {bs p, b} U B that dominates this vertex. It
follows that the blue token on B,,, can only move to Agqr¢. Furthermore
since there is a token on B, there can be no token on as, for p < pg and
since Cr_1 satisfies condition 3 there must be a blue token on B, for any
p < po. It follows that the blue token on B, in C;_; can only move to

asp, and that condition 3 is satisfied by C;, which concludes the proof.

O
Furthermore, up to removing a move from the sequence we have the following:

Observation 31. Let t' >t + 1 such that no token has moved from By between Ciyy

and Cy. Then for any configuration between Cyi1 and Cy there is a token on {sa,ep}.

Proof. Since the move at time ¢ is the first bad move, there is a token on {s,ep} at
time ¢. If there is a token on epg, there can be no token on Agqr+ and by Lemma 58.3
there must be blue token on B, for every p < 2k so there can be no move from ep to
Astart- Suppose there exists 7 > ¢ such that (7:s4 — Be,p) for some p. By Lemma 59
and 58, this token cannot move to A before time ¢’ + 1. But then we can replace the
move at time 7 by (7:s4 — ep): since N(eg) C N(bep) all the moves between time

7 and t' 4+ 1 remain valid. O

Let us now consider the configurations Cy and Cy 1. We know that (¢' : By — A;)
and in particular there can be no token on by, nor b, for any p <4 in Cy;. Since
configuration Cy 1 satisfies condition 1 of Lemma 59 we have that for any even
p < ¢ there is a red token on 1)1‘)4, and since %4
on N (vafl) N B. Then by condition 2 of Lemma 59 there is necessarily a token on

~ ;,4,1 there cannot be any red token

v]’f_l. Furthermore, by Lemma 58.2 there is a red token on b, for every p > 4, and
by Lemma 58.1 there is a blue token on B, for every p < ¢ in Cy;. Condition 3
of Lemma 59 ensures that there is a blue token on {bs,} U B, for every p > ¢ in
Ci11. Furthermore, Observation 31 and Observation 25 ensure that there is token on
{sa,ep} and a token on {sp,es}. Finally, there are two tokens on B, at time ¢’ and
one of these moves to A;, which ensures that Cy 1 is well-organized.

In the considered shortest sequence S, the token that moves from B to A at time
t' moves at least three times before we reach the well-organized configuration Cy 1, a

contradiction with the choice of S by Lemma 23.

8.2.2.5 Bad moves of type 2 and 3

The proof for bad moves of type 2 and 3 follows similar reasoning as for type 1. We
first show that as long as the bad token does not move after time ¢ 4+ 1, a large part of
the other tokens remain frozen. We then show that the bad token has to move again

after time ¢ 4+ 1 and that we subsequently either obtain a well-organized configuration

1C'6}123Lp1;e1r 8. On girth and the parameterized complexity of Token Sliding and Token
Jumping

or cancel a bad move. By Observation 28 and 29 we have either (¢ : A; — beq) or
(t:s4 — beg) for some ¢ > i. Note that in the particular case of a bad move a type 2
we have ¢ = . By Observation 27, there is exactly one blue token on B,, for every
1 <p <2k in Cy. We denote by U{f the only vertex of I; N B, and by vl‘j‘ the copy of
vf in Ap.

Let p < 2k be odd. Recall that by construction, if vf ~ vfﬂ then the blue tokens on
{vZ, vl |} cannot move to A, and no other token can move to (A, U Apy1) —{v;!, vl 1.
If vf o UEH, no token can move A, U A, except for the tokens on {Uf, UpB-i-l}' Let
us first show that there necessarily exists a time ¢ > ¢ at which the bad token moves

again:

Observation 32. Let t; >t be such that for anyt <7 <, b,y € C;. Then for any
t<7t<U{ sgeC,.

Proof. As long as there is a token on b, 4, no token on by, for p > ¢ can move to A.
Since by Observation 25, sgp € C} and since b, € Cy for p > ¢, these token are frozen

as long as there is a token on b 4.]

Observation 33. If the move at time t is a bad move of type 2, then there is a blue

token on ep in C; and this token cannot move before the bad token moves again.

In order to show that the configuration Cy 1 is well-organized, we need a lemma

similar to Lemma 59:

Lemma 60. Let t' >t + 1 be the smallest integer such that the move between Cy
and Cyy1 is a move of the bad token. Then any configuration Cy with t +1 < £ <t

satisfies the following conditions:

A

1. If p < q is even, there is either a red token on bsy or a red token on vy, or a
red token on be .
2. If p < q is odd, there is either a red token on bs,, or a red token on v;‘, or a

red token in N(vi') N B, or red token on beyp.

3. For every p < 2k there is a blue token on vf.

4. For every p > q there is a red token on bs), and there is a red token on sp.

Proof. As the configuration Cy is well-organized and (¢ : A; — Bstart), conditions 1 to
4 are satisfied by configuration Cy41. As for the proof of Lemma 59, we suppose for a
contradiction that there exist a time t +1 < 7 < ' such that C; satisfies conditions 1

to 4 and C;41 does not. We consider the smallest such time 7.

1. (41 does not satisfy condition 1. Since C satisfies the four conditions,
there exist exactly one even integer py < ¢ for which condition 1 is not satisfied

in CT+1 .

8.2. Hardness results 163

(a) Suppose there is a red token on by ;,, in Cr. Since C; satisfies condition 4,
this token cannot move to B, for any p > ¢ nor it can move to Agpq. Since
there is a token on b4, it cannot move to A, either. So we must have

(7 :bsp, = Ag) for some py < z < ¢q. Suppose w.l.o.g that x is even: by

B

condition 3, there is a token on both v2 and v? | with vZ ~ v || thus we

have (7 : bsp, — v3). But then if # py, condition 1 and 2 ensure that

there is either a token on v%', b 4, bs, or on N(v2)N B, a contradiction.

T

(b) Suppose there is a red token on U;‘O in C;. Since C; satisfies condition 2,
there is also a token on v4 | and by condition 3 we have v’ A

po—1 po—1 ™ Upo—1-

A : .
So the token on v, can either move to bey, or bsp, since any other of
its neighbors in B.pq or Bster¢ dominates A,,_1, and condition 1 remains

satisfied.

(c) Suppose there is a red token on b p, in C;. Since there is a token on b g,
the token on b p, cannot move to Apq, and it must move to A. Since the
vertices bsp, and b, p, share the same neighborhood in A, we can apply
the same arguments as for case 1.a showing that (7 : bep, — vﬁ)), and

condition 1 remains satisfied.

2. Cr41 does not satisfy condition 2. Since C; satisfies the four conditions,
there exist exactly one odd integer py < ¢ for which condition 2 is not satisfied
in Cr41. First note that the proof for case 1 do not make use at any point of the
parity of pg. Hence if there is a token on by p,, v;i)
1.c apply respectively. Only the case where there is a red token on N (vﬁ)) NnB

or on b p, case l.a, 1.b and

in C; remains to be considered. Let u denote the vertex on which the token
is. Since condition 3 is satisfied by C., this token cannot move to Agsqr+ nor
Aend, so we have (7 : N(u) — v2) for some x. Suppose that A, and A, are
not copies of the same set. First note that z must be odd, for otherwise there
must be a token on by, or b, at time 7 by condition 1 and it is not possible to
move from B to A, at time 7. Furthermore we must have x < p: if not, then
by condition 1 there must be a token on by y,+1 0O be o1 Which dominates A,
since pg is odd and since there can be no token on vﬁ) 11

There can be no move from vﬁ) to w at any time between ¢ and 7. Suppose
otherwise and consider a time ty such that ¢ < ¢ty < 7 at which such a move
occurs: in Cy, there is a token on v?}

po
nor by ,+1 hence there is a token on vZ,; € N(u) by condition 1. It follows

so there cannot be any token on be ;1

that, since condition 2 is satisfied for any time ¢t < 7, there must be a token
either on by p, or be p, or on a vertex of N (vﬁ)) N B which is distinct from u. But
then after the token on u moves to vZ at time 7 condition 2 is still satisfied, a

contradiction.

3. Cr41 does not satisfy condition 3. Since C; satisfies condition 3, there

exists a unique pg < 2k such that at time 7 a blue token moves from vﬁ). Since

condition 3 is satisfied and since there is a token on b, 4, this token cannot move

1C’fi}iapter 8. On girth and the parameterized complexity of Token Sliding and Token
Jumping

B

to Aeng nor Agiare. So we can suppose that (7 : v, — Ag) for some z odd

PO
without loss of generality. If v2 = vf "1 then there must be a red token on by ;41
or be z4+1 by condition 1 since there can be no token on vfﬂ. So it must be that

B
/Ul'

on by 4, be o Or on N(vé‘) N B and it follows that no blue token can move to A,.

~ vB_|: but then again by condition 1 and 2 there must be either a red token

4. C;41 does not satisfy condition 4. As long as there are some tokens on
Bgtart, the red token on sp cannot move, so there exists a unique py > ¢ such
that at time 7 a red token moves from b; p,. Since there is a token on sp this
token cannot move to Agtqr+ and thus can only move to A. By construction it
can only move to A, for some x > ¢ and any such set is dominated by the token

on be 4, a contradiction.

O

As long as the bad token does not move again after time ¢, condition 4 of Lemma 60
ensures that the red tokens on Bgire U {sp} remain frozen. So there must exist a time
t’ > t such that the bad token moves at time #’. The following observation actually

show that this token moves back to the position it had in Cj:

Observation 34. Lett' >t denote the time at which the bad token moves again. We
have the following:

1. (t' : bey — vi) if the move at time t is a bad move of type 2.
2. (t' :beg — sa) if the move at time t is a bad move of type 3.
Proof. We prove the two statements separately:

1. The move at time t is a bad move of type 2. By Lemma 60.3 there is
a blue token on B), for every p < 2k at time ¢’ so the bad token cannot move
to Astart- Furthermore by Observation 33 there is a blue token on ep at time
t' so it cannot move to sa either. By Observation 28 we have ¢ = 7 and thus
(t' : beg — Ay) for some x > i. By Lemma 60.4 there are red tokens on by, for
every p > i so it must be that x = i. Finally Lemma 60.3 ensures that there
is a token on v? in Cp and since v{* ~ v? it follows that (¢ : b, — v{) is the

only possible move for the bad token at time #'.

2. The move at time t is a bad move of type 3. As for the previous case,
Lemma 60.3 ensures that the bad token cannot move to Agqrt. By Observation 29
we have ¢ > i and by Lemma 60.4 there is a token on b, , so the bad token
cannot move to A. It follows that (¢ : be s — s4) is the only possible move for
the bad token at time ¢'.

O]

The following Observation allows us to conclude about the bad moves of type 2:

8.2. Hardness results 165

Observation 35. Let t' > t+ 1 denote the time at which the bad token mowves
again. If the move at time t is a bad move of type 2, then the configuration Cyq is

well-organized.

Proof. By Observation 34.1, we have that (¢ : b.; — v{!). Since ¢ = i by Observa-
tion 28, Lemma 60 ensures that there is a red token on b,), for every p > ¢ and a
blue token on B, for every z < 2k a time t'. It remains to show that there is a red
token on A, for every y < i to obtain a well-organized configuration. Since there
is a token on A; in Cpi; there can be no token on b,), nor b, for any p < i and
condition 1 of Lemma 60 then ensures that there is a red token on v;‘ for every even
p < 4. Since furthermore v;f ~ ;‘H for every odd p < i, there can be no token on
N(U;‘H) NB = N(vzf‘) N B for any such p, and condition 2 of Lemma 60 ensures that

there is a red token on v;‘ for every odd p < i. O

As for bad moves of type 1, there is a token that moves at least three times to
reach the well-organized configuration Cy 1, a contradiction with Observation 23.

It remains to check the case of bad moves of type 3. If (¢t : s4 — be) We proceed
as follows: we replace the move at time ¢ by the move (¢ : s4 — ep) and the move at
time ¢’ by (¢’ : eg — sa). Since N(ep) € N(beq), the moves at times ¢,t+1,...,t
remain valid. Furthermore by Observation 34.2 we obtain the same independent set
at time t' 4+ 1. Although the modified sequence is not shorter, it does not contain any
bad move of type 3: either we obtain a well-organized configuration at time ¢’ + 1 and
we are done, or there is a bad move of type 1 or 2 between time ¢ + 1 and ¢, in which
case one of the previous cases apply. It follows that the sequence contains no bad

move of type 3. The proof of Lemma 56 is now straightforward:

Proof. Let S be a shortest reconfiguration sequence from I to I.. In section 8.2.2.4
we showed that S contains no bad move of type 1, and we showed that S contains no
bad moves of type 2 or 3 in section 8.2.2.5. Then by Observation 24 it follows that S

contains no bad move. O

Acknowledgments. The authors thank the anonymous reviewer of the extended
abstract of this paper, accepted in ISAAC 2020 [9], for her/his insightful comments

that allowed us to improve Lemmas 35 and 34.

167

Chapter 9

Galactic Token Sliding

The results presented in this chapter were obtained with Nicolas Bousquet, Clément

Dallard and Amer E. Mouawad. These results have not been peer-reviewed yet.

This chapter is devoted to the proof of the following theorem:

Theorem 39. Let A > 3 be a fized constant. TOKEN SLIDING is fized parameter

tractable with respect to the parameter k on graphs of mazximum degree A.

In order to do so, we introduce a new model, which we call galactic token sliding,
which we believe is of independent interest. In Chapter 6, we described a general
method to obtain fixed parameter tractable algorithm for TOKEN JUMPING in sparse
graphs. It basically consists in finding a buffer independent set, "far away" from the
starting and ending positions of tokens, to which we can jump the tokens one by one
(or use the fact that no such set exists to bound the size of the graph by a function of
k). In the TOKEN SLIDING problem, the buffer space may not be used as easily as
for TOKEN JUMPING since some tokens may be blocked in there initial positions (or
close to it). Hence, what can we do with this extra space that we have on the graph?
First, we cannot delete it, since we cannot decide a prior: if this space will be used in
a reconfiguration sequence or not. However we will see that we can merge it, under
certain conditions.

Let us give a concrete example: suppose that the input graph contains a vertex v that
is neither in S nor T, the starting and ending independent sets, and that is attached
to a "pendant" induced path P of length > 2k. By pendant, we mean that the unique
vertex of P that has a neighbor outside of P is the neighbor of v. An illustration is
given in Figure 9.1. Suppose furthermore that no vertex of P is in S or T. Obviously,
the path P can hold the k tokens. Furthermore we do not really "care" about the
position of the tokens on the path: If a token enters P, we can always assume that
it goes as far down the path as possible. If a token leaves the path, we can always
assume that this token is the one in P that is closest to v. In other words, we can
merge this path into a single special vertex, and simply recall that this vertex can
hold all £ tokens. We call such a vertex a black-hole.

By doing so, we of course leave the framework of classical independent set reconfigu-
ration. We formally describe this new problem, which we call galactic token sliding,

in the next section. The key point of the proof of Theorem 40 is then to show that,

168 Chapter 9. Galactic Token Sliding

v |P| > 2k

FIGURE 9.1: Illustration of a graph with a pendant path P

as we did for the path P, we can merge any geodesic path of the input graph that is

long enough with respect to k and obtain an equivalent instance.

9.1 Galactic graphs

We say that a graph G = (V, E) is a galactic graph if V(G) can be partitioned into
two sets A(G) and B(G) where the set A(G) C V(G) is the set of vertices that we
call planets and the set B(G) C V(G) is the set of vertices that we call black holes.
For a given graph G’, we write G’ < G whenever A(G") < A(G) or, in case of equality,
B(G'") < B(G). In the standard TOKEN SLIDING problem, tokens are restricted to
sliding along edges of a graph as long as the resulting sets remain independent. This
implies that no vertex can hold more than one token and no two tokens can ever
become adjacent. In a galactic graph, the rules of the game are slightly modified.
When a token reaches a black hole (a special kind of vertex), the token is absorbed
by the black hole. This implies that a black hole can hold more than one token, in
fact it can hold all k tokens. Moreover, we allow tokens to be adjacent as long as
one of the two vertices is a black hole (since black holes are assumed to make tokens
“disappear”). On the other hand, a black hole can also “project” any of the tokens it
previously absorbed onto any vertex in its neighborhood (be it a planet or a black
hole). Of course, all such moves require that we remain an independent set in the
galactic sense. We say that a set S is a galactic independent set of a galactic graph
G whenever G[S N A] is independent. To fully specify a galactic independent set S
of size k containing more than one token on black holes, we use a weight function
ws : V(G) = {0,...,k}. Hence, wg(v) < 1 whenever v € A(G), ws(v) € {0,...,k}
whenever v € B(G), and 3,y (¢ ws(v) = k.

We are now ready to define the GALACTIC TOKEN SLIDING problem. We are
given a galactic graph G, an integer k, and two galactic independent sets S and T’
such that |S| = |T| = k > 2 (when k = 1 the problem is trivial). The goal is to
determine whether there exists a sequence of token slides that will transform S into T'
such that each intermediate set remains a galactic independent set. As for the classical
TOKEN SLIDING problem, given a galactic graph G we can define a reconfiguration
graph which we call the galactic reconfiguration graph of G. It is the graph whose
vertex set is the set of all galactic independent sets of G, two vertices being adjacent
if their corresponding galactic independent sets differ by exactly one token slide. We
always assume the input graph G to be a connected graph, since we can deal with
each component independently otherwise. Furthermore, components without tokens
can be safely deleted. Given an instance (G, k,S,T) of GALACTIC TOKEN SLIDING,
we say that (G, k,S,T) can be reduced if we can find an instance (G', k', S’, T") which

9.1. Galactic graphs 169

is positive (a yes-instance) if and only if (G, k,S,T) is positive (a yes-instance) and
G <G.

Let G be a galactic graph. A planetary component is a maximal connected
component of G[A]. A planetary path P, or A-path, composed only of vertices of A, is
called A-geodesic if, for every x,y in P, dgia)(z,y) = dp(w,y).

We use the term A-distance to denote the length of a shortest path between
vertices u,v € A such that all vertices of the path are also in A. Let us state a few
rules that allow us to safely reduce an instance (G, k,S,T) of GALACTIC TOKEN
SLIDING to an instance (G', k', S', T"):

e Rule 1 (adjacent black holes rule): If two black holes u and v are adjacent,
we contract them into a single black hole w. If there are tokens on u or v,
the merged black hole receives the union of all such tokens. In other words,
wgr(w) = wg(u) + ws(v) and wy (w) = wr(u) + wr(v). Loops and multi-edges

are ignored.

e Rule 2 (dominated black hole rule): If there exists two black holes u and v such
that N(u) € N(v), wg(u) =0, and wr(u) = 0, we delete wu.

o Rule 3 (absorption rule): If there exists u,v such that u is a black hole, v €
(N(u)nA)\ (SUT) (v is a neighboring planet that is neither in S nor T),
SNANN(v) =0, and TN AN N(v) = 0, then we contract the edge uv. We
say that v is absorbed by wu.

o Rule 4 (path reduction rule): Let G be a galactic graph and P be a A-geodesic
path of length 5k such that (ANN[P])N(SUT) = 0. Then, P can be contracted
into a black hole.

Note that all of the above rules allow us to reduce the size of the input graph. In
the remainder of this section, we prove a series of lemmas establishing the safety of
the aforementioned rules. We apply the rule in order, starting from Rule 1 up to Rule
4. Every-time a rule applies, we start again from Rule 1. This way, we assume that a

rule is applied exhaustively before moving on to the next one.

Lemma 61. Let (G = (AUB,E),k,S,T) be an instance of GALACTIC TOKEN
SLIDING and let Q be any subset of V(G). Let (G',k,S’,T") be the instance obtained
by identifying all vertices of QQ into a single black hole vertexr q which is adjacent to
every vertex in Ng(Q) \ @ (loops and multi-edges are ignored). If QNS # 0, then
we set wgr(q) = |QNS|. Similarly, if QNT # (0, then we set wp(q) = |QNS|. If
(G,k,S,T) is a yes-instance, then (G',k,S',T") is a yes-instance.

Proof. Assume that there exists a transformation from S to T'in G. Let o := [y =
S,I1,...,Iy = T be such a transformation. To obtain a transformation in G’ we
simply ignore all token slides that are restricted to G[Q]. Formally, we delete any
I; that is obtained from I;_; by sliding a token along an edge in G[Q]. For every

170 Chapter 9. Galactic Token Sliding

I; obtained from I;_; by sliding a token from Ng(Q) \ @ onto @, we instead slide
the token to ¢ and increase the weight of ¢ by one, i.e., wfl((q) = wllg_l(q) +1. We
replace every I; obtained from I;_; by sliding a token from @ to Ng(Q)\ Q by I!_,
and I/_; where one token gets projected from ¢ onto its corresponding neighbor (and
we decrease the weight of the black hole by one). All other slides in the sequence are
kept as is and we obtain the desired sequence 3 := I} = S, I{,...,I;, =T’ from S’ to
T in G'. O

Lemma 62. Rule 1, the adjacent black holes rule, is safe.

Proof. Let G be the initial galactic graph and G’ be the graph obtained after contract-
ing the two adjacent black holes u and v into a single black hole w. Let S,T be the
two galactic independent sets of G and let S’, T be their counterparts in G’. If there
is a transformation from S to T in G, then, by Lemma 61, there is a transformation
from S’ to T" in G'.

Assume now that there is a transformation from S’ to 7" in G'. We adapt it
into a sequence in G maintaining the fact that, at each step, the weight of every
vertex s # u, v is the weight of s at the same step of the transformation in G’ and
w(u) + w(v) = w(w). Note that S (resp. T') satisfies these conditions with S’ (resp.
T"). We perform the same sequence in G if possible, that is, if both vertices exist in G,
we perform the slide (which is possible by the above condition). Now, let us explain
how we simulate the moves between w and its neighbors. If a token on s € N(w)
slides to w, then in G we simulate this move by sliding the corresponding token to u
or v, depending on which vertex s is incident to (note that if s € N(u) N N(v), then
the token on s can be slid to u or v). If the move corresponds to a token leaving w
in G’ to a vertex s, then if a vertex in {u,v} incident to s has positive weight, we
slide a token from one of these vertices to s. So we can assume, up to symmetry, that
u is incident to s and w(u) = 0. Since w(u) + w(v) = w(w) (at every step) and a
token leaves w in G, we have w(v) > 0. Hence, we can move a token from v to u, and

eventually move this token from u to s. O

Lemma 63. Rule 2, the dominated black hole rule, is safe.

Proof. Let us denote by G the original galactic graph and G’ the graph where u has
been deleted. Clearly, every sequence in G’ is a sequence in G. We claim that every
sequence in G from S to T can be adapted into a sequence where u never contains a
token. Consider a reconfiguration sequence from S to T that minimizes the number
of times a token enters u, and suppose for a contradiction that at least one token
enters u. Let s be the last step where a token enters u and s’ be the next time a token
is leaving from u (note that both steps s and s’ exist, since wg(u) = wp(u) = 0).
Instead of moving a token to u at step s we move it to v and at step s’, we move the
token from v (which is possible since N(u) C N(v)). It still provides a sequence from
S to T and the number of times a token enters u is reduced, a contradiction with the
choice of the sequence. Hence, there exists sequence from S to ¢ in G such that u

never contains a token, and thus Rule 2 is safe. [

9.1. Galactic graphs 171

Lemma 64. Assume that there exists a sequence between two galactic independent
sets S and T of a galactic graph G. Then this sequence can be modified such that for

each black hole b we have at most one token on N(b) N A at all times.

Proof. Consider such a reconfiguration sequence Ip = S, I1,...,I; =T from S to T
and suppose that there exists a black hole b such that, at some point in the sequence,
N(b) N A contains two tokens. Suppose first that N(b) N A contains at least two
vertices of S or at least two vertices of T'. Let S’ (resp. T") be the galactic independent
set obtained by moving the token on S (resp. T') to b. By definition of black-holes
this is a valid reconfiguration sequence, and thus there is a sequence transforming S
into 7' if and only if there is one transforming S into 77, and N(b) N A contains no
vertex of the initial nor target independent set in its neighborhood anymore.
Otherwise, let I; be the last galactic independent set in the transformation with
two tokens on N(b) N A. By the choice of i, I; is not the last independent set of
the sequence. In the next galactic independent set I;41 in the sequence, there is a
unique token a on N(b) N A. Let v, € N(b) N A be the vertex containing a in [;41.
Let s be the step when a enters v, (and does not move until 7;11). We add a move
in the sequence just after s consisting in sliding a from v, to the black hole b. We
then perform the same sequence of moves until we reach the galactic independent set
(Ii+1 \ va) Ub. Finally, we move the token a from b to v,, which gives the galactic
independent set I; 1 from the original sequence. Hence, the number of steps with at
least two tokens on the neighborhood of b has strictly reduced. We can repeat this
argument as many times as needed on every black-hole of GG, up until we obtain a
sequence from S to T where no black-hole ever has two token in its neighborhood at

the same step. 0
Lemma 65. Rule 3, the absorption rule, is safe.

Proof. Let u be a black hole with a planet neighbor v & S UT such that SNANN (v) =
f, and TNANN(v) = 0. We denote by G’ the galactic graph where u and v are
contracted into a vertex b and S” and T” be the galactic independent sets corresponding
to S and T'. If there is a transformation from S to T in G, then, by Lemma 61, there
is a transformation from S’ to 7" in G’. Consider a transformation from S’ to 7" in G’.
We claim that the transformation in G’ can be changed into a transformation in G.
By Lemma 64, we can assume the existence of a sequence in G’ where the number
of tokens in N (b) N A is at most one throughout the sequence. If there is a move in G’
between two vertices s and ¢ where s,t ¢ N(b), then the same move can be performed
in G. If a token ¢ in the sequence in G’ has to move to N (b) from a position distinct
from b, then we first move the token ¢’ on v (if such a token exists) to u in G (since
Ng(v) \ {u} C Ng/(b), leaving a token on v in G may result in two tokens being
adjacent) before moving t. So we are left with the case where a token has to enter
or leave b. If the token enters b from a neighbor w of u (in G), then we simply move
the token to u (in G). So we can assume that the token enters b from a neighbor w

of v (in G). In that case, we can perform the slides w to v and then v to u to put

172 Chapter 9. Galactic Token Sliding

the token on the black hole. Such a transformation is possible since there is no other
token on N (v) (in G, there is at most one token in N (b) at all times). Similarly, if a
token has to go to some vertex w of N(v) from b, then there is currently no token on
N(v), and thus the sequence of moves u to v and v to w is possible, which completes
the proof. O

As immediate consequences, the following property holds in an instance where

Rules 1, 2, and 3 cannot be applied.

Corollary 2. Each (planet) neighbor of a black hole must have at least one vertex of
SUT in its planet neighborhood.

Proof. If a planet neighbor of a black hole has zero vertex of SUT in its planet
neighborhood, then Rule 3 can be applied and we get a contradiction. O

Lemma 66. Rule 4, the path reduction rule, is safe.

Proof. Let P be an A-geodesic path of length 5k in G such that no vertex of AN N[P]
are in the initial or target independent sets, S and T'. Let G’ be the graph obtained
after contracting P into a single black hole b (recall that multi-edges and loops are
ignored). Let S’ and T” be the galactic independent sets corresponding to S and
T. If there is a transformation from S to T in G, then, by Lemma 61, there is a
transformatiom from S’ to 7" in G’. We now consider a transformatiom from S’ to T”
in G’ and show how to adapt it in G.

By Lemma 64, we can assume the existence of a sequence in G’ where the number
of tokens in N(b) N A is at most one throughout the sequence, for any black hole b.
If there is a slide from a vertex u to a vertex v in G’ such that u,v € N[b], then the
same slide can be applied in G. Whenever a token slides (in G’) to a vertex w in N(b),
then we know that either u later slides to b or slides out of N(b) (since we have at
most one token in the neighborhood of black holes at all times). If the token does not
enter b, then the same slide can be applied in G. If the token enters b, then we slide
the token to a corresponding vertex in P (in G). Following that slide, two things can
happen. Either this token leaves b, in which case we can easily adapt the sequence
in G by sliding along the path P. In the other case, more tokens can slide into b,
which mighty be the problematic case. Note, however, that P is of length 5k and
is A-geodesic. Hence, every vertex a € A has at most three neighbors in P and any
independent set of size at most k£ in A has at most 3k neighbors in P. This leaves 2k
vertices on P which we can use to hold as many as k tokens that need to slide into b
(in G'). In other words, whenever more than one token slides into b in G’, we simulate
this by sliding the tokens in P onto the 2k vertices of P that are free. Since initially
(ANN[P])N(SUT) = 0, every time a token enters into a vertex v € N(b) in G,
in G we can rearrange the tokens on P to guarantee that N[v] contains no tokens.
Finally, when a token leaves b to some vertex v € N(b) (in G’), then we rearrange the
tokens on P so that a single token in P becomes closest to v. This token can safely
slide from P to v. O

9.2. Graphs of bounded degree 173

Corollary 3. If Rule 4, the path reduction rule, cannot be applied, then the diameter

of any planetary component is at most O(k?).

Proof. Assume by contradiction that the diameter of any planetary component is
at least 5k(k + 1). Let P be a shortest A-path between two vertices at A-distance
5k(k 4 1). Note that P is A-geodesic. Since the size of each independent set is at most
k and each planet can see at most three vertices on an A-geodesic path, there is a
sub-path of P of length at least 5k that does not have any vertex of the independent set
in its neighborhood. Hence, Rule 4 can be applied by Lemma 66, a contradiction. [

9.2 Graphs of bounded degree

We now show how the galactic reconfiguration framework can be applied to show that
TOKEN SLIDING is fixed-parameter tractable (for parameter k) when restricted to
graphs of bounded degree.

Note that an instance (G, k, S, T) of TOKEN SLIDING can also be considered as
an instance of GALACTIC TOKEN SLIDING (containing only planet vertices) and S
and T can be considered as two galactic independent sets of G. Then, (G, k,S,T) is
a yes-instance of TOKEN SLIDING if and only if the corresponding irreducible instance
(Gr,k,S,T) is a yes-instance of GALACTIC TOKEN SLIDING.

In the remaining of this section, we let (G,k,S,T) be an instance of TOKEN
SLIDING where the maximum degree of G is d = A(G). Let (G, k,S,T) be the
corresponding irreducible instance of GALACTIC TOKEN SLIDING. We let G/ be the
graph obtained from G after deleting SUT and we let C,Co,...,C, denote the

connected components of G’.
Lemma 67. The number of connected components in G’ is at most 2kd.

Proof. Observe that a planetary vertex that belongs to both to G and G has not
been merged to any other vertex by the reduction rules, and thus has degree at most
d in G'. It is in particular the case for the vertices in S UT. Therefore, G, contains

at most ¢ < 2kd connected components C1,...,Cy. O
Lemma 68. Let C' be a component of Gy. Then, |V(C)| is at most dO**)

Proof. If C' does not contain any black hole, then C' is a planetary component and
has diameter O(k?) by Corollary 3. It follows that C contains d°**) vertices since
any vertex in C' has degree at most d.

Suppose that C contains at least one black hole. Let Ac be the set of planet
vertices which have at least one neighbor in SUT), i.e., the vertices that cannot be
absorbed by Rule 3. Note that we have |A¢| <= 2kd. Since the vertices in A¢ also
have degree at most d, the graph obtained by deleting A¢ from C' contains at most
q' < 2kd? connected components O, . .., Cys- Let C' be one of these components. If C’
contains a black hole b, then we claim that C' = {b}. Suppose otherwise. Then b either
has a planet neighbor in C’ which has degree 0 in SUT (by definition of C”) or b has

174 Chapter 9. Galactic Token Sliding

another black hole neighbor. In the former case, we get a contradiction to Corollary 2
and in the latter case we get a contradiction since Rule 1 would apply. Hence, either
C' = {b} or C' is a planetary component of diameter at most 5k containing at most
dO"**) vertices (Corollary 3). Putting it all together, we get the desired bound. [

Theorem 40. TOKEN SLIDING is fixed-parameter tractable when parameterized by
k+ A(G).

Proof. Let (G,k,S,T) be an instance of TOKEN SLIDING. We first transform it to an
instance of GALACTIC TOKEN SLIDING where all vertices are planetary vertices. We
then apply all of the reduction rules exhaustively. The total number of components in
(k%)

G is at most 2kd (Lemma 67) and each component contains at most d° vertices

(Lemma 68), as needed. O

9.2.1 On further using Galactic Token Sliding

In this chapter, we showed how to use the GALACTIC TOKEN SLIDING problem in
order to show that TOKEN SLIDING is fixed-parameter tractable on graphs of bounded-
degree. The rules designed to reduce the instances of GALACTIC TOKEN SLIDING
essentially allow us to merge some connected subgraph of the input graph in a single
vertex (black-hole) which maintains the nice properties of these subgraphs towards
tokens (any number of tokens can enter, move inside, and leave these subgraphs). The
reduction rules only merge neighbors and delete vertices, two operations that preserve
both planarity and treewidth. Hence, we believe that GALACTIC TOKEN SLIDING
could be a good starting point for the design of fixed-parameter tractable algorithms

on planar graphs and bounded-treewidth graphs with parameter k.

175

Part 111

Conclusion

177

Chapter 10

Conclusion

10.1 Graph recoloring and independent set reconfigura-
tion

In the first part of this thesis, we investigated the question of finding linear transfor-
mations between colorings. We first tackled the case of chordal graph. Let G be a
d-degenerate chordal graph of maximum degree A. The best known bound on the
number of colors needed to obtain linear sequences prior to our work was 2d + 2, given
by Theorem 16 of Bousquet and Perarnau. We showed that as long as the number of
color k satisfies k > d + 4, the diameter of Ry (G) is at most Ox(n). We also know
from [19] that there exists an infinite family of d-degenerate chordal graphs which
(d + 2)-reconfiguration graph has diameter Q)(n?). Therefore the case k = d + 3

remains to be investigated:

Question 5. Is the diameter of Ray3(G) at most f(A(G)) - n for any d-degenerate
graph G ¢

The other interesting question concerning chordal graphs is the dependency on
the maximum degree of the graph. Is it possible to remove it? In other words, is the

answer to the following question positive?

Question 6. Is the diameter of Rq13(G) at most f(d) -n for any d-degenerate chordal
graph G?

Our algorithm extensively makes use of the fact that the input graph has bounded
degree. We believe that our technique could be used to obtain linear bound without
dependency on A, but that it would require more than d + 3 colors. We could, for
instance, use the extra colors (above the d 4+ 3 threshold) in order to "isolate" high
degree vertices, and then use our algorithm as a black box. However, we believe that

answering Question 6 requires new ideas.

We then investigated the case of graphs of treewidth two. Again, we know from
Theorem 16 that if G is a graph of treewidth two then Rg(G) has linear diameter,
and we know from [15] that such a result is impossible for R4(G). We closed the last

remaining case and showed that R5(G) indeed has linear diameter. Is it possible to

178 Chapter 10. Conclusion

obtain similar results for graph of treewidth larger than two? In other words, can we

answer the following question in the affirmative?

Question 8. Does there exists a constant C' such that, for every graph G of treewidth
at most d, the diameter of Ri(G) is linear when k > d+ C?

The second part of this thesis was devoted to the independent set reconfiguration
problem. We first showed that both TOKEN SLIDING and TOKEN JUMPING remain
PSPACE-complete on H-free graphs unless H is a path on at least five vertices, the
claw, or a subdivision of the claw. It is known from [23] that both problems are
polynomial-time solvable on claw-free graphs but the complexity of TOKEN SLIDING
and TOKEN JUMPING on H-free graphs remains to be investigated for the other graphs
H.

We then considered independent set reconfiguration from a parameterized com-
plexity point of view. The parameter we investigated is the size of the source and
target independent sets, which we denote by k. In particular, we showed that TOKEN
SLIDING is W([1]-hard on bipartite graphs, but that it admits a polynomial kernel on
bipartite Cy-free graphs.

It is not hard to see that our construction proving the hardness of TOKEN SLIDING
on bipartite graphs completely fails when considering TOKEN JUMPING. This leaves

the following question open:
Question 12. Is TOKEN JUMPING FPT parameterized by k on bipartite graphs?

The proof of the kernel for TOKEN SLIDING on bipartite Cy-free adapts the "buffer
space" technique that is regularly used for TOKEN JUMPING (and that we described in
Chapter 6). This lead us to introduce a new reconfiguration problem, the GALACTIC
TOKEN SLIDING which we used as a tool to show that TOKEN SLIDING is FPT on
graphs of bounded-degree. We strongly believe that this is a powerful tool and
that it could also be used to investigate the cases of planar graphs and graphs of
bounded-treewidth:

Question 15. Is it possible to adapt the reduction rules for GALATIC TOKEN SLIDING
to show that TOKEN SLIDING is FPT parameterized by k on planar graphs and bounded
treewidth graphs?

If this last question is answered in the affirmative, we could also ask whether
GALACTIC TOKEN SLIDING can be used to design FPT algorithms for other classes of
sparse graphs, on which very little is known for the TOKEN SLIDING rule.

10.2 Other problems we investigated

I also got to work on problems that are not related to reconfiguration during my Phd.
I give below a brief description of two projects I worked on during the past three years

and that lead to publications.

10.2. Other problems we investigated 179

Zombies and Survivor. During a visit in Bordeaux in August 2020 I worked along
with Laurine Bénéteau, Marthe Bonamy, Hoang La and Jonathan Narboni on a new
variant of the famous Cops and Robbers game called Zombies and Survivor. In this
game, zombies take the place of the cops and survivors take the place of the robber.
The zombies, being of limited intelligence, have a very simple objective in each round
— to move closer to a survivor. Therefore, each zombie must move along some shortest
path, or geodesic, joining itself and a nearest survivor. We say that the zombies
capture a survivor if one of the zombies moves onto the same vertex as a survivor. The
zombie number of a graph G is the minimum number of zombies needed to ensure that
the survivor will be eventually captured, and is denoted by z(G). In [45], Fitzpatrick
et al. asked the following:

Question 16. Is z(GOH) < z(G) + z(H) for all graphs G and H?

Where GUIH is the cartesian product of G and H. We answered this question in

the affirmative in a short note [8].

PACE challenge. During the years 2020 — 2021 was held the sixth iteration of
PACE, the Parameterized Algorithms and Computational Experiments Challenge, to
which I participated along with Gabriel Bathie, Nicolas Bousquet, Marc Heinrich, Théo
Pierron and Ulysse Prieto. PACE is a challenge at the frontier between programming
and theory, where the goal for participants is to design and implement efficient
algorithms to solve classical parameterized problems.

This year’s problem was CLUSTER EDITING. In this problem we are given a graph
G and an integer k, and the question is whether it is possible to transform G into a
graph where each connected component is a clique (sometimes called a cluster graph)
by adding/deleting at most k edges from G.

We implemented both an exact algorithm and a heuristic for this problem. Our
algorithms combine several existing techniques with new reduction rules based on the
study of the symmetric difference of the neighborhoods of vertices. Both our algorithms
were ranked third in the exact track and the heuristic track respectively and thus
their descriptions will be published in the proceedings of the IPEC 2021 conference.
The description of our exact algorithm can be found here: https://github.com/
valbart/pace-2021/blob/main/solver_description.pdf and the description of
the heuristic algorithm can be found here: https://github.com/GBathie/pace_
2021_mu_solver/blob/main/solver_description.pdf.

https://github.com/valbart/pace-2021/blob/main/solver_description.pdf
https://github.com/valbart/pace-2021/blob/main/solver_description.pdf
https://github.com/GBathie/pace_2021_mu_solver/blob/main/solver_description.pdf
https://github.com/GBathie/pace_2021_mu_solver/blob/main/solver_description.pdf

181

Appendix A

Proof techniques for graph

recoloring

A.1 Graphs with bounded maximum average degree

In this section, we sketch the proof of Theorem 17 as initially given by Bousquet
and Perarnau in [29]. Let G be a graph of maximum average degree my and «, 3
be two k-colorings of G such that kK > mg+ 1. A t-partition of degree ¢ of a graph
G = (V,E) is a partition of V(@) into ¢ sets V1,...,V; such that for every ¢ < ¢ and
every vertex v € V;, v has at most ¢ neighbors in the graph induced by U;>;V;. Note
that a d-degenerate graph G on n vertices admits an n-partition of degree d, where
each set V; consist of a single vertex v; such that vy, ..., v, is a degeneracy ordering.

Their proof relies on two key points:

1. A graph G such that my(G) < mg — € admits a t := C - log(n)-partition of

degree mg — 1 where C only depends on my and e.

2. If G admits a t-partition of degree ¢, then G admits an independent set .S such
that G — S admits a t-partition of degree ¢ — 1.

Note that item 1 is a direct application of the definition of the maximum average
degree: set V] to be all the vertices of degree at most mg — 1 in G. Then repeat the
process with G — V4. Since my(G) < mg — €, Vi has size linear in n, and the process
terminates in O(log(n)) steps. They make use of this slightly different peeling process
as follows: First, remove the color mg 4+ 1 from the current coloring. To do so, pick a
vertex v that is colored with mg + 1 in V; (if no such vertex exists, pick v in V; for i
maximum). By definition of the partition, there exists a color a # mg + 1 that is not
used in V;. Try to recolor v with a: if not possible then there are some neighbors of
vin Vi,...V,_1 colored with a: apply this procedure on these vertices with color a.
Then recolor v with a. By construction, calling this procedure on a vertex in V; does
not recolor any vertex on V;11,...,V;. Analyzing the tree of calls of this procedure
then shows that since V' is partitioned into ¢ = Clog(n) subsets, each vertex calls the
procedure at most O(n¢) times, and thus is recolored at most O(n°) times.

Once the color mg + 1 has been removed, one is free to recolor the independent set S

of point 2 with mg + 1 and to repeat the process with the partition of G — S of degree

182 Appendix A. Proof techniques for graph recoloring

mq — 2 with mg colors. Note that recoloring S require at most O(n) recolorings, and
thus the bottleneck lies in the first part of the process. Applying this algorithm during
mg + 1 steps starting from any two mgq 4+ 1-coloring « and 3 of GG leads to the same
mg + 1 coloring v of G (where the first independent set given by item 2 is colored
with mg + 1, the second independent set is colored by mg, and so on). Hence their
algorithm gives a reconfiguration sequence from « to v and from S to v, and thus

from « to .

A.2 Weakly chordal graphs and OAT graphs

Weakly chordal graphs A graph is weakly chordal if it does not contain a cycle of
length at least five or the complement of a cycle of length at least five as an induced
subgraph. The class of weakly chordal graphs is a natural generalization of the class
of chordal graph, and was recently studied in the framework of graph recoloring by
Feghali and Fiala in [43]. Unlike for chordal graphs, a k-colorable weakly chordal
graph is not necessarily k — 1-degenerate. In [43], the authors actually show that for
any integer k > 0 there exists a k-colorable chordal graph G such that Ry.1(G) is
not connected. However, they introduce a subclass of weakly chordal graphs which
they call compact graphs that has the nice property that for any k-colorable compact
graph G, Ri+1(G) is connected. Two non-adjacent vertices z,y of a graph G form a
2-pair if every induced paths z — y path in GG has length exactly two. Note that if
{z,y} is a 2-pair in G then Ng(z) N Ng(y) is a separator of G. In what follows, we
denote the common neighborhood Ng(z) N Ng(y) of two vertices z,y of a graph G
by S¢(x,y). Given two vertices x,y of a graph we let Sg(x,y) := Ng(z) N Na(y).

Definition 4. A weakly chordal graph G is compact if every subgraph H of G satisfies
one of the following:

1. H is a clique, or
2. H contains a 2-pair {x,y} such that Ng(x) C Ng(y), or

3. H contains a 2-pair {x,y} such that C, U Sy (z,y) induces a clique on at most
three vertices, where Cy, is the connected component of H \ Sg(xz,y) containing

.
Let us now sketch the proof of the following theorem in [43]:

Theorem 41. Let G be a k-colorable compact graph on n vertices. Then Ry+1(G) is

connected and has diameter O(n?).

The proof is short and make use of similar ideas as the ones used for chordal
graph. Let a and § be two k + 1 colorings of G and let us show that there exists a
reconfiguration sequence from « to B of length at most O(n?). Is G is a clique, then

the results holds as seen in the previous paragraph. If G satisfies condition 2 of the

A.2. Weakly chordal graphs and OAT graphs 183

definition of compact graphs, then let {z,y} be a 2-pair that satisfies the condition.
As before, we can "fold" x on y using the inclusion of the neighborhood: Since
N¢(x) € Ng(y), we can recolor z with the color of y and identify the two vertices.
The remaining graph can be recolored by induction and the obtained sequence can
be naturally extended to a sequence of G. Finally suppose that G satisfies condition
3 of the definition of compact graphs. Then Sg(x,y) contains a single vertex z for
otherwise condition 2 of the definition holds, and C, contains at most one other
vertex w # x. We can recolor the graph G \ C, by induction and extend the obtained
sequence for G by recoloring vertices of C, before z whenever z is recolored (which
can be done since C, U{z} is a clique on at most k vertices and there are k 4 1 colors).
It is then not hard to check that in any case the recoloring sequence contains O(n?)
vertices.

We outline the fact that Theorem 41 implies that Ry+1(G) is connected and has at
most quadratic diameter if G is co-chordal, that is G does not contain the complement
of a cycle of length four or more as and induced subgraph. Showing that the class of
compact graphs the class of co-chordal graph is non-trivial and we refer the interested
reader to the full article for a complete proof. Let us conclude this paragraph by an
observation: Feghali and Fiala showed that there exists k-colorable weakly chordal
graphs G that admit frozen k + 1-colorings, and thus that Ry1(G) is disconnected.
However, frozen colorings are trivial components in the reconfiguration graph, and
nothing indicates that the size of a largest connected component of Ry+1(G) should

have size more than O(n?). Hence the following question:

Question 17. What is the mazimum size of a connected component of Ri4+1(G) over

all possible k-colorable weakly chordal graph G on n vertices?

OAT graphs The class of compact graphs defined by Feghali and Fiala could also
be constructed in another way: starting from a clique G, a compact graph can be
obtained by successively adding a vertex y to G such that the neighborhood of y is
included in the neighborhood of another vertex = already in G, or by attaching a
clique on at most two vertices to a single vertex z already in G.

In [12], Biedl et al. generalizes this idea to define the class of OAT graph as follows:

Definition 5. A graph G is an OAT graph if it can be constructed from single vertex

graphs with a finite sequence of the following four operations.
1. Taking the disjoint union of G1 and Ga, defined as (V4 U Vs, E1 U E3).
2. Taking the join of G1 and Ga, defined as (V4 U Va, By U Es U{ay|z € Vi,y € Va}.

3. Adding a vertex u ¢ Vi comparable to a vertex v € Vi, defined as (V4 U{u}, B4 U
{uz|z € X} where X C N(v).

4. Attaching a complete graph Q = (Vg,Eq) to a vertex v of Gi, defined as
ViUV, E1U EqU{qulq € Vo}

184 Appendix A. Proof techniques for graph recoloring

They show that the class of OAT graphs strictly contains the class of compact
graph, but that it is disjoint from the class of weakly chordal graphs. They also show
that OAT graphs contains Pj-sparse graphs, that is graphs for which any subset of
five vertices induces at most one P;. By definition this later class strictly contains the
class of Py-free graphs. The main result of Biedl et al. on recoloring OAT graphs is
the following:

Theorem 42. Let G be a k-colorable OAT graph on n vertices. Then Ri41(G) is

connected and has diameter at most 4n?.

This Theorem generalizes both the result of Feghali and Fiala and a result of
Bonamy and Bousquet in [15] who showed that the k + 1-reconfiguration graph of
a k-colorable Py-free graph G is connected. However, the bound of Bonamy and
Bousquet on diam(Rg4+1(G) for a Py-free graph G is better since they show that it
is at most O(x(G) -n). We will not discuss the proof of Theorem 42 with as many
details as for the previous results, but let us outline the fact that the definition of
OAT graphs is inherently good for recoloring purposes. Let o and § be two colorings
of a OAT graph G:

e If G is constructed from the disjoint union of two graphs GG; and G, recolor

independently GG; and G2 by induction

e If G is constructed from a graph Gy by adding a vertex u comparable to a vertex
v € (31, recolor u to the color of v, identify v and v and recolor by induction

the obtained graph.

e If G is constructed from a graph G by attaching a clique @ to a vertex z € Gy,
recolor G; by induction and extend the sequence to a sequence of G by recoloring
vertices of () whenever the color of z is modified. This is always possible since
the number of available colors is strictly larger than the size of a maximum

clique of G.

e If G is constructed from the join of two graphs G; and Gs, then the set of colors
used for G1 and G are disjoint for any proper colorings of G. Then one can

essentially recolor G and G2 independently as for the case of the disjoint union.

However, here again it is difficult to see how such a definition can be used to obtain
linear bounds for the diameter of the reconfiguration graph. Suppose for instance
that G is constructed from G by adding a comparable vertex u to a vertex v € Gj.
The same problem as for chordal and compact graph arises: recoloring inductively the

whole graph (1 necessarily leads to recoloring each vertex a linear amount of time.

185

Bibliography

[10]

[11]

Karen I. Aardal et al. “Models and solution techniques for frequency assignment
problems”. en. In: Annals of Operations Research 153.1 (Sept. 2007), pp. 79-129.
I1SSN: 0254-5330, 1572-9338. DOI: 10.1007/s10479-007-0178-0. (Visited on
03/17/2021).

Akitaya et al. “Reconfiguration of Connected Graph Partitions via Recombina-
tion”. In: 12701 (2021), pp. 61-74. DOI: 10.1007/978-3-030-75242-2_4.

Vladimir E Alekseev. “Polynomial algorithm for finding the largest independent
sets in graphs without forks”. en. In: Discrete Applied Mathematics 135.1-3 (Jan.
2004), pp. 3-16. 1ssSN: 0166218X. DOI: 10.1016/S0166-218X (02)00290~1.

Vladimir E Alekseev. “The effect of local constraints on the complexity of
determination of the graph independence number”. In: Combinatorial-algebraic

methods in applied mathematics (1982), pp. 3-13.

Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach.
OCLC: 0cn286431654. Cambridge ; New York: Cambridge University Press,
2009. 1SBN: 978-0-521-42426-4.

Armen S. Asratian and Carl Johan Casselgren. “Solution of Vizing’s Problem
on Interchanges for the case of Graphs with Maximum Degree 4 and Related
Results”. In: Journal of Graph Theory 82.4 (Aug. 2016), pp. 350-373. ISSN:
03649024. por: 10.1002/jgt .21906.

Valentin Bartier, Nicolas Bousquet, and Marc Heinrich. “Recoloring graphs of
treewidth 27. In: Discrete Mathematics 344.12 (2021), p. 112553. 13SN: 0012-365X.
DOL: https://doi.org/10.1016/j.disc.2021.112553.

Valentin Bartier et al. “A note on deterministic zombies”. In: Discrete Applied
Mathematics 301 (2021), pp. 65-68. 1SSN: 0166-218X. DOI: https://doi.org/
10.1016/j.dam.2021.05.001.

Valentin Bartier et al. “On girth and the parameterized complexity of token
sliding and token jumping”. In: ISAAC. 2020.

Rémy Belmonte et al. “Independent Set Reconfiguration Parameterized by
Modular-Width”. en. In: Algorithmica 82.9 (Sept. 2020), pp. 2586—-2605. 1SSN:
0178-4617, 1432-0541. po1: 10.1007/s00453-020-00700~y.

Rémy Belmonte et al. “Token Sliding on Split Graphs”. en. In: Theory of
Computing Systems 65.4 (May 2021), pp. 662—686. 1SSN: 1432-4350, 1433-0490.
DOI: 10.1007/s00224-020-09967-8.

https://doi.org/10.1007/s10479-007-0178-0
https://doi.org/10.1007/978-3-030-75242-2_4
https://doi.org/10.1016/S0166-218X(02)00290-1
https://doi.org/10.1002/jgt.21906
https://doi.org/https://doi.org/10.1016/j.disc.2021.112553
https://doi.org/https://doi.org/10.1016/j.dam.2021.05.001
https://doi.org/https://doi.org/10.1016/j.dam.2021.05.001
https://doi.org/10.1007/s00453-020-00700-y
https://doi.org/10.1007/s00224-020-09967-8

186

Bibliography

[12]

[13]

Therese Biedl, Anna Lubiw, and Owen Merkel. “Building a larger class of graphs
for efficient reconfiguration of vertex colouring”. In: arXiv:2003.01818 [cs] (Mar.
2020). arXiv: 2003.01818.

Alexandre Blanché et al. “Decremental Optimization of Dominating Sets Under
the Reconfiguration Framework”. In: Combinatorial Algorithms. Ed. by Leszek
Gasieniec, Ralf Klasing, and Tomasz Radzik. Vol. 12126. Series Title: Lecture
Notes in Computer Science. Cham: Springer International Publishing, 2020,
pp. 69-82. 1SBN: 978-3-030-48965-6 978-3-030-48966-3. DOI: 10.1007/978-3~
030-48966-3_6.

Hans L. Bodlaender. “A Linear-Time Algorithm for Finding Tree-Decompositions
of Small Treewidth”. In: STAM Journal on Computing 25.6 (Dec. 1996), pp. 1305~
1317. 18sN: 0097-5397, 1095-7111. DOI: 10.1137/S0097539793251219.

Marthe Bonamy and Nicolas Bousquet. “Recoloring graphs via tree decompo-
sitions”. In: Furopean Journal of Combinatorics 69 (Mar. 2018), pp. 200-213.
15SN: 01956698. DOI: 10.1016/j.ejc.2017.10.010.

Marthe Bonamy and Nicolas Bousquet. “Reconfiguring Independent Sets in
Cographs”. In: arXiv:1406.1433 [cs, math] (June 2014). arXiv: 1406.1433.

Marthe Bonamy and Nicolas Bousquet. “Token Sliding on Chordal Graphs”.
In: Graph-Theoretic Concepts in Computer Science. Ed. by Hans L. Bodlaender
and Gerhard J. Woeginger. Vol. 10520. Series Title: Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2017, pp. 127-139. ISBN:
978-3-319-68704-9 978-3-319-68705-6. DOI: 10.1007/978-3-319-68705-6_10.

Marthe Bonamy et al. On Vizing’s edge colouring question. 2021. arXiv: 2107 .
07900 [math.CO].

Marthe Bonamy et al. “Reconfiguration graphs for vertex colourings of chordal
and chordal bipartite graphs”. In: Journal of Combinatorial Optimization 27.1
(Jan. 2014), pp. 132-143. 18sN: 1382-6905, 1573-2886. DOI: 10.1007 /510878~
012-9490-y.

Edouard Bonnet et al. “Parameterized Complexity of Independent Set in H-Free
Graphs”. en. In: Algorithmica 82.8 (Aug. 2020), pp. 2360-2394. 1SSN: 0178-4617,
1432-0541. DOI: 10.1007/s00453-020-00730-6.

Paul Bonsma. “Independent Set Reconfiguration in Cographs and their General-
izations.” en. In: Journal of Graph Theory 83.2 (Oct. 2016), pp. 164-195. 1SSN:
03649024. por: 10.1002/jgt.21992. (Visited on 06/16,/2021).

Paul Bonsma and Luis Cereceda. “Finding Paths between graph colourings:
PSPACE-completeness and superpolynomial distances”. In: Theoretical Com-
puter Science 410.50 (Nov. 2009), pp. 5215-5226. 1SsN: 03043975. pOIL: 10.1016/
j.tcs.2009.08.023.

https://doi.org/10.1007/978-3-030-48966-3_6
https://doi.org/10.1007/978-3-030-48966-3_6
https://doi.org/10.1137/S0097539793251219
https://doi.org/10.1016/j.ejc.2017.10.010
https://doi.org/10.1007/978-3-319-68705-6_10
https://arxiv.org/abs/2107.07900
https://arxiv.org/abs/2107.07900
https://doi.org/10.1007/s10878-012-9490-y
https://doi.org/10.1007/s10878-012-9490-y
https://doi.org/10.1007/s00453-020-00730-6
https://doi.org/10.1002/jgt.21992
https://doi.org/10.1016/j.tcs.2009.08.023
https://doi.org/10.1016/j.tcs.2009.08.023

Bibliography 187

[23]

[24]

[25]

[26]

Paul Bonsma, Marcin Kaminski, and Marcin Wrochna. “Reconfiguring Indepen-
dent Sets in Claw-Free Graphs”. In: Algorithm Theory — SWAT 201/. Ed. by
David Hutchison et al. Vol. 8503. Series Title: Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2014, pp. 86-97. 1SBN: 978-3-
319-08403-9 978-3-319-08404-6. DOI: 10.1007/978-3-319-08404-6_8.

Ludvig Borgne. “Automatic frequency assignement for cellular telephones using

local search heuristicis”. 1994.

Prosenjit Bose and Ferran Hurtado. “Flips in planar graphs”. In: Computational
Geometry 42.1 (Jan. 2009), pp. 60-80. 1SSN: 09257721. DOI: 10.1016/j.comgeo.
2008.04.001.

Nicolas Bousquet and Valentin Bartier. “Linear transformations between col-
orings in chordal graphs”. In: arXiw:1907.01863 [cs, math] (July 2019). arXiv:
1907.01863.

Nicolas Bousquet and Marc Heinrich. “A polynomial version of Cereceda’s
conjecture”. In: arXiv:1905.05619 [cs, math] (Mar. 2019). arXiv: 1903.05619.

Nicolas Bousquet, Arnaud Mary, and Aline Parreau. “Token Jumping in Minor-
Closed Classes”. In: Fundamentals of Computation Theory. Ed. by Ralf Klasing
and Marc Zeitoun. Vol. 10472. Series Title: Lecture Notes in Computer Science.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2017, pp. 136-149. 1SBN: 978-3-
662-55750-1 978-3-662-55751-8. DOI: 10.1007/978-3-662-55751-8_12.

Nicolas Bousquet and Guillem Perarnau. “Fast recoloring of sparse graphs”. In:
European Journal of Combinatorics 52 (Feb. 2016), pp. 1-11. 1SSN: 01956698.
DOI: 10.1016/j.ejc.2015.08.001.

Marcin Brianski et al. “Reconfiguring Independent Sets on Interval Graphs”. In:
arXiv:2105.03402 [math] (May 2021). arXiv: 2105.03402.

Luis Cereceda. “Mixing Graph Colourings”. PhD thesis. London School of

Economics and Political Science, 2007.

Sitan Chen et al. “Improved bounds for randomly sampling colorings via linear
programming”. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms. SIAM. 2019, pp. 2216-2234.

Stephen A. Cook. “The complexity of theorem-proving procedures”. en. In:
Proceedings of the third annual ACM symposium on Theory of computing -
STOC ’71. Shaker Heights, Ohio, United States: ACM Press, 1971, pp. 151-158.
DOI: 10.1145/800157.805047.

Marek Cygan et al. Parameterized Algorithms. 1st. Springer Publishing Company,
Incorporated, 2015. 1SBN: 3319212745.

Erik D. Demaine et al. “Linear-time algorithm for sliding tokens on trees”. en.
In: Theoretical Computer Science 600 (Oct. 2015), pp. 132-142. 1SSN: 03043975.
DOI: 10.1016/j.tcs.2015.07.037.

https://doi.org/10.1007/978-3-319-08404-6_8
https://doi.org/10.1016/j.comgeo.2008.04.001
https://doi.org/10.1016/j.comgeo.2008.04.001
https://doi.org/10.1007/978-3-662-55751-8_12
https://doi.org/10.1016/j.ejc.2015.08.001
https://doi.org/10.1145/800157.805047
https://doi.org/10.1016/j.tcs.2015.07.037

188

Bibliography

[36]

[37]

[47]

Reinhard Diestel. Graph theory. 3rd ed. Graduate texts in mathematics 173.
OCLC: 0cm61167989. Berlin ; New York: Springer, 2005. 1SBN: 978-3-540-26182-
7.

Zdenék Dvordk and Carl Feghali. “A Thomassen-type method for planar graph
recoloring”. In: Furopean Journal of Combinatorics 95 (June 2021), p. 103319.
ISSN: 01956698. DOI: 10.1016/j.ejc.2021.103319

Martin Dyer et al. “Randomly coloring sparse random graphs with fewer colors
than the maximum degree”. en. In: Random Structures and Algorithms 29.4
(Dec. 2006), pp. 450-465. 1sSN: 10429832, 10982418. DOI: 10.1002/rsa.20129.

Eduard Eiben and Carl Feghali. “Toward Cereceda’s conjecture for planar
graphs”. In: Journal of Graph Theory 94.2 (June 2020), pp. 267—277. 1SSN:
0364-9024, 1097-0118. poI: 10.1002/jgt .22518.

Carl Feghali. “Paths between colourings of graphs with bounded tree-width”.
In: Information Processing Letters 144 (Apr. 2019), pp. 37-38. 1SsN: 00200190.
DOI: 10.1016/j.1ipl1.2018.12.006.

Carl Feghali. “Reconfiguring 10-Colourings of Planar Graphs”. In: Graphs and
Combinatorics 36.6 (Nov. 2020), pp. 1815-1818. 1ssN: 0911-0119, 1435-5914. DOTI:
10.1007/s00373-020-02199-0.

Carl Feghali. “Reconfiguring colorings of graphs with bounded maximum aver-
age degree”. In: Journal of Combinatorial Theory, Series B 147 (Mar. 2021),
pp. 133-138. 1sSN: 00958956. DOI: 10.1016/j.jctb.2020.11.001. (Visited on
03/23/2021).

Carl Feghali and Jifi Fiala. “Reconfiguration graph for vertex colourings of

weakly chordal graphs”. In: Discrete Mathematics 343.3 (Mar. 2020), p. 111733.
1SsN: 0012365X. Dor: 10.1016/j.disc.2019.111733.

Carl Feghali, Matthew Johnson, and Dani¢l Paulusma. “A Reconfigurations
Analogue of Brooks’ Theorem and Its Consequences”. In: Journal of Graph
Theory 83.4 (Dec. 2016), pp. 340-358. 1SsN: 03649024. DOI: 10.1002/jgt .22000.

Shannon L Fitzpatrick et al. “A deterministic version of the game of zombies and

survivors on graphs”. In: Discrete Applied Mathematics 213 (2016), pp. 1-12.

Eli Fox-Epstein et al. “Sliding Token on Bipartite Permutation Graphs”. In:
Algorithms and Computation. Vol. 9472. Berlin, Heidelberg, 2015, pp. 237-247.
ISBN: 978-3-662-48970-3 978-3-662-48971-0. DOI1: 10.1007/978-3-662-48971~
0_21.

Philippe Galinier, Michel Habib, and Christophe Paul. “Chordal graphs and
their clique graphs”. In: Graph-Theoretic Concepts in Computer Science. Ed. by
Manfred Nagl. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995, pp. 358-371.

https://doi.org/10.1016/j.ejc.2021.103319
https://doi.org/10.1002/rsa.20129
https://doi.org/10.1002/jgt.22518
https://doi.org/10.1016/j.ipl.2018.12.006
https://doi.org/10.1007/s00373-020-02199-0
https://doi.org/10.1016/j.jctb.2020.11.001
https://doi.org/10.1016/j.disc.2019.111733
https://doi.org/10.1002/jgt.22000
https://doi.org/10.1007/978-3-662-48971-0_21
https://doi.org/10.1007/978-3-662-48971-0_21

Bibliography 189

[48]

[57]

Philippe Galinier, Michel Habib, and Christophe Paul. “Chordal graphs and
their clique graphs”. en. In: Graph-Theoretic Concepts in Computer Science.
Ed. by Gerhard Goos et al. Vol. 1017. Series Title: Lecture Notes in Computer
Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995, pp. 358-371. ISBN:
978-3-540-60618-5 978-3-540-48487-5. DOI: 10.1007/3-540-60618-1_88.

Guilherme C. M. Gomes, Sérgio H. Nogueira, and Vinicius F. dos Santos. “Some
results on Vertex Separator Reconfiguration”. In: arXiw:2004.10873 [cs] (Apr.
2020). arXiv: 2004.10873.

Parikshit Gopalan et al. “The Connectivity of Boolean Satisfiability: Compu-
tational and Structural Dichotomies”. en. In: SIAM Journal on Computing
38.6 (Jan. 2009), pp. 2330-2355. 1SSN: 0097-5397, 1095-7111. por: 10.1137/
07070440X. (Visited on 06/16/2021).

Andrzej Grzesik et al. “Polynomial-time algorithm for Maximum Weight In-
dependent Set on $P__6$-free graphs”. In: arXiv:1707.05491 [cs, math] (Mar.
2020). arXiv: 1707.05491.

R. Haas and K. Seyffarth. “The k-Dominating Graph”. In: Graphs and Com-
binatorics 30.3 (May 2014), pp. 609-617. 1ssN: 0911-0119, 1435-5914. por:
10.1007/s00373-013-1302-3.

Michel Habib et al. “Lex-BFS and partition refinement, with applications to
transitive orientation, interval graph recognition and consecutive ones testing”.
In: Theoretical Computer Science 234.1-2 (Mar. 2000), pp. 59-84. 1SsN: 03043975.
DOI: 10.1016/S0304-3975(97)00241-7.

Arash Haddadan et al. “The complexity of dominating set reconfiguration”. In:
Theoretical Computer Science 651 (Oct. 2016), pp. 37-49. 1sSN: 03043975. DOI:
10.1016/j.tcs.2016.08.016.

Junghee Han. “Frequency reassignment problem in mobile communication net-
works”. In: Computers € Operations Research 34.10 (2007), pp. 2939-2948. 1sSN:
0305-0548. DOI: https://doi.org/10.1016/j.cor.2005.11.005.

Robert A. Hearn and Erik D. Demaine. “PSPACE-completeness of sliding-block
puzzles and other problems through the nondeterministic constraint logic model
of computation”. en. In: Theoretical Computer Science 343.1-2 (Oct. 2005),
pp. 72-96. 1SSN: 03043975. DOI: 10.1016/j .tcs . 2005.05.008. (Visited on
06/12/2021).

Jan van den Heuvel. “The complexity of change”. In: Surveys in Combinatorics
2013. Ed. by Simon Blackburn, Stefanie Gerke, and Mark Wildon. Cambridge:
Cambridge University Press, 2013, pp. 127-160. 1SBN: 978-1-139-50674-8. DOI:
10.1017/CB09781139506748.005.

https://doi.org/10.1007/3-540-60618-1_88
https://doi.org/10.1137/07070440X
https://doi.org/10.1137/07070440X
https://doi.org/10.1007/s00373-013-1302-3
https://doi.org/10.1016/S0304-3975(97)00241-7
https://doi.org/10.1016/j.tcs.2016.08.016
https://doi.org/https://doi.org/10.1016/j.cor.2005.11.005
https://doi.org/10.1016/j.tcs.2005.05.008
https://doi.org/10.1017/CBO9781139506748.005

190

Bibliography

[58]

[59]

[66]

Duc A. Hoang, Akira Suzuki, and Tsuyoshi Yagita. “Reconfiguring k-path Vertex
Covers”. In: WALCOM: Algorithms and Computation. Ed. by M. Sohel Rahman,
Kunihiko Sadakane, and Wing-Kin Sung. Vol. 12049. Series Title: Lecture Notes
in Computer Science. Cham: Springer International Publishing, 2020, pp. 133—
145. 1sBN: 978-3-030-39880-4 978-3-030-39881-1. DOI: 10.1007/978-3-030~
39881-1_12.

Duc A. Hoang and Ryuhei Uehara. “Sliding Tokens on a Cactus”. en. In: (2016).
Artwork Size: 26 pages Medium: application/pdf Publisher: Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik GmbH, Wadern/Saarbruecken, Germany, 26
pages. DOI: 10.4230/LIPICS.ISAAC.2016.37.

Takehiro Ito, Marcin Kaminski, and Erik D. Demaine. “Reconfiguration of list
edge-colorings in a graph”. en. In: Discrete Applied Mathematics 160.15 (Oct.
2012), pp. 2199-2207. 18SN: 0166218X. DOI: 10.1016/j.dam.2012.05.014.

Takehiro Ito, Marcin Kaminski, and Hirotaka Ono. “Fixed-Parameter Tractabil-
ity of Token Jumping on Planar Graphs”. In: Algorithms and Computation.
Ed. by Hee-Kap Ahn and Chan-Su Shin. Vol. 8889. Series Title: Lecture Notes in
Computer Science. Cham: Springer International Publishing, 2014, pp. 208-219.
ISBN: 978-3-319-13074-3 978-3-319-13075-0. DOI: 10.1007/978-3-319-13075~
0_17.

Takehiro Ito, Hiroyuki Nooka, and Xiao Zhou. “Reconfiguration of Vertex Covers
in a Graph”. In: IEICE Transactions on Information and Systems £E99.D.3 (2016),
pp. 598-606. 1SSN: 0916-8532, 1745-1361. DOI: 10.1587/transinf .2015FCP0010.

Takehiro Ito et al. “On the complexity of reconfiguration problems”. en. In: The-
oretical Computer Science 412.12-14 (Mar. 2011), pp. 1054-1065. 1SSN: 03043975.
DOI: 10.1016/j.tcs.2010.12.005. (Visited on 06/12/2021).

Takehiro Ito et al. “On the Parameterized Complexity for Token Jumping on
Graphs”. In: Theory and Applications of Models of Computation. Ed. by David
Hutchison et al. Vol. 8402. Series Title: Lecture Notes in Computer Science.
Cham: Springer International Publishing, 2014, pp. 341-351. 1SBN: 978-3-319-
06088-0 978-3-319-06089-7. DOI: 10.1007/978-3-319-06089-7_24. (Visited on
06/16/2021).

Mark Jerrum. “A very simple algorithm for estimating the number of k-colorings
of a low-degree graph”. en. In: Random Structures € Algorithms 7.2 (Sept.
1995), pp. 157-165. 1SSN: 10429832. DOIL: 10.1002/rsa.3240070205. (Visited
on 03/24/2021).

Wm. Woolsey Johnson and William E. Story. “Notes on the "15" Puzzle”. In:
American Journal of Mathematics 2.4 (Dec. 1879), p. 397. 1sSN: 00029327. DOTI:
10.2307/2369492.

https://doi.org/10.1007/978-3-030-39881-1_12
https://doi.org/10.1007/978-3-030-39881-1_12
https://doi.org/10.4230/LIPICS.ISAAC.2016.37
https://doi.org/10.1016/j.dam.2012.05.014
https://doi.org/10.1007/978-3-319-13075-0_17
https://doi.org/10.1007/978-3-319-13075-0_17
https://doi.org/10.1587/transinf.2015FCP0010
https://doi.org/10.1016/j.tcs.2010.12.005
https://doi.org/10.1007/978-3-319-06089-7_24
https://doi.org/10.1002/rsa.3240070205
https://doi.org/10.2307/2369492

Bibliography 191

[67]

Marcin Kaminski, Paul Medvedev, and Martin Milani¢. “Complexity of inde-
pendent set reconfigurability problems”. en. In: Theoretical Computer Science
439 (June 2012), pp. 9-15. 1SSN: 03043975. DOI: 10.1016/j.tcs.2012.03.004.
(Visited on 06/12/2021).

Marcin Kaminski, Paul Medvedev, and Martin Milani¢. “Shortest Paths between
Shortest Paths and Independent Sets”. In: Combinatorial Algorithms. Ed. by
Costas S. Iliopoulos and William F. Smyth. Vol. 6460. Series Title: Lecture
Notes in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 56—67. ISBN: 978-3-642-19221-0 978-3-642-19222-7. DOI: 10.1007/978-3~-
642-19222-7_7. (Visited on 06/12/2021).

Jeong Han Kim. “The Ramsey number R(3, t) has order of magnitude t2/log
t”. en. In: Random Structures €& Algorithms 7.3 (Oct. 1995), pp. 173-207. 1SSN:
10429832. DOI: 10.1002/rsa.3240070302.

David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov chains and

mixing times. American Mathematical Society, 2006.

Daniel Lokshtanov and Amer E. Mouawad. “The Complexity of Independent
Set Reconfiguration on Bipartite Graphs”. In: ACM Transactions on Algorithms
15.1 (Jan. 2019), pp. 1-19. 18sN: 1549-6325, 1549-6333. DOI: 10.1145/3280825.
(Visited on 06,/18/2021).

Daniel Lokshtanov, Martin Vatshelle, and Yngve Villanger. “Independent set in
P 5-free graphs in polynomial time”. In: Proceedings of the twenty-fifth annual
ACM-SIAM symposium on discrete algorithms. STAM. 2014, pp. 570-581.

Daniel Lokshtanov et al. “Reconfiguration on sparse graphs”. en. In: Journal
of Computer and System Sciences 95 (Aug. 2018), pp. 122-131. 18sN: 00220000.
DOI: 10.1016/5.jcss.2018.02.004.

Anna Lubiw and Vinayak Pathak. “Flip distance between two triangulations
of a point set is NP-complete”. In: Computational Geometry 49 (Nov. 2015),
pp. 17-23. 18sN: 09257721. DOI: 10.1016/j.comgeo.2014.11.001.

Jessica McDonald, Bojan Mohar, and Diego Scheide. “Kempe Equivalence
of Edge-Colorings in Subcubic and Subquartic Graphs”. In: Journal of Graph
Theory 70.2 (June 2012), pp. 226-239. 1SSN: 03649024. DOI: 10.1002/jgt .20613.

George J Minty. “On maximal independent sets of vertices in claw-free graphs”.
en. In: Journal of Combinatorial Theory, Series B 28.3 (June 1980), pp. 284-304.
1ssN: 00958956. DOI: 10.1016/0095-8956(80) 90074-X.

Bojan Mohar. “Kempe Equivalence of Colorings”. In: Graph Theory in Paris. Ed.
by Adrian Bondy et al. Series Title: Trends in Mathematics. Basel: Birkhduser
Basel, 2007, pp. 287-297. 1SBN: 978-3-7643-7228-6. DOI: 10.1007/978-3-7643-
7400-6_22.

https://doi.org/10.1016/j.tcs.2012.03.004
https://doi.org/10.1007/978-3-642-19222-7_7
https://doi.org/10.1007/978-3-642-19222-7_7
https://doi.org/10.1002/rsa.3240070302
https://doi.org/10.1145/3280825
https://doi.org/10.1016/j.jcss.2018.02.004
https://doi.org/10.1016/j.comgeo.2014.11.001
https://doi.org/10.1002/jgt.20613
https://doi.org/10.1016/0095-8956(80)90074-X
https://doi.org/10.1007/978-3-7643-7400-6_22
https://doi.org/10.1007/978-3-7643-7400-6_22

192

Bibliography

[78]

[82]

[83]

[84]

Amer E. Mouawad, Naomi Nishimura, and Venkatesh Raman. “Vertex Cover
Reconfiguration and Beyond”. In: Algorithms and Computation. Ed. by Hee-Kap
Ahn and Chan-Su Shin. Vol. 8889. Series Title: Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2014, pp. 452-463. ISBN:
978-3-319-13074-3 978-3-319-13075-0. DOI: 10.1007/978-3-319-13075-0_36.

Amer E. Mouawad et al. “On the Parameterized Complexity of Reconfiguration
Problems”. In: Parameterized and Exact Computation. Ed. by David Hutchison
et al. Vol. 8246. Series Title: Lecture Notes in Computer Science. Cham: Springer
International Publishing, 2013, pp. 281-294. 1SBN: 978-3-319-03897-1 978-3-319-
03898-8. pOI: 10.1007/978-3-319-03898-8_24.

Naomi Nishimura. “Introduction to Reconfiguration”. In: Algorithms 11.4 (Apr.
2018), p. 52. 1SSN: 1999-4893. DOI: 10.3390/211040052. (Visited on 03/16,/2021).

Hiroki Osawa et al. “Complexity of Coloring Reconfiguration under Recol-
orability Constraints”. en. In: (2017). Artwork Size: 12 pages Medium: applica-
tion/pdf Publisher: Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH,
Wadern/Saarbruecken, Germany, 12 pages. DOI: 10.4230/LIPICS.ISAAC.2017.
62.

Hiroki Osawa et al. “The Complexity of (List) Edge-Coloring Reconfiguration
Problem”. en. In: IEICE Transactions on Fundamentals of Electronics, Commu-
nications and Computer Sciences E101.A.1 (2018), pp. 232-238. 1SsN: 0916-8508,
1745-1337. DOI: 10.1587/transfun.E101.A.232.

Donald J. Rose, R. Endre Tarjan, and George S. Lueker. “Algorithmic Aspects
of Vertex Elimination on Graphs”. en. In: SIAM Journal on Computing 5.2
(June 1976), pp. 266-283. 1SsN: 0097-5397, 1095-7111. DOI: 10.1137/0205021.

Jesus Salas and Alan D. Sokal. “Absence of phase transition for antiferromag-
netic Potts models via the Dobrushin uniqueness theorem”. en. In: Journal of
Statistical Physics 86.3-4 (Feb. 1997), pp. 551-579. 1SsN: 0022-4715, 1572-9613.
DOI: 10.1007/BF02199113. (Visited on 03/24/2021).

Walter J. Savitch. “Relationships between nondeterministic and deterministic
tape complexities”. en. In: Journal of Computer and System Sciences 4.2 (Apr.
1970), pp. 177-192. 1SSN: 00220000. DOI: 10.1016/50022-0000(70)80006-X.

Najiba Sbihi. “Algorithme de recherche d’un stable de cardinalite maximum
dans un graphe sans etoile”. en. In: Discrete Mathematics 29.1 (1980), pp. 53-76.
ISSN: 0012365X. DOI: 10.1016/0012-365X(90)90287-R.

Sebastian Siebertz. “Reconfiguration on Nowhere Dense Graph Classes”. In: The
FElectronic Journal of Combinatorics 25.3 (Aug. 2018), P3.24. 1SSN: 1077-8926.
pOI: 10.37236/7458. (Visited on 06/23/2021).

https://doi.org/10.1007/978-3-319-13075-0_36
https://doi.org/10.1007/978-3-319-03898-8_24
https://doi.org/10.3390/a11040052
https://doi.org/10.4230/LIPICS.ISAAC.2017.62
https://doi.org/10.4230/LIPICS.ISAAC.2017.62
https://doi.org/10.1587/transfun.E101.A.232
https://doi.org/10.1137/0205021
https://doi.org/10.1007/BF02199113
https://doi.org/10.1016/S0022-0000(70)80006-X
https://doi.org/10.1016/0012-365X(90)90287-R
https://doi.org/10.37236/7458

Bibliography 193

[38]

[91]

[92]

Daniel D. Sleator, Robert E. Tarjan, and William P. Thurston. “Rotation
distance, triangulations, and hyperbolic geometry”. In: Journal of the American
Mathematical Society 1.3 (Sept. 1988), pp. 647-647. 1SSN: 0894-0347. DOT: 10.
1090/80894-0347-1988-0928904-4.

Akira Suzuki, Amer E. Mouawad, and Naomi Nishimura. “Reconfiguration
of Dominating Sets”. In: Computing and Combinatorics. Ed. by Zhipeng Cai,
Alex Zelikovsky, and Anu Bourgeois. Vol. 8591. Series Title: Lecture Notes in
Computer Science. Cham: Springer International Publishing, 2014, pp. 405-416.
ISBN: 978-3-319-08782-5 978-3-319-08783-2. DOI: 10.1007/978-3-319-08783~
2_35.

Asahi Takaoka. “Complexity of Hamiltonian Cycle Reconfiguration”. en. In:
Algorithms 11.9 (Sept. 2018), p. 140. 1SSN: 1999-4893. DOI: 10.3390/211090140.
(Visited on 07/09/2021).

C. Thomassen. “Every Planar Graph Is 5-Choosable”. In: Journal of Combi-
natorial Theory, Series B 62.1 (Sept. 1994), pp. 180-181. 1SsN: 00958956. DOI:
10.1006/jctb.1994.1062.

Carsten Thomassen. “Decomposing a Planar Graph into an Independent Set
and a 3-Degenerate Graph”. In: Journal of Combinatorial Theory, Series B 83.2
(Nov. 2001), pp. 262-271. 1SSN: 00958956. DOI: 10.1006/jctb.2001.2056.

Eric Vigoda. “Improved bounds for sampling colorings”. en. In: Journal of
Mathematical Physics 41.3 (Mar. 2000), pp. 1555-1569. 1sSN: 0022-2488, 1089-
7658. DOI: 10.1063/1.533196. (Visited on 03/24/2021).

V. G. Vizing. “The chromatic class of a multigraph”. In: Cybernetics 1.3 (May
1965), pp. 32—41. 1ssN: 0011-4235, 1573-8337. DOI: 10.1007/BF01885700.

VG Vizing. On an estimated of the chromatic class of a p-graph. Diskrete Analiz.,
3: 25-50. 1964.

K. Wagner. “Bemerkungen zum Vierfarbenproblem.” eng. In: Jahresbericht der
Deutschen Mathematiker- Vereinigung 46 (1936), pp. 26-32.

Douglas Brent West. Introduction to graph theory. 2nd ed. Upper Saddle River,
N.J: Prentice Hall, 2001. 1sBN: 978-0-13-014400-3.

Marcin Wrochna. “Reconfiguration in bounded bandwidth and tree-depth”. en.
In: Journal of Computer and System Sciences 93 (May 2018), pp. 1-10. 1SSN:
00220000. poI: 10.1016/j.jcss.2017.11.003.

Takeshi Yamada and Ryuhei Uehara. “Shortest Reconfiguration of Sliding
Tokens on a Caterpillar”. In: WALCOM: Algorithms and Computation. Ed. by
Mohammad Kaykobad and Rossella Petreschi. Vol. 9627. Series Title: Lecture
Notes in Computer Science. Cham: Springer International Publishing, 2016,
pp. 236-248. 1sBN: 978-3-319-30138-9 978-3-319-30139-6. DOI: 10.1007/978-3~
319-30139-6_19.

https://doi.org/10.1090/S0894-0347-1988-0928904-4
https://doi.org/10.1090/S0894-0347-1988-0928904-4
https://doi.org/10.1007/978-3-319-08783-2_35
https://doi.org/10.1007/978-3-319-08783-2_35
https://doi.org/10.3390/a11090140
https://doi.org/10.1006/jctb.1994.1062
https://doi.org/10.1006/jctb.2001.2056
https://doi.org/10.1063/1.533196
https://doi.org/10.1007/BF01885700
https://doi.org/10.1016/j.jcss.2017.11.003
https://doi.org/10.1007/978-3-319-30139-6_19
https://doi.org/10.1007/978-3-319-30139-6_19

194

Index

H-free graph, 20
X-complete, 17
X-hard, 17
W-hierarchy, 23
d-degenerate, 19
k-edge-coloring, 26
k-mixing, 36

absorbed, 168

acyclic, 18

adjacent configuration, 24
anti-ferromagnetic Potts model, 36

aperiodic Markov chain, 38

bag, 21

bipartite graph, 20
bipartition, 20
black holes, 168

cactus graph, 116
choice number, 51
choosability, 51

chord, 20

chordal graph, 20
chromatic index, 26
chromatic number, 19
class of graph, 19

claw, 112

clique, 19

clique number, 19
closed neighborhood, 18
cographs, 20

colorable, 19

coloring, 19
complement graph, 18
configurations, 24
connected, 18
connected component, 18

cycle, 18

decision algorithm, 16
decision problem, 16
degeneracy ordering, 19
degree, 18

depth (boolean circuit), 23
diameter, 18

disconnected, 18

distance, 18

edge set, 17
edge-flip, 25
ergodic Markov chain, 38
even hole-free graph, 112

fixed-parameter tractable, 22
flip distance, 25

flip dynamic, 40

fork, 117

frequency reassignement problem, 34
frozen coloring, 36

frozen configuration, 108

galactic graph, 168

galactic independent set, 168
galactic reconfiguration graph, 168
galactic token sliding, 168
Glauber dynamics, 38

graph recoloring, 26

hereditary class, 19

independence number, 19
independent set, 19
Independent set reconfiguration, 106
induced cycle, 18
induced path, 18
induced subgraph, 18
instance, 16

irreducible Markov chain, 38

INDEX

195

Kempe chain, 26
Kempe change, 26
Kempe-equivalent, 26
kernel, 22

list list assignment, 51
list-coloring, 51

loop, 17

Markov chain, 37
Markov property, 37
maximum degree, 18
modular-width, 119

neighbor, 18

neighborhood, 18

non-deterministic algorithm, 16
Nondeterministic Constraint Logic, 105

nowhere-dense graph, 118

parameterized problem, 21
parameterized reduction, 23
path, 18

perfect elimination ordering, 20
perfect graphs, 20

planetary component, 169
planetary path, 169

planets, 168

polynomial-time reduction, 17

proper coloring, 19

rapidly mixing, 39

reconfiguration graph, 24
reconfiguration graph for rule 7, 108
reconfiguration operation, 24
reconfiguration rule, 107
reconfiguration sequence, 34
reversible Markov chain, 38

rigid configuration, 108

simple graph, 18

sliding token problem, 105
source problem, 24

split graph, 20

stationary Markov chain, 38

subgraph, 18

TAR-adjacent, 107
TJ-adjacent, 107

token jumping, 27

token sliding, 27

total variation distance, 39
tree, 21

tree decomposition, 21
treewidth, 21
triangulation, 25
TS-adjacent, 107

undirected graph, 18

valid recoloring sequence, 34
vertex cover, 22

vertex set, 17

walk, 18
weft, 23

	Introduction
	Preliminaries
	A brief introduction to reconfiguration
	Outline of this thesis

	I Graph recoloring
	Introduction to graph recoloring
	An example: the frequency assignement problem
	Definitions
	From statistical physics to graph theory: Glaubers dynamic
	Diameter of the reconfiguration graph and Cereceda's conjecture
	Linear transformations between colorings and our contributions.

	Proof techniques for graph recoloring
	Induction based techniques
	Identification technique
	List recoloring
	Proof techniques for linear bounds
	Our techniques

	Linear transformations between colorings of chordal graphs
	Outline of proof: a warm-up on interval graphs.
	The algorithm on chordal graphs
	Overview of the four steps
	Step 1: proof of Lemma 4
	Step 2: proof of Lemma 5
	Step 3: proof of Lemma 6
	Step 4: proof of Lemma 7

	Recoloring graphs of treewidth 2
	Reduction to chordal graphs
	Best choice algorithm

	II Independent set reconfiguration
	Independent set reconfiguration
	Definitions
	Basic results and complexity
	Independent set reconfiguration on graph classes
	Parameterized complexity

	Independent set reconfiguration in H-free graphs
	An Alekseev type theorem for reconfiguration
	MISR in fork-free graphs
	A short discussion on the non-maximum case

	On girth and the parameterized complexity of Token Sliding and Token Jumping
	Positive results
	Hardness results

	Galactic Token Sliding
	Galactic graphs
	Graphs of bounded degree

	III Conclusion
	Conclusion
	Graph recoloring and independent set reconfiguration
	Other problems we investigated

	Proof techniques for graph recoloring
	Graphs with bounded maximum average degree
	Weakly chordal graphs and OAT graphs

	Bibliography

