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Résumé étendu

Une image hyperspectrale provient de l’observation d’une même scène dans
de nombreuses longueurs d’onde esapcées de quelques nanomètres et contigües.
L’intérêt est d’obtenir un spectre que l’on peut assimiler comme continu. En im-
agerie hyperspectrale on considère que chaque matériau, présent dans la scène, reflète
des ondes électromagnétiques de manière spécifique. Ainsi, Le spectre de chaque
pixel diffère suivant le ou les matériaux présents et on peut par exemple discriminer
deux objets de même couleur composés de matériaux différents. La représentation
d’une image hyperspectrale sous forme de tenseur d’ordre trois ou d’un tableau tridi-
mensionnel est la plus utilisée, où les dimensions impliquées sont de même nature
: deux dimensions spatiales et une dimension spectrale, comme le montre la figure
1. Ceci nous permet de prendre en compte simultanément l’information spatiale et
l’information spectrale.

En raison des caractéristiques des HSI, l’imagerie hyperspectrale est largement
utilisée dans de nombreux domaines [1,2], tels que l’exploration minérale [3], l’agriculture
[4,5], l’environnement [6]. Dans ces applications on s’intèresse plus particulièrement
à la classification et la détection de cibles dans les images hyperspectrales.

Figure 1: Schéma de principe de l’imagerie hyperspectrale.
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Cependant, comme les HSI contiennent généralement des centaines de bandes
spectrales, la charge de calculs augmente rapidement et les techniques convention-
nelles ne sont plus efficaces pour le traitement de données de grande dimension,
principalement en raison de la malédiction de la dimensionnalité [7]. La réduction
de dimension spectrale ou l’extraction de caractéristiques pertinentes de l’image hy-
perspectrale sont des moyens efficaces de résoudre le problème de la malédiction de
la dimensionnalité. L’extraction des caractéristiques est l’une des étapes les plus
importantes pour la classification et la détection. Les données hyperspectrales sont
des données typiques non linéaires, qui contiennent de nombreuses informations
spectrales et spatiales. Les méthodes traditionnelles d’extraction de caractéristiques
sont basées sur des transformations linéaires, telles que l’analyse factorielle (FA),
l’analyse en composantes principales (PCA), qui sont limitées pour l’extraction de
caractéristiques non linéaires et des caractéristiques à un niveau profond [8].

Au cours de ces dernières années, considéré comme une branche importante
de l’apprentissage automatique [9–12], l’apprentissage en profondeur a attiré une
large attention en raison de ses bonnes performances pour l’analyse de données
et l’extraction de caractéristiques [13, 14]. En extrayant les caractéristiques des
données d’entrée du bas vers le haut du réseau, les modèles d’apprentissage en
profondeur peuvent former les caractéristiques de haut niveau et non linéaires [15].
Certains modèles d’apprentissage profond sont utilisés à la classification en imagerie
hyperspectrale et quelques résultats sont obtenus, tels que l’autoencodeur (AE) [16],
les réseaux de croyances profondes (DBN) [17], les réseau de neurones récurrents
[18, 19], les réseaux de neurones résiduels (ResNet) [20] et les réseaux de neurones
convolutifs (CNN) [21].

Objectif et contributions de ce travail de thèse

Compte tenu de l’énorme potentiel de l’apprentissage en profondeur en traite-
ment d’images et de nombreux modèles pouvant gérer des données multidimension-
nelles de manière flexible, les modèles d’apprentissage en profondeur sont principale-
ment utilisés pour le traitement des HSI dans cette thèse. Les cibles sont débruitées,
classées et détectées en extrayant entièrement les caractéristiques spectrales et spa-
tiales et en analysant les données hyperspectrales.

Étant donné que les opérations basées sur la convolution peuvent gérer des
données multidimensionnelles de manière flexible, 2D-CNN et 3D-CNN sont re-
spectivement utilisés pour l’extraction et la classification des caractéristiques. 2D-

2



CNN montre un grand potentiel dans la préservation de la structure spatiale des
cibles. 3D-CNN peut prendre directement des données 3D en entrée, ce qui permet
d’exploiter les informations spectrales et spatiales en même temps. De plus, une
méthode de réglage des paramètres est proposée pour sélectionner les paramètres
à leur tour selon le principe de la variable unique. Le réseau avec des paramètres
optimaux nous aide à obtenir de meilleurs résultats. Cependant, qu’il soit 2D-
CNN ou 3D-CNN, le réseau est optimisé en minimisant l’erreur entre la sortie et
l’étiquette, ce qui signifie que CNN nécessite un grand nombre d’échantillons éti-
quetés pour garantir ses performances. Malheureusement, les échantillons étiquetés
dans les HSI sont limités et la collecte d’échantillons étiquetés prend du temps et
demande beaucoup de travail. Pour résoudre ce problème, les méthodes du trans-
fert de l’apprentissage et de la génération d’échantillons virtuels sont introduites. Le
transfert de l’apprentissage permet à un système de reconnaître et d’appliquer les
connaissances et les compétences acquises dans de précédents domaines/tâches à de
nouveaux domaines/tâches [22]. Si on dispose d’une HSI (données sources) avec suff-
isamment d’échantillons étiquetés et avec les mêmes caractéristiques spatiales que
la HSI à classer (données cibles), alors l’apprentissage par transfert peut être util-
isé pour réduire le besoin d’échantillons étiquetés de données cibles. Si les données
sources ne sont disponibles, on peut générer des échantillons virtuels à partir des
échantillons originaux des données cibles pour résoudre le problème d’insuffisance
d’échantillons pour l’apprentissage.

Afin de mieux comparer les résultats de classification obtenus par différents mod-
èles, les valeurs de précision globale (OA) sont principalement utilisées pour évaluer
la précision de la classification. Pour une meilleure comparaison visuelle, les cartes
de classification de l’ensemble des données de l’Université de Pavie obtenues par
2D-CNN, 3D-CNN et 3D-CNN avec le transfert d’apprentissage et en utilisant des
échantillons virtuels (3D-CNN-TV) sont illustrées dans la figure 2 .

On peut voir à partir de la figure 2 que la carte de classification de 2D-CNN a
plus de pixels mal classés par rapport aux cartes de classification obtenues avec 3D-
CNN, ce qui montre que 3D-CNN a de plus grandes capacités à exploiter pleinement
les informations . En outre, la méthode proposée 3D-CNN-TV permet d’obtenir la
carte la plus claire et la valeur la plus élevée de OA, ce qui montre que cette méthode
3D-CNN-TV a un grand potentiel en imagerie hyperspectrale pour la classification.

L’extraction non supervisée de caractéristiques qui n’implique pas d’échantillons
étiquetés est un autre moyen pour résoudre le problème de manque de données éti-
quetées. Le réseau antagoniste génératif (GAN) est entraîné de manière antagoniste
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(a) (b) OA=95.03% (c) OA=97.18% (d) OA=99.78%

Figure 2: Cartes de classification de l’Université de Pavie obtenues par différentes
méthodes: (a) Vérité terrain, (b) 2D-CNN, (c) 3D-CNN, (d) 3D-CNN-TV.

ne nécessitant aucun échantillon étiqueté et il est l’un des réseaux de l’apprentissage
non supervisé les plus prometteurs [23]. L’AE apprend une représentation des don-
nées d’entrée via un encodeur, puis décode la représentation pour reconstruire les
données d’entrée. La représentation à faible dimension des données par l’AE peut
être utilisée comme les caractéristiques des données d’entrée. Du fait que les par-
mètres de l’AE sont optimisée en minimisant l’erreur entre les données reconstruites
et les données d’entrée, aucune étiquette n’est impliquée, on parle alors d’un modèle
non supervisé. Par conséquent, des méthodes d’extraction de caractéristiques non
supervisées basées sur GAN et AE sont proposées pour résoudre le problème lié
à la limitation du nombre des échantillons étiquetés. Étant donné que l’opération
de convolution 3D est effectuée dans le domaine spatial et spectral, et qu’elle a un
grand potentiel pour extraire entièrement les caractéristiques spectrales et spatiales,
le générateur et le discriminateur de 3D-GAN sont construits sur des sous-réseaux
de convolution entièrement 3D et de déconvolution 3D. L’autoencodeur convolu-
tif 3D conçu (3D-CAE) est composé de couches convolutives 3D et de couches de
déconvolution 3D.

Une explosion ou une disparition de gradient peuvent être provoquées lors de
la formation du GAN. Pour résoudre ce problème, le Wasserstein GAN 3D (3D-
WGAN) est amélioré en ajoutant une pénalité de gradient pour intégrer la con-
trainte de Lipschitz, dénommé 3D-WGAN-GP, est utilisé pour créer une technique
d’extraction de caractéristiques non supervisée. Lorsque le 3D-WGAN-GP est bien
entraîné, nous pensons que le générateur a appris la distribution des données réelles
et que le discriminateur a une forte capacité d’extraction de caractéristiques. Le
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discriminateur peut convertir des données de grande dimension en données de faible
dimension, ce qui est cohérent avec notre objectif d’extraction de caractéristiques.
Par conséquent, le discriminateur optimisé peut être transféré en tant qu’extracteur
de caractéristiques.

Les encodeurs d’un 3D-CAE ont une structure hiérarchique de bas en haut, et
ils sont comme des pyramides de caractéristiques. Les couches inférieures corre-
spondent principalement aux informations, telles que les bords, la texture et les
contours, et les couches supérieures correspondent principalement aux informations
sémantiques. Afin d’exploiter pleinement les représentations apprises, une méthode
d’extraction de caractéristiques multi-niveaux non supervisée basée sur un 3D-CAE
est proposée. De plus, les caractéristiques multi-niveaux sont directement obtenues
à partir de différentes couches codées de l’encodeur optimisé, ce qui est plus efficace
que l’apprentissage de plusieurs réseaux. L’utilisation complète des informations dé-
taillées dans les couches inférieures et des informations sémantiques dans les couches
supérieures peut apporter des avantages complémentaires et améliorer les résultats
de la classification.

Afin de vérifier l’efficacité des méthodes proposées, les résultats de classification
basée sur différentes caractéristiques (caractéristiques de 3D-WGAN-GP, caractéris-
tiques à un seul niveau de 3D-CAE et caractéristiques à plusieurs niveaux de 3D-
CAE) sont comparés. Plus les résultats de la classification sont bons, meilleures sont
les caractéristiques correspondantes. La méthode machines à vecteurs de support
(SVM)est utilisée comme classifieur dans cette expérience.

(a) (b) OA=98.60% (c) OA=97.01% (d) OA=98.65%

Figure 3: Cartes de classification de l’Université de Pavie obtenues par différentes
méthodes: (a) Vérité terrain, (b) 3D-WGAN-GP, (c) 3D-CAE avec fonctionnalités
à un seul niveau, (d) 3D-CAE avec fonctionnalités multi-niveaux.

On peut voir sur la figure 3 que les valeurs de OA obtenues par 3D-WGAN-GP
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et 3D-CAE sont élevées. En général, les cartes de classification de 3D-WGAN-GP
et 3D-CAE avec des caractéristiques multi-niveaux ont moins de pixels mal classés,
ce qui prouve que les méthodes d’extraction de caractéristiques non supervisées
proposées ont des perspectives prometteuses pour les HSI.

Étant donné que les petites cibles sont plus sensibles à la taille de l’entrée et
ont moins d’échantillons, l’analyse de petites cibles est plus difficile dans les HSI.
Pour trouver un équilibre entre les différentes cibles et améliorer les résultats de
la classification des petites cibles, un nouveau réseau multi-taille et multi-modèle
basé sur 3D-CAE, appelé 3D-M2CAE, est proposé. Trois 3D-CAE avec différentes
tailles d’entrée centrées sur le pixel observé sont utilisées pour construire le réseau
et extraire les caractéristiques. De plus, afin de réduire le temps d’apprentissage,
le réseau est construit et entrâiné de manière progressive en utilisant le transfert
d’apprentissage [22, 24, 25]. Les poids des couches intermédiaires du dernier 3D-
CAE sont transférés du précédent 3D-CAE optimisé, ce qui accélère et facilite
l’apprentissage du réseau. Bénéficiant de cette méthode d’entraînement, les car-
actéristiques d’une même cible sont obtenues de manière efficace aux différentes
tailles du réseau.

Pour mieux évaluer les performances de la méthode proposée, des méthodes
d’extraction de caractéristiques supervisées basées sur DBN et une méthode d’extraction
de caractéristiques non supervisée basée sur FA sont considérées pour la comparai-
son. Les données de l’image HSIa qui contiennent des cibles de petites dimensions
sont utilisées. Les cartes de classification obtenues par les différentes méthodes sont
présentées dans la figure 4.

(a) (b) OA=90.92% (c) 92.42 (d) OA=97.20%

Figure 4: Cartes de classification du HSIa obtenues par différentes méthodes: (a)
Vérité terrain, (b) FA, (c) DBN, (d) Proposé 3D-M2CAE.

En comparant la vérité terrain et les cartes de classification de la figure 4, nous
pouvons constater que presque toutes les petites cibles sont mal classées dans la
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figure 4 (b). Les résultats de classification dans la Figure 4 (c) sont améliorés par
rapport à la Figure 4 (a), mais il y a encore beaucoup de pixels jaunes et bleus qui
ne sont pas correctement classés. Lorsque le 3D-M2CAE proposé est utilisé pour
obtenir des caractéristiques, la carte de classification correspondante (figure 4 (d))
est la plus claire et il y a peu de pixels mal classés dans les régions rouge, bleue et
jaune, ce qui montre que la méthode proposée a un grand potentiel dans l’extraction
de caractéristiques et la classification de petites cibles.

Dans tout ce qui précède, nous nous sommes principalement intéressés à l’extraction
des caractéristiques et la classification des HSI. La détection des cibles est également
l’une des importantes applications en traitement HSI. Avec une signature spectrale
connue appelée aussi modèle spectral, les détecteurs peuvent déterminer si la cible
est présente ou pas en comparant le modèle spectral aux pixels d’une scène. Cepen-
dant, les HSI souffrent toujours des variations spectrales causées par le bruit ou
l’environnement, ce qui augmente les variations intra-classes et dégrade les perfor-
mances des détecteurs. Il est essentiel d’obtenir une précision de détection élevée
même des cibles dans des scènes bruitées. Ainsi, nous souhaitons améliorer les ré-
sultats de détection de cibles en utilisant des détecteurs existants en améliorant la
qualité du spectre de la cible et en exploitant les caractéristiques invariantes du spec-
tre. L’autoencodeur de débruitage (DAE) est introduit pour reconstruire le spectre
et augmenter la robustesse spectrale. Afin de faire en sorte que les spectres recon-
struits contiennent autant d’informations que possible, un réseau d’autoencodeur
de débruitage à plusieurs échelles dénommé MSDAE est conçu pour améliorer la
détection de cibles dans les HSI. Le spectre d’entrée est codé à différentes échelles
pour obtenir un ensemble de représentations d’entrée, puis ils sont décodés pour les
fusionner pour obtenir le spectre final reconstruit.

Pour vérifier l’efficacité de la méthode proposée, les performances de détection
et de débruitage de la méthode proposée sont testées sur l’image bruitée R qui est
obtenue en ajoutant du bruit aléatoire N à l’image H, soit R = H + N. Un
bruit blanc gaussien centré (WGN) et un bruit multiplicatif (MPN) uniformément
distribué et de moyenne nulle sont utilisés pour simuler le bruit aléatoire. Courbes
d’efficacité du récépteur (ROC) de la cible 4 en HSIb avec un rapport signal sur
bruit (SNR) de 20 dB débruité par le filtre de Wiener (WF), et block-matching
and 3D filtering (BM3D), et denoising convolutional neural network (DnCNN) sont
représentés sur la figure 5.

On peut constater sur la figure 5, que les méthodes basées sur DAE et DnCNN
obtiennent des valeurs de probabilité de détection (Pd) plus élevée avec la même
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(a) (b)

Figure 5: Courbes ROC de HSIb sous différents bruits avec un SNR de 20 dB: (a)
WGN, (b) MPN.

probabilité de fausse alarme (PFA), ce qui montre que les modèles d’apprentissage
profond ont un grand potentiel pour réduire le bruit et conserver les informations
utiles. De plus, avec la méthode MSDAE proposée sont obtenus de meilleurs résul-
tats en présence des deux types de bruit WGN ou MPN.

Contributions du travail de cette thèse

Cette thèse est consacrée à l’utilisation de méthodes basées sur les tenseurs, en
se concentrant sur les méthodes d’apprentissage profond, pour traiter les HSI. Les
principaux apports se résument comme suit :
• Considérant que CNN a un grand potentiel dans l’extraction de caractéristiques

et peut bien préserver la structure spatiale de la cible, 2D-CNN est introduit pour
extraire les caractéristiques parmi les données pour la classification hyperspectrale.
Cependant, les performances de CNN sont toujours influencées par les réglages des
paramètres. Pour obtenir les paramètres optimaux pour la classification HSI, nous
proposons une méthode de classification basée sur un 2D-CNN avec réglage des
paramètres (2D-CNN-PT). Les paramètres du réseau sont réglés à leur tour selon
le principe de la variable unique et un ensemble de paramètres optimaux peut enfin
être obtenu pour améliorer les performances du réseau.
• Les HSI sont représentées par des tableaux ou tenseurs 3D et comme les données

multidimensionnelles peuvent être directement appliquées à l’entrée de 3D-CNN.
Par conséquent, un 3D-CNN est introduit pour exploiter pleinement les informa-
tions spectrales et spatiales des données hyperspectrales et améliorer la précision
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de la classification. Cependant, le manque d’échantillons étiquetés de HSI limite
les performances des 3D-CNN. Pour résoudre ce problème, une méthode améliorée
basée sur des 3D-CNNs combinés à un transfert d’apprentissage ou à des échantil-
lons virtuels est proposée. Les poids dans les couches inférieures du réseau cible
sont transférés d’un autre 3D-CNN bien entrainé sur une HSI (données sources)
avec suffisamment d’échantillons et avec les mêmes caractéristiques spatiales que
les données cibles. De plus, des échantillons virtuels générés à partir des échan-
tillons originaux des données cibles sont utilisés pour augmenter encore le nombre
d’échantillons. Le transfert d’apprentissage ou les échantillons virtuels peuvent at-
ténuer le problème posé par la limitation des échantillons étiquetés rencontré dans
de nombreuses situations.
• Le GAN est entraîné de manière antagoniste ne nécessitant aucun échantil-

lon étiqueté, ce qui est un modèle d’entraînement non supervisé. Pour pallier la
limitation des échantillons étiquetés, un extracteur de caractéristiques non super-
visé est conçu sur la base d’un transfert d’apprentissage et d’un 3D-WGAN-GP.
Le 3D-WGAN-GP ajoute une pénalité de gradient pour appliquer la contrainte de
Lipschitz, ce qui peut résoudre le problème de l’explosion et de la disparition des
gradients. De plus, compte tenu des caractéristiques spectrales et spatiales des HSI,
le réseau est conçu sous forme 3D, ce qui permet d’exploiter pleinement les infor-
mations contenues dans les données hyperspectrales.
• L’AE peut être optimisé en minimisant l’erreur entre les données reconstru-

ites et les données d’entrée sans utilisation de données étiquetées, c’est un modèle
non supervisé typique. Pour apprendre simultanément les informations spectrales
et spatiales des cibles et ne pas dépendre des échantillons étiquetés qui sont souvent
limités, un nouveau réseau d’extraction de caractéristiques à plusieurs niveaux non
supervisé basé sur un 3D-CAE est proposé. En outre, l’encodeur d’un 3D-CAE
est une structure hiérarchique du bas en haut, et les caractéristiques extraites sont
en forme d’une pyramide. Pour exploiter pleinement les avantages du réseau opti-
misé, les caractéristiques multi-niveaux obtenues à partir des couches codées avec
différentes échelles et résolutions sont proposées, ce qui est plus efficace que d’utiliser
plusieurs réseaux pour les obtenir. De plus, un réseau multi-taille et multi-modèle
basé sur 3D-CAE, appelé 3D-M2CAE, est proposé pour l’extraction et la classifica-
tion de petites cibles. La conception et l’optimisation du réseau reposent sur une
croissance progressive et un transfert d’apprentissage. Bénéficiant de cette méth-
ode d’entraînement, les caractéristiques d’une même cible sont obtenues de manière
efficace aux différentes tailles et le réseau proposé présente une grande robustesse
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vis-à-vis des différentes cibles.
• En raison des variations spectrales causées par le bruit ou l’environnement, la

variation intra-classe est importante, ce qui dégrade les performances des détecteurs,
en particulier lorsque la taille de la cible est petite. Compte tenu de la grande capac-
ité d’extraction de caractéristiques et de représentation des modèles d’apprentissage
en profondeur, le DAE est introduit pour réduire le bruit et exploiter les informa-
tions invariantes pour la détection de cibles. De plus, pour extraire entièrement
les caractéristiques des spectres d’origine, un modèle MSDAE est conçu pour in-
corporer des informations complémentaires dans le spectre final en fusionnant les
spectres reconstruits à partir de représentations à différentes échelles, ce qui four-
nit des informations plus complexes et des caractéristiques plus robustes pour une
identification spectrale.

Organisation de la thèse

Cette thèse est organisée en cinq chapitres.
Chapter 1 présente une méthode supervisée d’extraction de caractéristiques

basée sur 2D-CNN pour la classification en imagerie hyperspectrale. Considérant que
les performances du réseau sont fortement influencées par les paramètres, un réseau
2D-CNN-PT est conçu. Neuf principaux paramètres sont réglés tour à tour selon le
principe de la variable unique. Les résultats expérimentaux sur deux images réeelles
montrent que les réglages de paramètres appropriés sont d’une grande importance
pour améliorer les performances du réseau et la précision de la classification.

Chapter 2 décrit une méthode d’extraction de caractéristiques supervisée basée
sur 3D-CNN pour la classification hyperspectrale. 3D-CNN peut traiter de manière
flexible des données multidimensionnelles et extraire les informations spectrales et
spatiales au même temps. En raison des caractéristiques des HSI, une importante
charge de calculs est nécessaire. Par conséquent, une nouvelle méthode de réduction
de dimension spectrale est proposée pour réduire la dimensionnalité des HSI. De
plus, pour résoudre le problème des échantillons insuffisants et améliorer la clas-
sification des HSI, un réseau 3D-CNN-TV basé sur un 3D-CNN avec un transfert
d’apprentissage et la génération des échantillons virtuels est proposé. Les résultats
expérimentaux montrent que l’apprentissage par transfert ou les échantillons virtuels
peuvent améliorer la précision de la classification, et le réseau 3D-CNN-TV donne
les meilleurs résultats de classification par rapport aux autres méthodes considérées.

Chapter 3 introduit une méthode d’extraction de caractéristiques non super-
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visée basée sur un 3D-WGAN-GP. Dans un premier temps, certaines connaissances
de base du GAN sont présentées. Ensuite, une nouvelle méthode de réduction de
dimensionnalité basée sur des convolutions de 1 × 1 et un pooling de 1 × 1 est
proposée pour obtenir des données de dimensionnalité inférieure contenant des car-
actéristiques plus abstraites et de haut niveau. Ensuite, un réseau d’extraction
de caractéristiques non supervisé pour la classification hyperspectrale basé sur 3D-
WGAN-GP et sur un transfert d’apprentissage est conçu pour pallier la limitation
des échantillons étiquetés. Enfin, des expériences sont réalisées sur des données
réelles pour évaluer les performances de la méthode proposée, et les résultats ex-
périmentaux montrent la faisabilité et l’efficacité de la méthode proposée.

Chapter 4 présente les deux autres réseaux d’extraction de caractéristiques non
supervisés basés sur 3D-CAE. Dans le premier réseau, des caractéristiques multi-
niveaux sont proposées pour contenir des informations détaillées et des informations
sémantiques en même temps. Les caractéristiques multi-niveaux proposées sont di-
rectement obtenues à partir de différentes couches codées de l’encodeur optimisé, ce
qui nous permet de tirer pleinement parti du réseau bien entrainé et à améliorer en-
core la qualité des caractéristiques. Dans le second réseau, un 3D-M2CAE composé
de trois 3D-CAE avec une taille d’entrée différente est proposé pour équilibrer les
différentes cibles et améliorer les résultats de classification des petites cibles. Béné-
ficiant de la méthodologie d’entrainement progressif et du transfert d’apprentissage,
l’optimisation de 3D-M2CAE est facilitée. Les résultats expérimentaux montrent
que les deux réseaux conçus sont prometteurs pour l’extraction non supervisée de
caractéristiques.

Chapter 5 propose un modèle MSDAE pour l’amélioration de la détection des
cibles. Selon les caractéristiques spectrales, les pixels peuvent être classés en cible
ou en fond d’image. Cependant, en raison des variations spectrales causées par le
bruit ou l’environnement, la variation intra-classe est importante, ce qui dégrade
les performances des détecteurs, en particulier lorsque la taille des cibles sont pe-
tites. Pour résoudre ce problème, la méthode DAE est proposée pour reconstruire
les spectres et exploiter les informations invariantes pour la détection de cibles. De
plus, pour extraire entièrement les caractéristiques des spectres d’origine, un mod-
èle MSDAE est conçu pour incorporer des informations complémentaires dans le
spectre final obtenu par fusion des spectres reconstruits à partir des représentations
aux différentes échelles, ce qui fournit des informations plus complexes et des car-
actéristiques plus robustes pour une identification spectrale. Les résultats sur des
données simulées et réelles montrent que la méthode proposée peut non seulement
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améliorer la détection des cibles, mais également a un grand potentiel pour préserver
les petites cibles.
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Abbreviations

1D One-dimensional

2D-CNN Two-dimensional convolutional neural network

2D-CNN-PT 2D-CNN with parameter tuning

3D-CAE Three dimensional convolutional autoencoder

3D-CNN Three-dimensional convolutional neural network

3D-CNN-TL 3D-CNN with transfer learning

3D-CNN-VS 3D-CNN with virtual samples

3D-CNN-TV 3D-CNN with transfer learning and virtual samples

3D-WGAN 3D Wasserstein generative adversarial network

3D-WGAN-GP Improved 3D-WGAN adding gradient penalty

AA Average accuracy

AE Autoencoder

ACE Adaptive coherence/cosine estimator

BCS Band column selection

AMF Adaptive matched filter

BM3D Block-matching and 3D filtering

CAE Convolutional autoencoder

CNN Convolutional neural network

DAE Denoising autoencoder

DBN Deep belief networ

DnCNN Denoising convolutional neural network
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DP Douglas-Peucker

FA Factor analysis

GAN Generative adversarial network

HSI Hyperspectral images

κ Kappa coefficient

MNBS Minimum noise band selection

MPN Multiplicative noise

MSDAE Multiscale denoising autoencoder

OA Overall accuracy

PCA Principal component analysis

Pd Probability of detection

PFA Probability of false alarm

ROC Receiver operating characteristic

SAE Stacked autoencoder

SAM Spectral angle mapper

SIFT Scale invariant feature transformation

SNR Signal-to-noise ratio

SVM Support vector machine

WF Wiener filter

WGN White Gaussian noise
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Introduction

Hyperspectral images (HSIs) are collected from the interested scene by space-
borne and airborne hyperspectral imagers with a lot of narrow electromagnetic bands
as shown in Figure 6. Based on two-dimensional (2D) space domain, a third spectral
dimension is added for each pixel. Thus, an HSI can be represented as a three-
dimensional (3D) data block that contains not only spatial information but also
spectral characteristics. Due to the characteristics of HSIs, hyperspectral imaging
technology has been widely applied in many fields [1, 2], such as mineral explo-
ration [3], agriculture [4, 5], environment management [6]. Hyperspectral classifica-
tion and detection are two important techniques for these applications, and feature
extraction is one of the most significant steps for classification and detection. Tra-
ditional feature extraction methods are unusually based on linear transformation,
such as principal component analysis (PCA) [26] and independent component analy-
sis (ICA) [27], which are not suitable for nonlinear hyperspectral data. Worse, most
of the traditional feature extraction methods can only extract features in a shallow
manner [28]. Therefore, effective feature extraction is one of the key processings to
improve HSI classification and detection [29–32].

Figure 6: Schematic diagram of hyperspectral imaging.
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Recently, as an important branch of machine learning [9–12], deep learning has
attracted wide attention due to its strong capabilities in data analysis and feature
extraction [13,14]. By extracting features of the input data from the bottom to the
top of the network, deep learning models can form the high-level abstract features
[15]. Some deep learning models have been successfully applied to HSIs, such as
autoencoder (AE) [16], deep belief network (DBN) [17], recurrent neural network
(RNN) [18, 19], convolutional neural network (CNN) [21, 33, 34]. Among numerous
deep learning models, CNN has attracted widespread attention due to its unique
network structure and strong feature extraction capabilities [35].

HSIs are 3D tensor data and multidimensional data can be directly input into
CNNs, which helps to preserve the original relevant information of the data and
avoids complex data reconstruction [36–38]. Therefore, CNN has been introduced
to extract high-level invariant features and improve the classification performance of
HSIs [39,40]. However, since the HSI usually contains hundreds of bands, the num-
ber of corresponding network parameters and the amount of calculation increase.
Besides, sufficient training samples are needed to guarantee the performance of CNN.
Unfortunately, labeled samples in HSIs are always limited [41–43]. Therefore, high
dimensionality and insufficient labeled samples are two challenges in HSI process-
ing. Dimensionality reduction can effectively reduce the computational difficulty.
Some representative methods, for example transfer learning [25, 44, 45], manifold
regularization based on semi-supervised leaning [41,43], and so on, have been stud-
ied to alleviate the problem of limited samples. The former method is suited for
high-dimensional data structures, the latter being more suitable for ordinary images.
Therefore, transfer learning is introduced and applied to HSIs.

Unsupervised feature extraction is another good way to get rid of limited labeled
samples. In recent years, some deep learning models have been investigated for un-
supervised feature extraction. Generative adversarial network (GAN) is trained in
an adversarial way requiring no labeled samples. It has been one of the most promis-
ing unsupervised learning representatives [23]. In [46], a semi-supervised framework
based on GAN is established for hyperspectral classification with a small number
of labeled samples. But only spectral features are extracted, which are far from
enough for classification. In [47], Zhang proposed a novel modified GAN whose
generator and discriminator are designed in the form of fully deconvolutional net-
work and fully convolutional network to extract the features without supervision.
Nevertheless, only spatial information is taken as input when the modified GAN is
trained, which can be treated as 2D convolution on multiple channels. Hyperspec-
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tral data is a tensor data, which contains not only spatial information but also the
spectral characteristics of the target. Fully mining the spectral-spatial features in
HSIs is helpful for classifying the target. Considering 3D convolution operation is
performed in space and spectrum, we want to design a framework based on three-
dimensional generative adversarial network (3D-GAN) in which the generator and
discriminator are built on fully 3D convolution and 3D deconvolution subnetworks
to fully extract the spectral-spatial features with unsupervised learning for classifica-
tion. In addition, the AE learns a representation for input data through an encoder
and then decodes the representation to reconstruct data [48, 49]. The AE can be
optimized by minimizing the error between the reconstructed data and the input
data, and no labels are involved, which is a typical unsupervised model. Because of
these characteristics of AE, some unsupervised feature extraction methods that are
based on AE have been introduced in HSIs and achieved some results [50]. In [51],
two variants based on stacked sparse AE are designed to the unsupervised spectral
features learning and multiscale spatial features learning, respectively. The learned
spectral and spatial features are stacked as a long feature vector embedded into
a classifier for classification, which is more potential and robust in hyperspectral
classification compared to traditional methods. However, the spectral features and
spatial features are extracted separately. In [52], an unsupervised feature extraction
method based on recursive AE is developed to produce high-level features. Some re-
sults have been obtained based on variants of AE, but often single-level features are
considered, which affects feature performance. Therefore, we want to use AE-based
models to further explore multi-scale features in HSIs.

In addition, target detection is also an important task for us. Each pixel in HSIs
corresponds to a spectral curve and the spectral signature of the same category
is similar, which enables identify the materials present in the pixel. Therefore,
target detection can be treated as a binary classification task [53]. With a known
spectral signature can also be called a spectral template, comparing the spectral
template to the pixels in a scene can determine whether target is present or not.
There are some detectors which are commonly used for target detection in HSIs [54],
such as adaptive coherence/cosine estimator (ACE), adaptive matched filter, and
spectral angle mapper. However, HSIs always suffer from spectral variations caused
by noise or environment, which enlarges within-class variation and degrades the
performance of detectors. It is essential to obtain high detection accuracy even
targets in noisy scenes. Thus, we want to improve the target detection results using
existing detectors by improving the quality of spectral signature and mining the
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invariant features of the spectrum. To improve target detection results, denoising
usually be done as a preprocessing step for noise removal, and then target detection
is performed. Traditional denoising methods, such as PCA [55] and models based
on Wiener filter (WF) [56], and block-matching and 3D filtering (BM3D) [57], have
been successfully applied in image processing. However, the traditional denoising
method is easy to face the problem of single task [58] or preserving small targets [59].

With the development of deep learning, some methods based on deep learning
have been proposed for image denoising [60]. In [61,62], models based on denoising
autoencoder (DAE) model is established for image denoising, which uses encoder to
get the latent representation and then reconstructs it into the clean data through
the decoder. In [63], feed-forward denoising convolutional neural network (DnCNN)
is designed for image denoising and obtained effective results. In [64], deep resid-
ual network is introduced to learn a non-linear map between noisy and clean im-
age for HSI denoising. In [65], GAN is used for estimating the noise distribution
and constructing a paired training dataset to train CNN for image blind denoising.
Compared with conventional denoising methods, deep learning-based methods are
usually not limited to specific denoising tasks and the parameters are automatically
updated according to the input. Therefore, deep learning methods are explored
to remove noise and mine invariant features of targets to improve target detection
results in our research.

Thesis objective and contributions

This dissertation is devoted to using deep learning methods to process HSIs.
The targets are denoised, classified and detected by analyzing hyperspectral data
and fully extracting spectral-spatial characteristics with deep learning models. More
specifically, the main contributions are summarized as follows:
• Considering that CNN has great potential in feature extraction and has been

widely used in the field of image processing, 2D-CNN and 3D-CNN are introduced to
extract the features among data for hyperspectral classification respectively. Since
the CNN performance is greatly influenced by the parameter settings, a 2D-CNN
with parameter tuning named 2D-CNN-PT is proposed to guarantee performance
and further improve classification results.
• Limited label samples are the main challenge of applying deep learning models

to HSIs. Since the optimization of GAN and CAE does not require the participa-
tion of label samples, unsupervised feature extractors based on GAN and CAE are
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designed to help get rid of the limitation of labeled samples. The networks are built
with fully 3D-convolutional layers to fully exploit the spectral-spatial information in
HSIs. Besides, with the help of transfer learning and progressive growing training,
a multi-size and multi-model framework is designed to increase the robustness of
features to target size and improve the classification accuracy of small targets.
• Considering the great feature extraction and representation ability of deep

learning models, DAE is introduced to remove noise and exploit the invariant infor-
mation for target detection. Besides, a multiscale model is developed to incorporate
complementary information, which provides more robust features for subsequent
spectral identification.

Thesis outline

This thesis is organized in five chapters.
Chapter 1 presents a supervised feature extraction method based on 2D-CNN

for hyperspectral classification. Considering that the network performance is strongly
influenced by the parameter settings, a 2D-CNN-PT framework is designed. Nine
main parameters are tuned in turn according to the unique variable principle. The
experimental results on two real-world HSIs show that the appropriate parameter
settings are of great help to improve network performance and classification accu-
racy.

Chapter 2 describes a supervised feature extraction method based on 3D-CNN
for hyperspectral classification. 3D-CNN can flexibly process multi-dimensional
data, and mine the spectral-spatial information at the same time. Due to the high
dimensionality of HSIs, a large amount of calculation is caused. Therefore, a novel
band selection method is proposed to quickly select the band and reduce the dimen-
sionality of HSIs. In addition, to solve the problem of insufficient labeled samples
and improve the classification of HSIs, an improved 3D-CNN classification method
based on transfer learning and virtual samples is proposed. Experimental results
show that either transfer learning or virtual samples can help us further improve
the classification accuracy, and the 3D-CNN combining transfer learning and virtual
samples yields the best classification results.

Chapter 3 introduces an unsupervised feature extraction method based on
GAN. At first, some basic knowledge of GAN is overviewed. Next, a novel dimen-
sionality reduction method based on 1×1 convolution and 1×1 pooling is proposed
to obtain lower dimensionality data containing more abstract and high-level features.
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Then, an unsupervised feature extraction framework for hyperspectral classification
based on 3D-WGAN-GP and transfer learning is designed to get the rid of the lim-
itation of labeled samples. Finally, experiments are performed on real-world data
sets to verify the performance of the proposed method, and experimental results
prove the feasibility and effectiveness of the proposed method.

Chapter 4 introduces the other two unsupervised feature extraction frameworks
based on 3D-CAE. In the first framwork, multi-level features are proposed to con-
tain detail information and semantic information at the same time. The proposed
multi-level features are directly obtained from different encoded layers of the op-
timized encoder, which helps us to make full use of the well-trained network and
further improve feature quality. In the second framework, a 3D-M2CAE consisting
of three 3D-CAEs with different input sizes is proposed to balance different targets
and improve classification results of small targets. Benefiting from the progressive
training methodology and transfer learning, the optimization of 3D-M2CAE is facili-
tated and accelerated. Experimental results show that the designed two frameworks
have great promise in unsupervised feature extraction.

Chapter 5 proposes a MSDAE for improvement of target detection. In order
to remove noise and retain invariant features, DAE is introduced to reconstruct
spectrums and exploit the invariant information for target detection. Besides, to
fully extract the features from the original spectrums, the MSDAE model is de-
signed to incorporate complementary information. The final spectrum is fused by
reconstructed spectrums from different scales representations, which provides more
complex information and more robust features for subsequent spectral identifica-
tion. The results on simulated and real-world data demonstrate that the proposed
method can not only improve the target detection but also has great potential for
preserving small targets. In addition, unsupervised segmentation is investigated to
help small target detection.
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Chapter 1

Supervised feature extraction based
on 2D-CNN for hyperspectral clas-
sification

1.1 Introduction

As the main branch of machine learning, deep learning has shown considerable
potential in the field of remote sensing classification [66, 67] owing to its strong
capability for big data analysis, which enables it to extract the inherent laws and
characteristics of the data [68]. CNN has a unique network structure with local
connection and weight sharing, which reduces the number of parameters significantly
[69] and it have been successfully used for HSI classification [70–72]. However, the
CNN performance is greatly affected by the parameter settings and the loss function
may reach a local minimum owing to inappropriate weights. To improve the CNN
performance for HSIs, a classification method based on a CNN with parameter
tuning is proposed in this Chapter.

1.2 Overview of 2D-CNN

A 2D-CNN mainly includes convolutional layers and pooling layers as shown in
Figure 1.1, where Ci, Pi and F represent the ith convolutional layer, the ith pooling
layer, and fully connected layer respectively, and n @ feature map means there are
n feature maps in current layer. Each convolution kernel corresponds to an output
(feature map), and different convolution kernels can extract different features.
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Figure 1.1: A conventional CNN structure.

Convolution operations have been widely used in signal processing and image
processing. They can apply convolution kernels to an input data to produce feature
maps and show great potential in feature extraction. Figure 1.2 shows a diagram of
2D convolution operation [73].

Figure 1.2: 2D convolution operation.

It can be seen from Figure 1.2 that 2D convolution is performed on 2D input
data. When the convolution kernel slides over the input, compute the product of the
mutually overlapping pixels and calculate their sum, then a 2D output is obtained.
When 2D convolution operation is done with the stride being 1× 1, its output Ox, y

at position (x, y) is defined as:

Ox, y =
W1−1∑
p=0

W2−1∑
q=0

W p, q Ix+p, y+q + b (1.1)

where I ∈ RI1×I2 represents the input with dimension of I1 × I2, W ∈ RW1×W2 is
the convolution kernel, and b is the bias.

In the pooling layers, data can be subsampled by reducing the resolution of the
feature maps while the number of feature maps is unchanged. Figure 1.3 shows
examples of max-pooling and mean-pooling.

Max-pooling operation calculates the maximum value for patches, and mean-
pooling (also called average-pooling) operation calculates the average value for patches.
Both of them can be used to progressively reduce the spatial size of the representa-
tion, and reduce the amount of parameters and computation in the network.
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(a) (b)

Figure 1.3: 2D pooling operation: (a) Max-pooling, (b) Mean-pooling.

1.3 Hyperspectral classification based on 2D-CNN

To explore the rich information in HSIs, a 2D-CNN is introduced for feature
extraction and classification in this subsection. Although CNN reduces network
parameters through local connection and weight sharing, its overall performance
is influenced by the network parameters, such as the input size, network structure,
pooling method, activation function and so on. In the existing literature, the network
parameters are generally set by default. Hence, appropriate parameter selection
methods are worth studying in order to improve the results.

1.3.1 Optimal parameter selection based on 2D-CNN

To obtain the optimal CNN parameters for HSI classification, a classification
method based on a 2D-CNN with parameter tuning (2D-CNN-PT) is proposed.

Figure 1.4: Hyperspectral classification based on a 2D-CNN with parameter tuning.

The procedure of the proposed 2D-CNN-PT method shown in Figure 1.4 can be
mainly divided into four steps:

Firstly, considering that HSIs are high-dimensional data composed of numerous
spectral bands and they include a significant amount of redundancy. PCA can repre-
sent the original data with a set of linearly uncorrelated variables through orthogonal
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transformation. Therefore, PCA is used to reduce the number of dimensions [74,75].
It’s known that HSIs are 3D data and each pixel corresponds to a spectral vector.
Therefore, we unfold the 3D data into a 2D matrix. The number of rows in the 2D
matrix is equal to the number of pixels in the HSI and the number of columns is
equal to the number of spectral bands, i.e., each row corresponds to the spectral
characteristics of the sample. This set of possibly correlated spectral characteris-
tic variables into a set of values of linearly uncorrelated variables called principal
components. The first principal component containing most of the information is
preserved and reshaped into a 2D image with the same length and width as the
original HSI.

Next, for each observed pixel, one block of S×S pixels on the 2D image obtained
based on The first principal component is selected as an input data. A CNN con-
sisting of two pooling layers, two convolutional layers and one fully connected layer
is constructed with input size being S × S and classifier being softmax regression.
Softmax function can converts a vector of numbers into a vector of probabilities
through Eq. (1.2):

Outym = softmax(ym) = eym∑N
j=1 e

yj
(1.2)

where m = 1, 2, ... N , and N is the number of classes. ym is the value of the mth
class. Outym which takes values between 0 and 1 is the corresponding output value
after softmax.

Then, the network parameters are tuned in turn according to the unique variable
principle based on the classification results during classification, which means that
only one parameter is changed while the others are fixed to explore the effect of the
changed parameter on the experimental results. A set of appropriate parameters
can be obtained according to parameter tuning.

Finally, the 2D-CNN with optimal parameters can be used to extract features
for hyperspectral classification.

1.3.2 Data set description and assessment criteria

1.3.2.1 Data set description

There are some commonly used hyperspectral datasets used to test the perfor-
mance of methods and models. Different data sets may have different characteristics
in resolution, land-cover classes, image quality and so on. Pavia University dataset
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and Indian Pines data set are used as our target data in the following simulations.

(a) (b) (c) (d)

Figure 1.5: Data sets: (a) False-color image of Pavia University. (b) Ground truth
of Pavia University. (c) False-color image of Indian Pines. (d) Ground truth of
Indian Pines.

Pavia University data set, shown in Figure 1.5 (a), is collected by Reflective
Optics System Imaging Spectrometer (ROSIS) sensor covering the University of
Pavia, northern Italy. It contains 610× 340 pixels, and the spatial resolution is 1.3
meters per pixel. There are 103 useful spectral bands reserved ranging from 0.43 to
0.86 µm after removing noise-affected bands. It can be seen from Figure 1.5 (b) that
each class is color coded and pixels of the same color indicate that they are from
the same class, where black represents the unlabeled area. There are 9 different
land-cover classes in Pavia University data set. The details of land-cover classes and
number of samples are listed in Table 1.1.

Table 1.1: Details of land-cover classes in Pavia University data set.
Class No. Color coding Class name Number of samples

1 Asphalt 6631
2 Meadows 18649
3 Gravel 2099
4 Trees 3064
5 Metal sheets 1345
6 Bare soil 5029
7 Bitumen 1330
8 Bricks 3682
9 Shadows 947

The Indian Pines data set, shown in Figure 1.5 (c), is acquired by the Airborne
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Visible/ Infrared Imaging Spectrometer (AVIRIS) sensor over the Indian Pines test
site in northwest Indiana, USA. There are 224 spectral bands ranging from 0.4 to
2.5 µm. The number of spectral bands is reduced to 200 after removing bands
covering the region of water absorption. The Indian Pines scene contains two-thirds
agriculture, and one-third forest or other natural perennial vegetation. As shown
in Figure 1.5 (d), there are 16 land-cover classes and black represents the unlabeled
area. The details of land-cover classes and number of samples are listed in Table 1.2.

Table 1.2: Details of land-cover classes in Indian Pines data set.
Class No. Color coding Class name Number of samples

1 Alfalfa 46
2 Corn-notil 1428
3 Corn-min 830
4 Corn 237
5 Grass-pasture 483
6 Grass-trees 730
7 Grass-pasture-mowed 28
8 Hay-windrowed 478
9 Oats 20
10 Soybean-notill 972
11 Soybean-mintill 2455
12 Soybean-clean 593
13 Wheat 205
14 Woods 1265
15 Buildings-grass-trees 386
16 Stone-stel-towers 93

1.3.2.2 Assessment criteria

In order to evaluate and compare the performance of different methods, overall
accuracy (OA), average accuracy (AA), and kappa coefficient (κ) are introduced
to represent the classification results. All the values used in the experiments are
average values obtained from multiple experiments.

If there are N classes in a data set and the number of samples in the nth class is
λn. Thus, the total number of samples is λ (λ = ∑N

n=1 λn). Cnn denotes the number
of test samples that actually belong to the nth class, and are also classified into nth
class. The OA, AA, and κ values can be defined as [76]:

OA =
∑N
n=1 Cnn∑N
n=1 λn

× 100% (1.3)
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AA = 1
N

N∑
n=1

Cnn
λn
× 100% (1.4)

κ =

∑N

n=1 Cnn

λ
−

∑N

n=1 λnCnn

λ2

1−
∑N

n=1 λnCnn

λ2

× 100% (1.5)

1.3.3 Experimental results

In the experiment, two seven-layer 2D-CNNs are built for Pavia University and
Indian Pines, respectively. The initial network structure is listed in Table 1.3, where
k1 × k2 × n in convolutional layer represents that there are n kernels with size of
k1×k2 and ReLU means rectified linear unit. The kernel size in pooling layer is 2×2
and the stride is set to 2. The batch size and the number of units in output layer
are 256 and 9 for Pavia University, and 128 and 16 for Indian Pines, respectively.
Besides, the network weights are randomly initialized by a normal distribution with
a mean and standard deviation of 0 and 0.5, the network weights are updated by
the Adadelta algorithm with a learning rate of 1, and the number of epochs is set
to 100 for the two 2D-CNNs.

Table 1.3: Initial network structure of 2D-CNN.
Layer C1 P1 C2 P2 F

Parameter 4× 4× 16 2× 2 3× 3× 32 2× 2 128
Activation function ReLU Max-pooling ReLU Max-pooling −

The following parameters are considered in this research: input size, network
structure, number of units in the fully connected layer, activation function, pool-
ing method, optimization method, batch size, number of convolutional kernels and
number of epochs. Next, we will explore the influence of these parameters on the
results.

1.3.3.1 Input size

Considering the input size, i.e., S × S, has a great influence on the design of
the whole network structure, it is optimized first in the experiment. Moreover,
the proportion of the training data also has an impact on the classification results.
Therefore, the training data ratio which reflects the proportion between the number
of training samples and total samples and input size are considered simultaneously.
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Odd input size (S × S) from 13 × 13 to 31 × 31 under the training ratio from
0.1 to 0.5 are tested in the experiment, while the other parameters are fixed. The
experimental results are shown in Figure 1.6.

Figure 1.6: OA values under different input sizes and training set ratio.

It can be seen that when the training data ratio exceeds 0.1, the OA values of
the two HSIs show an upward trend with input size at the beginning and then tend
to stable under the same training set ratio. The larger the input size, the longer
the training time. Therefore, when the training data ratio exceeds 0.1, it is more
appropriate to set the input size to 15 × 15. When the training data ratio exceeds
0.1, the OA values show upward trend with the increase of input size. Due to
the collection of the labeled samples are time consuming and labor consuming, the
training data ratio of two HSIs is selected as 0.1, and 27×27 is finally chosen as the
input size because the corresponding OA value is higher and this size has been widely
used in the literature which makes the experimental results more contrasting [21].
For the subsequent simulations, the input size is fixed at 27× 27 for both two data
sets.
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1.3.3.2 Network structure

The network structure is mainly affected by input size and the number of layers,
and convolution kernel size, etc. Under the condition of the input size is 27×27 and
the number of units in fully connected layer is 128, the layer number and the size of
the convolutional kernel are considered together in the experiment. Five 2D-CNNs
with different structures are established as shown in Table 1.4.

Table 1.4: Network parameters of different networks.
Net C1 P1 C2 P2 C3 P3
Net 1 4× 4× 16 2× 2 3× 3× 32 2× 2 − −
Net 2 4× 4× 16 2× 2 5× 5× 32 2× 2 − −
Net 3 4× 4× 16 2× 2 3× 3× 32 2× 2 4× 4× 48 −
Net 4 4× 4× 16 2× 2 5× 5× 32 2× 2 4× 4× 48 −
Net 5 4× 4× 16 2× 2 3× 3× 32 2× 2 4× 4× 48 2× 2

The OA values of the two data sets under different network structures are listed
in Table 1.5. According to the experimental results in Table 1.5, the highest OA
value of Pavia University is obtained under Net 3. For Indian Pines data set, Net
1 and Net 3 show better classification performance. However, the dimension of the
feature vector before the fully connected layer of Net 3 is much smaller than that
of Net 1 and low-dimensional features help reduce the amount of calculation and
storage space. Therefore, Net 3 could be a good candidate for the Pavia University
and Indian Pines.

Table 1.5: OA values of Pavia University and Indian Pines under different networks.

Data set

OA (%) Net
Net1 Net 2 Net 3 Net 4 Net 5

Pavia University 92.88 92.86 93.45 93.39 93.27
Indian Pines 90.46 88.96 89.76 89.65 89.48

1.3.3.3 Number of units in the fully connected layer

For the classification model, the fully connected layer plays the role of converting
features into 1D vector form. The larger the number of units in the fully connected
layer, the larger the feature dimension and the greater number of weights that needs
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to be trained. The OA values under different number of units in fully connected
layer are shown in Table 1.6, where nf represents the number of units.

Table 1.6: OA values of Pavia University and Indian Pines under different number
of units in fully connected layer.

Data set

OA (%) nf

32 64 128 256 512 1024 2048

Pavia University 92.74 93.27 93.45 93.49 93.50 93.95 93.16
Indian Pines 88.78 89.39 89.76 89.72 89.55 90.55 90.82

We can find from Table 1.6 that the OA value does not always increase as the
number of units increases. A high number of units only increases the number of
parameters, but may also introduce interference information. From the perspective
of computational efficiency and accuracy, the optimal number of units in the fully
connected layer for both the Pavia University and the Indian Pines is set to 128
which is more commonly used.

1.3.3.4 Activiation function and pooling method

A neural network without an activation function becomes a linear system. Hence,
the activation function allows the inclusion of nonlinear factors. An activation func-
tion is differentiable nearly everywhere [77]. Several commonly used activation func-
tions (f(·)) are shown in Figure 1.7. A real number can be mapped to (0, 1) through
the sigmoid function. However, the vanishing gradient problem occurs during back
propagation. The hyperbolic tangent (tanh) function is suitable for various obvious
features. But, it also suffers from the vanishing gradient problem. ReLU has been
widely used in CNNs owing to its efficient computation [78]. Furthermore, it does
not suffer from the vanishing gradient or exploding gradient problem. Through ex-
periments we found that the OA values of the Pavia Unicersity and the Indian Pines
are higher when ReLU is selected as activation function. Therefore, ReLU is a good
choice for activation function.

The pooling layer is usually employed between the convolutional layers. Pooling
operation can reduce the resolution of feature maps and prevent over-fitting to a
certain degree. In CNNs, the commonly used pooling methods are max-pooling
and mean-pooling [79]. Max-pooling effectively retains the texture information of
images, whereas mean-pooling effectively preserves the background information of
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Figure 1.7: Different activation functions.

images. In theory, texture information is more useful for image classification. In
the experiments, the OA values are also higher for both HSIs under max-pooling.
Therefore, max-pooling is selected as the pooling method for the Pavia University
and Indian Pines.

1.3.3.5 Optimization method

Some optimization methods [80,81]: Adadelta, stochastic gradient descent (SGD),
adaptive gradient algorithm (Adagrad), root mean square prop (RMSprop), adap-
tive moment estimation (Adam) are compared in this part.

Table 1.7: OA values of Pavia University and Indian Pines under different optimiz-
ers.

Data set

OA (%) Optimizer
SGD Adagrad Adadelta RMSprop Adam

Pavia University 92.87 93.03 93.45 93.95 94.14
Indian Pines 86.58 87.38 90.45 90.53 90.61

It can be seen from Table 1.7 that the highest OA value is obtained when Adam
is used as the optimizer. Therefore, Adam is chosen as the optimizer for the two
data sets.
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Figure 1.8: OA values and computation times under different batch sizes.

1.3.3.6 Batch size

In the following experiments, a mini-batch based on the Adam algorithm is used.
The relationship between the OA values and the computation time under different
batch sizes is shown in Figure 1.8. It can be seen that when the batch size increases,
the OA values of the two HSIs decrease. But the computation is more efficient,
especially for the Pavia University. To achieve a tradeoff between the OA values
and the computation time, 128 is chosen as the batch size for the Pavia University
and Indian Pines.

1.3.3.7 Number of convolutional kernels

Feature extraction is a key indicator of classification performance. Different
convolutional kernels can extract different features. However, the computational
complexity increases with the number of convolutional kernels. The OA values
under different numbers of convolutional kernels are shown in Figure 1.9 and only
the number of kernels in the first convolution layer is listed, where if the number of
kernels in the first convolution layer is n, the number of kernels in the lth convolution
layer is n× l.

As seen from the Figure 1.9, for Pavia University, the OA values are lower when
the number of kernels in the first convolution layer is 8 and 96, while for other kernel
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Figure 1.9: OA values under different number of convolutional kernels.

numbers, the accuracy does not change much. For the Indian Pines, the OA values
do not vary significantly with the number of kernels increasing (except when it is 8).
In the case of the same other parameters, the amount of calculation increases and the
training time becomes longer as the kernel number increases. Therefore, considering
the aforementioned factors, the number of kernels in the first convolutional layer is
selected as 16 for Pavia University and Indian Pines.

1.3.3.8 Number of epochs

All inputs are processed one time individually of forward and backward to the
network, called one epoch. The number of epochs has a significant impact on the
computation time. The more the number, the longer is the time required to train
the network. Therefore, the epoch number is tuned after the other parameters have
been optimized. Too many epochs will not only reduce the efficiency but may also
cause over-fitting. The OA values under different number of epochs are shown in
Table 1.8.

It can be found from Table 1.8 that OA values slowly increase as the number
of epochs increases, but the training time increases greatly. Considering OA values
and training time, the number of epochs is set to 100 for both two data sets.

A set of optimal parameters can be finally obtained after parameter tuning.
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Table 1.8: OA values of Pavia University and Indian Pines under different number
of epochs.

Data set

OA (%) ne

100 200 300 400 500 600

Pavia University 95.03 95.10 95.14 95.14 95.36 95.37
Indian Pines 90.88 90.78 90.84 90.83 90.85 90.87

However, overfitting is still a problem need to be faced. To prevent complex co-
adaptations on the training data, dropout can be used to reduce overfitting by
randomly omitting some hidden units from the network [82]. Therefore, dropout is
introduced into the optimized 2D-CNN to further improve the classification perfor-
mance of the network.

1.3.3.9 Comparison of classification results

For better visual observation of the effectiveness of the proposed method, fea-
ture extraction methods based on factor analysis (FA) and DBN are considered
for comparison to better evaluate the performance of the proposed method. FA
is a linear statistical method that uses fewer numbers of factors to replace origi-
nal data [83]. DBN is composed of multiple layers of latent variables and it usually
takes a 1D vector as input, which learns deep features via pretraining in a hierarchal
manner [84–86].

The classification maps of Pavia University and Indian Pines obtained by differ-
ent methods are shown in Figure 1.10 and Figure 1.11, respectively.

It can be seen from Figure 1.10 that classification map of FA has the most
misclassified pixels, especially a large number of pixels in the green are misclassified
as pixels in the yellow area in the upper left and lower left of the HSI. Besides many
pixels in the yellow are mistakenly classified as green in the central area of the HSI.
In Figure 1.10 (c), the number of misclassified pixels in the upper left and lower left
is greatly reduced compared with Figure 1.10 (b), but there are still lots of pixels
in the central area. Overall, the classification map of Figure 1.10 (d) is the clearest
and the misclassified pixels are the least.

For Indian Pines, we can find that the classification maps in Figure 1.11 (b)
and (c) have many misclassified pixels in the upper left area. Although there are
still some misclassified pixels in Figure 1.11 (d), the classification map obtained by
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(a) (b) OA=88.64% (c) OA=92.97% (d) OA=95.03%

Figure 1.10: Classification maps of Pavia University under different methods: (a)
Ground truth, (b) FA, (c) DBN, (d) 2D-CNN-PT.

(a) (b) OA=75.16% (c) OA=87.87% (d) OA=90.88%

Figure 1.11: Classification maps of Indian Pines under different methods: (a)
Ground truth, (b) FA, (c) DBN, (d) 2D-CNN-PT.
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2D-CNN-PT is the clearest.

1.4 Conclusion

A 2D-CNN-PT method is proposed in this Chapter to improve the classification
results of HSIs. First, PCA is introduced to reduce the HSI dimension. Second,
a 2D-CNN is constructed and the parameters of the 2D-CNN are tuned in turn
according to the unique variable principle on the basis of experimental results and
effectiveness. Finally, classification is performed with the optimized 2D-CNN. The
experimental results on two real-world HSIs show that the proposed 2D-CNN-PT
method achieves better HSI classification performance compared to the other two
commonly used methods.

Although the optimal parameters are obtained under a limited set of explored
parameters, these results can provide a reference for parameter initialization settings
of other models, and it will save time for parameter tuning of models.
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Chapter 2

Supervised feature extraction based
on 3D-CNN for hyperspectral clas-
sification

2.1 Introduction

In the Chapter 1, 2D-CNN is introduced to mine information in HSIs. 2D-CNN
can directly take 2D data as input and has great potential in preserving spatial
structure of the target. However, HSIs that usually contain hundreds of spectral
channels not only contain spatial information but also provide abundant spectral
information. Therefore, 2D-CNN has limitations in retaining the spectral informa-
tion. In [87], a two channels deep CNN composed of a 1D-CNN and a 2D-CNN
is proposed to learn jointly spectral-spatial information, but the characteristics of
the spectral domain and the spatial domain are extracted separately. Considering
that the 3D data can be directly input into the 3D-CNNs, which helps to fully ex-
ploit the spectral and spatial information at the same time and avoids complex data
reconstruction [36–40], 3D-CNN is developed to fully exploit the spectral-spatial
information of HSIs in this chapter.

2.2 Hyperspectral classification based on 3D-CNN

2D-CNNs mainly capture features from the spatial domain, but 3D-CNNs could
help to obtain spatial-spectral features of tensors [88]. Therefore, a 3D-CNN is
considered to fully exploit the information among hyperspectral data. The flow

37



chart of a conventional 3D-CNN for hyperspectral classification is illustrated in
Figure 2.1.

Figure 2.1: A conventional 3D-CNN for hyperspectral classification.

3D-CNN mainly obtains features through 3D convolution. It is known that 2D
convolution operation can be performed on 2D input data and it has strong abilities
in retaining the spatial information of the data. We can find from Figure 2.2 that
3D convolution can be performed on 3D data. The 3D filter in 3D convolution can
move in three directions (width, height, and depth of data) and each movement
of the filter can obtain a value by element-wise multiplication and addition. The
output of 3D convolution is also a 3D data.

Figure 2.2: 3D convolution operation.

When 3D convolution operation is performed with stride of 1×1×1, the output
at position (x, y, z) can be calculated by:

Ox, y, z =
W1−1∑
p=0

W2−1∑
q=0

W3−1∑
r=0

W p, q, rIx+p, y+q, z+r + b (2.1)

where I ∈ RI1×I2×I3 represents the input with dimension of I1 × I2 × I3, W ∈
RW1×W2×W3 is the convolution kernel, and b is the bias.

In order to preserve as much spatial and spectral information of the target as
possible, a 3D data block centered on the target can be used as the input of 3D-
CNN. However, HSIs usually contain hundreds of spectral bands and the information
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of adjacent bands is highly correlated. If the input data contains all the bands,
not only the amount of calculation is increased but curse of dimensionality may be
caused [7]. Therefore, dimensionality reduction is an important step in hyperspectral
classification based on 3D-CNN.

In subsection 1.3, PCA is used to reduce the dimensionality of HSIs. In addition
to the commonly used PCA, band selection is one of the alternative ways to reduce
the dimensionality of HSIs.

2.2.1 Band selection

When band selection is implemented unsupervised, a commonly-used approach
is to combine all possible subsets to find the most satisfactory objective value under
some criterion, such as signal-to-noise ratio (SNR), optimum index factor (OIF),
which may result in excessive computational complexity and cost. Moreover, the
spectral signatures which are important to differentiate the materials are easy to be
ignored or destroyed [89].

Selecting the bands with more invariant features and low correlation can help us
improve the training efficiency and obtain better network performance. In order to
efficiently select the band of HSIs, a fast band selection method based on a modified
Douglas-Peucker algorithm named FMDP is proposed for hyperspectral classifica-
tion. In the FMDP method, the number of invariant features calculated by scale
invariant feature transformation (SIFT) algorithm and the spectral values are taken
into account as evaluation criteria to ensure band information and spectral char-
acteristics. The bands are simplified by limiting the distance between the selected
adjacent bands, which not only reduces the band correlation but also reduces the
number of iterations.

2.2.1.1 Introduction of SIFT and DP algorithms

The SIFT algorithm is proposed by David [90,91] which can be used to transform
an image into local feature vectors. The features are invariant to image scaling,
translation and rotation, which is of great help to image processing [92].

To find the distinctive features, a difference-of-Gaussian pyramid needs to be
constructed at first to search for potential interest points that are brighter or darker
than its surroundings. Next, the location and scale of candidate keypoints are
determined by performing a detailed model fit to the nearby data and they are
selected according to their stability. Then, each keypoint is assigned one or more
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orientations based on its local image patch. Finally, the descriptor is built for each
keypoint in its local neighborhood, which is measured by the local image gradients.
The SIFT keypoints are useful for object recognition and matching due to their
invariance and distinctiveness.

DP algorithm also known as the Ramer DP algorithm, is proposed by Urs Ramer
[93], David Douglas and Thomas Peucker [94]. It is perfected by other scholars in the
following decades, which has been widely used to compress the redundant graphical
points and extract keypoints.

Figure 2.3: DP algorithm for line simplification.

DP algorithm produces straight-line segments to simplify the original curve, and
the distance between the curve points and the segment is used as the evaluation
criterion. Given a curve, connect the start point A and the end point B can get a
straight-line segment AB shown in Figure 2.3. Search the farthest point C on the
curve where the distance from the segment AB is the maximum. Comparing the
maximum distance d with the preset threshold T , if d is greater than T , C is selected
to become the end point of the two new segments AC and BC. For each segment
created, repeat the previous process until the maximum distance not satisfies the
threshold value, and a polyline which can be used as the approximation of curve is
eventually obtained.

2.2.1.2 Proposed FMDP method for band selection

The goal of selecting the band is to keep the bands containing more informa-
tion and low correlation. Considering the distinctive features from scale-invariant
keypoints obtained by SIFT are invariant to image scale and rotation, which is of
immense benefit to image processing, the number of keypoints can be introduced to
estimate the information of band. Since an HSI is a 3D data cube and each chan-
nel collects geometrical information of the same scene in the spatial domain [95],
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keypoints detection can be individually performed on the 2D image correspond-
ing to each band to estimate the number of keypoints. Besides, different dimen-
sions of HSI correspond to different energies represented by the square of Frobenius
norm (F-norm). The smaller the corresponding F-norm value of the image, the
lower the corresponding energy and the less useful information contained. In or-
der to better estimate the information contained in the band, an evaluation criteria
(Q(h3), h3 = 1, 2, ...H3) of the h3th band considering the aforementioned keypoint
number and F-norm is defined as follows:

Qfn(h3) = ‖H(:, :, h3‖2
F =

H1∑
h1=1

H2∑
h2=1
|H(h1, h2, h3)|2 (2.2)

Q(h3) = Qkp(h3)×Qfn(h3) (2.3)

where the raw HSI with H1 rows, H2 columns and H3 spectral bands, Qfn(h3)
represents the F-norm value of the h3th band, Qkp(h3) represents the number of the
keypoints of the image corresponding to the h3th band. Both Qkp(h3) and Qfn(h3)
are normalized to [0 1]. The larger the Q(h3) value of a band, the greater the
possibility that it has high quality.

In addition to the selected bands with high quality and abundant information,
low correlation between the selected bands is also essential. Besides, each pixel
in HSIs corresponds a spectral curve, which can be used to distinguish land-cover
classes. Therefore, we expect the spectral characteristics can be reserved as much
as possible and the corresponding polylines of selected bands are able to distinguish
the target. To get rid of the computational complexity caused by combining all
possible sub-bands to choose the least relevant one, we are looking for a new way
to reduce the band correlation. It can be known that the neighboring bands are
more correlative through calculating the correlation coefficient between the bands.
Therefore, a modified DP algorithm is used to select bands and reduce the band
correlation by controlling the distance between adjacent selected bands.

As shown in Figure 2.4, if curve AB is plotted according toQ(h3) value calculated
by the Eq. (2.3) where A and B correspond to the first and last bands of an HSI. C is
the point with maximum Q(h3) value on the curve, corresponding to the Dth band.
Instead of setting a threshold for d (the distance from point C to the straight-line
segment AB), two thresholds (T1 and T2, T1<T2) are set to limit the distance (X1)
between point A and point D, and the distance (X2) between point D and point B.
X1 and X2 are estimated by the difference of the corresponding band number, for

41



Figure 2.4: The modified DP algorithm.

example, the distance of the ith band and jth band is |j − i|. If T2 <X1 and T1 <X2

<T2), the Dth band is added to the subset of selected bands. Continue to search
for the possible bands to be selected between the band A and band D. If T1 <X11

<T2 and T1 <X12 <T2, the F th band is added to the subset of selected bands. If
the distance between all adjacent selected bands meets the condition, i.e. T1 <X1,
X2, X11, X12 <T2, the band selection ends. The Ath, F th, Dth, Bth bands are the
final selected bands. If not, repeat the previous step until all distances meet the
condition.

The detailed procedure of the proposed FMDP is shown in Figure 2.5, where a
stadium box indicates the beginning and ending of a process, a parallelogram box
denotes the process of inputting and outputting data, a rectangular box represents a
processing step, and a diamond is used to represent a decision point in the process.

For each HSI, the evaluation criteria Qkp(h3) can be calculated. Given two
threshods (T1, T2) and the number of bands to select N , we can get a set of candidate
bands based on the modified DP algorithm. Sort all the candidate bands according
to Q(h3) value and the top N bands with the largest Q(h3) value are the final
selection. Besides, to reduce the number of iterations and increase the difference
of the selected bands, the set of the two thresholds try to make the number of
candidate bands is near to N toward 0 and T2 tries to be about twice as large as
T1. When the proposed FMDP is utilized, only a few iterations are needed and the
spectral information can be preserved as much as possible, which not only greatly
improves the computational efficiency but also lays a solid foundation for subsequent
classification.
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Figure 2.5: The flowchart of proposed FMDP for band selection.

2.2.1.3 Experimental results of band selection

To verify the effectiveness of the proposed band selection method, comparative
experiments on Pavia University and Indian Pines data sets are carried out in this
subsection.

When the band to be selected is 10, for Pavia University, T1 and T2 are set to 9
and 18; For Indian Pines, T1 and T2 are set to 16 and 32. The original spectral curves
and fitted spectral curves of different classes in Pavia University and Indian Pines are
depicted in Figure 2.6 and 2.7, respectively. The selected bands are corresponding
to the red asterisk in Figure 2.6 (b) and 2.7 (b).

It can be observed from Figure 2.6 and 2.7 that the selected bands try to fill the
band range instead of focusing on a narrow spectral band, which helps reduce data
redundancy and data correlation. In addition, most of the selected bands are key
locations that affect the contour of the spectral curve and the fitted spectral curves
are closer to the original curves, which allows the selected band can provide more
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(a) (b)

Figure 2.6: Pavia University: (a) Original spectral curve, (b) Fitted spectral curve
with selected bands.

(a) (b)

Figure 2.7: Indian Pines: (a) Original spectral curve, (b) Fitted spectral curve with
selected bands.
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spectral information to distinguish the materials.

Figure 2.8: OA values under different number of selected bands.

When the number of selected band ranges from 10 to 50, the OA values based
on 3D-CNN of Pavia University and Indian Pines are depicted in Figure 2.8. It can
be found that OA values increase as the number of selected bands increases and
then stabilize. However, according to the OA value obtained by using all the bands,
it can be inferred that the OA values exceed a certain range decrease as the band
increases. Overall, even in the rising range, the change in OA value is not great,
but the amount of data calculation has greatly increased. Therefore, dimensionality
reduction is very helpful to improve efficiency.

In order to better verify the performance of the proposed method, four other un-
supervised band selection methods, maximum-variance principal component analysis
(MVPCA), adaptive band selection (ABS), minimum noise band selection method
(MNBS), and band column selection (BCS) are considered for comparison. MVPCA
[96] prioritizes bands using loading-factors matrix via the corresponding eigenval-
ues and eigenvectors to achieve band reduction. ABS is developed in [97] based on
OIF [98] and the high correlation between adjacent bands is also take into account.
In [99], a MNBS is proposed based on data quality integrating both SNRs and corre-
lation of bands. Because each HSI can be represented as a tensor data and selecting
the most desirable column subsets is an analogy to band selection for HSIs, BCS
is employed in [100] by transforming the original hyperspectral data into a matrix
and then selecting the most informative and least correlative column subset. The
OA values with different number of selected bands of Pavia University and Indian
Pines are shown in Figure 2.9 and Figure 2.10, respectively.
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Figure 2.9: OA values of Pavia University based on different number of bands se-
lected by different methods.

For Pavia University, we can find from Figure 2.9 that the OA values are affected
by band selection methods, but the relationship between OA values and the number
of selected bands is similar. At the beginning, the OA values show an upward
tendency as the number of selected bands increases within a certain range. Then the
OA values decrease as all bands are used except when ABS is used to select the band.
Besides, when the number of selected bands is small, the proposed FMDP achieves
higher accuracy compared with other mentioned methods. It’s because the band
selected by the proposed FMDP has a wide distribution and retains good spectral
characteristics. When the number of selected bands exceeds 30, the classification
results obtained by BCS, MNBS, MVPCA and the proposed FMDP are better
than the results obtained with all bands, which proves that the appropriate number
of selected bands can help to obtain better results compared to all bands being
considered.

For Indian Pines (Figure 2.10), FMDP, BCS, MNBS and MVPCA have similar
relationship between OA values and the number of selected bands. The OA values
increase with the number of selected bands at the beginning, and then tend to be
stable. By comparing with the OA values of all bands, it can be inferred that OA
values decrease after a certain range. The OA values obtained based on ABS increase
with the number of selected bands, but the OA values are low compared with the
results got by other methods. When the selected band is fixed at 10, the proposed
FMDP helps obtain the highest OA value. In addition, when the selected band is
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Figure 2.10: OA values of Indian Pines based on different number of bands selected
by different methods.

between 30 and 50, the OA values of FMDP, BCS, and MNBS are similar and their
performance surpasses the precision gained with all bands.

In general, the classification results of Pavia University and Indian Pines demon-
strate that choosing appropriate number of bands instead of all bands for classifica-
tions helps obtain better results and improves efficiency. In particular, the proposed
method exhibits best performance with a few iterations when the number of selected
bands is small.

2.2.2 Solutions with limited labeled samples

After the HSI has been reduced in dimensionality, it can be input into 3D-
CNN for feature extraction and classification. The designed framework is showed in
Figure 2.11 where DR represents dimensionality reduction.

According to the unique variable principle described in subsection 1.3, the pa-
rameters of the 3D-CNN can be also tuned one by one to get a set of optimal
parameters, which helps improve network performance. However, although the di-
mensionality of HSI is reduced, there are still a large number of parameters need
to be optimized in a 3D-CNN, which requires sufficient labeled samples. Unfor-
tunately, the labeled samples in hyperspectral data is limited and the collection
of labeled samples is labor-consuming and time-consuming, which has a negative
impact on the classification results.
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Figure 2.11: Proposed hyperspectral classification based on a 3D-CNN.

2.2.2.1 Transfer learning

Transfer learning (or knowledge transfer) has attracted widespread attention in
recent years and has been widely applied in computer vision [101] and natural lan-
guage processing [102], etc. To better understand transfer learning, the definitions
of a “domain” and a “task” are given, respectively [22].

A domain D consists of a feature space X and a marginal probability dis-
tribution P (X), where X = {x1, x2, ..., xn} ∈ X and xi represents the ith fea-
ture. In general, if two domains are different, then they may have different fea-
ture spaces or different marginal probability distributions. Given a specific domain,
D = {X , P (X)}, a task (T = {Y , f(·)}) is composed of a label space Y and an
objective function f(·) which can be learned from the training data. The training
data consists of pairs {xi, yi}, where xi ∈ X and yi ∈ Y . For a new instance x, f(·)
can be used to predict the corresponding label f(x). From a probabilistic viewpoint,
f(x) can be written as P (y|x).

For simplicity, we only consider the condition where there is one source domain
DS, and one target domain DT . The source data is denoted as DS = {(xS1 , yS1), (xS2 , yS2),
..., (xSn , ySn)}, where xSi

∈ XS is the data instance and ySi
∈ YS is the cor-

responding label. Similarly, the target domain data can be denoted as DT =
{(xT1 , yT1), (xT2 , yT2), ..., (xTn , yTn)}, where xTi

∈ XT is the input and yTi
∈ YT

is the corresponding output. Then, the definition of transfer learning can be defined
as follows:

Given a source domain DS and learning task TS, a target domain DT and learning
task TT , transfer learning aims to help improve the learning of the target predictive
function fT (·) in DT using the knowledge in DS and TS, where DS 6= DT , or TS 6=
TT .
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From the definition of transfer learning, we can see that transfer learning has the
ability of a system to recognize and apply knowledge and skills learned in previous
domains/tasks to novel domains/tasks. There are some commonly used approaches
such as instance-based transfer learning (or instance-transfer) approach, feature-
representation-transfer approach, parameter-transfer approach, etc.

If there is another HSI (source data) with enough labeled samples and the same
feature space as the HSI to be classified (target data), then transfer learning can
be used to help us reduce the need for labeled samples of target data. The de-
signed framework of 3D-CNN with transfer learning (3D-CNN-TL) is illustrated in
Figure 2.12, where DR means dimensionality reduction.

Figure 2.12: Proposed 3D-CNN-TL framwork.

The training procedure of designed 3D-CNN-TL can be divided into five steps:
Step 1: the source data and target data are reduced to the same dimension.
Step 2: two 3D-CNNs (3D-CNN I and 3D-CNN II) with same network structure

except for the output layer are established, and the number of units in output layer
is equal to the number of classes contained in the corresponding data set.

Step 3: the 3D-CNN I with source data as input is trained and optimized by
sufficient training samples.

Step 4: knowledge transfer can be made: the weights in convolutional layers
and pooling layers in the 3D-CNN II can be transferred from the same layers of the
3D-CNN I in Step 3, and the weights of other layers are initialized randomly.

Step 5: the 3D-CNN II can be further fine-tuned by the training samples from the
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target data to obtain better classification performance. Besides, since the weights
of the middle layers of 3D-CNN II are transferred from 3D-CNN I, the optimization
of 3D-CNN II has lower requirements on the number of samples and the number of
iterations.

2.2.2.2 Virtual samples

When the source data is available, knowledge transfer can be made from the
source data to the target domain to improve the network performance by avoiding
rather expensive data labeling efforts [103]. However, not all target data have cor-
responding source data. Without the help of source data, transfer learning cannot
be implemented. If the source data is absent, as a pseudo-sample transformed from
the original sample of the target data, virtual samples are also a solution to make
up for the lack of HSI samples [21, 23].

If ϕo represents an original sample in the HSI with a size of S × S ×Hdr, then
the virtual sample ϕv can be defined as:

ϕv = ηϕo +N (µ, σ2) (2.4)

where η is the correlation coefficient, and N (µ, σ2) denotes the Gaussian noise with
a mean of µ and a variance of σ2, which is used to simulate the interference of the
external environment to the samples. After mixing the virtual samples with the
original ones, the overall number of training samples can be greatly increased.

2.2.2.3 3D-CNN with transfer learning and virtual samples

Since both transfer learning and virtual samples can make contributions to solve
the problem of limited training samples, a hybrid method named 3D-CNN-TV which
combines 3D-CNN, transfer learning, and virtual samples, is proposed in order to
further improve HSI classification. Figure 2.13 shows the procedure of the proposed
3D-CNN-TV method, where a stadium box indicates the beginning and ending of a
process, a parallelogram box denotes the process of inputting and outputting data,
and a rectangular box represents a processing step.

The training procedure of designed 3D-CNN-TV can be devided into three steps:
First of all, 3D-CNN I is trained and optimized by sufficient training samples

from the source data to obtain optimized weights. At the same time, virtual samples
are generated from the original samples of target data according to Eq. (2.4). The
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Figure 2.13: Flow chart of proposed 3D-CNN-TV framwork.
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generated virtual samples are mixed with the original samples as training samples
of target data.

Then, as described in Figure 2.13, the weights of middle layers in 3D-CNN II
(or 3D-CNN-TV) are transferred from the corresponding layers pf the optimized
3D-CNN I.

At last, the training samples consisting of the original and the virtual ones can
help to further fine-tune the 3D-CNN-TV model. In addition, due to the introduc-
tion of virtual samples, not only the number of training samples is greatly increased,
but the robustness of the model can be improved.

2.3 Experimental results

In order to compare and verify the effectiveness of the proposed models, the
classification results based on single 3D-CNN, 3D-CNN-TL, 3D-CNN-VS, and 3D-
CNN-TV are analyzed and discussed in this subsection. In order to improve effi-
ciency and reduce the amount of calculation, the dimensionality of the data sets
involved in this subsection is reduced, and both PCA and proposed FMDP are used
for comparison. Specifically, the original HSI (H ∈ RH1×H2×H3) is reduced to a lower
dimensional image (Hdr ∈ RH1×H2×Hdr , (Hdr < H3)). For each pixel, a 3D tensor
with a size of S×S×Hdr is selected as the input of network. In the experiments, we
choose Pavia University and Indian Pines as the target data to study and analyze
the network performance in hyperspectral classification. The dimensionality of both
two data sets is reduced to 10 by PCA and FMDP, respectively. The input size is
fixed at 27 × 27 × 10. In the following, the parameter settings of different models
are introduced in detail.

2.3.1 Details of 3D-CNN

As described in Figure 2.11, the network structure of 3D-CNN is listed in Ta-
ble 2.1 with input size being 27× 27× 10. 128 is chosen as the batch size and Adam
is chosen as the optimizer.

2.3.2 Details of 3D-CNN-TL

The center of Pavia city (Pavia Centre) shown in Figure 2.14 (a) is acquired by
the ROSIS sensor, the same as the sensor that obtained Pavia University. After
discarding the pixels containing no information, there are 1096 × 715 pixels with

52



Table 2.1: Network structure of 3D-CNN.
Network layer Convolutional layer ReLU Pooling laler Dropout

1 4× 4× 3× 16 yes 2× 2× 1 -
2 5× 5× 3× 32 yes 2× 2× 1 0.2
3 4× 4× 3× 64 yes - 0.2

(a) (b)

Figure 2.14: Source data sets: (a) Pavia Centre, (b) Salinas.
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102 spectral bands. Nine land-cover classes are contained in this data set and the
details are listed in Table 2.2.

Table 2.2: Comparison of land-cover classes and number of samples in Pavia Centre
and Pavia University.

Pavia Centre Pavia University
Class No. Name Number Name Number

1 Water 65971 Asphalt 6631
2 Trees 7598 Meadows 18649
3 Asphalt 3090 Gravel 2099
4 Bricks 2685 Trees 3064
5 Bitumen 6584 Metal sheets 1345
6 Tiles 9248 Bare soil 5029
7 Shadows 7287 Bitumen 1330
8 Meadows 42826 Bricks 3682
9 Bare Soil 2863 Shadows 947

It can be found from Table 2.2 that Pavia Centre and Pavia University have
seven common classes, such as Trees, Asphalt, Bricks, Bitumen, etc.

Salinas shown in Figure 2.14 (b) is collected by the 224-band AVIRIS sensor over
Salinas Valley, California, the same as the sensor that obtained Indian Pines. The
scene covers comprises 512 lines by 217 samples, including 16 land-cover classes. As
with Indian Pines scene, 20 water absorption bands is discarded. It can be observed
from Table 2.3 that although the land-over classes in Indian Pines are different from
Salinas, the two data sets mainly contain agriculture, forest and vegetation.

Pavia Centre and Salinas are used as the corresponding source data for Pavia
University and Indian Pines in the transfer learning experiment, respectively. We
assume that both Pavia Centre and Salinas contain sufficient labeled samples.

To ensure the stability of the network performance, 70% of samples of each
class in the Pavia Centre and Salinas are randomly chosen as the training set and
the remaining 30% belong to the testing set. The network structures and parameter
settings of 3D-CNNs are the same as in Table 2.1. When the two 3D-CNNs are well-
trained by sufficient labeled samples from Pavia Centre and Salinas, respectively,
the weights of the convolutional layers and the pooling layers are transferred to
the corresponding 3D-CNN-TL (3D-CNN II) model. After transfer learning, 5% of
samples of each class in target data are used to fine-tune the 3D-CNN-TL networks.
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Table 2.3: Comparison of land-cover classes and number of samples in Indian Pines
and Salinas.

Indian Pines Salinas
Class No. Name Number Name Number

1 Weeds1 2009 Alfalfa 46
2 Weeds2 3726 Corn-notil 1428
3 Fallow 1976 Corn-min 830
4 Fallow-rough-plow 1394 Corn 237
5 Fallow-smooth 2678 Grass-pasture 483
6 Stubble 3959 Grass-trees 730
7 Celery 3579 Grass-pasture-mowed 28
8 Grapes-untrained 11271 Hay-windrowed 478
9 Soil-vinyard-develop 6203 Oats 20
10 Corn 3278 Soybean-notill 972
11 Lettuce-4wk 1068 Soybean-mintill 2455
12 Lettuce-5wk 1927 Soybean-clean 593
13 Lettuce-6wk 916 Wheat 205
14 Lettuce-7wk 1070 Woods 1265
15 Vinyard-untrained 7268 Buildings-grass-trees 386
16 Vinyard_vertical_trellis 1807 Stone-stel-towers 93

2.3.3 Details of 3D-CNN-VS

Virtual samples are introduced to the 3D-CNN model according to Eq. (2.4).
To reduce the difference between the virtual samples and real samples, the value of
correlation coefficient η should be closed to 1. Therefore, η is set to a uniformly
distributed random number in [0.9, 1.1] in the experiment. Considering that the
number of virtual samples and the interference N can also influence the network
performance, a sensitivity analysis is conducted in this part to achieve better network
performance.

If the number of original training samples selected from among the target data
is nt, then the number of virtual samples will be nv = r× nt where r represents the
ratio between the number of virtual samples and the number of original samples.
The mean value µ of noise N is set to 0, and the variance σ2 is set to 0.01 at
the beginning. In the experiment, the virtual samples and the original samples are
mixed together to form the training data set. When the value of the ratio r is
different, i.e., when the number of virtual samples is different, Figure 2.15 (a) shows
the relationship between r and OA values for Pavia University and Figure 2.15 (b)
for Indian Pines.

It can be seen from Figure 2.15 that for Pavia University and Indian Pines, the
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(a) (b)

Figure 2.15: Relationship between r and OA values.

OA values increase first and then decrease with r. For both data sets, the highest
value is arrived when the number of virtual samples is 1 × nt, i.e., the number of
virtual samples is equal to the number of original samples. Therefore, the number
of virtual samples is set to nv = nt for the 3D-CNN-VS model in the classification.

When introducing virtual samples, the noise N can also affect the classification
performance. Keeping the number of virtual samples fixed at nv = nt and the mean
value of N at 0, and changing the variance value σ2, the resulting OA values are
shown in Table 2.4, where OA1 represents the OA values of Pavia University and
OA2 represents the OA values of Indian Pines.

Table 2.4: OA values under different noise variances of the virtual samples.
σ2 0.00001 0.0001 0.001 0.01 0.1 1
OA1 98.31 98.52 99.15 98.15 98.55 98.22
OA2 96.60 96.64 97.75 96.73 96.30 95.81

As presented in Table 2.4, the OA value of Pavia University is relatively high
when the value of σ2 is less than 0.001. Besides, the highest OA values of Pavia
University and Indian Pines are both obtained with σ2 being 0.001, which means
that the virtual samples are more similar to the original samples at this point.

2.3.4 Details of 3D-CNN-TV

As mentioned in Section 2.2.2.3, a 3D-CNN-TV model combined with transfer
learning and virtual samples can be constructed for the classification. Meanwhile,
the virtual samples with zero mean and noise variance of 0.001 could be generated
from the original samples. Then, the virtual samples are mixed with the original
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ones to fine-tune the 3D-CNN-TL model with transferred weights. When the 3D-
CNN-TV is well optimized, input the target data into the optimized 3D-CNN, and
the category prediction can be obtained.

2.3.5 Comparison of classification results

In order to make a visual comparison, the classifications maps of Pavia University
and Indian Pines obtained from 3D-CNN-based models are illustrated in Figure 2.16
and Figure 2.17.

(a) OA=97.18% (b) OA=98.32% (c) OA=99.15% (d) OA=99.78%

Figure 2.16: Classification maps of Pavia University under different methods: (a)
3D-CNN, (b) 3D-CNN-TL, (c) 3D-CNN-VS, (d) 3D-CNN-TV.

It can be seen from Figure 2.16 that the classification map of 3D-CNN has more
pixels misclassified compared with the other three classification maps, especially
the yellow area. Both the introduction of transfer learning as shown in Figure 2.16
(b) and virtual samples as shown in Figure 2.16 (c) can reduce the number of
misclassified pixels. Besides, virtual samples are more helpful for improving the
classification performance for Pavia University. Moreover, the proposed 3D-CNN-
TV method helps to obtain the clearest map and highest OA value.

For Indian Pines, we can find from Figure 2.17 that the misclassified pixels are
mainly concentrated in the upper left area. The misclassification of pixels is greatly
reduced in Figure 2.17 (b) - (d), which demonstrate that transfer learning and virtual
samples have great potential in further improve the network performance.
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(a) OA=95.73% (b) 96.58% (c) OA=97.75% (d) OA=98.50%

Figure 2.17: Classification maps of Indian Pines under different methods: (a) 3D-
CNN, (b) 3D-CNN-TL, (c) 3D-CNN-VS, (d) 3D-CNN-TV.

2.4 Conclusion

When 3D-CNN is introduced for hyperspectral classification, due to the network
structure and the data characteristics of HSIs, a large amount of calculation is
caused. To solve this problem, we propose a new band selection method to quickly
select the band and reduce the dimensionality of HSIs. In addition, to solve the
problem of insufficient samples, improved 3D-CNNs based on transfer learning and
virtual samples are proposed for HSI classification. On the one hand, the initial
weights in the middle layers are transferred from another 3D-CNN which has been
well trained by the source data. On the other hand, virtual samples are generated
from the original samples in the target data to increase the number of training
samples. Experimental results show either transfer learning or virtual samples can
help us further improve the classification accuracy, and the OA values obtained
by 3D-CNN with virtual samples are higher for both two data sets. Besides, it is
relatively easy to obtain virtual samples compared with transfer learning, because
training the network with source data requires a large amount of calculation and
time. In general, the combination of transfer learning and virtual samples further
improves network performance and achieves the highest accuracy.
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Chapter 3

Unsupervised feature extraction based
on GAN for hyperspectral classifi-
cation

3.1 Introduction

In the previous Chapter, transfer learning and virtual samples are investigated
to alleviate the problem of limited labeled samples in HSIs. However, the models
mentioned above are all supervised feature extraction, which means that the training
process still requires the participation of labeled samples. Unsupervised feature
extraction which doesn’t involve labeled samples is another good way to help us
get rid of labeled data. Considering the powerful data mining capabilities of deep
learning models, unsupervised feature extractors based on deep learning models
can be designed to fully exploit the nonlinear and spectral-spatial features of HSIs
without labeled samples.

GAN is trained in an adversarial way requiring no labeled samples. It has been
one of the most promising unsupervised learning representatives [23]. In [46], a
semi-supervised framework based on 1D-GAN is established for hyperspectral clas-
sification with a small number of labeled samples. But only spectral features are
extracted, which are far from enough for classification. In [47], Zhang proposes a
novel modified GAN whose generator and discriminator are designed in the form
of fully deconvolutional network and fully convolutional network to extract the fea-
tures without supervision. Nevertheless, only spatial information is taken as input
when the modified GAN is trained, which can be treated as 2D convolution on
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multiple channels. Hyperspectral data is a tensor data, which contains not only
spatial information but also the spectral characteristics of the target. Fully mining
the spectral-spatial features in HSIs is helpful for classifying the target. Consid-
ering 3D convolution operation is performed in space and spectrum, we want to
design a framework based on 3D-GAN in which the generator and discriminator are
built on fully 3D convolution and 3D deconvolution subnetworks to fully extract the
spectral-spatial features with unsupervised learning for classification.

3.2 Overview of GAN

GAN is proposed by Goodfellow et al. [104], mainly including a generator and a
discriminator. Generator can capture the probability distributions of real data x, by
producing synthetic data from given some noise source z; Discriminator estimates
whether the sample is real or generated. The architecture of standard GAN is shown
in Figure 3.1, where G represents generator and D represents discriminator.

Figure 3.1: Standard GAN.

Given a low-dimensionality latent data z with the probability distribution being
pz (z ∼ pz), and it can be projected to x̃ whose probability distribution is pg,
where generator is a multilayer perceptron. Similarly, another multilayer perceptron
can be represented as discriminator. Real data x with probability distribution pr

or generated data x̃ is input into discriminator, where discriminator can output a
probability that the input belongs to real data. Generator and discriminator play a
minmax game and objective function is as follows:

min
G

max
D

Ex∼pr [log D(x)] + Ex̃∼pg [log (1−D(G(z))] (3.1)

where E represents mathematical expectation. Ex∼px represents the expectation over
real data x with probability distribution being px. Ex̃∼pg means the expectation over
noisy data x̃ with probability distribution being pg.

Through the adversarial manner and competition of two models, both the gener-
ator and the discriminator will be continuously optimized. However, in the training
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procedure of standard GAN, Jensen-Shannon divergence is used to minimize the
difference between the probability distributions of generated data and real data,
which makes the training of GANs is well known for being delicate and unstable,
and often leads to vanishing gradients as the discriminator saturates [105,106].

Wasserstein GAN (WGAN) uses Wasserstein distances to calculate the distances
between different distributions and designs weight clipping to enforce a Lipschitz
constraint, which makes progress toward stable training of GANs and get rid of
mode collapse [107, 108]. However, the use of weight clipping of WGAN leads to
optimization difficulties, because weight clipping makes the weights of discriminator
almost concentrated in the extremes of the clipping range as shown in Figure 3.2.
Even worse, gradient explode or gradient vanish may be caused.

Figure 3.2: Weight distribution with weights clipping.

To solve the aforementioned problems, an improved WGAN adding gradient
penalty to enforce the Lipschitz constraint, named WGAN-GP, has been developed
and has been demonstrated that gradient penalty is an effective way to solve ex-
ploding and vanishing gradients. The new objective is [109]:

L = Ex̃∼pg [D(x̃)]− Ex∼pr [D(x)]︸ ︷︷ ︸
Original critic loss in WGAN

+λEx̂∼px̂
[(‖∇x̂D(x̂)‖2 − 1)2]︸ ︷︷ ︸
Gradient penalty

(3.2)

where λ is a gradient penalty coefficient, and px̂ samples uniformly along straight
lines between pairs of points sampled from the pg and pr. It has been demonstrated
that the training of WGAN-GP is more stable, and gradient penalty is an effective
way to solve exploding and vanishing gradients.
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Figure 3.3: Weight distribution with gradient penalty.

3.3 Proposed unsupervised feature extraction method
based on 3D-WGAN-GP

We have learned that HSI is a high-dimensional data which contains hundreds
of spectral bands and it’s difficult for generator to produce high-dimensional data,
which makes the training of GAN is difficult. In Chapter 2, a band selection method
is proposed to reduce the dimension of HSIs. In this Chapter, a new dimensionality
reduction method is designed based on 1×1 convolution and transfer learning, which
can provide an alternative way for data dimensionality reduction.

3.3.1 Proposed dimensionality reduction method

When dimensionality reduction is conducted, the spatial size (height and width)
of HSI is unchanged and only the dimension corresponding to the band (depth)
is reduced. Considering this characteristic of dimensionality reduction and being
inspired in [110], we propose to use 1× 1 convolutions to obtain lower-dimensional
and more abstract features. Furthermore, we want to reduce the dimension of target
data through transfer learning with an unsupervised process, which means labeled
samples of target data are not required during the dimensionality reduction process.
The designed framework of dimensionality reduction is depicted in Figure 3.4.

Take Pavia University as an example, we give a specific explanation of the di-
mensionality reduction framework. Since the number of spectral bands is 103 for
Pavia University and 102 for Pavia Centre, to make the target data and the corre-
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Figure 3.4: Framewrok of proposed dimensionality reduction method.

sponding source data have the same number of bands, the 103-rd spectral dimension
of the Pavia University is removed. Then, the original band of Pavia University and
Pavia Centre becomes 102. The network structure of 3D-CNN corresponding to the
source data is listed in Table 3.1.

Table 3.1: Network structure of 3D-CNN.
Network layer Convolutional layer ReLU Pooling laler Output

1 1× 1× 83× 1 yes 1× 1× 2 27× 27× 10× 1
2 4× 4× 3× 16 yes 2× 2× 2 12× 12× 4× 16
3 5× 5× 3× 32 yes 2× 2× 2 4× 4× 1× 32
4 4× 4× 1× 64 yes − 1× 1× 1× 64

The input size S×S×H3 is set to 27× 27× 102 at the beginning and the stride
is 1. The output size of feature map in the first convolutional layer is (27− 1 + 1)×
(27− 1 + 1)× (102− 83 + 1) = 27× 27× 20. After pooling operation, the size of the
corresponding feature maps is 27×27×10. It can be found that the height and width
of the input data are not changed after the first layer of convolution and pooling
operations, and only the depth (spectral dimension) is reduced. The 3D-CNN is
trained by source data which is assumed to have sufficient labeled samples. During
the training process, the parameters of the network are continuously optimized.
When the 3D-CNN is well-trained, the first convolutional layer and pooling layer
can be transferred as the dimensionality reduction module. When the target data
is input to this module, the lower-dimensional data can be obtained.
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3.3.2 Details of proposed unsupervised feature extraction
method

To extract the spectral-spatial features in HSIs with an unsupervised process,
a 3D convolution model based on WGAN-GP is designed and the framework of
the proposed method is shown in Figure 3.5, where deconv represents fractional-
strided convolutions (or deconvolution operation), conv means strided convolution
operation, G and D represent generator and discriminator, respectively.

Figure 3.5: Proposed unsupervised feature extraction method based on 3D-WGAN-
GP.

The process in figure 3.5 can be divided into three main steps:
First, a 3D-WGAN-GP model is constructed. Since convolution operation shows

great advantages in feature extraction, the model is built in all convolutional net
where pooling operation is replaced by fractional-strided convolutions (deconv) in
G and strided convolution (conv) in D. No fully-connected layers are used, and the
last convolution layer is flattened to fed into a single output.

Next, train and optimize the 3D-WGN-GP to improve its performance. The real
samples from lower dimensionality target data and the generated samples mapping
from noise vector through generator have the same size, and they are treated as
inputs of discriminator. During the training process, the fake data is getting closer
to real data, and discriminator has more and more difficulties in distinguishing
between real data and fake data. When the model is optimized to reach a point
where the discriminator is unable to differentiate real data and generated data, we
think the generator has learned the distribution of real data and the discriminator
has strong feature extraction ability.

Finally, transfer the optimized discriminator as the feature extractor. It can be
observed that generator can map 1D vector to high-dimensional data. Discrimina-
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tor can convert high-dimensional data into low-dimensional data, which is consistent
with the goal of feature extraction. Therefore, the optimized discriminator can be
taken out separately as the feature extractor. Input the real target data into the
feature extractor, and the corresponding low-dimensional data with high-level fea-
tures are obtained which lays a foundation for subsequent classification. Considering
no labeled samples are used during this process, unsupervised feature extraction is
implemented.

3.3.3 Experimental results

To verify the performance of the proposed method, Pavia University and Indian
Pines are chosen as target data, and Pavia Centre and Salinas are used as source
data as Section 2.3.2. According to the previously proposed dimensionality reduction
method, the dimension of the target data is reduced to 10 with the help of source
data and transfer learning. For each pixel, a 3D block with size being 27× 27× 10.
According to the size of input data, a 3D-WGAN-GP is built and some details are
described in Table 3.2, where Af represents activation function.

Table 3.2: Architectures of the 3D-WGAN-GP.
Net Layer Conv Af Net Layer Deconv Af

D

1 4× 4× 3× 16 leakyReLU

G

1 5× 5× 3× 128 ReLU
2 5× 5× 3× 32 leakyReLU 2 5× 5× 3× 64 ReLU
3 5× 5× 3× 64 leakyReLU 3 5× 5× 3× 32 ReLU
4 5× 5× 3× 128 leakyReLU 4 4× 4× 3× 16 ReLU

It can be seen from Table 3.2 that all activation functions of layers in discrimi-
nator are leaky rectified linear unit (leakyReLU). ReLU is chosen as the activation
function of layers in generator, except the output layer, which uses hyperbolic tan-
gent function (Tanh). Besides, in convolution-related operations, the stride is set
as 1 × 1 × 1 and the padding is set as valid which means there is no zero padding
operation on the boundary data. The generated samples obtained from the uni-
formly distributed noise with size being 100 × 1 through generator are mixed with
the real samples of source data, and then are fed into discriminator. In the training
procedure, dropout is introduced to avoid overfitting and a mini-batch based on
the root mean square prop (RMSProp) algorithm [111] which performs well even on
very nonstationary problems is employed and the size of batch is set as 32.

To evaluate the performance of the proposed method, the unsupervised feature
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extraction methods based on standard GAN, 3D-WGAN [47] and the proposed 3D-
WGAN-GP are compared. However, it’s difficult to directly evaluate the extracted
features. Therefore, the classification performance based on the extracted features
is used to estimate the quality of the extracted features. Better classification results
reflect that the corresponding methods have stronger feature extraction ability. In
the experiment, two widely used classifiers, support vector machine (SVM) and soft-
max, are used to classify the features. 10% of the samples of each class are randomly
chosen to train the classifier and the remaining 90% are for testing. Classification ac-
curacy of a single land-cover class and OA values are used to assess the classification
performance.

The comparison results of Pavia University and Indian Pines are listed in the
Table 3.3 and Table 3.4, respectively.

Table 3.3: Classification accuracy of Pavia University under different methods.

Class
Model GAN

- softmax
GAN
- SVM

WGAN
- softmax

WGAN
- SVM

WGAN
-GP-softmax

WGAN
-GP- SVM

Asphalt 92.83 98.08 96.67 98.49 96.89 98.73
Meadows 82.52 83.04 93.09 82.70 93.76 92.14
Gravel 98.24 99.66 98.90 99.65 99.57 99.59
Trees 95.40 93.51 98.01 98.10 98.73 99.05

Meltal sheets 99.48 99.90 99.92 99.85 97.99 99.78
Bare Soil 90.91 90.43 82.16 93.77 93.77 99.54
Bitumen 85.56 84.06 77.29 66.70 92.71 90.45
Bricks 88.73 95.27 90.79 98.75 95.30 98.61
Shadow 92.93 70.33 96.20 95.99 97.46 95.78
OA (%) 94.27 95.57 94.84 96.67 97.45 98.60
AA (%) 91.84 90.48 92.56 92.70 96.24 97.08
κ (%) 92.40 94.10 93.11 95.57 96.62 98.15

From Table 3.3, it can be seen that the classification accuracy of meadows, bare
soil and bitumen is relatively low compared to other categories, which may be caused
by large intra-class variation and small interclass variation. The features obtained by
3D-WGAN-GP help obtain higher OA, AA and κ values compared with the features
obtained by GAN and 3D-WGAN. Besides, SVM performs better than softmax on
Pavia University.

From Table 3.4, it can be seen that when the features obtained by GAN are
used for classification, the classification accuracy of many land-cover classes is less
than 90%, which is unsatisfactory. When the features obtained by 3D-WGAN and
3D-WGAN-GP are used for classification, the classification results have been greatly
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Table 3.4: Classification accuracy of Indian Pines under different methods.

Class
Model GAN

- softmax
GAN
- SVM

WGAN
- softmax

WGAN
- SVM

WGAN
-GP-softmax

WGAN
-GP- SVM

Weeds1 93.47 84.78 91.30 86.96 91.30 93.48
Weeds2 85.92 82.49 85.29 89.36 91.94 94.26
Fallow 80.36 91.32 90.36 89.28 94.58 98.07

Fallow-rough 77.63 69.62 78.06 81.43 89.87 87.34
Fallow-smooth 92.34 92.96 96.27 92.13 87.99 92.75

Stubble 95.62 97.67 98.77 98.22 97.67 96.44
Celery 60.71 64.29 75.00 71.43 75.00 100.00

Grapes-untrained 98.12 98.54 97.49 96.86 100.00 100.00
Soil-vinyard 60.00 85.00 80.00 40.00 100.00 75.00

Corn 86.32 91.77 95.16 92.28 90.95 96.29
Lettuce-4wk 91.32 94.70 95.64 94.91 95.93 96.01
Lettuce-5wk 81.96 79.59 87.02 89.04 89.71 95.28
Lettuce-6wk 98.05 98.54 99.89 99.89 98.05 97.56
Lettuce-7wk 97.71 95.65 96.21 98.74 98.33 98.26

Vinyard-untrained 88.86 86.01 99.48 95.60 100.00 98.45
Vinyard-vertical 91.40 79.57 78.49 77.42 93.54 97.85

OA (%) 89.72 90.89 93.20 93.21 94.63 96.16
AA (%) 86.23 87.03 90.28 87.10 93.43 94.82
κ (%) 88.25 89.59 92.23 92.24 93.87 95.61
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improved, which indicates the potential of 3D convolution-based operations in min-
ing spatial-spectral features. Besides, the highest OA, AA, and κ values are obtained
based on the features extracted by 3D-WGAN-GP with SVM as the classifier.

In general, the classification accuracy of two data sets is well when using the
features extracted by the 3D-WGAN and 3D-GAN-GP for classification. In other
words, convolution operation shows greater potential than multilayer perceptron in
feature extraction. The classification accuracy of most classes based on the pro-
posed 3D-WGAN-GP is better than other models, especially when SVM is used as
a classifier.

Next, the classification results based on the proposed dimensionality reduction
method are compared with the results obtained using PCA. Features extracted from
dimensionality-reduced data obtained by different methods are tested with GAN-
based models. The classification performance with accuracy values is shown in
Table 3.3.3, where “A + B” indicates the combination of dimensionality reduction
method “A” and model “B”, DR represents the proposed method.

Table 3.5: Classification results of different GANs combining PCA or proposed
dimensionality reduction method.

Model
OA (%) Pavia University Indian Pines

OA(%) AA(%) κ(%) OA(%) AA(%) κ(%)
DR+GAN 95.57 90.48 94.10 90.89 87.03 92.24
DR+WGAN 96.67 92.70 95.57 93.21 87.10 92.24

DR+WGAN-GP 98.60 97.08 98.15 96.16 94.82 95.61
PCA+GAN 95.26 93.57 93.37 88.74 83.40 87.05
PCA+WGAN 95.73 95.69 94.73 92.35 89.74 91.18

PCA+WGAN-GP 95.96 95.74 95.19 93.74 88.45 93.31

From Table 3.3.3, we can see the differences between the proposed method
(DR+WGAN-GP) and others. The proposed method improves about 2.3%, 2%,
2.4% in OA, AA and κ values for Pavia University and 3.5%, 5%, and 3.4% for In-
dian Pines compared with PCA+WGAN. When the proposed method is compared
with PCA+GAN, the differences are larger, which are 2.8%, 3.8%, 3.8% for Pavia
University and 7%, 12%, 7.5% for Indian Pines. In addition, since the proposed
method consists the DR and the proposed feature extraction, the impact of DR or
WGAN-GP on the results are analyzed separately. When PCA is used to reduce
the dimension of HSIs, for Pavia University dataset, the results obtained with fea-
tures extracted by GAN, WGAN or WGAN-GP are similar. For Indian Pines, the
OA values improved 1-2% with the improvement of the feature extraction models.
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When the DR is used to reduce the dimension of HSIs, the differences of the re-
sults got by GAN, WGAN and WGAN-GP are bigger than those got with PCA
for both datasets. But the improvements are still insignificant. When the feature
extraction model is designed based on WGAN-GP, the classification accuracy with
DR increases about 2% for the two datasets compared with PCA. The proposed DR
method is helpful for the WGAN-GP performance.

In general, if we only use the proposed DR or the proposed feature extraction
method, the differences are not significant compared with other methods. But the
combining of the proposed DR and the proposed unsupervised feature extraction
method helps to obtain better results, which shows great potential in HSI classifi-
cation.

In order to make a visual comparison, the classifications maps of Pavia University
obtained by combining the proposed dimensionality reduction method and different
GAN-based models with different classifiers are illustrated in Figure 3.6.

It can be seen from Figure 3.6 that the classification maps of GAN-SVM and
GAN-softmax have more pixels misclassified in Figure 3.6 (c) to Figure 3.6 (d),
especially the classes corresponding to yellow and green areas. In Figure 3.6 (e) to
Figure 3.6 (g), some samples of the yellow area are incorrectly classified as green
or blue. In Figure 3.6 (h), although there are still some points of misclassification,
it’s the closest to the ground truth image, which shows that the proposed method
based on 3D-WGAN-GP is more promising in unsupervised feature extraction.

The classifications maps of Indian Pines obtained by combining the proposed
dimensionality reduction method and different GAN-based models are illustrated in
Figure 3.7.

It can be seen that the classification maps in Figure 3.7 (c) and (d) have many
misclassified pixels in the upper part of the image. The classification maps of Fig-
ure 3.7 (e) - (h) have fewer misclassified pixels compared to Figure 3.7 (c) and (d),
which proves the ability and potential of 3D convolution in feature extraction.

3.4 Conclusion

High dimensionality and limited labeled samples are two issues we have to face
when we classify hyperspectral data. In order to reduce the dimension of HSIs, a
novel dimensionality reduction method based on 1× 1 convolutions and 1× 1 pool-
ing is proposed to obtain lower dimensionality data containing more abstract and
high-level features. In order to get the rid of the limitation of labeled samples, an
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(a) (b) (c) OA=94.27% (d) OA=95.57%

(e) OA=94.84% (f) OA=96.67% (g) OA=97.45% (h) OA=98.60%

Figure 3.6: Classification maps of Pavia University under different methods: (a)
False-color image, (b) Ground truth, (c) GAN-softmax, (d) GAN-SVM, (e) 3D-
WGAN-softmax, (f) 3D-WGAN-SVM, (g) 3D-WGAN-GP-softmax, (h) 3D-WGAN-
GP-SVM.
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(a) (b) (c) OA=89.72% (d) OA=90.89%

(e) OA=93.19% (f) OA=93.21% (g) OA=94.63% (h) OA=96.16%

Figure 3.7: Classification maps of Indian Pines under different methods: (a) False-
color image, (b) Ground truth, (c) GAN-softmax, (d) GAN-SVM, (e) 3D-WGAN-
softmax, (f) 3D-WGAN-SVM, (g) 3D-WGAN-GP-softmax, (h) 3D-WGAN-GP-
SVM.

unsupervised feature extraction framework based on WGAN-GP and transfer learn-
ing is designed for hyperspectral classification. The generator and the discriminator
in 3D-WGAN-GP are built with 3D deconvolution operation and 3D convolution
operation, respectively, which can better mine the spectral-spatial features of HSIs.
The optimized discriminator is transferred and utilized as an unsupervised feature
extractor to help solve the problem of insufficient labeled samples. Experimental
results prove that the performance of the proposed method is better than that of
GAN and 3D-WGAN. In addition, the proposed method provides an alternative
way for dimensionality reduction and unsupervised feature extraction of HSIs.
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Chapter 4

Unsupervised feature extraction based
on CAE for hyperspectral classifi-
cation

4.1 Introduction

To get rid of the limitation of labeled samples, unsupervised feature extraction
method based on GAN is designed in Chapter 3. However, since GAN is trained
in a confrontational manner, the optimization of the GAN is more complicated and
more challenging. The AE learns a representation for input data through an encoder
and then decodes the representation to reconstruct data [48, 49]. The AE can be
optimized by minimizing the error between the reconstructed data and the input
data, and no labels are involved, which is a typical unsupervised model. Because
of these characteristics of AE, unsupervised feature extraction methods based on
AE have been introduced in HSIs and achieved some results [50–52, 112]. Unfortu-
nately, when AE-based models are developed for unsupervised feature extraction,
features from the single layer are usually considered, which can lose some useful
information [113]. The image pyramid framework, which uses different-scale images
to independently train multiple networks to obtain multi-level features is one of the
solutions [114], but training multiple networks increases the time and computational
cost, which is unsatisfactory.

The encoder of a AE is a hierarchical structure from bottom to top, and it’s
like a feature pyramid. The bottom layer mainly corresponds to information, such
as edges, texture, and contours, and the top layer mainly corresponds to semantic
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information [115]. Considering the construction and training of AE is easier than
GAN, an unsupervised multi-level feature extraction method based on a 3D-CAE is
proposed in this Chapter. The designed 3D-CAE is composed of 3D convolutional
layers and 3D deconvoluional layers, combining the advantages of CNN and AE. The
3D-CAE can not only fully mine the spectral-spatial information with 3D data as
input, but it also does not require the participation of labeled samples in the training
process. Besides, multi-level features are directly obtained from different encoded
layers of the optimized encoder, which is more efficient when compared to training
multiple networks. The full use of the detail information at the bottom layer and
semantic information at the top layer can achieve complementary advantages and
improve the classification results.

In addition, the input size for different targets is always same while different
targets often perform differently with the same input size, especially when there are
small targets. In order to solve this problem and balance different targets, a novel
multi-size and multi-model framework based on three-dimensional convolutional au-
toencoder, called 3D-M2CAE, is proposed. Three 3D-CAEs with different input
sizes centered on the observed pixel are used to build the framework and extract
features. Moreover, in order to save training time, the framework is established
and trained in a progressive way with the help of transfer learning [22, 24, 25]. The
weights of the middle layers of the latter 3D-CAE are transferred from the former
optimized 3D-CAE, which speeds up and facilitates network training. Benefiting
from this training method, the features of the same target from different sizes are
obtained in a more efficient way.

4.2 Overview of AE

Traditional AE [116] as shown in Figure 4.1 consists of fully connected layers,
and it unusually contains an input layer, a hidden layer and an output layer, which
constitute an encoder and a decoder. If there is an input I ∈ RI1 and it’s first
mapped to a latent representation Y by encoder during the training procedure.
Then this representation Y can be decoded to a reconstruction one O. The output
size of AE is the same as its input size. These two steps can be expressed by the
formula as:

Y = f(WI + b) (4.1)
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Figure 4.1: Conventional AE architecture.

O = f(W′Y + b′) (4.2)

where the one-dimensional (1D) W of length W1 (W ∈ RW1) denotes the weight
between input layer and hidden layer and W′ is the weight matrix between hidden
layer and output layer. b and b′ represent the bias vectors. The weight matrix can
be constrained by W′=WT, in which case the AE has tied weights [117]. Generally,
activation function (f(·)) is used to introduce nonlinearity into the model. The
parameters of the model are optimized by minimizing the error between the input
and reconstruction. Mean squared error (MSE) defined as E(I,Y ) = ‖O − I‖2 is
one of the commonly used loss functions.

Since no labeled data is needed during the whole training process, the training
of AE is unsupervised. When the network can recover the input from the latent
representation Y , we think Y preserves useful information and invariant features.
The higher the quality of the reconstructed image reflects the better the extracted
features. The AE can also be stacked to a deeper network, stacked autoencoder
(SAE), with multiple hidden layers for learning more high-level information.

Figure 4.2: CAE architecture.

Traditional AE usually takes the form of a 1D vector as input, which has limi-
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tations on retaining the spatial information of the original data. Convolution-based
operation can be flexibly performed on tensor data and it has been widely used in im-
age processing. CAEs replacing fully connected layers by convolutional layers, which
can not only train the network unsupervised, but also process multi-dimensional data
more flexibly. Taking 3D convolution as an example, when the input is I with size of
I1 × I2 × I3 (I ∈ RI1×I2×I3), the convolution kernel is W with size of W1×W2×W3

(W ∈ RW1×W2×W3), and the stride is 1× 1× 1, its output is defined as:

Ox, y, z =
W1−1∑
p=0

W2−1∑
q=0

W3−1∑
r=0

Wp, q, rIx+p, y+q, z+r + b (4.3)

where Ox, y, z means the output at position (x, y, z), Wp, q, r denotes the kernel
value of position (p, q, r), and Ix+p, y+q, z+r represents the input value at position
(x+ p, y + q, z + r). Then, the MSE value can be calculated by Eq. (4.4).

E(I,Y) = 1
I1 × I2 × I3

I1−1∑
x=0

I2−1∑
y=0

I3−1∑
z=0

(Ix, y, z −Ox, y, z)2 (4.4)

4.3 Proposed multi-level feaure extraction method

4.3.1 Details of the proposed framework

Considering convolution-based operation has high flexibility in processing multi-
dimensional data and has a strong ability in feature extraction, a 3D-CAE is in-
troduced to extract features unsupervised. In order to better preserve the spatial
and spectral characteristics of HSIs, the designed 3D-CAE is established by fully 3D
convolutional layers and 3D deconvolutional layers (see Figure 4.3), where Conv-n
and Deconv-n mean the nth convolutional layer and the nth deconvolutional layer,
respectively. As in the previous two chapters, a 3D block centered on the current
observed pixel is used as the input of 3D-CAE to learn its invariant characteristics.
The proposed framework based on 3D-CAE for multi-level feature learning is mainly
divided into three steps:

Firstly, a 3D-CAE is constructed. The 3D-CAE is designed as a symmetrical
structure composed of 3D convolutional layers and deconvolutional layers, as shown
in Figure 4.3. The size of feature map is gradually reduced, and the number of
convolution kernels is gradually increased. The size of output is the same as the size
of input.
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Figure 4.3: Proposed framework for multi-level feature extraction.

Secondly, 3D-CAE is trained and optimized. The data is input into the 3D-CAE
and encoded as a low-dimensional representation through the encoder. The decoder
is responsible for recovering the original input data from the representation. The 3D-
CAE is constantly adjusted by minimizing the error between the output (Ox, y, z)
and input (Ix, y, z), as described in Eq. (4.4). When the network can reconstruct
the input data well, we believe that the 3D-CAE has a strong ability to mine the
useful information in the data.

Thirdly, multi-level features from the optimized encoder are obtained. The hier-
archical structure of the encoder from the bottom to top provides us with features of
different levels and different scales. Max-pooling is introduced to reduce the feature
dimension and increase feature invariance [118]. The filter size of max-pooling is set
to equal to the size of the corresponding feature map. Through pooling operations,
each layer can get a feature vector containing different information. The final fea-
tures are concatenated by these feature vectors from multiple layers of encoder to
make them contain more information and have high scale robustness. It is worth
noting that the proposed multi-level features come from a single network. Compared
with training multiple networks to obtain multi-level features, the proposed method
is more effective and greatly saving training time. The goal of the proposed method
is to make full use of the well-trained network to obtain as much information as
possible, and then help to improve the subsequent classification accuracy.
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4.3.2 Experimental results

In order to compare and study the performance of the proposed feature extraction
method, experiments are performed on Pavia University and Indian Pines. Based on
the experimental results of the relationship between band and accuracy in Chapter 2,
the bands of the two data sets are reduced to 10 by PCA in order to reduce the
amount of calculation and improve the efficiency of network training [75,119].

4.3.2.1 Network Construction

For each pixel in HSIs, a 3D block with a size of S × S × Hdr centered on
the observed pixel is selected as the input to construct the network, where S × S
represents the spatial neighborhood window around the observed pixel and Hdr

means the dimension after dimensionality reduction. Taking 13 × 13 × 10 as an
example, the corresponding 3D-CAE structure is given in Table 4.1. Considering
that the established 3D-CAE is symmetrical, only the parameter settings of the
encoder are listed.

Table 4.1: Network structures of encoder in proposed 3D-CAE.
Layer Input Size Kernel Output
Conv-1 13× 13× 10× 1 5× 5× 4× 16 9× 9× 7× 16
Conv-2 9× 9× 7× 16 5× 5× 3× 32 5× 5× 5× 32
Conv-3 5× 5× 5× 32 3× 3× 3× 64 3× 3× 3× 64
Conv-4 3× 3× 3× 64 3× 3× 3× 128 1× 1× 1× 128

In Table 4.1, Conv-n represents the nth convolutional layer and kernel of k1 ×
k2 × k3 × k4 means that there are k4 convolution kernels with kernel size being
k1 × k2 × k3 in the current layer. Besides, the stride is set to 1 × 1 × 1 during the
convolution operation. ReLU is mainly used as an activation function to introduce
nonlinear mapping into the network, except for the last deconvolution layer with
sigmoid. Adam [81] is selected as the optimizer to update the weights.

4.3.2.2 Comparison and analysis of experimental results

Classification results based on different single-level features are considered for
comparison to better evaluate the effectiveness of the multi-level features. The better
the classification result, the better the corresponding features. In the experiment,
SVM is selected as the classifier. OA, AA, and κ values are introduced to evaluate
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the classification results. For each class in data sets, approximately 10% is used to
train the classifier and the rest is used for testing.

At first, single-level features and multi-level features from three encoded layers
are compared under the condition of input size being 13×13×10. Since the number
of encoded layers used to form multi-level features may also affect the classification
results, we will study the influence of this parameter on the results later. As shown
in Figure 4.4, the feature map size in top three layers (the third, fourth, and fifth
layers) of encoder is 5 × 5 × 5, 3 × 3 × 3, and 1 × 1 × 1, respectively. Therefore,
the filter size of max-pooling in the third and fourth layers is correspondingly set as
5×5×5 and 3×3×3. The feature map size of the fifth layer is already 1×1×1, so
we directly flatten the feature maps into a 1D vector. After max-pooling operation,
three feature vectors are obtained with sizes of 1×32, 1×64, and 1×128. The three
feature vectors are concatenated to obtain a final feature vector with the size being
1 × 224. These features are fed into the classifier, and the prediction results can
be obtained, where Prediction I represents the predicted classification results based
on the final multi-level features with a size of 1 × 224, Prediction II represents the
results of single-level features 1×128 from the fifth layer, Prediction III corresponds
to the single-level features with a size of 1 × 64, and Prediction IV corresponds to
the single-level features with a size of 1× 32.

Tables 4.2 and 4.3 list the classification results that are based on different features
of Pavia University and Indian Pines, respectively.

Table 4.2: The classification accuracy of Pavia University based on different features.

Class
Prediction Single-Level Multi-Level

IV III II I
Asphalt 95.17 96.47 97.68 98.28
Meadows 78.94 89.47 93.14 94.14
Gravel 97.45 98.69 98.47 99.46
Trees 95.98 96.96 97.98 97.75

Metal sheets 99.86 99.98 100.00 100.00
Bare soil 78.43 84.81 88.67 96.60
Bitumen 77.44 79.70 79.92 91.43
Bricks 90.71 93.45 96.06 96.79

Shadows 98.83 99.36 99.78 99.79
OA (%) 92.76 95.11 96.19 98.10
AA (%) 90.33 93.20 94.65 97.14
κ (%) 90.33 93.49 94.93 97.48

For the Pavia University data set, it can be observed from Table 4.2 that Predic-
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Figure 4.4: Proposed framework for multi-level feature extraction.

tion II based on features from top layer of encoder are better when compared with
Prediction III and Prediction IV when only single-level features are considered. The
classification accuracy of the Meadows, Bare soil and Bitumen is less than 90% in
Prediction III and Prediction IV, which is not satisfactory. Although the relevant
results in Prediction II are improved, the classification accuracy of the Bare soil and
Bitumen is still not good. When multi-level features are used for classification, the
classification accuracy of each category exceeds 90%. Moreover, the results of Pre-
diction I are approximately 2% higher than the OA, AA, and κ values of Prediction
II.

For Indian Pines data set, when single-level features are used for classification,
it can be found from Table 4.3 that the performance of single-level features of Pre-
diction IV and Prediction III is not as good as Prediction II. Prediction II is the
best among classification results based on single-level features, but the classification
accuracy of the Grass-pasture-mowed, Oats, Wheat and Buildings-grass-trees is less
than 80%. When multi-level features are used for classification, the classification
accuracy of the Grass-pasture-mowed, Oats, Wheat and Buildings-grass-trees is in-
creased by 14%, 25%, 7%, and 7% compared with Prediction II. In addition, the
highest OA, AA, and κ values are achieved when multi-level features are used. Pre-
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Table 4.3: Classification accuracy of Indian Pines based on different features.

Class
Prediction Single-Level Multi-Level

IV III II I
Alfalfa 80.43 82.61 84.78 89.13

Corn-notil 56.63 70.36 92.05 96.14
Corn-min 58.89 74.58 82.28 87.04
Corn 53.16 72.99 80.17 87.34

Grass-pasture 84.06 95.24 97.31 98.75
Grass-trees 93.84 96.85 97.81 98.90

Grass-pasture-mowed 82.14 75.00 53.57 67.85
Hay-windrowed 97.28 98.54 100.00 100.00

Oats 95.00 90.00 75.00 100.00
Soybean-notill 54.22 75.21 86.93 91.04
Soybean-mintill 76.86 75.89 83.29 88.39
Soybean-clean 85.36 94.63 97.07 97.56

Wheat 54.97 66.61 76.73 83.31
Woods 94.23 98.10 97.94 99.53

Buildings-grass-trees 76.69 83.68 78.76 86.27
Stone-stel-towers 92.47 95.70 96.77 97.85

OA (%) 73.77 81.70 88.17 92.08
AA (%) 77.27 84.12 86.28 91.83
κ (%) 69.95 79.16 86.54 90.98
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diction I outperforms any result based on single-level features, which proves that
multi-level features allow us to obtain more useful information.

It can be seen from Table 4.2 and Table 4.3 that the classification accuracy
of some classes is always lower than other classes under different features, such
as Bitumen in Pavia University, and Grass-pasture-mowed and Wheat in Indian
Pines. From Table 1.1 and Table 1.2 in Chapter 1, we can find that the number
of Bitumen in Pavia University is the second smallest, and the number of Grass-
pasture-mowed and Wheat in Indian Pines is less than the average. Besides, the
within-class variation and inter-class similarity may also reduce the classification
accuracy, such as Asphalt and Bitumen, and Wheat and Grass-trees. But in general,
the proposed multi-level features obtain the highest OA, AA, and κ values for the
two data sets and the classification accuracy of most land-cover classes is improved
when compared to the results that are obtained by single-level features.

Both of the results shown in Table 4.2 and Table 4.3 are obtained under the
condition that the input size is 13 × 13 × 10. When the input size changes from
13×13×10 to 19×19×10, the classification accuracy based on single-level features
from top encoded layer (Prediction II) and multi-level features (Prediction I) are
compared. The comparison results of Pavia University and Indian Pines are depicted
in Figure 4.5 and Figure 4.6, respectively.

Figure 4.5: Classification accuracy of Pavia University under different input sizes.

For the Pavia University data set, we can find from Figure 4.5 that when the
input size increases from 13×13×10 to 19×19×10, whether single-level features or
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multi-level features are used for classification, the OA, AA, and κ values gradually
increase slowly. As the size increases, the amount of calculation also increases,
which leads to longer training time. Therefore, we need to comprehensively consider
accuracy and efficiency in practical applications. In addition, the performance of
multi-level features always outperforms single-level features at any input size. The
OA, AA, and κ values increased by about 2% to 3% on average as compared with
the results of single features.

Figure 4.6: Classification accuracy of Indian Pines under different input sizes.

For Indian Pines data set (Figure 4.6), when single-level features are used for
classification, we find that the input size greatly affects the classification accuracy.
The classification accuracy initially increases as the input size and it reaches a peak
at 17 × 17 × 10, and then it begins to decline. When multi-level features are used
for classification, the classification accuracy shows an upward trend as the input
size increases. When the input size is fixed, the performance of multi-level features
is much better than single-level features. Compared with the results of single-level
features, the classification values of multi-level features improve about 2% to 5%.
Moreover, even the peak value of a single-level features is about 2% lower than that
of multi-level features.

In general, the results that are based on multi-level features are better than
those of single-level features for both data sets, which proves that comprehensive
consideration of the feature information of different layers can further improve the
results of hyperspectral classification.
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In the previous experiments, the multi-level features are obtained by concate-
nating the information of three encoded layers. In order to observe the impact of
the number of encoded layers on the classification results, the multi-level features
obtained from two, three, and four encoded layers are compared with input size
being 17×17×10. Figure 4.7 shows the comparison results of Pavia University and
Figure 4.8 is the comparison results of Indian Pines.

Figure 4.7: Classification accuracy of Pavia University based on multi-level features
with different numbers of encoded layers.

It can be observed from Figure 4.7 that the performance of multi-level features
obtained by using three and four encoded layers are better than that of two encoded
layers. Considering that the results of three and four encoded layers are similar and
the feature dimension obtained by three encoded layers is lower, three encoded layers
used to concatenate features are more appropriate for Pavia University. Therefore,
three is selected as the number of encoded layers for multi-level features in the
subsequent experiments.

For the Indian Pines data set (Figure 4.8), the OA and κ values are slightly
affected by the number of encoded layers. But the AA values based on two encoded
layers and four encoded layers are relatively low. Therefore, three encoded layers
are suitable for obtaining multi-level features for Indian Pines.

Next, supervised feature extraction methods based on DBN, 2D-CNN, and un-
supervised feature extraction methods based on FA, SAE are considered for com-
parison to better evaluate the performance of the proposed method with the input
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Figure 4.8: Classification accuracy of Indian Pines based on multi-level features with
different numbers of encoded layers.

size being 17 × 17 × 10 and the number of encoded layers for multi-level features
being three. FA, DBN, and 2D-CNN have been introduced in Chapter 1. SAE is
stacked by multiple AEs that can be used to learn a higher-level representation of
input data [120, 121]. The relevant results of Pavia University and Indian Pines
under different methods are given in Table 4.4 and Table 4.5, where FE represents
feature extraction.

For the Pavia University data set, we can see from Table 4.4 that the OA,
AA, and κ values of FA are the lowest, which reflects that deep learning models
have more strong ability in feature extraction. When DBN and SAE are used
for extracting features, the classification accuracy of Class 1 (Asphalt), Class 3
(Gravel) to 5 (Metal sheets) and Class 9 (Shadows) is relatively high. When 2D-
CNN is introduced to obtain features, although the classification accuracy of Class
1 (Asphalt), Class 4 (Trees), and Class 9 (Shadows) is not as good as that of DBN
and SAE, the accuracy of most other classes is improved, especially the OA values.
This is because the inputs of DBN and SAE are 1D vectors, while 2D-CNN can
take 2D matrices as input, which can better retain the spatial information of the
target. Among all of the deep models considered, the results based on 3D-CAE are
more satisfactory. Besides, compared with single-level features, multi-level features
can help us to further improve the classification accuracy. Especially for Class 7
(Bitumen), the accuracy obtained by other feature extraction methods is less than
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Table 4.4: Classification accuracy of Pavia University based on different feature
extraction methods.

Class No.
Method Supervised FE Unsupervised FE

DBN 2D-CNN FA SAE 3D-CAE
Single-Level

3D-CAE
Multi-Level

1 95.85 96.74 95.88 96.26 97.48 98.58
2 75.51 73.03 79.56 73.70 93.14 94.76
3 97.88 99.63 86.47 97.55 98.76 99.68
4 96.87 96.80 95.14 95.07 98.07 97.78
5 99.78 99.14 99.03 100.00 100.00 100.00
6 76.60 88.03 94.55 66.91 92.32 97.71
7 72.93 89.02 81.65 82.78 86.99 95.49
8 95.11 89.19 69.61 90.82 96.77 98.07
9 99.79 96.72 95.88 97.88 100.00 100.00

OA (%) 92.97 95.03 88.16 91.45 97.01 98.65
AA (%) 90.03 92.13 88.64 89.00 95.94 98.01
κ (%) 90.60 93.36 84.62 88.50 96.03 98.21

90%, but the introduction of multi-level features reaches 95%. Overall, the highest
OA, AA, and κ values are obtained by the proposed multi-level features.

For Indian Pines data set (Table 4.5), the classification results of FA are not
good and the classification accuracy of most classes is less than 90%. DBN and
SAE help us to improve the classification accuracy to a certain extent, but it’s still
not satisfactory. The OA and κ values based on 2D-CNN and CAE-based models
exceed 90%, which demonstrates that convolution-based operations are more flexible
and have strong feature extraction capabilities. Besides, the OA, AA, and κ values
that are based on multi-level features improved by about 3%, 1%, and 3% compared
with single-level features.

For better visual comparison, classification maps of Pavia University and Indian
Pines obtained by different methods are depicted in Figure 4.9 and Figure 4.10,
respectively.

For the Pavia University data set, it can be seen that there are many pixels
in the green area that are incorrectly classified into the yellow, and some pixels in
the sienna region are misclassified into the red in Figure 4.9 (c) - (e). Besides, the
misclassified pixels in the green and sienna region are greatly reduced in Figure 4.9
(f) and (g), but some pixels in the purple region are still not correctly classified,
especially in Figure 4.9 (e). Overall, the classification map in Figure 4.9 (h) is the
clearest.
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Table 4.5: Classification accuracy of Indian Pines based on different feature extrac-
tion methods.

Class No.
Method Supervised FE Unsupervised FE

DBN 2D-CNN FA SAE 3D-CAE
Single-Level

3D-CAE
Multi-Level

1 89.13 84.78 89.13 65.22 84.78 91.30
2 92.77 82.49 61.81 86.14 93.49 94.61
3 92.36 91.32 61.90 84.59 91.25 96.98
4 87.76 69.62 43.88 83.12 91.14 94.93
5 75.77 92.96 87.78 83.85 97.10 97.51
6 92.33 97.676 81.51 95.21 99.17 99.45
7 92.86 64.28 89.29 50.00 75.00 85.71
8 98.12 98.53 93.10 94.35 99.58 100.00
9 90.00 85.00 65.00 65.00 95.00 100.00
10 77.77 87.97 53.60 88.37 88.78 94.15
11 81.02 94.70 88.96 93.60 92.67 95.47
12 98.54 83.02 99.99 88.29 94.63 91.39
13 85.67 98.53 34.23 71.50 90.05 90.73
14 98.74 95.65 95.65 92.89 98.33 99.92
15 95.34 86.15 70.47 74.35 92.75 96.89
16 46.23 79.56 68.82 55.91 99.97 95.69

OA (%) 87.87 90.88 75.16 87.85 93.71 96.17
AA (%) 87.15 87.03 74.07 79.53 92.73 95.29
κ (%) 86.24 89.59 71.16 86.12 92.83 95.63
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(a) (b) (c) OA=88.64% (d) OA=92.97%

(e) OA=95.03% (f) OA=91.44% (g) OA=97.01% (h) OA=98.65%

Figure 4.9: Pavia University: (a) Composite image, (b) Ground truth, (c) FA, (d)
DBN, (e) 2D-CNN, (f) SAE, (g) 3D-CAE (single-level features), and (h) 3D-CAE
(multi-level features).
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(a) (b) (c) OA=75.16% (d) OA=87.87%

(e) OA=90.88% (f) OA=87.85% (g) OA=93.71% (h) OA=96.17%

Figure 4.10: Indian Pines: (a) Composite image, (b) Ground truth, (c) FA, (d)
DBN, (e) 2D-CNN, (f) SAE, (g) 3D-CAE (single-level features), and (h) 3D-CAE
(multi-level features).

For the Indian Pines data set, there are many misclassified pixels in Figure 4.10
(c), (d) and (f), especially the upper left corner area. The classification maps in
Figure 4.10 (e) and (g) are better. Among all of the classification maps, Figure 4.10
(h) has the least number of misclassified pixels, which demonstrates the effectiveness
of the proposed method.

4.4 Proposed 3D-M2CAE framework for small tar-
get feature extraction and classification

In Subsection 4.3, multi-level features from different layers of the same input
data are studied. Generally, the input size of different targets in the model is the
same. However, the relationship between different targets and input size may be
different. Therefore, it’s necessary to improve the feature robustness of the target
to the input size, especially when there are small targets. In order to achieve this
goal, a 3D-M2CAE framework with multi-size and multi-model is proposed in this
subsection.
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4.4.1 Details of proposed framework

In the proposed framework, three data blocks of different input sizes centered on
the observed pixel are selected as inputs to obtain features as shown in Figure 4.11.

Figure 4.11: Proposed 3D-M2CAE framework for unsupervised feature extraction.

The proposed 3D-M2CAE mainly contains three 3D-CAEs with different input
sizes. It can be found from Figure 4.11 that the size of the input gradually increases
and the number of layers of the corresponding network also gradually increases.
Since it is time-consuming to train three networks independently, the proposed
framework is trained in a progressive way with the help of transfer learning. The
training procedure of the proposed 3D-M2CAE framework is mainly divided into
four steps:

Firstly, a five-layer 3D-CAE with input I is established, referred to as 3D-CAE
I, and no labeled samples are involved. When the 3D-CAE I is well optimized, its
weights are all appropriate and it has good ability in learning invariant features.
The encoded representations (Feature I) retaining useful information to reconstruct
images can be obtained.

Secondly, a seven-layer 3D-CAE with input II is established, referred to as 3D-
CAE II. The feature map size of second layer in 3D-CAE II is the same as input I
and the network structure of the middle three layers in 3D-CAE II is the same as
that in 3D-CAE I. It can be seen that input I is contained in input II and closer
to the observed pixel. Since input II data has a high similarity to input I, the
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weights of middle layers of 3D-CAE II (in the red rectangle) are transferred from
optimized 3D-CAE I to reduce training time, and the weights of other layers are
initialized randomly. Then the 3D-CAE II is fine-tuned by samples with input II.
Due to the weights of middle layers of 3D-CAEII are pre-adjusted, they are closer
to the optimal parameters than the random weights. Therefore, the 3D-CAE II
takes less number of iterations to reach stability compared with the model where all
weights are initialized randomly. When the 3D-CAE II is optimized, Feature II can
be obtained.

Thirdly, similar to the previous step, a nine-layer 3D-CAE III with input III
is established. The weight of middle layers in 3D-CAE III are transferred from
optimized 3D-CAE II and others are initialized randomly. The 3D-CAE III can be
further fine-tuned by samples with input III to obtain high-quality features.

Finally, through this progressive growing training, three feature vectors are ob-
tained from different input data. Comprehensive consideration of these characteris-
tics can help us better analyze the target.

Compared with training multiple 3D-CAEs separately to obtain features, the pro-
posed framework is trained in a progressive way with the help of transfer learning,
which is more efficient and greatly saves training time. Besides, benefiting from pro-
gressive training, the quality of the reconstructed image can be also improved [122],
especially when large-size or high-dimensional images need to be reconstructed.

4.4.2 Experimental results

4.4.2.1 Data set description

In order to verify the performance of the proposed method, two data sets are
used as our target data. The first data set named HYDICE is collected by Hyper-
spectral Digital Imagery Collection Experiment (HYDICE). The original image has
1280 × 320 pixels with 220 spectral bands. Since it’s not convenient and efficient
to directly process the entire image, 148 spectral bands are retained after removing
low-information and noise bands [123]. In addition, we select part of the image
that contains the target of interest as the new data set (Figure 4.12), which is de-
noted as HSIa. The second data is Pavia University, which is described in detail in
Chapter 1. Both two data sets are normalized to [0, 1] in the experiment.

HSIa data set contains 316× 216 pixels covering 148 bands, which divided into
7 land-cover classes. In the subsequent experiment, 10% samples of each class are
used for training the classifier and the remaining samples for testing. The details of
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(a) (b)

Figure 4.12: HSIa: (a) False-color image. (b) Ground truth.

land-cover classes in HSIa are listed in Table 4.6.

Table 4.6: Land-cover classes and color coding in HSIa.
Class No. Class Total Training Testing

1 Field 41832 4183 37649
2 Trees 13468 1347 Road
3 Road 4212 421 3791
4 Shadow 7277 728 6549
5 Target 1 414 41 373
6 Target 2 594 60 534
7 Target 3 459 46 413

4.4.2.2 Network construction

The dimensionality of spectral dimension of HSIa is reduced by PCA to reduce
the amount of calculation. The three 3D-CAEs are designed into a symmetrical
structure in the experiment as shown in Figure 4.11. Taking the input size of input
I is S × S × Hdr, then the size of input II is (S + 4) × (S + 4) × (Hdr + 2), and
(S + 8) × (S + 8) × (Hdr + 4) for input III. When S × S × Hdr is 7 × 7 × 7, the
corresponding structures of the three encoders are listed in Table 4.7, where Ci× j
means there are j kernels of size k1 × k2 × k3 in the ith convolutional layer.

When three 3D-CAEs are constructed, the stride is set to 1 × 1 × 1. It can
be found by calculation that the input size of 3D-CAE I is the same as the size of
feature map of the first convolutional layer in the 3D-CAE II, and the input size
of 3D-CAE II is the same as the size of feature map of the first convolutional layer
in the 3D-CAE III. Taking the input size of 11 × 11 × 9 in the 3D-CAE II as an
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Table 4.7: Encoder structures of three 3D-CAEs in proposed 3D-M2CAE framework.

Network Input size C1×8 C2×16 C3×32 C4×64 C5×128
3D-CAE I 7× 7× 7 − − 3× 3× 3 3× 3× 3 3× 3× 3
3D-CAE II 11× 11× 9 − 5× 5× 3 3× 3× 3 3× 3× 3 3× 3× 3
3D-CAE III 15× 15× 11 5× 5× 3 5× 5× 3 3× 3× 3 3× 3× 3 3× 3× 3

example, after convolving input II with the kernel of 5× 5× 3, the feature map size
is (11 − 5 + 1) × (11 − 5 + 1) × (9 − 3 + 1) = 7 × 7 × 7, which is the same as the
input size of the 3D-CAE I. Besides, ReLU is utilized to introduce nonlinearity in
all convolutional layers and deconvolutional layers except the last layer that uses
sigmoid activation. Batch normalization is introduced to normalize the features and
Adam is selected for optimizing the network parameters. After the experimental
test, the number of training epochs of the three 3D-CAEs are set to 20, 5 and 5
respectively, with batch size being 512.

Through progressive training, three feature vectors from different input sizes
are finally obtained. In order to make full use of the extracted features, these three
feature vectors are concatenated into one feature vector for subsequent classification.
In order to evaluate the quality of learned features by the proposed method, the
classification results based on learned features are used to measure their effectiveness.
SVM with linear kernel is selected as the classifier. OA, AA and κ values are mainly
used to evaluate the classification results.

4.4.2.3 Result analysis of HSIa data set

In order to study the effect of the input size on the feature performance, we
firstly focus on the results of small targets (Target 1, Target 2 and Target 3 in
HSIa), which are more challenging in HSI processing. We gradually increase the
input size and the OA values of these three small targets based on features obtained
by 3D-CAE I, 3D-CAE II and 3D-CAE III are plotted in Figure 4.13 - Figure 4.15.

We can find from Figure 4.13 that when 3D-CAE I is used for feature extraction,
the OA values of Target 1 is slightly affected by input size, the OA values of Target
2 increase as the input size increases and then the OA values decrease, and the OA
values of Target 3 show an upward trend with the input size in the range of 7×7×7
to 13 × 13 × 7. Overall, 7 × 7 × 7 may be more appropriate for Target 1, while
9× 9× 7 is more appropriate for Target 2 and 13× 13× 7 is more appropriate for
Target 3.
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Figure 4.13: OA values of three small targets based on 3D-CAE I under different
input sizes.

Figure 4.14: OA values of three small targets based on 3D-CAE II under different
input sizes.

For 3D-CAE II (Figure 4.14), as the input size increases, the OA values of Target
1 change slightly, the OA values of Target 2 gradually increase and tend to be stable,
and the OA values of Target 3 decrease at the beginning and then increase. Overall,
15× 15× 9 helps Target 1 and Target 2 get higher OA values, and 17× 17× 9 helps
Target 3 get higher OA value when 3D-CAE II is used for feature extraction.

For 3D-CAE III (Figure 4.15), 17×17×11 is a good choice for three small targets
and the highest OA values are obtained within the experimental range. Although
the OA value is also high for Target 2 when input size is 21× 21× 11, the amount
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Figure 4.15: OA values of three small targets based on 3D-CAE III under different
input sizes.

of calculation increases with the size.
In general, no matter which 3D-CAE model is used to extract features, the OA

values are affected by input size and the relationship between different targets and
input size is different. In addition, the OA values of Target 3 with input size being
13 × 13 × 7 (Figure 4.13) and 13 × 13 × 9 (Figure 4.14) are quite different, which
implies that not only the width and height of the input, but also the depth can
affect the classification accuracy.

In order to verify the performance of the proposed method, we compare and
analyze the feature performance extracted by three single 3D-CAEs and 3D-M2CAE
framework. The comparison results of three small targets are shown in Figure 4.16 -
Figure 4.18, respectively, and the given input size H×H×Hdr is based on 3D-CAE
I. The input size of 3D-CAE II and 3D-CAE III can be calculated according to the
given size.

For Target 1, it can be seen from Figure 4.16 that when 3D-CAE I is used for
feature extraction, the input size of 13×13×7 helps us obtain the highest OA value.
When 3D-CAE II is used for feature extraction, the OA values are stable, but the
amount of calculation increases as the input size increases. When 3D-CAE III is
used for feature extraction, the highest OA value is got under the condition that
the corresponding H ×H ×Hdr is 9 × 9 × 7. The performance of 3D-CAE II and
3D-CAE III is better and more stable compared with 3D-CAE I for Target 1. When
the proposed 3D-M2CAE is used to obtain features, the OA values of 3D-M2CAE
always exceed that of three 3D-CAEs regardless of input size, and the highest OA
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Figure 4.16: OA values of Target 1 based on features obtained from different net-
works.

value of Target 1 is obtained when the corresponding H ×H ×Hdr is 7× 7× 7.

Figure 4.17: OA values of Target 2 based on features obtained from different net-
works.

For Target 2, we can find from Figure 4.17 that the OA values based on 3D-CAE
I and 3D-CAE II rise to the peak and then decreases. When the corresponding
H × H × Hdr being 11 × 11 × 7, the OA values based on 3D-CAE I and 3D-CAE
II are higher, while 9 × 9 × 7 helps 3D-CAE III get the highest OA value. When
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proposed 3D-M2CAE is used for feature extraction, we can find the OA values are
greatly improved compared with single 3D-CAEs, especially when the corresponding
H ×H ×Hdr is small.

Figure 4.18: OA values of Target 3 based on features obtained from different net-
works.

For Target 3, we can see from Figure 4.18 that when 3D-CAE I is used for
feature extraction, the OA values have an upward trend as the input size increases.
For 3D-CAE II, the OA value decreases first and then increases with the input size.
3D-CAE III get the highest OA value with the corresponding H × H × Hdr being
9×9×7, but the classification accuracy of other input sizes is low. The performance
of proposed 3D-M2CAE outperforms the other three 3D-CAEs and the OA values
of Target 3 all exceed 85%.

In general, when single 3D-CAEs is used to obtain features, the feature perfor-
mance of different targets respond differently to the input size. The input size has a
great influence on the classification results. However, the proposed 3D-M2CAE can
help us obtain better results than any single 3D-CAEs without limitation of input
size. Besides, the classification accuracy is also greatly improved, which proves that
the proposed method can effectively help small targets improve the classification
accuracy.
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4.4.2.4 Result analysis of Pavia University data set

In the previous experiments, we mainly focus on small targets. Next, we treat
Pavia University as target data to further verify the effectiveness and generaliza-
tion of the proposed 3D-M2CAE framework. The OA, AA and κ values of Pavia
University are given in Figure 4.19 - Figure 4.21.

Figure 4.19: OA values of Pavia University based on features obtained from different
networks.

It can be observed from Figure 4.19 that 3D-CAE III performs better than 3D-
CAE I and 3D-CAE II for Pavia University data set. However, the performance of
single 3D-CAE is greatly affected by the input size. When proposed 3D-M2CAE is
used for feature extraction, the OA values are slightly affected by the input size.
Moreover, the OA values obtained based on 3D-M2CAE are improved about 2%
compared with that got based on 3D-CAE III.

From Figure 4.20, we can find that when single 3D-CAE is used to extract
features, the AA values are low especially when the input size is small. The AA
value got by proposed 3D-M2CAE is about 98%, which is 4% higher than 3D-CAEs
I and II, and 2% higher than 3D-CAE III when the corresponding H ×H ×Hdr is
7× 7× 7. The low AA value reflects the large difference in classification accuracy of
different classes. The proposed 3D-M2CAE can not only help us further improve the
classification accuracy but also narrow the difference between the results of different
classes.

Figure 4.21 shows the κ values of different models under different sizes. It can be
seen that the κ values of proposed 3D-M2CAE far exceed those of 3D-CAEs, which

98



Figure 4.20: AA values of Pavia University based on features obtained from different
networks.

Figure 4.21: κ values of Pavia University based on features obtained from different
networks.

demonstrates the potential of the proposed framework.

4.4.2.5 Visual observation and comparison

For better visual observation of the effectiveness of the proposed method, super-
vised feature extraction methods based on DBN, 2D-CNN, and unsupervised feature
extraction method based on FA, SAE are considered for comparison. Considering
the amount of calculation and classification accuracy, the input size (S×S×Hdr) in
the proposed 3D-M2CAE is set to 9×9×7 for HSIa data set and 7×7×7 for Pavia
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University data set. The classification maps of these two data sets are depicted in
Figure 4.22 and Figure 4.23.

(a) OA=90.92% (b) OA=91.31% (c) 92.42 (d) OA=92.60%

(e) OA=97.02% (f) OA=96.88% (g) OA=96.49% (h) OA=97.20%

Figure 4.22: Classification maps of HSIa obtained by different methods: (a) FA,
(b) SAE, (c) DBN, (d) 2D-CNN, (e) 3D-CAE I, (f) 3D-CAE II, (g) 3D-CAE III, (h)
Proposed 3D-M2CAE.

By comparing the ground truth of HSIa in Figure 4.12 (b) and the classification
maps in Figure 4.22, we can find that almost all small targets are misclassified in
Figure 4.22 (a). The classification results in Figure 4.22 (b) - (d) are improved
compared with Figure 4.22 (a), but there are still a lot of yellow pixels are not
correctly classified. When 3D-CAE is used to obtain features, the corresponding
classification maps are clearer. Although the OA values obtained by single 3D-CAE
and 3D-M2CAE are not very much different, the classification results of small targets
are quite different. This is because the given OA values are for the whole image, and
the number of samples for small targets is much smaller than the total number of
samples. The classification results of small targets have little effect on the OA value
compared with other targets. From the classification map, there are few misclassified
pixels in red, blue and yellow region in Figure 4.22 (h), which demonstrates that
the proposed method has great potential in feature extraction and classification of
small targets.
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(a) OA=88.64% (b) OA=91.44% (c) OA=92.97% (d) OA=95.03%

(e) OA=94.73% (f) OA=95.88% (g) OA=97.31% (h) OA=98.69%

Figure 4.23: Classification maps of Pavia University obtained by different methods:
(a) FA, (b) SAE (c) DBN, (d) 2D-CNN, (e) 3D-CAE I, (f) 3D-CAE II, (g) 3D-CAE
III, (h) Proposed 3D-M2CAE.

It is observed from Figure 4.23 (a)-(f) that there are many yellow pixels are
misclassified into green and there are lots of misclassified pixels in purple region.
The classification map in Figure 4.23 (g) has less misclassified pixels compared with
classification maps in Figure 4.23 (a)-(f), but the purple and yellow areas in the
middle are not clear enough. The proposed 3D-M2CAE framework help us obtain
the highest OA value and clearest classification map.

In general, the proposed method not only helpful for improving the classification
of small targets, but also applicable to other targets.

4.5 Conclusion

In this chapter, two frameworks based on 3D-CAE are designed to get rid of lim-
itations of labeled samples and further improve classification accuracy. Considering
that the convolution-based operations can handle multi-dimensional data flexibly
and has a strong ability in feature extraction, the designed 3D-CAEs are stacked
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by fully 3D convolutional and 3D deconvolutional layers, which helps us exploit the
spectral-spatial characteristics among hyperspectral data.

In the first framework, multi-level features are proposed to contain detail infor-
mation and semantic information at the same time. The proposed multi-level fea-
tures are directly obtained from different encoded layers of the optimized encoder,
which helps us to make full use of the well-trained network and further improve
feature quality. Experimental results of Pavia University and Indian Pines show
that single-level features from the top encoded layer perform better when com-
pared to single-level features from other encoded layers. The performance of the
proposed multi-level features exceeds any single-level features under different input
sizes. The OA, AA, and κ values based on proposed multi-level features increased
by about 2% to 3% for Pavia University and 2% to 5% for Indian Pines compared
with single-level features from top encoded layer. Besides, we find that the number
of layers used to form multi-level features also affects the feature performance. The
more encoded layers are selected, the larger the dimension of the multi-level fea-
tures. Our goal is to use low-dimensional features to obtain high accuracy. Based
on the experimental results, we choose three encoded layers for multi-layer features
in the experiment. Moreover, the proposed multi-level features are compared with
the features obtained by supervised DBN and 2D-CNN, as well as unsupervised FA
and SAE. The experimental results show that the proposed method outperforms
the considered methods. The proposed multi-level features help us to obtain the
highest classification accuracy, which demonstrates that they have huge potential in
hyperspectral classification.

In addition, another framework named 3D-M2CAE is proposed to balance dif-
ferent targets and improve classification results of small targets. The proposed
3D-M2CAE consists of three 3D-CAEs with different input size. The input size and
network layers of the three 3D-CAEs are gradually increasing. Since the three in-
puts of the same target have high relevance and similarity, the weights of the middle
layers of the second and third 3D-CAEs are transferred from the previously opti-
mized network. Benefiting from the progressive training methodology and transfer
learning, we can facilitate the training and save time of 3D-M2CAE. In addition,
features from different input sizes can be obtained during the progressive training,
which helps us improve the feature robustness to size variations and provide more
information to better analyze targets. Since small targets are more sensitive to the
input size and have fewer samples, the analysis of small target is more challenging in
HSIs. In the experiment, we first focus on small targets to observe the performance
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of the proposed 3D-M2CAE. Experimental results of HSIa show that the proposed
method can greatly improve the classification results of small targets compared with
single-input model. Then, the experiment is executed on Pavia University data set.
The results of Pavia University demonstrate that the proposed framework is not
only helpful for improving the classification of small targets, but also applicable to
other targets.
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Chapter 5

Deep learning models for improve-
ment of target detection

5.1 Introduction

In the previous chapters, supervised feature extraction and unsupervised feature
extraction have been studied for hyperspectral classification. In this chapter, we
focus on target detection of HSIs. With a known spectral signature can also be
called a spectral template, comparing the spectral template with the pixels in a scene
can determine whether target is present or not. There are some detectors which are
commonly used for target detection [54], such as adaptive coherence/cosine estimator
(ACE), adaptive matched filter (AMF), and spectral angle mapper (SAM). However,
HSIs always suffer from spectral variations caused by noise or environment, which
enlarges within-class variation and degrades the performance of detectors. It is
essential to obtain high detection accuracy even targets in noisy scenes. Thus, we
want to improve the target detection results using existing detectors by improving
the quality of spectral signature and mining the invariant features of the spectrum.
To achieve this goal, denoising is usually done as a preprocessing step for noise
removal and then target detection is performed. Traditional denoising methods,
such as PCA [55], models based on Wiener filter (WF) [56], and block-matching
and 3D filtering (BM3D) [57], have been successfully applied in image processing.
However, the traditional denoising methods are easy to face the problem of single
task [58] or preserving small targets [59].

With the development of deep learning, some methods based on deep networks
have been proposed for image denoising [60]. In [61,62], models based on denoising
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autoencoder (DAE) model are established for image denoising, which uses encoder
to get the latent representation and then reconstructs it into the clean data through
the decoder. In [63], feed-forward denoising convolutional neural network (DnCNN)
is designed for image denoising and obtained effective results. In [64], deep residual
convolutional neural network (ResCNN) is introduced to learn a non-linear map
between noisy and clean image for HSI denoising. In [65], GAN is used for estimat-
ing the noise distribution and constructing a paired training dataset to train CNN
for image blind denoising. Compared with conventional denoising methods, deep
learning-based methods are usually not limited to specific denoising tasks and the
parameters are automatically updated according to the input.

In addition, the target of interest in practice is usually small compared to the
background (target of non-interest). For example, when aircraft wreckage needs to
be detected, its background is usually on challenging terrains, such as mountains,
forests or seas [124]. In these cases, the target to be detected can be treated as
small target compared to backgrounds. Based on this situation, when small target
detection is focused on, we want to segment the HSI to obtain the region of interests
(ROIs) and narrow the detection range. In other words, the detection process is
divided into two stages. The first stage is selecting ROIs according to the result
of segmentation. Some models have been developed for segmentation, such as fully
convolutional network (FCN) [125], U-net [126], SegNet [127]. However, segmen-
tation ground truth is usually required when these models are optimized, which is
inconsistent with our goal of unsupervised image segmentation. Therefore, we want
to find a new way to segment HSIs unsupervised and select ROIs. Then, the second
stage can be executed to detect whether the selected ROIs contain targets.

5.2 Spectral reconstruction for denoising and tar-
get detection

5.2.1 Methodology

In this section, we describe some basic knowledge which will be used in the
proposed method.
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5.2.1.1 n mode unfolding

We have known that an HSI can be represented as a 3D block denoted by H ∈
RH1×H2×H3 , where the HSI has H1 rows, H2 columns, H3 spectral bands and R is
the real manifold. Then the HSI H can be flattened to be a n mode matrix Hn ∈
RHn×Mn as shown in Figure 5.1, where Mn = Hp ×Hq (p, q 6= n).

Figure 5.1: A DAE architecture.

5.2.1.2 Denoising autoencoder

In Chapter 4, we give a brief introduction to the AE. Compared with AE, DAE
tries to reconstruct the original input from a corrupted and partial destroyed one
which is usually got by randomly setting some values of input to zero while the
others left untouched or adding some noise to input. The architecture of a DAE is
shown in Figure 5.2.

Figure 5.2: A DAE architecture.

It can be seen from Figure 5.2, for each input vector, the value of some neurons
is randomly set to zero with a fixed dropout rate. The corrupted input Ĩ is mapped
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to the hidden layer Y = f(W Ĩ + b), and then Y is mapped to the output layer
O = f(W′ Y + b′). During training procedure, the reconstructed O from the
destroyed Ĩ is getting closer and closer to I. Reconstructing the original version
from the corrupted version enforces the robust of the network and can be used to
denoise.

5.2.2 Target detection combined a multiscale denoising au-
toencoder

Target detection can be treated as a binary classification task [53]. According
to the spectral characteristics, pixels can be classified as target or background. To
improve the results of target detection, DAE is introduced to reconstruct spectrums
and increase spectral robustness.

5.2.3 Spectral reconstruction by denoising autoencoder

Each pixel in HSI can be represented as a 1D vector. If there is a noisy HSI
H with size of H1 ×H2 ×H3. According to the 3 mode unfolding, 3D tensor data
H can be unfolded to be a 2D matrix H3 with size of H3 ×M3 (M3 = H1 × H2).
Each row vector in H3 corresponding to a spectral curve can be used as the input
of DAE network as shown in Figure 5.3. By minimizing the error between output
and input, the DAE is trained and fine-tuned. After the network is well-trained, the
reconstructed spectrum that contains the useful information as much as possible can
be obtained. Due to the DAE tries to recover the original one from the corrupted one,
the spectrum reconstructed by DAE can remove noise while retaining the invariant
features.

Figure 5.3: Spectral reconstruction with DAE.

108



5.2.4 Proposed model for target detection

The reconstructed spectrums removing noise can replace the original spectrums
for target detection. In a DAE network, the dimensions of input layer and output
layer are the same, but the dimension of hidden layer can affect the performance of
reconstruction which has impact on subsequent target detection. In order to make
the reconstructed spectrums contain as much information as possible, a multiscale
denoising autoencoder (MSDAE) is designed for improvements of target detection
in HSIs. The input spectrum is encoded to different scales to get a set of repre-
sentations of input, and then they are decoded to fuse into the final reconstructed
spectrum. The flowchart of proposed MSDAE model for target detection is depicted
in Figure 5.4.

Figure 5.4: Target detection with the proposed MSDAE.

In Figure 5.4, there are three sub-denoising autoencoders (DAE_l) (l = H3
2 , H3,

2H3) in the MSDAE model and DAE_l means the number of units of hidden layer
in current DAE is l. The proposed method mainly consists three parts. At first, the
input is compressed, represented and expanded separately by the encoders. Three
vectors of different scales are obtained and decoded into three reconstructed vectors
later. Then, the three spectrums reconstructed from different scales are fused into
a final reconstructed spectrum. Finally, the final reconstructed spectrum and the
template spectrum are input to the detector for target detection. According to the
probability of detection (Pd) and the preset threshold γ, detection results can be
divided into two categories:

 Pd > γ, the input is target;
Pd < γ, the input is background.

(5.1)

Due to the final reconstructed spectrum is integrated by multiple reconstruction
vectors decoded from different scales, it can provide more complex information and
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robust features which can help improve detection results.

5.2.5 Experimental results

To verify the performance of the proposed method, experiments on simulated
and real-world HSIs are done and analyzed in this Section. In addition, the de-
noising performance of the proposed method is tested on noisy image R which is
obtained by adding random noise N to the image H, i.e. R = H + N. Gaus-
sian noise and multiplicative noise (MPN) are often encountered in hyperspectral
imagery [128,129]. Thus, we use zero-mean white Gaussian noise (WGN) and MPN
uniformly distributed with zero-mean are introduced to model the random noise.
In the experiment, we will discuss and analyze the removal effects of two kinds
of noise with different signal-to-noise ratio (SNR) values. The SNR is estimated
as ζ = 10log10

‖H‖2

‖N‖2 = 10log10
‖H‖2

‖R − H‖2 . Moreover, three commonly used denoising
algorithms WF, BM3D and DnCNN are served as the contrastive methods.

The most commonly used ACE detector is selected to detect the target, which
can be expressed as follows:

ACE(k) = (sTΓ−1k)2

(sTs)(kTΓ−1k) (5.2)

where k is the pixel spectrum and s is the target template spectrum. Γ is the
covariance matrix estimated by 1

M3

∑M3
i=1(ki − k)(ki − k)T and ki is the ith column

of the matrix R with k = 1
M3

∑M3
i=1 ki.

Receiver operating characteristic (ROC) curves formed by plotting Pd and the
probability of false alarm (PFA) are mainly used to evaluate the performance of
target detection. If the number of target pixels in an HSI is Ntarget and the number
of pixels belonging to background is Nbackground, Pd can be calculated by Pd = Ntp

Ntarget

and the PFA is defined as PFA = Nfp
Nbackground

, where Ntp represents that the number
of target pixels is rightly detected as the target and Nfp means background pixels
are falsely detected as targets.

Through experiments, we found that when the MSDAE model is consisted of
three sub-denoising autoencoders (DAE_H3

2 , DAE_H3, DAE_2H3), five sub-denoising
autoencoders (DAE_ I3

4 , DAE_
H3
2 , DAE_I3, DAE_2H3, DAE_4H3) or seven sub-

denoising autoencoders (DAE_H3
8 , DAE_H3

4 , DAE_H3
2 , DAE_H3, DAE_2H3, DAE_4H3,

DAE_8H3), the change in results is not significant. More sub-denoising autoen-
coders and more hidden layers require more time to train the network. When the
number of sub-denoising autoencoders and hidden layers is increased, it has little
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influence on the detection results and causes a large amount of calculation. In addi-
tion, the detection results of the proposed MSDAE are greatly improved compared
to the results of single DAE. Therefore, in order to balance training time and de-
tection results, three sub-denoising autoencoders with one hidden layer are selected
in the following experiments, which help us get the best results in less time. The
input layer of each sub-denoising autoencoder is randomly dropping out units with
a 10% probability. To further improve the robustness of the model, Gaussian noise
with a zero mean and 0.01 variance is added to the samples before they are input
to the DAE. A batch learning [130] is used to update the weights via minimizing
the reconstruction error calculated by MSE, which improves the training efficiency.
In the following experiments, the size of batch is setting as 128 and the number of
epochs is 500.

5.2.5.1 Experiments on simulated data

(a) (b) (c)

Figure 5.5: Simulated scenes: (a) simulateda (the 80th band), (b) simulatedb (the
80th band), (c) spectral signatures.

When we generate synthetic images, spectral signatures are from Pavia Univer-
sity dataset and 100 bands are used after removing several low-signal bands [131].
In the experiment, two simulated data, simulateda in Figure 5.5 (a) and simulatedb
in Figure 5.5 (b) are generated with size being 100 × 100 × 100, and the spectral
signatures are shown in Figure 5.5 (c). The targets are mixed to the background
according to the linear mixing model [132] when target abundance is 80%. For
simulateda HSI, the spatial size of the three targets is 10× 10. For simulatedb HSI,
the spatial size is 5× 5 along the first column, 3× 3 along the second column, 1× 1
along the last column.

Due to simulateda and simulatedb have 100 spectral bands, two same MSDAEs
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can be constructed separately. Each MSDAE consists of three DAEs with the num-
ber of units in hidden layers is 50, 100, 200, respectively. For better visual obser-
vation, the original spectrum, noisy spectrum [133] and reconstructed spectrum of
Target 2 in simulateda and simulatedb are plotted in Figure 5.6.

(a) (b)

Figure 5.6: Comparison of different spectral curves of Target 2 in simulated images:
(a) simulateda, (b) simulatedb.

Figure 5.6 reflects that reconstructed spectrums have largely removed noise and
are similar to the corresponding original spectrum. When the image is disturbed by
WGN, DAE_200 performs better than the other two single DAEs. When the image
is disturbed by MPN, DAE_100 and DAE_200 perform better than DAE_50. In
general, the spectrum represented by MSDAE under two kinds of noise is closer to
the original signature than the spectrum reconstructed any single DAE.

In the experiment, we range ζ from 10 dB to 80 dB to compare the performance
of the proposed MSDAE with a single DAE. We find when the SNR exceeds 30 dB
for simulated images, the Pd values are always one. Other relevant Pd values under
PFA = 10−3 of Target 2 in two simulated HSIs are given in Table 5.1.

We can see from Table 5.1 that results obtained by DAE_200 are better for
simulateda while DAE_100 are better for simulatedb with WGN when only one
DAE is used. However, DAE_100 performs better for both simulated image under
the condition of MPN noise. Therefore, if the spectrum is reconstructed by a single
DAE, the detection results are unstable and easily affected by network structure.
The proposed MSDAE helps us yield best detection results than any sub-denoising
autoencoder whether the image is destroyed by WGN or MPN. This is because
the final reconstructed spectrum is restored from features of different scales, which
provides more information for the subsequent target detection.
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Table 5.1: The Pd values of different models for simulateda and simulatedb.
Noise Model Simulateda Simulatedb

10 dB 20 dB 25 dB 30 dB 10 dB 20 dB 25 dB 30 dB

WGN

DAE_50 0.60 0.80 0.96 1.00 0.66 0.86 0.97 1.00
DAE_100 0.54 0.58 0.96 1.00 0.71 0.80 1.00 1.00
DAE_200 0.64 0.73 0.99 1.00 0.60 0.66 0.80 0.97
MSDAE 0.85 0.96 1.00 1.00 0.86 0.97 1.00 1.00

MPN

DAE_50 0.74 0.96 1.00 1.00 0.77 0.94 1.00 1.00
DAE_100 0.78 0.99 1.00 1.00 0.83 0.97 1.00 1.00
DAE_200 0.71 0.84 0.99 1.00 0.71 0.86 1.00 1.00
MSDAE 0.83 1.00 1.00 1.00 0.89 1.00 1.00 1.00

To evaluate the performance of the proposed model, when SNR is 20 dB, the ROC
curves of Target 2 for simulateda and simulatedb denoised by different methods are
depicted in Figure 5.7 and in Figure 5.8, respectively.

(a) (b)

Figure 5.7: ROC curves of simulateda under different noises with SNR being 20 dB:
(a) WGN, (b) MPN.

For simulateda, we can see that the images denoised by BM3D and DnCNN get
higher Pd values compared to sub-denoising autoencoder in reducing WGN. DAE
and DnCNN show great potential in removing MPN. It is worth noting that under
the two noise models, the detection results obtained by the proposed MSDAE out-
porform other models, and the related Pd values are more stable. For simulatedb,
we can find that the parameter setting of single DAE has great influence on per-
formance. The Pd values based on DAE_200 are lower than those by DnCNN, but
DAE_50 performs better than other models. The Pd values of reconstructed image
by MSDAE under two kinds of noise are significantly improved, especially when the
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(a) (b)

Figure 5.8: ROC curves of simulatedb under different noises with SNR being 20 dB:
(a) WGN, (b) MPN.

PFA values are small.

5.2.5.2 Experiments on real-world data

Since the simulated HSIs are generated in an idealistic scene, two real-world
HSIs, referred to as HSIb (Figure 8 (a)) and HSIc (Figure 8 (b)), taken from the
entire HYDICE are considered in this part to test the performance of the proposed
model. Both HSIb and HSIc have 148 spectral bands with spatial size of HSIb
being 141 × 126 and HSIc being 140 × 140. For HSIb, the target size is 12 × 12.
For HSIc, the spatial size of each column of targets is 5× 3, 3× 3 and 1× 1.

(a) (b) (c)

Figure 5.9: Real-world scenes: (a) HSIb (the 60th band), (b) HSIc (the 60th band),
(c) spectral signatures.

The reconstruction process of these two HSIs is similar to the simulated HSIs.

114



The reconsructed spectrums of Target 4 by different DAE models are shown in
Figure 5.10.

(a) (b)

Figure 5.10: Comparison of different spectral curves of Target 4 in real-world scenes:
(a) HSIb, (b) HSIc.

The results in Figure 5.10 demonstrate that spectrum reconstruction can reduce
the noise interference and retain spectral characteristics, which lays a foundation for
target detection.

When the ζ is increased from 10 dB to 80 dB, we find when the SNR exceeds
40 dB for HYDICE images, the Pd values are always one, so we don’t list them in
the table. Other relevant Pd values under PFA = 10−3 for different reconstructed
images are listed in Table 5.2.

Table 5.2: The Pd values of different models for HSIb and HSIc.
Noise Model HSIb HSIc

10 dB 20 dB 30 dB 40 dB 10 dB 20 dB 30 dB 40 dB

WGN

DAE_74 0.63 0.94 1.00 1.00 0.60 0.74 0.88 1.00
DAE_148 0.69 0.71 0.86 0.95 0.74 0.91 0.97 1.00
DAE_296 0.73 0.96 1.00 1.00 0.88 0.99 1.00 1.00
MSDAE 0.83 1.00 1.00 1.00 0.91 1.00 1.00 1.00

MPN

DAE_74 0.72 0.94 0.96 1.00 0.69 0.89 0.94 1.00
DAE_148 0.51 0.88 0.94 0.99 0.69 0.91 1.00 1.00
DAE_296 0.65 0.99 1.00 1.00 0.86 0.99 1.00 1.00
MSDAE 0.90 1.00 1.00 1.00 0.94 1.00 1.00 1.00

We can see from Table 5.2 that among all single DAEmodels, DAE_296 performs
better under two different types of noise in real experiment. But the proposed
MSDAE still has a significant improvement compared with DAE_296, especially
when the SNR value is small. Overall, the proposed MSDAE achieves the best
results in different SNR values.
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The ROC curves of Target 4 in HSIb and HSIc with SNR being 20 dB denoised
by different methods are depicted in Figure 5.11 and Figure 5.12.

(a) (b)

Figure 5.11: ROC curves of HSIb under different noises with SNR being 20 dB: (a)
WGN, (b) MPN.

It can be seen from Figure 5.11, MSDAE, DAE_296 and DnCNN obtain better
detection results whether the HSIb is destroyed by WGN or MPN.

(a) (b)

Figure 5.12: ROC curves of HSIc under different noises with SNR being 20 dB: (a)
WGN, (b) MPN.

Figure 5.12 shows the performance of the proposed MSDAE for HSIc is far
superior to other methods, which proves the potential of the proposed method in
target detection.
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5.2.5.3 Small target detection

To verify whether the proposed method has a good ability in preserving the small
targets, the detection maps of simulatedb and HSIc with the more commenly used
WGN and SNR being 20dB are compared. All the detection maps are obtained
under PFA = 10−3 after denoising or reconstructing by different models, which are
shown in Figure 5.13 and Figure 5.14, respectively.

(a) (b) (c)

(d) (e)

Figure 5.13: Detection maps of simulatedb: (a) ground truth, (b) denoised by WF,
(c) reconstructed by BM3D, (d) reconstructed by DnCNN, (e) reconstructed by
MSDAE.

From Figure 5.13 we can find that the target with size of 1×1 are all not detected
after denoising by WF. In the detection maps of denoising by BM3D and DnCNN,
both of them have two small targets with size of 1 × 1 are missed. However, after
reconstructing by MSDAE, only one pixel is undetected and the 1×1 targets are all
detected, which indicates that the proposed MSDAE can better preserve the small
targets while removing the noise.

It can be see from Figure 5.14, when the target size is 1× 1, only the detection
result based on MSDAE is the most satisfactory. Other detection results after
denoising have problems of missing small targets, especially for Target 1, Target 2
and Target 4.
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(a) (b) (c)

(d) (e)

Figure 5.14: Detection maps of HSIc: (a) ground truth, (b) denoised by WF, (c)
denoised by BM3D, (d) denoised by DnCNN, (e) reconstructed by MSDAE.

The results of simulated images and real-world HSIs highlight the prospects of the
proposed MSDAE for small target detection in the presence of WGN interference.

5.3 Unsupervised segmentation for small target
detection

Image segmentation can be treated as a pixel classification problem. In order to
get rid of the segmentation ground truth, unsupervised segmentation is an effective
way. K-mean clustering is one of the main unsupervised segmentation methods [134],
but it has limitations in mining the spectral-spatial information compared with deep
learning models [135]. Therefore, unsupervised segmentation based on deep learning
model is investigated for improvement of small target detection.

5.3.1 Unsupervised segmentation

CNN has strong feature extraction abilities and has been widely used in image
processing. However, label samples are unusually required to optimize the network.
In [136,137], an unsupervised image segementation method is developed by assigning
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labels to pixels based on features. Label prediction and network parameter learning
are alternately iteratively trained and optimized. The illustration of unsupervised
segmentation based on CNN is shown in Figure 5.15.

Figure 5.15: Unsupervised segmentation based on 2D-CNN.

In Figure 5.15, s × s × k represents that there are k convolutional kernels with
size of s × s in current layer. Zero padding is introduced to keep the input and
output having the same width and height. The training procedure can be mainly
devided into two parts: the forward propagation and the backword propagation.
The forward propagation assigns label based on feature maps. The largest value of
the feature map is the label of the corresponding pixel. The backword propagation
optimizes network parameters based on gradient decent and assigned labels. The
network optimization process tries to meet the following criteria:

(1) Pixels of similar features are designed with the same label.
(2) Pixels of spatial continuity are designed with the same label.
(3) The number of unique cluster labels is designed to be large.
Criteria (1) and (2) are dedicated to merging neighboring pixels with similar

characteristics into the same class. But there may be extreme situations where all
pixels are merged into one class. In order to avoid this situation, criteria (3) is
necessary.

5.3.2 Experimental results

In the experiment, we choose HSIa as the target data to test the effectiveness
of unsupervised segmentation for small target detection.

We have known that HSIs contain hundreds of bands. 2D convolution for multi-
channel is used in 2D-CNN for unsupervised segmentation and the number of chan-
nels is equal to the number of bands. The corresponding network structure used
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for segmentation is listed in Table 5.3 and SGD is used to update weights. The
maximum number of segmentation classes is set to 8.

Table 5.3: Network structures of 2D-CNN.
Layer Input Size Kernel Output

Conv-1 316× 216× 148× 1 3× 3× 148× 24 316× 216× 24× 1
Conv-2 316× 216× 24× 1 3× 3× 24× 24 316× 216× 24× 1
Conv-3 316× 216× 24× 1 1× 1× 24× 24 316× 216× 24× 1

It can be find from Table 5.3 that the length and width of the output have
not changed and are the same as the size of the input image. After 100 epochs of
training, the segmentation map is shown in Figure 5.16 (b).

(a) (b) (c)

Figure 5.16: HSIc: (a) Composite image, (b) Segmentation map, (c) Small target
regions of interest.

We can see from Figure 5.16 (b) that the target image is segmented into 5 classes.
Although the segmented classes are smaller than the actual classes, the neighboring
targets of different classes can be distinguished well. Pixels of the same color are
considered to have the same pixel value. According to the pixel value, a set of
connected components can be obtained. Given a preset threshold, we select the
regions where the number of pixels contained in the connected components is lower
than this threshold as the ROIs. As shown in Figure 5.16 (c), the white part is the
area that may contain small targets.

Taking target 3 in HSIa as the target to be detected and ACE as the detector,
the detection maps are shown in Figure 5.17 when we directly detect the target in
the entire image.

As described in Eq. (5.1), by comparing the calculated Pd value with the thresh-
old γ, we can determine whether the current pixel is the target. It can be seen from
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(a) (b) γ=0.45 (c) γ=0.50 (d) γ=0.55

Figure 5.17: Detection maps of HSIa without unsupervised segmentation: (a)
Ground truth. (b) Detection map with γ=0.45, (c) Detection map with γ=0.50,
(d) Detection map with γ=0.55.

Figure 5.17, when the γ value is 0.45 and 0.50, many pixels are mistakenly detected
as targets. When the γ value is 0.55, most of the detected pixels are target pixels.
But the pixels are scattered, which is difficult to locate the target.

Figure 5.18 shows the detection maps of Target 3 in HSIa after selecting ROIs
with unsupervised segmentation.

(a) (b) γ=0.40 (c) γ=0.45 (d) γ=0.50

Figure 5.18: Detection maps of HSIa with unsupervised segmentation: (a) Ground
truth. (b) Detection map with γ=0.40, (c) Detection map with γ=0.45, (d) Detec-
tion map with γ=0.5.

It can be found that the detection maps in Figure 5.18 help detect and locate the
target more accurately compared to the detection maps in Figure 5.17. In particular,
when the γ value is set to 0.40, only a few pixels are misdetected. According to the
detection map in Figure 5.18 (b), these small targets can be well located.

Experimental results prove that the first stage of unsupervised segmentation can
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effectively reduce the detection range and remove interfering pixels. Besides, the
detection results can be further improved. Considering that in practical applications,
the background area is generally much larger than the target area, unsupervised
segmentation to select ROIs for target detection is very promising.

5.4 Conclusion

In this Chapter, we introduce DAE to HSIs to reconstruct spectrum for remov-
ing noise interference and improving performance of target detection. In order to
further improve the target detection results, we design a MSDAE model to mine
spectral characteristics as much as possible. The original spectrum is compressed,
represented and expanded and then they are decoded into different reconstructed
spectrums. These reconstructed spectrums from different scales features are finally
merged to one spectrum for target detection, which effectively exploits the spectral
characteristics and invariant features. Experimental results of simulated and real-
world HSIs with WGN and MPN demonstrate the effectiveness. Compared with a
single DAE and other mentioned methods, the performance of proposed MSDAE is
more stable and gets higher Pd values. Besides, the proposed method shows great
ability in preserving small targets. The promising results show significant poten-
tial of the proposed MSDAE model for target detection. In addition, in order to
further improve the detection of small targets, a two-stage method including seg-
mentation and detection is proposed. Unsupervised segmentation is used to obtain
ROIs and narrow the detection range and then target detection is performed in the
ROIs. Experimental results prove that the proposed two-stage method is effective
and promising for detecting small targets.
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Conclusion and future works

Conclusion

This dissertation aims at the study of HSI processing and its applications. Target
classification and target detection are key techniques for hyperspectral applications,
and feature extraction is the most significant step of classification and detection.
Therefore, feature extraction, classification and detection are the main research
topics investigated. Since deep learning has strong capabilities in data mining and
feature extraction, we are devoted to processing HSIs with deep learning models.

Considering that HSIs are 3D tensor data and CNN can handle multi-dimensional
data flexibly, hyperspectral classification models based on 2D-CNN and 3D-CNN are
studied. Due to the model performance is greatly influenced by the parameter set-
tings, a parameter tuning method (2D-CNN-PT) based on 2D-CNN with unique
variable principle is proposed for hyperspectral classification, and the optimal pa-
rameters are selected mainly based on classification results, which helps us further
improve network performance. The parameters of the 3D-CNN or other models
can also be selected as proposed 2D-CNN-PT. Experimental results on real-world
HSIs demonstrate that appropriate parameter settings can help to obtain better
classification results. Besides, 3D-CNN shows greater potential in fully exploiting
the spectral-spatial information and helps us obtain higher classification accuracy
compared to 2D-CNN. However, there are more parameters in 3D-CNN and the op-
timization of CNN is supervised, which means a large number of labeled samples are
required to guarantte the network performance. Unfortunately, the labeled samples
are limited in HSIs. To get rid of the limitation of labeled samples, a 3D-CNN-TV
method based on 3D-CNNs combined with transfer learning and virtual samples is
proposed. Transfer learning helps to apply knowledge learned in source data with
sufficient labeled samples to novel target data. The weights of the 3D-CNN with
target data are transferred from another 3D-CNN which has same network struc-
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ture as the previous 3D-CNN and is optimized by source data, so that the 3D-CNN
corresponing to target data has a strong feature extraction ability at the beginning.
Virtual samples generated from the original samples can greatly increase the number
of labeled samples. The introduction of transfer learning and virtual samples effec-
tively alleviates the problem of insufficient labeled samples. Experimental results on
real-world HSIs show either transfer learning or virtual samples can effectively alle-
viates the problem of insufficient labeled samples, and the combination of transfer
learning and virtual samples helps to yield highest classification results.

Unsupervised learning is a type of algorithm that learns patterns from unlabeled
data. If we can learn the features in the hyperspectral data in an unsupervised way,
the problem of insufficient labeled samples can be solved. GAN is trained in an ad-
versarial way requiring no labeled samples and it has been one of the most promising
unsupervised learning representatives. AE can be optimized by minimizing the error
between the reconstructed data and the input data, and no labels are involved. GAN
and AE are typical unsupervised training networks. Therefore, unsupervised feature
extractors based on GAN and AE are investigated in this thesis. Firstly, unsuper-
vised feature extraction methods based on 3D-WGAN-GP is proposed. With the
help of transfer learning, the discriminator of the optimized 3D-GAN-GP is trans-
ferred as the feature extractor. Then, a multi-level feature extraction method based
on 3D-CAE is proposed. The proposed multi-level features are directly obtained
from different encoded layers of the optimized encoder, which is more efficient when
compared to training multiple networks and makes full use of the information at
the bottom and top layers. Finally, a 3D-M2CAE framework is designed to balance
different targets and improve classification results of small targets. Three 3D-CAEs
with different input sizes centered on the observed pixel are used to build the frame-
work and extract features. The framework is established and trained in a progressive
way with the help of transfer learning to save training time. Benefiting from this
training method, the features of the same target from different sizes are obtained
in a more efficient way. Features from the same target and different sizes can be
obtained, which can greatly improve the robustness of features to size changes. The
experimental results verify the effectiveness of three proposed unsupervised feature
extractors and show great application prospects without labeled samples.

In addition to feature extraction and classification, target detection is also stud-
ied. Target detection can be treated as a binary classification task. According to
the spectral characteristics, pixels can be classified as target or background. Due
to spectral variations caused by noise or environment, the within-class variation is
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enlarged which degrades the performance of detectors, especially when the target
size is small. We design a MSDAE model to denoise and mine the invariant features.
The final spectrum input to the detector is fused by reconstructed spectrums from
different scales representations, which provides more complementary information
and more robust features for subsequent detection. Experiments on simulated and
real-world data demonstrate that the proposed MSDAE can not only improve the
target detection but also has great potential for preserving small targets in denoising.
In addition, to further improve the detection of small targets, a two-stage method
including segmentation and detection is proposed. Unsupervised segmentation is
used to obtain ROIs and narrow the detection range, and then target detection is
performed in the ROIs. Experimental results demonstrate the effectiveness of the
proposed method and have promising prospects in small target detection.

Future works

In this dissertation, we successfully apply the deep learning models to HSIs to
extract features, classify and detect targets. But there are still some aspects that
need to be further study. We propose here some research directions for a future
extension of this work.
• In the process of feature extraction and classification, we don’t separately

consider and analyze the effect of noise on the results. So, the effect of different types
of noise on the results and whether the noise is removed during feature extraction
need to be further studied.
• In this thesis, a parameter selection method based on unique variable principle

is proposed and the parameters are adjusted one by one. Taking into account the
correlation between the parameters, a new algorithm needs to be developed in order
to achieve the best overall performance of network.
• As described in Chapter 5, we design a MSDAE model based on DAE to

reconstruct the spectrum and remove noise. The experiments show that the noise
is well removed, but only spectral information is considered as input. In the future,
a denoising model that consider both spectral and spatial information need to be
studied.
• When a small target is a research object, its size and number of samples are

much smaller compared to the background, making the processing of small targets
more difficult and challenging. More work needs to be focused on small targets in
the future.
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• In previous research, we mainly focus on classification and detection. In the
future, we want to use deep learning to analyze features for spectral unmixing.
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Résumé

Cette thèse est consacrée à l’analyse et au traitement d’images hyperspectrales
principalement avec des modèles d’apprentissage en profondeur. Pour exploiter
pleinement les informations spectrales et spatiales des données hyperspectrales, un
réseau neuronal convolutif avec réglage des paramètres est proposé pour la classi-
fication hyperspectrale. En outre, pour résoudre le problème des échantillons éti-
quetés limités dans les images hyperspectrales, des méthodes d’extraction de car-
actéristiques non supervisées basées sur un réseau antagoniste génératif amélioré
et un autoencodeur convolutif sont étudiées. De plus, un cadre d’autoencodeur de
débruitage multi-échelle est conçu pour le débruitage et l’amélioration de la détec-
tion de cibles. Les résultats sur des données simulées et réelles montrent l’efficacité
des méthodes proposées et leurs perspectives prometteuses pour les applications en
imagerie hyperspectrale.

Mots clés: Classification, détection, extraction de caractéristiques, apprentissage
non supervisé, apprentissage profond, imagerie hyperspectrale.

Abstract

This thesis is devoted to analyzing and processing hyperspectral images mainly
with deep learning methods. To fully exploit the spectral-spatial information of hy-
perspectral data, convolutional neural network with parameter tuning is proposed
for hyperspectral classification. Besides, to solve the problem of limited labeled
samples in hyperspectral images, unsupervised feature extraction methods based on
improved generative adversarial network and convolutional autoencoder are inves-
tigated. In addition, a multi-scale denoising autoencoder framework is designed for
denoising and improvements of target detection. The results on simulated and real-
world data demonstrate that the effectiveness of the proposed methods and their
promising prospects in hyperspectral imaging applications.

Keywords: Classification, detection, feature extraction, unsupervised learning,
deep learning, hyperspectral image.
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