
HAL Id: tel-03644277
https://theses.hal.science/tel-03644277

Submitted on 19 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Studies and implementation of hardware
countermeasures for ECDSA cryptosystems

Jérémy Dubeuf

To cite this version:
Jérémy Dubeuf. Studies and implementation of hardware countermeasures for ECDSA cryptosystems.
Micro and nanotechnologies/Microelectronics. Université Grenoble Alpes, 2018. English. �NNT :
2018GREAT048�. �tel-03644277�

https://theses.hal.science/tel-03644277
https://hal.archives-ouvertes.fr


�����

���������	
�������
�����

�����	
�����
�
����	�
	���	����
������
�������
����

����

�
��������������������������������������� ���

���!���"
	
#���
�����$%�"

�$&'(

���#�	�����
�

��������	��	�

�)*#���
�
�����
�������� ���
�	����
������
�
�����
���!"�#����$�

����
����
��#�
	�����!%&�! &�����!%&�! &����#���&���' �&��� �
#(�� �)�! �&��#�*�*�* +��*�
�
	#�,(��&,���&� &�!,���,�� �&��-.�/��,�� �& ��0��-.�/�

. &�! �-.�/���!� ���� �#.���)�!,�1��
��2

� .#��� ���',���� ! �&��#���&� ��3��*.��*�
�! ����,,�*�'&.��,!�'�& �� �&��#��#�*'&*� �4*�
#�����' &)�!'0�������


� .#��*�!�#���',���� ! �&��&4�0!�#5!���
�&.� ����!*.��*�4&������
����' &*�* ��*

�)*#��#����	�������
+��"�	�����6��!��789:,
��-
	�����.��/���"��#������

�&�*��.������������
�	���
0������1�����2�������,� ����3������,�1
������������)*#�

�&�*��.���$��
����	����$
���2������,�������0����������,��
��������

�&�*��.������
������	��
���2������,����4�������5����0������6������6�������,�
�
��������

�!#!����

��3������������
���� ��1�����������,������1��� ��������� ��1��6
����������,��7
"
	
����

�&�*��.��������������
;3�������
���2������,����4������� ����3��������,����#
��	�

�&�*��.���
�������$
0������1�����2�������,� ����3������,��7
"
	
����





Studies and Implementation of

Hardware Countermeasures for

ECDSA Cryptosystems





Contents

List of Figures 7

List of Tables 9

List of Algorithms 11

List of Acronyms 13

1 Introduction 15

1.1 Information Security, a necessity . . . . . . . . . . . . . . . . . . . . . 15

1.2 Integrated Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Side channel attacks . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Fault injection attacks . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5 Ph.D. interests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Elliptic Curve Cryptography 27

2.1 Group, ring and field . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Generalities on ECC . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1 Computation of the ECC scalar operation . . . . . . . . . . . . 32

2.3 ECDLP and Security level of ECC . . . . . . . . . . . . . . . . . . . . 33

2.4 Point representation . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Elliptic Curve Digital Signature Algorithm . . . . . . . . . . . . . . . 36

2.5.1 Key generation . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.2 Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.5.3 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3



2.6 Lattice attacks on ECDSA . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6.1 Gathering signatures and information . . . . . . . . . . . . . . 38

2.6.2 Computing a lattices attack . . . . . . . . . . . . . . . . . . . 38

2.6.3 Basic numerical example of a lattice attack . . . . . . . . . . . 40

2.6.4 Lattice attack results on NIST P256 . . . . . . . . . . . . . . . 42

2.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Side Channel Against ECC and ECDSA 45

3.1 Scalar algorithms and leakages sources . . . . . . . . . . . . . . . . . . 46

3.1.1 Double-and-Add . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.2 Fixed-base windowing . . . . . . . . . . . . . . . . . . . . . . 49

3.1.3 Fixed-base comb method . . . . . . . . . . . . . . . . . . . . . 51

3.1.4 Double-and-Add countermeasures . . . . . . . . . . . . . . . . 53

3.1.5 Global timing . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Leakages on underlying algorithms . . . . . . . . . . . . . . . . . . . . 56

3.3 Leakages usage against the ECDSA . . . . . . . . . . . . . . . . . . . 60

Example on NIST P-256 . . . . . . . . . . . . . . . . . . . . . 60

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Fault Attacks Against ECC and ECDSA 67

4.1 Safe-error attack against the scalar algorithm . . . . . . . . . . . . . . 69

4.1.1 Local dummy operations, C safe-error against the Montgomery

ladder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.1.2 Unused memory values . . . . . . . . . . . . . . . . . . . . . . 73

4.1.3 The infinity point and dummy operands . . . . . . . . . . . . . 74

4.1.4 Safe-error on underlying algorithms . . . . . . . . . . . . . . . 76

4.2 Fault attacks against the ECDSA signature . . . . . . . . . . . . . . . 78

4.2.1 Faulted secret key . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.2 Faulted nonce . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.3 Faulted intermediate values . . . . . . . . . . . . . . . . . . . . 85

4.2.4 Example of architecture and fault opportunities . . . . . . . . . 86

Architecture description . . . . . . . . . . . . . . . . . . . . . 86

Signatures with shared nonces . . . . . . . . . . . . . . . . . . 88

Signature nonces with mostly shared bits . . . . . . . . . . . . 89

Nonces with some known or shared bits . . . . . . . . . . . . . 89

Signature generations with faulted secret key . . . . . . . . . . 90

Signature generations with faulted nonces . . . . . . . . . . . . 91

4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4



5 Side Channel and Fault Countermeasures 95

5.1 Our secure scalar point multiplication . . . . . . . . . . . . . . . . . . 96

5.1.1 Scalar operation . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.1.2 Scalar operation with pre-calculation . . . . . . . . . . . . . . . 99

5.1.3 The non-standard 2k · P result and exceptional cases . . . . . . 100

5.2 Secure implementation strategy . . . . . . . . . . . . . . . . . . . . . 101

5.2.1 Scalar with a fixed base point: k · P . . . . . . . . . . . . . . . 101

5.2.2 Sum of two scalars: k · P + v ·G . . . . . . . . . . . . . . . . . 103

5.2.3 Scalar with any base point: k ·G . . . . . . . . . . . . . . . . . 104

5.3 Preventing attacks against ECDSA nonce and private key . . . . . . . 106

5.3.1 ECDSA signature, s part private key countermeasures . . . . . 106

5.3.2 ECDSA signature, s part nonce countermeasures . . . . . . . . 109

Countermeasure against signatures with faulted nonce . . . . . . 109

Countermeasure against nonce updating tampering . . . . . . . 115

5.4 Algorithms Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6 Conclusion 119

References 125

Résumé substantiel 137

5



6



List of Figures

1.1 Integrated Circuit with and opened package . . . . . . . . . . . . . . . 17

1.2 NMOS transistor, left represents the physical implementation, right is

the equivalent schematic representation. . . . . . . . . . . . . . . . . . 18

1.3 CMOS inverter, left represents the transistor level representation, right

is the gate level representation. . . . . . . . . . . . . . . . . . . . . . . 19

2.1 Hierarchy of ECDSA operations. . . . . . . . . . . . . . . . . . . . . 27

2.2 Left: Elliptic curve point addition operation over the field of real numbers.

Right: Elliptic curve point doubling operation over the field of real numbers. 31

2.3 Security level of ECC vs RSA, [1]. . . . . . . . . . . . . . . . . . . . . 34

2.4 Lattice illustration in 2 dimensions . . . . . . . . . . . . . . . . . . . . 39

2.5 Lattice attack result against NIST P256 . . . . . . . . . . . . . . . . 42

3.1 Double-and-Add left to right power trace

axe: Time y-axe: Power consumption. . . . . . . . . . . . . . . . . . . 47

3.2 SPA result of left to right

axe: Time y-axe: Power consumption. . . . . . . . . . . . . . . . . . . 48

3.3 Fixed-base windowing power trace

axe: Time y-axe: Power consumption. . . . . . . . . . . . . . . . . . . 50

3.4 SPA result of the fixed-base windowing implemented with Jacobian rep-

resentation.

axe: Time y-axe: Number of peaks . . . . . . . . . . . . . . . . . . . . 50

3.5 Patterns extracted from a power trace of Algorithm 3.3 execution.

axe: Time y-axe: Number of peaks. . . . . . . . . . . . . . . . . . . . 52

7



3.6 Key used with Algorithm 3.3 and Figure 3.5. Arrows represent the parsed

secret columns when the 2nd orphan point addition appears . . . . . . 53

3.7 SPA results of Algorithm 3.4.

axe: Time y-axe: Correlation value. . . . . . . . . . . . . . . . . . . . 54

3.8 Comparison of two different scalar operations based on Algorithm 3.4.

x-axe: Time y-axe: Correlation value. . . . . . . . . . . . . . . . . . . 56

3.9 Comparison between genuine scalar and attacker scalar.

genuine, grey: attacker, 0xE00 · · · 0000
axe: Time y-axe: Power consumption. . . . . . . . . . . . . . . . . . . 58

3.10 2nd comparison between genuine scalar and attacker scalar.

genuine, grey: attacker, 0xC00 · · · 0000
axe: Time y-axe: Power consumption. . . . . . . . . . . . . . . . . . . 58

3.11 3rd comparison between genuine scalar and attacker scalar.

genuine, grey: attacker, 0xA00 · · · 0000
axe: Time y-axe: Power consumption. . . . . . . . . . . . . . . . . . . 58

3.12 4th comparison between genuine scalar and attacker scalar.

genuine, grey: attacker, 0x800 · · · 0000
axe: Time y-axe: Power consumption. . . . . . . . . . . . . . . . . . . 59

3.13 Superposition of power traces from different signatures.

axe: Time y-axe: Power consumption. . . . . . . . . . . . . . . . . . . 61

4.1 Illustration of a laser-based fault injection setup . . . . . . . . . . . . . 68

4.2 Illustration of the number of faults required to recover an 8 bits value

arbitrary set to 0x84 . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 Average of the number of fault required to recover an 8 bits value . . . 80

4.4 Error e distribution on a random 8 bits register . . . . . . . . . . . . . 82

4.5 Total number of required signatures to recover the private key thanks to

a lattice attack and random fault on MSB bits on NIST-P256 . . . . . 83

4.6 Number of occurrences of error e on a random m = 8 bits register that

is forced to a constant value v = 54 . . . . . . . . . . . . . . . . . . . 84

4.7 Error e distribution on a random m = 8 bits register that lead to two

different values v1 = 54, v2 = 168 . . . . . . . . . . . . . . . . . . . . 85

4.8 Overview of the considered architecture. Grey blocks containing some

side channel and fault countermeasures . . . . . . . . . . . . . . . . . 87

4.9 Chronograph of a ECDSA signature generation . . . . . . . . . . . . 87

4.10 Illustration of an 8 bits to 32 bits interface . . . . . . . . . . . . . . . 91

8



List of Tables

2.1 Security Level of ECC vs RSA, [1]. . . . . . . . . . . . . . . . . . . . 33

2.2 Operation counts for EC double and EC addition. . . . . . . . . . . . 36

2.3 Lattice example, known information summary . . . . . . . . . . . . . 40

3.1 Detailed operation flow of Algorithm 3.4 depending on the MSB . . . 55

3.2 Figure 3.9 to 3.12 results summary . . . . . . . . . . . . . . . . . . . . 59

4.1 Representation of the neutral element in different systems . . . . . . . 76

4.2 AES bits accumulation through SRAM read/write iteration . . . . . 92

5.1 Algorithms summary . . . . . . . . . . . . . . . . . . . . . . . . . . 117

9



10



List of Algorithms

2.1 Left-to-right Double-and-Add . . . . . . . . . . . . . . . . . . . . . . 33

3.1 Left-to-right Double-and-Add . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Fixed-base windowing EC scalar multiplication algorithm . . . . . . . . 49

3.3 Fixed-base comb method with two tables . . . . . . . . . . . . . . . . 52

3.4 Left to right Double-and-Always-Add . . . . . . . . . . . . . . . . . . 54

3.5 Coron always Double-and-add . . . . . . . . . . . . . . . . . . . . . . 57

4.1 Coron always Double-and-add . . . . . . . . . . . . . . . . . . . . . . 70

4.2 Montgomery scalar operation . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Montgomery scalar operation with a specific scalar value . . . . . . . . 72

4.4 Binary Expansion with RIP (BRIP) . . . . . . . . . . . . . . . . . . . 74

4.5 Scalar operation with pre-computed points . . . . . . . . . . . . . . . 75

4.6 Right-to-left double-and-add always with coherency checking . . . . . . 76

4.7 ECC Jacobian point addition . . . . . . . . . . . . . . . . . . . . . . 77

5.1 Scalar operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 ECC Jacobian-affine point addition/subtraction . . . . . . . . . . . . . 98

5.3 Modified Comb method . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4 2kP operation optimized with two precomputed points . . . . . . . . . 102

5.5 2k · P + 2v ·G operation . . . . . . . . . . . . . . . . . . . . . . . . 103

5.6 kG operation computed as 2k ·G = k1G + k2(r ·G) . . . . . . . . . . 105

5.7 Field scalar operation . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.8 Side channel and fault resistant field scalar operation . . . . . . . . . . 111

5.9 EC and field scalar operation with a CFI . . . . . . . . . . . . . . . . 112

11



5.10 ECC Jacobian point doubling and field doubling on NIST curves: dou-

ble(Q,q) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.11 ECC Jacobian-affine point addition/subtraction and field addition/subtraction:

addsub(Q,P,q,u,m,b,r) . . . . . . . . . . . . . . . . . . . . . . . . . . 114

12



List of Acronyms

ADPA Address bit Differential Power Analysis.

AES Advanced Encryption Standard.

AIS Anwendungshinweise und Interpretationen.

CCD Charge-Coupled Device.

CFI Control Flow Integrity.

CIA Central Intelligence Agency.

CMOS Complementary-Metal-Oxide-Semiconductor.

CPA Correlation Power Analysis.

CPU Central processing Unit.

CRT Chinese Reminder Theorem.

CV P Closest Vector Problem.

DES Data Encryption Standard.

DFA Differential Fault Analysis.

DLP Discrete Logarithm Problem.

DPA Differential Power Analysis.

DRAM Dynamic Random-Access Memory.

DSA Digital Signature Algor .ithm.

DSS Digital Signature Standard.

DUT Device Under Test.

DV FS Dynamic Voltage and Frequency Scaling.

EC Elliptic Curve.

ECC Elliptic Curve Cryptography.

ECDH Elliptic Curve Diffie-Hellman.

ECDLP Elliptic Curve Discrete Logarithm Problem.

13



ECDSA Elliptic Curve Digital Signature Algor .ithm.

ECIES Elliptic Curve Integrated Encryption Scheme.

EEPROM Electrically Erasable Programmable Read-Only

Memory.

EM Electromagnetic.

FBBI Forward Body Biased Injection.

FET Field-Effect-Transistor.

I2C Inter-Integrated Circuit.

IC Integrated Circuit.

LED Light-Emitting Diode.

LLL Lenstra-Lenstra-Lovász.

LSB Less Significant Bit.

MOSFET Metal-Oxide-Semiconductor-Field-Effect-

Transistor.

MOV Menezes Okamoto and Vanstone.

MSB Most Significant Bit.

NAF Non-Adjacent Form.

NIST National Institute of Standards and Technology.

NMOS Negative-channel MOSFET.

NSA National Security Agency.

NVM Non-Volatile Memory.

Nd : Y AG Neodymium-Doped Yttrium Aluminium Gar-

net.

PCB Printed Circuit Board.

PMOS Positive-channel MOSFET.

RAM Random-Access Memory.

RNG Random Number Generator.

RPA Refined Power Analysis.

RSA Rivest-Shamir-Adleman.

SHA Secure Hash Algor .ithm.

SHA–1 Secure Hash Algor .ithm 1.

SHA–2 Secure Hash Algor .ithm 2.

SHA–256 Secure Hash Algor .ithm 2 with 256 bits.

SOC System On Chip.

SPA Simple Power Analysis.

SRAM Static Random-Access Memory.

ZPA Zero-value Point Attacks.

pmf Probability mass function.

14



CHAPTER 1

Introduction

This first chapter introduces t
.

he importance of information security and its relation to

Integrated Circuits (IC).intern After a brief description of IC, non-invasive physical threats

are described.intern These threats, side channel and fault attac
.

ks, represent a real security

risk as they can allow extracting sec
.

r .ets from t
.

he IC.intern Ensure sec
.

r .ets protection of

ICs is thus a challenge and t
.

his work aims at improving t
.

he security of Elliptic Curve

Digital Signature Algor .ithm implementation through various contributions described

at t
.

he end of t
.

his chapter.intern

1.1 Information Security, a necessity

Nowadays, information is everywhere and used for everything.intern The amount of informa-

tion generated and exchanged by human is tremendous and continue to rise exponen-

tially as new technologies are created.intern Every field of human activity relies somehow on

information and many decisions are based on them.intern Thus, information trust is essential

especially for critical systems and infrastructures. Military, government, financial, health

and safety related information are usually considered with a special care as obviously

critical to t
.

he good of our society.intern However, information in every field mays be consid-

ered as critical depending on t
.

he point of view.intern Many questions related to information

may be asked.intern As example, how does a decision-maker is supposed to choose a good

decision based on erroneous information? Where t
.

he decision-maker may be a human,

a complex computer program or a simple algor .ithm in a basic piece of electronic.intern What

happen and which advantages are preserved if competitors have access to t
.

he same

information? Thus, how to ensure a privileged access to t
.

he information? How ensuring

that t
.

he information is correct? Does t
.

he source is trustworthy? Does t
.

he communi-

15



cation channel preserves t
.

he integrity without eavesdropping? Does t
.

he information

reaches t
.

he good recipient?

Security aims at answering these questions.intern More generally, information security aims at

ensuring t
.

he preservation of confidentiality, integrity and availability of t
.

he information.intern

Depending on t
.

he context, authenticity, accountability, non-repudiation and reliability

can also be involved [2].intern In [3] authors summarized t
.

he goals of information security

according to different references.

Considering t
.

he previous questions, it becomes obvious that information security is a

necessity.intern Cryptography is important to information security as it can provide confi-

dentiality, integrity, authenticity and non-repudiation.intern As these terms are essential for

cryptography, we give their definitions as follows, [4]:

Confidentiality: Ensures that data are accessible only to those that are authorized

and unintelligible to others.

Integrity: Ensures that t
.

he data are not modified without a proper authorization.intern

Authenticity: Ensures that an entity is what it claims to be.

Non-repudiation: Ability to prove t
.

he occurrence of a claimed event or action and its

originating entities

Modern cryptography considers three different kinds of algor .ithm, symmetric, asym-

metric and hash functions.intern Symmetric algor .ithms allow encryption and decryption with

t
.

he same key.intern The Advanced Encryption Standard (AES) is one of them and in its

basic use case allows confidentiality.intern From a readable information called plaintext and

t
.

he sec
.

r .et key, it generates an unreadable output called ciphertext.intern Only those that

know t
.

he sec
.

r .et key can transform t
.

he ciphertext back to t
.

he plaintext.intern A deterministic

symmetric cipher algor .ithm operating on fixed-length groups of bits is called block

cipher.intern How t
.

he block cipher algor .ithm is used is called t
.

he mode of operation.intern Depend-

ing on t
.

he selected operation mode, authenticity and integrity can also be provided.intern

In t
.

he field, t
.

he use of symmetric ciphers can be inconvenient due to t
.

he required key

distribution.intern As opposed to symmetric algor .ithm, asymmetric cryptography, also named

public key cryptography, uses pairs of keys.intern Usually referred as t
.

he private key and the

public key.intern The private key is sec
.

r .etly known by one actor while t
.

he public key can be

known from everyone.intern The public key can then be used to verify that someone knows

t
.

he private key, providing authenticity.intern The public key can also be used to encrypt a

message that only t
.

he holder of t
.

he private key can decrypt, providing confidentiality.intern

16



Hash functions aim at mapping data of arbitrary size to data of fixed size.intern Crypto-

graphic hash function requires different properties such as pre-image resistance, second

pre-image resistance and collision resistance.intern The pre-image resistance prevents to in-

verse t
.

he function, from a given hash value h, it should be difficult to find any message

m such that h = hash(m).intern The second pre-image resistance prevents to find another

message with t
.

he same hash result.intern Given an input m1 it should be difficult to find

a different input m2 such that hash(m1) = hash(m2).intern Then t
.

he collision resistance,

prevent to find two different messages with t
.

he same hash result.intern Hash function allows

providing integrity and depending how used may also provide authenticity. Secure pro-

tocols use these different kinds of algor .ithms inside communications in order to ensure

t
.

he various security requirements such as t
.

he confidentiality, integrity, authenticity and

non-repudiation of t
.

he data.

Modern cryptography is complex and thus is computed by machines.intern Nowadays,

cryptographic algor .ithms are usually implemented into integrated circuits (IC).intern Either

t
.

he implementations is directly defined by a specific hardware architecture or it mays

be a software running on a Central Processing Unit (CPU ).intern The security level provided

by t
.

he ICs, meaning, t
.

he security risks that ICs should be able to withstand, is thus

important for t
.

he overall security.intern In t
.

he next section, an overview on IC is provided.

1.2 Integrated Circuit

Integrated Circuit (IC) is a small electronic circuit on a semiconductor material, such

as silicon, embedded in a package.intern The circuit, called die, is inserted in a package and

wires allow connecting it to lead frames.intern The lead frames allow soldering t
.

he IC to a

printed circuit board (PCB) and provide connections with other components of the

PCB.intern Figure 1.1 shows an IC with an opened package, allowing to see t
.

he internal

die and bondings.

Figure 1.1: Integrated Circuit with and opened package

17



A semiconductor material has a conductivity between conductor and insulator and, as

opposed to metals, increase alongside their temperature.intern This property allows to easily

control t
.

he conductivity depending on t
.

he amount of energy provided to t
.

he material

either with thermal or electric excitation.intern Moreover, their conducting properties can be

locally altered by deliberately introducing impurities.intern This process is called doping.intern By

inserting e.g.intern phosphorus impurities into silicon, it generates an excess of electron free to

move and then improving t
.

he conductivity.intern This results to what is called n-type doped

semiconductors.intern An opposed effect can be obtained by inserting e.g.intern boron impurities to

silicon.intern By doing so, electron void in t
.

he silicon lattice structure called hole are created.intern

These holes readily accepts electrons, decreasing t
.

he conductivity.intern This is called p-type

doped semiconductors.intern

By using these properties, is it possible to build a Field-Effect-Transistor (FET )

directly on a semiconductor.intern This is called Metal-Oxide-Semiconductor Field-Effect

Transistor (MOSFET ).intern A p-type doped semiconductor is used as substrate and two

n-type regions are added, forming t
.

he transistor source and drain.intern Then a gate is added

between t
.

he two regions and isolated with an oxide.intern This construction is depicted on

t
.

he left side of figure 1.2.

Figure 1.2: NMOS transistor, left represents the physical implementation, right is the

equivalent schematic representation.

The two n-type regions have a high conductivity and are separated by t
.

he substrate

which has a low conductivity thus isolating t
.

he source and t
.

he drain.intern When a positive

voltage is applied between t
.

he gate and t
.

he source, some electrons move away from

t
.

he gate, creating positively charged holes in t
.

he gate.intern These positive charges create

a field which attracts substrate electrons close to t
.

he oxide generating an inversion

region which is conductive.intern Electrons can then freely move between t
.

he source and

t
.

he drain.intern Such transistors are called negative-channel MOSFET or NMOS.intern They

can be used as a controlled switch, which is either open if t
.

he voltage between the

18



gate and t
.

he source is small, or closed if t
.

he voltage is higher than t
.

he threshold.intern By

inverting t
.

he doping, i.e.intern using an n-type substrate and p-type doping for t
.

he source and

drain, anotherMOSFET is obtained, called positive-channelMOSFET or PMOS.intern

PMOS works similarly to NMOS, however allows current to pass between source

and drain when t
.

he gate voltage is low and prevents it to pass when t
.

he voltage is high.

As these transistors may act as controlled switches, it is possible to build-upon them

logic cells.intern As example, in figure 1.3, a basic inverter is built from a PMOS plus a

NMOS transistor.

Figure 1.3: CMOS inverter, left represents the transistor level representation, right is

the gate level representation.

Other basic logic cells such as AND, OR, XOR, NAND can be built from transistors.intern

This kind of logic that uses bothNMOS andPMOS transistors is called Complementary-

Metal-Oxide-Semiconductor (CMOS) logic.intern It is also possible to build any logic blocks

using only NMOS transistors, which is called NMOS logic or using only PMOS

which is called PMOS logic.

The use of different logic gates, allows t
.

he implementation of other elements such as

flip flops and by using flip flop alongside logic elements, complex functions such as finite

state machines, memories or CPUs can be built.intern In synchronous designs, clocked flip

flops are used.intern The clock which is a periodic signal is propagated to all t
.

he flip flop over

t
.

he design allowing them to evaluate their outputs simultaneously.intern The clock frequency

is adjusted in such a way that signals have enough time to propagate from a flip flop

to another through t
.

he logic.intern For a given IC, propagation times vary depending on

t
.

he temperature and power supply.intern The slowest path between two flip flops is called

t
.

he critical path and determines t
.

he maximum clock frequency that can be used in the

worse temperature and power supply conditions according to t
.

he specification.intern

The number of a transistors in ICs double approximately every two years since the

1970s.intern This observation is called Moore’s law and it allowed to move from thousands

19



of transistor per IC in t
.

he 1970s to a couple of billions in modern ICs.intern This rise

is due to node technology improvement that moved from 10µm in 1970s, to 7nm in

2017.intern Originally, t
.

he technology node was defined by t
.

he length of transistors gates,

i.e.intern t
.

he L dimension in figure 1.2.intern Later, t
.

he International Technology Roadmap for

Semiconductors defined t
.

he technology node as t
.

he smallest half-pitch of contacted

metal 1 lines allowed in t
.

he fabrication process.intern Nowadays, t
.

he node name is more a

label than a physical meaning.

ICs are thus t
.

he physical support of various algor .ithm implementations including

cryptography.intern Unfortunately, they can be observed or perturbed when operating.intern In

t
.

he next sections, explanation about these non-invasive physical threats are provided.

1.3 Side channel attacks

While modern cryptography is considered mathematically secure, meaning that it is

neither possible to recover t
.

he plaintext without t
.

he key nor to recover t
.

he key from the

plaintext and t
.

he ciphertext in a reasonable amount of time, it needs a physical support

to be implemented.intern Nowadays, ICs are used to compute cryptographic algor .ithms.intern The

execution of these algor .ithms are not instantaneous, meaning that they require time

and intermediate results are processed. During t
.

he computation, t
.

he IC can then be

observed from different perspectives.intern Information or partial information of t
.

he running

algor .ithm can be extracted from t
.

he observation and can be enough to reveal sec
.

r .ets;

t
.

his is called side channel attac
.

ks.

The common observations used to recover information are:

Timing [5]: Some parts of algor .ithms may imply time variations depending on the

processed data.intern By observing t
.

he time, some data can eventually be recovered.

Power consumption [6]: ICs are composed of transistors and they require en-

ergy to commute from a state to another thus generating a dynamic leakage.intern Once in

a given state, a leakage current may also exist providing a static leakage.intern The overall

power consumption of an IC depends on t
.

he internal activity.intern Thus by observing the

power consumption, t
.

he algor .ithmic sequence can be observed providing accurate tim-

ing information.intern Signals amplitude may also depend on t
.

he processed data and thus

may provide information on intermediate results.

Electromagnetic emanations [7]: Current flowing through transistors means

moving charges and thus magnetic field.intern Electromagnetic (EM) emanations thus

20



roughly contains t
.

he same kind of information than t
.

he power consumption.intern How-

ever, while power consumption of an IC is observed for t
.

he whole chip, EM probes

can be placed at different positions over t
.

he chip.intern Thus EM add spacial freedom for

t
.

he observation over power consumption.intern This freedom may allow improving t
.

he signal

to noise ratio and thus enhance t
.

he analysis.intern

Photonic emission [8]: Light emissions in silicon devices had been observed for

t
.

he first time in 1955 [9] and is used for failure analysis [10].intern CMOS logic emits photon

depending on t
.

he switching activity.intern Thus photon emission are data-dependent and by

observing them, internal information of t
.

he IC can be obtained.

Acoustic [11]: Capacitor squeal and coil whine are often observed in computer

systems.intern The noise, typically caused by voltage regulation circuits, depends on t
.

he sys-

tem load and thus on t
.

he activity.intern By analyzing t
.

he acoustic emanation generated during

a cryptography operation, information can be obtained.intern The main difference with power

analysis is due to t
.

he low signal bandwidth that is lower than t
.

he system speed.intern How-

ever, [11] demonstrated t
.

he feasibility of using acoustic to recover cryptographic sec
.

r .ets.intern

It is to be noted that leakages do not necessarily provide direct information about

sec
.

r .ets.intern Signal processing and statistical methods are used to leverage t
.

he leakage and

obtain t
.

he information.intern The Differential Power Attack (DPA) [6] presented by Paul

Kocher in 1999 is a good example of such practice.intern Current research about side channel

tends to be focused on t
.

he signal processing, t
.

he distinguisher and on statistical leakage

assessment tools.intern Side channel observation through software is also a hot topic as it

allows targeting remote devices.intern Cache-timing attac
.

k [12], or t
.

he more recent spectre

[13] and meltdown [14] attac
.

ks are interesting examples.intern While remote analysis does

not allow accurate timing analysis, malicious software running on t
.

he target device

may provide t
.

he information and unfortunately, side channel countermeasures are often

omitted for non-physically accessible devices.intern Side channel source of information can

also be t
.

he observation of t
.

he software execution behavior, t
.

he Differential Computation

Analysis presented in [15] demonstrates that monitoring stack access of a withe-box

cryptographic algor .ithm can allow recovering enough information to get t
.

he private

key.intern

21



1.4 Fault injection attacks

Cryptographic algor .ithms are implemented in a physical support.intern And unfortunately

t
.

his support can be manipulated or perturbed during t
.

he computation resulting in

various errors.intern As example, t
.

he errors or faults can be a modification of t
.

he operation

flow, data or memory corruption.intern The most common fault models are t
.

he bit-flip which

inverts t
.

he value of a bit, t
.

he bit-set or bit-reset which either set a bit to 1 or to 0

and t
.

he stuck-at which locks t
.

he bit value.intern Faults may occur on a single bit or on a

set of bits.intern Depending on how t
.

he fault is injected, t
.

he result can be different.intern Fault

injection attac
.

ks aim at injecting a fault during t
.

he computation on an algor .ithm to

obtain sec
.

r .et information or trigger a specific event.intern Its effect on t
.

he system can be vari-

ous such as altering processed data, modifying addresses or changing t
.

he operation flow.intern

Numerous ways of inserting faults to an IC had been considered such as:

Overclocking [16]: IC clock signal sometime come from t
.

he outside and thus can

be controlled by attac
.

kers.intern By inserting a clock with a frequency out of t
.

he specification,

timing violations appear in t
.

he design resulting to faults.intern By syncing t
.

he clock frequency

overclocking around t
.

he timing where sensitive information are processed, it is possible

to insert faults during specific parts of t
.

he running algor .ithm.intern

Under-powering [17]: Under-powering t
.

he IC allows modifying t
.

he propagation

delays and thus, similarly to overclocking, can generate timing violations which result

into faults.

Clock or power glitching [18], [19]: By inserting a short pulse either on the

power supply or on t
.

he clock, propagation delays can be violated resulting to faults.intern

The glitch can be inserted with a high timing accuracy helping attac
.

kers to control the

fault injection more precisely than overclocking or under-powering.

Temperature [20]: Propagation delays vary depending on t
.

he temperature, thus

temperature is also a common way to fault an IC.intern

Magnetic pulses [21]: By using a coil to generate a magnetic pulse close to the

IC, transient faults can be injected.intern The coil can be placed at different positions over

t
.

he chip.intern Thus providing attac
.

kers fault control for both timing and position.intern

Laser [22]: Light contains photons which can interact with CMOS transistors.intern

By using a laser with a small beam, faults can be precisely injected in t
.

he IC with a

22



high time accuracy.intern Moreover, depending on t
.

he laser wavelength, both frontside and

backside fault injection are possible.

Substrate biasing [23], [24]: The idea is to directly inject current into t
.

he IC

which will generate faults.intern This can be done by applying a high magnitude transient

voltage pulse to a needle in contact to t
.

he substrate.intern The attac
.

k requires a partial

backside access for t
.

he needle and allows a high control over t
.

he fault injection.intern This

kind of attac
.

k is called Forward Body Biasing Injection attac
.

k (FBBI).

Devices are designed according to a specification that contains working conditions.intern

The basic question when faults are considered is what happen outside t
.

he specification?

Or at t
.

he edge of t
.

he worse working condition? Attack methods can be combined

(e.g.intern under-powering at t
.

he specification limit plus increasing t
.

he temperature and

working at t
.

he maximum frequency) to stay as close as possible of t
.

he specification to

generate fault and avoid detections.intern Fault injection techniques can also be combined

with side channel analysis in order to synchronize t
.

he fault injection according to the

operation flow of t
.

he running algor .ithm.intern Fault injection methods and control over the

fault are in constant evolution and while remote devices were longtime considered as

safe against them, t
.

he rowhammer [25] attac
.

k contradicts t
.

his feeling.intern Faults can also

be instrumented to recover key in software implementation as demonstrated in [26]

where a withebox AES implementation was instrumented to inject faults and recover

t
.

he key.intern

1.5 Ph.D. interests

ICs are widely used for all kinds of purposes from basic usages such as simply handling

LED to t
.

he more complex such as computer CPU .intern Computation, communication,

power, all are managed by ICs.intern Thus Information security heavily relies on them.intern

Unfortunately, ICs face a lot of threats such as t
.

he previously described side channel

or fault attac
.

ks that are only a couple of examples.intern Indeed, ICs also face up reverse

engineering which consists in recovering how t
.

he IC works including its sec
.

r .ets and

various invasive attac
.

ks.

The following work was motivated by Maxim Integrated, a world leader in t
.

he semi-

conductor industry, as a will of constantly strengthen its products.intern Maxim provides a

wide range of ICs for t
.

he automotive, industrial, communications, consumer and com-

puting markets.intern Maxim secure microcontroller, secure manager and secure authenticator

products are directly concerned about security.intern This work focuses on side channel and

23



fault countermeasures for t
.

he Elliptic Curve Digital Signature Algor .ithm (ECDSA).intern

It focuses on hardware vulnerabilities of such algor .ithm implementation no matter if

t
.

he implementation is fully hardware or is a software running on microcontrollers as in

both case t
.

he properties of t
.

he hardware can be leveraged to attac
.

k t
.

he system.intern Similar

researches exist and usually focus only on t
.

he elliptic curve scalar algor .ithm attac
.

ks and

associated countermeasures.intern In t
.

his work, we focus mainly on leakage sources and how

to prevent them or make them unusable during t
.

he ECDSA signature generation.intern The

motivation is that a leakage source may be used in different attac
.

k schemes and thus

provides different attac
.

k scenarios.intern By fixing t
.

he leakage, we prevent existing attac
.

ks

but also undiscovered or non-disclosed attac
.

ks based on t
.

he leakage.intern Moreover, while the

elliptic curve scalar algor .ithm is at t
.

he heart of t
.

he security of all elliptic curve related

schemes, all t
.

he system needs security.intern The ECDSA signature is also a very leakage

sensitive scheme based on elliptic curve.intern A small leakage on few bits may conduct to

fully disclose t
.

he private key.

The ECDSA can be implemented in different flavors such as in a software that runs

on a microcontroller or as a hardware self-contained block or also as a mix between

software and hardware accelerator.intern Thus, a wide range of architectures is possible to

implement t
.

he ECDSA.intern For t
.

his reason, in t
.

his work, we mainly focus on algor .ithm

countermeasures as it allows being compliant with different kinds of implementations.

In order to develop a strong ECDSA implementation resistant to side channel and

fault attac
.

ks, t
.

he following contributions are presented in t
.

his work:

-Experimental lattice attac
.

k results with a widely used elliptic curve is provided in

order to understand t
.

he threat of even t
.

he smallest leakage inside t
.

he ECDSA.

-Different side channel leakage sources that allow recovering information about the

scalar are discussed and experimentally demonstrated.intern It demonstrates leakages that

can be unintentionally inserted due to t
.

he choice of coordinates representation.intern The

leakage due to t
.

he use of t
.

he infinity point is also presented and illustrated in different

cases to recover information.intern Finally, we demonstrate that side channel collision between

signatures may allow recovering t
.

heECDSA private key without leaking any bits value.

-We show that some elliptic curve scalar algor .ithms are wrongly supposed to be

safe-error resistant due to either t
.

he algor .ithm or to underlying computations.intern The

Montgomery ladder and t
.

he coherency checking countermeasure are two examples.intern We

also introduce t
.

he concept of dummy operand due, for example, to t
.

he infinity point

that can be used when t
.

his specific point is considered and manipulated as a normal

24



point (e.g.intern with Edward curves).intern We demonstrate that even if in t
.

he ECDSA signature,

t
.

he scalar represents a nonc
.

e that is refreshed for each signature, t
.

his kind of fault is

enough to recover t
.

he private key.

-Faults on both r and s parts of t
.

he ECDSA signature are also discussed.intern It shows

that ECDSA signatures generated from faulted private key can be used to recursively

recover t
.

he key bits.intern Then a similar method is applied on nonc
.

es allowing to provide

enough bits of information to be used within lattice attac
.

ks.intern It also demonstrate that

error distribution allow attac
.

kers to understand t
.

he behavior of t
.

he injected fault.

-Opportunities of injecting t
.

he considered faults in a basic architecture is discussed.intern

This demonstrates that threats exist at t
.

he architecture level as interfaces between

functional blocks can be at risk.intern This also demonstrates that countermeasures in the

low level functional blocks are not enough.

-New elliptic curve algor .ithms are described that allow protecting t
.

he computation

against discussed threats.intern Both side channel and safe-error countermeasures are pro-

vided while t
.

he security concern of eventual partial leakage is reduced.intern

-Approaches to protect both t
.

he ECDSA private key and t
.

he nonc
.

e while computing

signatures are described.intern The nonc
.

e countermeasure allows strengthening t
.

he elliptic

curve scalar algor .ithm against fault attac
.

k by providing a Control Flow Integrity (CFI).

Chapter 2 provides t
.

he basic mathematical background regarding ECC and the

ECDSA.intern This chapter presents t
.

he minimum mathematical knowledge to understand

t
.

he following chapters from both, a computation point of view and also to understand

t
.

he various presented threats.intern In chapter 3, side channel regarding t
.

he EC scalar

operation are discussed.intern It presents leakage sources of some common algor .ithm that

may allow attac
.

ker to partially recover information.intern It also provides an example of lattice

attac
.

k that aims at showing how these small leakages can be used to fully recover an

ECDSA private key.intern Next, chapter 4 considers fault attac
.

ks.intern The chapter starts by

exhibiting t
.

he power of safe-error that we thought is underestimated.intern Then faults on

both r and s parts of t
.

he ECDSA signature are discussed.intern Finally chapter 5 provides

countermeasures against all presented threat prior chapter 6 which concludes about the

work.

25



26



CHAPTER 2

Elliptic Curve Cryptography

In 1985, Elliptic Curves (EC) were proposed independently by Neal Koblitz [27] and

Victor Miller [28] to be used for public key cryptography.intern Nowadays, Elliptic Curve

Cryptography (ECC) are standardized and widely used in various systems ranging

from t
.

he most simple ones to t
.

he most complex.intern ECC provides confidentiality and

authenticity through various schemes.intern In t
.

he following, we are interested by t
.

he Elliptic

Curve Digital Signature Algor .ithm (ECDSA) which aims at signing messages in order

to ensure there authenticity.intern The ECDSA is based on EC which is based on finite

field arithmetic as depicted in figure 2.1.

Figure 2.1: Hierarchy of ECDSA operations.

27



This figure provides an overview of t
.

heECDSA construction and operation requirements.intern

The following chapter is essential to t
.

he understanding of others as it explains t
.

he basic

mathematical requirements behind ECC and more specifically t
.

he ECDSA.intern After

explaining t
.

he advantages of using such scheme over alternatives it also explains and pro-

vides background on lattice attac
.

ks that is a real mathematical threat to t
.

he ECDSA.intern

First, group theory basics are recalled in section 2.1.intern Then description and generalities

about ECC are provided in section 2.2.intern Section 2.2.1 explains how t
.

he EC scalar can

easily be computed over large fields.intern The section 2.3 discusses t
.

he advantage of ECC

over alternatives.intern Section 2.4 explains t
.

he coordinates choices available in ECC and how

it provides design flexibility.intern Section 2.5 details t
.

he ECDSA, it shows how key pairs

generation, signature and verification work.intern Finally, section 2.6 explains t
.

he problem

of lattice attac
.

k against t
.

he ECDSA prior concluding t
.

he chapter in section 2.7 .

2.1 Group, ring and field

Elliptic curve cryptography is based on group theory, we thus recall some basics about

group, ring and field.intern A group G is a mathematical set of elements equipped with

an operation + that satisfies four axioms namely closure, associativity, identity and

invertibility.

Closure: (G,+) : G×G→ G

Associativity: ∀a, b, c ∈ G : a + (b + c) = (a + b) + c

Additive identity: ∃0 ∈ G such that ∀a ∈ G : a + 0 = 0 + a = a

Invertible: ∀a ∈ G, ∃b ∈ G such that a + b = b + a = 0

A commutative group is called abelian group.

Commutativity: ∀a, b ∈ G : a + b = b + a

A ring R is an abelian group with a second operation × that is associative and dis-

tributive over t
.

he + operation and has an identity element 1.

Distributivity (left): ∀a, b, c ∈ R : a× (b + c) = a× b + a× c

Distributivity (right): ∀a, b, c ∈ R : (a + b)× c = a× c + b× c

Multiplicative identity: ∃1 ∈ R such that ∀a ∈ R : a× 1 = 1× a = a

A ring F is called field if all nonzero elements are invertible regarding t
.

he multiplicative

operation.

Invertible: ∀a 6= 0 ∈ F , ∃b ∈ F such that a× b = b× a = 1

The group order is t
.

he total number of elements of t
.

he group and is denoted by ord(G).intern

28



The order of an element a ∈ G denoted by ordG(a) is t
.

he smallest integer c | ord(G)

such that c× a = a + a + ...intern + a = 0.intern If it exists an element g of t
.

he group such that

ordG(g) = ord(G) then t
.

he group is called cyclic and g is a generator.

Example of group: G1 = (Z7,+), is t
.

he set of integers from 0 to 6 with t
.

he addition

modulo 7 as group operation and 0 as t
.

he identity.intern The order of t
.

he group is 7.intern This is

an abelian group as for any a, b ∈ G1, a + b mod 7 ≡ b + a mod 7.intern We can add a

second operation to t
.

his group such as t
.

he multiplication modulo 7 that is associative

and distributive over t
.

he modular addition.intern The identity of t
.

he modular multiplication

is 1.intern As any elements of G is invertible regarding t
.

he modular multiplication, t
.

he new

construction (group G1 + t
.

he modular multiplication) is a field and is denoted by F7.intern

A group G2 = (Z6,+) plus a multiplication modulo 6 as a second operation does not

form a field as not all elements are invertible regarding t
.

he modular multiplication.intern For

example, we cannot find a such that a×3 mod 6 ≡ 1 meaning that 3 is not invertible.

A mapping between a group to another is called a morphism.intern An isomorphism is a

morphism that admit an inverse.

Example of isomorphism: We consider t
.

he group G1 = (Z14,+).intern We also consider

t
.

he group G2 = (Z2 × Z7,+), t
.

he pairs (x, y) where t
.

he x-coordinates is an integer

from 0 to 1 and t
.

he y-coordinates is an integer from 0 to 6 and where addition in

t
.

he x-coordinate is modulo 2 and addition in t
.

he y-coordinate is modulo 7.intern These two

groups have t
.

he same order however contain different elements (integers from 0 to 13

or (x, y) coordinates).intern We can easily build a mapping: (x, y)→ 7x + 8y mod 14.

(0, 0)→ 0 (0, 4)→ 4 (0, 1)→ 8 (0, 5)→ 12

(1, 1)→ 1 (1, 5)→ 5 (1, 2)→ 9 (1, 6)→ 13

(0, 2)→ 2 (0, 6)→ 6 (0, 3)→ 10

(1, 3)→ 3 (1, 0)→ 7 (1, 4)→ 11

In order to invert t
.

his mapping, we can take any element A ∈ G1 and then recover

x ≡ A mod 2 and y ≡ A mod 7.intern It is to be noted that t
.

he operation + performed

in G1 or G2 provide equivalent results:

(0, 6) + (1, 4) ≡ (1, 3)→ 3

6 + 11 mod 14 ≡ 3→ (1, 3)

29



2.2 Generalities on ECC

An elliptic curve E over a field K is t
.

he set of points (x, y) which are solutions of a

Weierstrass equation [29]:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 (2.1)

Where ai ∈ K and t
.

he discriminant △ 6= 0.

Depending on t
.

he characteristic of K, (2.1) can be simplified by applying an admissi-

ble change of variables.intern If t
.

he characteristic of K is different from 2 or 3, t
.

he admissible

change:

(x; y)→ (
x− 3a21 − 12a2

36
;
y − 3a1x

216
− a31 + 4a1a2 − 12a3

24
) (2.2)

Transforms (2.1) into t
.

he short Weierstrass equation:

E : y2 = x3 + ax + b (2.3)

In t
.

his manuscript we consider only prime fields with a characteristic > 3, other trans-

formations exist if t
.

he characteristic is 2 or 3.intern The reader can refer to [29] for more

mathematical details if they are interested in these other cases.intern For cryptographic use,

elliptic curves defined over prime field Fp, binary field F2m and extension field Fpm are

considered.intern These fields come along equipped with two operations: a modular addition

and a modular multiplication.intern In order to use elliptic curve points as an abelian group

and to perform calculus on them, an additive elliptic curve group law is built and

an identity O is added.intern As depicted in Figure 2.2, t
.

he operation ”+” between two

points P and Q of t
.

he elliptic curve consists in finding t
.

he third point that lies on the

segment (PQ) and belongs to t
.

he elliptic curve and taking t
.

he opposite by inverting

t
.

he y-coordinate.intern It is to be noted that t
.

he elliptic curve point doubling operation is

similar, however it uses t
.

he point’s tangent instead of a segment.intern This law is known as

t
.

he chord-and-tangent group law.

These operations can be written as follows in t
.

he affine coordinate system:

Point addition:

λ =
(y2 − y1)

(x2 − x1)
; x3 = λ2 − x2 − x1 and y3 = λ · (x1 − x3)− y1 (2.4)

Point doubling:

λ =
(3x21 + a)2

(2y1)
; x3 = λ2 − 2x1 and y3 = λ · (x1 − x3)− y1 (2.5)

Where λ represents t
.

he segment slope or t
.

he tangent slope, (x1; y1) is t
.

he P coordi-

nates, (x2; y2) t
.

he Q coordinates and (x3; y3) t
.

he resulting P +Q or 2P coordinates.

30



Figure 2.2: Left: Elliptic curve point addition operation over the field of real numbers.

Right: Elliptic curve point doubling operation over the field of real numbers.

One should notice that Figure 2.2 is a simplified illustration which represents the

elliptic curve and t
.

he point operations with real numbers.intern In cryptography, Galois fields

are used.intern Thus, all calculations are modulus t
.

he field order.intern

The group formed by t
.

he elliptic curve points plus t
.

he neutral element O and the

chord-and-tangent group law has an order #E(Fq) in t
.

he Hasse interval [q + 1 −
2
√
q, q + 1 + 2

√
q].intern This can be expressed as #E(Fq) = q + 1− t with |t| ≤ 2

√
q the

trace of t
.

he curve.intern Elliptic curves such that char(Fq) | t are called supersingular and

others non-supersingular or also ordinary curve.intern Elliptic curves such that #E(Fq) = q

are called anomalous curve.intern Curves candidate for secure implementation of ECC have

#E(Fq) = h ·m with m a prime number and h a small number called cofactor.intern

The elliptic curve point multiplication or scalar multiplication kP with k ∈ Fq and

P ∈ E(Fq) is build upon t
.

he additive group law and defined as:

kP = P + P + ... + P
︸ ︷︷ ︸

k times

This scalar operation is t
.

he security root of any system based on elliptic curves

as it involves a complex mathematical problem, t
.

he so-called Elliptic Curve Discrete

Logarithm Problem (ECDLP ). It can be enunciated as follows: Given two points

31



P ∈ E(Fq) and G ∈ E(Fq), find k ∈ [0,#E(Fq)− 1] such that G = kP .intern The integer

k is called t
.

he discrete logarithm of G to t
.

he base P .intern For a k large enough, retrieving

it is computationally infeasible although computing kP is relatively easy and fast if k

and P are known.intern Thus, for ECC, t
.

he scalar k usually represents a sec
.

r .et such as a

private key whereas G is a public key.

Example of elliptic curve: We consider t
.

he elliptic curve E1 : y2 = x3 + 2x + 7

defined over F11.intern The order of t
.

his curve is 7 and t
.

he set of points is E1(F11) =

{O, (6; 2), (6; 9), (7; 1), (7; 10), (10; 2), (10; 9)}.intern As #E1 is prime, t
.

he group is cyclic

and any element is a generator.intern If we consider t
.

he point (6; 2), it is possible to compute

2(6; 2) = (6; 2) + (6; 2) = (10; 9) from (4).intern Then 3(6; 2) = (10; 9) + (6; 2) = (7; 10)

from (5).intern All t
.

he multiples can be recursively computed from (4) and (5) and are the

following:

1(6; 2)→ (6; 2) 3(6; 2)→ (7; 10) 5(6; 2)→ (10; 2) 7(6; 2)→ O
2(6; 2)→ (10; 9) 4(6; 2)→ (7; 1) 6(6; 2)→ (6; 9)

2.2.1 Computation of the ECC scalar operation

Cryptosystems based on elliptic curve, use an elliptic curve over a bigger field of more

than 192 bits.intern Thus, a naive implementation of t
.

he elliptic curve scalar operation can

leads to an inefficient computation time.intern However, simple algor .ithms such as algor .ithm

2.1 provide acceptable performance by iteratively considering each bit of t
.

he binary

representation of t
.

he scalar k.intern

This algor .ithm known as t
.

he ”double-and-add” algor .ithm first initializes a working

register Q to t
.

he infinity point O.intern Then a for loop iteratively double t
.

he point Q

and evaluate t
.

he scalar bits, from t
.

he MSB to t
.

he LSB, and either add P to Q if

t
.

he evaluated bit is 1 or do nothing.intern Then t
.

he final value of t
.

he working register Q is

returned and contains t
.

he kP result.intern Algor .ithm 2.1 is one of t
.

he most widely known

algor .ithm as it is one of t
.

he most simple and it is similar to t
.

he square-and-multiply

algor .ithm used for exponentiation in other cryptosystems.intern A right-to-left variant of the

double-and-add also exist.intern The difference comes from t
.

he way to parse t
.

he scalar k.intern The

right-to-left evaluates t
.

he scalar from t
.

he LSB to t
.

he MSB whereas t
.

he left-to-right

evaluates from t
.

he MSB to t
.

he LSB.

32



Algorithm 2.1 Left-to-right Double-and-Add

Input: k = (kt−1, kt−2, ..., k1, k0)2, P ∈ E(Fq)

Output: kP

1: Q← O
2: for i = t− 1 to 0 do

3: Q← 2Q

4: if ki then

5: Q← Q + P

6: end if

7: end for

8: return (Q)

2.3 ECDLP and Security level of ECC

As stated previously, t
.

he ECC security rely on t
.

he ECDLP .intern An inefficient approach

to solve t
.

he ECDLP is to iteratively try all possible k from 0 to #E(Fq) − 1 until

kP = Q is found.intern However, t
.

his is totally unpractical as soon as k is big enough

(> 80bits) as t
.

he computation time would be in average 1
2 ·#E(Fq) ≈ 279 ECC point

additions and thus too slow to be considered as a real threat.intern Other approaches far more

efficient exist.intern The Pollard Rho algor .ithm [30] is t
.

he fastest known general method.intern It

allows t
.

he scalar k to be recovered with a running time of O(
√
n) with n the order of

the base point.intern The Pohlig-Hellman attac
.

k [31] make use of t
.

he prime decomposition of

t
.

he base point P order to recover t
.

he scalar k with a complexity of O(
√
p) with p the

largest prime divisor of #E(Fq). As a result of these attac
.

ks, t
.

he security level (i.e.intern the

number of required step to recover the key) of ECC can be compared to t
.

he security

level of a symmetric block cipher or to t
.

he RSA.intern Table 2.1 summarizes t
.

he key size

versus t
.

he security level of ECC and RSA.

Table 2.1: Security Level of ECC vs RSA, [1].

Security level (bits) ECC (bits) RSA (bits)

80 160-223 1024

112 224-255 2048

128 256-283 3072

192 384-511 7680

256 512-571 15360

Figure 2.3 represents t
.

he same data as a chart.intern It points out t
.

he linear evolution

33



of t
.

he security level of ECC whereas RSA one is exponential.intern The expected security

level of a cryptosystem aims to improve over t
.

he time in order to stay safe from

new cryptanalysis techniques and computation power improvement.intern This difference of

behavior between ECC and RSA makes ECC implementation more attractive in

embedded systems than RSA.intern Indeed, for an RSA system, t
.

he size of manipulated

data, memories, computation time and t
.

he system cost drastically increase when the

security level is improved.intern ECC is thus more and more competitive when t
.

he required

security level evolves.

Figure 2.3: Security level of ECC vs RSA, [1].

Depending on t
.

he curve properties, other mathematical attac
.

ks can be used in order

to solve t
.

he ECDLP .intern For t
.

his reason, elliptic curves are carefully selected prior to be

used in a cryptosystem.intern Both supersingular and anomalous curves are usually avoided in

ECC as they provide special mathematical properties that reduce t
.

he security level of

t
.

he system.intern Indeed, an anomalous curve over Fp generates a cyclic group E(Fp) that is

isomorphic to t
.

he additive group Fp allowing thus to transform t
.

he elliptic curve scalar

operation into a basic modular multiplication that is totally unsafe.intern Satoh, Araki [32],

34



Semaev [33] and Smart [34] demonstrated that such isomorphism can easily be found

and used (”Smart-ASS attac
.

k”).intern Supersingular curves are subject to t
.

he MOV [35]

and t
.

he Weil/Tate [36] pairing attac
.

ks where t
.

he main idea is to find an isomorphism

between E(Fq) and G a subgroup of t
.

he extension field Fqk in order to end-up with an

easy to solve DLP .intern More generally, in order to avoid t
.

his kind of transfer attac
.

k, it is

required that t
.

he embedding degree is higher than a given value.intern The value depends on

t
.

he standard (usually at least 20, e.g.intern [37]).intern The embedding degree of t
.

he cyclic group

generated by P ∈ E(Fp) with ordE(Fp)(P ) = l is defined as t
.

he smallest k such that

pk ≡ 1 mod l.intern

2.4 Point representation

In t
.

he previous chord-and-tangent group law formulæ, affine coordinates are used.intern

As other coordinate systems exist and can be defined, other point addition and point

doubling formulæ have been expressed [29].intern The affine, standard projective and Jacobian

coordinate systems are t
.

he more commonly used for ECC.intern They allow different kinds

of performance optimizations and security features.intern

Projective points are represented as (X ;Y ;Z) = {(λc·X, λd·Y, λ·Z); c, d ∈ N∗, λ ∈
F ∗
q }. The standard projective coordinates are defined with c = d = 1 and Jacobian

coordinates with c = 2, d = 3. Points represented with affine coordinates as (x; y) can

be represented in projective coordinates by calculating (X ;Y ;Z) = (λc · x, λd · y, λ)
for any λ ∈ F ∗

q .intern The conversion from projective form to t
.

he affine one can be achieved

by calculating (x; y) = (X/Zc, Y/Zd). Below, as an illustration, we give elliptic curve

point doubling and point addition formulæ when Jacobian coordinates are used for a

characteristic of Fq different than 2 or 3.

Elliptic curve point doubling in Jacobian:






X3 = (3 ·X2
1 + a · Z4

1 )
2 − 8 ·X1Y

2
1

Y3 = (3 ·X2
1 + a · Z4

1 )(4 · x1Y 2
1 −X3)− 8 · Y 4

1

Z3 = 2 · Y1Z1

(2.6)

Elliptic curve point addition in Jacobian:






X3 = (Y2Z
3
1 − Y1Z

3
2 )

2 − (X2Z
2
1 −X1Z

2
2 )

2 · (X1Z
2
2 +X2Z

2
1 )

Y3 = (Y2Z
3
1 − Y1Z

3
2 )(X1Z

2
1 · (X2Z

2
1 −X1Z

2
2 )

2 −X3)− Y1Z
3
2 · (X2Z

2
1 −X1Z

2
2 )

3

Z3 = Z1Z2 · (X2Z
2
1 −X1Z

2
2 )

(2.7)

35



An affine point can be seen as a Jacobian point with a Z coordinate equal to 1.intern Thus, the

general point addition in Jacobian can be used to add an affine point with a Jacobian

point and gives a Jacobian result.intern This is called mixed-coordinates and allows improving

t
.

he computation speed as multiplications by 1 are removed.

Table. 2.2 below summarizes t
.

he number of operation counts for different coordinates

when a curve with a characteristic different than 2 or 3 is considered.

Note: NIST curves (in [37]) projective point doubling formula over prime field can

be simplified as a = −3 thus (3 ·X2
1 − 3 · Z4

1 ) = 3 · (X1 + Z2
1 )(X1 − Z2

1 ) allowing to

save two field squaring.

Table 2.2: Operation counts for EC double and EC addition.

Doubling Addition Mixed coordinates

Coordinates Operations Coordinates Operations Coordinates Operations

2A 1I,2M,2S A+A 1I,2M,1S P+A 9M,2S

2P 7M,5S P+P 12M,2S J+A 8M,3S

2J 4M,6S J+J 12M,4S

2P NIST 7M,3S

2J NIST 4M,4S
Note: A = affine, P = standard projective, J = Jacobian, I = field inversion,

M = field multiplication, S = field squaring.

The different coordinates systems involve different number, kind and proportion of

operation.intern Depending on t
.

he implementation platform, changing t
.

he coordinate system

to another one may improve t
.

he global performance or reduce it.intern Indeed, as example,

usually field inversions are costly compared to field multiplications especially without

a dedicated implementation.intern Thus, even if t
.

he total number of operation required if

projective coordinates are used is higher than affine coordinates, t
.

he computation time

can be reduced as no field inversions are involved.intern The most time efficient coordinates

system depend on t
.

he implementation architecture.intern It is also to be noted that the

memory required vary withing t
.

he different coordinates.intern Projective coordinates require

saving three coordinates while affine ones require saving only two.intern

2.5 Elliptic Curve Digital Signature Algorithm

The Elliptic Curve Digital Signature Algor .ithm (ECDSA, [37]) is an alternative to the

Digital Signature Algor .ithm (DSA) which uses elliptic curves scalar instead of modular

36



exponentiation [37].intern Such signature schemes are used for authentication purpose.intern There

are three distinctive operations in ECDSA: The key generation, t
.

he signature and

t
.

he verification.

A shared curve E(Fq) and a base point P of order n are used between users for these

different operations.intern These operations are defined as follows:

2.5.1 Key generation

It aims at generating a key pair composed of a private key and a public key.intern The

private key d is usually randomly chosen such that 0 ≤ d ≤ n− 1 with n the order of

the base point.intern The associated public point Q is determined by using t
.

he elliptic curve

scalar operation as defined above: Q = d · P

2.5.2 Signature

In order to sign a message msg, first a random nonc
.

e k such that 0 ≤ k ≤ n − 1

is generated.intern Then t
.

he scalar k · P is computed producing a resulting point (x, y).intern

Afterwards, r ≡ x mod n composes t
.

he first part of t
.

he signature.intern The second part s

of t
.

he signature is calculated as: s ≡ k−1(H(msg) + d · r) mod n where H is a hash

function (such as SHA–1, SHA–2. . . ) and d is the private key.intern If t
.

he computations

of r or s return ”0” then t
.

he process restarts at t
.

he beginning.intern The signature result is

t
.

he couple (r, s).

2.5.3 Verification

First, verification checks that Q (the public key) is not t
.

he point at infinity and

is part of t
.

he given curve E.intern One verifies than that n · Q equals t
.

he infinity point.intern

The signature element r and s are asserted to be between 1 and n − 1. Afterwards,

(x, y) = (H(msg) · s−1 mod n) ·P + (r · s−1 mod n) ·Q is computed.intern The signature

is correct if r ≡ x mod n.

2.6 Lattice attacks on ECDSA

The lattice attac
.

k on ECDSA is a powerful mathematical approach that can be used

to bypass t
.

he ECDLP and recover t
.

he ECDSA private key and nonc
.

es used to sign

messages [38].intern The mathematical demonstrations behind such attac
.

k can be complex to

understand, however using t
.

he concept and implementing these kinds of attac
.

ks is easy.intern

37



Thus next lines aim at describing lattice basics and provide a simple numeric example

to demonstrate how easy it is to break ECDSA using t
.

he lattices.intern Lattice attac
.

ks are

composed roughly of three phases.intern The first one consists in recording signatures and

gathering a maximum of information about t
.

he sec
.

r .et and nonc
.

es that were used.intern The

second phase consists in writing equations of t
.

he ECDSA scheme, inserting known

information in them and transforming t
.

he system.intern The last phase consists in resolving

t
.

he equation system and concluding if recovered sec
.

r .et and nonc
.

es are correct or not.intern

Since lattice attac
.

ks only need partial known information on t
.

he sec
.

r .et or nonc
.

es to be

useful, combining them with side channel and faults attac
.

ks furnishes a powerful mean

to recover t
.

he private key.intern Indeed, small piece of information gathered by side channel

attac
.

ks can be enough to successfully feed a lattice attac
.

k as detailed further in this

part.

2.6.1 Gathering signatures and information

The attac
.

k first starts by recording ECDSA signatures and for each one of them,

tries to gather information.intern All information on t
.

he system (private key or nonc
.

e bits

values, bias. . . ) from all sources (power analysis, timing, algor .ithm. . . ) can be useful

and can increase t
.

he chance of success.intern Basic lattice attac
.

ks on ECDSA require

around 2.
√

log(#E) signatures and
√

log(#E) + log(log(#E)) known consecutive

bits of each nonc
.

e [38].intern These numbers are approximation, if more bits are known, the

number of signatures required decreases and vice versa.intern Thus, any attac
.

ks (e.g.intern timing,

side channel, faults) can be used to gather information and increase t
.

he lattice attac
.

k

efficiency.intern Information such as t
.

he nonc
.

e length can be exploited directly as it indicates

t
.

he number ofMSBs set to 0 [39].intern [38] presents experimental results when nonc
.

e length

can be discovered through a remote timing analysis over a computer network.

2.6.2 Computing a lattices attack

Each signature (rj, sj) can be written as: sj = k−1
j (Hj(m) + d · rj) with rj = (kjP )x

mod n.intern Thus it is an equation with two unknown values, namely t
.

he sec
.

r .et d and the

nonc
.

e kj .intern Gathering h signatures leads to h modular equations with h + 1 unknown

values (h nonc
.

es + t
.

he sec
.

r .et d).intern Therefore, t
.

he equation system cannot be normally

solved.intern However, by inserting some knowledge of each unknown values, we can eventually

solve it.

sj ≡ k−1
j (Hj(m) + d · rj) mod n

⇔ sjkj − d · rj −Hj ≡ 0 mod n

⇔ kj − d · rj/sj −Hj/sj ≡ 0 mod n

⇔ kj − d · rj/sj −Hj/sj − ai · n = 0

38



From h equations as above, t
.

he lattice generated by t
.

he rows of A can be built:

A =











−1 −r1
s1

mod n −r2
s2

mod n · · · −rh
sh

mod n

0 n 0 · · · 0

: 0 n
. . . 0

: : · · · . . . 0

0 0 0 · · · n











By construction, it exists X such that XA − t = (d, k1, k2, . . . , kh) with t =

(0,−H1/s1 mod n,−H2/s2 mod n, . . . − Hh/sh mod n) If d and kj are small

enough, it is possible to solve t
.

he problem by reducing A to B with t
.

he Lenstra-

Lenstra-Lovász (LLL, [40]) algor .ithm, rounding t to t
.

he nearest Lattice point with

Babai [41] to find XB and compute XB − t that gives d and kj .

Figure 2.4: Lattice illustration in 2 dimensions

Figure 2.4 illustrates a lattice.intern When (d, k1, k2, . . . , kh) are small, then XB − t is

small due to t
.

he equality XB − t = (d, k1, k2, . . . , kh), thus t is close to t
.

he “good”

lattice point XB and then by rounding t to t
.

he nearest lattice point, XB is found

and then t
.

he correct result.intern If (d, k1, k2, . . . , kh) are not small enough, t
.

he equation

XB− t = (d, k1, k2, . . . , kh) is still valid, however t
.

he wrong lattice point will be found

when rounding t and thus will lead to an incorrect result.intern In t
.

his case, surrounding points

can be used and potentially conduct to a correct result.intern The knowledge of information

about d and kj aims to write similar equations with smaller d′ and k′j .intern For example

if k1 is even, it is possible to write k1 = 2 · k′j .intern Thus, by replacing k1 with 2 · k′j and

dividing by 2 t
.

he equation, leads to t
.

he same kind of equation however with a k′1 twice

smaller than k1.intern If no information is known about t
.

he sec
.

r .et d, d can be expressed

and replaced by a kj value with known information then reducing t
.

he system to h− 1

39



equations.intern [38] discuss about consecutive bits knowledge in t
.

he middle of t
.

he nonc
.

e.

2.6.3 Basic numerical example of a lattice attack

The curve E : y2 = x3 + 1001x + 75 over F7919 and t
.

he base point G = (4023; 6036)

of order #G = 7889 are considered.

The given public point of t
.

he system to attac
.

k is Q = (7359; 3262) and three signature

results are obtained.

Thanks to side channel leakages, we consider that we discovered that an important

number of nonc
.

e MSBs are equal to 0 (e.g.intern from global timing analysis).intern We do

not know exactly how many, due, for example, to t
.

he time measurement precision.

Information gathered on t
.

he system are summed-up in t
.

he following table:

Table 2.3: Lattice example, known information summary

(r; s) H(msg) Nonce: Private key used:

(3012; 7290) 5172 k1 = (0...0?...?)2 d =?

(4596; 2372) 3095 k1 = (0...0?...?)2 d =?

(4808; 941) 1350 k1 = (0...0?...?)2 d =?

Note: Where (0...0?...?)2 is t
.

he binary representation,

? represents an unknown bit value.

From Table 3, these three equations can be written:

5172− 7290 · k1 + 3012 · d ≡ 0 mod 7889

3095− 2372 · k2 + 4596 · d ≡ 0 mod 7889

1350− 941 · k3 + 4808 · d ≡ 0 mod 7889

As no information is known about t
.

he private key d used, d is expressed in function

of k1 and replaced in all equations.

5172− 7290 · k1 + 3012 · d ≡ 0 mod 7889

⇔ d ≡ 2784 · k1 + 5310 mod 7889

k2 + 6978 · k1 + 283 ≡ 0 mod 7889

k3 + 564 · k1 + 2755 ≡ 0 mod 7889

Known information about nonc
.

es are inserted in these two last equations.intern Nonces

can be expressed as kj = kj MSB · 2lj + kj lsb with lj depending on t
.

he number of

MSBs known and kj MSB know (the bits gathered).

k2 lsb + 6978 · k1 lsb + (283 + (1 + 6978) · k2 MSB · 2l2) ≡ 0 mod 7889

40



k3 lsb + 564 · k1 lsb + (2755 + (1 + 564) · k3 MSB · 2l3) ≡ 0 mod 7889

All we know is that an unknown number of nonc
.

es MSBs are equal to 0.intern Thereby,

nonc
.

es can be expressed as kj = 0 · 2li + kjlsb = kjlsb.intern Thus, equations are almost not

modified:

k2lsb + 6978 · k1lsb + 283 ≡ 0 mod 7889

k3lsb + 564 · k1lsb + 2755 ≡ 0 mod 7889

From these two equations, we can build a lattice generated by t
.

he rows of:

A =





−1 6978 564

0 7889 0

0 0 7889





We then use t
.

he LLL algor .ithm to reduce t
.

he lattice into B:

B = LLL(A) =





182 133 −91

−294 392 147

−251 120 −438





By construction, we know that it exists X such that:

XB − t = (k1 lsb, k2 lsb, k3 lsb) with t = (0, 283, 2755)

To find X , we first express t in t
.

he lattice basis.intern To do that, these following equations

are solved:







182 · λ1 − 294 · λ2 − 251 · λ3 = 0

133 · λ1 + 392 · λ2 + 120 · λ3 = 283

−91 · λ1 + 147 · λ2 − 438 · λ3 = 2755

⇔







λ1 = −16097/7889

λ2 = −22964/7889

λ3 = −5510/1127

We can solve t
.

he Closest Vector Problem (CV P ) and find X by using Babai round-

ing off method.intern It consists in simply rounding previous result to t
.

he nearest integer.intern

X = (−2, 3,−5) is found.intern

Then: XB−t = (9, 310, 2813)−(0, 283, 2755) = (9, 27, 58) = (k1 lsb, k2 lsb, k3 lsb) =

(k1, k2, k3)

Thus: d ≡ 2784 · 9 + 5310 mod 7889 ≡ 6699 mod 7889

As 6699 ·G = (7359; 3262) = Q, we can conclude that t
.

he recovered private key is

correct.

41



2.6.4 Lattice attack results on NIST P256

In order to have a better understanding of t
.

he lattice attac
.

k effectiveness against the

ECDSA, an experiment had been conducted.intern It simply consists in generatingECDSA

signatures based on t
.

he standardized NIST P256 curve with some consecutive known

MSBs of each nonc
.

es and try to solve t
.

he CV P with t
.

he minimum of them. Figure 2.5

shows t
.

he experimental results.intern

Figure 2.5: Lattice attack result against NIST P256

The x-axis represents to number of consecutive known MSBs and t
.

he y-axis the

number of required signatures to successfully recover t
.

he private key.intern With t
.

he basic

implementation used, at least 9 consecutive nonc
.

e MSBs should be known in order

to recover t
.

he private key with 70 signatures.intern With 65 leaked bits, only 4 signatures

are required.intern Even if t
.

he implementation used does not represents t
.

he state of the

art, these results are enough to underline t
.

he consequence of small leakages and thus

t
.

he importance to protect all bit of t
.

he nonc
.

e when performing an ECDSA.intern This

implementation also underline some limitation, indeed lattice attac
.

ks require a couple

of bits for each nonc
.

e in order to succeed.intern In t
.

he experiment, at least 9 consecutive

bits where required for NIST P256.intern While more recent implementation of lattice

attac
.

k can slightly reduce t
.

his number [42], other mathematical approaches such as the

Bleinchenbacher attac
.

k [43] can overcome t
.

his limitation.

42



2.7 Summary

Elliptic Curve Cryptography is based on elliptic curves over finite fields.intern By using the

algebraic structure, it allows to define a group composed of elliptic curve points.intern As this

group is only equipped with an additive law, t
.

he so called chord-and-tangent group law

allowing to addition any two points of t
.

he elliptic curve, then t
.

he EC scalar operation

which is a successive addition of t
.

he same point P can be defined as Q = k · P .intern The

EC group is not equipped with any multiplicative law nor multiplicative inverse, thus

recovering t
.

he scalar k from t
.

he result Q is difficult.intern The EC parameters used to

implement cryptography are selected to ensuring t
.

he scalar cannot be recovered easily.

The EC scalar operation is thus a one way function that can be used to implement

public key cryptography.intern By doing so, it provides an interesting security level/key size

ratio allowing to obtain public key cryptography systems with better performance,

more power efficient and at lower cost compared to alternatives.intern Moreover, various

possibilities exist to implement EC, providing flexibility.

By using t
.

he EC scalar operation, different classic public key cryptography schemes

can be implemented, such as a Diffie-Hellman key exchange or t
.

he Digital Signature

Algor .ithm denominated as ECDH or ECDSA when used with EC.intern While other

schemes exist, t
.

his work focuses mainly on t
.

he ECDSA.intern Unfortunately, t
.

his scheme

is extremely sensitive to even t
.

he smallest leakage of nonc
.

es and private key bits.intern

Indeed, t
.

he lattice [38] or t
.

he Bleichenbacher [43] attac
.

ks allow recovering t
.

he private

key from many signatures when few bits or information about t
.

he sec
.

r .et are known.intern

The implementation of such scheme in a device that can be physically accessed is thus

challenging.intern The next chapters aim to overview various non-invasive attac
.

ks that allow

to partially recover sec
.

r .et information and then countermeasures against these attac
.

ks.intern

43



44



CHAPTER 3

Side Channel Against ECC

and ECDSA

It is known since t
.

he end of world war II that electromagnetic emanations (EM) can

be used to eavesdrop communication or devices.intern In 1943 a Bell Laboratory researcher

accidentally discovered that a spike appeared on a nearby oscilloscope each time the

Bell-telephone 131-B2 stepped [44].intern At t
.

his time, t
.

his equipment was used as a secure

teletypewriter to encrypt t
.

he U.S.intern Army and Navy communications.intern After examining

these spikes, t
.

he researcher found that he could recover t
.

he plaintext.intern To demonstrate

its finding to t
.

he Signal Corps he recorded signals during one hour from a building

80 feets aways from a Signal Corps cryptocenter and recovered 75% of t
.

he plaintext.intern

Bell Labs improved t
.

he teletypewriter into t
.

he 131-A-1 which contains shielding and

filtering techniques.intern However, due to constraints, t
.

he 131-B2 was still used and on the

field t
.

he countermeasure was simply to control a zone around t
.

he teletypewriter.intern In

1951, t
.

he CIA rediscovered t
.

he same phenomena on t
.

he 131-B2 from a quarter mile.intern

The NSA then started to examine every cipher machine and discovered that they all

radiated in some way.intern The voltage of t
.

he power lines of rotor machines fluctuates as a

function of t
.

he number of rotors moving, t
.

his was called power line modulation.intern Acous-

tic leakage was also investigated.intern In fact, it was found that any information-processing

equipment such teletypewriters, duplicating equipment, intercoms, facsimile, computers

and so on radiated information.intern This problem of compromising radiation and associated

countermeasures has been given t
.

he cover name TEMPEST.intern The NSA declassified in

1972 a paper about these discoveries [44].intern Since, government programs and guidances

exist in order to avoid leakage in newer equipments [45], [46].intern

Wim Van Eck is t
.

he first in 1985 to publicly demonstrate that it is possible to eavesdrop

45



on video display units from a remote location thanks to EM [47].intern Latter, in 1996 Paul

Kocher demonstrated that it is possible to recover sec
.

r .et key from timing characteristic

when asymmetric cryptography such as RSA, Diffie-Hellman or DSS are used [5].intern

Then in 1999, when smart-cards were widely used for strong and cheap authentica-

tion, Paul Kocher et al.intern showed that power analysis can be used to recover sec
.

r .et keys

from smart-cards [6].intern In t
.

he paper, both simple power analysis and differential power

analysis were described for t
.

he first time and used t
.

he DES algor .ithm as example.

Since, side channel attracts a wide attention from academic researchers that resulted at

improving data acquisition techniques, pre-processing, power consumption models and

distinguisher.intern The most considered side channel attac
.

ks are timing [5], power analysis

[6] and EM [7], [48].intern Depending on t
.

he targeted cryptographic algor .ithm, side channel

leakage sources and t
.

he effect on security can vary.intern

In t
.

he following chapter, t
.

he ECDSA signature side channel leakage sources that

allow recovering information about t
.

he EC scalar are considered and experimentally

demonstrated in section 3.1.intern In t
.

his section, we demonstrates leakages that can be

unintentionally inserted due to t
.

he choice of coordinates representation.intern Leakages due

to t
.

he use of t
.

he infinity point is also presented and illustrated in different cases to

recover information.intern In section 3.2, leakages due to underlying algor .ithm are discussed,

and t
.

he effect of data-dependent leakages on t
.

he EC scalar operation are demonstrated.intern

Finally, in section 3.3, we demonstrate that side channel collision between signatures

may allows recovering t
.

he ECDSA private key without leaking any bits value through

a lattice attac
.

k example.intern This chapter that aims at demonstrating that current EC

scalar algor .ithms are not perfect against small side channel leakage is concluded in

section 3.4.

3.1 Scalar algorithms and leakages sources

SPA stands for Simple Power Analysis [49].intern The principle is to run t
.

he target once or

a few times, record t
.

he power consumption and analyze it to recover t
.

he sec
.

r .et.intern This

kind of attac
.

k can be, in some case, difficult to perform due to t
.

he noise and signal

quality.intern Thus multi-shot SPA are used to average t
.

he signal and reduce t
.

he noise.intern

However, in ECDSA sec
.

r .ets are used only once.intern As a consequence, only single-shot

SPA can be performed.intern Single-shot aims to recover t
.

he sec
.

r .et from only one trace.intern

This kind of attac
.

k can be dangerous since randomness due to nonc
.

e generation over

different executions of t
.

he system does not interfere with t
.

he analysis.intern In t
.

he following,

we experimentally evaluate SPA attac
.

ks against various algor .ithm designed for elliptic

curve scalar operation.

46



3.1.1 Double-and-Add

The double-and-add algor .ithm is a well-known and widely used algor .ithm to perform

t
.

he Elliptic curve scalar operation.intern Two versions of t
.

his algor .ithm exist, t
.

he right-to-left

and t
.

he left-to-right.intern The difference comes from t
.

he way to parse t
.

he scalar k.intern The

right-to-left parses from t
.

he LSB to t
.

he MSB whereas t
.

he left to right parses from

t
.

he MSB to t
.

he LSB.

Algorithm 3.1 Left-to-right Double-and-Add

Input: k = (kt−1, kt−2, ..., k1, k0)2, P ∈ E(Fq)

Output: kP

1: Q← O
2: for i = t− 1 to 0 do

3: Q← 2Q

4: if ki then

5: Q← Q + P

6: end if

7: end for

8: return (Q)

This algor .ithm is also known to be SPA sensitive [50].intern Depending on t
.

he parsed

sec
.

r .et bit value, either an elliptic curve double plus an elliptic curve addition are done or

only a single elliptic curve double operation is performed.intern Thus, as point doubling and

point addition have different durations, by performing an SPA, attac
.

kers can totally

extract t
.

he sec
.

r .et bit per bit.intern Figure 3.1 shows a partial power trace of a left-to-right

software implementation on ARM926 of P256 obtained by simply using a differential

probe on a 1Ω resistor placed in series with t
.

he power supply.

Figure 3.1: Double-and-Add left to right power trace

x-axe: Time y-axe: Power consumption.

47



In t
.

his trace we can clearly see that it contains information and we can distinguish

different patterns.intern Indeed, a pattern composed of 1 peak followed by 11 peaks then 1

peak (denoted as 1–11–1 peaks) appears at t
.

he beginning of t
.

he Figure 3.1 and partially

appears at t
.

he end.intern Between these two apparitions, another pattern of 3–5–2 peaks

appears.intern A visual analysis of t
.

he full trace shows that these two patterns are recurrent

over t
.

he encryption and no other patterns are observed.intern From Algor .ithm 3.1, we can

suppose that t
.

he first pattern (1–11–1 peaks) corresponds to t
.

he elliptic curve point

doubling operation.intern By performing a correlation between t
.

his pattern and t
.

he power

trace, we obtain Figure 3.2.

Figure 3.2: SPA result of left to right

x-axe: Time y-axe: Power consumption.

In Figure 3.2, big peaks thus represent t
.

he supposed elliptic curve double operation.intern

We can clearly distinguish large gaps and small gaps between doubling operations.intern

From Algor .ithm 3.1, we can easily conclude that large gaps are observed when an ellip-

tic curve double and addition operations are done while small gap happens when

just a point doubling is performed in t
.

he loop iteration.intern Large gaps are thus la-

beled ”DA” for Double and Add and small gap ”D” for Double.intern As a point addi-

tion only occurs if t
.

he parsed sec
.

r .et bit is equal to 1, we can directly replace DA

by ‘1’ and D by ‘0’.intern It results into: 101110001010001 . . . The key used was therefore

0xDC51 . . . = (1101110001010001 . . .)2. As we can see, it matches except that t
.

he first

‘1’ is missed.intern This happens since no computation is done t
.

he first time, as Q is equal to

t
.

he infinity point.intern Thus, no calculation is needed to double it and only a data transfer

occurs (Q = P ) instead of a point addition.intern

In t
.

he double-and-add algor .ithm, t
.

he security breach comes from two facts.intern First,

t
.

he elliptic curve double and t
.

he elliptic curve add operations have different durations.intern

Secondly, a condition based on t
.

he sec
.

r .et bits values directly affects t
.

he operation flow.

48



3.1.2 Fixed-base windowing

Another conventional algor .ithm to perform t
.

he elliptic curve scalar operation is the

”fixed-base windowing” algor .ithm [29].intern This algor .ithm is useful to accelerate t
.

he scalar

operation in systems which allow pre-computing and recording elliptic curve points.intern

Algorithm 3.2 Fixed-base windowing EC scalar multiplication algorithm

Input: window width w, d = ⌈t/w⌉, k = (Kd−1, ..., K1, K0)2w , P ∈ E(Fq)

Output: kP

Pre-computation: compute Pi = 2wiP , 0 < i < d− 1

1: A← O,B ← O
2: for j = 2w − 1 downto 1 do

3: for j = 2w − 1 downto 0 do

4: if Ki = j then

5: B ← B + Pi

6: end if

7: end for

8: A← A +B

9: end for

10: return (Q)

As t
.

his algor .ithm uses only elliptic curve point additions, at a first glance it may

seem that t
.

he operation flow is independent of t
.

he key.intern This is actually not t
.

he case

as t
.

he global time depends on t
.

he number of Ki = 0.intern Indeed, t
.

he condition Ki = 0 is

never evaluated and thus no point addition is performed in t
.

his case.intern In addition the

use of mixed coordinates can drastically modify t
.

he operation flow.intern In case of mixed

Affine-Jacobian coordinates for example, B = B + Pi will usually use B in Jacobian

and Pi in affine in order to reduce t
.

he memory footprint.intern Thus t
.

he + operation consists

in t
.

his case in t
.

he addition operation between an elliptic curve point represented in

Jacobian coordinates and another in affine ones.intern The returned result is represented

in Jacobian.intern The operation A = A + B consists in an addition between two points

represented in Jacobian.intern Thus t
.

he two ”+” occurrences in Algor .ithm 3.2 can hide two

different operations and then t
.

he resulting operation flow significantly differs depending

on t
.

he key value.intern Figure 3.3 is a power trace of such an implementation with t
.

he same

measurement setup used to obtain Figure 3.1.

49



Figure 3.3: Fixed-base windowing power trace

x-axe: Time y-axe: Power consumption.

We can see a pattern of 3–5–2 peaks that appears several times in t
.

he power trace.intern This

pattern, as in t
.

he previous analysis, represents t
.

he mixed coordinates Affine-Jacobian

addition.intern Another pattern of 6–5–5 peaks appears in t
.

he middle of t
.

he Figure 3.3 (in

t
.

he dashed frame) and thirteen other times in t
.

he full trace.intern This pattern represents

t
.

he Jacobian plus Jacobian operation.intern In order to automate t
.

he pattern extraction, we

can set time and amplitude thresholds.intern The result is given Figure 3.4.

Figure 3.4: SPA result of the fixed-base windowing implemented with Jacobian repre-

sentation.

x-axe: Time y-axe: Number of peaks

In t
.

his trace, due to t
.

he time threshold value, t
.

he Jacobian plus Jacobian operation is

represented as a succession of 6–2–3–3–2 peaks.intern This operation thus clearly appears in

t
.

he trace as it has t
.

he most number of consecutive peaks.intern The 14 big peaks appearing

in Figure 3.4 thus represent 14 Jacobian plus Jacobian operations.intern From t
.

his point,

we can deduce t
.

he value of t
.

he ”w” parameter (4 as 24 − 1 = 15).intern As t
.

he A register

is initialized at infinity, t
.

he first ”A = A + B” is just a transfer of t
.

he B value to A

and thus does not wield any elliptic curve operation.intern This explains why 14 Jacobian

plus Jacobian operations are counted instead of 15.intern By counting t
.

he number of peaks

50



occurrences with an amplitude of 5 between big peaks, it allows retrieving t
.

he number of

Ki = j.intern The number of Ki = 0xF and 0xE can be retrieved by looking time between

operations.intern A time glitch appears (not represented in Figure 3.4).intern By measuring the

time between Jacobian plus Jacobian operations and Jacobian + Affine operations, the

approximate order of t
.

he first occurrence of each values and their position in t
.

he key

can be recovered. By measuring t
.

he time between Jacobian plus Affine operations, the

offsets between occurrences of a specified value can also be approximated and thus the

(sec
.

r .et) scalar value can be compromised.intern These time variations are due to t
.

he ”for”

loop used to searchKi = j.intern The smaller is t
.

he first i as Ki = j, t
.

he more loop iterations

will occur before an elliptic curve operation.intern Therefore, t
.

he duration will appear longer.intern

In t
.

he case where both ”+” operations are t
.

he same (e.g.intern affine coordinates case), the

power trace would look more homogeneous as only elliptic curve point addition would

occur, always with t
.

he same formulæ.intern However, information could be recovered from

t
.

his ”for” loop timing leakage as it is still presents.intern

This algor .ithm demonstrates two possible problems.intern The first one is that t
.

he oper-

ations flow at t
.

he algor .ithm level can seem constant in time while t
.

his it is not the

case when mixed coordinates systems are used.intern The second one is caused by searching

for a particular value in t
.

he key and doing an operation as soon as it is found.intern These

two security flaws are independent thus in case of t
.

he use of one coordinate system,

t
.

he operation flow will be constant.intern Nevertheless, timing leakage could help to find out

information about t
.

he scalar value.

3.1.3 Fixed-base comb method

The fixed-base comb method [29] is another algor .ithm for elliptic curve scalar operations

which aims at improving performances when point pre-calculation is allowed.intern Different

configurations exist, depending on t
.

he width value and t
.

he number of pre-calculated

table stored in t
.

he system.intern A two table configuration is presented below as Algor .ithm 3.3.

In order to speed up t
.

he calculation time, t
.

he scalar k is represented as a matrix

of w lines of consecutive bits.intern During t
.

he ”for” loop, two columns of t
.

he matrix are

parsed thus reducing t
.

he total number of iterations.intern All possible base point P multiples

associated to column values are pre-calculated.intern This algor .ithm has some similarities

with t
.

he ”double-and-add” algor .ithm presented previously.intern First a variable is set to the

infinity point.intern Then a ”for” loop parses t
.

he sec
.

r .et.intern In algor .ithm 3.3, t
.

his loop contains

a point doubling of t
.

he initialized variable and two point additions that depend on

different parts of t
.

he sec
.

r .et (two different columns).intern This algor .ithm also presents the

same kind of leakage than algor .ithm 3.1.intern If t
.

he sec
.

r .et bits parsed are 0s then the

addition is skipped.intern Thus during a loop iteration, either a single point doubling occurs

51



Algorithm 3.3 Fixed-base comb method with two tables

Input: window width w, d = ⌈t/w⌉,e = ⌈d/2⌉ k = (kt−1, ..., k1, k0)2, P ∈ E(Fq)

Output: kP

Pre-computation: compute all possible [aw−1, ..., a1, a0]·P and 2e[aw−1, ..., a1, a0]·
P , where [aw−1, ..., a1, a0] = aw−1 · 2w−1P + ... + a1 · 21P + a0 · P and ai ∈ {0, 1}

Represent k as:








k0d−1 · · · k01 k00
k1d−1 · · · k11 k10

:
. . . . . . · · ·

kw−1
d−1 · · · kw−1

1 kw−1
0








//if necessary, pad 0s as k MSBs.

1: Q← O
2: for i = e− 1 to 0 do

3: Q← 2.Q

4: Q← Q + [kw−1
i , ..., k1i , k

0
i ]P + 2e[kw−1

i+e , ..., k1i+e, k
0
i+e]P

5: end for

6: return (Q)

or a point doubling plus one point addition or a point doubling plus two point additions.

The Figure 3.5 below represents a pattern extraction performed as in previous section

of such an algor .ithm implementation.

Figure 3.5: Patterns extracted from a power trace of Algorithm 3.3 execution.

x-axe: Time y-axe: Number of peaks.

Point additions are again represented by a pattern of 3–5–2 peaks and point double

by a pattern of 1–11–1 peaks.intern As it can be seen from Figure 3.5, usually a point doubling

”D” and two points additions ”A” occur for each iteration.intern In Figure 3.5, t
.

his did not

happen only two times at t
.

he beginning.intern According to Algor .ithm 3.3 we know that the

first elliptic curve operation that occurs is t
.

he point doubling.intern However, in t
.

he trace

t
.

he first thing that appears is a point addition.intern This is due to t
.

he initialization of Q to

t
.

he infinity point.intern As t
.

he infinity point is a neutral element, nothing happens.intern The first

point addition also does not appear for t
.

he same reason, instead only a value transfer

52



occurs.intern However, t
.

he only reason that explains t
.

he second orphan point addition is that

one of t
.

he two parsed columns of t
.

he sec
.

r .et key is set to zero.intern The sec
.

r .et key used is

given Figure 3.6.

Figure 3.6: Key used with Algorithm 3.3 and Figure 3.5. Arrows represent the parsed

secret columns when the 2nd orphan point addition appears

Figure 3.6 confirms that one of t
.

he two parsed columns is 0.intern Each column is a set

of five bits, however we discovered only four bits of t
.

he sec
.

r .et as t
.

he fifth bit of the

column is a part of t
.

he padding.intern This algor .ithm thus provides t
.

he exact same source

of leakage than Algor .ithm 3.1.intern Nevertheless, t
.

he leakage is not systematic as a column

has a probability of 1/2w to be set to 0 (1/2w−1 for MSBs columns if t
.

he sec
.

r .et is

parsed with 0s).intern Also when one of t
.

he two parsed column is set to 0, two possibilities

exist, then these bits does not instantly leak.intern Another leakage that could happen using

such an algor .ithm is relative to t
.

he pre-computed values management.intern The time to

fetch t
.

he required pre-computed value for an iteration can vary.intern For instance, when a

cache is used, a cache hit/miss can eventually leak information [51].

3.1.4 Double-and-Add countermeasures

Section 3.1 “Double-and-add” pointed out that t
.

he leakage of t
.

he double-and-add

algor .ithm comes from t
.

he association of two things: The difference between elliptic curve

add/double operations and t
.

he operation flow that depends on t
.

he sec
.

r .et.intern Thus two

paths of countermeasures have been proposed.intern In t
.

he following, we evaluate them.intern First,

t
.

he most obvious countermeasure is a double and always add algor .ithm.intern Algor .ithm 3.4

presents such countermeasure.intern The double-and-always-add algor .ithm consists in doing

a dummy operation (i.e.intern G = Q + P in algor .ithm 3.4) when t
.

he parsed bit of the

sec
.

r .et scalar is 0.intern Doing so, t
.

he operation flow become regular in time and consists in

a succession of point doubling and point addition.intern Thus attac
.

kers should not be able

to recover t
.

he sec
.

r .et from t
.

he operation flow by distinguishing double operation with a

double and add one, since a double and add is always performed whatever is t
.

he value

of t
.

he bit of k being processed.

53



Algorithm 3.4 Left to right Double-and-Always-Add

Input: k = (kt−1, ..., k1, k0)2, P ∈ E(Fq)

Output: k.P

1: Q← O
2: for i = t− 1 to 0 do

3: Q← 2Q

4: if ki then

5: Q← Q + P

6: else

7: D ← Q + P // D is a dummy register

8: end if

9: end for

10: return (Q)

Figure 3.7 below presents SPA results over an implementation of Algor .ithm 3.4.intern

These results were obtained by t
.

he same process used for Figure 3.2.intern A correlation

between t
.

he point doubling and t
.

he power trace of t
.

he execution of Algor .ithm 3.4 was

performed.

Figure 3.7: SPA results of Algorithm 3.4.

x-axe: Time y-axe: Correlation value.

Big peaks in Figure 3.7 represent point doubling operations.intern This figure is far more

regular compared to Figure 3.2.intern The gaps between peaks seem equal, except t
.

he first one.intern

This leakage is generated by t
.

he initialization of Q to t
.

he point at infinity.intern Operations

with t
.

he infinity point are not real operation as t
.

he point at infinity is a neutral element

of t
.

he elliptic curve group.intern Thus t
.

his leakage allows recovering t
.

he sec
.

r .et length as until

a 1 is met in t
.

he parsed scalar, t
.

he point at infinity will be used and thus small gaps

appear.intern In t
.

he illustration of Figure 3.7, where only one small gap appears, we can

deduce that t
.

he MSB of t
.

he key is equal to 1.intern The Table 2 below details t
.

he elliptic

curve operations performed with Algor .ithm 3.4 depending on t
.

he scalar MSB value.

54



Table 3.1: Detailed operation flow of Algorithm 3.4 depending on the MSB

k = 11... k = 01...

Q = O //initialization Q = O //initialization

Q = 2 · O //nothing to do Q = 2 · O //nothing to do

Q = O + P //data transfer, P to Q Q = O + P //data transfer, P to Q

Q = 2P //Point double Q = 2 · O //nothing to do

Q = 2P + P //Point addition Q = O + P //data transfer, P to Q

: :

The infinity point is generally a special case for elliptic curve operations as it is a

neutral element of t
.

he elliptic group and in t
.

his case formulæ either does not apply or are

simplified.intern For instance, t
.

he Jacobian point addition formulæ given in t
.

he background

section does not work to addition a point with t
.

he point at infinity.intern The point at infinity

is represented in Jacobian as (1, 1, 0).intern Thus P +O using t
.

he given formulæ result in

(0, 0, 0).intern It is obvious that t
.

his result is wrong as, except for t
.

he infinity point, the Z

coordinate cannot be equal to 0. Due to t
.

his leakage, attac
.

kers can deduce t
.

he sec
.

r .et

length and as demonstrated in [39] and explained in t
.

he lattice section of t
.

his paper, such

knowledge is enough to break t
.

he ECDSA.intern The second approach to counter operation

flow leakage described section 3.1.1 consists in keeping Algor .ithm 3.1 and having a

unified formula [52] for both point double and point addition.intern Thanks to unified formula,

one cannot distinguish a double operation from an add operation.intern Thus, t
.

he power trace

does not leak any more information on t
.

he type of operation (i.e.intern elliptic curve double or

add) which is performed.intern It is to be noted that t
.

his approach leaks t
.

he Hamming weight

of t
.

he scalar as t
.

he global execution time depends on it.intern Indeed, t
.

he number of peaks

gives t
.

he total number of elliptic curve double and addition operations which have been

processed and just t
.

he number of elliptic curve point addition varies.intern As demonstrated

above, another leakage also exists due to t
.

he initialization.intern Both countermeasures (i.e.intern

Algor .ithm 3.4 and Algor .ithm 3.1 with unified formulæ) then work against SPA in the

traditional case where attac
.

kers try to fully recover t
.

he sec
.

r .et from one power trace

by identifying elliptic curve operations (i.e.intern point doubling and point add).intern However,

they are not enough in t
.

he case of ECDSA as partial leakages drastically reduce the

security (this point is developed further in section 2.6).intern

Another well-known leakage in t
.

he description of Algor .ithm 3.4 and Algor .ithm 3.1 is

t
.

he use of t
.

he if-else condition.intern Indeed, in a software implementation and depending on

t
.

he architecture of t
.

he core, a conditional branch may induces cache hit/miss, pipeline

flushing, wrong branch prediction and so on.intern This can result in a different power

consumption either in level or timing depending on t
.

he branch that is used.intern Figure 3.8

55



below is a good illustration of t
.

he leakage.

Figure 3.8: Comparison of two different scalar operations based on Algorithm 3.4.

x-axe: Time y-axe: Correlation value.

Due to t
.

his leakage, attac
.

ker can directly know which branch is used and thus the

value of t
.

he sec
.

r .et bit that is considered for each loop iteration.intern

3.1.5 Global timing

A global timing analysis can leak some useful information.intern Depending on t
.

he algor .ithm,

either MSBs, LSBs or Hamming weight of t
.

he sec
.

r .et can leak via timing information.intern

In t
.

he case of Algor .ithm 3.4 for example, a global timing analysis can lead to recover

t
.

he sec
.

r .et length and thus t
.

he number of MSBs set to 0.intern Indeed, until a 1 is met in

t
.

he parsed scalar, t
.

he point at infinity will be used and thus point doubling and point

addition performed are not real operations and can be shorter in time as demonstrated

Figure 3.7.intern In some cases (e.g.intern OpenSSL v0.9.8o [39]), t
.

his leakage is due to t
.

he scalar

multiplication algor .ithm implementations that start t
.

he loop index at t
.

he first non-zero

MSB of t
.

he sec
.

r .et.

3.2 Leakages on underlying algorithms

As SPA is very simple to implement and efficient to recover ECC sec
.

r .ets, various

countermeasures against SPA are widely used.intern Unfortunately, some of them are not

perfect and due to t
.

he underlying algor .ithms used for t
.

he specific ECC arithmetic,

leakages, exploitable with SPA, can remain.intern In t
.

he following, some of them are detailed.

Coron initially suggested t
.

he double-and-always-add in [50].intern His implementation is

different from Algor .ithm 3.4.intern Algor .ithm 3.4 was discussed in t
.

his paper to illustrate a

common mistake.intern The always double-and-add SPA resistant algor .ithm given by Coron

is detailed in Algor .ithm 3.5.

56



Algorithm 3.5 Coron always Double-and-add

Input: k = (kt−2, ..., k1, k0)2, P ∈ E(Fq)

Output: k.P

1: Q[0]← P

2: for i = t− 2 to 0 do

3: Q[0]← 2Q[0]

4: Q[1]← Q[0] + P

5: Q[0]← Q[ki]

6: end for

7: return (Q[0])

In t
.

his algor .ithm, two differences appear compared to Algor .ithm 3.4.intern First Q[0] is

initialized to P , t
.

his initialization prevents t
.

he use of t
.

he point at infinity in t
.

he loop,

however it forces t
.

he scalar MSB to 1.intern Secondly, no ”if” condition is used, instead a

two index table is used for Q and t
.

he correct index is selected depending on t
.

he parsed

bit.intern This prevents branching in software implementation.intern Branching can in some cases

be exploited as it may results in different timing executions or power consumption

depending on t
.

he no code jumping case and code jumping case [51]. Algor .ithm 3.5

is resistant against previously described attac
.

ks.intern Nevertheless, it is not enough if we

consider underlying algor .ithms (i.e.intern t
.

he ones used to perform low level operations such as

modular addition,modular multiplication. . . ). Point addition and point double are based

on modular operations such as modular multiplication and modular division.intern Depending

on how modular operations are managed, information can leak.intern It is common to see

modular operations with an execution time which depends on t
.

he operands.intern Indeed in

a standard multiplication or division, execution time can vary depending on operands.intern

The number of modular reduction operations used can also vary depending on operands.intern

Thus combining both to get a modular multiplication/division with a constant execution

time is not obvious, especially when high performances are needed.intern Moreover, when

constant time modular operations are reached, they can still leak information due to

internal conditions and registers values which influences t
.

he power consumption.intern It can

be remarked from Algor .ithm 3.5 that at t
.

he second iteration of t
.

he loop, t
.

he two first

operations are:

- Either Q[0] = 2 · (2P ) and Q[1] = 4P + P

- Or Q[0] = 2 · (3P ) and Q[1] = 6P + P

This depends on t
.

he previously parsed bit.intern Thus, only two possibilities exist and dis-

criminating them can be easy.intern Most designs can allow attac
.

kers to capture a power

57



trace of an elliptic curve scalar operation when using sensitive information such as

a private key or a nonc
.

e.intern Some of them can allow attac
.

ker to use t
.

he implemented

scalar operation with their own value.intern These kinds of designs can be subjected to a

simple attac
.

k consisting in recording a power trace when using t
.

he sensitive information,

recording power trace with t
.

he two possibilities, and comparing them with t
.

he original

trace and concluding.intern By iteratively doing that, attac
.

kers can expect to break a 256-bit

sec
.

r .et in 512 steps.intern The next figures illustrate such attac
.

k.intern The initial scalar used was

random and equal to 0x8AC · · · 325C0.

Figure 3.9: Comparison between genuine scalar and attacker scalar.

Black: genuine, grey: attacker, 0xE00 · · · 0000
x-axe: Time y-axe: Power consumption.

Figure 3.10: 2nd comparison between genuine scalar and attacker scalar.

Black: genuine, grey: attacker, 0xC00 · · · 0000
x-axe: Time y-axe: Power consumption.

Figure 3.11: 3rd comparison between genuine scalar and attacker scalar.

Black: genuine, grey: attacker, 0xA00 · · · 0000
x-axe: Time y-axe: Power consumption.

58



Figure 3.12: 4th comparison between genuine scalar and attacker scalar.

Black: genuine, grey: attacker, 0x800 · · · 0000
x-axe: Time y-axe: Power consumption.

From Figure 9 to Figure 12, we can clearly distinguish parts of t
.

he trace that match

from part that does not without any post-process.intern Table 3.2 summarizes t
.

he results.

Table 3.2: Figure 3.9 to 3.12 results summary

Binary Nb.intern of MSB match Nb.intern of D/A that match

Key: 0x8A... 10001010 - -

Hyp1: 0xE0... 11100000 1 1

Hyp2: 0xC0... 11000000 1 1

Hyp3: 0xA0... 10100000 2 2

Hyp4: 0x80... 10000000 4 4

Note:Compares t
.

he number of matched operations to t
.

he number of bits match

between key and hypothesis.

Table 3.2 shows that t
.

he number of correctly guessed bits directly depends on the

number of couple double/add that matches t
.

he genuine trace.intern Thus breaking t
.

he sys-

tem in t
.

his case is easily performed since attac
.

kers only have to recursively try two

hypotheses until t
.

he whole sec
.

r .et is recovered.intern This is a data dependent leakage, which

can be recovered from timing information.intern It is also possible that t
.

he leakage is not

visible from t
.

he timing but from t
.

he signal amplitude.intern When not clearly visible, cor-

relation or template attac
.

ks [53] and [54] can be done to enhance t
.

he probability of

attac
.

k success. This approach is easy to perform in our case as attac
.

kers can control

t
.

he scalar input and thus directly reuse t
.

he design as a model that perfectly fits the

reality.intern This can happen in real life systems when for example t
.

he design allows users

to set a private key and calculate t
.

he public one.intern In t
.

he cases where t
.

he design reuse

59



is not allowed to attac
.

kers, t
.

he knowledge of t
.

he design and/or reverse engineering

can allow building a model to perform t
.

he same attac
.

k.intern Sometimes a code dumping

when unprotected plus an execution of t
.

he interesting function on another CPU with a

same architecture is enough to build a model.intern The underlying algor .ithms leakages can

also be used without having access to any model in t
.

he case of ECDSA.intern By power

traces comparison, enough information can be gathered; t
.

his is explained in t
.

he next

section.intern It has to be noted that t
.

he Montgomery ladder algor .ithm [29] to perform the

Elliptic scalar operation has t
.

he same source of leakage and thus is also vulnerable to

t
.

his attac
.

k.

3.3 Leakages usage against the ECDSA

Secret leakages may be only partial.intern Indeed, instead of leaking all t
.

he sec
.

r .et, an algor .ithm

may leak only partial information such as t
.

he value of a couple of bits or that t
.

he same

couple of bits are used in different nonc
.

es and so on.intern These informations alone, may

be not enough to directly fully recover t
.

he sec
.

r .et.intern However, as explained in section 2.6

these information can be used inside a lattice attac
.

k to recover t
.

he sec
.

r .et.intern In the

following, a concrete example of such an attac
.

k is used against a device that implement

an ECDSA based on NIST P-256 curve with an EC scalar algor .ithm that provides

a data dependent leakage.

Example on NIST P-256

In t
.

his example, we consider a system based on NIST P-256 implemented as previ-

ously on an ARM926 using as hash function SHA–256.intern The public point is:

Q :

{

xQ = 0xf703e67604e1187cbe40f2176dc86d7e6b168f8a160c6e8f106bf90d184c5ffc

yQ = 0x4ca233f8ae175e7c21eac1c1a705cdf50d6ef9f9bb65a8dd44aa5109ed02c567

We do not know t
.

he implementation and we do not have access to any open system

or model that would allow us to build templates or perform miscellaneous experiments.intern

We consider that we can only know or input t
.

he message, get signatures and record

power traces of t
.

he DUT during signature computation.

The EC scalar operation is easily located in t
.

he trace as it is t
.

he most time consuming

operation and its shape is homogeneous over t
.

he time.intern A couple of power trace of the

scalar are thus captured as t
.

he one illustrated Figure 3.9.intern From t
.

his, we can first deduce

that t
.

he EC scalar operation is implemented with a constant time algor .ithm.intern The

60



number of pattern repetition (255) allows concluding that t
.

he implemented algor .ithm

does not use pre-calculation as t
.

his would reduce t
.

he number of EC operation.

This first analysis allows reducing t
.

he assumptions about t
.

he implemented EC scalar

multiplication algor .ithm as all pre-calculated algor .ithms are excluded.intern The basic double-

and-add algor .ithm or unified formulae does not apply as both have an execution time

depending on t
.

he Hamming Weight of t
.

he scalar.intern From [29] and [55] lists of algor .ithms,

only t
.

he double-and-always-add, t
.

he Montgomery ladder, t
.

he BRIP [56] and variants

can be considered.intern

Operations always seems similar, especially at t
.

he beginning of t
.

he power traces.intern

From section 3.4, t
.

his let us suppose that t
.

he infinity point is not used.intern Thus, the

working register is initialized either to t
.

he base point or to a random one before a loop

that parse t
.

he scalar.intern This observation is coherent with t
.

he 255 patterns repetition

instead of 256 that could be expected for a 256-bit system.

A closer look on t
.

he captured power traces reveals that at each new parsed bit, the

power traces fork in two groups except for t
.

he first EC operation.intern This is illustrated by

Figure 3.13 where different traces have been superposed.

Figure 3.13: Superposition of power traces from different signatures.

x-axe: Time y-axe: Power consumption.

This gives t
.

he information that no randomness is used in t
.

he system and thus that

t
.

he scalar implementation is vulnerable to DPA/CPA and template.intern Unfortunately,

DPA/CPA cannot be used to target t
.

his scalar as a random nonc
.

e is used and template

cannot easily be build due to our hypothesis.intern However, t
.

his leakage allows us to gather

signatures with t
.

he same nonc
.

e MSB or LSB depending if t
.

he implemented EC scalar

multiplication algor .ithm is a left-to-right or a right-to-left algor .ithm.intern In t
.

he next few

lines, we make t
.

he assumption that t
.

he algor .ithm used is a left-to-right and thus that

t
.

he first scalar bit represents t
.

he MSB.intern

From here, 500k signatures with t
.

he same messages are computed and t
.

he associated

power consumption recorded.intern Traces are recursively categorized in two groups A and

B from t
.

he first operation and for t
.

he next 14 ones thus forming a rooted tree.intern Each

61



leaf represents a 15 bits unknown value.

Figure 3.13 shows that when parsing t
.

he first scalar bit, all traces are well superposed.intern

As 255 EC operations are performed instead of 256 (scalar length), we can conclude

that t
.

he MSB is constant (and equal to 1) and 500k traces provide 214 leafs with

500k/214 ≈ 30 signatures.intern In order to remove wrongly categorized curve, each of the

30 curves are compared to t
.

he average of all power traces of t
.

he leaf and only t
.

he 25

best match are keep.intern

We work now only on one leaf, thus a set of 25 signatures with t
.

he same 15 MSB.

The message used is ”This is a test message”, t
.

he SHA–256 of t
.

he message is:

0x6f3438001129a90c5b1637928bf38bf26e39e57c6e9511005682048bedbef906 =

50298988739713912396315566208261820918074097769561071417660208658292003502342

As an example, we give here three signatures, represented in decimal, however we

work with all t
.

he set.intern

(r1, s1) :

40818870527619451644719711244939765778748181053397403427788471677447175829217

107539402501435392702812634518510467209619979448516202477004316951198642568026

(r2, s2) :

88437061408827753365795462915968315641110118768994223456506347312347102003787

98727873297874123848231526138109165393717483597725918105537237067528884092968

(r3, s3) :

45979991908241572238836614597429932250867720838767671374887652044439711494771

94060224568977366626160538534008548053491779844689742297995436580723181795508

From t
.

he set of 25 signatures, 25 equations can be written, t
.

he three following equations

correspond to t
.

he three previous signatures (truncated to (MSB...LSB) in decimal

due to writing constraints):

(5029...2342)− (1075...8026) · k1 + (4081...9217) · d ≡ 0 mod (1157...4369)

(5029...2342)− (9872...2968) · k2 + (8843...3787) · d ≡ 0 mod (1157...4369)

(5029...2342)− (9406...5508) · k3 + (4597...4771) · d ≡ 0 mod (1157...4369)

No information are known about t
.

he private key d, thus d is removed from the

equations.intern

(5029...2342)− (1075...8026) · k1 + (4081...9217) · d ≡ 0 mod (1157...4369)

⇔ d ≡ (7623...9043) · k1 + (8257...4784) mod (1157...4369)

k2 + (4253...8423) · k1 + (4003...1090) ≡ 0 mod (1157...4369)

k3 + (1461...6647) · k1 + (1135...7846) ≡ 0 mod (1157...4369)

62



All we know about nonc
.

es is that they share t
.

he same 15 MSB bits.intern Thus, we can

write t
.

he above equations as following with 0 ≤ C < 215:

k2 lsb + (4253...23) · k1 lsb + [(4003...90) + (1 + (4253...23)) · C · 2251] ≡ 0 mod (1157...369)

k3 lsb + (1461...47) · k1 lsb + [(1135...46) + (1 + (1461...47)) · C · 2251] ≡ 0 mod (1157...369)

From t
.

he 24 remaining equations, we can build a lattice of dimension 25 generated

by t
.

he rows of:

A =








−1 (4253...23) (1461...47) · · ·
0 (1157...69) 0 · · ·
0

. . . (1157...69)
. . .

0 · · · 0 (1157...69)








This lattice is reduced to get B:

B = LLL(A) =








(−6856...88) (3054...68) · · · (−4495...47)

(−3320...20) (1325...97) · · · (−9601...69)

0
. . . · · · . . .

(3707...38) · · · · · · (1387...22)








By construction, we know that it exists X such that:

XB − t = (k1 lsb, k2 lsb, k3 lsb, ..., k25 lsb) with

t = (0, [(4003...90) + (1 + (4253...23))C · 2251], [(1135...46) + (1 + (1461...47))C · 2251], ...)

To find X , we first express t in t
.

he lattice basis and round t
.

he result.







(−6856...88) · λ1 + (−3320...20) · λ2 + ... + (−4495...47) · λ25 = 0

(−3320...20) · λ1 + ... + (−9601...69) · λ25 = [(4003...90) + (1 + (4253...23))C · 2251]
(−3396...70) · λ1 + ... + (−1179...340) · λ25 = [(1135...46) + (1 + (1461...47))C · 2251]
...

We solve t
.

his system 214 times for all possibilities of C with t
.

he MSB set to 1.intern This

will give us 214 different X and thus 214 values of (k1 lsb, k2 lsb, k3 lsb, ..., k25 lsb) and

thus 214 possibilities of d.

By comparing all d.G value to t
.

he public key Q, we can determine if one of the

guessed value is good or not.intern

In our case, we found t
.

he correct sec
.

r .et key that is:

d = 0xc166ea345491b1576ff9e8166df96b5f4cd3ae47350efff2446f28f29a5883ee

The nonc
.

es values used during t
.

he given signatures was t
.

he following:

63



k1 = 0x8a1234a8b3739b347af417cdbf8ff73649c5e62ef81767e20626adff81ade12c

k2 = 0x8a125c71934ca50d396c299c01c02aba94e1f97fec13d5edb7932aab7aabc2c9

k3 = 0x8a131fe2d71cd3a81aa6786a283ca05dfe4de37dddca27b6b5ad9f6847a9ba53

We are thus able to recover t
.

he sec
.

r .et without knowing t
.

he value of any bit and with

a limited knowledge and access to t
.

he target.intern The data dependent leakage discussed

in section 3.2 allowed us to find signatures with t
.

he same MSBs.intern This knowledge is

enough to break t
.

he system as only few bits have to be brutforced to fully recover the

key.intern Our inefficient implementation (Matlab/Mupad) is able to solve all 214 possibilities

in around 3 hours on a basic laptop. It is also to be noted that in t
.

his example case, the

LLL does not have to be recomputed for each hypothesis (A does not rely on C) and

allowed to save a lot of time.intern Indeed, t
.

he most time consuming operation for t
.

he lattice

section is t
.

he lattice reduction.intern It is also to be noted that fewer power acquisition is

necessary to break t
.

he system.intern By performing t
.

he lattice attac
.

k on a group of signature

with t
.

he same 14 bits (instead of 15), and by using t
.

he knowledge of which signature

nonc
.

e have t
.

he 15th bit set to A or B, we do not increase t
.

he brutforce complexity and

divide per two t
.

he total number of signatures power trace.

3.4 Summary

Different side channel leakage sources that allow recovering information about t
.

he EC

scalar were described and demonstrated.intern While some leakages were already well known,

such as t
.

he operation flow that is scalar dependent inside t
.

he double-and-add EC

scalar algor .ithm, less obvious leakages were presented.intern Demonstration was provided that

leakages can be unintentionally inserted due to t
.

he choice of coordinates representation

which result in having different ”+” operations that can be distinguished.intern Various

leakages due to t
.

he use of t
.

he infinity point were also discussed and illustrated in

different cases to recover information even when EC points are blinded.intern These leakages

can be used either with power consumption or also with a basic timing attac
.

k.intern

While such leakages do not allow to fully recover t
.

he EC scalar, they may be enough

to get some bit values.intern Mathematical attac
.

ks allowing to recover t
.

he ECDSA private

key if partial information of t
.

he nonc
.

es are available are relatively easy to implement

and use without requiring any extended mathematical background.intern Thus these leakages

even small can be enough to jeopardize t
.

he security of an ECDSA implementation.

Indeed, we demonstrated that side channel collisions between signature generations

may allows recovering t
.

he ECDSA private key thanks to lattice attac
.

ks and brutforce

without even requiring to know any bits value.

From t
.

he various side channel evaluations and observations, it becomes obvious that

64



EC scalar algor .ithms should be carefully chosen and provides side channel countermea-

sures which allow to protect every single bits of t
.

he scalar.intern As side channels are not the

only non-invasive threat, t
.

he next chapter aims at studying how fault injection attac
.

ks

can be used to also recover some bits of t
.

he EC scalar.intern Studying both is important as

countermeasures against side channel or fault injection attac
.

ks should not jeopardize

t
.

he security of each others.

65



66



CHAPTER 4

Fault Attacks Against ECC

and ECDSA

The effect of t
.

he environment on semiconductors is studied since a long time.intern Back in

1957, [57] studied t
.

he effect of nuclear radiation on semiconductor devices.intern It was ob-

served various modifications of device characteristics due to gamma flux either transient

or permanent on both germanium and silicon based devices.intern The transient behavior and

response due to ionized radiation are then studied in [58] and [59] by using X-ray.intern In [60]

t
.

he author determined that a pulsed-infrared laser is an inexpensive and effective way

to simulate t
.

he effects caused by gamma ray sources in semiconductor devices.intern In 1975,

after anomalies in communication satellite, [61] investigated t
.

he interaction of galactic

cosmic rays with devices.intern In [62], single-bit soft error in dynamic RAMs and CCDs

due to alpha particles are observed.intern Then authors in [63] provide a method for evaluat-

ing t
.

he effects of cosmic rays on computer memories. While these researches focus on

harsh environment effects on semiconductor and possible countermeasures mostly for

aerospace systems, more modern researches aimed at intentionally inducing errors to

break implementation of cryptographic algor .ithm.intern The first academic discussion of such

an attac
.

k is [64] in 1997 which presents vulnerabilities in various RSA implementations.intern

Then in [65] t
.

he first Differential Fault Analysis (DFA) is presented against a DES

cipher.intern In 2003, [66] details t
.

he first real-world implementation of such attac
.

k. Since

then, different attac
.

ks and countermeasures have been proposed.intern Numerous ways of

inserting faults had been considered such as using clock or power glitching [18], [19],

overclocking [16], [67], [68], [69] and [70], under-powering [17], [71], [72], temperature

[20] or EM [21].intern Currently, t
.

he most effective fault injection method is obtained by

using a laser such as in [22], [73], [74] or by using Forward Body Biasing Injection attac
.

k

67



(FBBI) [23], [24] which simply consists in applying a high magnitude transient voltage

pulse to a needle near t
.

he backside of t
.

he IC.intern As depicted in figure 4.1, t
.

he IC is

decapsulated and placed on an XY positioning table allowing placing t
.

he target under

t
.

he laser beam or t
.

he FBBI needle.

Figure 4.1: Illustration of a laser-based fault injection setup

The XY table allows targeting specific area of t
.

he IC.intern The attac
.

k can happen both

on front-side or in backside.intern It is interesting to notice that laser evolution, moving from

Nd : Y AG laser as in [75] to LED based laser, greatly improve attac
.

k possibilities.intern

Indeed, LED based lasers allow reducing t
.

he jitter of t
.

he beam while providing a

wide range of pulse durations ranging from 3ps to continuous wave at a decent power.intern

This greatly help to target a specific operation of t
.

he IC at low cost.intern Most modern

laser attac
.

k stations contain different lasers that can be used simultaneously to fault

different parts of t
.

he IC [76].intern More recently, software based fault injection methodologies

are also researched allowing remote fault injection.intern The Rowhammer attac
.

k [25] is a

good example, it consists in repeating t
.

he toggling of a DRAM row’s wordline that

accelerates charge leakage from nearby rows which cannot be compensate by t
.

he memory

refresh system and end up with faulted bits.intern Another example is t
.

he Clkscrew [77] attac
.

k

which by using t
.

he SOC DV FS allows forcing t
.

he chip to operate outside its operating

range resulting to a fault.intern Combined with an embedded software for timing profiling,

both attac
.

k allow to overcome ARM Trustzone isolation [78].intern

Different faults and countermeasures in various cryptosystems are reviewed in [79].intern

Unfortunately, fault injection to recover sec
.

r .et keys is still an active field of research

and previously presented countermeasures become not enough. In t
.

he following chapter,

68



various attac
.

k scenarios that can be used on some modern ECDSA implementations

are described. As fault injection result depends on t
.

he architecture, chip technology and

so on, t
.

he success rate of t
.

he fault injection is not studied.intern However, in t
.

he following

t
.

he considered faults required for each attac
.

k do not need to be very specific.intern Indeed,

random fault on different group of bits are considered instead of, as example, single

bit flip.intern Moreover, for some described fault attac
.

ks, attac
.

kers may have many cycles

(≈ 3000 or more due to t
.

he elliptic curve arithmetic) of opportunity allowing them to

insert multi faults to ensure a success rate of fault insertion inside t
.

he computation of

around 1.

The aims of t
.

his chapter is to identify security threats related to fault injection to

determine later, in chapter 5, proper countermeasures independently of t
.

he success

rate of t
.

he fault injection.intern We show that some elliptic curve scalar algor .ithms are

wrongly supposed to be safe-error resistant due to either t
.

he algor .ithm or to underlying

computations.intern The Montgomery ladder and t
.

he coherency checking countermeasure are

two examples.intern We also introduce t
.

he concept of dummy operand.intern We demonstrate that

even if in t
.

he ECDSA signature, t
.

he scalar represents a nonc
.

e that is refreshed for

each signature, safe-errors are enough to recover t
.

he private key.intern

Section 4.1 exhibits t
.

he power of safe-error against t
.

he EC scalar operation that we

thought is underestimated.intern Then in section 4.2, faults on t
.

he s part of t
.

he ECDSA

signature are discussed.intern It shows that ECDSA signatures generated from faulted

private key can be used to recursively recover t
.

he key bits.intern Then a similar method is

applied on nonc
.

es allowing to provide enough bits of information to be used within

lattice attac
.

ks.intern It also demonstrates that t
.

he error distribution allow attac
.

kers to

understand t
.

he behavior of t
.

he injected fault.intern Section 4.2 also discusses opportunities of

injecting t
.

he considered faults in a basic architecture.intern Finally, t
.

he chapter is concluded

in section 4.3.

4.1 Safe-error attack against the scalar algorithm

Some elliptic scalar point multiplication algor .ithms are designed to resist against SPA

by adding dummies operations.intern These operations aim at providing a constant operation

flow without being useful from an arithmetic point of view.intern Algor .ithm 4.1 is a good

example of such practice.

69



Algorithm 4.1 Coron always Double-and-add

Input: k = (kt−2, ..., k1, k0)2, P ∈ E(Fq)

Output: k.P

1: Q[0]← P

2: for i = t− 2 to 0 do

3: Q[0]← 2Q[0]

4: Q[1]← Q[0] + P

5: Q[0]← Q[ki]

6: end for

7: return (Q[0])

C safe-error attac
.

ks aim at injecting a fault inside a computation and, thanks to the

error propagation or non-propagation, to conclude about a sec
.

r .et value from t
.

he correct

or incorrect result.intern In [80], authors have presented t
.

he C safe-error attac
.

k against the

dummy operation inside an RSA exponentiation.intern The basic idea behind t
.

his attac
.

k

is to inject a fault during a dummy operation and to see if it is propagated or not.intern

From algor .ithm 4.1 in t
.

he case ki = 0 then t
.

he result of Q[1] = Q[0] + P is never

used.intern Then, if one inject an error during t
.

his computation, t
.

he computation result will

not be altered and then t
.

he attac
.

ker can deduce that t
.

he bit ki was 0 at t
.

his time.intern

Thus, an attac
.

ker can easily conclude about t
.

he ki value if he is able to inject a fault

inside t
.

he Q[0] + P computation for t
.

he i index and observe if t
.

he result is correct or

incorrect.intern This kind of fault injection is really powerful as attac
.

kers does not have to

know which kind of fault is injected nor where exactly.intern Synchronization between the

algor .ithm execution and t
.

he fault injection is simple in t
.

his case as algor .ithm 4.1 always

execute t
.

he same operation flow.intern Moreover, t
.

he operation Q[1] = Q[0] + P require

many clock cycles (E.g.intern > 2816 cycles in t
.

he case of mixed jacobian-affine coordinates

and a modular multiplication performed in 256 cycles) providing time and opportunity

to t
.

he fault attac
.

k.

While safe-error are known since at least 15 years, we think that t
.

he effect on security

is highly underestimated.intern Indeed, many EC algor .ithms are vulnerable to safe-error and

even some algor .ithms presented as immune to t
.

his kind of attac
.

k.intern M safe-error attac
.

ks

are similar to C safe-error attac
.

k and aim at targeting a memory value instead of a

computation.intern The attac
.

ker concludes also depending on t
.

he propagation or not of the

fault to t
.

he result.

In t
.

he following, we present different situations where safe-error can be used to recover

enough information on t
.

he ECDSA nonc
.

e during t
.

he EC scalar algor .ithm to mount

a lattice attac
.

k.

70



4.1.1 Local dummy operations, C safe-error against the

Montgomery ladder

Most common ECC scalar algor .ithms are known to be sensitive against t
.

he C safe-

error attac
.

k and require specific countermeasures.intern In t
.

he literature only t
.

he Mont-

gomery ladder presented in algor .ithm 4.2 is referenced as resistant against t
.

his attac
.

k

by construction.intern In [81], t
.

he authors claim t
.

his resistance as there are no dummy opera-

tions in t
.

he Montgomery ladder.intern Also, they described t
.

he M safe-error attac
.

k against the

Montgomery ladder that targets a memory value instead of a computation in order to

see if it is used or not and then they provide a modified Montgomery ladder ‘protected’

against side-channel, M safe-error and also C safe-error per t
.

he previous claim.

Algorithm 4.2 Montgomery scalar operation

Input: k = (1, kt−2, ..., k1, k0)2, P ∈ E(Fq)

Output: k.P

1: R0 ← P

2: R1 ← 2P

3: for i = t− 2 to 0 do

4: R1−ki ← R0 +R1

5: Rki ← 2Rki

6: end for

7: return (R0)

One missing information is that, from algor .ithm 4.2, if ki = 0 t
.

he operation R1−ki ←
R0+R1 may become a dummy operation.intern It is clearly visible that for k = (1, 0, ..., 0, 0)2
t

.

he register R1 is never involved in t
.

he result.intern Algor .ithm 4.3 is an illustration of the

Montgomery scalar operation with t
.

his specific scalar value.

This observation can be used in order to break an ECDSA.intern Indeed, if a nonc
.

e is

randomly selected and then used as t
.

he scalar k in algor .ithm 4.2, an attac
.

ker may inject

a fault into R1−ki ← R0 +R1 during k LSBs, and then deduce if kLSB are equal to

0.intern After gathering a couple of signature with nonc
.

es LSBs set to 0, it is possible to

perform a lattice attac
.

k [38] to recover t
.

he private key.intern As we did not find any public

record of such an attac
.

k, here is a short example of t
.

he principle.intern An attac
.

ker looking

for 70 signatures with 9 known bits of nonc
.

es LSBs (see section 2.6.4) in order to

perform a lattice attac
.

k against an ECDSA based on NIST P-256 will need to fault

R0 +R1 during evaluation of t
.

he nine LSBs for 29 · 70 = 35840 signatures generation.intern

71



Algorithm 4.3 Montgomery scalar operation with a specific scalar value

Input: k = (1, 0, ..., 0, 0)2, P ∈ E(Fq)

Output: k.P

1: R0 ← P

2: R1 ← 2P

3: for i = t− 2 to 0 do

4: R1 ← R0 +R1

5: R0 ← 2R0

6: end for

7: return (R0)

This is due to t
.

he uniform distribution of t
.

he nonc
.

es, t
.

he probability of having nine

LSBs set to 0 is 1/29, thus 29 signatures are needed to find one signature with t
.

he nine

nonc
.

e LSB equal to zero.intern A valid signature means that t
.

he faults did not propagate

to t
.

he result and thus that t
.

he nine LSB were set to 0.intern This attac
.

k scheme is realistic

as each elliptic curve operation requires time, any fault on t
.

he targeted operation can

be used and t
.

he algor .ithm is highly homogeneous facilitating t
.

he fault injection.intern As all

faults can be injected in t
.

he same physical location of t
.

he IC, a single LED based laser

is enough to perform t
.

he attac
.

k.intern Moreover, t
.

he targeted operation R1−ki ← R0 +R1

requires time and multiple clock cycles allowing attac
.

ker to inject multiple faults in

t
.

he computation to ensure t
.

he fault injection.intern Both data and control flow of low level

operations (e.g.intern modular operations) can be targeted as long as t
.

he computation is

corrupted without altering t
.

he signature process.intern Once R1 contains a faulted value,

it will propagate to t
.

he end releasing t
.

he need to fault followings R1−ki ← R0 + R1

operations.intern Regarding section 2.6.4, our number in term of required signatures (35840)

is realistic in order to break an ECDSA based on NIST P-256 with a basic, non

optimized lattice attac
.

k and does not take into account t
.

he information of t
.

he scalar

MSB bit directly given by t
.

he algor .ithm.intern TheMSBs leakage, in t
.

his case, can easily be

taken in account inside t
.

he lattice attac
.

k.intern Indeed, from [37], t
.

he s part of t
.

he ECDSA

signature is equal to:

sj ≡ k−1
j (H(mj) + d · rj) mod n

⇔ kj − d · rj/sj −H(mj)/sj ≡ 0 mod n

⇔ kjMSB
+ kjunknow

· 2x + kjLSBs
− d · rj/sj −H(mj)/sj ≡ 0 mod n

Where H(mj) is t
.

he hash result of t
.

he message mj , d is t
.

he private key, kj t
.

he ran-

dom nonc
.

e, rj t
.

he r part of t
.

he signature, j represents t
.

he jth signature and kjunknow

represents all t
.

he unknown bits of k .intern x depends on t
.

he number of LSB set to 0.intern

72



By considering a 256 bit curve, kjMSB
= 1 and kjLSBs

= 0:

⇔ kjunknow
· 2x − d · rj/sj −Hj/sj + 2255 ≡ 0 mod n

⇔ kjunknow
− d · rj/(sj · 2x)−Hj/(sj · 2x) + 2255−x ≡ 0 mod n

Thus, if t
.

he MSB bit is given away, attac
.

kers can easily insert t
.

his knowledge inside

t
.

he equations in order to reduce t
.

he researched values to t
.

he minimum improving

lattice attac
.

k success rate (please refer to section 2.6 for details on t
.

he lattice attac
.

k).intern

As t
.

he MSB of k is set to 1 and then provided, attac
.

kers will seek one bit less and

then t
.

he expected consequence is to divide by almost two t
.

he total number of required

signatures to ask to t
.

he system and thus t
.

he attac
.

k time.intern Indeed, in our example, with

28 ·70 = 17920 signatures, attac
.

kers will obtain 70 of them with 9 known bits (8 LSBs +

1 MSB). The M safe-error countermeasure presented in [81] does not affect t
.

his attac
.

k as

it simply changes t
.

he operand order depending on t
.

he sec
.

r .et bit.intern We can then conclude

that t
.

he Montgomery ladder, as opposed to a common thought ([81], [82], [55], [83]...),

is in some case sensitive to C safe-error attac
.

ks.intern It also demonstrates that safe-error

attac
.

ks can be used even with an ephemeral scalar value in t
.

he ECDSA case.intern A good

practice could be to systematically verify that R0−R1 = P prior any result exposure.intern

However, t
.

his is not enough.intern Indeed, during t
.

he operation R1−ki ← R0 + R1, a fault

may occur on R1 once R1 value is used in t
.

he computation and prior t
.

he update of

R1−ki .intern This is called M safe-error attac
.

k and similarly to C safe-error attac
.

k, it lead

to know t
.

he value ki through correct or incorrect result.intern The countermeasure in the

case of elliptic curve is not obvious, especially considering t
.

he complexity of t
.

he elliptic

curve point addition as detailed later in section 4.1.4.

4.1.2 Unused memory values

Similarly, errors can be inserted on a memory saved value which is no longer used.intern To

illustrate t
.

he problem, t
.

he algor .ithm described in [84] based on t
.

he binary expansion and

t
.

he randomized initial point (RIP, initially presented in [85]) is considered.intern The presented

algor .ithm aims to be resistant against Simple Power Analysis (SPA), Differential Power

analysis (DPA) [50], Refined Power Analysis (RPA) [86] and Zero-value Point Attacks

(ZPA) [87].intern It is described as algor .ithm 4.4.intern

For k = (0, ..., 0, 0)2, T is never used, therefore, an attac
.

ker can fault T inside the

memory prior evaluation of t
.

he scalar LSBs and thus detect if they are equal to zero

similarly to Section 4.1.1.intern If an attac
.

ker is able to induce a temporary fault inside T

during a loop iteration, t
.

he result is even worse.intern Indeed, in t
.

his case attac
.

kers could

target any part of t
.

he scalar as after attac
.

king during ki bit, t
.

he fault no longer exist

allowing t
.

he system to work properly and pursuing operation.intern It is worth to notice that

t
.

his unused value problem may arises with different algor .ithm and most algor .ithms that

73



Algorithm 4.4 Binary Expansion with RIP (BRIP)

Input: k = (kt−1, ..., k1, k0)2, P ∈ E(Fq)

Output: k.P

1: R← randompoint()

2: T ← P −R

3: Q← R

4: for i = t− 1 to 0 do

5: Q← 2Q

6: if ki then

7: Q← Q + T

8: else

9: Q← Q−R

10: end if

11: end for

12: return (Q−R)

use pre-calculated to accelerate t
.

he computation may be subject to t
.

he same kind of

attac
.

k as t
.

he one previously described.intern Indeed, attac
.

kers may fault some pre-computed

values at some instant of t
.

he algor .ithm execution and deduce if they are used or not

from a correct or incorrect result leading to provide information about t
.

he sec
.

r .et scalar

value.intern

4.1.3 The infinity point and dummy operands

Despite t
.

he fact that t
.

he infinity point (i.e.intern t
.

he neutral element) usually generates

particular cases in t
.

he computation as usual elliptic curve point doubling and point

addition formulæ does not work with it, some scalar point multiplication algor .ithms

even in t
.

he most modern implementations still use it.intern Algor .ithm 4.5 is an example of

such algor .ithms.intern It uses pre-calculated points in order to speed up t
.

he computation

and a simple loop to sequentially add t
.

he correct points.intern The scalar k is represented

with both positive and negative coefficients in order to reduce t
.

he total number of

pre-calculated points and thus t
.

he memory and implementation cost.intern

As defined above, t
.

his algor .ithm uses t
.

he infinity point for t
.

he initialization and also

as a pre-calculated point.intern It can then be expected that, in most cases, attac
.

kers may

recover all rj = 0 through side channel analysis due to t
.

he specific arithmetic involved

as explained in [88].intern In [89] t
.

he authors describe t
.

he same algor .ithm used with an

Edwards curve.intern An interesting property of Edwards curves is t
.

he fact that t
.

he elliptic

curve point addition formula is a unified and complete addition law that works for both

74



Algorithm 4.5 Scalar operation with pre-computed points

Input: k = (r⌈t/4⌉, ..., r1, r0)24 , |rj|.16a.P ∈ E(Fq), with 0 ≤ a ≤ ⌈t/4⌉ for any
rj ∈ {−8,−7,−6,−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5, 6, 7}
Output: k.P

1: Q← O
2: for i = ⌈t/4⌉ to 0 do

3: Q← Q + rj.16
i.P

4: end for

5: return (Q)

point addition, point doubling and also with t
.

he neutral element without any special

condition.intern However, t
.

he neutral element is still special.intern Indeed, t
.

he neutral element (0, 1)

under t
.

he twisted Edwards addition law presented in [90] generates special arithmetic

cases. The given law is t
.

he following:

(x1, y1) + (x2, y2) = (
x1 · y2 + x2 · y1

1 + d · x1 · x2 · y1 · y2
,

y1 · y2 + x1 · x2
1− d · x1 · x2 · y1 · y2

) (4.1)

With t
.

he neutral element, we obtain:

(x1, y1) + (0, 1) = (
x1 · 1 + 0 · y1

1 + d · x1 · 0 · y1 · 1
,

y1 · 1 + x1 · 0
1− d · x1 · 0 · y1 · 1

) = (x1, y1) (4.2)

In order to avoid side channel attac
.

ks, t
.

he system should perform multiplication oper-

ations similarly with random operands than with specific values such as 0 or 1.intern This

mean x1 · 1 mod p similarly to x1 · y2 mod p, 0 · y1 mod p similarly to x2 · y1 and so

on.intern And also perform inversions without leaking information, i.e.intern A/1 mod p similarly

to A/B mod p for any A and B.intern With ”similarly” meaning, without any noticeable

timing difference due to a simplification nor without a different power consumption

that could be due to carry propagation, modular reduction or other.intern Such system is

not obvious and t
.

his prerequisite limit t
.

he Even considering t
.

he design is safe against

side channel analysis, other problems appear if fault injection is considered.intern Indeed, in

equation (4.2), a fault can be injected in y1 operand when 0 · y1 is computed.intern Faults

can also be injected in dx1 operands or computation without affecting t
.

he result.intern Such

faults will not be propagated to t
.

he result in t
.

he case where t
.

he neutral element is used.intern

Thus, due to t
.

his special point t
.

he design may face up safe-error attac
.

ks.intern Table 4.1

provides t
.

he identity element representation in different systems.intern From t
.

his table, it

can be expected that t
.

he neutral element, due to t
.

he zero and one values, will generate

special computation cases in most systems that can be detected thanks to side channel

or fault injection and thus should be avoided.intern

75



Table 4.1: Representation of the neutral element in different systems

System O
Weierstrass, affine coordinates none

Weierstrass, projective coordinates (0:1:0)

Weierstrass, Chudnovsky coordinates (1:1:0:0:0)

Edwards, affine coordinates (0,1)

Edwards, homogeneous projective coordinates (0:1:1)

4.1.4 Safe-error on underlying algorithms

As a safe-error resistant algor .ithm, [91] suggests to use a countermeasure based on

coherency checking.intern Algor .ithm 4.6 presents t
.

his countermeasure.

Algorithm 4.6 Right-to-left double-and-add always with coherency checking

Input: k = (kt−1, ..., k1, k0)2, P ∈ E(Fq)

Output: k.P

1: Q0 ← O
2: Q1 ← O
3: Q2 ← P

4: for i = 0 to t− 1 do

5: Qki ← Qki +Q2

6: Q2 ← 2Q2

7: end for

8: if Q0 ∈ E(Fq) and Q1 ∈ E(Fq) and Q2 = Q0 +Q1 + P then

9: return (Q1)

10: else

11: return (O)

12: end if

Despite t
.

he fact t
.

his algor .ithm may leak through side channel t
.

he number of times

t
.

he MSB value repeats itself due to t
.

he use of t
.

he infinity point (Q0 and Q1 are

both initialized to O and will be updated at t
.

he first ki = 0 and ki = 1 which can

be detected), t
.

he coherency checking provides an interesting approach to validate that

all computations are done correctly.intern Indeed, all computations are not necessary to end

up with t
.

he good result in Q1 as some of them are dummy operations (i.e.intern operations

involving Q0).intern However, t
.

he checking Q2 = Q0 +Q1 + P line 8 involves both Q0 and

76



Q1.intern Thus, it is expected that faults on any Qki ← Qki +Q2 computations, line 5, or

memory addresses will be detected independently of t
.

he scalar value k.

Nevertheless, t
.

he ”+” operation is an elliptic curve point addition which is a complex

operation.intern Algor .ithm 4.7 is an example of ECC point addition operation performed in

Jacobian coordinates.intern If we consider t
.

he line 8 of algor .ithm 4.6, t
.

he operation Qki ←
Qki +Q2 is performed, meaning that either Q0 or Q1 will be updated with t

.

he result.intern

If algor .ithm 4.7 is used, Q0 or Q1 will be updated with t
.

he (X3 : Y3 : Z3) result of

algor .ithm 4.7.intern A fault on Q0 x-coordinate between line 7 and line 19 of algor .ithm 4.7

will either generate an error or not during t
.

he coherency checking.intern Indeed, if ki = 0,

then Q0 will be updated with t
.

he result (X3 : Y3 : Z3) of algor .ithm 4.7.intern Thus, the

faulted x-coordinate will be updated with t
.

he correct result X3 and then no error will

be detected.intern As opposed, if ki = 1, Q1 will be updated with t
.

he result (X3 : Y3 : Z3) of

algor .ithm 4.7 and t
.

he error on Q0 x-coordinated will remain and be detected during the

coherency checking.intern An attac
.

ker can thus guess t
.

he value of ki by using an M safe-error

attac
.

k despite t
.

he countermeasure.intern The same attac
.

k can be applied also on Q1.intern And

other lines of algor .ithm 4.7 can be targeted (e.g.intern X3, Y3, Z3 can be used).

Algorithm 4.7 ECC Jacobian point addition

Input: P = (X1 : Y1 : Z1) and Q = (X2, Y2, Z2) on E(Fq) : y
2 = x3 − 3x + b

Output: P +Q = (X3 : Y3 : Z3)

1: T1 ← Z2
1

2: T3 ← Z2
2

3: T2 ← T1 · Z1

4: T1 ← T1 ·X2

5: T4 ← T3 · Z2

6: T3 ← T3 ·X1

7: T2 ← T2 · Y2

8: Y3 ← T4 · Y1

9: T1 ← T1 − T3

10: T2 ← T2 − Y3

11: if T1 == 0 then

12: if T2 == 0 then

13: (X3 : Y3 : Z3) = Compute(2Q)

14: return (X3 : Y3 : Z3)

15: else

16: return (O)

17: end if

18: end if

19: Z3 ← Z1 · T1

20: Z3 ← Z2 · Z3

21: X3 ← T 2
1

22: T4 ← X3 · T1

23: T3 ← X3 · T3

24: T1 ← 2T3

25: X3 ← T 2
2

26: X3 ← X3 − T1

27: X3 ← X3 − T4

28: T3 ← T3 −X3

29: T3 ← T3 · T2

30: T4 ← T4 · Y3

31: Y3 ← T3 − T4

77



4.2 Fault attacks against the ECDSA signature

The ECDSA signature is a complex operation as it involves different computations

with different sec
.

r .ets such as t
.

he private key or t
.

he nonc
.

e.intern Thus, t
.

he number of attac
.

k

possibilities is large.intern Indeed, t
.

he elliptic curve scalar operation can be targeted as

previously detailed, however, t
.

he random number generator, modular operations or

memory access can also be faulted.intern Previously, we focused on t
.

he elliptic curve scalar

operation, in t
.

his section, we overview t
.

he consequences of faults on t
.

he private key,

t
.

he nonc
.

e or on intermediate values outside t
.

he scalar operation.

4.2.1 Faulted secret key

Each ECDSA signature is generated from a nonc
.

e k and t
.

he private key d.intern We recall

here t
.

he ECDSA key generation and signature.intern

Key generation:

- Select a random d such that 0 ≤ d ≤ n− 1

- Compute Q = d.P with P ∈ E(Fq)

- d is t
.

he private key, Q is t
.

he public one.

Signature:

- Generate a nonc
.

e k such that 0 ≤ k ≤ n− 1

- Compute G = (x, y) = k.P with P ∈ E(Fq)

- r ≡ x mod n

- s ≡ k−1(H(msg) + d · r) mod n

- (r, s) is t
.

he signature.

The signature (r, s) can be verified by using t
.

he public key Q and E(Fq) as explained

in section 2.5. If an attac
.

ker is able, somehow, to fault d into d′ = d ± e · 2l during
signature, t

.

he following will happen:

- Generate a nonc
.

e k such that 0 ≤ k ≤ n− 1

- Compute G = (x, y) = k.P with P ∈ E(Fq)

- r ≡ x mod n

- s′ ≡ k−1(Hj(m) + (d± e · 2l) · r) mod n

- (r, s′) is t
.

he faulted signature.

In t
.

his case, t
.

he signature (r, s′) cannot be verified from Q = d · P and E(Fq).intern

Indeed, from t
.

he verification formula:

(x, y) = (H(msg) · s′−1 mod n) · P + (r · s′−1 mod n) ·Q
⇔ (x, y) = (H(msg) · k · (Hj(m)+ (d± e · 2l) · r)−1 mod n) ·P +(r · k · (Hj(m)+

78



(d± e · 2l) · r)−1 mod n) ·Q
⇔ (x, y) = [k · (H(msg) + d · r) · (H(msg) + (d± e · 2l) · r)−1 mod n] · P
⇔ (x, y) 6= k · P and (x, y) 6= −k · P
⇔ x 6= r mod n

If ±e is small enough, i.e.intern can be exhaustively tested, and t
.

he position l known, an

attac
.

ker can try to compute all possible Q′ = Q± e · 2l · P until t
.

he signature (r, s′)

can be verified from Q′ and E(Fq).

Once e is found, t
.

he verification will pass:

(x, y) = (H(msg) · s′−1 mod n) · P + (r · s′−1 mod n) ·Q′

⇔ (x, y) = [k · (H(msg) + (d± e · 2l) · r) · (H(msg) + (d± e · 2l) · r)−1] · P
⇔ x ≡ r mod n

From t
.

he knowledge of ±e, attac
.

kers obtain information about d.intern Indeed, as example,

lets consider that t
.

he fault is simply a one bit flip on t
.

he LSB.intern Thus e = ±1.intern If e = 1,

t
.

his means that t
.

he LSB flip from 0 to 1.intern If e = −1, t
.

his means that t
.

he LSB flip

from 1 to 0.intern Thus t
.

he LSB is recovered.

Multi-bits attac
.

k is also possible however it is not as simple.intern Indeed, some e values can

be injected in different ways.intern As example, if we consider an 8 bits register that is faulted

and e t
.

he error injected.intern Then e = +1 means that either t
.

he LSB flips from 0 to 1 or

that it flips from 1 to 0 and t
.

he fault also flips bits according to a carry propagation

(e.g.intern if 0x01 is faulted into 0x02, t
.

he error e is 1 while t
.

he LSB flips from 1 to 0).intern Both

solutions are possible and depends on t
.

he fault model (i.e.intern one bit flip, multi-bits flip,

flip only 0 to 1...).intern A +1 error may happen on any value, except on 255 as 256 cannot be

encoded into t
.

he 8 bits register.intern The same applies for every possible e.intern It is interesting

to notice that an 8 bits register allows encoding values from 0 to 255 and thus for each

value a unique range of error is possible.intern E.g.intern if t
.

he register encodes t
.

he value 6 then

t
.

he error range is from −6 to +249 as 6 − 6 = 0 and 6 + 249 = 255.intern For t
.

he value

7, t
.

he range is −7/ + 248.intern This means that, once t
.

he error range is determined, the

value is obtained.intern Figure 4.2 is a simulated example of t
.

he number of faults required

to recover an arbitrary 8 bits value (0x84) thanks to t
.

he error range.intern It considers that

a fault on t
.

he 8 bits register generates a uniformly random 8 bits value.intern The x-axis

represents t
.

he number of faults.intern Y-axis is t
.

he probability of having t
.

he good result.intern E.g.intern

0.5 means that two possible values remain.intern In Figure 4.2 example, around 1500 faults

were required to reduce t
.

he number of possibilities to a single one.intern This means the

highest error minus t
.

he lowest equal 255.intern As we can see, couples of faults are enough

to start to reduce t
.

he possibilities while a lot of them are required to end-up with the

correct value.intern

79



Figure 4.2: Illustration of the number of faults required to recover an 8 bits value

arbitrary set to 0x84

Figure 4.3 represents t
.

he average of t
.

he results of different simulations with random

initial values.intern From t
.

his figure, around 1300 faults are required to end-up with t
.

he good

result with 90% of correct guessing.intern 290 are required to obtain two possibilities.intern

Figure 4.3: Average of the number of fault required to recover an 8 bits value

If someone is able to insert such faults on a 256 bits key length system, 1300 faults on

8 bits of t
.

he sec
.

r .et and a maximum of 29 computations after each fault to recover ±e

80



allows recovering these 8 bits with 90% of chance.intern Doing so 32 times (41k faults) allows

recovering t
.

he full key with in average log(1/0.9)/log(2) · 32 = 4.86 missing bits that

can easily be brutforced.intern The number of necessary faults can be reduced depending on

t
.

he computation power available, e.g.intern ∼ 20k faults and 240 computations to recover ±e
can also recover t

.

he full key.intern It is obvious that, if for some reasons attac
.

kers know the

result value of t
.

he faulted register, by recovering ±e, t
.

he genuine value is recovered.intern It

is also to be noted that in a non-contiguous faulted bits case, t
.

he carry propagation

cannot be generated by t
.

he fault, and thus, similarly to t
.

he previous LSB bit flip

example, attac
.

kers directly recover t
.

he flipped bits.intern E.g.intern if t
.

he fault model considers

fault only on MSB and LSB, a +1 error necessary reveals that t
.

he genuine LSB is 0.intern

Indeed, t
.

he second bit cannot be faulted due to t
.

he model preventing t
.

he fault to flip bit

according to t
.

he carry propagation required if t
.

he LSB is 1. This attac
.

k demonstrates

that an error inserted on t
.

he ECDSA private key during signature generation can be

recovered from t
.

he faulted signature.intern Due to t
.

he binary representation of t
.

he private

key, it is then possible to recover information about t
.

he private key.

4.2.2 Faulted nonce

For each new signature, a nonc
.

e k is selected and used for both t
.

he r and s parts of the

signature.intern In t
.

he following, it is considered that an attac
.

ker is able to fault t
.

he nonc
.

e

in such a way that r and s are computed with a slightly different k (with a couple of

flipped bits).intern

In t
.

his case, t
.

he ECDSA signature generation can be summarized as following:

- Generate a nonc
.

e k such that 0 ≤ k ≤ n− 1

- Compute G = (x, y) = k.P with P ∈ E(Fq)

- r ≡ x mod n

- s′ ≡ (k ± e · 2l)−1(H(msg) + d · r) mod n

- (r, s′) is t
.

he faulted signature.

As in t
.

he previous section, t
.

he signature will not pass t
.

he verification as r and s

are not computed with t
.

he same nonc
.

e. And as previously presented, if e is small

enough, i.e.intern can be exhaustively tested, and t
.

he position l known, an attac
.

ker can try

to compute all possible G′ = (x′, y′) = kP ± (e · 2l) · P and r′ ≡ x′ mod n until

t
.

he signature (r′, s′) can be verified from G′ and E(Fq).intern In E(Fp), due to t
.

he Hasse

interval (n ∈ [p + 1 − 2
√
p, p + 1 + 2

√
p]), t

.

he probability to get r > n is less than

1/2127 for a 256 bits curve.intern Thus, most of t
.

he time r = x, and kP = (x, y) can be

recovered.intern

Once e and r′ are found, t
.

he verification will pass:

81



Figure 4.4: Error e distribution on a random 8 bits register

(x, y) = (H(msg) · s′−1 mod n) · P + (r′ · s′−1 mod n) ·Q
⇔ (x, y) = [(k ± e · 2l) · (H(msg) + d · r) · (H(msg) + d · r)−1] · P
⇔ (x, y) = kP ± (e · 2l) · P
⇔ r′ ≡ x mod n

It is to be noted that two possible values of G′ allow t
.

he verification.intern One is G′ =

kP ± (e · 2l) · P and t
.

he second one is G′ = (n− k)P ± (e · 2l) · P with t
.

he sign of e

inverted.intern This is due to t
.

he fact that kP + (n − k)P = O, thus if kP = (x, y) then

(n− k)P = (x,−y).intern As both x are t
.

he same, it results to t
.

he same r value.

Similarly to t
.

he previous section, from t
.

he knowledge of ±e, attac
.

kers obtain in-

formation about k due to its representation.intern The difference is that k is a nonc
.

e that

changes for every signature thus it is not possible to perform multiple fault attac
.

ks and

learn k from all t
.

he answers. Nevertheless, as explained in t
.

he previous section, single

bit fault and non-contiguous multi-bits faults (i.e.intern faults on non-adjacent bits) allow

recovering all flipped bits in one attac
.

k.

In t
.

he case of contiguous multi-bits faults, it is interesting to notice that t
.

he distribu-

tion of t
.

he error e is not uniform.intern Indeed, per example, if we consider an 8 bits register

that is faulted and e t
.

he error injected.intern And if we consider that a fault on t
.

he 8 bits

register generates a uniformly random 8 bits value.intern Then t
.

he error distribution is as

depicted in figure 4.4.

This is due to t
.

he fact that t
.

he error e = +255 may happen only if t
.

he register value

is 0.intern The error e = +254 may happen only if t
.

he register value is 0 or 1.intern The value

e = 0 (no error) may happen on any value of t
.

he register.intern And, as opposed, e = −255

may happen only on a +255 registers and so on.intern Thus t
.

he probability mass function

(pmf ) is P (e) = (28 − |e|)/(22·8), e = [−255; 255].intern This can be generalized to any

register of size m with t
.

he function P (e) = (2m − |e|)/(22·m), e = [−2m + 1; 2m − 1].

82



Figure 4.5: Total number of required signatures to recover the private key thanks to a

lattice attack and random fault on MSB bits on NIST-P256

From t
.

his observation, we know that large |e| values allow attac
.

kers to recover the

MSBs of t
.

he faulted register while small |e| value such as 0 provide less information.intern

E.g.intern if an attac
.

ker obtains e ≥ 240, then he directly knows that t
.

he genuine 8 bits

register value is smaller than 15, thus t
.

he four MSBs are set to 0.intern Someone looking

for x MSBs need to find |e| ≥ 2m− 2m−x.intern The probability to find such an error value

is px ≈ 1/22x.intern Thus, ≈ 22x+3 faults can be injected in order to obtain at least one

which will provide x bits of information with a high probability.intern Doing so by targeting

t
.

he ECDSA signature nonc
.

es would enable a lattice attac
.

k as described previously in

section 2.6.intern If t
.

he result on NIST P256 provided section 2.6.4 are considered, then the

total number of signatures required to recover t
.

he sec
.

r .et can be determined.intern Figure 4.5

provides these numbers for different number of targeted MSB.

As two possible values ofG′ exist that are kP and (n−k)P , then t
.

he guessedMSBs

are either for k or n − k.intern These values are related.intern On NIST P256, MSBs of the

modulo n are set to 1s [37].intern Thus, if t
.

he MSBs of k are set to 0s then t
.

he MSBs of

(n−k) are set to 1s and vis versa.intern For each gathered signature such as |e| ≥ 2m−2m−x,

two solutions exist, either x MSBs of k are set to 0s or x MSBs of k are set to 1s.

In t
.

he case where w signatures are required, then attac
.

ker should perform at most

2w times t
.

he lattice attac
.

k with t
.

he different possibilities to end-up with t
.

he correct

result.intern Nevertheless, t
.

he most time consuming operation of t
.

he lattice attac
.

k, namely

t
.

he lattice reduction, is to be performed only one time if nonc
.

es MSBs are targeted

as explained in section 3.3. From our result figure 2.5 and figure 4.5, 1.27 billions of

signatures and 232 CV P solving are required to obtain t
.

he private key.intern While this

number seems huge, as explained section 2.6.4, our lattice implementation is far from

t
.

he state of t
.

he art and less signature should be enough. In fact, t
.

his number represents

t
.

he worst case.intern Indeed, it was previously considered that a uniformly distributed random

83



value is obtained in t
.

he faulted register after t
.

he fault insertion forcing inserting a lot

of faults on different signatures to find particular ones.intern If, for some reasons, attac
.

kers

know t
.

he result of t
.

he faulted register, by recovering e, t
.

he genuine value is recovered.intern

Also, if t
.

he faulted register always end-up with a particular value or inside a set of value,

then t
.

his can be detected and used (i.e.intern see section 4.2.4).

Figure 4.6 represents t
.

he error distribution when 8 bits of ECDSA signatures nonc
.

es

are faulted and forced to a value v.

Figure 4.6: Number of occurrences of error e on a random m = 8 bits register that is

forced to a constant value v = 54

The distribution should be uniform, however, due to t
.

he fact that two values of G′

exist and conduct to recover either e or −e, t
.

he distribution is as depicted.intern It is the

sum of two uniform distributions symmetrical to 0 centered around v − (2m − 1)/2

and −(v − (2m − 1)/2) and with a width of 2m − 1.intern From t
.

he observed distribution,

attac
.

kers have two candidates for t
.

he value v that are one of t
.

he falling edge (i.e.intern 54 or

201 in figure 4.6). Distributions on figure 4.4 and figure 4.6 can easily be distinguished,

meaning that an attac
.

ker can know if t
.

he faulted register end-up with a random value

or a constant one.intern In t
.

he last case, t
.

he number of required faulted signatures to recover

t
.

he sec
.

r .et key is t
.

he number required to identify t
.

he error distribution (≈ 10 · 2m can

be enough, working with t
.

he absolute value allow reducing t
.

his number).intern Indeed, once

attac
.

kers obtain it, a basic lattice attac
.

k can be conducted as t
.

he faulted nonc
.

es share

t
.

he same m bits and are equal to one of t
.

he falling edge of t
.

he distribution.

If t
.

he faulted register results end-up in a small set of values, then t
.

he error distribution

is t
.

he sum of t
.

he different distributions as depicted figure 4.7 where t
.

he faulted register

either end-up to t
.

he value v1 or v2.intern In t
.

his case, more faults are required to identify

84



t
.

he distribution.

Figure 4.7: Error e distribution on a random m = 8 bits register that lead to two

different values v1 = 54, v2 = 168

Depending on t
.

he error result, t
.

he register value can be categorized into v1.intern Indeed,

from figure 4.7 it can be determined that v1 = 54 or 201 and v2 = 87 or 168.intern If an

attac
.

ker observes |e| > 168 then he knows that v1 is t
.

he correct value.intern In t
.

he figure 4.6

example, around 16% of t
.

he faulted signatures end-up with t
.

he v1 value.intern Around 10k

faulted signatures are sufficient to identify t
.

he distribution edge +168, resulting in

≈ 1600 signatures with t
.

he v1 value.intern 1600 signature with 8 known bits are enough in

order to recover t
.

he private key thanks to a lattice attac
.

k.intern This represents t
.

he ideal

case and t
.

he success rate of t
.

he fault injection may vary depending on t
.

he system and

architecture choices.

4.2.3 Faulted intermediate values

The partial knowledge of intermediate values during an ECDSA signature can also

compromise t
.

he security of t
.

he sec
.

r .et key.intern Indeed, as demonstrated in [92], a partial

knowledge of (H(msg) + d · r) allows a lattice attac
.

k to recover t
.

he sec
.

r .et d.intern Same

apply on d · r. It is possible to write:

(H(msg) + d · r) ≡ A mod n

⇔ A− d · r −H(msg) ≡ 0 mod n

A represents an unknown value which is an intermediate result of t
.

he signature

generation.intern This equation is similar to t
.

he one targeted by lattice attac
.

k in section 2.6.intern

85



Thus if partial information about A are leaked on enough signatures, then attac
.

kers

can use a lattice attac
.

k to fully recover t
.

he private key d.intern If information about d · r
leak, then H(msg) is removed from t

.

he equation and t
.

he attac
.

k also work.intern

While [92] demonstrates an approach to reveal partial information in t
.

he specific

case where operand scanning multiplier is used, other method can be used to recover

t
.

he information.intern Indeed, a similar approach as in section 4.2.2 can be used. Indeed,

assuming d · r is faulted with a fault e then t
.

he ECDSA signature generation can be

summarized as following:

- Generate a nonc
.

e k such that 0 ≤ k ≤ n− 1

- Compute G = (x, y) = k.P with P ∈ E(Fq)

- r ≡ x mod n

- s′ ≡ k−1(H(msg) + d · r ± e · 2l) mod n

- (r, s′) is t
.

he faulted signature.

The signature will not pass t
.

he verification.intern However, if e can be exhaustively tested,

and t
.

he position l known, attac
.

ker can try to verify (r, s′) with every possible (H(msg)±
e · 2l) combination.intern Once t

.

he signature pass t
.

he verification, e is discovered.intern The

interpretation of t
.

he error e is similar to t
.

he one in section 4.2.2.intern Indeed, as r depends

on t
.

he nonc
.

e and change for each signature then d ·r will be different for each signature.intern

The distribution of e over different signature will provide information about t
.

he kind

of injected fault (random or constant value).intern Then signature with specific e value will

leak information about t
.

he intermediate result A.intern The exact same happen if d · r is

targeted instead of (H(msg) + d · r).

4.2.4 Example of architecture and fault opportunities

Architecture description

In t
.

he following, we consider a basic architecture that allows t
.

he generation of ECDSA

signatures.intern The architecture is described and then different situations allowing to recover

t
.

he private key are discussed alongside how to fault/alter t
.

he system to reach these

situations.intern Figure 4.8 is an overview of t
.

his architecture.intern It is composed of an I2C

communication block in order to enable interaction from t
.

he outside, a cryptographic

core allowing ECDSA signatures computation and two memories (a NVM plus an

SRAM ) to save information and as working space. The cryptographic core is composed

of a RNG allowing nonc
.

es generation, an ECC accelerator that allows computing

elliptic curve operations, a SHA block for messages hashing and an AES to internally

encrypt/decrypt sec
.

r .ets.

86



Figure 4.8: Overview of the considered architecture. Grey blocks containing some side

channel and fault countermeasures

In t
.

his architecture, memories are shared and partitioned between t
.

he communication

block and t
.

he cryptographic core.intern It is considered that EEPROM and SRAM are

not accessible to t
.

he I2C block while containing sensitive or partial information.intern We

also consider that t
.

he RNG is perfect (i.e.intern uniformly random and not controllable from

outside) and t
.

he ECC block contains strong side channel and fault countermeasures

(i.e.intern resistant to any fault and side channel attac
.

k).intern The private key d is securely stored

in t
.

he EEPROM protected thanks to an AES cipher with also both side channel

and fault countermeasures.intern The elliptic curve considered is NIST P256.intern Memories are

32 bits width and 8 memory accesses are performed each time to read or write 256 bits

(8 · 32 = 256), t
.

he SHA and AES blocks are built with a 8 bits datapath.

The ECDSA signature generation is as depicted in t
.

he chronograph presented in

figure 4.9.

Figure 4.9: Chronograph of a ECDSA signature generation

87



First, t
.

he message to sign is hashed thanks to t
.

he SHA 256 block.intern The result is then

saved in t
.

he SRAM to a specific address.intern A 256 bits nonc
.

e k is generated from the

RNG and saved into t
.

he SRAM .intern The ECDSA block then reads t
.

he nonc
.

e from the

SRAM when needed (for each bit evaluation, as shown in previously described elliptic

curve scalar algor .ithm), performs an elliptic curve scalar operation and compute the r

part of t
.

he signature that is saved into t
.

he SRAM at another address.intern The ciphertext

C(d) of t
.

he private key d is read from t
.

he EEPROM and then decrypted by t
.

he AES

block.intern The result d is then saved into t
.

he SRAM .intern The ECDSA block then reads the

hash result, t
.

he r part of t
.

he signature, t
.

he private key d and t
.

he nonc
.

e k from the

SRAM and generates t
.

he s part of t
.

he signature.intern Once all sensitive information are

cleared, t
.

he ECDSA signature (r, s) of t
.

he message is then exposed to t
.

he outside.

This architecture provides countermeasures against side channel and fault attac
.

ks at

t
.

he cryptographic block level and not overall in t
.

he system.intern Errors can thus happen in

blocks interfaces, in memories, or on memory controllers that may affect data during

transfer or address used.intern In t
.

he following, based on t
.

his observation, different situations

allowing security breach are studied.intern

Signatures with shared nonces

Two signatures computed with a different message and t
.

he same nonc
.

e are enough

to recover t
.

he private key.intern Indeed, each signature j, provides an equation with two

unknown values, t
.

he nonc
.

e and t
.

he private key.

sj = k−1
j (H(mj) + d · rj)

Thus two signatures provide two different equations with three unknown values, two

nonc
.

es and t
.

he private key.intern If t
.

he nonc
.

es are equals, then there are two different equa-

tions with two unknown values, t
.

he system is thus solvable as detailed in equation (4.3).

{

s1 ≡ k−1(H(m1) + dr) mod n

s2 ≡ k−1(H(m2) + dr) mod n

⇔
{

k ≡ s−1
1 (H(m1) + dr) mod n

d ≡ (s2H(m1)− s1H(m2)) · (r(s1 − s2))
−1 mod n

(4.3)

In t
.

he considered architecture, nonc
.

es are refreshed from t
.

he RNG for each signature.intern

However, one can try to interfere into t
.

his process in order to end-up with two signa-

tures with t
.

he same nonc
.

es.intern In order to end-up with t
.

his result within t
.

he provided

architecture, first, a signature can be asked.intern Then a second signature is requested and

during operation B in figure 4.9 where t
.

he 256 bits nonc
.

e k is generated from the

RNG and saved into t
.

he SRAM , one can try to fault t
.

he writing addresses or the

read/write signal.intern If t
.

he 8 faults injection are successful (recall, 8 writing are performed

88



for updating t
.

he 256 bits nonc
.

e), then t
.

he new nonc
.

e k will be written in another

location, unrelated to t
.

he nonc
.

e or not written at all.intern As t
.

he previous nonc
.

e is in the

memory, then t
.

he new signature will be computed with t
.

he same nonc
.

e that t
.

he previ-

ous one.intern It is to be noted that during operation B, t
.

he SRAM contains only t
.

he hash

result.intern Meaning that t
.

he nonc
.

e addresses can be faulted and transformed into almost

any other addresses without corrupting important data for t
.

he process.intern If t
.

he hash is

corrupted, t
.

he signature will be invalid and thus can be rejected by t
.

he attac
.

kers.intern It is

also to be noted that, if t
.

his kind of faults are injected at t
.

he first signature then the

nonc
.

e used will be t
.

he initialization value of t
.

he SRAM .intern The success of t
.

his attac
.

k

can be detected by having two signature with t
.

he same r value.

Signature nonces with mostly shared bits

Signatures nonc
.

es with mostly shared bits (k1 = k2 + X · 2l with X small and l

known) also allow recovering t
.

he private key.intern Two signature equations allow to write

t
.

he following:
{

s1 ≡ k−1
1 (H(m1) + dr1) mod n

s2 ≡ k−1
2 (H(m2) + dr2) mod n

If k2 = k1 ±X · 2l:

⇔
{

k2 ≡ s−1
1 (H(m1) + dr1)±X · 2l mod n

d ≡ (s2H(m1)− s1H(m2)± s1s2X · 2l) · ((r2s1 − r1s2))
−1 mod n

(4.4)

Thus, if X is small enough, attac
.

kers can try all possible values and then guess the

private key d. As in t
.

he previous case, attac
.

kers may try to interfere with t
.

he nonc
.

e

update.intern The difference is that less successful fault injections are needed.intern Indeed, in the

given architecture, each faulted addresses or read/write alterations during operation

B allows avoiding t
.

he update of 32 consecutive bits.intern In t
.

he previous case, 8 successful

faults were needed.intern In t
.

his new case, 6 or 7 successful faults injection allow obtaining

two signatures with either 192 or 224 shared bits.intern Thus, either 64 or 32 bits should be

brutforced.intern It is interesting to notice that t
.

he fault injection that should be performed

is exactly as in t
.

he previous case.intern The difference is only t
.

he number of successful fault

and t
.

he computation power required to recover t
.

he private key.intern The previous case is in

fact just a special case where X equals 0.

Nonces with some known or shared bits

This case follow up t
.

he two previous one.intern In t
.

his case, only a few bits of t
.

he random

nonc
.

e are equal.

89









k1 = X · 2l +Rdm1

k2 = X · 2l +Rdm2

... kj = X · 2l +Rdmj

As previously, t
.

his can happen in t
.

he studied architecture if t
.

he nonc
.

e update is

compromised.intern A single fault during operation B on t
.

he address used or t
.

he read/write

signal may lead to avoid a word update.intern As explained in section 3.3, if enough such

signature are gathered, a lattice attac
.

k can be used with a brutforce on t
.

he shared

bits.intern It is to be noted that, even if 32 bits or more are shared, t
.

he brutforce can be

applied on fewer bits and attac
.

kers will need more signatures to succeed.intern Thus, a trade

off between number of signature and computation power is possible.intern

Signature generations with faulted secret key

Section 4.2.1 details how a faulted private key used inside an ECDSA signature can

be used to recover information when it is slightly different from t
.

he genuine private key

used during t
.

he key generation.intern In t
.

he described architecture, different possibilities may

exist to inject such fault.intern The private key is stored encrypted in an NVM .intern In order

to use it, first it is decrypted thanks to an AES block and then stored in t
.

he SRAM

during operation D.intern Faults injections and countermeasures in AES as discussed in

[93] consider faults inside t
.

he block cipher.intern Hence, despite t
.

he fact t
.

he AES contains

fault countermeasures at t
.

he block level, t
.

he interface between it and t
.

he SRAM can

eventually be faulted.intern In our case, considering section 4.2.1, attac
.

kers are interested

to fault t
.

he output result of t
.

he AES prior to be used to generate t
.

he s part of the

ECDSA signature.intern The AES block internally uses a 8 bits datapath and t
.

he SRAM

interface uses 32 bits of data.intern Thus, in t
.

his case either t
.

he AES result is accumulated in

hardware until 32 bits are ready to be written in t
.

he SRAM or multiple read and write

are used to end up with t
.

he full word written correctly in t
.

he memory.intern The fact that

t
.

he AES uses an 8 bits datapath is interesting for attac
.

kers.intern Indeed, t
.

his may allow

them to target 8 bits instead of 32.intern Figure 4.10 illustrate how bits can be accumulated

to 32 bits prior an SRAM writting.

90



Figure 4.10: Illustration of an 8 bits to 32 bits interface

A counter starts from 0 and count until 3.intern For each new value of t
.

he counter, the

AES provides 8 bits that are stored in an 8 bits register according to t
.

he counter.intern At

t
.

he end, t
.

he 32 bits accumulated in t
.

he different registers are then written into the

SRAM at a specific address. Attackers can try to directly target t
.

he AES output, or

t
.

he registers used for accumulation.intern It is also possible to fault t
.

he counter register, the

address or t
.

he read/write signal.intern Due to t
.

his structure, various effect can be obtained

such that faulting 8, 16, 24 or 32 bits of data, prevent word writing or shift t
.

he private

key. In t
.

he case where multiple read and write are used in order to write t
.

he private

key into t
.

he SRAM , t
.

he system is still vulnerable to faults.intern Table 4.2 bellow is an

illustration of t
.

he normal behavior and what can be expected from attac
.

kers.

Faults occurring either on t
.

he data or on t
.

he read/write address can lead to fault

1− 4 bytes of data.intern It is interesting to notice that faults on t
.

he writing address allow

attac
.

ker to target any specific byte of t
.

he word. Faults on t
.

he private key used during

t
.

he generation of t
.

he s part of t
.

he signature can also happen in t
.

he SRAM prior

operation E or when reading t
.

he value during operation E.intern Indeed, as previously either

t
.

he data read or t
.

he address used can be faulted, resulting in 32 faulted bits.intern

Signature generations with faulted nonces

As explained in section 4.2.2, if t
.

he r and s parts of t
.

he ECDSA signature are

generated with a slightly different nonc
.

e, then t
.

he difference can be recovered providing

information on t
.

he nonc
.

e that can eventually be used inside a lattice attac
.

k (see

section 2.6).intern From t
.

he architecture, provided in figure 4.9, t
.

his can happen almost

91



Table 4.2: AES bits accumulation through SRAM read/write iteration

Expected Faulted data or read @ Faulted write @

Read1 @ 0x0000 @ 0x0000 @ 0x0000

Write1 @ 0xA1000 @ 0xA1000 @ 0xA1000

Read2 @ 0xA1000 @′ 0xF1F2F3F4 @ 0xA1000

Write2 @ 0xA1A200 @ 0xF1A200 @′ 0xA1A200

Read3 @ 0xA1A200 @ 0xF1A200 @ 0xA1000

Write3 @ 0xA1A2A30 @ 0xF1A2A30 @ 0xA10A30

Read4 @ 0xA1A2A30 @ 0xF1A2A30 @ 0xA10A30

Write4 @ 0xA1A2A3A4 @ 0xF1A2A3A4 @ 0xA10A3A4

@: address, Ai: i
th byte of AES result, Fi: Faulted byte

anytime between operations C and E.intern Indeed, t
.

he nonc
.

e read during operation C can

be faulted either directly on t
.

he data bus or by faulting t
.

he read address.intern Similarly, the

same can happen during operation E.intern A fault can also occur in t
.

he SRAM between

operations C andE.intern As during operation C t
.

he ECDSA block read t
.

he nonc
.

e from the

SRAM for each bit evaluation (i.e.intern for each loop iteration of t
.

he previously described

elliptic curve scalar algor .ithm), attac
.

kers can target a few bits of t
.

he nonc
.

e with faults.intern

Indeed, even if 32 bits of t
.

he nonc
.

e are faulted during t
.

he nonc
.

e reading of operation

C, only t
.

he bits required by t
.

he elliptic curve scalar algor .ithm are used.intern Thus, t
.

he fault

propagate to t
.

he result only on those bits.

4.3 Summary

We demonstrated that some elliptic curve scalar algor .ithms are wrongly supposed to

be safe-error resistant due to either t
.

he algor .ithm or to underlying computations.intern The

Montgomery ladder and t
.

he coherency checking countermeasures are two examples.intern The

problem of t
.

he Montgomery ladder is that, depending on t
.

he scalar value, operations

may become useless to t
.

he computation of t
.

he correct result.intern Thus by injecting a fault,

attac
.

kers can detect t
.

he particular value of t
.

he scalar.intern While it cannot be expected to

fully recover t
.

he EC scalar value with t
.

his method, it allows to get couple of bits.intern The

coherency checking algor .ithm faces another problem that is due to t
.

he scalar dependent

update of a working register alongside t
.

he complexity of EC operation that allows

fault injection opportunities.intern By using a memory safe-error attac
.

k on an EC input

point of t
.

he point addition algor .ithm after it is used inside t
.

he computation, attac
.

kers

know if t
.

he register update corrects t
.

he fault or not and thus can obtain t
.

he scalar bit

value. The concept of dummy operand was introduced due, for example, to t
.

he infinity

92



point that can be used when t
.

his specific point is considered and manipulated as a

normal point (E.g.intern with Edward curves).intern We demonstrated that even if in t
.

he ECDSA

signature, t
.

he scalar represents a nonc
.

e that is refreshed for each signature, safe-error

attac
.

ks are enough to recover t
.

he private key due to t
.

he fact that obtaining only a

couple of bits per signature allows mathematical attac
.

ks.intern

The EC scalar operation represents only t
.

he r part of ECDSA signature.intern The s

part of t
.

he signature can also be targeted.intern We thus showed that ECDSA signatures

generated from faulted private key can be used to recursively recover t
.

he key bits.intern We

demonstrated that a slightly faulted private key used during t
.

he computation of the s

part of t
.

he signature may generate a small error that can be recovered from t
.

he faulted

signature.intern Thanks to t
.

he knowledge of how t
.

he private key is represented in registers

and t
.

he error, information about t
.

he key can be obtained.intern Indeed, t
.

he possible error

range generated by a register of a given size depends on t
.

he size and t
.

he genuine value.intern

By recursively generating signature with faulted private key, it is possible to recover the

error range and with t
.

he knowledge of t
.

he register size and how t
.

he sec
.

r .et is represented,

t
.

he private key can be fully recovered.intern A similar method was also applied on nonc
.

es.intern

While it is not possible to recursively attac
.

k a given nonc
.

e, signature can be selected

according to t
.

he obtained error due to t
.

he fault.intern This allows to provide enough bits

of information to be used within lattice attac
.

ks and then to recover t
.

he private key.intern

We also demonstrated that t
.

he error distribution allows attac
.

kers to understand the

behavior of t
.

he injected fault and then to greatly improve t
.

he attac
.

k speed.intern

A basic architecture of an ECDSA system was described allowing to compute

signatures.intern This allowed to understand t
.

he wide range of fault injection possibilities

and opportunities for attac
.

kers and to understand how realistic t
.

he described fault

injection attac
.

ks can be.intern This also demonstrated that countermeasures in t
.

he low level

functional blocks are mandatory but unfortunately are not enough to ensure t
.

he security

regarding fault injection.

Safe-error attac
.

ks against t
.

he EC scalar algor .ithm and consequences are underes-

timated in t
.

he case of ECDSA computations and other fault injections may allow

recovering information in other parts of t
.

he ECDSA. Similarly to side channel, while

fully recover sec
.

r .et information with fault injection is not obvious, it seems easy to re-

cover at least partial information enabling mathematical attac
.

ks and then to recover the

private key of ECDSA systems.intern Countermeasures against both side channel and fault

attac
.

ks are thus mandatory and should protect all t
.

he sec
.

r .et bits.intern In t
.

he next chapter,

countermeasures attempting to cover all these threats are presented and discussed.intern

93



94



CHAPTER 5

Side Channel and Fault

Countermeasures

In order to speedup or ease t
.

he computation, some elliptic curve scalar point multiplica-

tion algor .ithms require t
.

he scalar in a non-conventional representation.intern In t
.

he previous

chapter, algor .ithm 4.5 is one example of such practice.intern The Non-Adjacent Form (NAF )

and t
.

he Join Sparse Form [29] are also often used.intern As t
.

he sec
.

r .et scalar may be used

elsewhere in t
.

he system, t
.

his ends up with different representation, manipulation and

use case of a same sec
.

r .et.intern This may extend t
.

he attac
.

k surface and introduce new security

risks.intern For example, from [37], t
.

he implementation of ECDSA signature requires the

elliptic curve scalar operation k · P with a random k for t
.

he r part of t
.

he signature.intern

It also requires t
.

he computation of k−1(H(msg) + d · r) mod n with t
.

he same k for

t
.

he s part.intern If t
.

he scalar k · P is computed with algor .ithm 4.5, it is highly possible that

t
.

he system uses a conversion function φ(k) = k′ to convert t
.

he random nonc
.

e k from

a binary representation to k′, t
.

he signed representation required in t
.

he algor .ithm.intern In

t
.

his case, it is necessary to design such a function with inherent side channel and fault

countermeasures.intern Indeed, t
.

he carry attac
.

k against t
.

he scalar blinding presented in [94]

is a good demonstration that any scalar manipulation can leak information through

side channel.intern While t
.

he scalar blinding aims at avoiding leakage during t
.

he EC scalar

computation, Fouque et al.intern demonstrated that a simple scalar addition with a random

value can put t
.

he scalar at risk due to t
.

he carry propagation between words.intern Indeed,

they show that t
.

he carry can be detected thanks to side channel and then after many

experiment, t
.

he number of time t
.

he carry is propagated depends on t
.

he sec
.

r .et value

and thus can be recovered.intern The fault countermeasure is also important in order to

guarantee that k and k′ represent t
.

he same value independently of t
.

he representation

95



otherwise t
.

he system may be vulnerable to a lattice-based fault attac
.

k as explained

in chapter 4.intern As example, if k′ is used to compute r, and k to compute s, and if, due

to a fault, a bit flip such that k′ represents t
.

he value k ⊕ 2i then t
.

he signature (r, s)

generated by t
.

he system will be invalid.intern As demonstrated in chapter 4, in t
.

his case an

attac
.

ker can easily recover t
.

he injected fault and then deduce t
.

he value of t
.

he flipped

bit of k.intern If a larger fault (i.e on 8 bits) is injected, more bits can be recovered and then

used inside a lattice attac
.

k to recover t
.

he private key.intern Section 4.2.2 demonstrates some

attac
.

k possibilities when attac
.

kers have t
.

he opportunity to fault nonc
.

es.

In t
.

his following chapter, we detail algor .ithms, improvement and implementation

strategies that aim to obtain an ECDSA signature implementation secure against

t
.

he previously described attac
.

ks.intern First in section 5.1, new elliptic curve algor .ithms are

described that allow protecting t
.

he computation against both side channel and safe-error

while reducing t
.

he security concern in case of partial leakages while computing the r

part of t
.

he signature.intern Section 5.2 discusses about t
.

he implementation of such algor .ithms.intern

It presents a selection of parameter allowing merging most parts of algor .ithms and also

presents improved way of using such algor .ithms to, as example, efficiently compute the

EC scalar operation with a blinded scalar. Then in section 5.3, approaches to protect

both t
.

he ECDSA private key and t
.

he nonc
.

e while computing t
.

he s part of signatures

are described.intern The nonc
.

e countermeasure also allows to strengthen t
.

he elliptic curve

scalar algor .ithm against fault attac
.

k by providing a Control Flow Integrity (CFI).intern

This CFI aims at ensuring that t
.

he operation flow is correct and not modified by a

fault and also provides some detection capabilities of data modification.intern Finally, the

various algor .ithms and countermeasures performances, cost, and countermeasures are

summarized in section 5.4.

5.1 Our secure scalar point multiplication

If we consider current attac
.

ks and t
.

he aforementioned problems, from a security point

of view a secure scalar point multiplication algor .ithm should use an operation flow

independent of t
.

he scalar.intern Indeed such a deterministic flow can easily be online checked

with a control flow integrity (CFI) system.intern It should also avoid t
.

he use of any dummy

operation or operand, even local as t
.

his can be detected.intern The infinity point should not

be used and no scalar bit should be given away.intern The algor .ithm should also avoid using

specific representation of t
.

he scalar that are different than required in other computation

involving t
.

he scalar. From both a performance and design cost point of view, the

algor .ithm should use a minimum number of working registers and allows acceleration

through pre-calculation.intern Plenty of elliptic curve scalar multiplication algor .ithms already

96



exist, however, as far as we now, no published algor .ithms meet all these requirements.intern

In t
.

his section we describe a solution that meets all these criteria.intern

5.1.1 Scalar operation

Our proposition presented in algor .ithm 5.1 is based on t
.

he classical double-and-add

algor .ithm and aims at correcting t
.

he different security issues.intern

Algorithm 5.1 Scalar operation

Input: E(Fq), k = (kt−1, ..., k1, k0)2, P ∈ E(Fq)

Output: 2k.P

1: Q← P

2: for i = t− 1 to 0 do

3: Q← 2.Q

4: Q← Q + (−1)ki.P //add or subtract P, depending on ki
5: end for

6: Q← Q− P

7: return (Q)

The idea behind our algor .ithm is to first initialize Q to a point E ∈ E(Fq) instead of

t
.

he infinity point as in t
.

he standard double-and-add algor .ithm.intern This will be transformed

to 2E during t
.

he loop due to t
.

he point doubling.intern In order to maintain t
.

he point E over

t
.

he loop indexes and reject t
.

he doubling effect, E should be subtracted from Q.intern This

leads to two possibilities, if ki = 1, Q ← Q + (P − E) otherwise, Q ← Q − E.intern At

t
.

he end of t
.

he loop, E is subtracted from Q in order to remove t
.

he initialization.intern By

carefully selecting E = P
2 , t .

he two solutions become, if ki = 1, Q← Q + P
2 otherwise,

Q← Q− P
2 .intern By using P instead of P

2 , t .

his leads to algor .ithm 5.1 that compute 2k ·P .intern

This proposed algor .ithm removes most problems encountered in t
.

he basic double-and-

add.intern It ensures that no infinity point is used without forcing any bit of t
.

he scalar.intern The

operation flow is homogeneous and branches condition are removed.intern It is to be noted

that algor .ithm 5.1 avoids dummy operations that can be detected through safe-error

attac
.

ks, does not force any specific treatment on any bits and also minimizes t
.

he number

of required registers to prevent faults on unused memory values.intern Thanks to t
.

he use

of either +P or −P , t
.

he algor .ithm is also immune to Address bit DPA (ADPA)

[95] as t
.

he addresses flow is constant and independent of t
.

he scalar.intern The number of

working registers is t
.

he same than a standard double-and-right, left-to-right algor .ithm.

97



The data dependent leakage is however not removed as operands values depends on

t
.

he scalar.intern It is also to be noted that algor .ithm 5.1 adds a new horizontal side channel

threat.intern Indeed, at t
.

he beginning and until a scalar bit equal to one is encountered; the

computation of Q← Q− P nullifies t
.

he double operation.intern Thus, t
.

he following elliptic

curve double operation will double t
.

he same point as t
.

he previous operation.intern This will

helps attac
.

kers to detect t
.

he scalar length through collision correlation analysis [96] that

allow detecting t
.

he number of time t
.

he loop performs t
.

he same operations.intern However

existing solutions can be used and are discussed in Section 5.2.

If t
.

he platform does not provide indistinguishable field addition/subtraction, the

elliptic curve point addition/subtraction can be computed with algor .ithm 5.2.intern

This algor .ithm is similar to standard ECC mixed Affine/Jacobian point addition

excepted from lines 4 to 9.intern These lines compute t
.

he intermediate result for both ECC

point addition and ECC point subtraction and save them randomly in T3[0] and T3[1]

depending on r.intern Line 6 selects which intermediate result is to be used regarding the

asked operation and t
.

he random bit r.intern This randomness aims at avoiding fault injection

inside t
.

he memory (M safe-error) as attac
.

kers will not know which value −T2 or T2 is

faulted.intern Lines 8 and 9 aim at preventing C safe-error attac
.

ks when −T2 is computed.intern

Algor .ithm 5.1 improves t
.

he security level compared to t
.

he algor .ithm presented in

[97] that uses t
.

he zeroless signed-digit expansion.intern In [97], t
.

he authors note that any

group of w bits 00...01 can be replaced with a group of w signed digits 11̄1̄...1̄ with

1̄ = −1.intern This remark leads to a zeroless signed representation of t
.

he scalar k.intern An on the

fly conversion is possible by initializing Q to t
.

he base point P and then by performing

a for loop for all bits (except t
.

he LSB) that contains a point double Q← 2Q and two

Algorithm 5.2 ECC Jacobian-affine point addition/subtraction

Input: P = (X1 : Y1 : Z1) in Jacobian and Q = (x2, y2) in affine ∈ E(Fq), b

operation selection, r a random bit

Output: if b = 0, P −Q else P +Q

1: T1 ← Z2
1

2: T2 ← T1 · Z1

3: T1 ← T1 · x2
4: T[r]← −T

5: T[r]← T

6: T ← T[b⊕ r] · y

7: T ← T −X

8: T ← T + T[]

9: T ← T + T[]

10: T2 ← T2 − Y1

11: if T1 == 0 then

12: return (error)

13: end if

14: Z3 ← Z1 · T1

15: T3[0]← T 2
1

16: T3[1]← T3[0] · T1

17: T3[0]← T3[0] ·X1

18: T1 ← T3[0] + T3[0]

19: X3 ← T 2
2

20: X3 ← X3 − T1

21: X3 ← X3 − T3[1]

22: T3[0]← T3[0]−X3

23: T3[0]← T3[0] · T2

24: T3[1]← T3[1] · Y1

25: Y3 ← T3[0]− T3[1]

98



possibilities, Q← Q+P if ki = 1 or Q← Q−P if ki = 0.intern Nevertheless, t
.

he zeroless

signed representation works only for an odd scalar k thus forcing t
.

he LSB to one.intern

Another downside of [97] is that an on t
.

he fly conversion with pre-calculated points

seems harder to implement.intern Also, as mentioned in Chapter 5, recoding t
.

he scalar value

in a signed representation prior using t
.

he elliptic curve scalar operation may extends

attac
.

k possibilities.intern Thus, our algor .ithm 5.1 improves t
.

he security as no scalar extra

manipulation is required and no scalar bit is constrained to any value while allowing

performance/cost flexibility thanks to pre-calculation possibilities as presented in the

next section.intern Compared to algor .ithm 4.4, algor .ithm 5.1 losts some randomness provided

by t
.

he random point.intern However, t
.

his allows preventing M safe-errors and ADPA as all

registers are used during each loop independently of t
.

he sec
.

r .et.intern Randomness can be

recovered as described in Section 5.2 without effecting t
.

he M-safe resistance property

of t
.

he algor .ithm.intern

5.1.2 Scalar operation with pre-calculation

When performance is needed, point precalculation is usually used.intern The number of pre-

computed points can be used to determine a trade-off between implementation cost

and performance.intern In t
.

his section we present how our approach can be applied to the

fixed-base comb method.intern This leads to similar performance with half of t
.

he required

pre-calculated points.intern Compared to [98], in our case t
.

he scalar k does not need any

modified representation simplifying t
.

he implementation.intern In order to achieve that, the

same reasoning than algor .ithm 5.1 is applied.intern The working register Q is initialized to a

carefully selected point instead of t
.

he neutral element.intern The introduced error is partially

corrected over t
.

he for loop and then fully removed after t
.

he loop.intern By carefully selecting

t
.

he initialization point, t
.

he number of pre-calculated points is divided by two and the

neutral element is removed from t
.

he list.intern Algor .ithm 5.3 describes t
.

his approach. Each

pre-calculated point is used either in an elliptic curve point addition or subtraction.intern

This leads to a better performances/cost ratio if pre-computation is allowed in the

system.intern It is to be noted that t
.

he initialization point is one of t
.

he pre-calculated ones

and t
.

he neutral element is never used.intern As described, algor .ithm 5.3 needs to pre-compute

2w−1 points and uses ⌈ t
w⌉ elliptic curve point double operations and ⌈ t

w⌉ + 1 elliptic

curve point addition operations.

The ‘represent k as:’ does not necessarily mean that t
.

he scalar representation change

in t
.

he register.intern Indeed, an hardware implementation can easily use t
.

he standard binary

representation of k and evaluate t
.

he required bit without transforming t
.

he scalar.

99



Algorithm 5.3 Modified Comb method

Input: E(Fq), k = (kt−1, ..., k1, k0)2, P ∈ E(Fq), window width w, d = ⌈ t
w⌉

Output: 2k.P

Pre-computation: compute 2 · [1, aw−2, ...a1, a0].P − [1w−1, ...11, 10].P for all possi-

ble binary values of aw−2, ...a1, a0, with [1, aw−2, ...a1, a0].P = 2(w−1)dP+...+a12
dP+

a0P .

Represent k as:






k0d−1 · · · k01 k00

:
. . . . . . :

kw−1
d−1 · · · kw−1

1 kw−1
0




 //if necessary, pad 0s as k

MSBs.

1: Q← [1w−1, ...11, 10].P //represents t
.

he highest pre-calculated point.

2: for i = d− 1 to 0 do

3: Q← 2.Q

4: Q← Q + (−1)k
w−1

i .[[kw−1
i , ..kw−1

i ]⊕ [kw−2
i , ...k1i , k

0
i ]].P

5: end for

6: Q← Q− [1w−1, ...11, 10].P

7: return (Q)

5.1.3 The non-standard 2k · P result and exceptional cases

Standard ECC schemes usually require t
.

he computation of k · P , instead of 2k · P
as presented algor .ithms.intern While elliptic curve point halving is possible, it requires to

implement another specific operation and thus it is not efficient in term of required

memory.intern Different simple other solutions exist.intern First, t
.

he less recommended solution

would be to compute c = k · 2−1 mod n prior using our algor .ithms with c.intern This

solution is not t
.

he best one as it extends t
.

he number of manipulation of t
.

he sec
.

r .et k

thus extending t
.

he attac
.

k surface (k is a sec
.

r .et but also c in t
.

his case).intern Another solution

would be to save P
2 in t

.

he system instead of t
.

he fixed base point P during t
.

he system

development.intern However, t
.

his solution cannot be applied if algor .ithms are intended to be

used with an elliptic curve point coming from outside t
.

he system (e.g.intern a Diffie-Hellman).intern

Finally, a last solution could be to consider during t
.

he sec
.

r .et generation that k · 2−1

mod n is generated and saved in memory instead of k and taken into account if needed.intern

For example, during an ECDSA signature, c can be generated using a random number

generator.intern Then for t
.

he r part of t
.

he signature, by using c with our algor .ithms, k ·P will

be returned.intern The s part can be changed into: s = c−1(H(m)+d · r) · 2 mod n leading

to t
.

he good signature.intern This solution seems to be t
.

he best as it can be applied to most

ECC schemes without extending t
.

he attac
.

k surface nor requiring special computation

such as point halving. It is also to be noted that few exceptional cases exist within

our algor .ithms depending on t
.

he scalar.intern Indeed, per example, if n represents t
.

he ECC

100



point order used within algor .ithm 5.1, then if k = 0, k = n− 1, k = n− 2, k = n− 3,

k = n−1
2 and k = n−1

2 − 1, special computation such as P + P , P − P , −P + P ,

−P−P or 2 ·∞ will happen in t
.

he EC point addition formula leading to special power

consumption or fault exposure as explained in Section 4.1.3.intern However, t
.

he probability

to encounter these cases is really low (around 5
2256 for NIST P256) and thus attac

.
ker

cannot expect to observe such behavior.

5.2 Secure implementation strategy

Usually, systems requiring ECC require t
.

he implementation of different schemes such

as ECDSA, ECDH or ECIES.intern These schemes face up different threat models as

they use t
.

he elliptic scalar operation in different scenario.intern In an ECDH , t
.

he scalar is a

private key while t
.

he base point is a given public key.intern Thus chosen point attac
.

ks such as

RPA[87]/ZPA[86] or attac
.

ks requiring multiple executions with t
.

he same scalar such

as DPA can be used to attac
.

k t
.

he device and fully recover t
.

he sec
.

r .et.intern However, during

an ECDSA signature, t
.

he elliptic scalar operation is used with a refreshed nonc
.

e and

t
.

he curve base point.intern Thus, these attac
.

ks cannot be used.intern Nevertheless, due to Lattice

attac
.

k a partial leakage of t
.

he scalar is enough to recover t
.

he sec
.

r .et [88].intern The work

presented in [82] surveys different active and passive attac
.

ks, their prerequisites and

countermeasures.intern Resource-restricted systems such as embedded system or smart-card

need clever implementations in order to provide both functionalities and security with

acceptable performance.intern In t
.

his section we present an efficient implementation strategy

based on previous algor .ithms that can be used in different scenarios.intern Three use cases

are considered.intern Firstly t
.

he elliptic curve scalar operation k · P with P t
.

he curve base

point which can be hardcoded.intern Secondly t
.

he sum of two elliptic curve scalar operation

k ·P +v ·G with two different points P and G that can be different from t
.

he curve base

point.intern Finally, these algor .ithms will lead to a security enhanced elliptic curve scalar

operation k · G that considers any point G.intern It is to be noted that t
.

he different cases

differ only from slight algor .ithmic modifications.intern Thus, a single implementation can

be used over these use-cases in order to save memory or silicon as only t
.

he input and

configuration will change.

5.2.1 Scalar with a fixed base point: k · P
The k ·P operation can be implemented using ECC point precomputation techniques

as described in algor .ithm 5.3.intern In algor .ithm 5.4, we use a window width parameter of two,

allowing to speed-up t
.

he computation with a factor of ×2 compared to computation

without t
.

he precomputed points.intern It requires only two ECC points on t
.

he curve: 2t/2P +

P and 2t/2P − P .

101



In t
.

his algor .ithm, RandomAfftoJac() represents t
.

he common affine to Jacobian

random representation conversion and provides countermeasure against data dependent

leakage.intern Shuffleregisters() is a function that randomly reassign P [0] and P [1] in

order to avoid address dependent leakages.intern V erify(Q) ensure that t
.

he input point is

on t
.

he curve.intern Lines 12-14 aim to involve P [r] and P [r] in t
.

he result prior verification

for integrity check.intern Without these two operations, an attac
.

ker can fault P [r] prior the

last l bits of t
.

he scalar and use t
.

he consequences to detect l consecutive 1 inside the

LSBs (M-safe-error attac
.

ks).intern This countermeasure does not consider transient faults

as only t
.

he value at t
.

he end is verified.intern

Algorithm 5.4 2kP operation optimized with two precomputed points

Input: k = (kt−1, ..., k1, k0)2, P and 2t/2P ∈ E(Fq)

Output: 2k.P

1: r ← randombit()

2: P [r]← 2t/2P − P //in affine coordinates

3: P [r]← 2t/2P + P //in affine coordinates

4: Q← RandomAfftoJac(P [1]) //use random affine to Jacobian conversion

5: Verify(Q)

6: for i = t/2− 1 to 0 do

7: Q← 2Q

8: Q← Q + (−1)ki+t/2P [r ⊕ (ki ⊕ ki+t/2)]

9: r ← randombit() //refresh t
.

he random r

10: shuffleregisters(P [0],P [1],r) //shuffle P[0] and P[1] according to r

11: end for

12: Q← Q + P [r] //add P [r] for system integrity

13: Q← Q− P [r]

14: Q← Q− P [r] //remove P [r]

15: Q← JactoAff(Q) //use Jacobian to affine conversion

16: Verify(Q)

17: return Q

This algor .ithm requires t/2 + 5 ECC point additions and t/2 ECC point doubling

operations while requiring 2 precomputed points.intern In a similar configuration, t
.

he classical

comb method would require 3 ECC points to perform in t/2 ECC point doubling and

ECC point additions.intern As t
.

he base point is fixed, precomputation cost is neglected.

102



5.2.2 Sum of two scalars: k · P + v ·G
ECDSA verifications for example require t

.

he computation of k ·P +v ·G with always

t
.

he same known ECC point P and G another ECC point representing a public key.intern

Usually precomputation is not convenient to use in t
.

his case as t
.

he point G is not

predictable.intern The best known solution to speed-up t
.

he computation is Shamir’s trick

[29] that aims to simultaneously compute both scalar.intern In our implementation, we use

Shamir’s trick combined with our previous presented solution.intern The result is described

by algor .ithm 5.5 and allows a speed-up with a factor of ×2 compared to two distinct

classical ECC scalar operations. During t
.

he for loop, two bits of scalars are considered,

one from k and another from v ending-up with four different cases.intern With t
.

he classic

Shamir’s trick, either Q +∞, Q + P , Q +G or Q + (P +G) are considered.intern In our

case, t
.

he four different cases become either Q− (P +Q), Q− (G− P ), Q+ (G− P )

or Q + (G + P ).intern

Algorithm 5.5 2k · P + 2v ·G operation

Input: k = (kt−1, ..., k1, k0)2,v = (vt−1, ..., v1, v0)2, P and G ∈ E(Fq)

Output: 2kP + 2vG

1: r ← randombit()

2: P [r]← G− P //in Affine coordinates

3: P [r]← G + P //in Affine coordinates

4: Q← RandomAfftoJac(P [1]) //use random affine to Jacobian conversion

5: Verify(Q)

6: for i = t− 1 to 0 do

7: Q← 2Q

8: Q← Q + (−1)viP [r ⊕ (ki ⊕ vi)]

9: r ← randombit() //refresh t
.

he random r

10: shuffleregisters(P [0],P [1],r) //shuffle P[0] and P[1] according to r

11: end for

12: Q← Q + P [r] //add P [r] for system integrity

13: Q← Q− P [r]

14: Q← Q− P [r] //remove P [r]

15: Q← JactoAff(Q) //use Jacobian to affine conversion

16: Verify(Q)

17: return Q

This algor .ithm does not aim to improve t
.

he security level of t
.

he implementation

103



as all manipulated values are public.intern Instead, it aims to end-up with a very similar

implementation than t
.

he k · P computation.intern The descriptions of algor .ithm 5.4 and

algor .ithm 5.5 are almost identical.intern The differences are t
.

he initialization of P [r] and

P [r], t
.

he loop length, t
.

he bits used to select t
.

he ECC point addition/subtraction

and t
.

he precomputed value to use.intern By doing so, implementation cost can be reduced

as a parameter can be used to configure t
.

he algor .ithm depending on t
.

he requested

operation. This algor .ithm requires t + 5 ECC point additions and t ECC point

doubling.intern The classic Shamir’s trick would get slightly better performances, in average

t ECC point doubling and 0.75t ECC point addition.intern While ECDSA verification

does not necessary requires side channel countermeasures as all parameters are public,

t
.

his algor .ithm may be used in other situations.

5.2.3 Scalar with any base point: k ·G

The k · G operation is required for example in a Diffie-Hellman key agreements.intern It

differs from t
.

he k · P operation as t
.

he ECC point used is not predictable meaning

that usual precomputation techniques cannot be used efficiently.intern Another difference

is from a security perspective as t
.

his operation is vulnerable to chosen point attac
.

ks.intern

For instance, RPA[87]/ZPA[86] can defeat t
.

he random affine to Jacobian point rep-

resentation conversion.intern These attac
.

ks rely on t
.

he fact that some special points such as

(0, Y, Z), (X, 0, Z) remains in t
.

he same form whatever t
.

he value of Z and thus t
.

he ran-

dom number used during t
.

he conversion.intern In t
.

his attac
.

k scenario, attac
.

kers input a chosen

value Q that will be transformed to t
.

he special point at a targeted stage depending on

t
.

he scalar value.intern E.g.intern in algor .ithm 5.4, if P is chosen such that (2t/2+1)P = (0, Y, Z)/3

then if kt−1 = kt/2−1 = 1, t
.

he value (0, Y, Z) will appear in t
.

he system at t
.

he end of

t
.

he first loop iteration.intern This can be detected through a CPA by attac
.

kers allowing

them to recover two bits.intern By iteratively performing t
.

he attac
.

k, attac
.

kers end-up with

all t
.

he scalar value. To prevent t
.

his attac
.

k, we can use t
.

he k · P + v ·G algor .ithm as

presented previously with a random ECC point G, v = 0 and P = Q.intern

From an arithmetic point of view, k · P + 0 · G is equal to k · P , however inside

Algor .ithm 5.5, computations are based on G− P and G + P .intern Thus with a random G,

t
.

he algor .ithm computes t
.

he good result from random points.intern Attackers that input their

own special point P will not be able to predict t
.

he values of G− P and G + P .intern With

t
.

his use of algor .ithm 5.5, t
.

he scalars represent sec
.

r .et values and thus countermeasures

are mandatory.intern In t
.

he given example, t
.

he ECC point G is based on a 32bits random

number that can be computed similarly than k ·P with a reduced loop in order to reduce

t
.

he effect on t
.

he overall performances. An even more interesting use of algor .ithm 5.5

to compute k · Q is with scalar splitting such that k · P = k1P + k2(r · P ).intern This is

104



described in algor .ithm 5.6.

Algorithm 5.6 kG operation computed as 2k ·G = k1G + k2(r ·G)

Input: k = (kt−1, ..., k1, k0)2, G ∈ E(Fq)

Output: 2k ·G
1: r ← random([0, 232 − 1])

2: v ← random([0,#E(Fq)− 1])

3: k ← k − v

4: v ← v · (2r)−1 mod n

5: Q← AlgKP (r,G) //Algor .ithm 5.4 reduced for 32bits of scalar

6: R← AlgkPvG(k,G, v,Q) //Algor .ithm 5.5 kP+vQ

7: return R

Indeed, algor .ithm 5.5 security relies on indistinguishable point addition or subtraction

and also indistinguishable use of P [0] or P [1] during each loop iteration.intern By using scalar

splitting, attac
.

kers will be forced to look for both information at t
.

he same time.intern In

algor .ithm 5.6, 2× t + 32 bits of sec
.

r .et are used instead of t.intern If an attac
.

ker is able to

distinguish elliptic curve point addition from point doubling, he obtains at most t bits

of sec
.

r .et meaning that t + 32 bits remain.intern Similarly, if an attac
.

ker is able to recover

which precomputed point is used, he will obtain at most t+ 32 bits and thus t bits will

remain.intern The use of r aims to remove t
.

he probability dependence between bits that exist

and can be used in t
.

he simple additive splitting as explained in [99].intern The reduction to

a 32 bit loop should be carefully implemented by t
.

he designer.intern Indeed, if using an input

parameter to configure t
.

he loop size, he has to ensure that t
.

his entry cannot be faulted

in order to reduce t
.

he computation of a full size scalar to only 32 bits.intern Nevertheless, a

CFI should easily be able to detect any iteration errors within t
.

he loop.

This algor .ithm requires t+26 ECC point additions and t+16 ECC point doubling

operations.intern The classic always double-and-add algor .ithm would be faster as only t

ECC point doubling and additions would be required, however, algor .ithm 5.5 uses a

fully masked scalar.intern Scalar blinding technique could also be used alongside t
.

he classic

always double-and-add algor .ithm.intern Nevertheless, a too small random used with t
.

he scalar

blinding may conduct to a partially masked scalar [100] due to t
.

he particular modulus

value or to bias t
.

he probability as described in [101] or also to face doubling attac
.

ks

due to t
.

he birthday paradox [102].intern From [100], a NIST P256 implementation would

require a random on 64 bits leading to t+64 ECC point doubling and additions.intern From

t
.

his perspective,algor .ithm 5.5 is around 15% faster.intern

105



5.3 Preventing attacks against ECDSA nonce and

private key

The elliptic curve scalar operation is a complex operation that needs an extremely

careful attention.intern However, t
.

his is not t
.

he only critical operation of an ECDSA.intern This

scalar operation is used to generate t
.

he public key Q from t
.

he private one d and also

to generate t
.

he r part of t
.

he signature by using t
.

he nonc
.

e.intern As previously explained in

section 4.2, t
.

he s part of t
.

he ECDSA signature can also be targeted as it involves

both t
.

he private key d and t
.

he nonc
.

e k.intern In t
.

he following, we provide methods on how to

protect t
.

he private key and t
.

he nonc
.

e against fault and side channel while computing

t
.

he s part of t
.

he signature.

5.3.1 ECDSA signature, s part private key countermeasures

The ECDSA private key d is involved in t
.

he s part of t
.

he signature with t
.

he following

formula:

- s ≡ k−1(H(msg) + d · r) mod n

Section 4.2.1 details a possible fault attac
.

k against t
.

he private key that aims to force

t
.

he system to compute t
.

he s part of t
.

he ECDSA signature with a slightly different

key than t
.

he one used for t
.

he public key generation.intern The attac
.

k success depends on

t
.

he attac
.

ker capability of injecting such fault and to recover t
.

he resulting error.intern This

depends on t
.

he system architecture and implementation choices.intern In order to counteract

t
.

his attac
.

k path, in t
.

he following suggestion, t
.

he private key d is no-longer manipulated

as a single binary represented number.intern Instead of being generated from a single random

number, t
.

he private key d is generated from two random shares (m1 and m2) that

should be multiplied ( mod n) to get t
.

he good result d.intern By doing so, t
.

he system never

manipulates d.

Suggestion of key generation to protect d:

- Select and store a random m1 such that 0 ≤ m1 ≤ n− 1

- Select a random r1 such that 0 ≤ r1 ≤ n− 1

- Select a random r2 such that 0 ≤ r2 ≤ n− 1

- Compute k = r1 ·m1 mod n

- Select a random r3 such that 0 ≤ r3 ≤ 232

- Compute G = 2r3.P with P ∈ E(Fq) //Algor .ithm 5.4 reduced for 32bits of scalar

- Compute v = (r2 · (2r3)−1) ·m1 mod n

- Compute and save Q = 2k · P + 2v ·G with P and G ∈ E(Fq) //Algor .ithm 5.5

- Compute and save m2 = r1 + r2 mod n

106



- d = 2 · (m1 ·m2) mod n is t
.

he private key, Q is t
.

he public one.

Suggestion of signature to protect d:

- Generate a nonc
.

e k such that 0 ≤ k ≤ n− 1

- Compute G = (x, y) = k.P with P ∈ E(Fq)

- r ≡ x mod n

- s ≡ k−1(H(msg) + 2m1 · (r ·m2)) mod n

- (r, s) is t
.

he signature.

The modular multiplication relationship between d, m1 and m2 prevents t
.

he attac
.

k.intern

Indeed, if m1 is faulted into m′
1 = m1 ± e, t

.

he s part of t
.

he signature become:

s ≡ k−1(H(msg) + 2 ·m′
1 · (r ·m2)) mod n

s ≡ k−1(H(msg) + 2 · (m1 ± e) · (r ·m2)) mod n

⇔ s ≡ k−1(H(msg) + (d± 2 · e ·m2) · r) mod n

The equivalent error injected on t
.

he private key d is ±e ·m2 mod n.intern As m2 is a

random number such as 0 ≤ m2 ≤ n− 1 then 0 ≤ e ·m2 mod n ≤ n− 1 thus even

if ±e is small, attac
.

kers will not be able to recover t
.

he error by exhaustively trying

all possibilities.intern The same happen if m2 is faulted.intern If for some reasons, attac
.

kers know

t
.

he resulting value of t
.

he faulted register, then as long as m2 is unknown it is still not

possible to recover ±e ·m2 and thus deduct information about d. It is to be noted that

if an attac
.

ker perfectly control t
.

he fault injection (i.e.intern is able to force a specific bit to

0 or 1 or fostering 0 to 1 transitions over 1 to 0 [103] ) then he can get information

with a safe-error principle and iteratively recover information.intern E.g.intern if t
.

he LSB of m1

is forced to 1 and t
.

he signature is valid, then t
.

he genuine m1 LSB is 1 otherwise it is

0.intern It is also to be noted that m2 can be recovered from r ·m2 thanks to a classic DPA

or CPA as r is known and then m1 recovered from m1 · (r ·m2).intern This side channel

attac
.

k is similar to t
.

he classical one against t
.

he ECDSA private key [104] and [105].intern

Moreover, if an operand scanning integer multiplication or similar is used to compute

field multiplications, then attac
.

ks described in [92] can be used.intern These attac
.

ks need to

be recursively used as they aim at faulting a partial product which, once propagated,

allow to recover a single sec
.

r .et word according to t
.

he fault position.intern In order to counter

both t
.

he fault attac
.

k and t
.

he side channel, t
.

he shares that represent t
.

he private key

can be updated after each signature.

Suggestion of shares update:

- Select and store a random R such that 0 ≤ R ≤ n− 1

- m1 ← m1/R mod n

107



- m2 ← m2 ·R mod n

By doing t
.

his shares update, t
.

he representation of t
.

he private key d over t
.

he elements

m1 and m2 changes over t
.

he time.intern This allows preventing iterative fault attac
.

ks and

vertical side channel attac
.

ks against m1 and m2.intern From a side channel perspective, m1

and m2 act as masks.intern It is however to be noted that m1 · (r ·m2) = d ·r, thus t
.

he result

of m1 · (r · m2) is not masked and equals t
.

he private key times a known value that

change over signatures.intern The modular multiplication relationship between t
.

he sec
.

r .et d

and t
.

he result d · r does not provide relationship between hypothesis of a subset of d

and t
.

he result due to t
.

he modular reduction. Thus targeting t
.

his intermediate result

with a DPA or CPA like attac
.

ks is not obvious.intern However, partial leakage of d.r can

be used inside a lattice attac
.

k in order to recover d as demonstrated in section 4.2.3.intern

Thus, a good practice should be to maintain t
.

he private key masked until t
.

he end.intern

To t
.

his end, another random number m3 can be used to finally obtain t
.

he following

ECDSA signature generation.

Suggestion of signature to protect d with side channel countermeasure:

- Generate a nonc
.

e k such that 0 ≤ k ≤ n− 1

- Compute G = (x, y) = k.P with P ∈ E(Fq)

- r ≡ x mod n

- Select a random m3 such that 0 ≤ m3 ≤ n− 1

- s ≡ (k ·m3)
−1(H(msg) ·m3 + 2m1 · ((r ·m3) ·m2))) mod n

- Update m1 and m2.

- (r, s) is t
.

he signature.

If instead of t
.

he modular multiplication used between shares to generate t
.

he private

key, a modular addition is used (i.e.intern d = m1+m2 and s ≡ k−1(H(msg)+m1 ·r+m2 ·r)
mod n) then t

.

he fault ±e can be recovered as it is not modified by t
.

he random shares

allowing exhaustive search.intern Indeed, if m′
1 = m1 ± e, then:

s ≡ k−1(H(msg) +m′
1 · r +m2 · r) mod n

⇔ s ≡ k−1(H(msg) +m1 ± e · r −m2 · r) mod n

⇔ s ≡ k−1(H(msg) + (d± e) · r) mod n

Similarly to t
.

he case without countermeasures (i.e.intern section 4.2.1 ), t
.

his would provide

information on t
.

he faulted register (m1).intern E.g.intern If an 8 bits register containing 8 bits of

m1 is targeted by a fault that generates an error e = 1.intern Then t
.

he genuine register value

is < 255 as 256 cannot be encoded within t
.

he register.intern This error provides information

to t
.

he attac
.

ker.intern Multiple attac
.

ks against m1 will allow attac
.

kers to fully get t
.

he value.intern

108



As nothing prevent to do similarly with m2, t
.

he private key d can be recovered.intern

The modular multiplication used between t
.

he shares used to generate t
.

he private key

thus represents a better solution.intern The computation overhead is negligible compared to

t
.

he whole signature.intern Only four field multiplications and two random number generations

are required to protect t
.

he private key during t
.

he computation of ECDSA signatures.intern

5.3.2 ECDSA signature, s part nonce countermeasures

Countermeasure against signatures with faulted nonce

The nonc
.

e k is involved in t
.

he s part of t
.

he ECDSA signature with t
.

he following

formula:

- s ≡ k−1(H(msg) + d · r) mod n

Section 4.2.2 details a possible fault attac
.

k against t
.

he nonc
.

e that aims to force the

system to compute t
.

he s part of t
.

he ECDSA signature with a slightly different nonc
.

e

than t
.

he one used for t
.

he r part.intern The success of t
.

he attac
.

k depends on t
.

he attac
.

ker

capability of injecting such fault and thus depends on t
.

he system architecture and

implementation choices.intern In order to counteract t
.

his attac
.

k path, in t
.

he following sug-

gestion, t
.

he nonc
.

e k is manipulated only one time thus preventing t
.

he nonc
.

e alteration

between r and s computation.

Suggestion of signature to protect k from faults:

- Generate a nonc
.

e k such that 0 ≤ k ≤ n− 1

- Select and store a random m such that 0 ≤ m ≤ n− 1

- Compute simultaneously G = (x, y) = k.P and km = k · m mod n with

P ∈ E(Fq)

- r ≡ x mod n

- s ≡ k−1
m (H(msg) ·m + d · (r ·m)) mod n

Where ”Compute simultaneously G = (x, y) = k.P and km = k · m” means

computing k.P and k ·m by evaluating t
.

he value of t
.

he scalar k only once for both

operation. The elliptic curve scalar multiplication k.P computes k times t
.

he base point

P .intern Thus, a similar algor .ithm can be used to compute k ·m with m in t
.

he field.intern Bits

evaluation of t
.

he scalar k can then be combined to compute both k.P and km = k ·m.intern

By doing so, r and s will be computed with t
.

he same nonc
.

e thus preventing attac
.

kers

to obtain information when trying to tamper t
.

he nonc
.

e. As an example, algor .ithm 5.7

can be used to compute k · m.intern This algor .ithm is similar to algor .ithm 5.1 that was

described in section 5.1 to compute t
.

he elliptic curve scalar operation.

109



Algorithm 5.7 Field scalar operation

Input: k = (kt−1, ..., k1, k0)2,m ∈ Fq

Output: 2k.m

1: q ← m

2: for i = t− 1 to 0 do

3: q ← 2.q

4: q ← q + (−1)ki.m //add or subtract r, depending on ki
5: end for

6: q ← q −m

7: return (q)

It is important to notice that t
.

he computation is not on an elliptic curve.intern Thus

t
.

he computation time is negligible compared to algor .ithm 5.1.intern Indeed, algor .ithm 5.7

requires 2 basic field operations (addition, subtraction, shift...) per loop iteration.intern In the

case of mixed affine-jacobian coordinates with a NIST curve, algor .ithm 5.1 requires

12 field multiplications, 7 field squaring and around 16 basic field operations per loop

iteration.intern However, while algor .ithm 5.1 can provide side channel countermeasures by

using a random jacobian representation of t
.

he base point P , algor .ithm 5.7 does not.

Thus algor .ithm 5.7 is, as presented, subject to horizontal attac
.

ks.intern Indeed, as long as

ki = 0 then lines 3 and 4 compute q ← 2.m and q ← 2.m −m.intern The redundancy of

these operations can be detected leading attac
.

kers to conclude about t
.

he scalar length.intern

Another side channel threat is how q ← q + (−1)ki.m is computed.intern Indeed, either the

modular addition/subtraction is computed and then should not be different from a side

channel point of view, or a two indexes table v[0] = −m, v[1] = m can be used.intern In

t
.

his last case, t
.

he addresses of v[0] and v[1] and t
.

he values −m and m will be constant

over t
.

he execution.intern Attackers can thus use a horizontal attac
.

k to try to differentiate

whether v[0] and −m or v[1] and m are used.intern Moreover, as discussed in section 4.1,

unused values can be detected with safe error attac
.

k.intern

In order to counter these threats, algor .ithm 5.7 is improved into algor .ithm 5.8.intern The

random value u is multipurpose.intern First it allows countering horizontal side channel

attac
.

ks.intern The value u randomizes all intermediate values and t
.

he indexes of t
.

he table v

is randomized by using a random bit r.intern By doing so, both data and addresses will vary

independently of t
.

he sec
.

r .et bit ki.intern Secondly, it allows countering safe error attac
.

ks, as

both indexes of t
.

he table v are used during each loop iteration (in line 9) for updating

u.intern If either v[0] or v[1] are faulted, then u will be faulted conducting t
.

he result q to be

faulted and then also t
.

he signature (r, s).intern Finally, t
.

he random u also acts as a CFI

as it allows ensuring t
.

he correct execution of t
.

he algor .ithm.intern Indeed, u is involved in

110



all operations, evolves over t
.

he execution and is removed by using t
.

he product with a

constant value X prior returning t
.

he result.

Algorithm 5.8 Side channel and fault resistant field scalar operation

Input: k = (kt−1, ..., k1, k0)2,m, n ∈ Fq

Output: 2k.m mod n

1: q ← random([1, 2t − 1])

2: u← q −m mod n

3: u← 2u

4: for i = t− 1 to 0 do

5: r ← randombit()

6: u← (2t−1 − 1) · u mod n

7: v[r]← u +m mod n

8: q ← 2q mod n

9: v[r]← u−m mod n

10: q ← q + v[(ki ⊕ r)] mod n

11: u← v[r] + v[r] mod n

12: end for

13: q ← q −m mod n

14: q ← q−X ·u mod n //X = 2t−1 · (1− (2t−1−1)t+1)/((1− (2t−1−1)) · (2t−2)t)

15: return (q)

It is interesting to notice that even if a fault on v[0] or v[1] generates a different

error on t
.

he result q depending on t
.

he value of ki, t
.

his difference is not usable by

attac
.

ker to conclude about ki due to t
.

he random m.intern As an example, if u+m is faulted

into u + m + e during t
.

he last loop iteration then if k0 = 0 t
.

he final result will be

q′ = 2 · k ·m +X · e, otherwise, if k0 = 1 then q′ = 2 · k ·m + (X + 1) · e.intern Attackers
will observe a signature (r, s′) either with s′ ≡ (2k +X/m · e)−1 · (H(msg) + d · r)
mod n or s′ ≡ (2k + (X + 1)/m · e)−1 · (H(msg) + d · r) mod n.intern The equivalent

error on t
.

he nonc
.

e 2k is thus either X/m · e or (X + 1)/m · e, both depending on m

which is on t bits.intern The error search space is thus to big to allow recovering t
.

he error

on 2k, independently of t
.

he initial fault that generates e.intern

Independent execution of algor .ithm 5.1 and algor .ithm 5.8 does not provide evidence

that t
.

he same scalar is used in both cases as it can be tampered between executions.intern In

order to do so, they should be merged into a single algor .ithm.intern Algor .ithm 5.9 describes

t
.

he convergence of algor .ithm 5.1 and algor .ithm 5.8.

111



Algorithm 5.9 EC and field scalar operation with a CFI

Input: E(Fq), k = (kt−1, ..., k1, k0)2, P ∈ E(Fq) and m ∈ Fq

Output: 2k · P and 2k ·m
1: q ← random([1, 2t − 1])

2: u← q −m mod n

3: u← 2u

4: Q← RandomAfftoJac(P )

5: Verify(Q)

6: for i = t− 1 to 0 do

7: r ← randombit()

8: u← (2t−1 − 1) · u mod n

9: (Q, q)← double(Q, q)

10: (Q, q)← addsub(Q,P, q, u,m, ki, r) //if ki = 0, subtract else, add

11: end for

12: (Q, q)← addsub(Q,P, q, u,m, 0, 0)

13: q ← q−X ·u mod n //X = 2t−1 · (1− (2t−1−1)t+1)/((1− (2t−1−1)) · (2t−2)t)

14: Q← JactoAff(Q) //use Jacobian to affine conversion

15: Verify(Q)

16: return (Q, q)

The functions double(Q, q) and addsub(Q,P, q, u,m, ki, r) aim at tying up t
.

he EC

scalar and t
.

he field scalar operations.intern The purpose of doing t
.

his with double(Q, q) is

to extend algor .ithm 5.8 CFI to cover some operations of t
.

he EC scalar operation.intern

Alongside t
.

he final point verification, t
.

his allows to be confident about t
.

he correct exe-

cution of t
.

he EC point doubling operation.intern The purpose of addsub(Q,P, q, u,m, ki, r)

is similar, however it also ensures that EC point addition or subtraction choice is done

in accordance to t
.

he field addition of subtraction.

Algor .ithm 5.10 details t
.

he double(Q, q) function for NIST curves in Jacobian

coordinates.intern The modification between t
.

his algor .ithm and a standard EC point dou-

bling algor .ithm allowing to tying t
.

he EC and t
.

he field scalar operations are between

lines 6 to 10.intern Due to t
.

he CFI , t
.

he field doubling 2q is ensured to be computed otherwise

t
.

he signature result will be completely corrupted with a random value.intern As t
.

his doubling

is computed inside double(Q, q), t
.

his allows ensuring that t
.

his function is executed and

not bypassed due to a fault or any other reason.

Instead of directly computing t
.

he doubling, a partial result composed of both q and

an EC element (Y1) is computed in line 6, then doubled and replace t
.

he EC element Y1

in line 8.intern At t
.

his point t
.

he EC element Y1 is modified with 2q and thus (X1 : Y1 : Z1)

112



Algorithm 5.10 ECC Jacobian point doubling and field doubling on NIST curves:

double(Q,q)

Input: P = (X1 : Y1 : Z1) in Jacobian ∈ E(Fp), q ∈ Fp

Output: (X1 : Y1 : Z1)← 2P and q ← 2q mod n

1: T1 ← Z2
1 mod p

2: T2 ← X1 − T1 mod p

3: T1 ← X1 + T1 mod p

4: T2 ← T2 · T1 mod p

5: T2 ← 3T2 mod p

6: T ← Y + q

7: q ← Y mod p // 2Y1

8: Y ← T //2Y1 + 2q

9: q ← Y − q //2q

10: Y ← Y − q mod p //2Y1

11: q ← q mod n //2q mod n

12: Z1 ← Y1 · Z1 mod p

13: T3 ← Y 2
1 mod p

14: Y1 ← T3 ·X1 mod p

15: T3 ← T 2
3 mod p

16: T3 ← T3/2 mod p

17: X1 ← T 2
2 mod p

18: T1 ← 2Y1 mod p

19: X1 ← X1 − T1 mod p

20: T1 ← Y1 −X1 mod p

21: T1 ← T1 · T2 mod p

22: Y1 ← T1 − T3 mod p

is no longer on t
.

he curve.intern The register q which is also modified is then used with Y1 to

end up with t
.

he expected computation 2q.intern This result is then used with Y1 to obtain

t
.

he good EC result which is two times t
.

he original Y1 value.intern It is obvious that skipping

a line among lines 6 to 10 conduct to fault q which is part of t
.

he CFI .intern It is also obvious

that random faults on data will either fault Y1, which will move t
.

he computation outside

t
.

he curve, or q.

The addsub(Q,P, q,m) function uses similar tricks and is presented as algor .ithm 5.11.intern

This algor .ithm is based on algor .ithm 5.2 of section 5.1.intern The main differences are using

Y1 as a working register instead of T2 due to line 2, then lines 5 to 13 aims at selecting

addition or subtraction for both EC and field operations.intern Then lines 16 to 19 aim at

checking t
.

he integrity of all tables which contain addition or subtraction possibilities.intern

Using Y1 instead of T2 for intermediate value aims at ensuring that Y1 is modified by

t
.

he algor .ithm thanks to t
.

he CFI .intern In order to pass t
.

he point verification at t
.

he end of

t
.

he EC scalar operation, X1 and Z1 should be modified accordingly to t
.

he modified

Y1.intern This ensure that either a point addition or a point subtraction is performed. In

lines 5 to 9 two two-indexes tables are fulfilled with addition or subtraction possible

values, for EC elements summed with field elements in one table (T3) and field elements

alone in t
.

he second (T4).intern In line 11 t
.

he correct possibility, according to t
.

he addition or

subtraction bit selection b, is transfered from T3 into Y1.intern From Y1, an intermediate q

value is then computed during line 12.intern Line 13 aims at removing t
.

he field component

113



from Y1.intern Then t
.

he EC element Y1 is removed from q.intern

Algorithm 5.11 ECC Jacobian-affine point addition/subtraction and field addi-

tion/subtraction: addsub(Q,P,q,u,m,b,r)

Input: P = (X1 : Y1 : Z1) in Jacobian and Q = (x2, y2) in affine ∈ E(Fp), q, u and

m ∈ Fp, b operation selection, r a random bit

Output: if b = 0, (X1 : Y1 : Z1) ← P − Q, q ← q + u −m mod n and u ← 2u

mod n, else (X1 : Y1 : Z1)← P +Q, q ← q + u +m mod n and u← 2u mod n

1: T1 ← Z2
1 mod p

2: T2 ← Y1

3: Y1 ← T1 · Z1 mod p

4: T1 ← T1 · x2 mod p

5: T[r]← Y

6: T[r]← u +m mod n

7: T[r]← T[r] + T[r]

8: T[r]← −Y

9: T[r]← u−m mod n

10: T[r]← T[r] + T[r]

11: Y ← T[b⊕ r]

12: q ← Y + q

13: Y ← Y − T[b⊕ r] mod p

14: q ← q − Y mod n

15: Y ← Y · y mod p

16: Y ← Y + T[] mod p

17: Y ← Y + T[] mod p

18: Y ← Y − T[] mod p

19: Y ← Y − T[] mod p

20: u← T[r] + T[r] mod n

21: Y1 ← Y1 − T2 mod p

22: T1 ← T1 −X1 mod p

23: if T1 == 0 then

24: return (error)

25: end if

26: Z1 ← Z1 · T1 mod p

27: T3[0]← T 2
1 mod p

28: T3[1]← T3[0] · T1 mod p

29: T3[0]← T3[0] ·X1 mod p

30: T1 ← T3[0] + T3[0] mod p

31: X1 ← Y 2
1 mod p

32: X1 ← X1 − T1 mod p

33: X1 ← X1 − T3[1] mod p

34: T3[0]← T3[0]−X1 mod p

35: T3[0]← T3[0] · Y1 mod p

36: T3[1]← T3[1] · T2 mod p

37: Y1 ← T3[0]− T3[1] mod p

The addition or subtraction bit selection b is used two times, in line 11 and in line

13.intern If during both these lines, b is t
.

he same value, then either an EC point subtraction

alongside a field subtraction is performed (b = 0) or an EC point addition alongside

a field addition is performed (b = 1).intern If t
.

he b value is, for some reason (e.g.intern a fault),

different in lines 11 and 13, then line 13 is equivalent to either Y1 ← −Y1 − 2m or

Y1 ← Y1 + 2m.intern The Y1 value is thus corrupted with t
.

he random m and t
.

he result

(X1 : Y1 : Z1) will not be on t
.

he curve which will be detected.

114



Using t
.

he modified EC point doubling and EC point addition formulæ generate

around 8% of time overhead compared to standard jacobian-affine formulæ.intern The com-

plete solution which consist in algor .ithm 5.9, algor .ithm 5.10 and algor .ithm 5.11 gener-

ates 13% time overhead and requires 5 more working registers compared to a classical

double-and-add algor .ithm with also mixed jacobian-affines coordinates.intern This overhead

allows ensuring that t
.

he operation flow is not modified.intern It also allows ensuring that

t
.

he same nonc
.

e is used in both t
.

he r and s part of t
.

he signature by evaluating it

simultaneously for both.intern To our knowledge, t
.

he closest solution is t
.

he one presented in

[106], which involves more than 30% of overhead and requires t
.

he implementation of

t
.

he CRT () function.intern While in [106], authors do not consider fault on t
.

he s part of the

signature, their point addition and point doubling formulæ can be used similarly than

in our solution.

Countermeasure against nonce updating tampering

While AIS 31 or NIST 800–90A/B standards require embedded tests to ensure that

t
.

heRNG works properly and its output contains a high entropy, nothing allows ensuring

that t
.

he output is correctly inserted inside t
.

he ECDSA signature.intern In section 4.2.2,

different attac
.

k scenarios are described which take place between t
.

he nonc
.

e generation

by t
.

he RNG and its use during t
.

he computation of t
.

he ECDSA signature.intern The

described attac
.

k targeted addresses used to either read or write t
.

he nonc
.

e.intern By faulting

addresses, t
.

he nonc
.

e can be incorrectly updated or t
.

he system mays use another value

stored in other memory locations with poor entropy instead of t
.

he nonc
.

e generated by

a high quality RNG.intern An interesting feature about t
.

he countermeasure presented in

section 5.3.2 is t
.

he ability to compute t
.

he signature with an on t
.

he fly nonc
.

e generation.intern

Indeed, by computing both k · P and k · m at t
.

he same time allows evaluating the

nonc
.

e bits simultaneously for both t
.

he r and s parts of t
.

he signature.intern Thus, t
.

he nonc
.

e

no longer need to be saved and t
.

he RNG output can be used on t
.

he fly. This can be

used to circumvent attac
.

ks described in section 4.2.2 by directly connecting t
.

he RNG

to t
.

he ECDSA block avoiding t
.

he storage of t
.

he nonc
.

e in a memory.intern By doing so, the

nonc
.

e value does not persist in any memory and then nonc
.

e reuse over signatures is

not possible. As explained in section 4.2.2, t
.

he random bit b used in both lines 11 and

13 of algor .ithm 5.11 required to be unchanged.intern Thus, t
.

his provides reading redundancy

over t
.

he value.intern

115



5.4 Algorithms Summary

Table 5.1 summarizes t
.

he proposed algor .ithms and compares them to basic well known

algor .ithms.intern It shows required memory, performances, leakage vulnerabilities and various

information on how t
.

he scalar is processed for a scalar of size t.intern The ”′” algor .ithms

are simply t
.

he scalar algor .ithm modified to compute both in EC field and in the

basic field to provide CFI and avoid some other attac
.

ks as described in section 5.3.2.

Algor .ithm ”5.4bis”, is t
.

he same as algor .ithm 5.4 however with four pre-computed points

and scalar blinding k′ = k + λn with λ having a size of t/2 bits.intern This choice allows

acceleration over classic algor .ithm while blinding t
.

he scalar.intern While t
.

his kind of scalar

blinding does not prevent lattice attac
.

ks, as explained in [42], it forces attac
.

ker to get

more bits and to work on both selection methods due to t
.

he λ parameter.intern Indeed, the

processed scalar is used to both select EC point addition/subtraction and select which

precomputed point is used.intern With a parameter λ having a size of t/2 bits, if t
.

he EC

point addition/subtraction selection somehow leak, only t/2 bits of information leak

and thus it is not enough to mount a lattice attac
.

k.intern As opposed, if t
.

he precomputed

point selection leak then, as pre-computed points are used in two different cases either

in an addition or in a subtraction, it is not enough to mount a lattice attac
.

k. The

last lines of t
.

he table, aim at giving t
.

he number of bit that are processed, t
.

he number

of usecases these bits are manipulated, t
.

he repartition between them and finally the

number of usecase manipulation that attac
.

ker should find leakages in order to get

enough information to be able to mount a lattice attac
.

k in case of ECDSA.intern

116



T
ab

le
5.1:

A
lgorith

m
s
su
m
m
ary

Algor .ithm with ADA Coron ADA Montgomery (+y) 5.1 5.9 5.4 5.4’ 5.4bis 5.4bis’ 5.6 5.6’

Jacobian k · P&k ·m k · P&k ·m k · P&k ·m
Total working 7 10 10 7 11 7 11 7 11 13 17

registers

Inputs 3 3 3 3 3 5 6 9 12 3 3

Performances tD + tA tD + tA (t + 1)D + tA tD + (t + 1)A ×1.13 t/2D + (t/2 + 3)A ×1.13 t/2D + (t/2 + 5)A ×1.13 (t + 26)D + (t + 16)A ×1.13

Constant EC ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

operation flow

Conditional ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

jump

Timing ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Data ✗ ✗/✓ ✗/✓ ✗/✓ ✓ ✓ ✓ ✓

dependent

Infinity ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

point

Dummy ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓

operations

Dummy ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓

operands

Unused memory ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓

values

Register update ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓

scalar dependents

Integrated ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

control flow

Number of t t t t t t 1.5 · t 2 · t + 32

sec
.

r .et bits (kP + λ · n) (k1 · P + k2(r · P ))

Number of 1 1 1 1 1 2 2 2

bit usecase (add/sub, point selec.) (add/sub, point selec.) (add/sub, point selec.)

Usecase
t t t t t t

2/
t
2 t/ t

2 t/t
repartition

Nb of usecase to 1 1 1 1 1 1 2 2

discriminate for attac
.

k

117



118



CHAPTER 6

Conclusion

Information security is a necessity and as it finally relies on IC, securing t
.

he hard-

ware running t
.

he system is a necessity.intern This work focuses on hardware vulnerabilities

(specifically non invasive attac
.

ks) of integrated circuits running ECDSA algor .ithms.intern

It provides a study of existing ECC algor .ithms and schemes in order to demonstrate

their vulnerabilities against such threats.intern Indeed, despite t
.

he fact that many algor .ithms

dedicated to ECC include countermeasures against side channel and fault attac
.

ks,

security weaknesses remain regarding t
.

he computation of ECDSA signatures.intern This

is due to t
.

he fact that t
.

his cryptographic scheme is particularly sensitive, even to the

smallest leakages as they can be leveraged by mathematical attac
.

ks.

We thus started by demonstrating that these mathematical attac
.

ks are relatively easy

to implement and exploit if partial information of t
.

he ECDSA nonc
.

es are available

and without requiring any extended mathematical background.intern Experimental results

with a widely used elliptic curve were provided in order to understand t
.

his threat.intern

While existing side channel and fault countermeasures protect t
.

he EC scalar manip-

ulation in overall, they can fail in specific cases.intern Thus, different side channel leakage

sources that allow recovering information about t
.

he EC scalar have been described and

demonstrated.intern While some leakages are already well known, such as t
.

he operation flow

that is scalar dependent inside t
.

he double-and-add EC scalar algor .ithm, less obvious

leakage have been presented.intern

-Demonstration was provided that leakages can be unintentionally inserted due to

t
.

he choice of coordinates representation which result in having different ”+” operations

that can be distinguished.intern Various leakages due to t
.

he use of t
.

he infinity point have

119



also been discussed and illustrated for different cases to recover information even when

EC points are blinded.intern These leakages can be recovered either with power consumption

or also with a basic timing attac
.

k.intern Finally, we have demonstrated that side channel

collisions between signature generations may allows recovering t
.

he ECDSA private

key thanks to lattice attac
.

ks and brutforce without requiring any bits value.

-We have also demonstrated that some elliptic curve scalar algor .ithms are wrongly sup-

posed to be safe-error resistant due to either t
.

he algor .ithm or to underlying computations.intern

The Montgomery ladder and t
.

he coherency checking countermeasures illustrate this

point.intern The problem of t
.

he Montgomery ladder is that, depending on t
.

he scalar value,

operations may become useless to t
.

he computation of t
.

he correct result.intern Thus by inject-

ing a fault, attac
.

kers can detect t
.

he particular value of t
.

he scalar.intern While it cannot be

expected to fully recover t
.

he EC scalar value with t
.

his method, it allows to get couple

of bits.intern The coherency checking algor .ithm faces another problem that is due to the

scalar dependent update of a working register alongside t
.

he complexity of EC operation

that creates fault injection opportunities.intern By using a memory safe-error attac
.

k on an

EC input point of t
.

he point addition algor .ithm after it is used inside t
.

he computation,

attac
.

kers know if t
.

he register update corrects t
.

he fault or not and thus can obtain the

scalar bit value.

-The concept of dummy operand have been introduced due, for example, to t
.

he in-

finity point that can be used when t
.

his specific point is considered and manipulated as

a normal point (E.g.intern with Edward curves).intern We have demonstrated that even if in the

ECDSA signature, t
.

he scalar represents a nonc
.

e that is refreshed for each signature,

safe-error attac
.

ks are enough to recover t
.

he private key due to t
.

he fact that obtaining

only a couple of bits per signature allow mathematical attac
.

ks.intern

We thus showed that safe-error attac
.

ks and consequences are underestimated in the

case of ECDSA computations.intern The EC scalar operation represents only t
.

he r part

of ECDSA signature.intern The s part of t
.

he signature can also be targeted.

-We thus showed that ECDSA signatures generated from faulted private key can be

used to recursively recover t
.

he key bits.intern We demonstrated that a slightly faulted private

key used during t
.

he computation of t
.

he s part of t
.

he signature mays generate a small

error that can be recovered from t
.

he faulted signature.intern Thanks to t
.

he knowledge of

how t
.

he private key is represented in registers and t
.

he error, information about t
.

he key

can be obtained.intern Indeed, t
.

he possible error range generated by a register of a given size

depends on t
.

he size and t
.

he genuine value.intern By recursively generating signature with

120



faulted private key, it is possible to recover t
.

he error range and with t
.

he knowledge of

t
.

he register size and how t
.

he sec
.

r .et is represented, t
.

he private key can be fully recovered.intern

-A similar method was also applied on nonc
.

es.intern While it is not possible to recursively

attac
.

k a given nonc
.

e, signature can be selected according to t
.

he obtained error due to

t
.

he fault.intern This allows to provide enough bits of information to be used within lattice

attac
.

ks and then to recover t
.

he private key.intern We have also demonstrated that t
.

he error

distribution allows attac
.

kers to understand t
.

he behavior of t
.

he injected fault and then

to greatly improve t
.

he attac
.

k speed.intern

-A basic architecture of an ECDSA system was described allowing to compute

signatures.intern This allowed to understand t
.

he wide range of fault injection possibilities

and opportunities for attac
.

kers and to understand how realistic t
.

he described fault

injections attac
.

ks can be.intern This also demonstrated that countermeasures in t
.

he low

level functional blocks are mandatory but unfortunately are not enough to ensure the

security regarding fault injection.

The ECDSA private key manipulation and use are sensitive to both side channel and

fault attac
.

ks.intern Moreover, every single bit of ECDSA signatures nonc
.

es are important.intern

Unfortunately, small leakages or weaknesses can be used through side channel or fault to

easily recover partial information.intern As existing countermeasures do not perfectly protect

against these small leakages, new-ones were proposed.

-First, new methods to compute t
.

he EC scalar algor .ithm have been proposed.intern These

new algor .ithms aim at completely avoiding dummy operations, even locally and also

to avoid t
.

he use of t
.

he infinity point while not constraining t
.

he scalar.intern Some of the

described methods have been specifically developed to efficiently compute t
.

he EC

scalar operation with a blinded scalar.intern These methods also reduce t
.

he risk against small

leakages as more bits of t
.

he scalar should be recovered.intern It also forces attac
.

kers to find

security flaws in different scalar dependent parts of t
.

he algor .ithm and combining them.intern

The overhead involved for t
.

he two most robust algor .ithms (scalar blinding with half of

t
.

he scalar size of with t
.

he scalar size) is respectively about ×1.6 in memory for ×0.5

in computation time and ×1.6 for ×1.08 in computation time compared to a classic

double-and-add algor .ithm with mixed jacobian-affine coordinates.

Then approaches to protect both t
.

he ECDSA private key and t
.

he nonc
.

e while

computing signatures have been described.intern

-As t
.

he identified private key threat requires attac
.

kers to recover t
.

he mathematical

121



error generated by a faulted private key register, t
.

he countermeasure simply consists in

using different shares to represent t
.

he private key.intern By doing so, t
.

he mathematical error

due to a faulted share is multiplied by t
.

he second one.intern As t
.

he search space become too

large, attac
.

kers cannot recover t
.

he error and thus conclude about t
.

he initial register

value.intern

-In order to protect t
.

he nonc
.

e, t
.

he EC scalar operation k · P is computed alongside

a basic field scalar operation k ·m with a random m.intern By doing so, it allows avoiding

scalar evaluation mismatch between t
.

he r and s parts of t
.

he signature.intern

-The nonc
.

e countermeasure has been extended to provide a control flow and com-

putation integrity that ensures scalar operations are performed correctly.intern It allows to

detect if operations are not computed and if t
.

he number of loop iterations are correctly

performed is correct providing extended fault countermeasures.intern The performance over-

head generated by t
.

his countermeasure is about ×1.13 on t
.

he computation time.intern The

memory overhead depends on t
.

he selected EC scalar algor .ithm to protect.intern In t
.

he basic

case, it requires 5 more working register of t
.

he same size than t
.

he field.

The resulting algor .ithms thus provide a wide range of countermeasures against side

channel and fault leakages.intern The scalar blinding techniques used aims at blind every bits

of t
.

he scalar.intern Moreover it force attac
.

kers to face different scalar-bit selection methods

reducing t
.

he risk of finding potential vulnerability.intern The overall overhead is contained

as t
.

he two most advanced presented algor .ithms with all t
.

he countermeasures require

respectively ×2 in memory with ×1.22 in computation time and ×2.3 in memory with

×0.51 in computation time compared to a classic double-and-add algor .ithm with mixed

jacobian-affine coordinates.intern These numbers does not include t
.

he curve parameters which

would reduce t
.

he memory overhead ratio.

122



Contributions

J. Dubeuf, D. Hely, and V. Beroulle, “Ecdsa passive attacks, leakage sources, and

common design mistakes,”ACM Trans. Des. Autom. Electron. Syst., vol. 21, pp. 31:1–

31:24, Jan. 2016

J. Dubeuf, D. Hély, and V. Beroulle, “Enhanced elliptic curve scalar multiplication

secure against side channel attacks and safe errors,” in Constructive Side-Channel

Analysis and Secure Design - 8th International Workshop, COSADE 2017, Paris,

France, April 13-14, 2017, Revised Selected Papers, pp. 65–82, 2017

J. Dubeuf, F. Lhermet, and Y. LOISEL, “Systems and methods for operating secure

elliptic curve cryptosystems,” Sept. 22 2016. US Patent App. 14/744,927

123



124



Bibliography

[1] G. Martinez, H. Encinas, and S. Avila, “A survey of the elliptic curve integrated

encryption scheme.” Journal of computer science and engineering,2, 2 (2010), 7-13,

2010. http://hdl.handle.net/10261/32671/.

[2] “Information technology – Security techniques – Information security manage-

ment systems – Overview and vocabulary,” ISO/IEC 27000:2016, International

Organization for Standardization, Geneva, CH, Feb. 2016.

[3] Y. CHERDANTSEVA and J. Hilton, “Information security and information as-

surance. the discussion about the meaning, scope and goals,” 09 2013.

[4] C. National Research Council, K. W. Dam, and H. S. Lin, Cryptography’s Role

in Securing the Information Society. Washington, DC, USA: National Academy

Press, 1996.

[5] P. C. Kocher, Timing Attacks on Implementations of Diffie-Hellman, RSA,

DSS, and Other Systems, pp. 104–113. Berlin, Heidelberg: Springer Berlin

Heidelberg, 1996.

[6] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,” in Proceedings

of the 19th Annual International Cryptology Conference on Advances in

Cryptology, CRYPTO ’99, (London, UK, UK), pp. 388–397, Springer-Verlag, 1999.

[7] K. Gandolfi, C. Mourtel, and F. Olivier, Electromagnetic Analysis: Concrete

Results, pp. 251–261. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001.

[8] A. Schlösser, D. Nedospasov, J. Krämer, S. Orlic, and J.-P. Seifert, “Simple pho-

tonic emission analysis of aes,” in Cryptographic Hardware and Embedded

125



Systems – CHES 2012 (E. Prouff and P. Schaumont, eds.), (Berlin, Heidelberg),

pp. 41–57, Springer Berlin Heidelberg, 2012.

[9] R. Newman, “Visible light from a silicon p− n junction,” Phys. Rev., vol. 100,

pp. 700–703, Oct 1955.

[10] W. K. Chim, Semiconductor Device and Failure Analysis : Using Photon

Emission Microscopy. Wiley, 2000.

[11] D. Genkin, A. Shamir, and E. Tromer, “Rsa key extraction via low-bandwidth

acoustic cryptanalysis,” in Advances in Cryptology – CRYPTO 2014 (J. A.

Garay and R. Gennaro, eds.), (Berlin, Heidelberg), pp. 444–461, Springer Berlin

Heidelberg, 2014.

[12] D. J. Bernstein, “Cache-timing attacks on aes,” tech. rep., 2005.

[13] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard,

T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks: Exploiting speculative

execution,” meltdownattack.com, 2018.

[14] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P. Kocher,

D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown,” meltdownattack.com,

2018.

[15] J. W. Bos, C. Hubain, W. Michiels, and P. Teuwen, “Differential computation

analysis: Hiding your white-box designs is not enough,” in Cryptographic Hard-

ware and Embedded Systems – CHES 2016 (B. Gierlichs and A. Y. Poschmann,

eds.), (Berlin, Heidelberg), pp. 215–236, Springer Berlin Heidelberg, 2016.

[16] O. Faurax, A. Tria, L. Freund, and F. Bancel, “Robustness of circuits under delay-

induced faults : test of aes with the pafi tool,” in 13th IEEE International

On-Line Testing Symposium (IOLTS 2007), pp. 185–186, July 2007.

[17] A. Barenghi, G. Bertoni, E. Parrinello, and G. Pelosi, “Low voltage fault attacks on

the rsa cryptosystem,” in 2009 Workshop on Fault Diagnosis and Tolerance

in Cryptography (FDTC), pp. 23–31, Sept 2009.

[18] R. Anderson and M. Kuhn, Low cost attacks on tamper resistant devices,

pp. 125–136. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998.

[19] P. I. Breveglieri, I. Koren, F. D. A. T. In, H. Choukri, and M. Tunstall, “Round

reduction using faults.”

126



[20] J. Brouchier, T. Kean, C. Marsh, and D. Naccache, “Temperature attacks,” IEEE

Security and Privacy, vol. 7, pp. 79–82, Mar. 2009.

[21] A. Debhaoui, J.-M. Dutertre, B. Robisson, P. Orsatelli, P. Maurine, and A. Tria,

“Injection of transient faults using electromagnetic pulses Practical results on

a cryptographic system,” 2012. Journal of Cryptology ePrint Archive: Report

2012/123.

[22] S. P. Skorobogatov and R. J. Anderson, Optical Fault Induction Attacks, pp. 2–

12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003.

[23] P. Maurine, K. Tobich, T. Ordas, and P. Y. Liardet, “Yet Another Fault Injection

Technique : by Forward Body Biasing Injection,” in YACC’2012: Yet Another

Conference on Cryptography, (Porquerolles Island, France), Sept. 2012.

[24] N. Beringuier-Boher, M. Lacruche, D. El-Baze, J.-M. Dutertre, J.-B. Rigaud, and

P. Maurine, “Body biasing injection attacks in practice,” in Proceedings of the

Third Workshop on Cryptography and Security in Computing Systems, CS2

’16, (New York, NY, USA), pp. 49–54, ACM, 2016.

[25] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and

O. Mutlu, “Flipping bits in memory without accessing them: An experimental

study of dram disturbance errors,” in 2014 ACM/IEEE 41st International

Symposium on Computer Architecture (ISCA), pp. 361–372, June 2014.

[26] E. Sanfelix, C. Mune, and J. de Haas, “Unboxing the white-box,” Blackhat Europe,

2015.

[27] N. Koblitz, “Elliptic curve cryptosystems,” Mathematics of Computation,

vol. 48, pp. 203–209, Jan. 1987.

[28] V. S. Miller, “Use of elliptic curves in cryptography,” in Advances in Cryptology

— CRYPTO ’85 Proceedings (H. C. Williams, ed.), (Berlin, Heidelberg), pp. 417–

426, Springer Berlin Heidelberg, 1986.

[29] D. Hankerson, A. J. Menezes, and S. Vanstone, Guide to Elliptic Curve Cryp-

tography. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2003.

[30] J. M. Pollard, “Monte Carlo methods for index computation mod p,” Mathemat-

ics of Computation, vol. 32, pp. 918–924, 1978.

[31] S. Pohlig and M. Hellman, “An improved algorithm for computing logarithms

over and its cryptographic significance (corresp.),” IEEE Trans. Inf. Theor.,

vol. 24, pp. 106–110, Sept. 2006.

127



[32] T. Satoh and K. Araki, “Fermat quotients and the polynomial time discrete log

algorithm for anomalous elliptic curves,” Commentarii Math. Univ. St. Pauli,

1998.

[33] I. A. Semaev, “Evaluation of discrete logarithms in a group of p-torsion points of

an elliptic curve in characteristic p,”Math. Comput., vol. 67, no. 221, pp. 353–356,

1998.

[34] N. P. Smart, “The discrete logarithm problem on elliptic curves of trace one,”

Journal of Cryptology, vol. 12, pp. 193–196, 1999.

[35] A. Menezes, S. Vanstone, and T. Okamoto, “Reducing elliptic curve logarithms

to logarithms in a finite field,” in Proceedings of the Twenty-third Annual

ACM Symposium on Theory of Computing, STOC ’91, (New York, NY, USA),

pp. 80–89, ACM, 1991.

[36] G. Frey and H.-G. Rück, “A remark concerning m-divisibility and the discrete

logarithm in the divisor class group of curves,” Math. Comput., vol. 62, pp. 865–

874, Apr. 1994.

[37] NIST, “Digital signature standard (dss).” FIPS PUB 186., 2013. http://

nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf.

[38] P. Q. Nguyen and I. Shparlinski, “The insecurity of the digital signature algorithm

with partially known nonces,” J. Cryptology, vol. 15, no. 3, pp. 151–176, 2002.

[39] B. B. Brumley and N. Tuveri, “Remote timing attacks are still practical,” in Com-

puter Security - ESORICS 2011 - 16th European Symposium on Research in

Computer Security, Leuven, Belgium, September 12-14, 2011. Proceedings,

pp. 355–371, 2011.

[40] L. A. L. L. Lenstra, H.W. jr., “Factoring polynomials with rational coefficients.,”

Mathematische Annalen, vol. 261, pp. 515–534, 1982.

[41] L. Babai, “On lovász’ lattice reduction and the nearest lattice point problem,”

Combinatorica, vol. 6, Mar. 1986.

[42] D. Goudarzi, M. Rivain, and D. Vergnaud, “Lattice attacks against elliptic-curve

signatures with blinded scalar multiplication,” in Selected Areas in Cryptogra-

phy - SAC 2016 - 23rd International Conference, St. John’s, NL, Canada,

August 10-12, 2016, Revised Selected Papers, pp. 120–139, 2016.

[43] D. Bleichenbacher, “On the generation of dss one-time keys.” Preprint, 2001.

128



[44] NSA, “Tempest: A signal problem,” in Cryptologic Spectrum, 1972.

[45] “Tempest certification program,” Accessed: 2017-11-15. https://www.iad.gov/

iad/programs/iad-initiatives/tempest.cfm.

[46] “Canadian emsec and tempest,” Accessed: 2017-11-15. https://www.cse-

cst.gc.ca/en/publication/list/EMSEC-and-TEMPEST.

[47] W. Van Eck, “Electromagnetic radiation from video display units: An eavesdrop-

ping risk?,” Computers & Security, vol. 4, no. 4, pp. 269 – 286, 1985.

[48] J.-J. Quisquater and D. Samyde, ElectroMagnetic Analysis (EMA): Measures

and Counter-measures for Smart Cards, pp. 200–210. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2001.

[49] S. Mangard, E. Oswald, and T. Popp, Power Analysis Attacks: Revealing the

Secrets of Smart Cards (Advances in Information Security). Secaucus, NJ,

USA: Springer-Verlag New York, Inc., 2007.

[50] J.-S. Coron, “Resistance against differential power analysis for elliptic curve cryp-

tosystems,” 1999.

[51] C. Rebeiro, D. Mukhopadhyay, and S. Bhattacharya, Timing Channels in Cryp-

tography. Springer-Verlag New York, Inc., 2015.

[52] E. Brier, M. Joye, and T. E. D. Win, “Weierstraß elliptic curves and side-channel

attacks,” in Public Key Cryptography – PKC 2002, volume 2274 of LNCS,

pp. 335–345, Springer–Verlag, 2002.

[53] M. Medwed and E. Oswald, “Template attacks on ecdsa.,” in WISA (K.-I. Chung,

K. Sohn, and M. Yung, eds.), vol. 5379 of Lecture Notes in Computer Science,

pp. 14–27, Springer, 2008.

[54] L. Batina, L. Chmielewski, L. Papachristodoulou, P. Schwabe, and M. Tunstall,

“Online template attacks,” in Progress in Cryptology - INDOCRYPT 2014 -

15th International Conference on Cryptology in India, New Delhi, India,

December 14-17, 2014, Proceedings, pp. 21–36, 2014.

[55] J.-L. Danger, S. Guilley, P. Hoogvorst, C. Murdica, and D. Naccache, “A synthesis

of side-channel attacks on elliptic curve cryptography in smart-cards,” Journal

of Cryptographic Engineering, vol. 3, no. 4, pp. 241–265, 2013.

129



[56] H. Mamiya, A. Miyaji, and H. Morimoto, “Efficient countermeasures against rpa,

dpa, and SPA,” in Cryptographic Hardware and Embedded Systems - CHES

2004: 6th International Workshop Cambridge, MA, USA, August 11-13,

2004. Proceedings, pp. 343–356, 2004.

[57] G. L. Keister and H. V. Stewart, “The effect of nuclear radiation on selected

semiconductor devices,” Proceedings of the IRE, vol. 45, pp. 931–937, July

1957.

[58] R. S. Caldwell, D. S. Gage, and G. H. Hanson, “The transient behavior of transis-

tors due to ionized radiation pulses,” Transactions of the American Institute

of Electrical Engineers, Part I: Communication and Electronics, vol. 81,

pp. 483–491, Jan 1963.

[59] J. L. Wirth and S. C. Rogers, “The transient response of transistors and diodes to

ionizing radiation,” IEEE Transactions on Nuclear Science, vol. 11, pp. 24–38,

Nov 1964.

[60] D. H. Habing, “The use of lasers to simulate radiation-induced transients in

semiconductor devices and circuits,” IEEE Transactions on Nuclear Science,

vol. 12, pp. 91–100, Oct 1965.

[61] D. Binder, E. C. Smith, and A. B. Holman, “Satellite anomalies from galactic

cosmic rays,” IEEE Transactions on Nuclear Science, vol. 22, pp. 2675–2680,

Dec 1975.

[62] T. C. May and M. H. Woods, “A new physical mechanism for soft errors in

dynamic memories,” in 16th International Reliability Physics Symposium,

pp. 33–40, April 1978.

[63] J. F. Ziegler and W. A. Lanford, “Effect of cosmic rays on computer memories,”

Science, vol. 206, no. 4420, pp. 776–788, 1979.

[64] D. Boneh, R. A. Demillo, and R. J. Lipton, “On the importance of eliminating

errors in cryptographic computations,” Journal of Cryptology, vol. 14, pp. 101–

119, 2001.

[65] E. Biham and A. Shamir, Differential fault analysis of secret key cryptosys-

tems, pp. 513–525. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997.

[66] C. Aumüller, P. Bier, W. Fischer, P. Hofreiter, and J.-P. Seifert, Fault Attacks on

RSA with CRT: Concrete Results and Practical Countermeasures, pp. 260–

275. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003.

130



[67] J. L. Danger, S. Guilley, S. Bhasin, and M. Nassar, “Overview of dual rail with

precharge logic styles to thwart implementation-level attacks on hardware crypto-

processors,” in 2009 3rd International Conference on Signals, Circuits and

Systems (SCS), pp. 1–8, Nov 2009.

[68] T. Fukunaga and J. Takahashi, “Practical fault attack on a cryptographic lsi

with iso/iec 18033-3 block ciphers,” in 2009 Workshop on Fault Diagnosis and

Tolerance in Cryptography (FDTC), pp. 84–92, Sept 2009.

[69] M. Agoyan, J.-M. Dutertre, D. Naccache, B. Robisson, and A. Tria,When Clocks

Fail: On Critical Paths and Clock Faults, pp. 182–193. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2010.

[70] K. Sakiyama, T. Yagi, and K. Ohta, “Fault analysis attack against an aes prototype

chip using rsl,” in Proceedings of the The Cryptographers’ Track at the RSA

Conference 2009 on Topics in Cryptology, CT-RSA ’09, (Berlin, Heidelberg),

pp. 429–443, Springer-Verlag, 2009.

[71] F. Khelil, M. Hamdi, S. Guilley, J. L. Danger, and N. Selmane, “Fault analysis

attack on an fpga aes implementation,” in 2008 New Technologies, Mobility

and Security, pp. 1–5, Nov 2008.

[72] N. Selmane, S. Guilley, and J. L. Danger, “Practical setup time violation attacks

on aes,” in 2008 Seventh European Dependable Computing Conference, pp. 91–

96, May 2008.

[73] J. M. Schmidt, M. Hutter, and T. Plos, “Optical fault attacks on aes: A threat in

violet,” in 2009 Workshop on Fault Diagnosis and Tolerance in Cryptography

(FDTC), pp. 13–22, Sept 2009.

[74] S. Skorobogatov, “Using optical emission analysis for estimating contribution

to power analysis,” in 2009 Workshop on Fault Diagnosis and Tolerance in

Cryptography (FDTC), pp. 111–119, Sept 2009.

[75] Y. Monnet, M. Renaudin, R. Leveugle, C. Clavier, and P. Moitrel, Case Study of

a Fault Attack on Asynchronous DES Crypto-Processors, pp. 88–97. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2006.

[76] Alphanov, “Focus and scan two laser spots through the field of the objective,”

Accessed: 2017-09-15. http://www.alphanov.com/41-optoelectronics-

systems-and-microscopy-double-laser-microscope-station.html.

131



[77] A. Tang, S. Sethumadhavan, and S. Stolfo, “CLKSCREW: Exposing the perils of

security-oblivious energy management,” in 26th USENIX Security Symposium

(USENIX Security 17), (Vancouver, BC), pp. 1057–1074, USENIX Association,

2017.

[78] “Soc and cpu system-wide approach to security,” Accessed: 2017-11-12. https:

//www.arm.com/products/security-on-arm/trustzone.

[79] P. Q. Nguyen and M. Tibouchi, Lattice-Based Fault Attacks on Signatures.

nformation Security and Cryptography, Springer, 2011.

[80] S.-M. Yen, S. Kim, S. Lim, and S. Moon, “A countermeasure against one physical

cryptanalysis may benefit another attack,” in Proceedings of the 4th Interna-

tional Conference Seoul on Information Security and Cryptology, ICISC ’01,

(London, UK, UK), pp. 414–427, Springer-Verlag, 2002.

[81] M. Joye and S.-M. Yen, “The montgomery powering ladder,” in Revised Papers

from the 4th International Workshop on Cryptographic Hardware and Em-

bedded Systems, CHES ’02, (London, UK, UK), pp. 291–302, Springer-Verlag,

2003.

[82] J. Fan and I. Verbauwhede, “An updated survey on secure ecc implementations:

Attacks, countermeasures and cost,” in cryptography,” in Cryptography and

Security: From Theory to Applications (D. Naccache, ed.), vol. 6805 of Lecture

Notes in Computer Science, pp. 265–282, Springer Berlin Heidelberg, 2012.

[83] F. Rondepierre, “Revisiting atomic patterns for scalar multiplications on elliptic

curves,” in Smart Card Research and Advanced Applications (A. Francillon

and P. Rohatgi, eds.), vol. 8419 of Lecture Notes in Computer Science, pp. 171–

186, Springer International Publishing, 2013.

[84] H. Mamiya, A. Miyaji, and H. Morimoto, “Efficient countermeasures against rpa,

dpa, and spa.,” in CHES (M. Joye and J.-J. Quisquater, eds.), vol. 3156 of Lecture

Notes in Computer Science, pp. 343–356, Springer, 2004.

[85] K. Itoh, T. Izu, and M. Takenaka, “Efficient countermeasures against power anal-

ysis for elliptic curve cryptosystems,” in Smart Card Research and Advanced

Applications VI, IFIP 18th World Computer Congress, TC8/WG8.8 &

TC11/WG11.2 Sixth International Conference on Smart Card Research and

Advanced Applications (CARDIS), 22-27 August 2004, Toulouse, France,

pp. 99–113, 2004.

132



[86] L. Goubin, “A refined power-analysis attack on elliptic curve cryptosystems.,”

in Public Key Cryptography (Y. Desmedt, ed.), vol. 2567 of Lecture Notes in

Computer Science, pp. 199–210, Springer, 2003.

[87] T. Akishita and T. Takagi, “Zero-value point attacks on elliptic curve cryptosys-

tem,” in Information Security (C. Boyd and W. Mao, eds.), vol. 2851 of Lecture

Notes in Computer Science, pp. 218–233, Springer Berlin Heidelberg, 2003.

[88] J. Dubeuf, D. Hely, and V. Beroulle, “Ecdsa passive attacks, leakage sources, and

common design mistakes,” ACM Trans. Des. Autom. Electron. Syst., vol. 21,

pp. 31:1–31:24, Jan. 2016.

[89] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B. Yang, “High-speed high-

security signatures,” IACR Cryptology ePrint Archive, vol. 2011, p. 368, 2011.

[90] D. J. Bernstein, P. Birkner, M. Joye, T. Lange, and C. Peters, “Twisted ed-

wards curves.” Cryptology ePrint Archive, Report 2008/013, 2008. http://

eprint.iacr.org/.

[91] A. Alkhoraidly, A. Dominguez-Oviedo, and M. A. Hasan, “Fault attacks on elliptic

curve cryptosystems,” in Fault Analysis in Cryptography, pp. 137–155, 2012.

[92] A. Barenghi, G. Bertoni, A. Palomba, and R. Susella, “A novel fault attack against

ECDSA,” in HOST 2011, Proceedings of the 2011 IEEE International Sym-

posium on Hardware-Oriented Security and Trust (HOST), 5-6 June 2011,

San Diego, California, USA, pp. 161–166, 2011.

[93] S. Ali, X. Guo, R. Karri, and D. Mukhopadhyay, Fault Attacks on AES and

Their Countermeasures, pp. 163–208. Cham: Springer International Publishing,

2016.

[94] P.-A. Fouque, D. Réal, F. Valette, and M. Drissi, “The carry leakage on the

randomized exponent countermeasure.,” in CHES (E. Oswald and P. Rohatgi,

eds.), vol. 5154 of Lecture Notes in Computer Science, pp. 198–213, Springer,

2008.

[95] K. Itoh, T. Izu, and M. Takenaka, “Address-bit differential power analysis of

cryptographic schemes ok-ecdh and ok-ecdsa,” in Revised Papers from the 4th

International Workshop on Cryptographic Hardware and Embedded Systems,

CHES ’02, (London, UK, UK), pp. 129–143, Springer-Verlag, 2003.

[96] A. Bauer, É. Jaulmes, E. Prouff, and J. Wild, “Horizontal collision correlation

attack on elliptic curves,” in Selected Areas in Cryptography - SAC 2013 -

133



20th International Conference, Burnaby, BC, Canada, August 14-16, 2013,

Revised Selected Papers, pp. 553–570, 2013.

[97] R. R. Goundar, M. Joye, A. Miyaji, M. Rivain, and A. Venelli, “Scalar multi-

plication on weierstraß elliptic curves from co-z arithmetic.,” J. Cryptographic

Engineering, vol. 1, no. 2, pp. 161–176, 2011.

[98] M. Hedabou, P. Pinel, and L. Bénéteau, “Countermeasures for preventing comb

method against sca attacks,” in Proceedings of the First International Con-

ference on Information Security Practice and Experience, ISPEC’05, (Berlin,

Heidelberg), pp. 85–96, Springer-Verlag, 2005.

[99] F. Muller and F. Valette, “High-order attacks against the exponent splitting

protection,” in Public Key Cryptography, pp. 315–329, 2006.

[100] B. Feix, M. Roussellet, and A. Venelli, “Side-channel analysis on blinded regular

scalar multiplications.” Cryptology ePrint Archive, Report 2014/191, 2014. http:

//eprint.iacr.org/.

[101] K. Okeya and K. Sakurai, “Power analysis breaks elliptic curve cryptosystems even

secure against the timing attack,” in Progress in Cryptology - INDOCRYPT

2000, First International Conference in Cryptology in India, Calcutta, India,

December 10-13, 2000, Proceedings, pp. 178–190, 2000.

[102] P.-A. Fouque and F. Valette, “The doubling attack - why upwards is better than

downwards.,” in CHES (C. D. Walter, e. K. Koç, and C. Paar, eds.), vol. 2779

of Lecture Notes in Computer Science, pp. 269–280, Springer, 2003.

[103] F. Courbon, Partial hardware reverse engineering applied to fine grained

laser fault injection and efficient hardware trojans detection. Theses, Ecole

Nationale Supérieure des Mines de Saint-Etienne, Sept. 2015.

[104] M. Hutter, M. Medwed, D. Hein, and J. Wolkerstorfer, Attacking ECDSA-

Enabled RFID Devices, pp. 519–534. Berlin, Heidelberg: Springer Berlin Hei-

delberg, 2009.

[105] M. Repka, M. Varchola, and M. Drutarovský, “Improving cpa attack against dsa

and ecdsa,” vol. 66, pp. 159–163, 06 2015.

[106] J. Schmidt and M. Medwed, “A fault attack on ECDSA,” in FDTC, pp. 93–99,

IEEE Computer Society, 2009.

134



[107] J. Dubeuf, D. Hély, and V. Beroulle, “Enhanced elliptic curve scalar multipli-

cation secure against side channel attacks and safe errors,” in Constructive

Side-Channel Analysis and Secure Design - 8th International Workshop,

COSADE 2017, Paris, France, April 13-14, 2017, Revised Selected Papers,

pp. 65–82, 2017.

[108] J. Dubeuf, F. Lhermet, and Y. LOISEL, “Systems and methods for operating

secure elliptic curve cryptosystems,” Sept. 22 2016. US Patent App. 14/744,927.

135



136



Résumé substantiel

Ce document de thèse vise tout d’abord à soulever un certain nombre de vulnérabilités

liées à l’utilisation de l’ECDSA dans un environnement permettant les analyses par

canaux-cachés ou par attaques en fautes. Il rappelle que l’ECDSA a pour particularité

d’être extrêmement sensible en cas de fuite partielle d’informations sur les secrets

manipulés, ce qui est dû aux attaques à base de réseau euclidien. Nous constatons à

travers la thèse que toutes les contremesures contre les attaques par canaux-cachés et

attaques en faute ne protègent pas intégralement les secrets manipulés. Il devient alors

possible de récupérer partiellement de l’information sur ces secrets et ainsi d’utiliser des

outils de cryptanalyse mathématique afin de complètement récupérer les secrets. De

nouvelles contremesures sont donc indispensables afin de garantir qu’aucune information

permettant une cryptanalyse mathématique ne fuite du système.

La sécurité de l’information est l’un des enjeux majeurs du monde actuel. La cryp-

tographie y joue un rôle particulier puisqu’elle permet, via une assurance mathématique

ou physique, d’apporter confidentialité, intégrité et authenticité aux systèmes. Les

implémentations cryptographiques dépendent d’un support physique qui est bien sou-

vent un circuit intégré. Ces circuits peuvent être la cible d’attaques diverses et variées.

Les attaques par canaux-cachés ainsi que les attaques en fautes posent un problème

particulier de par le faible coût de mise en œuvre et l’accessibilité qu’elles permettent.

En effet, les attaques par canaux-cachés visent simplement à observer le système du-

rant l’exécution d’opération critique afin d’obtenir de l’information. Les observations se

portent sur des éléments tels que le temps de calcul, la consommation ou même le rayon-

nement électromagnétique du composant, de façon totalement passive. Les attaques en

fautes visent à influencer le composant durant l’exécution d’opération critique afin de les

altérer. L’attaquant analyse ensuite le résultat produit pour en retirer de l’information.

Pour se faire, différents moyens sont possibles. Tout d’abord, l’attaquant peut essayer

de faire fonctionner le composant au-delà des spécifications de fonctionnement fournies

par le fabricant. Il est également possible d’améliorer le contrôle de la faute injectée, en

ouvrant mécaniquement ou chimiquement le composant afin d’exposer certaines zones

du circuit logique à un faisceau laser, de telle sorte à apporter localement de l’énergie.

L’algorithme ECDSA est un algorithme cryptographique à clef publique à base de

courbe elliptique qui permet de valider qu’une entité est porteuse d’une clef privée à

partir d’une clef publique via un mécanisme de signature et vérification. Cet algorithme

est très utilisé à travers une multitude de protocoles afin de garantir l’authenticité d’un

message. Trois phases sont distinctes. Tout d’abord la génération de clef vise à générer

137



une clef publique à partir d’une clef privée grâce à l’utilisation d’un scalaire elliptique.

Cette paire de clefs correspond à une identité. La clef publique peut être connue de

tous alors que la clef privée permet à son porteur d’être le seul à pouvoir effectuer

certaines opérations, telle que la génération de signature. Cette dernière vise à générer

une signature (r; s) d’un message grâce à la clef privée et à un nombre aléatoirement

généré (nonce). La vérification de l’ECDSA permet de valider que la signature (r; s)

d’un message a bien été générée par quelqu’un connaissant la clef privée. L’étape de

vérification nécessite uniquement la clef publique, le message, ainsi que la signature.

Garantir la sécurité de l’implémentation de la signature de l’ECDSA est donc primor-

dial pour éviter le vol d’identité numérique. Ce schéma est cependant particulièrement

vulnérable à cause d’outils de cryptanalyse tels que les réseaux euclidiens qui perme-

ttent de récupérer la clef privée à partir de signatures dont on connâıt des fragments

d’information sur les nonces. Il en résulte qu’une implémentation légèrement imparfaite

peut être fatale à la sécurité globale du système. Nous avons donc expérimentalement

testé les attaques à base de réseaux euclidiens et constaté que 70 signatures dont on

connâıt 9 bits consécutifs du nonce suffisent pour extraire la clef privée d’un système

utilisant une courbe elliptique sur 256 bits. Cette constatation est dérangeante puisque

le nombre de bits requis est extrêmement faible en comparaison à la taille de la courbe.

De plus, notre implémentation de l’attaque est loin de représenter l’état de l’art en la

matière.

L’étape suivante du manuscrit vise donc à évaluer les algorithmes de scalaire elliptique

existants, afin de vérifier s’ils permettent de garantir la confidentialité de tous les bits du

scalaire manipulés face aux attaques par canaux cachés et en faute. Bien que ces sujets

ne soient pas inconnus, l’utilisation du scalaire elliptique dans le cadre de l’ECDSA le

soumet à des risques de sécurité particuliers qui n’ont, à notre goût, pas suffisamment été

abordés par le passé, du fait qu’une fuite partielle permet à un attaquant de récupérer

intégralement la clef privée. Par exemple, concernant les canaux cachés, nous avons

constaté que l’observation de calcul de différentes signatures pouvait dans certains cas

permettre à un attaquant d’identifier des signatures générées à partir de nonces qui

possèdent un groupe de bits avec la même valeur. Bien que la valeur reste inconnue de

l’attaquant, celui-ci peut néanmoins mener une cryptanalyse à base de réseau euclidien

tout en émettant des hypothèses sur la valeur du groupe de bits. A partir de cette

constatation, un attaquant peut donc observer les traces de consommation générées

lors de plusieurs signatures ; trouver des traces qui ont les mêmes bits de poids fort

et ensuite retrouver la clef privée grâce à une cryptanalyse à base de réseau euclidien.

En réalisant ceci à partir de cinq cent mille traces, l’attaquant peut espérer obtenir de

façon probabiliste trente signatures ayant les même quatorze bits de poids fort. Ce qui,

au vu de nos expérimentations, est largement suffisant pour extraire la clef privée d’un

138



système utilisant une courbe elliptique sur 256 bits.

Après une courte introduction sur la manière dont peut être insérée une faute dans

une puce électronique, les attaques en fautes visant l’ECDSA sont traitées en deux

points. Tout d’abord, les attaques sur le scalaire elliptique ; ensuite sur le reste de

la signature. Dans la première partie, nous montrons entre autres qu’il est possible

d’obtenir de l’information sur quelques bits du scalaire elliptique grâce à une faute.

Nous approfondissons notamment l’utilisation des safe-error et démontrons leur efficacité

sur différents algorithmes. Il en ressort que la quasi-totalité des algorithmes y sont

vulnérables lorsque le scalaire n’est pas masqué. Un exemple d’algorithme généralement

reconnu pour être résistant aux safe-errors est traité. Il s’agit du scalaire de Montgomery.

Cependant nous avons constaté que dans le cas d’un scalaire nul, cet algorithme se

transforme de telle sorte qu’une partie des opérations exécutées n’influent pas sur le

résultat final. Nous avons donc montré qu’il est possible, en fautant ces opérations, de

déterminer si les bits les moins significatifs d’ un scalaire aléatoire ont une valeur nulle

ou non avec le principe de safe-error.

D’autres exemples d’utilisation des safe-errors sont donnés dans le document visant les

différents niveaux arithmétiques des calculs. La notion de ”dummy operand”, également

introduite, permet de détecter des valeurs particulières d’opérandes à partir du principe

de safe-error. Il est également mentionné que le masquage du scalaire peut dans quelques

cas ne pas suffire car certains masquages ne protègent pas l’ensemble des bits du scalaire.

La deuxième partie concernant les attaque en faute sur l’ECDSA traite des fautes lors

de la génération de signature en dehors du scalaire elliptique. De nouvelles attaques sont

démontrées tirant parti de signatures générées à partir d’une clef privée ou d’un nonce

erroné. Il est montré qu’à partir d’une signature générée avec une clef fautée de quelques

bits, un attaquant peut retrouver l’erreur mathématique générée. En ayant connaissance

de la façon dont est représentée la clef dans le matériel (e.g. représentation binaire),

l’attaquant peut obtenir de l’information sur la clef privée. En attaquant récursivement,

l’ensemble de la clef privée peut ainsi être obtenue. De façon similaire, si, due à une

faute, les parties r et s d’une signature sont calculées à partir d’un nonce légèrement

différent de quelque bits, l’attaquant peut retrouver l’erreur générée et obtenir quelques

bits d’information sur le nonce utilisé. En cumulant ce genre de signature, il devient

possible à l’attaquant de récupérer la clef privée grâce aux attaques à base de réseau

euclidien. Nous montrons dans le document qu’il est également possible avec la même

approche d’extraire de l’information en ciblant des calculs intermédiaires.

Une analyse d’architecture classique de composants permettant la génération de

signatures d’ECDSA ainsi que des opportunités pour insérer les fautes discutées, est

fournie. Elle met en évidence les nombreuses possibilités offertes aux attaquants pour

récupérer la clef privée du système. Elle montre également l’importance de sécuriser

139



l’ensemble du système et non juste l’implémentation du scalaire elliptique.

Les contremesures développées dans le document visent à protéger l’ensemble de

la génération de signature ECDSA et sont présentées dans un chapitre dédié. Dans

un premier temps, de nouveaux algorithmes permettant le calcul du scalaire elliptique

sont fournis. Ils visent à résister aux différentes attaques en fautes et en canaux-cachés

discutées. Différents algorithmes effectuant plusieurs types de calculs sur les courbes

elliptique sont détaillés. Ces algorithmes sont ensuite modifiés afin de converger vers

un algorithme permettant un masquage efficace et total du scalaire utilisé. Grâce à ce

masquage, l’extraction de fragments d’information relatifs au scalaire, ne permet pas

à l’attaquant d’obtenir la clef privée du système via la cryptanalyse à base de réseau

euclidien.

Dans un second temps, des contremesures visant le reste du calcul de signature

de l’ECDSA sont détaillées. Ces dernières contremesures visent à protéger à la fois

l’utilisation de la clef privée, le nonce, ainsi que les calculs intermédiaires des attaques

en faute et par canaux-cachés. Le nonce est protégé en modifiant le schéma de signature

et l’algorithme du scalaire elliptique de telle sorte qu’il soit évalué une seul fois durant la

génération de la signature. La méthode présentée permet également de valider l’intégrité

du flot d’opérations, tout en protégeant la signature via des calculs infectieux qui rendent

les signatures modifiées par les attaquants inutilisables. Afin de protéger la clef privée,

un schéma de masquage avec mise à jour est également proposé. Le surcout généré par

l’ensemble de ces contremesures est contenu puisque le temps de calcul est augmenté

de seulement 22% comparé à l’algorithme de référence ”always-double-and-add” et ceci

tout en doublant le nombre de registres de travail.

140



141



Studies and Implementation of Hardware

Countermeasures for ECDSA Cryptosystems

Key Topics

∗ Elliptic curve arithmetic

∗ Lattice attac
.

k

∗ Side channel leakages of

few EC scalar bits

∗ Safe-error on EC scalar to

recover few sec
.

r .et bits

∗ Fault attac
.

k against t
.

he

ECDSA

∗ Example of vulnerable

architecture

∗ Countermeasures

Contenue clef

∗ Arithmétique des courbes

elliptiques

∗ Attaque par réseau

mathématique

∗ Canaux cachés visant

quelques bits du sec
.

r .et

∗ Safe-error et récupération

de quelques bits sec
.

r .ets

∗ ECDSA et attaques par

faute

∗ Exemple d’architecture

vulnérable

∗ Contremesures

Information security heavily relies on integrated circuits (ICs).intern Un-

fortunately, ICs face a lot of threats such as side channel or fault

attacks.intern This work focuses on small vulnerabilities and countermea-

sures for the Elliptic Curve Digital Signature Algorithm (ECDSA).intern

The motivation is that leakage sources may be used in different at-

tack scenarios.intern By fixing the leakage, existing attacks are prevented

but also undiscovered or non-disclosed attacks based on the leakage.intern

Moreover, while the elliptic curve scalar algorithm is at the heart of

the security of all elliptic curve related cryptographic schemes, all the

ECDSA system needs security.intern A small leakage of few secret bits may

conduct to fully disclose the private key and thus should be avoided.

The ECDSA can be implemented in different flavors such as in a

software that runs on a microcontroller or as a hardware self-contained

block or also as a mix between software and hardware accelerator.intern

Thus, a wide range of architectures is possible to implement an

ECDSA system.intern For this reason, this work mainly focuses on

algorithmic countermeasures as they allow being compliant with

different kinds of implementations.

La sécurité de l’information repose étroitement sur les circuits

intégrés (CI).intern Malheureusement, les CIs sont soumis à de nombreuses

menaces telles que les attaques par canaux cachés ou par injection

de fautes.intern Ce travail se concentre sur les petites vulnérabilités et les

contremesures liées à l’algorithme ECDSA.intern La motivation est qu’une

source de vulnérabilité peut être utilisée dans différents scénarios

d’attaque.intern En corrigeant la vulnérabilité, les attaques existantes sont

évitées mais également les attaques non découvertes ou non publiées

utilisant la vulnérabilité en question.intern De plus, bien que le scalaire

sur courbe elliptique soit au cœur de la sécurité de tous les schémas

cryptographiques à base de courbe elliptique, l’ensemble du système

a besoin d’être sécurisé.intern Une vulnérabilité concernant simplement

quelques bits de secret peut suffire à récupérer la clef privée et donc

doit être évitée.

L’ECDSA peut être implémenté de différentes façons, en logiciel ou

via du matériel dédié ou un mix des deux.intern De nombreuses architec-

tures différentes sont donc possibles pour implémenter un système à

base d’ECDSA.intern Pour cette raison, ces travaux se concentrent princi-

palement sur les contremesures algorithmiques.


