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Summary

Higher order statistics for cosmology: likelihood
development for future surveys like Euclid

Weak gravitational lensing by the large-scale structure is the e�ect of bending of light
emitted by background galaxies due to the presence of foreground matter. It represents
a powerful tool for estimating cosmological parameters as it is sensitive to the large-scale
structure of the universe. Past, present, and future cosmological surveys, like the upcom-
ing European Space Agency’s Euclid mission, will use it as one of the main physical probes
for investigating unsolved questions in current cosmology, such as: what the properties of
the dark components of the universe are, what the origin of its accelerated expansion is
and what the sum of neutrino masses is. As weak lensing surveys become deeper, they re-
veal more non-Gaussian features of the matter density �eld, requiring statistics beyond the
second order to properly extract cosmological information. This has motivated the intro-
duction of several statistics of order higher than the second, such as Minkowski function-
als, higher-order moments, the bispectrum, peak counts and, most recently, the scattering
transform, wavelet phase harmonic statistics, and machine learning-based methods to ac-
count for non-Gaussian information in cosmological analysis. The aim of this thesis is to
investigate and develop statistical methods to optimally extract the information encoded in
the data in the context of higher order statistics, that can eventually help to improve the
constraints on cosmological parameters in current and future cosmological analysis. In a
�rst study, we have compared di�erent summary statistics (from power spectrum to peak
counts) and quanti�ed the impact of di�erent multi-scale �ltering techniques on cosmolog-
ical forecasts obtained in an ideal setting. Speci�cally, we employ a starlet �lter, which is an
isotropic undecimated wavelet transform that naturally decomposes the original image in
several di�erent images of the same size, enabling to extract cosmological information from
the maps at di�erent scales simultaneously. The performed study is tomographic, and we
compare di�erent summary statistics, assuming Euclid-like shape noise. The performance
of the starlet is compared with a concatenation of Gaussian �lters using peak counts and
with the state of the art of summary statistics in weak lensing in an ideal setting without
systematics e�ects. The �ndings are that in both multi-scale settings, peak counts result
to perform better than the state of the art for second order statistics and single scale peak
counts. Moreover, when using a multi-scale approach, joining power spectrum and peaks
does not add any relevant information over considering just the peaks alone. While the per-
formance and behaviour of both multi-scale �lters are similar, for the starlet �lter we �nd
that the majority of the information of the data covariance matrix is encoded in the diago-
nal elements. This can be advantageous when inverting the covariance matrix, speeding up
the numerical implementation. Based on the promising performance of the multi-scale ap-
proach in the context of peak counts found in the �rst study, we propose a new high order
summary statistics called the starlet `1-norm. This statistics provides a multi-scale calcula-
tion of the full voids and peaks distribution and avoids the problem of the de�nition of what
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is a peak and what is a void. Indeed, it is built so that it carries the information encoded in
all pixels of the map and not just the one in local maxima and local minima. The outcome
is that, in a tomographic ideal setting (without further systematics) with the assumption
of Euclid shape noise, this new summary statistics outperforms commonly used ones, such
as weak lensing peak counts, minimum counts, or combination of the two in terms of con-
straining power. The starlet `1-norm represents a new promising uni�ed framework to
account for the information encoded in peak counts and voids simultaneously, preserving
the advantages of the multi-scale approach. In order to accomplish these two studies, I de-
veloped a pipeline written in python that takes as input weak lensing convergence maps
and provides as output cosmological parameters constraints. In a second part, the thesis
presents preliminary results and procedures of the current work in progress. We aim at
extending the previous �ndings to di�erent survey settings and cosmological probes, by
applying high order statistics to galaxy clustering simulations for the Kilo-Degree Survey
(KiDS); as the two previous works were carried in an ideal setting (without systematics), we
show preliminary results of a �rst application to real data from the Canada-France Imaging
survey (CFIS) to test the robustness of these statistics.

Keywords:Weak gravitational lensing ; higher order statistics ; cosmological parameters ;
wavelet transform ; Euclid ; Dark energy ; Cosmology ; multi-scale analysis ; Large-scale
structure



Résumé de la thèse en français

Statistiques d’ordre supérieur pour la cosmologie :
développement de la fonction de vraisemblance pour

des missions comme Euclid

L’ e�et de lentille gravitationnelle faible lié aux structures à grande échelle est l’e�et de
la courbure de la lumière émise par les galaxies d’arrière-plan en raison de la présence de
matière au premier plan. Il représente un outil puissant pour estimer les paramètres cos-
mologiques car il est sensible aux structures à grande échelle de l’univers. Les études cos-
mologiques passées, présentes et futures, comme la prochaine mission Euclid de l’Agence
spatiale européenne, l’utiliseront comme l’une des principales sondes physiques pour en-
quêter sur les questions non résolues de la cosmologie actuelle, comme les propriétés des
composants sombres de l’univers, l’origine de son expansion accélérée ou de la somme
totale des masses des neutrinos. Au fur et à mesure que les relevés par lentilles faibles
deviennent plus profonds, ils révèlent davantage les caractéristiques non Gaussiennes du
champ de densité de matière, nécessitant ainsi l’utilisation de statistiques au-delà du sec-
ond ordre pour mieux extraire des données les informations cosmologiques. Ceci a motivé
l’introduction de di�érentes mesures statistiques d’ordre supérieur, telles que les fonctions
de Minkowski, le calcul des moments d’ordre supérieurs à 2, le bispectre, les comptages de
pics des vides ou, plus récemment, la scattering transform, la decomposition wavelet phase
harmonic statistics et des techniques d’intelligence arti�cielle. Cette thèse étudie le po-
tentiel d’e�ectuer des mesures statistiques multi-échelles dans le contexte des statistiques
d’ordre superieur pour contraindre les paramètres cosmologiques. Le manuscrit commence
en fournissant les outils généraux nécessaires pour comprendre les résultats présentés pen-
dant la thèse. En particulier, le modèle cosmologique standard, les principes de formations
des structures et certains des dé�s actuels de la cosmologie moderne sont présentés dans
le premier chapitre. Un aperçu des principales sondes cosmologiques qui seront utilisées
par Euclid est présenté avec les outils statistiques bayésiens qui seront utilisés dans les
di�érents travaux présentés dans la thèse. Le deuxième chapitre traite ensuite plus en dé-
tail les lentilles gravitationnelles faibles. La présentation commence avec la dérivation des
équations de lentille à partir de la déviation lumineuse. Puis, après avoir introduit la con-
vergence et le cisaillement, le lien entre observations et modèles cosmologiques est traité.
Ensuite, des statistiques de second ordre du cisaillement cosmique sont décrites et un bref
aperçu des e�ets systématiques tels que les e�ets des baryons, l’alignement des ellipticités
intrinsèques des galaxies, le biais sur la mesure du cisaillement dans les lentilles faibles et
certaines des contraintes actuelles sont présentés. Après, je décrit l’état de l’art des statis-
tiques d’ordre supérieur comme par exemple le bispectre, les fonctions des Minkowski, les
moments d’ordre supérieur à 2, le comptage de pics et des vides et en�n des techniques
qui utilisent l’apprentissage automatique. L’objectif du troisième chapitre est d’introduire
quelques dé�nitions utiles dans le cadre du formalisme en ondelettes. En particulier, je com-
mence par donner une brève introduction de la notion de parcimonie, de transformée en
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ondelettes continue et d’ondelette discrète. Grâce à ces outils, la transformée en starlette,
qui sera largement utilisée dans les chapitres 4, 5 et 6 est introduite. Ensuite, la procé-
dure suivie pour estimer la bruit dans les images utilisées dans le manuscript et calculer
les coe�cients d’ondelettes est illustrée. En�n, un bref aperçu des récentes méthodes de
reconstruction des cartes de masse basées sur des représentations parcimonieuses, comme
DeepMass etMCALens, est fourni. Dans le quatrième chapitre je présente la motivation,
la méthodologie et les résultats de notre étude présentés dans mon premier papier (Ajani
et al. 2020). Nous avons étudié l’impact des approches de �ltrage multi-échelles sur les
paramètres cosmologiques en employant un �ltre starlette (ondelette) et une concaténation
de Filtres Gaussiens pour contraindre la somme des masses de neutrinos Mν , le paramètre
de densité de matière Ωm et l’amplitude du spectre de puissance primordial As en utilisant
quatre redshifts tomographiques en simulant un bruit pour une mission comme Euclid.
Nous avons comparé di�érentes statistiques: le spectre de puissance, le comptage de pics à
une seule échelle et à plusieurs échelles et évalué leurs performances dans un cadre idéal
(sans inclure e�ets systématiques). Nous considérons d’abord deux techniques d’analyse
multi-échelles sur des simulations de cartes convergence de lentilles faibles fournies par
les manipulations MassiveNus. Nous ajoutons du bruit qui simule Euclid à ces cartes
et nous comparons les deux techniques, a�n de quanti�er l’impact du choix du �ltre sur
la capacité à contraindre les paramètres. La première approche est la concaténation de �l-
tres Gaussiens suivie de comptages de pics et la seconde consiste à utiliser une transformée
starlette qui est une transformée en ondelettes isotrope non décimée et qui décompose une
image en plusieurs bandes de même taille, permettant d’extraire simultanément des infor-
mations cosmologiques des cartes à di�érentes échelles. Cette étude exploite l’information
tomographique et considère un bruit d’une amplitude de l’ordre du bruit attendu avec la
mission Euclid. Nous trouvons que ces deux approches de comptage de pics multi-échelles
performent mieux des méthodes couramment utilisées qui sont les statistiques de second
ordre comme le spectre de puissance ou le comptage de pics à une seule échelle pour ce
qui concerne la puissance de contraindre. De plus, nous observons que dans le cas d’une
analyse multi-échelle, combiner les pics multi-échelles avec le spectre de puissance n’ajoute
aucune information supplémentaire par rapport à la prise en compte uniquement des pics.
L’avantage de la transformée starlette par rapport aux �ltres multi-Gaussiens est que la
matrice de covariance est quasiment diagonale, ce qui facilite son inversion. Plus spéci-
�quement, nous trouvons que:

a) Pour les comptages de pics, une approche de �ltrage multi-échelle des cartes bruitées
conduit à un facteur d’amélioration de plus de deux par rapport à une approche mono-
échelle (noyau Gaussien unique pour �ltrer la carte de convergence) pour les con-
traintes conjointes sur (Mν ,Ωm), (Mν , As) et (Ωm, As) lors de l’utilisation d’un noyau
starlette, et un facteur de plus de trois lors de l’utilisation d’un �ltre multi-Gaussien.
Ceci est encore plus évident dans les contraintes marginalisées, où l’amélioration est
respectivement de 43% sur Mν , 25% sur Ωm et 34% sur As pour la starlette, alors
que pour le setting multi-Gaussien c’est 54% sur Mν , 25% sur Ωm et 45% sur As.
L’utilisation d’un �ltre multi-Gaussien au lieu d’un �ltre starlette dans le contexte
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du nombre de pics pourrait améliorer les contraintes de 19% sur Mν et de 18% sur
As, alors qu’aucune amélioration est remarquée pour Ωm. En�n, les deux comptages
de pics multi-échelles fonctionnent mieux que le spectre de puissance sur l’ensemble
des paramètres [Mν , Ωm, As] respectivement de 63%, 40% et 72% lors de l’utilisation
d’un �ltre starlette et de 70%, 40% et 77% lors de l’utilisation d’un �ltre Gaussien
multi-échelle.

b) Lors de la combinaison des pics multi-échelle avec le spectre de puissance, c’est-à-dire
en utilisant une concaténation du nombre de pics et du spectre de puissance comme
vecteur de données observé, nous constatons que l’information est principalement
contenue dans les seuls pics (pour certains paramètres, tels que Ωm dans le cas de
la starlette, elle est encodé complètement). Cela suggère que lors de l’adoption d’une
approche multi-échelle, il pourrait être su�sant de travailler avec les pics seuls.

c) L’inclusion de la carte coarse dans la décomposition en starlette lors du comptage des
pics préserve des informations cruciales. De plus, pour les cartes avec une taille de
pixel de 0.4 arcmin, il existe une résolution minimale (c’est-à-dire la plus petite échelle
nécessaire) pour les échelles de starlette correspondant à θker = 3.2 arcmin pour
atteindre une puissance de contrainte maximale. Cela nous permet d’exclure les deux
premières échelles les plus �nes de la décomposition en starlette, qui correspondent
aux fréquences les plus élevées et sont les plus sujettes à l’impact du bruit, permettant
une analyse plus rapide et plus e�cace.

d) Nous remarquons que l’utilisation d’un �ltre starlette conduit à une matrice de co-
variance de données très diagonale, tandis que pour le �ltre multi-Gaussien, les ter-
mes hors diagonale sont prédominants et les corrélations entre les di�érentes échelles
sont non négligeables. En d’autres termes, la majorité des informations dans le cas
du �ltre starlette est codée dans les éléments diagonaux de la matrice de covariance.
C’est un aspect intéressant du �ltre starlette qui pourrait s’avérer utile lorsqu’il s’agit
de données de grande dimension où la matrice de covariance peut être di�cile à in-
verser.

En résumé, dans mon premier papier, nous con�rmons que le nombre de pics dans le con-
texte des lentilles faibles est un outil puissant pour dériver contraintes sur les paramètres
cosmologiques, en particulier lors de l’étude du régime non linéaire où l’impact de paramètres
tels que les masses de neutrinos devient important. Nous soulignons également l’importance
d’adopter une approche multi-échelle dans le contexte de comptages de pics de lentilles
faibles, qui présentent l’avantage d’analyser les informations encodées à di�érentes échelles
simultanément, conduisant ainsi à des contraintes plus strictes que l’analyse à une seule
échelle. Ensuite, dans le cinquième chapitre, je présente l’étude qui à mené à mon deux-
ième papier (Ajani et al. 2021). Dans cet étude, nous proposons ensuite de remplacer le
comptage de pic multi-échelle par un nouveau descripteur statistique, que nous appelons
`1-norm starlette, et qui consiste à sommer la norme `1 des coe�cients starlette de la carte
de convergence. Ceci évite de devoir dé�nir la notion de pic ou de vide, et permet de tenir
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compte de toute l’information contenue dans les coe�cients de notre analyse. Outre le
fait d’élégamment uni�er l’analyse des pics et des vides, cette nouvelle méthodologie est
plus e�cace non seulement que chacune des deux indépendamment mais aussi de l’analyse
jointe pics-vides. Motivé par les avantages des approches multi-échelles pour l’inférence
de paramètres cosmologiques comme discuté dans le chapitre 4 et avec les résultats récents
de Coulton et al. 2020a en combinant pics et minima, nous proposons la starlette `1-norm
comme nouvelle statistique d’ordre supérieur multi-échelles. La mesure des amplitudes des
pics à plusieurs échelles peut être considérée comme une mesure de la norme `1 d’un sous-
ensemble de coe�cients d’ondelettes positifs. De même, la mesure des amplitudes des vides
peut être considérée comme une mesure de la norme `1 d’un sous-ensemble de coe�cients
d’ondelettes négatifs. Les ondelettes fournissent donc un excellent cadre pour une anal-
yse conjointe des pics et des vides, dans laquelle les informations de tous les coe�cients
d’ondelettes sont incluses. Nous proposons donc d’utiliser une statistique `1-norm très sim-
ple dé�nie comme la somme de la `1-norm de tous les coe�cients dans une case du rapport
signal sur bruit S/N (pixel) donnée pour chaque échelle d’ondelettes, dé�nie comme:

lj,i1 =

#coef(Sj,i)∑

u=1

| Sj,i[u] |= ||Sj,i||1 (1)

si Bi et Bi+1 sont positifs, cela correspond à la dé�nition de l’ensemble des coe�cients Sj,i
à l’échelle j et dans le bin i tel que Sj,i = {wj,k/Bi < wj,k < Bi+1}, où k est le pixel
index. On peut alors calculer la somme

∑#coef(Sj,i)
u=1 Sj,i[u] et l’indice u va de 1 au nombre

de pixels dans un bac donné i à l’échelle j (i.e. #coef(Sj,i)). Nous étudions l’impact de
l’utilisation de la starlette norme `1 en tant que statistique calculée sur des cartes de con-
vergence à lentilles faibles pour estimer les paramètres cosmologiques et nous trouvons
qu’elle est potentiellement très e�cace en surpasser les statistiques de pointe, le spectre
de puissance et la combinaison de pics et de vides monoéchelle, respectivement de 72%
et 24% sur Mν , 60% et 50% sur Ωm et 75 % et 24 % sur As. Nous avons en outre pro-
posé des starlette extrema comme statistiques et les avons comparés à la `1-norm: dans ce
cas également, cette dernière est plus performante en termes de puissance de contrainte,
dans le cadre idéal actuel, tandis que les extrema de starlette présentent l’avantage d’une
matrice de covariance plus diagonale. Pour servir de sonde robuste pour la cosmologie de
précision, la puissance statistique seul ne su�t pas; pour leur utilisation, il sera important
de tester comment ces statistiques réagissent dans un cadre non idéal, et comment leurs
performances sont impactées par les e�ets systématiques du signal. En �n de chapitre, je
propose également une description et visualisation des di�érentes étapes du pipeline utilisé
pour obtenir le résultats des chapitre 4 et 5. Dans la suite, je montre dans le chapitre 6 les
résultats préliminaires relatif à l’application de notre nouvelle méthodologie pour le relevé
de galaxies KiDS (Kilo-Degree Survey) et également pour une autre sonde, le clustering des
galaxies. Plus en détail, je présente la procédure et quelques résultats préliminaires d’un
travail en cours (Ajani et al. in prep.) dont le but est d’étendre le pipeline décrit dans le
chapitre précédent en ce qui concerne 1) l’espace des paramètres considérés 2) la sonde



vii

cosmologique. La nouvelle sonde envisagée est le clustering photométrique des galaxies,
qui, avec la lentille faible et le clustering spectroscopique des galaxies, sera l’une des prin-
cipales sondes des relevés de galaxies de prochaine génération comme Euclid. Di�érentes
sondes cosmologiques sont a�ectées de manière di�érente par les redshifts considérés et
par les ranges dynamiques de la structure à grande échelle sous-jacente. Ceci, ainsi que les
di�érences dans les instruments employés et les approches de mesure, permettent d’obtenir
des informations cosmologiques complémentaires et de traiter facilement les e�ets systé-
matiques car ils sont généralement distincts et non corrélés dans di�érentes sondes. La
combinaison de sondes peut donc exploiter ces avantages. De plus, comme discuté en dé-
tail tout au long de cette thèse, les statistiques d’ordre supérieur au second ordre peuvent
fournir des informations non Gaussiennes supplémentaires qui sont généralement perdues
lors de l’utilisation de statistiques du second ordre uniquement. En utilisant donc une nou-
velle suite de simulations fournies par le premier auteur de Harnois-Déraps, J., Giblin, B.,
and Joachimi, B. 2019, je décris les paramètres et la procédure suivie jusqu’à présent et que
nous envisageons de suivre pour étudier l’impact de la combinaison de sondes dans le cadre
des statistiques d’ordre supérieur. Simultanément, j’illustre les questions ouvertes que nous
devons encore aborder pour étendre le pipeline pour atteindre cet objectif et l’extension déjà
accomplie. Dans le septième chapitre, je fournis la description de la première application
de mon pipeline à des données réelles du relevé Canada-France Imagerie (CFIS). Le relevé
d’imagerie Canada-France (CFIS), est un relevé en bandes u et r couvrant 5000 deg2 en
l’hémisphère Nord. Sa haute résolution et sa profondeur en font un excellent candidat aux
sondages pour la science des lentilles faibles à ce jour. Le CFIS est également un élément es-
sentiel des données nécessaires pour redshifts photométriques pour Euclid. Nous pro�tons
donc de la disponibilité des données du CFIS et commençons à inclure les systématiques
une à une, pour quanti�er leurs e�ets d’abord séparément et éventuellement conjointement.
Nous commençons par l’inclusion des e�ets baryoniques et fournissons une première de-
scription qualitative de leur impact dans trois scénarios di�érents pour une analyse des
comptage de pics. Maintenant, dans le but �nal d’inclure autant de systématiques que pos-
sible, nous nous concentrons sur une deuxième systématique, à savoir le biais sur la mésure
de cisaillement.

Mots clés: Lentillage gravitationnel faible ; Statistiques d’ordre supérieur ; paramètres
cosmologiques; Transformée en ondelettes ; Euclid ; Energie sombre ; Cosmologie ; analyse
multi-échelle; Grandes structures de l’Univers
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Introduction

A large part of current research in cosmology is driven by two fundamental questions, be-
ing what the nature and properties of dark matter and dark energy are. Observations of
the Cosmic Microwave Background (CMB) at microwave and infrared frequencies through
the European Space Agency (ESA) Planck mission enabled to measure several cosmological
parameters at the percent level and to establish the standard cosmological model to be the
Λ Cold Dark Matter (ΛCDM) model (Planck Collaboration et al. 2020). More precisely, we
know that only 5% of the Universe energy-matter content is composed by ordinary visible
matter that we are able to describe via the standard model of particle physics. The remain-
ing 95% is composed by two unknown components, referred to as dark matter and dark
energy. Also if we take a closer look to the standard model of particle physics, unanswered
questions are still present and in search of an answer, such as what the values of the neu-
trino masses are. To answer these questions, the �rst step to undertake is to investigate
which physical e�ects and observables are sensitive to dark matter, dark energy and the
sum of neutrino masses. We know that dark energy for example, is associated with the
accelerated expansion of the universe (Riess et al. 1998; Perlmutter et al. 1999) and that the
amount and the behaviour of dark matter and dark energy have an impact on how cosmic
structures grow. Combining information coming from the expansion history with the one
from the growth of structures will enable to understand whether the current discrepancies
between theory and observations lie in how dark energy is modelled (testing the validity
of considering it is a constant or if it is actually a �uid evolving in time) or if it is a sign
that our current theory of gravity needs to be modi�ed. Next year, in 2022, the European
Space Agency Medium Class Euclid (Laureijs et al. 2011) satellite will be launched in space
to survey the sky for 6 years in the near infrared and visible part of the electromagnetic
spectrum. In practice, Euclid will collect∼ 2 billions of galaxy shapes and∼ 30 millions of
galaxy positions that will make it possible to investigate the expansion history of the uni-
verse and the growth of structure in a redshift range 0 < z < 2, namely covering the period
of time during which dark energy played a crucial role in accelerating the expansion of the
Universe. This will allow to further test the ΛCDM paradigm at low redshifts, providing
complementary information to the CMB, as Planck was designed to test the physics of the
very early Universe, which does not bring a lot of information on dark energy. The galaxy
shapes and positions that will be collected by Euclid are the cornerstone of the primary
cosmological probes used by the Euclid mission. These are the gravitational lensing by
the large-scale structure and galaxy clustering. Gravitational lensing is the phenomenon
of bending of light emitted from some background sources due to the presence of mas-
sive bodies between the sources and the observer. This bending induces a distortion of the
original images of the sources and it represents a powerful tracer of the total foreground
matter causing the distortion. Therefore, it can be used to directly probe the distribution
of dark matter. In the regime in which these deformations are small, this phenomenon
is called weak lensing and it is possible to directly map the dark matter distribution and
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the measured lensing quantities. To make the connection between the physical observable
that we will obtain and the theoretical models that need to be tested, statistical techniques
to extract the cosmological information present in the data are needed. Generally speak-
ing, this means extracting features that characterise the data with a summary statistics and
then compare the summary statistics relative to the observed data with the ones predicted
by a given model. A common summary statistics that has been used in the past and cur-
rent cosmological analysis is the two-point correlation function of these data (or its Fourier
transform, the power spectrum). Despite being widely employed in current analysis, it is
known that second order statistics fail to capture the non-Gaussian information encoded
in the data due to non-linear regime e�ects of structure formation. Indeed, to overcome
this information loss, several statistics of order higher than the second have been proposed
in the literature, as the bispectrum, Minkowski functionals, higher order moments, peak
counts, minima counts and very recently and in parallel to this thesis work, the scattering
transform and wavelet phase harmonic statistics. This long list will be discussed more in
details in a dedicated chapter. Along with Euclid, other wide large-scale imaging and spec-
troscopic surveys as DESI (DESI Collaboration et al. 2016), the Rubin Observatory’s Legacy
Survey of Space and Time (LSST) (LSST Science Collaboration et al. 2009) and the Roman
Space Telescope (WFIRST) (Spergel et al. 2015) will measure the matter distribution with
unprecedented precision, will enable to reach very non-linear scales and will provide an
enormous amount of data. Hence, a crucial, parallel challenge of modern cosmology is to
master this unprecedented precision, to be able to use and optimise the huge amount of
information we will receive to extract useful information, with high accuracy. The path
from input data to the �nal cosmological parameters includes many challenges. Among
them, we need to be able to extract the useful features encoded in the data, to optimise
the gain in cosmological information. This can be done at di�erent levels of the analysis.
For instance, to be able to appreciate the weak lensing distortions, one needs to smooth or
�lter the shape noise that is dominating over the lensing signal. Some questions arising
at this level are then: how does the �ltering of the noise impact the information retrieved
on cosmological parameters? Are there �lters that are more suited than others to extract
the information? More in general, which is the statistics that best allows us to retrieve
cosmological information and impact our understanding of the universe? Depending on
the knowledge that one has on the physical �eld to be analysed the choice of the summary
statistics employed plays a crucial role. For example, if we know that the physical �eld is
very close to a Gaussian �eld, then the power spectrum can be a good choice to extract
features. Or, if it is not far from a Gaussian �eld one can use n-point correlation functions.
At late times, we know that an important contribution of the density maps is composed by
dark matter halos and clusters, so peak counts can be an optimal choice. Moreover, it has
been proved that combination of certain summary statistics as for example peaks and voids
can bring an improvement in the constraining power, so this is also another aspect to keep
in mind.

Beyond the combination of summary statistics of the same probe, it is known that combina-
tion of di�erent cosmological probes adds additional information to cosmological analysis
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with respect to a single probe. As explained before, di�erent cosmological probes are sensi-
tive to the underlying large-scale structure �eld in di�erent ways as well as to systematics
e�ects.

Exploit the advantages coming from both combination of summary statistics of the same
probe and of di�erent probes combined, represent an important challenge for next gener-
ation galaxy surveys.

The goal of this thesis is to investigate these aspects, to �nd ways to optimally extract the
information encoded in the data in the context of higher order statistics that can even-
tually help to improve the constraints on cosmological parameters in current and future
cosmological analysis.

The content of the thesis is structured as follows: a �rst part composed by Chapter 1,
Chapter 2 and Chapter 3 provides the background tools and the state of the art needed
to understand the rest of the thesis. In particular, in Chapter 1 I introduce some basic con-
cepts in General Relativity and cosmology, de�ne cosmological parameters and the current
cosmological model and principles of structure formation. Then a brief overview of Eu-
clid primary probes is illustrated, followed by some main tools used in Bayesian inference.
Chapter 2 outlines the weak lensing formalism, second order summary statistics and cur-
rent constraints from some of the main current galaxy surveys. Then, the state of the art of
statistics of order higher than the second is presented. Chapter 3 describes some concepts
in signal processing useful for the purposes of this work, as sparsity, the wavelet starlet
transform and some example of usage of wavelet for mass mapping aims. A second part
composed by Chapter 4, Chapter 5, Chapter 6 and Chapter 7 illustrates the contributions
of my PhD work. In particular, in Chapter 4, I present the analysis and results of a work
where we investigate the impact of the multi-scale �ltering techniques using weak lensing
peak counts. This led to the paper: Ajani et al. 2020. In Chapter 5 I present a new summary
statistics that we have introduced motivated from the �ndings of the �rst paper along with
the search for a uni�ed framework for peaks and voids. This new statistics is called the
starlet `1-norm and we presented it for the �rst time in a second paper: Ajani et al. 2021.
Chapter 6 and Chapter 7 describe instead my current ongoing work, so the nature of the
results and discussion of these last two chapters is more preliminary and at a earlier stage
than Chapter 4 and Chapter 5. Speci�cally, in Chapter 6 I describe the work I am follow-
ing to extend the results of this thesis work to photometric galaxy clustering. Chapter 7
presents a �rst attempt of application on real data. The �nal discussion and future prospects
are then summarised in Chapter 8.
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6 Background

The purpose of this �rst chapter is to provide the general tools needed to understand the
rest of this thesis. In particular the standard cosmological model, principles of structure
formation and some of the current challenges of modern cosmology are presented. A brief
overview of the primary cosmological probes that will be used by Euclid is presented along
with the Bayesian statistical tools that will be used in the di�erent works presented through-
out the thesis.

1.1 Cosmological Principle

Our current understanding of the structure of the universe is based on the Friedmann-
Lemaître-Robertson-Walker (FLRW) model. In this model the universe is homogeneous
and isotropic on large-scales. Isotropy is rotational invariance around any point. Homo-
geneity implies that the space is the same in every point and it can be seen as translational
invariance. The universe’s homogeneity and isotropy constitute the Cosmological Prin-
ciple, i.e. there is no privileged position nor preferential direction in our universe. The
present section summarises the main results of modern cosmology which will be useful for
the following chapters.

1.1.1 Homogeneity and isotropy

In order to undertake a description consistent with the Cosmological Principle, it is neces-
sary to work with a metric built assuming homogeneity and isotropy. Friedmann-Lemaître-
Robertson-Walker (FLRW) metric is then built using invariants in order to satisfy the Cos-
mological Principle criteria. Also, it is convenient to work in a comoving reference frame
and to choose spherical coordinates which are very well suited for the isotropy requirement.
The resulting line-element is:

ds2 = dt2 − a2(t)

[
dr

1−Kr2
+ r2dθ2 + r2sin2θdφ2

]
(1.1)

= dt2 − a2(t)
[
dχ2 + fK(χ)2

(
dθ2 + sin2θdφ2

)]
, (1.2)

where a(t) is the scale factor, a parameter that is free to vary as a function of time that
physically provides information on how distances between points change as the universe
contracts or expands (Hubble 1929); (r, θ, φ) the spherical coordinates, χ and fK(χ) the
comoving radial and transverse distance, de�ned in Section 1.1.3 and K is a parameter of
curvature such that
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K =





1 Closed universe (S3)

0 Flat universe (R3)

−1 Open universe (H3)

(1.3)

where S3,R3,H3 are respectively the three-dimensional sphere, hyperboloid and �at Eu-
clidean space embedded in four-dimensional Euclidean spaceR4. All three possible spatial
geometries are homogeneous and isotropic, hence satisfying the Cosmological principle.
More in general, the local geometry of space-time can be entirely described by a metric
tensor gµν that de�nes the in�nitesimal distances of a trajectory in a curved space through
the line element

ds2 = gµνdx
µdxν . (1.4)

The kinematics and dynamics of universe’s evolution are described by Einstein’s Field Equa-
tions

Rµν −
1

2
gµνR = 8πGTµν . (1.5)

The left hand side (l.h.s.) contains the information relative to the geometry and curvature
of space-time, as the Ricci curvature tensor Rµν and Ricci scalar R are expressions of the
metric gµν and its derivatives. The right hand side (r.h.s) provides information about the
source of such curvature, encoded in the energy-momentum tensor Tµν . Einstein’s Equa-
tions can be obtained as �eld equations of General Relativity by applying the principle of
least action to

S = SHE + SM =

∫
d4x
√
g

[
− 1

16πG
R+ LM

]
, (1.6)

where SHE is the Hilbert-Einstein action, that minimised leads to Equation 1.5 while SM
is the action for matter, which leads exactly to the source of space-time curvature when
minimised, i.e.

Tµν = − 2√
g

δSM
δgµν

(1.7)

to the energy-momentum tensor.

As mentioned above, through Equation 1.5, it is possible to derive information about the
content of the universe and its evolution. In particular, thanks to the cosmological principle,
working in a comoving inertial frame, the energy-momentum tensor can be treated as a
perfect �uid, completely de�ned by its rest-frame energy density ρ and momentum p as
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T µ ν = T µαgαν =




ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p


 (1.8)

where ρ is the energy density of the perfet �uid and p its momentum. This can be formally
obtained by considering the four momentum pµ = mUµ, where Uµ is the four velocity
Uµ = dxµ

dτ
with respect to proper time τ . Hence, Tµν represents the �ux of the four mo-

mentum pµ, and in a non comoving reference frame their relation is given by (Hobson,
Efstathiou, and Lasenby 2006):

Tµν = (ρ+ p)UµUν − pgµν (1.9)

and its expression of Equation 1.8 is then found by considering a comoving observer in
Uµ = (1, 0, 0, 0) and by lowering the index with the metric.

1.1.2 Dynamical evolution of the universe

Thanks to how the metric and the energy-momentum tensor can be written under the
Cosmological Principle, it is possible to describe the dynamical evolution of the universe
and the di�erent contributions of its components through the Einstein �eld equations as
follows. The resulting equations have been �rst derived by A. Friedman in 1922 (Friedmann
1922) and are known as Friedmann Equations. Practically, this translates in considering the
zeroth-component of Equation 1.5 and in substituting for the l.h.s the expressions obtained
for the Ricci tensor and the scalar curvature in the FLRW metric, while using T 00 = ρ for
the r.h.s, that leads to

(
ȧ

a

)2

+
K

a2
=

8πGρ

3
, (1.10)

which is the �rst Friedmann equation, where ȧ indicates the derivative with respect to cos-
mic time t. It describes the evolution of the scale factor a(t) stating that expansion depends
only on the energy density ρ. The �rst ratio of the l.h.s. represents the Hubble parameter

H(t) =
˙a(t)

a(t)
[H] = [t−1] (1.11)

whose value today H0 = ȧ(t0) (given that a(t0) = 1) is given by the Hubble Constant
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H0 = 100h km s−1 Mpc−1, (1.12)

expressed above in terms of the dimensionless reduced Hubble parameter h. Equation 1.10
does not provide information on a possible expansion, but it depicts the velocity of the
expansion in terms of the energy density and in dependence on the curvature. The same
procedure for the ijth-component of Equation 1.5 always assuming a perfect �uid approx-
imation, leads to

ä

a
= −4πG

3
(ρ+ 3p) = −4πG

3
ρ(1 + 3w), (1.13)

which is the second Friedmann equation, where the parameter w = p/ρ relates the pressure
of the fuid to its energy density, representing its equation of state. Equation 1.13 encodes
the crucial information on whether the expansion is accelerating or decelerating. The �rst
situation arises for ä > 0 hence requiring the condition 1+3w < 0, that isw < −1/3 , while
the second implies w > −1/3. This consideration provides important information about
which component is predominant. In fact, from observations, today’s expansion appears to
be accelerated (Riess et al. 1998).

Universe energy-matter content

To describe the evolution of ρ with the scale factor one can combine Friedmann equations.
In particular, by taking the derivative of Equation 1.10 and then using Equation 1.13 one
can �nd

ρ̇ = −3(1 + w)
ȧ

a
. (1.14)

Then, considering di�erent i components, each one of them is characterised by its equation
of state, given by the solution of Equation 1.14:

ρi = ρi,0a
−3(1+w), (1.15)

where ρi,0 is the energy density of the ith component at present time t0. The FLRW model
assumes these components to be three non-interacting components. Speci�cally, consider-
ing a system consituted by N particles with mass m, each one characterised by the four-
momentum pµn(t) = muµn, with n = 1, .., N :

Non-relativistic components: if the �uid is formed uniquely by non-relativistic matter, the ki-
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netic energy is much smaller than the rest energy. Hence, the energy En =
√
|p2
n +m2| ∼

m+ p2n
2m

and consequently its density becomes

ρ =
∑

n

{
m+

|pn|2
2m

}
δ3(x− xn(t)) = mn+

∑

n

|pn|2
2m

δ3(x− xn(t)) (1.16)

where n =
∑

n δ
3(x − xn(t)) is the number density of particles. Using then the fact that

for a perfect �uid p =
∑

n
|pn|2
3m

δ3(x − xn(t)), that leads to ρ = mn + 3
2
p. However, since

the thermal energy, which is the source of pressure, is much less than the rest mass, in
a non-relativistic �uid the pressure p is considered negligible with respect to the energy
density ρ, i.e. p � ρ. For a non-relativistic �uid one can consider p ∼ 0 and consequent
equation of state w = 0.

Relativistic components: for a relativistic �uid, rest masses are null or su�ciently small
compared to the kinetic energy to be considered negligible. This corresponds to the limit
pn ∼ En, which leads to

ρ =
∑

n

Enδ
3(x− xn(t)) (1.17)

p =
∑

n

|pn|2
3m

δ3(x− xn(t)) ∼ 1

3

∑

n

Enδ
3(x− xn(t)) (1.18)

and consequently to p = 1
3
ρ, namely to an equation of state given by w = 1

3
.

Cosmological constant Λ: writing Einstein’s equations in the case in which the cosmological
constant Λ is not absorbed into the energy-momentum tensor yields

Rµν −
1

2
gµνR = 8πG

{
Tµν +

Λgµν
8πG

}
, (1.19)

where along with the matter-radiation tensor described so far, the energy-momentum ten-
sor of the cosmological constant T (Λ)

µν = Λgµν plays the role of a source term, characterised
by an energy density ρΛ = T 00

(Λ) = Λ
8πG

g00 = Λ
8πG

and pressure p such that T ij(Λ) = −pgij .
This leads to an equation of state for Λ given by w = −1.

Now, combining the above discussion with Equation 1.15, it is possible to describe the evo-
lution of each component i = (m, r,Λ), where m stands for matter (the non-relativistic
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component), r indicates radiation (the relativistic component), Λ describes the cosmolog-
ical constant Λ. Hence, by making the equations of state explicit in Equation 1.15, one
�nds:

ρm(t) = ρm,0a
−3(t), ρr(t) = ρr,0a

−4(t), ρΛ = ρΛ,0 = const. (1.20)

As already mentioned when describing Equation 1.13, a �uid with an equation of state of
w < −1/3 would drive an acceleration of the universe expansion. In particular, the cos-
mological constant Λ can be interpreted as a �uid with wΛ = −1, in which case its energy
density remains constant with time. However, in order to investigate the nature of dark
energy, one can let its equation of state vary with time, to have a more general expression
where ρde is di�erent from ρΛ. In particular, its evolution can be expressed as a function
of the more general equation of state wde = f(a) that presents several parametrisations. A
common parametrisation is given by (Linder and Jenkins 2003):

wde(a) = w0 + (1− a)wa, (1.21)

that includes the case wde < −1/3 which is compatible with the expansion of the universe
and also recovers the simpler cosmological constant case for w0 = −1 and wa = 0. Now,
by manipulating the �rst Friedmann equation Equation 1.10 to write it as

1 +
K

H2a2
=

8πG

3H2
ρ, (1.22)

and de�ning the quantity in the. r.h.s as

ρc ≡
3H2

8πG
, (1.23)

called the critical density, it is possible to introduce for each component i = (matter, radia-
tion, Λ) its corresponding density parameter, de�ned as

Ωi =
ρi
ρc
. (1.24)

This leads to a total density parameter de�ned as

Ω(a) = Ωma
−3 + Ωra

−4 + Ωdea
f(a) (1.25)

obtained by dividing the energy densities for each component by the critical density and by
considering Equation 1.20 with a more general equation of state for dark energy: w = f(a).
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Then, Equation 1.22 expressed in terms of the density parameter Ω becomes K
H2a2

= Ω− 1,
telling us that for Ω > 1 we expect a universe with positive curvature K > 0, for Ω < 1 a
universe with positive curvature K < 0 and for Ω = 1 a �at universe with K = 0.

1.1.3 Kinematics in an expanding universe

To deal with the evolution of the motion of freely-falling particles in a FLRW space-time,
geodesic equations in a curved space-time can be obtained. From the General Relativity
Equivalence Principle, or by applying the principle of least action to the action

S =

∫ √
−gµνdxµdxν , (1.26)

it is possible to derive the geodesic equations of motion (Weinberg 1972):

d2xµ

dλ2
+ Γµαβ

dxα

dλ

dxβ

dλ
= 0, (1.27)

representing the evolution of the shortest possible trajectories of a particle in free fall be-
tween two points with respect to the a�ne parameter λ. The study of the radiation emitted
by the objects populating the universe provides crucial information about their characteris-
tics, hence representing a fundamental tool in cosmology. Speci�cally, when investigating
the emission and propagation of such radiation, the expansion of the universe needs to be
taken into account. Indeed, considering that photons are massless, their four-momentum
pµ = (E, pi) follows the equation of motion pµp

µ = 0. This, combined with the Fried-
mann equations, relates the energy of the photon E the scale factor as E ∝ a−1 and hence
λ ∝ a (consistently with the solution for the energy density of radiation in Equation 1.14).
So, in the presence of expansion, the relation between the light emitted at a given time of
emission te from a given position re, characterised by the wavelength λe is related to the
wavelength of the same photon observed at time t0 through

λe
λ0

=
ae
a0

. (1.28)

In the absence of expansion ae = a0 and the wavelength of the light stays the same as
it propagates through the universe. In the presence of expansion, the scale factor at t0 is
larger than it was when the light was emitted by the distant source, in which case λ0 > λe,
namely its spectrum is shifted towards the red. This shift towards the red is called redshift,
and it is quanti�ed by the parameter
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z ≡ λ0 − λe
λe

. (1.29)

Along with Equation 1.28, Equation 1.29 sets the relation between the measured redshift z
of a distant source to the scale factor at the time of emission te:

ae =
1

1 + z
, (1.30)

considering that a(t0) = 1. Hence, the presence of a cosmological redshift is due to the
expansion of the universe (which is encoded in the scale factor) and from the knowledge of
the emission of well-known objects (such as the standard candles) at a certain redshift z it
is possible to trace the value of the scale factor at the time of emission.

Distances

The redshift of distant sources can be linked to their distance through the cosmological
model. Hubble 1929 observed a roughly linear relation between the velocity and the dis-
tance of extra-galactic nebulae. Such relation is known as Hubble’s law : v = H0r. It can
be recovered from Equation 1.12 and it is only valid for the local universe. On cosmological
scales, the evolution of the Hubble parameter as a function of time needs to be taken into
account.

Proper distance: The proper distance dp is the distance seen by a photon. It describes the
collection of in�nitesimal light paths despite the expansion of the universe. Mathematically,
it is de�ned as dp = cdt. Since the light speed is a constant, the proper distance is simply
given by

dp(z0, ze) = c[t(z0)− t(ze)], (1.31)

where z0 and ze are respectively the redshift at which the light ay if observed and emitted.

Comoving distance: The comoving radial distance (or simply comoving distance) χ is de-
�ned as dχ = cdt

a
, namely is the rescaling by the scale factor of the physical distance, such

that two particles initially at rest in the evolving FLRW metric stay equidistant in comoving
coordinates. As mentioned before, the cosmological model enables to relate the observed
redshift of a distant source to its comoving distance with respect to the observer. In partic-
ular, by manipulating the Hubble parameter de�nition as dt = da

aH
, it is possible to re-write

dχ = cdt
a

as
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χ(a) =

∫ 1

a

cda′

a′2H(a′)
, (1.32)

where the extreme of the integral indicate that χ(a) is the comoving distance of an object
given that we observe now (at t0, when holds a(t0) = 1) light that was emitted when
the scale factor of the universe was equal to a. Through the scale factor-redshift relation
Equation 1.30, this can be explicitly expressed with respect to the redshift as

χ(z) =

∫ z

0

cdz′

H(z′)
. (1.33)

Comoving transverse distance: The comoving transverse distance fK is the ratio of the co-
moving separation between two points at χ to their separation angle. It only depends on
the comoving distance χ and it is related with the curvature K as

fK(χ) =





1√
K

sin (
√
Kχ) forK > 0

χ forK = 0
1√
−K sinh (

√
−Kχ) forK < 0.

(1.34)

Angular diameter distance: The angular diameter distance DA is the ratio of a physical
separation at the emission epoch (with comoving radial distanceχ) to its angular separation
from an observer. It can be obtained by scaling the comoving transverse distance to the
emission epoch ze. So, for an observer at z0 = 0 and calling the emission epoch ze = z, the
angular diameter distance is de�ned as

DA(z) =
fK [χ(z)]

1 + z
. (1.35)

Luminosity distance: The luminosity distance is based on the scaling of the �ux F of a
distant source with its distance. It is de�ned so that the �ux of the source at distance with
an intrinsic luminosity L corresponds to:

DL =

√
L

4πF
. (1.36)

It can be expressed in terms of the transverse comoving distance fK or in terms of the
angular diameter distance as:
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DL(z) = (1 + z)fK [χ(z)] = (1 + z)2DA(z) (1.37)

for any observer at z0 = 0 and sources at ze = z.

1.2 Cosmological parameters

Given the tools introduced in the previous sections, it is now possible to de�ne some cos-
mological parameters and their evolution as function of redshift.

1.2.1 Age of the universe

The �rst Friedmann Equation can be rewritten in terms of today’s (at t0) cosmological pa-
rameters and it is known as Hubble equation. In particular, it can be rephrased as

ȧ2 = H2
0

{∑

i

Ωi(t0)a−(1+3wi) + [1− Ω(t0)]

}
. (1.38)

By integrating the above equation, the evolution for the scale factor a(t) is obtained and it
is consequently possible to give an estimation of the expansion rate of the universe today.
Considering instead the inverse function of the scale factor t(a), one can derive the age of
the universe, given a certain cosmological model. For instance, the calculation of t can be
performed by considering the change of variables dt = da/ȧ and by integrating it starting
from an initial time (imposed to be ti = 0 ) and supposing the scale factor at that time to be
a point-like singularity, i.e. a(ti) = 0. In this way the following expression for t is obtained
as

t =
1

H0

∫ ∞

z

dz(1 + z)−2

[
∑

i Ωi(t0)(1 + z)(1+3wi) + 1− Ω(t0)]
1/2
, (1.39)

where the scale factor-redshift relation as da = −dz(1+z)−2 has been used. Equation 1.39
returns the age of the universe today when integrated between zero and in�nity (corre-
sponding to an integration between 0 and 1 with respect to the scale factor). The estimated
(Planck Collaboration et al. 2020) age of the universe today is

13.801± 0.024 Gyr. (1.40)
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1.2.2 Hubble parameter

By simply using that ȧ2 = H2a2 in Equation 1.38, the following explicit expression for the
Hubble Parameter as a function of the redshift is also obtained

H2(z) = H2
0

{∑

i

Ωi(t0)(1 + z)3(1+wi) + [1− Ω(t0)](1 + z)2

}
, (1.41)

so that the expansion rate at a given redshift z can be related to the energy density contri-
bution of each component Ωi, knowing its value today.

1.2.3 Density Parameter

The connection between the density parameter Ωi and the redshift leads to the signi�cant
consideration that if the universe is �at today will remain so for any value of the redshift
and, more generally, if the universe has a certain curvature, this will stay the same for every
time. Indeed the density parameter can be formulated as

Ωi(z) =
Ωi(t0)(1 + z)3(1+wi)

[
∑

i Ωi(t0)(1 + z)3(1+wi)+(1−Ω(t0))(1+z)2 ]
, (1.42)

where Equation 1.23 and Equation 1.28 have been used.

1.2.4 Primordial power spectrum

The current theory explaining how structures as galaxies, galaxy clusters or the cosmic
web that we observe today formed assumes the existence of small primordial perturba-
tions, namely deviations from the mean density of the universe which slowly increased in
amplitude because of the phenomenon of gravitational instability and formed the virialised
structures observed at the present time. Among the theories proposed to explain the ex-
istence of these density perturbations, in�ation (Guth 1981; Baumann 2012) predicts that
these deviations from the background density �eld are the product of processes in the very
early universe, corresponding to quantum �uctuations which expanded to macroscopic pro-
portions during an extremely fast period of expansion. During this process, these quantum
�uctuations reach macroscopic scales and will eventually act as seeds of large-scale struc-
ture formation. The scale dependence of such perturbations are described by the primordial

power spectrum, de�ned as
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Pζ(k) = As

(
k

kp

)ns−1

, (1.43)

and parametrised as a power law of amplitude As and spectral index ns, that measures
the deviation from scale invariance (ns = 1) and kp is a pivot scale. In the large-scale
structure convention, it is common to normalise the primordial power spectrum of matter
�uctuations at present time by requiring that the root mean square (r.m.s.) variance on a
sphere of radius R8 = 8h−1 Mpc is equal to a normalisation factor, called σ8.

1.2.5 Sum of neutrino masses

Thanks to the discovery of oscillations among neutrino �avor eigenstates, neutrino masses
mν are now known to be non-zero. This can be understood intuitively by considering the
minimal neutrino mixing scenario where the existence of three species of neutrinos is as-
sumed. The neutrino �avor eigenstates να (with α = e, µ, τ ) can be expressed as a superpo-
sition of neutrino mass eigenstates νi (with i = 1, 2, 3 ) through the unitary transformation:

〈να〉 = ΣαUαi 〈νi〉 , (1.44)

and the concept of neutrino mixing is encoded in the unitary matrix Uαi: if Uαi is the iden-
tity matrix, the �avor eigenstates coincide with the mass eigenstates and there is no oscilla-
tion. However, from solar and atmospheric neutrino experiments, compelling evidences for
neutrinos oscillation have been provided (Group, Zyla, Barnett, et al. 2020) as it is observed
that the massive states propagate di�erently between the source (in which neutrinos are
produced) and the observer. One of the main quantities considered by these experiments to
describe and quantify this phenomenon, is given by the probability that a neutrino of �avor
α is later detected as a neutrino with �avor β. Such probability can be derived explicitly
and its expression depends on the neutrino mass squared di�erences ∆m2

ij ≡ |m2
i − m2

j |
(Maki, Nakagawa, and Sakata 1962; Pontecorvo 1968; Kajita 1999). Hence, neutrino os-
cillation experiments can provide information about the di�erence of the squared masses
while remaining blind with respect to the absolute value of the neutrino mass and to the
way in which these masses are ordered. This allows two scenarios in which the masses can
be distributed: a normal hierarchy where the masses are ordered as m1 < m2 < m3 and
an inverted hierarchy corresponding to m3 < m1 < m2. Moreover, from the combination
of solar and atmospheric results, a hierarchy among the mass splittings can be derived as
well, namely ∆m2

21 � |∆m2
31| ∼ |∆m2

32|. Assuming then that the lightest neutrino is
massless, it is possible to obtain a lower bound from oscillation experiments on the sum
of neutrino masses

∑
νmν ≡ Mν by taking the sum of the mass di�erences: in a normal

hierarchy setting this value correspond to Mν > 0.06 eV and in a inverted hierarchy set-
ting to Mν > 0.1 eV. Particle physics experiments (Wolf 2010; Esfahani, Asner, Böser, et al.
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2017) are only sensitive to the mass of the lightest neutrino. Fortunately, massive neutrinos
leave an imprint on the expansion history and growth of structure in the universe and this
can be used to infer the sum of their masses Mν . Speci�cally, the fact that neutrinos with
mass less than a few eV remain relativistic and behave like radiation at the time of matter-
radiation equality and became then non-relativistic behaving like matter today, delays the
beginning of linear growth by moving the matter-radiation equality at a later time. More-
over, neutrinos with small masses have large thermal velocities, and can then stream out
of cold dark matter potential wells, causing a suppression of the growth of structure be-
low a certain scale. This scale is approximately equal to the Hubble radius when neutrinos
are relativistic while when neutrinos become non-relativistic this scale corresponds to the
point in which gravitational instability overcomes the thermal pressure of neutrinos. The
strongest upper bound we have today on the sum of neutrino masses comes from cosmol-
ogy, and it is speci�cally Mν < 0.12 eV, from the combination of temperature anisotropies
in the cosmic microwave background (CMB), CMB lensing and Baryon Acoustic Oscillation
(BAO) (Planck Collaboration et al. 2020).

1.2.6 ΛCDMmodel

Depending on the cosmological parameters, various cosmological models with di�erent
characteristics emerge. The one that best describes current observations is the Λ Cold
Dark Matter model (ΛCDM). The name itself gives us information about its two main com-
ponents: Λ being the cosmological constant appearing in Einstein Fields Equations of Gen-
eral Relativity, related to the simplest parametrisation of a �uid called dark energy (DE); and
CDM standing for cold dark matter. This model is a mathematical parameterisation of Big
Bang cosmology, as described by General Relativity and the Friedman-Lemaître-Roberson-
Walker (FLRW) equations introduced in Section 1.1.1. It is based on the assumptions that the
universe is composed of elementary particles, i.e. ordinary matter (baryons, leptons, pho-
tons, neutrinos), and cold (non-relativistic at the time of decoupling) dark matter, which
only interacts gravitationally along with dark energy, responsible for the observed accel-
eration in the Hubble expansion. Dark energy is assumed to take the form of a constant
vaccuum energy density, which should coincide with the cosmological constant introduced
by Einstein in 1917. It requires only a small set of parameters (illustrated in Table 1.1), to
reproduce all cosmological observations and completely specify the cosmological model.
The requirement of space �atness comes from these parameters and it is in agreement with
the observational data. Indeed, by rewriting the r.h.s. of Equation 1.22 in terms of the den-
sity parameter ΩTOT =

∑
i Ωi it can be seen how for a �at universe (K = 0), Equation 1.22

requires that ΩTOT = 1. By looking at the values of the energy density parameters for the
di�erent components in Table 1.1, one can see how in the ΛCDM paradigm, the vast ma-
jority of the total energy-matter density budget is dominated by the cosmological constant
Λ, accounting for ∼ 69% of the total energy-matter density budget. The remaining 31% is
encoded in the matter density Ωm, whose contributions are respectively given by a 26.2%
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of cold dark matter (encoded in the parameter Ωc) and 4.8% of ordinary matter, usually
called in cosmology baryonic matter (encoded in Ωb). The contribution of ΩΛ is associated
in the ΛCDM framework with the dark energy, responsible for the accelerated expansion
of the universe (Riess et al. 1998; Perlmutter et al. 1999), because of its negative pressure,
introduced through its equation of state in Section 1.1.2. The necessity for dark matter, the
second largest contribution to the total energy content of the universe, was historically in-
voked to explain the mass de�cit of visible matter from observations (Zwicky 1937) and the
observations of �at galaxy rotation curves to large distances (Rubin and Ford 1970). Also,
the combined weak lensing and X-ray observation of the Bullet Cluster provided as well a
strong hint of the presence of dark matter through the o�set found between the center of
the total mass and the center of the baryonic mass peaks of the clusters system (Clowe et al.
2006).

Parameter Symbol Value
Hubble parameter H0 (67.66± 0.42) km s−1Mpc−1

Total matter density Ωm 0.3111± 0.0056

Dark matter density Ωch
2 0.11933± 0.00091

Baryon density Ωbh
2 0.02242± 0.00014

Dark energy density ΩΛ 0.6889± 0.0056

Power spectrum normalisation σ8 0.8102± 0.0060

Spectral index ns 0.9665± 0.0038

Reionisation optical depth τ 0.0561± 0.0071

Sum of neutrino masses Mν < 0.12 eV

Table 1.1: Some of the main cosmological parameters de�ning the ΛCDM model from
Planck Collaboration et al. 2020 obtained by the combination of CMB TT, TE, EE + lowE +
CMB lensing + BAO.

These two dark components, dark matter and dark energy, dominate the current energy-
matter content of the universe. However, their nature and properties are still unknown and
one of the main goals of the current and future cosmological surveys is exactly to try to
determine them, by comparing theory and observations and by performing cosmological
parameter inference, as will be described in the next sections, through the imprints these
components leave on the cosmological observables.

1.3 Principles of structure formation

The previous section dealt with a homogeneous and isotropic universe, constituted by a
perfectly smooth cosmological �uid. However, from both simulations an observations we
know that structures as galaxies, galaxy clusters or the cosmic web actually exist. As brie�y

https://www.nasa.gov/vision/universe/starsgalaxies/dark_matter_proven.html
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anticipated in Section 1.2.4, the current theory explaining how those structures formed
assumes the existence of small primordial deviations from the mean density which slowly
increase in amplitude because of the phenomenon of gravitational instability and form the
virialised structures observed at the present time.

1.3.1 Density contrast in the linear regime

The above mentioned deviations from the background can be considered already at the
level of the FLRW metric de�ned in Equation 1.2 by adding to it a perturbative term, in the
limit where these perturbations are su�ciently small. This perturbative term propagates in
the matter density which becomes the sum of a background density ρ̄m(t) term and a per-
turbation term δρm(r, t). The deviation from the background density is then summarised
in the quantity

δ(r, t) =
δρm(r, t)

ρ̄m(t)
=
ρm(r, t)− ρ̄m(t)

ρ̄m(t)
, (1.45)

called the matter density contrast. At early times and on large scales, this deviation is very
small and it is fair to work in the limit δ � 1 that allows to derive the evolution of the
density �eld using linear perturbation theory. The dynamical evolution of the density ρ
can be described through a Vlasov-Poisson system of equations (Peebles 1993) and conse-
quently the density contrast δ as well. By combining these equations and working under the
assumption of an ideal pressureless �uid, in the linear regime the evolution for the density
contrast is given by (Dodelson 2003)

δ̈ + 2Hδ̇ = 4πGρ̄mδ, (1.46)

which provides a good description of the density �uctuations evolution in the early epochs
of the universe, when density �uctuations are still small. The r.h.s. comes from the Poisson

equation and its the source term governing the evolution of the density contrast, while the
second term of the l.h.s. takes into account the universe expansion through the Hubble
parameter H . This ordinary second order di�erential equation admits the general solution
of the form (Peebles 1980; Peacock 1999):

δ(t, r) = D+(t)δ+(r) +D−(t)δ−(r), (1.47)

where the spatial and temporal coordinates can be decoupled and D+ and D− are respec-
tively a growing and decaying mode. Since the decaying mode will disappear as time goes
by, it is not relevant at late times and in this context it can be neglected. Hence, the density
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contrast can then be expressed using the growing mode whose general solution in terms of
the scale factor is given by

D+(a) =
5ΩmH(a)

2H0

∫ a

0

da′

a′3

(
H0

H(a′)

)3

, (1.48)

and it is conventionally normalised such that D+(a) = a during the matter-dominated
era and it is referred to as the growth factor. It is convenient to consider its normalised
expression as

D(a) =
D+(a)

D+(a = 1)
, (1.49)

to ensure that its value at present time is D+(a = 1) = D+(z = 0) = 1 so that the density
contrast in the linear regime is given by δ(r, z) = D(z)δ(r).

1.3.2 Matter power spectrum

A consequence of the cosmological principle is that the density contrast de�ned in Equa-
tion 1.45 is a statistically isotropic and homogeneous �eld. To be able to perform a quan-
titative comparison between the theory of structure formation and the actual distribution
of the structures that we observe, statistical measures of the density �eld are needed. A
natural way to do it is to invoke the two-point correlation function (2PCF) of the �eld, which
is given by

〈δ(r′)δ(r + r′)〉r′ =

∫

R3

δ(r + r′)δ(r′)dr′, (1.50)

and describes the probability of �nding two objects separated by the distance r at the posi-
tions r′ and r′+rwith respect to the probability one would have if those objets were simply
scattered independently with uniform probability. Considering the 3D Fourier transform
of the density �eld δ̃(k) = 1

(2π)3

∫
d3re−ik·rδ(r), it is possible to write the 2PCF of this �eld

in Fourier space as

〈δ̃(k)δ̃?(k′)〉 = (2π)3Pδ(k)δ
(3)
D (k − k′), (1.51)

where δ?(k) is the complex conjugate and δ(3)
D is the Dirac delta and Pδ(k) is the 3D matter

power spectrum. Given the assumption of homogeneity and isotropy, the dependence on
the scale is actually only Pδ(k) = Pδ(|k|), with |k| = k. Then, it is possible to relate
the matter power spectrum Pδ(k) to the primordial power spectrum of initial �uctuations
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de�ned in Equation 1.43, through a transfer function T (k) as for example (Eisenstein and
Hu 1998)

T (k) =
δ̃(k, a = 1)δ̃(k = 0, a = 0)

δ̃(k, a = 0)δ̃(k = 0, a = 1)
, (1.52)

such that the processed power-spectrum Pδ(k) is related to its primordial form via Pδ(k) ∝
T 2(k)Pζ(k), accounting for the modulation of each Fourier mode between their original
value at a = 0 to their current value at a = 1. The actual computation of the the power
spectrum at su�ciently large scales can be performed by solving linear perturbation theory
equations. In particular, it is possible to derive some analytical expressions for the transfer
function, either relying on some approximation methods or �tting formulae as in Eisenstein
and Hu 1998. Alternatively by employing Boltzmann codes such asCAMB (Lewis, Challinor,
and Lasenby 2000a) or CLASS (Lesgourgues 2011). At smaller scales, entering the non-
linear regime where δ ∼ 1, perturbation theory is no longer applicable and approaches
based on N-body simulations are needed. To explore the non-linear gravitational evolution,
these N-body simulations are then used to obtain phenomenological halo models or �tting
formulae of the non-linear gravitational clustering. For instance, Takahashi et al. 2012,
provided a revised prescription of the HALOFIT model of Smith et al. 2003 whose main
idea is based on the assumption that all the matter content in the universe is assumed to
be bound in dark matter halos. Then the power spectrum can be decomposed into two
terms, one accounting for the correlation between two distinct halos, that is dominant at
large scales, and another term describing matter correlations within the same dark matter
halo, which is dominant at small scales. Boltzmann solvers as CLASS can then be used
to compute the linear power spectrum as mentioned before and also to compute the non-
linear power spectrum including non-linear corrections computed through the HALOFIT
code. It is very important to remind that the functional form for the power spectrum is
then based on the halo model, but the model parameters are calibrated from the N-body
simulations in consideration. As can be seen by looking at Figure 1.1, the impact of these
non linear correction leads to an enhancement of the power at small scales. Moreover, as
will be described more in details in Section 2.2.5, for future surveys such as Euclid and Rubin
Observatory Legacy Survey of Space and Time (LSST) that will have a very high precision
and very low statistical uncertainties, it is very important to control and be able to properly
model the non-linearities in the matter power spectrum with high accuracy to get accurate
and unbiased cosmological constraints from weak gravitational lensing measurements.

1.4 Brief overview of cosmological probes

As described in Section 1.2.6, the nature and properties of the vast majority of the com-
ponents of our universe are still unknown and from Section 1.2.5 one can see how even
in the Standard Model of particle physics there are still some open questions that need

https://camb.info/
CAMB
https://lesgourg.github.io/class_public/class.html
CLASS
HALOFIT
CLASS
HALOFIT
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Figure 1.1: Illustration of the linear matter power spectrum (continuous line) and non-
linear power spectrum (dashed line) obtained with pyccl. The linear one is computed
with Eisenstein and Hu 1998 approximation and the non-linear one with the halo�t model
of Takahashi et al. 2012.

an answer. Fortunately, the behaviour and characteristics of dark energy, dark matter and
the sum of neutrino masses, leave an imprint on cosmological observables and this can be
used to infer cosmological parameters, with the aim of trying to answering those questions.
As an example, Figure 1.2 shows the fractional di�erence matter power spectrum between
power spectra of models including massive neutrinos (the di�erent colours corresponding
to di�erent values of the masses) and the power spectrum with massless neutrinos as a
function of comoving wavenumber k. The same plot indicates also the sensitivity in the
power spectrum for di�erent probes depending on the scale.

For instance, the Cosmic Microwave Background radiation (CMB) (Penzias and Wilson
1965), that is the result of the decoupling of photons from electrons at the epoch of recom-
bination, can be used as a probe to constrain the neutrino mass. Indeed, for low enough

https://github.com/LSSTDESC/CCL
pyccl
CMB
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Figure 1.2: Plot from Abazajian et al. 2015, showing thee fractional di�erence of the matter
density power spectrum as a function of comoving scale k for di�erent values of

∑
νmν .

masses (such that they became non-relativistic after recombination), the angular diameter
distance that is degenerate with decreasing H0 changes, impacting the CMB power spec-
trum. Small secondary temperature �uctuations induced in the CMB due to the evolution
of the gravitational potentials right after recombination can be used to constrain relativistic
species, hence also the number of neutrinos and their masses. Moreover, Planck Collabora-
tion et al. 2014 moved the analysis to a regime where the dominant e�ect comes from the
gravitational lensing of the CMB by the large scale structure. Indeed, CMB lensing leads to
a direct measurement of the matter power spectrum on scales where the e�ects of neutrino
masses become relevant. More generally, the decrease in temperature due to the expansion
of the universe makes the neutrinos transition from being a ultra-relativistic gas behaving
as radiation to a cold gas behaving as dark matter. This results in a suppression of power on
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scales smaller than the neutrinos free-streaming scale. This scale is associated with the scale
at which the matter power spectrum peaks, caused by the transition from the radiation to
the matter dominated era, when perturbations cross the cosmological horizon. This can be
"seen" through the CMB at large scales and by large scale structures probes at small scales.
In general, measurements of tracers of the matter clustering in the large-scale structure can
be used to constrain cosmological parameters. The combination with absorption lines in
the spectra of distant galaxies and quasars arising from the Lyman-α electron transition of
the neutral hydrogen due to intervening low density gas, more simply referred to as Ly-α
forest (Weinberg et al. 2003) has enabled to provide one of the strongest inferred constraints
on neutrino mass for example (Seljak, Slosar, and McDonald 2006). The detection of the 21
cm line from high-redshift neutral hydrogen (HI) represents a powerful probe that with the
potential of mapping the distribution of matter until the epoch of reionisation and is the
goal of several present and upcoming radio telescopes as for instance the Square Kilometer
Array (SKA) (Santos et al. 2015; Combes 2021). The next two sections, are dedicated to two
speci�c probes, weak lensing and galaxy clustering, that I have used in some of the works
described in this thesis and that represent the two main cosmological probes that will be
employed by Euclid.

1.4.1 Galaxy Clustering

Another tracer of the underlying matter distribution is given by the distribution of galax-
ies. Indeed, galaxies as well as dark matter haloes are sampling the matter density �eld,
however not in a uniform way, in the sense that the spatial clustering of galaxies do not
precisely represent the clustering of the totality of the matter in the universe. Galaxies are
hence considered as a biased tracer of the underlying total matter density �eld (Kaiser 1984;
Bardeen et al. 1986). Following the same philosophy of de�ning a matter density contrast
to investigate the evolution of the overdensity with respect to the background to eventually
compute a statistical measure of the �eld as the 2PCF or the power spectrum, it is possible
to de�ne the �uctuations in the galaxy number density �eld n(x; z) in the linear regime as

δg(x; z) =
n(x; z)− n̄(z)

n̄(z)
= bg(z)δ(x; z), (1.53)

related to the matter density contrast de�ned in Equation 1.45 through the galaxy bias bg(z).
At large scales, it is fair to assume the bias to be scale independent and to model it uniquely
as a function of the redshift. Under these conditions, from Equation 1.53 follows that the
galaxies power spectrum can be expressed in terms of the matter power spectrum as

Pg(k, z) = b2
g(z)Pδ(k, z). (1.54)

It is important to underline that more complex bias modelling are required, in order to

https://www.skatelescope.org/
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include e�ects such as primordial non-gaussianities, the presence of massive neutrinos,
dark energy, modi�ed gravity and redshift space distortions, as these factors can lead to a
more complicated expression for the bias, making it scale-dependent (Desjacques, Jeong,
and Schmidt 2018). The discussion of these e�ects goes beyond the purposes of this work,
however their role is non-negligible in current and future cosmological analysis and a huge
scienti�c e�ort from the community to properly model them is currently ongoing. To map
the distributions of the galaxies it is possible to measure their frequency distribution of
observed photons per galaxy. Then, through spectroscopy, knowing the absorption and
emission lines in the rest-frame and obtaining the redshifted ones, it is possible to determine
the position of each galaxy in terms of right ascension (RA), declination (DEC) and redshift
zspec. Thanks to spectroscopic instruments as the Sloan Digital Sky Survey (SDSS), it has
been possible to create an extremely detailed 3D map of the universe, using deep multi-
color images for one third of the sky, and spectra for more than 3 millions astronomical
objects have been retrieved (Ahn et al. 2012) and the future Dark Energy Spectroscopic
Instrument (DESI) data releases will obtain spectra and measure the positions and receding
velocities of ∼ 40 million galaxies (DESI Collaboration et al. 2016). The medium-class
ESA mission Euclid will enable to measure up to ∼ 30 millions spectroscopic redshifts
(Pozzetti, L. et al. 2016; Euclid Collaboration et al. 2020b) through the spectroscopic channel
of its Near Infrared Spectrometer and Photometer (NISP) instrument. An alternative way
to estimate the galaxy redshifts without involving the spectra, consists in measuring the
galaxy �ux in a number of standard �lters that select a relatively broad passband of colours
to determine the redshift that is then related to the distance through the Hubble law, de�ned
in Section 1.1.3. The redshifts estimated in this way are referred to as photometric redshifts.
These measurements lead to the probes for the clustering of galaxies that depending on the
technique used are referred to as Spectroscopic Galaxy Clustering (GCsp) and Photometric

Galaxy Clustering (GCph) that along with weak gravitational lensing (see Section 1.4.2)
constitute the primary probes of the Euclid mission. Section 6.5.2 provides a slightly more
detailed description of Photometric Galaxy Clustering, used in one of the projects of this
thesis (Chapter 6).

1.4.2 Weak Gravitational Lensing

Another powerful cosmological probe to constrain cosmological parameters is the bending
of light emitted by distant background galaxies due to the presence of foreground large-
scale structure between the sources emitting the light and the observer. This phenomenon
is widely used in current cosmology and is called Weak Gravitational Lensing (WL). Indeed,
the distortions induced by the presence of the foreground large-scale structure on back-
ground galaxy shapes provide a direct probe of the matter power spectrum Pδ(k) (Kaiser
1992). This is because the distortions, even if small in the weak regime, are induced by the
matter distribution along the path of the emitted photons. Hence, it is possible to retrieve
information on the properties of this matter distribution, given enough galaxies across the

https://www.sdss.org/
SDSS
https://www.desi.lbl.gov/
DESI
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sky. Moreover, since both baryonic and dark matter contributes to this e�ect, weak lens-
ing traces directly all matter, in contrast for example to the distribution of galaxies, that as
seen in the previous section, needs to invoke a galaxy bias to retrieve the dark matter dis-
tribution using galaxies. The observable signal related to this e�ect encodes an anisotropic
deformation, called the shear along with an isotropic magni�cation, called the convergence,
of the original source galaxy shape. So what it is actually observed is galaxy shapes, pre-
cisely, the observed ellipticity of the galaxy that in the weak regime can be expressed as
the sum of its intrinsic ellipticity plus the shear induced by weak lensing. Details of weak
lensing formalism, de�nitions and state of the art results are illustrated in Chapter 2, which
is entirely dedicated to weak lensing, as it represents one of the main focus of this thesis
in the framework of cosmological parameter inference. As mentioned above, weak lensing
constitutes one of the primary probe of future galaxy survey, like Euclid. Its visible (VIS)
instrument will measure the shapes of 1.5 billions galaxies covering 15000 deg2 of the sky,
up to redshifts of about zs = 2. The near infrared photometry introduced in the previous
section, combined with the VIS data will enable to derive photometric redshifts and rough
estimates of these galaxies. Past and current galaxy surveys as the Canada-France-Hawaii
Telescope Lensing Survey (CFTHLenS) (Heymans et al. 2012), the Kilo-Degree Survey
(KiDS) (Hildebrandt et al. 2016) or the Dark Energy Survey (DES) (Zuntz et al. 2018) have
also used and are at present using weak lensing as main cosmological probe and released
the associated data products that led to the delivery of some of the most recent results in
cosmology (DES Collaboration, Abbott, et al. 2021). In the coming years, along with Euclid,
also the Vera C. Rubin Observatory Large Synoptic Survey Telescope (LSST) will survey a
remarkable fraction of the sky (∼ 20000 deg2). Both experiments will deliver source galaxy
samples consisting of billions of galaxies and with the combination of deep and wide-�eld
optical photometry that will be provided by LSST along with the wide-�eld optical pho-
tometry, NIR photometry and high resolution of Euclid it is crucial to optimise and try to
maximise the amount of information they will bring.

1.5 Parameter inference for future galaxy surveys

In order to exploit the richness in information provided by the cosmological probes de-
scribed in the previous section and be able to measure and estimate the parameters of a
certain cosmological model, given some observed data, statistical methods are needed. This
section presents an introduction to the main tools in a Bayesian inference framework useful
for the purposes of this thesis based on (Heavens 2009; Verde 2010)1.

1and on the knowledge about this topic I have acquired during the class on Bayesian Statistics by Professor
Benjamin Wandelt.

http://www.cfhtlens.org/
CFTHLenS
http://kids.strw.leidenuniv.nl/index.php
https://www.darkenergysurvey.org/
DES
https://www.lsst.org/about
LSST


28 Background

1.5.1 Bayesian inference

In the Bayesian framework, probabilities are interpreted as degree of belief in a hypothesis.
Given a random variable (event) x and denoting the probability density of such event to
take a speci�c value as P(x), then the probability that the random variable x takes a value
between x and x+dx is given byP(x)dx. Being a probability,P(x) has to be de�ned within
the range 0 ≤ P(x) ≤ 1 and it has to satisfy the condition

∫∞
−∞P(x)dx = 1. Moreover, for

mutually exclusive events x1 and x2 holds the relation: P(x1∪x2) = P(x1) +P(x2). Con-
sidering now the probability of x1 and x2 to happen, i.e. the joint probability density func-
tion (PDF) P(x1, x2), this is given by the probability of x1 times the conditional probability
of x2 given that x1 has already happened P(x2|x1), namely P(x1, x2) = P(x1)P(x2|x1).
If x1 and x2 are independent events, then P(x2|x1) = P(x2) and the joint PDF reduces to
P(x1, x2) = P(x1)P(x2). Based on P(x1, x2) = P(x2, x1) the following identity is a direct
consequence:

P(x1, x2) = P(x1)P(x2|x1) = P(x2)P(x1|x2). (1.55)

For the purposes of this work, it is now interesting to embed the previous discussion in a
potential application for cosmology. If we consider a given cosmological modelM char-
acterised by a set of cosmological parameters Θ = {θ1, θ2, ..., θn}, assuming that we have
observed a set of data d, we can rely on Equation 1.55 to write the following identity for the
conditional probability density function of the cosmological parameters Θ, given the data
d:

P(Θ|d,M) =
P(Θ|M)P(d|Θ,M)

P(d|M)
. (1.56)

This identity is known as Bayes Theorem and it regulates the relation between the condi-
tional probability density function of the parameters Θ given the observed data d, with the
conditional probability density function of observing the data d given a modelM charac-
terised by the parameters Θ and given a precedent knowledge on the the parameters Θ, that
might be given for instance by some previous experiments, and on the data. P(Θ|d,M) is
called the posterior probability distribution, P(Θ|M) the prior, P(d|Θ,M) the likelihood

and P(d|M) the evidence. With the �nal goal of determining the posterior distribution for
the parameters of a given cosmological model, one needs to de�ne a prior on the parame-
ters, assume a likelihood and de�ne the evidence. The latter, that is the probability of the
data before it is known, is fundamental for model comparison but it can be considered as
a normalisation constant for parameter inference, in a way that the problem to determine
the posterior distribution becomes:

P(Θ|d) ∝ P(Θ)P(d|Θ), (1.57)
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where to simplify the notation the assumption of the modelM has been omitted. Concern-
ing the prior, it can provide a de�nite information about a certain variable or parameters
of a given model or general information about such variable. In the �rst case it is called
informative prior and in the second uninformative prior. To give an example of the �rst
scenario, in many situations we have knowledge of the parameters from some previous ex-
periment and this information can enter the inference analysis throughP(Θ). For instance,
the state-of-the art of cosmological parameters inference from previous experiments such
as COBE (Smoot 1999), WMAP (Hinshaw et al. 2013), Planck (Planck Collaboration et al.
2020), SDSS (Tegmark, Strauss, Blanton, et al. 2004), provides a rich and solid theoretical
cornerstone for current and future analysis. In the absence of any previous information,
the prior can be assumed to be a constant and it is called a �at prior. In summary, the prior
represents the state of belief on the parameters that will be inferred, prior to any in�uence
by the new observed data d.

1.5.2 Likelihood

Once the prior choice is made, the fundamental ingredient that needs to be determined to
evaluate the posterior probability distribution for the parameters is the likelihood function
P(d|Θ), as one can see from Equation 1.57. The likelihood can have an analytical expres-
sion when this is known or it can be estimated through density estimation problems be-
longing to the class of methods known as likelihood free inference (LFI) (Papamakarios and
Murray 2018; Alsing et al. 2019), Section 1.5.4 brie�y discusses this point. A very common
choice for the likelihood function in cosmological analysis is the assumption of a Gaus-
sian likelihood relying on arguments such as the central-limit theorem or the principle of
maximum entropy. In these cases, when the likelihood is assumed to be Gaussian, it is
convenient to work with its logarithm, namely

logL(d|Θ) =
1

2
[(d− µ(Θ))T C−1 (d− µ(Θ))] , (1.58)

where d indicates the observed data, Θ the cosmological parameters de�ning the model,C
is the covariance matrix encoding the information about the data errors and the correlation
among observables at di�erent scales, and µ(Θ) is the observable coming from the model
as a functions of the parameters Θ. From this expression of the likelihood, one can see
how the key ingredients needed to build the likelihood are a) the covariance matrix, b) the
model.
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Covariance matrix estimation

Concerning the covariance matrix, this can be computed analytically (following again some
assumptions as for example a Gaussian covariance as for example in Euclid Collaboration et
al. 2020b) or it can be computed from N-body simulations as for example in Harnois-Déraps
et al. 2018, when a Gaussian assumption does not hold anymore for example and the non
Gaussian terms become more di�cult to estimate. For the purposes of this work, I will focus
on the case where the covariance is assumed to be cosmology independent, namely when
it is computed for a �xed set of cosmological parameters. Nevertheless, it is important to
brie�y mention that a way to accurately assess the uncertainty on the measurements relies
on the computation of the covariance using a large ensemble of independent N-body simu-
lations at each of the cosmologies that can be sampled in parameters space. However, this
requires that the number of simulations per ensemble is signi�cantly larger than the data
vector and this scenario needs computing resources far exceeding those currently available.
As mentioned before, an alternative approach is to run an ensemble of full N-body simula-
tions at a single cosmology and ignore the variation of the covariance with cosmology. This
case also requires a large number of independent simulations with respect to the dimension
of the summary statistics and the data array, as in practice it enters the likelihood function
with a correction factor, known as the Hartlap factor (Hartlap, Simon, and Schneider 2007)
that takes into accounts the loss of information due to the �nite number of bins nbins and
realisations N as

C−1 =
N − nbins − 2

N − 1
C−1
∗ , (1.59)

where the element of the covariance matrix C∗ are given by

Cij
∗ =

N∑

r=1

(xri − x̄i)(xrj − x̄j)
N − 1

, (1.60)

and xri is the value of the observable in the ith bin for a given realisation r and x̄i = 1
N

∑
r x

r
i

is the mean of such observable in a given bin over all the realisations. By looking at Equa-
tion 1.59 one can see then how the more the pre-factor is close to one (i.e. N � nbins) the
more the estimated covariance is close to the truth and the uncertainty is smaller. Sellentin
and Heavens 2017 have quanti�ed the loss of information associated to this pre-factor for
DES, KiDS and Euclid settings and in particular they shown how for KiDS-450 and DES
SV, the uncertainty due to the covariance matrix is subdominant with respect to parameter
degeneracies and the �nite data set that are the dominating drivers of the uncertainties of
cosmological parameters; for Euclid they found a loss of 1% of information for 1900 simu-
lations, as compared to knowing the true the covariance matrix. In the works presented in
this manuscript, the condition N � nbins is always satis�ed, thanks to the large suite of
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independent N-body simulations employed in the di�erent studies. However, it is impor-
tant to point out that this is not always the case for weak lensing analysis, depending on
the available simulations. When the condition N � nbins is not satis�ed, the formalism to
follow to properly account for all biases to be removed from the parameter inference is the
one presented in Sellentin and Heavens 2016 and Sellentin and Heavens 2017. Moreover, as
at the late-times tracers of the large-scale structure enter the non-linear regime, deviations
from a Gaussian distribution of their PDF at smaller scales increase and it is necessary to
properly consider in the analysis the non-Gaussian contributions such as the supersample
covariance (SSC) (Hu and Kravtsov 2003). This extra term arises from the non-linear im-
pact caused by density �uctuations that have wavelengths that are greater than the survey
size and modify the local observables such that the background density averaged over the
survey size is not representative of the averaged density in the universe. This correction is
crucial when performing cosmological analysis as it is expected to be the dominant source
of statistical error or cosmic variance in the context of weak lensing weak lensing (Barreira
et al. 2018). In the works presented in this thesis, this term is not included, but it is important
to be aware of this correction for future extensions, considering that ways to take it into
account exist or are currently in development, as for example the approximation presented
by Lacasa and Grain 2019, that makes fast numerical computation of the SSC possible.

Building the model with Gaussian Processes

The next ingredient needed to build the likelihood de�ned in Equation 1.58 is the model
µ(Θ), namely a prediction for the observable used to perform the analysis as a function of
the cosmological model. When an analytical prescription of the observable is possible to
compute, one can use it to directly predict the observable as a function of cosmological pa-
rameters. There are several codes that provide an estimate for certain observable and enable
to get a theoretical prediction, for example CAMB (Lewis, Challinor, and Lasenby 2000b),
CLASS (Lesgourgues 2011), pyccl (Chisari et al. 2019) for the matter power spectrum or
lensing power spectrum, NICAEA (Kilbinger et al. 2017), for calculating second-order cor-
relation functions, and in general pipeline and softwares are available to obtain prediction
for cosmological observable as a function of cosmology (e.g. CosmoSIS (Zuntz et al. 2015),
nbodykit (Hand et al. 2018), PyCosmo (Refregier et al. 2018)). However, there are a number
of situations in which an analytical prescription is not always available or presents some
drawbacks with respect to e�ects that can impact the prediction (systematics, masks..).
Weak lensing peak counts, that will be introduced and discussed in Section 2.3.5, for exam-
ple can be used as cosmological observable to derive constraints on parameters. Analytical
models to obtain an estimation of their predictions exist, but present some downsides as it
will be described in Section 2.3.5. Hence, one of the alternative ways to get the theoretical
predictions in these situations relies in employing Gaussian Processes Regression (GPR).
Gaussian processes can be seen as an in�nite-dimensional multivariate Gaussian distribu-
tion or as Gaussian distributions over functions such that they are completely de�ned by a

CAMB
CLASS
pyccl
https://github.com/CosmoStat/nicaea
https://bitbucket.org/joezuntz/cosmosis/wiki/Home
https://nbodykit.readthedocs.io/en/latest/index.html
https://cosmo-docs.phys.ethz.ch/PyCosmo/index.html
PyCosmo
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mean function m(θ) and a covariance function K(θ, θ′), that in this context is dubbed the
kernel and f(θ) ∼ GP (m(θ), K(θ, θ′)). Then, the Gaussian Processes act by an assump-
tion of smoothness, i.e. by considering that for a new point in parameter space θ∗ which is
su�ciently close to a known point θ belonging to the training set, the corresponding ob-
servable will be described by a joint normal distribution along with the known observable.
This can be summarised by:

[
f
f∗

]
∼ N

([
m
m∗

]
,

[
K(θ, θ) + σ2

nI K(θ, θ∗)
K(θ∗, θ) K(θ∗, θ∗)

])
,

where K(θ, θ′) is the kernel of the Gaussian processes that assesses the smooth relation
among points in parameter space and for the works presented in this thesis we take its
form to be an anisotropic squared exponential function. σn is the standard error of the noise
level in the targets. Then, the prediction can be retrieved by making use of the Multivariate

Gaussian Theorem, so that it is simply de�ned by its posterior conditional P(f∗|θ∗, θ, f) =
N (f∗|m∗,Σ∗), completely de�ned by its conditional mean and covariance (Rasmussen and
Williams 2005):

m? = m(θ∗) +K(θ∗, θ)[K(θ, θ) + σ2
nI]−1(f −m(θ)),

Σ∗ = K(θ∗, θ∗)−K(θ∗, θ)[K(θ, θ) + σ2
nI]−1K(θ, θ∗).

The predictions are then exactly given by the conditional means m?, and variances can be
obtained directly taking the diagonal elements of the covariance matrix Σ∗.

1.5.3 Explore parameter space with MCMC

Now that what is needed to build the likelihood is de�ned, the next step is to explore the
parameter space to �nd the parameter range that provides theoretical predictions µ(θ) that
best �t the data d, with the �nal goal of deriving the posterior probability distribution de-
�ned in Equation 1.56. One way to do this relies on Markov Chain Monte Carlo (MCMC).
Given a generic probability distribution p(θ), called the target distribution, the MCMC sam-
ples the parameter space through a random walk that is initialised at a given point θ0. A
common choice for such point is a value (or a set of n values for n-dimensional parameter
space) very close to where it is expected that the likelihood is centred. In the case of fore-
casts for instance, given a �ducial model, one can initialise the random walk in a Gaussian
ball with a tiny radius around the �ducial parameters values. Now, to start the parameter
space exploration one needs to determine the next position in parameter space θ̃i+1. To
do this, one can follow the Metropolis-Hastings (MH) algorithm (Metropolis et al. 1953;
Hastings 1970). The main idea is based on the fact that a new point in parameter space θi+1
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can be explored by de�ning a proposal probability distribution function q(θ̃i+1, θi) that only
depends on the previous point θi. Then, by de�ning the following quantity

a = min

(
1, r ≡ p(θ̃i+1)q(θi|θ̃i+1)

p(θi)q(θ̃i+1|θi)

)
, (1.61)

if the acceptance ratio parameter r < 1, the step to the value θ̃i+1 is accepted and θi+1 = θ̃i+1

with probability a; if r > 1, the proposed value θ̃i+1 is rejected and θi+1 = θi. Then, the
procedure is repeated iteratively by doing i → i + 1 until the set {θi}i=1,..N converges
to the a sample of the target p(θ), in the limit N → ∞. While being a cornerstone of
MCMC methods, the MH algorithm presents some limits when dealing with high dimen-
sional parameter space as well as many di�erent models (Akeret et al. 2013). Alternative
ways within the MCMC framework have hence been proposed, such as the A�ne invariant

ensemble sampler. First introduced by Goodman and Weare 2010 and then implemented by
Foreman-Mackey et al. 2013, this method considers an ensemble of walkers spread across
the parameter space of the target distribution to explore the parameter space. At each it-
eration, the walkers are split into groups and are randomly assigned to a partner subgroup
chosen from the walkers ensemble and what is proposed as the next step is a random point
on a line that links their positions. Then the walkers of one subgroup are updated using
the other half of the walkers as reference. Formally, following Goodman and Weare 2010,
the proposed position θ̃i+1 is given by

θ̃i+1 = θmi + z(θki − θmi ) (1.62)

where the indexes m, k indicate walkers belonging to the di�erent subgroups and z is a
value sampled from a �xed distribution q(z) = 1√

z
for z ∈ [ 1

a
, a] and 0 elsewhere, with a

being a tuning parameter. Then, the proposed position is accepted if

zn−1p(θ̃i+1)

p(θmi )
≥ r, (1.63)

where r ∈ [0, 1] is a random number and n is the dimension of the target. The implementa-
tion of this method by Foreman-Mackey et al. 2013 led to the python package emcee. One
of the advantages of this a�ne invariant ensemble sampling of the MCMC is that it can be
parallelised since a large number of positions are updated simultaneously at each iteration
of the process. In the works presented in this thesis, as some of the simulations used have
a vast number of di�erent cosmological models, parameter inference is performed with the
package emcee to exploit the advantages of parallelisation. A variety of di�erent methods
to perform MCMC are however present such as Gibbs sampling, Hamiltonian Monte Carlo
and others. A detailed review can be found in Sharma 2017; Robert and Changye 2020.

https://emcee.readthedocs.io/en/stable/
emcee
https://emcee.readthedocs.io/en/stable/
emcee


34 Background

A corresponding variety of codes and softwares are as well available and widely employed
for inference in cosmology as for example CosmoHammer (Akeret et al. 2013), CosmoMC
(Lewis and Bridle 2002), Cobaya (Torrado and Lewis 2021)..

1.5.4 Brief mention of likelihood-free inference and ABC methods

Even if the analysis presented in this thesis are all based on a MCMC approach, it is im-
portant to mention that exist alternative ways that during the recent years have drawn the
attention of the community to perform inference. The main motivation behind the intro-
duction of these methods is to �nd a solution to situations in which the likelihood function
is intractable. Indeed, current cosmological analyses are typically based on the assump-
tion that the likelihood is Gaussian. However, it has been shown that non-Gaussianities
are present even for underlying Gaussian �elds (e.g. the lensing �eld) and if neglected
by assuming a Gaussian likelihood, they can induce biases on the parameter constraints
(Sellentin and Heavens 2017). Moreover, MCMC methods can present some limitations in
terms of speed when dealing with very high-dimensional parameter space. In general, to
try to overcome the problems arising when the likelihood is unknown and/or too many
(in terms of speed) likelihood calls are necessary to obtain well sampled posteriors, the
concept of Approximate Bayesian computation (ABC) (Rubin 1984) and density estimation
Likelihood Free-Inference (DELFI) (Papamakarios and Murray 2016), have been introduced
in cosmological analysis. The main idea behind ABC methods is to draw parameters from
some proposal density, then forward simulate data that are compared to the observed data
under some distance metric. The proposed parameters are then accepted if this distance
is below some threshold value ε and the accepted samples provide the samples from an
approximate posterior, that recovers the exact posterior one only under the limit ε → 0.
While making it possible to probe the likelihood without a direct evaluation of it, this ac-
cept/reject criterion present some disadvantages. As example, as said before these methods
recover the exact posterior only in the limit ε → 0, but they critically slow down in this
limit, and what happens in practice is that they draw samples from a distribution that is
broader than the posterior (Papamakarios and Murray 2016). Hence, DELFI methods have
been introduced to overcome this limitation. In this framework, inference is treated as
a density estimation task and the sampling distribution of the data is learned by neural
density estimators (NDEs) as a function of the parameters of the model and by adaptively
acquiring simulations with active learning. Very schematically, �rst forward simulations
are run to obtain a set of parameters θ and the corresponding data d. Then, following some
compression procedure (e.g. Alsing and Wandelt 2018), the D dimensional data are com-
pressed to informative summaries d→ t, where t has the same dimension of the parameter
space. From the simulated mocks, the sampling distribution P(t|θ) is then learned by the
NDE and evaluated at the observed data t0, providing the likelihood. Some examples of
LFI implementations that can be used in cosmological analysis are PyDelfi, BOLFI and
others, that have been proven to potentially be a robust alternative for cosmological infer-

http://cosmo-docs.phys.ethz.ch/cosmoHammer/
CosmoHammer
https://cosmologist.info/cosmomc/
CosmoMC
https://cobaya.readthedocs.io/en/latest/
Cobaya
https://pydelfi.readthedocs.io/en/latest/intro.html
PyDelfi
https://elfi.readthedocs.io/en/latest/usage/BOLFI.html
BOLFI
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ence (Je�rey, Alsing, and Lanusse 2020; Alsing, Wandelt, and Feeney 2018). Both classes
of methods (ABC and LFI) have reached a vast extension in their theoretical development
and applications that goes beyond the purposes of this thesis, and a single section won’t
su�ce to provide an extensive overview. However, it is worth to mention these approaches,
as even if they are still in a early epoch of their usage (validations and diagnostics of such
methods are a very topical object of current research) their potential applications on the
enormous amount of data that we will receive from next generation cosmological surveys
could bring many advantages.

1.6 Summary

In this Chapter, I de�ned some background tools that are needed to understand the fol-
lowing Chapters. Starting from the cosmological principle, main cosmological quantities
have been derived and our current cosmological model, ΛCDM, has been introduced. Along
with its de�nition, the unsolved questions concerning the two main components of our uni-
verse, dark matter and dark energy have been introduced. Then statistical tools as the two
point correlation function and the matter power spectrum have been de�ned, and their
connection with cosmological probes as the CMB, weak lensing, galaxy clustering.. has
been presented. Lastly, the Bayesian inference framework has been outlined, to show how
given a model and some observed data, it is possible to infer the parameters of the model
through techniques such as MCMC. The next Chapter will zoom in one particular cosmo-
logical probe, weak gravitational lensing and will provide more details on how this probe
is employed to constraints cosmological parameters.
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This Chapter discusses more in details weak gravitational lensing. The presentation starts
with the derivation of lensing equations from light de�ection. Then, after introducing the
convergence and the shear, the link between observations and cosmological models is illus-
trated. Second order statistics of cosmic shear are then de�ned, followed by a brief overview
of systematics e�ects in weak lensing and some of the current constraints. Next, I provide
an overview of the state of the art of summary statistics in weak lensing.

2.1 Lensing formalism

The following summarises the most relevant quantities for the purposes of this thesis for
weak gravitational lensing based on Seitz, Schneider, and Ehlers 1994; Bartelmann and
Schneider 2001; Bacon, Refregier, and Ellis 2000; Refregier 2003; Kilbinger 2015.

2.1.1 Light de�ection and the lens equation

There are di�erent ways to derive the equations describing the bending light due to the
presence of massive bodies. For example one can derive them directly from the �rst princi-
ples of General Relativity (GR). In particular, we know that in GR the trajectory of light is
de�ned by null geodesics. Hence, given any metric, light de�ection from gravitational lens-
ing can be derived from the geodesic equations (introduced in Equation 1.27 and illustrated
again for convenience)

d2xµ

dλ2
+ Γµαβ

dxα

dλ

dxβ

dλ
= 0, (2.1)

where Γµαβ are the Christo�el symbols for a given metric and λ the a�ne parameter. Now,
following Seitz, Schneider, and Ehlers 1994, we can consider two arbitrary light rays, where
we set γµfid(λ) to be the �ducial and γµ(λ,θ) to be the one separated by the angular coordi-
nates θ = (θ1, θ2) from the �ducial. Given this setting, the quantity of interest to formalise
the phenomenon of gravitational lensing is the physical separation between the two rays
ξ(θ, λ) = (x1, x2) as it depends on the contents of the Universe they pass through, at any
arbitrary point λ > 0. Speci�cally, the components of ξ(θ, λ) are the transverse com-
ponents, perpendicular to the tangential direction x3 of the reference ray in the physical
3D space, as shown in Figure 2.1. The evolution of the physical separation ξ(θ, λ) is then
described through the geodesic deviation equation, that reads:

d2ξ(θ, λ)

dλ2
= T (x1, x2, x3)ξ(θ, λ), (2.2)

where T = T bg + T cl is the optical tidal matrix, accounting for the deviation due to the
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isotropic background Universe encoded in Tbg and the contribution to the deviation due
to local inhomogeneities, or clumps, described in Tcl. By assuming a metric, these two
last terms can take an explicit form. We work in the weak �eld limit that implies that the
potential is small Φ � c2 as well as the angles through which the light’s path is deviated.
Under this assumption, in the case of a FLRW metric, Seitz, Schneider, and Ehlers 1994
found the explicit expressions for the two terms constituting the optical tidal matrix to be

(T bg)ij =
4πG

c2

ρ̄0

a5
δij, (2.3)

(T cl)ij = − 1

c2a2

(
2

∂2

∂xi∂xj
+ δij

∂

∂x3

)
Φ, (2.4)

with i, j = {1, 2} being the indeces of the transvere components x1, x2 and x3 being the
l.o.s. direction. From now on, we work under the thin-lens approximation, namely we con-
sider that inhomogeneities are geometrically thin and the variation along the x3 direction
vanishes, following Seitz, Schneider, and Ehlers 1994. To obtain the lens equation one can
de�ne the comoving separation x = (x1, x2) ≡ ξ/a, and by explicitly plugging the sum
of Equation 2.3 and Equation 2.4 into Equation 2.2 one can obtain the evolution for the
comoving separation x in comoving coordinates χ as:

d2x

dχ2
+Kx(χ) = − 2

c2
[∇⊥Φ(x, χ)−∇⊥Φ(0, (χ))] , (2.5)

where∇⊥ = (∂/∂x1, ∂/∂x2) is the comoving transverse gradient, χ the comoving coordi-
nate, and the space-time curvatureK arise from the use of Friedmann equation before pass-
ing to the comoving reference frame. The solution of Equation 2.5 obtained with boundary
conditions x(χ = 0) = 0 and (∂x/∂χ)|χ=0 = θ is given by

x(χ) = fK(χ)θ − 2

c2

∫ χ

0

fK(χ− χ′) [∇⊥Φ(x(χ′), χ′)−∇⊥Φ(0, χ′)] dχ′. (2.6)

Now that we have the expression for the comoving separation x(χ) we can derive the lens
equation by considering that in absence of lensing the comoving separation would be seen
by the observer under an angle β(θ, χ) = x(χ)/fK(χ).

Hence, the di�erence between the angular separations of two light rays in unperturbed and
perturbed Universe, at comoving distance χ gives us the de�ection angle α:

α(θ, χ) = θ − β(θ, χ) =
2

c2

∫ χ

0

fK(χ− χ′)
fK(χ)

[∇⊥Φ(x(χ′), χ′)−∇⊥Φ(0, χ′)] dχ′, (2.7)
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Figure 2.1: Illustration of the propagation of two light beams emitted by a galaxy in the
source plan through a cluster located in the lens plan. As described in the text θ is the
angular separation between the observed apparent positions of the source, β is the angular
separation between the true (unlensed) positions of the source, and α is the de�ection
angle, representing the di�erence between the two. χ is the comoving distance between
the observer and the source plan and χ′ is the comoving distance between the observer and
the lens plan. Image credits to Guinot 2020.

that using β(θ, χ) = x(χ)/fK(χ) basically corresponds to dividing Equation 2.6 by the
comoving angular diameter distance fK(χ). Assuming that that the potential evaluated
on the perturbed light path does not di�er substantially from the one on the unperturbed
line of sight, i.e. working under the Born approximation

1, it is possible to substitute the
comoving separation x(χ) in Equation 2.6 with its 0th order solution x0(χ) = fK(χ)θ and
Equation 2.6 becomes:

α(θ, χ) = θ−β(θ, χ) =
2

c2

∫ χ

0

fK(χ− χ′)
fK(χ)

[∇⊥Φ(fK(χ′)θ, χ′)−∇⊥Φ(0, χ′)] dχ′. (2.8)

The above expression is the lens equation under the Born approximation and it encodes
the information on the deviation of the apparent (observed) position of a source at θ with
respect to its true position β(θ, χ) due to the gravitational potential Φ between the source
and the observer. An illustration of the above description can be found in Figure 2.1.

1Within the Born approximation, Shapiro and Cooray 2006 proved using numerical simulations that the
corrections up to fourth order in the gravitational potential of large-scale structure on the weak lensing
power spectra are unimportant (namely the approximation to be accurate to sub-percent on most scales) for
any weak lensing survey, including for a full sky survey limited by cosmic variance.
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2.1.2 Shear and convergence �elds

Given the lens equation derived in the previous section, it is possible to quantify the e�ect
of lensing by mapping the lensed space to the unlensed space. This can be done by de�ning
a linear distortion matrix A that describes the variation of the true position β with respect
to the observed position θ trhough the JacobianA ≡ ∂β/∂θ, whose elements are explicitly
given by

Aij(θ, χ) = δij −
∂αi
∂θj

= δij −
2

c2

∫ χ

0

fK(χ− χ′)fK(χ′)

fK(χ)

∂2

∂xi∂xj
Φ[fK(χ′)θ, χ′]dχ′, (2.9)

where it has been used that ∇⊥ = (∂/∂x1, ∂/∂x2) and that x0(χ) = fK(χ)θ to express
the partial derivatives with respect to the comoving transverse components x1 and x2. It is
useful now to de�ne the lensing potential as

ψ(χ,θ) =
2

c2

∫ χ

0

fK(χ− χ′)
fK(χ)fK(χ′)

Φ[fK(χ′)θ, χ′]dχ′, (2.10)

such that the distortion matrix can be expressed as

Aij(θ, χ) = δij −
∂2ψ(χ,θ)

∂θi∂θj
. (2.11)

We can already see from the equation above how the mathematical formalism starts to give
us an intuition of the physics behind the distortion: the impact of lensing on the unlensed
scenario that corresponds to the identity encoded in the Krönecker delta δij is quanti�ed by
the variation of the lensing potential ψ that physically de�nes how much the gravitational
potential Φ arising from a mass distribution changes the direction of the light path.

It is possible now to do a step further and de�ne some fundamental quantities in weak
lensing that make even more intuitive the e�ect of lensing. More speci�cally, the distortion
matrix A can be parametrised as

A =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
= (1− κ)

(
1− g1 −g2

−g2 1 + g1

)
, (2.12)

where (γ1, γ2) are the components of a spin-2 �eld γ = γ1 + γ2 = |γ|e2iφ called shear,
and κ is a scalar �eld called convergence and the two are related through the reduced shear

gi(θ, χ) ≡ γi(θ, χ)/(1 − κ). The reduced shear is a complex �eld that can as well be ex-
pressed as a function of its modulus and its phase as g = g1+g2 = |g|e2iφ. The shear and the
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Figure 2.2: Illustration of the mapping between unlensed and lensed space thruogh the
distortion matrix A. Given an original circular source image S the e�ect of weak lensing
leading to the observed image I can be summarised in the action of 1) the shear γ whose
e�ect is to imprint an anisotropic stretching (example shown in blue) where its norm |γ|
characterizes the �atness of the ellipse and the rotation angle φ indicates the distortion
direction; 2) the convergence κ that isotropically magni�es or contracts the original shape
(example shown in red). This is formalised in the distortion matrix A, being the Jacobian
between the original coordinates β and the observed coordinates θ.

convergence describe respectively the anisotropic stretching and the isotropic magni�cation
of the galaxy shape due to lensing. Equation 2.11 de�nes the shear and the convergence
�elds as second-order derivatives of the lensing potential:

γ1 ≡
1

2
(∂1∂1 − ∂2∂2)ψ; γ2 ≡ ∂1∂2ψ (2.13)

κ ≡ 1

2
(∂1∂1 + ∂2∂2)ψ =

1

2
∇2ψ. (2.14)

With the tools introduced so far, it is now possible to understand the physical meaning of
the shear and the convergence, the relation between the two, and how they are related with
the lensing potential. This can be intuitively understood by looking at Figure 2.2. Following
Lin 2016 and looking at Figure 2.2, given a circular source S of radius β, the actual observed
distorted image I can be obtained through the local mapping of the source light distribution
to image coordinates given by the inverse of the Jacobian distortion matrix A−1, as
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I = A−1S =
β

(1− κ)(1− |g|2)

(
cos t+ |g| cos (2φ− t)
sin t+ |g| sin (2φ− t)

)
(2.15)

with t ∈ R parametrising the circumference S. Applying now a rotation of −φ, the rotated
image is given by:

Irot =

(
cos (−φ) sin (−φ)
− sin (−φ) cos (−φ)

)
I =

(
cos (t+ φ) β

(1−κ−|γ|)
sin (t+ φ) β

(1−κ+|γ|)

)
, (2.16)

that is the equation of a parametrized ellipse with semi-axes a = β
(1−κ−|γ|) and b = β

(1−κ+|γ|) .
In the absence of shear (γ = 0), the equation of a circumference is recovered, telling us that
the scalar �eld κ acts as isotropic transformation. If the shear is non zero, its norm |γ|
characterizes the �atness of the distortion and the rotation angle φ gives the distortion
direction.

2.1.3 From observation to cosmology

Now that the formalism to depict the main weak lensing quantities useful for this thesis
has been outlined, the next step is to understand the connection between what we actually
observe through galaxy surveys with what we can say about cosmology. This can be done
by �nding the relation between the galaxy observed ellipticities, that is what we actually
measure with a survey like Euclid for example, with the shear, that allows to quantify the
e�ect of lensing. Then, by linking the shear to the convergence, that as will be illustrated
in the following section can be related to the matter density �eld, it is possible to infer
information about the matter distribution between the observer and the source and �nally,
about the underlying cosmological model.

Estimating shear from galaxy shapes

In the weak regime, the values for the convergence and the shear are of the order of a few
percent or less (|κ| � 1 and |γ| � 1). There are no multiple images caused by lensing
and each source is mapped uniquely into one image and the matrix A is invertible. The
quantity that is actually measured by galaxy surveys is the observed galaxy ellipticity εobs

and it’s related to the intrinsic ellipticity of the source galaxy εs for |g| ≤ 1 through (Seitz
and Schneider 1997):

εobs =
εs + g

1 + g∗εs
for |g| ≤ 1, (2.17)
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where g∗ is the complex conjugate of the reduced shear g = g1 + ig2. In the weak regime
this relation can be approximated to εobs ≈ εs + γ. The variance of the observed ellipticity
is then given by σ2(εobs) = σ2(εs) + σ2(γ). The variance of the intrinsic ellipticity of the
source is usually dominant and it is referred to as shape noise. In order to isolate the lensing
signal and reduce the shape noise, a very large number of galaxies are required. Under the
assumption that the intrinsic ellipticity of galaxies has no preferred orientation (that implies
that the expectation value of the intrinsic ellipticities vanishes 〈εs〉 = 0), the expectation
value of the observed ellipticity becomes:

〈εobs〉 ≈ g ≈ γ, (2.18)

meaning that averaging the ellipticity of many galaxies in a circular area and assuming that
the shear is constant over this area, one should obtain an unbiased estimate of the shear
itself (provided that there are no systematics in the shape measurement). For the moment,
we work under the approximation described above, leading to Equation 2.18. Hence, what
is directly measurable is the shear g ≈ γ, while the convergence κ is not, and inversion
methods are necessary to retrieve κ from γ.

Projected overdensity and convergence

As mentioned at the beginning of this section, we are walking through the steps to under-
stand the path that starting from the observations lead us to the cosmological information.
Having introduced one unbiased estimator of the observed ellipticity through Equation 2.18,
the following step is now to provide an interpretation for the other fundamental weak lens-
ing quantity vastly used in weak lensing analysis as well as in this work: the convergence
κ. From Equation 2.16 and Figure 2.2 we have seen how the convergence κ is related to
an isotropic increase or decrease of the observed size of a source image. Moreover, Equa-
tion 2.14 shows how the convergence �eld can be obtained as the second derivative of the
lensing potential. This last point was mentioned en passant, but it actually contains all
we need to connect the convergence to the cosmological information that we want to ex-
tract. Indeed, if we look more carefully into it, we see that the equation relating the lensing
potential and the convergence is a Poisson equation. We remind here few useful steps to un-
derline why this is important for the aim of this section. By making Equation 2.10 explicit
in Equation 2.14 we get:

κ(θ, χ) ≡ 1

2
∇2ψ(θ, χ) =

1

c2

∫ χ

0

fK(χ− χ′)
fK(χ)fK(χ′)

∇2Φ[fK(χ′)θ, χ′]dχ′, (2.19)

and using now the fact that the gravitational potential Φ is related to the matter density
contrast δ = ∆ρ/ρ̄ through the Poisson equation∇2Φ = 4πGa2ρ̄mδ, the convergence �eld
can be rewritten as
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κ(θ, χ) =
3H2

0 Ωm

2c2

∫ χ

0

fK(χ− χ′)fK(χ′)

fK(χ)

δ[fK(χ′)θ, χ′]

a(χ′)
dχ′, (2.20)

where the mean matter density has been written in terms of the critical density, de�ned in
Equation 1.23, in comoving space.

It is more explicit now how the convergence is connected to the matter distribution: Equa-
tion 2.20 depicts the convergence as an integration of the density contrast along the line of
sight, weighted by comoving transverse distances and the scale factor. Hence, the conver-
gence κ can be interpreted as the projected overdensity, or the projected mass. Now, given a
population of source galaxies with source redshift distribution n(χ), the mean convergence
from such population can be obtained as

κ(θ) =

∫ χlim

0

n(χ)κ(θ, χ)dχ, (2.21)

where χlim is the limiting comoving distance of the galaxy sample. Putting everything
together:

κ(θ) =
3H2

0 Ωm

2c2

∫ χlim

0

g(χ)fK(χ)
δ[fK(χ)~θ, χ]

a(χ)
dχ, (2.22)

where the lensing strength at a distance χ of the combined background galaxy distribution
at χ′ has been summarised in the term

g(χ) =

∫ χlim

χ

n(χ′)
fK(χ′ − χ)

fK(χ′)
dχ′, (2.23)

known as lens e�ciency or lensing kernel. Back to the initial intent of this section, we see
how the convergence is a measure of the total matter density projected along the line of
sight accounting for lensing and the geometry of the universe via the distance ratios, and
the source galaxy distribution, given a cosmological model.

Relation between shear and convergence: mass mapping methods

It has been described so far how the shear is related to what is the actual observed quantity
(galaxy shapes) and how the convergence provides rich information about the total matter
density projected along the line of sight. The last step consists in considering how the shear
and the convergence are related, to complete the link between observation and the informa-
tion of matter distribution along the line of sight. From Equation 2.13 and Equation 2.14 one
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can see how both the shear and the convergence are related through the lensing potential.
Considering these expressions in Fourier space, one gets:

γ̂1 =
(k2

1 − k2
2)

2
ψ̂; γ̂2 = k1k2ψ̂ (2.24)

κ̂ =
(k2

1 + k2
2)

2
ψ̂. (2.25)

Then, one way to obtain the convergence from the shear is to follow Kaiser-Squire (KS)
inversion method (Kaiser and Squires 1993) that combines these equations to build a mini-
mum variance estimator of the convergence

κ̂est
γ =

(k2
1 − k2

2)

k2
γ̂1 +

2k1k2

k2
γ̂2 or κ̂est

γ =
k2

1 + k2
2

(k1 + ik2)2
γ̂, (2.26)

with k =
√
k2

1 + k2
2 . This is equivalent to write in direct space:

κ(θ) =
1

π

∫
D(θ − θ′)γ(θ′)dθ′ + κ0, (2.27)

where the convolution kernel D is the Fourier transform of the inverse of the pre-factor
in Equation 2.26. This equation tells us that the convergence can be obtained as a convo-
lution of the shear �eld, meaning that there exists a linear relation between the shear and
the convergence. Nevertheless, Kaiser-Squires inversion is characterised by some compli-
cations due to di�erent factors. On one side, the shape noise (de�ned in Section 2.1.3) is
larger than the shear induced by lensing and the random sampling of background galaxies
propagates errors through this reconstruction. Therefore, smoothing to reduce the shape
noise per pixel and ensure that there are no empty pixels is required. This imprints a loss in-
formation at small scales and requires accounting for masks. On the other side, this method
su�ers from the so called mass-sheet degeneracy: a constant convergence does not induce a
shear, and this can be seen by noticing that Equation 2.26 is not de�ned for k1 = k2 = 0. In
real space, this is encoded by the constant term κ0 in Equation 2.27 and it implies that the
global level of the convergence map is undetermined by this method.

Despite some advantageous properties as linearity (in the weak regime), minimum vari-
ance and the ability to accommodate reduced shear of this inversion method, the di�erent
shortcomings mentioned above led to the introduction in the literature of alternative mass
mapping techniques. Some examples are approaches aimed to remove the errors caused
by the �nite size of the �eld in weak lensing maps through inpainting (Pires et al. 2009)
or based on estimating the convergence from the gradient of the convergence (�exion) as
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proposed in Bacon et al. 2006. Weak-lensing reconstructions of the potential and mass dis-
tribution in three dimensions are also possible. In the recent years, powerful methods based
on sparsity have also been introduced, such as GLIMPSE (Lanusse et al. 2016) where to
preserve all available small-scale information, any binning of the irregularly sampled input
shear and �exion �elds are avoided and the mass mapping problem is treated as a general
ill-posed inverse problem, which is regularised using a robust multi-scale wavelet sparsity
prior. In Je�rey et al. 2020 the �rst reconstruction of dark matter maps from weak lensing
observational data using deep learning was presented, with a method called DeepMass.
Such method estimates the posterior mean of the convergence map from observed weak
lensing shear measurements. More speci�cally, it estimates the convergence maps through
a functionFΘ that maps the pixelised shear to the convergence map such that κ̂ = FΘ(γ),
where what is learned by the CNN are the parameters Θ by minimising a mean-square-
error (MSE) cost function J(Θ) = ||FΘ(γ)−κtrue||22. This cost function is evaluated on a set
of training data which consists of pairs of realistic shear and truth convergence maps and
the truth maps are drawn from a prior distribution P (κ), so that the corresponding noisy
shear map is drawn from the likelihood P (γ|κ). This provides a generalised method where
the simulations are trained over a broad prior distribution of cosmological parameters and
it has proven to be substantially more accurate than existing mass-mapping methods: com-
pared to Wiener �ltering with a �xed power spectrum, the DeepMass method improved
the mean square error (MSE) by 11%.

Another novel approach introducing a new convergence map model based on a mixture of
a sparsity-based component to account for the non-Gaussian structure of the �eld and a
Gaussian random �eld to represent the linear characteristics of the �eld was presented in
Starck et al. 2021 and it is called MCALens. As it uses concepts that need an understanding
of sparsity, it will be treated more in detail in Section 3.6. Moreover, very recently, another
method, called KaRMMa for performing mass map reconstruction based on a Bayesian ap-
proach has been introduced (Fiedorowicz et al. 2021) in the literature. It is based on a
forward model of the observed shear �eld as a noisy realsation of an underlying noiseless
convergence �eld, that is assumed to be a non-linear transformation of a Gaussian ran-
dom �eld parametrised by a shift parameter, being the minimum possible value that the
map can take in a pixel. This method outperforms the Kaiser–Squires reconstruction by
exhibiting a narrower distribution of residuals when compared to some true mass maps
from simulations. It also appears to be potentially powerful for aspects such as generating
void or peak catalogues, as otherwise other methods as KS will also identify prior-sourced
structures in peak/void �nding algorithms. However, its current implementation does not
allow for cosmological inference analysis as a speci�c cosmology is required to be able to
specify the prior; also, it can only perform reconstruction for one single tomographic bin,
hence making a joint reconstruction across multiple tomographic bins impossible. Lastly,
it is still restricted to relatively low resolutions, therefore, an improved version of it would
be needed at this stage in the interests of performing a cosmological inference analysis.

GLIMPSE
DeepMass
DeepMass
KaRMMa


48 Weak gravitational lensing

2.2 Cosmic shear

Now that the building blocks to understand the main weak lensing quantities have been de-
scribed, the next milestone is to understand how to extract cosmological information from
weak lensing observables. At this point, we know that the shear is strictly related with
what is actually measured, i.e. the galaxy shape, that the convergence can be interpreted as
the 2D mass projection along the line of sight providing information about the matter dis-
tribution, and that the shear and the convergence are related through the lensing potential
and can be obtained with inversion methods such as the ones mentioned in the previous
section.

2.2.1 The shear two-point correlation function

In particular, through Equation 2.22, we have seen how the convergence is related to the
density contrast and via Equation 2.26 the link between shear and convergence. Since the
average density contrast 〈δ〉 is zero, following Equation 2.22 the expected value of conver-
gence is also zero. In order to retrieve cosmological information, the �rst non trivial cosmic
shear observable is the real-space shear two-point correlation function (2PCF). It can be
built by decomposing the shear in a tangential component γt and in a cross component γ×:

γt = −<(γe−2iφ); γ× = −=(γe−2iφ) (2.28)

where φ is the polar angle of the direction θ. Then three two-point correlators can be built
from these two shear components: 〈γtγt〉, 〈γ×γ×〉, 〈γtγ×〉 leading to the three components
of the 2PCF ξ(θ):

ξ±(θ) ≡ 〈γtγt〉(θ)± 〈γ×γ×〉(θ); ξ×(θ) ≡ 〈γtγ×〉(θ). (2.29)

These correlation functions should be invariant under parity transformation, namely: γt →
γt, γ× → −γ×. Then ξ× vanishes. Reminding now that in the weak regime Equation 2.18
holds, i.e. the average of the observed ellipticity provides an unbiased estimate of the shear
(assuming that the shear is constant over the averaged area and provided there are no
systematics in shape measurement), an estimator of the 2PCF is given by (Schneider, P. et
al. 2002):

ξ̂±(θ) =

∑
ij wiwj[εt(θi)εt(θj)± ε×(θi)ε×(θj)]∑

ij wiwj
, (2.30)

where εt and ε× are respectively the tangential and cross component of the observed ellip-
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ticity εobs (the apex obs has been omitted) and each galaxy has a measured ellipticity εobs

and an attributed weight wi to account for the measurement uncertainty. The sum extends
over pairs of galaxies (i, j) at corresponding positions on the sky ϑi and ϑj whose separa-
tion |ϑi − ϑj| lies in an angular distance bin around θ. More details on this formalism and
notation can be found in Schneider, P. et al. 2002.

2.2.2 The convergence power spectrum

Analogously to the previous section, it is possible to de�ne a 2PCF for the convergence
�eld. In particular, working in Fourier space, the two-point correlation function de�nes the
convergence power spectrum Cκ(`) through:

〈κ̃(`)κ̃∗(`′)〉 = (2π)2δD(`− `′)Cκ(`), (2.31)

where δD is the Dirac delta, and following Schneider 2006, κ̃ is the Fourier transform of the
convergence �eld κ:

κ̃(`) =

∫
d2θκ(θ)ei`·θ. (2.32)

Then, using the expression found in Equation 2.22 for the convergence in Equation 2.32 to
compute Equation 2.31 and working under the following assumptions:

• Limber approximation: correlations along the line of sight are neglected, namely only
modes that lie in the plane of the sky are considered (Limber 1953; Kaiser 1992; Simon,
P. 2007)

• Small-angle approximation: approximating to �rst order the expansion og trigono-
metric functions of the angle

• Flat-sky limit: replacing the expansion in spherical harmonics by an expansion in
Fourier modes (Lemos, Challinor, and Efstathiou 2017),

it is possible to get an explicit expression for the convergence power spectrum as

Cκ(`) =

(
3H2

0 Ωm

2c2

)2 ∫ χlim

0

g2(χ)

a2(χ)
Pδ

(
k =

`

fK(χ)
, χ

)
dχ, (2.33)

where Pδ is the matter power spectrum, arising from the the density contrast in the right
hand side of Equation 2.22 and g(χ) is the lensing kernel introduced in Equation 2.23. Re-
minding also the relation that holds between the shear and the convergence through Equa-
tion 2.26, this implies that |κ̃| = |γ̃|. Hence, the shear power spectrum de�ned through
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〈γ̃(`)γ̃∗(`′)〉 = (2π)2δD(` − `′)Cγ(`), is actually equivalent to the convergence power
spectrum, namely Cκ(`) = Cγ(`). Thus, while it is possible to obtain the convergence
from shear measurements through inversion methods as described in Section 2.1.3, we can
also work directly with the 2-point statistics of shear and still retrieve the cosmological
information contained in Equation 2.33 and viceversa.

2.2.3 Systematics

There is a range of systematics e�ects that can mimic a shear signal, namely, multiplicative
shear bias, mean redshift bias, baryonic feedback, intrinsic alignment, and boost factor.
This section provides a brief overview of these systematics e�ects, by de�ning them and by
presenting some of the issues that characterise them and some of the current approaches
to try to alleviate them.

Baryonic e�ects

As mentioned in Section 1.3.2 and as will be outlined more in details in Section 2.2.5, pre-
dicting the matter distribution in the non-linear regime with high accuracy still represents
a challenge. For instance, for Fourier modes as large as k ∼ 10 h Mpc−1 baryonic physics
can di�er from the dynamics of dark matter. In particular, it has been shown that to under-
stand the fact that the star formation rate is higher than expected, the feedback from active
galactic nuclei (AGN), i.e. the re-deposition of energy and momentum into the interstellar
medium of a galaxy through the out�ows and radiation, needs to be taken into account
during galaxy formation (Dubois et al. 2013). Hence, as baryonic physics modi�es the clus-
tering property of matter, it impacts the non-linear matter power spectrum and, as a direct
consequence, it also in�uences the lensing signal. If the baryonic physics is not properly
accounted for, biases are induced on cosmological constraints. In particular, Daalen et al.
2011 have shown that this impacts the matter power spectrum to a level which is higher
than the accuracy required for current and future weak lensing surveys, that require an
accuracy of a few per cent for a large range of scales.

This becomes more important at more non-linear scales; however, already at the level of
second order statistics, it has been shown that ignoring the e�ects of baryonic physics can
induce a bias as large as ∼ 40% on the dark energy equation of state for the AGN scenario
(Semboloni et al. 2011). The convergence power spectrum is signi�cantly altered speci�-
cally at angular scales corresponding to ` ≤ 1000 (or to ` ≤ 3000, depending on the as-
sumed statistical uncertainty (Kilbinger 2015)). With this awareness, a lot of e�ort has been
put in the attempt of modelling such complex physics in the ensemble of baryonic processes
as radiative cooling, star formation, supernovae, AGN and their associated feedback on the
matter density �eld through hydro-dynamical simulations such as the Horizon-AGN
(Dubois et al. 2016), the Illustris (Vogelsberger et al. 2014), the EAGLE (Schaye et

Horizon-AGN
Illustris
EAGLE
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al. 2014), the Osato15 (Osato, Shirasaki, and Yoshida 2015), the BAHAMAS (McCarthy
et al. 2016), the Magneticum path-finder (Dolag, Komatsu, and Sunyaev 2016),
the Illustris-TNG (Pillepich et al. 2017). An e�ort on modelling these e�ects has
been also put in analytical and physically intuitive approaches based on the halo model
as for example in Semboloni et al. 2011 or in Fedeli et al. 2014. An alternative method,
that does not require hydro-dynamical simulations, consists of modifying the output of
N-body simulations by slightly displacing particles around halo centres based on an empir-
ical parametrisation of halo pro�les including gas, stars, and dark matter. This approach is
called baryoni�cation, introduced in Schneider and Teyssier 2015 and Schneider et al. 2019
and it allows to perform many fast realisations of the non-linear cosmic density �eld with
varying baryonic parameters. As already mentioned above, being able to account for bary-
onic e�ects becomes more and more important when willing to probe non linear scales. In
the next section, dedicated to higher order statistics, some recent studies and results with
baryonic e�ects in non-Gaussian statistics will be discussed. In our �rst application on real
data using CFIS that will be presented in Chapter 7, we consider this e�ect, alone and in
combination with the multiplicative shear bias.

Intrinsic alignment

The interpretation of the lensing signal and convergence maps as introduced in this work
so far is based on the hypothesis that the intrinsic galaxy orientation should not have any
privileged direction, i.e. on the assumption made in Equation 2.18. In reality, galaxies are
continuously exposed to the gravitational interaction with the surrounding matter distri-
bution, during their formation and evolution, and this leads to a coherent alignment of their
intrinsic shapes, induced by the underlying tidal �eld on physically near galaxies and by a
complex relation with their host halos. This phenomenon is called intrinsic alignment (IA)
(Heavens, Refregier, and Heymans 2000). Extensive reviews on this topic are present in
Kirk et al. 2015; Kiessling et al. 2015; Joachimi et al. 2015.

At the level of second order statistics, this e�ect can be included by forgetting the assump-
tion that 〈εs〉 = 0 and by considering the 2PCF for the observed galaxy ellipticities 〈εobs〉
(indicating with i and j a pair of galaxies and the average is over all pairs):

〈εobs
i εobs

j 〉 = 〈γiγj〉+ 〈εsiεsj〉+ 〈γiεsj〉+ 〈εsiγj〉, (2.34)

where the 〈γiγj〉 can be be referred to as “GG”, describing the cosmic shear correlation (the
only contribution that survives, when working under the assumption that there is no pre-
ferred orientation for intrinsic galaxy shapes); the 〈εsiεsj〉 term that can be referred to as “II”,
encodes the correlations between intrinsic ellipticities; and the last two terms 〈γiεsj〉, 〈εsiγj〉
can be summarised in the notation “GI”, and describe the correlations between the shear
for one galaxy and the intrinsic ellipticity of the other. Neglecting the IA e�ects can intro-

Osato15
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duce important biases on weak lensing signal and consequently on parameters estimation.
Indeed, in order to properly model this e�ect in weak lensing analysis, a wide number of
models has been proposed in the literature, such as the Linear Alignment (LA) model (Cate-
lan, Kamionkowski, and Blandford 2001), based on the tidal alignment of galaxies taken at
linear order or the Non-Linear Alignment (NLA), an empirical modi�cation of the LA based
on the consideration that it better �ts the data, as motivated in Hirata and Seljak 2004; Bri-
dle and King 2007. Kirk et al. 2012 noted that, if IA is imprinted in the primordial phases of
galaxy formation, perturbations are still in the linear regime: they then claim that the linear
power spectrum should be used for the “II” correlation. Along with this, shear depends on
the non-linear power spectrum which must be taken into account in the correlation with
IA. Therefore, they proposed to use a Freeze - in model (FM) where the overall e�ect of IA is
suppressed at low redshifts and large k because of the use of linear rather than non-linear
matter power spectrum.

Many other models that try to account for what is neglected in the LA and NLA mod-
els (such as astrophysical e�ects beyond the lowest order) can be mentioned, such as the
Full tidal alignment (FTA), obtained by carrying on the computation of the intrinsic-matter
power spectrum to the next leading orders (Blazek, Vlah, and Seljak 2015) or the Tidal align-
ment and torquing (TAT) including also terms originating from the tidal torquing expected
in rotation supported systems. In Fortuna et al. 2020, a uni�ed framework to account for
di�erent IA signatures at large and small scales that also incorporates luminosity and ra-
dial dependence has been presented. In this context, the total IA power spectra are given
by the sum of the behaviour at large scales (where the majority of the IA signal is due to
red central galaxies) and the behaviour at small scales (dominated by the satellite alignment
signal). The fact that there is such a vast number of di�erent models is due to the fact that
some of these models are not able to represent accurately the real physical e�ects due to
the large number approximations (LA) or they are too hard to compute (as for example FTA
and TAT) or not completely understood (FM), or with too many parameters (full NLA).

Given the di�culties to reproduce the physical properties of galaxies coherently with the
observations employing DM-only simulations to predict the intrinsic alignment signal, the
use of hydro-dynamical simulations has been proven powerful to better predict the complex
relation between halo shape and spin and galaxy shape and spin (Codis et al. 2015; Bate et
al. 2019). An alternative way to include IA in weak lensing analysis, consists in treating
it as an additive component to the cosmological signal, directly obtained from the particle
shells of the simulations in a similar fashion as the cosmological convergence signal κ itself,
as performed in Zürcher et al. 2021 with the Ufalcon pipeline (Sgier et al. 2019).

Multiplicative shear bias

The multiplicative shear bias is a systematics arising at the level of the shear measure-
ment that can be caused by various e�ects as noise bias, a systematics error whose origin is

Ufalcon
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identi�ed in high-order noise terms in the measurement of the shape parameters of galax-
ies, due to the non-linear relation between image pixels and galaxy shape (Refregier et al.
2012); model bias in the context of model �tting methods, if the model is not able to rep-
resent realistic galaxy morphologies well enough, then the shape estimator will be biased
(Kacprzak et al. 2014); or imperfect PSF corrections (Paulin-Henriksson, S., Refregier, A.,
and Amara, A. 2009). This systematics can change the overall amplitude of the cosmic shear
auto-correlation and its cross-correlation with other probes of the large scale structure and
consequently cause biased estimations of cosmological parameters (Liu, Ortiz-Vazquez, and
Hill 2016). The simplest way to deal with shear estimation biases consists in estimating
the shear errors by processing simulated data with known input shear through the same
pipeline as the real data. These calibration methods require simulations that need to be
carefully matched to the properties of the given data in order to have correct calibration
factors. An alternative way to calibrate the shear measurement is the metacalibration (Hu�
and Mandelbaum 2017). This method does not rely on simulations, and allows to avoid
the challenge of creating a large number of time-consuming image simulations and it has
proven to be very e�ective both when applied to the DES Year 1 (Y1) catalogue (Zuntz et al.
2018) and to the Canda-France Imaging Survey (CFIS) r-band data (Guinot et al. in prep.). In
our �rst application on real data using CFIS that will be presented in Chapter 7, we consider
this e�ect, alone and in combination with baryonic e�ects.

Mean redshift bias

As one can see from Equation 2.21 and Equation 2.23, it is required to have a knowledge
of the the source galaxy distribution n(z), in order to be able to interpret weak lensing ob-
servables from a cosmological point of view. In particular, for a given desired accuracy to
estimate cosmological parameters, the mean redshift z̄ has to be determined at least to that
accuracy. When performing a tomographic analysis, this applies to each individual redshift
bin, as the knowledge of the centers of each bin needs to be better than a per cent to avoid a
decrease in the accuracy of dark-energy parameters to 50% as was shown by Huterer et al.
2006. The estimation of galaxy redshifts through photometry ( brie�y mentioned in Section
1.4.1), or photometric redshifts (photo-zs) is hence needed. The requirements of the accu-
racy of photometric redshifts depend on the survey. For example, for KiDS, it was found that
even a Gaussian 1σ uncertainty on the measured mean redshift of each tomographic bin can
degrade the statistical errors on relevant cosmological parameters by ∼ 25% (Hildebrandt
et al. 2016). Since the galaxy samples photometric redshift distributions typically present
highly non-Gaussian tails, analytic estimates based on Gaussian redshift errors don’t rep-
resent the optimal way to obtain accurate calibrations. In Hildebrandt et al. 2016, di�erent
methods, based on weighted direct calibration obtained by a magnitude-space re-weighting
or on angular cross-correlation based calibration, that rely on spectroscopic redshift (spec-z)
training samples are compared. Their favoured technique relies on a weighted direct cal-
ibration obtained by a magnitude-space re-weighting of spectroscopic redshift catalogues
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that overlap with KiDS (Lima et al. 2008). They also conclude that for future cosmic shear
surveys bringing considerably large data sets, it will be essential to reduce the statistical un-
certainty in the redshift calibration. For Euclid, Euclid Collaboration et al. 2020a presented
a report on the performance of 13 photometric redshift codes for single value redshift esti-
mates and redshift probability distributions on a common set of data, focusing particularly
on the redshift range that the Euclid will probe. Their �nding is that while all methods are
able to provide reliable single value estimates, several machine-learning methods do not
manage to produce useful redshift probability distributions. Moreover, they �nd that no
machine-learning method provides good results in the regions of galaxy color-space that
are sparsely populated by spectroscopic-redshifts, while generally performing better than
template-�tting (Bolzonella, Miralles, and Pelló 2000) methods at low redshift, indicating
that template-�tting methods do not use all of the information contained in the photome-
try. They conclude that further work in identifying how to best select between machine-
learning and template-�tting approaches for each individual galaxy should be pursued as
a priority for future galaxy surveys like Euclid.

Boost factor

Another consequence of the uncertainty of photometric redshift estimates is the contami-
nation of the source galaxy catalogue with galaxies associated with the foreground cluster,
namely counting galaxies residing at the lens redshift in the n(z) of the sources. As this
contamination dilutes the measurement, in order to recover the true signal, the raw signal
has to be boosted. Hence, this e�ect is referred to as the boost factor. This systematics is
mostly relevant for higher order statistics such as peak counts as the strength of the shear
signal varies with the distance of source galaxies to the lens and this causes the detection
probability of a peak to depend on the distribution of the redshifts of source galaxies at the
position of a peak (Kacprzak et al. 2016). In the context of peak counts, the boost factor
can be estimated in di�erent ways. For instance, Kacprzak et al. 2016 corrected the peak
function found in their cosmological training set as a function of S/N by evaluating the
fractional over-crowding and over-blending rates in peaks of di�erent S/N from a separate
catalogue that matches the DES-SV n(z) and by restricting their measurement to S/N < 4
where they found that the impact of this e�ect is minimal (a shift in S8 of about 0.01) and
can then be neglected. For KiDS-450, Shan et al. 2017 used a cluster catalogue that overlaps
with the KiDS-450 survey, and evaluated the boost factor from the excess source density
around these massive objects. Their �nding is that the contamination to the peak func-
tion reaches 27% for peaks with S/N = 5, being however less than 6% for S/N < 4,
consistently with Shan et al. 2017.
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2.2.4 Constraints with cosmic shear second order statistics

The detection of cosmic shear and its interpretation as direct measure of the mass power
spectrum (Bacon, Refregier, and Ellis 2000; Kaiser, Wilson, and Luppino 2000) and the con-
sequent proof of the technical feasibility of using weak lensing surveys to measure dark
matter clustering to constrain cosmological parameters (Waerbeke et al. 2000), led to the
use of cosmic shear as a primary probe for past, current and future galaxy surveys. The
most popular approach adopted by these surveys to perform cosmological parameter in-
ference relies on second order statistics, in the form of correlation functions (or its Fourier
equivalent, the power spectrum), or estimated using pseudo-C`, band powers or quadratic
estimators. For example, Kilbinger, Fu, Heymans, et al. 2013 used the shear two-point cor-
relation functions computed on CFHTLenS data spanning 154 deg2 to constrain σ8 and Ωm

with cosmic shear only and on ΩK, ΩDE and w0 by adding WMAP7 and BOSS data. Again,
using the shear two-point correlation function Troxel et al. 2018 constrained σ8, Ωm, their
combination S8 and w, for DES Y1, covering 1321 deg2 of the southern sky and found con-
straints in good agreement with previous cosmic shear results from KiDS-450 (covering 450
deg2) (Hildebrandt et al. 2016). For the fourth data release of the KiDS that doubled the sur-
vey area (covering 1000 deg2), Asgari, Marika et al. 2021 compared a COSEBIs (Complete
Orthogonal Sets of E/B-Integrals) analysis with complementary analyses of the two-point
shear correlation function and band power spectra, �nding results to be in great agreement
and the sensitivity of the three statistics to systematics to be robust and dominated by sta-
tistical errors for the constraints on S8. Hamana et al. 2020 employed the shear 2PCF from
the HSC �rst-year data, covering 136.9 deg2 �nding constraints for S8 consistent with the
latest Planck CMB result while in tension at a ∼ 2σ level KiDS + VIKING-450 (Joudaki,
S. et al. 2020). To investigate this tension and understand its origin, they plan in future
works to analyse the KiDS public shape catalog with their methodology. The most recent
results available from cosmic shear to date are from DES-Y3 cosmological results (Amon
et al. 2021), with the data spanning 4143 deg2 for four redshift bins. The analysis provides
constraints in the context of the ΛCDM model and �nd a 3% constraint for S8, the highest
signi�cance measurement of cosmic shear to date, with a signal-to-noise of 40. The two
low-redshift measurements are found to be statistically consistent with Planck Cosmic Mi-
crowave Background result, however, a ∼ 2.3σ tension, slightly dependent on the method
used, remains for high-redshift predictions (Lemos, DES Collaboration, et al. 2021).

Forthcoming experiments like Euclid (Laureijs et al. 2011), the Vera C. Rubin Observatory
LSST (LSST Science Collaboration et al. 2009), and the Nancy Grace Roman Space Telescope
(Spergel et al. 2015) will also use cosmic shear as a primary probe and will give access to
small scales than ever before. Modelling challenges in cosmic shear will become hence
more and more important on non-linear scales. This last point is further discussed in the
next section, with a focus on the Euclid mission.
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2.2.5 Non-Linear regime

This paragraph aims to provide a concise description of the impact on the modelling of
cosmic shear of the scales at the which matter density �eld perturbations become larger
and linear theory fails to predict the evolution of large-scale structures, mostly based on
Martinelli et al. 2020 and Euclid Collaboration et al. 2020b. A wide contribution to the
constraining power of the cosmic shear signal lies in non-linear scales, speci�cally in cor-
respondence of scales up to k ≈ 7 h Mpc−1 (Taylor, Kitching, and McEwen 2019). This
requires the capability of modelling the matter power spectrum at high-k. Indeed, if non-
linear scales not properly modelled of the shear signal are included in the analysis, this can
lead to biases or underestimation of the contours size. For instance, Copeland, Taylor, and
Hall 2018 have shown that the impact of baryonic e�ects on the non-linear power spec-
trum can lead to a decrease of the FoM by up to 40%, depending on the model and the
prior. Hence, it is very important to model the behaviour at high-k and be aware of the
choices adopted when modelling the non-linear power spectrum.

A straightforward way to avoid the problematic of dealing with non-linear scales that might
be di�cult to model and interpret is to apply a cut in `-modes by setting a maximum mul-
tipole value `max. This method is the most commonly employed in weak lensing analysis
as it yields unbiased results. For example, Euclid Collaboration et al. 2020b identi�ed cuts
in `-modes corresponding to an optimistic and a pessimistic settings in the context of Fisher
forecasts. Speci�cally, for the pessimistic setting the cut is set at `max = 1500. This choice
is motivated by the fact that the information content of the shear power spectrum, de�ned
as the total signal-to-noise ratio, decreases by 30% at `max = 5000 when in the covariance
matrix is considered also the non-Gaussian contribution (Takada and Hu 2013).

The optimistic setting sets `max = 5000, to quantify the gain that could be obtained ex-
tending to the non-linear regime, if one were able to include such high multipoles. As also
discussed in Euclid Collaboration et al. 2020b, this approach is practical, but has limited
applicability and can lead to imprecise parameter constraints, especially at low redshifts.
Indeed, parameter sensitivities are generally scale dependent (Copeland, Taylor, and Hall
2018) and respond di�erently to di�erent cuts and to non-Gaussian correlations in the co-
variance. In the analysis presented in this thesis, we follow the optimistic setting we of
Euclid Collaboration et al. 2020b when employing the MassiveNus simulations, while
using a value closer to the pessimistic setting of Euclid Collaboration et al. 2020b (we use
`max ∼ 2000) when using the cosmo-SLICS simulations.

To overcome these issues, methods to optimally remove sensitivity to poorly modelled
scales based on the Bernardeau-Nishimichi-Taruya (BNT) transform (Bernardeau, Nishimichi,
and Taruya 2014), where the observed tomographic angular power spectrum can be re-
weighted in such a way that each redshift bin retains only the information about lenses
within a small redshift range, have been proposed. In particular, employing these meth-
ods can reduce the error on S8 by 32% relative to a correlation function analysis with the
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same priors but with angular scale cuts and can alleviate baryons modelling uncertainties,
as shown when working in con�guration space by Taylor, Bernardeau, and Hu� 2021. At
the same time, Deshpande, Taylor, and Kitching 2020 showed how the optimistic scenario
of `max = 5000 mentioned for Euclid Collaboration et al. 2020b is more achievable when
the k-cut cosmic shear technique, that consists in applying a redshift-dependent `-cut after
making the BNT transform, is applied.

Besides the complexity of modelling the power spectrum at non-linear scales, the fact that
the �uctuations of the cosmic density �eld are Gaussian in the early Universe, but then
grow into a complex structure containing walls, �laments, nodes, and voids, makes second
order statistics like the power spectrum blind to non-Gaussian features of the large-scale
structure �eld due to non-linear evolution at late times.

Figure 2.3 shows this with the comparison between a convergence map of size 12.25 deg2

from the MassiveNus suite of simulations (left top panel) with a fake convergence map
of the same size (right top panel) built such that its power spectrum matches the power
spectrum of the convergence map. By looking at both maps, it is possible to notice how
many structures (such as the big blog at the right top of the left map, or the structures
located at its center) are not present in the map of the right and yet, the two maps are
described at second order by the same power spectrum. Indeed, by de�nition, second order
statistics can potentially capture all cosmological information encoded in linear, Gaussian
density �elds. However, as shown in Figure 2.3, a large number of high value convergence
are seen in the �rst convergence map, but are not encoded in the information brought by
the power spectrum indicating rich non-Gaussian information and the need to go beyond
second order statistics. The next section is dedicated to the state of the art of statistics of
order higher than the second, introduced to account for non-Gaussianities.

2.3 State of the art of higher-order statistics

In this section, I will present an overview of the state of the art of current higher-order
statistics with the corresponding de�nitions and main recent results on forecasts and real
data constraints. As mentioned at the end of the previous section, in the context of weak
lensing, second-order statistics as the two-point correlation function or its Fourier trans-
form (the power spectrum) do not capture the non-Gaussian information encoded in the
non-linear features of weak lensing data (Weinberg et al. 2013). This has motivated the
introduction of several higher-order statistics, such as Minkowski functionals (Kratochvil
et al. 2012; Petri et al. 2015; Vicinanza et al. 2019; Marques et al. 2019; Parroni et al. 2020),
higher-order moments (Petri, May, and Haiman 2016; Vicinanza, Cardone, Maoli, et al.
2018; Peel, Pettorino, Giocoli, et al. 2018; Chang et al. 2018; Gatti et al. 2020), the bispec-
trum (Takada and Jain 2004; Chan and Blot 2017; Coulton et al. 2019), peak counts (Kruse
and Schneider 1999; Kratochvil, Haiman, and May 2010; Dietrich and Hartlap 2010; Maturi,
Fedeli, and Moscardini 2011; Pires, Leonard, and Starck 2012; Hamana et al. 2012; Hilbert
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Figure 2.3: Comparison between a convergence map from the MassiveNus suite of sim-
ulations (left top panel) with a fake convergence map (right top panel) built such that its
power spectrum matches the power spectrum of the convergence map. The bottom panel
shows the power spectrum measured on the convergence map (continuous line) with re-
spect to the power spectrum computed on fake convergence map (dashed line). The mes-
sage of this illustration is to show how a large number of high value peaks (as the big blob at
the top right of κ map 1 detectable also by naked eye or the several structures at the center
of the same map) are not accounted for when extracting information with the power spec-
trum, indicating the presence of information beyond Gaussian statistics that is not present
in the information brought by the power spectrum.
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et al. 2012; Marian et al. 2012; Marian et al. 2013; Martinet et al. 2015; Lin and Kilbinger
2015; Giocoli, Moscardini, Baldi, et al. 2018; Martinet et al. 2018; Peel, Pettorino, Giocoli,
et al. 2018; Li, Liu, Zorrilla Matilla, et al. 2019), the scattering transform (Cheng et al. 2020),
wavelet phase harmonic statistics (Allys et al. 2020), and machine learning-based methods
(Fluri et al. 2018; Peel et al. 2019; Gupta, Matilla, Hsu, et al. 2018; Ribli et al. 2019; Shirasaki
et al. 2019), to account for non-Gaussian information in cosmological analysis. Focusing
on peak counts, it has been shown that this statistics is particularly powerful in breaking
degeneracy between the standard model and �fth forces in the dark sector (Peel, Pettorino,
Giocoli, et al. 2018) as well as in constraining cosmological parameters when employed in
a multi-scale setting (Liu, Petri, Haiman, et al. 2015; Lin, Kilbinger, and Pires 2016; Fluri,
Kacprzak, Sgier, et al. 2018; Ajani et al. 2020; Zürcher et al. 2021). In particular, as it will be
discussed in Chapter 4, in Ajani et al. 2020 we have advanced the state of the art by show-
ing that multi-scale peak counts signi�cantly outperform the weak lensing power spectrum,
improving the constraints on the sum of neutrino masses

∑
mν ≡Mν by 63% when using

a starlet �lter. In the same study, we have also found that multi-scale peak counts are so
constraining that the addition of the power spectrum does not further improve constraints.
A very interesting feature that we have found for multi-scale peaks, when they are obtained
using the starlet transform (Starck, Fadili, and Murtagh 2007), is the behaviour of the co-
variance matrix that tends to encode all information in its diagonal elements. Another weak
lensing probe of large-scale structure is represented by cosmic voids, namely under-dense
regions of the large-scale matter �eld (Colberg, Pearce, Foster, et al. 2008; Pisani, Massara,
Spergel, et al. 2019). Local minima of weak lensing convergence maps, namely pixels with
values smaller than their eight neighbouring pixels, have been proposed as tracers of the
matter distribution voids to infer cosmological parameters, both in a mono-scale setting
(Coulton et al. 2020b; Martinet, Nicolas et al. 2021; Davies, Cautun, Giblin, et al. 2020) and
in a multi-scale setting (Zürcher et al. 2021). More speci�cally, Coulton et al. 2020b found
that lensing minima alone are slightly less constraining than the peaks alone and, in agree-
ment with Martinet, Nicolas et al. 2021 and Zürcher et al. 2021, that the combination of the
two statistics produces signi�cantly tighter constraints than the power spectrum.

2.3.1 One-point probability distribution function (PDF)

A summary statistics alternative to the power spectrum is the one-point probability distri-
bution function (PDF), which is obtained by taking the histogram of projected weak lensing
convergence in pixel values (Thiele, Hill, and Smith 2020). Using the one-point PDF, Liu
and Madhavacheril 2019 found that the non-linear growth generates non-Gaussianity in
the PDF, demonstrating additional information encoded in the tomographic PDF beyond
the power spectrum and that the PDF alone outperforms the power spectrum in constrain-
ing cosmology as previously found by Patton et al. 2017. Recently, Boyle et al. 2020 provided
a theoretical PDF model to perform forecasts and eliminate the need for relying on expen-
sive N-body simulations, allowing for performing forecasts with the convergence PDF on
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the full set of ΛCDM parameters and established with Fisher forecasts that the constraining
power of the convergence PDF compares favourably to the two-point correlation function
for a Euclid-like survey area at a single source redshift.

2.3.2 Bispectrum

Another way to go beyond the second-order convergence power spectrum and include the
non-Gaussian information encoded at non-linear scales consists in considering the next-
leading order statistic de�ned as the bispectrumBκ. Analogously to how the 2PCF is related
to the power spectrum, by measuring the shear three-point correlation function (3PCF)
(Takada and Jain 2003), one can relate the 3PCF to the bispectrum, and then to the matter
distribution which depends on cosmology (Schneider, P. and Lombardi, M. 2003). The bis-
pectrum measures three-point correlations of the convergence de�ned on a closed triangle
in Fourier space:

〈κ̃(`1)κ̃(`2)κ̃(`3)〉 = (2π)2δD(`1 + `2 + `3) [Bκ(`1, `2) +Bκ(`2, `3) +Bκ(`1, `3)] . (2.35)

It is not trivial to de�ne the relation between the 3PCF and the bispectrum and to e�ciently
evaluate it numerically. One di�culty of directly using the Fourier bispectrum is its large
number of terms, which generally must be reduced in some way. Recent works that used the
bispectrum to perform parameter inference relied on bispectrum estimators as the binned
bispectrum estimator based on Bucher, Racine, and Tent 2016 and adapted to the �at-sky
regime. Moreover, under the assumption of homogeneity and isotropy, the bispectrum can
be written as a function that only depends on the magnitude of the `modes and the binned
bispectrum estimator can be implemented as a simple sum over products of �lter maps.
Using this assumptions, Coulton et al. 2019 found that the bispectrum and power-spectrum
measurements are highly complementary and analysing them jointly produces 30% tighter
parameter contours when using theMassiveNus simulations in an ideal setting, namely,
neglecting systematic e�ects, baryonic e�ects, intrinsic alignment, multiplicative bias.

2.3.3 Minkowski functionals

Another powerful tool to account for deviations from Gaussianity is represented by Minkow-
ski functionals (MFs), �rst introduced by Mecke, Buchert, and Wagner 1994 for galaxy clus-
ters applications and then widely used in astrophysics and cosmology (Saar et al. 2006;
Hikage, Komatsu, and Matsubara 2006; Ducout et al. 2012). Minkowski functionals are
a complete family of morphological measures invariant under rotations and translations.
Their usage allows one to morphologically characterise a given random �eld in aD dimen-
sional space by a set of D+ 1 functionals Vj , with j = 0.., D. For a 2D �eld as for example
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when working with a weak lensing convergence map κ, setting a threshold ν and de�ning
σ0 as the standard deviation of the convergence �eld, the three Minkowski functionals V0,
V1, V2 describe respectively the area, the perimeter and the genus of the excursion set Σ(ν):

V0(ν) =
1

A

∫

Σ(ν)

da, (2.36)

V1(ν) =
1

4A

∫

∂Σ(ν)

dl, (2.37)

V2(ν) =
1

2πA

∫

∂Σ(ν)

Kdl, (2.38)

whereA is the total area of the map, Σ(ν) is the set of pixels with κ such that κ > κ0 = νσ0

and ∂Σ(ν) is the boundary of the excursion set. Given these de�nitions, the area V0 is equiv-
alent to the cumulative distribution function, the perimeter V1 describes the length of its
boundary and the genus V2 is a measure of the total number of connected regions above
κ0 minus number of connected regions below κ0, measured by the integrated geodesic cur-
vature K along the boundary. Employing MFs for weak lensing cosmological constraints,
Kratochvil et al. 2012 found that a substantial amount of information from non-Gaussian
features is encoded by MFs of convergence maps and that this statistic is particularly well
suited to break degeneracies and to constrain the dark energy equation of state parameter
w. They identi�ed that the non-Gaussian information is brought in part by the one-point
function of the convergence through V0, and in part through combining di�erent smoothing
scales for V0, and through V1 and V2. Vicinanza et al. 2019 presented a method to match the
theoretical predictions with measured MFs taking into account shape noise, imperfections
in the map reconstruction and inaccurate description of the non-linearities in the matter
power spectrum and bispectrum and validated their method against simulated maps recon-
structed from shear �elds generated by the MICE simulations. With a Fisher matrix analysis
they forecasted the accuracy on cosmological parameters from a joint MFs and shear to-
mography analysis and found that MFs are helpful to break the Ωm – σ8 degeneracy but
leading to an overall increase of the Figure of Merit. In a companion study, Parroni, Car-
olina et al. 2020 discussed the use of MFs in Stage IV lensing surveys updating the procedure
used in Vicinanza et al. 2019 �nding that MFs can provide a valuable help in increasing the
FoM of the lensing survey, provided the nuisance parameters are known with a non negli-
gible precision. Recently, Zürcher et al. 2021 forecasted the performance of the Minkowski
Functionals for a stage-3-like weak lensing survey, and found that Minkowski functionals
increase the constraining power by a factor of about 2 with respect to the power spectrum,
and can help add some robustness against galaxy intrinsic alignment in a non-tomographic
setting. Petri et al. 2015 applied Minkowski functionals to perform parameter inference us-
ing CFHTLenS data, �nding that Minkowski functionals can constrain the non-degenerate
direction in parameter space, Σ8, where the e�ects of degeneracy are mitigated. However,
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they also �nd that constraints on the (Ωm, σ8) plane su�er from a strong bias that might be
due to uncorrected systematics in the CFHTLenS data when using this statistics.

2.3.4 Higher-order moments

The non-Gaussianity of the convergence �eld can also be quanti�ed through higher than
second order moments. Following Vicinanza et al. 2016, the moment of order n of the
convergence κ can be de�ned as

〈κn〉 =
1

Npix

∑
κ̃ni , (2.39)

where i runs over the number of pixels in the map Npix and κ̃ni is the value of the con-
vergence in the i-th pixel. Focusing on moments up to 4th order, one can construct the
skewness S3 and the kurtosis S4 of the convergence �eld de�ned as

S3 = 〈κ3〉/(〈κ2〉)3/2, S4 = 〈κ4〉/(〈κ2〉)2, (2.40)

that quantify deviations from a zero centred Gaussian distribution. In particular, using
aperture mass computed on weak lensing convergence maps, Peel, Pettorino, Giocoli, et al.
2018 found that these observables can be powerful to discriminate between f(R) models
and ΛCDM. Howerver, they also found that peak counts computed in aperture mass maps
outperform third and fourth-order moments for this purpose. Using CFHTLenS data Petri
et al. 2015, obtained constraints on the parameter set (Ωm, w, σ8) using a set of moments
up to 4th order and �nd that high-order moments can break the (Ωm, σ8) degeneracy and
provide tight constraints with no apparent bias. Nevertheless, high-order moments are
very sensitive to outliers and may hence su�er high empirical variance meaning that if
the distribution of �eld intensity has a long tail, the amount of information accessible to
n-point functions quickly decrease.

2.3.5 Weak lensing peaks

A high order statistics that has become very popular and more and more adopted in the
recent years in weak lensing analysis is peak-count statistics. It can be obtained by counting
the local maxima of shear or convergence maps speci�cally by selecting all pixels that have
a higher value than their eight neighbour pixels in 2D. Such local maxima correspond to
high signal regions, that are closely associated with massive structures along the line-of-
sight. This subsection is dedicated to peak counts in a more detailed way, as peaks are one
of the main protagonists of this thesis work, as will be described in Section 4.1.
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Models for predicting peak counts

Providing an explicit expression for the peak function, namely a peak number density as a
function of the pixels, is a research issue that gave rise to a rich literature in the last decades.
At the same time, being able to provide a complete and satisfying theoretical prediction for
weak lensing peak counts as a function of the cosmological model, still represents a chal-
lenge. Jain and Waerbeke 2000 measured the distribution of peaks from simulated lensing
surveys with a peak model based on Bardeen et al. 1986; Bond and Efstathiou 1987; Waer-
beke 2000 and showed that the peaks distribution from lensing data contains information
on the projected mass function of dark matter halos and represents a probe of non-Gaussian
information beyond second order statistics. Later, Bartelmann, M., Perrotta, F., and Bacci-
galupi, C. 2002 proposed weak-lensing halo counts with the aperture-mass technique as a
new method for constraining the nature of dark energy.

Then, Maturi, M. et al. 2010 introduced a new approach based on the peak theory of the
Gaussian random �eld (Bardeen et al. 1986; Bond and Efstathiou 1987) providing a simple
analytical recipe to compute the signal-to-noise distribution of detections caused by chance
projections of large-scale structures as well as the shape and shot noise contributions by the
background galaxies. The same year, Fan, Shan, and Liu 2010 proposed a model to calculate
the number of peaks in large-scale reconstructed convergence maps from weak-lensing ob-
servations, including both true peaks corresponding to clusters of galaxies and false peaks
from intrinsic ellipticities of background galaxies based again on the Gaussian peak theory.
However, while in this study peaks are identi�ed as local maxima in the map, in Maturi,
M. et al. 2010 a di�erent de�nition simplifying the analytical expression is given, according
to which peaks are determined as contiguous areas with values above a given threshold.
Cardone et al. 2013 computed the number density of haloes based on the theoretical mass
function to constrain f(R) theories and then the total number of peaks by integrating over
the full redshift range, smoothing out the dependence of the mass function on the redshift.

Whilst being the only way to provide explicit expressions for the peak function, analytical
models present some downsides. Speci�cally, when working in realistic conditions, such as
in the presence of mask, or the bias from photometric redshifts, as well as the errors from
shape measurement, the performance of these models can be strongly limited. Moreover,
the link between cosmology and observed lensing peaks is made even more complicated
because of some complexity from halo geometry, projections e�ect and shape noise. To
correct for large-scale structure projection e�ects, Yuan et al. 2018 extended the model
of Fan, Shan, and Liu 2010 by incorporating these projection e�ects by modelling them
as a random �eld, i.e. by adding the stochastic large-scale structure contribution to the
convergence map from the halo plus the shape noise. However, being able to model realistic
survey settings, including additional cosmological or astrophysical features as for example
IA and errors in general still remains challenging for analytical models.

A way to circumvent the di�culties that arise when trying to predict peak counts with an-



64 Weak gravitational lensing

alytical models, relies on generating weak lensing simulations densely sampled in cosmo-
logical parameter space. For example, Dietrich and Hartlap 2010 generated a set of N-body
simulations in the (Ωm, σ8) plan for 158 di�erent cosmologies and interpolated using bilin-
ear smoothing splines their shear peak function across parameter space. Liu J. et al. 2015
used a suite of ray-tracing N-body simulations on a grid of 91 cosmological models, vary-
ing the three parameters (Ωm, σ8, w) and interpolated from the 91 measured peak counts
to other cosmological models using two di�erent methods ( multi-dimensional Radial Basis
Function and Gaussian Processes). Kacprzak et al. 2016 used the same set from Liu J. et al.
2015 and similar interpolation methods to predict the peak counts. With the advent of the
MassiveNus simulations (Liu et al. 2018), predictions for peak counts based on simula-
tions with a dependence on the sum of neutrino masses Mν have also become possible, as
in Li, Liu, Zorrilla Matilla, et al. 2019 and as we did in Ajani et al. 2020, as will be discussed
in Chapter 4, with a set of 100 di�erent cosmological models. Another recent set of cos-
mological simulations is the cosmo-SLICS suite of simulations with 25 cosmologies in the
[Ωm, σ8, h, w0] parameter space, that has been used in Harnois-Déraps et al. 2020 to predict
weak lensing shear peaks. Somewhere in between analytical models and N-body simula-
tions, a halo-based model that generates fast stochastic simulations of convergence maps
called CAMELUS was proposed by Lin, Chieh-An and Kilbinger, Martin 2015. It’s a semi-
analytic model, requiring only a halo pro�le and a halo mass function as input to generate
a lensing catalogue. It consists in assuming that the main contribution to the lensing signal
comes from halos and it discretises the space between the lensed galaxies and the observer
in redshift bins, populating them with halos following a Navarro-Frenk-White (NFW) den-
sity pro�le and placing them randomly within its redshift bin. This method was used by
Peel et al. 2017a to assess the constraining power of peak counts in a simulated Euclid-like
survey on the cosmological parameters (Ωm, σ8, w0). They found that using CAMELUS,
peak statistics yield a tight but signi�cantly biased constraint in the (Ωm, σ8) plane, indi-
cating the need to better understand and control the model’s systematics before applying
it to a real surveys. Furthermore, Zorrilla Matilla et al. 2016 investigated how CAMELUS
predicts the mean abundance of high-S/N peaks compared to N-body simulations, and
found reasonable agreement, but that further development is needed to accurately estimate
CAMELUS’s variance and to probe the low-S/N tail.

Considered the above discussion, despite being costly to run, N-body simulations present
several advantages with respect to analytical or semi-analytical models such as the possi-
bility to incorporate the exact survey mask and shape noise in an easy way when one needs
to deal with real data. Next section presents a brief overview of the results obtained using
peak counts on real data.

State of the art of peaks on real data

The �rst cosmological constraints from peak analyses were performed approximately at
the same time and in an independent way by Liu X. et al. 2015 and Liu J. et al. 2015. Liu X.
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et al. 2015 derived constraints on cosmological parameters using weak lensing peak statis-
tics measured on the ∼ 130 deg2 of the Canada-France-Hawaii Telescope Stripe 82 Survey
(CS82) employing the model from Fan, Shan, and Liu 2010 described in the previous para-
graph. They found that for �at ΛCDM, the cosmological constraints on (Ωm, σ8) from peak
analyses are fully consistent with the constraints obtained with both WMAP9 and Planck
results and from cosmic shear two-point correlation studies. At the same time, they found
that the degeneracy direction of the two parameters is �atter than those from the 2PCF
analyses and deduced from this the complementarity of peak counts analysis to 2PCF stud-
ies. Liu J. et al. 2015 derived constraints on (Ωm, σ8, w) for CFHTLenS ∼ 154 deg2 data.
Their studies are based on interpolations from the suite of simulation templates on a grid
of 91 cosmological models introduced in the previous paragraph. From the outcome of this
study resulted that constraints from peak counts are comparable to those from the power
spectrum, and that when the two statistics are combined, the area of the contours in the
(Ωm, σ8) plane is reduced by a factor of ∼ 2. Moreover, neither observable can constrain w
without further external data. Examining the e�ects of additional smoothing scales, binning
of peaks, and the robustness of the results under masking, they demonstrated that using
multiple smoothing scales can reduce the size of the area of the error contour by a moderate
amount and left to more detailed study the quanti�cation of the impact of these choices on
the parameter constraints. With the same methodology adopted in Liu X. et al. 2015, Liu
et al. 2016 presented constraints on the Hu-Sawicki f(R) theory with CFHTLenS data. For
DES SV data, Kacprzak et al. 2016 measured shear peaks using aperture mass maps adopt-
ing the simulation approach to produce WL maps (Dietrich and Hartlap 2010) spanning the
(Ωm, σ8) plane. They found that, including systematics, peaks perform roughly as good as
the power spectrum in a non-tomographic analysis. For the KiDS 450 deg2 data release, two
analysis were performed using peak counts: one obtaining the theoretical prediction using
Fan’s analytical model (Shan et al. 2017) and one employing N-body simulations (Martinet
et al. 2018). Both studies give consistent estimates of the parameter S8 ≡ σ8

√
Ωm/0.3,

however, I think it’s important to consider that the analytical predictions of the �rst study,
were calibrated on the same simulations employed in the study based on N-body simula-
tions. Considering the combination of shear peaks with non-tomographic measurements
of the shear two-point correlation functions brought to an improvement of 20% in the
uncertainty on the parameter S8 in the simulation based analysis, compared to the shear
two-point correlation functions alone, highlighting the great potential of peaks as a cosmo-
logical probe. The �rst tomographic peak counts data analysis was recently performed by
Harnois-Déraps et al. 2020, with a joint cosmic shear two-point shear correlation function
and peak-counts analysis for DES-Y1 data release. To calibrate the cosmological depen-
dence of peak counts they used the cosmo-SLICS suite of simulations (details on these sim-
ulations are also discussed in Chapter 6) covering the (Ωm, σ8, h, w0) parameter space. They
assessed the impact of baryons with the Magneticum hydrodynamical simulations, quan-
ti�ed the e�ect of �nite particle mass from high-resolution light-cones, and investigated
the impact of intrinsic alignment by infusing intrinsic shapes to mock galaxies following a
physical model based on the shape of dark matter halos. They also modelled source-lens
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clustering by comparing galaxy excess in peaks of di�erent height, and found to have a
negligible impact on their results given their peak selection criteria. They found a ∼ 20%
gain in precision compared to the 2PCF analysis for the constraints on S8 when using peak
counts. Being the �rst tomographic analysis with peak counts on real data, they con�rm
that including cross-redshift bins reinforces the constraints, once systematics such as IA are
properly calibrated and conclude that for the peaks statistics to remain competitive with
the 2PCF, further development is required in the modelling of baryon feedback.

In summary, it becomes more and more clear that peak counts represent a powerful tool,
given their complementarity to second order statistics as the 2PCF or the power spec-
trum to constrain cosmological parameters, and this has been proven on real data appli-
cations. Now, in order for peaks statistics to remain competitive with the 2PCF, one chal-
lenge consists in further developing the modelling of baryon feedback. The baryoni�cation
method described in Section 2.2.3 could be one possible way to further model this, as well
as metholodogies based on hydrodynamical simulations. Another crucial aspect that still
has to be addressed concerns intrinsic alignment, as the inclusion in peaks analysis is still
critical, and improving the IA modelling is necessary for future analyses. The model for IA
adopted in Harnois-Déraps et al. 2020 remains too simple, and as they demonstrated, this
e�ect has an impact on the inferred cosmology at the same level as baryonic e�ect that can
reach 1σ level, limiting in a severe way the analysis. Further exciting work is hence needed
to be able to properly model these systematics e�ects to maximise the exploitation of peak
counts potential in cosmological inference.

2.3.6 Weak lensing minima

A complementary probe of non-Gaussian information is given by weak lensing minima
that is the number counts of local minima in a lensing convergence map as a function of
their depth. In practice, for a 2D map, weak lensing minima are computed as the pixels
with values smaller than their eight surrounding pixels. Physically, they are associated
to underdense regions (voids) in our universe, being hence complementary to the lensing
peaks which are typically associated with massive regions.

Cosmological forecasts with weak lensing minima

The projected mass distribution around voids can be used as a tool for constraining mod-
els of dark matter, dark energy, and modi�ed gravity (Hamaus, Sutter, and Wandelt 2014).
Deriving forecasts on the parameters (Mν ,Ωm, As) for an LSST-like survey, Coulton et al.
2020a proposed lensing minima as a novel statistic to extract cosmological information in
weak lensing data as they probe the emptiest regions (voids) in of the universe and also
motivating their choice with the fact that baryonic e�ects are expected to impact voids dif-
ferently than overdense regions (peaks). Their results show how in their settings, lensing
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minima alone are slightly less constraining than lensing peaks but that when the two are
combined, they produce signi�cantly tighter constraints with respect to the power spec-
trum. In the same study, the BAHAMAS hydrodynamical simulations are used to study the
e�ects of baryons on lensing minima and the �nding is that baryonic processes tend do
decrease the number of very negative minima and high, positive minima, while increas-
ing the number of minima values closer to zero. The bias induced by baryonic e�ects ap-
pears to have a small impact on minima (∼ 0.5σ), while a more signi�cant one on peak
counts (∼ 4σ). Another recent study that forecasted the cosmological power of weak lens-
ing voids was presentend by Davies et al. 2020. Using the cosmo-SLICS source catalogue
down-sampled to match LSST speci�cations, they provide forecasts on the (Ωm, S8, h, w0)
parameters and �nd that these are tighter than the constraints obtained with the 2PCF with
the same simulated observational speci�cations.

These results show how weak lensing minima (voids) represent a promising probe for up-
coming cosmological experiments and how when combined with peak counts they repre-
sent a very competitive summary statistics to constrain cosmological parameters.

Void de�nition debate

Since voids may have irregular shapes, the lensing signal depends on the identi�cation
scheme considered. A large number of quite di�erent void-�nding algorithms is present in
the literature, constructed using particles, haloes, and semi-analytical model galaxies ex-
tracted from simulations. For example, Bos et al. 2012 used a scheme called Watershed Void
Finder based on halos and galaxy distributions to investigate whether void shapes can be
used as a probe of the properties of dark energy. They found that the potential of voids as
probe for dark energy, when they are identi�ed through halos and galaxies distributions is
limited by the discrete, sparse and biased nature of these objects. Another example is the
study performed by Davies, Cautun, and Li 2018, where a higher lensing signal for voids is
identi�ed using lensing peaks, compared to the one found for voids identi�ed using galax-
ies. Indeed, since the full mass distribution is not easily observable, observational studies
make use of the galaxy distribution to identify voids. This approach can lead to galaxy
voids less underdense than one would have using the full matter density �eld. This was
one of the reason of Coulton et al. 2020a for introducing weak lensing minima avoiding
void tracers such as halos or lensing peaks. However, this method is based on the assump-
tion that lensing minima are mostly associated with negative lensing signal, but in reality, a
small number have imprints from slightly overdense regions as discussed by Coulton et al.
2020a. A detailed comparison of di�erent void �nders present in the literature is provided
by Colberg, Pearce, Foster, et al. 2008.

BAHAMAS
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2.3.7 Machine learning based methods

In the recent years, with the massive advances in the �eld of machine learning (ML), ma-
chine learning and deep learning (DL) techniques have been proposed as analysis tools
for cosmology. In particular Schmelzle et al. 2017 demostrated how a Deep Convolutional
Neural Networks (DCNN) can be used to discriminate among cosmologies by learning the
relation between �ve cosmological models and the corresponding convergence maps. By
comparing the performance of this approach to commonly used non-Gaussian statistics as
the skewness and kurtosis (de�ned in Section 2.3.4) of the convergence maps, they found
that the DCNN implemented in their study outperforms the skewness and kurtosis statis-
tics, especially for high noise levels and can e�ciently break the (σ8,Ωm) degeneracy with
weak lensing convergence maps alone. Another study performed by Gupta, Matilla, Hsu,
et al. 2018 applied a convolutional neural network to simulated noiseless lensing maps cov-
ering 96 di�erent cosmological models with varying (σ8,Ωm) and showed that their neural
network could yield �ve times tighter constraints than the power spectrum, and four times
tighter than the lensing peaks. A further step was then achieved by Ribli, Pataki, and Csabai
2018 that improved the convolutional neural network architecture to recover cosmological
parameters more accurately from simulated weak lensing maps. Then, Fluri et al. 2018 ex-
plored the constraining power of CNNs compared to a standard power spectrum analysis
for varying levels of noise and smoothing scales applied to convergence maps for the same
set of parameters. They showed how the network is able to signi�cantly improve the con-
straints with respect to the power spectrum, but also how the gain tends to decrease as the
noise level and smoothing scales adopted increase. Peel et al. 2019 explored whether a neu-
ral network can discriminate better than peak counts between ΛCDM and modi�ed gravity
models with massive neutrinos and found that it can potentially discriminate between such
models better than conventional higher-order statistics. Merten et al. 2019 investigated ob-
servational degeneracies between nine models of modi�ed gravity and massive neutrinos
using three di�erent machine learning techniques and compared the performance with
classical summary statistics as power spectrum, peak counts and Minkowski functionals.
Their outcome is that the CNN provides the most discriminating representation of the data
in a optimal noise-free maps setting. Matilla et al. 2020 analysed the neural network em-
ployed in Ribli et al. 2019 and compared its performance with constraints obtained from
a combination of three commonly used WL statistics (power spectrum, lensing peaks, and
Minkowski functionals), �nding that the network can improve the inferred parameter con-
straints relative to this combination by 20% even in the presence of realistic levels of shape
noise. However, the study needs to be veri�ed under more realistic treatments that include
realistic galaxy distributions and noise, as well as systematic errors. The �rst study that
used a CNN to measure the cosmological parameters from observed weak lensing data has
been performed for KiDS-450 (Fluri et al. 2019). By comparing the results obtained with the
CNN to the ones obtained with the power spectrum analysis on the same maps they found
an improvement of about 30% on S8 for the CNN.
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In summary, machine learning based methods can be promising tools to retrieve cosmolog-
ical information beyond second-order statistics e�ciently. Moreover, the advancement in
parallelised training strategies opens the gates to the possibility of training of larger net-
works so that the geometry of large survey (as next generation surveys) can be taken into
account. Despite this enormous potential, these techniques still need a huge work of inves-
tigation to become a robust and accepted tool by the community as when applied to real
data for example, systematic errors that are not taken into account in the training process
are di�cult to get checked and controlled. Moreover, the large number of �tted parame-
ters involved, and the depth of the many layers of non-linearities, on one side enable the
learning of complex non-linear relationships between data and the parameters, while on
the other side are still very di�cult to interpret from a physical point of view.

2.3.8 The scattering transform, wavelet-phase harmonic statistics

Very recently, simultaneously and independently of the work presented in the thesis, two
high order summary statistics based on wavelet transform were introduced: the scattering

transform (Cheng et al. 2020) and Wavelet Phase Harmonics (WPH) statistics (Allys et al.
2020). The �rst one shares ideas with convolutional neural networks but doesn’t require
training nor tuning. More speci�cally, it employs the scattering transform introduced by
Mallat 2012 and consists in a wavelet convolution of the weak lensing input image followed
by a pixelwise modulus. The scattering operation is then iterated at di�erent scales and
�nally the spatial average of every scattering image is taken. The constraining power of
this statistic for the (Ωm, σ8) plane has been compared to the one of the power spectrum,
peak counts and the CNN adopted in Ribli et al. 2019. Their outcome is that on convergence
maps with and without galaxy shape noise, the scattering transform outperforms the power
spectrum and peak counts, and performs as well as the state-of-the-art CNNs. Then, Cheng
and Menard 2021 have tested its performance extending the parameter space also to the dark
energy equation of state parameter w0 using the set of Dark Energy simulations from the
Columbia Lensing Group and to the sum of neutrino masses Mν using the MassiveNus
simulations and compared their performance with respect to the power spectrum and the
bispectrum. They found an improvement for all parameters, and their results on Mν are
consistent with the improvement we have found in both our studies for multi-scale higher
order statistics (Ajani et al. 2020; Ajani et al. 2021), as they also state in Cheng and Menard
2021.

The second study from Allys et al. 2020 applied Wavelet Phase Harmonics (WPH) (Mallat,
Zhang, and Rochette 2019) to constrain the parameters (Ωm,Ωb, h, ns, σ8) using the Qujote
simulations (Villaescusa-Navarro et al. 2020). The computation of this statistics consists
in applying the phase harmonic operator to the 2D projection of the large-scale structure
matter density �eld provided from the simulations and convolved with the bump steerable
wavelets introduced in Mallat, Zhang, and Rochette 2019. By computing Fisher information
matrices, they �nd that the WPH statistics lead to stringent constraints on all parameters

http://columbialensing.org/
MassiveNus
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except for σ8 when compared to statistics based on the combination of the power spectrum
and bispectrum.

As in our works (Ajani et al. 2020; Ajani et al. 2021), that are presented in details in Chap-
ter 4 and Chapter 5, these two statistics exploit the advantages of performing multi-scale
analysis, thanks to the properties of wavelet functions. From these results, is becoming
more and more clear that the possibility of extracting cosmological information from dif-
ferent scales simultaneously can bring great improvement to the cosmological constraints
and further e�ort should be put in testing the robustness of such multi-scale statistics with
respect to systematics, to prepare them to be applied to real data for future galaxy surveys.

2.3.9 Summary

As second-order statistics fail to fully capture the non-Gaussian information encoded in the
non-linear features of weak lensing data, an increasing number of statistics of order higher
than second have been proposed by the weak lensing community. Depending on the survey
settings, systematics, noise level and cosmological parameter considered, they can perform
in di�erent ways with respect to each other in constraining cosmological parameters. I
show here an attempt of summary of the state of the art of studies that have provided clear
quanti�cation of the performance of these statistics with respect to second order statistics
for forecasts as well as for real data analysis, when available.

• Statistics: lists the names of the summary statistics employed to perform cosmolog-
ical parameter inference.

• Tomography: this column indicates whether a tomographic study has been per-
formed or not.

• Systematics: indicates if systematic e�ects have been included in the analysis and if
so which ones.

• Parameters: indicates which cosmological parameters have been constrained in the
analysis. Notice that some analysis might have taken into account certain parameters
but couldn’t constrain them (e.g. w0) for CFHTLenS peak counts. In this case the non-
constrained parameters are not listed. Only parameters that have been constrained
are listed. For clarity and for the purposes of this summary, only references that
present a clear quanti�cation of the improvement in constraining power with respect
to second order statistics are shown.

• Forecasts: speci�es the improvement for forecasts analysis (i.e. without the use of
real data) for the high order statistics combined with second order statistics w.r.t.
the performance of second order statistics alone. The percentages indicates the im-
provement for the marginalised 1D probability of the corresponding parameter, the
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Statistics Tomo Systematics Params Forecasts
(with II order)

Real data Survey References

Summary statistics 
employed in the analysis

If a 
tomographic 
analysis was 
performed

m = multiplicative bias
c = additive bias

photo-z = photometric redshifts
bar = baryonic effects

IA = intrinsic alignment

The cosmological 
parameters that are 

constrained 

Improvement 
w.r.t 2PCF

%=single parameter
Number = 2D FoM

Constraining power
> = better
~ = similar
< = worst 

Survey specs, name or sky 
coverage + galaxy number 

density

First author + year. 

PDF
no
yes
no

m, c
no
no

Ω", $%
&',()
&',*+

2
35%, 61%

27%,40%+Planck

DES-Y1  
LSST
Euclid

Patton + 2017
Liu, J.+ 2018
Boyle+ 2020

Bispectrum yes
yes
yes

no
no
no

σ%,*-,*+,Ω.
Ω", $%

&',Ω",()

3
2

32%, 13%, 57%

4000 deg2, 100 arcmin-2

Euclid
LSST

Takada+ 2005
Bergé+ 2010
Coulton+ 2019

MF yes
no
yes
yes

no
photo-z, m, c

no
IA, photo-z, m

Ω", $%,*+
Ω", $%

&',Ω",()
Ω", $%

11%, 14%, 14%

4
4.2

biased (syst.)

LSST
CFHTLenS

LSST
DES

Kratochvil+ 2012
Petri+2015
Marques+2018
Zürcher+ 2021

Moments no
yes
yes

photo-z, m, c
m, c

bar, IA, photo-z, m

Ω", $%
Ω", $%
/%

2
20%

> 2PCF CFHTLenS
3500 deg2, 27 arcmin-2

DES-Y3

Petri+ 2015
Vicinanza+ 2018
Gatti+ 2019

Peaks yes
yes
no
no
yes
yes
yes

photo-z, m, c
photo-z, m, c

m,c, IA, boost, photo-z
no

m,c, IA, photo-z, bar
no
no

Ω", $%
Ω", $%
Ω", $%
Ω", $%
/%

&',Ω",()
&',Ω",()

~ 2PCF (biased)

39%, 32%, 60%
63%, 40%, 72%

~ 2PCF
> 2PCF (2)

~ 2PCF

> 2PCF (20%)

CS82
CFHTLenS

DES-Y1

KiDS-450
LSST
Euclid

Liu X.+ 2015 
Liu J.+ 2015
Kacprzak+ 2016
Peel+2016
Martinet+ 2017
Li Z.+ 2018
Ajani+ 2020

Minima
Minima+Peaks

Voids
1D Map

yes
yes
no
yes

IA, photo-z, m
bar
no
no

Ω", $%
&',Ω",()
Ω", /%, ℎ,*+
Ω",/%,*+

2.8
44%, 11%, 63%

≳ 2PCF
57%, 46%, 68%

DES
LSST
LSST
Euclid

Zürcher+ 2021
Coulton+ 2020
Davies+ 2020
Martinet+2020

M. Learning

no
no
yes
yes

no
no
no

photo-z, m, c, IA

Ω", $%
Ω", $%
&', f(R)
/%

5
~45% (dep. noise)
> Power spectrum

> 2PCF (30%)

3500 deg2, no noise
KiDS-450

KiDS-450

Gupta+ 2018
Fluri 2018
Merten+2019
Fluri 2019

Scattering T.
Starlet 23- norm

yes
yes

no
no

&', Ω",*+
&',Ω",()

40%, > 2PCF
72%, 60%, 75%

LSST
Euclid

Cheng S.+ 2021
Ajani+ 2021

Figure 2.4: Table summarising the current state of the art of high order statistics where
an estimate of the constraining power and its performance with respect to second order
statistics have been provided by the authors. I would like to stress that this table does not
include all studies ever performed with statistics of order higher than the second but the
studies where cosmological inference has been performed and an explicit comparison with
second order statistics is provided in the paper.

.

integer numbers illustrate the improvement of the �gure of merit. If a generic "≥",
"∼" is shown, it means that the exact improvement has not been mentioned by the
authors.

• Real data: report the results in terms of constraining power found in real data anal-
ysis.

• Survey: indicates the name of the survey if the survey settings used in the anal-
ysis are explicitly associated by the authors to a speci�c survey, otherwise the sky
coverage and galaxy number density employed are reported.

• References: indicates the corresponding study, identi�ed by �rst author name +
year.
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Wavelet formalism for astrophysical im-
ages
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The aim of this chapter is to introduce some de�nitions useful for the purposes of this thesis
in the context of wavelet formalism. In particular, I start by giving a brief introduction of
the concept of sparsity, of the continuous wavelet transform and of the discrete wavelet
transform. Thanks to these tools, the starlet transform, that will be widely use in Chapter
4, Chapter 5 and Chapter 6 is introduced. Then, the procedure followed to estimate the
noise and compute the wavelet coe�cients is illustrated. Finally, a brief overview of recent
mass mapping methods based on sparse representations is provided.

73
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3.1 Sparse signal representation

In a context where the goal is to try to maximise the information that we can extract from
cosmological data, there are di�erent representations of the data that can be considered.
Indeed, any given signal can be represented in a variety of di�erent domains without losing
information, but depending on the properties of the signal and on the application, a given
representation may be preferred. One very well established representation is the sparsity
model, that has proven to be very powerful for astrophysical applications (Starck, Murtagh,
and Fadili 2016; Lanusse 2015; Lin, C.-A. et al. 2016). The following is based on Starck, Fadili,
and Murtagh 2007; Starck, Murtagh, and Fadili 2016; Starck et al. 2021.

Sparsity data model

A signal X , X = [x1, ..., xN ]T is de�ned sparse if most of its entries are equal to zero. More
speci�cally, a k−sparse signal is a signal with only k non-zero samples values. It is also
possible to give a less stringent de�nition when considering a signal where only a few of
its entries have a large magnitude and the majority of them are close to zero: in this case,
one can de�ne the signal as weakly sparse or compressible. Hence, in a sparse signal, either
only a �nite number of coe�cients is non zero, or the coe�cients decrease fast when rank-
ordered. If a signal is not sparse, it can be sparsi�ed using a given data representation.
Intuitively, this can be understood by thinking to periodic signals as for example sin(x)
and by looking at Figure 3.1: in real space, sine functions are not sparse, but they are sparse
in Fourier space, in particular "1-sparse", as they become the Dirac delta functions.

!

+!−! $%

Real space Fourier space

Figure 3.1: The periodic function sin(x) is not sparse in real space (left image) but it can
be sparsi�ed by changing the data representation and work instead in Fourier space (right
image).

Having this in mind, a signal X is de�ned sparse in the Fourier domain if it has sparse
Fourier coe�cients, de�ned as X̂[u] = 1

N

∑
kX[k]e2π uk

N . This concept can be generalised
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by introducing a dictionary Φ = [φ1, ..., φM ], whose elements are T elementary waveforms
that enable to model the signal X ∈ RN as the linear combination:

X = Φα =
M∑

i=1

α[i]φi, (3.1)

where α ∈ RM are the decomposition coe�cients of the signal X in the dictionary Φ. This
is of interest for this work because, if one can �nd a good representation that allows to
separate the signal from the noise e�ciently, this leads to a gain of extracted information.
The representation basis treated in this work is the wavelet starlet transform, as it is very
well suited for astronomical images that often contain isotropic sources (Starck, Fadili, and
Murtagh 2007).

3.2 Continuous Wavelet transform

This section provides an introduction to the fundamentals of the continuous and discrete
wavelet transforms, in order to have the tools to introduce and understand the starlet trans-
form, that will be used in the works presented in this thesis. A wavelet is a function ψ(x)
satisfying the admissibility condition:

∫ ∞

0

|ψ̂(k)|2dk
k
<∞, (3.2)

where ψ̂(k) is the Fourier transform of ψ(x). In order for Equation 3.2 to be satis�ed, ψ
has to satisfy the condition

∫
ψ(x)dx = 0. This condition implies that wavelets are highly

localized functions with vanishing mean. Wavelet transforms decompose a signal into a
family of scaled and translated functions by generating a family of daughter wavelets:

ψa,b(x) =
1√
a
ψ

(
x− b
a

)
, (3.3)

where ψ? is the complex conjugate of ψ, a is a scaling parameter and b is a translation
(or position) parameter. Hence, ψa,b are scaled and translated versions of ψ, called the
mother wavelet. Given a scale parameter, a > 0, and the translation parameter b ∈ R, the
continuous wavelet transform (CWT)(Grossmann and Morlet 1984) of a function f(x) can
be de�ned as:

Wψ(a, b)(f) =

∫ ∞

−∞
f(x)ψ?a,b(x)dx =

1√
a

∫ ∞

−∞
f(x)ψ?

(
x− b
a

)
dx. (3.4)
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By varying continuously the scale parameter a and the position parameter b one can ob-
tain the wavelet coe�cients for a given scale and position. Intuitively, one can think at
this transform by considering how Fourier transforms measure the similarity between a
signal and an analysing function. In the Fourier transform case, the analysing functions
are complex exponential ejωt, while in the case of the continuous wavelet transform, the
analysing function is a wavelet, ψ, that compares the signal to shifted and compressed or
dilated versions of the mother wavelet. In other words, as the Fourier transform outputs
coe�cients as a function of the frequency, the wavelet transform outputs coe�cients which
are a function of their scale and translation. Another nice, canonical way, commonly used
in lectures on wavelets, to understand the properties of the wavelet function, is to consider
the information in terms of time and frequency that can be extracted through time series
analysis, Fourier transforms, short-time Fourier transforms (STFT) and wavelet transforms,
as shown in Figure 3.2. From time series analysis (top left panel of Figure 3.2), namely the
analysis of a sequence of data points (signal) that occur in successive order over some period
of time, information on the signal is provided for every single point in time, missing how-
ever information about its frequency. The Fourier transform (top right panel) converts the
time information in the frequency domain, providing great frequency resolution and being
well suited for stationary signals, but loosing track of the time information. To overcome
the poor time resolution of the Fourier transform, the short-time Fourier transform (STFT)
(Gabor 1946) was introduced. The STFT (bottom left panel of Figure 3.2) provides a time-
frequency representation of the signal and it is based on the assumption that a portion of
the non-stationary signal is stationary. In this way, a small portion of the signal is analysed
at a time. Then the Fourier transform of each stationary portion is taken and the results
are added up, to recover the entire signal. With this approach, one can recover frequency
resolution for a given time resolution. This is done by taking a window function of �xed
length that is moved along the signal. The drawback is hence that once the window size is
chosen, it remains unchanged during the entire analysis. This leads to a trade-o� between
the time and frequency resolution that it is possible to derive: by choosing a narrow win-
dowing in time, the time resolution will be good but the frequency resolution will decrease;
by choosing instead a wider windowing in the time axis, the time resolution will decrease
as the frequency resolution increases. This leads to an inevitable loss of information, as low
frequency components usually last a longer time, requiring good resolution in frequency,
while high frequency components are often shorten in time, invoking the need of good
resolution in time. Wavelets transform improve this context, as they allow to analyse the
signal into di�erent frequencies at di�erent resolutions (bottom right panel of Figure 3.2).
By looking at the frequency-time plane in Figure 3.2, one can see how in the high frequen-
cies regime, the resolution is good in time and poor in frequency. In other words, where
the frequencies are high, the vertical lines are much denser than the horizontal lines. At the
same time, at low frequencies, there is better resolution in frequencies and poorer resolu-
tion in time. In contrast to the STFT, the width and the central frequency of the wavelet can
be changed by changing the scale parameter a, while moving across the signal. In this way,
expanded wavelets, namely with large values of a, will be good in resolving low frequencies
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components of the signal with bad time resolution. Similarly, narrower wavelets, charac-
terised by a smaller values of a, will be better in resolving high frequency components with
better time resolution. So, when the frequency of the wavelet matches part of the signal
with a very similar frequency, the output of the wavelet coe�cients Wψ(a, b)(f) is high.
In practice, starting from smaller to increasing scales a, the signal is anaysed from high
frequencies to low frequencies: high frequency wavelets will trace the high frequencies of
the signal, and low frequencies wavelets will detect low frequency of the signal.

3.3 Discrete Wavelet transforms

In the case of CWT, the scale parameter a and the translation parameter b are continuous,
implying that a huge amount of wavelet coe�cients is generated. To reduce the amount
of data generated, one can consider discrete values for the parameters a and b. With this
in mind, a discrete wavelet transform (DWT) can be de�ned through the concept of mul-

tiresolution analysis (MRA) (Mallat 1989; Meyer 1992). In this framework, the scale and
translation parameters are chosen so that they are based on powers of two (dyadic). The
main idea of MRA is to build a sequence of approximations fj of a function f ∈ L2(R) by
smoothing it with a kernel of increasing width proportional to 2j . Each of these approxi-
mations then belong to a subspace that contains all possible approximations at scale 2j . For
each approximation subspace is then possible to build an orthogonal subspace containing
all the details that are lost between two consecutive approximations. Performing this pro-
cedure recursively enables to decompose the entire L2(R) space into a direct sum of the
orthogonal subspace containing all the details that were lost between two consecutive ap-
proximations. Then for each j ∈ Z, it is possible to build a wavelet ψ, such that the family
of wavelets:

{
ψj,n =

1√
2j
ψ

(
t− 2jn

2j

)}
n∈Z

, (3.5)

is an orthonormal basis of the subspace containing all the details that are lost between two
consecutive approximations. The scale parameter is now a = 2j and the translation (posi-
tion) parameter b = 2jn. In practice, what happens when analysing a signal f with a DWT,
can be understood considering multilevel decomposition, reading Figure 3.3, as follows. The
input signal f is passed into a low pass �lter h and a high pass �lter g, so that low pass �lters
will select the low frequency components while rejecting the high frequency components
and vice-versa. The low pass portions of the signal are called approximation coe�cients aj
and they are iteratively �ltered by the low pass �lter and the high pass �lter. The output of
the high pass �lters are instead the detail (or wavelet) coe�cients dj , corresponding to high
frequencies information. At each level of this process the output is downsampled in a way
that its size is halved. This last step is called decimation and takes place when a decimated
DWT is used to analyse the signal. The result of the entire process is a set of approxima-
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Figure 3.2: Illustration of the time-frequency diagram for Time series analysis (top left
panel), Fourier transform (top right panel), Short Time Fourier transform (STFT, bottom
left panel), the Wavelet transform (bottom right panel). As desribed in the text, time
series analysis provide good resolution in time, but none in frequency; Fourier transform,
convert the time information in frequency information, loosing all information on time;
STFT provide both frequency-time resolution, with the drawback that the window is �xed,
and inevitable loss of information is present because of this. The wavelet transform en-
ables a multiresolution analysis, i.e. to analyse the signal into di�erent frequency ranges at
di�erent time resolutions.

tion coe�cients {a1, a2, a3, .., aj, ..aJ} and a set of detail coe�cients {d1, d2, d3, .., dj, ..dJ},
bringing respectively the low and high frequency components of the input signal.

To give a more formal description, a consequence of the multiresolution approximation
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Figure 3.3: Illustration of the multilevel decomposition of the signal f . By passing through
a low pass �lter, the approximation coe�cients { a1, a2, a3, .., aj ,..aJ } are generated. Each
approximation coe�cient is iteratively passed through a low pass �lter generating the ajs
and through a high pass �lter that generates the detail coe�cients { d1, d2, d3, ..,dj ,..dJ }.
If a decimated DWT is employed, at each step the size of the coe�cients is halved because
the output is downsampled by a factor of 2.

(Mallat 1989; Meyer 1992) is that it is possible to build a scaling function φ that constitutes
an orthonormal basis in the approximation subspace, such that

φj,n =
1√
2j
φ

(
t− n

2j

)
, (3.6)

for each j ∈ Z, that enables to compute the approximations fj of f at the scale 2j as the
orthogonal projection of f in the approximation subspace as follows:

fj =
∑

n∈Z

aj[n]φj,n, (3.7)

where aj[n] are the approximation coe�cients given by aj[n] = 〈f, φj,n〉. Now, looking at
the scaling functions de�ned in Equation 3.6, one can consider the scaled function φ1,0 =

1√
2
φ
(
t
2

)
, and by exploiting again the implications of the multiresolution approximation

(Mallat 1989; Meyer 1992), it is possible to introduce the discrete �lter h such that

1√
2
φ

(
t

2

)
=
∑

n∈Z

h[n]φ(t− n), (3.8)

where h[n] = 〈 1√
2
φ
(
t
2

)
, φ(t − n)〉, namely the φ1,0 has been decomposed on the basis

{φ0,n}n∈Z. This can be generalised to any scale 2j+1 and basis {φj,p}p∈Z in a way that the
approximation coe�cients at the scale j+1 can be obtained recursively from the coe�cients
at the previous scale j, as
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aj+1[p] =
∑

n∈Z

h[n− 2p]aj[n]. (3.9)

Furthermore, it can be shown (Mallat 1989; Meyer 1992) that the projection of f onto the
family of wavelets de�ned in Equation 3.5 forming an orthonormal basis of the subspace
containing all the details that were lost between two consecutive approximations, enables
to decompose f as

f =
∑

j∈Z

∑

n∈Z

dj[n]ψj,n, (3.10)

through the details (wavelet) coe�cients dj[n] = 〈f, ψj,n〉, with scale parameter 2j and
position parameter 2jn. Then, analogously to Equation 3.9, it is possible to de�ne a �lter
g to obtain the details coe�cients at the scale j + 1 from the approximation coe�cients of
the previous scale j:

dj+1[p] =
∑

n∈Z

g[n− 2p]aj[n] (3.11)

as schematically summarised in Figure 3.3. Depending on the properties of the �lters g and
h, the wavelet employed in the analysis has di�erent properties that can be more or less
convenient depending on the goal of the analysis. For the purposes of this thesis, we are
interested in a particular type of DWT, called the starlet transform, introduced in the next
section.

3.4 The starlet transform

The Isotropic Undecimated Wavelet Transform (IUWT) (Starck, Fadili, and Murtagh 2007),
also called starlet transform, is an undecimated DWT, meaning that the decimation step
introduced in the previous section is removed from its implementation. Moreover it is
isotropic, meaning that

- the �lters h and g must be symmetric, namely h̄[k] = h[−k] = h[k] and ḡ[k] =
g[−k] = g[k],

- in dimensions ≥ 2, the �lters h, g, the scaling function φ and the wavelet ψ must be
nearly isotropic.
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À trous algorithm

The starlet decomposition can be implemented through the à trous algorithm (Holschnei-
der et al. 1989) as follows. The approximations and details coe�cients introduced in Equa-
tion 3.9 and Equation 3.11 are recursively computed as

aj+1[k] =
∑

l∈Z

h[l]aj[l − 2jk], (3.12)

dj+1[k] =
∑

l∈Z

g[l]aj[l − 2jk], (3.13)

where at each scale j di�erent �lters h(j) and g(j) are derived from h and g by inserting
2j − 1 zeros between each of the values, so that for j = 1 there will be one zero between
each value of the �lter, for j = 2 there will be three zeros.. and so on as

h(1) = (..., h[−2], 0, h[−1], 0, h[0], 0, h[1], 0, h[2], ...)

h(2) = (..., h[−1], 0, 0, 0, h[0], 0, 0, 0, h[1], 0, 0, 0, h[2], ...)

so that they become sparse. Then, as mentioned before, the scaling function φ in D ≥ 2
must be isotropic and it is chosen to be the spline of order 3 (Daubechies 1992), i.e.

φ1(x) =
1

12
(|x− 2|3 − 4|x− 1|3 + 6|x|3 − 4|x+ 1|3 + |x+ 2|3) (3.14)

with φ(x, y) = φ1(x)φ1(y) and the wavelet function is built as the di�erence between two
successive approximations of this isotropic scaling function as

1

4
ψ
(x

2
,
y

2

)
= φ(x, y)− 1

4
φ
(x

2
,
y

2

)
, (3.15)

so that ψ is also isotropic. This is re�ected also in the relation between the �lters h and g,
that is

g[k, l] = δ[k, l]− h[k, l], (3.16)

where δ[0, 0] = 1 and δ[k, l] = 0 otherwise and

h[k, l] = h(1D)[k]h(1D)[l], (3.17)
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with

h(1D) =
[1, 4, 6, 4, 1]

16
. (3.18)

Hence, when convolved with a 2D starlet, an original image I is decomposed by this trans-
form into a coarse version of it aJ plus several images of the same size at di�erent resolution
scales j, as shown in Figure 3.4:

I[k, l] = a0[k, l] = aJ [k, l] +
J∑

j=1

dj[k, l], (3.19)

where the wavelet images dj represent the details of the original image at dyadic (powers
of two) scales corresponding to a spatial size of 2j pixels. The maximum j is determined by
the map size as log2N for an N × N image. In practice, this is done by implementing the
above discussion, by �rst considering the �lter bank h1D = { 1

16
, 1

4
, 3

8
, 1

4
, 1

16
} and initializing

j = 0. Each coe�cient aj+1[k, l] is hence smoothed by convolving the previous coe�cient
aj[k, l] with the corresponding sparsi�ed weight h1D at the scale j. After this smoothing,
the discrete wavelet transform is given by the di�erence aj[k, l]−aj+1[k, l]. More formally,
each wavelet coe�cient is obtained as:

aj+1[k, l] =
∑

m

∑

n

h1D[m]h1D[n]aj[k + 2jm, l + 2jn] (3.20)

and

dj+1[k, l] = aj[k, l]− aj+1[k, l] (3.21)

so that the ensemble of {d1, d2, ....aJ} are the wavelet coe�cients, i.e. the starlet transform
of the original image.

Therefore, the IUWT is entirely de�ned by the choice of the scaling function φ and asso-
ciated �lter h. One advantage of employing a starlet �lter is provided by its multi-scale
analysis, namely its ability to investigate and extract the information encoded at di�erent
scales at the same time (Starck, Murtagh, and Bijaoui 1998). Moreover, compared to the
DWT, it presents useful properties such as invariance per rotation and translation. Fur-
thermore, as we are interested in optimising the extraction of information from weak lens-
ing maps, the shape of this �lter emphasises round features making it very e�cient when
dealing with for example with peak counts, which are point-like features. Moreover, peak
counts (the signal) are sparse in the starlet domain, as they are described by a few number
of non-zero coe�cients, while white noise is not sparse in any representation. Hence, as we
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=

Figure 3.4: Illustration of the starlet decomposition with jmax = 4 scales. As the j index
increases, larger scales are considered and the resolution decreases.

are employing the starlet to smooth the noise to access the cosmological information from
the maps at smaller scales where the noise is more dominant, it represents a powerful tool
to separate the noise from the signal. Further details on the advantages of wavelet starlet
analysis can be also found in Lin, C.-A. et al. 2016, Peel et al. 2017b and Peel, Pettorino,
Giocoli, et al. 2018. Figure 3.5 shows the starlet 1D and 2D pro�les.
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Figure 3.5: We show the 2D starlet function (top panel) as de�ned in Eq. (3.15) and its 1D
pro�le (bottom panel). Being a wavelet it is a compensated function, i.e. it integrates to
zero over its domain. This comes from the admissibility condition for the wavelet function
ψ:
∫ +∞

0
| ˆψ(k)|2 dk

k
< +∞ which implies that

∫
ψ(x)dx = 0 and it has compact support

in [−2, 2] × [−2, 2]. Its shape emphasises round features, making it very e�cient when
dealing with peak counts.

3.5 Wavelet coe�cients and noise estimation

The summary statistics that we compute on the noisy weak lensing maps in Chapter 4
and Chapter 5, except for the power spectrum that is computed as function of the angular
multipoles `, are expressed as a function of the signal to noise ratio ν ≡ S/N . Therefore,
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Starlet scale σej
d1 0.8891
d2 0.2017
d3 0.086
d4 0.0414
a5 0.0324

Table 3.1: Values of the noise estimates for each starlet scale j for a map with (npix, npix)

= (512, 512) convolved with a starlet with jmax = 4 scales.

it is necessary to be able to estimate the noise at each scale. We de�ne the signal to noise
�eld ν = S/N as the ratio between the noisy convergence κ convolved with the �lterW
over the smoothed standard deviation of the noise for each of the map we consider in our
analysis:

ν =
(W ∗ κ)(θ)

σfilt
n (θ)

. (3.22)

If W is a Gaussian kernel, the denominator in the above equation will be given by the
standard deviation of the noise smoothed with a Gaussian kernel of the same size as the
one used to smooth the signal. For instance, if the noisy convergence map is smoothed
with a Gaussian kernel of size θker = 1 arcmin, then σfilt

n (θ) is the standard deviation of the
noise smoothed with a Gaussian kernel of size θker = 1 arcmin. WhenW is a starlet kernel
instead, one needs to take into account the fact that the noise level varies at each scale.
This can be done using the automatic noise estimation from the multiresolution support
presented by Starck and Murtagh 1998. Speci�cally, the appropriate value of the noise at
the scale j in the succession is assessed from the standard deviation of the noise in the
original image σI and from the behavior of the noise in the wavelet space. The procedure
to estimate the noise level σj at each starlet scale is the following:

• we de�ne the number of scales for the starlet decomposition,

• we compute the coe�cients σej by taking the starlet transform of a Gaussian distri-
bution of the same size of the original image with standard deviation one,

• to estimate σI we take the median absolute deviationof the noisy convergence map.

The estimate of the noise level at each wavelet scale, is then given by σj = σejσI . An example
for these values is provided in Table 3.1.
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3.6 Wavelets andDarkMatterMassMapReconstruction

As described in Section 2.1.3, it is essential to be able to recover the convergence from
the shear in a proper way. Mass mapping methods solve an ill-posed problem due to the
irregular sampling of the lensing �eld and the low signal to-noise ratio on small scales
(Lanusse et al. 2016), that consists in �nding the unknown underlying convergence �eld κ
(the signal) from observed observed shear data (noisy measurements), γ:

γ = Aκ+ n, (3.23)

where n is the statistical uncertainty vector associated with the data. As mentioned in
Section 2.1.3, there exist mass mapping methods based on sparsity. For example, the Grav-
itational Lensing Inversion and MaPping using Sparse Estimators (GLIMPSE) (Leonard,
Lanusse, and Starck 2014; Lanusse et al. 2016) relies on the assumption that the density �eld
can be sparsely represented in an appropriate dictionary in order to regularise the inver-
sion of the lensing operator. Being based on sparse representation, GLIMPSE is well suited
for recovering piece-wise smooth features. A di�erent approach, that relies on a Bayesian
framework, is the one of Wiener �ltering (Wiener 1949). In this approach a Gaussian ran-
dom �eld is assumed as a prior for the convergence map, which is responsible for inserting
some bias that prevents the estimate from over-�tting (Zaroubi et al. 1995). It has been
shown (Lanusse et al. 2016; Price et al. 2019) that the solutions derived using a wavelet
regularization signi�cantly outperform standard techniques such as Wiener �ltering for
peaks recovery, while Wiener �ltering performs better on the Gaussian content of the map
(Je�rey et al. 2018). As explained in Section 2.3, since the density �eld is inhomogeneous,
it encompasses Gaussian-type large-scale structures, as well as non-Gaussian features. It is
therefore essential for mass mapping methods to preserve both Gaussian and non-Gaussian
features during the reconstruction process. Motivated by the above considerations, Starck
et al. 2021 proposed a method, called MCALens, to model the matter density �eld using
both linear and non-linear characteristics. More speci�cally, the idea is to consider that
modelling the convergence map as a Gaussian random �eld leads to a good recovery of the
large scales of the convergence map but not the non-Gaussian structures, while assuming
the convergence map is compressible in the wavelet domain (i.e. sparse modelling) recovers
non-Gaussian structures as peaks extremely well but poorly the Gaussian content. Hence,
the sparse recovery is somehow complementary to the Wiener solution. To address these
limitations, Starck et al. 2021 introduce a novel approach where the convergence �eld κ is
given by a Gaussian and a non-Gaussian part:

κ = κG + κNG. (3.24)

The non-Gaussian part of the signal κNG undergoes a sparse decomposition in a wavelet
dictionary, while the component κG is assumed to be inherently non-sparse and Gaus-
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sian. These two components are separated through the Morphological Component Analy-
sis (MCA) proposed in Starck, Elad, and Donoho 2004 that allows to separate two compo-
nents mixed in a single image when these have di�erent morphological properties. If one
can exploit the morphological di�erences between the components, it was shown that it is
possible to extract and separate them.

This requires to de�ne the functions CG and CNG, such that the following is minimised

min
κG,κNG

{
‖γ −A(κG + κNG)‖2

Σn
+CG(κG) +CNG(κNG)

}
, (3.25)

where Σn is a pre-de�ned covariance matrix of the noise, A is the inversion matrix from
Equation 3.23 and γ is the shear.

Morphological Component Analysis solves this by performing an alternating minimization
scheme, as follows:

• estimate κG assuming κNG is known:

min
κG

{
‖(γ −AκNG)−AκG)‖2

Σn
+CG(κG)

}
, (3.26)

• estimate κNG assuming κG is known:

min
κNG

{
‖(γ −AκG)−AκNG)‖2

Σn
+CNG(κNG)

}
. (3.27)

A recent range of MCA applications in astrophysics can be found in Melchior et al. 2018;
Joseph et al. 2019 and Wagner-Carena et al. 2020

The Gaussian component

The Gaussian component is then modelled following the standard Wiener modelling where
κG is assumed to be a Gaussian random �eld:

CG(κG) = ‖κ‖2
Σk
, (3.28)

and the solution of Equation 3.26 is obtained using the iterative Wiener �ltering method
described in Je�rey et al. 2018.
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The non-Gaussian component

There are di�erent ways to use a sparse model in the MCA framework. One way consists
in using the standard `1 or `0-norm regularisation in a wavelet-based sparsity model, as it
is done in the GLIMPSE algorithm (Lanusse et al. 2016). This results in:

CNG(κNG) = λ‖Φ?κNG‖p, (3.29)

where p = 0 or 1, Φ is the wavelet matrix, and λ is a Lagrangian parameter. However, it
seems that this approach leads to large wavelet scales and low Fourier frequencies that are
relatively close, making it di�cult to separate the information.

For this reason, Starck et al. 2021 implement another approach, that involves �rst estimat-
ing the set of scales and positions where wavelet coe�cients are above a given threshold,
typically between 3 and 5 times the noise standard deviation relative to each wavelet coef-
�cient. This set is composed by some coe�cients named Ω, called active coe�cients. These
coe�cients can be interpreted as a mask in the wavelet domain, where Ωj,x = 1 if a wavelet
coe�cient detected at scale j and position x and 0 otherwise. The noise σj,x at scale j and
position x can be determined using noise realizations.

The noise is whitened, since the noise factor considered is Gaussian with standard deviation
equal to one and with a uniform power spectrum. Once this wavelet mask Ω is estimated,
the non Gaussian component κNG can be estimated through

min
κNG

{|Ω�Φ? ((γ − AκG)− AκNG)) |2 +CNG(κNG)}, (3.30)

with CNG(κNG) = iR(κNG). Once Ω is �xed, the algorithm is almost linear and only a
positivity constraint remains. Such positivity constraint is applied on the non-Gaussian
component κNG. Peaks in the map can be on top of voids, and therefore have negative
pixel values. As peaks are captured by the non-Gaussian component, they are positive
by construction, but the convergence map κ = κG + κNG can still be negative at peaks
positions. The larger the non-Gaussianities, the more MCALens is expected to improve
over linear methods such as the Wiener one. The experiments run using this method on
simulated data show a signi�cant improvement compared to the state of art.

Example

Here is shown an example performed in Starck et al. 2021 of application of MCAlens to
reconstruct a convergence map of the 1.64 deg2 HST/ACS COSMOS survey (Scoville et al.
2007). The bright galaxies shape catalogue produced for Schrabback et al. 2010 is employed.
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Figure 3.6: COSMOS data: Top, galaxies count map (left) and Wiener map (right) smoothed
with a Gaussian having a Full Width at Half Maximum of 2.4 arcmin. Bottom, GLIMPSE(left)
and MCAlens(right). Images and caption from Starck et al. 2021.

The results of Starck et al. 2021 after applying MCAlens on COSMOS data are presented
in Figure 3.6. The top row shows the galaxy count map (left) and the Wiener map (right)
smoothed with a Gaussian at a Full Width at Half Maximum of 2.4 arcmin. The bottom row
shows respectively the wavelet solution obtained with GLIMPSE (left) and the MCAlens
map (right). The white dots show the locations and redshifts of X-ray selected massive
galaxy clusters from the XMM-Newton Wide Field Survey (Finoguenov et al. 2007) with
0.3 < z < 1.0. From Figure 3.6, one can see how the Wiener �lter returns the Gaussian
components, GLIMPSE well reconstructs the overdense non-Gaussian parts in correspon-
dence of the massive galaxy clusters and how MCAlens returns both Gaussian and non-
Gaussian features.
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3.7 Summary

To summarise, wavelets are functions that allow to decompose data into di�erent frequency
components, and then study each component with a resolution matched to its scale. The
reason for the success of wavelets is due to the fact that wavelet bases represent well a
large class of signals, especially astronomical data where many objects present isotropic
features. The starlet transform is very well designed for representing these type of data.
Sparse wavelet regularization is very e�cient for inverse problems in astrophysics such as
denoising or deconvolution. Very nice results have been obtained based on weak lensing
mass map recovery with the algorithm MCALens (Starck et al. 2021) and Chapter 4.1.8 will
show the potential of starlet-based summary statistics as a tool to extract information from
cosmological data and estimate cosmological parameters.
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The goal of this chapter is to illustrate the methodology and results of our study presented
in the paper Ajani et al. 2020. We investigated the impact of multi-scale �ltering approaches
on cosmological parameters by employing a starlet (wavelet) �lter and a concatenation of
Gaussian �lters to constrain the sum of neutrino masses Mν , the matter density parameter
Ωm and the amplitude of the primordial power spectrum As for four tomographic redshifts
in a Euclid-like setting. We have compared di�erent summary statistics: power spectrum,
single-scale peak counts and multi-scale peak counts and assessed their performance in an
ideal setting (no systematics).

91
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4.1 Forecasts onneutrinomasses usingmulti-scale peak
counts

4.1.1 Overview

As described in Section 2.3, second order statistics such as the two-point correlation func-
tion or the power spectrum fail to capture the non-Gaussianities of the large-scale structure
�eld and it is necessary to consider statistics of order higher than the second to distinguish
the cosmological information hidden in non-linear modes that can represent new signals
beyond the standard ΛCDM model. Moreover, as illustrated in Section 3.1, multi-scale ap-
proaches based on wavelets can be used for several applications in astrophysics. In the
context of weak lensing peak counts, Liu J. et al. 2015 have shown that a combination of
certain smoothing scales can tighten the errors on the cosmological constraints, using the
publicly available data from the 154 deg2 CFHTLenS survey. However, they claim that the
combination that they �nd is only a limited investigation of the bene�t of using multiple
smoothing scales and leave the open question of identifying optimal �lter shapes, sizes, and
combinations that can help further tighten constraints using peak counts. An investigation
in this direction has then been performed by Lin, Kilbinger, and Pires 2016, where they
compared linear �ltering with a Gaussian and two compensated �lters (the starlet wavelet
and the aperture mass), and the non-linear �ltering method MRLens when inferring the
matter density parameter Ωm, the power spectrum normalisation σ8, and the dark-energy
parameter w0. While they �nd that a compensated �lter function with counts included
separately from di�erent smoothing scales yields the tightest constraints on cosmological
parameters from weak lensing peaks, their non-tomographic con�guration does not allow
to impose constraints on w0. The goal of the study presented in this chapter is to compare
and quantify the performance of di�erent �ltering techniques in a multi-scale framework
and to compare di�erent summary statistics in this context: as second order statistics we
employ the convergence power spectrum, as higher order statistics we employ peak counts
of lensing convergence maps. We use as synthetic data the lensing convergence maps from
MassiveNus simulations (Petri 2016; Liu et al. 2018). Using the same suite of simula-
tions, Liu and Madhavacheril 2019, Marques et al. 2019, and Coulton et al. 2019 have already
shown for a LSST-like survey (LSST Science Collaboration et al. 2009) that combining the
lensing power spectrum with higher-order statistics can provide tighter constraints on pa-
rameters. For this purpose, we perform our analysis using the lensing power spectrum and
peak counts as summary statistics following Li, Liu, Zorrilla Matilla, et al. 2019. We extend
the study by considering a survey with Euclid-like noise, and to smooth the noisy conver-
gence maps we employ a multi-scale approach, investigating a concatenation of Gaussian
�lters and separately a starlet �lter (Starck, Murtagh, and Fadili 2010).

MassiveNus
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Figure 4.1: Parameter space of the 100 cosmological models available from the Massiv-
eNus simulations. The red dot shows the �ducial model corresponding to {Mν , Ωm, 109As

} = { 0.1, 0.3, 2.1 }.

4.1.2 Simulations

We use the Cosmological Massive Neutrino Simulations (MassiveNus), a suite of pub-
licly available N-body simulations released by the Columbia Lensing group 1. It contains
101 di�erent cosmological models obtained by varying the sum of neutrino masses Mν , the
total matter density parameter Ωm and the primordial power spectrum amplitude As at the
pivot scale k0 = 0.05 Mpc−1, in the range Mν = [0, 0.62] eV, Ωm =[0.18, 0.42] and As·
109=[1.29, 2.91]. The reduced Hubble constant h = 0.7, the spectral index ns = 0.97, the
baryon density parameter Ωb = 0.046 and the dark energy equation of state parameter
w = −1 are kept �xed under the assumption of a �at universe. The �ducial model is set at
{Mν ,Ωm, 109As}={0.1, 0.3, 2.1}. The presence of massive neutrinos is taken into account
assuming normal hierarchy and using a linear response method, where the evolution of
neutrinos is described by linear perturbation theory but the clustering occurs in a non-
linear cold dark matter potential. The simulations have a 512 Mpc/h box size with 10243

CDM particles. They are implemented using a modi�ed version of the public tree-Particle
Mesh (tree-PM) code Gadget2 with a neutrino patch, describing the impact of massive
neutrinos on the growth of structures up to k = 10 h Mpc−1. A complete description of
the implementation and the products is presented in Liu et al. 2018. We use the simulated
convergence maps as mock data for our analysis. When dealing with real data, the actual
observable is the shear �eld that can be converted into the convergence �eld as discussed
in Section 2.1.3. We bypass this step from γ to κ and work with the convergence maps di-
rectly provided as products from MassiveNus. The maps are generated using the public
ray-tracing package LensTools (Petri 2016) for each of the 101 cosmological models at
�ve source redshifts zs = {0.5, 1.0, 1.5, 2.0, 2.5}. Each redshift has 10000 di�erent map re-
alisations obtained by rotating and shifting the spatial planes. Each κ map has 5122 pixels,
corresponding to a 12.25 deg2 total angular size area in the range ` ∈ [100, 37000] with
a resolution of 0.4 arcmin. Figure 4.1 shows the 2D parameter space planes for the 100
cosmological models available from the simulations.

1The simulations are publicly available at http://columbialensing.org.

Massiv
eNus
http://columbialensing.org
MassiveNus
Gadget2
MassiveNus
LensTools
http://columbialensing.org
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4.1.3 Noise and survey speci�cations

The method described in this work can be applied to any given survey. For illustration
purposes, we perform here a tomographic study using the source redshifts zs = { 0.5, 1.0,
1.5, 2.0 } and mimicking the noise expected for a survey like Euclid

2(Laureijs et al. 2011;
Euclid Collaboration et al. 2020b). Speci�cally, at each source redshift we produce 10000
map realisations of Gaussian noise with mean zero and variance

σ2
n =

〈σ2
ε 〉

ngalApix

, (4.1)

where we set the dispersion of the ellipticity distribution to σε = 0.3, and the pixel area
for these simulations is by Apix ' 0.16 arcmin2. The redshift dependence that makes a
tomographic investigation possible is encoded in the source galaxy redshift distribution,
for which we assume the parametric form

n(z) = C
(
z

z0

)α
exp

[
−
(
z

z0

)β]
, (4.2)

with α = 2, β = 3/2 z0 = 0.9/
√

2 as in (Laureijs et al. 2011; Euclid Collaboration et al.
2020b), and C is the normalization constant to guarantee the constraint

∫ zmax

zmin
n(z) dz = 30

gal/arcmin−2. Then, we compute the galaxy number density at each bin as

nigal = C
∫ z+i

z−i

n(z)dz, (4.3)

where z−i , z+
i are the edges of the ith bin. We adapt the binning choice to the provided

simulation settings, assuming that we observe galaxies within a small range around the
actual source redshift. This leads to the values for the galaxy number density ngal per
source redshift bin zs provided in Table 4.1:

zs 0.5 1.0 1.5 2.0
ngal 11.02 11.90 5.45 1.45

Table 4.1: Values of ngal for each source redshift zs. We adapt the binning choice
to the provided simulation settings, assuming that we observe galaxies within a small
range around the actual redshift. In practice, this means considering as bin edges
{0.001, 0.75, 1.25, 1.75, 2.25}, in order to compute the integral in Equation 4.3.

2https://www.Euclid-ec.org

https://www.Euclid-ec.org
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Figure 4.2: Convergence maps κ are noiseless. We apply Gaussian noise and then �lter
the map using either the Gaussian or starlet �ltering. For illustration purposes, we show
the Gaussian �ltering with θGker = 1.6 arcmin of one map realisation for the �ducial model
{Mν ,Ωm, 109As}={0.1, 0.3, 2.1}. The colour bar on the right of each map describes values
of the convergence �eld κ. For each realisation of the 10000 maps provided for each redshift
we generate 10000 noise maps as described in Section 4.1.3 corresponding to the di�erent
value of ngal respectively for zs = [0.5, 1.0, 1.5, 2.0].

4.1.4 Filtering strategy

In this section, I will describe the strategy used for �ltering. Some de�nitions introduced
in Section 3.1 will be re-established in order to keep reading smooth. In order to access the
signal in the convergence maps at small scales, where they are mostly dominated by noise,
we �lter them, considering a multi-scale analysis compared to a single-scale analysis. First,
we use a single Gaussian kernel of size θker, de�ned as

G(θ; θker) =
1√

2πθker

e−θ
2/(2θ2ker) , (4.4)

which was also used for a single-scale �lter in Li, Liu, Zorrilla Matilla, et al. 2019. We then
compare the results with those obtained when applying instead a concatenation of Gaussian
�lters and an Isotropic Undecimated Wavelet Transform, also known as a starlet transform
(Starck, Fadili, and Murtagh 2007), introduced in Section 3.4. This allows us to decompose
our original image (the noisy convergence map) I as a sum of wavelet coe�cient images
wj plus a coarse resolution image cJ :

I(x, y) = cJ(x, y) +

jmax∑

j=1

wj(x, y), (4.5)

where the wavelet images wj represent the details of the original image at dyadic (powers
of two) scales corresponding to a spatial size of 2j pixels and J = jmax + 1.
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One of the advantages of employing a starlet �lter is provided by its multi-scale analysis,
namely its ability to investigate and extract the information encoded at di�erent scales at
the same time (Starck, Murtagh, and Bijaoui 1998). Hence, the starlet transform presents
the properties to compute e�ciently J scales with a fast algorithm with a complexity of
O(N2 logN) for an image ofN ×N pixels and to analyse data with compensated aperture
�lters with �nite support. Further details on the advantages of wavelet starlet analysis have
been discussed in Chapter 3 and are also present in Peel et al. 2017; Peel, Pettorino, Gio-
coli, et al. 2018. The following example illustrates how we can compare results from these
two di�erent �ltering schemes. Applying a starlet transform with jmax = 4 to a map with
0.4 arcmin pixel size results in a decomposition of four maps with resolutions [ 0.8, 1.6,
3.2, 6.4 ] arcmin plus the coarse-scale map. For our study, we will consider as �nest scale
θStker = 1.6 arcmin, being a more realistic choice in terms of resolution for convergence maps
coming from Euclid-like survey data. We will therefore focus on the set of scales [ 1.6, 3.2,
6.4 ] arcmin plus the coarse map. Concerning the multi-Gaussian �lters, to fairly compare
them to the starlet, we set the standard deviations of the Gaussian �lters such that their
maximum matches that of the corresponding single starlet scale pro�le as shown in Fig-
ure 4.3, resulting in a concatenation of Gaussians respectively with θGker = [1.2, 2.7, 5.5, 9.5]
arcmin. Based on the above, in our study we compare cosmological constraints obtained
using noisy maps smoothed from a single-Gaussian kernel with the ones obtained from a
multi-Gaussian analysis and from a starlet decomposition. We exclude the observables cor-
responding to 0.8 arcmin in our analysis after having veri�ed that this does not cost any
loss of information. The starlet transform can be seen as multi-Gaussian �ltering where
each Gaussian kernel is replaced by a compensated �lter. In Figure 4.2 we show the result
of the �ltering procedure for a Gaussian kernel: given the original convergence map κ, we
add white noise as described in Section 4.1.3 and then we �lter the noisy map with the
chosen kernel.
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Figure 4.3: We show the matching between the Gaussian �lter and the starlet at the di�erent
scales. We chose the kernel for the multi-Gaussian concatenation such that the maximum
of the two pro�les match. From left to right are the �nest scale to the smoothest scale where
[ w1, w2, w3, c4 ] = [ 1.6, 3.2, 6.2, 12.8 ] arcmin.
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Figure 4.4: Peak Counts distribution in logarithmic scale for each starlet scales resolutions:
[ 1.6, 3.2, 6.4 ] arcmin and the coarse maps (red dotted line) and the Gaussian case (black
dashed line). Due to the decomposition at di�erent scales, for each map �ltered with the
starlet there are 4 di�erent distributions. Indeed, the number of counts depends on the
resolution: the larger the smoothing size (the lower the frequency) the smaller the number
of peaks.

4.1.5 Summary statistics: power spectrum and multi-scale peaks

To extract and investigate the cosmological information encoded in the weak lensing con-
vergence maps, we compute the power spectrum (PS) and peak counts as summary statis-
tics.

Convergence power spectrum

In this study, we compute as second order summary statistics the power spectrum as de-
�ned in Section 2.1 of the noisy �ltered convergence maps. For a given cosmology we add
Gaussian noise to each realisation of κ. For each redshift we generate a di�erent set of
noise maps following Equation 4.1. To �lter the maps we employ a Gaussian kernel with
smoothing size θGker = 1 arcmin and consider angular scales with logarithmically spaced
bins in the range ` = [300, 5000]. We compute the power spectra using the python package
LensTools for each of the 10000 realisations per cosmology and then we take the aver-
age over the realisations. We parallelise our code using joblib3 to accelerate processing
due to the large number of realisations per cosmology.

3https://joblib.readthedocs.io/

LensTools
joblib
https://joblib.readthedocs.io/
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Multi-scale peaks

As higher order statistics, we detect and count weak lensing peaks on the noisy �ltered
maps using our code 4 as follows. We compute peaks as local maxima of the signal-to-noise
�eld ν ≡ S/N i.e. as a pixel of larger value than its eight neighbours in the image. We de�ne
the signal to noise �eld ν as the ratio between the noisy convergence κ convolved with the
�lter W(θker) over the smoothed standard deviation of the noise for each realisation per
redshift:

ν =
(W ∗ κ)(θker)

σfilt
n

, (4.6)

where W(θker) can be the single-Gaussian, the multi-Gaussian or the starlet �lter. Con-
cerning σfilt

n , its de�nition depends on the employed �lter. For a Gaussian kernel it is given
by the standard deviation of the smoothed noise maps, while for the starlet case we need
to estimate the noise at each wavelet scale for each image per redshift. To estimate the
noise level at each starlet scale we follow Starck and Murtagh 1998. As described in Sec-
tion 3.5, we use the fact that the standard deviation of the noise at the scale j is given by
σj = σejσI , where σI is the standard deviation of the noise of the image and σej are the
coe�cients obtained by taking the standard deviation of the starlet transform of a Gaus-
sian distribution with standard deviation one at each scale j. To estimate σI we take the
median absolute deviation

5 of the noisy convergence map. We do this for each one of the
10000 realisations for each cosmology and then take the average over the realisations. We
consider the peaks distribution for 41 linearly spaced bins within the range ν = [−0.6, 6],
based on the outcomes of Li, Liu, Zorrilla Matilla, et al. 2019 where it is shown that includ-
ing the low (S/N < 1), medium (1 < S/N < 3) and high peaks (S/N > 3) jointly give the
best constraints. Moreover, low and medium peaks, typically formed due to multiple much
smaller halos than the single halos that cause the high peaks (Liu and Haiman 2016), con-
tain a similar level of information as the high peaks. In Figure 4.4 we show for illustration
purposes the peak counts distribution in logarithmic scale for each starlet scale and for a
single-Gaussian �lter case. We see that the number of counts depends on the resolution: the
larger the smoothing size (the lower the frequency) the smaller the number of peaks. We
have investigated the impact of the binning on the results by testing di�erent boundaries,
and we have found that choosing 41 bins instead of 50 decreases the condition number of
the data matrix, hence facilitating its inversion during the likelihood analysis. We have also
considered the minimum and the maximum values of the S/N maps as bin edges, and we
have seen that this choice is not very convenient, since it increases the condition number
by two orders of magnitude.

4Code publicly available at https://github.com/CosmoStat/lenspack.
5For a Gaussian distribution the median absolute deviation (MAD) and the standard deviation are directly

related as: MAD/σ = 0.6745. We choose to use this estimator since it is more robust when dealing with non-
normal distributions (being more resistant to outliers in a data set) to have a more general implementation in
our pipeline.

https://github.com/CosmoStat/lenspack.
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4.1.6 Covariance matrices
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Figure 4.5: We show the correlation coe�cients respectively for the starlet (left) and the
multi-Gaussian (right) peak counts. The white dashed lines split the contribution of the
di�erent redshifts: the bin range [1,164] refers to the correlations at zs = 0.5, the bin range
[165, 328] refers to the correlations at zs = 1.0, the bin range [328, 492] refers to the
correlations at zs = 1.5 and the bin range [493, 656] refers to the correlations at zs = 2.0.
Each redshift contribution is split in the four di�erent scales (the four mini-blocks inside
the white boxes) in increasing order, i.e. [1.6, 3.2, 6.4, coarse] arcmin for the starlet and
[1.2, 2.7, 5.5, 9.5] arcmin for the multi-Gaussian, where each scale is binned in 41 values
of S/N in the range [−0.6, 6]. We notice how the starlet decomposition has a tendency to
make the observable correlation matrix more diagonal while the o�-diagonal terms of the
multi-Gaussian matrix show more correlations along the scales and among S/N values in
the mini-blocks.

To compute the covariance matrices of the data, we use the independent �ducial massless
neutrino simulation, de�ned by [Mν ,Ωm, 109As] = [0.0, 0.3, 2.1] and obtained from initial
conditions di�erent from the massive simulations used to perform inference. We consider a
parameter-independent covariance to reduce the risk of assigning an excess of information
to the observables in the context of a Gaussian likelihood assumption, following the results
of Carron, J. 2013. The covariance matrix elements are computed as

Cij =
N∑

r=1

(xri − µi)(xrj − µj)
N − 1

, (4.7)

where N is the number of observations (in this case the 10000 realizations), xri is the value
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of the power spectrum or the peak counts in the ith bin for a given realisation r and

µi =
1

N

∑

r

xri , (4.8)

is the mean of the power spectrum or the peak counts in a given bin over all the realisations.

In Figure 4.5 we show the correlation coe�cients of the multi-scale tomographic peak
counts: the starlet case (in the left panel ) and the multi-Gaussian case (in the right panel).
The matrices are organised as follows. From left to right, the four main blocks are for
the tomographic redshifts respectively in the order zs = [0.5, 1.0, 1.5, 2.0]. Within each
of the main blocks, there are four sub-blocks representing the �lter scale, i.e. the scales
[1.6′, 3.2′, 6.4′, coarse] for the starlet and [1.2′, 2.7′, 5.5′, 9.5′] for the multi-Gaussian. Each
scale is binned in 41 values of signal to noise in the range S/N = [−0.6, 6]. We see that
the starlet decomposition has a tendency to make the matrix more diagonal, while the o�-
diagonal terms for a multi-Gaussian show more correlations between the scales and for
small and high values of S/N . Consistently with this, we notice that the most correlated
bins in the starlet case are the ones corresponding to the coarse scale (the last mini-block for
each of the main blocks) whose pro�le indeed closely mimics a Gaussian, as one can see in
the last panel of Figure 4.3. Furthermore, we take into account the loss of information due
to the �nite number of bins and realisations by adopting for the inverse of the covariance
matrix the estimator introduced by Hartlap, Simon, and Schneider 2007:

C−1 =
N − nbins − 2

N − 1
C−1
∗ , (4.9)

whereN is the number of realisations, nbins the number of bins, and C∗ the covariance ma-
trix computed for the power spectrum and peak counts, whose elements are given by Equa-
tion 4.7. We also scale the covariance for a Euclid sky coverage by the factor fmap/fsurvey,
where fmap = 12.25 deg2 is the size of the convergence maps and fEuclid = 15000 deg2.

In using Equation 4.9, we do not expect all biases to be removed from our parameter infer-
ence, as this has already been ruled out in Sellentin and Heavens 2016 and in Sellentin and
Heavens 2017. Nevertheless, we rely on the fact that the number of realisations that we are
using (10000) is su�ciently large and greater than nbins to consider it a reliable estimator for
our purposes6. By looking at the correlation matrices of Figure 4.5 it is clear that the starlet
(left panel) has the tendency to make the matrix more diagonal while the multi-Gaussian
case (right panel) presents non-trivial o�-diagonal terms. This �nding, namely the fact that
the majority of the information seems to be encoded in the diagonal terms of the covariance

6Indeed, the value of the correction coe�cient is close to 1 for each analysis we perform. However, con-
sidering that the results of (Sellentin and Heavens 2017) quantify the loss of information also in the case
of a Euclid-like survey, it would be worth it to reproduce our study applying their restoration technique to
generalize our analysis.
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matrix in the starlet case, will be further investigated in the next section where I illustrate
the results we obtained in this study.

4.1.7 Likelihood

To perform Bayesian inference and get the probability distributions of the cosmological
parameters, we use a Gaussian likelihood for a cosmology-independent covariance:

logL(θ) =
1

2
(d− µ(θ))TC−1(d− µ(θ)), (4.10)

where d is the data array, C is the covariance matrix of the observable, µ the expected
theoretical prediction as a function of the cosmological parameters θ. In our case, the data
array is the mean over the (simulated) realisations of the power spectrum or peak counts
or combination of the two for our �ducial model. Cosmological parameters are the ones for
which simulations are available, namely {Mν ,Ωm, As}. In order to determine the relation
between the observable and the models µ(θ), i.e. to be able to have a prediction of the power
spectrum and the peak counts given a new set of points in parameter space, we employ an
interpolation with Gaussian Processes Regression (GPR, (Rasmussen and Williams 2005))
using the scikit-learn python package. As discussed in Section 1.5.2, Gaussian Pro-
cesses are a generic supervised learning method that, via an assumption of smoothness be-
tween parameters with close values, allows one to compute the prediction for an observable
at a new given point in parameter space. The cosmological parameters and the correspond-
ing observables (power spectrum and peak counts or the two statistics combined) from the
simulations are used as a training set, i.e. as the input for the GPR. Then, the Gaussian
Processes act by assuming that for a new point in parameter space θ∗ which is su�ciently
close to a known point θ belonging to the training set, the corresponding observable will be
described by a joint normal distribution along with the known observable. For this inter-
polation, we employ an anisotropic squared exponential function. We estimate the standard
error of the noise level in the targets as the noise given by the fact that we take the mean
over 10000 realisations for each observable and each bin. More speci�cally, for each bin we
compute the observable mean and its corresponding standard error over the 10000 reali-
sations available from the simulations. The �tting procedure takes then as input the three
cosmological parameters and the re-scaled mean of the observable for each bin, while the
standard errors are added as dual coe�cients of the training data points in kernel space, i.e.
as a regularisation term to the diagonal of the kernel matrix to take into account the noise
level on the mean. This results in a number of GP corresponding to the number of bins that
are then taken in by a prediction function. The latter reads new points in parameter space
and returns the corresponding observable predictive distribution (power spectrum, peaks
or the two statistics jointly) and its standard deviation. The hyper-parameters are �t with
the standard marginal likelihood approach. For the validation we compare the prediction of

scikit-learn
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a given model obtained with the GP emulator excluding the corresponding model from the
simulation, for 10 models near the �ducial model following Liu and Madhavacheril 2019.

Figure 4.6: Visualisation of Gaussian processes predictor input and output: the training set,
constituted by the cosmological parameters and corresponding peaks distributions obtained
from the simulations are represented in blue. The output for the prediction is given by the
red curves: for 200 new given cosmologies in parameter space fed to the Gaussian processes
prediction function we get the corresponding peaks distribution.

We �nd di�erences at the sub-percent level that always lie within the statistical error con-
sistent with Li, Liu, Zorrilla Matilla, et al. 2019; Coulton et al. 2019; Marques et al. 2019.
Intuitively, this can be understood by looking at Figure 4.6: the training set, constituted by
the cosmological parameters and corresponding peaks distributions obtained from the sim-
ulations are represented in blue. The output for the prediction is given by the red curves:
for 200 new given cosmologies in parameter space fed to the Gaussian processes prediction
function we get the corresponding peaks distribution. During the likelihood analysis, pa-
rameter space is explored in this way: by computing the summary statistics corresponding
to each new set of cosmological parameters explored by the MCMC walkers.

4.1.8 Results

In this section I illustrate forecast results on the sum of neutrino masses Mν , on the mat-
ter density parameter Ωm and on the primordial power spectrum amplitudeAs for a survey
with Euclid-like noise in a tomographic setting with four source redshifts zs = [0.5,1.0,1.5,2.0
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], and compare results for di�erent observables (power spectrum and peak counts) and �l-
ters (single-Gaussian, starlet and multi-Gaussian) to answer the questions lying at the origin
of the study performed in Ajani et al. 2020:

A) What is the performance of multi-scale peak counts in terms of constraining power
with respect to the state of the art summary statistics in weak lensing?

B) Does the combination of second order statistics and multi-scale higher-order statistics
bring an improvement in tightening the constraints?

C) What is the impact of the di�erent scales on the parameter constraints?

D) What is the impact of the �lter choice on the covariance matrix?

E) What is the impact of the di�erent tomographic redshift bins on the parameter con-
straints?

To answer these questions and compare the di�erent contours corresponding to the di�er-
ent summary statistics and �ltering settings we perform a Bayesian likelihood analysis and
use the emcee package7 to explore the parameter space with MCMC. We assume a �at
prior, speci�cally following Coulton et al. 2019, a Gaussian likelihood function as de�ned
in Equation 4.10, and a model-independent covariance matrix as discussed in Section 4.1.6.
The walkers are initialised in a tiny Gaussian ball of radius 10−3 around the �ducial cos-
mology [Mν ,Ωm, 109As] = [0.1, 0.3, 2.1] and we estimate the posterior using 120 walkers.
Our chains are stable against the length of the chain, and we verify their convergence by
employing Gelman Rubin diagnostics (Gelman and Rubin 1992). To plot the contours we
use the ChainConsumer python package (Hinton 2016).

As our results consist in comparing the constraining power for di�erent summary statistics
and �ltering settings, in order to quantify our results, we use estimators common in the
literature, whose de�nitions are recalled here.

Figure of Merit

To have an approximate quanti�cation of the size of the parameter contours that we use
to compare their constraining power, we consider the following Figure of Merit (FoM) as
de�ned in Euclid Collaboration et al. 2020b:

FoM =
(

det (F̃ )
)1/n

, (4.11)

7emcee is a python implementation of the a�ne-invariant ensemble sampler for Markov chain Monte
Carlo (MCMC) introduced by (Foreman-Mackey et al. 2013) and described in Section 1.5.3.

emcee
ChainConsumer
emcee
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FoM (Mν , Ωm) (Mν , As) (Ωm, As) (Mν , Ωm, As)
Power spectrum 1585 77 1079 2063
Single-Gaussian Peaks 3559 200 2861 6537
Single-Gaussian Peaks + PS 5839 322 4688 11205
Starlet Peaks 7818 434 6428 12755
Starlet Peaks diagonal 8434 471 6936 16528
Starlet Peaks + PS 9796 540 7966 16166
Multi-Gaussian Peaks 11804 655 9729 18647
Multi-Gaussian Peaks diagonal 13612 770 11231 29780
Multi-Gaussian Peaks + PS 13471 742 10983 22115

Table 4.2: Values of the FoM as de�ned in Equation 4.11 for the di�erent parameters pairs (α,
β) for each observable employed in the likelihood analysis: the power spectrum, the peaks
counted on maps smoothed with the kernel in consideration and Peaks + PS always refer
to the constraints obtained with the peaks relative to some �lters and the power spectrum
while the term diagonal refers to the contours obtained with a likelihood analysis performed
by only considering the diagonal elements of the data covariance matrix. We provide in the
last column the 3D FoM given as the inverse of the volume in (Mν , As,Ωm) space.

where F̃ is the marginalised Fisher submatrix that we estimate as the inverse of the co-
variance matrix among the set of cosmological parameters {Mν ,Ωm, 109As} obtained with
the MCMC chains. In the exponent, n is equal to the parameter space dimensionality, e.g.
n = 2 for FoM in a 2-dimensional plane between two parameters while n = 3 if we take
the Fisher matrix among the three parameters. We show the values of the FoM four our
observables in Table 4.2.

Figure of correlation

To quantify the correlations among the parameters we use the Figure of Correlation (Casas
et al. 2017; Euclid Collaboration et al. 2020b):

FoC =
√

det(P−1), (4.12)

where P is the correlation matrix, whose elements are de�ned as Pαβ = Cαβ/
√
CααCββ ,

with Cαβ being the covariance between the cosmological parameters α and β as de�ned in
the previous section. When the parameters are fully uncorrelated FoC = 1, while for FoC
> 1 the o�-diagonal terms are non-zero, indicating an increasing presence of correlations
among parameters as the FoC increases. The values of the FoC for our constraints are
shown in Table 4.3.
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FoC (Mν , Ωm) (Mν , As) (Ωm, As)
Power spectrum 1.00 1.98 1.10
Single-Gaussian Peaks 1.21 1.42 1.01
Single-Gaussian Peaks + PS 1.19 1.31 1.04
Starlet Peaks 1.14 1.18 1.14
Starlet Peaks + PS 1.13 1.13 1.20
Multi-Gaussian Peaks 1.13 1.16 1.17
Multi-Gaussian Peaks + PS 1.13 1.14 1.18

Table 4.3: Value of the Figure of Correlation for each pair of cosmological parameters cor-
responding to the di�erent tomographic observables: the power spectrum alone (PS), the
Peaks alone for di�erent �lters and the two statistics combined (Peaks + PS). As explained
in the text, FoC = 1 corresponds to uncorrelated parameters, while the further the FoC is
to 1, the more correlations are present. Qualitatively, this can be appreciated by looking at
the inclination of the contours: by looking at Figure 4.7 we can see more ‘oblique’ contours
for the Gaussian peaks in the plane (Mν , Ωm) compared to the power spectrum, while for
the pair (Mν , As) the power spectrum shows more correlation than peaks.

Condition Number Single-Gaussian Peaks Starlet Peaks Multi-Gaussian Peaks
41 bins 105 106 107

50 bins 105 1016 -

Table 4.4: Values of the Condition Number for the data covariance matrices. The smaller
the number the easier it is to invert the matrix. In this case we get very large values for this
estimator, leading to the conclusion that the data covariance matrices for Starlet Peaks and
Gaussian Peaks show very singular behaviours.

Matrix condition number

To estimate how di�cult it is to invert our data covariance matrices, we compute the cor-
responding condition number : if the matrix is singular, the associated condition number is
in�nite, i.e. matrices with large condition numbers are more di�cult to invert. We compute
the condition number through the 2-norm of the matrix using singular value decomposition
(SVD). As shown in Table 4.4, the condition number depends on the binning choice, espe-
cially for the multi-scale analysis. Indeed, we �nd that choosing 41 linearly spaced bins for
the peak counts instead of 50 reduces the condition number of the starlet peaks of about 10
orders of magnitude. For this reason we choose 41 bins when performing inference using
peak counts.
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σαα Mν Ωm As

Power spectrum 0.127 0.005 0.204
Single-Gaussian Peaks 0.083 0.004 0.086
Single-Gaussian Peaks + PS 0.061 0.003 0.066
Starlet Peaks 0.047 0.003 0.057
Starlet Peaks diagonal 0.049 0.003 0.053
Starlet Peaks + PS 0.040 0.003 0.052
Multi-Gaussian Peaks 0.038 0.003 0.047
Multi-Gaussian Peaks diagonal 0.042 0.002 0.039
Multi-Gaussian Peaks + PS 0.035 0.002 0.044

Table 4.5: Values of 1-σmarginalised error for each cosmological parameter for the di�erent
observables.

Marginalised error

To estimate the marginalised 1σ error on a single parameter θα (which means having in-
cluded all the degeneracies with respect to other parameters), we use the quantity:

σαα =
√
Cαα, (4.13)

where Cαα are the diagonal elements of the parameter covariance matrix. We show the
values of the σαα for our observables in Table 4.5.

A) Multi-scale peak counts performance vs state of the art summary statistics

In the left panel of Figure 4.7 we compare constraints obtained from the single-scale and
the multi-scale peak counts analysis against the power spectrum contours. For the single
scale we employ a Gaussian �lter with θGker = 1.6′. For the multi-scale analysis we employ a
starlet �lter and a concatenation of Gaussian �lters with smoothing widths chosen such that
the pro�les match the starlet scales, as described in Section 4.1.4. More speci�cally, we show
the comparison among the power spectrum (blue contours), the single-scale peaks (green
contours), the starlet peaks (red contours) and the multi-Gaussian peaks (black contours).
We con�rm that peak counts outperform power spectrum constraints even in the single-
Gaussian case, as found in Li, Liu, Zorrilla Matilla, et al. 2019. In addition, we �nd that
a multi-scale approach leads to a remarkable improvement with respect to a single-scale
approach in terms of constraining power, as expected, due to its higher information content
concerning structure formation. We quantify these outcomes by considering the Figure of
Merit de�ned in Equation 4.11. As shown in Table 4.2, the FoM for the single-Gaussian
peaks in the parameter space plane (Mν , Ωm) is more than twice the one given by the
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power spectrum; the one from starlet peaks is more than twice that obtained with the
single-Gaussian peaks, and the multi-Gaussian peaks FoM is more than three times the one
corresponding to the single-Gaussian case. Concerning the (Mν , As) and (Ωm, As) planes,
the FoM for Gaussian peaks is about three times that for the power spectrum, the one from
starlet peaks is again about twice that obtained with the single-Gaussian peaks, and the
multi-Gaussian peaks give again a FoM about three times that seen for single-Gaussian
peaks contours.

As further investigation, we compute the Figure of Correlation as de�ned in Equation 4.12
to study the correlation among the parameters. By looking at Table 4.3, one can see how
values for the power spectrum for the pairs (Mν , Ωm) and (Ωm,As) are close to one, suggest-
ing that correlation among them appears to be very small, while the plane (Mν , As) shows
more correlation, as its FoC is nearly twice as large. Qualitatively this can be appreciated
by looking at the inclination of the contours. More speci�cally, concerning the plane (Mν ,
Ωm), the power spectrum contours are horizontal and show also visually that these two
parameters are not correlated; constraints obtained via peak counts show a slightly larger
correlation, increasing by 21% for Gaussian peaks and by about 13-14% for the multi-scale
analysis, with respect to the power spectrum. It is interesting to note that in the (Mν , As)
plane, the correlation decreases by 30% when using single-Gaussian peaks and by about
40% when using a multi-scale approach compared to the power spectrum, suggesting that
peak counts can play an important role in breaking the degeneracy for this pair of param-
eters. Independently of the correlation, all constraints obtained with multi-scale �ltering
are tighter than the ones obtained via single-scale �ltering, and both are tighter than the
ones for the power spectrum.

B) Performance of second order statistics and multi-scale peaks combined

Based on the previous result, we are now interested in the constraints obtained when con-
sidering the two statistics jointly and on the impact of the di�erent �lter settings in this
context. In particular, by focusing on the right panel of Figure 4.7, where we compare the
95% con�dence contours of the power spectrum (blue contours) with the single-Gaussian
peaks (green contours) and the two joint statistics (violet contours), we notice how in the
single-scale approach the addition of the power spectrum to the peak counts brings a non-
negligible improvement in terms of constraining power with respect to the peaks alone.
More speci�cally, reading the values presented in Table 4.2, we see that the FoM of the
joint contours is roughly 1.6 times that of the peaks alone, and more than three times that
of the power spectrum.

Focusing now on the multi-scale approaches, in Figure 4.8 we show the same compari-
son in the left panel by comparing the power spectrum with the starlet peaks alone (red
contour) and the two joint statistics (orange contours) and in the right panel for the multi-
Gaussian case with the multi-Gaussian peaks alone (black contours) and the two joint statis-
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Figure 4.7: 95 % con�dence contours tomography with source redshifts zs = [ 0.5,1.0,1.5,
2.0 ] and corresponding galaxy number density: ngal =[ 11.02, 11.90, 5.45, 1.45]. The
black dotted line is the �ducial model: [

∑
mν , Ωm, 109As] = [0.1, 0.3, 2.1]. Left panel:

constraints from power spectrum (blue contours) computed on noisy maps smoothed with
a Gaussian kernel θker = 1 arcmin, constraints from Gaussian Peak counts (green contours)
computed on noisy maps smoothed with a Gaussian kernel θker = 1.6 arcmin, constraints
from Starlet Peak counts (red contours) computed on noisy maps smoothed with a Starlet
kernel with corresponding resolutions [1.6, 3.2, 6.4] arcmin + coarse map, constraints from
multi-Gaussian Peak counts computed on noisy maps smoothed with a Starlet kernel with
corresponding resolutions [1.2, 2.7, 5.5, 9.5] arcmin. Right panel: constraints from power
spectrum (blue contours) computed on noisy maps smoothed with a Gaussian kernel θker =

1 arcmin, constraints from Gaussian Peak counts (green contours) computed on noisy maps
smoothed with a Gaussian kernel θker = 1.6 arcmin and the two statistics jointly (violet
contours).

tics (turquoise contours). We notice in this case that the FoM of the combined statistics are
roughly 1.1 − 1.2 times the peaks alone in the starlet case and 1.1 times the peaks alone
in the multi-Gaussian case, suggesting that the information given by the joint statistics is
mostly contained in the multi-scale peak counts alone. Peak counts therefore appear to be
competitive and su�cient statistics for parameter inference when dealing with weak lens-
ing convergence maps as input data, in our ideal setting. This further con�rms that lensing
peaks are a powerful tool in the context of cosmological parameter inference, emphasising
as well the importance of the role played by the �ltering choice.
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Figure 4.8: 95 % con�dence contours tomography with source redshifts zs = [ 0.5,1.0,1.5,
2.0 ] and corresponding galaxy number density: ngal = [ 11.02, 11.90, 5.45, 1.45 ]. The
black dotted line is the �ducial model: [

∑
mν , Ωm, 109As] = [ 0.1, 0.3, 2.1 ]. Left panel:

constraints from power spectrum (blue contours) computed on noisy maps smoothed with
a Gaussian kernel θker = 1 arcmin, constraints from Starlet Peak counts (red contours)
computed on noisy maps smoothed with a Starlet kernel with corresponding resolutions
[1.6, 3.2, 6.4] arcmin + coarse map and constraints from the two statistics joint (orange
contours) . Right panel: constraints from power spectrum (blue contours) computed on
noisy maps smoothed with a Gaussian kernel θker = 1 arcmin, constraints from multi-
Gaussian Peak counts (black contours) computed on noisy maps smoothed with a multi-
Gaussian kernel with corresponding resolutions [1.2, 2.7, 5.5, 9.5] arcmin and the two
statistics jointly (light blue contours).

C) Starlet scales impact on constraints

The left panel of Figure 4.9 shows the impact of the di�erent starlet decomposition scales on
the constraints. The MCMC chain used for the starlet decomposition results of the analysis
has been obtained by considering all starlet scales, i.e. [1.6, 3.2, 6.4] arcmin + coarse scale,
shown in red. To check that we are allowed to exclude the �nest scale in the entire analysis,
namely not to include the resolution corresponding to 0.8 arcmin - which won’t satisfy the
survey requirements - we compare the constraints relative to [0.8, 1.6, 3.2, 6.4] arcmin +
coarse scale with the ones for [1.6, 3.2, 6.4] arcmin + coarse scale and we verify that they
overlap. We then investigate the impact of the di�erent starlet scales and we obtain that
it is su�cient to consider the setting [3.2, 6.4] + coarse scale to obtain results competitive
with the full set of scales, as shown by the dark blue contours in the �gure that match the
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full starlet decomposition contours. Hence, we identify w2 = 3.2 arcmin as the smallest
scale needed to obtain the maximal constraints with convergence maps of resolution 0.4
arcmin. We also perform the inference by adding one scale at a time in the observable array
to show how the contours shrink as a function of the number of starlet scales. We �nd that
the only setting that recovers almost the full information is given by [3.2, 6.4, coarse]. We
also notice from the contours relative to [w1, w2, w3] that excluding the coarse scale leads
to a loss of information (precisely 28% on Mν , 33% on Ωm and 19% on As).
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Figure 4.9: 95 % con�dence contours using tomography with redshifts zs = [ 0.5,1.0,1.5,
2.0 ] and corresponding galaxy number densities ngal = [ 11.02, 11.90, 5.45, 1.45 ]. The
black dotted line is the �ducial model: [

∑
mν , Ωm, 109As ] = [ 0.1, 0.3, 2.1 ]. Left panel:

we show the impact of the di�erent starlet scales and we prove there exists a minimum
resolution θker = w2 = 3.2 arcmin that allows us to obtain constraints comparable to what
is achieved with the full wavelet decomposition and that the information contained in the
coarse map cannot be neglected. Starting from the �rst starlet scale alone θker = w1 = 1.6

arcmin (dashed big contours in light blue) we add scale by scale in light blue until [w1, w2,
w3]. In dark blue we show the constraints corresponding to [w2, w3, c4 ] that almost match
with the constraints provided by the full starlet decomposition (in red). Right panel: we
show here the constraints obtained by adding each tomographic redshift at the time: the
dashed pink corresponds to the contours relative to zs = 0.5, the lighter red to zs = [ 0.5,
1.0 ], the darker pink to zs = [ 0.5, 1.0, 1.5 ] and the dark red to the full set of redshifts in
the starlet case. We plot this against the power spectrum (blue contours) to show how each
source redshift contribution to shrinks the contours and helps break the degeneracy with
respect to the power spectrum.
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D) Impact on covariance matrix: Gaussian multi-scale and Starlet comparison

In this section we investigate the impact of the choice of the �lter on the data covariance
matrix. Indeed, by looking at the correlation matrices of Figure 4.5 it is clear that the star-
let (left panel) has the tendency to diagonalise the matrix while the multi-Gaussian case
(right panel) presents non-trivial o�-diagonal terms as introduced in Section 4.1.6. To fur-
ther explore this aspect we have run the likelihood analysis considering just the diagonal
elements of the covariance matrices in order to compare results with full covariance case.
We �nd the constraints illustrated in Figure 4.10: in the left panel we plot the starlet peak
counts contours obtained with the full covariance matrix (red) against the diagonal-only
version of the data covariance matrix (dashed dark red). On the right panel we show the
same comparison for the multi-Gaussian peaks case with the full covariance case (black)
against diagonal-only contours (dashed gray). We see that for the starlet �lter the majority
of the information is indeed encoded in the diagonal elements, while for the multi-Gaussian
case the presence of non-trivial correlations among the scales makes the contours slightly
larger for Ωm and As, while it adds some information on Mν with respect to the diagonal
case. We can quantify this by taking the ratio between the FoM relative to the full covari-
ance and the diagonal elements cases: for the starlet we �nd a ratio of 1.07 and 1.15 for
the multi-Gaussian. The same interpretation arises when looking at the 1-σ marginalised
error of Table 4.5: excluding the o�-diagonal terms in the starlet data covariance matrix
implies a loss of information of 4% on Mν , no loss on Ωm and a gain of 7% on As. For the
multi-Gaussian case, the same procedure leads to a loss of 11% on Mν , a gain of 33% on
Ωm and a gain of 17% on As. This is an interesting aspect of the starlet �lter that could
prove to be useful when dealing with high dimensional data and the covariance matrix can
be di�cult to invert.

E) Impact of di�erent tomographic redshifts

Here we investigate how parameter constraint contours shrink by adding the tomographic
redshift bins by one by one. In particular, in the right panel of Figure 4.9 we show the infor-
mation gain resulting from the addition of each tomographic redshift bin. In blue we show
the power spectrum, and in darkening shades of red we plot contours for the starlet peaks
as follows. Contours for source redshift zs = 0.5 are dashed pink, they are dashed darker
pink for source redshift zs = [0.5, 1.0], and so on until reaching the dark red contours which
are obtained by concatenating all source redshifts. As expected, the peaks contours show
a di�erent degeneracy direction from that of the power spectrum due to the higher-order
information they contain. Indeed, the contours at zs = 0.5 already show di�erent degen-
eracy compared to the power spectrum contours between Mν and Ωm with a FoC=1.09,
giving though larger marginalised constraints on Ωm. Adding zs = 1.0 provides FoM that
are more three times those for zs = 0.5 alone for the planes (Mν ,Ωm) and (Mν , As) but
increases the correlation betweenMν and Ωm to FoC=1.17. Finally, the concatenation of the
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Figure 4.10: 95 % con�dence contours tomography with redshifts zs = [0.5, 1.0, 1.5, 2.0]

and corresponding galaxy number density: ngal = [11.02, 11.90, 5.45, 1.45]. The black dot-
ted line is the �ducial model: [

∑
mν , Ωm, 109As ] = [ 0.1, 0.3, 2.1 ]. Left panel: constraints

from starlet peak counts (continuous red contours) obtained employing the full covariance
matrix against constraints from starlet peak counts (dashed red contours) obtained employ-
ing the diagonal elements only of the covariance matrix in the likelihood analysis. Right
panel: constraints from multi-Gaussian peak counts (continuous black contours) obtained
employing the full covariance matrix against constraints from multi-Gaussian peak counts
(dashed gray contours) obtained employing the diagonal elements only of the covariance
matrix in the likelihood analysis

source redshifts zs = [0.5, 1.0, 1.5] further adds correlations between the two parameters
(FoC=1.19) but shrinks the contours to almost reach those of the complete set of source
redshifts.

Marginalised errors

In Figure 4.11 we show the marginalised constraints on each cosmological parameter cor-
responding to the di�erent observables. To compare the improvement obtained by em-
ploying the di�erent statistics we compute the 1σ marginalised error for each parameter,
summarised in Table 4.5. In particular, we �nd an improvement of 35%, 20% and 58% re-
spectively on Mν , Ωm and As when employing the single-Gaussian peaks instead of the
power spectrum, an improvement of 63%, 40% and 72% when employing the starlet peaks
instead of the power spectrum alone, and an improvement of 70%, 40% and 77% when em-
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ploying the multi-Gaussian peaks instead of the power spectrum alone. Namely, the starlet
peaks outperform the single-Gaussian peaks by 43% on Mν , 25% on Ωm and 34% on As,
and the multi-Gaussian peaks outperform the single-Gaussian peaks by 54% on Mν , 25%
on Ωm and 45% on As. Finally, employing a multi-Gaussian instead of a starlet �lter in the
context of peak counts might improve the constraints by 19% on Mν , and 18% on As, while
no improvement is noticed for Ωm.
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Power spectrum
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Figure 4.11: Marginalized constraints on each parameter for forecasts showing the 2.5
and 97.5 percentiles with respect to the �ducial model. These marginalised constraints
refer to a tomographic setting with z = [0.5, 1.0, 1.5, 2.0] with the �ducial model set
at [Mν ,Ωm, 109As] = [0.1, 0.3, 2.1] corresponding to the di�erent observables employed
within the likelihood analysis. The values are listed in Table 4.6.

4.1.9 Conclusions and future prospects

In the presented study, we infer the sum of neutrino massesMν , the matter density parame-
ter Ωm and the amplitude of the primordial power spectrumAs for a survey with Euclid-like
noise using tomographic weak lensing. Our goal is to compare the constraining power of
multi-scale �ltering approaches, namely the starlet �lter and a concatenation of Gaussian
�lters, with respect to a single-Gaussian one in the context of peak counts. We also com-
pute the constraints with standard second-order statistics, in particular using the lensing
power spectrum as a benchmark for the comparison. We compare the outcomes obtained
from �ltering the lensing convergence maps, which have a resolution of 0.4 arcmin, with a
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Observable Mν+ Ωm− Ωm+ As− As+

Power spectrum 0.514 0.289 0.308 2.008 2.774
Single-Gaussian Peaks 0.372 0.295 0.311 1.998 2.340
Single-Gaussian Peaks + PS 0.290 0.294 0.307 2.016 2.277
Starlet Peaks 0.238 0.293 0.305 2.029 2.255
Starlet Peaks diagonal 0.244 0.294 0.305 2.039 2.248
Starlet Peaks + PS 0.210 0.293 0.305 2.032 2.239
Multi-Gaussian Peaks 0.201 0.294 0.305 2.037 2.222
Multi-Gaussian Peaks diagonal 0.218 0.295 0.305 2.054 2.207
Multi-Gaussian Peaks + PS 0.190 0.294 0.304 2.042 2.216

Table 4.6: Values of the 2.5 and 97.5 percentiles for each cosmological parameter as illus-
trated in Figure 4.11. In this table we also show the values corresponding to the marginalised
constraints obtained using only the diagonal elements of the covariance matrices. They are
very similar to the ones obtained by employing the full covariance. We further investigate
this aspect in Section 4.1.8.

Gaussian kernel of smoothing size 1.6 arcmin, a starlet kernel, and a concatenation of Gaus-
sians. More speci�cally, the starlet �lter is an isotropic undecimated wavelet transform that
allows us to extract the information encoded in di�erent spatial scales simultaneously. Set-
ting the number of scales in the transform to four, the starlet kernel sizes for our maps
correspond to [0.8, 1.6, 3.2, 6.4] arcmin + the coarse map, since the starlet transform re-
turns maps �ltered at dyadic scales. In deriving parameter constraints we exclude the �rst
scale and work with [1.6, 3.2, 6.4] arcmin + coarse map. To fairly compare it with a multi-
Gaussian, we set the standard deviations of the Gaussian kernels at each scale such that
their pro�le peaks match the corresponding starlet scale peaks, resulting in a concatena-
tion of Gaussians with standard deviations of [1.2, 2.7, 5.5, 9.5] arcmin respectively.

We �nd the following results:

a) For peak counts, a multi-scale �ltering approach of the noisy maps leads to an im-
provement factor of more than two over a single-scale approach (single-Gaussian
kernel) for the joint constraints on (Mν ,Ωm), (Mν , As) and (Ωm, As) when using a
starlet kernel, and a factor of more than three when using a multi-Gaussian �lter.
This is even more evident in the marginalised constraints, where the improvement is
respectively 43% onMν , 25% on Ωm and 34% onAs for the starlet, while for the multi-
Gaussian it is 54% on Mν , 25% on Ωm and 45% on As. Employing a multi-Gaussian
instead of a starlet �lter in the context of peak counts might improve the constraints
by 19% on Mν , and 18% on As, while no improvement is noticed for Ωm. Finally, both
multi-scale peak counts perform better than the power spectrum on the set of param-
eters {Mν ,Ωm, As} respectively by 63%, 40% and 72% when using a starlet �lter and
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by 70%, 40% and 77% when using a multi-scale Gaussian �lter.

b) When combining multi-scale peaks and the power spectrum, i.e. using a concatena-
tion of peak counts and the power spectrum as the observed data vector, we �nd that
the information is mostly encoded in the peaks alone (for certain parameters, such
as Ωm in the starlet case, it is completely encoded). This suggests that when adopting
a multi-scale approach, it might be su�cient to work with the peaks alone.

c) The inclusion of the coarse map when counting peaks preserves crucial information.
Moreover, for maps with a pixel size of 0.4 arcmin, there exists a minimum resolution
(i.e. smallest scale needed) for the starlet scales corresponding to θker = 3.2 arcmin to
achieve maximal constraining power. This enables us to exclude the �rst two �nest
scales of the starlet decomposition, which correspond to the highest frequencies and
are the most prone to the impact of noise, allowing for a faster and more e�cient
analysis.

d) We notice that employing a starlet �lter leads to a highly diagonal data covariance
matrix, while for the multi-Gaussian �lter the o�-diagonal terms are prominent, and
correlations among the di�erent scales are non-negligible. In other words, the ma-
jority of the information in the starlet �lter case is encoded in the diagonal elements
of the covariance matrix. This is an interesting aspect of the starlet �lter that could
prove useful when dealing with high dimensional data where the covariance matrix
can be di�cult to invert.

In summary, we con�rm that weak-lensing peak counts are a powerful tool to infer cosmo-
logical parameters, especially when investigating the non-linear regime where the impact
of parameters such as the neutrino masses becomes relevant. We also point out the im-
portance of adopting a multi-scale approach in the context of weak-lensing peak counts,
which bring the advantage of analysing the information encoded at di�erent scales simul-
taneously, thereby leading to tighter constraints than single-scale analysis. As we have
shown in Figure 4.11, the multi-scale �lters considered (the multi-Gaussian �lter and the
starlet �lter) lead to similar constraints. This is expected, as we choose the Gaussian ker-
nels such that each pro�le peak matches with a starlet scale. Minimal residual di�erences
between the two �lters may be related to the binning: while this is the same for both, it
might be that the two �lters are optimal with di�erent choices of the binning. We leave the
investigation of the optimal binning for both multiscale Gaussian and starlet peaks to fu-
ture work. There is however an advantage, in using the starlet �lter over a multi-Gaussian
�lter: the starlet has the tendency to remove the o�-diagonal terms in the covariance ma-
trix, hence making the matrix more diagonal, easy and faster to invert. Moreover, Leonard,
Pires, and Starck 2012 have proved that it o�ers a clear and signi�cant time advantage over
standard aperture mass algorithms for all scales of interest. We implemented a pipeline
that allows us to go from simulated lensing convergence maps as input data to constraints
on cosmological parameters as �nal output, employing di�erent �ltering techniques with
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second-order (the power spectrum) and higher-order statistics (peak-counts). Hence, a fu-
ture project will be to generalise the pipeline in terms of �exibility of the input data, in-
cluding systematics e�ects and modelling of the noise. In particular, being able to control
systematics errors and baryonic e�ects is as important as the statistical power to guaran-
tee a robust analysis. In the context of weak-lensing peak counts, baryons can change the
shape of the distribution of peaks by increasing the low S/N end and decreasing the high
S/N values by a few percent, as quanti�ed by Fong et al. 2019. It has been shown as well
by Coulton et al. 2020b that ignoring baryonic e�ects can lead to strong biases in inferences
from peak counts and that in principle these biases can be mitigated without signi�cantly
degrading cosmological constraints when baryonic e�ects are modelled and marginalised.
In Chapter 7 I will present a �rst application to real data where we include baryonic e�ects.
Concerning intrinsic alignment and noise uncertainty, further investigations is needed in
future studies with the aim of including such modelling in our pipeline and to ultimately
apply our pipeline to real data coming from future galaxy surveys.
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In this chapter I illustrate the methodology and results we presented in Ajani et al. 2021.
Motivated by the advantages of multi-scale approaches for cosmological parameter infer-
ence as discussed in Chapter 4 along with recent results of Coulton et al. 2020a in combining
peaks an minima, we propose a new multi-scale higher order summary statistics that we
called the starlet `1-norm that allows for a multi-scale analysis that naturally encodes the
information brought by peaks and minima. At the end of the chapter, I also provide a
description and visualisation of the di�erent steps of the pipeline employed to obtain the
results of this chapter and Chapter 4.
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5.1 Starlet `1-norm for weak lensing cosmology

5.1.1 Overview

The previous section outlined the potential of peak statistics in a multi-scale framework for
cosmological parameter inference. As previously mentioned, besides peak statistics, sev-
eral alternative high order statistics have been proven to be very powerful in many studies
to account for the non-Gaussian information encoded in weak lensing data. In particular,
Coulton et al. 2020a have introduced weak lensing minima as a new probe of non-Gaussian
information related to underdense regions (voids) in our universe and have shown how the
combination of lensing peaks and minima leads to an improvement of respectively 44%,
11% and 63% on the sum of neutrino masses Mν , the matter density parameter Ωm and
on the amplitude of the primordial power spectrum As with respect to the power spectrum
contours. In a study to compare the constraining power of high order statistics in the (Ωm,
σ8) plane, Zürcher et al. 2021 found that peak counts, minimum counts and Minkowski func-
tionals yield stronger constraints when compared to the angular power spectrum analysis
in a non-tomographic, as well as a in tomographic setup. From the results of these studies,
it becomes clearer and clearer that the information encoded in lensing minima is comple-
mentary to what we can extract through peak counts and that their combination, namely
the full distribution, is more powerful than considering the two statistics alone in terms of
constraining power. In this direction, Martinet et al. 2021 have performed forecasts with
aperture mass (Map) map statistics for future cosmic shear surveys, including peaks, voids,
and the full distribution of pixels (1D Map) and have shown that for the the structure growth
parameter S8, the dark energy equation of state parameter w0 and the matter density pa-
rameter Ωm, the full distribution of pixels with aperture mass has a superior constraining
power than peaks and voids because it includes both peaks and voids. Motivated by the
general context just described and by our previous �ndings on the potential of multi-scale
wavelet based framework for high order statistics, we have then proposed in Ajani et al.
2021 a new summary statistics called starlet `1 norm that allows to perform very naturally
a joint multi-scale peaks and voids analysis, accounting for the information present in all
pixels in the weak lensing convergence map. The aim of this chapter is to present the
methodology and results of the study Ajani et al. 2021.

5.1.2 Toward the starlet `1 norm

Starlet peaks

Multi-scale peaks counts can be derived either using a set of Gaussian kernels of di�erent
sizes or through a wavelet decomposition such as the starlet transform as done in Ajani
et al. 2020. The starlet transform decomposes a convergence map κ of size N × N into a
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setW = {w1, ..., wjmax , cJ} of J = jmax + 1 bands of same size, where jmax is the number
of wavelet scales considered, cJ is the coarse scale, namely a very smoothed version of the
original image κ, and wj are the wavelet bands at scale 2j pixels. An example to illustrate
this is shown in Figure 5.1 and details of this have been outlined in Section 3.4 and in Section
4.1.4.

Figure 5.1: Visualisation of the starlet decomposition of an original noisy convergence map.
The original noisy convergence map is obtained by applying shape noise to a noiseless
realisation of the MassiveNus convergence maps products. Then by convolution with
a 2D starlet, the original image is decomposed in several di�erent images corresponding
to the scale 2j plus a smoother (coarse) version of it. Here we show the decomposition
for a map of the �ducial cosmology. The resolution for the MassiveNus simulations
convergence maps is ∼ 0.4 arcmin.

It was also shown in Leonard et al. 2012 that the starlet transform can be interpreted as a fast
multiscale aperture mass decomposition where the aperture mass kernels have a compact
support and are compensated (namely, the kernel integral is null). Starlet peaks are then
derived by considering n bins with bin edges given by the minimum and the maximum
values of each band in W . An interesting advantage of such an approach is that each
wavelet band covers a di�erent frequencies range which leads to an almost diagonal peaks
counts covariance matrix (Ajani et al. 2020). This is not the case when a standard multiscale
Gaussian analysis is applied on the convergence map.

Starlet extrema

In this section we introduce the notation starlet extrema to refer to peaks computed on
positive signal and minima computed on negative signal that we will use as a statistics
to compare against the starlet `1-norm. We employ starlet peaks computed on maps with
only S/N > 0 contribution combined with starlet minima computed on maps with only
S/N < 0 contribution using a 4 scales corresponding to [1.6′, 3.2′, 6.4′, coarse] based on
the resolution of the convergence maps that we use, with 29 linearly spaced bins for each
scales between the minimum and maximum values of each S/N map.

As mentioned in the introduction, cosmic voids analysis is an alternative to peaks to study
convergence maps, and the combination of both improves the constraints on cosmological

MassiveNus
MassiveNus
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parameters. It is interesting to notice how a starlet decomposition can naturally include a
multiscale voids analysis. Instead of extracting only maxima (peaks) in each band, we can
also extract minima (pixels with values smaller than their eight neighbours), and a joint
peaks-voids multiscale is therefore obtained extracting wavelet coe�cients extrema (min-
ima + maxima). The starlet decomposition provides therefore a very natural framework for
a joint multiscale peaks and voids analysis.

5.1.3 De�nition of starlet `1-norm

A particularity of peak and void statistics is that only a few pixels are considered, while
other high-order statistics, such as bispectrum or Minkowski functionals, use all the pixels.
In a starlet framework, we should emphasise that starlet peaks have mainly positive values
and starlet voids negative values due to the property of the wavelet function. So instead of
counting the number of peaks or voids in a given bin i de�ned by two values, Bi and Bi+1,
we could take the sum of all wavelet coe�cients with an amplitude between Bi and Bi+1.
If Bi and Bi+1 are positive, this corresponds to the de�nition of the set of coe�cients Sj,i
at scale j and in bin i such that Sj,i = {wj,k/Bi < wj,k < Bi+1}, where k is the pixel index.
We can then compute the sum

∑#coef(Sj,i)
u=1 Sj,i[u]. This can be generalised to positive and

negative bins using:

lj,i1 =

#coef(Sj,i)∑

u=1

| Sj,i[u] |= ||Sj,i||1 (5.1)

where ||.||1 is the standard `1-norm (i.e. ||x||1 =
∑

k |xk|) and the index u runs from 1 to
the number of pixels in a given bin i at scale j (i.e. #coef(Sj,i)). The quantity lj,i1 de�ned
in Equation (5.1) is nothing more than the `1-norm of the binned pixel values of the starlet
coe�cients of the original image κ map. In the following, we will name S`1 , the starlet
`1-norm, as the set S`1 of all lj,i1 numbers obtained from the di�erent scales j and bins i.
This approach enables us to extract the information encoded in the absolute value of all
pixels in the map instead of characterising it only by selecting local minima or maxima.
An interesting advantage is that it avoids the open issue of how to de�ne a void (Colberg,
Pearce, Foster, et al. 2008), brie�y discussed in Section 2.3.6. It is interesting to notice that
this S`1 statistic is also directly related to the density probability function of the starlet
coe�cients at di�erent scales.

5.1.4 Methodology

We provide constraints on the sum of neutrino massesMν , on the matter density parameter
Ωm and on the power spectrum amplitudeAs by employing �ve di�erent summary statistics
applied to the MassiveNus in the same setting as the one described in Section 4.1.2 and

MassiveNus
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Section 4.1.3. We compute the summary statistics on maps of the signal to noise �eld where
we de�ne the signal to noise as the ratio between the noisy convergence κ convolved with
the �lter W(θker) over the smoothed standard deviation of the noise for each realisation
per redshift. We estimate the noise level at each starlet scale following Starck and Murtagh
1998 as described in Section 3.5. For the purposes of this study, we mimic the shape noise
expected for a survey like Euclid

1(Laureijs et al. 2011; Euclid Collaboration et al. 2020b) as
de�ned in Section 4.1.3. We perform a tomographic analysis using four source redshifts
zs = {0.5, 1.0, 1.5, 2.0} with corresponding values for the galaxy number density ngal per
source redshift bin ngal = {11.02, 11.90, 5.45, 1.45}. The covariance matrix is computed in
the same way as described in Section 4.1.6 and the model to build the likelihood is obtained
with the Gaussian Process Regressor as in Section 4.1.7 for the di�erent summary statistics.
Analogously to the multi-scale peaks study detailed in the previous chapter, we explore and
constrain the parameter space with theemcee package, which is a python implementation
of the a�ne invariant ensemble sampler for Markov chain Monte Carlo (MCMC) introduced
by (Foreman-Mackey et al. 2013). We assume a �at prior, a Gaussian likelihood function
as de�ned in Section 4.1.7, and a model-independent covariance matrix as discussed in
Section 4.1.6. The walkers are initialised in a tiny Gaussian ball of radius 10−3 around the
�ducial cosmology [Mν ,Ωm, 109As] = [0.1, 0.3, 2.1] and we estimate the posterior using
120 walkers. Our chains are stable against the length of the chain, and we verify their
convergence by employing Gelman Rubin diagnostics (Gelman and Rubin 1992). To plot
the contours we use the ChainConsumer python package (Hinton 2016). To quantify
our results, we employ the same result estimators as the ones introduced in Section 4.1.8.

5.1.5 Summary statistics

In this section I illustrate the di�erent summary statistics used for the analysis.

a) We compute the power spectrum on noisy convergence maps �ltered with a Gaus-
sian kernel with smoothing size θGker = 1 arcmin. We consider angular scales with 24
logarithmically spaced bins in the range ` = [300, 5000].

b) Monoscale peaks + voids: we compute peaks (as pixels with values larger than their
eight neighbours) and voids (as pixels with values smaller than their eight neigh-
bours) on noisy convergence maps �ltered with a single-Gaussian kernel with smooth-
ing size θGker = 2 arcmin with 29 linearly spaced bins for peaks between the minimum
and maximum of the map in S/N and 29 linearly spaced bins for voids between the
negative maximum and positive minimum of the maps in S/N .

c) Starlet peak counts are computed as pixels with values larger than their eight neigh-
bours, computed on noisy convergence maps �ltered with a starlet kernel with four

1https://www.Euclid-ec.org

emcee
ChainConsumer
https://www.Euclid-ec.org
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scales corresponding to [1.6′, 3.2′, 6.4′, coarse], with 29 linearly spaced bins for each
scales between the minimum and maximum values of each S/N maps.

d) Starlet extrema are obtained combining peaks computed on maps with only S/N > 0
contribution combined with starlet voids computed on maps with only S/N < 0
contribution, using a starlet as in c), with 58 (29 for peaks + 29 for voids) linearly
spaced bins.

e) the starlet `1-norm S`1 is computed following Equation 5.1 on noisy convergence
maps �ltered with a starlet kernel with four scales as in c) and d).

Statistics (d) and (e) are our new proposals for this study. In all statistics where we
employ the starlet decomposition, the �nest frequency we consider is θStker = 1.6 ar-
cmin, corresponding to the maximum angular scale `max = 2149.

5.1.6 Results

In this section, I illustrate forecast results on the sum of neutrino masses Mν , on the mat-
ter density parameter Ωm and on the primordial power spectrum amplitude As for a sur-
vey with Euclid-like shape noise in a tomographic setting with four source redshifts zs=
[0.5,1.0,1.5,2.0]. We compare results for the di�erent observables de�ned in Section 5.1.5
and investigate the impact of the choice of the �lter on the covariance matrix.

0.2 0.4 0.6∑
mν [eV]

0.29 0.30 0.31
Ωm

2.00 2.25 2.50 2.75
109As

Power spectrum

Starlet peaks

L1-norm

Starlet extrema

Peaks+voids

Figure 5.2: Marginalised errors for the observables described in Section 5.1.5, on each pa-
rameter showing the 2.5 and 97.5 percentiles with respect to the �ducial model. They
refer to a tomographic setting with z = [0.5, 1.0, 1.5, 2.0] with the �ducial model set to
[Mν ,Ωm, 109As] = [0.1, 0.3, 2.1]. The last observable refers to monoscale peaks and voids,
as described in the text.
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In Figure 5.3 we show the comparison between the constraints obtained using di�erent
summary statistics, as described in Section 5.1.5. As expected, we see that all higher-order
statistics are more constraining than the power spectrum. The new result of this study is
represented by the starlet `1-norm: the inclusion of all pixels enables to retrieve tighter
constraints than the combination of local minima and maxima (voids + peaks). Speci�cally,
for all parameter space planes, the starlet `1-norm FoM values, illustrated in Table 5.1, are
about twice the ones for the local minima and local maxima combined (and more than seven
times larger than the power spectrum FoM values).
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Figure 5.3: 95 % con�dence contours tomography with source redshifts zs = [ 0.5, 1.0, 1.5,
2.0 ] and corresponding galaxy number density: ngal = [ 11.02, 11.90, 5.45, 1.45 ]. The black
dotted line is the �ducial model: [

∑
mν ,Ωm, 109As] = [0.1, 0.3, 2.1]. Left panel: con-

straints from the power spectrum (light blue contours) computed on noisy maps smoothed
with a Gaussian �lter with θker =1 arcmin compared to constraints from starlet `1-norm
(dark blue contours) computed on noisy maps �ltered with a four scales starlet kernel.
Right panel: constraints from the combination of peaks and voids (magenta contours)
computed on noisy maps smoothed with a Gaussian �lter with θker =2 arcmin against con-
straints from starlet peak counts (green contours), starlet extrema (orange contours) and
`1-norm (dark blue contours) computed on noisy maps �ltered with a four scales starlet
kernel.

In this work, we have also introduced starlet extrema as new summary statistics to constrain
the parameters. Similarly to the `1-norm, starlet extrema are computed between the mini-
mum and maximum S/N value of the map, but they are de�ned as the combination of local
maxima computed on S/N > 0 and local minima computed on S/N < 0 (namely, they do
not encode the information present in all pixels). We see that starlet extrema FoM values
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Table 5.1: Values of the Figure of Merit (FoM) as de�ned in Equation 4.11 for di�erent
parameters pairs for each observable employed in the likelihood analysis. We provide in
the last column the 3D FoM given as the inverse of the volume in (Mν , As,Ωm) space.

FoM (Mν , Ωm) (Mν , As) (Ωm, As) (Mν , Ωm, As)
Power spectrum 1585 77 1079 2063
Starlet Peaks 5904 331 4856 10147
`1-norm 11408 619 9126 16688
Starlet extrema 6967 442 5956 6740
Peaks + voids monoscale 5321 307 4286 6114

Table 5.2: Values of 1-σmarginalised error as de�ned in Equation 4.13 for each cosmological
parameter for the di�erent observables.

σαα Mν Ωm As

Power spectrum 0.147 0.005 0.204
Starlet peaks 0.057 0.003 0.064
`1-norm 0.041 0.002 0.051
Starlet extrema 0.040 0.004 0.062
Peaks + voids monoscale 0.054 0.004 0.067

are larger than starlet peaks and peaks + voids monoscale suggesting that starlet extrema
can be a good candidate as well as multiscale higher order statistics. However, the `1-norm
remains the statistics that performs the best with respect to all the summary statistics we
have considered in terms of constraining power. In Figure 5.2 we show the marginalised
constraints on each cosmological parameter corresponding to the di�erent observables. To
compare the improvement obtained by employing the di�erent statistics we compute the
1σ marginalised error for each parameter, summarised in Table 5.2. We �nd that the starlet
`1-norm outperforms the power spectrum by 72% on Mν , 60% on Ωm and 75% on As, and
the state of the art peaks + voids for a single smoothing scale respectively by 24% on Mν ,
50% on Ωm and 24% on As. Starlet extrema outperform the power spectrum by 72% on
Mν , 20% on Ωm and 70% on As . We also quantify the improvement provided by the `1-
norm with respect of our previous study (Ajani et al. 2020), �nding that the `1-norm starlet
outperforms starlet peaks by 28% on Mν , 33% on Ωm and 20% on As. We also compare
the covariance matrices obtained when using starlet extrema and the `1-norm and we have
found that starlet extrema present a more diagonal covariance for the observable.
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Diagonal Covariances

As recalled in the introduction, in Ajani et al. 2020 we found that starlet peak counts have
the interesting feature that the corresponding covariance matrix is nearly diagonal. Moti-
vated by this, we have tested in this work whether this feature is also maintained for starlet
extrema and for the `1-norm. Interestingly, we �nd that starlet extrema keep this character-
istic while the `1-norm show more correlations in the o�-diagonal term. This can be seen
by looking at Figure 5.4: in the left panel we show the constraints for the starlet extrema
when using the full covariance matrix (continuous contours) and compare them with the
starlet extrema when using only the diagonal elements of the covariance matrix (dashed
contours). Analogously, we show the same comparison for the `1-norm in the right panel.
When using starlet extrema as summary statistics, if we employ in the likelihood analysis
a covariance matrix with only its diagonal elements, there is no loss of information on Mν ,
and a slight loss of information of 25% on Ωm and 22% As. Concerning the `1-norm, it is
su�cient to look at the contours to notice how the contours with only diagonal terms are
considerably di�erent with respect to the contours obtained with the full covariance ma-
trix: they appear shifted and they present a di�erent degree of degeneracy for (Ωm, As).
Hence, we conclude that the `1-norm outperforms starlet extrema in terms of constraining
power when considering the full covariance in the analysis, but presents a less diagonal
matrix than starlet extrema. We conclude that depending on the context the `1-norm could
be a convenient choice when the priority is the constraining power while starlet extrema
might be more useful when interested in speeding up the analysis or when the covariance
matrix can be di�cult to invert.

5.1.7 Conclusions and future prospects

In this work we propose to use starlet `1-norm statistics on weak lensing converge maps
to constrain cosmological parameters. The measure of multiscale peak amplitudes can be
seen as a measure of the `1-norm of a subset of positive wavelet coe�cients. Similarly, the
measure of voids amplitudes can be seen as a measure of the `1-norm of a subset of neg-
ative wavelet coe�cients. Wavelets provide therefore a great framework for a joint peaks
and voids analysis, in which information from all wavelet coe�cients is included. We pro-
pose therefore to use a very simple `1-norm statistics de�ned as the sum of the `1-norm
of all coe�cients in a given S/N (pixel) bin for each wavelet scale, as de�ned in Equa-
tion 5.1. We investigate the impact of employing the starlet `1-norm as summary statistics
computed on weak lensing convergence maps to estimate cosmological parameters and we
�nd that the `1-norm outperforms the state of the art summary statistics, the power spec-
trum and the combination of monoscale peaks and voids, respectively of 72% and 24% on
Mν , 60% and 50% on Ωm and 75% and 24% on As. We have further proposed starlet ex-
trema and compared them to `1-norm: also in this case the latter performs better in terms
of constraining power, within the current ideal setting, while starlet extrema present the
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Figure 5.4: 95 % con�dence contours tomography with source redshifts zs = [ 0.5, 1.0, 1.5,
2.0 ] and corresponding galaxy number density: ngal = [ 11.02, 11.90, 5.45, 1.45 ]. The
black dotted line is the �ducial model: [

∑
mν , Ωm, 109As] = [ 0.1, 0.3, 2.1 ]. Left panel:

constraints from starlet extrema with the full covariance matrix (continuous contours) com-
puted on noisy maps �ltered with a four scales starlet kernel against constraints from star-

let extrema with the only diagonal elements of the covariance matrix (dashed contours).
Right panel: constraints from `1-norm with the full covariance matrix (continuous con-
tours) computed on noisy maps �ltered with a four scales starlet kernel against constraints
from `1-norm with the only diagonal elements of the covariance matrix (dashed contours).
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advantage of a more diagonal covariance matrix. We are aware that to serve as a robust
probe for precision cosmology, the statistical power alone is not su�cient; for their usage,
it will be important to test how these statistics react in a non-ideal setting, and how their
performance is impacted by systematics in the signal. We will dedicate a future study to
this aspect.

5.2 Pipeline description and visualisation

This section illustrates a description of the pipeline used in the work presented in this chap-
ter and the one presented in Chapter 4. The input of the pipeline is given by weak lensing
convergence maps. These convergence maps are then �ltered, with a Gaussian or a starlet
�lter if they are already noisy, otherwise shape noise mimicking a given survey is added
to the maps. Then the summary statistics are computed on the noisy smoothed maps for
both simulations at the di�erent cosmologies available and for the data (or �ducial model).
With the same settings as the models and data summary statistics, the covariance matrix is
computed by concatenating the di�erent observables if tomography or probe combination
is taken into account. Then, the observables computed from the simulations (model) are
fed to the Gaussian Processes (GP) regressor that learns the relation between the summary
statistics and the cosmological parameters and is then able to predict the observable to a
new given point in parameter space. Afterwards, the summary statistics for the data, for the
model and the covariance, are given as input to the likelihood function and to the MCMC
module. The output of this last module provides the chains corresponding to a given sum-
mary statistics constraining the parameters that where given as input to the GP training.
A visualisation of the procedure is presented in Figure 5.5. Here’s a detailed description of
the di�erent steps numbered in correspondence of the �gure below:

1a) Convergence map: The convergence map are provided as initial input in this �rst
version of the pipeline.

1b) Survey noise: If the convergence map is built directly from observed ellipticity
maps, the noise is intrinsically taken into account following the survey speci�ca-
tions present in the simulations that supply the catalogue. If the convergence map is
built directly from γ shear maps, we add the noise to the map by taking the standard
deviation of the observed ellipticity of each map for each tomographic bin and follow
Equation 4.1.

2) Noise �ltering: In order to access the cosmological information, the noisy map if
convolved with a 2D Gaussian �lter or with a 2D starlet �lter. The starlet decompo-
sition with J scales generates J + 1 di�erent maps, at the scale 2J , where the J + 1
map is the coarse map. The Gaussian kernel is computed with the python package
scipy. The starlet decomposition is performed using the CosmoStat python pack-
age lenspack.

scipy
https://github.com/CosmoStat/lenspack/blob/master/lenspack/utils.py
lenspack
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3), 4) Summary statistics: On the smoothed/�ltered maps (output of 2)), di�erent sum-
mary statistics can be computed.

– Power spectrum
– Peak counts: single-scale peak counts, multi-scale peak counts, starlet peak

counts
– Void counts: single-scale minima counts, multi-scale minima counts
– Starlet extrema

– Starlet `1-norm

The computation of all summary statistics is implemented in parallel using the python
package joblib, so that their computation is performed simultaneously for each
cosmological model, redshift and realisation.

5) Interpolation with Gaussian Processes: The interpolation with GP to get the pre-
dictions of the observable is implemented for each bin in ` or S/N and for each
redshift when a tomographic analysis is performed. This means that for an observ-
able with 20 bins and 4 tomographic redshift, 80 di�erent Gaussian Processes will be
generated to get the prediction. The Gaussian Process Regressor, the GP kernel and
the prediction function are implemented using the scikit-learn package.

6) Covariance: The covariance matrix takes as input the summary statistic for a given
�ducial model and it’s computed following Equation 4.9. In practice it is implemented
using numpy. Depending on the survey sky coverage and the size of the maps, a pre-
factor to scale the covariance has to be provided.

7), 8) Likelihood analysis andMCMC: The likelihood, prior and posterior functions im-
plemented take as input the cosmological parameters and the GP prediction function.
The MCMC is performed using the python packages emcee and multiprocessing
packages so that parameter space is explored in parallel. The chains are plotted using
ChainConsumer, that is also employed to compute the mean acceptance fraction
and the mean autocorrelation time.

As will be described in Section 6.3.1 a �rst extension of the input of the pipeline is now in
place, allowing to take as initial input directly a galaxy catalogue from which shear maps
or convergence maps can be built. This is one of the focus of Chapter 6.

joblib
https://scikit-learn.org/stable/
scikit-learn
numpy
emcee
ChainConsumer
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Figure 5.5: Illustration of the di�erent steps of the pipeline. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The above illustration shows a noiseless convergence map. To include observational noise, noise is added to
each pixel, drawn from a random Gaussian distribution centered at zero with variance

�noise =
< �2

� >

ngal�⌦
. (5)

This expression shows how the noise level depends on the galaxy shape noise ��, the galaxy density ngal and
the noise smoothing scale. The noise contribution has to be modeled for specific survey designs.

1.2 Gaussian smoothing

To remove noises that are dominating the small scales the maps are smoothed.
Jia’s paper takes into account LSST noise and considers three di↵erent smoothing scales (1,2 and 5 arcmin)

to compare the confidence contours from lensing peak counts when computing the contraints on cosmological
parameters. The resulting maps for the corresponding gaussian smoothings will appear as

Figure 2: Noisy convergence map of Figure 1, smoothed with a gaussian filter of precisions 1,2 and 5 arcmin
respectively.

Small smoothing scales can extract more non-linear information (as well as considering higher ` as maximum
multipole), but too small scales would result in a noise dominated map, while too large scales loose the too
much non-lineari information.
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FIG. 4. We show the correlation coe�cients respectively for the starlet (left) and the multi-Gaussian (right) peak counts. The
white dashed lines split the contribution of the di↵erent redshifts: the bin range [1,164] refers to the correlations at zs = 0.5,
the bin range [165, 328] refers to the correlations at zs = 1.0, the bin range [328, 492] refers to the correlations at zs = 1.5 and
the bin range [493, 656] refers to the correlations at zs = 2.0. Each redshift contribution is split in the four di↵erent scales
(the four mini-blocks inside the white boxes) in increasing order, i.e. [1.6, 3.2, 6.4, coarse] arcmin for the starlet and [1.2, 2.7,
5.5, 9.5] arcmin for the multi-Gaussian, where each scale is binned in 41 values of S/N in the range [�0.6, 6]. We notice how
the starlet decomposition has a tendency to diagonalise the observable correlation matrix while the o↵-diagonal terms of the
multi-Gaussian matrix show more correlations along the scales and among S/N values in the mini-blocks.

terms are non-zero, indicating an increasing presence of
correlations among parameters as FoC increases. The
values of the FoC for our constraints are shown in Ta-
ble IV and we will comment on them in Sec. IV.

3. Matrix condition number

To estimate how di�cult it is to invert our data covari-
ance matrices, we compute the corresponding condition
number : if the matrix is singular, the associated condi-
tion number is infinite, i.e. matrices with large condi-
tion numbers are more di�cult to invert. We compute
the condition number through the 2-norm of the matrix
using singular value decomposition (SVD). As shown in
Table II, the condition number depends on the binning
choice, especially for the multi-scale analysis. Indeed, we
find that choosing 41 linearly spaced bins for the peak
counts instead of 50 reduces the condition number of the
starlet peaks of about 10 orders of magnitude. For this
reason we choose 41 bins when performing inference us-
ing peak counts.

D. MCMC simulations and posterior distributions

To explore and constrain the parameter space, we use
the emcee package, which is a python implementation
of the a�ne-invariant ensemble sampler for Markov

chain Monte Carlo (MCMC) introduced by [52]. The
pipeline is built in a way that both the computation
of the power spectrum and peak counts along with the
MCMC are run in parallel to gain computation time.
We assume a flat prior, specifically following [28], a
Gaussian likelihood function as defined in Eq. (17), and
a model-independent covariance matrix as discussed in
Sec. III B. The walkers are initialised in a tiny Gaus-
sian ball of radius 10�3 around the fiducial cosmology
[M⌫ ,⌦m, 109As] = [0.1, 0.3, 2.1] and we estimate the pos-
terior using 120 walkers. Our chains are stable against
the length of the chain, and we verify their convergence
by employing Gelman Rubin diagnostics [53]. To plot the
contours we use the ChainConsumer python package [54].

IV. RESULTS

We now illustrate forecast results on the sum of neu-
trino masses M⌫ , on the matter density parameter ⌦m

and on the power spectrum amplitude As for a survey
with Euclid - like noise in a tomographic setting with four
source redshifts zs = [0.5, 1.0, 1.5, 2.0], and compare re-
sults for di↵erent observables (power spectrum and peak
counts) and filters (single-Gaussian, starlet and multi-
Gaussian).
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This chapter presents the procedure and some preliminary results of an ongoing work
(Ajani et al. in prep.[a]) whose aim is to extend the pipeline described in the previous with
respect to 1) the considered parameter space 2) the cosmological probe. The new probe in
consideration is photometric galaxy clustering, that along with weak lensing and spectro-
scopic galaxy clustering will be one of the primary probes of next generation galaxy surveys
like Euclid. Di�erent cosmological probes are a�ected in di�erent ways by the considered
redshifts and by the dynamical ranges of the underlying large-scale structure (Harnois-
Déraps, J., Giblin, B., and Joachimi, B. 2019). This, along with the di�erences in the instru-
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ments employed and measurement approaches make it possible to obtain complementary
cosmological information and to easily deal with systematic e�ects as they are typically
distinct and uncorrelated in di�erent probes (Harnois-Déraps et al. 2018). Probe combina-
tion can therefore exploit these advantages. Moreover, as discussed in details throughout
this thesis, statistics of order higher than the second can provide additional non-Gaussian
information that is typically lost when using second order statistics only. Using hence a
new suite of simulations provided by the �rst author of Harnois-Déraps, J., Giblin, B., and
Joachimi, B. 2019, I describe the settings and procedure followed so far and that we envis-
age to follow to investigate the impact of probe combination in a higher order statistics
framework. Simultaneously, I illustrate the open questions that we still need to address to
extend the pipeline to achieve this goal and the extension already accomplished.
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6.1 Background de�nitions

We employ as second order statistics for photometric galaxy clustering, the angular power
spectra in harmonic space, CGG(`) measured on the galaxy maps, built as described in the
next section. Its theoretical description is brie�y provided here. Given the galaxy number
density nG

i (z) in each tomographic bin i of the photometric survey, the angular galaxy
density in such redshift bin is given by

n̄G
i =

∫ zmax

zmin

dz nG
i (z) . (6.1)

Then, the radial weight function for a given tomographic bin i for galaxy clustering can be
de�ned as

WG
i (z) =

nG
i (z)

n̄G
i

H(z)

c
. (6.2)

The observable spectrum is theoretically given by the following expression

CGG
ij (`) =

∫
dz

WG
i (z)WG

j (z)

H(z)r2(z)
P photo

gg

[
`+ 1/2

r(z)
, z

]
(6.3)

where Pgg(`, z) is the galaxy-galaxy power spectrum, linked to the matter power spectrum
Pδδ(`, z) through the bias bg

P photo
gg (`, z) = [bphoto

g (z)]2Pδδ(`, z). (6.4)

In this preliminary part of the work, we consider for our power spectrum measurements
only the auto-spectra in the same redshift bin and the galaxy bias bg is �xed in the simula-
tions.

6.2 SLICS and cosmo-SLICS simulations

The analysis presented in this section is based on two suites of N-body simulations, the
Scinet LIght Cones Simulations (SLICS) (Harnois-Déraps et al. 2018) and the cosmo-SLICS
(Harnois-Déraps, J., Giblin, B., and Joachimi, B. 2019). The SLICS set is used to get the
observables employed in the computation of the covariance matrix, while the cosmo-SLICS
suite to compute the observables for the model and mock data (�ducial cosmology). Both are
based on a series of 100 deg2 light-cones extracted from N-body simulations with the multi-
ple plane technique. The underlying gravity-only calculations are obtained as in (Harnois-
Déraps et al. 2013) and evolve 15363 particles in a box of comoving side of 505 h−1 Mpc.



134 Extension to Photometric Galaxy Clustering

The SLICS are speci�cally designed for the estimation of covariance matrices: they pro-
vide of 800 fully independent ΛCDM runs in which the cosmological parameters are �xed
to the cosmology [Ωm, σ8, h, ns,Ωb] = [0.2905, 0.826, 0.6898, 0.969, 0.0473] and the ran-
dom seeds in the initial conditions are varied. The cosmo-SLICS are run with a similar but
complementary N-body con�guration: the random seeds are �xed, while the cosmological
parameters [Ωm, S8, h, w0] are sampled with a Latin hypercube at 25 points in parameter
space, while keeping the parameters ns, and Ωb �xed to the value used in the SLICS. For
each cosmology, a pair of simulations is provided, obtained with two di�erent seeds (seeda

and seedf ) to suppress the sampling variance, such that any measurement averaged over the
two seeds nearly follows the ensemble mean. For each seed for each cosmology and each
bin, 25 di�erent realisations are provided. The parameter space is shown in Figure 6.1. In
total, given the for 25 light-cones for the two seeds, for each realisation covering 100 deg2,
the simulations provide 5000 deg2 per cosmology. Further details on these simulations can
be also found in Burger et al. 2021.

Figure 6.1: Illustration of the di�erent parameter space planes for the cosmo-SLICS suite of
simulations. The red dots indicate the values for the �ducial cosmology used to mock the
observational data.

Main di�erences with the MassiveNus simulations used in the works described in chap-
ter 4 and chapter 5 mainly consist in:

MassiveNus
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• the number of cosmologies, being 25 for the cosmo-SLICS and 100 for theMassiveNus

• the number of realisations per cosmologies, being 25 for the cosmo-SLICS and 10000
for the MassiveNus

• cosmological parameters: the cosmo-SLICS parameter space is 4-dimensional, pre-
cisely the varying parameters are [Ωm, σ8, h, w0]. The MassiveNus parameter
space is 3-dimensional, with varying parameters [Mν ,Ωm, As].

• the size of the maps, that is 100 deg2 for the cosmo-SLICS and 12.25 deg2 for the
MassiveNus.

I want to underline these di�erences, since one of the aimed extensions for the pipeline
described in Section 5.2 is to test its performance for a di�erent parameter space than the
MassiveNus. Indeed, the MassiveNus were the �rst simulations I have employed
as �rst application of the pipeline, so it is crucial to verify that the pipeline works with
di�erent simulations, to be sure that none of the steps is dependent on the simulations and
that it works regardless of this choice. We have therefore chosen to use the cosmo-SLICS,
since they also provide a catalogue for the lenses that we will aim to use for combining
probes.

6.3 Weak lensing

6.3.1 Building the convergence maps from the catalogue

A �rst extension that needs to be done concerns the input of the pipeline. Indeed, as the
MassiveNus directly provide weak lensing convergence maps, the pipeline used to get
the results of Chapter 4 and Chapter 5 is built in such a way that it takes directly as input
the convergence maps. One of the products of the cosmo-SLICS instead, is the galaxy cata-
logue mimicking KiDS−1000 requirements (Asgari, Marika et al. 2021). This section shows
the procedure I followed to build the convergence maps that are then used to compute
the summary statistics from the galaxy catalogue provided by the simulations. The �nal
pipeline will hence take as input directly the catalogues and give as output the cosmological
constraints.

Galaxy catalogue

The galaxy catalogue provides:

• the positions (x, y) for each galaxy in arcmin

MassiveNus
MassiveNus
MassiveNus
MassiveNus
MassiveNus
MassiveNus
MassiveNus
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• values for the redshifts z that match to best �t estimates from the data, obtained by
a self-organising map method

• values for two components of the shear γ1, γ2 assigned to each galaxy

• values for two components of the observed ellipticities εobs
1 , εobs

2 assigned to each
galaxy.

To get the convergence map, we use Kaiser Squires (KS) inversion: �rst, we project the
shear onto a Cartesian grid and then we smooth it with a Gaussian �lter with width 0.7
arcmin following Giblin et al. 2018 to reduce the impact of potential empty pixels. We
chose npix = 600 pixels per side. Since the size of each catalogue covers 100 deg2, the
resolution is 1 arcmin. Then, we employ Equation 2.26 to get κ̂est

γ . Finally, we perform
an inverse Fourier transform to recover κ(θ). This is implemented using our CosmoStat
python package lenspack. In Figure 6.2 we show an example of our reconstructed κ
maps.

Figure 6.2: κ map reconstructed from the catalogue with KS inversion. The catalogue used
to reconstruct this corresponds to the cosmology ′00′ ( the list of cosmologies is available
in Table 2 of Harnois-Déraps, J., Giblin, B., and Joachimi, B. 2019) of the cosmo-SLICS, for
l.o.s.=74. Left panel: noiseless κ. Right panel: noisy κ, smoothed with a Gaussian kernel
of size 3 arcmin.

Noise and �ltering

Once the convergence map is obtained, the next step is to add a noise component to take
into account shape noise. As the catalogues provide the observed ellipticity for each galaxy,

https://github.com/CosmoStat/lenspack
lenspack
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the average shape noise 〈σλ〉 can be obtained by simply taking the standard deviation of the
observed ellipticities for each cosmology and for each tomographic redshift. Then, to get
the standard deviation of the noise as in Equation 4.1, we take the total number of galaxies
N for each catalogue and we divide it by the area of the map in pix2 to get the galaxy
number density per catalogue. For each tomographic bin, it is possible to build the n(z)
with the redshifts values provided from the catalogue. Figure 6.3 shows the n(z) for the
di�erent redshifts and the corresponding number of galaxiesN that we employ to compute
the noise to add to the convergence maps.

Figure 6.3: Figure showing the di�erent redshift distributions n(z) for each tomographic
bin provided by the simulations. The legend shows the number of galaxies N associated to
each bin, that is employed to compute the noise that we add to the convergence maps.

As the noisy maps are ready, the next step is to �lter them in order to access the cosmological
information. We then smooth the noisy convergence maps with a Gaussian kernel of size
θker = 3 arcmin.

6.3.2 Map validation with power spectrum

Once the maps are �ltered, we compute the power spectrum for each map of each cosmol-
ogy and each redshift, to build the training set for the Gaussian Processes interpolation.
We use the power spectrum to also validate our maps. We do this by comparing our mea-
surement for each cosmology, taking the average over the realisations and over the two
di�erent seeds for each tomographic bin to the theoretical predictions, as shown in the left
panel of Figure 6.4. We �nd that the power spectra we measure are in good agreement from
`min = 180 up to `max = 4700 with the theoretical predictions.
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Figure 6.4: Validation of our reconstructed convergence maps from the catalogue with the
power spectrum. Left panel: comparison between the theoretical predictions (continuous
lines) provided by the author of the cosmo-SLICS simulations (Harnois-Déraps et al. 2018)
and the power spectra measured on our noiseless κ maps reconstructed from the catalogue
shear components (γ1, γ2). Right panel: comparison between the power spectrum mea-
sured on the map provided by the authors of Giblin et al. 2018 and the power spectrum
measured on our map. Speci�cally, both maps are built from the observed ellipticities (εobs

1 ,
εobs

2 ) provided by the catalogue for the �rst tomographic bin of the SLICS simulations for
KiDS-1000, for l.o.s. 74.

We also perform an extra validation, by comparing the power spectrum measured on our
reconstructed map with one map provided by the authors of Giblin et al. 2018, as we follow
a similar method to reconstruct the κmap 1, and we �nd very good agreement between the
two, as shown in the right panel of Figure 6.4. The power spectra used to validate against the
theoretical predictions are measured on noiseless κmaps, built from the two components of
the shear (γ1, γ2) from the catalogue. The power spectrum used to validate against the map
from Giblin+ 2018, is measured on a noisy smoothed map, built from the two components
of the observed ellipticities (εobs

1 , εobs
2 ) from the catalogue. The power spectra employed

as summary statistics to perform the parameter estimation analysis are computed as the
latter, namely measured on κmaps that are built from the two components of the observed
ellipticities (εobs

1 , εobs
2 ), hence intrinsically accounting for the shape noise of each map. We

use 33 bins in the range ` = [180, 2040], that lies within the region where we are con�dent
that the power spectra are in agreement with the theoretical predictions (white region in
the left panel of Figure 6.4).

1The map they provided is built from the same catalogue (for KiDS-1000) we are using.
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6.4 Photometric Galaxy Clustering

6.4.1 Building the maps from the catalogue

Figure 6.5: Left panel: example of galaxy map built from the LRGs cosmo-SLICS catalogue,
smoothed with a Gaussian �lter of size 3 arcmin. Right panel: S/N map built from the
LRGs cosmo-SLICS catalogue, where we provide as estimate of the noise, the mean of the
map.

In order to obtain the GCph observables we build galaxy density maps from the d KiDS-
1000-like lens catalogues of Luminous Red Galaxies (LRGs) provided by the cosmo-SLICS
simulations. This set of photometric redshift galaxy foreground samples of LRGs mock
catalogues is available for each of the cosmo-SLICS cosmologies illustrated in Figure 6.1
and for 4 tomographic bins. A recent study employing the same catalogue was performed
by Burger et al. 2021. Each catalogue is constituted by the positions of each galaxies in RA
and DEC and redshift. The redshifts of the LRGs match exactly the redshifts of projected
mass sheets, from which they originate. So they appear to be very discrete, separated by
about ∆χ = 257 Mpc/h. The catalogues are generated assuming a constant linear galaxy
bias bg = 1.72, with a galaxy number density of n0 = 0.028 gal/arcmin2. Starting from this
catalogue we build galaxy density maps for each cosmology and each realisation as follows:

• we bin the provided positions in RA and DEC into a 2D grid of 600× 600 pixels

• we smooth it with a Gaussian �lter of size 3 arcmin

an example of the resulting map is shown in the left panel of Figure 6.5. As for the com-
putation of the high order statistics, we are interested in the S/N , we estimate the noise
as the mean of our map. The S/N is then de�ned as the galaxy map smoothed over the
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standard deviation of our noise estimate, for each map. One example is shown in the right
panel of Figure 6.5.

6.4.2 Map validation with power spectrum

We validate our maps by comparing our measured power spectra against the theoretical
prediction obtained with the python library pyccl, corresponding to Equation 6.3.
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Figure 6.6: Comparison between the power spectrum measured on a galaxy map we built
from the LRGs lens catalogue (orange line) and the theoretical prediction obtained with
pyccl (blue line). The gray region indicates values for the multipoles ` > `max where
`max = 780 is the maximum value used for the analysis.

In order to do so we measure the power spectrum on the galaxy density map built as de-
scribed in the previous section. As the map is intrinsically noisy (due to the presence of
Poisson noise), while the theoretical prediction is obtained for a noiseless case, we com-
pute the power spectrum of the noise and then subtract it from the power spectrum of the
map. As �rst approximation, we estimate the noise of the map as its mean. An example of
this comparison for one realisation is shown in Figure 6.6. At high ` a noisy behaviour can
be noticed. This noise probably is intrinsic in the data as the shot noise has already been

https://pypi.org/project/pyccl/
pyccl
pyccl
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subtracted as described before. The scales where this happens are in any case excluded
from the analysis, as we include multipoles up to `max = 780 as explained in Section 6.5.2.
Moreover, when averaging over the di�erent l.o.s. for each cosmology (which is what we
do when performing the analysis) the noisy behaviour disappears.

6.5 Preliminary results

This section presents some preliminary results of this project. The �nal goal is to obtain cos-
mological forecasts for combined weak lensing and photometric galaxy clustering for both
second and higher order statistics. Here some preliminary outputs are shown, some of them
being useful to validate some already implemented extensions of the pipeline presented in
Section 5.2 and others to understand what are the next steps to follow to extend it to reach
the aim of this project. I would like to stress that these outputs are still preliminary and do
not represent �nal quantitative results. At this stage of the project, they should be read as
�rst experiments to understand if some approximations we make have to be modi�ed and
how. To get the parameter constraints for all summary statistics we follow the same proce-
dure as in Chapter 4 and Chapter 5. To get the model predictions and build the likelihood
we employ Gaussian Processes interpolation, in the same fashion we did in Section 4.1.7.
We assume �at priors, in particular spanning the following the ranges for each parameter:
Ωm = [0.001, 0.6], h = [0.5, 0.9], w0 = [−2,−0.3], σ8 = [0.5, 1.3] and when we consider
S8 instead, S8 = [0.1, 1.3]. To compute the covariance matrix we employ the SLICS suite
of simulations, that is obtained at a �xed cosmology (Ωm = 0.2905, h = 0.6898, w0 = −1,
σ8 = 0.826, Ωc = 0.2432, ΩΛ = 0.7095). The �nal SLICS suites for KiDS-1000 will provide
800 independent realisations. However, at the moment these �rst tests were run, we found
some missing l.o.s., therefore we used the 715 realisations that are available at the moment.
We scale the covariance matrix with the pre-factor fmap/fsky = 100/1000, since the size
of the maps corresponds to 10 × 10 deg2 and the catalogue is built for KiDS-1000 cover-
ing 1000 deg2. We then perform MCMC with thee python package emcee, described in
Section 1.5.3.

6.5.1 Weak lensing (WL) power spectrum

We perform a cosmological parameter inference analysis using the power spectrum com-
puted as described in Section 6.3.2. We use 33 bins in the range ` = [180, 2040]. We provide
forecasts for the matter density parameter Ωm, the clustering amplitude σ8, their combina-
tion S8 ≡ σ8

√
Ωm/0.3, the dark energy equation of state parameter w0 and the reduced

Hubble parameter h. We �nd that the results obtained with our pipeline are consistent
with the cosmic shear analysis of the KiDS fourth data release (KiDS-1000) (Asgari, Marika
et al. 2021). In particular, in Figure 6.7, we compare our result with the marginal posterior
from mock data for the second order statistics employed by Asgari, Marika et al. 2021 for

emcee
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the parameter space plane (Ωm, σ8). We consider this step as an important validation of
the �rst extension of the pipeline. In particular, the step that goes from the catalogue to
the convergence maps was not present in the �rst version of the pipeline as it was used
for its �rst applications (Chapter 4, Chapter 5). After this extension its input is directly the
galaxy catalogue, and it provides the possibility to work with shear maps as well as with
convergence maps obtained with a KS inversion.

Asgari, Lin, Joachimi et al. 2021: KiDS-1000 cosmic shear

A&A 645, A104 (2021)

Figure 6.7: Preliminary forecasts derived employing the power spectrum as summary statis-
tics. The analysis is tomographic, performed with the 5 redshift bins shown in Figure 6.3.
We compare our results on the right (blue contours) with the results obtained by (Asgari,
Marika et al. 2021) for di�erent second order statistics for KiDS-1000 mock data (smaller
panel on the left).

6.5.2 Galaxy clustering photometric (GCph) power spectrum

As a second test, we want to provide forecasts for the matter density parameter Ωm, the
clustering amplitude σ8, their combination S8 ≡ σ8

√
Ωm/0.3, the dark energy equation of

state parameter w0 and the reduced Hubble parameter h. We perform a cosmological pa-
rameter inference analysis measuring the power spectrum on our galaxy maps. The value
for the galaxy bias is �xed in the simulations at bg = 1.72. For the angular scales, we employ
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a conservative cut, by removing the contributions of multipoles ` > 780 from the analysis,
following the pessimistic setting of Euclid Collaboration et al. 2020b. Speci�cally, We use 14
bin in the range ` = [120, 780]. We show the result in the left panel of Figure 6.8. Employ-
ing photometric galaxy clustering instead of weak lensing brings very tight constraints in
this setting: the constraining power of GCph seems to be actually more constraining than
expected. Whether the reason for this lies in some limitations of the simulations or in some
approximations we have made, as we estimate the noise for instance, is currently under
investigation. What we know for sure is that the clustering varies with the galaxy bias
which is �xed in the simulations, but largely unknown in the data. That would in�ate the
error contours signi�cantly in more realistic conditions. On the right panel of Figure 6.8
we also show the constraints on the (Ωm, S8) plane for both probes and their combination.
As expected, the combination brings an improvement on the constraining power for both
probes, and the GCph contribution is dominant. However, it is important to stress that this
is a �rst test of the pipeline on a new probe, as well as the fact that the bias is actually
largely unknown in the data, so we expect that once applied to real data, the error contours
for GCph will in�ate signi�cantly. At this stage, we do not treat these outcomes as �nal
quantitative results but more as �rst experiments to understand how to properly include
this new probe.

6.5.3 Photometric Galaxy Clustering starlet peaks

The next extension involves the inclusion of higher order statistics computed on the galaxy
maps. We therefore attempt a �rst experiment by applying the starlet peak counts frame-
work described in Section 4.1. We express the maps in terms of their signal to noise ratio
S/N and built them as depicted in Section 6.4.1. The size of the �lters for the high or-
der statistics are chosen such that when comparing the results for second order statistics
(GCph power spectrum) the scales considered roughly match to have a fair comparison.
For example, since in the GCph power spectrum analysis the considered range in scale is
` = [120, 780], for maps with resolution 1 arcmin, we need to consider that for jmax = 6
scales, the larger scale gives θ = 64 arcmin, corresponding to ` = 54 and the �nest scale
θ = 2 arcmin, corresponds to ` = 1719.

Hence, we only include scales corresponding to θ = [4, 6, 16, 32] arcmin leading to ` =
[859, 430, 215, 107]. The scales considered in the analysis and corresponding galaxy maps
are shown in Figure 6.9. We then compute the peak counts for the di�erent starlet scales
and perform the MCMC analysis. We show the corresponding 95% con�dence contours
in Figure 6.10. Qualitatively we see that for the majority of the parameters, except h and
Ωm the starlet peaks for GCph tend to provide tighter contours. However, we also notice
that the constraints on w0 tend to induce a slight shift. The next step is then to investigate
whether this is due to some approximation in the analysis such as the way we estimate the
noise or in some limits of the simulations as the �xed galaxy bias or to other origins.
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Figure 6.8: The plots shown in �gure are very preliminary and do not represent yet quan-
titative results. They are illustrated to show some �rst tests we run on a new probe, to
understand the next step to undertake to properly incorporate the GCph analysis. Left
panel: Cosmological forecasts for Ωm, σ8, w0 and h for �ve redshift bins with weak lensing
power spectrum (blue contours) and four redshift bins for photometric galaxy clustering
power spectrum (violet contours). As mentioned above, the constraining power of GCph
seems to be actually more constraining than expected and we expect the error contours to
signi�cantly in�ate in more realistic conditions, starting with a varying galaxy bias. Right
panel: joint forecast for Ωm and S8 ≡ σ8

√
Ωm/0.3 for weak lensing power spectrum

(blue contours) and galaxy clustering photometric power spectrum (violet contours) and
their combination (red contours). We stress also here that the constraining power of GCph
seems to more constraining than expected and that the reason for this (if it is due to the
simulations or to some approximations we have made) is currently under investigation.
What we know for sure is that the value for the galaxy bias is �xed at bg = 1.72 and as the
bias is actually largely unknown in the data, we expect that once applied to real data, the
error contours for GCph will in�ate signi�cantly.

6.6 Ongoing work and future prospects

The results shown in this section are very preliminary as the work on this project is cur-
rently ongoing. The goal of this �rst part of the project mainly consists in understanding in
which aspects the pipeline presented in Section 5.2 needs to be extended to be able to deal
with a di�erent parameter space and a di�erent cosmological probe. Concerning the �rst
point, using a di�erent set of simulations (the cosmo-SLICS instead of the MassiveNus)

MassiveNus
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Figure 6.9: Starlet decomposition for a galaxy map. The scales shown in the �gure are the
ones included in the analysis. The value in arcmin corresponds to the resolution of the
corresponding starlet scale, considering that the resolution of the original map is 1 arcmin.
The corresponding values in ` are also shown.

allowed us to extend the analysis to a 4−dimensional parameter space, and most impor-
tantly to add the initial step of deriving the convergence maps from the catalogue so that
now, the initial input is the galaxy catalogue. Concerning the second point, by employing
the mock lens catalogue for the KiDS-1000 LRGs set, allowed us to start including in the
analysis photometric galaxy clustering as a new probe. It is indeed known that probe com-
bination is crucial to increase the gain in information as di�erent probes are sensitive to
di�erent dynamical ranges of the underlying structure formation and to di�erent redshifts
(Harnois-Déraps et al. 2018). For example, weak lensing and galaxy clustering depend on
two independent combinations of the gravitational potentials (the growth of structure and
de�ection of light) and can therefore help in testing gravity (Amendola et al. 2018; Harnois-
Déraps et al. 2018; Euclid Collaboration et al. 2020b; Heymans et al. 2020). Furthermore,
as detailed throughout this thesis, statistics of order higher than the second enable to in-
clude the non-Gaussian information of physical �elds present at non-linear scales and as a
consequence to improve the constraining power. Therefore, we are willing to investigate
what is the impact of combining probes for statistics of order higher than the second on the
constraints, with a particular interest in testing our starlet `1-norm that has been proven
potentially powerful in the context of weak lensing (Section 5.1.2). As one can see from
these �rst preliminary results, there are many aspects that need to be clari�ed and are the
focus of my current work. In practice, the next steps involve to better understand why the
contours for the GCph power spectrum are more constraining than expected and then to
understand the behaviour of starlet peaks on the galaxy maps by quantifying the impact
of our approximations (concerning the noise estimation and the �xed bias). Once these
steps are completed, the goal is to compute the starlet `1-norm for GCph, WL and study
the impact of their combination on cosmological parameter as well as the combination of
each single probe with the corresponding second order statistics (the angular power spec-
tra in this case). Depending on the outcome of this analysis in an ideal setting, the natural
follow-up will be then to apply this on real data. I would like to underline that, despite
the exploratory nature of the results presented so far, the use of a new suite of simulations
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enabled a �rst extension of the pipeline in terms of initial input. Indeed, the steps described
in Section 5.2 can be extended at the beginning with the following items

Sources Galaxy catalogue: The galaxy catalogue is provided usually as fits or
dat �le. It contains the galaxy position (x, y), the redshift z, the observed ellipticities
(εobs

1 , εobs
2 ) and the values for the two components of shear (γ1, γ2). Public python

packages as astropy can be used to read it.

Pixelated shear map: Taking as input the observed ellipticity or the shear values
provided by the catalogue, a shear map is built by binning the shear values according
to position. This is performed using the CosmoStat python package lenspack.

Convergence map: The convergence map is then computed by Kaiser Squires (KS)
inversion. This is performed using the CosmoStat python package lenspack.

Lenses Galaxy catalogue: The galaxy catalogue is provided usually as fits or
dat �le. It contains the galaxy position in RA and DEC and the redshift z. Public
python packages as astropy can be used to read it.

Galaxy map: The galaxy map is obtained by binning the positions in RA and DEC
into a cartesian grid of npix × npix.

that basically summarise the procedure described in Section 6.3.1 and Section 6.4.1. In this
way, the pipeline illustration of Figure 5.5 can be updated by adding the initial step il-
lustrated in Figure 6.11. Starting from a lenses catalogue instead of a sources one, this
is automatically extended to photometric galaxy clustering. The procedure make it now
possible to obtain constraints on cosmological parameters as output starting from a mock
catalogue of lenses or sources as input. As brie�y mentioned also in this Chapter, the nat-
ural extension of the pipeline is actually to apply it to more realistic settings, to be ready
to apply it to real data. Along with the extension for new probes which is the focus of the
project introduced in this Chapter, a parallel e�ort to extend it to more realistic conditions
is described in the next chapter.

fits
dat
astropy
https://github.com/CosmoStat/lenspack/blob/master/lenspack/utils.py
lenspack
https://github.com/CosmoStat/lenspack/blob/master/lenspack/utils.py
lenspack
fits
dat
astropy
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Figure 6.10: This plot represents a preliminary test for the extension of our method to GCph
second order statistics and starlet peaks. As discussed above, the contours for the power
spectrum seem to be more constraining than expected and we are currently investigating if
this might be due to some limitations of the employed simulations or to some approxima-
tions we made throughout the analysis. I illustrate here a �rst attempt to get cosmological
forecasts for Ωm, σ8, w0 and h for four redshift bins with galaxy clustering photometric
power spectrum (violet contours) and starlet peaks (green contours). The scales considered
for the starlet decomposition are chosen to roughly match the range in ` for the power
spectrum. We notice that the constraints for w0 tend to slightly shift the contours. It is to
be investigated weather this is caused by some assumption made in the analysis as noise
estimation or the �xed galaxy bias.
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Figure 6.11: Extension of the initial input of the pipeline illustrated in Figure 5.5.
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The Canada-France Imaging Survey (CFIS), is a u- and r-band survey covering 5000 deg2 in
the Northern hemisphere. Its high resolution and depth make it a great survey candidates
for weak lensing science to date. CFIS is also a critical component of the data needed for
photometric redshifts for Euclid. A �rst attempt of applying the pipeline to real data from
the CFIS survey and preliminary results are presented. This Chapter presents the procedure
and some preliminary results of an ongoing work (Ajani et al. in prep.[b]).
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https://www.cfht.hawaii.edu/Science/CFIS/
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7.1 CFIS survey

The Canada-France Imaging Survey (CFIS), is a u- and r-band survey covering 5000 deg2 in
the Northern hemisphere. Since 2017 it has covered 3000 deg2, and will cover 4800 deg2 in
2025. Its high resolution and depth make it a great survey candidates for weak lensing sci-
ence to date. CFIS is also a critical component of the data needed for photometric redshifts
for Euclid. In particular, the survey parameters for CFIS are also chosen to provide essential,
complementary, sky coverage to Euclid. The optimal area for CFIS-r to best complement
Euclid is given by the the northern 5000 deg2 of the extragalactic sky. Figure 7.1 illustrates
the sky coverage for CFIS relative to some complementary surveys. CFIS-u requires exten-
sive sky coverage away from the Galactic plane, whereas the primary science drivers for
CFIS-r require SDSS spectroscopy. An area as large the one of the SDSS region as possible
is hence covered, leading to a ngal = 7 gal/arcmin2 for lensing. This value for the galaxy
density is similar to the ones of RCS2, KiDS and DES, but over a much larger area than the
�rst two, and a better delivered image quality than the latter (CFIS coll. 2017).

Figure 7.1: Image from https://www.cfht.hawaii.edu/Science/CFIS/
cfissurvey.html, showing the equatorial projection of the entire sky for CFIS-r (red
outline) and CFIS-u (blue outline) with respect to other surveys (listed in the top right cap-
tion). The areas that will be observed from the A and B semesters are indicated at the top.
Image credit: T. Dwelly.

https://www.cfht.hawaii.edu/Science/CFIS/
http://www.rcslens.org/astronomers/content-suitable-astronomers
http://kids.strw.leidenuniv.nl/
https://www.darkenergysurvey.org/
https://www.cfht.hawaii.edu/Science/CFIS/cfissurvey.html
https://www.cfht.hawaii.edu/Science/CFIS/cfissurvey.html
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7.2 Analysis setting

This Section describes the setting chosen for the analysis. We employ as data convergence
maps built from CFIS catalogue as described in the following and as simulations we use the
MassiveNus simulations introduced in Section 4.1.2 that we correct including baryonic
e�ects following Coulton et al. 2020a. We compute peak counts as summary statistics, we
assume a Gaussian likelihood, a cosmology independent covariance, and perform MCMC
using the emcee python package.

7.2.1 Data

As starting point of our analysis we take a convergence map built by Guinot 2020 through
the pipeline ShapePipe (Guinot et al. in prep.). In particular, we consider the patch P3
of the four patches presented in Guinot 2020 of 806, 282, 249 and 358 deg2, corresponding
to P1, P2, P3, and P4, respectively, shown in Figure 7.2.

Figure 7.2: Process patches of the CFIS dataset provided by Guinot 2020. In this analysis,
we employ the P3 (red patch) corresponding to a size of 249 deg2.

The patches represent around 5200 single exposures and 6800 tiles, with a total area of
1695 deg2. From the catalogue provided by ShapePipe, the κ map for the patch P3
shown in Figure 7.3 is built, through the KS inversion implemented in lenspack in a
way that the resolution in pixel corresponds to∼ 0.4 arcmin. The reason behind the choice
of this speci�c value is that for the purposes of this analysis, we employ the MassiveNus

MassiveNus
emcee
ShapePipe
ShapePipe
https://github.com/CosmoStat/lenspack/tree/master/lenspack
lenspack
MassiveNus
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simulations, (described in Section 4.1.2) and we choose to match the resolution of the sim-
ulations. Given the noiseless κ maps from the simulations, we need to have an estimate
of the noise to mimic the CFIS survey. For this, we need a redshift estimate for the source
galaxies, or at least the galaxy number density distribution as a function of redshift, n(z),
for the lensing sample.

Figure 7.3: Illustration of the E-mode convergence map constructed for the CFIS P3 patch,
corresponding to 249 deg2. The data shown in this image have been provided by A. Guinot
(Guinot 2020). The map is built through KS inversion, setting a pixel size of ∼ 0.4 arcmin,
to match the resolution of the κ maps from the MassiveNus simulations.

We employ the n(z) built by Guinot 2020, shown in Figure 7.4. As of today, the galaxy
number density distribution is not available based on CFIS data only, since only data on
the r-band are available right now 1. For this reason, the n(z) is derived by matching CFIS
galaxies with the ones detected in the W3 region of CFHTLens (Erben et al. 2013), that corre-
sponds to P3. Around 700,000 galaxies have been matched with CFHTLenS by Guinot 2020.
Then the n(z) is reconstructed from the photometric redshift measurements in CFHTLenS,
using the best-�t value zB. This method provides only an approximation, but it gives a �rst
estimate of the galaxy distribution.

The corresponding mean galaxy number density used in the analysis isngal = 7 gal/arcmin2.
The shape noise is σε = 0.44.

1An ongoing e�ort to obtain redshift distributions with the so-called cluster-z technique as presented in
Ménard et al. 2014 is currently pursued by the collaboration.

MassiveNus
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Figure 7.4: Galaxy number density distribution (blue line) obtained by matching the galaxies
with the CFHTLenS-W3 patch by Guinot 2020.

7.2.2 Methodology

We perform a likelihood analysis by applying the pipeline I developed, introduced in Sec-
tion 5.2. In this �rst attempt, we adapt the data to the available MassiveNus simulations,
in terms of resolution and size of the maps. Ideally, one would do the contrary, in order to
exploit the full information contained in the data. However, in the interest of performing a
�rst experiment, and given the huge amount of maps from the simulations (100 cosmologies
× 10000 realisations = 106 maps), we start by mainly adapting the data to the simulations,
to get an idea of what some preliminary output would be, in this �rst application on real
data. In order to do so, we cut 13 squared patches of size 512× 512 from the original P3 con-
vergence map of Figure 7.3. In this way, the maps from which we compute the peak counts
that are use to build the theoretical predictions, and the maps from which we compute the
peak counts for the data, have the same resolution (∼ 0.4 arcmin) and the same size (512×
512 pixels2). Concerning the redshift for the sources, in chronological order we have acted
as follows. As the redshift planes provided by the MassiveNus simulations are �xed at
zs = [0.5, 1.0, 1.5, 2.0, 2.5], we looked at the n(z) for the data, shown in Figure 7.4. We no-
ticed that the value z = 0.5 (dashed gray line in Figure 7.4) is actually very close to where
the n(z) peaks and decided to perform the analysis employing the convergence maps from
the simulations at zs = 0.5. We have in a �rst moment performed the entire analysis in this
setting, adding Gaussian noise with standard deviation

MassiveNus
MassiveNus
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σn =
〈σε〉√

2ngalApix

, (7.1)

to the noiseless simulated maps, with σε and ngal being respectively the shape noise and the
mean galaxy number density de�ned in the previous section and withApix = 0.16 arcmin2

being the pixel area. At a later time, we realised we could try to adapt the source redshift of
the simulations to the actual value at which the n(z) peaks, which is z = 0.65. Therefore we
have used the presence of convergence maps at zs = 0.5 and zs = 1.0 from the simulations
and performed an interpolation for all 100 cosmologies and 10000 realisations and derived
e�ective convergence maps at zs = 0.65. This is done by considering that, as shown in
Equation 2.21 the convergence �eld as a function of θ is given by

κ(θ) =

∫ zlim

0

n(z)κ(θ, z)dz, (7.2)

and that given that the available redshifts in our case are basically two Dirac delta functions,
we can approximate Equation 7.2 for a discrete case to �nd our e�ective convergence map
at zs = 0.65 as

κeff
zs=0.65 = κzs=0.5λ+ κzs=1.0(1− λ), (7.3)

where λ is a parameter that weights the convergence maps at a given redshift so that their
combination leads to the e�ective convergence map at the desired redshift. The parameter
λ is then obtained by asking that the mean redshift z̄ is equal to 0.65, namely by asking that

z̄ =

∫
n(z)zdz (7.4)

=

∫
[δ(z − 0.5)λ+ δ(z − 1)(1− λ)]zdz (7.5)

= 0.5λ+ 1(1− λ) = 0.65, (7.6)

that leads to a value of λ = 0.7. By performing this interpolation, we obtain the set of
e�ective κ maps for the simulation at zs = 0.65. We show in Figure 7.5 one realisation
example of the output of the interpolation. The e�ective convergence map κeff

zs=0.65 is in
the central panel. Qualitatively, one can recognise by eye the same structures in the same
positions as zs = 0.5 and zs = 1.0. In the bottom panel we compare the angular power
spectra for the κ maps at zs = 0.5 and zs = 1.0 with our e�ective κeff

zs=0.65 at zs = 0.65 as
well as the peak counts. Given the di�erence between the summary statistics (in particular
for the peak counts) at zs = 0.5 and κeff

zs=0.65, we expect this di�erence to be propagated
in the results of the inference analysis in the two settings. To further improve this inter-
polation, by trying for example to match the entire redshift distribution, we would need
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simulated convergence maps at more intermediate redshift steps, which are not provided
by the employed simulations. As a more detailed follow-up study, it could be interesting to
see how the constraints behave with simulations at zs = 0.65±∆z. For this study however,
we would again need to use other simulations.

Figure 7.5: Illustration of one realisation example result of our interpolation to get the
e�ective convergence map κeff

zs=0.65 at zs = 0.65. Top panel: at the edges the maps from
the simulations employed for the interpolation are shown, z = 0.5 (left) and z = 1.0

(right). The central panel shows the result of Equation 7.3. Bottom panel: angular power
spectra (left), peak counts (right) for the di�erent redshifts. Given the di�erence between
the summary statistics (in particular for the peak counts) at zs = 0.5 and κeff

zs=0.65, we expect
this di�erence to be propagated in the results of the inference analysis in the two settings.

7.2.3 Peak counts

As a �rst result for the constraints on the parameters Ωm and σ8 has already been obtained
by Guinot 2020 for the 3× 2-point analysis, we focus on peak counts as summary statistics
for our analysis as a �rst experiment to apply the pipeline. For both settings at zs = 0.5
and zs = 0.65, we consider 30 linearly spaced bins in S/N in the range [−2, 6]. The signal
to noise ratio is de�ned as in the Gaussian �lter case of Section 4.1, namely as the noisy
κ map smoothed with Gaussian kernel, over the standard deviation of the noise. The size
of the Gaussian kernel is 2 arcmin. To build the theoretical predictions we compute the
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peak counts for each realisation and each of the 100 cosmologies from the MassiveNus
simulations and then interpolate through the Gaussian Process Regression (GPR) presented
in Section 5.2. For the data, we compute the peak counts for the 13 patches extracted from
the P3 patch and the average over them before inserting them in the likelihood. We then re-
scale the covariance matrix to take into account for the fact that we average over 13 patches.
The peak counts are computed on a HPC cluster in parallel with the package joblib for
each of the 10000 realisations and each of the 100 cosmologies.

7.3 Correction for baryonic e�ects

As we are dealing with real data but modelling the theoretical predictions with N-body
simulations, we should take into account a variety of systematics to consider our analy-
sis robust. For this �rst experiment we start by including in the analysis a correction for
baryonic e�ects. As described in Section 2.2.3, baryonic e�ects (which are not described
by gravity-only N-body simulations) have a signi�cant impact on current and future weak
lensing observations. Weiss et al. 2019 have shown that the strength of the baryon sup-
pression on peak counts is strongly dependent on the scale of the Gaussian smoothing
applied to the convergences maps. Speci�cally, they found that for a DES-like con�gura-
tion, a smoothing scale of θker ∼ 8 arcmin or larger is su�cient to wash-out the baryonic
e�ects so that the suppression signal becomes smaller than the statistical error and for a
Euclid-like setting that a smoothing of at least θker ∼ 16 arcmin is required to reduce the
baryon suppression signal enough so that it falls below the statistical error. If one considers
smaller smoothing scales, a proper modelling of baryonic e�ects is necessary. We apply a
smoothing scale of θker ∼ 2 arcmin to our convergence maps. Hence, to model the baryonic
e�ects impact, as we get the theoretical prediction with theMassiveNus simulations, we
apply corrections to the peak counts in our analysis following the results of Coulton et al.
2020a. To include baryonic e�ects, they consider a parameter calledAbaryon, which linearly
interpolates the fractional e�ect of baryons between no baryonic e�ects (Abaryon = 0) to
the BAHAMAS high-AGN model Abaryon = 3, with Abaryon = 2 for the �ducial model,
and Abaryon = 1 for the low-AGN model. We use the peak counts for the three models
(low-AGN, �ducial, high-AGN), kindly provided by the authors of Coulton et al. 2020a and
compute the ratio between each baryon feedback model and the peak counts obtained by
the DM-only simulations. The peak counts sets they provided are computed for 99 linearly
spaced bins, in the range S/N = [−6, 16]. Since for our likelihood analysis we want to use
30 bins in the range S/N = [−2, 6], we perform a 1-D interpolation with the python pack-
age scipy, to extract the peak counts in our S/N range of interest for the three baryon
feedback models. We show in Figure 7.6 the fractional di�erence (left panel) and the ratio
with respect to the dark matter only (right panel) peak counts due to di�erent feedback
strengths, from the arrays provided by the authors of Coulton et al. 2020a. The correction
input that we use to get our peak counts accounting for the di�erent baryonic feedback cor-
responds to the right panel. All three baryon feedback models imprint a deviation from the

MassiveNus
joblib
MassiveNus
scipy
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DM only distribution, that increases with the strength of the baryonic e�ects. The counts
for S/N ' [−1, 3] are boosted, while being suppressed for S/N ≥ 3.
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Figure 7.6: Left panel:Fractional di�erence between peak counts from Low-AGN (blue),
Fiducial (yellow), High-AGN (green) models with respect to the peak counts computed on
DM ony simulations. Right panel: Ratio between peak counts from Low-AGN (blue),
Fiducial (yellow), High-AGN (green) models with respect to the peak counts computed on
DM ony simulations. The arrays plotted in this �gure have been kindly provided by the
authors of Coulton et al. 2020a.

We run the analysis in the following settings:

1) for source redshift zs = 0.5: we run the likelihood analysis using as summary statis-
tics a) DM-only peak counts, b) Low-AGN peak counts, c) Fiducial (Abaryon = 2) peak
counts, d) High-AGN peak counts using as data the peak counts computed on the 13
squared patches extracted from CFIS P3 patch, shown in Figure 7.3.

2) For source redshift zs = 0.65: we run the likelihood analysis using as summary
statistics a) DM-only peak counts, b) Low-AGN peak counts, c) Fiducial (Abaryon = 2)
peak counts, d) High-AGN peak counts using as data the peak counts computed on
the 13 squared patches extracted from CFIS P3 patch, shown in Figure 7.3

7.4 First experiment and discussion

We run a �rst experiment to get constraints on the sum of neutrino masses Mν , the matter
density parameter Ωm and the amplitude of the primordial power spectrum As. We take
into account the baryonic feedback for three di�erent models, labeled as Low-AGN, �ducial
and High-AGN. We assume a Gaussian likelihood
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logL(θ) =
1

2
(d− µ(θ))TC−1(d− µ(θ)), (7.7)

where for the model µ(θ) we employ the Gaussian Process Regressor trained on the 100
cosmological models from the MassiveNus simulations, for the data d the peak counts
computed on the 13 patches of the CFIS P3 patch, and the covariance is computed employing
the massless cosmology from the simulations and re-scaled with respect to the area of the
13 patches. We explore parameter space with MCMC using the python package emcee,
with 120 walkers and 6500 steps. We verify the convergence of our chains with Gelman-
Rubin (Gelman and Rubin 1992) and Geweke (Geweke 1991) statistics. We start by looking
at the di�erence induced when employing maps at zs = 0.65 and maps at zs = 0.5, namely
the constraints shown in Figure 7.7. In particular, for both the dark matter only simulations
(left panel) and the �ducial baryonic e�ects model (right panel), when considering zs =
0.65 (dashed lines) there is a shift for the matter density parameter Ωm and the amplitude
of the primordial power spectrum As, towards smaller values. As already mention, the
reason behind the change in source redshift was due to the fact that the MassiveNus
simulations exist at �xed redshift zs = 0.5 and zs = 1.0 and not at zs = 0.65, for which
we have derived some e�ective convergence maps to try to better match the peak in n(z),
shown in Figure 7.4. After ascertaining the di�erence between the two redshift settings,
we consider the setting at zs = 0.65 the most reliable for our analysis, given the above
discussion on the distribution of the sources. We then explore the impact of the di�erent
baryonic correction on the constraints. Speci�cally, by looking at Figure 7.8, we notice that
the presence of baryonic e�ects induces a shift in the (Ωm, As) plane towards higher values
of both Ωm and As and this e�ect increases as the parameter Abaryon increases. The e�ect
on the sum of neutrino masses Mν is harder to detect, from the joint contours, while from
the marginalised constraints in Figure 7.9, the Low-AGN and Fiducial correction seem to
increase its value and the High-AGN to slightly decrease it, with respect to the case without
correction. We show in Table 7.1 the maximum likelihood values for the case without
baryonic correction (DM only), and the three baryonic models for the setting at zs = 0.65.

Table 7.1: Maximum likelihood values for the three parameters for the di�erent settings
(no correction, Low-AGN, Fiducial, High-AGN).

Model Mν Ωm 109As

DM only 0.105+0.313
−0.043 0.358+0.023

−0.028 1.60+0.43
−0.30

Low-AGN 0.21+0.20
−0.15 0.375+0.036

−0.021 2.05+0.57
−0.20

Hihg-AGN 0.091+0.229
−0.029 0.418+0.0091

−0.0449 2.09+0.41
−0.22

Fiducial 0.21+0.21
−0.15 0.393+0.027

−0.024 2.08+0.46
−0.21

In summary, we see that in all cases, the impact of taking into account or not the baryonic
feedback is pretty important. We notice that Ωm and As are shifted to higher value and
Mν becomes constrained narrower than the prior. The three baryonic corrections yield

MassiveNus
emcee
MassiveNus
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Figure 7.7: Constraints on Mν , Ωm and As using as data the CFIS P3 patch. Left panel:
constraints obtained with DM-only peak counts for source redshift zs = 0.5 (continuous
line) and for source redshift zs = 0.65 (dashed line). Right panel: same as left panel but
for the baryonic e�ects �ducial model.
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Figure 7.8: Constraints on Mν , Ωm and As using as data the CFIS P3 patch. Left panel:
comparison between constraints with no baryonic e�ects (black contours) and including
baryonic e�ects with the Low AGN model (blue contours, Abaryon = 1). Central panel:
comparison between constraints with no baryonic e�ects (black contours) and including
baryonic e�ects with the Fiducial model (orange contours, Abaryon = 2). Right panel:
comparison between constraints with no baryonic e�ects (black contours) and including
baryonic e�ects with the High AGN model (green contours, Abaryon = 3).

to constraints which are pretty close to each other. Thus, even if we do not know how
important is the baryonic feedback on the data, we can conclude that the speci�c �avour of
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Figure 7.9: Maximum likelihood values and marginalised errors for the 3 parameters.

baryonic feedback (if Low-AGN, Fiducial or High-AGN) is less important than the di�erence
between baryonic feedback and pure dark-matter models. With the baryonic feedback there
is less peaks in the model. Hence, this has to be compensated with a higher Ωm because the
data does not change.

7.5 Ongoing work and future prospects

The aim of this chapter was to show a �rst experiment of application of the pipeline pre-
sented in Chapter 4 and Chapter 5 using peak counts as summary statistics on real data.
We are aware that the preliminary results shown so far are very limited by the fact that
the only systematics that we are including are baryonic e�ects in the simulations, while
other crucial systematics such as intrinsic alignment, multiplicative shear bias, mean red-
shift bias, boost factor (previously discussed in Section 2.2.3) have been neglected. Indeed,
an ongoing e�ort with the collaborators of this project is ongoing, in trying to model each
one of these e�ects �rst independently and then combined with the baryonic e�ects. For
instance, a further step has been undertaken to extend this work by including multiplica-
tive shear bias using metacalibration (Hu� and Mandelbaum 2017) with a residual bias ∆m
and explore its impact on the constraints, independently from and combined with baryonic
e�ects. A �rst result of this second step is shown in Figure 7.10: �rst, the two systematics
e�ects (multiplicative shear bias and baryonic e�ects) are considered separately to have an
idea of how the single e�ects act with respect to the constraints where no correction is
applied to the simulations. This is shown in the left panel of Figure 7.10. We can see how
the baryonic correction tends to shift Ωm and As to higher values whereas the redshift and
metacalilbration bias tends to shift them to lower values. Then the two are combined, to see
how they act together with respect to the constraints where no correction is applied. On the
right panel of Figure 7.10, we can see the constraints obtained for data from the local cali-
bration at 1 deg2 with ∆m = 0.007 (Guinot et al. in prep.) for the simulations at zs = 0.65
corrected by the baryonic feedback with the �ducial model Abaryon = 2. We would like
to stress that as of today the exact value for ∆m is still unknown for CFIS. Therefore we
have used a preliminary value for it (Guinot et al. in prep.) as our best guess. Next steps
will be then to include in the analysis further systematics that have been neglected, with
the �nal goal of quantifying the impact of each of them and of all of them combined on the
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�nal constraints and quantify the robustness and constraining power of peak counts in this
context. This work is ongoing, while a straightforward future work that will be interesting
to carry out is to test the starlet `1-norm, introduced in Section 5.1.5, that has been proven
powerful in an ideal setting, but still has not been tested on real data.
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Figure 7.10: Left panel: constraints without corrections (black contours), constraints with
local calibration and ∆m uncertainty (light blue contours), constraints with local calibra-
tion and ∆m uncertainty (light blue contours), constraints with �ducial baryonic correc-
tion (orange contours). Right panel: constraints without corrections (black contours),
constraints with local calibration and ∆m uncertainty combined with �ducial baryonic
correction (violet contours).





Chapter 8

Conclusions and perspectives

The main goal of this thesis has been the investigation and development of statistical meth-
ods to extract information from cosmological data coming from next generation galaxy sur-
veys like Euclid. To address this topic, I �rst focused on a study where we investigated the
impact on the parameter constraints of multi-scale �ltering techniques at the level of the
noisy data. Comparing the performance of a wavelet starlet �lter and a concatenation of
Gaussian �lters with the state of the art techniques when using weak lensing peak counts
as summary statistics, we found that in an ideal setting, both multi-scale techniques sig-
ni�cantly outperform the state of the art. For instance, for the set of parameters Mν ,Ωm

and As, we found that starlet peak counts provide an improvement of respectively 63%,
40% and 72% with respect to the standard power spectrum. As second result of this �rst
study, we found that the power spectrum does not seem to bring any additional information
to the constraints when multi-scale peak counts are combined with the power spectrum.
This is interesting and quite new outcome, as usually when second order statistics and
higher order statistics are combined, an improvement on the constraining power is typi-
cally found for single-scale statistics, as each statistics bring complementary information
to the other. Lastly, when exploring the e�ect of the �lter choice on the di�erent steps of
the analysis, we noticed that the covariance matrix for peak counts when using a starlet
�lter tends to be more diagonal than the one obtained when using multi-Gaussian �lter.
Intrigued by this feature, we run the same analysis using only the diagonal elements of the
covariance matrix, and basically recovered the same constraints as when the full covari-
ance is used. This can be convenient for situations (actually not rare in cosmology) where
the covariance matrix is di�cult to invert, or there is interest in speeding up the analy-
sis. In a broader sense, this analysis proved some advantages of the starlet transform to
optimise the information gain in cosmological analysis, con�rmed the potential of higher
order statistics in improving the constraining power and showed how the combination of
high order statistics in a multi-scale framework can bring a signi�cant improvement in the
constraining power of future surveys like Euclid. The results of this �rst work also led to
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the construction of a pipeline skeleton for multi-scale peak counts, having as initial input
weak lensing convergence maps and as output constraints on cosmological parameters in
an ideal simulations-based setting. Then, trying to preserve the advantages of a multi-scale
approach in a higher order statistics framework, we wondered if our choice of peak counts
as higher order statistics was limiting in some sense. Indeed, as discussed in Section 2.3,
a vast literature of di�erent type of higher order statistics is present and it was proven
that some combination of these statistics can improve even more the constraining power.
For example, using the same sets of simulations that we used, Coulton et al. 2020b found
that the combination of peak counts (local maxima in convergence maps) and local minima
counts, further tighten the constraints. Inspired by this, we wondered: what happens if,
instead of selecting only the local minima and local maxima in the map, we consider the
information encoded in all pixels, while preserving the starlet multi-scale approach that
has been proven advantageous? This question gave origin to my second study, where we
have introduced a new multi-scale higher order summary statistics: the starlet `1-norm.
This statistics is built in such a way that starting from a starlet decomposition of the input
data, it accounts for the information present at di�erent wavelet scales for all pixels in the
map. Hence, it automatically contains the information encoded in both peaks and minima.
This is con�rmed by our outcome on its performance in constraining parameters: the star-
let `1-norm outperforms the state of the art combination of peaks and voids and it avoids
at the same time the problem of de�ning what is a void (topic on which there is still no
unanimous agreement). This second work also led to an extension of the public CosmoStat
python package lenspack, that now contains the implementation of this new statistics
to perform cosmological analysis.

The practical contributions of these �rst two studies can be summarised has follows:

1) a �rst paper (Ajani et al. 2020) quantifying the impact of di�erent multi-scale �ltering
on weak lensing peak counts and between di�erent statistics

2) the construction of a pipeline skeleton for multi-scale peak counts, having as ini-
tial input weak lensing convergence maps and as output constraints on cosmological
parameters in an ideal simulations-based setting

3) the introduction of a new multi-scale higher order statistics, de�ned in a second paper
(Ajani et al. 2021)

4) an extension of the public CosmoStat python package lenspack

5) tomographic MCMC forecasts mimicking a Euclid-like shape noise for the parame-
ters Mν ,Ωm, As obtained with many di�erent statistics such as the power spectrum,
single-scale peak counts, multi-scale Gaussian and starlet peaks, voids and starlet
`1-norm.

https://github.com/CosmoStat/lenspack/tree/master/lenspack
lenspack
https://github.com/CosmoStat/lenspack/tree/master/lenspack
lenspack
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These results show that the multi-scale higher order statistics approach we developed rep-
resents a very promising tool to reach high levels of precision in constraining cosmological
parameters. However, to serve as a robust probe for precision cosmology, the statistical
power alone is not su�cient and it is very important to guarantee robustness with respect
to systematic errors. Furthermore, keeping in mind that the �nal aim is to maximise the
information coming from surveys like Euclid, we also want to apply these �ndings not only
to weak lensing, but also to galaxy clustering to fully exploit the information gain deriving
from their combination. These re�ections led to the ongoing work and preliminary results
of Chapter 6 and Chapter 7 where we aim to extend our method to photometric galaxy
clustering alone and combined with weak lensing and to real data from the Canada France
Imaging Survey (CFIS). This, from a practical point of view, translates in understanding in
which parts and in which ways my multi-scale higher order statistics pipeline needs to be
extended. First of all, for the extension to photometric galaxy clustering, I had to use dif-
ferent simulations than the MassiveNus on which the pipeline was initially built. This
change of simulations, naturally led to two extensions simultaneously. The �rst concerns
the di�erent parameter space, both in terms of speci�c parameters (w0 and h were actually
�xed in the MassiveNus) and in terms of dimensionality (the parameters space for the
cosmo-SLICS is 4-dimensional). The second extension is relative to the input, that is now
given by the galaxy catalogues directly instead of the convergence maps. What one deals
with in real data analysis is actually a galaxy catalogue, and now the pipeline directly takes
as input the catalogue, builds a pixelised shear maps and with Kaiser-Squires inversion
gets the convergence maps. Lastly, given a lens catalogue instead of a source one, it is now
possible to build galaxy density maps with the idea of performing a photometric galaxy
clustering analysis. Running exploratory experiments, we obtained some preliminary re-
sults for combined second order statistics (the power spectrum) for both weak lensing and
galaxy clustering. As expected, we �nd that the combination of the two improves the con-
straints. However, for photometric galaxy clustering, we are applying some approximations
in how we estimate the noise and for the galaxy bias. The investigation on these points is
ongoing and we expect the contours for GCph to in�ate once using real data, where the
galaxy bias is largely unknown. We also apply starlet peaks on the galaxy maps built from
the lenses catalogue and �nd improvement for the majority of the parameters in the con-
straining power. However, a slight shift in the w0 constraints arises and we are currently
trying to understand whether this is caused by approximations made in the procedure or
if its origin has a di�erent nature. Lastly, a natural test for the robustness of the pipeline
is to adapt our procedure to real data. Fortunately, about 1600 deg2 of the CFIS data have
been already pre-processed and this has enabled a �rst test of the pipeline on a part of these
avaiable data. In Chapter 7 some preliminary work in this sense is outlined. In its �rst im-
plementation, the pipeline didn’t include any systematics e�ects. We therefore pro�t of the
availability of CFIS data and start including the systematics one by one, to quantify their ef-
fects �rst separately and eventually jointly. We start with the inclusion of baryonic e�ects,
and provide a �rst qualitative description of their impact in three di�erent scenarios for a
peak counts analysis. Now, with the �nal aim of including as many systematics as possible,

MassiveNus
MassiveNus
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we are focusing on a second systematics, namely the multiplicative shear bias. To calibrate
the shear, we usemetacalibration and test the impact of local calibration. Indeed, as the mul-
tiplicative shear bias depends on the local density (Hoekstra, Viola, and Herbonnet 2017),
a local calibration can be more precise and consequently lead to a smaller multiplicative
bias. However, as metacalibration is not perfect, there is a residual bias ∆m that needs to
be considered and whose value is a current object of research within the CFIS collabora-
tion. The results obtained so far on CFIS data are still very preliminary. However, we start
having an idea of some qualitative behaviour, such as that with these data and simulations,
the more constrained of the parameters seems to be Ωm. We also �nd that local calibration
with a ∆m < 0 shifts this parameter to higher values compared to baryonic corrections.
On the other hand, we can conclude that the speci�c �avour of baryonic feedback is not so
relevant, with respect to the di�erence between baryonic feedback and pure dark-matter
models. Concerning the local calibration, it is sure that a local one is preferred over a global
one, as long as the error and standard deviation are small, because it will account for lo-
cal e�ects of the catalogue. Finally, we need a more precise value of ∆m as changes in
this value can lead to large di�erences on the parameters. Some questions presented above
still need an answer, as for example, what the impact of combining multi-scale high order
statistics on combined probe is, or what the impact of many systematics e�ects that were
neglected is. However, these unsolved points are already structured in ongoing projects
whose outcomes hopefully will provide us with the answers that we are looking for. Be-
sides the above discussed projects, many other interesting questions that are still pending
can be addressed in this context. For example, by paying attention to some assumptions
made throughout this work, we could focus on the fact that we derive our input conver-
gence maps with a standard Kaiser-Squires inversion. However, as shown in Section 2.1.3
and Section 3.6, new powerful approaches as DeepMass (Je�rey et al. 2018) or MCALens
(Starck et al. 2021) that have overtaken the drawbacks of standard inversion techniques are
available to be used. It is then worth exploring how the combination of these mass mapping
approaches with multi-scale higher order statistics can improve the analysis. On a di�erent
level, many other questions concerning the considered parameters can arise. For instance,
using the MassiveNus simulations, we provided forecasts and constraints on the sum
of neutrino massesMν . However, strong observational degeneracies between the e�ects of
modi�ed f(R) gravity theories and massive neutrinos have been highlighted on structure
formation processes over a wide range of scales and redshifts, both in the linear and in the
non-linear regime (Baldi et al. 2014). These degeneracies can be broken with the use of
high order statistics as was proved by Peel, Pettorino, Giocoli, et al. 2018. However, what
the optimal statistics to do so is, still remains an open question, and testing whether the
starlet `1-norm could be a good candidate for this task could be interesting and in practice
doable using the DUSTGRAIN-path�nder simulations (Giocoli, Baldi, and Moscardini 2018)
that include f(R) models. This work is also currently in progress.

A large number of open questions are of course still present. In the context of this work, a
summary of what needs to be addressed can be summed up in the fact that next generation
cosmological surveys such as Euclid, DESI, the Vera Rubin Observatory Legacy Survey of

DeepMass
MCALens
MassiveNus
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Space and Time, the Nancy Grace Roman Space Telescope, will provide us with a huge vol-
ume of data, characterised by a high resolution up to the very small scales. The main goal is
then to fully exploit these small scales up to k ∼ 10hMpc−1, as they contain the cosmolog-
ical information needed to try to answers the big questions about the dark components of
the universe outlined at the beginning. A huge collective e�ort in this context is ongoing.
For example, the current work carried on by the Interscience Taskforce for Likelihood de-
velopment (IST:L) in Euclid to which I had the chance to contribute, will provide the tools
that we will need to perform a full cosmological analysis including weak lensing, galaxy
clustering and their cross-correlation. Concerning the higher order statistics, it is clear that
given the large amount of di�erent statistics already available now, one crucial challenge
at this stage is also to compare what it is already available and �nd the optimal statistics in
terms of constraining power and robustness to systematics. In this sense, a collective e�ort
is as well ongoing within the higher order weak lensing statistics (HOWLS) work package
within the Euclid collaboration. Besides the preparation for future surveys, this is already
a very exciting time to pursue these investigations, as data from current surveys as KiDS
and DES are already available and have very recently provided the most precise constraints
on the ΛCDM and wCDM models to date from weak lensing probes (DES Collaboration,
Abbott, et al. 2021).
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