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(Finland)
Rapporteur

Nestor Armesto

Professeur - IGFAE, Universidade de Santiago de

Compostela (Spain)
Examinateur

Cédric Lorcé
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Abstract
Title: Statistical properties of partonic configurations and diffractive dissociation
in high-energy electron-nucleus scattering.

In the high-energy scattering of a quark-antiquark color dipole off a hadron, the quantum states

of the former are represented by a stochastic set of dipoles generated by a binary branching process,

in the so-called color dipole model of quantum chromodynamics (QCD). It was found that there is

a profound connection between this QCD description and the branching-diffusion processes studied

in statistical physics from which different properties of the scattering in the high-energy regime

are revealed. Our work in this thesis is aimed to exploit the cross-fertilization between QCD and

statistical physics to study the detailed partonic content of the Fock states of a color dipole subject

to high-energy evolution in the scattering off a large nucleus. We also produce predictions for

diffractive dissociation in electron-ion collisions, based on the QCD dipole picture.

In the first place, the scattering events of a color dipole, when parameters are set in such a

way that the total cross section is small, are triggered by configurations containing large-transverse-

size dipoles. The latter are due to rare partonic fluctuations, which look different as seen from

different reference frames, from the rest frame of the nucleus to frames in which the rapidity is

shared between the projectile dipole and the target nucleus. It turns out that the freedom to select

a frame allows to deduce an asymptotic analytic expression for the rapidity distribution of the

first branching of the slowest parent dipole of the set of those which scatter, which provides an

estimator for the correlations of the latter. In another aspect, the study implies the importance

of the characterization of particle distribution near the extremal particles, referred to as the “tip”,

in the states generated by the QCD dipole branching, and more generally, by any one-dimensional

branching random walk model. To this aim, we develop a Monte Carlo algorithm to generate the

tip of a binary branching random walk on a real line evolving to a predefined time, which allows to

study both rare and typical configurations.

The above statistical description proves advantageous for calculating diffractive cross section

demanding a minimal rapidity gap Y0 and the distribution of rapidity gaps Ygap in the diffractive

dissociation of a small dipole off a large nucleus, in a well-defined parametric region. They are the

asymptotic solutions to the Kovchegov-Levin equation, which was established more than 20 years

ago to describe the diffractive dipole dissociation at high energy. Additionally, we present predictions

for the distribution of rapidity gaps in realistic kinematics of future electron-ion machines, based

on the numerical solutions to the original Kovchegov-Levin equation and of its next-to-leading

extension taking into account the running of the strong coupling. The outcomes for the former

reflect in a qualitative way our asymptotic analytical result already at rapidities accessible at future

electron-ion colliders.
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Résumé

Titre: Propriétés statistiques des configurations partoniques et dissociation diffrac-
tive dans la diffusion électron-noyau à haute énergie.

Dans le cadre de la chromodynamique quantique (QCD), la théorie microscopique de l’interaction

forte, on montre que les états quantiques d’un quarkonium pertinents dans les collisions hadroniques

à très haute énergie, dans la limite paramétrique théorique d’un grand nombre de couleurs, peuvent

être représentés par un ensemble stochastique de dipôles de couleur générés par un processus de

branchement binaire particulier. Cette image des états quantiques hadroniques est appelée “modèle

des dipôles de couleur”. Ce modèle peut être analysé à l’aide d’outils généraux développés pour

l’étude de processus de branchement diffusif en physique statistique et en mathématiques. On sait

par exemple que l’équation de Balitsky-Kovchegov établie dans le cadre du modèle des dipôles de

couleur et qui régit l’évolution avec l’énergie d’amplitudes de diffusion d’un quarkonium sur un

noyau atomique lourd, appartient à la classe d’universalité de l’équation de Fisher-Kolmogorov-

Petrosky-Piscounov (F-KPP) qui régit, entre autre, l’évolution temporelle de la distribution de la

position des particules extrêmes dans le mouvement brownien branchant. Dans cette thèse, nous

exploitons ce lien entre physique des particules et physique statistique pour étudier le contenu

partonique détaillé des états de Fock d’un dipôle dans la diffusion à haute énergie sur un ion lourd,

dont nous déduisons le comportement asymptotique des sections efficaces de dissociation diffractive

d’un quarkonium. Nous présentons également des prédictions pour les sections efficaces de collision

électron-ion.

En premier lieu, les événements de diffusion nucléaire d’un petit dipôle de couleur, lorsque

les paramètres sont réglés de sorte que la section efficace totale soit petite, sont induits par des

configurations contenant des dipôles de grande taille transverse. Ces dernières sont dues à des

fluctuations partoniques rares, distribuées différemment selon le référentiel choisi, du référentiel

de repos du noyau aux référentiels dans lesquels la rapidité est partagée entre le dipôle projectile

et le noyau cible. Il s’avère que la liberté de sélectionner un référentiel permet de déduire une

expression analytique asymptotique de la distribution de la rapidité du premier branchement du

dipôle parent de l’ensemble des dipôles qui interagissent, ce qui fournit un estimateur des corrélations

de ces derniers. Dans un autre aspect, notre étude montre l’importance de la caractérisation de

la distribution des particules au voisinage des particules extrémales dans les états générés par le

processus de branchement de dipôles en QCD, et plus généralement, par tout modèle de marche

aléatoire branchante unidimensionnelle. Dans le but d’étudier quantitativement cette distribution,

nous développons un algorithme de Monte Carlo pour générer la région frontalière d’une marche

aléatoire unidimensionnelle avec branchements binaires évoluée à grand temps, qui permet d’étudier

à la fois des configurations typiques et les configurations rares conditionnées de sorte que la particule

extrême au temps final ait une position très différente de la position typique ou moyenne.

Un autre résultat de notre travail est l’observation que la diffusion d’un petit dipôle de couleur

sur un noyau lourd possède une interprétation probabiliste pour les sections efficaces de diffusion :
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la section efficace totale de diffusion est le double de la probabilité d’avoir au moins un dipôle en

interaction dans l’état du dipôle initial à la rapidité de diffusion, et la section efficace de diffusion

diffractive est le double de la probabilité d’avoir un nombre pair de dipôles en interaction. Cette

interprétation probabiliste ainsi que la description statistique ci-dessus permettent de dériver les

expressions analytiques asymptotiques de la section efficace diffractive conditionnée à un “gap” de

rapidité minimal Y0 ou, de manière équivalente, la distribution des “gaps” de rapidité Ygap dans

la dissociation diffractive d’un petit dipôle sur un grand noyau, dans une région paramétrique bien

définie. Nous obtenons ainsi les solutions asymptotiques de l’équation de Kovchegov-Levin, qui a

été établie il y a plus de 20 ans pour décrire la dissociation diffractive d’un dipôle sur un noyau

dans des collisions à haute énergie. De plus, nous présentons des prédictions pour la distribution

des “gaps” de rapidité dans la cinématique des futurs collisionneurs électrons-ions, sur la base des

solutions numériques de l’équation originale de Kovchegov-Levin et de son extension à une constante

de couplage forte courante. Les résultats sont en accord qualitatif avec nos formules analytiques

asymptotiques déjà à des rapidités accessibles aux futurs collisionneurs électron-ion.
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General introduction

Strong interactions of quarks and gluons are described by quantum chromodynamics (QCD), a

Yang-Mills gauge theory whose gauge field is characterized by the color quantum number. Due to

the color confinement, quarks and gluons do not stay isolated, but are trapped together to form

composite bound states known as hadrons. Among puzzles of QCD, the dynamics of hadronic

matter in the regime of high energy involves intriguing issues, and has been queried for a long time.

Theoretical studies on such topic are also supported by a massive amount of high-energy collision

data, which have been collected at various colliders around the world. To understand the behaviors

of hadronic matter in high energy collisions is also a main physical goal of the research programmes

at many proposed future colliders, such as the Large Hadron Electron Collider (LHeC) [1] and the

Future Circular Collider (FCC) [2] at CERN, or the Electron-Ion Collider (EIC) [3] at Brookhaven.

Many high-energy collision machines are motivated by deep-inelastic scattering of a lepton off

a hadron, which is an outstanding process to probe a variety of properties of hadronic matter, and

has been closely associated with the development of QCD from the beginning. As an example,

the observations in the MIT-SLAC experiment on electron-proton collisions during the late 1960s

and early 1970s provided the experimental evidences to support the existence of quarks and the

parton model (for a review, see Ref. [4]). In this scattering process, the interaction between the

lepton with the hadron is mediated by a virtual photon with a high-enough virtuality in order to

be able to resolve the partonic level. In an appropriate frame, the photon could be replaced by a

quark-antiquark dipole, which therefore gives rise to the study of the dipole-hadron scattering.

The scope of the thesis is limited to discussions of deep-inelastic scattering off a large nucleus,

and hence, the dipole-nucleus scattering. As a matter of fact, the latter is a remarkable process

to understand theoretically, not only by the fact that it can be factorized from the deep-inelastic

scattering of a virtual photon at high energy. Actually, it is the simplest dilute-dense interaction

process. A dipole may be a good starting point to model dilute systems, such as heavy mesons, or

maybe even specific states of proton, in order to understand some of their properties. On another

aspect, in proton-nucleus collisions, it turns out that an appropriate Fourier transform of the dipole-

nucleus total cross section is mathematically identical to the differential cross section for producing

a semi-hard jet of a given transverse momentum [5], at least at next-to-leading logarithmic accuracy

[6], which is usually referred to as transverse momentum broadening.

For the dipole-nucleus scattering, if the dipole is subject to a high-energy boost, it does not

appear as a bare quark-antiquark state when traversing the nucleus, but as a complex state

dominated by soft gluons characterized by small longitudinal momentum fractions x, as a re-

sult of quantum evolution. At low density, the growth of this gluonic system with the rapid-

ity is linear, and the behavior of its mean density is controlled by the Balitsky-Fadin-Kuraev-

Lipatov evolution equation [7, 8], which resums the leading logarithmic series of the parameter

ᾱ ln(1/x) . Such linear evolution is tamed when the parton density becomes sufficiently high by

1



General introduction

nonlinear effects. A prominent example of equations encoding these nonlinear effects is the Jalil-

ian–Marian–Iancu–McLerran–Weigert–Leonidov–Kovner equation [9–16]. When the number of col-

ors is taken to be large, it boils down to the Balitsky-Kovchegov evolution equation [17, 18], which

lies at the basis of our studies presented in this thesis.

Apart from the mean-field evolution, there could be fluctuations in the quantum states of both

the projectile dipole and the target nucleus, which generate rare gluonic scattering configurations.

In many cases, those fluctuations can play an important role [19–23]. When fluctuations enter the

game, the foremost problem is to construct a model to describe them properly. Such description

should capture the main features of the physics we are considering, in this case, the QCD evolution.

It will then provide us with a picture of the scattering, and enable us to address certain observables

and/or to draw some consequences.

The large part of this thesis will be dedicated to discuss the nuclear scattering of a small

dipole. We shall assume that the target nucleus follows the deterministic evolution, consequently

fluctuations in the target are neglected. The scattering is then triggered by fluctuations in the

content of the Fock state of the dipole. In fact, by the analogy between the QCD dipole evolution

and a branching-diffusion process, Mueller and Munier [20] adapted a description of fluctuations in

the latter process [24] to the former, and yielded some properties of QCD scattering amplitudes. This

stochastic picture also enabled them [22, 23] to deduce an (incomplete) estimation for the rapidity

gap distribution in the diffractive onium-nucleus scattering. In this thesis, we shall improve that

description by developing a model of dipole distribution, which allows us to study the configurations

of onia in the scattering off a nucleus and a related genealogical problem.

As another remark, we will construct a formulation for diffraction of a small dipole. This

formulation, together with the description of rare fluctuations, will enable us to address important

observables of interests in diffractive dissociation.

In additional to the dipole-nucleus scattering, we shall also investigate diffractive virtual photon-

nucleus scattering base on the numerical solutions to the QCD evolution equations. The aim of this

investigation is to produce predictions for future electron-ion colliders.

The main content of this thesis consists in four chapters, which are organized as follows:

– Chapter 1 - QCD evolution of hadronic matter toward high energy: this chapter is to

review some backgrounds for the discussions in the thesis: light-cone formalism, deep-inelastic

scattering (DIS) at high energy and QCD color dipole model.

– Chapter 2 - QCD evolution in analogy with branching-diffusion processes: this

chapter is aimed to introduce the QCD nonlinear evolution for the onium-nucleus scattering

at high energy in connection to branching-diffusion processes in statistical physics, and to

present a Monte Carlo algorithm [25] to generate particles close to an extreme particle in a

one-dimensional branching random walk.

– Chapter 3 - Nuclear scattering of small onia: in this chapter, we shall present our

investigation [26] on the nuclear scattering configuration of a small onia subject to high-energy

evolution and a related genealogical structure.

2



General introduction

– Chapter 4 - Diffractive dissociation: this chapter is aimed at presenting our studies

[27, 28] on diffractive dissociation of a small onium and a virtual photon. For the former,

we shall introduce a theoretical formulation of diffraction from which one can derive the

observables of interest. For the diffraction of a virtual photon, we shall present a numerical

study in the framework of the color dipole formulation and produce some predictions for future

electron-ion colliders.

We shall then conclude the discussions in the thesis by summarizing the main results together

with some possible future developments. Three appendices gather some technical details for the

calculations presented in the main chapters.
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Chapter 1

QCD evolution of hadronic matter

toward high energy

Contents

1.1 QCD Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Light-cone formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Light-cone kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2 QCD Hamiltonian on the light cone . . . . . . . . . . . . . . . . . . . . . 8

1.2.3 Perturbative expansion on the light-cone . . . . . . . . . . . . . . . . . . 13

1.3 Deep-inelastic scattering in the dipole picture . . . . . . . . . . . . . . . . . . . . 15

1.3.1 DIS kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.2 Dipole picture for DIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Dipole evolution and BFKL equation . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4.1 High-energy evolution of the onium . . . . . . . . . . . . . . . . . . . . . 20

1.4.2 Dipole number and BFKL evolution . . . . . . . . . . . . . . . . . . . . 26

1.4.3 Solution to the BFKL equation . . . . . . . . . . . . . . . . . . . . . . . 27

1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

This chapter is aimed to review the theoretical description of high energy evolution in the

framework of color dipole formalism [29–32] in QCD. We shall start with a brief introduction of the

light-cone perturbation theory (LCPT) and the deep-inelastic scattering in the dipole picture. We

shall then present the Balitsky-Fadin-Kuraev-Lipatov (BFKL) [7, 8] equation, which governs the

linear evolution of the gluonic content at high-energy.
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1.1. QCD LAGRANGIAN

1.1 QCD Lagrangian

Quarks and gluons, which constitute hadrons, are fundamental degrees of freedom of QCD. Their

strong interaction is associated to the color charge, which is an analog to electric charge in the

electromagnetic interaction. For a general number of colors Nc, the gauge group of QCD is given

by the special unitary group SU(Nc). A quark of flavor f and color index i is represented by a

four-component spinor ψfi (x) (1 ≤ i ≤ Nc), which is the component i of a vector of size Nc in the

fundamental representation of SU(Nc). Meanwhile, a gluon, which carries the strong interaction

(i.e, gauge boson), is described by a massless vector field Aaµ(x) (gauge field) with color index a in

the adjoint representation of the SU(Nc) (hence, a runs from 1 to N2
c − 1). The Lagrangian which

describes the dynamics of those fields and their mutual couplings reads

LQCD = − 1

4
F a
µν(x)F µν

a (x)
︸ ︷︷ ︸

LYM

+ ψ̄fi (x)
[
iγµDij

µ −mfδ
ij
]
ψfj (x)

︸ ︷︷ ︸
LDirac

, (1.1)

where mf is the mass of a quark flavor f , and the sums over color, flavor and Lorentz indices are

understood. The covariant derivative D reads Dij
µ = δij∂µ − igsA

a
µ(x)tija , where gs is the strong

coupling constant and ta are generators of SU(Nc) in the fundamental representation. The gluon

field strength tensor F a
µν is given by

F a
µν = ∂µA

a
ν − ∂νAaµ + gsf

abcAbµA
c
ν . (1.2)

The real numbers fabc in the above expression of the field strength are the structure constants of

SU(Nc), which are coefficients of the linear extension of the Lie brackets of pairs of generators,

[ta, tb] = ifabctc. The first term in Eq. (1.1), LYM , is the Yang-Mills term concerning the dynamics

of gluons and their interactions. Unlike QED, there is an additional term in the field strength tensor

(1.2), the third term, due to the non-abelian nature of the strong interaction. This term induces

gluon self-coupling, making QCD a theory with an intriguingly rich coupling structure. The second

term in Eq. (1.1), LDirac, is the Dirac Langrangian, which encodes the dynamics of quarks and their

coupling to gluons. The QCD Lagrangian (1.1) is invariant under a local gauge transformation with

respect to the SU(Nc) group which acts on the elementary fields as

ψfi (x)→ [Ω(x)]ij ψ
f
j (x), ψ̄fi (x)→ ψ̄fj (x)

[
Ω†(x)

]
ji
, (1.3a)

Aµ(x)→ Ω(x)Aµ(x)Ω†(x)− i

gs
[∂µΩ(x)] Ω†(x), (1.3b)

in such a way that the covariant derivative and the field strength tensor transform in the adjoint

representation:

Dµ → Ω(x)DµΩ†(x), (1.4a)

Fµν(x)→ Ω(x)Fµν(x)Ω†(x), (1.4b)
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QCD evolution of hadronic matter toward high energy

where Aµ = Aaµt
a, Fµν = F a

µνt
a, and Ω(x) = eiθ

a(x)ta ∈ SU(Nc), with θa(x) being real-valued

functions. Under the gauge transformation, each gauge field configuration develops into a class

of gauge-equivalent configurations, or a gauge orbit, in the configuration space. Gauge symmetry

implies that the physics is invariant along each such orbit. Therefore, it is, “at heart, a redundancy

in our description of the world” [33]. To avoid unphysical degrees of freedom due to the gauge

redundancy in the quantization, we select from each orbit a particular configuration by imposing a

condition on the gauge fields, which procedure is referred to as gauge fixing 1. In this thesis, we fix

the gauge according to the so-called light-cone gauge condition,

η · Aa = 0, η2 = 0. (1.5)

An advantage of this gauge is that the gluons have only physical transverse degrees of freedom.

Consequently, the theory is free of unphysical ghost fields.

For the sake of simplicity, we will hereafter omit the flavor and color indices in the notation of

the quark’s spinor. Therefore, the Dirac term in the QCD Lagrangian can be rewritten as

LDirac = ψ̄(x) [iγµDµ −m]ψ(x), (1.6)

where the sums over flavor and color indices are implicitly understood.

1.2 Light-cone formulation

Field theory is usually quantized in a Lorentz frame,

x̃µ = (x0, x1, x2, x3) ≡ (t, x, y, z),

gµν = ηµν ≡ diag(1,−1,−1,−1).
(1.7)

This parametrization is usually referred to as the instant form of Hamiltonian dynamics in which

the Hamiltonian of a physical system drives the evolution of the system along the ordinary time

t. It turns out that Eq. (1.7) is not the only choice: there are various possibilities to cast the

ordinary spacetime coordinates into another representation. Dirac [35] pointed out that, there are

three inequivalent spacetime parameterizations, including the instant form, in the sense that they

cannot be mapped to each other by a finite Lorentz transform. In this thesis, we shall deal with

one of them which is known as the lightcone parameterization 2.

1This procedure however does not fixed the gauge completely, due to Gribov copies [34].
2In fact, under an infinite Lorentz boost (β = 1) along the x3 direction, the instant form and the lightcone form

are mathematically equivalent. Therefore, Kogut and Soper [36] interpreted the infinite-momentum limit as the
lightcone reparametrization of the spacetime coordinates to avoid the limiting procedure.
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1.2. LIGHT-CONE FORMULATION

1.2.1 Light-cone kinematics

In the light-cone notation, the spacetime coordinates are given by xµ = (x+, x−, x⊥), which are

related to the components in the instant form (1.7) as

x+ =
1√
2

(x0 + x3), x− =
1√
2

(x0 − x3), x⊥ = (x1, x2). (1.8)

The component x+ is conventionally chosen to be the light-cone time. The light-cone time derivative

is denoted as ∂+ ≡ ∂/∂x+, and the longitudinal derivative is ∂− ≡ ∂/∂x−. Note that ∂+ = ∂−, and

∂− = ∂+. In general, for a four-vector u, the u+ and u− are referred to as the “time-like” and the

longitudinal components, respectively, while u⊥ are the transverse components. The metric tensor

gµν in this notation reads

gµν =




0 1 0 0

1 0 0 0

0 0 −1 0

0 0 0 −1


 , (1.9)

and the scalar product of two four-vectors u and v is given by

u · v = u+v− + u−v+ − u⊥ · v⊥ (1.10)

From Eq. (1.10), the light-cone energy of a free particle on the mass shell with four-momentum P

is given by

P− =
(P⊥)2 +m2

2P+
, (1.11)

where m is the mass of the particle. Comparing to the expression of the energy in the instant form,

P 0 =

√
m2 + |~P |2, one can see that the light-cone energy (1.11) are free of square root, and hence,

the issue of negative energies can be avoided, as pointed out by Dirac. This square-root-free feature

simplifies the perturbative calculations when the light-cone coordinates are employed. In the end,

physical results should be unchanged, since this formulation is just a spacetime reparametrization

in its nature.

1.2.2 QCD Hamiltonian on the light cone

With the light-cone parameterization, one can rewrite the QCD Lagrangian (1.1) as

LQCD =
1

2
F+−
a F+−

a + F+m
a F−ma − 1

4
(Fmn

a )2 + ψ̄
(
iγ+D− + iγ−D+ − iγ⊥D⊥ −m

)
ψ, (1.12)

8



QCD evolution of hadronic matter toward high energy

with indices m,n ∈ {1, 2}. The elementary fields can be decomposed as follows:

Aµa =
(
0, A−a , A

⊥
a

)
, (1.13a)

ψ = ψ+ + ψ−, ψ± = Λ±ψ ≡
γ0γ±√

2
ψ, (1.13b)

where Λ± are projection operators:

Λ+ + Λ− = 1, Λ±Λ∓ = 0, (Λ±)2 = Λ±, (1.14)

and γ± = (γ0 ± γ3)/
√

2. In Eq. (1.13), we have employed the light-cone gauge condition (1.5). In

particular, we choose η = (0, 1, 0⊥), and hence, get rid of the plus component of the gauge field,

A+
a = 0.

We are going to review the structure of the QCD Hamiltonian HQCD, which is related to the

Lagrangian (1.12) through a Legendre transform,

HQCD =

∫
dx−d2x⊥

[∑

φ

Πφ∂+φ− LQCD
]
, (1.15)

where φ are the field components appearing in Eq. (1.13), and Πφ =
δLQCD
δ(∂+φ)

are their corresponding

conjugate momenta. From the Lagrangian (1.12), the latter reads

ΠAma = ∂+Ama , ΠA−a
= 0, (1.16a)

Πψ+ = i
√

2ψ†+, Πψ− = 0. (1.16b)

The field components A−a and ψ− have zero conjugate momenta: they are not dynamical fields.

Consequently, the usual canonical quantization procedure cannot be applied on such fields. However,

they can be expressed in terms of the dynamical fields Ama and ψ+ by the virtue of the equations of

motion.

Quark fields

The Dirac equation in the light-cone notation reads

(
iγ+D− + iγ−D+ − iγ⊥D⊥ −m

)
ψ(x) = 0. (1.17)

Acting the “plus” projector on the Dirac equations (1.17) from the left gives

i
√

2γ0∂−ψ−(x) =
(
iγ⊥ ·D⊥ +m

)
ψ+(x). (1.18)

Hence,

ψ−(x) =
1√
2

γ0

i∂−

(
iγ⊥ ·D⊥ +m

)
ψ+(x) =

1

2

γ+

i∂−

(
iγ⊥ ·D⊥ +m

)
ψ+(x), (1.19)

9



1.2. LIGHT-CONE FORMULATION

where 1/∂− is the antiderivative operator, i.e. an integral with respect to x−. Eq. (1.19) includes

the coupling with the color gauge field encoded in the covariant derivative. If one sets this coupling

to zero, we obtain the so-called free “minus” components,

ψ̃−(x) =
1

2

γ+

i∂−

(
iγ⊥ · ∂⊥ +m

)
ψ+(x), (1.20)

and the free Dirac spinors reads ψ̃ = ψ+ + ψ̃−.

Gluon fields

The Euler-Lagrange equations for the gluon fields are Yang-Mills equations:

∂µF
µν
a = Jνa , (1.21)

where the current is given by

Jνa = −gsfabcF νσ
b Acσ − gsψ̄γνtaψ. (1.22)

The equation for (ν = +) reads

− ∂2
−A
−
a − ∂−(∇⊥ · A⊥a ) = −gsfabc(∂−Aib) · Aci − gsψ̄γ+taψ. (1.23)

The component A− can then be expressed in terms of A⊥ and ψ+ as

A−a = − 1

∂−
(∇⊥ · A⊥a ) +

gs
∂2
−

[
fabc(∂−A

i
b)A

c
i + ψ̄γ+taψ

]
. (1.24)

The first term in Eq. (1.24) is free of the coupling constant gs, and is referred to as the “free

component”:

Ã−a ≡ −
1

∂−
(∇⊥A⊥a ). (1.25)

The free gauge vector field is then

Ãµa = (0, Ã−a , A
⊥
a ). (1.26)

Free and interaction Hamiltonians

With the help of the free fields, we can write the QCD Hamiltonian on the light cone as HQCD =

H0 +Hint, where H0 and Hint are free and interaction parts, respectively, and are given by

H0 =
1

2

∫

Σ

dx−d2x⊥
{
ψ̃γ+m

2 −∇2
⊥

i∂+
ψ̃ − Ãµa∇2

⊥Ã
a
µ

}
, (1.27)
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QCD evolution of hadronic matter toward high energy

Hint =

∫

Σ

dx−d2x⊥
{

2gsTr
(
i∂µÃν

[
Ãµ, Ãν

])
− gsψ̃γµÃµψ̃ +

g2
s

2
Tr
([
Ãµ, Ãν

] [
Ãµ, Ãν

])

+g2
s ψ̃(γµÃµ)

γ+

2i∂−
(γνÃν)ψ̃ + g2

sTr

([
i∂−Ã

µ, Ãµ

] 1

(i∂−)2

[
i∂−Ã

ν , Ãν

])

−g2
s ψ̃

γ+

(i∂−)2

[
i∂−Ã

µ, Ãµ

]
ψ̃ +

g2
s

2
ψ̃γ+taψ̃

1

(i∂−)2
ψ̃γ+taψ̃

}
.

(1.28)

Quantization

To quantize the theory, we first decompose the dynamical fields ψ+ and A⊥ into Fourier modes.

Since the subspace image of the projection Λ+ is two-dimensional, the spinor ψ+ can be expressed

in a basis {wr, r = ±1/2} of that subspace as

ψ+,i(x) =
∑

r

∫
d2p⊥dp+

(2π)32p+

{
21/4wr(p)br,i(p)e

−ip·x + 21/4w−r(p)d
†
r,i(p)e

ip·x
}

Θ(p+), (1.29)

where we have recovered the quark color index i. The basis spinors are chosen to obey the following

completeness and orthogonality relations:

∑

r

wr(p)w
†
r(p) = p+Λ+; w†r(p)ws(p) = p+δrs. (1.30)

In the same manner, the transverse gauge field can be expanded in modes as follows:

A⊥a (x) =

∫
d2k⊥dk+

(2π)32k+

∑

λ

{
ε⊥λ aλ,a(k)e−ik·x + ε⊥∗λ a†λ,a(k)eik·x

}
Θ(k+), (1.31)

where the two transverse polarization vectors ε⊥λ are chosen to be normalised as

∑

λ

ε⊥jλ (ε⊥j
′

λ )∗ = δjj
′
; ε⊥λ · ε⊥∗λ′ = δλλ′ . (1.32)

We then treat the fermionic and bosonic coefficients in the mode expansions (1.29) and (1.31),

respectively, as operators. Their (anti)commutation relations read

{
br,i(p), b

†
s,j(q)

}
= (2π)32p+δ(p+ − q+)δ2(p⊥ − q⊥)δrsδij, (1.33a)

{
dr,i(p), d

†
s,j(q)

}
= (2π)32p+δ(p+ − q+)δ2(p⊥ − q⊥)δrsδij, (1.33b)

[
aa,λ(k), a†b,λ′(k

′)
]

= (2π)32k+δ(k+ − k′+)δ2(k⊥ − k′⊥)δabδλλ′ . (1.33c)

All other possible commutation (resp. anticommutation) relations between bosonic (resp. fermionic)

are identically zero.

Since the Hamiltonians (1.27) and (1.28) are expressed in terms of the free fields ψ̃ and Ã The

11



1.2. LIGHT-CONE FORMULATION

spinor ψ̃ can then be decomposed as

ψ̃i(x) = ψi+ + ψ̃i− =
∑

r=±1/2

∫
d2p⊥dp+

(2π)32p+

{
bir(p)ur(p)e

−ip·x + d†ir (p)vr(p)e
ip·x}Θ(p+), (1.34)

where the basis spinors u and v are given by

ur(p) = wr +
γ+

2p+
(γ⊥ · p⊥ +m)wr, (1.35a)

vr(p) = w−r +
γ+

2p+
(γ⊥ · p⊥ −m)w−r. (1.35b)

In a similar manner, we can also decompose the gauge field as

Ãµ(x) =

∫
d2k⊥dk+

(2π)32k+

∑

λ

{
aλa(k)εµλ(k)e−ik·x + aλ†a (k)εµ∗λ (k)eik·x

}
Θ(k+), (1.36)

where εµλ(k) (λ = 1, 2) are polarization vectors. Bosonic creation and annihilation operators aλ†a and

aλa satisfy following commutation relations:

[
aλa(k), aλ

′

b (k′)
]

=
[
aλ†a (k), aλ

′†
b (k′)

]
= 0,

[
aλa(k), aλ

′†
b (k′)

]
= 2k+(2π)3δ(k+ − k′+)δ2(k⊥ − k′⊥)δabδλλ′ .

(1.37)

In Eqs. (1.29), (1.34) and (1.36), we use the following Lorentz-invariant integral measure:

∫
d4k

(2π)4
(2π)δ(k2 −m2) =

∫
d2k⊥dk+

(2π)32k+
Θ(k+). (1.38)

Using the Fourier decompositions (1.34) and (1.36) together with underlying (anti-)commutation

relations, we can construct the light-cone pertubation theory (LCPT) based on the light-cone QCD

Hamiltonian. The LCPT rules can be found, for example, in Ref. [37]. In the following, we shall

introduce the interaction vertices in the LCPT, which are written in terms of the quantized fields.

Interaction vertices

Now, with the notion of quantized fields, we can interpret the terms in the interaction Hamiltonians

(1.28).

The first three terms in Eq. (1.28) correspond to the usual QCD vertices:

12



QCD evolution of hadronic matter toward high energy

Three-gluon vertex: 2gs

∫

Σ

dx−d2x⊥
{
Tr
(
i∂µÃν

[
Ãµ, Ãν

])}
= (1.39)

Quark-gluon coupling vertex:

∫

Σ

dx−d2x⊥
{
−gsψ̃γµÃµψ̃

}
= (1.40)

Four-gluon vertex:

∫

Σ

dx−d2x⊥
{
g2
s

2
Tr
([
Ãµ, Ãν

] [
Ãµ, Ãν

])}
= (1.41)

The remaining terms in Eq. (1.28) are referred to as instantaneous effective vertices, and can be

represented diagrammatically as

∫

Σ

dx−d2x⊥
{
g2
s ψ̃(γµÃµ)

γ+

2i∂−
(γνÃν)ψ̃

}
= (1.42)

∫

Σ

dx−d2x⊥
{
g2
sTr

([
i∂−Ã

µ, Ãµ

] 1

(i∂−)2

[
i∂−Ã

ν , Ãν

])}
= (1.43)

∫

Σ

dx−d2x⊥
{
−g2

s ψ̃
γ+

(i∂−)2

[
i∂−Ã

µ, Ãµ

]
ψ̃

}
= (1.44)

∫

Σ

dx−d2x⊥
{
g2
s

2
ψ̃γ+taψ̃

1

(i∂−)2
ψ̃γ+taψ̃

}
= (1.45)

where instantaneous quark and gluon lines are depicted by regular quark and gluon lines with a

short line segment cross.

1.2.3 Perturbative expansion on the light-cone

Due to quantum effects, the initial state of a system at the asymptotic light-cone time x+ = −∞
may fluctuate into another quantum state at the considered light-cone time. The quantum evolution

of the system from x+ = −∞ to x+ = 0 is governed by the so-called evolution operator U(0,−∞),

13



1.2. LIGHT-CONE FORMULATION

which is a solution of the Schroedinger equation, as

|Ψ(x+ = 0)〉 = U(0,−∞)|Ψ(x+ = −∞)〉 ≡ T exp

{
−i
∫ 0

−∞
dx′+Hint

}
|Ψ(x+ = −∞)〉, (1.46)

where T is the light-cone time order product, and Hint is the interaction Hamiltonian in the inter-

action representation, which is related to the interaction Hamiltonian in the Schroedinger picture

Hint as

Hint = eiH0x+

Hint e
−iH0x+

. (1.47)

Expanding the evolution operator U , one gets

|Ψ(x+ = 0)〉 =
+∞∑

n=0

(−i)n
n!

∫
dx+

1 · · · dx+
nT
{
Hint(x

+
1 ) · · ·Hint(x

+
n )
}
|Ψ(x+ = −∞)〉. (1.48)

Let us denote {|ω〉} as the complete set of the eigenstates of the free Hamiltonian H0 corresponding

to the light-cone energy p−ω , H0|ω〉 = p−ω |ω〉. The asymptotic state |ω0〉 ≡ |Ψ(x+ = −∞)〉 also

belongs to this set, corresponding to the energy p−ω0
. They are chosen to be normalised as

〈ω|ω′〉 =
∏

i

2k+
(ω)i(2π)3δ(k+

(ω)i − k+
(ω′)i

)δ(2)(k⊥(ω)i − k⊥(ω′)i)δ{λ(ω)i}{λ(ω′)i}, (1.49)

where k(ω)i and {λ(ω)i} (k(ω′)i and {λ(ω′)i}) are momenta and quantum indices of nω (nω′) particles

in the state |ω〉 (|ω′〉). The state |Ψ(x+ = 0)〉 can then be expanded in this basis as

|Ψ(x+ = 0)〉 =
√
Z

(
|ω0〉+

∑

ω 6=ω0

φω|ω〉
)
,

=
√
Z

(
|ω0〉+

∑

ω 6=ω0

∫ [ nω∏

i=1

dk+
(ω)id

2k⊥(ω)i

(2π)32k+
(ω)i

]
φω|{k+

(ω)j}, {k⊥(ω)j}, {λ(ω)j}〉j=1,nω

)
,

(1.50)

where
√
Z is the renormalization factor for the onium wave function. The wave function φω of a

particular quantum fluctuation qq̄ → ω is defined by φω = 〈ω|Ψ(x+ = 0)〉. From the expansion

(1.48), we obtain:

φω 6=ω0 =
+∞∑

n=0

(−i)n
n!

∫
dx+

1 · · · dx+
n 〈ω|T

{
Hint(x

+
1 ) · · ·Hint(x

+
n )
}
|ω0〉

= 〈ω|ω0〉︸ ︷︷ ︸
=0

+
〈ω|Hint|ω0〉
p−ω0
− p−ω + iε

+
∑

ω′

〈ω|Hint|ω′〉〈ω′|Hint|ω0〉
(p−ω0
− p−ω + iε)(p−ω0

− p−ω′ + iε)
+ · · · .

(1.51)

Energy denominators in Eq. (1.51) contain light-cone energy difference the asymptotic state and

intermediate states. The states |ω〉 and |ω′〉 are not identical to |ω0〉 (up to constant factor). The

terms with |ω〉 and |ω′〉 indistinguishable from |ω0〉 are absorbed into the renormalization factor
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√
Z, as suggested by Ref. [38] (see also Ref. [39]).The Fock state expansion (1.50) together with

Eq. (1.51) prove to be useful in constructing light-cone wave function of a system subject to quantum

evolution from the lowest perturbative order.

1.3 Deep-inelastic scattering in the dipole picture

Deep-inelastic scattering (DIS) is a scattering process to resolve the internal structure of a hadron

using a leptonic particle like electron. Typically in DIS, the hadron is probed by a virtual photon,

which usually shatters hadron, resulting in the production of a set of hadrons X in the final state.

In this section, we are going to discuss the DIS on a nucleus A at high energy, which is conveniently

described by the so-called dipole picture. This constitutes the main framework of the discussions

in the dissertation. We shall begin with a short introduction of kinematic variables in DIS.

1.3.1 DIS kinematics

An illustration of the deep-inelastic electron-nucleus collision is sketched in Fig. 1.1. We denote

p = (p+, p−, p⊥) and p′ = (p′+, p′−, p′⊥) for the four-momenta of ingoing and outgoing electrons,

respectively, P = (P+, P−, P⊥) for the four-momentum of the nucleus, and q = (q+, q−, q⊥) for

the four-momentum of the virtual photon. In addition, the nucleus is supposed to move in the x−

direction, i.e. P⊥ = 0. The DIS can be described by following Lorentz-invariant quantities:

ŝ = (P + q)2, Q2 = −q2,

xBj =
Q2

2P · q , η =
P · q
P · p.

(1.52)

The quantity ŝ is the squared center-of-mass energy of the γ∗A scattering process. Q2 is called the

virtuality of the virtual photon. For the process to be deep inelastic, the photon should be highly

virtual, or Q2 � Λ2
QCD. Otherwise, when Q2 is negligibly small, i.e. Q2 ≈ 0, the process is referred

to as photoproduction. Therefore, the photon’s virtuality Q2 provides a natural hard scale in the

DIS.

To see the physical interpretations of the quantity η, let us consider the process in the rest frame

of the nucleus in which the four-momentum of the nucleus reads P µ = ( M√
2
, M√

2
, 0⊥), where M is the

mass of the nucleus. We have:

η =
P · q
P · p =

q+ + q−

p+ + p−
=
q0

p0
=
E − E ′
E

, (1.53)

where q0 and p0 are the energy components of the four-momenta of the photon and the ingoing

electron written in the instant form, and E and E ′ are the energies of the electron before and after

the scattering, respectively. Therefore, in the nucleus’s rest frame, η is the fraction of the electron’s

energy transferred to the nucleus.
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e−

e−

A

p
p′

P

γ∗(q)

X

Figure 1.1: Schematic diagram of the DIS of an electron (e−) on a nucleus (A) by exchanging a
virtual photon (γ∗). The nucleus is disintegrated into an inclusive set X of hadrons in the final
state.

Let us now interpret the Bjorken x variable, xBj. For this purpose, it is convenient to work in

the so-called Breit frame in which the nucleus moves very fast in the x− direction (P+ �M),

P = (P+,
M2

2P+
, 0⊥), (1.54)

and the photon’s momentum reads

q =
1√
2

(−Q,Q, 0⊥). (1.55)

From Eqs. (1.52), (1.54) and (1.55), we have the following relation:

Q

xBj
=
√

2P+ − M2

√
2P+

. (1.56)

Solving this equation for P+, one get

P+ =
Q

xBj
√

2

1 +

√
1 +

4x2
BjM

2

Q2

2
(1.57)

Since the lepton current can be factorized out, from now onwards we will consider the DIS as

the deep-inelastic virtual photon-nucleus scattering. The typical time scale for the photon-nucleus

interaction is then

τscatter ∼
1

Q
. (1.58)

Meanwhile, the partons inside the nucleus can interact mutually. For the nucleus at rest, the typical
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time scale for such mutual interactions is of order of the size of the nucleus R ∼ 1
ΛQCD

. In the Breit

frame, this time is dilated by the Lorentz factor γ = P+/M . Therefore, the time scale for partons’

mutual interactions in the Breit frame is given by

τm.i. ∼
P+

MΛQCD

. (1.59)

As P+Q � MΛQCD, we deduce that τscatter � τm.i.. In other words, the partons are effectively

independent during the scattering. This is the basis idea of the parton model.

γ∗(Q2)

A
P X

Figure 1.2: DIS in the Breit frame. The photon kicks out a parton (a quark in this figure),
which is effectively independent of remaining partons during the interaction. The partons after the
interaction are hadronized to form an inclusive set of hadrons X in the final state.

In the parton model, the virtual photon does not kick the hadron as a whole, but a single parton

of momentum

kµ = (k+,
(k⊥)2 + k2

2k+
, k⊥), (1.60)

see Fig. 1.2. This parton carries a light-cone longitudinal momentum fraction ξ = k+

P+ of the nucleus.

After the scattering, the scattered parton carries the momentum k
′µ. Since in the Breit frame the

partons can be treated as free during the interaction, there is an energy-momentum conservation

across the electromagnetic vertex. Therefore, the parton before and after scattering is on-shell. And

since it is assumed to be massless, k2 = k
′2 = 0. In addition, as the nucleus is moving fast along

the x− axis, we can assume that the parton is collinear, k⊥ = 0. We can then approximate the

four-momentum of the struck quark as

kµ ≈ (k+, 0, 0⊥). (1.61)
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1.3. DEEP-INELASTIC SCATTERING IN THE DIPOLE PICTURE

Furthermore, the conservation of four-momenta reads k
′
= q + k. Therefore,

0 = q2 + 2q · k = −Q2 +
√

2ξP+Q

= −Q2 +
ξQ2

xBj

1 +

√
1 +

4x2
BjM

2

Q2

2
.

(1.62)

We end up with following relation between xBj and ξ:

ξ =
2xBj

1 +

√
1 +

4x2
BjM

2

Q2

'
M2�Q2

xBj. (1.63)

If M2 � Q2, ξ and xBj are approximately identical. In other words, in this limit, xBj can be

interpreted as the light-cone longitudinal momentum fraction of the nucleus carried by the struck

parton.

1.3.2 Dipole picture for DIS

Let us return to the restframe of the nucleus, where P µ = (M/
√

2,M/
√

2, 0⊥), and choose the axis

such that the transverse components of the photon are zero, qµ = (q+, q−, 0⊥). The components q+

and q− obey following expressions

2q+q− = −Q2,

Q2

2xBj
= P · q =

M√
2

(q+ + q−).
(1.64)

Solving this system of equations in terms of Q, x, and M , one gets

q− = −
√

2MxBj

1 +

√
1 +

4M2x2
Bj

Q2

∼ −MxBj. (1.65)

The coherent length, which is defined as the typical light-cone longitudinal distance of the interac-

tion, is given by

∆τcoh ∼
1

|q−| ∼
1

MxBj
. (1.66)

It is also called the Ioffe time [40]. When xBj decreases, the coherent length increases. For small xBj,

∆τcoh becomes much larger than the size of the nucleus. Therefore, at high energy, the virtual photon

does not interact directly with the nucleus. Instead, it will fluctuate into a quark-antiquark dipole,

which is hereafter referred to as an onium, before the scattering. This onium, possibly equiped with

quantum corrections, then interact with the gluonic field inside the nucleus (see Fig. 1.3). Moreover,

the positions of the quark and the antiquark are frozen in the transverse plane: the onium does not

change size during the interaction!
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γ∗(Q2)

h

q (z)

q̄ (1− z)

r

P

X

Figure 1.3: DIS in the dipole picture. The virtual photon splits into an onium (a qq̄ pair) of
tranverse size r before the interaction with the nucleus. The quark carries a momentum fraction z
of the photon, while the antiquark carries the remainder (1− z).

The small-xBj limit, which is mentioned in the previous paragraph, is equivalent to the limit of

high energy. Indeed, for large ŝ such that ŝ� Q2,M2, we have

ŝ+Q2 −M2

Q2
=

2P · q
Q2

=
1

xBj
. (1.67)

Therefore,
ŝ

Q2
≈ 1

xBj
. (1.68)

For the sake of convenience, we introduce a representation of the energy, which is called as the

rapidity Y defined by

Y ≡ ln
ŝ+Q2

Q2
≈ ln

1

xBj
. (1.69)

Since the virtual photon interacts with the nucleus via the onium, we can write down the following

dipole factorization for the total cross section σγ
∗A:

σγ
∗A
tot (Y,Q2) =

∫ 1

0

dz

∫
d2r⊥

∣∣Ψγ∗→qq̄(r, z;Q2)
∣∣2 σoniumtot (r⊥, Y ), (1.70)

|Ψγ∗→qq̄(r, z;Q2)|2 is the probability density for the photon with the virtuality Q2 to dissociate into

an onium of transverse size r ≡ |r⊥| and a fraction z of the photon’s longitudinal momentum (their

expressions can be found in Refs. [31, 37, 38]; see also Chapter 4). The quantity σoniumtot (r, Y ) is the

total cross section of the scattering of an onium of transverse size r at the total relative rapidity Y .

By the optical theorem, it is related to the forward elastic scattering amplitude T1 by

σoniumtot (r⊥, Y ) = 2

∫
d2b⊥T1(r⊥, b⊥, Y ). (1.71)

In this thesis, we shall thoroughly assume the impact parameter independence in such a manner
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1.4. DIPOLE EVOLUTION AND BFKL EQUATION

that the b-integration results in an overall constant σ0, σoniumtot (r, Y ) = σ02T1(r, Y ). This is basically

a good approximation for centered scatterings off a large, homogeneous target. From Eq. (1.70), it

is important to understand the scattering process from the onium level at high energy. The studies

of the onium-nucleus scattering are the main discussions of the work presented in this thesis.

1.4 Dipole evolution and BFKL equation

As mentioned in the previous section, the onium-nucleus scattering is the backbone of the high-

energy DIS in the dipole picture. The onium may interact with the gluonic state of the nucleus by

its bare state or its evolved state by the virtue of quantum corrections, depending on the setting.

In this thesis, we are interested in the frame where the onium is highly evolved. Therefore, it is

essential to understand the wave function of the onium subject to the high energy evolution.

1.4.1 High-energy evolution of the onium

At x+ = −∞, the onium is a bare color-singlet quark-antiquark dipole. Therefore, its asymptotic

state can be written as

|Ψ〉−∞ =

∫
dk

2(p+ − k+
)
φ

(0)
rs
ij

(k⊥, ζ)|q(k; r, i)q̄(p− k; s, j)〉, (1.72)

where |q(k; r, i), q̄(p−k; s, j)〉 is the qq̄ state in which the quark of color index i carries a momentum

k and has the helicity r, while p−k, s and j are of the antiquark, and ζ ≡ k+
/p+ is the longitudinal

momentum fraction carried by the quark. For the sake of convenience, in Eq. (1.72), we use the

following notation for the integral measure:

dk ≡ dk+d2k⊥

(2π)32k+
Θ(k+). (1.73)

At the observation time x+ = 0, the wave function of the onium can be dressed by gluons by the

virtue of quantum radiation. Since we consider small-xBj limit, in which only soft gluon emissions

are taken into account, the quark contribution is negligible. Using Eq. (1.50), we can write the state

of the onium at x+ = 0 as

|Ψ〉0 = |Ψ〉−∞ +
∑

λ,a

∫
dkdl

2(p+ − k+ − l+)
φ

(1)
λrs
aij

(k⊥, l⊥, ξ, ξ′)|q(k; r, i)q̄(p− k − l; s, j)g(l;λ, a)〉
︸ ︷︷ ︸

one gluon

+ · · · ,

(1.74)

where the second term is the lowest-order correction taking into account one-gluon emission. The

momenta l, k, and p−k− l are correspondingly of the emitted gluon, quark and the antiquark. The

indices λ and a are the polarization and the color index of the gluon. ξ = k+/p+ and ξ′ = l+/p+ are

the momentum fractions carried by the quark and the gluon, respectively. Higher-order terms are
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QCD evolution of hadronic matter toward high energy

corresponding to further gluon emissions in the Fock state of the onium. In the above formula, the

quantum numbers of quark and antiquark are suppressed. We are going to explore the quantum

fluctuations in the onium’s state from the lowest order.

One-gluon emission

p− k − l,y

k,x

l, z

p

- k

k
p

(a)

p− k − l,y

k,x

l, z

p

- k

k
p

(b)

Figure 1.4: Real one-gluon emission either from (a) quark or (b) antiquark of the onium.

Using Eq. (1.51) and keeping only the lowest-order term, the wave function of the onium with a

single emitted gluon is given by

φ
(1)
λrs
aij

(k⊥, l⊥, ξ, ξ′) =
∑

r0,s0
i0,j0

∫
dk

2(p+ − k+
)

× 〈q(k; r, i)q̄(p− k − l; s, j)g(l;λ, a)|Hqqg
int |q(k; r0, i0)q̄(p− k; s0, j0)〉

(p− k)− + (k)− − k− − l− − (p− k − l)− φ
(0)
r0s0
i0j0

(k⊥, ζ),

(1.75)

where k is the momentum of the quark before the gluon emission. The Hamiltonian Hqqg
int is the

quark-gluon coupling term (1.40),

Hqqg
int =

∫

Σ

dx+d2x⊥ : gsψ̃γ
µÃaµt

aψ̃ :, (1.76)

where as usual, the operators are subject to the normal ordering (: O :). Now notice that

|q(k; r, i)q̄(p− k − l; s, j)g(l;λ, a)〉 = aλ†a (l)bi†r (k)dj†s (p− k − l)|0〉,

|q(k; r0, i0)q̄(p− k; s0, j0)〉 = bi0†r0 (k)dj0†s0 (p− k)|0〉,

〈0|0〉 = 1,

(1.77)

where |0〉 is the normalized vacuum state. When expressing the field operators in the Hamiltonian

(1.76) in Fourier modes using Eqs. (1.34) and (1.36), only two terms survive in the bra-ket sandwich,
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1.4. DIPOLE EVOLUTION AND BFKL EQUATION

which can be written explicitly as follows

〈qq̄g|Hqqg
int |qq̄〉 = gs

∫
dk′dl′dh′〈0|aλa(l)bir(k)djs(p− k − l)bi

′†
r′ (k

′)aλ
′†
a′ (l′)bj

′

s′(h
′)bi0†r0 (k)dj0†s0 (p− k)|0〉

× ūr′(k′)/ελ′(l′)ta
′
us′(h

′)

∫

Σ

dx+d2x⊥ei(
~k′+~l′−~h′)·~x

− gs
∫
dk′dl′dh′〈0|aλa(l)bir(k)djs(p− k − l)dj

′†
s′ (h′)aλ

′†
a′ (l′)di

′

r′(k
′)bi0†r0 (k)dj0†s0 (p− k)|0〉

× v̄r′(k′)/ελ′(l′)ta
′
vs′(h

′)

∫

Σ

dx+d2x⊥ei(
~h′+~l′−~k′)·~x.

(1.78)

Using associated (anti-)commutation relations for the creation and annihilation operators, after

some manipulations, we end up with following expression:

φ
(1)
λrs
aij

(k⊥, l⊥, ξ, ξ′) =gs(2π)3
∑

r0,s0
i0,j0





1

2(k+ + l+)

[
ūr(k)γµελ∗µ (l)taur0(k + l)

]
φ

(0)
r0s
i0j0

(k⊥ + l⊥, ξ + ξ′)δii0

(k + l)− − k− − l−

− 1

2(p+ − k+)

[
v̄s0(p− k)γµελ∗µ (l)tavs(p− k − l)

]
φ

(0)
rs0
i0j0

(k⊥, ξ)δjj0

(p− k)− − (p− k − l)− − l−



 .

.

(1.79)

The first term is corresponding to the case in which the gluon is emitted from the quark, while the

second one is from the antiquark (Fig. 1.4). The Kronecker deltas of quark color indices represent

the color rotation of (anti-)quark after emitting the gluon. Assuming the soft-gluon emission, i.e.

the gluon emission is eikonal, from Eqs. (1.30) and (1.35) together with some algebras, we get

ūr(k)γµελ∗µ (l)taur0(k + l) ≈ ūr(k)γµελ∗µ (l)taur0(k) = 2kµελ∗µ (l)δrr0 ,

v̄s0(p− k)γµελ∗µ (l)tavs(p− k − l) ≈ v̄s0(p− k)γµελ∗µ (l)tavs(p− k) = 2(p− k)µελ∗µ (l)δss0 .
(1.80)

In the light-cone gauge, the polarization vectors read

εµλ(l) = (0,
l⊥ · ε⊥λ
l+

, ε⊥λ ), (1.81)

and we will choose ε⊥λ to be real. The denominators containing light-cone energies can be evaluated

as

(k + l)− − k− − l− =
(k⊥ + l⊥)2

2(k+ + l+)
− (k⊥)2

2k+
− (l⊥)2

2l+
≈ −(l⊥)2

2l+
,

(p− k)− − (p− k − l)− − l− =
(p⊥ − k⊥)2

2(p+ − k+)
− (p⊥ − k⊥ − l⊥)2

2(p+ − k+ − l+)
− (l⊥)2

2l+
≈ −(l⊥)2

2l+
.

(1.82)
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In the end, the light-cone wave function of the onium taking into account one-gluon emission in the

momentum space reads

φ
(1)
λrs
aij

(k⊥, l⊥, ξ, ξ′) ≈ −2(2π)3gst
a l
⊥ · ε⊥λ
(l⊥)2

[
φ

(0)
rs
ij

(k⊥ + l⊥, ξ + ξ′)− φ(0)
rs
ij

(k⊥, ξ)

]
. (1.83)

Now we employ the mix representation by transforming Eq. (1.83) into the transverse coordinate

space while keeping the longitudinal component intact. One gets

φ̄
(1)
λrs
aij

(x⊥, y⊥, z⊥, ξ, ξ′) =

∫
d2l⊥

(2π)2

d2k⊥

(2π)2
φ

(1)
λrs
aij

(k⊥, l⊥, ξ, ξ′)eik
⊥·(x⊥−y⊥)+il⊥·(x⊥−z⊥)

= 2igst
aφ̄(0)

rs (x⊥ − y⊥, ξ)
[

(x⊥ − z⊥) · ε⊥λ
(x⊥ − z⊥)2

− (y⊥ − z⊥) · ε⊥λ
(y⊥ − z⊥)2

]
,

(1.84)

where φ̄ denotes for the transverse Fourier image of φ, and x⊥, y⊥ and z⊥ are the relative transverse

positions of the quark, the antiquark and the emitted gluon, respectively (see Fig. 1.4). To arrive at

the second line of Eq. (1.84), we employ the formula Eq. (B.22) in Appendix B and also suppress the

quark color indices in the wave function of the onium before emitting the gluon. Squaring the wave

function φ̄
(1)
λrs
aij

, summing over all possible quantum numbers and integrating over the longitudinal

momentum and over the transverse position of the gluon, the leading-αs order probability to find a

soft gluon in the wave function of the onium is then given by

∫ min(ξ,1−ξ)

ξ0

dξ′

ξ′

∫
d2r′

⊥αsCF
π2

r⊥
2

r′⊥2(r⊥ − r′⊥)2

∑

r,s

|φ̄(0)
rs (r⊥, ξ)|2, (1.85)

where αs = g2
s/(4π), r⊥ ≡ x⊥ − y⊥, r′⊥ ≡ x⊥ − z⊥. The factor CF = (N2

c − 1)/(2Nc) is the

fundamental Casimir. We see that, in the coordinate space, the wave function of the bare onium

totally factorizes. Furthermore, there are two types of logarithmic singularity occuring in Eq. (1.85).

The first type is the soft divergence corresponding to the limit ξ′ → 0. Therefore, we introduce an

IR cutoff ξ0 in the integration. The second one is realized when z⊥ approaches either x⊥ or y⊥. In

such cases we have collinear divergence.

Large-Nc limit

Let us now consider the onium wave function in the limit of large Nc, which was introduced by ’t

Hooft [41, 42]. As we shall shortly see, this limit will eliminate a class of diagrams which matter at

higher-order gluon emissions, which simplifies the construction of the onium wave function.
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We start with the Fierz identity for the SU(Nc) generator ta, which reads

taijt
a
kl =

1

2
δilδkj − 1

2Nc

δijδkl

i

l

j

k

=
1

2

i

l

j

k

− 1

2Nc

i

l

j

k

(1.86)

When the number of colors Nc is taken to be large, the second term in Eq. (1.86) is negligible. The

gluon is then equivalent to a zero-size quark-antiquark pair. In this limit, the emission of one soft

gluon of momentum fraction x at position z⊥ from the initial onium is essentially a dipole branching

process: the initial onium of size r⊥ ≡ x⊥−y⊥ splits into two daughter dipoles of size r′⊥ ≡ x⊥−z⊥
and r⊥ − r′⊥ (see Fig. 1.5). From Eq. (1.85), the probability of this process, up to dx and d2z⊥,

given by

ᾱ
dx

x

d2r′⊥

2π

r⊥
2

r′⊥2(r⊥ − r′⊥)2

︸ ︷︷ ︸
dp1→2(r⊥,r′⊥)

, (1.87)

with CF ' Nc/2 at large Nc and ᾱ ≡ (αsNc)/π. The dipole splitting rate dp1→2 in Eq. (1.87) can

be decomposed as

dp1→2(r⊥, r′⊥) ≡ 1

2π

r⊥
2

r′⊥2(r⊥ − r′⊥)2
d2r′⊥ =

1

2π

(
1

r′⊥2 +
1

(r⊥ − r′⊥)2
+

2r′⊥ · (r⊥ − r′⊥)

r′⊥2(r⊥ − r′⊥)2

)
d2r′⊥.

(1.88)

y⊥

x⊥

z⊥

(a)

x⊥

y⊥

z⊥

(b)

Figure 1.5: The large Nc limit of the Fig. 1.4

The first two terms in Eq. (1.88) is corresponding to the first and the second diagrams on the right

of Fig. 1.6, while the last term is from the last two inteference diagrams. The full dipole kernel is

represented by the diagram on the left of Fig. 1.6.

The emission of one soft gluon, or a single dipole branching, given by the probability (1.87) is

one step of the evolution of the dipole when boosting the bare onium to a higher rapidity. Instead

of the momentum fraction x, we can write the splitting probability in term of the evolution rapidity,
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= +

+ +

Figure 1.6: Squared onium wave function with a single soft gluon at large Nc. The dashed line
separates the wave function (to the left) from its complex conjugate (to the right).

i i′

j j′

large Nc'

i i′

j j′

1
4 −

i i′

j j′

1
4

Figure 1.7: Triple gluon vertex in the large Nc limit.

which is given by the logarithm of x, Y ≡ ln(1/x). The probability (1.87) can be rewritten as

ᾱdY dp1→2(r⊥, r′⊥), (1.89)

which is the probability of dipole branching into a pair of dipoles of sizes r′⊥ and r⊥−r′⊥ up to d2r′⊥

when advancing the rapidity by a step dY . This one-gluon emission is the first-order modification

to the wave function of the onium in the leading-αs ln(1/x) approximation (LLA).

Moving on to the higher-order corrections requires the triple-gluon vertex. In the eikonal limit,

both the quark-gluon and the triple-gluon vertices are the same, in particular of the form 2gsk · ε,
where kµ and εµ are the momentum and the polarization of the emitted soft gluon, respectively. Fur-

thermore, in the large-Nc limit, the triple gluon vertex, as shown in Fig. 1.7, has two configurations:

the planar color flow (the first diagram on the right of Fig. 1.7), and the non-planar one (the second

diagram on the right of Fig. 1.7). When taking the trace of color matrices, which is tantamount to

connect i and j, and i′ and j′ in Fig. 1.7, the former consists of three color loops (N3
c ) and hence, its

contribution is of order (αsNc)
2, after averaging over all colors. Meanwhile, the contribution from

the non-planar diagram is of order (αsNc)
2/N2

c , which is suppressed by the square of Nc. The triple

gluon vertex can then be represented by the planar configuration at large Nc, which is similar to

the quark-gluon coupling. In general, in diagrams of the same order of αsNc, non-planar diagrams

are suppressed by powers of Nc. Therefore, we can neglect all non-planar diagrams at large Nc.

This is an important consequence of the large Nc limit, which greatly simplifies the analyses of the

evolution of the onium Fock state.
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Higher-order corrections

When adding additional gluons to the Fock state of the onium, to obtain contributions at the LLA,

a gluon emitted later in the light-cone time must be softer than another gluon emitted earlier. In

other words, there should be a strong ordering in the light-cone longitudinal momenta of gluons,

l+1 � l+2 � l+3 � · · · , in accordance to their emission times (see, for e.g., Fig. 1.8). Consequently,

the diagrams containing instantaneous interaction vertices are subleading.

l1

l3

l2

x+

l+1 � l+2 � l+3

Figure 1.8: An example of a LLA diagram. The minimal value for the longitudinal momenta of the
emitted soft gluons is fixed by the total rapidity of the evolution.

The treatment of the higher-order soft-gluon emissions can be simplified due to the following

facts. First, as in Eq. (1.85), in the transverse coordinate space each step of evolution well factorises

from the previous step. Second, the eikonal emissions of gluons from a quark and from a gluon can

be treated identically. Finally, since the non-planar diagrams are suppressed, each subsequent dipole

in the Fock state of the onium at each evolution step evolves independently. Therefore, in the large-

Nc and eikonal limits, the evolution of the onium toward high energy (or high rapidity) is essentially

the iteration of dipole branching (Fig. 1.9). Eventually, the Fock state of the onium is a stochastic

set of dipoles with different transverse sizes.

→ → · · · →
rk

Figure 1.9: A realization of the squared wave function of the evolved onium at large Nc.

The formalism presented in this section is referred to as Mueller’s color dipole model [32].

Knowing the structure of the wave function of the onium subject to high energy evolution at LLA,

it is important to resum all the LLA terms. It was done by the virtue of evolution equations.

1.4.2 Dipole number and BFKL evolution

Consider an onium of size r evolved to a rapidity Y > 0. Let us denote by n(r, Y ;R) the mean

number of dipoles of (scalar) transverse size R in the Fock state of the onium r ≡ |r⊥|. We are

going to derive an equation to control the rapidity evolution n(r, Y ;R) at LLA.
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Let us start with a bare onium at Y = 0, and evolve it to Y + dY . After an evolution step

dY , there are two possibilities. In the first place, the bare onium can split into two dipoles of sizes

r′ ≡ |r′⊥| and |r⊥ − r′⊥|, with the probability given by Eq. (1.89). These two daughter dipoles

evolves in the rapidity interval of width Y , from dY to Y + dY . The total mean number of dipoles

then comes from the contributions of both offsprings. On the other hand, the initial onium may not

split and hence, the mean number of dipoles is unchanged after the boost dY . In this case, there

may be totally no soft-gluon emission in the wave function of the onium during the rapidity step

dY , or virtual emissions: the soft gluon is emitted and reabsorbed before dY . Therefore, the mean

number of dipoles at the rapidity Y + dY is given by

n(r, Y + dY ;R) = ᾱdY

∫
dp1→2(r⊥, r′⊥)

[
n(r′, Y ;R) + n(|r⊥ − r′⊥|, Y ;R)

]

+

[
1− ᾱdY

∫
dp1→2(r⊥, r′⊥)

]
n(r, Y ;R).

(1.90)

dY Y

n(|r⊥ − r′⊥|,Y; R)

n(r′,Y; R)

dY Y

n(r,Y; R)

Figure 1.10: Illustration of two terms in Eq. (1.90). The first one is due to the real emission, while
the second one represents the virtual correction.

Taking the limit dY → 0, the equation above turns into the following integro-differential evolu-

tion equation:

∂

∂Y
n(r, Y ;R) = ᾱ

∫
dp1→2(r⊥, r′⊥)

[
n(r′, Y ;R) + n(|r⊥ − r′⊥|, Y ;R)− n(r, Y ;R)

]
. (1.91)

Since at Y = 0, the onium is in the bare state, the initial condition for n reads n(r, Y = 0;R) =

δ
(
r
R

)
.

The equation (1.91) is known as the BFKL equation [7, 8] (see also Refs.[32, 43–45]) written in

the transverse coordinate space. Its more general form includes the impact parameter dependence.

However, as mentioned previously, we shall neglect such dependency in this thesis.

1.4.3 Solution to the BFKL equation

The equation (1.91) can be rewritten as

∂Y n(r, Y ;R) = KBFKL ⊗ n(r, Y ;R), (1.92)
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where KBFKL is the integral kernel in the BFKL equation, which acts on the mean dipole number

n. We observe that,

KBFKL ⊗
(
r2

R2

)γ
=

{
ᾱ

∫
d2r′⊥

2π

r2

r′2|r⊥ − r′⊥|2
[(

r′2

r2

)γ
+

( |r⊥ − r′⊥|2
r2

)γ
− 1

]}(
r2

R2

)γ
. (1.93)

We can rewrite the integral in the curly bracket as

∫
d2r′⊥

2π

{
r2

r′2|r⊥ − r′⊥|2
[(

r′2

r2

)γ
+

( |r⊥ − r′⊥|2
r2

)γ]
− r⊥ · r′⊥ + r⊥ · (r⊥ − r′⊥)

r′2|r⊥ − r′⊥|2
}

=

∫
dr′dθ

2π

r

r2 + r′2 − 2rr′ cos θ

[(
r′

r

)2γ−1

− cos θ

]
.

(1.94)

Performing the angular integration and putting u = r′/r, we obtain

∫ ∞

0

du
2u2γ − (u2 + 1) + |1− u2|

2u|1− u2| =

∫ 1

0

du
u2γ−1 + u1−2γ − 2u

1− u2
. (1.95)

Using the integral representation for the digamma function ψ(z) (the Appendix B), we end up with

the following final expression for the integral in Eq. (1.93), which we shall hereafter denote by χ(γ):

χ(γ) = 2ψ(1)− ψ(γ)− ψ(1− γ). (1.96)

Therefore, the functions (r2/R2)γ are the eigenfunctions of the BKFL kernel, corresponding to the

eigenvalues ᾱχ(γ). The function χ(γ) has simple poles at integers, γ = k, k ∈ Z. The principal

branch of χ(γ) lies on the domain 0 < Re(γ) < 1. A graphical illustration for real arguments

showing its principal branch and two other branches on both sides of the principal one is plotted in

Fig. 1.11.

With the help of the eigenfunctions, the general solution of the BFKL equation (1.91) can be

written as

n(r, Y ;R) =

∫ c+i∞

c−i∞

dγ

2πi

(
r2

R2

)γ
ñ(γ, Y ), (1.97)

with c a real constant. The coefficient function ñ(γ, Y ) satisfies the following differential equation:

∂Y ñ(γ, Y ) = ᾱχ(γ)ñ(γ, Y ). (1.98)

with the initial condition ñ(γ, Y = 0) = 1. Consequently, ñ(γ, Y ) is given by

ñ(γ, Y ) = eᾱχ(γ)Y ; (1.99)

and the solution (1.97) becomes

n(r, Y ;R) =

∫ c+i∞

c−i∞

dγ

2πi

(
r2

R2

)γ
eᾱχ(γ)Y . (1.100)
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Figure 1.11: The function χ(γ) on the real domain. The principal branch is on the range (0, 1).

Now let us evaluate the mean number of dipoles for a special case in which r/R� 1. In this limit

the integral in the solution (1.100) is dominated by the region γ ∼ 1, and then the eigenfunction

χ(γ) can be approximated as χ(γ) ' 1/(1− γ). Eq. (1.100) can be rewritten as

nr�R(r, Y ;R) '
∫ c+i∞

c−i∞

dγ

2πi
exp

[
γ ln

r2

R2
+

ᾱY

1− γ

]
. (1.101)

The saddle point is located at

γSD = 1−
√

ᾱY

ln(R2/r2)
, (1.102)

provided that ln(R2/r2) � ᾱY . Setting c = γSD and performing the integration in Eq. (1.101) in

the saddle point approximation, one yields

nDLA(r, Y ;R) ' r2

2R2

(ᾱY )1/4

[ln(R2/r2)]3/4
exp

[
2

√
ᾱY ln

R2

r2

]
(1.103)

This solution is referred to as the double logarithmic approximation (DLA), as it resums two large

logarithms per each power of ᾱ: ᾱ ln(1/x) ln(R2/r2).

When ln(R2/r2) is not large, and hence is not important to resum, but ᾱ ln(1/x) is still large,

the integration in Eq. (1.100) is dominated by the saddle point at χ′(γc) = 0, or γc = 1/2. Using

the saddle point approximation with the contour being the line parallel to the imaginary axis and
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passing through the saddle point, we get the following result:

nLLA(r, Y ;R) ' r

R
eᾱχ(

1
2)Y

exp

[
− ln2 r2

R2

2χ′′(1/2)ᾱY

]

√
2πχ′′(1/2)ᾱY

(1.104)

with χ(1/2) = 4 ln 2 and χ′′(1/2) = 28ζ(3) (ζ(z) is the Riemann zeta function). We see that the

density exhibits an exponential growth in the rapidity with the slope αP−1 ≡ ᾱχ(1/2). This slope is

usually referred to as the intercept of the BFKL pomeron, in reference to the Regge phenomenology

(for a review, see [46]).

1.5 Summary

We close this chapter by summarizing some remarks. The process of deep-inelastic scattering

at high energy can be conveniently described using the dipole formulation in which the virtual

photon interacts with the target via its onium state. This formulation enables us to turn the

discussion of virtual photon-hadron scattering into that of the onium-nucleus interaction, which

,to a certain extent, requires the understanding of the onium wave function at high energy. The

latter is dominated by soft gluons and turns out, in the large Nc limit, to be a set of color dipoles

of various sizes. The resummation of small-x gluon emissions at the leading logarithmic accuracy

can be done by the virtue of the linear BFKL evolution equation. The discussions in this chapter,

especially on the onium wave function at high energy, are the basis for further discussions in the

thesis, which are mainly on the onium-nucleus scattering.
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QCD evolution in analogy with

branching-diffusion processes

Contents

2.1 Nuclear scattering of onia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1.1 Balitsky-Kovchegov evolution equation . . . . . . . . . . . . . . . . . . . 32

2.1.2 Solution to the BK equation . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.1.3 Dual intepretation of the BK equation . . . . . . . . . . . . . . . . . . . 38

2.2 Dipole evolution and branching random walk . . . . . . . . . . . . . . . . . . . . 39

2.2.1 Mapping the BK equation to the F-KPP equation . . . . . . . . . . . . . 39

2.2.2 F-KPP equation and branching random walks . . . . . . . . . . . . . . . 41

2.2.3 The BK equation in the Fisher-KPP universality class . . . . . . . . . . 45

2.3 Particles in the tip of BRW: a Monte-Carlo algorithm . . . . . . . . . . . . . . . 46

2.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.3.2 Generating particles in the tip of a BRW . . . . . . . . . . . . . . . . . . 47

2.3.3 Continuous limit: Conditioning the BBM . . . . . . . . . . . . . . . . . . 52

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

In the previous chapter, we dealt with the wave function of an onium subject to a high-energy

evolution. In the present chapter, we shall introduce the Balitsky-Kovchegov (BK) equation [17, 18],

which governs the high-energy onium-nucleus interaction, and demonstrate its relationship to the

Fisher-Kolmogorov-Petrovsky-Piscounov (F-KPP) equation [47, 48], which describes the reaction-

diffusion processes in statistical physics. We shall then report on one of our original contributions

[25]. In particular, we will present a Monte-Carlo algorithm to generate particles of a branching

random walk (BRW) in the vicinity of a leading particle, or the “tip” of the BRW, which allows to

investigate the particle density in the tip as well as the structure of the evolution.
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2.1. NUCLEAR SCATTERING OF ONIA

2.1 Nuclear scattering of onia

2.1.1 Balitsky-Kovchegov evolution equation

Consider the scattering of an onium of size r off an nucleus of mass number A at total relative

rapidity Y . We denote by S(r, Y ) the S-matrix elements for that scattering process. At high

energy, cross sections are purely absorptive, so the S-matrix elements are real. To remind, we

assumed that S depend neither on the impact parameter nor on the orientation of the dipole in the

transverse plane.

The evolution equation for S can be established using the same technique as for the mean

number of dipoles n. Let us stay in the rest frame of the nucleus, and boost the onium to the

rapidity Y + dY . In this frame, S(r, Y ) can be intepreted as the probability that an onium of size r

evolving to the rapidity Y does not interact with the nucleus at rest. After an evolution step dY at

the beginning of the dipole evolution, the initial onium r may split into two dipoles of sizes r′ and

|r⊥− r′⊥|, with the probability given by Eq. (1.89); or it may stay unchanged. Hence, the S-matrix

elements at Y + dY , S(r, Y + dY ), reads

S(r, Y +dY ) = ᾱdY

∫
dp1→2(r⊥, r′⊥)S(r′, Y )S(|r⊥−r′⊥|, Y )+

[
1− ᾱdY

∫
dp1→2(r⊥, r′⊥)

]
S(r, Y ).

(2.1)

Taking the limit dY → 0, S(r, Y ) solves the following evolution equation:

∂Y S(r, Y ) = ᾱ

∫
dp1→2(r⊥, r′⊥)

[
S(r′, Y )S(|r⊥ − r′⊥|, Y )− S(r, Y )

]
. (2.2)

Equivalently, one can write the evolution equation for the forward elastic scattering amplitude

T1(r, Y ) = 1− S(r, Y ), which reads

∂Y T1(r, Y ) = ᾱ

∫
dp1→2(r⊥, r′⊥)

[
T1(r′, Y ) + T1(|r⊥ − r′⊥|, Y )− T1(r, Y )

−T1(r′, Y )T1(|r⊥ − r′⊥|, Y )
]
.

(2.3)

The equations (2.2) and (2.3) are two equivalent forms of the Balitsky-Kovchegov (BK) nonlinear

evolution equation [17, 18] written for the S-matrix elements and the forward elastic scattering

amplitude, respectively. From now on, we shall refer to the former as the S-type BK equation,

and to the latter as the T-type BK equation. If one neglects the nonlinear term, the T-type BK

equation (2.3) becomes the BFKL equation for the forward elastic scattering amplitude. The initial

conditions for S and T are scattering profiles determined at a particular rapidity Y0. Normally, they

are set at zero rapidity, which can be chosen, for example, to be the McLerran-Venugopalan (MV)

[49, 50] amplitude

T1(r, Y = 0) = 1− S(r, Y = 0) = 1− exp

[
−r

2Q2
A

4
ln

(
e+

1

r2Λ2
QCD

)]
, (2.4)
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or the Golec-Biernat-Wusthoff (GBW) [51, 52] amplitude

T1(r, Y = 0) = 1− S(r, Y = 0) = 1− exp

[
−r

2Q2
A

4

]
, (2.5)
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r = 1/QA
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Figure 2.1: Two initial conditions for the BK equation: the MV model (dashed curve) and the
GBW model (solid curve). The inverse saturation scale 1/QA is shown, which separates the T1 ∼ 1
regime from the T1 ∼ 0 regime. Parameters are set as QA = 1 GeV and ΛQCD = 0.2 GeV.

where the A-dependent momentum QA is called the saturation momentum characteristics of the

nucleus. In such models, the scattering amplitude monotonically decreases as the size r becomes

smaller, and asymptotically reaches 1 when r → ∞ (black-disk limit) and 0 when r → 0 (color

transparency limit). The transition between the two regimes T1 ∼ 1 and T1 ∼ 0 occurs around r ∼
1/QA (see Fig. 2.1). Due to the evolution, the saturation scale will acquire a rapidity dependence,

as we shall shortly see.

Before finishing this paragraph, let us write the T-type BK equation (2.3) in the transverse

momentum space by the following Fourier transformation

T̃1(k⊥, Y ) =

∫
d2r⊥

2πr2
e−ik

⊥·r⊥T1(r, Y ) =

∫ ∞

0

dr

r
J0(kr)T1(r, Y ), (2.6)

which shows that T̃1 depends only on the magnitude of k⊥, k ≡ |k⊥|. We first deal with the linear

BFKL sector of Eq. (2.3). Expressing T1(r, Y ) by the virtue of the inverse Mellin transformation,

one obtained:

T̃1(k⊥, Y ) =

∫ 1
2

+i∞

1
2
−i∞

dγ

2πi
Tγ(Y )

∫ ∞

0

d(rQA)(rQA)2γ−1J0(kr)

=

∫ 1
2

+i∞

1
2
−i∞

dγ

2πi
Tγ(Y )22γ−1

(
k

QA

)−2γ
Γ(γ)

Γ(1− γ)
.

(2.7)
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Reminding that (rQA)2γ are eigenfunctions of the BFKL kernel with the eigenvalues ᾱχ(γ), we have

∫ ∞

0

dr

r
J0(kr)KBFKL ⊗ T1(r, Y ) = ᾱ

∫ +∞

0

dr

r
J0(kr)

∫ 1
2

+i∞

1
2
−i∞

dγ

2πi
χ(γ)(rQA)2γTγ(Y )

= ᾱ

∫ 1
2

+i∞

1
2
−i∞

dγ

2πi
Tγ(Y )22γ−1χ(γ)

(
k

QA

)−2γ
Γ(γ)

Γ(1− γ)
= ᾱχ(−∂L)T̃1(k⊥, Y ),

(2.8)

where L ≡ ln(k2/Q2
A).

For the nonlinear term, its Fourier transform reads

ᾱ

∫
d2r⊥

2πr2
e−ik

⊥·r⊥
∫
d2r′⊥

2π

r2

r′2|r⊥ − r′⊥|2T1(r′, Y )T1(|r⊥ − r′⊥|, Y )

= ᾱ

∫
d2r′⊥

2πr′2
e−ik

⊥·r′⊥T1(r′, Y )

∫
d2(r⊥ − r′⊥)

2π|r⊥ − r′⊥|2 e
−ik⊥·(r⊥−r′⊥)T1(r2, Y ) = ᾱ

[
T̃1(k, Y )

]2

.

(2.9)

To the end, the BK equation in the transverse momentum space is given by

∂Y T̃1(k, Y ) = ᾱχ(−∂L)T̃1(k, Y )− ᾱT̃ 2
1 (k, Y ). (2.10)

One can easily observe that, the linear parts of the BK equations in the coordinate and momentum

spaces are similar. In particular, the coordinate-space BK equation in the linear regime reads

∂Y T1(ρ, Y ) = ᾱχ(−∂ρ)T1(ρ, Y ), (2.11)

with ρ = ln [1/(r2Q2
A)].

2.1.2 Solution to the BK equation

a. General properties of the solution

The BK equation (2.3) has two fixed points: the stable T1 = 1 and the unstable T1 = 0. In the

vicinity of the latter, the amplitude is small, T1 � 1, and one can neglect the nonlinear term in

Eqs. (2.3) and (2.11). The BK equation then becomes the BFKL equation, and the amplitude

grows exponentially as in Eq. (1.104), T1 ∼ eᾱχ(1/2)Y . When T1 approaches the stable fixed point,

the nonlinear term becomes important. The effect of this term is to compensate the growth of the

amplitude, and to cause it to saturate at the value T1 = 1 when Y → ∞. In other words, the

nonlinear term in the BK equation comes from the requirement of the unitarity of the scattering

amplitude.

Therefore, the scattering amplitude T1(r, Y ) solving the BK equation is a smooth curve con-

necting two states T1 = 1 and T1 = 0. The transition between two limits occurs at some scale

rs = 1/Qs(Y ), where Qs(Y ) is the saturation momentum at the rapidity Y . The value of the latter

at Y = 0 is the momentum QA in the initial condition.
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b. Asymptotic solution outside the saturation region

Let us now derive a solution for the BK equation at an asymptotic large rapidity for the case T1 � 1,

taking into account the saturation correction near r ∼ 1/Qs(Y ). We begin with the linear equation

(2.11) whose general solution reads

T1(ρ, Y ) =

∫ 1/2+i∞

1/2−i∞

dγ

2πi
Tγ exp [−γ (ρ− v(γ)ᾱY )] , (2.12)

where v(γ) = χ(γ)/γ. The solution Eq. (2.12) can be interpreted as a linear superposition of

elementary travelling waves of the form e−γ(ρ−v(γ)ᾱY ). They propagate at different velocities given

by v(γ). The minimum velocity of such waves is v(γ0), with 0 < γ0 < 1 solving the equation

v′(γ0) = 0⇔ χ′(γ0) =
χ(γ0)

γ0

. (2.13)

In numerical values, γ0 ≈ 0.6275, χ(γ0) ≈ 3.0645, χ′′(γ0) ≈ 48.5176.

Now let us expand the kernel χ(−∂ρ) around γ0 and truncate the series at the second-order

term. This truncation would limit the applicability of the approach: in particular, it does not work

in the DLA limit. The equation (2.11) then becomes

∂Y T1(ρ, Y ) = ᾱχ(γ0)∂Y T1(ρ, Y )− ᾱχ′(γ0)(∂ρ + γ0)T1(ρ, Y ) +
1

2
ᾱχ′′(γ0)(∂ρ + γ0)2T1(ρ, Y ). (2.14)

The equation (2.14) is the so-called diffusive approximation of the BFKL equation. It is equivalent

to saddle point method, with the saddle point located at γ0. We find the solution to Eq. (2.14) in

the form

T1(ρ, Y ) = e−γ0∆G(∆, Y ), (2.15)

where ∆ ≡ ρ− v(γ0)ᾱY . From Eq. (2.14), the function G solves the following diffusion equation:

∂YG(∆, Y ) =
1

2
ᾱχ′′(γ0)∂2

∆G(∆, Y ). (2.16)

The presence of the diffusion equation is natural: the dipole evolution is essentially a dipole branch-

ing process in which the subsequent dipoles diffuse in size. For the initial condition, we can approx-

imate the MV or the GBW conditions by a step function at ρ = 0. Then the function G at Y = 0

can be approximated by a Dirac delta function,

G(∆, Y = 0) = δ(∆). (2.17)

The diffusion equation (2.16) with the initial condition (2.17) has the following solution:

1√
2πχ′′(γ0)ᾱY

exp

(
− ∆2

2χ′′(γ0).ᾱY

)
. (2.18)
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For the nonlinear term, it is challenging to treat it in a direct way. Instead, we notice that its effect

is to tame the exponential growth of the amplitude predicted by the linear BFKL evolution. The

evolution is then driven by the linear kernel. We can treat the nonlinear effect on the solution by

putting an absorptive boundary which moves as the rapidity increases. In particular, we require

that

G(∆ = −C, Y ) = 0, (2.19)

where C is a constant. To satisfy this boundary condition, one should substract from the solution

Eq. (2.18) a similar gaussian term centered at ∆ = −2C. This is the basic idea of the method of

image. Consequently, the solution for G in the presence of the absorptive boundary (2.19) is given

by

G(∆, Y ) =
1√

2πχ′′(γ0)ᾱY

[
exp

(
− ∆2

2χ′′(γ0)ᾱY

)
− exp

(
− (∆ + 2C)2

2χ′′(γ0)ᾱY

)]
. (2.20)

For ∆ and C small compared to
√
ᾱY , the amplitude T1 reads

T1(ρ, Y ) ' cT
∆ + C

(ᾱY )3/2
e−γ0∆ exp

(
− ∆2

2χ′′(γ0)ᾱY

)

= cT (ρ− v(γ0)ᾱY + C) e
−γ0

(
ρ−v(γ0)ᾱY+ 3

2γ0
ln(ᾱY )

)
exp

(
−(ρ− v(γ0)ᾱY )2

2χ′′(γ0)ᾱY

)
.

(2.21)

We require the amplitude is a constant of order unity along the saturation line ρ = ρs ≡ ln(Q2
s(Y )/Q2

A).

To this aim, we pull back the boundary by 3/(2γ0) ln(ᾱY ). Eq. (2.21) then becomes

T (ρ, Y ) ' cT (ρ− ρs + const)e−γ0(ρ−ρs) exp

[
− (ρ− ρs)2

2χ′′(γ0)ᾱY

]
, (2.22)

where

ρs = v(γ0)ᾱY − 3

2γ0

ln(ᾱY ). (2.23)

Returning to the physical variables, the forward elastic scattering amplitude T1(r, Y ) solving the

BK equation at large rapidity is given by

T1(r, Y ) ' cT

[
ln

1

r2Q2
s(Y )

+ const

] (
r2Q2

s(Y )
)γ0 exp

[
− ln2(r2Q2

s(Y ))

2χ′′(γ0)ᾱY

]
, (2.24)

and the saturation momentum reads

Q2
s(Y ) = Q2

A exp

(
ᾱχ′(γ0)Y − 3

2γ0

ln(ᾱY )

)
. (2.25)

The solution (2.24) is valid for 1 < ln(1/r2Q2
s(Y )) <

√
χ′′(γ0)ᾱY , i.e. within the diffusion radius.

When ln(1/r2Q2
s(Y )) �

√
χ′′(γ0)ᾱY , we can neglect the gaussian term, and the dipole scattering

amplitude T1 effectively becomes a function of a single variable ln(1/r2Q2
s(Y )), which is referred

to as the scaling variable. This properties is known as the “geometric scaling”. It was manifested
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in the analysis of the HERA data on the electron-proton collision [53]. The geometric scaling of

the solution to the BK equation outside the saturation region was first presented in [54], but the

subleading term at large Y was incorrect therein. The derivation presented here is based on the

method in Ref. [55] by replacing the nonlinearity by an absorptive barrier. The results (2.24) and

(2.25) can also be obtained by exploiting the fact that the BK equation is in a universal class of

the reaction-diffusion equations (see below), and at large rapidity its solution converges to traveling

waves [56]. The geometric scaling is then corresponding to the traveling wave solution.

We have derived the solution to the BK equation for small onia outside the saturation region.

The solution deep inside the saturation domain, r � 1/Qs(Y ), can also be obtained by realizing

that, for such large onium’s sizes, T1 ≈ 1. Equivalently, the S-matrix is small, and one can neglect

the nonlinear term of in the BK equation (2.2) for the S-matrix. We can eventually obtain the

following expression [57]:

T sat1 (r, Y ) ' 1− S0 exp

[
− ln2(r2Q2

s(Y ))

2χ′(γ0)

]
. (2.26)

Several comments are in order. Firstly, the geometric scaling also manifests inside the saturation

regime. At very large onium’s size, the amplitude (2.26) approaches the black-disk limit value

T1 = 1. The unitarity is then preserved, as discussed previously. The amplitude (2.26) also grows

with the rapidity. However, this growth gets slower at larger rapidity or at larger onium’s size. At

asymptotic rapidity, it eventually terminates at the black-disk limit.

c. Numerical solutions

We now present numerical solutions to the BK equation, with the initial condition given by the MV

model (2.4) at the rapidity Y = 0. The initial saturation scale is chosen to be QA = 0.25 GeV.

Other parameters are set as in Appendix C.

The dipole scattering amplitude T1(r, Y ) is plotted in Fig. 2.2. As the rapidity Y increases, the

perturbation around the unstable state T1 = 0 moves toward the saturation value T1 = 1. It then

remains unchanged at this value. As a result, the solution is pushed forward to small onium sizes.

The asymptotic solution (2.24) can be visualized by plotting the function T1(r, Y )eγ0 ln(1/r2Q2
s(Y ))

as the function of the scaling variable ln(1/r2Q2
s(Y )) (see Fig. 2.3). We see that for a positive-

value domain of the scaling variable close to 0, the rescaled amplitude is roughly linear, which is

more evidently at higher rapidities. At small onium sizes far from the saturation line, the gaussian

suppression becomes significant.

We conclude this paragraph by reminding that, the BK equation in Eq. (2.3) (or equivalently

Eq. (2.2)) is written at leading order (LO). Its next-to-leading order (NLO) extension was already

known [58–65]. In addition, it was shown [66–70] that the BK equations at both LO and NLO could

describe HERA data on electron-proton collisions.
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Figure 2.2: Dipole scattering amplitude T1(r, Y ) at various rapidities. Due to the nonlinear evolu-
tion, the amplitude T1 is driven toward small values of r (horizontal arrow). Meanwhile, at a fixed
size r, the amplitude approaches the unitary limit as Y increases (vertical arrow).

2.1.3 Dual intepretation of the BK equation

From the above discussion, the BK equation (2.3) appears as the equation governing the nonlinear

evolution of the forward elastic scattering amplitude T1(r, Y ) of the nuclear scattering of an onium

with size r off a large nucleus at the total relative rapidity Y . In the restframe of the onium, this is

equivalent to the deterministic evolution of the set of gluons in the nucleus in rapidity characterized

by the nuclear saturation scale Qs(Y ). The scattering then just measures the opacity of this gluonic

system.

The BK equation also accepts another probabilistic interpretation in a frame where the onium

is evolved to, for e.g, a rapidity Ỹ ≤ Y . At the rapidity Ỹ , the Fock state of the onium in the

large-Nc limit is essentially a stochastic set of color dipoles of various sizes generated by the dipole

branching with probability given by Eq. (1.87). We define P (r, Ỹ ;R) as the probability of having

at least one dipole larger than R in the onium Fock state. It is then straightforward to show that,

the probability P (r, Ỹ ;R) solves the BK equation (2.3). The initial condition for P is given by

P (r, 0;R) = θ

[
ln
r2

R2

]
. (2.27)
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Figure 2.3: The dipole scattering amplitude T1(r, Y ) rescaled by e−γ0τ as a function of the scaling
variable τ = ln 1

r2Q2
s(Y )

at different values of rapidity.

Therefore, the BK equation is also the evolution equation for a measure of the stochastic evolution

of the onium Fock state. As we shall shortly see, although the initial conditions for T and P are

different, the asymptotic solutions at large rapidity for them fall into the same universality class.

One then can identify the QCD scattering amplitude T (r, Y ) with the probability P (r, Y ;R = 1/QA)

of having at least one dipole larger than the inverse saturation momentum of the nucleus at rest in

the onium Fock state at Y , starting from a bare dipole r at Y = 0,

T1(r, Y )
large Y' P (r, Y ; 1/QA). (2.28)

In the spirit of the probabilistic interpretation, the BK equation is an equation controlling the

rapidity evolution of an observable on a branching-diffusion process. It is therefore natural to relate

the QCD dipole evolution to branching random walks described in the statistical physics.

2.2 Dipole evolution and branching random walk

2.2.1 Mapping the BK equation to the F-KPP equation

We are going to show that, under the aforementioned diffusive approximation, the BK equation can

be mapped into a nonlinear partial differential equation which is well-known in the context of the
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2.2. DIPOLE EVOLUTION AND BRANCHING RANDOM WALK

statistical physics.

Let us return to the BK equation in the momentum space (2.10). In the diffusive approximation,

it reads

∂yT̃1 = −χ′(γ0)∂LT̃1 +
1

2
χ′′(γ0)(∂L + γ0)2T̃1 − T̃ 2

1

=
1

2
χ′′(γ0)∂2

LT̃1 + [γ0χ
′′(γ0)− χ′(γ0)] ∂LT̃1 +

1

2
γ2

0χ
′′(γ0)T̃1 − T̃ 2

1

(2.29)

where y ≡ ᾱY , and the relation γ0χ
′(γ0) = χ(γ0) is used. We perform the following change of

variables (y, L)→ (t, x) [71]:

y =
2

γ2
0χ
′′(γ0)

t,

L =
x

γ0

− 2 [γ0χ
′′(γ0)− χ′(γ0)]

γ2
0χ
′′(γ0)

t.

(2.30)

The equation 2.29 then becomes

γ2
0χ
′′(γ0)

2
∂tT̃1 =

γ2
0χ
′′(γ0)

2
∂2
xT̃1 +

γ2
0χ
′′(γ0)

2
T̃1 − T̃ 2

1 . (2.31)

Defining a new function U = [2/(γ2
0χ
′′(γ0))] T̃1, we end up with following equation for U :

∂tU(t, x) = ∂2
xU(t, x) + U(t, x)− U2(t, x). (2.32)

This equation shows the manifestation of the Galilean non-relativistic symmetry on the transverse

plane within the light-cone description (with the “time” variable t ∼ y and the “space” variable

x ∼ |k⊥|). It belongs to a family given by [48]

∂tU(t, x) = D∂2
xU(t, x) + F (U), (2.33)

where D is the diffusion coefficient, and F (U) is a smooth function satisfying following conditions:

F (0) = F (1) = 0,

F ′(0) = r > 0,

F (U) > 0 (0 < U < 1), F ′(U) < r (0 < U ≤ 1).

(2.34)

The general equation (2.33) is known as the F-KPP equation [47, 48] describing reaction-diffusion

processes. For a comprehensive review on the F-KPP equation, see Ref. [72].

We have presented a rigorous mapping between the QCD BK equation in the diffusive approx-

imation and the F-KPP equation in the context of the statistical physics. However, as the dipole

evolution is similar to branching-diffusion processes, it would be expected to have a more profound

relation between them. It is indeed the case: the BK equation is in the same universality class of

the F-KPP equation. We shall address this universality shortly, after discussing the emergence of

the F-KPP equation in a stochastic process of interest: one-dimensional branching random walk
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QCD evolution in analogy with branching-diffusion processes

(BRW).

2.2.2 F-KPP equation and branching random walks

a. General features of the solution to the F-KPP equation

We now consider the following particular form of the F-KPP equation:

∂tU(t, x) = D∂2
xU(t, x) + U(t, x)− U2(t, x). (2.35)

The F-KPP equation of the form (2.35) has two fixed points at U = 0 and U = 1. If we start by

a small perturbation in the vicinity of the latter, it will move back to that fixed point. Therefore,

U = 1 is called the stable fixed point. On the other hand, if we start with a small perturbation

around U = 0, it will grow towards U = 1. U = 0 is then the unstable fixed point of the equation.

At a sufficiently large time, U becomes close to unity and the nonlinear term is essential. In such

case, it tames the evolution and makes the solutions saturate at the stable fixed point U = 1. This

property of the solutions to the F-KPP equation is similar to those of the BK equation.

Let us now come into the so-called travelling wave solution of the F-KPP equation. First, we

notice that the eigenvalue of the linear kernel χF (∂x) ≡ D∂2
x+1 of the F-KPP equation corresponding

to the eigenfunction e−γx is given by

χF (γ) = Dγ2 + 1. (2.36)

We denote by γ0 the solution of the equation χF (γ) = γχ′F (γ), or γ0 = 1/
√
D.

We choose an initial condition such that it falls monotonically and smoothly from 1 to 0 as x

goes from −∞ to ∞. In addition, at large positive x, it behave as

U(0, x) ∼ e−βx, (β > γ0). (2.37)

For a certain point of x such that U(0, x)� 1, when the time elapses, the solution grows, and then

stops at U = 1, as discussed above. However, for larger values of x, the growth continues, and a

wave front establishes and moves toward large positive x as a traveling wave. The traveling wave

is characterised by its position X(t), which can be defined by, for e.g., the requirement U(t, x =

X(t)) = 1/2. At asymptotically large values of t, U is effectively a function of a single variable

x−X(t),

U(t, x) ' U (x−X(t)) , (2.38)

and the position of the front is given by:

X(t) = χ′F (γ0)t− 3

2γ0

ln t+O(1). (2.39)

This result constitutes a part of the Bramson’s theorem [73] for the traveling wave solution to

the F-KPP equation. We see that the characteristics of the traveling wave is determined by the
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2.2. DIPOLE EVOLUTION AND BRANCHING RANDOM WALK

linear kernel. Interestingly enough, the position of the front X(t) is similar to the logarithm of the

saturation scale (2.25) in the case of the BK equation, up to some appropriate substitutions.

b. A simple BRW

Consider a one-dimensional lattice labelled by x, with lattice spacing δx. Let us start with a single

particle located at x = 0 at time t = 0, and evolve the system forward in time. After a time step

δt, a particle at a site x can

(i) jump left or right with the same probability µ, or

(ii) duplicate with probability λ, or

(iii) remain unchanged with probability 1− 2µ− λ,

conditioned that 2µ+ λ < 1.

t + δt

t

δx

Figure 2.4: Elementary processes for a simple BRW: diffusion to adjacent sites and branching. The
case in which particle remains unchanged is not shown in this illustration.

We define by u(t, x) the probability to have at least one particle located to the right of position

x (including x) at time t (or after the evolution in the time period t). The equation for u(t+ δt, x)

can be obtained by tracking the initial particle at (t, x) = (0, 0) as follows:

Proba. to have particle(s) to the left of x at time t+ δt) =

(Proba. that the initial particle at t = 0 jumps left after δt)

× (Proba. to have particle(s) to the right of x+ δx after the time period t from δt to t+ δt)

+ (Proba. that the initial particle at t = 0 jumps right after δt)

× (Proba. to have particle(s) to the right of x− δx after the time period t from δt to t+ δt)

+ (Proba. that the initial particle at t = 0 duplicates after δt)

× (Proba. that at least one offspring generates particle(s) to the right of x

after the time period t from δt to t+ δt)

+ (Proba. that the initial particle at t = 0 does nothing)

× (Proba. to have particle(s) to the right of x after the time period t from δt to t+ δt).
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QCD evolution in analogy with branching-diffusion processes

The above rule can be written in terms of u and the probabilities λ and µ as follows:

u(t+ δt, x) = µ [u(t, x+ δx) + u(t, x− δx)] + λ
[
2u(t, x) (1− u(t, x)) + u2(t, x)

]

+ (1− 2µ− λ)u(t, x)

= u(t, x) + µ [u(t, x+ δx)− 2u(t, x) + u(t, x− δx)] + λ
[
u(t, x)− u2(t, x)

]
.

(2.40)

We set λ = δt and µδx2 = δt, and go to the continuous limit δt, δx → 0 (the limit of branching

Brownian motion (BBM)). The equation (2.40) then becomes

∂tu(t, x) = ∂2
xu(t, x) + u(t, x)− u2(t, x), (2.41)

which is exactly the F-KPP equation. As, we start with a single dipole at the origin, the initial

condition for u(t, x) is simply a step function,

u(0, x) = 1−Θ(x). (2.42)

In reference to the QCD dipole evolution, one can see that both the BK and the F-KPP equations

control the evolution of the probabilities of the same type: u(t, x) is analogous to P (r, Y ;R) defined

previously.

Before moving to the next case, let us derive an equation for the mean particle number 〈n(t, x)〉
on a site x at time t, starting from a single particle at (t, x) = (0, 0). The contribution to the mean

particle number 〈n(t+δt, x)〉 at t+δt comes from following contributions. First, a portion µ〈n(t, x)〉
is extracted from the total mean number 〈n(t, x)〉 by the diffusion either to the left or to the right

of the site x. A component λ〈n(t, x)〉 is added to 〈n(t, x)〉 due to the duplication. Furthermore,

µ〈n(t, x+ δx)〉 and µ〈n(t, x− δx)〉 particles from the sites x+ δx and x− δx, respectively, diffuse to

the site x after δt. Combining all such contributions, the equation for the mean number 〈n(t+δt, x)〉
reads

〈n(t+ δt, x)〉 = 〈n(t, x)〉 − 2µ〈n(t, x)〉+ λ〈n(t, x)〉+ µ [〈n(t, x− δx)〉+ 〈n(t, x+ δx)〉] . (2.43)

Similar to the above discussion, let us set λ = δt and µδx2 = δt, and take the limit δt, δx→ 0. The

time evolution of the mean particle number 〈n(t, x)〉 is given by

∂t〈n(t, x)〉 = ∂2
x〈n(t, x)〉+ 〈n(t, x)〉. (2.44)

Eq. (2.44) differs from the F-KPP equation by a nonlinear term. In the following example, we will

see that, by including a nonlinear recombination mechanism, this term can be recovered.

c. A BRW with recombination

We now introduce to the simple one-dimensional BRW defined aboved an additional recombination

process: two arbitrary particles located at the site x can recombine to become a single particle

43



2.2. DIPOLE EVOLUTION AND BRANCHING RANDOM WALK

at the same site with probability λ/N , where λ is the duplication rate as before and N is a new

parameter. Then the equation for the mean particle number at t+ δt reads

〈n(t+ δt, x)〉 = 〈n(t, x)〉 − 2µ〈n(t, x)〉+ λ〈n(t, x)〉+µ [〈n(t, x− δx)〉+ 〈n(t, x+ δx)〉]

− λ

N 〈n(t, x)(n(t, x)− 1)〉,
(2.45)

t + δt

t

δx

Figure 2.5: Elementary processes for a BRW with recombination: diffusion to adjacent sites, branch-
ing, and recombination. The case in which particle remains unchanged is not shown in this illus-
tration.

where the first four terms are the same to Eq. (2.43), and the last term encodes the recombination

mechanism. Due to the presence of the latter, this is not a closed equation. Now assuming that the

number of particles is large, we can employ the mean-field approximation and get

〈n(t+ δt, x)〉 = 〈n(t, x)〉 − 2µ〈n(t, x)〉+ λ〈n(t, x)〉+µ [〈n(t, x− δx)〉+ 〈n(t, x+ δx)〉]

− λ

N 〈n(t, x)〉2.
(2.46)

Taking the continuous limit as before, we arrive at the following equation:

∂t〈n(t, x)〉 = ∂2
x〈n(t, x)〉+ 〈n(t, x)〉 − 1

N 〈n(t, x)〉2. (2.47)

We rescale the mean particle number by N by introducing a novel function w(t, x) = 〈n(t, x)〉/N .

From Eq. (2.47), this rescaled mean particle number obeys the F-KPP equation,

∂tw(t, x) = ∂2
xw(t, x) + w(t, x)− w2(t, x). (2.48)

If we start with a single particle at the origin and take N to be a large number, the initial condition

for w is a small perturbation around the unstable fixed point. Following the previous discussions,

when the time is not sufficiently large such that the mean particle number is small compared to

N , the linear part of Eq. (2.48) dominates the evolution, and hence the recombination is negligible.

However, when the particle number becomes comparable to N , the contribution of the nonlinear

recombination effect is essential, causing w to saturate at the stable fixed point w = 1. Therefore,

N can be interpreted as the saturated value of the mean particle number, and the saturation is due

to the recombination.

The above-mentioned situation is in analogy to the QCD in the regime of high parton density. For

the latter, the QCD dynamics is dominated by saturation effects (including the gluon recombination)
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which kill certain partons resulted from the evolution (or, maybe more realistically, slow down their

splittings) and, hence, tame the rapid rise of the linear evolution. It is described by nonlinear

equations, for example the BK equation, which is analogous to the F-KPP mentioned above. In

the context of two BRW models hitherto, the BK and the F-KPP equations are similar in their

interpretations.

2.2.3 The BK equation in the Fisher-KPP universality class

Let us return to the QCD high-energy evolution. From previous discussions, there is very close

correspondance between it and the branching-reaction models introduced above. In the first place,

the dipole evolution is a branching-diffusion process: dipoles diffuse basically in the ln(1/r2) space

during the rapidity evolution. The dipole elastic scattering amplitude T (r, Y ), which is essentially

equal to the number of dipoles of size r in the onium Fock state multiplied by α2
s, is corresponding

to the rescaled particle density in a BRW with recombination.This saturation dynamics is also

observed in the model of BRW with recombination.

The BK equation and the F-KPP equation are also very similar. The F-KPP equation has two

interpretations as shown in two above BRW models, which are corresponding to two interpretations

of the BK equation discussed previously. More importantly, two equations have a lot in common in

their structure. They can be divided into linear and nonlinear parts: the linear parts are differential

kernels, and the nonlinear parts are quadratic. In addition, they have two fixed points at 0 and

1, with the former is unstable while the latter is stable. When the solutions are in the vicinity of

the former, the linear kernels dominate the evolution. The nonlinear corrections become important

when approaching the stable fixed point: the solutions hence saturate. In both QCD evolution and

a BRW model with recombination, saturation is shown to happen when the system becomes dense.

From these considerations, the BK equation is in the same universality class of the F-KPP

equation. One can make a correspondance between the two equations, as summarized in Table 2.1.

Table 2.1: The correspondance of the FKPP equation and the BK equation

Reaction-diffusion QCD dipole evolution
FKPP equation BK equation

Linear kernel χF (−∂x) χ(−∂ρ), ρ ≡ ln [1/(r2Q2
A)]

Evolution variable time t rescaled rapidity ᾱY
Diffusion space spatial axis x logarithmic transverse size ρ
Characteristics Wave front position X(t) Logarithmic saturation scale ln [Q2

s(Y )/Q2
A]

One can check this correspondance by looking into the asymptotic solution (2.22) of the BK

equation. In appropriate limits, it is actually in agreement with the travelling wave solution (2.39)

in the F-KPP case. The logarithmic saturation scale Eq. (2.23) is similar to the F-KPP front position

(2.39). In addition, the relevant initial conditions (either MV or GBW) for the BK equation, at
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small r (r � 1/QA), can be rewritten as

T1(r, Y = 0) ∼ 1− exp

[
−1

4
e
− ln 1

r2Q2
A

]
r�1/QA' 1

4
e
− ln 1

r2Q2
A , (2.49)

which is steeper than e
−γ0 ln 1

r2Q2
A , with γ0 defined in Eq. (2.13). Therefore, the asymptotic solution

of the BK equation outside the saturation region obeys the Bramson’s theorem for the travelling

wave solution of the F-KPP equation.

2.3 Particles in the tip of BRW: a Monte-Carlo algorithm

2.3.1 Motivation

BRW and its continuous limit, BBM, [74] are important stochastic processes which appear in many

contexts in different fields including physics, biology, chemistry, computer science and economical

science [75–80]. Particularly, from the discussions in the previous section, the QCD dipole evolution

is in analogy to one-dimensional BRW; and to some extent, one can replace the highly-evolved

onium state in the high-energy onium-nucleus scattering by a state created by a BRW.

As we shall see in the next chapters, the nuclear scattering of a small onium is dominatedly

triggered by largest dipoles in the onium Fock state. Such largest dipoles are corresonding to

particles located in the vicinity of the rightmost (or leftmost) particle of BRW (BBM), which

is referred to as the “tip” region. In many applications of BBM and BRW, it is important to

understand the distribution of particles residing on the tip [81–84]. From the first model of BRW

(BBM) presented in the previous section, the F-KPP equation can be used to characterize the tip;

therefore one method is to explore the solutions to the F-KPP equation. However, such method is

not omnipotent: for example, the genealogical structure of the rightmost particles [85] cannot be

obtained in this way.

One available method to study the tip of a BRW is to generate it and, then, measure observables

of interest from resulting realizations. Nevertheless, direct Monte Carlo simulations are impractical

for large time, due to the exponential increase of the number of particles with time. In addition,

it is almost impossible to use it to study the events in which the rightmost (or leftmost) particle is

far from its expected position, since they are particularly rare.

In the following, we shall report our work [25] on establishing a Monte Carlo algorithm to follow

only a tree of selected particles in the tip to cure the above issue. In particular, that algorithm

is designed to generate all particles which are close to the rightmost particle, when the latter is

conditioned to arrive to the right or exactly at some given position. This algorithm can be used

to study the tip in both typical (with the rightmost particle located in the vicinity of its expected

position) or rare events evolved to a very large time.
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2.3.2 Generating particles in the tip of a BRW

Model definition

We consider a one-dimensional BRW on the x axis with lattice spacing δx, and in discrete time

with step δt. The system starts with one single particle located at x = 0 at time t = 0. After each

time step, a particle at x can





jump from x to x+ δx probability pr,

jump from x to x− δx probability pl,

branch without moving probability r,

(2.50)

with pr + pl + r = 1. Let us denote by u(t, x) the probability to have at least one particle located to

the right of x at time t. Following a similar discussion as in Section 2.2.2, it satisfies the following

equation:
u(t+ δt, x) = plu(t, x+ δx) + pru(t, x− δx) + ru(t, x) [2− u(t, x)]

≡ Lu(x, t)− ru2(x, t),
(2.51)

with the initial condition u(0, x) = 1−Θ(x). L is a linear operator acting on u defined as follows:

Lu(x, t) ≡ plu(t, x+ δx) + pru(t, x− δx) + 2ru(t, x). (2.52)

Eq. (2.51) is in the universality class of the F-KPP equation. The mean position of the rightmost

particle is at mt, which reads

mt = χ′b(γ0)t− 3

2γ0

ln t+O(1), (2.53)

where χb(γ) is the eigenvalue of the linear operator L corresponding to the eigenfunction e−γx, in

analogy to Eq. (2.36), and γ0 solves χb(γ) = γχ′b(γ). The expression of χb(γ) is

χb(γ) =
1

δt
ln
[
pre

γδx + ple
−γδx + 2r

]
. (2.54)

We take a large time T , a position X, and a distance ∆. By the time evolution, a particle at an

intermediate time t < T will bring about descendant(s) at T , and among the latter, the rightmost

one is either to the right of X, to the left of X or exactly at X. For the sake of convenience, let us

define following particular sets of particles.

Definition 1. A particle is red if its rightmost offspring at T resides in [X,+∞).

Definition 2. A particle is orange if its rightmost offspring at T resides in [X −∆, X).

Definition 3. A particle is blue if its rightmost offspring at T resides in (−∞, X −∆).

(See Fig. 2.6). In addition, we introduce following notations:
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Figure 2.6: An illustration of the red, orange and blue particles.

• P(A): the probability for A to happen,

• P(A;B): the joint probability for A and B to happen together,

• P(A|B) = P(A;B)/P(B): the conditional probability for A to happen provided that B is

realized.

Ultimate goal

We now aim to generate all particles in the interval [X −∆,+∞), provided that the rightmost par-

ticle is located in [X,+∞). In other words, it is to track all the red and orange particles, starting

from an initial red particle. In a variant, the rightmost particle will be fixed exactly at X. The

algorithm is constructed as follows.

Generator

a. First goal: Tracing particles arriving in [X,+∞)

The first target of the algorithm is to keep track of the paths of all red particles in the BRW,

provided that the initial particle is red.

Let us define U(t, x) to be the probability that a particle at (t, x) is red. By definition, U(t, x)

is related to u(t, x) by

U(t, x) := P( is red ) = u(T − t,X − x). (2.55)

The probability that a particle at (t, x) is red and jumps right is

P( ; is red) = prU(t+ δt, x+ δx). (2.56)
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Then the probablity that a particle at (t, x) jumps right given that it is red reads

P( | is red) = pr
U(t+ δt, x+ δx)

U(t, x)
. (2.57)

Similarly, the probablity that a particle at (t, x) jumps left given that it is red is given by

P( | is red) = pl
U(t+ δt, x− δx)

U(t, x)
. (2.58)

In the case of a particle at (t, x) branching into two offsprings at (t+ δt, x), there are two relevant

situations. If those two offsprings are both red, then

P

(
red
red | is red

)
= r
U2(t+ δt, x)

U(t, x)
. (2.59)

Otherwise, only one of them is red. In the latter case, the conditional probability for a red particle

to branch into a red and a non-red (non-red = orange + blue) is

P

(
red
non-red | is red

)
= r

2U(t+ δt, x)− U2(t+ δt, x)

U(t, x)
. (2.60)

With Eq. (2.51), one can check that the sum of the conditional probabilities in Eqs. (2.57) to (2.60)

is unity. Those probabilities allow to generate realizations of the trajectories of all the red particles

given that the initial particle are red. In the last case given by the probability (2.60), we can ignore

the non-red child in the next evolution steps.

b. Second goal: Tracing particles arriving in [X −∆, X)

We can now extend the above algorithm to furthermore track the paths of all the particles arriving

in [X −∆, X) (the orange particles), in addition to the red ones.

Introduce V∆(t, x) as the probability that a particle at (t, x) is orange. V∆ is related to U by

V∆(t, x) := P( is orange ) = U(t, x+ ∆)− U(t, x) (2.61)

An orange particle can be created by the branching of a red particle. The conditional probability

for a red particle to branch into a red and a orange is

P

(
red
orange | is red

)
= r

2U(t+ δt, x)V∆(t+ δt, x)

U(t, x)
. (2.62)

Similarly,

P

(
red
blue | is red

)
= r

2U(t+ δt, x) [1− U(t+ δt, x+ ∆)]

U(t, x)
. (2.63)

Once the orange particles are created, we should follow their trajectories. Given that a particle is
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orange, it can jump right and left with following corresponding conditional probabilities:

P( | is orange) = pr
V∆(t+ δt, x+ δx)

V∆(t, x)
, (2.64)

P( | is orange) = pl
V∆(t+ δt, x− δx)

V∆(t, x)
. (2.65)

Additionally, it can branch into either two orange or one orange and one blue. Their correspond-

ing conditional probabilities read

P

(
orange
orange | is orange

)
= r
V2

∆(t+ δt, x)

V∆(t, x)
, (2.66)

P
(

orange
blue | is orange

)
= r

2V∆(t+ δt, x) [1− U(t+ δt, x+ ∆)]

V∆(t, x)
. (2.67)

In the cases given by probabilities (2.67) and (2.63), we ignore the further evolution of blue particles.

Combining the two goals, it is possible to generate realizations in which all the trajectories of the

particles arriving in [X −∆,+∞) at time T are tracked, provided that there is at least one particle

to the right of X.

To implement the algorithm, we present the state of the system at a given time t by two arrays

indexed by bins in the x axis containing the numbers of red and orange particles. To advance

the system from t to t + δt, one observes that on each bin in each array, the numbers of particles

undergoing the different possible events obey multinomial laws with parameters that we can compute

from u(t, x). This requires to integrate numerically Eq. (2.51) before the event generation begins.

We set the probabilities of the elementary processes to pr = pl = 1
2

(1− δt) , r = δt, and lattice

spacing to δt = 0.01 and δx = 0.1. Relevant front parameters for this model are γ0 = 1.43195 · · ·
and χb(γ0) = 1.99666 · · · . A realization of this conditioned BRW is shown in Fig. 2.7.

In order to validate the algorithm and its implementation, we measured the expected number of

particles at distance a from the rightmost particle. Based on the formalism developed in Ref. [82],

this observable can be computed using the formula

〈n(a)〉 = ∂2
a

∫
dxRa(t, x), (2.68)

where the function Ra(t, x) obeys the following equation:

R(t+ δt, x) = plR(t, x+ δx) + prR(t, x− δx) + 2r [1− u(t, x)]R(t, x), (2.69)

with u(t, x) defined in Eq. (2.51). The initial condition for R(t, x) reads

R(t = 0, x) =





1 for 0 ≤ x < a,

0 otherwise.
(2.70)

50



QCD evolution in analogy with branching-diffusion processes

0 5 10 15 20 25 30 35 40 45 50
0
10
20
30
40
50
60
70
80

expected
position mt

of the rightmost particle
x

t

X

X − ∆

Figure 2.7: A realization of the desired conditioned BRW up to T = 50 with X = 85.1 ' mt + 3
√
T

and ∆ = 5, where mt is the expected position of the rightmost particle at time t. The inset is a
zoom of the final times showing the red and orange particles. Figure is adapted from Ref. [25]

We solved Eqs. (2.51), (2.68) and (2.69) numerically and compared to the measured values from the

Monte Carlo simulation. The results shown in Fig. 2.8 exhibit a perfect agreement between both

methods within statistical uncertainties.
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0.01

0.1

1
X = mT

X = mT + 3
√

T

〈
n(a)

〉
e−γ0a

a

Figure 2.8: The expected number of particles 〈n(a)〉 at distance a from the tip particle, rescaled by
e−γ0a, as a function of a, for T = 400 and two values of X. The dotted are obtained from 3 × 106

realizations of the BRW generated by the established algorithm. The lines are from numerical
solutions obtained from Eqs. (2.51), (2.68) and (2.69). For a = 0, we removed 1 from the count of
particles. Figure is adapted from Ref. [25].

The above-presented algorithm enables the study of tip observables of a BRW for which no other

method is available to date. For example, we measured the distribution of the number of particles at

distance a to the left of the rightmost particle, in typical and rare realizations, for which a heuristic

calculation have been published recently [86]. The result is shown in Fig. 2.9.
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Figure 2.9: Rescaled tail distribution P(n ≥ 〈n〉z) as a function of the rescaled factor z for the
number of particles at distance a to the left of the rightmost particle with T = 400, for two values
of X and three values of a. The distribution of n is roughly exponential in the typical case (X = mt),
while it exhibits a much fatter tail for the rare configuration (X = mt + 3

√
T ). Figure is adapted

from Ref. [25].

c. Variant: Fixing the rightmost particle

Instead of letting the rightmost particle to be located in [X,+∞), we can vary the algorithm in

such a way that the rightmost offspring of the red particles is fixed exactly at position X. The

probability for a particle currently at (t, x) to reach (T,X) is

Ũ(t, x) := u(T − t,X − x)− u(T − t,X − x+ δx). (2.71)

Then following the same argument as above, the evolution probablities for these “new red” particles

are given by Eqs. (2.57) to (2.59) and (2.62) with U replaced by Ũ , and by Eq. (2.63) with the two

U outside the square brackets replaced by Ũ . With these new probabilities, one can follow “new

red” and orange particles (the definition of orange particle is kept the same).

2.3.3 Continuous limit: Conditioning the BBM

BBM is the continuous version of BRW. Passing to the continuous limit, each of the particles in the

above BRW model follows an independent Brownian motion, and branches with rate 1 (during each

infinitesimal time dt, each particle splits with probablility dt). The algorithm developed above can

be adapted to the BBM. We are going to discuss about it, with the goal being to offer a starting

point to analytical studies of the tip of the BBM, not to generate realizations.

Introduce as before the probability u(t, x) that the rightmost particle at t is on the right of x.

It satisfies the F-KPP equation

∂tu =
1

2
∂2
xu+ u− u2, (2.72)

with the initial condition u(0, x) = 1 − Θ(x). Eq. (2.72). The only difference compared to the
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previous version of the F-KPP equation (as in Eq. (2.41)) is in the diffusion coefficient, which would

not change the discussion. This version of the F-KPP equation is in fact the continuous limit of

the discrete equation (2.51) when the parameters pr, pl, r and (δt, δx) are set properly, for instant,

as in arriving at results shown in Figs. 2.8 and 2.9.

Given X and T , we define red particles as above. The probability of a particle at (t, x) to be

red is still U(t, x) = u(T − t,X − x). The conditional probability for a red particle to branch into

two red between t and t+ δt can be obtained from Eq. (2.59) when δt is infinitesimally small,

P

(
red
red | is red

)
= δt U(t, x) +O(δt2), (2.73)

with r = δt. Similarly, the conditional probability for a red particle to branch into a red and a

non-red is

P

(
red
non-red | is red

)
= δt 2 [1− U(t, x)] +O(δt2). (2.74)

The conditional probability that a particle at (t, x) moves during δt by ∆x ∈ [ε, ε + dε] (for a ∈
[b, b+ db] we will hereafter write a ∈ db for short) provided that it is red is

P (∆x ∈ dε | is red) =
e−

ε2

2δt√
2πδt

dε× U(t+ δt, x+ ε)

U(t, x)
. (2.75)

Multiplying the probability (2.75) by ε and integrating over ε, we obtain after expanding for small

δt the average drift distance of a red particle:

〈∆x | is red〉 = δt ∂x lnU(t, x) +O(δt2). (2.76)

With Eqs. (2.73) and (2.76), we thus obtain the following result:

“The trajectories of the particles in a BBM ending on the right of X (X included) at time

T , conditioned on the event that there is at least one of them, is a BBM with a space- and time-

dependent drift ∂x lnU(t, x) and a space- and time-dependent branching rate U(t, x).”

If orange particles are needed, one checks that a red particle branches out an orange particle

at rate 2V∆(t, x), that an orange particle branches into two orange at rate V∆(t, x), and that

orange particles have a drift ∂x lnV∆(t, x).

Similar to the BRW, one can modify the algorithm to fix the rightmost particle at X in the

BBM. In that case, the probability for a particle to end in the range [X,X + dX] is ∂xU(t, x)dX.

The “new red” particles follows a Brownian motion with drift ∂x ln[∂xU(t, x)].

There is another way to construct the tree of red particles in the BBM. Consider a particle at

(t, x) and call (τ1, ξ1) the time and position of the next branching event (τ1 > t). For x1 ∈ R and

t1 > t, one has

P(τ ∈ dt1 ; ξ1 ∈ dx1) = e−(t1−t)dt1 ×
e
− (x1−x)2

2(t1−t)

2π(t1 − t)
dx1. (2.77)
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For t1 < T , the conditional probability of a red particle to branch at (τ1, ξ1) is

P(τ ∈ dt1 ; ξ1 ∈ dx1 | is red) = e−(t1−t)dt1 ×
e
− (x1−x)2

2(t1−t)

2π(t1 − t)
dx1 ×

U(t1, x1) [2− U(t1, x1)]

U(t, x)
. (2.78)

This probability is not normalized: the integration over x1 ∈ R and t1 ∈ [t, T ] is smaller than 1. Its

unitary complement comes from the event that the next branching occurs after the time T . In such

case, the trajectory up to T of the red particle is simply a Brownian motion conditioned to arrive

to the right of X.

With the probability (2.78) one can draw the coordinates (τ1, ξ1) of the next branching event.

The trajectory between t and t1 is then a Brownian motion conditioned to be at position (τ1, ξ1).

With no conditioning, the probability to branch into two red is U2(τ1, ξ1), and the probability to

branch into one red and one non-red is 2U(τ1, ξ1) [1− U(τ1, ξ1)]. Then, given that the branching

particle is red, the probability that it branches into two red is U(τ1, ξ1)/ [2− U(τ1, ξ1)]. Its com-

plement is the probability that only one offspring is red. The algorithm is then repeated at each

branching point.

2.4 Summary

In this chapter, we have reviewed the BK nonlinear evolution equation at leading order, which con-

trols the rapidity evolution of the forward elastic scattering amplitude (or, equivalently, the elastic

S-matrix element) of the onium-nucleus scattering. It was shown to be in the same universality class

of the F-KPP equation, which describes branching-diffusion processes in statistical physics. This

universality enables to treat the dipole evolution as a peculiar BRW, and hence, the highly-evolved

onium Fock state as a state generated by a BRW. Consequently, many asymptotic features between

two sectors can be linked together, creating a cross-fertilization with many potential applications.

With the need to characterize the frontier region of the BRW, which is important for both QCD

and statistical physics, we developed a Monte Carlo algorithm to follow only a tree of rightmost

particles at a time T , with the rightmost particle is conditioned to located to the right of X, or to

be exactly at X in a variant. It enables the study of observables of the tip as well as the structure of

the evolution. When X is larger than the expected position mT of the rightmost particle at T , our

algorithm allows to study rare realizations, while with X close to mT , it allows to generate more

typical realizations.

One potential application of the algorithm is to investigate the distribution of the genealogical

tree of the particles in the tip [85, 87]. The algorithm may also be used for a numerical analysis of

the order statistics [81, 82, 88–90] of particles near one tip, or the statistics of the spatial span [91],

i.e. the distance between the leftmost and the rightmost particles, of a BRW.

Furthermore, the algorithm is believed, by the virtue of the aforementioned universality, to be

able to generate the tip of realizations the Fock state of an onium subject to high-energy evolution.

Therefore, one can use this algorithm to check certain results in QCD. For another possible develop-
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ment, we can also extend the algorithm for a real QCD dipole evolution: it just amounts to replace

the rule (2.50) in the considered BRW by the dipole branching with the probability (1.89), and the

discrete equation (2.51) by the BK equation. As a matter of fact, there have been Monte Carlo

studies on the high-energy QCD dipole evolution (see, for e.g., OEDIPUS [92–95]), but without

conditioning. An extension to the case of conditioned events may, therefore, be worthy.

While our main focus is BRW, we have also extended the algorithm to provide a theoretical

description of the conditioned BBM. This may be useful to construct a mathematical description

of the tip as in Ref. [84], in order to compute tip observables in a systematic way.
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Nuclear scattering of small onia
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In this chapter, we shall report on our recent study [26] on the configuration of the Fock state of a

small onium in the scattering off a large nucleus. The analysis is based on a phenomenological model

of dipole distribution, which is constructed from the understanding on the asymptotic solutions of

the BK equation, and on the statistical properties of the QCD dipole evolution, which were presented

in the previous chapter. To initiate, let us figure out the motivation of the problem.
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3.1 Why scattering configuration matters?

As being discussed in the previous chapters, the QCD evolution towards high energies of an onium is

a gluon branching process which, in the limit of large number of colors, boils down to the iteration of

independent one-to-two dipole splittings. This process results in realizations of a specific branching

random walk. In the nuclear scattering of a highly-evolved onium, the scattering amplitude is a

collective quantity, which depends on how each single dipole in the Fock state interacts with the

nucleus. This consequently leads to the question of dipole distribution. In addition, for a particular

scattering set up, there should be a class of realizations of dipole distribution which produce the

dominant contribution to the scattering. Therefore, it is of interest to look into the detail of the Fock

state of the onium in the interaction with the nucleus, and the relevant evolution configurations. The

latter naturally prompts the investigation of the correlation among participating dipoles, or their

genealogical tree, which is analogous to a similar problem for a specific set of particles generated

by a one-dimensional BRW (or BBM) [85, 87].

In this chapter, we shall investigate the scattering amplitudes for onium-nucleus collisions at

high energies in the geometric scaling region in which, as discussed in the previous chapter, the

forward elastic scattering amplitude is small and its asymptotic expression is known to effectively

depend only on the scaling variable of the rapidity and the size of the onium. In particular, we

shall study the amplitude in the framework of the color dipole model, in terms of fluctuations

of the partonic content of the onium, in different reference frames related to each other through

longitudinal boosts. The use of boost invariance is natural. First, it is the fundamental symmetry

of scattering amplitudes. An interesting issue arising here is to understand theoretically how this

symmetry is manifested at the microscopic level in the regime in which the onium can be considered

as a set of independent dipoles generated by a branching process. In addition, it is already well-

known that using boost invariance helps formulate the calculation of observables. In our case, we

will take advantage of boost invariance to select a specific class of frames which enables us to derive

a particular distribution, which is a priori very challeging to calculate.

The main outcome of the investigation is a partonic picture of the scattering in different frames.

Such picture allows to extract the asymptotic expression of the probability distribution of the

rapidity at which the latest ancestor of the dipoles in the Fock state of the onium effectively

interacting with the nucleus has branched. The latter characterizes the rapidity correlation of the

interacting dipoles. And, as mentioned previously, this is in analogy to the genealogical problem to

figure out the splitting time of the last common ancestor of a specific set of particles, which is of

particular interest in the study of BRWs.

We will start by introducing formulations for scattering amplitudes. An approximation scheme

for the dipole distribution for the scattering is then constructed. Finally we shall use this scheme to

investigate the scattering configuration of the onium in different reference frames, and to compute

observables of interests.
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3.2 Formulations for scattering amplitudes

We are interested in the following quantities:

(i) the forward elastic scattering amplitude T1,

(ii) the probability to have at least two dipoles in the onium Fock state to scatter off the nucleus

T2, and

(iii) the distribution of the branching rapidity of the last common ancestor of the dipoles which

scatter G, which is a particular derivative of T2 (see below).

All the above quantities are defined at a fixed impact parameter. We are going to construct two

different formulations for these quantities. The first formulation is the evolution equations. We

already knew the equation for the amplitude T1, which is the BK equation. We shall hence derive

equations for the two remaining quantities. Despite the fact that it is difficult to find the exact

analytical solutions to these equations, they can be solved numerically, and hence, can provide a cross

check for the results obtained from other possible approaches. The second formulation is a frame-

dependent representation of the solutions to those QCD evolution equations. This representation is

the starting point to construct the above-mentioned approximation scheme for further calculations.

3.2.1 Exact evolution equations in the color dipole model

In the previous chapter, we introduced the BK equation for the forward elastic amplitude T1(r, Y ).

As a matter of fact, T1(r, Y ) can be interpreted as the probability to have at least one dipole in the

Fock state of the onium of size r to scatter with the nucleus, when the total relative rapidity is Y .

Let us now consider also the case of multiple scatterings. We define T2(r, Y ;Y0) as the probability

that at least two dipoles in the Fock state of the onium in the reference frame where the nucleus

is boosted to a rapidity Y0 < Y and the onium evolves to the remaining rapidity Ỹ0 = Y − Y0 are

involved in the scattering. We can derive the evolution equation for T2 using the similar technique

to derive the BK and BFKL equations. If one increases the total rapidity by dY while keeping

the rapidity of the nucleus fixed at Y0, the former is then an infinitesimal boost of the onium.

Furthermore, we can place that infinitesimal boost at the beginning of the evolution of the onium.

In such set up, after the interval dY from zero rapidity, the initial onium can branch into two

dipoles with the probability ᾱdY dp1→2(r⊥, r′⊥), or stay a single dipole with the probability 1 −
ᾱdY

∫
dp1→2(r⊥, r′⊥).

For the ensemble with no branching, T2(r, Y + dY ;Y0) is just T2(r, Y ;Y0). Instead, for events in

which the initial onium r branches into two daughter dipoles r′ and |r⊥−r′⊥|, there are two possible

cases. If one of two daughter dipoles (either r′ or |r⊥−r′⊥|) results in no offspring scattering with the

nucleus, the set of offspring of the other should contain at least two interacting dipoles. Otherwise,

each daughter dipole should give at least one interacting offspring. Therefore the equation for
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T2(r, Y + dY ;Y0) reads

T2(r, Y + dY ;Y0) =

(
1− ᾱdY

∫
dp1→2(r⊥, r′⊥)

)
T2(r, Y ;Y0)

+ ᾱdY

∫
dp1→2(r⊥, r′⊥)

[
T1(r′, Y )T1(|r⊥ − r′⊥|, Y )

+T2(r′, Y ;Y0)S(|r⊥ − r′⊥|, Y ) + T2(|r⊥ − r′⊥|, Y ;Y0)S(r′, Y )
]
.

(3.1)

The coupling constant ᾱ always enters as a scaling factor of the rapidity. Therefore, for convenience,

we will absorb it into the rapidity variable by defining the rescaled rapidity y ≡ ᾱY . From now

on, we will use this rescaled rapidity and keep calling it as the ”rapidity”, when there is no further

notice. Enforcing the continuous limit dy ≡ ᾱdY → 0 and writing S = 1 − T1, we obtain the

evolution equation for T2 in the form of the following integrodifferential equation:

∂yT2(r, y; y0) =

∫
dp1→2(r⊥, r′⊥)

[
T2(r′, y; y0) + T2(|r⊥ − r′⊥|, y; y0)− T2(r, y; y0)

−T2(r′, y; y0)T1(r⊥ − r′⊥|, y)− T2(|r⊥ − r′⊥|, y; y0)T1(r′, y) + T1(r′, y)T1(|r⊥ − r′⊥|, y)
]
.

(3.2)

In the frame where the nucleus is boosted to the total rapidity y0 = y, the onium appears just as a

bare dipole. Therefore, there is no possibility to pick at least two dipoles in the Fock state of the

onium, T2(r, y0; y0) = 0. This identity is used as the initial condition for Eq. (3.2).

When tracking backward the evolution, since we start with a single dipole (the initial onium),

and since the evolution in rapidity is driven by elementary 1→ 2 dipole splitting processes, the set

of dipoles which are involved in the interaction with the nucleus necessarily stem from the branching

of a single dipole at a certain rapidity. This dipole is called as the “last common ancestor” of that

particular set. We are going to address the calculation of the distribution of the branching rapidity

y1 with respect to the nucleus of this ancestor.

To quantify this problem, let us introduce G(r, y; y1), the joint probability distribution that there

are at least two dipoles in the Fock state of the onium of size r involved in the interaction with the

nucleus at the total rapidity y, and that their last common ancestor has splitted at the rapidity y1.

Using the same method as for S and T2, we could derive the evolution equation for G. However,

the latter can be obtained by using the following simple relation between G and T2:

T2(r, y; y0) =

∫ y

y0

dy1G(r, y; y1), (3.3)

or,

G(r, y; y1) = − ∂T2(r, y; y0)

∂y0

∣∣∣∣
y0=y1

. (3.4)

Taking the derivative with respect to y0 of Eq. (3.2) and using the relation (3.4), we end up with

60



Nuclear scattering of small onia

the following evolution equation for G:

∂yG(r, y; y1) =

∫
dp1→2(r⊥, r′⊥)

[
G(r′, y; y1)S(|r⊥ − r′⊥|, y) +G(|r⊥ − r′⊥|, y; y1)S(r′, y)−G(r, y; y1)

]
.

(3.5)

The initial condition is set when the total rapidity coincides with the branching rapidity of the last

common ancestor: y = y1. In this case, the only possibility is that the onium has to branch at this

very rapidity y1 (or at the very beginning of its evolution), and each of its offspring must scatter

with the nucleus. This condition can be translated into the following relation:

G(r, y1; y1) =

∫
dp1→2(r⊥, r′⊥)

[
1− S(|r⊥ − r′⊥|, y1)

]
[1− S(r′, y1)] . (3.6)

The evolution equations (3.2) and (3.5) for T2 and G can be solved numerically, but no analytical

solutions are known. However, as we will shortly see, we can obtain exact asymptotic expressions

for the ratios T2/T1 and G/T1 in a picture expected to capture the main features of the QCD color

dipole model and of more general branching random walks. For this purpose, we shall introduce a

formulation in which T1, T2 and G can be represented in terms of the dipole density and the nuclear

scattering amplitude of a bare dipole as the starting point.

3.2.2 Frame-dependent formulation

We are going to formulate the solutions to the above evolution equations in such a way that it is

useful to set up approximation schemes, from which we are able to find asymptotic expressions.

Consider a reference frame in which the nucleus is boosted to a rapidity y0, and the onium is

at rapidity ỹ0 = y − y0. From now on, we use a notation with tilde ỹi for rapidities counted from

the onium, and without tilde yi for rapidities counted from the nucleus (ỹi + yi = y). For the

sake of convenience, instead of using as variables the transverse sizes r of dipoles and the saturation

momentum at y, Qs(y), we shall express all expressions in terms of the logarithms of these quantities,

which are defined as

x ≡ ln
1

r2Q2
A

, and Xy ≡ ln
Q2
s(y)

Q2
A

. (3.7)

Let us start with the S-matrix element S(x, y). Since all dipoles in the Fock state of the onium

interact with the nucleus independently, its exact representation reads

S(x, y) =

〈∏

{xi}

S(xi, y0)

〉

x,ỹ0

, (3.8)

where the averaging 〈· · · 〉x,ỹ0
is over all dipole configurations of the onium x at rapidity ỹ0, repre-

sented by the set of logarithmic (log) sizes {xi}. While on the left-hand side, S(x, y) is the S-matrix

element for the scattering of the evolved onium x off the nucleus at the total rapidity y, the S-matrix
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element on the right-hand side S(xi, y0) is for the scattering of an elementary dipole in the Fock

state of the onium off the nucleus boosted at the rapidity y0. Due to boost invariance, the former

should be independent of the chosen frame, or y0, used in the right-hand side.

One could check that the S-matrix element defined in Eq. (3.8) obeys the S-type BK equation

(2.2). Indeed, increasing y by dy is tantamount to increase ỹ0 by the same amount dy (while

keeping y0 unchanged). After the infinitesimal boost dy, the initial onium can branch into two

dipoles x ≡ ln 1/(r′2Q2
A) and x ≡ ln 1/((r⊥ − r′⊥)2Q2

A), both of which develop into two sets of

dipoles {xi} and {xi}, respectively, at the rapidity ỹ0. Otherwise, it remains unchanged. The

decomposition into these two possibilities can be written as

〈∏

{xi}

S(xi, y0)

〉

x,ỹ0+dy

=

(
1− dy

∫
dp1→2(r⊥, r′⊥)

)〈∏

{xi}

S(xi, y0)

〉

x,ỹ0

+ dy

∫
dp1→2(r⊥, r′⊥)

〈∏

{xi}

S(xi, y0)

〉

x,ỹ0

〈∏

{xi}

S(xi, y0)

〉

x,ỹ0

.

(3.9)

After simple manipulations and the continuous limit dy → 0, we recover the BK equation (2.2).

Let us introduce the number density n(x) of dipoles of log size x in the wave function of the

onium. We can rewrite Eq. (3.8) as

S(x, y) =

〈∏

{x′}

[S(x′, y0)]
n(x′)dx′

〉

x,ỹ0

=
dx′→0

〈
exp

[∫
dx′n(x′) lnS(x′, y0)

]〉

x,ỹ0

≡
〈
e−I(y0)

〉
x,ỹ0

,

(3.10)

where the product is now over all the bins in dipole size of with dx′, and we have defined

I(y0) ≡
∫
dx′n(x′) ln

1

S(x′, y0)
=

∫
dx′n(x′) ln

1

1− T (x′, y0)
. (3.11)

Since dipole evolution is a random process, n(x′) is a random density. The distribution of this

random density would depend on the size of the initial onium and on the evolution rapidity ỹ0.

From Eq. (3.10), the expression for the forward elastic amplitude T1 = 1− S reads

T1(x, y) '
〈
1− e−I(y0)

〉
x,ỹ0

. (3.12)

Let us take the initial onium to be small such that its size is much smaller than the inverse saturation

scale at the total rapidity y. We assume that the dipoles that effectively contribute to the integral all

have log size x′ such that T1(x′, y0)� 1. This is verified if the configurations of the onium Fock state

which contain individual dipoles larger than the inverse nuclear saturation scale at y0, i.e. x′ < Xy0 ,
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only bring a negligible contribution to the overall amplitude. We shall check a posteriori that it is

a consistent assumption. With this approximation, we can expand the logarithm in Eq. (3.11) and

obtain:

I(y0) =

∫
dx′n(x′)T1(x′, y0), (3.13)

which is the overlap of the dipole-nucleus scattering amplitude and the dipole density in the onium

Fock state.

Let us now turn into the case of multiple scatterings. The complement to unity of T2 includes

the probabilities of no scattering and of having only one dipole in the Fock state of the onium

involved in the scattering. Therefore, its exact formula reads

T2(x, y; y0) =

〈
1−


1 +

∑

{xi}

T1(xi, y0)

S(xi, y0)


∏

{xi}

S(xi, y0)

〉

x,ỹ0

. (3.14)

Again, we can show that this expression obeys Eq. (3.2) in the same way as for the S-matrix element

above.

Recall that relevant configurations contain only dipoles of log sizes x′ such that T1(x′, y0) � 1,

or equivalently S(x′, y0) ' 1. Going to the continuous limit, we get

T2(x, y; y0) '
〈
1− [1 + I(y0)] e−I(y0)

〉
x,ỹ0

. (3.15)

The equation for G can be obtained from a derivative w.r.t y0 of T2, as shown in Eq. (3.4).

Our main task in this chapter is to evaluate the right-hand sides of Eqs. (3.12) and (3.15). Since

the density n(x′) is a random quantity, and since its distribution is unknown, these evaluations

cannot be done through a straightforward calculation. Instead, we will develop a simple model

for the realizations of branching random walks and dipole evolution, which can quantify the above

randomness and, hence, enables us to perform such task.

3.3 Model for dipole distribution

Typical evolution

Since it is impossible to calculate the dipole distribution in an exact way, an approximation scheme

is needed. We start with an onium of log-size x. At low rapidities ỹ0 ∼ 1, since there are few

dipoles, the density is very noisy. When ỹ0 becomes large, the density becomes smooth around the

log-size x, since the typical number of dipole increases exponentially with ỹ0. However, the number

density in the tail |x− x′| ∼ χ′(γ0)ỹ0 is still low, and hence, the distribution remains noisy. We can

take into account the effect of this statistical noise in the first approximation by putting a moving

absorptive boundary, which is also known as the Brunet-Derrida cutoff [96], on the solution to the

BFKL equation (the latter is the mean dipole density). This boundary is actually the largest-dipole

tail of the dipole distribution in a typical evolution. This approximation gives the typical dipole
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density n̄(x′ − x, ỹ0) of log-size x′ near the largest dipole, which reads [20]

n̄(x′ − x, ỹ0) = C1(x′ − x− X̃ỹ0)eγ0(x′−x−X̃ỹ0 ) exp

[
−(x′ − x− X̃ỹ0)2

2χ′′(γ0)ỹ0

]
Θ(x′ − x− X̃ỹ0), (3.16)

where the displacement X̃ỹ0 , at large ỹ0, reads

X̃ỹ0 = −χ′(γ0)ỹ0 +
3

2γ0

ln ỹ0 +O. (3.17)

When extrapolating to the nonasymptotic regime of ỹ0, the logarithmic singularity when ỹ0 → 0 is

regularized in such a way that X̃ỹ0

ỹ0→0−→ 0.

The formula (3.16) represents the dipole density in a typical realization of the dipole evolution,

in the absence of a large fluctuation, in a region of size of order
√
ỹ0 from the typical log-size x+X̃ỹ0

of the largest dipole. The latter is the moving absorptive boundary mentioned above.

Single fluctuation

As mentioned previously, we are interested in the nuclear scattering of a small onium whose size x is

in the window 1 < x−Xy .
√
χ′′(γ0)y, where y is the total rapidity, which defines the scaling region

up to strong inequalities. For such a small onium, all the dipoles in its typical configuration will be

much smaller than the nuclear saturation scale, in every reference frame. The overlap between the

mean density of a typical configuration with the dipole-nucleus scattering amplitude would then be

negligible.

Therefore, on top of the above deterministic evolution, we assume that one single fluctuation

occurs after some random evolution rapidity 0 < ỹ1 < ỹ0 from the beginning of the dipole evolution.

We assume that this fluctuation creates a dipole of size larger than the largest dipole in typical

configurations by a factor eδ/2. In other words, the absolute difference between the log size of that

large dipole and the typical log size of the largest dipole in typical configurations is δ. Therefore,

we will hereafter call δ the “size” of the fluctuation.

We need the distribution for the fluctuation size δ in our calculations. Since we are interested in

large fluctuations, the particle distribution near the fluctuation is very dilute. We conjecture that

the distribution for the fluctuation size can be approximated by the probability of observing the

largest dipole with a log size shifted by (−δ) with respect to the mean-field tip. From the discussion

on the dual interpretation of the BK equation in the previous chapter (see Section 2.1.3), the latter

solves the BK equation. The rate for a fluctuation size δ at a large rapidity ỹ1 reads

p(δ, ỹ1) = Cδe−γ0δ exp

(
− δ2

2χ′′(γ0)ỹ1

)
Θ(δ), (3.18)

where C is a constant. When the fluctuation occurs, it will develop into a smaller front. And

the small onium always scatters exclusively with the nucleus throught this secondary front. Each

elementary dipole x′ in the state of the onium interacts independently with an amplitude T̄1(x′, y0)
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Figure 3.1: An illustration of the phenomenological model for dipole distribution in the nuclear
scattering of a small onium. The initial onium x develops into a deterministic front whose contribu-
tion to the scattering with the nucleus, represented by the dipole-nucleus amplitude T̄1(x′, y0) (the
blue curve), is negligible. The essence of the model is the occurrence of a fluctuation containing one
unusual large dipole at some rapidity ỹ1, which builds up, by further dipole branchings, another
deterministic front. The overlap with the nucleus (circled by the orange oval) is then dominated by
the dipole density of this small front.

that solves the T-type BK equation and has the form given by Eq. (2.24). In the notation (3.7), we

can write the latter as follows

T̄1(x′, y0) = C2(x′ −Xy0)e−γ0(x′−Xy0 ) exp

[
−(x′ −Xy0)2

2χ′′(γ0)y0

]
Θ(x′ −Xy0), (3.19)

where, again, the saturation log-scale Xy0 is regularized in such a way that X0 = 0.

The model of dipole evolution presented here is a slightly modified version of the model for

the evolution of general branching random walks, which was initially developed in Ref. [24] and

applied to QCD in Ref. [20]. In that original model, the mean number density is deformed by large

fluctuations which may occur in two different situations. First, they are likely to arise in the early

stages of the evolution when the system is stochastic since the overall number of dipoles is small.

Due to further rapidity evolution, the effect of the early fluctuations is to shift the mean-field value
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of the largest dipole at a rapidity ỹi by an random amount ∆f whose probability distribution is

denoted by pf (∆f , ỹi). Therefore, this type of fluctuations is referred to as “front fluctuations”.

At a large rapidity ỹj � 1, when the total number of dipoles becomes large, fluctuations can still

occur near the tip of the mean-field distribution, and hence, are referred to as “tip fluctuations”.

These tip fluctuations send randomly a small number (typically 1) of dipoles ahead of the mean-field

tip by some distance ∆t with the rate given by pt(∆t). The expressions of pf (∆f , ỹi) and pt(∆t)

read [20, 24]

pf (∆f , ỹi) ∼ e−γ0∆fΘ(∆f ), and pt(∆t) ∼ e−γ0∆tΘ(∆t), (3.20)

where for the former, it is expected to have a cut-off at ∆f ∼
√
ỹi given by a gaussian term (due to

diffusion effect), which can be neglected for ∆f �
√
ỹi. In fact, we can roughly recover Eq. (3.18)

from Eq. (3.20). In particular, at the rapidity ỹ1, the mean-field front is deformed by a fluctuation

δ, which can be decomposed into a front fluctuation of width ∆f and a tip fluctuation of size

∆t = δ −∆f . Given the probability distributions (3.20), the probability distribution of the whole

fluctuation δ can be computed as

p(δ, ỹ1) ∼
∫ δ

0

d∆fe
−γ0∆f e−γ0(δ−∆f ) = δe−γ0δ. (3.21)

Up to a gaussian cutoff (which is the effect of diffusion), this coincides with Eq. (3.18). Therefore, we

could think of the net fluctuation whose probability density is given by Eq. (3.18) as a combination

of a front fluctuation and a tip fluctuation in general.

3.4 Heuristic calculations of scattering amplitudes

At this moment, we have the necessary ingredients to evaluate Eqs. (3.12) and (3.15). Before doing

so, let us briefly summarize the picture. We are considering the scattering of a small dipole x in

the scaling windows off a large nucleus at the total rapidity y, in a frame where the nucleus is

boosted to y0 and the onium evolves to the remaining rapidity ỹ0. In the first place, the initial

onium will develop into a deterministic front until a random evolution rapidity ỹ1. At this rapidity,

a large fluctuation δ whose probability density is given by Eq. (3.18) occurs, which sends a dipole

ahead of the mean-field boundary. A small deterministic front in the rapidity interval ỹ0− ỹ1 which

stems from this dipole and is characterized by a dipole density then overlaps with the dipole-nucleus

scattering amplitude given by Eq. (3.19) to produce the dominant contribution to the scattering.

In this picture, the overlap (3.13) reads

I(y0; δ, y1) ∼=
∫
dx′n̄(x′ − Ξδ,ỹ1 , ỹ0 − ỹ1)T̄1(x′, y0), (3.22)

where Ξδ,ỹ1 ≡ x + X̃ỹ1 − δ is the log size of the lead dipole created by the large fluctuation at the

rapidity ỹ1. The average over dipole configurations in Eqs. (3.12) and (3.15) in the current approx-

imation is tantamount to the average over all possible fluctuations. Consequently, the expressions
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for T1 and T2 are given by

T1(x, y) =

∫ y

y0

dy1

∫ ∞

0

dδp(δ, ỹ1)
(
1− e−I(y0;δ,y1)

)
, (3.23)

and

T2(x, y; y0) =

∫ y

y0

dy1

∫ ∞

0

dδp(δ, ỹ1)
{

1− [1 + I(y0; δ, y1)] e−I(y0;δ,y1)
}
. (3.24)

We can also obtain a formula for G itself in the framework of the phenomenological model. From

Eq. (3.3), the only difference in the expressions for G and T2 is the integration over the fluctuation

rapidity y1. Indeed, the essence of the model is to single out one dipole in the state of the onium

evolved to the rapidity ỹ1 that will play the role of the last common ancestor of all dipoles which

scatter after evolution to the rapidity ỹ0. Therefore, the distribution G reads

G(x, y; y1) =

∫ ∞

0

dδp(δ, ỹ1)
{

1− [1 + I(y0; δ, y1)] e−I(y0;δ,y1)
}
. (3.25)

We introduce the logarithmic distance between the tip of the dipole ditribution (i.e. of the small

front) and the top of the nuclear scattering amplitude (i.e. the saturation log-scale),

∆(y0; δ, y1) ≡ X̃ỹ0−ỹ1 + Ξδ,ỹ1 −Xy0 . (3.26)

In other words, ∆(y0; δ, y1) is the logarithm of the squared ratio of the size of the smallest dipole

which would scatter with probability of order unity with the nucleus at rapidity y0, and of the size

of the largest dipole in the actual state of the onium at rapidity ỹ0. Substituting the expressions

for the terms on the right-hand side of Eq. (3.26), the distance ∆(y0; δ, y1) can be rewritten as

∆(y0; δ, y1) = x−Xy − δ +
3

2γ0

ln
(ỹ0 − ỹ1)y0ỹ1

y
. (3.27)

As commented after Eqs. (3.17) and (3.19), the logarithmic term has to be regularized in the limits

y1 → y and y1 → y0. Furthermore, with the considered choice of frame and parameters, it is always

small compared to x−Xy.

We shall first show that it is safe to disregard fluctuations such that ∆(y0; δ, y1) < 0, or δ >

δ0 ≡ x−Xy + 3
2γ0

ln (ỹ0−ỹ1)y0ỹ1

y
. To this aim, we estimate Eq. (3.23) in that region by noticing that

it is bound from above as

T1(x, y)|∆<0 ≤
∫ y

y0

dy1

∫ ∞

δ0

dδp(δ, ỹ1). (3.28)

The integration over δ can be performed simply by a notice that the Gaussian factor in p(δ, ỹ1) can

be replaced by an effective upper cut-off, set at δ1 =
√

2χ′′(γ0)ỹ1. For the integration not to be

null, the condition δ1 > δ0 should be satisfied, which implies y1 < y − (x − Xy)
2/[2χ′′(γ0)]. After
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these manipulations, we obtain

T1(x, y)|∆<0 ≤
C

γ0

1

y
3/2
0

(x−Xy)e
−γ0(x−Xy)×

∫ y− (x−Xy)2

[2χ′′(γ0)]

y0

dy1

(
y

(y − y1)(y1 − y0)

)3/2
∣∣∣∣∣
regularized

, (3.29)

where we have emphasized that the singularity at the lower bound of the integral needs to be

regularized, so that the integral is finite of order 1. To see that, one could replace the lower bound

by y0 + a, where a is a positive constant of order unity, and notice that the integration over the

small domain [y0, y0 + a] should be at most of order of a after the regularization. The y1-integral

can then be computed, and the result is of order (y/ỹ0)3/2 ∼ 1. From Eq. (3.29), we see that T1 is

suppressed by at least a factor y
3/2
0 � 1 with respect to the expected result; see Eq. (3.19) with y0

replaced y and x′ replace by x. This proves that we can restrict ourselves to the region δ ≤ δ0.

Actually, a closer look would show that only the region with ∆ & 3
2γ0

ln y0 contributes signif-

icantly. This means that the relevant configurations contain dipoles such that their correspond-

ing scattering amplitude, at rapidity ỹ0, is very small. This confirms our assumption that led to

Eqs. (3.12) and (3.15) (also Eqs. (3.23) and (3.24)).

We see that the functions T1, T2 and G are all written in terms of the probability density p and

the overlap I. For further calculations, let us write down the explicit expression for the latter, using

Eq. (3.22) and the expression for n̄ and T̄1,

I(y0; δ, y1) = C1C2e
γ0(Xy0−X̃ỹ0−ỹ1−Ξδ,ỹ1 )

∫
dx′(x′ − X̃ỹ0−ỹ1 − Ξδ,ỹ1)(x′ −Xy0)

× exp

[
−(x′ − X̃ỹ0−ỹ1 − Ξδ,ỹ1)2

2χ′′(γ0)(ỹ0 − ỹ1)
− (x′ −Xy0)2

2χ′′(γ0)y0

]
Θ(x′ − X̃ỹ0−ỹ1 − Ξδ,ỹ1)Θ(x′ −Xy0).

(3.30)

We shall now compute the scattering amplitudes T1 and T2, and the distribution G in the framework

of the phenomenological model for dipole distribution, in two different types of reference frames,

which are different to each other by the ordering of two variables y0 and (x −Xy)
2. In particular,

we are interested in

• a frame in which the nucleus is highly boosted: 1� (x−Xy)
2 � y0, and

• a frame in which the nucleus is slightly boosted: 1� y0 � (x−Xy)
2.

(See Fig. 3.2 for an illustration). For completeness, we also consider the frame that the nucleus is at

rest to verify the boost invariance of the amplitude T1, though this frame is not useful to compute

the quantities T2 and G for multiple scatterings.
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Figure 3.2: Three different frames for the onium-nucleus scattering with the total rapidity y shared
differently between the nucleus (y0) and the onium (ỹ0): (a) the nucleus is strongly boosted, (b) the
nucleus is slightly boosted, and (c) the nucleus is at rest.

3.4.1 Amplitudes in a frame in which the nucleus is highly boosted

Let us consider the frame in which the nucleus is boosted to a rapidity y0 such that

1� (x−Xy)
2 � y0. (3.31)

In the expression (3.30) for the overlap, we shift the integration variable x′ by defining x̄ = x′ −
X̃ỹ0−ỹ1−Ξδ,ỹ1 , which represents the relative “distance” between the log size of the interacting dipoles

and the log size of the largest dipole in the mean-field front that stems from the fluctuation. The

overlap then reads

I(y0; δ, y1) = C1C2e
−γ0∆(y0;δ,y1) exp

(
−∆2(y0; δ, y1)

2χ′′(γ0)y1

)

×
∫ ∞

0

dx̄x̄ [x̄+ ∆(y0; δ, y1)] exp

[
− y1

2χ′′(γ0)y0(ỹ0 − ỹ1)

(
x̄+

y1 − y0

y1

∆(y0; δ, y1)

)2
]
.

(3.32)

We observe that the integral is determined by a large integration region, up to x̄ ∼ √y0. Since

(x − Xy)
2 � y0, we can neglect ∆(y0; δ, y1) compared to x̄ in the second Gaussian term, and the

integral can be evaluated exactly. Moreover, we will check a posteriori that typically, ỹ1 � y, or

y1 ∼ y; hence, the first Gaussian factor involving ∆(y0; δ, y1) can be set to unity. The evaluation
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yields the following result:

I(y0; δ, y1) =
C1C2

√
π

4
e−γ0∆(y0;δ,y1)

[
2χ′′(γ0)y0(ỹ0 − ỹ1)

y1

]3/2

. (3.33)

Substituting the expression (3.26) of ∆(y0; δ, y1) into the above formula, we arrive at

I(y0; δ, y1) = C1C2

√
π

2
[χ′′(γ0)]3/2e−γ0(x−Xy)

[
y

y1ỹ1

]3/2

eγ0δ. (3.34)

We eventually see that, I appears to be independent of y0. Let us isolate the δ− and y1−independent

factor by introducing the following notation:

p1 ≡ C1C2

√
π

2
[χ′′(γ0)]3/2e−γ0(x−Xy). (3.35)

The product p1e
γδ is then just the overlap of the front of the nucleus with that of an onium if the

latter were involved in a purely deterministic way starting at a log size x − δ. Having I at hand,

we are now able to compute the functions T1, T2 and G.

a. Forward elastic scattering amplitude T1

Substituting the expressions of I in Eq. (3.34) and of p(δ, ỹ1) in Eq. (3.18) into Eq. (3.23) and

bearing in mind that ∆ ≥ 0, we obtain

T1(x, y) = C

∫ y

y0

dy1

∫ δ0

0

dδδe−γ0δ exp

(
− δ2

2χ′′(γ0)ỹ1

){
1− exp

[
−p1

(
y

y1ỹ1

)3/2

eγ0δ

]}
. (3.36)

We shift the variable δ by defining a new variable δ′ ≡ δ + 3
2γ0

ln y
y1ỹ1

. Since the integration domain

in δ′ extends up to δ′ . (x−Xy), a region much larger than any logarithm of rapidities appearing

in this problem, the lower bound of the δ′−integral can be kept to 0, and the logarithmic term in

the Gaussian factor can be omitted. The upper bound can be set to ∞ since the region δ > δ0

always gives a sub-dominant contribution. Therefore, Eq. (3.36) can be rewritten in term of the

new variable δ′ as

T1(x, y) = C

∫ ∞

0

dδ′δ′e−γ0δ′
[
1− exp(−p1e

γ0δ′)
] ∫ ỹ0

0

dỹ1

(
y

y1ỹ1

)3/2

exp

(
− δ′2

2χ′′(γ0)ỹ1

)
, (3.37)

where we have used the fact that ỹ1 = y − y1. The integration over ỹ1 is dominated by the region

ỹ1 � y, or y1 ' y. Therefore we can replace the upper bound by ∞ and get

∫ ỹ0

0

dỹ1

(
y

y1ỹ1

)3/2

exp

(
− δ′2

2χ′′(γ0)ỹ1

)
'
∫ ∞

0

dỹ1

ỹ
3/2
1

exp

(
− δ′2

2χ′′(γ0)ỹ1

)
=

√
2πχ′′(γ0)

δ′
. (3.38)
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Eq. (3.37) then becomes

T1(x, y) = C
√

2πχ′′(γ0)

∫ ∞

0

dδ′e−γ0δ′
[
1− exp(−p1e

γ0δ′)
]
. (3.39)

From the aforementioned interpretation of p1e
γ0δ′ , this expression effectively represents the nuclear

scattering of an onium whose size, or equivalently whose evolution front, is shifted by a log size δ′.

This is due to a fluctuation happening at the very beginning of the evolution, ỹ1 � ỹ0 (or y1 ' y),

with the weight given by e−γ0δ′ . This is exactly the front fluctuation, which was already discussed

in Section 3.3.

Equation (3.39) can be rewritten with the help of the integral I1 defined in Appendix B as

T1(x, y) =
C

γ0

√
2πχ′′(γ0)× I1(p1). (3.40)

Using the evaluation of the integral I1 in Eq. (B.2) and replacing p1 by its definition in Eq. (3.35),

the final result for the amplitude T1 reads

T1(x, y) ' CC1C2π[χ′′(γ0)]2(x−Xy)e
−γ0(x−Xy). (3.41)

We have just recovered the scaling limit of the known solution to the BK equation; see Eq. (3.19)

(with the substitutions y0 → y and x′ → x). Due to the strong assumption (x − Xy)
2 � y,

we cannot get consistently the finite-y correction that appears in the form of a Gaussian factor

exp [−(x−Xy)
2/(2χ′′(γ0)y)]. The calculation in this section indicates that, in the current con-

sidered frame, the realizations of the Fock state which trigger scattering events look like typical

realizations, as far as their shape is concerned, but are overall shifted towards larger dipole sizes by

a multiplicative factor (or additive term in the log scale), through a front fluctuation.

b. Multiple scatterings: T2 and G

From Eq. (3.24) and the expression of I(y0; δ, y1) in Eq. (3.34), the full expression of the amplitude

T2 for scattering at least twice reads

T2(x, y; y0) = C

∫ ỹ0

0

dỹ1

∫ δ0

0

dδδe−γ0δ exp

(
− δ2

2χ′′(γ0)ỹ1

)

×
{

1−
[

1 + p1

(
y

y1ỹ1

)3/2

eγ0δ

]
exp

[
−p1

(
y

y1ỹ1

)3/2

eγ0δ

]}
.

(3.42)

In the above formula, the dominant contribution still comes from the fluctuations of size δ ≤ δ0, as

we will check a posteriori. The evaluation of T2 goes along the very same lines as that of T1 above.

After performing the y1 integration, we are left with an integral over the shifted variable δ′,

T2(x, y; y0) = C
√

2πχ′′(γ0)

∫ ∞

0

dδ′e−γ0δ′
[
1−

(
1 + p1e

γ0δ
)

exp
(
−p1e

γ0δ
)]
. (3.43)
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Again, we make use of the integral I2 defined in the Appendix to rewrite Eq. (3.43) as

T2(x, y; y0) =
C

γ0

√
2πχ′′(γ0)× I2(p1). (3.44)

Substituting the formula for I2 in Eq. (B.2) and the expression (3.35) of p1 into Eq. (3.44), then

dividing the latter by T1 in Eq. (3.41) we eventually get

T2(x, y; y0)

T1(x, y)
=

y0�(x−Xy)2

1

γ0(x−Xy)
. (3.45)

For fluctuations such that δ > δ0, we have a very similar estimation as that for T1,

T2(x, y; y0)|δ>δ0 ≤ C

∫ ỹ0

0

dỹ1

∫ ∞

δ0

dδδe−γ0δ exp

(
− δ2

2χ′′(γ0)ỹ1

)
. const× T1

y
3/2
0

� T1

γ0(x−Xy)
.

(3.46)

This again proves that no single dipole has a significantly probability to scatter with the nucleus in

relevant configurations within this picture.

Now we are going to evaluate the genealogy distribution G. Its explicit expression only differs

from the expression for T2 in Eq. (3.42) by the absence of the integration over y1,

G(x, y; y1) = C

∫ δ0

0

dδδe−γ0δ exp

(
− δ2

2χ′′(γ0)ỹ1

)

×
{

1−
[

1 + p1

(
y

y1ỹ1

)3/2

eγ0δ

]
exp

[
−p1

(
y

y1ỹ1

)3/2

eγ0δ

]}
.

(3.47)

Again, since the integration region δ > δ0 only gives an unimportant contribution, we can replace

the upper bound δ0 by ∞. By a change of variable t = Aeγ0δ, where A ≡ p1

(
y

y1ỹ1

)3/2

, Eq. (3.47)

becomes

G(x, y; y1) =
C

γ2
0

A

∫ ∞

A

dt

t2
ln

(
t

A

)
exp

[
− ln2(t/A)

2γ2
0χ
′′(γ0)ỹ1

]{
1− [1 + t] e−t

}
(3.48)

Using the integrals R and Sk defined and evaluated in Appendix B, with S0 up to next-to-leading-log

order (Eq. (B.19)), we can rewrite G as:

G(x, y; y1) =
C

γ2
0

A [R(A)− S0(A)− S1(A)] ' C

γ2
0

A ln
1

A
exp

[
− ln2 1

A

2γ2
0χ
′′(γ0)ỹ1

]
, (3.49)

with β0 ≡ 2γ2
0χ
′′(γ0). Replacing A and p1 by their explicit expressions, we obtain

G(x, y; y1) =
CC1C2

γ0

√
π

2
[χ′′(γ0)]3/2

(
y

y1ỹ1

)3/2

(x−Xy)e
−γ0(x−Xy) exp

[
−(x−Xy)

2

2χ′′(γ0)ỹ1

]
. (3.50)

Divided by T1, the distribution of the splitting rapidity y1 of the slowest parent dipole of the set of
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dipoles which scatter reads

G(x, y; y1)

T1(x, y)
=

1

γ0

1√
2πχ′′(γ0)

[
y

y1(y − y1)

]3/2

exp

[
−(x−Xy)

2

2χ′′(γ0)ỹ1

]
. (3.51)

Analogy to a genealogical problem of a branching-diffusion process

Consider a branching-diffusion process (e.g., a BRW) on a real line x evolving in time t with a

diffusion coefficient D and a branching rate r. The mean density n̄ of particles solves the following

equation:

∂tn̄(x, t) = χF (−∂x;D, r)n̄(x, t), (3.52)

where χF (−∂x;D, r) ≡ D∂2
x + r is the branching-diffusion linear kernel (this is the generalization of

the FKPP kernel discussed in the previous chapter by including general constants D and r). This

kernel admits the eigenfunction e−βx, corresponding to the eigenvalue χF (β;D, r) = Dβ2 + r. After

some predefined time T , let us pick up two leftmost (or rightmost) particles, or any pair of particles

in the tip (e.g., the 2nd and the 5th leftmost particles), and ask for the branching time t1 of their

last common ancestor (see Fig. 3.3). This is not exactly the same problem as that of the dipole

evolution discussed above, but they are similar. According to Derrida and Mottishaw in Ref. [85],

the asymptotic distribution of t1 reads

p(t1;T ) =
1

β0

1√
2πχ′′F (β0;D, r)

[
T

t1(T − t1)

]3/2

. (3.53)

where β0 solves the equation β0χ
′
F (β0;D, r) = χF (β0;D, r). One sees that, except for the Gaus-

sian factor, there is a perfect analogy between this result (Eq. (3.53)) and our result presented in

Eq. (3.51), up to the following substitutions:

y ↔ t, y1 ↔ t1, χ(γ)↔ χF (β;D, r), and γ0 ↔ β0. (3.54)

3.4.2 Amplitudes in a frame in which the nucleus is slightly boosted

We now investigate the case in which the nucleus is slightly boosted, in such a way that

1� y0 � (x−Xy)
2. (3.55)

Due to the reversed ordering between y0 and (x−Xy)
2, some approximations at the very beginning

of the calculations in the previous case are no longer valid in this type of frames. Therefore, this

case is much more troublesome to deal with. We shall demonstrate how the estimations of T1 and

T2 go, which will enable us to figure out how dominant configurations look like in this frame.

As usual, we will start by the calculation of the forward elastic scattering amplitude T1. Bearing

in mind that the configurations with a non-zero overlap with the saturation region of the nucleus

contribute sub-dominantly, the overlap I(y0; δ, y1) is then small. So we can expand the exponential
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Figure 3.3: A realization of a branching random walk starting from a particle at (T, x) = (0, 0)
evolves up to T = 3. The branching of the last common ancestor of two leftmost particles is circled.
The red lines represent the genealogical trajectories of the latter particles up to the last common
ancestor.

in Eq. (3.23) to get

T1(x, y) =

∫ y

y0

dy1

∫ δ0

0

dδp(δ, ỹ1)I(y0; δ, y1). (3.56)

Replacing the overlap I by its expression, we obtain

T1(x, y) =
CC1C2

y
3/2
0

e−γ0(x−Xy)

∫ y

y0

dy1

∫ δ0

0

δdδ

∫ ∞

X̃ỹ0−ỹ1+Ξδ,ỹ1

dx′(x′ −Xy0) exp

[
−(x′ −Xy0)2

2χ′′(γ0)y0

]

︸ ︷︷ ︸
(I)

×
[

y

ỹ1(ỹ0 − ỹ1)

]3/2

(x′ − X̃ỹ0−ỹ1 − Ξδ,ỹ1) exp

[
−(x′ − X̃ỹ0−ỹ1 − Ξδ,ỹ1)2

2χ′′(γ0)(ỹ0 − ỹ1)

]

︸ ︷︷ ︸
(II)

exp

[
− δ2

2χ′′(γ0)ỹ1

]

︸ ︷︷ ︸
(III)

.

(3.57)

It is unfeasible to compute these nested integrals in a relatively straightforward way. Instead, we will

exploit the Gaussian factors (I), (II) and (III) whose presence sets effective cutoffs, and hence, helps

define the dominant contribution in the asymptotic limit. The first Gaussian factor (I) implies that
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the subdomain such that (x′ −Xy0) .
√
y0 will contribute dominantly. Since x′ is larger than the

leftmost tip (or the largest dipole) in the dipole distribution, the dominant contribution to T1 comes

from fluctuations such that the “distance” between the largest tip of the distribution and the top of

the nucleus amplitude ∆(y0; δ, y1) is also at most of order
√
y0. Since ∆(y0; δ, y1) ≈ x−Xy − δ, the

size of relevant fluctuations should be δ ∼ (x−Xy), up to O(
√
y0). Combining with the factor (II),

it is required that ỹ0 − ỹ1 . y0, i.e., ỹ1 ' ỹ0 up to corrections of order y0. Now, since δ ∼ (x−Xy)

and the initial onium x is chosen to stay in the scaling region (x−Xy)� √y ∼ √y0, the Gaussian

factor (III) can be safely set to unity.

Since the y1 dependences in ∆, or δ0, and X̃ỹ0−ỹ1 +Ξδ,ỹ1 appear in the form of logarithmic terms,

which are assumed to much smaller than any rapidity scales in the calculation, and since there

is no exponential which can enhance those log contributions, we can replace δ0 by (x − Xy) and

X̃ỹ0−ỹ1 + Ξδ,ỹ1 by (x+ X̃ỹ0 − δ). Then we can first perform the integral over y1, which reads

∫ ∞

y0

dy1

(y1 − y0)3/2

[
x′ − (x+ X̃ỹ0 − δ)

]
exp

[
− [x′ − (x+ X̃ỹ0 − δ)]2

2χ′′(γ0)(y1 − y0)

]
=
√

2πχ′′(γ0), (3.58)

where we have used the fact that (ỹ1/y) ∼ (ỹ1/ỹ0) ∼ 1, and hence, the integral is dominated by the

region y1 ∼ y0. Consequently, we can replace the upper bound y by ∞.

In the next step, the integration over x′ is simple to perform,

∫ ∞

x+X̃ỹ0−δ
dx′(x′ −Xy0) exp

[
−(x′ −Xy0)2

2χ′′(γ0)y0

]
'
∫ ∞

x−Xy−δ
dx̄x̄ exp

[
− x̄2

2χ′′(γ0)y0

]

= χ′′(γ0)y0 × exp

[
−(x−Xy − δ)2

2χ′′(y0)y0

]
.

(3.59)

The only remaining intergration to perform is the integral over the fluctuation size δ, which reads

∫ x−Xy

0

dδδ exp

[
−(x−Xy − δ)2

2χ′′(γ0)y0

]
≈
√
π

2

√
χ′′(γ0)y0 × (x−Xy). (3.60)

We see that the integral over δ is dominated by a window of size ∼ √y0 near the upper bound

(x−Xy), which brings about a factor
√
y0. Gathering all factors together, we get

T1(x, y)|1�y0�(x−Xy)2 ' CC1C2π[χ′′(γ0)]2(x−Xy)e
−γ0(x−Xy), (3.61)

which is perfectly identical to the expression (3.41) for T1 in the case of the nucleus being highly

boosted,

T1(x, y)|1�y0�(x−Xy)2 = T1(x, y)|1�(x−Xy)2�y0
. (3.62)

Therefore, we have verified explicitly that boost invariance actually holds in our phenomenological

model.

It would be interesting to note that, while the form of T1 is fully preserved, the physical pictures

in the two frames are very dissimilar. In the current case with the slightly-boosted nucleus, the
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above analysis of the dominant integration domain implies that the fluctuation typically occurs late

in the evolution of the onium, at a rapidity ỹ1 close to ỹ0, in a window of order y0. The small front

from the fluctuation is, hence, developed in a window of that size, in such a way that the overlap

with the nucleus amplitude, whose scaling area has size of order
√
y0, should be significant. This is

necessary since the fluctuation needs to extend far out of the “mean field” region and thus, requires

a large rapidity range to develop. The size of the front which results from the fluctuation is then of

order
√
y0, which is just the right size to have an optimal overlap with the front of the nucleus.

Returning to the previous case of the highly-boosted nucleus, we already pointed out that the

fluctuation is likely to occur in the early state of the evolution (ỹ1 � ỹ0), and hence the fluctuation

has a window of order ỹ0− ỹ1 ' ỹ0 to develop its front. This is also the most favorable shape, since

in this case, y0 ∼ ỹ0. Therefore, in both cases, the dominant configurations are selected by the

universal requirement: the overlap between the dipole density and the nucleus amplitude should be

optimized.

Now we move on to the calculation of the amplitude T2. In this case, the expansion of the

exponential in Eq. (3.24) is not usable, since we will loose the control of the overall constant factor

multiplying the leading term. It turns out that the direct treatment for the integrals in Eq. (3.24)

does not look possible.

Physically, to have at least two scatterings, the fluctuation should be typically pushed as far as

the largest dipole in the distribution gets close to the top of the nucleus front, such that the overlap

I(δ, y1) ∼ 1. The typical values for the fluctuation is then limited in a narrow range of order unity.

Consequently, the integral over the fluctuation’s size δ would not generate a factor
√
y

0
as in the

calculation for T1 presented above. Therefore, one could guess the following parametric form of T2:

T2(x, y; y0)|1�y0�(x−Xy)2 ∼
T1(x, y)√

y0

. (3.63)

For a better estimation, we may use the fact that the distribution G/T1 is boost invariant, and the

integration of this ratio over the rapidity y1 will give the ratio T2/T1. With Eq. (3.51), the latter

reads

T2(x, y; y0)

T1(x, y)
=

1

γ0

1√
2πχ′′(γ0)

∫ y

y0

dy1

[
y

y1(y − y1)

]3/2

exp

[
− (x−Xy)

2

2χ′′(γ0)(y − y1)

]
. (3.64)

Since ỹ1 ∼ ỹ0 ∼ y, we can replace (y − y1) by y in the above integral. The integral over y1 is then

trivial, and we obtain

T2(x, y; y0)

T (x, y)

∣∣∣∣
1�y0�(x−Xy)2

' 1

γ0

√
2

πχ′′(γ0)

1√
y0

. (3.65)

The result has the same parametric form as that of the guess Eq. (3.63), but the overall constant is

completely determined.

More generally, we can do the integration Eq. (3.64) in an exact way. By the change of variable
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u = y/(y − y1), we have

T2(x, y; y0)

T1(x, y)
=

1

γ0

1√
2πχ′′(γ0)

1√
y

∫ ∞

y/ỹ0

udu

(u− 1)3/2
exp

[
−(x−Xy)

2

2χ′′(γ0)y
u

]

=
1

γ0

1√
2πχ′′(γ0)

exp
[
− (x−Xy)2

2χ′′(γ0)y

]

√
y

∫ ∞

y0/ỹ0

dt

(
1

t1/2
+

1

t3/2

)
exp

[
−(x−Xy)

2

2χ′′(γ0)y
t

]

=
1

γ0

1√
2πχ′′(γ0)

exp
[
− (x−Xy)2

2χ′′(γ0)y

]

√
y

{√
2πχ′′(γ0)y

x−Xy

erfc

(
x−Xy√
χ′′(γ0)y

√
y0

ỹ0

)

+ 2 exp

[
−(x−Xy)

2

2χ′′(γ0)y

y0

ỹ0

]√
ỹ0

y0

−
√

2π(x−Xy)√
2χ′′(γ0)y

erfc

(
x−Xy√
χ′′(γ0)y

√
y0

ỹ0

)}
.

(3.66)

As we are in the scaling region, (x−Xy)
2 � y, we can replace the complementary error functions

erfc(u) and the exponential functions appearing on the above expression by 1 (actually, the expo-

nential outside the curly bracket should disappear if we include the same factor in the expression

of T1). Also, due to the same reason, the last term is negligible compared to the first two terms in

either cases. Finally, for the leading contribution, we get

T2(x, y; y0)

T1(x, y)
' 1

γ0(x−Xy)
+

1

γ0

√
2

πχ′′(γ0)

1√
y0

√
ỹ0

y
. (3.67)

In the first case, 1� (x−Xy)
2 � y0, we recover Eq. (3.45) (the first term in Eq. (3.67)); while for

the opposite ordering, we get Eq. (3.65) (the second term in Eq. (3.67) with ỹ0 ≈ y).

3.4.3 Nucleus at rest

The forward elastic scattering amplitude T1 was already analyzed in the rest frame of the nucleus

(y0 = 0) in Ref. [20]. A crucial point is that, unlike the above two frames, the nucleus in this

case has not developed a universal front, and is characterized by a steep amplitude which can be

approximated by a step function (see the initial conditions for the BK equation in the previous

chapter). The scattering amplitude of a dipole becomes very small as soon as the size of this dipole

gets smaller than the inverse saturation scale 1/QA. Consequently, the overlap between the small

front developed from the fluctuation at a rapidity ỹ1 (ỹ0 − ỹ1 � 1) and the tail with the nuclear

amplitude is negligible. Instead, the dominant contribution should come from a fluctuation occuring

at the very end of the evolution of the onium, which is referred to as the tip fluctuation. Therefore,

the formulation for T1 reads

T1(x, y)|y0=0 =

∫
dx′p(x+ X̃y − x′, y)T1(x′, 0), (3.68)
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where x+ X̃y − x′ is the probability of having dipoles of log size smaller than x′ in the distribution,

i.e., the size of the fluctuation. We can replace T (x′, 0) by a Heaviside distribution supporting values

of x′ such that x′ ≤ ln(1/QA),

T1(x′, 0) ' Θ

(
− ln

1

QA

)
. (3.69)

Eq. (3.68) can be rewritten as

T1(x, y)|y0=0 ∝
∫ ln 1

QA

−∞
dx′(x+ X̃y − x′)e−γ0(x+X̃y−x′) exp

[
−(x+ X̃y − x′)2

2χ′′(γ0)y

]

∝
∼
c (x−Xy)e

−γ0(x−Xy),

(3.70)

which can be obtained easily by noticing that the integral is dominated by a narrow range of x′

near the upper bound; hence, we can set the Gaussian factor to unity. The above result is what

is expected at the parametric level. However it is not possible to relate the constant c to the

constants C, C1 and C2 defined in the phenomenological model before. This is because the latter

are unambigously defined for evolved universal fronts, once a convention for the definition of the

front position or saturation scale has been chosen. However, the transition from the initial condition

to the well-defined front is not controlled analytically in the very early stage of the evolution.

Unlike T1, which can be estimated at the parametric level, T2 and G cannot be calculated in this

frame. Indeed, their evaluation requires a precise understanding of the particle distribution near

the tip. However, the fluctuation in the current case is typically at the end of the evolution of the

onium, and hence, does not have enough rapidity to develop into a well-defined front. Its particle

content is still a puzzle, which in turn prevents our effort to calculate T2 and G.

We have derived the expressions for the ratios T2/T1 and G/T1 with well-defined overall constant

factors, based on the assumptions of our phenomenological model. Whether these constants are the

correct ones for branching random walks and for the QCD color dipole model depends on the

ability of the phenomenological picture to capture accurately enough the features of the latter

models. Therefore, we shall perform numerical calculations to check the validity of the model.

3.5 Numerical evaluation of the ancestry distribution

In this section, we are going to check the result we have obtained from the phenomenological model

for the distribution of the branching rapidity of the last common ancestor by solving numerically

the exact evolution equations governing it. We will consider both the QCD evolution equation

(see Eq. (3.5)) and its corresponding version for branching random walk models. While the former

can give us a visualization of the numerical solutions in comparison to the analytical result, the

latter can help us assess quantitatively how the solutions approach the asymptotics, since we can

technically go to much higher rapidities in this case. The employment of the BRW model in this

check is motivated by the property that the asympotics is the same for all models in the universality

class of branching-diffusion processes, as discussed in the previous chapter. The only difference when
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switching between models is to change the numerical values of the kernel parameters γ0, χ′′(γ0) and

χ′(γ0), which depend on the detailed elementary processes.

In order to compare more easily different values of y, it is useful to introduce the rapidity overlap

q ≡ ỹ1/y. Its distribution is simply given by Eq. (3.51) up to a change of variable,

π∞(q;x, y) =
1√
y

1

γ0

1√
πχ′′(γ0)

1

q3/2(1− q)3/2
exp

[
−(x−Xy)

2

2χ′′(γ0)y

1

q

]
, (3.71)

where the∞ subscript is to remind that this distribution is valid for asymptotic values of y. In most

cases, we will restrict ourselves to values of q such that q � (x −Xy)
2/ [2χ′′(γ0)y] (the right-hand

side is small in the scaling region we are interested in). Therefore, we can neglect the Gaussian

factor in Eq. (3.71), and the y dependence simply appears as a prefactor.

3.5.1 QCD evolution equations

As being discussed previously, the probability G solves the evolution equation (3.5), which depends

on the solutions to the BK equation for either the S-matrix element S (Eq. (2.2)) or the forward

amplitude T1 (2.3), in the framework of the QCD dipole model. While it is impossible to find

exact solutions to such equations, we can solve them numerically. The strategy is simple: we evolve

the S-matrix element S from the initial condition at zero rapidity to the rapidity y1, then use this

solution to construct the initial condition for G according to Eq. (3.6). We then further advance G

to the total rapidity y by the virtue of Eq. (3.5), and eventually divide it by T1 to get the desired

distribution. For the initial condition for T1, we choose the MV model (2.4), with parameters set

as follows:

QA = 1 GeV, ΛQCD = 0.2 GeV. (3.72)

In order to satisfy the condition 1 � x − Xy �
√
χ′′(γ0)y (here we recover the factor χ′′(γ0)), or

1� ln[1/(r2Q2
s(y))]�

√
χ′′(γ0)y, we pick the onium size r such that

ln
1

r2Q2
s(y)

=
√
κy1/4, (3.73)

with a constant κ which enables us to move more or less deep into the scaling region by varying its

value. This choice of r is proportional to the geometric average of the two boundaries of the scaling

region.

We plot the overlap distribution π(q) rescaled by the factor
√
y for different values of the total

rapidity y in Fig. 3.4, with κ = 20. The numerical solutions are shown to have the similar shape of

the expected asymptotics, and get closer to it when increasing the total rapidity y. However, the

convergence seems to be very slow. Unfortunately, we cannot go to a very high rapidity in this case

due to technical reasons. Therefore, it is a big challenge to test the convergence to the analytical

asymptotic result just by using the numerical solutions to the QCD evolution equations. Instead,

we will employ the asymptotic universality of branching-diffusion processes, see the next section.

In addition to check the convergence to the asymptotics, we also plot the distribution for dif-
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Figure 3.4: Distribution of the rapidity overlap at different values of the total rapidity from the
solutions to the QCD evolution equations (full lines). The onium size r is picked according to the
condition ln[1/(r2Q2

s(y))] =
√

20y1/4. The expected asymptotics is also superimposed for compari-
son (dashed line).

ferent values of κ, i.e. for different onium sizes, for a fixed value of the total rapidity to see its

behavior when approaching the right boundary of the scaling region (see Fig. 3.5). We see that

the distribution in the region of small values of the overlap q, corresponding to small ỹ1, is sup-

pressed. In addition, this suppression seems to be similar to a Gaussian suppression, which appears

in Eq. (3.71). These observations indicate qualitatively that the analytical asymptotic expression

found from the phenomenological model for the ancestry distribution is reasonable.

3.5.2 A branching random walk model

To see better how the distribution approaches its asymptotics, we consider a branching random walk

in discrete space and time, give by a lattice with parameters (δx, δy), which is defined as follows.

After an evolution step δy, a particle on site x can jump to the site on the left (x− δx), or on the

right (x + δx) with respective probabilities 1
2
(1− δy). Otherwise, it may branch into two particles

on the same site x with probability δy.

This is exactly the BRW model defined to construct and to implement the Monte Carlo algorithm

in the previous chapter. This model differs from the QCD dipole evolution by the facts that in the

latter, the diffusion and the branching occur at the same time through a single process, and that

QCD is a theory in the continuum. However, these two points should not alter the asymptotic

behavior of the distribution we are considering.

By the previous discusssions, the equivalence to the forward elastic scattering amplitude T1 in

QCD is the probability T1(x, y) to find at least one particle to the right of the site x at the rapidity y.
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Figure 3.5: Distribution of the rapidity overlap at different sizes of the onium (full lines), when the
total rapidity is fixed at y = 40. The expected asymptotics is also superimposed for comparison
(dashed line).

The latter solves the finite difference equation (2.51), which can be rewritten in our new notations

as

T1(x, y + δy) =
1

2
(1− δy) [T1(x− δx, y) + T1(x+ δx, y)] + δyT1(x, y) [2− T1(x, y)] , (3.74)

which is analogous to the T-type BK equation in QCD and the FKPP equation for branching

diffusion. The initial condition is given by the Heaviside distribution T (x, 0) = Θ(−x). The

branching diffusion kernel of Eq. (3.74) linearized near the unstable fixed point T ∼ 0 accepts eγx

as the eigenfunction, with the corresponding eigenvalue given by

χ(γ) =
1

δy
ln

[
1

2
(1− δy)(eγδx + e−γδx) + 2δy

]
. (3.75)

Now we turn into the genealogical problem. The equivalence to the QCD evolution equation for

the probability G in this BRW model reads

G(x, y + δy; y1) =
1

2
(1− δy) [G(x− δx, y; y1) +G(x+ δx, y; y1)] + 2δyG(x, y; y1)S(x, y), (3.76)

with the initial condition given by

G(x, y1; y1) = T 2(x, y1). (3.77)

G(x, y; y1) in this model is precisely the probability for the last common ancestor of all particles to
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the right of x at the rapidity y to branch at the rapidity y1 (see Fig. 3.6).

Figure 3.6: A realization of the BRW model described in this section evolving up to y = 400 in
which there are particles to the right of the position X ' Xy=400 +

√
2 × 4001/4. The grey zone is

the set of occupied lattice sites for all values of the rapidity. The black lines represent the worldlines
of all the particles that end up with a position to the right of X (including X) at the final rapidity
y = 400. The last common ancestor of these particle branches at the rapidity y1 ≈ 192.43. The
inset is a zoom on the region around the branching rapidity y1, which illustrates that this common
ancestor is from a large fluctuation, as assumed in the phenomenological model. This realization is
generated using the algorithm presented in the previous chapter. Figure is adapted from Ref. [26].

For the implementation, we set the lattice parameters to the following values:

δx = 0.1, δy = 0.01. (3.78)

With this choice of the lattice parameters, the values of γ0, χ′(γ0) and χ′′(γ0), where γ0 solves

γ0χ
′(γ0) = χ(γ0), are given by

γ0 = 1.43195 · · · , χ′(γ0) = 1.39436 · · · , χ′′(γ0) = 0.96095 · · · . (3.79)

As in the previous section, in order to optimally satisfy the condition that x is well located in the

scaling region, 1� x−Xy � √y, we set x to a value X such that

X ' Xy +
√
κy1/4, (3.80)

(see Eq. (3.73)). The constant κ is now picked in the set {1, 2, 4}. Since we are working on a lattice

and the right hand side is generally off the lattice, it is not possible to set X exactly to the value

on the right hand side. Instead, we pick the closest lattice site to the left of the latter.

The current model allows us to boost y up to O(106). In Fig. 3.7, we plot the distribution
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π(q) of the rapidity overlap q at a finite rapidity, rescaled by
√
y, for different rapidities and for

κ = 2. The asymptotic distribution π∞(q) in Eq. (3.71), with the Gaussian factor suppressed, is

also superimposed.

We see that, when increasing the rapidity, the distribution obtained from the numerical solutions

get closer to its expected asymptotics. To perceive this convergence quantitatively, we pick a value

of q and plot the quantity 1 − πy(q)/π∞(q), which is expected to tend to 0 when y → ∞, as a

function of ln y/
√
y. For q = 0.5, the result is shown in Fig. 3.8. (We also checked for some other

values of q which are not close to 0 and 1, and got the same results.)

0.0 0.2 0.4 0.6 0.8 1.0q

2

3

4

5

6

π
(q

)
×
√

y

y = 100× 4k

expected asymptotics

Figure 3.7: Distribution of the rapidity overlap for different finite rapidities y = 100 × 10k (full
lines), with k running from 1 to 6 from bottom to top. X is set to the value Xy +

√
2y1/4 in each

case. The asymptotic distribution (without Gaussian factor) is also plotted for comparison (dashed
line). Figure is adapted from Ref. [26].

For a better estimation, we fit the following function to the numerical data points:

1− πy(q = 0.5)

π∞(q = 0.5)
'
fit
a+

b11 ln y + b12√
y

. (3.81)

The values of the parameters a, b11 and b12 obtained from the fit is shown in Table 3.1. They appear

to be reasonable: a is close to zero by the order of one percent, while b11 and b12 are of order 1.

Therefore, we conclude that our analytical formula in Eq. (3.71) is well-supported by the numerical

calculation.

From these numerical results, it is also important to note that the finite-y corrections are sig-

nificantly sizable and the convergence to the asymptotics is slow. Figure 3.8 and the fit seem to

indicate that the leading finite-rapidity correction to the asymptotic distribution π∞(q) may take

the form of a multiplicative factor (1 + const × ln y/
√
y). However, there is no theory up-to-date

that may enable us to understand the form of the distribution beyond the asymptotic level.
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Figure 3.8: The unity complement of the ratio between the finite-rapidity and the asymptotic
distributions at the overlap q = 0.5 for values of κ ∈ {1, 2, 4} and for different values of the total
rapidity y as a function of ln y/

√
y. The points come from the numerical solutions of Eqs. (3.74)

and (3.76). The continuous lines represent the fit according to the function (3.81), while the dotted
lines are extrapolations outside the domain in which the fit is performed. The oscillations observed
in the small-y tail is due to the fact that X is not exactly at Xy +

√
κy1/4, but at the nearest site

compared to the latter. Figure is adapted from Ref. [26].

Table 3.1: Values of the parameters in Eq. (3.81) obtained from the fit to the numerical points
shown in Fig. 3.8.

X −Xy a b11 b12

y1/4 1.26× 10−2 1.10 −0.52√
2y1/4 0.91× 10−2 0.90 −1.17

2y1/4 0.59× 10−2 0.81 −1.28

3.6 Summary

In the scattering of an onium off a large nucleus at a large rapidity Y , in a frame in which the onium

is boosted to a large rapidity Ỹ0, the latter interacts via its highly-evolved quantum state which can

be represented by a set of color dipoles of various sizes, which are randomly distributed. As the

interaction between each elementary dipole with the nucleus is encoded in a scattering amplitude

whose values monotonically decrease from 1 to 0 as the dipole size gets smaller, it turns out that

only a subset of those dipoles actually scatter off the nucleus in a particular realization. Requiring

to have at least one dipole in such subsets defines the forward elastic scattering amplitude T1.

Another interesting quantity is the amplitude T2 to have at least two dipoles in the set that scatter,

which provides a measure of the correlations of the dipoles involved in the interaction. The detailed
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scattering configuration would depend upon the kinematical regime of interest.

In the current chapter, we have developed a phenomenological picture for the dipole distribution

of a small onium evolved to a high rapidity in the scattering off a large nucleus. The picture involves

of the mean-field evolution and a rare fluctuation occuring in the course of the evolution of the onium

in such a way that it creates a large dipole of size much deviated from the typical value of the tip

of the dipole distribution at the rapidity of the fluctuation. We have shown that the dominant

pattern of the partonic configurations qualitatively contigents on the chosen reference frame, which

is to guarantee that the overlap between the dipole distribution and the dipole-nucleus amplitude

is optimal. In particular, if the nucleus is boosted to a rapidity Y0 much larger than ln2[r2Q2
s(Y )],

the fluctuation substantially takes place at the top of the evolution, and effectively shifts the whole

distribution toward larger sizes. This type of fluctuations is therefore called the “front fluctuation”.

On the other hand, if the nucleus is less boosted, 1 � ᾱY0 � ln2[r2Q2
s(Y )], the fluctuation occurs

preferably near the tip of the well-developed front of the onium at a rapidity ỹ1 close to the bottom

of the evolution. Finally, in the extreme case when the nucleus stays at rest, the scattering is

dominated by a large fluctuation at the very end of the evolution, which would create a dipole of

size at least touching the inverse saturation scale of the nucleus.

Apart from the forward elastic scattering amplitude T1, which is boost invariant, switching to

a frame such that the fluctuation is sufficiently developed enables us to calculate the asymptotic

amplitude of scatttering twice T2 whose ratio to T1 is determined with no free parameters,

T2(r, Y ;Y0)

T1(r, Y )
' 1

γ0 ln[1/(r2Q2
s(Y ))]

+
1

γ0

√
2

πχ′′(γ0)

1√
ᾱY0

√
Y − Y0

Y
, (3.82)

in which we have relaxed to the QCD variables.

More interestingly, we have deduced the full analytical expression for the distribution of the

branching rapidity Y1 of the last common ancestor of the set of dipoles that effectively interact with

the nucleus at an asymptotic total rapidity Y . In the QCD variables, it reads

G(r, Y ;Y1)

T1(r, Y )
=

1√
ᾱ

1

γ0

1√
2πχ′′(γ0)

[
Y

Y1(Y − Y1)

]3/2

exp

[
− ln2[r2Q2

s(Y )]

2χ′′(γ0)ᾱ(Y − Y1)

]
. (3.83)

This equation makes the main qualitative result for the chapter. The expressions in Eqs. (3.82)

and (3.83) are valid for the onium size located in the scaling region, which is defined as

1� ln
1

r2Q2
s(Y )

�
√
ᾱY . (3.84)

In another aspect, we expect Eq. (3.83) to represent the distribution of the branching time of the

last common ancestor of all particles that end up to the right of some predefined position x in

the scaling region for general one-dimensional branching random walk models, after the following

85



3.6. SUMMARY

identifications of time and space variables:

t↔ ᾱY, t1 ↔ ᾱY1,

x↔ ln[1/(r2Q2
A)], Xt ↔ ln[Q2

s(Y )/Q2
A],

(3.85)

and with the kernel parameters depending on the specific elementary processes. Furthermore,

we observed that our result coincides with a conjecture by Derrida and Mottishaw [85] for the

distribution of the branching rapidity of the last common ancestor of the two particles picked in the

tip. While they derived that distribution based on the generalized random energy model [97, 98],

our result is from the phenomenological picture of branching random walks. Indeed our approach

cannot be applied to the type of genealogical problems addressed by Derrida and Mottishaw to find

the complete distribution, since we do not have an enough understanding on the distributions of

particles near the tip and on their correlations. Finding a good description for the latter still needs

more efforts.

In addition to the asymptotic understanding of the ancestry distribution, it is also important

to develop a formalism which enables the calculation of finite-rapidity (time) corrections, as the

convergence to the asymptotics appears to be very slow. It is of interest not only for particle

physics but also for the investigation of branching diffusion processes in statistical physics, and

therefore, an exciting challenge for further developments.

Last but not least, the probabilities T2 and G discussed in this chapter are related to the

diffractive scattering cross sections for the diffractive dissociation of a small onium off a large

nucleus. Understanding the latter is our initial motivation for the current project. We will discuss

diffractive disscociation in the next chapter, with a reminiscence to those probabilities.
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In the previous chapter, we introduced a phenomenological model of dipole distribution which

enabled us to study the structure of the dipole evolution of a small onium in the scattering off a large

nucleus. For the current chapter, we shall keep working with the nuclear scattering of small onia,

focusing particularly on an analytical study of the diffractive dissociation process at asymptotics.

In addition, the diffractive dissociation of a virtual photon will also be analyzed numerically based

on QCD evolution equations aiming at producing predictions for future colliders. These are our

recent results [27, 28] on diffraction.
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4.1 Diffractive phenomena in high-energy scattering

In high-energy particle scattering, diffraction is defined to be a process in which there is an angular

region with no particle produced in the final state, which is referred to as the rapidity gap [99, 100]

(see also Ref. [101]). It has been observed in the scattering of hadrons and nuclei [102–107]. There

were also direct evidences for diffraction in deep-inelastic electron-proton scattering at DESY HERA

[108–110]: it was reported that about 10% of the inclusive DIS cross section is diffractive.

The history of diffraction in the physics of high-energy nuclear scattering can be traced back to

the 1950s, when that term was first introduced in the literature [111–114]. Good and Walker [115]

then provided a modern description for hadronic diffraction and established an elegant theoretical

framework in which inelastic diffraction is related to the dispersion of the forward elastic scattering

amplitude. In the mean time, it was also formulated in the framework of the Regge theory [116–

119] in which diffraction is due to the exchanges of color singlet objects called “pomerons”. The

discussions in those studies all focused on soft diffraction. It was not until 1985 that the hard

diffraction was first discussed by Ingleman and Schlein [120]. The striking experimental observations

at DESY HERA [108–110] and Tevatron [106, 107], as mentioned above, then made an impressive

boost to the physics of diffraction.

We are interested in hard diffraction in DIS, which is traditionally divided into two classes: the

quasi-elastic scattering in which the diffractive system is typically a vector meson or a hadronized

open quark-antiquark pair, and the diffractive dissociation in which the virtual photon is dissociated

into an inclusive set of particles in the final state. While there has been a great advance in the

study of the former recently (see e.g. Ref. [121] for a review), the diffractive dissocation has drawn

less attention. To gain insights into the latter phenomenon is our spotlight in this chapter. As a

major motivation, the detail investigation of diffraction, including diffractive dissociation, is a main

goal at future electron-ion colliders [1, 3, 122].

Diffractive DIS can be described on the basis of the color dipole formulation, in which the virtual

photon interacts via its quark-antiquark dipole state (onium). Nikolaev and Zakharov [31, 123, 124]

were pioneers in using the color dipole approach for the inclusive diffractive dissociation of a virtual

photon off a proton. Employing this approach together with a description of saturation effect,

Golec-Biernat and Wusthoff [51, 52] were able to succesfully describe the HERA diffractive data.

On a further development of the dipole formulation including the high-energy evolution, Mueller

[32] showed that, at high energy and in the limit of large number of colors, the S-matrix of the

hadronic scattering of the dipole state of the virtual photon is diagonal in the transverse size (see

Chapter 1), which consequently enables to link the Good and Walker mechanism [115] to QCD to

describe the hard diffractive dissociation in DIS [19, 23, 125, 126]. Based on this QCD color dipole

model, Kovchegov and Levin [127–129] established an elegant formulation, which provide detailed

predictions for diffractive cross sections in the scattering of an onium with the nucleus in the form

of nonlinear evolution equations whose leading-order version was then studied in detail numerically

[130–132].

Interestingly enough, the Kovchegov-Levin formulation enables us to address the distribution of
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rapidity gaps (see Eqs. (4.7) and (4.8) below), which shows up as an important observable. On the

experimental side, the existence of rapidity gap is a typical signature to detect diffractive events.

Also, since the partonic content of the hadrons has signature in the final state, such as the rapidity

gap, such observable could provide indications on the microscopic mechanism of diffraction. As a

matter of fact, a recent study [22, 23] has suggested a picture at the partonic-level for diffraction in

the nuclear scattering of a small onium, from which the authors enabled to derive the asymptotic

rapidity gap distribution.

In this chapter, we shall investigate the diffractive dissociation of a virtual photon off a large

nucleus, focusing on the diffractive scattering cross sections and the rapidity gap distributions. Our

aims are twofold. First, we would like to develop a theoretical formulation from which one can derive

diffractive observables in an onium-nucleus scattering in a particular kinematic regime of interest.

Second, we aim to produce predictions for the distribution of rapidity gaps in realistic kinematics

of future electron ion colliders, based on the numerical solutions of the original Balitsky-Kovchegov

and the Kovchegov-Levin equations at their next-to-leading versions. Both analyses are all based

on the QCD color dipole picture, which will be recalled in the next section before coming to the

main results.

4.2 Dipole formulation for diffractive dissociation in DIS

As discussed in Chapter 1, deep-inelastic virtual photon-nucleus scattering at high-energy can be

conveniently described in a frame, e.g. the target rest frame, in which the virtual photon (γ∗)

interacts with the nucleus (A) via its color-singlet quark-antiquark dipole state, i.e. onium. Such

dipole picture allows for the following dipole factorization for the total cross section:

σγ
∗A
tot (Q2, Y ) =

∫
d2r⊥

∫ 1

0

dz
∑

p=L,T ;f

∣∣∣Ψγ∗→qf q̄f
p (r, z,Q2)

∣∣∣
2

σqq̄Atot (r, Y ), (4.1)

which is a virtuality (Q2)-dependent and rapidity (Y )-dependent weighted average of the total cross

section of the onium-nucleus scattering σqq̄Atot over onium transverse sizes r⊥ and over longitudinal

momentum fractions z of the virtual photon carried by the quark (or the antiquark) (see Eq. (1.70)).

The rapidity Y encodes the squared center-of-mass energy ŝ of the process as Y = ln[(ŝ+Q2)/Q2].

The weight is given by the probability density functions
∣∣∣Ψγ∗→qf q̄f

L,T (r, z,Q2)
∣∣∣
2

of the quantum pair

creation γ∗ → qf q̄f in the longitudinal (L) and the transverse (T) polarizations for a quark flavor

f , whose expressions are given by [38]

∣∣∣Ψγ∗→qf q̄f
L (r, z,Q2)

∣∣∣
2

=
αEMNc

2π2
4Q2z2(1− z)2e2

fK
2
0(rαf ), (4.2a)

∣∣∣Ψγ∗→qf q̄f
T (r, z,Q2)

∣∣∣
2

=
αEMNc

2π2
e2
f

{
α2
fK

2
1(rαf )

[
z2 + (1− z)2

]
+m2

fK
2
0(rαf )

}
, (4.2b)
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where αEM is the electromagnetic coupling and α2
f ≡ Q2z(1 − z) + m2

f , with mf and ef being the

mass and the electric charge of a quark of flavor f , respectively. K0,1(x) are the modified Bessel

functions of the second kind.

γ∗ (Q2)

A

Y

r

Ỹ0 ≡ Y − Y0

Y0

Figure 4.1: A diagrammatic visualization of the diffractive dissociation of a virtual photon in the
dipole picture. The onium state dressed by quantum radiations of the virtual photon is, after the
interaction with the nucleus, dissociated into a set of final-state particles, while the nucleus is kept
intact. There is a gap in rapidity between the slowest particle in that set and the nucleus, which
defines diffractive event. Figure is adapted from Ref. [28].

The diffractive dissociation can also be formulated within the dipole picture. The difference

between diffraction and the generic DIS process is the fact that, while produced particles can

distribute at any rapidity in the latter, there is a rapidity gap with no particle observed for the

former case (see Fig. 4.1). This gap is deserved to the color-singlet nature of the overall gluonic

exchange state in diffraction. Similar to Eq. (4.1), the diffractive cross section for the diffractive

dissociation of a virtual photon with a minimal gap Y0 (0 < Y0 ≤ Y ) can be factorized as

σγ
∗A
diff (Q

2, Y, Y0) =

∫
d2r⊥

∫ 1

0

dz
∑

p=L,T ;f

∣∣ψfp (r, z,Q2)
∣∣2 σqq̄Adiff (r, Y, Y0). (4.3)

The factorizations in Eqs. (4.1) and (4.3) indicate that it is natural to analyse the nuclear scattering,

including the diffractive dissociation, of an onium. Indeed, the latter is better controlled theoreti-

cally. And, due to the weight average, the behaviors of the nuclear scattering of the onium would

be present in that of the virtual photon, which helps gain some insights into the latter process, at

least at a qualitative level.

We thus now focus on the diffractive dissociation of an onium. As a reminder, the total cross

section σqq̄Atot (r, Y ) is related to the forward nuclear elastic scattering amplitude T1(r, Y ) (assumming

the impact parameter independence) of an onium of size r at the total rapidity Y at a fixed impact

parameter by σqq̄Atot (r, Y ) = σ02T1(r, Y ), where σ0 ∼ πR2
A (RA is nuclear radius) is a surface that

stems from the integration over impact parameter. At high energy and in the limit of large Nc, T1

solves the T-type BK equation given in Eq. (2.3), assuming large nucleus. We also hereafter denote
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by σT (r, Y ) the total cross section per unit impact parameter, σT (r, Y ) = 2T1(r, Y ).

Figure 4.2: A large-Nc diagram contributing to the cross section for diffractive dissociation of an
onium. The grey vertical line represents the final state at the lightcone time x+ = +∞. The
amplitude is to the left of this line, while the conjugate amplitude is to the right. Interacting
dipoles in the Fock state of the onium exchange gluons with the nucleons (black dots) constituting
the nucleus.

As for diffractive dissociation, we define σD(r, Y ;Y0) to be the diffractive cross section per unit

impact parameter with rapidity gap not less than Y0. The cross section σqq̄Adiff (r, Y ;Y0) is then related

to σD(r, Y ;Y0) as

σqq̄Adiff (r, Y ;Y0) = σ0σD(r, Y ;Y0), (4.4)

Figure 4.2 represents a diagram contributing to the cross section σD(r, Y ;Y0). At largeNc, Kovchegov

and Levin [127] (see also Ref. [37]) established an evolution equation governing the high-energy

evolution of σD(r, Y ;Y0). This equation reads

∂Y σD(r, Y ;Y0) = ᾱ

∫
dp1→2(r⊥, r′⊥)

[
σD(r′, Y ;Y0) + σD(|r⊥ − r′⊥|, Y ;Y0)− σD(r, Y ;Y0)

−2σD(r′, Y ;Y0)T1(|r⊥ − r′⊥|, Y )− 2σD(|r⊥ − r′⊥|, Y ;Y0)T1(r′, Y )

+σD(r′, Y ;Y0)σD(|r⊥ − r′⊥|, Y ;Y0) + 2T1(r′, Y )T1(|r⊥ − r′⊥|, Y )
]
.

(4.5)

The initial condition for Eq. (4.5) can be set at Y = Y0: in this case, the scattering is elastic,

σD(r, Y0;Y0) = T 2
1 (r, Y0). (4.6)

In this chapter, we are interested in the following quantities:

i. the ratios between the diffractive cross section and the total cross section: σD(r, Y ;Y0)/σT (r, Y )

(for onium) and σγ
∗A
diff (Q

2, Y ;Y0)/σγ
∗A
tot (Q2, Y ) (for virtual photon); and

ii. the distributions of rapidity gaps, which are defined as the ratios between the diffractive cross
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section at a fixed rapidity gap Ygap and the total cross section:

π(r, Y ;Ygap) ≡ −
1

σT

∂σD
∂Y0

∣∣∣∣
Y0=Ygap

(4.7)

for an onium in the initial state, and

Π(Q2, Y ;Ygap) ≡ −
1

σγ
∗A
tot

∂σγ
∗A
diff

∂Y0

∣∣∣∣∣
Y0=Ygap

(4.8)

for a virtual photon.

The diffractive-to-total cross section ratios estimate the possibility of observing diffractive events

in the scattering. Meanwhile, the distributions of rapidity gaps tell us how likely to observe a

diffractive event of gap size Ygap, which may help in the selection of gap events at colliders.

The analysis of the above quantities requires the solutions to the Kovchegov-Levin (KL) equation

(4.5). Due to its complex structure, to solve it analytically, in a direct way, is still not possible.

However, it can be solved numerically, and we shall use its numerical solutions to investigate the

quantities of interest at kinematics accessible at future electron-ion colliders. Prior to that, in the

next section, we are going to introduce a formulation for diffraction based on which we can derive

analytical solutions to the Kovchegov-Levin equation at an asymptotically large rapidity for a small

onium size r, based on the phenomenological model for dipole distribution presented in the previous

chapter and on a probabilistic picture of scattering cross sections.

4.3 Analytical asymptotics for diffractive dissociation of an

onium

We consider the scattering of an onium of size r off a large nucleus A, at the total relative rapidity Y .

The onium is picked such that its size is well located in the scaling region, 0� ln[1/(r2Q2
s(Y ))]�√

ᾱY . Inherited from the previous chapter, as we are dealing with the leading-order evolution, we

shall rescale rapidity variables by multiplying them by ᾱ, and the new rescaled rapidity variables are

denoted by lowercase letter, for example, y ≡ ᾱY . In addition, it is convenient to use the logarithms

of tranverse sizes and saturation scales defined in Eq. (3.7) instead of the original variables.

We are going to use the aforementioned phenomenological model of dipole distribution for our

next calculations. Therefore, it is necessary to consider a reference frame in which the rapidity is

shared between the projectile and the target: the nucleus is boosted to the rapidity y0 and the

onium evolves to the rapidity ỹ0 ≡ y − y0. All the relevant rapidities are assumed to be large,

y, y0, ỹ0 � 1, so that the variables of well-developed mean-field fronts can be used properly.
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4.3.1 Formulation of scattering cross sections

a. Frame-dependent representation of cross sections

In the reference frame we are considering, by the dipole branching process, the Fock state of the

evolved onium at the rapidity ỹ0 consists of elementary dipoles of various log sizes x′. The scat-

tering cross sections can be expressed using the S-matrix element S(x′, y0) for the scattering of an

elementary dipole x′ off a nucleus boosted to y0, as in Eqs. (3.8) and (3.10). To this aim, let us

denote S(y0) being the S-matrix element for the scattering of a particular realization of the Fock

state of the onium at ỹ0, represented by the number density n(x′), off a nucleus at y0. In term of

the density n, S(y0) reads

S(y0) =
∏

{xi}

S(xi, y0) =
∏

x′

[S(x′, y0)]
n(x′)dx′

= exp

(
−
∫
dx′n(x′) ln

1

S(y0, x′)

)
≡ e−I(y0);

(4.9)

see Eqs. (3.10) and (3.11). Again, note that, since n is a random distribution, I(y0) is also a random

quantity.

With the help of S(y0), we can rewrite the S-matrix element for the nuclear scattering of the

initial onium x at the total rapidity y as

S(x, y) = 〈S(y0)〉x,ỹ0
. (4.10)

By the optical theorem, the total cross section reads

σT (x, y) = 2 〈1− S(y0)〉x,ỹ0
. (4.11)

σT (x, y) should be boost-invariant: while y0 is present in the right-hand side of the representation

(4.11), the explicit expression of σT (x, y) does not depend on it. We showed in the previous chapter

that, in the framework of our phenomenological model, this is in fact verified.

Now we move on to the diffractive cross section. According to the Good-Walker mechanism

[115], diffractive dissociation cross section (σDD) is related to the dispersion of the forward elastic

scattering amplitudes when evaluated in the different Fock states,

σDD(x, y; y0) = 〈x, ỹ0|T†(y0)T(y0)|x, ỹ0〉 − |〈x, ỹ0|T(y0)|x, ỹ0〉|2, (4.12)

where |x, ỹ0〉 is the quantum state of the initial onium of log size x evolved to the rapidity ỹ0, and

T(y0) is the interacting (transition) matrix (T-matrix) representing the interaction of a dipole state

when the latter traverses the nucleus at rapidity y0. σDD(x, y; y0) is different from σD(x, y; y0) by the

elastic term. In other words, σDD(x, y; y0) is the cross section for inelastic diffraction. Introducing
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{|m〉} as a complete set of dipole states, we can rewrite Eq. (4.12) as

σDD(x, y; y0) =
∑

m,m′,m′′

〈x, ỹ0|m〉〈m|T†(y0)|m′〉〈m′|T(y0)|m′′〉〈m′′|x, ỹ0〉

−
∣∣∣∣∣
∑

m,m′

〈x, ỹ0|m〉〈m|T(y0)|m′〉〈m′|x, ỹ0〉
∣∣∣∣∣

2

.

(4.13)

In the color dipole model for the onium-nucleus scattering at high energy, the dipoles are eigenstates

of the T-matrix. Therefore, we can rewrite Eq. (4.13) as

σDD(x, y; y0) =
∑

m

〈x, ỹ0|m〉 |〈m|T(y0)|m〉|2 〈m|x, ỹ0〉 −
∣∣∣∣∣
∑

m

〈x, ỹ0|m〉〈m|T(y0)|m〉〈m|x, ỹ0〉
∣∣∣∣∣

2

=
∑

m

|ψm(x, ỹ0)|2 |〈m|T(y0)|m〉|2 −
∣∣∣∣∣
∑

m

|ψm(x, ỹ0)|2 〈m|T(y0)|m〉
∣∣∣∣∣

2

,

(4.14)

where ψm(x, ỹ0) ≡ 〈m|x, ỹ0〉 is the probability amplitude for the Fock state of the onium x at the

rapidity ỹ0 to be the dipole state m. We denote by T (y0) the T-matrix element for a particular

scattering dipole state, which is the forward elastic amplitude for the scattering of a particular

realization of the onium Fock state at ỹ0 with the nucleus at y0. From Eq. (4.14), the diffractive

dissociation cross section reads

σDD(x, y; y0) =
〈
T 2(y0)

〉
x,ỹ0
− 〈T (y0)〉2x,ỹ0

, (4.15)

where the average over possible dipole realizations 〈· · · 〉x,ỹ0
is corresponding to the sum over dipole

eigenstates |m〉 with weights |ψm(x, ỹ0)|2 in Eq. (4.14). Since T (y0) = 1− S(y0), we can also write

the cross section σDD as:

σDD(x, y; y0) =
〈
S2(y0)

〉
x,ỹ0
− 〈S(y0)〉2x,ỹ0

. (4.16)

To obtain a representation for σD, we just need to add the elastic contribution 〈1− S(y0)〉2x,ỹ0
. The

diffractive scattering cross section with a minimal gap y0 eventually reads

σD(x, y; y0) =
〈
[1− S(y0)]2

〉
x,ỹ0

(4.17)

Finally, the inelastic cross section is the difference between the total cross section and the diffractive

cross section,

σin(x, y; y0) =
〈
1− S2(y0)

〉
x,ỹ0

. (4.18)

In comparison to the total cross section σT , the cross sections σD and σin depend on y0. The rapidity
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gap distribution can be expressed in term of either σD, as in Eq. (4.7), or σin,

π(x, y; ygap) ≡ −
1

σT

∂σD
∂y0

∣∣∣∣
y0=ygap

=
1

σT

∂σin
∂y0

∣∣∣∣
y0=ygap

. (4.19)

So far, the above representation of the S-matrix element and cross sections with S(y0) given by

Eq. (4.9) is valid in the dipole model for the QCD evolution of the onium Fock state and with the

assumption that the nucleus is large.

b. Probabilistic picture for cross sections of small onia

Let us recall that we are interested in the nuclear scattering of small onia with size in the scaling

regime. In this case, the scattering is effectively dominated by the Fock state configurations in

which the probability for each individual dipole x′ to scatter with the nucleus is very small (i.e.,

S(x′, y0) ∼ 1), which was already verified in the framework of our phenomenological model of dipole

distribution. This implies that the probability for the same dipole to scatter more than once is

negligible. Then, we can approximate I(y0) by Eq. (3.13), which is now denoted by I(1)(y0),

I(1)(y0) =

∫
dx′n(x′)T̄1(x′, y0). (4.20)

In the last chapter, this integral was called ”the overlap”. It corresponds to the sum of diagrams in

which one single dipole in one given realization of the onium Fock state interacts by exchanging a

single color-singlet two-gluon state with the nucleus. The approximation leading to Eq. (4.20) shall

be referred to as the “single-exchange approximation”. This is the meaning of the superscript (1)

in the notation I(1)(y0) of the overlap.

For our purpose, let us define

FN(I) ≡ I
N

N !
, (4.21)

and

Gk(I) ≡ Fk(I)e−I . (4.22)

FN
[
I(1)(y0)

]
(N ≥ 0) is the quantum-mechanical amplitude corresponding to the sum of all dia-

grams in which N dipoles in the onium Fock state exchange color-singlet two-gluon states with the

nucleus at the rapidity y0. Meanwhile, Gk (I) is unitarized,

∑

k≥0

Gk (I) = 1. (4.23)

With this property, Gk

[
I(1)(y0)

]
accepts a probabilistic interpretation: when choosing scattering

configurations with a weight given by their amplitude FN
[
I(1)(y0)

]
, it represents the probability

to pick those in which k dipoles interact. Note that, both FN and Gk are evaluated for a given

realization of the onium Fock state.

We can rewrite the cross sections in Eqs. (4.11), (4.17) and (4.18) in terms of FN and Gk in the
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single-exchange approximation. In particular, the total cross section reads

σT (x, y) = 2
(

1−
〈
G0

[
I(I)(y0)

]〉
x,ỹ0

)
≡ 2

∞∑

k=1

wk(x, y; y0), (4.24)

where wk are the average weights (over all possible realizations) to select scattering configurations

with k interacting dipoles,

wk(x, y; y0) ≡
〈
Gk

[
I(I)(y0)

]〉
x,ỹ0

. (4.25)

Note that, each weight, except for w0, may a priori depend on y0. The weight w0 should be boost

invariant since it is precisely the S-matrix element.

In the single-exchange approximation, the diffractive cross section can be rewritten as

σD(x, y; y0) =
〈

1− 2e−I
(1)(y0) + [e−I

(1)(y0)]2
〉
x,ỹ0

=
〈
e−I

(1)(y0)
(
e−I

(1)(y0) + eI
(1)(y0) − 2

)〉
x,ỹ0

=

〈
2
∑

k≥2
k even

[
I(1)(y0)

]k

k!
e−I

(1)(y0)

〉

x,ỹ0

= 2
∑

k≥2
k even

wk(x, y; y0),
(4.26)

which is two times the weight of the graphs with even number of participating dipoles. This relation

suggests that the diffraction of a small dipole is dominated by an even number of exchanges at the

interaction time.

Lastly, the inelastic scattering can be expressed as twice the weight of having an odd number of

exchanges,

σin(x, y; y0) = 2
∑

k≥1
k odd

wk(x, y; y0). (4.27)

We realize from this probablistic formulation that the calculation of the scattering cross sections

requires the average weights of selecting a particular number of interacting dipoles. We shall present

our estimation of the latter based on our aforementioned phenomenological picture of dipole distri-

bution, together with establishing an exact evolution equation of their generating function. Before

continuing with further calculations, we are going to show that, the representations of the diffractive

cross section σD are egligible, i.e., they indeed obey the KL equation (4.5).

c. Connection to the Kovchegov-Levin equation

To the aim to recover the KL equation, let us introduce the probability Sin(r, y; y0) that there is no

inelastic scattering between the state of the onium at ỹ0 and the nucleus at y0,

Sin(r, y; y0) =
〈
[S(y0)]2

〉
r,ỹ0

, (4.28)

where we have reused the original transverse size variable instead of the log transverse size notation.

Now we boost the scattering by an infinitesimal rapidity dy by assuming that the onium is

boosted while keeping the rapidity of the nucleus unchanged. We further put this infinitesimal boost
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at the begining of the QCD evolution of the onium. This is the technique we already employed

in the previous chapters to construct various evolution equations. By doing so, we are left with

two possibilities. In the first place, there is no dipole branching after dy; then Sin(r, y + dy; y0) =

Sin(r, y; y0). Otherwise, the initial onium may branch into two daughter dipoles r′ and |r⊥ − r′⊥|
after dy. In this case, for having no inelastic scattering between the state of the onium at ỹ0 + dy

with the nucleus, the state of each daughter dipole after the evolution over ỹ0 should not scatter

inelastically. Gathering those two cases in one equation, we have

〈
[S(y0)]2

〉
r,ỹ0+dy︸ ︷︷ ︸

Sin(r,y+dy;y0)

=

(
1− dy

∫
dp1→2(r⊥, r′⊥)

)〈
[S(y0)]2

〉
r,ỹ0︸ ︷︷ ︸

Sin(r,y;y0)

+ dy

∫
dp1→2(r⊥, r′⊥)

〈
[S(y0)]2

〉
r′,ỹ0︸ ︷︷ ︸

Sin(r′,y;y0)

〈
[S(y0)]2

〉
|r⊥−r′⊥|,ỹ0︸ ︷︷ ︸

Sin(|r⊥−r′⊥|,y;y0)

.

(4.29)

Letting dy → 0, we realize that Sin obeys the S-type BK equation. Since Sin = 1−σin, it is followed

that the inelastic cross section solves the T-type BK equation.

Now we turn into diffraction. From Eqs. (4.17) and (4.28), Sin and σD are related to each other

as

σD(r, y; y0) = 1− 2T1(r, y) + Sin(r, y; y0). (4.30)

By taking the derivative with respect to y both sides of Eq. (4.30), using the facts that T1 and Sin
obey the T-type and the S-type BK equations, respectively, it is straightforward to see that σD
solves the KL equation (4.5).

The remaining thing to deal with is the initial condition. At y = y0, or ỹ0 = 0, the Fock state

of the onium is just itself. Therefore,

Sin(r, y0; y0) = S2(r, y0). (4.31)

Substituting this into Eq. (4.30), with y = y0, we recover the initial condition for the diffractive

cross section in Eq. (4.6). Therefore, we have shown that, the representation (4.17) of the diffractive

cross section is valid.

In the above paragraph, we have considered an onium of generic size. Now we retrieve our

key assumption that the onium is picked in the scaling region, and hence, recall the probabilistic

representation (4.26) of the diffractive cross section. Let us define WE(r, y; y0) to be the weight of

the graphs with an even number of participating dipoles,

WE(r, y; y0) =
∑

k≥2
k even

wk

(
x ≡ ln

1

r2Q2
A

, y; y0

)
. (4.32)

Then for an odd number of exchanges,

WO(r, y; y0) = T1(r, y)−WE(r, y; y0). (4.33)

97



4.3. ANALYTICAL ASYMPTOTICS FOR DIFFRACTIVE DISSOCIATION OF AN ONIUM

The diffractive and the inelastic cross sections are just twice WE and WO, respectively.

Figure 4.3: Contributions of dipole branching events to the evolution of WE.

Using the well-known technique presented above, we can easily establish an evolution equation

for WE. In particular, we advance the system by a rapidity step dy by boosting the onium from

its rest frame. If the onium does not branch, WE(r, y + dy; y0) is just WE(r, y; y0). In case it splits

into two offspring r′ and |r− r′|, one has following possibilities (see Fig. 4.3). If only one offspring

interacts, it should scatter an even number of times. Otherwise, if both offspring interact, to have

an even number of exchanges in the initial onium r boosted to ỹ0 + dy is equivalent to have in the

states of both offspring either an even or an odd number of interacting dipoles. Therefore, we have

WE(r, y + dy; y0) =

(
1− dy

∫
dp1→2(r⊥, r′⊥)

)
WE(r, y; y0)

+ dy

∫
dp1→2(r⊥, r′⊥)

{
WE(r′, y; y0)

[
1− T1(|r⊥ − r′⊥|, y)

]
+WE(|r⊥ − r′⊥|, y; y0) [1− T1(r′, y)]

+ WE(r′, y; y0)WE(|r⊥ − r′⊥|, y; y0)

+ [T1(r′, y)−WE(r′, y; y0)]
[
T1(|r⊥ − r′⊥|, y)−WE(|r⊥ − r′⊥|, y; y0)

]}
.

(4.34)

Passing to the limit dy → 0, we obtain the following evolution equation for WE:

∂yWE(r, y; y0) =

∫
dp1→2(r⊥, r′⊥)

[
WE(r′, y; y0) +WE(|r⊥ − r′⊥|, y; y0)−WE(r, y; y0)

− 2WE(r′, y; y0)T1(|r⊥ − r′⊥|, y)− 2WE(|r⊥ − r′⊥|, y; y0)T1(r′, y)

+ 2WE(r′, y; y0)WE(|r⊥ − r′⊥|, y; y0) + T1(r′, y)T1(|r⊥ − r′⊥|, y)
]
.

(4.35)

Multiplying both sides of Eq. (4.35) by 2, we get the KL equation for σD = 2WE.

For the initial condition at y = y0, since the Fock state of the onium at ỹ0 = 0 contains just one

dipole (the initial one), there is no way for this state to scatter more than once in the single-exchange

approximation we are considering. Consequently,

WE(r, y0; y0) = 0. (4.36)

The term T 2
1 (r, y0) is consistently suppressed in 2WE(r, y0; y0), due to the single-exchange approx-

imation. Therefore, we can conclude that we have recovered the KL evolution equation for the
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diffractive cross section in the limit of interest.

Using the same technique, we can also establish the equation for WO: it obeys the T-type BK

equation, with the initial condition WO(r, y0; y0) = T1(r, y0); see Ref. [27].

The probabilistic representation in the single-exchange limit we are considering for diffraction

has just been shown to be consistent with the KL formulation. The basic building-blocks in this

representation are the average weights wk. In the next part, we are going to compute these weights,

which then enable us to deduce the desired quantities.

4.3.2 Calculation of the weights of the number of participating dipoles

a. Heuristic calculations using the phenomenological picture

We now compute the average weights wk based on their definition (4.25) as the probability to have

exactly k dipoles in the Fock state of the onium evolved to rapidity ỹ0 effectively interacting with

the nucleus at the rapidity y0, and on the phenomenological model for dipole distribution presented

in the previous chapter. It is always understood that the rapidities y0 and ỹ0 are large, so that the

variables of asymptotic fronts can be properly used.

Let us first recap the main features of the phenomenological model, for which we shall also

reiterate some important formulae. The key assumption of the model is that the onium evolves

deterministically except for one single fluctuation consisting in one unusually large dipole produced

at some random rapidity ỹ1, of log transverse size x + X̃ỹ1 − δ, which subsequently evolves to the

rapidity ỹ0. In general, the deterministic evolution of an initial dipole of log size X in the rapidity

∆ỹ results in a Fock state characterized by a mean-field dipole density n̄(x′−X,∆ỹ) for a dipole of

size x′, which is the solution to the BFKL equation supplemented by a cut-off on the large-dipole

tail. This density reads

n̄(x′ − X,∆ỹ) = C1

(
x′ − X− X̃∆ỹ

)
eγ0(x′−X−X̃∆ỹ) exp


−

(
x′ − X− X̃∆ỹ

)2

2χ′′(γ0)∆ỹ


Θ

(
x′ − X− X̃∆ỹ

)
,

(4.37)

where X̃∆ỹ = −χ′(γ0)∆ỹ+ 3
2γ0

ln ∆ỹ. In the current context, the dipole density is generated by both

the evolution of the initial onium {X = x,∆ỹ = ỹ0} and the evolution of the large dipole created

by the rare fluctuation {X = x+ X̃ỹ1 − δ,∆ỹ = ỹ0 − ỹ1}. At the scattering rapidity ỹ0, the number

density of dipoles of size x′ is given by the sum of these two contributions,

n(x′) = n̄(x′ − x, ỹ0) + n̄(x′ − x− X̃ỹ1 + δ, ỹ0 − ỹ1). (4.38)

The size δ, which is the difference between the log sizes of the large dipole by the fluctuation and

of the largest dipole in the typical mean-field configuration at ỹ1, x + X̃ỹ1 , is a random variable
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distributed according to the following probability distribution:

p(δ, ỹ1) = Cδe−γ0δ exp

(
− δ2

2χ′′(γ0)ỹ1

)
Θ(δ). (4.39)

Now we turn into the overlap I(1)(y0) in Eq. (4.20) between the dipole density n(x′) and the nuclear

scattering amplitude T̄1(x′, y0). Since the onium is small (in the scaling region), the nuclear overlap

of the mean density generated by the deterministic evolution of the initial onium (the first term in

Eq. (4.38)) is negligible in comparison to the contribution from the fluctuation. Therefore, in our

model, the overlap reads

I
(1)
δ,ỹ1

(x, y; y0) =

∫
dx′n̄(x′ − x− X̃ỹ1 + δ, ỹ0 − ỹ1)T̄1(x′, y0), (4.40)

where T̄1(x′, y0) is given by Eq. (3.19).

I
(1)
δ,ỹ1

(x, y; y0) is rigorously not boost invariant. The detailed calculation of the overlap depends

upon the choice of the reference frame, as presented in the previous chapter. For the frame in which

the nucleus is highly boosted, y0 � (x − Xy)
2, and in the regime of interest, a calculation of the

overlap was presented in the previous chapter, and led to the following expression:

I
(1)
δ,ỹ1

(x, y; y0) = C1C2

√
π

2
[χ′′(γ0)]3/2e−γ0(x−Xy)

(
y

y1ỹ1

)3/2

eγ0δ; (4.41)

see Eq. (3.34). It turns out that, in the frame with the slightly-boosted nucleus, the optimal overlap

is also of the form (Eq. (4.41)). Again, this does not mean that the overlap is boost invariant, but

reflect the requirement that the dominant configurations should optimize the overlap. In any case,

the optimal overlap (Eq. (4.41)) is effectively independent of y0. Therefore, we shall suppress the

y0 dependence of I
(1)
δ,ỹ1

in the following calculations.

In the phenomenological model, the weights wk of numbers of interacting dipoles, which is

defined in Eq. (4.25), is formulated as

wk(y, x; y0) =

∫ y

y0

dy1

∫ +∞

0

dδp(δ, ỹ1)
1

k!
[I

(1)
δ,ỹ1

(x, y)]ke−I
(1)
δ,ỹ1

(x,y), (4.42)

where, again, the average over all possible configurations is replaced by the integrations over the

fluctuation size δ and over the rapidity y1 (measured from the nucleus) at which the fluctuation

occurs, weighted by the distribution p(δ, ỹ1).

We start by computing the integral over δ,

πk(x, y; y1) ≡
∫ +∞

0

dδp(δ, ỹ1)
1

k!
[I

(1)
δ,ỹ1

(x, y)]ke−I
(1)
δ,ỹ1

(x,y). (4.43)

Replacing p(δ, ỹ1) by its expression in Eq. (4.39) and using I
(1)
δ,ỹ1

, which is now denoted I, as a new
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integration variable instead of δ, the integral πk(x, y; y1) becomes

πk(x, y; y1) =
C

γ0

1

k!
I

(1)
0,ỹ1

(x, y)

∫ +∞

I
(1)
0,ỹ1

(x,y)

dI ln
I

I
(1)
0,ỹ1

(x, y)
Ik−2e−I exp


−

ln2
[
I/I

(1)
0,ỹ1

]

2γ2
0χ
′′(γ0)ỹ1


 . (4.44)

The integral in Eq. (4.44) is the integral Sk (k ≥ 1) defined and evaluated in Appendix B, with

A ≡ I
(1)
0,ỹ1

(x, y) and β0 ≡ 2γ2
0χ
′′(γ0). Using Eqs. (B.10) and (B.13), we find

πk=1(x, y; y1) = γ0χ
′′(γ0)C

1

k!
ỹ1I

(1)
0,ỹ1

(x, y)

[
1− exp

(
−

ln2(I
(1)
0,ỹ1

(x, y))

2γ0χ′′(γ0)ỹ1

)]
, (4.45)

and

πk≥2(x, y; y1) =
C

γ0

I
(1)
0,ỹ1

(x, y)
1

k(k − 1)
ln

1

I
(1)
0,ỹ1

(x, y)
exp

(
−

ln2(I
(1)
0,ỹ1

(x, y))

2γ0χ′′(γ0)ỹ1

)
. (4.46)

Replacing I
(1)
0,ỹ1

(x, y) by its expression in Eq. (4.41), we obtain the following final expressions for the

density πk(x, y; y1) of the rapidity y1:

(i) Case k = 1:

πk=1(x, y; y1) = c

√
χ′′(γ0)

2π
e−γ0(x−Xy) y3/2

y
3/2
1 ỹ

1/2
1

[
1− exp

(
−(x−Xy)

2

2χ′′(γ0)ỹ1

)]
. (4.47)

(ii) Case k ≥ 2:

πk≥2(x, y; y1) =
c

γ0

1√
2πχ′′(γ0)

(x−Xy)e
−γ0(x−Xy)

k(k − 1)

(
y

y1ỹ1

)3/2

exp

(
−(x−Xy)

2

2χ′′(γ0)ỹ1

)
, (4.48)

where

c ≡ CC1C2π[χ′′(γ0)]2. (4.49)

Now we move on to the weights wk. For k = 1, the integration over y1 reads

∫ y

y0

dy1
y3/2

y
3/2
1 ỹ

1/2
1

[
1− exp

(
−(x−Xy)

2

2χ′′(γ0)ỹ1

)]
= 2
√
ỹ0

[
1− exp

(
−(x−Xy)

2

2χ′′(γ0)ỹ0

)]

+

√
2π

χ′′(γ0)
(x−Xy)erfc

(
x−Xy√
2χ′′(γ0)ỹ0

)
.

(4.50)

In the scaling region, (x−Xy)� √y ∼
√
ỹ0, we get the following expression for the weight w1:

w1(x, y; y0) ' c(x−Xy)e
−(x−Xy). (4.51)

The integration over y1 for the weights wk≥2 can be written in terms of the error function and of
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the elementary functions as

∫ y

y0

dy1

(
y

y1ỹ1

)3/2

exp

(
−(x−Xy)

2

2χ′′(γ0)ỹ1

)
= 2

√
ỹ0

yy0

exp

(
−(x−Xy)

2

2χ′′(γ0)ỹ0

)

+

√
2πχ′′(γ0)

x−Xy

(
1− (x−Xy)

2

χ′′(γ0)y

)
erfc

(
x−Xy√
2χ′′(γ0)

√
y0

yỹ0

)
exp

(
−(x−Xy)

2

2χ′′(γ0)y

)
.

(4.52)

In the scaling regime of interest, it boils down to two simple terms. Therefore, the weights wk with

k ≥ 2 eventually read

wk≥2(x, y; y0) =
c

γ0

1

k(k − 1)

(
1 +

√
2

πχ′′(γ0)

x−Xy√
y0

)
e−γ0(x−Xy). (4.53)

Interestingly enough, the k dependence comes as an overall factor, from which we can deduce the

following simple expression for the ratio wk≥2/w2:

wk≥2

w2

=
2

k(k − 1)
. (4.54)

This ratio shows that the distribution of the number of partipating dipoles decays slowly at large k.

As a matter of fact, the mean participant number is formally infinite. Therefore, once the multiple

scatterings are relevant, the events which involve a large number of interacting dipoles are not rare

at all.

b. Generating function

We first observe that the set of weights {wk; k ≥ 0} obey a hierarchy of evolution equations,

∂ywk(r, y; y0) =

∫
dp1→2(r⊥, r′⊥)

[
k∑

j=0

wj(r
′, y; y0)wk−j(|r⊥ − r′⊥|, y; y0)− wk(r, y; y0)

]
, (4.55)

with the initial condition wk(r, y0; y0) = δk,0S(r, y0) + δk,1T1(r, y0). This hierarchy can be proved

straightforwardly with the technique used to derive different evolution equations above, by noticing

that when the initial onium branches after an infinitesimal boost, one should take into account

all the cases in which the numbers of participating dipoles of two offspring add up to k. When

k = 0, this hierarchy degenerates into a closed equation: This is precisely the BK equation for the

S- matrix element S(r, y) ≡ w0(r, y; y0).

One can construct the ordinary generating function for the weights wk,

w̃λ(r, y; y0) =
∞∑

k=0

λkwk(r, y; y0). (4.56)

This generating function satisfies the following properties. First, the condition that the sum of all
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possible values of participating dipoles should be unitary can be expressed in terms of the generating

function that w̃λ=1(r, y; y0) = 1. Second, the generating function at λ = 0 coincides with the S-

matrix element, w̃λ=0(r, y; y0) = S(r, y). Third, the difference between the diffractive cross section

and the inelastic cross section is related to the difference between the values of the generating

function evaluated at two different values of λ:

σD(r, y; y0)− σin(r, y; y0) = 2(w̃λ=−1(r, y; y0)− w̃λ=0(r, y; y0)). (4.57)

Finally, and most interestingly, it turns out to solve the S-type BK equation,

∂yw̃λ(r, y; y0) =

∫
dp1→2(r⊥, r′⊥)

[
w̃λ(r

′, y; y0)w̃λ(|r⊥ − r′⊥|, y; y0)− w̃λ(r, y; y0)
]
. (4.58)

which can be proved using Eq. (4.55). The initial condition at y = y0 is given by

w̃λ(r, y0; y0) = 1− (1− λ)T (r, y0). (4.59)

Therefore, if we know the solution of the evolution equation (4.58), with the initial condition (4.59),

we can deduce the expressions of the weights, and hence, of the scattering cross sections. In the

following, we shall try to conjecture the solution to this equation based on the traveling wave

property of the asymptotic solution of the BK equation and on the above heuristic calculation of

the weights within the phenomenological model.

Traveling wave solution in the asymptotic limit

In the infinite-rapidity limit, the solution to the BK equation Eq. (4.58) converges to a traveling

wave. In particular, the generating function w̃λ(x, y; y0) at an asymptotic large rapidity y tends to

a function of x−Xy + fy0(λ) only, where fy0(λ) is a “delay function” that vanishes for λ = 0. The

term “delay” comes from the fact that, the position of the front Xy is pulled back by the distance

fy0(λ) with an initial condition of the form (4.59) when 0 < λ < 1.

When furthermore x−Xy + fy0(λ) is taken finite but large, by choosing an appropriate value of

x well-located in the scaling regime, the analytic form for the shape of the traveling wave is given

by

1− w̃λ(x, y; y0) = cw [x−Xy + fy0(λ)] e−γ0[x−Xy+fy0 (λ)]. (4.60)

where cw is an undetermined constant of order unity.

For the delay function, we can guess its form from the above heuristics of the weights wk from the

phenomenological model. Substituting the expressions of the weights wk≥1(x, y; y0) in Eqs. (4.51)

and (4.53), bearing in mind that w0(x, y; y0) = S(x, y) = 1− c(x−Xy)e
−γ0(x−Xy), into the definition
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of the generating function, we get

1− w̃λ ' c

{
(1− λ)(x−Xy)−

1

γ0

(
1 +

√
2

πχ′′(γ0)

x−Xy√
y0

)[
∞∑

k=2

λk

k(k − 1)

]}
e−γ0(x−Xy)

= c(1− λ)

{
(x−Xy) +

1

γ0

(
1 +

√
2

πχ′′(γ0)

x−Xy√
y0

)[
ln

1

1− λ −
λ

1− λ

]}
e−γ0(x−Xy)

' c(1− λ)

{
(x−Xy)

(
1 +

1

γ0

ln
1

1− λ

√
2

πχ′′(γ0)

1√
y0

)

+
1

γ0

ln
1

1− λ

(
1− 1

γ0

√
2

πχ′′(γ0)

1√
y0

)(
1 +

1

γ0

ln
1

1− λ

√
2

πχ′′(γ0)

1√
y0

)}
e−γ0(x−Xy)

' c(1− λ)
1− 1

γ0

√
2

πχ′′(γ0)
1√
y0

[
x−Xy +

1

γ0

ln
1

1− λ

(
1− 1

γ0

√
2

πχ′′(γ0)

1√
y0

)]
e−γ0(x−Xy),

(4.61)

or

1− w̃λ(x, y; y0) 'c
[
x−Xy +

1

γ0

ln
1

1− λ

(
1− 1

γ0

√
2

πχ′′(γ0)

1√
y0

)]

× exp

[
−γ0

(
x−Xy +

1

γ0

ln
1

1− λ

(
1− 1

γ0

√
2

πχ′′(γ0)

1√
y0

))]
.

(4.62)

In Eq. (4.61), we have added and removed terms of order O(1/
√
y0) compared to the leading term

(x−Xy) in the curly bracket, which is acceptable at this level of approximation. We have also used

the following relation:

(1− λ) ln
1

1− λ = λ−
∑

k≥2

λk

k(k − 1)
, (4.63)

and the expansion

(1− λ)
− 1
γ0

√
2

πχ′′(γ0)
1√
y0 =

y0�1
1 +

1

γ0

ln
1

1− λ

√
2

πχ′′(γ0)

1√
y0

+O
(

1

y0

)
. (4.64)

Comparing Eqs. (4.60) and (4.62) in parallel, we conjecture that the delay function has the following

form

fy0(λ) =
1

γ0

ln
1

1− λ

(
1− 1

γ0

√
2

πχ′′(γ0)

1√
y0

)
. (4.65)

The approximations leading to this conjecture implies that this solution is valid for large y0 such

that | ln(1 − λ)| � √y0, which looks somehow very limiting for y0. However, as we are interested

in the expansion of the generating function around λ = 0, this condition is not so restrictive. We
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shall present a check for the conjecture (4.65) of the delay function later, based on the numerical

solutions to the evolution equation of the generating function.

4.3.3 Diffractive cross sections

With the asymptotic expressions for the weights wk in hand, we are now able to derive the physical

observables of interest. In particular, we are now going derive the expressions for the diffractive

cross section with a minimal gap y0 and the rapidity gap distribution. We shall then connect our

result to a recent study also on the diffractive gap distribution.

a. Analytical asymptotics

We first see that, the asymptotic formula of the total cross section for the onium log size x chosen

in the scaling region is given by

σT (x, y) = 2
∑

k≥1

wk ≈ 2w1 = 2c(x−Xy)e
−γ0(x−Xy), (4.66)

which completely agrees with the result obtained in Chapter 3. In Eq. (4.66), the sum is domi-

nated by w1: the weights wk≥2 are suppressed as they are of order O
{

min
[
1/(x−Xy), 1/(

√
y0)
]}

compared to the leading contribution. This shows that, for the nuclear scattering of a small onium,

the total cross section is mainly due to one single exchange between the onium Fock state and the

nucleus.

The diffractive cross section can be obtained by doubling the weight of having an even exchange,

with the weight for no exchange being excluded. Using Eq. (4.53), the above expression for the

total cross section σT and the identity

∑

even k≥2

1

k(k − 1)
= ln 2, (4.67)

we arrive at the following simple asymptotic expression for the diffractive-to-total cross section

ratio:
σD(x, y; y0)

σT (x, y)
=

ln 2

γ0

(
1

x−Xy

+

√
2

πχ′′(γ0)

1√
y0

)
, (4.68)

which is valid for x picked in the scaling region and y0 � 1.

Let us now interpret two terms in Eq. (4.68). The fluctuation creating a large dipole occurs

most likely either in the beginning of the evolution (leading to a dissociative but small mass event),

or close to the scattering rapidity ỹ0 (leading to a gap size close to y0). The first configuration is

dominant when y0 � (x − Xy)
2, leading to the first term in Eq. (4.68). The second term would

dominate the diffractive cross section for the opposite ordering of y0 and (x − Xy)
2, the case in

which the second configuration is most probable.

In the same manner, the distribution of rapidity gaps is obtained by doubling the sum of the
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densities πk≥2 in Eq. (4.48) (with k even), then dividing the result by the total cross section σT . It

eventually reads

π(x, y; ygap) =
ln 2

γ0

√
2πχ′′(γ0)

[
y

ygap(y − ygap)

]3/2

exp

[
− (x−Xy)

2

2χ′′(γ0)(y − ygap)

]
(4.69)

As in the above cross sections, the distribution (4.69) is expected to be valid for a large total rapidity

y and for x chosen in the scaling region, 1 � x − Xy � √y. Additionally, the gap ygap should

satisfy the condition ygap, y − ygap � 1.

The rapidity gap distribution (4.69) is very similar to the distribution of the branching rapidity

of the last common ancestor of the set of dipoles which scatter in Eq. (3.51). The only difference

between these two distributions is an extra factor ln 2 in the former, which comes from the fact that

two distributions are related to two different sets of the weight wk. While the gap distribution is

related to even numbers of participating dipoles, the distribution of the last common ancestor sums

up the contributions of all possible numbers k of dipoles which interact, starting from k = 2,

G(x, y; y1)

T (x, y)
=

∑∞
k=2 πk(x, y; y1)∑∞
k=1 wk(x, y; y1)

. (4.70)

Consequently, the identity (4.67) is replaced, in this case, by
∑∞

k=2 1/[k(k − 1)], which is unity.

b. Connection to a recent picture of rapidity gap events

As a matter of fact, for the rapidity gap distribution (4.69), our new result is the determination

of the overall constant. The functional form of the distribution was first found in Ref. [22], based

on a prototype of the phenomenological model presented in Chapter 3. We shall now relate the

reasoning leading to the (incomplete) asymptotic rapidity gap distribution used in the mentioned

reference to the probabilistic description of diffraction of a small onium presented in this chapter.

Let us first briefly revisit the picture of diffraction in Ref. [22]. We start by defining P(x, y;X)

the probability of having at least one dipole whose log size is smaller than X in the Fock state of

an onium x at rapidity y. As discussed in Chapter 2, it solves the T-type BK equation, with the

initial condition given by the step function,

P(x, y = 0;X) = Θ(X− x). (4.71)

We know that, when y →∞, the solution to the BK equation with the initial condition (4.71) tends

to a traveling wave. For x in the scaling region, 1� (x−Xy)
2 � y, P reads

P(x, y;X) = cP(x+ X̃y − X)e−γ0(x+X̃y−X) exp

[
−(x+ X̃y − X)2

2χ′′(γ0)y

]
, (4.72)

where cP is an unknown constant. We recall that, x + X̃y is the log size of the largest dipole in a

typical configuration of the onium Fock state at the rapidity y.
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Now let us eyeball the onium-nucleus system at a rapidity 0 < yg < y counting from the nucleus.

The initial onium then evolves to the rapidity y− yg. We assume that both yg and y− yg are large

parameters. The Fock state of the onium at y − yg, which is a stochastic ensemble of dipoles,

may contain a few unusually large dipoles of log sizes smaller than the logarithm of the nuclear

saturation momentum at yg, i.e. in the saturation region, which is generated by a rare fluctuation.

These dipoles will be probed by the nucleus with a probability of order unity (T ∼ 1). Consequently,

the ratio of the elastic cross section to the total cross section reaches its maximal value,

σel
σT
' 1

2
, (4.73)

which characterizes the scattering of quantum particles off a black disk (the black disk limit).

Furthermore, the elastic scattering corresponds to the diffraction of particles in the shadow of the

disk. Therefore, this configuration will result in a diffractive dissociation event with rapidity gap

yg.

Figure 4.4: An illustration of the picture of diffractive dissociation event in Ref. [22]. The vertical
axis shows the rapidity of the nucleus (upward) and of the onium (downward) in such a way that
at each slice, the sum of their rapidities is the total relative rapidity y. The nucleus is represented
by the nuclear saturation scale (red line), which is the onset of the saturation regime (to the left
of that scale). The scaling region is close to the saturation line to the right (orange domain). The
blue line represents the largest dipole size in a typical realization of the Fock state of the onium x
at each rapidity during the evolution. Diffraction with a gap ygap is due to a rare fluctuation at ygap
creating a large dipole inside the saturation regime.

Within this picture, the diffractive cross section at a fixed rapidity gap ygap is proportional to

107



4.3. ANALYTICAL ASYMPTOTICS FOR DIFFRACTIVE DISSOCIATION OF AN ONIUM

the probability of having a dipole whose log size is smaller than Xygap in the Fock state of the onium

at the rapidity y − ygap. From Eq. (4.72), after dividing the diffractive cross section to the total

cross section, the rapidity gap distribution reads

π(x, y; ygap) = cD

[
y

ygap(y − ygap)

]3/2

exp

[
− (x−Xy)

2

2χ′′(γ0)(y − ygap)

]
, (4.74)

where cD is a constant which cannot be determined from this picture. An schematic illustration of

the picture is presented in Fig. 4.4.

It should be noticed that, this picture of diffraction suggests a possible connection between the

rapidity gap distribution in diffraction and the genealogical distribution of the splitting time of the

last common ancestor of the dipoles which scatter [22, 23, 133–135]. This is a motivation for us to

study the genealogical problem in the dipole evolution.

To link to the probabilistic description of diffraction, we notice that the above picture is in the

rest frame of the nucleus. In this frame, the total cross section is dominated by the tip fluctuation

occuring at the very end of the evolution of the onium, sending exclusively a dipole into the satura-

tion regime; see Chapter 3. Since such fluctuation does not have enough rapidity to develop further,

it is unlikely to find more than one dipole to effectively interact with the nucleus. Consequently,

it is unlikely to have a diffractive dissociation event, since the latter is due to an even number of

participants. To have at least two interacting dipoles, we need a fluctuation at an intermediate

rapidity 0 < yg < y consisting a dipole inside the saturation region. This configuration of the dipole

evolution then favors the diffractive events.

4.3.4 Numerical check for the delay function

In the previous chapter, we already argued that it is technically not possible to use the numerical

solution to the original QCD evolution equations to check the asymptotics. Instead, one uses their

equivalent version for a BRW model introduced in the last two chapters. Using that model, we are

going to check that the conjecture of the delay function in Eq. (4.65) is consistent with numerical

calculations.

The function vλ ≡ 1 − w̃λ, in the discrete model of BRW of interest, obeys the equivalence of

the T-type BK equation,

vλ(x, y + δy; y0) =
1

2
(1− δy) [vλ(x− δx, y; y0) + vλ(x+ δx, y; y0)]

+ δy vλ(x, y; y0)[2− vλ(x, y; y0)].
(4.75)

with the initial condition given by vλ(x, y0; y0) = (1 − λ)T1(x, y0). The amplitude T1(x, y) evolves

according to the same evolution equation (4.75), from the step initial condition T (x, 0) = Θ(−x),

which is tantamount to the MV or the GBW amplitudes.

In order to measure the delay function with a parameter λ, the numerical strategy is to have

numerics for v0 and vλ, and then, to compute the difference in the position between these two
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fronts. We first advance the amplitude T1 from the step function at zero rapidity to y0 according

to Eq. (4.75), with vλ replaced by T1. For v0, we further evolve T (x, y0) to the final rapidity y.

Meanwhile, for vλ, we multiply T (x, y0) by (1 − λ) and, then, advance the result to y. For each

front, the front position xp can be determined from the condition vλ(xp, y; y0) = 1/2. We repeat

the calculation of the delay function for different values of λ, y and y0 < y.

Figure 4.5: Comparison of the delay function fy0(λ) extracted from the numerical solutions to
the exact evolution equation and its conjectured formula (4.65), as a function of y0. The points

represent the data for 1 − fnumy0;y (λ)/f∞(λ), which should tend to 1
γ0

√
2

πχ′′(γ0)
1√
y0

(full red line) at

asymptotically large y, and for the difference [fnumy0;y (λ) − fy0(λ)]/f∞(λ). Two different values of
λ are considered (0.9 and 0.01); and for each λ, we pick three values of rapidity y (103, 104 and
105). We plot also functions proportional to 1/y0 (dashed line) and ln y0/y0 (dashed-dotted line)
for comparison. Figure is adapted from Ref. [27]

The results are shown in Fig. 4.5. We consider the two following quantities:

1− fnumy0;y (λ)

f∞(λ)
, and

fnumy0;y (λ)− fy0(λ)

f∞(λ)
, (4.76)

where we have added the y dependence to the numerical solutions, since they are evaluated numeri-

cally at a finite rapidity. According to Eq. (4.65), the former quantity should tend to 1
γ0

√
2

πχ′′(γ0)
1√
y0

at asymptotics. We see that, in the relevant parametric domain, 1 � y0 � y, all numerical

points almost superimpose and approach the asymptotic conjecture (see the upper set of points).

Futhermore, at larger y, the agreement gets better.
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The lower set of points represent the second quantity in Eq. (4.76), which is the difference

between the numerical data at finite y and the asymptotic conjecture. For a fixed value of λ, the

points in the domain y0 � y for different y overlap. We see that, the mismatch is accordant with a

function that decreases with y0 as 1/y0 or ln y0/y0.

4.4 Numerical evaluation of diffractive cross sections of a

virtual photon

In this section, we are going to present a numerical study of the diffractive dissociation of a virtual

photon off a large nucleus, focusing on the rapidity gap distribution, at the rapidities which are

accessible at future electron-ion colliders. We will come back to the original variables for transverse

sizes and transverse momenta instead of log variables, and the rapidity (uppercase notation) instead

of the rescaled rapidity (lowercase notation). We shall start with a brief recall of the theoretical

framework and the choice of kinematics for the numerical calculation. A detailed study of the

diffractive onium-nucleus scattering for different onium sizes will be provided prior to presenting

predictions for the virtual photon-nucleus scattering.

4.4.1 Theoretical framework

The numerical study relies on the QCD dipole model of the nuclear scattering of a virtual photon of

virtuality Q2 at high energy. In this model, the total cross section σγ∗Atot (Q2, Y ) and the diffractive

cross section σγ∗Adiff (Q
2, Y ;Y0) with a minimal gap Y0 can be factorized according to the dipole

factorization in Eqs. (4.1) and (4.3), respectively.

At leading order, the onium forward elastic scattering amplitude T1(r, Y ) obeys the T-type BK

equation (2.3), while the onium diffractive scattering cross section σD(r, Y ;Y0) with a minimal gap

Y0 solves the KL equation (4.5). For the sake of convenience, instead of solving the KL equation for

σD, we will solve the evolution equation for the dipole inelastic scattering cross section σin(r, Y ;Y0) =

σT (r, Y ) − σD(r, Y ;Y0), which can be shown straightforwardly to be the T-type BK equation. We

also refer this equation to as the KL equation for the inelastic cross section σin. The initial condition

for σin at Y = Y0 is given by

σin(r, Y0;Y0) = 2T1(r, Y0)− T 2
1 (r, Y0). (4.77)

In the meantime, the MV amplitude (Eq. (2.4)) is chosen as the initial condition for the forward

amplitude T1.

The BK equation for the amplitude T1 is known not only at leading order but also at next-

to-leading order [58–65]. However, the KL equation beyond the leading order has not been es-

tablished. The only known subleading correction to the KL equation comes from the running of

the strong coupling [128, 129]. To include such corrections, we simply replace the dipole spliting

kernel ᾱdp1→2(r⊥, r′⊥) at leading order by its theoretical-motivated running-coupling version. In
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the following, we will denote the former by dpLO(r, r′),

dpLO(r⊥ − r′⊥) ≡ ᾱdp1→2(r⊥, r′⊥). (4.78)

Different prescriptions for the running-coupling kernel were proposed [58, 59, 136, 137]. In the

current analysis, we work with the following ones:

(i) the Balitsky prescription [58]:

dpBal(r⊥, r′⊥) = ᾱ(r2)
d2r′⊥

2π

[
r2

r′2|r⊥ − r′⊥|2 +
1

r′2

(
ᾱ(r′2)

ᾱ(|r⊥ − r′⊥|2)
− 1

)

+
1

|r⊥ − r′⊥|2
(
ᾱ(|r⊥ − r′⊥|2)

ᾱ(r′2)
− 1

)]
,

(4.79)

(ii) the so-called “parent dipole” prescription [136]:

dpBal(r⊥, r′⊥) = ᾱ(r2)
d2r′⊥

2π

r2

r′2|r⊥ − r′⊥|2 . (4.80)

Notice again that ᾱ is kept fixed at a predefined value in Eq. (4.78), while runs with transverse

scales in Eqs. (4.79) and (4.80)

We follow Refs. [137, 138] to regularize the running-coupling constant ᾱ(r2) to avoid the issue

of the Landau pole. In particular, for the dipole sizes under some threshold r ≤ rc, the coupling is

given by

ᾱ(r2) =
12Nc

(11Nc − 2Nf ) ln
(

4C2

r2Λ2
QCD

) , (4.81)

where the number of quark flavors Nf and the number of colors Nc are fixed at the values Nc =

Nf = 3. The constant C reflects the uncertainty in the Fourier transform from momentum space to

coordinate space. In the meantime, for larger dipole sizes, r > rc, the coupling is frozen to a fixed

value ᾱc ≡ ᾱ(rc). This regularization is motivated by theoretical studies of the Schwinger-Dyson

equations for the gluon propagator in the infra-red regime (IR) and lattice QCD [139–141] results

which suggest that the strong coupling freezes to a constant value between 0.5 and 0.7 in the IR.

We also notice that, in case of the onium-nucleus scattering, the analytical asymptotic expression

for the rapidity gap distribution is now available with fixed coupling, as presented in the previous

section. However, there are still no analytical calculations for such quantity in the running-coupling

case. One motivation of this numerical analysis is to check whether the prediction (4.69) for the

asymptotic shape of the rapidity gap distribution already manifests at a finite rapidity, and whether

the running-coupling effects could significantly modify the shape of the distribution.

Since our aim is to produce predictions for future electron-ion colliders, we select kinematics

accessible at those machines. Therefore, we pick two values for the total relative rapidity: Y = 6

and Y = 10. The former value is accessible at BNL-EIC for low to moderate center-of-mass

energies, such as
√
seA = 90 GeV or

√
seA = 45 GeV (with A ≥ 56) [3], and at CERN-LHeC for
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√
sePb = 877 GeV [1]. Meanwhile, the latter is reachable for the electron-ion collisions with the

center-of-mass energy
√
sePb = 877 GeV at CERN-LHeC [1]. As for the photon virtuality Q2, we

choose pertubative values in the range 1 − 10 GeV 2. A detailed numerical set up is given in the

Appendix C.

4.4.2 Diffractive onium-nucleus scattering

The behavior of the nuclear scattering of an onium depends on its relative size compared to the

inverse saturation scale 2/Qs(Y ) of the nucleus. The latter separates two regimes of interest: the

dilute regime (r < 2/Qs(Y )) in which the scattering probability is small, and the saturation regime

(r ≥ 2/Qs(Y )) with the scattering amplitude of order unity. For this reason, it is convenient to

introduce the following scaling variable

τ ≡ ln
2

rQs(Y )
. (4.82)

Its name is from the fact that, at an asymptotically high rapidity and in the region 1� τ �
√
Y , the

forward elastic amplitude T1 is effectively a function only of this variable; see the last two chapters.

The saturation momentum Qs(Y ) can be extracted from the numerical solutions of the BK equation

for T1 by using the condition T1(r = 2/Qs(Y ), Y ) = 0.5. Positive values of τ parametrize the dilute

regime, while its negative values encode the saturation region.

Let us start with onia of sizes larger than the inverse saturation momentum. Figure 4.6 displays

the rapidity gap distributions π(r, Y ;Ygap) for the diffractive dissociation of onia in the saturation

region (τ ≤ 0). As the onium size goes more deeply inside the saturation regime, the nucleus

appears more likely to be a black disk. At this limit, there should be an equal probability of 1/2 for

the scattering to be purely elastic or inelastic. Such two contributions are excluded in the definition

of the diffractive dissociation distribution of gaps π(r, Y ;Ygap) (0 < Ygap < Y ). Consequently, the

contribution from the diffractive dissociation is suppressed as τ becomes more negative, or the

onium becomes larger in size, as shown in Fig. 4.6. The suppression is apparently stronger if one

takes into account the running of the strong coupling.

We now move on to the distributions for onia picked in the dilute regime, which are plotted

in Fig. 4.7. The shapes of the distributions between the fixed and the running coupling are not

similar. However, the distributions for both fixed and running coupling schemes are shown to share

some common properties. First, large-gap events are more probable for the sizes close to the inverse

saturation scale, while small-gap events are dominant for the sizes much smaller than 2/Qs(Y ).

Viewing from the rest frame of the nucleus, this property can be explained qualitatively using the

phenomenological model, in which the diffractive dissociation of a small onium with a fixed gap

size Ygap is triggered by a large-dipole fluctuation in the onium Fock state at Y − Ygap creating a

dipole larger than the inverse saturation scale 2/Qs(Ygap). For onium sizes close to the saturation

line, the favored fluctuations are those of small width, which are easy to happen at the early stage

of the evolution. On the other hand, if the onium is far from the saturation boundary, the size of
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Figure 4.6: Rapidity gap distributions for the diffractive scattering of onia of different sizes in the
saturation region (τ ≤ 0) at the total relative rapidities Y = 6 (first row) and Y = 10 (second row)
with both fixed and running coupling scenarios. Figure is adapted from Ref. [28].

the fluctuation should be large, and hence, it needs an enough rapidity span to develop. Therefore,

it is more likely for the fluctuation to occur at the downstream of the evolution. Another similarity

between two scenarios is the behavior of the distributions when approaching the color transparency

limit [31], r → 0. At such limit, the large fluctuation is less probable: a big price should be

paid to have a fluctuation with a very large size. Consequently, the contribution of the diffractive

dissociation should be suppressed. In this case, the inelastic contribution dominates the total cross

section, and even the total cross section rapidly approaches zero.

Interestingly, when the coupling is fixed, the shape predicted by the asymptotic distribution

(4.69) is already exhibited at realistic rapidities (Y = 6 and Y = 10). In order to check that this

peculiar shape corresponding indeed to the onset of the asymptotics in Eq. (4.69), we push the

calculation to a higher value of the total relative rapidity, in particular Y = 30 (see Fig. 4.8). Note

that this value of rapidity cannot be accessible at planned electron-ion colliders. Focusing on the

fixed-coupling panel, the convex shape of the distribution in the dilute region (see τ = 3.4) looks

more similar to the predicted asymptotics. However, finite-rapidity corrections are still sizeable at

this rapidity, which would screen the asymptotic appearance. Furthermore, that convex shape also

is also seen in the distributions for onium sizes in the saturation region.

In summary, the rapidity gap distribution for the diffractive dissociation of an onium off a

large nucleus depends upon the regime (either dilute or saturation) where the onium resides, and is

suppressed when the onium size become very different from the inverse saturation momentum of the
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Figure 4.7: Rapidity gap distributions for the diffractive scattering of onia of different sizes in the
dilute region (τ > 0) at the total relative rapidities Y = 6 (first row) and Y = 10 (second row) with
both fixed and running coupling scenarios. Figure is adapted from Ref. [28].

nucleus. The running of the strong coupling modifies the shape of the distribution in comparison

to the fixed coupling scenarios, however, it is not very susceptible to the selection of the running

coupling prescription. We also checked that, in the case of fixed coupling, the peculiar convex shape

from the asymptotic prediction already shows in the distribution at finite, realistic, rapidities for

onium sizes in the dilute regime and not very distant from the inverse saturation line.

4.4.3 Predictions for the diffractive dissociation of a virtual photon

We start by plotting the diffractive cross section σγ
∗A
diff (Q

2, Y ;Y0) with a minimal gap Y0 normalized

to the total cross section σγ
∗A
tot (Q2, Y ) for the diffractive scattering of a virtual photon; see Fig. 4.9.

This quantity estimates the rate of the diffractive events, including the (quasi-)elastic contributions,

and how close to the black-disk limit we are. As shown in Fig. 4.9, this ratio decreases slowly with

the virtuality Q2. It is closer to the black-disk limit when the scale ratio Q2/Q2
s(Y ) gets smaller,

as the onium states of larger sizes, in the saturation region, are more probable to be probed. The

predictions with the running-coupling inclusion are a bit higher than those with the fixed-coupling

kernel, by a few percent; and the rates with the Balitsky prescription are closer to the latter. For

example, taking Q2 = 2GeV 2, the fixed-coupling equations predict about 20%−28% of total events

are diffractive at Y = 6, and about 25% − 34% at Y = 10, depending on which threshold Y0 is

considered. Replacing the fixed-coupling kernel by the Balitsky kernel, such percentages rise to
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Figure 4.8: Rapidity gap distributions for the diffractive scattering of onia of different sizes in the
saturation region (τ ≤ 0; first row) and the dilute region (τ > 0; second row) for the total relative
rapidity Y = 30 with both fixed and running coupling scenarios. In the case of fixed coupling
and τ > 0, the analytical asymptotic prediction (4.69) is superimposed for comparison. Figure is
adapted from Ref. [28].

about 22%− 30% at Y = 6, and about 28%− 36% at Y = 10.

Figure 4.10 shows the numerical predictions of the rapidity gap distribution for different kine-

matics and scenarios. With the chosen set of the virtuality Q2, the quantity ln[Q/Qs(Y )], which

gives the typical value of the scaling variable τ in Eq. (4.82), is not far from 0, which suggests that

the dominant contribution should come from the onium sizes close to the saturation line. We see

that the gap distribution also depends on the relative ratio between the virtuality and the nuclear

saturation momentum, Q2/Qs(Y )2. Unlike the diffractive-to-total cross section ratio, it decreases

when that momentum ratio becomes smaller, i.e. when getting closer to the scattering off a black

disk. As pointed out before, this is because only diffractive dissociation is included in the definition

of the distribution. We note however that, by the above discussion on the color transparency limit,

the distribution should also be suppressed at large Q2 such that Q � Qs(Y ). The distribution in

such regime is not considered in this analysis.

With the current choices of kinematics, both fixed and running coupling scenarios predict a

inclination to have diffractive events with large rapidity gap Ygap (close to the total relative Y ).

However, there is a difference between the two cases: there is an enhancement for the distribution

of the gaps close to 0 for the fixed coupling case, which becomes more obvious at a higher rapidity.

This is the manifestation of the peculiar convex shape discussed previously, which reflects the
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Figure 4.9: The diffractive-to-total cross section ratio (σdiff/σtot)
γ∗A as a function of the minimal

rapidity gap Y0 at different Q2 considering two values of the total rapidity Y = 6 (first row) and
Y = 10 (second row). Figure is adapted from Ref. [28].

analytical prediction from the asymptotic calculations.

Since the gap distribution is shown to be sensitive to the scale ratio Q/Qs(Y ), and since Qs(Y ) is

set to grow with the nuclear mass number A as Q2
s(Y ) ∼ A1/3 [30, 49, 142, 143] (see the appendix),

the distribution should depend on the nuclear mass number A, as reported in Fig. 4.11. In particular,

it is suppressed as the virtual photon of a fixed virtuality scatters off a larger nucleus. Owing to

the fact that the nuclear dependence of the saturation scale is mild, this suppression appears fairly

weak.

We can transform the distribution of the rapidity gap Ygap into the distribution of the (squared)

invariant mass M2
X of the inclusive set of final state particles X from the diffractive dissociation of

a virtual photon. This distribution reads

Mdiff (Q
2, Y ;M2

X) ≡ 1

σγ
∗A
tot

dσγ
∗A
diff

dM2
X

=
Π(Q2, Y ;Ygap)

M2
X +Q2

, (4.83)

with

Ygap = Y − ln
M2

X +Q2

Q2
. (4.84)

We shall refer Mdiff to as the diffractive mass spectrum. Figure 4.12 shows its behavior when

varying either Q2 or A and keeping the remainder fixed. The spectra from both fixed and running

coupling equations have the same property: the low mass regime dominates over the high mass
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Figure 4.10: The rapidity gap distribution as a function of the rapidity gap Ygap for the diffractive
dissociation of a virtual photon at different values of the kinematic variables Q2 and Y . Figure is
adapted from Ref. [28].
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Figure 4.11: The rapidity gap distribution for two different nuclei A = 64 and A = 208. The
kinematic variables are fixed at Y = 6 and Q2 = 4GeV 2. Figure is adapted from Ref. [28].

regime. One can see that, as the photon becomes more virtual, the diffractive events with low

dissociated mass get suppressed significantly, while the high mass domain is slightly enhanced. And

if the nucleus becomes heavier, the mass spectra also go down, as in the case of the gap distributions.

However, the nuclear dependence of the mass spectum appears to be much milder compared to that

of the rapidity gap distribution.

117



4.4. NUMERICAL EVALUATION OF DIFFRACTIVE CROSS SECTIONS OF A VIRTUAL
PHOTON

100 101 102

M2
X (GeV2)

0.000

0.005

0.010

0.015

0.020

M
di

ff
(G

eV
−

2 )

fixed coupling
Y = 6, A = 208

Q2 = 1 GeV2

Q2 = 2 GeV2

Q2 = 4 GeV2

fixed coupling
Y = 6, A = 208

Q2 = 1 GeV2

Q2 = 2 GeV2

Q2 = 4 GeV2

100 101 102

M2
X (GeV2)

rc: pd
Y = 6, A = 208

Q2 = 1 GeV2

Q2 = 2 GeV2

Q2 = 4 GeV2

rc: pd
Y = 6, A = 208

Q2 = 1 GeV2

Q2 = 2 GeV2

Q2 = 4 GeV2

100 101 102

M2
X (GeV2)

rc: Bal
Y = 6, A = 208

Q2 = 1 GeV2

Q2 = 2 GeV2

Q2 = 4 GeV2

rc: Bal
Y = 6, A = 208

Q2 = 1 GeV2

Q2 = 2 GeV2

Q2 = 4 GeV2

100 101 102

M2
X (GeV2)

10−4

10−3

10−2

M
di

ff
(G

eV
−

2 )

fixed coupling
Y = 6, Q2 = 4 GeV2

A=208

A=64

fixed coupling
Y = 6, Q2 = 4 GeV2

A=208

A=64

100 101 102

M2
X (GeV2)

rc: pd
Y = 6, Q2 = 4 GeV2

A=208

A=64

rc: pd
Y = 6, Q2 = 4 GeV2

A=208

A=64

100 101 102

M2
X (GeV2)

rc: Bal
Y = 6, Q2 = 4 GeV2

A=208

A=64

rc: Bal
Y = 6, Q2 = 4 GeV2

A=208

A=64

Figure 4.12: The diffractive mass spectra at different virtualities Q2 when A is fixed (first row) and
at two different nuclear mass numbers A when Q2 is fixed (second row) for the total rapidity Y = 6.
The former is adapted from Ref. [28].

4.4.4 Running of the strong coupling for diffractive dissociation

The inclusion of the running coupling correction amounts to slow down the dipole evolution by

suppressing the emission of small dipoles in the quantum state of the onium [136, 137]. Consequently,

in the wave function of an initial onium of size larger than the saturation line (τ < 0), the emissions

of large dipoles inside the saturation region are favoured. The scattering is then more elastic, leading

to the stronger suppression of the diffractive dissociation when moving deeply into the saturation

regime. In addition, at large onium sizes, the running-coupling kernels tend to a universal form.

Therefore, the rapidity gap distributions for the two chosen running-coupling prescriptions look

very similar deeply inside the saturation region.

In addition, with our choices of kinematics, the dominant domain for the size of the onium

state in the virtual photon-nucleus is in the vicinity of the saturation scale. With the suppression

of small-dipole emissions, the nuclear scattering of the onium states of the virtual photon is more

elastic. As a result, the diffractive-to-total cross section ratio gets closer to the black-disk limit

when taking into account the running-coupling correction. This could also explain the observation

that, the running-coupling equations lead to a more significant dominance of the large-gap domain

over the small-gap one.
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Diffractive dissociation

Let us now apply, in a very naive way, the aforementioned phenomenological model used in

Refs. [22, 23] for the running coupling case. We still base on the twofold representation of the BK

equation in which the latter controls the evolution of the probability P (r, Ỹ ;R) of having at least

one dipole of size larger than some scale R in the Fock state of the initial onium r at the rapidity

Ỹ . In the scaling region, it reads

P (r, Ỹ ;R) ' CrcỸ
1/6

[
R2
rc(Ỹ )

R2

]γ0

Ai


ξ1 +

3ξ1

4βc

ln
(

R2

R2
rc(Ỹ )

)

Ỹ 1/6


 , (4.85)

where ξ1 = −2.338 · · · is the rightmost zero of the Airy function Ai(ξ), and

βc ≡
3

4
ξ1

(
χ′′(γ0)√

1.5γ0χ(γ0)

)1/3

= −5.36 · · · (4.86)

The function Rrc(Ỹ ) is the typical largest dipole size of the Fock state (mean tip) in the running-

coupling scenario, which is expected to grow with Ỹ in a similar way to the saturation momentum.

It reads

R2
rc(Ỹ ) ∼ r2 exp

[
αc(Ỹ + δ1)1/2 + βc(Ỹ + δ2)1/6

]
(4.87)

where αc =
√

(8χ′(γ0))/3 ' 3.61, and δ1,2 encode finite-rapidity subleading corrections.
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Figure 4.13: The probability P (r, Y −
Ygap; 1/Qs,rc(Ygap)) with the overall constant
excluded as a function of Ygap. Three different
onium sizes are selected. The total rapidity is
Y = 30.

According to the phenomenological model for

diffraction, to have a diffractive event with ra-

pidity gap Ygap, there should be a large func-

tuation in the wave function of the onium at

Y − Ygap sending particle to the nuclear sat-

uration regime at Ygap. For such argument

to be valid, the mean-field front of the onium

at Y − Ygap and the saturation regime of the

nucleus at Ygap should necessarily not overlap

each other. This condition can be simply ex-

pressed as

R2
sc(Y − Ygap) <

1

Q2
s,rc(Ygap)

, (4.88)

where Qs,rc(Y ) is the nuclear saturation scale

at Y with the running-coupling correction.

The latter reads

Q2
s,rc(Ygap) ' Λ2

QCD exp
[
αc(Ygap + δ2)1/2 + βc(Ygap + δ3)1/6

]
, (4.89)
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where, as in Eq. (4.87), δ2,3 are subleading corrections. In the spirit of the phenomenological model,

the gap distribution is given by

πrc(r, Y ;Ygap) ∝ P (r, Y − Ygap; 1/Qs,rc(Ygap)). (4.90)

Figure 4.13 shows the probability P (r, Y − Ygap; 1/Qs,rc(Ygap)) of the form (4.85) as a function of

the rapidity gap Ygap for Y = 30, with the overall unknown constant being ignored. We see that the

curves share some features with the numerics of the dilute regime in the running-coupling case, as

shown in Fig. 4.8. In particular, for the onium sizes close to the saturation boundary, the large-gap

domain are more favored. Meanwhile, the small-gap domain dominates the distribution for larger

onium sizes. Although this is just a naive estimation, it may suggest that, to a certain extent, one

could adapt the asymptotic calculation for the fixed-coupling case to that for the running-coupling

scenario.

4.4.5 Comparisons to other studies

A recent study [144] on diffractive scattering in electron-ion collisions also made predictions on the

diffractive-to-total cross section ratio. In particular, at Q2 = 2 GeV 2 diffraction is predicted to

account for about 20% of the events in the ePb collisions, which does not vary much at different

momentum fractions x (or correspondingly at different rapidity Y ), based on several models. In

fact, that prediction is rather close to our above prediction when the minimal gap Y0 is large, with

the fixed-coupling or the running-coupling Balitsky kernels. For other cases, our predictions is fairly

higher than those of the cited study.

The shape of the mass spectra from our calculation is quite similar to that of the same quantity

shown in Ref. [3] based on the models of saturation [145, 146], and of leading-twist shadowing

[147, 148]. In comparison to the results of the former model, our results expose two differences.

First, the mass spectra from a model of saturation have a local maximum in the low-mass domain

[3], which does not appear in our predictions. Second, while our results predict a slight enhancement

in the high-mass regime at higher Q2, the mass spectra from that saturation model appear to be

suppressed at all possible values of the invariant mass when increasing the virtuality.

Finally, we can comment on the nuclear dependence of the difractive distributions. The sup-

pression of the mass spectra when scattering off a larger nucleus seems to qualitatively agree with

the results from the leading-twisted shadowing model [3, 147, 148]. Consequently, our results may

reflect the nuclear shadowing effect on the diffractive gap (mass) distributions.

4.5 Summary

The dipole factorization of the high-energy nuclear scattering of a virtual photon allows to formulate

the diffractive scattering process in term of the more fundamental object, the onium, and hence,

promotes the study of the diffractive dissociation of the latter.
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Diffractive dissociation

We have presented that the diffractive scattering of an onium off a large nucleus at a large

rapidity, in such a kinematic regime that the total cross section is small, can be described by a

purely probabilistic formulation. In particular, it is twice the probability of having in the Fock state

of the onium at the scattering rapidity an even number of participating dipoles. This classical-like

formulation is unforeseen, since diffraction is typically a quantum mechanical phenomenon with no

classical counterpart.

Such probabilistic formulation and the phenomenological model of dipole distribution have en-

abled us to derive the complete expressions of the diffractive-to-total cross section ratio requiring a

minimal rapidity gap Y0, and of the distribution of rapidity gaps Ygap for the scattering of an onium

of size r in the geometric scaling region at an asymptotic total relative rapidity Y . The former

reads
σD(r, Y ;Y0)

σT (r, Y )
=

ln 2

γ0

[
1

ln[1/(r2Q2
s(Y ))]

+

√
2

πχ′′(γ0)

1√
ᾱY0

]
, (4.91)

where the nuclear saturation scale grows with Y as Q2
s(Y ) = Q2

Ae
χ′(γ0)ᾱY0/(ᾱY )3/(2γ0). Meanwhile,

the asymptotic rapidity gap distribution is given by

π(r, Y ;Ygap) =
ln 2

γ0

√
2πχ′′(γ0)

1√
ᾱ

[
Y

Ygap(Y − Ygap)

]3/2

exp

(
− ln2[r2Q2

s(Y )]

2χ′′(γ0)ᾱ(Y − Ygap)

)
. (4.92)

We have also found that the weight wk of having k participating dipoles (for k ≥ 2) decays gradually

like 1/[k(k − 1)]. This implies that, events with a large number of color singlet exchanges between

the onium and the nucleons constituting the nucleus are typical for diffraction, which is consistent

with the general expectation that diffraction is sensitive to the onset of saturation.

Employing the dipole model for diffractive dissociation, we have also performed a numerical

evaluation of the diffractive cross sections and of the rapidity gap distributions using both the fixed-

coupling and the running-coupling evolution equations for kinematics accessible at future electron-

ion machines. The results predict a significant ratio of diffractive events at the chosen kinematical

variables. Interestingly, at realistic rapidities, the numerics for the rapidity gap distributions in the

fixed-coupling case already exhibit the shape predicted by Eq. (4.92) at asymptotics. In addition,

while there is a siginificant difference between the distributions deduced within the fixed-coupling

scenario and those from the running-coupling equations, they are not very sensitive to the choice of

the prescription to taking into account the running of the strong coupling in the dipole kernel.

The predictions presented in Eqs. (4.91) and (4.92) may be viewed as a good starting point

for the construction of a model for diffractive dissociation in real electron-ion collisions at future

colliders. However, for the model to be realistic, it would be extremely useful to find a systematic

way to compute the next-to-leading order corrections, presumably of relative order lnY/
√
Y or

1/
√
Y , which makes a potential future development. Another possible development is to extend the

current analytical calculation for the case of including the running-coupling correction.

Let us close this chapter by refering back to general branching random walk processes. In the

context of the latter, the weights wk could be interpreted as the rate to select exactly k particles
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4.5. SUMMARY

in the tip according to a particular distribution which is taken to be the initial condition for the

F-KPP equation. Therefore, a more rigorous derivation of the weights wk beyond the heuristics is of

great interest to understanding the tip region of a general branching random walk, which, as already

mentioned previously, has many applications in different fields of science. The generating function

method presented in Section 4.3.2 could pave a promising way for this potential development.
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Conclusions and outlooks

Each chapter has its own summary at the end. Here we would like to draw some main points from

what we have discussed through the whole of the thesis.

This thesis focused on the deep-inelastic virtual photon-nucleus scattering at high energy, which

is related to the nuclear scattering of an onium, a color-singlet quark-antiquark dipole, by the dipole

factorization. The latter process can be described, at large number of colors, by using the QCD

color dipole model in which soft-gluon emissions in the wave function of the onium is replaced

by a dipole branching process. Within this formulation, the dipole evolution is a peculiar one-

dimensional branching random walk. As a matter of fact, the Balitsky-Kovchegov (BK) equation

describing the rapidity evolution of QCD amplitudes is in the same universality class of the F-KPP

equation, which controls the time evolution of branching-diffusion processes on a line.

The nuclear scattering of an onium, in a frame in which the latter is highly evolved, is due to

the interaction of a particular subset of dipoles in the onium Fock state, which is generated by

dipole branching process, with the nucleus. In the scaling region, in which the probability for the

same dipole in the Fock state of the onium to scatter more than once is negligible, the scattering is

triggered by a large fluctuation which creates at least one dipole of large transverse size beyond the

typical configuration at a certain rapidity during the evolution. The dominant realization of the fluc-

tuation is selected in such a way that the overlap between the dipole density and the dipole-nucleus

amplitude, equiped with a probability density of the fluctuation size, is optimal, which eventually

guarantees the boost invariance of the forward elastic scattering amplitude. Consequently, the fluc-

tuation looks very different in different frames, from the rest frame of the nucleus to a frame in

which the nucleus is significantly boosted. Eventually, the dipole density at the scattering rapidity

is generated by the combination of the mean-field evolution and a rare fluctuation, which is the

essence of the phenomenological picture for dipole distribution in the onium-nucleus scattering.

The phenomenological model for dipole distribution allows the freedom to select a frame in which

one can derive the asymptotic distribution for the branching rapidity of the last common ancestor

of the set of dipoles which interact, when this set consists of at least two dipoles. This genealogical

problem for the QCD dipole evolution is in analogy to another one for more general one-dimensional

branching random walks: the probability distributions in the two problems are very similar in their

analytical forms.

In addition to the scattering configurations, we discussed also diffractive dissociation of onia for

which an equation was written down 20 years ago by Kovchegov and Levin (KL), but no analytical

solution had been found. We found that the diffractive cross section for a small onium is twice

the probability to have an even, non-zero, number of interacting dipoles in the onium Fock state,

and that, while the total cross section is dominated by one single exchange, the events with a large

number of participants are typical for diffraction. Interestingly, using the phenomenological model
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for dipole distribution, we are able to, from that probabilistic description of diffraction, derive the

parameter-free asymptotics expressions of the diffractive cross section with a minimum gap, and

of the rapidity gap distribution. Furthermore, within the dipole formulation, using the numerical

solutions to the original QCD evolution equations (BK and KL) and their extension taking into

account the running of the strong coupling, we investigated numerically diffractive dissociation of a

virtual photon for the kinematics accessible at future electron-ion colliders. Predictions on the shape

of the rapidity gap distribution and on the diffractive-to-total cross section ratio were presented.

As an interesting point, the analysis of the rapidity gap distribution showed a connection between

the distribution shape at realistic rapidities and the predictions of the phenomenological model at

asymptotics.

Since the investigation of the nuclear scattering of small onia indicated the importance to charac-

terize the dipole distribution in the region close to the largest dipole, and since the dipole evolution

belongs to the class of one-dimensional branching random walk, we established a Monte Carlo algo-

rithm to generate a tip region of an one-dimensional branching random walk evolved to large time,

which provides a numerical tool to study the particle distribution near a tip and genealogical struc-

ture of the evolution in both typical and rare realizations. The algorithm could also be adapted to

the continuous limit of the branching random walk - the branching Brownian motion, which offers

a starting point for analytical studies of the tip region.

Not only the works presented in the thesis answered some of our questions, they also opened

potential questions for further studies. As mentioned previously, in QCD, possible developments

include the extension of the analytical study to the sub-asymptotic regime, and to the running-

coupling case, which would be important for further phenomenological applications in future electron-

ion machines. One could also question on the possibility of extending the current analytical studies

to other dilute-dense systems, such as the proton-ion collisions. On the statistical side, the con-

struction of a theoretical formulation to calculate tip observables is a promising outlook.
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Appendix A

Spinor matrix elements

The derivation of the color dipole model in Chapter 1 requires the following two matrix elements

in the eikonal limit:
Γµ1(p′, p) = ūr(p

′)γµus(p),

Γµ2(p′, p) = v̄r(p
′)γµvs(p).

(A.1)

Here we will compute the first current, based on Eqs. (1.30) and (1.35). The expression for the

second term can be deduce directly from

ūr(p)γ
µus(p

′) = v̄r(p
′)γµvs(p). (A.2)

We can choose two particular basis vectors wr (r = ±1/2) which satisfy the condition (1.30) as

follows:

w1/2(p) = 2−1/4
√
p+(1, 0, 1, 0)T ,

w−1/2(p) = 2−1/4
√
p+(0, 1, 0,−1)T ,

(A.3)

where T stands for the matrix transpose operator. The novel normalization reads

w†r(p
′)ws(p) =

√
2p′+p+δrs. (A.4)

We also use the Dirac representation for the gamma matrices,

γ0 =

(
12×2 0

0 −12×2

)
, γi =

(
0 σi

−σi 0

)
, (A.5)

where σi (i = 1, 2, 3) are the Pauli matrices,

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (A.6)
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Spinor matrix elements

“Plus” component

Substituting the expression of the spinor u in Eq. (1.35) into the expression of the Γµ1 and keeping

only the plus component, we have

Γ+
1 (p′, p) =

[
w̄r(p

′) + w†r(p
′)(−γ⊥ · p′⊥ +m)

γ0γ+

2p′+

]
γ+

[
ws(p) +

γ+

2p+
(γ⊥ · p⊥ +m)ws(p)

]
. (A.7)

Since (γ+)2 = 0, the only surviving term is

Γ+
1 (p′, p) = w̄r(p

′)γ+wr(p) =
√

2w†(p′)Λ+ws(p). (A.8)

Since ws is a vector of the subspace image of the projector Λ+, then Λ+ws = ws. Using Eq. (A.4),

we obtain the following final expression for the plus component:

Γ+
1 (p′, p) = 2

√
p′+p+δrs. (A.9)

“Minus” component

The minus component Γ−1 reads

Γ−1 (p′, p) =

[
w̄r(p

′) + w†r(p
′)(−γ⊥ · p′⊥ +m)

γ0γ+

2p′+

]
γ−
[
ws(p) +

γ+

2p+
(γ⊥ · p⊥ +m)ws(p)

]

= w†r(p
′)(−γ⊥ · p′⊥ +m)

γ0γ+γ−γ+

4p′+p+
(γ⊥ · p⊥ +m)ws(p),

(A.10)

where other terms after the expansion vanish due to the fact that Λ−wr = 0, as ws is on the subspace

image of the projector Λ+. Using the properties γ−γ+ =
√

2γ0γ+ and (Λ+)2 =
[
(γ0γ+)/

√
2
]2

=

(γ0γ+)/
√

2, and the anticommutation relation of the gamma matrices, we get

Γ−1 (p′, p) = w†r(p
′)

(−γ⊥ · p′⊥ +m)(γ⊥ · p⊥ +m)√
2p′+p+

ws(p). (A.11)

Let us evaluate the numerator of the second factor by expanding it,

(−γ⊥ · p′⊥ +m)(γ⊥ · p⊥ +m) =− γiγjp′ipj +m214×4 +mγj(pj − p′j)

=

(
σiσj 0

0 σiσj

)
p′ipj +m214×4 +mγj(pj − p′j).

(A.12)

Using σiσj = δij12×2 + iεij kσ
k (εijk is the Levi-Civita symbol), Eq. (A.12) becomes

(p′⊥ · p⊥)14×4 + i(p′⊥ × p⊥)

(
σ3 0

0 σ3

)
+m214×4 +mγj(pj − p′j), (A.13)
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Spinor matrix elements

where the cross product of two transverse vectors p′⊥ and p⊥ is a scalar, p′⊥ × p⊥ = det(p′⊥, p⊥).

Now, using Eqs. (A.3) to (A.5) we have

w†r(p
′)

(
σ3 0

0 σ3

)
ws(p) =

√
2p′+p+2r δrs,

w†r(p
′)γjpjws(p) = −

√
2p′+p+2r(p1 − 2irp2)δr,−s.

(A.14)

All in all, we obtain the following expression for the minus component:

Γ−1 (p′, p) =
δrs√
p′+p+

[
p′⊥ · p⊥ +m2 + 2ir(p′⊥ × p⊥)

]
− 2rδr,−s√

p′+p+

[
(p1 − 2irp2)− (p′1 − 2irp′2)

]
.

(A.15)

Transverse components

For the transverse components, we have

Γi1(p′, p) =

[
w̄r(p

′) + w†r(p
′)(−γ⊥ · p′⊥ +m)

γ0γ+

2p′+

]
γi
[
ws(p) +

γ+

2p+
(γ⊥ · p⊥ +m)ws(p)

]

= w†r(p
′)(−γ⊥ · p′⊥ +m)

γi√
2p′+

ws(p)− w†r(p′)
γi√
2p+

(γ⊥ · p⊥ +m)ws(p)

= w†r(p
′)

(
−γ

⊥ · p′⊥
p′+

γi√
2
− γi√

2

γ⊥ · p⊥
p+

)
ws(p) +

m√
2

(
1

p′+
− 1

p+

)
w†r(p

′)γiws(p),

(A.16)

where we have used the facts that wr,s = Λ+wr,s and (γ+)2 = 0. Using Eqs. (A.3) to (A.5), we

obtain

w†r(p
′)γiws(p) = −

√
2p′+p+2r(δi1 − 2irδi2)δr,−s,

w†r(p
′)γiγjpjws(p) = −

√
2p′+p+(pi + 2irεijpj)δrs,

w†r(p
′)γjp′jγiws(p) = −

√
2p′+p+(p′i − 2irεijp′j)δrs,

(A.17)

where εij is the Levi-Civita symbol. Substituting Eq. (A.17) into Eq. (A.16), one gets

Γi1(p′, p) = δrs
√
p′+p+

[
p′i − 2irεijp′j

p′+
+
pi + 2irεijpj

p+

]
− δr,−s2rm

√
p′+p+

(
1

p′+
− 1

p+

)
(δi1 − 2irδi2)

(A.18)

We see that the spinor matrix element Γµ1(p′, p) contain both helicity-flip and helicity-non-flip terms

(except for the plus component). In the eikonal limit, its becomes

Γµ1(p, p) = 2pµδrs. (A.19)

That is, only the helicity-non-flip term survives.

127



Appendix B

Some useful integrals

B.1 Integrals used in Chapters 3 and 4

The calculations presented in Chapters 3 and 4 involve some integrals which are defined as follows:

I1(A) ≡
∫ ∞

1

dt

t2
[
1− e−At

]
,

I2(A) ≡
∫ ∞

1

dt

t2
[
1− (1 + At)e−At

]
,

R(I0) ≡
∫ ∞

A

dI

I2
ln

(
I

A

)
exp

[
− ln2(I/A)

β0ỹ1

]
,

Sk≥0(A) ≡
∫ ∞

A

dI

I
ln

(
I

A

)
Ik−1e−I exp

[
− ln2(I/A)

β0ỹ1

]
.

(B.1)

We are going to evaluate them in the limit A � 1, keeping only the leading term. By a change of

variable u = At, the first two integral can be rewritten as

I1(A) = A

∫ ∞

A

du

u2

[
1− e−u

]
= 1− e−A + AΓ(0, A) =

A�1
A ln

1

A
+O(A),

I2(A) = A

∫ ∞

A

du

u2

[
1− (1 + u)e−u

]
= I1(A)− AΓ(0, A) = 1− e−A =

A�1
A+O(A2).

(B.2)

For the integral R, the integration by parts leads to

R(I0) =
β0ỹ1

2A
− β0ỹ1

2

∫ ∞

A

dI

I2
exp

[
− ln2 (I/A)

β0ỹ1

]
=
β0ỹ1

2A
− β0ỹ1

2A

∫ ∞

0

dte−t exp

[
− t2

β0ỹ1

]

=
β0ỹ1

2A

{
1−
√
πβ0ỹ1

2
exp

(
β0ỹ1

4

)[
1− erf

(√
β0ỹ1

2

)]}
.

(B.3)

The relevant limit is ỹ1 � 1, in which case we can use the following expansion of the error function:

erf

(√
β0ỹ1

2

)
= 1− e−

β0ỹ1
4√
π

[
2√
β0ỹ1

− 4

β0ỹ1

1√
β0ỹ1

+O
(

1

ỹ2
1

√
ỹ1

)]
. (B.4)
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R then becomes

R(I0) '
ỹ1�1

1

A

[
1 +O

(
1

ỹ1

)]
. (B.5)

Now we deal with the integral Sk (with an interger k ≥ 0). They can be rewritten in the form of a

series as

Sk(A) =
∞∑

j=0

(−1)j

j! (β0ỹ1)j

∫ ∞

A

dI

I
ln2j+1

(
I

A

)
Ik−1e−I

≡
∞∑

j=0

(−1)j

j! (β0ỹ1)j
H

(k)
2j+1,

(B.6)

where

H
(k)
2j+1 ≡

∫ ∞

A

dI

I
ln2j+1

(
I

A

)
Ik−1e−I . (B.7)

We will estimate the integral H
(k)
2j+1 integral in three separate cases: k ≥ 2 and k = 1, k = 0.

Case k ≥ 2. With the help of the incomplete gamma function Γ(a, x), the integral H
(k)
2j+1 reads

H
(k)
2j+1 =

∂2j+1

∂α2j+1

∣∣∣∣
α=0

[
A−α × Γ(α + k − 1, A)

]
. (B.8)

The value of α (before being eventually set to zero) can be restricted in a small interval (−ε, ε)
around 0. So, for k ≥ 2, as A � 1, we can approximate Γ(α + k − 1, A) by Γ(α + k − 1, 0). The

derivative in Eq. (B.8) then appears as a sum of terms containing powers of ln(1/A). Keeping only

the leading log term, we get

H
(k)
2j+1 ' Γ(k − 1) ln2j+1 1

A
= (k − 2)! ln2j+1 1

A
. (B.9)

Substituting this into Eq. (B.6), and resumming the leading log series, the integral Sk for k ≥ 2

reads

Sk≥2(A) ' (k − 2)! ln
1

A
exp

[
− ln2 1

A

β0ỹ1

]
. (B.10)

Case k = 1. By integration by parts, we have

H
(1)
2j+1 =

∫ ∞

A

dI

I
ln2j+1

(
I

A

)
e−I =

1

2j + 2

∫ ∞

A

dI ln2j+2

(
I

A

)
e−I

=
1

2j + 2

∂2j+2

∂α2j+2

∣∣∣∣
α=0

[
A−α × Γ(α + 1, A)

]
.

(B.11)

With the same argument to the case k ≥ 2, we can approximate Γ(α + 1, A) by Γ(α + 1, 0). The
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integral H(1)2j+1 in the leading log approximation reads

H
(1)
2j+1 '

1

2j + 2
ln2j+2 1

A
. (B.12)

Resumming the leading log series, we obtain the following expression for S1:

S1(A) =
β0ỹ1

2

[
1− exp

(
− ln2 1

A

β0ỹ1

)]
. (B.13)

Case k = 0. By integration by parts, we get

H
(0)
2j+1 =

∫ ∞

A

dI

I2
ln2j+1

(
I

A

)
e−I

=
1

2j + 2

[∫ ∞

A

dI

I2
ln2j+2

(
I

A

)
e−I +

∫ ∞

A

dI

I
ln2j+2

(
I

A

)
e−I
]

=
1

2j + 2

[
H

(0)
2j+2 +H

(1)
2j+2

]
=

1

2j + 2

[
H

(0)
2j+2 +

1

2j + 3
ln2j+3 1

A

]
.

(B.14)

From this, we have the following recurrence relation:

H(0)
m = mH

(0)
m−1 −

1

m+ 1
lnm+1 1

A
, (m ≥ 1). (B.15)

By induction, we can prove the following general formula for H
(0)
m :

H(0)
m = H

(0)
0 m!−

m−2∑

i=−1

m!

(m− i)! lnm−i
1

A

= m!

(
e−A

A
− Γ(0, A)

)
−

m−2∑

i=−1

m!

(m− i)! lnm−i
1

A

=
m!

A
[1 +O(A)]− 1

m+ 1
lnm+1 1

A

[
1 +O

(
1

ln 1
A

)]

(B.16)

or,

H
(0)
2j+1 =

(2j + 1)!

A
[1 +O(A)]− 1

2j + 2
ln2j+2 1

A

[
1 +O

(
1

ln 1
A

)]
(B.17)

Resumming only leading log terms, while keeping only the term j = 0 for the first part (containing

1/A) of Eq. (B.17), S0 finally reads

S0(A) '
LL

1

A
− β0ỹ1

2

[
1− exp

(
− ln2 1

A

β0ỹ1

)]
. (B.18)

130



Some useful integrals

When keeping up to next-to-leading-log order, S0 reads

S0(A) '
NLL

1

A
− β0ỹ1

2

[
1− exp

(
− ln2 1

A

β0ỹ1

)]
− ln

1

A
exp

(
− ln2 1

A

β0ỹ1

)
. (B.19)

B.2 Other integrals

In the thesis, we made use of the digamma function,

ψ(x) ≡ 1

Γ(x)

dΓ(x)

dx
, (B.20)

and its following integral representation:

ψ(x) = −γE +

∫ 1

0

1− tx
1− t dt. (B.21)

(γE = 0.57721 · · · is the Euler constant.)

The following integral was also needed:

∫
d2l⊥

2π

l⊥ · n⊥
l2

eil
⊥·x⊥ = i

x⊥ · n⊥
x2

, (B.22)

where l⊥, n⊥ and x⊥ are two-dimensional transverse vectors. Let us now prove the latter. Denote

by φ, α and β the angle between those vectors measured counter-clockwise in reference to n⊥ as

φ = (x⊥, l⊥),α = (n⊥, x⊥), and β = (n⊥, l⊥) (cos β = cos(φ+α)). We can rewrite the leff-hand side

of Eq. (B.22) as

∫
d2l⊥

2π

l⊥ · n⊥
l2

eil
⊥·x⊥ =

∫ ∞

0

dl

∫ π

−π

dφ

2π
n cos βeilx cosφ

=

∫ ∞

0

dl

∫ π

−π

dφ

2π
n (cosφ cosα− sinφ sinα) eilx cosφ

= in cosα

∫ ∞

0

J1(lx)dl = i
x⊥ · n⊥
x2

,

(B.23)

where J1(x) is the first-order Bessel function of the first kind (qed).
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Appendix C

Numerical setup for solving the

evolution equations

In this appendix, we present the numerical scheme to solve the BK equations for the T1 and σin both

the fixed-coupling and the running-coupling scenarios, which is used for the numerical analyses in

Chapter 3. The equation for the latter is equivalent to the KL equation.

To solve such integro-differential equations, we use the fourth-order Runge-Kutta method with

rapidity step dY = 10−2. The solutions are stored in a grid of the dipole size variable r in which

1000 points are spaced equally in the logarithmic scale in the range 10−14 ≤ rΛQCD ≤ 102. Integrals

are computes using the mid-point quadrature scheme. For rΛQCD < 10−14 (the color transparency

limit), we use the power-law extrapolation, while for rΛQCD > 102 (the saturation limit), we set the

solutions to 1.

Different parameters for the calculation are set as follows:

(i) The QCD parameter ΛQCD = 0.217 . This value is obtained by requiring that the value of

the running strong coupling at the mass of the Z0 boson is ᾱ(r2 = 4C2/M2
Z0) = 0.1104 [149],

with MZ0 ' 91.18 GeV .

(ii) Fixed coupling ᾱ = 0.14.

(iii) The frozen value of the running coupling ᾱc = 0.5.

(iv) The constant C in the expression of the running coupling is set to the value C2 = 6.5 [138].

(v) Nuclear saturation scale at zero rapidity Q2
A = 0.26A1/3Q2

p0, where A is the nuclear mass

number and Qp0 is the saturation scale of the proton, which is assumed to be ΛQCD . The

factor 0.26 leads to the smallness of the ratio Q2
A/Q

2
p0, which was interpreted as the weak

nuclear enhancement [146].

(vi) Quark masses mu = md = ms = 140 MeV , mc = 1.5 GeV . Active quark flavors in the sums

appearing in Eq. (4.2) are determined from the condition Q2 > 4m2
f .

To check the validation of the numerical calculation, we extract the saturation momenta from

the numerical solutions for the forward elastic amplitude T1 and plot them as functions of the
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Numerical setup for solving the evolution equations
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Figure C.1: Saturation momenta from the solutions for the amplitude T1 in three different schemes.
The black lines are fitting results using Eqs. (C.1) and (C.2).

rapidity (for A = 208) (see Fig. C.1). When the coupling is fixed, the following function is fitted to

the numerical data:

Q(fc)
s = af exp (bfY − cf lnY ) . (C.1)

In the case of running coupling, the fitting function reads

Q(rc)
s = ar exp

(
bf (Y + dr1)1/2 − cf (Y + dr2)1/6

)
. (C.2)

Fitting parameters are shown in Table C.1. The fitting values of the parameters bf , cf and br are

close to their established theoretical values [55, 56, 142], which reads bf = ᾱχ′(γ0)/2 ' 0.342,

cf = 3/(4γ0) ' 1.195 and br = αc/2 ' 1.804, respectively.

Table C.1: Values of the fitting parameters in Eqs. (C.1) and (C.2) obtained from the fits to the
corresponding numerical data for the saturation momenta.

Kernel af bf cf

Fixed coupling 1.035 0.342 1.174

Kernel ar br cr dr1 dr2

rc: parent dipole 0.419 1.805 3.374 7.862 11.131

rc: Balitsky 0.111 1.810 3.352 9.432 4.635
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[84] E. Aı̈dékon, J. Berestycki, É. Brunet, and Z. Shi. Branching Brownian motion seen from its

tip. Prob. Theory and Relat. Fields, 157:405, 2013.

[85] B Derrida and P. Mottishaw. On the genealogy of branching random walks and of directed

polymers. EPL (Europhysics Letters), 115:40005, 2016. DOI: 10.1209/0295-5075/115/

40005.

[86] A. H. Mueller and S. Munier. Particle-number distribution in large fluctuations at the tip

of branching random walks. Phys. Rev. E, 102:022104, 2020. DOI: 10.1103/PhysRevE.102.

022104.

[87] L.-P. Arguin, A. Bovier, and N. Kistler. Genealogy of extremal particles of branching Brownian

motion. Commun. Pure Appl. Math., 64:1647, 2011. DOI: 10.1002/cpa.20387.

[88] G. Schehr and S. N. Majumdar. Universal order statistics of random walks. Phys. Rev. Lett.,

108:040601, 2012. DOI: 10.1103/PhysRevLett.108.040601.

[89] K. Ramola, S. N. Majumdar, and G. Schehr. Universal order and gap statistics of crit-

ical branching Brownian motion. Phys. Rev. Lett., 112:210602, 2014. DOI: 10.1103/

physrevlett.112.210602.

[90] K. Ramola, S. N. Majumdar, and G. Schehr. Branching Brownian motion conditioned on

particle numbers. Chaos, Solitons & Fractals, 74:79, 2015. DOI: 10.1016/j.chaos.2014.

12.013. Extreme Events and its Applications.

[91] K. Ramola, S. N. Majumdar, and G. Schehr. Spatial extent of branching brownian motion.

Phys. Rev. E, 91:042131, 2015. DOI: 10.1103/PhysRevE.91.042131.

[92] G. P. Salam. Multiplicity distribution of color dipoles at small x. Nucl. Phys. B, 449:589–604,

1995. DOI: 10.1016/0550-3213(95)00299-8.

[93] G. P. Salam. Studies of unitarity at small x using the dipole formulation. Nucl. Phys. B, 461:

512–538, 1996. DOI: 10.1016/0550-3213(95)00658-3.

[94] G. P. Salam. OEDIPUS: Onium evolution, dipole interaction and perturbative unitariza-

tion simulation. Comput. Phys. Commun., 105:62–76, 1997. DOI: 10.1016/S0010-4655(97)

00066-0.

[95] A. H. Mueller and G. P. Salam. Large multiplicity fluctuations and saturation effects in onium

collisions. Nucl. Phys. B, 475:293–320, 1996. DOI: 10.1016/0550-3213(96)00336-7.

[96] E. Brunet and B. Derrida. Shift in the velocity of a front due to a cutoff. Phys. Rev. E, 56:

2597–2604, 1997. DOI: 10.1103/PhysRevE.56.2597.

[97] Derrida, B. A generalization of the Random Energy Model which includes correlations between

energies. J. Physique Lett., 46:401, 1985. DOI: 10.1051/jphyslet:01985004609040100.

[98] B. Derrida and E. Gardner. Solution of the generalised random energy model. Journal of

Physics C: Solid State Physics, 19:2253, 1986. DOI: 10.1088/0022-3719/19/13/015.

140

https://dx.doi.org/10.1007/s10955-011-0185-z
https://dx.doi.org/10.1073/pnas.1013529108
https://dx.doi.org/10.1209/0295-5075/115/40005
https://dx.doi.org/10.1209/0295-5075/115/40005
https://dx.doi.org/10.1103/PhysRevE.102.022104
https://dx.doi.org/10.1103/PhysRevE.102.022104
https://dx.doi.org/10.1002/cpa.20387
https://dx.doi.org/10.1103/PhysRevLett.108.040601
https://dx.doi.org/10.1103/physrevlett.112.210602
https://dx.doi.org/10.1103/physrevlett.112.210602
https://dx.doi.org/10.1016/j.chaos.2014.12.013
https://dx.doi.org/10.1016/j.chaos.2014.12.013
https://dx.doi.org/10.1103/PhysRevE.91.042131
https://dx.doi.org/10.1016/0550-3213(95)00299-8
https://dx.doi.org/10.1016/0550-3213(95)00658-3
https://dx.doi.org/10.1016/S0010-4655(97)00066-0
https://dx.doi.org/10.1016/S0010-4655(97)00066-0
https://dx.doi.org/10.1016/0550-3213(96)00336-7
https://dx.doi.org/10.1103/PhysRevE.56.2597
https://dx.doi.org/10.1051/jphyslet:01985004609040100
https://dx.doi.org/10.1088/0022-3719/19/13/015


BIBLIOGRAPHY

[99] J. D. Bjorken. Rapidity gaps and jets as a new-physics signature in very-high-energy hadron-

hadron collisions. Phys. Rev. D, 47:101, 1993. DOI: 10.1103/PhysRevD.47.101.

[100] J. D. Bjorken. Hard diffraction and deep inelastic scattering. In International Workshop on

Deep Inelastic Scattering and Related Subjects, 1994.

[101] Vincenzo Barone and Enrico Predazzi. High-Energy Particle Diffraction, volume v.565 of

Texts and Monographs in Physics. Springer-Verlag, Berlin Heidelberg, 2002. ISBN 978-3-540-

42107-8.

[102] G. Alberi and G. Goggi. Diffraction of Subnuclear Waves. Phys. Rept., 74:1, 1981. DOI: 10.

1016/0370-1573(81)90019-3.

[103] Konstantin A. Goulianos. Diffractive Interactions of Hadrons at High-Energies. Phys. Rept.,

101:169, 1983. DOI: 10.1016/0370-1573(83)90010-8.

[104] R. Bonino et al. Evidence for transverse jets in high-mass diffraction: UA8 experiment. Phys.

Lett. B, 211:239, 1988. DOI: https://doi.org/10.1016/0370-2693(88)90840-4.

[105] A. Brandt et al. Evidence for a superhard pomeron structure. Phys. Lett. B, 297:417, 1992.

DOI: 10.1016/0370-2693(92)91281-D. (UA8 collaboration).

[106] F. Abe et al. Observation of rapidity gaps in p̄p collisions at 1.8 TeV. Phys. Rev. Lett., 74:

855, 1995. DOI: 10.1103/PhysRevLett.74.855. (CDF collaboration).

[107] S. Abachi et al. Jet Production via Strongly-Interacting Color-Singlet Exchange in pp̄ Colli-

sions. Phys. Rev. Lett., 76:734, 1996. DOI: 10.1103/PhysRevLett.76.734.

[108] T. Ahmed et al. First measurement of the deep inelastic structure of proton diffraction. Phys.

Lett. B, 348:681, 1995. DOI: 10.1016/0370-2693(95)00279-T. (H1 collaboration).

[109] M. Derrick et al. Measurement of the diffractive structure function in deep elastic scattering

at HERA. Z. Phys. C, 68:569, 1995. DOI: 10.1007/BF01565257. (ZEUS collaboration).

[110] L. Schoeffel. Advances in diffraction of subnuclear waves. Prog. Part. Nucl. Phys., 65:9, 2010.

DOI: 10.1016/j.ppnp.2010.02.002.

[111] L. D. Landau and I. Ya. Pomeranchuk. Emission of γ-quanta during the collision of fast

π-mesons with nucleons. JETP, 24, 1953.

[112] E. L. Feinberg and I. Ya. Pomeranchuk. Inelastic diffraction processes at high energies. Nuovo

Cim. Suppl., 3, 1956.

[113] A. I. Akhiezer and I. Ya. Pomeranchuk. Diffraction effects in collisions of fast particles with

nuclei. Usp. Fiz. Nauk., 65, 1958.

[114] A. G. Sitenko. Deuteron interactions with nuclei. Usp. Fiz. Nauk., 67, 1959.

[115] M. L. Good and W. D. Walker. Diffraction disssociation of beam particles. Phys. Rev., 120:

1857, 1960. DOI: 10.1103/PhysRev.120.1857.

[116] T. Regge. Introduction to complex orbital momenta. Nuovo Cim., 14:951, 1959. DOI: 10.

1007/BF02728177.

[117] T. Regge. Bound states, shadow states and Mandelstam representation. Nuovo Cim., 18:947,

1960. DOI: 10.1007/BF02733035.

141

https://dx.doi.org/10.1103/PhysRevD.47.101
https://dx.doi.org/10.1016/0370-1573(81)90019-3
https://dx.doi.org/10.1016/0370-1573(81)90019-3
https://dx.doi.org/10.1016/0370-1573(83)90010-8
https://dx.doi.org/https://doi.org/10.1016/0370-2693(88)90840-4
https://dx.doi.org/10.1016/0370-2693(92)91281-D
https://dx.doi.org/10.1103/PhysRevLett.74.855
https://dx.doi.org/10.1103/PhysRevLett.76.734
https://dx.doi.org/10.1016/0370-2693(95)00279-T
https://dx.doi.org/10.1007/BF01565257
https://dx.doi.org/10.1016/j.ppnp.2010.02.002
https://dx.doi.org/10.1103/PhysRev.120.1857
https://dx.doi.org/10.1007/BF02728177
https://dx.doi.org/10.1007/BF02728177
https://dx.doi.org/10.1007/BF02733035


BIBLIOGRAPHY

[118] G. F. Chew and S. C. Frautschi. Principle of equivalence for all strongly interacting particles

within the s-matrix framework. Phys. Rev. Lett., 7:394, 1961. DOI: 10.1103/PhysRevLett.

7.394.

[119] V. N. Gribov. Partial waves with complex orbital angular momenta and the asymptotic

behavior of the scattering amplitude. Zh. Eksp. Teor. Fiz., 41:1962, 1961.

[120] G. Ingelman and P. E. Schlein. Jet Structure in High Mass Diffractive Scattering. Phys. Lett.

B, 152:256, 1985. DOI: 10.1016/0370-2693(85)91181-5.

[121] Heikki Mäntysaari. Review of proton and nuclear shape fluctuations at high energy. Rept.

Prog. Phys., 83:082201, 2020. DOI: 10.1088/1361-6633/aba347.

[122] R. Abdul Khalek et al. Science Requirements and Detector Concepts for the Electron-Ion

Collider: EIC Yellow Report. 2021. arXiv:2103.05419.

[123] Nikolai N. Nikolaev and B. G. Zakharov. Pomeron structure function and diffraction disso-

ciation of virtual photons in perturbative QCD. Z. Phys. C, 53:331, 1992. DOI: 10.1007/

BF01597573.

[124] Nikolai N. Nikolaev and B. G. Zakharov. The Triple pomeron regime and the structure

function of the pomeron in the diffractive deep inelastic scattering at very small x. Z. Phys.

C, 64:631, 1994. DOI: 10.1007/BF01957772.

[125] Robert B. Peschanski. ’Good-Walker’ + QCD dipoles = hard diffraction. In 6th Interna-

tional Workshop on Deep Inelastic Scattering and QCD (DIS 98), page 302, 1998. arXiv:hep-

ph/9805325.

[126] S. Munier and A. Shoshi. Diffractive photon dissociation in the saturation regime from the

Good and Walker picture. Phys. Rev. D, 69:074022, 2004. DOI: 10.1103/PhysRevD.69.

074022.

[127] Y. V. Kovchegov and E. Levin. Diffractive dissociation including multiple pomeron exchanges

in high parton density QCD. Nucl. Phys. B, 577:221, 2000. DOI: 10.1016/S0550-3213(00)

00125-5.

[128] Y. V. Kovchegov. Running Coupling Corrections to Nonlinear Evolution for Diffractive Dis-

sociation. Phys. Lett. B, 710:192, 2012. DOI: 10.1016/j.physletb.2012.02.073.

[129] Y. V. Kovchegov. Running Coupling Evolution for Diffractive Dissociation and the NLO

Odderon Intercept. AIP Conf. Proc., 1523:335, 2013. DOI: 10.1063/1.4802180.

[130] E. Levin and M. Lublinsky. Nonlinear evolution and high-energy diffractive production. Phys.

Lett. B, 521:233, 2001. DOI: 10.1016/S0370-2693(01)01217-5.

[131] E. Levin and M. Lublinsky. Diffractive dissociation and saturation scale from nonlinear evo-

lution in high-energy DIS. Eur. Phys. J. C, 22:647, 2002. DOI: 10.1007/s100520100839.

[132] E. Levin and M. Lublinsky. Diffractive dissociation from nonlinear evolution in DIS on nuclei.

Nucl. Phys. A, 712:95, 2002. DOI: 10.1016/S0375-9474(02)01269-1.

[133] S. Munier. Diffractive patterns in deep-inelastic scattering and parton genealogy. EPJ Web

Conf., 192:00008, 2018. DOI: 10.1051/epjconf/201819200008.

142

https://dx.doi.org/10.1103/PhysRevLett.7.394
https://dx.doi.org/10.1103/PhysRevLett.7.394
https://dx.doi.org/10.1016/0370-2693(85)91181-5
https://dx.doi.org/10.1088/1361-6633/aba347
https://arxiv.org/abs/2103.05419
https://dx.doi.org/10.1007/BF01597573
https://dx.doi.org/10.1007/BF01597573
https://dx.doi.org/10.1007/BF01957772
https://arxiv.org/abs/hep-ph/9805325
https://arxiv.org/abs/hep-ph/9805325
https://dx.doi.org/10.1103/PhysRevD.69.074022
https://dx.doi.org/10.1103/PhysRevD.69.074022
https://dx.doi.org/10.1016/S0550-3213(00)00125-5
https://dx.doi.org/10.1016/S0550-3213(00)00125-5
https://dx.doi.org/10.1016/j.physletb.2012.02.073
https://dx.doi.org/10.1063/1.4802180
https://dx.doi.org/10.1016/S0370-2693(01)01217-5
https://dx.doi.org/10.1007/s100520100839
https://dx.doi.org/10.1016/S0375-9474(02)01269-1
https://dx.doi.org/10.1051/epjconf/201819200008


BIBLIOGRAPHY

[134] A. D. Le. Diffraction in high-energy onium-nucleus scattering and structure of partonic evo-
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[135] Dung Le Anh and Stéphane Munier. Rapidity gaps and ancestry. Acta Phys. Polon. Supp.,

12:825, 2019. DOI: 10.5506/APhysPolBSupp.12.825.

[136] J. L. Albacete, N. Armesto, J. G. Milhano, C. A. Salgado, and U. A. Wiedemann. Nu-

merical analysis of the Balitsky-Kovchegov equation with running coupling: Dependence

of the saturation scale on nuclear size and rapidity. Phys. Rev. D, 71:014003, 2005.

DOI: 10.1103/PhysRevD.71.014003.

[137] J. L. Albacete and Y. V. Kovchegov. Solving high energy evolution equation including running

coupling corrections. Phys. Rev. D, 75:125021, 2007. DOI: 10.1103/PhysRevD.75.125021.

[138] J. L. Albacete, N. Armesto, J. G. Milhano, and C. A. Salgado. Non-linear QCD meets data:

A Global analysis of lepton-proton scattering with running coupling BK evolution. Phys. Rev.

D, 80:034031, 2009. DOI: 10.1103/PhysRevD.80.034031.

[139] John M. Cornwall. Dynamical Mass Generation in Continuum QCD. Phys. Rev. D, 26:1453,

1982. DOI: 10.1103/PhysRevD.26.1453.

[140] A. C. Aguilar, A. Mihara, and A. A. Natale. Freezing of the QCD coupling constant and

solutions of Schwinger-Dyson equations. Phys. Rev. D, 65:054011, 2002. DOI: 10.1103/

PhysRevD.65.054011.

[141] A. C. Aguilar, D. Binosi, and J. Papavassiliou. Gluon and ghost propagators in the Landau

gauge: Deriving lattice results from Schwinger-Dyson equations. Phys. Rev. D, 78:025010,

2008. DOI: 10.1103/PhysRevD.78.025010.

[142] L. V. Gribov, E. M. Levin, and M. G. Ryskin. Semihard processes in QCD. Phys. Rept., 100

(1):1, 1983. DOI: 10.1016/0370-1573(83)90022-4.

[143] A. H. Mueller and J. Qiu. Gluon Recombination and Shadowing at Small Values of x. Nucl.

Phys. B, 268:427, 1986. DOI: 10.1016/0550-3213(86)90164-1.

[144] D. Bendova, J. Cepila, J. G. Contreras, ‡. V. P. Gonçalves, and M. Matas. Diffractive deeply
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Titre : Propriétés statistiques des configurations partoniques et dissociation diffractive dans la diffusion
électron-noyau à haute énergie.

Mots clés : chromodynamique quantique, diffusion électron-noyau, dissociation diffractive, modèle des
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Résumé : Dans cette thèse, nous étudions les pro-
priétés statistiques des états quantiques d’un quar-
konium, et nous en déduisons des prédictions pour
les sections efficaces de dissociation diffractive qui
seront mesurées aux futurs collisionneurs électrons-
ions.
Dans le cadre du modèle des dipôles de couleur de la
chromodynamique quantique (QCD), on montre que
de tels états peuvent être représentés par un en-
semble de dipôles généré par un processus stochas-
tique défini par un branchement binaire particulier. En
premier lieu, les événements d’interaction d’un dipôle
de couleur avec un noyau lourd, dans le régime dans
lequel les paramètres de la réaction sont définis de
sorte que la section efficace totale soit petite, sont
induits par des fluctuations partoniques rares, dont
la distribution dépend du référentiel choisi. Il s’avère
que la liberté de sélectionner un référentiel permet de
déduire une expression analytique asymptotique de la
distribution de la rapidité du premier branchement du
dipôle parent le plus lent dans l’ensemble des dipôles
qui interagissent. Notre étude montre l’importance de

bien comprendre la distribution des dipôles et leurs
corrélations dans ces fluctuations particulières, dont
les propriétés sont communes à une vaste classe de
modèles de marches aléatoires branchantes. Dans ce
but, nous développons un nouvel algorithme de Monte
Carlo pour générer la région frontalière d’une marche
aléatoire branchante unidimensionnelle.
De plus, notre approche nous permet de calculer la
section efficace diffractive conditionnée à un “gap”
de rapidité minimal Y0 ou la distribution des “gaps”
de rapidité Ygap dans la dissociation diffractive d’un
petit dipôle sur un noyau lourd, dans une région
paramétrique bien définie. Nous obtenons ainsi des
solutions asymptotiques à l’équation de Kovchegov-
Levin pour la section efficace de dissociation dif-
fractive nucléaire d’un dipôle à haute énergie. Enfin,
nous présentons des prédictions quantitatives pour la
distribution des “gaps” de rapidité dans le domaine
cinématique des futurs collisionneurs électron-ion, sur
la base de solutions numériques de l’équation origi-
nale de Kovchegov-Levin et de son extension à une
constante de couplage forte courante.

Title : Statistical properties of partonic configurations and diffractive dissociation in high-energy electron-
nucleus scattering.

Keywords : quantum chromodynamics, electron-nucleus collision, diffractive dissociation, color dipole model,
branching random walk.

Abstract : In this thesis, we study the detailed parto-
nic content of the quantum states of a quark-antiquark
color dipole subject to high-energy evolution, which
are represented by a set of dipoles generated by a
stochastic binary branching process, in the scattering
off a large nucleus. We also produce predictions for
diffractive dissociation in electron-ion collisions, ba-
sed on the dipole picture of quantum chromodynamics
(QCD). Our main results can be captured as follows.
First, the scattering events of a color dipole, when pa-
rameters are set in such a way that the total cross
section is small, are triggered by rare partonic fluc-
tuations, which look different as seen from different
reference frames. It turns out that the freedom to se-
lect a frame allows to deduce an asymptotic expres-
sion for the rapidity distribution of the first branching
of the slowest parent dipole of the set of those which
scatter. In another aspect, such study implies the im-
portance of the characterization of particle distribu-
tion in the frontier region in the states generated by

the QCD dipole branching, and more generally, by
any one-dimensional branching random walk model.
To this aim, we develop a Monte Carlo algorithm to
generate the frontier region of a binary branching ran-
dom walk on a real line.
Furthermore, with the above statistical description, we
are able to calculate the diffractive cross section de-
manding a minimal rapidity gap Y0 and the distribution
of rapidity gaps Ygap in the diffractive dissociation of a
small dipole off a large nucleus, in a well-defined para-
metric region. They are the asymptotic solutions to the
so-called Kovchegov-Levin equation, which describes
the diffractive dipole dissociation at high energy. Ad-
ditionally, we present predictions for the distribution of
rapidity gaps in realistic kinematics of future electron-
ion machines, based on the numerical solutions of the
original Kovchegov-Levin equation and of its next-to-
leading extension taking into account the running of
the strong coupling.
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