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Introduction

More than 500 years ago, the polymath Leonardo Da Vinci was named a ”Master of Water”

by the Florentine authorities. In this role he had to explore deviating the river Arno away

from Pisa. In his notebook, he depicted how fluids flow in a diagram, problably without

knowing that he was describing the three-dimensional nature of flowing water and the fact

that turbulent flows consist of a range of co-existing eddies, varying in scale from large to

small. These scales were mathematically formalized by the mathematician A. N. Kolmogorov,

and compose the well known Kolmogorov cascade of energy. Energy of bigger eddies gets con-

Figure 1: Leonardo Da Vinci, Studies of water passing obstacles and falling, c. 1508-9. Wikimedia

Commons (cropped image)

verted to that of smaller eddies. This process goes on until the eddy is small enough so that

the energy dissipates directly to heat in the fluid. Or, as this was all phrased in a poem by

the English mathematician Lewis Fry Richardson:

1



INTRODUCTION

”Big whirls have little whirls,

Which feed on their velocity,

And little whirls have lesser whirls

And so on to viscosity.”

Vortices, ”the sinews and muscles of fluid” as described by Küchemann (1965), constitute the

elementary structures of all fluid flows more particularly in transitional and turbulent flows.

Studying their intrinsic dynamics and interactions helps us understand the behavior of the

complicated flows.

Figure 2: Cross-section of the flow in a typical room, showing different eddy sizes. This was made

visible using a laser, a glass rod (to refract the light into a plane) and a fog machine. Credit : YouTube

channel 3Blue1Brown / Visualizing Turbulence.

Vortices are inevitable and are constantly encountered in industrial flows. During the com-

bustion of a fuel, they are beneficial as they increase efficiency by improving the mixing the

fuel with the oxydiser. Contrariwise, the vortices forming at the tip of rotating blades in axial

compressors (also known as tip-leakage vortices TLV), can cause significant power loss and

are linked to the stall of a compressor. In this case, vortex removal would be beneficial. In

aviation, the wingtip vortices from an airplane dissipate slowly and linger in the atmosphere

long after the airplane has passed, becoming a potential flight hazard.

Wake vortices : the stakes

This Ph.D. program is part of the PHYWAKE convention, between ONERA and the French

Civil Aviation Authority. The aim of the convention is to improve theoretical knowledge

on wake vortices, evaluate the environmental impact of condensation trails, optimize safety

distances and improve detection and measurements of wakes vortices.

Aircrafts remain airborn due to the presence of lift. The latter results by the difference of pres-

sure between the lower side of the wing (intrados) and its upper side (extrados). This pressure

gradient results in the rotation of the fluid about the wing tip as the fluid is pushed from

2



below. Once the fluid rollup is complete, two counter rotating vortices appear downstream of

the aircraft, as sketched in figure 3.

(a) Sketch of the downstream wake. (b) Real aircraft wake

Figure 3: Aircraft wakes.

Measuring and characterizing wake vortices features would allow a better traffic management

in airports.

Flight Safety : Airport Proximity

For the past fifty years, air traffic has been in almost progress with a yearly average of 5%.

This will continue as part of the democratization of air transport in many parts of the world

(see, Airbus SAS (2015)). Among other issues the increase in the number of flights has led to

the saturation of major airports, especially at peak hours. In that context separation distances

imposed to mitigate the risk of wake vortices encountered at take-off and landing appear as an

important factor to play with in order to increase frequency of arrivals/departures. The goal

is to improve airport capacity without building new infrastructures, which is often impossible

for technical, environmental or societal reasons.

Wake vortices are robust structures and contain a lot of energy in the circular motion of the

fluid. The vortex strength is characterized by its circulation, Γ. From the Kutta–Joukowski

theorem, one shows that the circulation of the vortices is proportinal to the lift (hence the

weight of the aircraft). This causes safety problem in airports. Indeed, an aircraft encoun-

tering wake vortices from a preceding aircraft may lead to lethal consequences. The Federal

Aviation Administration and the International Civil Aviation Organisation established sep-

aration distances (see table 1) between the take-off and landing of aircraft of each category

(small, medium, heavy,jumbo).

This would ensure that vortices would dissipate and no longer pose safety issues. This is

particularly true for wake vortices impacting the ground as the vortices persist above the run-

ways, hence reducing the frequency of arrivals departures in airports. The need for increasing

airport capacity and flight safety becomes therefore of obvious interest.

3



INTRODUCTION

Minimum Separation Distance for trailing aicraft, NM

Preceding Aircraft Following Aircraft Minimum Separation

JUMBO HEAVY 6

JUMBO MEDIUM 7

JUMBO LIGHT 8

HEAVY HEAVY 4

HEAVY MEDIUM 5

HEAVY LIGHT 6

MEDIUM LIGHT 5

Table 1: Current FAA standards for aircraft separation. In nautic miles (NM).

Objectives of the thesis

The thesis focuses on the linear and nonlinear dynamics of counter rotating vortices impinging

a ground plane. This setup is relevant for aircrafts in the vicinity of runways. Considering

the previously described safety issues and measurement goals, the following question arises:

”How can one enhance vortex decay in ground proximity?”.

To answer the first question, conceptual solutions based on flow control are envisaged.

One efficient way would be to promote the inviscid dynamics of the vortex pair. Indeed the

presence of viscosity, due to the induced boundary layer and entrainment effect associated

with secondary vorticity, results in the persistence of the vortices below the flight path. This

strongly constrains the possibility for reduced separation distances between aircrafts. This

naturally suggests modifying the boundary conditions applied at the ground. This is achieved

using the optimal control method in order to reduce the effect of viscous friction at the

wall. These results and others will be detailed.

The second approach consists in determining the optimal perturbation, that is the pertur-

bation that maximizes the kinetic energy of the vortex system. The objective of this thesis is

to determine the linear optimal perturbation of the aircraft vortex wake. Although this goal

is yet to be achieved in its entirety, several successful steps are taken towards accomplishing

this aim.

Due to the complex spatial distribution of the optimal perturbation, applying the results ob-

tained with linear optimal perturbaions remains challenging. To tackle that very problem, we

will explore the use of so-called p−norms. Conventional optimal perturbations are obtained

using the classical L2 norm of the velocity field. Higher order norms, on the other hand use

the Lp norm in order to localize the perturbation in a confined region of space. This method

was first used by Foures et al. (2013) and is worthwhile for industrial applications.

4



Organisation of the thesis

As the work described in this thesis is exclusively numerical, chapter [1] starts by describing

the mathematical and numerical tools that are used throughout the manuscript. We start

with a brief overview of the Spectral Element Method (SEM). We follow with a presentation

of the various variational formulations of the constrained optimization problems in order to

introduce the concepts of optimal control and optimal perturbations.

In chapter [2], we present the non-linear dynamics of a pair of counter-rotating vortices in

ground effect. Following a review of the literature, we present an approach aiming at increasing

the lateral position of the vortices using an optimal control stategy acting on the ground. The

contents form an article published in the Journal of Fluid Mechanics, see Wakim et al. (2020).

Chapter [3] addresses the optimal perturbation problem in the case of a two and three-

dimensional counter-rotating vortices in the vicinity of the ground. The goal is to reduce the

lifespan of the vortices by adding optimally located perturbation in the fluid domain.

Lastly, in chapter [4], we focus on the localization of the optimal perturbation by changing the

classical L2-norm approach with higher order norms. We first focus on the case of an isolated

Lamb-Oseen vortex and then investigate the three-dimensional p−norm optimal perturbation

of the flow past a flat plate wing following the study of Navrose et al. (2019).
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CHAPTER 1

Numerical Tools

The work described in this thesis is exclusively numerical. In this chapter, we describe

the tools and methods that are used.

1.1 Spectral Element Method tool

Most of the Direct Numerical Simulations (DNS) were carried out using the incompressible

Navier-Stokes (N-S) open source solver Nek5000 (Fischer et al. (2008)) well renowned for

its parallel computation performance and the availability of its adjoint solver, among other

features.

In the following sections, the flows are governed by the incompressible N-S equations :

∇ · u = 0

∂tu+ (u · ∇)u = −∇p+
1

Re
∇2u

(1.1)

which are solved using the Spectral Element Method (SEM) implemented in Nek5000.

1.1.1 Space Discretization

The SEM is an approximation scheme based on the Galerkin method and was introduced

by Patera (1984). It combines the geometrical flexibility of the Finite Element Method with

7



CHAPTER 1. NUMERICAL TOOLS

the convergence properties of Spectral Methods. More details are provided in Deville et al.

(2002); Abgrall & Ricchiuto (2018). In this subsection, we briefly summarize the theoretical

content on spatial discretisation.

The Galerkin approximation allows the solving of Partial Differential Equations (PDE) using

their variational (weak) form. Let’s consider the following PDE :

Du = f (1.2)

with D being the differential operator. The weak formulation of the previous equation is

expressed as follows :

A(u,v) = F (v) ∀v ∈ V (1.3)

where A is a bilinear operator arising from the integration by part of equation 1.2 and F a

linear function.

To approximate the exact solution û, we consider a finite-dimensional subspace Vh ∈ V , a set

of basis functions φn and numerical coefficient un such that :

uN (x) =
N∑

n=0

unφn(x)

A(uN ,v) = F (v) ∀v ∈ Vh

(1.4)

Nek5000 uses the Legendre Polynomials as basis functions. In addition to orthogonality, they

provide the best approximation using the H1-norm. For a one-dimensional equation, the

finite-length domain [a, b] is divided into E elements. such that a = x0 < x1 < . . . < xE = b.

Each element xi−1 < x < xi is mapped onto the interval [−1, 1]. Pieced together over all E

elements, the Legendre Polynomials of degree p form the basis φn. The points {ξ0, ξ1, . . . , ξp}
which form the interpolation grid (within each element) are the Gauss-Lobatto-Legendre

quadrature points. They are the solution of :

(
1− ξ2

i

) dLN
dξ

(ξi) = 0 (1.5)

where LN is the Legendre polynomial of degree N. The spectral approximation uN,e of degree

N is given by :

8



1.1. SPECTRAL ELEMENT METHOD TOOL

uN,e(ξ) =
N∑

i=0

ui,eπi(ξ),

πi(ξ) =
−1

N(N + 1)

(
1− ξ2

)
L′N (ξ)

(ξ − ξi)LN (ξi)
0 ≤ i ≤ N

(1.6)

Spatial discretisation is therefore achieved, first, by splitting the integration domain is divided

into E elements, then by increasing the order of the polynomials.

Refining a mesh can therefore be performed in two ways :

• increasing the number of elements E.

• increasing the polynomial order P .

Figure 1.1: Sketch of a bi-dimensional grid forming an element with N = 4.

1.1.2 Time Discretization

Nek5000 uses a semi-implicit BDFk/EXTk time scheme to discretize the N-S equations. Dif-

fusion is treated implicitly. The time derivative is approximated using the k-order Backward

Differentiation Formula. The whole scheme is globally second order accurate in time. For the

remainder of the manuscript, we use the BDF2/EXT2 scheme. The resulting discretised N-S

equations are :

∇ · un = 0

3un − 4un−1 + un−2

2∆t
= −∇pn +

1

Re
∇2un − (2(u ·∇)u|tn−1 − (u ·∇)u|tn−2)

(1.7)

9
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Finally the constant timestep ∆t is chosen such that the Courant-Friedrichs-Lewy number

remains below 0.6 (see, Fischer et al. (2008)).

Boundary Conditions

Depending on the nature of the flow that is simulated, the boundary conditions of the calcu-

lation vary. In the case of the bi-dimensional vortex pair in ground effect, no-slip Boundary

Condition (BC) is applied on the ground and symmetric BC are imposed on the other bound-

aries. The top and right boundaries are placed sufficiently far from the main flow to ensure

that their influence is negligible. A sketch is provided in figure (2.1). In the case of a three-

dimensional vortex pair in ground effect, the previously described bi-dimensional mesh is

extruded in the axial direction and periodic conditions are applied on the axial boundaries.

Tool Validation

The validation of this numerical setup is provided in figure (2.2) where we compare vortex

centroid trajectories obtained by Türk et al. (1999) and Zheng & Ash (1996) for three distinct

values of the Reynolds number and two different initial conditions.

1.2 Variational Formulation and Constrained Optimization

In this thesis, the vortex problem is assessed in two ways. The first method, presented in

Chapter 2 relies on the Optimal Control Method, which consists in finding the optimal time-

dependant boundary condition to maximize a flow related cost function. The second method

relies on the optimal perturbation concept, detailed in Chapter 3. Its goal is to determine a

perturbation field which maximizes a perturbation related cost function.

Both of these methods can be described within the same mathematical framework, namely,

the constrained optimization framework.

1.2.1 Mathematical Framework

Let us define the following variables :

• The system state is described by a velocity field and a pressure field (etc.) for every

position and time that we define collectively as X.

• The control variables that we define are denoted collectively as U .

• The cost function that needs to be optimized is denoted as J (X,U).

Usually it includes a penalization of the control as follows J (X,U) = E(X) + l||U ||2,

10
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where || · || is a norm and l is a positive parameter. This usually allows to be a well

posed problem in which the control amplitude is bounded.

• The constraints which represent the governing equations are denoted by F(X,U) = 0.

These, in the present case, are the N-S equations.

The general idea of control is to design a cost functional J expressing the control objectives

such as energy, enstrophy, drag reduction, shape optimization (etc.) and the seek for the

extremum of this cost function. Depending on the chosen method, the goal is either to find

the optimal boundary condition at the wall which maximizes the chosen cost function, or to

find the initial perturbation field which allows the maximum energy growth over a given time

interval [0, T ].

From Constrained to Unconstrained Optimization

The optimization of J is a constrained optimization problem :

Determine the optimal control and state such that J is maximized (or minimized) under the

constraint F(X,U) = 0.

A natural approach is to compute the ”gradient” of the cost function with respect to the

control in which we link X and U under the constraint F(X,U) = 0. In other terms, we

want to compute
dJ
dU

(X,U) where X depends on U . The optimal control would then satisfy

dJ
dU

(X(U), U) = 0.

An other (very elegant) way is to introduce the so-called Lagrange Multipliers. Let us

introduce the following inner product :

〈f , g〉 (1.8)

whose definition depends on the context and the following Lagrangian function :

L(X,U, X̃) := J (X,U)−
〈
F(X,U), X̃

〉
(1.9)

where X̃ which will later be assossiated to the adjoint (or co-state) of X. As opposed to the

initial problem, the variables are assumed to be independant from each other. The initial

problem transforms into the following :

”Determine the optimal control, state and adjoint variable such that L is station-

ary.”

11
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The following question arises : How does one find the stationary points of the Lagrangian

function?

Adjoint-based optimization techniques are commonly designed with the intention of finding

these points using efficient iterative algorithms. As optimization theory is mainly based on

the concept of directional derivatives, let us have a reminder:

A function f is Gateaux differentiable if f has a directional derivative along all directions at

x. This means that there exists a function g such that

g(h) = lim
t→0

f(x+ th)− f(x)

t
(1.10)

g is also known as the differential of f at x. We then define the weak form of the gradient as

the unique vector ∇f such that g(h) = 〈∇f(x),h〉.

The stationary points are found by cancelling the first variation of L with respect to X̃,X

and U . ( The prefix δ denotes arbitrary test functions mostly used in inner products. All

adjoint functions are superscripted by a tilde ” ·̃ ”. ). The weak form of the gradient of L is

defined, for any test function δX̃, δX,U , as follows :

〈
∂L
∂X̃

, δX̃

〉
:= lim

ε→0

L(X,U, X̃ + εδX̃)− L(X,U, X̃)

ε
〈
∂L
∂X

, δX

〉
:= lim

ε→0

L(X + εδX,U, X̃)− L(X,U, X̃)

ε
〈
∂L
∂U

, δU

〉
:= lim

ε→0

L(X,U + εδU, X̃)− L(X,U, X̃)

ε

(1.11)

• First variation with respect to X̃ :

〈
∂L
∂X̃

, δX̃

〉
= lim

ε→0

J (X,U)− J (X,U)

ε
−

〈
F(X,U), X̃ + εδX̃

〉
−
〈
F(X,U), X̃

〉

ε〈
∂L
∂X̃

, δX̃

〉
=
〈
F(X,U), X̃

〉
= 0, ∀ δX̃

(1.12)

Therefore, it yields :

∂L
∂X̃

= F(X,U) = 0 (1.13)

and we retrieve the governing equation F(X,U) = 0.

• First variation with respect to X :

12



1.2. VARIATIONAL FORMULATION AND CONSTRAINED OPTIMIZATION

〈
∂L
∂X

, δX

〉
= lim

ε→0

J (X + εδX,U)− J (X,U)

ε
− lim
ε→0

〈
F(X + εδX,U), X̃

〉
−
〈
F(X,U), X̃

〉

ε〈
∂L
∂X

, δX

〉
=
∂J
∂X

δX −
〈
∂F
∂X

δX, X̃

〉

(1.14)

Let us define the adjoint operator of L satisfying :

〈
L(Y ), X̃

〉
=
〈
Y, L̃(X̃)

〉
+ boundary terms (1.15)

Note that the boundary terms appear from successive integration by part. If X̃ is the adjoint

solutions then the boundary terms are nill, therefore

〈
L(Y ), X̃

〉
=
〈
Y, L̃X̃

〉
(1.16)

If we define the adjoint operator of
∂F
∂X

, we obtain:

〈
∂F
∂X

δX, X̃

〉
=

〈
δX,

∂̃F
∂X

X̃

〉
(1.17)

Therefore: 〈
∂L
∂X

, δX

〉
=

〈
∂̃J
∂X

, δX

〉
−
〈
∂̃F
∂X

X̃, δX

〉
(1.18)

Yielding the adjoint equation:

∂̃F
∂X

X̃ =
∂̃J
∂X

(1.19)

• First variation with respect to U :

The same reasoning as above is applied, yielding the optimality condition

∂̃F
∂U

X̃ =
∂̃J
∂U

(1.20)

Equations 1.19 and 1.20 form a PDE system whose solution yields the optimal control U , the

optimal state variable X and the optimal adjoint field X̃.

Note that, the adjoint equation 1.19 is linear with respect to the adjoint variable X̃.
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1.2.2 Numerical Resolution

If we assume that one can solve the system of partial derivative equations formed by equations

1.13,1.19 and 1.20, then no iteration is needed.

However in various cases it is not possible to solve this system, therefore requiring an iterative

procedure (see figure 1.2) described below:

Step 1 : Start with an initial guess value U

Step 2 : Solve the governing equations including the control

Step 3 : Compute the optimality condition

Step 4 : Solve the adjoint equation

Step 5 : Compute the gradient of the Lagrangian with respect to U

Step 6 : Update the control using the gradient of the Lagrangian

UGuess value
Governing

Equation

Adjoint

Equation

Optimality

Condition

X̃

X

U

Figure 1.2: Sketch of the iterative procedure aproximating the optimal solution.

This procedure based on the determination of the adjoint variable X̃ is a particular case of

optimization method where the gradient cost function is evaluated using the adjoint state (see

equation 1.20) .

1.2.3 Adjoint Navier-Stokes Equations & Nek5000

As an example, we derive the adjoint N-S equations when we try to find the initial condition

that maximizes the gain in kinetic energy :

E(T )

E(0)
=

1

2

∫
Ω
u2(x, T )dΩ

1

2

∫
Ω
u0

2(x)dΩ
(1.21)

of the flow over the time interval [0, T ] in a fluid domain denoted Ω. We recall the Navier-

Stokes equations :

∇ · u = 0

∂tu+ (u · ∇)u+∇p− 1

Re
∇2u = 0

14
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or in a more compact way F(q) = 0, where q = (u, v, w, p). The initial conditions writes :

u(x, t = 0)− u0(x) = 0

or simply G(u,u0) = 0.

Then, we define the following inner products :

〈a, b〉 =

∫

Ω

∫ T

0
a(x, t) · b(x, t) dTdΩ

(c,d) =

∫

Ω
c(x, t) · d(x, t) dΩ

[f , g] =

∫ T

0
f(t) · g(t) dT

The Lagrangian function is expressed as follows :

L (q,u0, q̃, ũ0) =
E(T )

E(0)
− 〈 F (q) , q̃ 〉 − ( G(u,u0) , ũ0) (1.22)

As previously shown, the first variation of the Lagrangian function yields the constraints, we

will directly go through the derivation of the first variation of the Lagrangian with respect to

the direct variables.

L (u, v, w, p, u0, v0, w0, ũ, ṽ, w̃, p̃, ũ0, ṽ0, w̃0) =

∫
Ω

(
u2(T ) + v2(T ) + w2(T )

)
dΩ∫

Ω

(
u2

0 + v2
0 + w2

0

)
dΩ

−
∫

Ω

∫ T

0
p̃ (∂xu+ ∂yv + ∂zw) dtdΩ

−
∫

Ω

∫ T

0
ũ

(
∂tu+ u∂xu+ v∂yu+ w∂zu+ ∂xp−

1

Re
∆u

)
dtdΩ

−
∫

Ω

∫ T

0
ṽ

(
∂tv + u∂xv + v∂yv + w∂zv + ∂yp−

1

Re
∆v

)
dtdΩ

−
∫

Ω

∫ T

0
w̃

(
∂tw + u∂xw + v∂yw + w∂zw + ∂zp−

1

Re
∆w

)
dtdΩ

−
∫

Ω
ũ0 (u(0)− u0) dΩ−

∫

Ω
ṽ0 (v(0)− v0) dΩ−

∫

Ω
w̃0 (w(0)− w0) dΩ

(1.23)

L is derived with respect to each of the independant variables. After applying successive

integration by parts, one can determine the following set of adjoint equations:

− (∂xũ+ ∂yṽ + ∂zw̃) = 0

−∂tũ− u∂xũ− v∂yũ− w∂zũ+ u∂xu+ ṽ∂xv + w̃∂xw + ∂xp̃−
1

Re
∆ũ = 0

−∂tṽ − u∂xṽ − v∂yṽ − w∂z ṽ + u∂yu+ ṽ∂yv + w̃∂yw + ∂yp̃−
1

Re
∆ṽ = 0

−∂tw̃ − u∂xw̃ − v∂yw̃ − w∂zw̃ + u∂zu+ ṽ∂zv + w̃∂zw + ∂z p̃−
1

Re
∆w̃ = 0

(1.24)
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or a more compact way:

−∇ · ũ = 0

−∂tũ− (u · ∇)ũ+ (∇u)T ũ+∇p̃− 1

Re
∆ũ = 0

(1.25)

and the compatibilty equation arises by matching the time integration by part:

ũ(x, T ) = 2 · u(x, T )

E(0)
(1.26)

The gradient (update direction) with respect to the initial condition is obtained in a similar

way :

∂L
∂u0

= −2 · E(T )

E(0)2
· u(x, 0) + ũ(x, 0) (1.27)

The adjoint equation (1.25) is linear with respect to the adjoint variable and as opposed to

the direct N-S equation, the time derivative is preceded by a minus sign. One interpretation is

to consider that the equation travels backwards in time by considering the change of variable

t̃ = T − t and the compatibility equation is the initial condition of the adjoint field.

1.3 Finite Element linear optimization tool

In the interests of speeding up the determination of linear optimal perturbations of the isolated

Lamb-Oseen vortex, a one-dimensional tool is used implementing the Finite Element Solver

Freefem++ Hecht (2012). The results obtained from this tool are presented in Chapter 4.

The linearized Navier-Stokes equations are solved to obtain normal mode solutions. The base

flow composed of an isolated Lamb-Oseen vortex, is considered to be frozen. The velocity

profile of the Lamb-Oseen vortex is U = (0, V (r), 0) where

V (r) =
Γ

2πr

(
1− exp(−r2/a2)

)

where a is the vortex dispersion radius and Γ is the circulation.

1.3.1 Spatial Discretization

As is the case with spectral element method, the Finite Element Method is based on a vari-

ational formulation of the equations. We use Taylor Hood finite elements of second order P2

for the velocity components and of the first order P1 for the pressure. These elements and

their degrees of freedom are presented in figure 1.3.
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Figure 1.3: Finite element P1 and P2 discretization. Degrees of freedom are denoted qi.

1.3.2 Time Discretization

We solve the linearized Navier-Stokes equations in cylindrical coordinates:

1

r
∂r(ru) +

1

r
∂θv + ∂zw = 0

∂tu+
V

r
∂θu−

2V

r
v = −∂rp+

1

Re

[
1

r
∂r (r∂ru) +

1

r2
∂2
θu+ ∂2

zu−
u

r2
− 2

r2
∂θv

]

∂tv + ∂rV u+
V

r
∂θv +

V

r
u = −1

r
∂θp+

1

Re

[
1

r
∂r (r∂rv) +

1

r2
∂2
θv + ∂2

zv +
2

r2
∂θu−

v

r2

]

∂tw +
V

r
∂θw = −∂zp+

1

Re

[
1

r
∂r (r∂rw) +

1

r2
∂2
θw + ∂2

zw

]

(1.28)

After introducing q = q̂eimθ+ikz the equations read:

∂r(rû) + imv̂ + ikrŵ = 0

r2∂tû+ imrV û− 2rV v̂ = −r2∂rp̂+
1

Re

[
r∂r (r∂rû)−

(
m2 + k2r2 + 1

)
û− 2imv̂

]

r2∂tv̂ + imrV v̂ +
(
r2∂rV + rV

)
û = −imrp̂+

1

Re

[
r∂r (r∂rv̂)−

(
m2 + k2r2 + 1

)
v̂ + 2imû

]

r2∂tŵ + imrV ŵ = −ikr2p̂+
1

Re

[
r∂r (r∂rŵ)−

(
m2 + k2r2

)
ŵ
]

(1.29)

The solution qn+1 at time tn+1 is computed as a function of qn and qn−1. The lineat terms

of the Navier-Stokes equations are handled semi-implicitly with the BDF2 scheme. The time

derivative is expressed, at order 1 as:

∂tu =
un+1 − un

∆t
(1.30)

and at order 2 as:

∂tu =
3un+1 − 4un + un−1

2∆t
(1.31)
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with ∆t the time step. The integration is started at order 1 and switches to order 2 after two

iterations. This yields:

3

2
un+1 −∆tL

(
qn+1

)
= 2un − 1

2
un−1 (1.32)

with L
(
qn+1

)
i the linear terms of the Navier-Stokes equations.

1.3.3 Normal Modes

Normal modes are solution of the linearized Navier-Stokes equations of the form q̂ = q̃eσt,

with q̃ the normal mode and σ a complex frequency σ = σR+ iσI with σR the growth rate and

σI the frequency. After introduction into the linearized Navier-Stokes equations, one obtains:

∂r(rũ) + imṽ + ikrw̃ = 0

(
r2σ + imrV

)
ũ− 2rV ṽ = −r2∂rp̃+

1

Re

[
r∂r (r∂rũ)−

(
m2 + k2r2 + 1

)
ũ− 2imṽ

]

(
r2σ + imrV

)
ṽ +

(
r2∂rV + rV

)
ũ = −imrp̃+

1

Re

[
r∂r (r∂rṽ)−

(
m2 + k2r2 + 1

)
ṽ + 2imũ

]

(
r2σ + imrV

)
w̃ = −ikr2p̃+

1

Re

[
r∂r (r∂rw̃)−

(
m2 + k2r2

)
w̃
]

(1.33)

These equations can be cast in matrix format Aũ = σBũ with:

A =




−imrV +D − ν 2rV − 2iνm 0 −r2∂r

−r2∂rV − rV + 2iνm −imrV +D − ν 0 −imr
0 0 −imrV +D −ikr2

r∂r + 1 im ikr 0




(1.34)

D is the viscous diffusion: D = ν
(
r(∂r + r∂2

r )− (m2 + k2r2)
)

B =




r2 0 0 0

0 r2 0 0

0 0 r2 0

0 0 0 0




(1.35)

B is the mass matrix. Adjoint modes can be similarly defined using the adjoin Navier-Stokes

equations: A+ũ+ = σ+B+ũ+ with

A+ =




imrV +D − ν −r2∂rV − rV − 2iνm 0 −r2∂r

2rV + 2iνm imrV +D − ν 0 −imr
0 0 imrV +D −ikr2

r∂r + 1 im ikr 0




(1.36)
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σ+ is the adjoint complex frequency. The adjoint is defined through the Hermitian dot

product (u,v) = wHNu where the superscript H denotes the Hermitian conjugate and

N =




r 0 0 0

0 r 0 0

0 0 r 0

0 0 0 0




(1.37)

The direct and adjoint modes are normalized as such:

{
(wi,uj) = δij

(ui,ui) = 1
(1.38)

The result of the adjoint simulation based on the B mass matrix needs to be mapped to the

dot product based on N rather than B. This can be achieved by writing wH
i NB−1Bui = 1 =(

B−1Nwi

)H Bui. After identifying the B−based adjoint field wi = B−1Nwi, the N−based

adjoint is obtained via applying wi = N−1Bwi.

1.3.4 Numerical Resolution

The problem to solve is: B∂tũ = Aũ. Using the BDF2 scheme, the solution at time tn+1 is

therefore:

ũn+1 = (3B − 2∆tA)−1B (4ũn − ũn−1) (1.39)

The same reasonning can be used for the adjoint equations. Finally, as for the optimization

procedure described in 1.2 the iterative direct-adjoint process has been implemented using

Freefem++.

Conclusion: The aforementioned numerical tools are thorougly used in this thesis

to describe and control the dynamics of vortices in ground effects. The following

chapters focus on the use of these tools to hasten vortex decay. More details on the

different algorithms and implementations are provided within each chapter.
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CHAPTER 2

A Vortex Pair in Ground Effect, Dynamics and

Optimal Control

The contents of this chapter form a self-contained article, see Wakim et al. (2020),

available at the following hyperlink:

Wakim, Arnold, Brion, Vincent, Dolfi-Bouteyre, Agnès & Jacquin, Laurent, 2020.

A vortex pair in ground effect, dynamics and optimal control. Journal of Fluid

Mechanics, 885.

In the following we describe and study the optimal control of a pair of counter-

rotating vortices in ground effect of in a two-dimensional, incompressible and

laminar configuration. We present a conceptual approach to deal with aircraft

separation distances in airport airspace by increasing the sideward position of the

vortices, away from the runway.

This work was granted access to the HPC resources IDRIS under the alloca-

tion 2016-100746 made by GENCI. The work is primarily supported by the

PHYWAKE project dedicated to vortex dynamics and funded by the French Direc-

torate for Civil Aviation (DGAC). The careful reading and support of Navrose have

been deeply appreciated and were decisive to finalize this work.
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The dynamics and control of a vortex pair in ground effect are investigated in
a planar, incompressible and laminar setting. The evolution of the vortices obtained
numerically shows vortex rebound as a consequence of the separation of the boundary
layer induced at the wall by the vortices. An optimal control approach is developed
and employed for vortex Reynolds numbers of 200 and 1000 in order to identify
the optimal Dirichlet boundary condition at the wall to counteract this rebound and
allow for an increased lateral displacement of the vortex, similarly to the inviscid
evolution of the flow, which features hyperbolic trajectories. The work is primarily
a conceptual approach to deal with aircraft separation distances in airport airspace
by moving the vortices laterally, away from the runway but may also apply to the
control of coherent structures in wall bounded turbulence. The most efficient control
is able to double the lateral position and yields mostly vertical in and outflow at the
wall. An optimal horizon time is found, equal to 5 characteristic time units of the
vortex system, beyond which control is not able to further displace the vortices. The
control is shown to delay the separation of the boundary layer at the origin of vortex
rebound by applying suction ahead of the vortex, and to generate a vorticity flux at
the wall, leading to a pusher vortex of sign opposite to that of the primary vortex,
that attenuates the effect of the no-slip boundary condition at the wall by pushing
the vortex outward.

Key words: control theory, variational methods, vortex dynamics

1. Introduction
Air traffic has been in almost constant progress, with a yearly average increase

of 5 %, during the past 50 years and will continue to grow as a consequence of
the democratization of air transport in many parts of the world (Airbus SAS 2015).
Among other issues, the increase in the number of flights has led to the saturation
of major airports, especially at peak hours. In that context, separation distances
imposed to mitigate the risk of wake vortices encountered at take-off and landing

† Email address for correspondence: arnold.wakim@gmail.com
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appear to be an important factor to play with in order to increase the frequency
of arrivals/departures. The goal is to improve airport capacity without building new
infrastructures, which is often impossible for technical, environmental or societal
reasons. In the present work, we propose a new vortex mitigation strategy based on
flow control applied at the ground. The action of control gives novel insight into
the mechanisms affecting vortex evolution in ground effect and how these can be
manipulated.

For an inviscid flow (Lamb 1932) a pair of rectilinear counter-rotating vortices set
parallel to the ground in a quiescent environment moves along hyperbolic trajectories.
The initial descent is related to the downward momentum provided to the flow by
the lifting surface. The subsequent lateral displacement is the consequence of the
momentum induced by the image vortices about the ground. With viscosity, the
phenomenon of vortex rebound occurs, as reported by Dee & Nicholas (1968), i.e.
the vortex leaves the hyperbolic trajectory, gains relative altitude and features little
sideward motion. From an air traffic management perspective, this corresponds to
a persistence of the vortices about the runway. As a consequence of the pragmatic
importance of this matter and the required fundamental knowledge of vortex dynamics
and turbulence near walls, vortex rebound has received much attention in the past.
Following Harvey & Perry (1971), vortex rebound results from the formation of a
detached boundary layer at the ground, the former being formed due to the velocity
field induced by the vortices, and the generation of opposite sign vorticity. The
production of this secondary vorticity at the wall during the dipole–wall collision
was in particular studied by Coutsias & Lynov (1991) and Clercx & Van Heijst
(2002). Barker & Crow (1977) explained vortex rebound as the elliptic deformation
of the vortex as it nears the ground, with the subsequent oscillation of the ellipticity
creating the vertical motion of the vortex centre. In Peace & Riley (1983), a matched
asymptotic expansion of the vortex induced boundary layer shows that the increase
of vortex height is also to be attributed to the thickness effect associated with the
developing transverse boundary layer. The rebound has been simulated by Orlandi
(1990), Coutsias & Lynov (1991), Zheng & Ash (1996), Türk, Coors & Jacob
(1999) and Clercx & Van Heijst (2002). Zheng & Ash (1993) used a specific
vorticity–streamfunction computational method, a technique that allows for efficient
calculation of the flow evolution, up to large Reynolds numbers (Zheng & Ash 1996;
Türk et al. 1999).

The inviscid dynamics of the vortex pair would be beneficial to the airport problem.
Indeed, the presence of viscosity, due to the induced boundary layer and entrainment
effect associated with secondary vorticity, results in a dramatic persistence of the
vortices below the flight path that strongly constrains the possibility for reduced
separation distances between aircraft. This naturally suggests that a control aimed at
removing the effect of viscous friction at the wall would be beneficial. Following this
simple idea, the present work looks at how to apply blowing/suction of air at the wall
to favour an improved lateral displacement of trailing vortices approaching ground. A
previous work to control wake vortices at the ground is described in Holzäpfel et al.
(2016) and uses a system of plate lines developed in a heuristic way.

It is noteworthy that the dynamics of vortices in ground effect generally results
from multiple other effects, notably cross-wind, stratification, turbulence and
three-dimensionality (Robins & Delisi 1993; Zheng & Ash 1996; Gerz, Holzäpfel
& Darracq 2002; Pailhas, de Saint & Touvet 2002; Harris & Williamson 2012;
Bricteux et al. 2016; Leweke, Le Dizes & Williamson 2016). Gentle side wind is
in particular known to be particularly harmful for the persistence of wake vortices
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(Gerz et al. 2002). In the current study, which targets the numerical implementation
of the control and its application to the most simple case, none of these effects are
accounted for. The resulting scenario, two-dimensional laminar vortices in a quiescent
environment, is yet one of the worst cases for air traffic and consequently quite
conservative since turbulence, stratification and three-dimensional effects all lead to
an accelerated dissipation of the vortex system. The limitation to a two-dimensional
physical set-up amounts to considering infinite trailing vortices, parallel to the ground.

Irrespective of aircraft wakes, vortices are elementary components of wall
turbulence. The understanding of vortex/ground interaction is therefore of primary
interest for all turbulent flows and flow control in this domain could play an
interesting role in accomplishing objectives such as drag reduction, relaminarization,
delay of flow separation and mixing enhancement. A significant part of the drag
generated by wall turbulence results from the shear stress powered by coherent
streamwise vortices located near the wall (Kravchenko, Choi & Moin 1993). The
dynamics of these vortices includes sweep and lift (rebound) motions that resemble
those of the large scale trailing vortices shed by airplanes. The typical Reynolds
number involved is in the range O(102–103). These vortices play an active part in the
generation of turbulence at its early stages, by promoting longitudinal velocity streaks
and the formation of secondary vorticity, whose destabilization leads the turbulence
cycle. Conversely, their attenuation is able to trigger flow relaminarization (Jiménez
& Pinelli 1999). In developed wall turbulence Lee et al. (1997) and Choi, Moin
& Kim (1994) show that the application of a blowing/suction control strategy
produces significant drag and turbulence reduction by modifying the vortex lateral
and vertical motions. Along this line Koumoutsakos (1997) developed a sensor-based
control strategy with mass exchange at the wall to manipulate wall vorticity. Vortex
annihilation could even be attained this way. Akhavan, Jung & Mangiavacchi (1993)
realized control by lateral blowing and oscillatory wall deformation and also observes
that this shifts the vortices and in turn reduces turbulence production. In all these
studies it seems that reducing vortex rebound is a way to temper turbulent production.
Such a feature could also be of interest to maintaining longitudinal vortices for longer
times near the wall and controlling flow separation using vortex generators (Lin 2002).
One could also find interest in such controls for turbomachinery tip leakage vortex
flow. Storer & Cumpsty (1991) mentions that the tip leakage region leads to
increased flow blockage and the tip vortex is a source of instabilities in the near
stall regime (Furukawa et al. 1999).

The present work adopts an optimal control strategy, as detailed by Bewley (2001)
and Choi, Hinze & Kunisch (1999), to do so. In the case when a large set of
degrees of variables needs to be optimized, the associated direct–adjoint technique
is particularly well suited. Here, the variable to be optimized is the velocity at the
wall and falls into that category. The technique has been successfully applied for
boundary layers and wakes (Walther, Airiau & Bottaro 2001; Homescu, Navon & Li
2002; Airiau et al. 2003; Guégan, Schmid & Huerre 2006; Flinois & Colonius 2015).
In Önder & Meyers (2016), the optimal control method is used to improve the mixing
of an incompressible axisymmetric jet and in Bewley, Moin & Temam (2001) flow
relaminarization and drag reduction in a plane channel are demonstrated. The control
algorithm for an unsteady flow and nonlinear dynamics typically requires a large
amount of storage as the full flow field information is needed at each time step. As
a result, sub-optimal boundary control strategies have been designed to reduce the
associated cost of computation. Such a strategy was for instance applied by Choi
et al. (1999) for the case of the recirculation bubble behind a backward-facing step.
In the present study, linear interpolation is used to reduce this storage issue.
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The paper is organized as follows. In § 2 we define the governing equations and
present the numerical set-up to compute the dynamics of the vortices in ground effect.
Section 3 presents the principal features of the uncontrolled flow. In § 4, we outline
the optimal control approach that allows the maximization of the horizontal position
of the vortices. In § 5 the strategy is applied, the various results are presented and we
discuss the effect of optimal control on wake vortices. Conclusions and outlooks for
application are provided in § 6.

2. Governing equations
In the following, the fluid domain is (x, y > 0) where y = 0 is ground. The

flow is started by a pair of counter-rotating Lamb–Oseen vortices, located at
(xc0, yc0) = (±0.5b, yc0) with initial circulation Γ0. Initially the vortex dispersion
radius that defines the vortex velocity profile is set to a= 0.15b. Length and velocity
are normalized on vortex separation b and on the drift velocity of the vortex pair
v∗=Γ0/2πb, yielding a reference time T∗=2πb2/Γ0 and a circulation-based Reynolds
number Re= Γ0/2πν where ν is the kinematic viscosity of the fluid. The Reynolds
number is considered in the range 200 6 Re 6 5000. For the remainder of the paper
and unless otherwise stated, all the quantities are normalized upon the aforementioned
variables. The flow is governed by the incompressible Navier–Stokes equations,

∇ · u= 0,
∂tu+ (u · ∇)u=−∇p+ Re−1

∇
2u,

u(x, y= 0, t)= uw,



 (2.1)

where uw is the velocity at the wall, which is zero in the uncontrolled case, and
optimized in the controlled case. These equations are solved using the incompressible
computational tool Nek5000 (Fischer, Lottes & Kerkemeier 2008). Numerical
simulations have been carried out using parallel computations with 128 cores and
solving the set of (2.1) limited to the right half of the domain, denoted Ω , shown
in figure 1 with a mesh containing 143 × 129 = 18 447 elements. Each element
contains 8× 8 Gauss–Lobatto points, leading to 1.2 M discretization points. Boundary
conditions are symmetry conditions at all frontiers except the wall where Dirichlet
boundary condition is applied.

Numerical validation is carried out using comparisons of vortex trajectories against
data from different simulations published by Türk et al. (1999) and Zheng & Ash
(1996). Usually the vortex centroid Mc = (xc, yc) is obtained by the first moment of
the normal to the plane vorticity field ω

xc =

∫

Ω

xω dΩ
∫

Ω

ω dΩ
; yc =

∫

Ω

yω dΩ
∫

Ω

ω dΩ
. (2.2a,b)

However, in the present configuration, Mc does not match the primary vortex locus
Mpv = (xpv, ypv) because of the boundary layer and secondary vortices. Instead, the
vortex locus Mpv is taken as the barycentre of the vorticity field ωpv given by

ωpv(x, y)=ω(x, y) · [ω(x, y) > 0] · [Q(x, y) > 0], (2.3)

where [S] denotes the Iverson bracket of the statement S (Iverson 1962) and Q is
the Q-criterion which defines a vortex as a region with a positive second invariant of
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15

™Ø4:sym ™Ø2:sym

0

y

x
-20 0 20

™Ø3:sym

™Ø1:Dirichlet

FIGURE 1. Schematic (not to scale) of the physical set-up. Dimensions are indicated.
The right part of the domain is the computational domain and is shaded in grey. The
disks represent the two Lamb–Oseen vortices at time t = 0. Symmetric conditions are
applied at the right, upper and left boundaries (respectively denoted ∂Ω2,3,4) and Dirichlet
is prescribed at the ground denoted ∂Ω1.

2.0

1.5

1.0

0.5

0 0.5 1.0 1.5 2.0
x

y

FIGURE 2. Trajectories of the right vortex for a set of Reynolds numbers. The red, blue
and green curves respectively correspond to Re0 = Γ0/ν = 330, 3300, 7650. The results
obtained by Türk et al. (1999) (two cases) and Zheng & Ash (1996) are respectively
represented with the dashed, dash-dotted and solid lines and the trajectories obtained in
the simulations are marked with squares, triangles and circles.

∇u (Hunt, Wray & Moin 1988; Kolář 2007). The barycentre leading to Mpv is then
obtained by the same volume integration as in relation (2.2), with ω replaced by ωpv.

The comparison against Türk et al. (1999) is conducted for Re0 = Γ0/ν = 330 and
3300 and that against Zheng & Ash (1996) for Re0 = Γ0/ν = 7650 (note the use of
Re0 = 2πRe). The flow is initialized by a pair of Lamb–Oseen vortices localized at
±(xc0, 2xc0) and (±xc0, 3.8xc0) to match the settings of Türk et al. (1999) and Zheng
& Ash (1996), respectively. The ensemble of trajectories, shown in figure 2, provides
comparisons that validate the present numerical approach.

3. Uncontrolled flow
In potential flows, vortices initially located in (±xc0, yc0) follow a hyperbolic

trajectory (xc(t), yc(t)) described by

1
x2

c(t)
+

1
y2

c(t)
=

1
x2

c0

+
1

y2
c0

. (3.1)
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2.5
Re = 1000
Re = 5000
Inviscid
Doppler lidar

2.0

1.5

1.0

0.5

0 0.5 1.0 1.5 2.0 2.5 3.0
x

y

FIGURE 3. Trajectories of the right vortex for Re = 1000 (dashed line), for Re = 5000
(solid line) and inviscid flow (dotted line). Simulation time is t = 15. Circle markers
correspond to Doppler lidar measurements achieved at Toulouse-Blagnac airport (European
Commission 2015; Hallermeyer 2017) during 50 s (in this case b' 40 m and circulation
is Γ0 ' 500 m2 s−1). Note the existence of an average cross-wind (ucrosswind ∼−1 m s−1)
in the lidar case, not taken into account in the simulated data.

With viscosity, as seen previously in figure 2 and now in figure 3 which plots the
vortex trajectories for Re= 500 and 1000, the dynamics is modified when the vortices
near the ground. This so-called rebound results in an oscillation of the altitude of
the vortex and a reduction of its sideward motion. It is noteworthy that such an
observation is coherent with practical, high Reynolds number cases of aircraft wake
vortices impacting ground, as is shown by the lidar (light detection and ranging)
measurements also plotted in figure 3. The data come from a set of Doppler lidar
measurements performed at Toulouse-Blagnac airport (Hallermeyer 2017). From the
simulated data it can be remarked that with a larger Reynolds number the vortex
follows the inviscid path up to a larger distance. Rebound yet remains practically
unchanged, given that both the current simulations and the real life lidar measurements
show identical overall kinematics.

Rebound is illustrated in figure 4 with plots of the vorticity field at various instants
of the vortex evolution. The figure also features a set of velocity profiles in the near
wall region and the wall-wise pressure gradient. The velocity profiles show the flow
at the wall that is induced by the momentum brought by the vortices. As initially
described by Harvey & Perry (1971) and due to the large Reynolds number, this
subsequently forms a boundary layer. The vortex also imposes a positive pressure
gradient at its sides because of the low pressure present in its core. As a consequence
of this (adverse) pressure gradient, the boundary layer separates. This occurs when the
vortex gets closer to the ground (figure 4b). The separated flow then rolls into opposite
sign vorticity, soon embarked around the primary vortex (c). Additional detachments
of the separated boundary layer later form other vortices, which themselves induce an
opposite boundary layer flow (d).

The question of how the vortex circulation evolves in this context can be analysed
using the circulation of the right part of the flow Γtot =

∫
Ω
ω dΩ , whose evolution is
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FIGURE 4. Uncontrolled vorticity field computed for Re = 1000 at t =
0.25, 2.5, 3.75, 5, 10, 15. Thick lines represent boundary layer profiles are given at
locations x = 0.5, 1, 1.5, 2.0, 2.5. Dashed lines represent the pressure gradient along the
wall (at y = 0). (a) Descending vortex t = 1.25. (b) Boundary layer and detachment of
a secondary vortex t = 2.5. (c) Rebound of the vortex t = 3.75. (d) Entrainment of the
secondary vortex t = 5. (e) Entrainment of the secondary vortex t = 10. ( f ) Entrainment
of the secondary vortex t= 15.

to be inferred from the equation of the vorticity ω

dΓtot

dt
=

1
Re

∫

∂Ω

∇ω · n∂Ω =−
1

Re

(∫

∂Ω1

∂ω

∂y
dx+

∫

∂Ω4

∂ω

∂x
dy
)
. (3.2)

Since ∂ω/∂x > 0 at ∂Ω4, the left boundary, and ∂ω/∂y > 0 at ∂Ω1, the bottom
boundary, total circulation is expected to decrease. Physically the second and first
terms on the right-hand side relate to friction with the left vortex and ground,
respectively. It is important to mention that total circulation Γtot is not equal to
Γ0 initially because of the presence of the boundary layer, which features negative
vorticity.

To characterize the vortex circulation, Γpv is introduced, which is defined as

Γpv =

∫

Ωpv

ω dΩpv. (3.3)
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1.0

0.5

0

0 2.5 5.0 7.5 10.0

˝/
˝ 0

12.5 15.0
t

˝p√(200, 15)
˝tot(200, 15) ˝tot(1000, 15)

˝p√(1000, 15) ˝tot: in√iscid

FIGURE 5. Evolution of Γpv and Γtot at Re= 200, 1000 and T = 15 for the uncontrolled
case. Vertical dotted lines correspond to times t=1.25,2.5,3.75,5,10 referring to figure 4.

The configuration imposes Γpv = Γ0 initially. The zone Ωpv defines the spatial extent
of the primary vortex. Here, to discriminate it from the several vortical zones featured
by the flow, Ωpv is defined as the zone of positive vorticity about the primary vortex
locus Mpv = (xpv, ypv). Note that the simple integration of ωpv over the half-domain Ω ,
as used to define Mpv in (2.3), does not yield the vortex circulation as desired, as, due
to the Q-criterion constraint, it misses some part of the vortical area associated with
the vortex. The zone Ωpv cannot be easily described and therefore a specific procedure
is employed to automatically track its shape in the snapshots of the flow. The first step
is to locate the primary vortex centre using procedure (2.3). Once the vortex centre is
known, the method consists in using a cylindrical coordinate system about Mpv and to
locate at all azimuthal positions θ the radial extent R where ωpv(R, θ)= 0. In practice,
an ensemble of Nθ = 128 azimuthal positions θi is considered, and the radial direction
is discretized into Ri with a spacing of δr = 0.01. The ensemble of (θi, Ri) forms a
polygonal area that is taken as Ωpv.

Figure 5 shows the evolution of Γtot and Γpv as a function of time for the two
Reynolds numbers Re = 200 and 1000. Total circulation Γtot is seen to decrease
significantly up to t = 4 and to level off after that. This can be analysed in the
light of figure 4, which corresponds to the case Re= 1000. Indeed the development
of the boundary layer, its separation and the formation of the secondary vortex
(see figure 4a–c) explain the initial strong decrease of Γtot in figure 5 while the mild
decrease of total circulation after t = 4 stems from the end of these processes and
corresponds to the slow viscous interaction between the different vorticity zones.

It is observed that the evolution of Γtot hardly changes between Re= 200 and 1000,
suggesting a weak Reynolds number dependency of this quantity. The formulation of
circulation written below

Γtot =

∮

∂Ω

u · dl, (3.4)

can help understand why this is so. In (3.4) dl is the tangent vector along the closed
contour ∂Ω . In the no-slip case, the contour integration reduces to the symmetry
boundary ∂Ω4. Indeed, the velocities at the top and right boundaries are very small
and their contribution can thus be neglected. Equation (3.4) can hence be rewritten as

Γtot =−

∫

∂Ω4

v(0, y) dy, (3.5)
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where ∂Ω4 is oriented downward. The vertical velocity at the symmetry plane v(0, y)
essentially evolves as a function of the lateral distance of the vortex and one expects
little influence of the no-slip boundary condition applied at the ground. As a check,
we introduce Γinv=−

∫
∂Ω4
vinv(0, y) dy, the contribution of the left symmetry frontier to

the total circulation in the inviscid case. The velocity vinv results from the Biot–Savart
law applied to the point vortex along the hyperbolic trajectory and its images. This
circulation can be calculated following

Γinv =

∫

∂Ω4

Γ0

2π

{
2xc√

x2
c + (y− yc)2

−
2xc√

x2
c + (y+ yc)2

}
dy. (3.6)

Crossed markers in figure 5 show the time evolution of total circulation using (3.6).
The evolution of Γinv follows closely that of Γtot provided by (3.2) up to t = 3.
Departure from the inviscid evolution appears afterwards, indicating the impact of
no slip at the ground on the lateral position of the vortex. However the difference
between Γinv and Γtot remains small, which concludes on the weak influence of
Reynolds number on Γtot.

The circulation of the primary vortex Γpv shows a different evolution than Γtot,
with three distinct phases and a net effect of Reynolds number. The first phase, that
corresponds to the initial descent of the vortices, up to t= 2.5, preserves circulation,
i.e. Γpv ' Γ0. The second phase, up to t = 5, features a sudden drop of circulation
and coincides with the rebound of the vortex. In this step the vortex experiences
strong friction at the wall because ∇ω · n is increased by the presence of opposite
sign vorticity at the wall (boundary layer). The decay rate then slightly levels off,
corresponding to the third phase of evolution. Vortex decay in the two last phases
shows a clear dependence upon the Reynolds number. The start of the third phase
(t > 5) corresponds to the slow decay phase of the total circulation Γtot, and to the
quasi-disappearance of the pressure gradient at the wall, which goes along with the
quasi-suppression of the boundary layer, see figure 4. The vortex system altitude is
now large due to the previous rebound and the friction at the wall is not as significant.

4. Optimal control approach
We consider the effect of either blowing or suction applied at the ground

to counteract the stagnation of the vortex system and promote increased lateral
displacement. Practically, a modification of the boundary condition at ∂Ω1 in (2.1) is
applied with u∂Ω1 = uw(x, t) where uw(x, t) is free to vary in intensity and orientation.
The control is restricted to a zone of finite extent ∂Ω1,w = {0 6 x 6 10}. Figure 6
provides a schematic of the control set-up.

The optimal control strategy requires an appropriate objective function J to
optimize uw and maximize the lateral position of the vortex system at a given
horizon time T . A choice could have been the first moment of vorticity

∫
Ω

xω dΩ
as it evaluates, once divided by Γtot (see (2.2)), the horizontal component of the
barycentre of vorticity.

However, because of the different vorticity areas, which yield opposite signs, this
optimization would lead to maximizing the lateral position of the positive vorticity
(primary vortex) and minimizing that of the negative vorticity (separated boundary
layer). Therefore, the maximization of the lateral position of the vortex seems not to
be guaranteed. A way to shape the objective function to our goal is to consider instead
the square of vorticity ω2. The benefit is that it mechanically embarks the vorticity
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(uw, √w)(x, t)
™Ø1,w

FIGURE 6. Schematic of the control scheme applied along the portion ∂Ω1,w of the wall.
uw and vw denote the flow velocity imposed at the wall.

of the primary vortex and the opposite vorticity coming from the separated boundary
layer alike.

The implementation hence proceeds from an evaluation of the horizontal position of
the vortex based on the horizontal component of the barycentre of vorticity squared,
that is

J (u; uw; T, l)=J1(u; uw; T, l)− lJ2(uw; T, l), (4.1)

with

J1(u; uw; T, l)=

∫

Ω

xω2(T) dΩ
∫

Ω

ω2(T) dΩ
, (4.2)

and

J2(uw; T, l)=
1
2

∫ T

0

∫

∂Ω1

u2
w dx dt. (4.3)

The term J2 (spatio-temporal norm of the control) penalizes J1 by acting as a cost
function for control. The mathematical parameter l > 0 (which holds no physical
interpretation) prevents uw from reaching an unphysically large amplitude and
increases the convergence of the optimization algorithm. As such, it favours the
existence and unicity of a solution as well as eases convergence of the optimization
loops. The case l→∞ amounts to the uncontrolled case i.e. Jm(·,∞) = J1(·,∞)
since liml→∞ J2 = 0 (a validation is provided further down, see § 5.1).

The maximum Jm(T, l) of J in the space of uw for a given T and l is found
using the Lagrange multiplier method in which the constrained optimization problem
is transformed into an unconstrained one. To this end, the cost functional and the
constraints are assembled into the Lagrangian function L, in the form

L(u, u+, p, p+, uw, u+w ) = J (uw)−

[
∂tu+ (u · ∇)u+∇p−

1
Re
∇

2u, u+
]

− [∇ · u, p+] − (u− uw, u+w ), (4.4)

where [·, ·] and (·, ·), denote the following inner products

[a(x, t), b(x, t)] =
∫ T

0

∫

Ω

a(x, t) · b(x, t) dΩdt,

(c(x), d(x))=
∫

∂Ω1

c(x) · d(x) dx,





(4.5)
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and a, b are functions of space and time and c, d are functions of space alone.
The Lagrangian function L depends on the direct (u, p, uw) variables and Lagrange

multipliers (u+, p+,u+w ), also known as adjoint variables. The optimal control is found
by cancelling the first variation of the Lagrangian with respect to its variables. For a
complete derivations of these equations the reader is referred to Choi et al. (1999).
Here, only the most important relations are provided. The first variation of L with
respect to the adjoint variables yields the equations of the constraints and the first
variation with respect to the direct variables provides a set of equations for the adjoint
variables,

∇ · u+ = 0,

−∂tu+ − (u · ∇)u+ + (∇u)ᵀu+ =−∇p+ +
1

Re
∇

2u+,

}
(4.6)

where ᵀ denotes the transpose operator. The minus sign in front of the time partial
derivative can be interpreted as a change of variable t −→ T − t. As a consequence,
the adjoint equation is solved backward in time from t = T to t = 0. By matching
terms of the integration by part of the partial time derivative, one obtains the following
compatibility equation (which is derived in appendix A) for t= T

u+(x, T)=
2

I0(T)
(x∇×ω(T)ez +∇x×ω(T)ez)−

2I1(T)
I0(T)2

(∇×ω(T)ez), (4.7)

where

I0(t)=
∫

Ω

ω2(t) dΩ, (4.8)

and

I1(t)=
∫

Ω

xω2(t) dΩ. (4.9)

Relation (4.7) initializes the adjoint variable u+(x, T). The gradient of the Lagrangian
with respect to uw

∇uwL=−luw + u+w =−luw +

(
p+(x, y= 0, t)−

1
Re
∂u+

∂y
(x, y= 0, t)

)
ey, (4.10)

eventually provides the direction to follow in order to update the control variable.
This optimal system is based on a set of nonlinear partial differential equations.

While this nonlinearity could lead to difficulties in converging an optimal solution, in
the present case the dynamics of the vortex to be controlled follows a deterministic
evolution, so that similarly to Önder & Meyers (2016), a steepest descent algorithm
with a generic backtracking line search is successfully used in order to perform the
optimization. The whole procedure is sketched in figure 7. Starting from an initial
uw,0 = 0, the algorithm follows two loops. The main loop goes towards the optimal
velocity at the wall by computing the gradient and updating uw with a factor αk

of the gradient. The second loop concerns the line search to adapt the value of αk

when the chosen value does not optimize. The starting value is 0.5. Whenever the
chosen value does not lead to optimization, αk is halved and the direct simulation is
repeated until optimization is achieved. The iterative algorithm is eventually stopped
when (Jk+1 −Jk)/Jk 6 ε= 10−4.
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Direct
equations

Compatibility
equation

No

Nouw,k+1 = uw,k + åk/2◊uw,kl

jk+1 ≥ jk jk+1 - jk/jk ≤ Ó

uw,k+1 = uw,k + åk◊uw,kl

Yes: exit

Adjoint equations

uw,0 = 0 uw,kå0 = 0.5
? ?

FIGURE 7. Sketch of the optimization algorithm. The line search parameter is αk.
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FIGURE 8. (a) Evolution of the cost of control J2 as a function of l for Reynolds numbers
200 and 1000, T = 5, showing that the optimal control amounts to the uncontrolled case
for increasing values of l. (b) Ratio J1(5, l)/J1(5,∞) as a function of the penalization
coefficient for computations carried at Re= 200 (dashed line and crosses) and Re= 1000
(solid line and squared markers) for T = 5.

In the current algorithm the cost of storing the control variable when integrating the
adjoint is decreased by using linear interpolation over uniform time intervals [ti, ti+1]

of the horizon time T

uw(tk)= βkuw(ti)+ (1− βk)uw(ti+1), (4.11)

where βk = (ti+1 − tk)/1t and δti = ti+1 − ti is chosen such that δti 6 5 %. The
convergence of the results is provided in appendix B.1 and convergence in δti is
shown in appendix B.2.

5. Controlled flow
5.1. Optimal parameters

Optimizations have been carried out for T ∈ [2, 10] and l ∈ [1, 100], and Reynolds
numbers of 200 and 1000.

In figure 8(a) the cost of control J2 is plotted as a function of l. It shows, as
expected, that growing l returns to the uncontrolled case J2 → 0. Low values of l
have been tested and have shown that when l< 1 the optimization breaks down: the
intensity of uw becomes too high for the capability of the mesh and time step that are
used (which correspond to the initial simulation of the uncontrolled case). Figure 8(b)
shows the optimized vortex barycentre J1 normalized upon its value for infinite l (no
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FIGURE 9. Vorticity field at horizon time T = 5 for Re= 200 (a–d) and 1000 (e–h) for
increasing l. Dashed lines show the locations of the vorticity-squared barycentres, J1(5, l).

control) as a function of l for Re= 200 and 1000. It shows that the gain increases as l
is lowered, reaching a maximum of 1.5 and 2 for l= 1 at the two Reynolds numbers,
respectively. Increasing Reynolds number yields a favourable effect for augmenting
control capacity. Plots of the vorticity field at final time t= T = 5 for selected values
of l∈ [1,∞] and the two values of Reynolds number are displayed in figure 9. They
show the effect of control on the separation pattern and timing of the boundary layer
and the intensity, location and number of the secondary vortices that rotate around the
primary one.

The effect of horizon time T is shown in figure 10 for Re = 200 and Re = 1000
at l = 1, the best value within the range under consideration. Figure 10(a) plots the
absolute position of the vortex J1(T, l) for the uncontrolled and controlled cases. The
increase in lateral distance provided by control is apparent from the offset between
the two curves. Above T = 5, the lateral position of the vortex shows a limit at
approximately x= 3 and no decisive increase beyond that time. Since l= 1 provides
the strongest control effect, this shows that optimization at a larger time is not
required: T = 5 appears to be quasi-optimal for the present parameter space.

For Re = 200, it is found that optimization cannot be carried out beyond T = 5.
Indeed, the routine produces irregular vorticity at the end of the domain ∂Ω1,w, which
is attributed to the finite length of the control area at the ground. Coincidentally, the
vortex is also sucked by the control at the wall and disappears. Calculations beyond
T = 5 are not conducted for Re= 200.

Figure 10(b) shows the amplification of the full functional Jm between the
controlled and uncontrolled cases. It shows that the optimal for T = 5 is also the
time for which the dynamics can be optimally balanced between the possibility of
increased lateral displacement and cost of control. This shows that an optimal time
exists over the parameter range investigated here, at approximately 5.

5.2. Physical mechanisms
The physics behind the action of control is now analysed. The time sequence
displayed in figure 11, which is obtained for T = 5 and corresponds to the same
Reynolds number (Re= 1000) as the uncontrolled one shown in figure 4, is used in
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FIGURE 10. Effect of horizon time. (a) Evolution of the vortex position J1(T, l) for Re=
200, 1000, respectively in dashed and dotted lines, for the uncontrolled case l=∞ (black)
and for l= 1 (red). (b) Evolution of the ratio Jm(T, 1)/Jm(T,∞), computed for Re= 200
(dashed line), Re=1000 (solid lines) and l=1. For this value of l and Re=200, increasing
the horizon time, beyond T > 5, leads to the complete absorption of the primary vortex.
No data are consequently available for larger time.

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
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0

30

0

-30

x

y

y

x x x

t = 0.25 t = 1 t = 1.25 t = 2.5

t = 3 t = 3.75 t = 4 t = 5

(a) (b) (c) (d)

(e) (f) (g) (h)

FIGURE 11. Vorticity field in the controlled case, computed for (Re, T, l)= (1000, 5, 10),
showing the sequence up to the optimization time t= 5. Thicker borders refer to the times
used in figure 4 showing the uncontrolled case at the same Reynolds number, with the
same iso-contours. Note however the different spatial extensions of the plots.

preamble. Some of the time indices used in figure 4 are also repeated in figure 11,
to ease the comparison. The main effect of control which can be seen in this time
sequence is the delay in boundary layer separation, which is only apparent near the
final time t > 4, while in the uncontrolled case (figure 4) it is already effective at
t= 2.5. The doubling of the lateral distance, presented in the previous section, is also
directly visible here, changing from x' 1.2 (see figure 4d) to x' 3 when control is
active. Interestingly, the vortex kinematics under the effect of control bears a strong
similarity to the vortex evolution obtained with the v-control scheme developed
by Choi et al. (1994) (figure 22b).

The evolution of the velocity at the wall imposed by control is displayed in
figure 12 with some of the same time stamps as in figure 11. It is observed that
control initially applies blowing at the centre of the two vortex system x∈ [0, 1]. After
t= 2, suction starts to act, essentially below the vortex, with increasing strength up to
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FIGURE 12. Evolution of the optimal control uw along the control area for different
time steps. The thicker borders refer to the same times as those used in figure 4. Solid
(respectively dashed) lines represent vw (respectively uw).
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2
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-2
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FIGURE 13. Evolution of the optimal control velocity at the wall as a function of time
at x= 1. Solid (respectively dashed) lines represent vw (respectively uw).

t= 3. At this time, the primary vortex has reached its lowest altitude (see figure 11e).
Subsequent control essentially reduces to slight blowing at the left of the primary
vortex. After t= 2, suction starts to act, essentially below the vortex, with increasing
strength up to t = 3. At this time, the primary vortex has reached its lowest altitude
(see figure 11e). Subsequent control essentially reduces to slight blowing at the left
of the primary vortex. Figure 13 shows the time trace of the control at x= 1, that is,
under the descent path of the vortex. The suction then blowing strategy of the control
described above is grasped immediately using this plot, along with the dominance of
the vertical velocity component upon the lateral component.

Two main factors have been identified to explain how control physically achieves
increased lateral displacement. One is related to (i) delayed separation, which reduces
the vortex updraft by secondary vorticity, hence maintaining lower vortex altitude and
increased induction effect by image vorticity about the ground, and the other one to
(ii) reduced effective friction at the ground to decrease the opposition to the vortex
lateral displacement.

The factor (i) relates to the suction that is applied by control in the region
x ∈ [1, 1.5], slightly to the right of the primary vortex. Suction is a generic principle
to delay boundary layer separation (Lachmann 2014). Its interest in the present
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FIGURE 14. Plot of the Q-criterion at time t= 2 for (a) (1000, 5,∞) and (b) (1000, 5, 1).
Creation of a rotational area in the boundary layer (positive values of the Q-criterion) that
corresponds to the pusher vortex.

configuration can be grasped by comparing figure 4, without control, for which the
boundary layer separates in the region x∈ [1, 1.5] around time t= 2.5, with figure 11,
that yields control and which, as a result of suction, allows a delayed separation, up
to time t> 4.

The second factor (ii) is vortex induction. It can be identified using figure 11(d,e),
which indicates that a specific vorticity pattern is formed at the wall by control
between t = 2 and 3, this pattern being absent in the flow at the same time when
control is absent (figure 4b). The field of Q-criterion between the uncontrolled and
controlled cases at t = 2 and focused in the region between the primary vortex and
the wall is shown in figures 14(a) and 14(b), respectively, to highlight the associated
structure. The plot shows that a rotational area is brought about by control which,
referring to figure 11(e), amounts to negative vorticity. Albeit the zone does not
present a pressure minimum (at least not apparently), for simplicity’s sake we coin
it as a vortex. Considering Biot–Savart induction, it can be stated that the effect
of this vortex upon the primary vortex favours the motion to the right of the latter,
and effectively pushes it along the wall. In the following, this vortex is conveniently
referred to as the pusher vortex.

The formation of this pusher vortex can be directly linked to the velocity imposed
by the control at the wall. Indeed figure 12 shows that the vertical velocity component
generates a strong gradient ∂v/∂x below the primary vortex for time t = 2 to 3
(figure 12d,e) and this is to be analysed as creating the ω associated with the pusher
vortex. In effect ω ' ∂v/∂x since |uw| � |vw| and characteristic length scales for uw
and vw are similar.

An interesting consequence of control concerns circulation, which is found to be
significantly diminished with the application of control. The behaviours of Γtot and
Γpv are shown in figure 15(a) for Re= 200 and 1000, T = 5 and l= 1. Comparison
can be made with the uncontrolled case in figure 5. For Re=200, the circulation drops
by more than 60 % at t= 5 compared to 50 % after 15 time units in the uncontrolled
case. For Re= 1000, the decrease is approximately 15 % compared to less than 10 %
in the uncontrolled case, also at t= 5.

Figure 15(b) sums up the previous analysis by showing the trajectory of the
controlled vortex against the uncontrolled and inviscid trajectories, with equal time
stamps to enable the comparison of the vortex progress in each case. The controlled
vortex is initially moved above the uncontrolled trajectory as a consequence of the
initial blowing imposed by control. Then, as the uncontrolled vortex rebounds, it
moves laterally and close to the ground, reaching an altitude lower than the inviscid
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FIGURE 15. (a) Evolution of primary vortex and total circulation for (200, 5, 1) (black)
and (1000,5,1) (red). For times beyond t=5, control has been turned off. (b) Evolution of
the centroid trajectories for 06 t 6 5 for inviscid, controlled (1000, 5, 1) and uncontrolled
flow (1000,5,∞). Circled markers correspond to the centroid position at t=0,1,2,3,4,5.

hyperbolic path. At the final time, the controlled vortex achieves a more outward
position than the inviscid vortex, concluding the efficiency of the blowing/suction
strategy.

5.3. Control robustness
In this subsection, we discuss the robustness of the optimal control approach with
respect to the initial height, radius and activation time of the control law. It is
noteworthy that assessing the robustness of the method with respect to the initial
vortex circulation would imply only varying the circulation-based Reynolds number.
Previous results comparing Re = 200 and 1000 show no major modification of the
present strategy with Reynolds number. Three distinct simulations H (for height),
R (for radius) and DAT (for delayed activation time) have been carried out where
we modify the initial height, dispersion radius and activation time separately. In
simulation H, all parameters are kept the same, except for the initial height yc0 = 5
(instead of 2.5) and the horizon time (T = 10 instead of 5). Note that doubling the
descending distance justifies doubling of the horizon time in order to compare with
the case at (1000, 5, 1) and yc0 = 2.5. Simulation R keeps all the same parameters as
for the case at (1000, 5, 1) except for the initial dispersion radius a = 0.1 (instead
of 0.15). In simulation DAT, we use the optimal control law of the optimal case
(1000, 5, 1) for the situation when the vortex initially departs from yc0 = 5. Control
is then only active between ta = 2.5 and t = 7.5. Table 1 summarizes the objective
function results and compares them to the reference case (1000, 5, 1), yc0 = 2.5
and a = 0.15. The performance of the control, when looking at the value of J2,
is moderately affected for cases H and R, with a relative 18 % decrease, and is
unchanged for case DAT. This suggests that the control does not suffer much from
changes in the parameters of the present model. The final vorticity fields and time
trace of the optimal control at x= 1 are shown in figure 16(a,b) for cases H and R.
The case DAT leads to negligible changes compared to the reference in figures 11(h)
and 13 and is thus not shown in figure 16. Similar behaviours and amplitudes of the
cost function are observed between the optimal reference case (1000, 5, 1) and cases
H, R and DAT. In particular, the time traces shown in figure 16 resemble those in
figure 13(c,d).
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(1000, 5, 1) H : yc0 = 5 R : a= 0.1 DAT : yc0 = 5, ta = 3.5

Jm 1.25 1.77 1.22 ·

J1 3.18 2.56 2.59 3.2
J2 1.04 0.43 0.72 1.04

TABLE 1. Effect of the initial height, radius and activation time on the objective function
results. Left column corresponds to the reference optimal case (1000, 5, 1) already shown
in figure 11. The second, third and fourth columns correspond to simulations H, R and
DAT respectively, which yield similar results.
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FIGURE 16. (a,b) Final vorticity field and (c,d) time trace of the control at x= 1 achieved
by the control. Panels (a,c) (respectively b,d) refer to simulation H (respectively R). To
be compared to the optimal case (1000, 5, 1), see figures 11 and 12.

5.4. Vorticity flux at the wall
The physical analysis can be backed by looking theoretically at the evolution of I1(t),
the numerator of J1(t), introduced in § 4 (see (4.8)). Following the calculations given
in appendix C, the time derivative of I1 yields

İ1 =−
2

Re

∫

Ω

x|∇ω|2 dΩ +
1

Re

∫

∂Ω1

x(∇ω2) · n dx+
∫

Ω

uω2 dΩ = İ11 + İ12 + İ13. (5.1)

This equation shows that I1 is reduced by the dissipative term (İ11), and increased by
the vorticity flux at the bottom boundary (İ12) which also can be written as

İ12 =−
2

Re

∫

∂Ω1

xω
∂ω

∂y
dx, (5.2)

and by the advection of the vorticity field (İ13).
Figure 17 plots the evolution of İ11,12,13 for the controlled and uncontrolled cases

at Re = 1000. The term İ13 is almost unaffected by control, unlike the terms İ11
and İ12, which are increased by nearly 3 orders of magnitude when reaching their
maximum values (shortly after t = 2). The term İ12 becomes larger than İ11, which
implies the net increase of I1 and also means that the vorticity flux provoked by
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FIGURE 17. Time evolution −İ11, İ12, İ13 from left to right for the uncontrolled case
(dashed lines) and the controlled case (solid lines) for (Re, T, l)= (1000, 4, 10).

control at the wall, which results in the negative pusher vortex being present there,
is the dominant mechanism at Re= 1000. As explained previously, this pusher vortex
creates a horizontal induction to the primary vortex which minimizes the impact of
zero velocity at the wall. This way, it allows the primary vortex to slide along the
wall and move to larger lateral distances.

6. Conclusion

This work shows the effective control of vortex rebound at the ground in the
situation of a laminar set of two opposite symmetric vortices, in a quiescent
environment. The physics of vortex rebound results from the interplay between the
vortex and the boundary layer it induces. An optimal control approach is employed
with mass flow exchange at the wall to counteract this rebound and allow for a
larger lateral displacement of the vortex, a concept initially devised for the interest
of wake vortices in airport airfields. At the same time, the optimization offers novel
insights into the dynamics of vortices impacting the ground and the effective physical
leverages for its modification. The optimal blowing/suction strategy is shown to target
a delayed separation of the boundary layer formed at the wall by a predominant
suction of the flow ahead of the vortex, and the formation of a pusher vortex, of
opposite sign vorticity compared to the primary vortex, to reduce the no-slip constraint
at the wall. This helps the lateral movement of the vortex by mutual induction by the
inserted vortex. Importantly, it is found that blowing laterally to the wall is essentially
not required. In the most efficient control case, the lateral movement of the vortex
is almost doubled, reaching a larger lateral distance than without viscosity. At the
lower Reynolds number Re = 200 envisaged in this study, the control is also found
to suppress the vortex. From a broader point of view, the findings of the present
analysis show perspectives for vortex control of the coherent structures embedded in
wall turbulence, in line with the conclusions of Akhavan et al. (1993), Choi et al.
(1994) and Lee et al. (1997), all the more so as the Reynolds number range targeted
here is coherent with this type of flow.
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For the problem of airport and airport terminal management (ATM), the effectiveness
of the control potentially makes it an appealing strategy to apply ahead of runways to
reduce vortex encounter. From a technical point of view, blowing and sucking at the
ground could be achieved by compressed air supply and sucking devices (e.g. vacuum
chambers or ejector suction devices) wrapped into a web of holes on the ground,
vertically oriented, and a controller system for the multiple valves involved. This
would still represent a great technical challenge. Moreover, in spite of the apparent
generality of the mechanisms exposed in the present study, there are also physical
questions on the variety of situations that could be tackled by such a system. Further
analysis of the effect of turbulence, presence of wind, thermal updrafts and terrain
effects to name a few would be necessary to fully qualify the robustness of the
control strategy. Some of these questions could be answered by carrying out higher
Reynolds number simulations of the control laws developed here, including possibly
variations in the boundary conditions to incorporate, e.g. side wind. Note, however,
that the effect of Reynolds number on the early stages of vortex dynamics is small,
which justifies the choice of low Reynolds analysis performed here, but becomes
important for the development of turbulence in the boundary layer flow at the ground
and turbulent interactions with the vortex. As it is, the current algorithm stands as a
proof of concept that shows both the physical interest in optimizing what happens at
the ground and the working of the control in a simple configuration.

Another side question on the application of the concept is that of parallel runways.
Indeed, as the vortices are pushed to the sides, they may interfere with the nearby
runway. The lateral distances realized in the present work are of the order of 3 to 4
wingspans at most (we neglect here the ratio between vortex separation and wingspan,
as it is close to unity). A non-exhaustive list of some 86 airports that operate parallel
runways is available in libraries dedicated to flight safety (see for instance Skybrary
(2019)). For airports with parallel runways far apart, such as London Heathrow airport,
the matter is not a question. For airports with nearby runways, such as Philadelphia
International airport, the question becomes important as the separation distance, in this
case approximately 400 m, ranges between 10 wingspans for small airliners to 5 for
heavy ones. In the present analysis however, it is found that as the vortex control
stops, the vortex rebounds and almost stops its sideward motion. This means that the
control concept could certainly cope with an additional constraint of maximum lateral
distance for the vortex system.

At this stage certainly one of the most interesting discussions is on the cost of the
control. Using the normalization on Γ0 and b used in the present study, the power P
required to apply control can be evaluated by integrating the flux of kinetic energy at
the wall, that is

P=
∫ T

0

∫

∂Ω1

|uw|
2vw dx dt. (6.1)

This quantity scales with ρΓ 3
0 /(16π3b2) hence, for a typical large aircraft (b= 50 m,

Γ0 = 500 m2 s−1), this would yield P ' 100 W m−1 (the integrated quantity is
order one). The set-up being two-dimensional, control must be applied over an a
priori infinite distance. In practice, the control area would be finite yet the questions
of what length of application would be necessary is open. There would also be
different constraints when considering departing or arriving aircraft. This would
deserve a detailed analysis and especially require three-dimensional effects to be
looked into.

One certainly interesting use of the proposed control would be to exploit the
capacity to move the vortex normal to its axis to induce three-dimensional waves
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along the vortex. This could be obtained by modulating the control in the axial
direction or even implementing only crenelated patches of control. Besides drastically
decreasing the required power, this would help three-dimensional instabilities that
naturally grow in the wake (Williamson et al. 2014). Indeed, the range of horizon
times T = 0..10 contains the characteristic times of Crow and elliptic instabilities,
respectively Tcr ' 6 (Williamson et al. 2014) and Tel ' 4.9 (Widnall, Bliss & Tsai
1974; Leweke & Williamson 1998; Sipp & Jacquin 2003). Such an opportunity could
be usefully investigated in future works with the question of the optimal wavelength
to be applied in mind.

Other perspectives are opened up by this work. One interesting outlook concerns
the control of the shape of the wall instead of that of the boundary condition
for the velocity field. Using the same technique that has been applied in the
present study, the optimization of the shape of the wall to achieve the increased
lateral displacement of the vortex or more simply to target its reduction could
be envisaged. As a first step toward such an approach the present results can
be used to derive such wall deformations since (uw, vw) = (∂xw/∂t, ∂yw/∂t) can
relate the movement of the wall to the velocity imposed at its surface. However,
this approach would not take into account the effect of surface deformation
on the flow and would hence be suited to very small surface deformations.
For large displacements, new developments would be required to incorporate
the deformation of the numerical domain (mesh) in the procedure. Like the
blowing/suction strategy, adaptive walls could be an issue in practice due to
implementation complexity. A way to deal with this would be to consider a
static shape to control the vortices, in a way similar to what has been achieved
at Amsterdam airport to counter the noise of aircraft (Sorvig & Thompson 2018).
The optimization procedure in this case would not require the use of the adjoint
technique since the shape of the wall could be described by a small set of parameters.
Another way could be the use of compliant walls. The subject has gained strong
interest in recent years to deal with hydro and aerodynamic problems such as drag
reduction (Endo & Himeno 2002), flow instabilities (Yeo 1992; Davies & Carpenter
1997; Hoepffner, Bottaro & Favier 2010) and turbulence (Luhar, Sharma & McKeon
2015). In particular, Endo & Himeno (2002) shows that passive compliant walls tend
to reduce the intensity of vortex structures at the wall.
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Appendix A. Compatibility equation
The derivation leading to the compatibility (4.7) is here derived. Without loss of

generality let us consider three-dimensional fields. We introduce the following inner
spatial product:

〈f (x), g(x)〉 =
∫

Ω

f (x) · g(x) dΩ, (A 1)
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where f and g are functions of space. By cancelling the first variation of the
Lagrangian function (4.4) with respect to u(T), one obtains

〈
∂L
∂u(T)

, δu(T)
〉
=

〈
∂J
∂u(T)

, δu(T)
〉
−
〈
u+(T), δu(T)

〉
= 0, (A 2)

where δu(T) is an arbitrary vector. To compute the term 〈(∂J /∂u(T)), δu(T) 〉, one
needs to compute 〈(∂Im/∂u(T)), δu(T)〉 where Im=0,1 is defined in (4.8) and (4.9). For
the sake of clarity, let us rewrite Im with the following expression:

Im(u(T))=
∫

V
xm(∇× u(T))2 dΩ. (A 3)

This allows us to compute the directional derivative of Im with respect to u(T) as
follows: 〈

∂Im

∂u(T)
, δu(T)

〉
= lim

ε→0

1
ε
(Im(u+ εδu(T))− Im(u)), (A 4)

yielding 〈
∂Im

∂u(T)
, δu(T)

〉
=

∫

Ω

2xmω(T) · (∇× δu(T)) dΩ. (A 5)

We can use the following formula ∇ · (a× b)= b · (∇× a)− a · (∇× b) and integration
over Ω using the Green–Ostrogradski theorem, which yields

〈
∂Im

∂u(T)
, δu(T)

〉
=

∫

Ω

∇× (2xmω) · δu(T) dΩ. (A 6)

Remark that the previous equality holds true for any arbitrary vector δu(T), thus

∂Im

∂u(T)
=∇× (2xmω)= 2∇(xm)×ω+ 2xm

∇×ω. (A 7)

Hence, one can evaluate the initialization of the adjoint variable in two dimensions

u+(T)=
∂J
∂u(T)

=
2

I0(T)
(x∇×ω(T)ez +∇x×ω(T)ez)−

2I1(T)
I0(T)2

(∇×ω(T)ez), (A 8)

and find (4.7).

Appendix B. Convergence analysis
B.1. Optimization

This appendix provides examples of the convergence of the algorithm described in § 4.
The assessment of numerical convergence is evaluated using the following residual

rn =

∣∣∣∣
Jn −Jn−1

Jn

∣∣∣∣. (B 1)

Figure 18 plots rn as a function of iteration number and displays two typical
convergence results: approximately 20 iterations are required to obtain a well-
converged optimal (rn ' 10−3).
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0 10 20 30

10-2

10-5

10-8

Iteration number

rn

FIGURE 18. Convergence for two typical cases (200, 4, 1) (dashed line) and (1000, 4, 1)
(solid line) showing algorithmic convergence.

δti Jm(1000, 5, 1)

δti = 0.010 2.84
δti = 0.025 2.79, (1.9 %)
δti = 0.05 2.62, (7.75 %)

TABLE 2. Convergence analysis of the δti used for the interpolation procedure detailed
in (4.11).

B.2. Influence of the interpolation time interval δti

This appendix discusses the convergence as a function of δti. One example is
considered: (Re, T, l) = (1000, 5, 1). Convergence results are provided in table 2.
The value δti = 0.025 is chosen as a consequence of the satisfactory convergence it
enables.

Appendix C. Temporal evolution of the cost function

This appendix details the derivation of relation (4.4). We consider the general case
of Im=

∫
Ω
Am dV with Am= xmω2 and m= 0, 1. The time derivative of Im is obtained

as follows:

İm =
d
dt

∫

Ω

Am dV =
∫

Ω

∂Am

∂t
dV +

∫

∂Ω

Am(u · n) dS=
∫

Ω

∂Am

∂t
dV +

∫

Ω

∇ · (Amu) dV.

(C 1)
The last term of the previous equation develops into Am∇ · (u) + u · ∇(Am) = u ·
∇(Am) = mxm−1uω2

+ xm(u · ∇)ω2. The vorticity equations in two dimensions are
written as

∂ω

∂t
+ (u · ∇)ω=

1
Re
1ω. (C 2)

This is used to simplify (C 1)

İm =

∫

Ω

2ωxm

{
∂ω

∂t
+ (u · ∇)ω

}
+mxm−1uω2 dV =

∫

Ω

2
Re

xmω1ω+mxm−1uω2 dV.

(C 3)
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4

3

2

1

0

-1
0 2 4 6 8

t
10 12 14

j1(t)
.
j1(t)

.
j1,num(t)

FIGURE 19. Time evolution of J1 (solid line) and J̇1 (dashed line) computed with
(C 6) for the (Re, T, l)= (1000, 15,∞) case. Circled markers, placed every 2000 points,
correspond to the numerical time differentiation of J1 (denoted J̇1,num) matching the
analytical expression of J̇1.

The term xmω1ω can be worked out using the identity ∇ · ( f∇(g))=∇( f ) · ∇(g)+
f1g which yields

İm =
2

Re

∫

Ω

∇ · (x2ω∇ω)−∇(xmω) · ∇ω+mxm−1uω2 dV. (C 4)

Then, the middle term of (C 3) can be developed and integrated. This gives

İm =
2

Re

∫

Ω

∇ · (x2ω∇ω)− xm
∇(ω)2 +mxm−1uω2 dV. (C 5)

Eventually, using the Green–Ostrogradski theorem, we get

İm =
2

Re

∫

Ω

−xm
|∇ω|2 dV +

1
Re

∫

∂Ω

xm(∇ω2) · n dS+
∫

Ω

mxm−1uω2 dV. (C 6)

In figure 19 the time evolution of the cost functional along with its derivative for the
uncontrolled case (Re, T, l) = (1000, 15,∞) are shown. The derivative is obtained
either by using (C 6) leading to J̇ = (İ1I0 − I1İ1)/I2

0 or by numerically differentiating
J (t). The two approaches to the differentiation match well.
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CHAPTER 2. A VORTEX PAIR IN GROUND EFFECT, DYNAMICS AND OPTIMAL
CONTROL

Future studies could focus on the development three-dimensional instabilities of

counter-rotating vortices impinging the ground after applying the optimal control

strategy, however because of time constraints, they are out of the scope of this thesis.

A starting point would be the study of bi and tree-dimensional optimal perturbations

of counter-rotating vortices in ground effect, as addressed in the next chapters.

48



CHAPTER 3

Optimal Perturbations of a Counter-Rotating

Vortex Pair in Ground Effect

The reader may refer to Chapter 2 in which the dynamics of a vortex pair in ground

effect has been presented, along with its control by flow actuation at the ground.

One of the main motivations for studying optimal perturbation of vortex pairs

in ground effect is that these perturbations are expected to hasten the transition

to turbulence, by triggering three-dimensional mechanisms. Thereby, reducing the

danger of a vortex encounter.

3.1 Vortex Instabilities & Ground Effect

Late in the 19-th century, Kelvin (1880) analyzed wave motions in a column of uniform vor-

ticity surrounded by irrotational motion (Rankine vortex model). It became a starting point

for the study of various vortical flows. Many of them rely on the Linear Stability Analysis

(LSA). LSA is a powerful tool used to study the asymptotic (t → +∞) dynamical behavior

of a fluid system subjected to small perturbations. In the long term, the least stable mode is

expected to dominate the evolution of the flow. However, many flow mechanisms lead to the

development of strong perturbations from initially small amplitude perturbations over a finite

time interval that cannot, therefore, be predicted by LSA. This process, known as transient

growth of perturbation energy, relates to the non-normality of the Linearized Navier-Stokes
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CHAPTER 3. OPTIMAL PERTURBATIONS OF A COUNTER-ROTATING VORTEX
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operator (Farrell (1988); Trefethen et al. (1993)). As a result of this non-normality, the eigen-

modes of the homogeneous problem are non-orthogonal, making it possible to form an initial

perturbation (from a combination of different eigenmodes) for which the time derivative of

perturbation energy is positive, albeit the linear eigenmode are individually stable. During

the transient phase of both stable and unstable flows liable to non-normality and short term

disturbance amplification, the perturbations growing in amplitude may lead to further linear

development (secondary instabilities) and non-linear interactions. This is able to drive the

dynamics away from the initial flow state. The plane Couette flow is an example of LSA pre-

dicting stability for all Reynolds numbers while experiments show that turbulence is observed

for relatively low Reynolds numbers (Re ∼ 300). Flow non-normality and transient growth

mechanisms lie behind this surprising observation.

The term optimal perturbations has been defined by Farrell (1988) while studying the pertur-

bation that would lead to the greatest growth over a finite period of time [0, T ]. Mathemat-

ically, the optimal perturbation is the perturbation of the base-flow that optimizes a given

cost function. Kinetic energy is commonly used to quantify the growth of a perturbation to

the flow. However other quantities can also be considered depending on the physics at play

and mechanism to target. For instance, enstrophy is also an interesting choice as it targets

the capacity of the flow to dissipate its momentum through turbulence. It is also particularly

adapted to flows dominated by vortical motion.

In the present chapter we describe the transient growth potential in vortices interacting with

a wall. As an introduction we first review some of the single and double vortex instabilities.

Most studies have focused on the Rankine model (uniform and circular patch of vorticity)

both for its good repreentation of most vortex flows and also for its analytical simplicity,

the Lamb-Oseen (L-O) vortex (gaussian vorticity profile) for its good agreement with experi-

mental data and the Batchelor vortex (gaussian vorticity including axial velocity). Therefore

we will go over the range of these different vortex models in the course of this review, first

looking at the single vortex case and then the vortex pair. In a second step, we introduce the

mathematical formalism for the transient growth analysis and lastly we present the results

for the wall interacting vortices.

3.1.1 Stability and optimal perturbations of an isolated vortex

The optimal perturbation for an isolated vortex has been studied mainly within the linear

framework (Antkowiak & Brancher (2004); Pradeep & Hussain (2006); Mao & Sherwin (2011,

2012)). The eigenmodes of the L-O vortex were determined by Fabre et al. (2006) and are

composed of singular modes and Kelvin waves. However, due to the non-normality of the

Navier-Stokes operator applied to the L-O vortex, strong transient growth are known to be

possible. The linear optimal perturbations of the L-O vortex were described by Antkowiak

& Brancher (2004, 2007) and Pradeep & Hussain (2006). Pertubation on an isolated axisym-
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metric vortex can be decomposed into azimuthal modes of m periodicity. The axisymmetric

m = 0 optimal perturbation takes the form of superimposed filaments of alternating positive

and negative azimuthal velocity around the vortex core (see Antkowiak & Brancher (2007)).

These structures evolve into counter-rotating rings of azimuthal vorticity through a mech-

anism of anti-lift-up. This term is coined in reference to the process of lift-up, because it

proceeds reversely to the process of the lift-up mechanism commonly observed in shear flows

(see Ellingsen & Palm (1975); Landahl (1975)).

The nonaxisymmetric optimal perturbations of the L-O vortex were described by Antkowiak

& Brancher (2007) for m = 1 and Pradeep & Hussain (2006) up to m = 4. In these cases,

perturbation growth is achieved through the Orr mechanism and resonance between struc-

tures located outside the core and eignemodes of the vortex core. The shear mechanism is

fully described by the Orr (1907) energy equation (Pradeep & Hussain (2006)):

dE

dt
= dtE = −

∫

V
uᵀ · ∇U · u dV − 1

Re

∫

V
∇u :∇u dV = P −D (3.1)

where D is the viscous dissipation rate and

P = −
∫

V
uᵀ · ∇U · u dV = −

∫

Ω
uvr

∂S

∂r
dΩ (3.2)

the production term. The strain S = r∂r(V/r) of a L-O vortex is negative, thus energy

production requires a positive Reynolds stress uv. This is accomplished by flow structure

in the form of spirals coiled around the vortex core with positive tilt. The transient growth

is naturally stopped as the differential rotation by the base flow transforms the positive-tilt

spirals into negative-tilt spirals. A schematic defining positive and negative tilt spirals is

shown in figure 3.1 (source: Pradeep & Hussain (2006)).

Figure 3.1: Positive-tilt (left) and negative-tilt (right) spirals, from (Pradeep & Hussain, 2006) .

The second mechanism consists of a resonance phenomenon between the perturbation

outside the vortex and core modes. Both Antkowiak & Brancher (2004) and Pradeep &

Hussain (2006) showed that the optimal perturbation tends to select a radial location for

the perturbation that rotates at the frequency of the least stable mode. Radial velocity u
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is generated within the core through the advection of perturbation axial vorticity ω by the

baseflow.

3.1.2 Linear Optimal Perturbation of a Vortex Pair

The stability of a vortex pair was studied in many earlier works (Crow (1970); Widnall et al.

(1974); Tsai & Widnall (1976); Pierrehumbert (1980)). Vortices in a pair can become unsta-

ble to short-wave and long wave instabilities. These instabilities are described extensively in

reviews by Widnall (1975) and Leweke et al. (2016). Asymptotic optimal perturbations of

vortex pairs, in the absence of ground, was determined numerically by Brion et al. (2007), for

the wavelength of the Crow instability. Jugier (2016) investigated the optimal perturbation

to the vortex pair for a pure planar flow, further accounting for stratification effects, along

with Ortiz, Donnadieu & Chomaz (2015). In the particular case of the Crow wavelength,

the perturbation takes the form of a pair of opposite-signed vorticity sheets situated close to

the plane separating the vortices. The evolution of the perturbation goes first through an

advection toward the leading hyperbolic point of the flow, where the perturbation vorticity

is then amplified and transfered to the vortex core through an induction mechanism with the

velocity field of the base flow (Biot-Savart). An acceleration of the Crow instability is ob-

tained through this process, which leads to a reduction of approximatey 2.5 normalized time

units τ = 2πb2/Γ of the time required to reach the Crow instability, for Re = Γ/ν = 3600.

The investigation performed by Jugier (2016) of the linear optimal pertubations for a counter-

rotating pair of vortices in two dimensions provided results showing that the transient growth

can lead to higher energy gain than the most unstable mode. Ortiz, Donnadieu & Chomaz

(2015) investigated a similar bi-dimensional configuration with stratification. The latter is

observed to significantly increase the instability as the two vortices are pushed together, re-

sulting in an enhanced straining field, and hence a more rapid growth of the elliptic instability.

3.1.3 Instabilities in Ground Effect

In terms of linear stability, ground proximity has a notable influence on the development of

long and short-wave instabilities in vortex pairs.

The modification to the long-wavelength instability was investigated by Crow (1970); Asselin

& Williamson (2017). Several regimes are observed depending on the height of the vortex

system above the ground. If the initial height of the vortex pair above the ground plane is

sufficiently large, then the Crow instability and the transformation into vortex rings will occur

before surface interaction. Howerver, at relatively smaller initial heights, the growth of the

Crow instability is found to be inhibited by the presence of the ground. What occurs is that

while the long-wave instability develops, regions of the vortex pair closest to the wall interact
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with the boundary layer first leading to an increase in local pressure, and then pushing the

flow axially away from these regions. This dynamics tends to modify the long wave motion

of the vortex cores which supports the long wave Crow instability of the pair, and results in

a weaker growth.

Following this influence of vortex height, experiments by Asselin & Williamson (2017)

further detail that there exists three regimes of vortex-surface interaction. If the ratio h0/b0

(h0 is the initial height and b0 is the initial separation) is above 9 then Crow instability pre-

vails (note that according to Spalart (1998) the typical time for the development of Crow

instability is 5 (vortex pair time units), which is coherent with the value 9 corresponding to

this first regime). If the vortex pair is generated below a critical height (3 < h0/b0 < 9), the

wall tends to inhibit the Crow instability and two other modes, of shorter wavelength, are

observed. For smaller intermediate heights (3 < h0/b0 < 6), the primary vortices interact

with the secondary vortices to form vertically oriented rings (see figure 3.2). These ’vertical

rings’ are the typical structures observed when three-dimensional deformations of the flow are

accounted for in the wall interaction, on top of the rebound phenomenon that we could ob-

serve in the section dedicated to the two-dimensional situation. For completeness, it must be

noted that the Crow instability also develops before wall interaction for intermediate heights

(6 < h0/b0 < 9). However, as the perturbation grows larger, the reduction of circulation at the

trough (were the vortex tubes are closer together) leads to a higher pressure compared with

the peaks of the vortices, and triggers the collapse of the primary vortices as a result of the

strong axial flows from the troughs towards the peaks. This yields ”horizontal rings modes”.

The structures found by Asselin & Williamson (2017) are comparable to those observed in

vortex-ring impingement at a wall, studied experimentally by Lim (1989) and Cheng et al.

(2010).

Similar results are found by Dehtyriov et al. (2020) while studying the transient growth of a

counter-rotating vortex pair impinging a wall with the particular setting h0/b0 = 6. These au-

thors show that the linear growth of the Crow instability is inhibited by the wall. In addition,

the evolution results in the suppression of the secondary vortices and a strong reduction of

the rebound phenomenon. Furthermore, the linear short-wave instability outgrows the long-

waves modes, thus clearly underlining the importance of the elliptic mode in the presence of

a plane surface. At last, experiments of a bi-dimensional vortex pair impinging on a wavy

wall, carried by Morris & Williamson (2020), show the generation of rebounding vortex rings

and the acceleration of the decay of the primary vortex pair.

For the rest of this thesis, the single vortex and vortex pairs are modelled, as for the initial

condition, by a single L-O vortex or a superposition of L-O vortices. Recall that the radial
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Figure 3.2: Visualization of the secondary vorticity associated with the vertical rings mode (h0/b0 =

5); (a–d) show a top view and (e–h) show a side view of the vortex pair impinging on a flat surface.

Figure taken from Asselin & Williamson (2017).

velocity profile of the L-O vortex is given by

Vθ(r, t) =
Γ

2πr

[
1− exp

(
−r

2

r2
c

)]
(3.3)

where Γ and rc(t) =
√

4νt+ r2
c (0) respectively denote the vortex circulation and dispersion

radius.
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The following sections are dedicated to the study of a spatially periodic (in the axial

direction) linear optimal perturbations of a counter-vortex pair impinging on a sur-

face plane and initially located at h0/b0 = 2.0 with an initial vortex radius a = 0.2b0.

We first discuss the pure two-dimensional case and then the three-dimensional case.

We detail the mathematical formulation of the problem in section 3.2.1. The pre-

sentation and discussion of the results are given in section 3.3.2. Finally section 3.4

shows the results of the nonlinear evolution of the baseflow disturbed by a selection

of linear optimal perturbations with finite initial amplitude.

.

3.2 Method

3.2.1 Optimization approach

The flow is decomposed into a base flow U and a perturbation u. The amplitude of the

latter is considered to be small in comparison with the base flow such that one can write

utot = U + εu and ptot = P + εp where ε � 1. One can rewrite the Navier-Stokes (N-S)

equations as follows :

∇ · (U + εu) = 0

∂t (U + εu) + ((U + εu) ·∇) (U + εu) = −∇ (P + εp) +
1

Re
∇2 (U + εu)

(3.4)

By introducing this decomposition, one retrieves the Navier-Stokes equations applied to the

base flow at order ε0 :

∇ ·U = 0

∂tU + (U · ∇)U = −∇P +
1

Re
∇2U

U(y = 0) = 0

(3.5)

and the linearised evolution of the perturbation at order ε1 when the second order term

ε2 (u · ∇)u sufficiently small (that is when u has a small amplitude). This yields the first

order linearized N-S equations:

∇ · u = 0

∂tu+ (U · ∇)u+ (u · ∇)U = −∇p+
1

Re
∇2u

u(y = 0) = 0

(3.6)
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The goal is to find an initial perturbation u0 that maximizes the gain of perturbation kinetic

energy over a given horizon time T . The perturbation kinetic energy is defined as follows:

E(t) =

∫

Ω
u2(t)dΩ (3.7)

and the gain in kinetic energy with respect to the initial perturbation kinetic energy at horizon

time T reads as:

G(T ) =
E(T )

E(0)
(3.8)

Hence, the optimal perturbation optimizes the value of G at the horizon time. To solve such

a problem, we use the Lagrange multipliers (presented in Chapter 1).

The Langrangian function L, as in equation 1.22, is defined as

L (q,u0, q̃, ũ0) = G(T )− 〈 F (q) , q̃ 〉 − ( H(u,u0) , ũ0) + λ(E(t = 0)− E0) (3.9)

where F (q) = 0 represents the governing equation (3.6), H the initial condition operator , q̃

and λ the Lagrange multipliers (or adjoint variables). E0 constrains the perturbation kinetic

energy at t = 0 to be equal to a fixed value. (In this linearized framework, E0 can be set to

1 since G(T ) is independant of the initial amplitude of the perturbation). This constraint is

applied using a geometric update technique discussed later in this section. In order to reach

the optimal state, the gradient of the Lagragian functional with respect to all the variables

must be equal to zero. Doing so with respect to :

• q̃, yields equation (3.6)

• q, yields the adjoint equations

−∇ · ũ = 0

−∂tũ− (U · ∇)ũ+ ũ · (∇U)T +∇p̃− 1

Re
∆ũ = 0

ũ(y = 0) = 0

(3.10)

• q(T ), gives the compatibility equation

q̃(T ) = 2 · E(T )

E0
(3.11)

• q0 gives the optimality condition

∇q0
L = q̃(0)− 2 · E(T )

E(0)2
· q(0) (3.12)
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For the methodology and the detailed derivation of the equations, the reader may refer to

Chapter 1 and papers by Farrell (1988) and Corbett & Bottaro (2000). Reaching the optimal

perturbation is achieved through the iterative procedure described in figure 1.2.

The unit energy constraint is enforced by the geometric update technique proposed by Dou-

glas, Amari & Kung (2000) to iterate over q0. First, the component of the Lagrangian function

that is normal to qk0 is scaled so as to satisfy the energy constraint, as follows :

Nk = E(0)1/2
∇qk

0
L⊥∥∥∥∇qk

0
L⊥
∥∥∥

(3.13)

where k is the current iteration and ⊥ denotes the normal component. The update is thus

qk+1
0 = qk0cos(αk) +Nk sin(αk) (3.14)

where αk is the step size with initial value α0 = 1. The line search is achieved by dividing α

by 2 when the gain doesn’t increase. The procedure stops when the residual

rn =
Gk − Gk−1

Gk−1
(3.15)

is inferior to 10−6 (value allowing gain convergence inferior to 0.01%). Finally, the first initial

guess is set as random white noise. The whole procedure is sketched in figure 3.3

q0,k
q0

α0 = 1

Direct

equations

Adjoint equations
Compatibility

equation

qk+1
0 = qk0 cos(αk) +Nk sin(αk)

qk+1
0 = qk0 cos(

αk
2

) +Nk sin(
αk
2

)

Gk+1

?
≥

Gk
rk≤ε

NO

NO

yes : exit

Figure 3.3: Sketch of the optimization algorithm, Douglas et al. (2000). The line search parameter

is αk.

3.2.2 Definition of the computational configuration

The computations are carried out at Re = 500, in the laminar regime. The Reynolds number

effect is small in this range of rather large Reynolds number and laminar flow conditions, and

therefore only this value is considered.
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Due to the simplicity of the flow configuration that is considered, the horizon time and the

axial wavelength are retained as the two main parameters of the study. The range of horizon

time is T ∈ [2, 5] and the axial wavenumber varies from 0 to 10.

The initial height of the vortex pair is constant throughout the study. No parametric

study over this initial height is considered given that, as reviewed above, its effect is mainly

to delay the occurence of the influence of the ground. Here the vortex pair initial height, at

h0/b0 ≥ 2, is lower than the one considered in Asselin & Williamson (2017); Dehtyriov et al.

(2020) where h0/b0 ≥ 4, which leads to a shorter time for the vortex pair to experience wall

influence. This choice allows for a consistent physics while reducing the computational cost

of the simulation and optimization.

The baseflow being symmetric with respect to the central plane x = 0, one may show that

two orthogonal subsets of perturbations can be considered : symmetric and anti-symmetric

perturbations, respectively denoted SYM and ASYM throughout the rest of the manuscript.

Symmetric perturbations are the one verifying mirror symmetry with respect to x = 0, that

is:

u(−x, y, z, t) = −u(x, y, z, t)

v(−x, y, z, t) = v(x, y, z, t)

w(−x, y, z, t) = w(x, y, z, t)

(3.16)

conversely anti-symmetric perturbations are the one that verify :

u(−x, y, z, t) = u(x, y, z, t)

v(−x, y, z, t) = −v(x, y, z, t)

w(−x, y, z, t) = −w(x, y, z, t)

(3.17)

For the upcoming simulations, the simulation domain is either two-dimensional or three-

dimensional.

2D domain: The simulation domain consists in a rectangle of size 20b × 10b composed of

Nx×Ny = 222×111 spectral elements with polynomial order P = 5 (which yields 6 gridpoints

per element in each direction).

3D domain: The simulation domains is the two-dimensional plane extruded in the z-

dimension. Hence it becomes a box of size 20b × 10b × λ. The associated mesh is made

of Nx ×Ny ×Nz = 222× 111× 3 = 73926 spectral elements. The polynomial order is P = 5.

Each spectral element is composed of Lx × Ly × Lz = (5 + 1)3 = 216 grid points. All in all,

the mesh comprises approximately 6.3× 107 degrees of freedom.
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A mesh convergence analysis has been performed, whose results are provided in Appendix A.

The chosen grid size allows for well converged results and therefore, for the remainder, the

results relie on a polynomial order P = 5.

Due to the homogeneity of the base flow in the axial direction perturbations can be de-

composed into axially periodic components. A Fourier modal decomposition is therefore

implemented

[u, p, ũ, p̃] =

∫ +∞

−∞
[u, p, ũ, p̃]eikzdk (3.18)

with the simulation domain axial dimension being equal to the spatial wavelength λ. Due

to the linearity of the problem the Fourier modes with different wavenumbers k = 2π/λ are

treated separately. In practice, to enforce a unique wavelength λ = 2π/k and prevent the

development of unwanted disturbance walength compatible with the computational domain

(harmonics of the principal wavelength specified by the domain axial length), a projection

onto the space (cos(kz), sin(kz)) is executed regularly during the time integration of the di-

rect and adjoint equations. The perturbation equation being linear, this projection operation

removes undesirable wavelengths arising from numerical errors, keeping the selected wave-

length untouched.

Wrapping up the previous details, in the following we consider the set of parameters given

by:

• wavenumber k ∈ [0, 10]

• horizon time T ∈ J2, 5K
• symmetry of the perturbation.

to conduct the analysis of the ground interaction dynamics.

3.3 Results

3.3.1 Two-dimensional case

This subsection describes and analyses the two-dimensional optimal perturbations.

Figure 3.4 shows the optimal gain as a function of time horizon T , for the symmetry and

anti-symmetric sets. The figure suggests that the optimal gain is an increasing function

of the horizon time regardless of the symmetry. Furthermore it is found that symmetric

perturbations dominate for lower values (T < 3.7) of horizon time whereas anti-symmetric

perturbations dominate for larger horizon times, although from a global point of view the

range of amplification remains quite similar for the two symmetries. This relatively low

incidence of flow symmetry on transient amplification growth puts forward the importance of

the ground effect which is not determined by symmetry.
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Figure 3.4: Optimal gain a function of time for ASYM and SYM optimal perturbations.

In order to understand the mechanisms that lead to transient growth, one may refer to equa-

tion (3.1) which writes the instantaneous growth of kinetic energy. In this equation the second

term represents viscous dissipation and the first term corresponds to the production of kinetic

energy. The latter occurs by the alignment of the perturbations with the proper directions of

the strain rate tensor of the flow (baseflow). As is evident from equation (3.2), the region of

the flow where the shear production per unit volume is negative contributes to the growth of

the perturbations.

To understand where, in the vortex pair flow interacting with the wall, this production region

lies, we show in figure (3.5) the norm tr(ᵀ∇U · ∇U)1/2 of the strain rate tensor at times

t = 0, 1.25, 2.5, 3.75.

At initial time, it is found that the regions contributing to the growth are predominantly

located inside the Kelvin oval of the vortex pair (fig. 3.5(a)). However, when time increases

and the vortices approach the plane of the ground, the strength of the strain rate tensor shifts

to the boundary layer that concurrently forms at the wall (fig. 3.5(b-c)). When the primary

vortices rebound (fig. 3.5(d)), the intensity of the strain rate tensor partially shifts back to

the vortex cores. This can be interpreted as a consequence of the relaxation of the effect of

the ground due to the increased distance of the vortices above it (the shearing effect due to

the vortices reduces).

The consequence of this is shown in figure 3.6 where the initial vorticity of ASYM and SYM

optimal perturbations is plotted for various values of the horizon time T . When the horizon

time is low (T ' 2), the perturbation is principally located in the vicinity of the Kelvin oval

of the primary vortices. As horizon time grows (T = 3 → 5), the spatial distribution of the
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Figure 3.5: Distribution of the norm of the strain rate tensor of the baseflow for time t = 0, 1.25, 2.5

and 3.75 respectively corresponding to subfigures a), b) c) and d). Green solid lines correspond to the

iso-contours of vorticity (ωz/ω0,max = ±0.1,±0.2) of the primary vortices.

initial perturbation yields stronger structures in the vicinity of the wall and in the vortex

cores. For the lower values of the horizon time T , the optimal perturbation is principally

Figure 3.6: Initial vorticity distribution of ASYM (top row) and SYM (bottom row) optimal pertur-

bation computed for different horizon times 2, 3, 4 and 5 (from left to right). Increasing horizon time

implies a shift of the optimal perturbation shape towards the ground, pointing out the influence of

horizon time on the boundary layer effect.
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located inside the Kelvin oval, at the center plane x = 0 and near the leading and trailing

hyperbolic points. These region are identified by the norm of the strain rate in figure 3.5(a)

although they do not correspond to the zones where the maximum production rate occurs. In

fact lower optimal time yields a better match to the instantaneous optimal production zone

(not shown). The interesting feature is that as horizon time increases, the optimal perturba-

tion becomes stronger near the wall, indicating increased sensitivity to perturbation there.

The optimal perturbation at horizon time is shown in 3.7, in terms of axial vorticity. The

final shape of the optimal perturbation for T = 2 is a displacement mode located inside the

vortex cores, see figure 3.7(d). For T = 5, the baseflow boundary layer separates to form

secondary vortices. From figures 3.7f) and g), it appears that the perturbation grows in the

secondary vortices where it forms two displacement modes. One displacement mode acts on

the primary vortices (dotted lines in fig. 3.7-f), the second on the secondary vortices.

Figure 3.7: Evolution of the vorticity of the symmetric optimal perturbations for horizon time T = 2

(top) and T = 5 (bottom) at times T/4, T/2, 3T/4 and T . As the baseflow boundary layer detaches, the

optimal perturbation takes the form of two displacement modes: one acting on the primary vortex, the

other on the secondary. Solid lines correspond to the iso-contours of vorticity (ωz/ω0,max = ±0.1,±0.2)

of the primary vortices.

Concluding on two-dimensional optimal perturbation, it must be reminded that in the

absence of the ground the linear optimal perturbations of a vortex pair consists in vortex

filaments in a spiral arrangement around the vortex core and that its evolved state has a

quadripolar structure near the vortex center (Navrose et al. (2018)). In addition they have

shown that the mechanism for the largest gain in perturbation energy for a vortex pair is

the same as that of an isolated vortex (Navrose et al. (2018), figure 20). In the presence of

ground, we find here that the linear optimal perturbation is a displacement mode acting on

the primary vortices (see, figure 3.7) for lower horizon times (T = 2) and that for higher

62



3.3. RESULTS

values of the horizon time T , the optimal perturbation grows into displacement modes in the

secondary vortices as well as in the primary vortices. In this case, the flow is sensible about

the initial vortex pair footprint but also in the region near the ground.

3.3.2 Three-dimensions case

Figure 3.8 plots the evolution of the perturbation kinetic energy gain as a function of the

wave number k for various horizon times and symmetries. Similar behaviours are observed

(a) Anti-symmetric optimal perturbations (b) Symmetric optimal perturbations

Figure 3.8: Evolution of the gain in kinetic energy with the wavenumber for various horizon times

T = 2, 3, 4, 5 for the two symmetries. Similar overall behaviour is observed for both symmetries where

two wavenumbers seem to arise, k = 0.8 and 6.

for the two symmetries. Overall, it appears that long wavelength instabilities prevail for short

horizon time, replaced by short wavelengths for large horizon times. These results agree with

those obtained by Asselin & Williamson (2017). That is, as explained in the introduction,

the presence of the wall tends to inhibit the longwave instabilities and to promotes shorter

wavelengths. We find two characteristic wavenumbers, k = 0.8 and k = 6.0. Wavenumber

k = 0.8 corresponds to the Crow wavelength. Wavenumber k = 6.0 yields the most critical

optimal perturbation at larger horizon times, regardless of the symmetry.

For what follows, we focus on symmetric optimal perturbations as they yield higher

gains, more particularly at T = 5. The two wavenumbers that will be investigated are k = 0.8

and k = 6.

Figure 3.9 shows iso-contours of vorticity magnitude for these specific wavenumbers (k = 0.8

in the left panel and k = 6 in the right panel). One can see that the effect of the shape of

the optimal perturbation ressembles the two dimensional optimals previously shown in figure

3.6, modulated in the z-direction. In addition low values of the contours ||ω|| ' 5 are more

present near the ground for k = 6 compared to k = 0.8 certainly due to the fact that shorter

axial wavelength are more compatible with the small dimension of the boundary layer. This

would indicate that a possible explanation for the domination of the shorter wavelengths is
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that they may take better advantage of the dynamics of the boundary layer and separated

flow that forms during its evolution. The sheared flow region at the frontier of the separated

flow area offers strong potential for disturbance growth, both for 2D (Orr mechanism) and

3D situations.

Figure 3.9: Axial vorticity for the symmetric optimal pertubations, k = 0.8 (left) and k = 6 (right),

SYM perturbations, horizon time T = 5. Stronger ground effects are observed for k = 6: the iso

contour of vorticity |ωz| ' 5 are observable in the vicinity of the ground plane whereas they are not

for longer wavelengths.

Figure 3.10 shows the time sequence of vorticity magnitudes contours of symmetrical optimal

perturbations k = 0.8 (3.10a) and k = 6 (3.10b) for t = 0, 1, 2, 3, 4, 5 (for horizon time T = 5).

During the first stage of the primary vortex descent (t = 0→ t = 2), the effect of the wall is

weak and the perturbations grow into longwave deformations. As the boundary layer of the

baseflow separates at the ground the perturbations appear to grow strongly in this region of

the boundary layer (t = 2→ t = 3). At later times the perturbation then acts principally on

the secondary vortices (t = 4→ t = 5).
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(a) k = 0.8

(b) k = 6

Figure 3.10: Time sequence of axial vorticity of symmetric optimal perturbation at k = 0.8 (top)

and k = 6 (bottom), SYM perturbations, horizon time T = 5. The optimal perturbation initially

acts as a displacement mode inside the primary vortex cores and when boundary layer separates,

the perturbation drastically grows in the boundary layer. When the boundary layer has detached,

displacement modes grow into the secondary vortices giving rise to structures similar to those that

were observed in two dimensions. Vorticity magnitude ranges between 10 and 900 (top). and between

10 and 3× 104 (bottom).

3.4 Nonlinear response to the linear optimal perturbation

The potential for anticipated destruction of a counter-rotating vortex pair using the linear

optimal perturbation of the vortex pair in ground effect is assessed. Direct numerical simula-

tion is used to study the development of instabilities and the subsequent evolution of the flow

up to 25 characteristic times (t = 25). To achieve this goal, the previously computed optimal

perturbations are superimposed to the unperturbed flow at initial time such that the initial

velocity field for each DNS described in this section is expressed as uε(0) = U(0)+ε||U(0)||u0

65



CHAPTER 3. OPTIMAL PERTURBATIONS OF A COUNTER-ROTATING VORTEX
PAIR IN GROUND EFFECT

with u0 the normalized optimal perturbation velocity field and ε the initial amplitude. For

what follows, ε varies in [10−3, 10−1] and we evaluate the flow dynamics for a selection of ε

values in this range. The direct numerical simulations convergence properties are provided in

Appendix (A.2).

Unperturbed flow ε = 0 :

In chapter [2] we have described the dynamics of a vortex pair in ground effect without

perturbation. The evolution of the vorticity magnitude, in three-dimensional iso-contours,

is shown in figure 3.11, as a reference for the finite values of ε that follow. The baseflow is

robust and remains two-dimensional during multiple rebounds and finally becomes subject to

perturbation (t > 22). This betrays the unavoidable arising and growth of 3D perturbations

in the simulation. The fact that these appear at late time in the simulation shows the good

quality of the numerical resolution of the equations offered by the Nek5000 solver.

Figure 3.11: Time sequence of vorticity magnitude of the unperturbed baseflow. The flow remains

two-dimensional before perturbations set in after t = 20.

Long wave optimal perturbations: k = 0.8, ε = 10−3

Figure 3.12 shows the evolution of the symmetric optimal perturbation computed for T = 5

and k = 0.8 superimposed to the baseflow with an initial amplitude of ε = 10−3. Quickly, the

flow seem to develop sub-wavelengths due to the non linearity of the Navier-Stokes equations

and the simulation becomes under-resolved. From figure 3.8, the short wave gain in kinetic

energy is four orders of magnitude higher than the long wave ones. We remind the reader,
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that the mesh contains only three elements in the z-direction, each composed of 6 gridpoints.

For computational cost purposes, as the simulations would need mesh refinement in the axial

direction (thus drastic increase in gridpoints would ensue), long-wave dynamics is not investi-

gated here, and interest is devoted to shorter wavelengths, as they are the linearly dominant

ones.

Figure 3.12: Time sequence of vorticity magnitude of the nonlinear response to the symmetric

long-wave optimal perturbation computed for T = 5 and k = 0.8. The early breakdown of structures

into short waves can not be captured by the mesh resolution in the axial direction which is made for

the long-wave dynamics.

Short wave optimal perturbations: k = 6, ε = 10−3

Figure 3.13 shows the evolution of the symmetric optimal perturbation computed for T = 5

and k = 6 superimposed to the baseflow with an initial amplitude of ε = 10−3.

The first effects of the perturbations are felt early during the descent of the vortex, around

t = 2 where we can observe the deformation of the boundary layer as the secondary vortices

form. The perturbations grows inside the secondary vortices, causing the secondary vortices

to undergo strong stretching at midplane z = λ/2 (cf. time t = 3 → 5). This stretching

causes the vortices to link in the middle plane x = 0 until the formation of a vertical ring

(cf. time t = 5 → 6). This ring stretches outwards until the identified iso-levels break (cf.

t = 7→ 10) and provoke a slow but steady decay of the primary vortices. This decay can be

inferred from the decreasing size of the considered vorticity iso-level.
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Figure 3.13: Time sequence of vorticity magnitude of the nonlinear response to the symmetric short

wave optimal perturbation computed for T = 5 and k = 6 with an initial amplitude of ε = 10−3. The

three levels of iso-contours are ω/ω0,max = 0.05, 0.1 and 0.2

Short wave optimal perturbations: k = 6, ε = 10−2

Figure 3.14 shows the evolution of the symmetric optimal perturbation computed for T = 5

and k = 6 superimposed to the baseflow with an initial amplitude of ε = 10−2.

In the early stages, the flow ressembles the U-shaped vortical structure of the linear optimal

perturbation above the boundary layer at time t = 1, see figure 3.10b. These U-shaped

structures rotate around the baseflow (t = 2) and link with the secondary vortices while

being stretched (t = 3 → 4). The secondary vortices slowly lose strength and get advected

away from the ground and the primary vortices (cf. t = 5→ 8). The primary vortices decay

slowly but faster than the case ε = 10−3, for t > 8.

Short wave optimal perturbations: k = 6, ε = 10−1

The structures of the perturbation in the early stage ressemble the ones in the case ε =

10−2 but stronger. The U-shaped structures link with the boundary layer sooner, at times

t = 0.5 → 1 and we also notice that the rebound phenomenon is reduced. The primary

vortices undergo strong deformations in the axial direction (cf. t = 2→ 5) and decay rapidly

thereafter (t = 6→ 8). The vortex system is almost completely suppressed beyond t = 10.

Kinetic energy: k = 6

The temporal evolution of the volume integrated kinetic energy writes as

dE

dt
= −2µ

∫∫∫

Ω
d : d dxdydz (3.19)
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Figure 3.14: Time sequence of vorticity magnitude of the nonlinear response to the symmetric short

wave optimal perturbation computed for T = 5 and k = 6 with an initial amplitude of ε = 10−2. The

three levels of iso-contours are ω/ω0,max = 0.05, 0.1 and 0.2

Figure 3.15: Time sequence of vorticity magnitude of the nonlinear response to the symmetric short

wave optimal perturbation computed for T = 5 and k = 6 with an initial amplitude of ε = 10−1. The

three levels of iso-contours are ω/ω0,max = 0.05, 0.1 and 0.2

where the volume Ω is the entire computational domain.

Figure 3.16 shows the time evolution of the kinetic energy that results from the unpertur-
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bated and perturbated simulations. In the first case (no perturbations) the plot shows how

the kinetic energy first decays at a rather steady rate, with a marked increased after about

17 time units, finally reaching 20% of its initial value after 25 time units. The initial decrease

of the kinetic energy results from the work of the dissipative term. The increased reduction

of the kinetic energy after 17 time units seems to correspond to the appearance of small scale

structures, which probably arise due to the discretisation errors of the computational solver.

These structures, precursor of the turbulent state, reinforce the dissipation process by inten-

sifying the deformations of the flow. From the reference state, increasing the amplitude of the

initial amplitude of perturbation hastens the occurence of the vortex decay, with a breakdown

time reduced to t = 5 for ε = 0.001 and 0.01 and almost immediate for ε = 0.1. In the evolu-

tion of the flow with finite values of ε (see figures 3.13 3.14 3.15) it seems that the anticipated

breakdown relates to the first appearance of the deformations of the secondary flow about the

primary vortices, which only after transfer to them. More precisely, the deformations start in

the boundary layer and continue then in the rolling-up vortex sheet that forms the secondary

vortices. This stresses the important role of the boundary layer flow in the evolution of the

interacting vortices.

Figure 3.16: Time evolution of the kinetic energy for various values of the initial perturbation

amplitude.

Figure 3.17 and 3.18 show the evolution of the circulation present in sections of the flow

at two axial positions, z = λ/2 and λ/4. Only a half of the section and the axial vorticty

is considered for the integration of the circulation. No distinction is made of the primary
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vortices thus these plots provide the total circulation of the half flow. The surprising result

is that there is no overall effect of ε on the evolution of the total circulation, all evolutions

showing a rapid decrease of the circulation a the two section considered.

Figure 3.17: Time evolution of the circulation γz at z = λ/2

Figure 3.18: Time evolution of the circulation γz at z = λ/4
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We eventually look at the evolution of enstrophy in figure 3.19 in the section of the flow.

Enstrophy is a good indicator of the appearance of small vortical structures in the flow and

viscous dissipation. The figure shows that the simulations made at the various values of ε

yield a peak of enstrophy at initial time. In the reference test case ε = 0 the first enstrophy

peak corresponds to the rebound and formation of secondary vorticity from the formation

of the boundary layer and its detachment. In the simulations with finite ε values, this first

peak is complement by additional formation of smaller scale structures due to the initial

perturbation. In the ε = 0.001 case this causes a second peak right after the rebound peak

while in the case ε = 0.01 the first and second peaks occur together, generating a large and

higher single peak. In the most perturbed case ε = 0.1 the rebound peak is anticipated by

the strong initial deformations due to the initial perturbation and the peak due to rebound is

only secondary in the overall dynamics. The enstrophy levels in this last case reduce strongly

and become negligible after about 10 time units, which corresponds to the disappearance of

the flow (see figure 3.15).

Figure 3.19: Time evolution of the enstrophy E .
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In this chapter we have investigated the potential for vortex decay in the vicinity of the

ground by perturbating the system at initial time using linear optimal perturbations.

The vortices show to be principally affected by displacement modes for both two and

three-dimensional vortices. The gain in kinetic energy was much higher in the case of

the three-dimensional perturbations. The ground effect promotes short wavelengths

at short times and then small scale perturbations arise in the flow. The separation

of the boundary layer provides great potential for destabilization. Non-linear DNS of

the total flow show noticeable vortex decay as compared to the unperturbed flow.

73



CHAPTER 3. OPTIMAL PERTURBATIONS OF A COUNTER-ROTATING VORTEX
PAIR IN GROUND EFFECT

74



CHAPTER 4

On p-norm Optimal Perturbations

Variational formulation based on a direct-adjoint optimization mostly relies on the

kinetic perturbation density defined as

E(t) =

∫

V

1

2
u(x, t)2dV

which corresponds to the common L2 norm of the perturbation field. Using kinetic

energy-based techniques often yields widespread structures (cf. chapter [3]). Taking a

more local approach to identify the zones of optimal energy growth is of great interest,

especially for vortex systems. To tackle the aforementioned application issue, which

is also of fundamental interest, one may consider using the following p-norm,

Ep(t) =

(∫

V
ep(x, t)dV

)1/p

,where e(x, t) =
u(x, t)2

2

introduced by Foures et al. (2013).

Note that in the present section, the initial kinetic energy is written E(0) instead of E0

to prevent any misunderstanding with the p index.

The vast majority of studies on stability are based on a measure of the kinetic energy

density defined as e(x, t) = (u2 + v2 + w2)/2. A common choice to quantify the growth of

perturbations is the L2 norm of e defined as

E1(t) =

∫

V
e(x, t)dV
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where V is the fluid domain. Using such energy based approaches yield global structures that

are widespread throughout the entire fluid domain as no spatial restrictions are explicitly

enforced. With the growing interest driven by industrial flows (pipe, junction, vortex flows,

etc.), locating the regions responsible for optimal energy growth is central.

Recently, constrained optimization of the p-norm of the disturbance energy defined as:

Ep(t) =

(∫

V
ep(x, t)dV

)1/p

(4.1)

has been introduced by (Foures, Caulfield & Schmid, 2013) with the aim of promoting the

localization of the optimal perturbation. The methodology was applied to the case of a

simple two-dimensional channel flow. Locating and identifying ’hotspots’ for energy growth

can be achieved by choosing Ep for the optimization process. We show below how, for a finite

dimension space, the p−norm tends to the maximum value as p increases, that is, considering

a vector x = [x1, x2, . . . , xn]ᵀ

lim
p→∞

‖x‖p = ‖x‖∞ = max
1≤i≤n

{xi} (4.2)

The heuristic proof is obtained by bounding the p-norm as follows

max |xi| ≤ (max |xi|p)1/p ≤
(

n∑

i=1

|xi|p
)1/p

≤
(

n∑

i=1

max |xi|p
)1/p

= n1/p max |xi|

Taking the limit for large p yields the desired result. A similar proof exists for continuous

functions but is not developped here. This shows that the p−norm targets the part of the

perturbation with maximum possible growth. Such a localized regions is coined as the ’hottest

spot’.

The reader can refer to section (3.2.1) in chapter [3] for the derivation of the variational

framework when p = 1 (that is, L2). When it comes to arbitrary values of p, there are two

minor differences for finding p−norm optimal perturbations as opposed to p = 1:

• The cost function transforms into G(T ) = Ep(T )/E1(0) where E1(0) = E(0) is the

kinetic energy.

• The initialization of the adjoint field, or the so-called compatibility equation, becomes:

ũ(x, T ) =
e(x, T )p−1

Ep(T )p−1
u(,x, T ) (4.3)

where e(x, t) = u(x, t)2/2 denotes the perturbation kinetic energy density. Note that one

retrieves the result derived from Chapter [3] with p = 1.

Equation 4.3 is the key localization step in the procedure. If we consider the limit of large
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p the adjoint initial condition approaches a Dirac function centered on the maximum values

of the direct energy density field, see figure 4.1. When advected backwards in time, this will

therefore lead to spatially localized gradient making the procedure converge toward a localized

initial perturbation. Hence, depending on the initialization of the optimal perturbation, one

can expect to have multiple optmimal solutions.

Figure 4.1: Example of localization step (see eq. 4.3) with the mock function: u(x, y) =
1

1 + x2 + y2
,

using p = 1 (left), p = 100 (middle) and p = 1000 (right). The adjoint field approaches the dirac delta

function centered around the maximum value of u.

For p = 1, Foures et al. (2013) have recovered traditional energy-based stability analysis re-

sults where the initial optimal perturbation is an array of vortices aligned against the mean

flow shear (see Foures et al., 2013, figures 2b, 3 and 7a). For large values of p� 1 they have

observed ’hotspots’ where significant energy growth can be expected. Two different regions of

energy growth have arisen: the center of the channel (see Foures et al., 2013, figure 7b) and at

the walls (see Foures et al., 2013, figure 7c) of the domain each obtained at T = Topt = 10.4

(their characteristic time is based on the average flow velocity in the channel and channel

width). For either solution, a saturation of E∞ is observed, that occurs much before the limit

p→∞ is reached. For instance it is observed for p = 50 when the Reynolds number is equal

to 4000. The reason for this is that, increasing p reduces the localization length scale (see

figure 4.1). There is a competition between this length scale and that of diffusion. Specifi-

cally, when the localization length scale becomes smaller than that of diffusion, the effect of

p disappears, causing the observed saturation. Therefore the saturation effect of p depends

upon the value of the Reynolds number.

In a subsequent work, Farano et al. (2016) also took a look into the potential of p−norm

optimization, specifically considering:

• p−normed objective functions within the linear framework

• 1−normed objective function within the nonlinear framework
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in order to analyze the structure of localized optimal perturbations in a three-dimensional

plane Poiseuille flow for subcritical conditions. They found that 1−normed optimal perturba-

tions can be grouped in four families depending on the amplitude of the initial perturbation

kinetic energy and horizon time (at finite horizon time, the energy of perturbation can become

sufficient to trigger non-linear effects):

• Linear (LOP), for low values (E(0) ≤ 3 ·10−7) of the initial energy for all horizon times.

• Weakly NonLinear (WNLOP) for horizon times T ≤ 20 and E(0) ≤ 1.5 · 10−6.

• Highly NonLinear (HNLOP) for horizon times T ≥ 20 and E(0) ≥ 4 · 10−7.

• hairpin-like optimal perturbations obtained using large values E(0).

The LOP is composed of arrays of vortices parallel to the streamwise direction. The WNLOP

are composed of alternated vortices, inclined with respect to the streamwise direction. The

HNLOP are highly localized, do not have a preferred direction in space and do not show any

symmetry. The reader may refer to figure 2 of Farano et al. (2016) for further description

of the optimal perturbations. The progressive localization of the nonlinear optimal perturba-

tions has been achieved by progressively increasing E(0) and T .

For linear p−normed optimal perturbations, they found that p = 50 is the value that maxi-

mizes Ep. As opposed to Foures et al. (2013), who have found multiple solutions (center and

wall) depending on the initialization of the optimal perturbations, the linear p−norm optimal

perturbations led to one type of solution only that varies slightly with p. The linear p−norm

optimal perturbations are characterized by vortices inclined upstream, (Farano et al., 2016,

figure 6).

Though the nonlinear perturbation outperform the linear p−norm optimal perturbations in

terms of hastening the transition to turbulence when used in the initialization of direct nu-

merical simulations, one conclusion of the study is that linear p−norm solutions provide a

good compromise between efficiency and computation cost.

In summary, the physical mechanisms associated with energy growth often rely on large struc-

tures able to extract energy from the baseflow. In L2 norm the initial perturbation has no

specific restrictions for its spatial distribution. In Lp norm with large enough p, the con-

straint for thinner localization targets regions of the flow with the most potential for growth,

yet with overall lower perturbation growth. As such p−norm techniques can be very useful for

designing experimental setups, in which perturbations can be injected only locally using con-

trol devices, either due to technical constraints, accessibility or cost of control devices, which

necessarily limit the distribution of such devices. Also control devices generally operates at

or near walls, with limited reach within the flow, making much more attractive theoretical

optimals localized in the wall vicinity. Therefore constraining more localized structures and

choosing those occuring near walls help to achieve the realization of the control strategies,
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although with sub-optimality compared to less restrained optimal that would not have to deal

with such realization constraints.

We use the same algorithm as chapter [3] with the modification due to the definition of the

cost function and compatibility equation given above. We apply the algorithm for an isolated

vortex and for the case of the flow past a finite wing. In the isolated vortex case, because the

problem is axisymmetric, we further use a one dimensional optimization tool which discretizes

the perturbation equations in radial coordinates, with the p−norm constraints, see Chapter

[1].

4.1 Application to the Isolated Lamb-Oseen Vortex

In this part we optimize Ep for an isolated Lamb-Oseen vortex whose velocity profile in cylin-

drical coordinates is given by U =

(
0,

Γ

2πr

(
1− exp(−r2/a2)

)
, 0

)
. The radius of the vortex

a is set equal to 1. The circulation based Reynolds number Re = Γ/2πν = 5000. The horizon

times considered are 2T ∗, 5T ∗ and 10T ∗ where T ∗ = 4π2a2/Γ is the characteristic time of

rotation of the isolated vortex.

Throughout the chapter the baseflow is considered to be frozen, meaning that the vortex does

not undergo viscous diffusion. This approximation can be applied when the time evolution

of the perturbative part of the flow given by T∗ is small compared to the viscous time scale

Tν = 2πa2/ν. The ratio of the two time scales T ∗/Tν is equal to the inverse of the Reynolds

number and is therefore sufficiently small.

As a consequence of the axysymmetric base flow, perturbations can be decomposed as:

u = û(r, t) exp(mθ) with m the azimuthal wavenumber. Modes of different m are inde-

pendant as the equations are linear. We further consider planar perturbations with no axial

wavelength.

4.1.1 p = 1 case (L2 norm)

In order to validate our p−norm optimization tool, we refer to figure 4.2 to ensure the correct

retrieval of values when p = 1. The latter provides the linear optimal gains for varying horizon

time for m = 1, 2, 3 at Re = 5000 as determined by Bisanti (2013), also retrieved by Johnson

(2016). As noted by Antkowiak & Brancher (2004) the growth of the m = 1 displacement

mode increases linearly with the horizon time at large T . This linear behaviour is preceded

by a stage where modes of higher azimuthal wavenumber m = 2 and m = 3 prevail. As

presented in chapter 3, the inviscid linear growth described by Antkowiak & Brancher (2004)

and Pradeep & Hussain (2006) can be explained upon writing the perturbation kinetic energy
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Figure 4.2: Linear optimal gain as a function of the horizon time T for m = 1, 2, 3 at Re = 5000,

see Bisanti (2013).

integrated over the domain:
dE

dt
= −

∫

Ω
uvr∂r

(
V

r

)
dΩ (4.4)

As the strain S = r∂r(V/r) is negative in a LO vortex, kinetic energy production occurs when

uv > 0 (positive Reynolds stress). Hence, the linear optimal perturbations of an isolated

vortex takes the form of spiral as displayed in figure 4.3. For short times, this inviscid

mechanism is equivalent of the the Orr mechanisms in plane shear flows.

Antkowiak & Brancher (2004); Pradeep & Hussain (2006) have shown that the optimal per-

turbations select a radial location for the initial perturbation that would progressively induce

a core mode within the vortex through a resonance-driven mechanism. By deriving the lin-

earized vorticity equation for perturbation:

∂ω

∂t
+
V

r

∂ω

∂θ
+ u

∂Ω

∂r
= 0 (4.5)

one shows that advection of the perturbation vorticity by the baseflow induces radial velocity

u within the vortex core according to the Biot-Savart law.

4.1.2 Effect of varying p

Several optimizations are carried out for T = 5 when varying the value of p. Figure 4.4

provides the variation of energy gain and ∞−norm gain versus the value of p for T = 5 and

m = 2. When p is increased the energy gain decreases, on the other hand, the ∞−norm

increases but saturates for large values of p. A similar behavior has been found also for larger

target times, the ∞-norm converging toward an asymptotic value for p ≥ 50. Therefore, the
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Figure 4.3: Top: Perturbation energy growth over time for the linear optimal perturbation of a

Lamb-Oseen vortex for m = 2, p = 1, T = 5 and Re = 5000.

Bottom left: z− vorticity at t = 0. Bottom middle: z− vorticity at t = 5. Bottom right: z− vorticity

at t = 10 showing inverted spirals. The dotted line indicates the vortex dispersion radius.

largest value of p considered here is 50. The same value was also used by Foures et al. (2013)

and Farano et al. (2016).

The 1, 10, 50− norm optimal perturbations computed for m = 1, 2, 3 and T = 5 are shown in

figure 4.5. The optimal perturbations are characterized by spirals similar to the case p = 1.

For m = 1, increasing the value of p yields a more localized vorticity in the vortex core.

Although being less visual, similar core localization is observed for m = 2 and 3. Figure 4.7

shows the initial vorticity amplitude as a function of the radius for θ = 0. For m = 1, the

perturbation switches from a peripheral to a core perturbation. By recalling equation (4.5)
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Figure 4.4: Result of the p−norm optimization for m = 1 and T = 5 showing the effect of the

optimization on the differnt norms as a function of p. (left) Energy gain E1/E(0), (middle) p−norm

evaluation Ep/E(0) and (right)and ∞−norm gain.

Figure 4.5: Result of the optimization in p−norm showing the shape of the initial p−norm pertur-

bation for m = 1, 2, 3 (top to bottom) and p = 1, 10, 50 (left to right). The contour levels are linearly

spaced between -10 and 10 with 512 distinct levels. The dotted lines represent the circle of radius the

dispersion radius of the base Gaussian vortex.
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Figure 4.6: Result of the optimization in p−norm showing shape of the final perturbation for

m = 1, 2, 3 (top to bottom) and p = 1, 10, 50 (left to right). The contour levels are linearly spaced

between -10 and 10 with 512 distinct levels. The dotted lines represent the circle of radius the dispersion

radius of the base Gaussian vortex.
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Figure 4.7: Vorticity amplitude ωz(r, θ = 0) for m = 1, 2, 3 (left, middle, right) showing the increased

amplitudes for r → 0 when p increases. This phenomenon is in agreement with the observations flowing

from equation (4.5).

we notice that the p−norm optimal perturbation directly acts on the production term (second

term on the left-hand side) and deactivates the induction term for increasing values of p. This

also stands for short horizon times in L2−norm (p = 1), where only the production term

participates to the growth of the perturbation. Regarding the final optimal perturbation, the

shapes at horizon time are almost unchanged despite an increase of p. Finally, the value of

Ep(T ) converges towards the ∞−norm gain as pointed out by equation 4.2.

4.2 Short time multiple modal states

The previously described p − norm optimization procedure has been implemented in a 2D

simulation setup of the vortex flow without hypothesizing the azimuthal decomposition of the

perturbation field. The methodology is implemented in the Nek5000 solver. We thus perform

p−norm optimization in the cartesian coordinates system and keep the Lamb-Oseen vortex

as the baseflow.

The optimization are carried out for relatively short horizon times (T ≤ 1). We focus on this

short time horizon because we observe an interesting behavior of the pertubration, due to the

p−norm optimization, that we describe below. For this range of short horizon times, figure

4.2 shows that in L2 norm optimization (p = 1), modes m = 1, 2, 3 yield similar energy gains.

The fact that the instability of these azimuthally periodic solutions do not differ much from

each other creates the possibility for non selectivity at these short time, due to the opti-

mization process. In p−norm this indefiniteness is amplified by equation (4.3), whose ep(T )

numerator dictates the adjoint initial perturbation and, upon the noise inherently present

in the simulation, can potentially promote non periodic, more localized solutions. We could

observe the occurence of this effect when initializing the optimization process at short horizon

time with an isolated mode m, and playing on the value of p. The procedure led to the ap-
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parition of what we call ”spiral” and ”whip” perturbations for values of p ∼ 1.6, see figure 4.8.

On the left of figure 4.8, for p = 1.6, we observe a perturbation that is strictly m = 2. It is

Figure 4.8: Spiral (left) vs. Whip (right) : Contours of vorticity magnitude. Computed for T = 1 and

p = 1.6. On the left, the optimal perturbation remains m = 2, on the right, the optimal perturbation

is a sum of various modes.

obtained by restarting the optimization with a previously computed m = 2 mode. Repeating

this procedure for p < 1.6 yields m = 2 modes. On the right of figure 4.8 the computations

are restarted with random white noise and the optimal perturbation resembles a whip and is

a sum of multiple different modes. For p ≥ 1.7, the very same procedure exclusively yields

similar whip modes. These results are summarized in figure 4.9 in which we plot the cost

function as a function of p for T = 1. The whip (resp. spiral) branch is represented with a

solid (resp. dotted) line. It exhibits a critical value, p = 1.6, that separates the dynamics

into a well defined m azimuthal wavenumber type of optimal p−norm perturbation and a

region beyond this critical value that exhibits a dissymetric perturbation not following an m

azimuthal decomposition. This behavior occurs at small horizon time. It is found to disap-

pear when increasing this horizon time. A similar observation was reported by Foures et al.

(2013) where ”C-branch” solutions were traced to values of p as low as p = 1.5 where they

progressively merged with ”periodic” solutions. The mechanism for this behavior seems to

relate to the adjoint initialization. Following equation (4.3) the short time optimal is sensi-

tive to low amplitude noise (from discretization, convergence, machine precision, etc.) that

naturally arises in the numerical simulation and that is subjected to strong amplitifcation by

the p−norm exponent, causing the observed breaking of azimuthal symmetry. However the

fact that this whip mode is robust to the type of initialilization of the optimization procedure

may be indicative of a more physical dynamics.
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Figure 4.9: p−norm objective function as a function of p. The dotted line represent ”spiral” solution

and the solid line represent ”whip” solutions. These two branches appear after amplification of noise

during the initialilization of the adjoint.

4.3 Flow past a wing

In order to apply the p−norm procedure to a more realistic case, we present below, the

p−norm optimal perturbations for the flow past a finite span wing, following the work of

Navrose et al. (2019).

4.3.1 L2 optimal perturbations

In their study, Navrose et al. (2019) investigated the L2 linear optimal perturbations in the

steady and fully developped flow past a finite aspect ratio wing. The parameters that were

explored are the horizon time T , the Reynolds number, the aspect ratio AR (span/chord),

and the angle of attack α.

The computational set-up consisted of a rectangular wing placed in a cubiform domain with

a uniform inlet velocity. The streamwise length of the domain is 64 times the chord length

(c): 4c upstream and 60c downstream from the leading edge of the wing. In the vertical

direction, the position of the wing is such that the leading edge is at an equal distance of

10c from the bottom and top boundaries. Due to the symmetry of the flow about the mid-

plane, the computations were carried out in the half-domain with the symmetry boundary

condition enforced on the mid-plane y = 0. The reader may refer to figure 4.10 to visualize

the computational setup. For Re = 1000, with an aspect ratio AR = 6 and α = 5◦ of

angle of attack, Navrose et al. (2019) have found that the gain in kintetic energy increases
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Figure 4.10: Flow past a finite span wing (purple) at Re = 1000 with AR = 6 and α = 5◦. The

grey contour represent |ωx| = 0.1. For this very illustration, the contour surface has been shown for

the full wing by reflecting the flow at the mid-plane y = 0.
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monotonically with T . Conversely, the shape of the optimal perturbation does not change

considerably with the horizon time. The linear optimal perturbation is located near the

surface of the wing and is dominated by spanwise oriented structures mostly composed of ωy

vorticity. The different components of vorticity are arranged as parallel sheets of alternate

sign inclined to the surface wing, see figure 4.11. The streamwise and vertical components

of vorticity are fairly weaker than the spanwise component. It is interesting to note that the

Figure 4.11: Optimal perturbation for a flat plate: Isocontours ωy = ±0.2 for T = 10 of the linear

optimal perturbation. The wing root lies on the plane of symmetry of the geometrical set-up.

optimal perturbation is mainly located at the wing and its vicinity. When increasing the

aspect ratio, the optimal gain increases. Moreover, the computations have shown that the

2-D optimal gain is higher than that of the finite span wing. When α increases, the optimal

gain increases.

Changing the shape of the airfoil to a NACA0012 increases the gain by an order of magnitude

as compared to the flat plate. Regardless of the gain being affected by the changes of the

parameters, Navrose et al. (2019) have shown that the shape of the optimal perturbation

is akin over the parameter space. When instantiating linear and nonlinear direct numerical

Figure 4.12: Optimal perturbation for a NACA0012 rectangular wing. Computed at T = 10,

AR = 6 and α = 5. The contour represent the spanwise vorticity at different chord sections.
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simulations using the linear optimal perturbation, it is observed that the perturbation evolves

as a wavepacket travelling at nearly the freestream velocity. In addition its energy increases in

the near wake region following the Orr mechanism. It is also noted that the finite amplitude,

nonlinear perturbation provokes an elliptical motion of the vortex core whereas the linear

evolution does not affect the locus of the vortex.

The fact that the linear optimal perturbation is located near the wing (which is desirable

from a practical control point of view) encourages the investigations of p−norm optimal

perturbations.

4.3.2 p−norm optimal perturbations

Despite being suboptimal in terms of pure kinetic energy, using p−norm optimization can

be applied for more realistic flows. In this subsection, we discuss the early investigations

of p−norm optimal perturbations of the flow past a flat plate wing. The computational

setup is identical to the one presented in the previous subsection. For more detail on mesh

convergence, the reader may refer to table 1 from the original paper by Navrose et al. (2019).

Unless otherwise stated, the selected parameters are: Re = 1000, T = 10, AR = 6 and α = 5◦.

Figure 4.13 shows the evolution of the perturbation kinetic gain, the p−norm cost function,

and the ∞−norm gain as a function of p.

The trend of the curves follow that of figure 4.4. The saturation in infinite norm gain occurs

Figure 4.13: Evolution of E(T )/E(0) (left), Ep(T )/E(0) (middle), E∞(T )/E(0) (right) as a function

of p in the case of the flow past a wing at Re = 1000, α = 5 and AR = 6. The evolutions are similar

to that observed in figure 4.4. The values of p correspond to 1, 2, 5, 10, 50 and 100 from left to right.

around p = 5. This effect is imputed to the relatively low value of the Reynolds number.

The viscous diffusion will filter the localization lengthscale, and any increase will not modify

the infinite norm gain nor the shape of the optimal perturbations. Foures et al. (2013) have

shown that the p−threshold value increases with the Reynolds number.

Figure 4.14 compares the L2 and p−norm optimal perturbation shapes for p = 1, 2, 5 and
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100. Similar overall shapes are observed for the various perturbations, except that the higher

order norm localizes the perturbation closer to the mid plane y = 0. The 5−norm optimal

Figure 4.14: Comparison between the 1, 2, 5 and 100−norm (left to right, top to bottom) optimal

perturbations for a flat plate wing. Computed at T = 10, AR = 6 and α = 5. As expected the p−norm

procedure localizes the perturbation. The contour represent the streamwise vorticity levels at ±0.2 of

the perturbations. The shape of the optimal perturbation do not vary when p ≥ 2, this saturation

occurs when the diffusion and p−norm lengthscales are equivalent.

perturbation yields a gain in kinetic energy E1(T = 10)/E(0) = 1720 whereas the L2 optimal

perturbation yields E1(10)/E(0) = 2206. The 22% decrease in energy is expected as the

localization step reduces the perturbation support i.e. the subset of the domain containing

the elements which are not mapped to zero. For higher values of p, the kinetic energy gain

decreases and suddenly drops for p ≥ 50.

Figure 4.15 plots the shape of the optimal perturbation at horizon time T = 10 for p =

5. The chevron pattern is inverted compared to the one observed in figure 4.14 in which

the perturbation is oriented downstream. This is the consequence of the action of the Orr

mechanism. The importance of the Orr mechanism points out the two-dimensional nature

of the perturbation growth in the near wake. As a reminder, Navrose et al. (2019) have

shown that the gain following optimal perturbation was the highest for an infinite aspect

ratio wing. The question that would need to be answered is whether, as it does when non-

linearity is triggered within the evolution of the L2−norm optimal, is whether such horizon

time perturbation can transfer to the vortex core and provokes its displacement. Numerical

simulation up to larger time would be worthwhile to carry out in future researches.
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Figure 4.15: Perturbation streamwise vorticity at horizon time T = 10 (red and blue). The green

chevrons represent the streamwise vorticity of the initial optimal perturbation. The chevrons invert

while travelling downstream.

Throughout this chapter, we have explored the use of p−norm optimal perturbation

in the case of the single vortex and the flow past a plate. We have shown how

the higher order exponent reduces the spatial extent of the perturbation field. The

achieved growth rates in terms of kinetic energy remains at significant levels in spite

of the p-norm constraint. It is found that initial optimal perturbation retains a

complex spatial distribution, however support is shrunk.
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Conclusion

Summary of the main results and outlook on future works

Real trailing wakes vortices persist for long durations, typically between one to three minutes.

This duration is likely longer in the worst case scenario when crosswind and atmospherical

turbulence, which are among the mechanisms for accelerated turbulent decay, are absent.

In the vicinity of the ground this persistence is complicated by the rebound effect, which

provokes the stagnation of the vortices above the runway area. The rebound is a result of

the viscosity acting on the flow provoked by the vortices at the ground. In the absence of

viscosity the vortices follow an hyperbolic motion due to the image effects of the ground.

The viscous action at the ground generates a boundary layer that separates in the counter

pressure gradient provoked by the vortices, which leads them to sustain entrainment by sec-

ondary, detached vorticiy. Within their hovering above the ground, the vortices are found

to loop multiple times. In real air trafic, the lengthy presence of the vortices constraints the

take-off and landing frequencies of aircrafts. The risky potential for hazardous wake vortex is

greatest in this phase of an aircraft mission, compared to cruise, and has deserved much of the

focus of the regulations on vortex separation distances. The way to circumvent these rules and

gain take-off and departure frequencies, without compromising safety, has been tackled in re-

cent works mostly by gaining increased knownledge on vortex dynamics in ground effect, and

by developping control strategies, for instance by selecting ideal configurations of obstacles

pattern at the ground or by activating long-wave instabilities ideal wavelength by modulated

ground altitude. Vortex control has been at the heart of this thesis, with the objective in

mind to find new and especially optimal ways to reduce vortex lifetime in and out of ground

proximity. We have explored several theoretical control strategies, based on optimal control

and optimal perturbation techniques.

We started in chapter [2] by describing the vortex dynamics in ground effect. Although

largely discussed and presented in the literature before, we could verify and analyse the cause

for vortex rebound and looping with precise two-dimensional direct numerical simulations.

The flow was then employed to calculate an optimal control strategy based on blowing and
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suction at the ground. The motivation behind this theoretical setting was based on the a

priori simplicity of such a system, although in the end an attempt to evaluate the cost of

such a control showed the applicative difficulty. We discuss in the outlook how, still, the sum

of the thesis work could be combined efficiently for a reduced cost of such a control. The

optimal control strategy was very rich from the point of view of the physics learned. First

we showed that the vortex rebound effect could be countered, with consequence that the

controlled vortex is able to follow an inviscid like trajectory, that is, a hyperbolic line first

down the ground and then parallel to it, outward. The mechanism of the control was found

to be the stabilization of the boundary layer formed at the ground, with dominant suction to

prevent flow separation. In effect the control strategy was able to double the lateral distance

of the vortices. An optimal horizon time of the control was also found, meaning that acting

beyond it would not provide more benefit to the lateral displacement. The analysis ended by

evaluating the energy required to practically apply the optimal control in at a real airport

runway.

In the next chapter, chapter [3], we have explored the potential for vortex mitigation in ground

effect through acting on the intrinsic stability of the vortices. Due to the peculiar kinematics

of the vortices in ground proximity (described above : rebound and looping) we have employed

a linear optimal perturbation strategy to describe the linear stability of the vortices, first in

a two-dimensaionl setting and then in three-dimensions. The methodology was fully based

on the flow initiated from a pair of Lamb-Oseen vortex. After the numerical implementation

of the method and its validation, the results of the two-dimensional analysis first showed the

importance of the boundary layer at the ground in the overall dynamics of the interaction.

The vortices were shown to be affected by displacement modes, as could be anticipated from

previous study of the two-dimensional dynamics and optimal perturbation results obtained

for instance by Jugier (2016). The interest was greater when looking at three-dimensional

perturbations. First the amplification potential of three-dimensional perturbations is much

larger than in two-dimensions. Second, after a normalized time of about 2 to 3, the short

wavelengths become dominant among the spectrum, showing that ground effect promotes the

rise of small scale perturbations into the flow. This was attributed to the consequence of the

boundary layer, which appears as a shorter scale compared to the vortices, and the separation

of which provides strong mechanisms for flow destabilization. Yet at short time, the optimal

wavelength is found to be that of the long-wavelength typical of the vortex dynamics in free

space. We concluded this linear analysis by conducting non-linear DNS simulations of the flow

initialized by optimal perturbation of finite amplitudes. Initial amplitudes of 0.1 to 10% were

considered. When applied with an amplitude of 1% of the total energy, the system is found

to be completely mitigated, developping turbulence in a short amount of time. Comparison

was taken against the uncontrolled system which, in the same time, remained coherent. This

validated the strong response of the vortices to short wavelength initial perturbations.

94



Eventually chapter [4] questions the localization of the optimal perturbations, such as those

found in the previous chapter, however with a limited application to the case of a single vortex

case, without ground effect, and for the flow past a wing, following some previous works of

the literature. The motivation is driven by the application of optimal perturbation results in

realistic configurations. Usually the spatially wide distribution of the optimal perturbation

structure is a difficulty when one searches for control devices to generate them. One way to

relax the issue is to optimize more localized perturbations and this can be achieved using sub-

optimal optimization, like p−norm optimization. p−norm replaces the usual kinetic energy

of the perturbation with a p-norm evaluation of the velocity field. With high value of the p

exponent, the norm tends to select only the area of the flow where the maximum growth is

achieved. Although the initial optimal perturbation retains a complex spatial distribution,

the support is thinned and possibly realized using control devices in fewer places. The appli-

cation of the p-norm optimal shows the localization effect for the single vortex, as well as for

the flow past a flat plate. The achieved growth rates in terms of kinetic energy remains at

significant levels in spite of the p-norm constraint.

Outlook and Perspectives

Various aspects of the dynamics of vortices have been investigated in the course of this thesis.

Behind the focus of ground effect, and the motivation of flow control for accelerated vortec

decay, fundamental results showing how vortices behaves and respond to perturbations and

the presence of hard surfaces placed around them have been obtained.

The results that were obtained form a partially coherent set that provides possible out-

look for future works and investigations. The most interesting is to take a global look on

optimal control described in chapter [2] with the optimal perturbation in three-dimensional

space detailed in chapter [3]. Indeed, the optimal control can be seen as a way to trigger

three-dimensional perturbation at the optimal wavelength of the vortex dynamics. If the

optimal control were distributed axially at the wavenumber k ' 6 which is found for large

horizon time, given that part of the optimal perturbation is located at the ground for such

time horizons, then one could expect to trigger such flow departure from coherence that are

observed in the DNS results at the end of chapter [3]. This objective of flow decay would then

replace the objective that was chosen in the two-dimensional setting, of optimizing the lateral

position of the vortices. A future study could replicate the optimal control algorithm with

an adapted objective for perturbation growth and a three-dimensional domain. Although the

computational cost would be high, it should be affordable with current ressources.

To reduce the burden of implementing the blowing/suction strategy in a real configuration,

investigations towards the optimization of simpler control means would be helpful. Following

the work of Stephan et al. (2013) and the efficiency of plate lines devices, it could be envisaged
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to optimize fix patterns of geometric variations of the ground surface. Such geometries could

be defined by a limited set of parameters thereby allowing for simpler optimization algorithms

than the adjoint technique used in the present work.

Another research thread is to investigate the non-linear fate of perturbations and taking

non-linearity into account from the optimization stage. With the increased compute capability

and storage, adding the effect of non-linearities to the optimal perturbations in ground effect

would be achievable, and provide worhtwhile results. Navrose et al. (2018) have shown that

a nonlinear optimal perturbation can outperform the linear optimal perturbation for a 2-D

isolated vortex and counter-rotating vortex pair. The complex kinematics of the vortices

in ground effect would legitimate the use of a non-linear model because it is expected that

perturbations to the secondary structures of the flow may not be insignificant to them at their

early stage of formation (separation of the boundary layer for instance). Retroactions of the

perturbation upon the flow are to be expected.

Eventually it would be worthwhile to attempt experimentally some of the theoretical

results obtained in this thesis. The question whether the highlighted mechanisms are efficient

in a realistic environnement with imperfections of symmetry, wall roughness, boundaries, and

account of the way to generate the initial vortices would be a powerful incentive to dig into a

broader domain of the vortex dynamics. Successful results would open new perspectives for

regulating air trafic with regards to wake hazard.
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APPENDIX A

Optimal Perturbations : Mesh Convergence

Mesh refinement using spectral elements is convenient as it can be achieved in two ways.

The first consist in increasing the total number of elements. The other consists in increasing

the polynomial order, this results in exponential convergence of residuals. In Chapter 3, the

polynomial order is P = 5 amounting to 63 = 216 grid points per element (gdp/elem).

A.1 Linear Optimal Perturbations

Increasing the polynomial order to 7 marginally modifies the results. Table A.1 summarized

the results on mesh convergence for 2 extreme cases (respectively A and B) : A has a relatively

low horizon time T = 1.25 and B is the most optimal perturbation T = 5, kz = 6.0.

Parameters Polynomial Order Number of gdp/elem G(T, kz)

T = 1.25, kz = 1.0 5 216 101.59

5 512 101.61 (+0.01%)

T = 5, kz = 6.0 5 216 3890437

7 512 3890325 (+0.002%)

Table A.1: Grid sensitivity data for the transient growth : influence of the polynomial order on

the total gain in the pertubation kinetic energy for T = 1.25, kz = 1.0 (top) and T = 5.0, kz = 6.0

(bottom).

Contours of vorticity magnitude for the case T = 5.0, kz = 6.0 are provided in figure A.1.

Nearly identical structures are observed when increasing the polynomial order.
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Figure A.1: Comparison of the shape of the optimal perturbation T = 5, kz = 6.0 for 216 grid points

per element (left) versus 512 (right) showing good matching between the vorticity fields.

A.2 Direct Numerical Simulations

The case T = 5.0, kz = 6.0 has been considered to assess mesh convergence when running

Direct Numerical Simulations. Figure A.2 shows identical evolution of the total kinetic energy

when changing the polynomial order from 5 to 7. The relative error in kinetic energy is

r ' 0.01%.

Figure A.2: Time evolution of the kinetic energy in the case of direct numerical simulations showing

no effect when increasing the polynomial order.
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Long French Résumé

Les tourbillons de sillage générés derrière les avions de transport peuvent persister sur des

longues périodes de temps, généralement comprises entre une à trois minutes. Cette durée

est encore plus longue dans le cas le plus défavorable, lorsque le vent de travers et la turbu-

lence atmosphérique, qui font partie des mécanismes de décroissance accélérée des tourbillons,

sont absents. Au voisinage du sol, cette persistance est amplifiée par l’effet de rebond, qui

provoque la persistance des tourbillons au-dessus de la zone de la piste.

Le rebond résulte de la viscosité agissant sur l’écoulement provoqué par les tourbillons au

niveau du sol. En l’absence de viscosité, les tourbillons suivent une trajectoire hyperbolique

qui s’explique par les effets d’image dû au sol. L’action visqueuse au niveau du sol génère une

couche limite qui se sépare dans le gradient de pression adverse provoqué par les tourbillons,

ce qui les conduit à subir l’entrâınement par de la vorticité secondaire détachée. Au cours

de leur mouvement au-dessus du sol, les tourbillons effectuent de multiples boucles. Dans le

trafic aérien réel, cette présence prolongée des tourbillons limite les fréquences de décollage et

d’atterrissage des avions. C’est dans cette phase de la trajectoire d’un avion, par rapport à

la phase de croisière, que le risque de tourbillon de sillage dangereux est le plus élevé et c’est

pourquoi les réglementations sur les distances de séparation des tourbillons ont fait l’objet

d’une grande attention. Le contrôle des tourbillons a été au cœur de cette thèse, avec pour

objectif de trouver de nouveaux moyens, particulièrement optimaux, d’assurer la sécurité des

vols.

L’objectif de cette thèse a été de trouver des moyens optimaux pour réduire la durée de vie

des tourbillons dans et hors de la proximité du sol.

Pour cela, nous avons exploré plusieurs stratégies théoriques de contrôle, basées sur des tech-

niques de contrôle optimal et de perturbation optimale.

Nous avons commencé dans le chapitre 2 par décrire la dynamique des tourbillons en effet

de sol. Bien que largement discutée et présentée dans la littérature auparavant, nous avons

pu vérifier et analyser la cause du rebond et le bouclage des tourbillons avec des simulations

numériques directes en deux dimensions. L’écoulement a ensuite été utilisé pour calculer une

stratégie de contrôle optimale basée sur le soufflage et la succion. La motivation derrière ce
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cadre théorique était basée sur la simplicité a priori d’un tel système, en fin de compte une

tentative d’évaluer le coût d’un tel contrôle a montré la difficulté applicative du concept en

l’état. Nous discutons dans les perspectives comment, malgré tout, la somme des travaux de

la thèse pourrait être combinée efficacement pour mettre en oeuvre l’intérêt des mécanismes

obtenus. La stratégie de contrôle optimal était très riche du point de vue de la physique

apprise. Nous avons d’abord montré que l’effet de rebond du vortex pouvait être contré, avec

pour conséquence que le vortex contrôlé est capable de suivre une trajectoire de type non

visqueuse, c’est-à-dire une ligne hyperbolique d’abord le long du sol puis parallèle à celui-ci,

vers le bas et ensuite parallèlement à celui-ci, vers l’extérieur. Le mécanisme de contrôle s’est

avéré être la stabilisation de la couche limite formée au sol, avec par un effet d’aspiration,

de sorte à empêcher la séparation de l’écoulement. En effet, la stratégie de contrôle a permis

de doubler la distance latérale des tourbillons. Un temps d’horizon optimal du contrôle a

également été trouvé, ce qui signifie qu’agir au-delà de ce temps n’apporterait pas plus de

bénéfice au déplacement latéral. L’analyse s’est terminée par l’évaluation de l’énergie requise

pour appliquer concrètement le contrôle optimal sur une piste d’aéroport réelle.

Dans le chapitre suivant, le chapitre 3, nous avons exploré le potentiel d’atténuation des

tourbillons en effet de sol en agissant sur la stabilité intrinsèque des tourbillons. En raison

de la cinématique particulière des tourbillons en effet de sol (décrite ci-dessus : rebond et

bouclage), nous avons employé une stratégie de perturbation optimale linéaire pour décrire

la stabilité linéaire des tourbillons, d’abord dans un cadre bidimensionnel, puis en trois di-

mensions. La méthode était entièrement basée sur l’écoulement initié à partir d’une paire de

tourbillons Lamb-Oseen. Après la mise en œuvre numérique de la méthode et sa validation,

les résultats de l’analyse bidimensionnelle ont d’abord montré l’importance de la couche limite

au sol dans la dynamique globale de l’interaction. Les tourbillons se sont révélés être affectés

par les modes de déplacement, comme on pouvait l’anticiper à partir de l’étude précédente de

la dynamique bidimensionnelle et des résultats de perturbation optimale obtenus par exem-

ple par Jugier (2016). L’intérêt était plus grand lorsqu’on s’est intéressé aux perturbations

tridimensionnelles. Premièrement, le potentiel d’amplification des perturbations tridimen-

sionnelles est beaucoup plus important qu’en deux dimensions. Deuxièmement, après un

temps normalisé d’environ 2 à 3, les courtes longueurs d’onde deviennent dominantes parmi

le spectre, ce qui montre que l’effet de sol favorise la l’augmentation des perturbations à pe-

tite échelle dans l’écoulement. Ceci a été attribué à la conséquence de la couche limite, qui

apparâıt comme une échelle plus courte par rapport aux tourbillons, et dont la séparation

fournit de forts mécanismes de destruction de l’écoulement. dont la séparation fournit des

mécanismes forts pour la déstabilisation de l’écoulement. Pourtant, à court terme, la longueur

d’onde optimale optimale est celle de la grande longueur d’onde typique de la dynamique des

vortex en espace libre. espace libre. Nous avons conclu cette analyse linéaire en effectuant
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A.2. DIRECT NUMERICAL SIMULATIONS

des simulations DNS non linéaires de l’écoulement initialisées par une perturbation optimale

d’amplitudes finies. Des amplitudes initiales de 0,1 à 10% ont été considérées. Lorsqu’il est

appliqué avec une amplitude de 1% de l’énergie totale, le système est trouvé est complètement

atténué, développant la turbulence en peu de temps. La comparaison a été faite par rapport

au système non contrôlé qui, dans le même temps, est resté cohérent. Ceci valide la forte

réponse des tourbillons aux perturbations initiales de courte longueur d’onde.

Enfin, le chapitre 4 questionne la localisation des perturbations optimales, telles que celles

trouvées dans le chapitre précédent, avec toutefois une application limitée au cas d’un seul

tourbillon, sans effet de sol, et pour l’écoulement devant une aile, suivant certains travaux

antérieurs. La motivation est expliquée par l’application des résultats de perturbation op-

timale dans des configurations réalistes. Habituellement, la large distribution spatiale de

la structure de la perturbation optimale représente une difficulté lorsque l’on recherche des

résultats surtout lorsqu’on cherche des dispositifs de contrôle pour les générer. Une façon de

résoudre ce problème est de chercher des perturbations plus localisées, ce qui peut être réalisé

en utilisant une procédure sous-optimale, comme l’optimisation en norme p. La norme p rem-

place l’énergie cinétique habituelle de la perturbation par une évaluation en norme p du champ

de vitesse. Avec une valeur élevée de l’exposant p, la norme tend à sélectionner uniquement la

zone de l’écoulement où la croissance maximale est atteinte. Bien que la perturbation optimale

initiale conserve une distribution spatiale complexe, le support est amoindri et éventuellement

réalisé en utilisant des dispositifs de contrôle en moins d’endroits. L’application de la norme

p montre l’effet de localisation pour le tourbillon unique, ainsi que pour l’écoulement autour

une plaque plane. Les taux de croissance atteints en termes d’énergie cinétique restent à des

niveaux significatifs malgré la contrainte de la norme p.

107



APPENDIX A. OPTIMAL PERTURBATIONS : MESH CONVERGENCE

108



Titre : Contrôle des Paires de Tourbillons en Effet de Sol
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Résumé : Les tourbillons de sillage persistent pen-
dant de longues durées, généralement entre une et
trois minutes. Cette durée est encore plus longue
dans le cas le plus défavorable, lorsque le vent de
travers et la turbulence atmosphérique, qui font partie
des mécanismes de décroissance accélérée des tour-
billons, sont absents. Au voisinage du sol, cette per-
sistance est amplifiée par l’effet de rebond, qui pro-
voque la stagnation des tourbillons au-dessus de la
zone de la piste.
Le rebond résulte de la viscosité agissant sur
l’écoulement provoqué par les tourbillons au niveau
du sol. En l’absence de viscosité, les tourbillons
suivent une trajectoire hyperbolique dû aux effets
d’image du sol. L’action visqueuse au niveau du sol
génère une couche limite qui se sépare dans le gra-
dient de pression adverse provoqué par les tour-
billons, ce qui les conduit à subir l’entraı̂nement par
de la vorticité secondaire détachée. Au cours de

leur mouvement au-dessus du sol, les tourbillons ef-
fectuent de multiples boucles. Dans le trafic aérien
réel, la présence prolongée des tourbillons limite les
fréquences de décollage et d’atterrissage des avions.
C’est dans cette phase de la trajectoire d’un avion, par
rapport à la phase de croisière, que le risque de tour-
billon de sillage dangereux est le plus élevé et c’est
pourquoi les réglementations sur les distances de
séparation des tourbillons ont fait l’objet d’une grande
attention. Le contrôle des tourbillons a été au cœur
de cette thèse, avec pour objectif de trouver de nou-
veaux moyens, particulièrement optimaux, d’assurer
la sécurité des vols.
L’objectif de cette thèse a été de trouver des moyens
optimaux pour réduire la durée de vie des vortex dans
et hors de la proximité du sol.
Pour cela, nous avons exploré plusieurs stratégies
théoriques de contrôle, basées sur des techniques de
contrôle optimal et de perturbation optimale.

Title : Control of Vortex Pairs in Ground Effect

Keywords : vortex, flow control, optimization

Abstract : Real trailing wakes vortices persist for long
durations, typically between one to three minutes.
This duration is likely longer in the worst case sce-
nario when crosswind and atmospherical turbulence,
which are among the mechanisms for accelerated tur-
bulent decay, are absent. In the vicinity of the ground
this persistence is complicated by the rebound effect,
which provokes the stagnation of the vortices above
the runway area.
The rebound is a result of the viscosity acting on the
flow provoked by the vortices at the ground. In the
absence of viscosity the vortices follow an hyperbo-
lic motion due to the image effects of the ground.
The viscous action at the ground generates a boun-
dary layer that separates in the counter pressure gra-
dient provoked by the vortices, which leads them to
sustain entrainment by secondary, detached vorticiy.
Within their hovering above the ground, the vortices

are found to loop multiple times. In real air trafic, the
lengthy presence of the vortices constraints the take-
off and landing frequencies of aircrafts. The risky po-
tential for hazardous wake vortex is greatest in this
phase of an aircraft mission, compared to cruise, and
has deserved much of the focus of the regulations on
vortex separation distances. The way to circumvent
these rules and gain take-off and departure frequen-
cies, without compromising safety, has been tackled in
recent works mostly by gaining increased knownledge
on vortex dynamics in ground effect, and by develop-
ping control strategies.
Vortex control has been at the heart of this thesis,
with the objective in mind to find new and especially
optimal ways to reduce vortex lifetime in and out of
ground proximity. We have explored several theoreti-
cal control strategies, based on optimal control and
optimal perturbation techniques.
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