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M. Emmanuel Chaput Professeur des Universités, ENSEEIHT - INP Toulouse, Rapporteur

Mme Nathalie Mitton Directrice de Recherche, INRIA Lille - Nord Europe, Rapporteur

Mme Hakima Chaouchi Professeur, Institut Mines Telecom - Telecom Sud Paris, Examinateur
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Abstract

Internet of Things (IoT) today comprises a plethora of different sensors and diverse

connected objects, constantly collecting and sharing heterogeneous sensory data from their

environment. This enables the emergence of new applications exploiting the collected data

towards facilitating citizens lifestyle. These IoT applications are made context-aware thanks

to data collected about user’s context, to adapt their behavior autonomously without hu-

man intervention. In this Thesis, we propose a novel paradigm that concern Machine to

Machine (M2M)/Thing To Thing (T2T) interactions to be aware of each other context

named “T2T context-awareness at the edge”, it brings conventional context-awareness

from the application front end to the application back-end. More precisely, we propose

to empower IoT devices with intelligence, allowing them to understand their environment

and adapt their behaviors based on, and even act upon, the information captured by the

neighboring devices around, thus creating a collective intelligence.

The first challenge we face in order to make IoT devices context-aware is (i) How can we

extract such information without deploying any dedicated resources for this task ? To do

so we propose in our first work a context reasoner [1] based a cooperation among IoT

devices located in the same surrounding. Such cooperation aims at mutually exchange data

about each other context.

To enable IoT devices to see, hear, and smell the physical world for themselves, we

need firstly to make them connected to share their observations. For a mobile and energy-

constrained device, the second challenge we face is (ii) How to discover as much neighbors

as possible in its vicinity while preserving its energy resource ? We propose Welcome [2] a

Low latency and Energy efficient neighbor discovery scheme that is based on a

single-delegate election method.

Finally, a Publish-Subscribe that takes into account the context at the edge of IoT devices,

can greatly reduce the overhead and save the energy by avoiding unnecessary transmission of

data that doesn’t match application requirements. However, if not thought about properly

building such T2T context-awareness could imply an overload of subscriptions to meet
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context-estimation needs. So our third contribution is (iii) How to make IoT devices context-

aware while saving energy. To answer this, We propose an Energy efficient and context-

aware Publish-Subscribe [3] that strike a balance between energy-consumption due to

context estimation and energy-saving due to context-based filtering near to data sources.

Keywords : Internet of Things (IoT), IoT Applications, Services, Quality of context,

Quality of service ,Context-awareness, Machine learning, Condiotional Random Field, Neigh-

bir Discovery, Publish-Subscribe, Mobility, Energy Efficiency, low Latency, Wireless sensor

networks (WSN), Game Theory, Dynamic Coalitional Games.



Résumé

L’Internet des objets (IdO) comprend aujourd’hui une riche offre d’objets connectés, qui

permettent de collecter et de partager en continu des données hétérogènes se rapportant

à leurs environnements. Ceci a permis l’émergence d’un nouveau type d’applications, qui

sont basées sur ces données et permettent de faciliter la vie des citoyens. Ces applications

de l’Internet des objets sont dites « sensibles au contexte ». Grâce aux données collectées

sur le contexte de l’utilisateur, elles sont en mesure d’adapter leur comportement de ma-

nière autonome, sans intervention humaine. Dans cette thèse, nous proposons un nouveau

paradigme autour des interactions objet-á-objet, nommé « Interactions objet-á-objet pour

la sensibilité au contexte en bordure de réseaux ». Ce dernier, permet de tenir compte d’un

nouveau type de contexte, paradoxalement á la notion conventionnelle de « sensibilité au

contexte » qui se limite au contexte de l’utilisateur d’une application. Ainsi nous proposons

de nous intéresser pour la première fois au contexte des objets en tant que composante

meme de l’application. Cette thése vise á doter les objets connectés d’un certain degré d’in-

telligence, leur permettant de comprendre leur propre environnement et d’en tenir compte

dans leurs interactions objet-á-objet. Les contributions majeures de cette thése se focalisent

sur deux modules principaux. Nous proposons, dans un premier temps, un module d’iden-

tification de contextes capable de capter les contextes des objets mobiles et de délivrer ce

genre d’information de contexte de façon exacte et continue. Sur la base de cette informa-

tion de contexte assurée par le premier module, nous proposons un deuxième module de

collecte de données sensible aux contextes de déploiement des objets connectés.

Afin que ceci soit possible, de nombreux verrous restent á lever. Concernant le premier

module d’identification de contexte, le premier défi rencontré afin de permettre aux objets

connectés de devenir sensibles au contexte est (i) Comment peut-on assurer une identifica-

tion de contexte exacte pour des objets déployés dans des environnements incontrôlables ?

Pour ce faire, nous proposons dans notre premier travail un raisonneur dédié á l’apprentis-

sage et le raisonnement sur le contexte [1]. Le raisonneur proposé est fondé sur une stratégie

coopérative entre les différents dispositifs IdO d’un même voisinage. Cette coopération vise

á un échange mutuel des données parmi les ressources disponibles d’un même voisinage.

La deuxième problématique rencontrée est (ii) Comment peut-on assurer une identification

de contexte continue pour des nœuds mobiles appartenant á des réseaux opportunistes ?
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Nous devons tout d’abord leur permettre de découvrir un maximum de voisins afin d’éta-

blir un échange avec. Afin de répondre á cette deuxième problématique nous proposons

WELCOME un protocole de découverte des voisinages éco énergétique et á faible latence

[2] qui permettra de diminuer considérablement les collisions sur la base d’une découverte

de voisinage á faible coût en termes de latence et d’énergie.

La troisième problématique, se rapportant au module de collecte de données sensible

au contexte, est (iii) Comment peut-on assurer une collecte efficace et précise sur la base

du contexte physique de déploiement des capteurs. En effet, d’une part tenir compte de

l’information de contexte des capteurs, permet d’éviter toutes transmissions inutiles ou re-

dondante de données. D’autre part, la contextualisation des données implique un partage et

donc des transmissions de messages. La question ici (iii) Comment peut-on contextualiser au

mieux le plus grand nombre d’objets connectés tout en préservant au mieux leurs ressources

énergétiques. Afin de répondre á cette question, nous proposons un Publish-Subscribe á la

fois sensible au contexte et éco énergétique basé sur un jeu coalitionnel dynamique qui per-

met de résoudre ces conflits d’intérêts entre les sources dans un réseaux [3]. Mots clés :

Internet des Objets (IdO), IdO Applications, Services, Qualité de contexte, Qualité de

service, Sensibilisation au Contexte, Apprentissage Machine, Les Champs Aléatoires condi-

tionnels, Découverte de voisinage, Publish-Subscribe, mobilité, Efficacité énergétique, Faible

latence, Réseau de capteurs, Théorie de jeux, Jeux Coalitionnels Dynamiques.
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Chapter 1

Introduction

Contents

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Motivation

The rapid worldwide deployment of Internet passed from connecting HTML pages to

interconnecting all physical and digital objects,things, creating a new ecosystem called

“Internet of Things” (IoT). IoT enables the emergence of a new generation of applications

and services destined to improve our quality of life, security, and performance. These IoT

applications always rely on a number of “smart things” to help resolve the challenges (e.g.

road traffic congestion) we face every day. A smart thing is an identifiable physical element

that is potentially able to communicate, act, sense, and interact with the environment and

other smart things. The realization of Smart Cities, which is a major consumer of IoT

applications, requires a huge number of connected sensors, or actuators as instances of

“smart things”, also referred as IoT devices/objects or simply things, to act autonomously

to collect data and to provide different services to IoT application consumers.

Given the frequent mobility of these things and their dynamic states change (e.g. sleep/wake

up, connect/disconnect), IoT network is a highly unstructured cloud. The environment in

which these devices are deployed can largely impact the collected data and the provided

1



1.1. Motivation 2

services quality. So, in this thesis we advocate that it is important that such devices are

made aware of the context of their surroundings, particularly while collecting data. Thus

the provision of IoT applications that could satisfy the user needs is still an open issue. To

supply IoT systems with data collected by mobile devices, we need a better understanding

of how the data was collected and communicated to other machines.

Figure 1.1: Context-awareness at the edge example

To better assess our motivation, let us present the example in 1.1, where an IoT ap-

plication user, want to know the environment quality outside his home. To answer this

request the IoT application needs to be provided with some sensoring data such as the

ambient temperature, the humidity, the carbon dioxide (CO2), the volatile organic com-

pounds (VOCs), outside his home. Hence, the IoT application will firstly search for all

available necessary sensors lying into the desired area. Let us consider the specific case of

temperature sensor selection only. The list of available candidates to answer the application

request comprises indoor and outdoor sensors. As it is clear that the indoor temperature

sensors doesn’t meet the application requirements, they should be removed from the tem-

perature sensor list. From those deployed outdoor it seems that not all of them can satisfy

the application requirement. Indeed, their situational contexts influence their reports. For

instance the sensor installed inside the car will report ambient temperature inside the car,

and the sensor under the tree will report outdoor under shade temperature. It seems that

the temperature sensor on the roof is the locally best candidate to answer the application
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request.This is the one that needs to be identified and selected. On the light of described

scenario, “context-aware computing at the edge” avoid IoT applications to be provided with

undesired data with regard to IoT application requirements. More generally, as things pro-

vide their functions as real-world services, we consider essential to fill that gap by proposing

a new form of context-awareness that provide IoT applications with context-aware services.

On the one hand, this may offer innovative opportunities for IoT applications/users to

specify precisely their needs (temperature under shade, ambient luminosity, etc). On the

other hand, this allow things to participate and act autonomously based on their context.

More precisely, we focus on machine to machine communication and data exchange to

ensure providing IoT system with trustworthy and fully described data. Our intent, in

this thesis, is to empower IoT devices with a layer of intelligence for the development of

a T2T consciousness/environmental awareness. To mimic humans talk, we aim to

boost T2T communication to a much higher level than simple communication, we want to

contextualize these communication to make it a conversation. To do so, we tackle in this

thesis the main IoT modules that could ensure T2T context-awareness at the edge:

• Context identification module: (i)How to ensure a trustworthy and accurate context

estimation for the IoT devices especially when deployed in uncontrolled environments?

(ii) How to ensure the continuity of such an context identification module for mobile

nodes in opportunistic networks?

• Context-aware data collect module: How to provide applications with the appropriate

data in efficient and?

1.2 Contributions

The first question we faced in order to make IoT devices context-aware is: how to anno-

tate raw data gathered by connected objects according to their context of acquisition (i)

without deploying any dedicated resources and (ii) at the same time ensure a trustworthy

and accurate context recognition? We firstly propose a collaborative approach between

connected objects in the same geographical location (neighborhood) to contextualize the

data collected during the collection phase. We think that any pair of sensors reporting

information about their environment to the applications back-end, can at the same time
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report information about their mutual environment. For instance, a temperature sensor

near a luminosity sensor can report its reading to describe its neighbor’s context, and vice-

versa. Based on this, we propose a “ T2T context Reasoner” which, once the sensor

reading stream and the observations about its physical context reported by its neighbors

is provided, returns an estimation about sensor’s context at a given instant as well as its

temporal evolution. By doing so, the reasoner assigns a sensing context to each sensor

reading. The dedicated reasoner is based on Conditional Random Fields (CRF), a well

known statistical model method used for structured prediction. CRF allows to take into

account the spatio-temporal interaction between sensors of the same neighborhood in order

to decode a temporal sequence. Results show that the proposed model estimates the con-

text of a sensor with high accuracy (up to 98.5%). The proposed model not only estimates

the context of a sensor with high accuracy but also strongly overcome biased data.

To enable IoT devices to see, hear, and smell the physical world for themselves, we need

firstly to make them connected to share their observations. Mobile and energy-constrained

devices in opportunistic networks face the challenge of: How to discover as much neighbors

as possible in its vicinity while preserving energy resources? Indeed, T2T context-awareness

at the edge is based on a collective intelligence among IoT devices in the same neighborhood,

which requires wireless low-power devices in each other proximity to interact locally to form

an opportunistic network. To achieve this, IoT devices need to discover themselves first.

As IoT devices are energy-constrained and opting for duty cycling, neighbor discovery

under such constrains is a major challenge. To address this question, we propose as a

second contribution, “Welcome”: A low-latency and energy-efficient neighbor discovery

scheme that copes with heterogeneity of duty-cycles and avoids collision to occur based

on a single-delegate election algorithm. The single-delegate election algorithm is based

a self-organization and rotation of the delegate role among spatio-temporally co-located

nodes. In this way only one node at time can broadcast messages as a delegate node for a

neighborhood during a period of time.

We perform simulation over NS3 for a 100-node neighborhood size, opting for 5% duty

cycle. Welcome is compared to indirect schemes i) Blend [4] and ii) Garissidi [5], iii) fixed-

slot based Hello [6], and iv) G-Nihao [7], v) dynamic slot based Searchlight [8] and vi)

Blinddate [9], and vii) stochastic Birthday mechanism [10]. Results show that Welcome
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not only discovered 100% neighbors but also yielded low energy consumption and discovery

latency due to the reduction in the amount of transmitted messages leading to collisions.

The third and last challenge concerns context-aware Publish-Subscribe protocol. Our

aim here is to answer the question of: How to optimally manage the data transmissions

based on source’s context? Once a Publish-Subscribe system is aware of the desired con-

text by an IoT application on the one hand and the measured data context in the other

hand, a targeted selection from available resources is possible and only the ones that match

the IoT application requirements are involved. However, this selection phase requires a

context estimation process that could entail further subscriptions, which in turn results in

additional messages transmissions. Indeed, messages transmissions required by context es-

timation phase depends on the number of participants and their frequency of participation.

There is a trade-off between two conflicting objectives here: Maximizing the number of

participants in the context estimation process and minimizing the overall energy consump-

tion. To solve this optimization problem, we propose, “CEEPS4IoT” as a context-aware

Publish-Subscribe based on a dynamical coalitional game between co-located IoT devices.

CEEPS4IoT incentivizes the best set of neighbors to share data for the context estimation

task while dealing with IoT devices individual rationality to save their resources.

We evaluate our proposed ”CEEPS4IoT’ compared to a Publish-Subscribe with a location-

based filtering feature, using NS3 simulations. For scalability matter, we consider 50, 100,

200 and 300 nodes, and for each network size we set the half of nodes as publishers and

the other half as subscribers for two types of data (temperature and luminosity). Results

show that CEEPS4IoT, is an energy efficient context-aware publish-subscribe system. Our

proposed model could not only reduce energy consumption by 50% up to 75%, but also

reduce the network latency by 30% up to 70% compared to the selected Publish-Subscribe

model. In addition, CEEPS4IoT can reach almost 50% of throughput compared to only

30% for the compared model.

1.3 Thesis Organization

The remaining of the document is organized as follows. Chapter 2 highlights the background

along a review of the state of the art context-awareness, neighbor discovery and data

collection schemes in the literature. The proposed ”T2T context-awareness at the edge
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reasoner’ is presented in Chapter 3 as the core engine of a novel smart data management

system. Chapter 4 ensures the continuity of the context identification task for mobile nodes

deployed in opportunistic networks, based on WELCOME a neighbor discovery protocol. In

Chapter 5, we present and validate a context-aware and energy-efficient Publish-subscribe

protocol. The Chapter 6 concludes our work with a discussion on future insight.
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2.1 Introduction

We are entering a new era of computing technology, the era of Internet of Things (IoT).

Internet of Things (IoT) today comprises sensors, actuators and other connected devices

providing data to IoT applications. Massively deployed IoT devices enable IoT applications

to adapt their behavior to the user’s environment (e.g. location, activity, nearby people).

This later notion, known as context awareness, allows IoT applications to support an im-

proved response ability and thus it plays an important role in the IoT. However, that large

amount of IoT devices, context-aware applications need to rely on, are characterized by

their mobility and/or the dynamic nature of their deployment. Hence, they can change

8
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their position and/or environment at any time. Although the fact that popularization of

data collection is a real opportunity to take advantage of the widely deployed sensors, it

is also a big challenge. Indeed, most of those sensors will be deployed by different users

in different environments, and for different purposes. This massive deployment and data

collected from IoT devices results, at the same time, in a better spatio-temporal coverage

of urban area, creating new interesting opportunities, but also implies several challenges.

For instance, a temperature sensor is designed to sense the temperature, though, the

context in which it is deployed (indoor/outdoors, in ambient/in shade, on a human body)

results in different readings. These are influenced by the physical conditions of the device’s

surroundings. So, the belief motivating this thesis is that we need a thorough investigation

of IoT application’s services context. We propose in this thesis a new paradigm, that we

name “T2T context-awareness at the edge”, which allow IoT devices to be aware of

their own context as well as the one of their counterparts IoT devices during an interaction

phase when triggered by an application. In order to better understand the present notion

of context-awareness and its major challenges, in the following sections we investigate this

through the following main questions:

• What is context-awareness? Does it exist definitions and concept related to IoT

device’s context ?

• If Yes, which context features are mainly considered by these approaches to select the

appropriate sensors to answer an application request?

• Selection is first of all based on a discovery process and especially for mobile nodes

deployed in opportunistic, thus we investigate how such a fundamental IoT application

needs was addressed in the literature: Does neighbor discovery mechanisms allow

nodes in each other communication range to discover all their neighbors while running

on low duty cycles?

• Publish-Subscribe systems that encompass context-aware sensor selection schemes

are named context-aware Publish-Subscribe: How such architectures claim to reduce

energy-consumption and overhead while enhance the throughput?

To answer these questions, we firstly review the existing definitions of context-awareness

and investigate the relevant works on context-aware sensor selection, in sections ??, Sec-

tion 2.2 and Section 2.3, respectively. Next, in Section 2.4, we discuss an overview of existing
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neighbor discovery schemes in the literature and identify their drawbacks, we also provide

a preliminary simulation-based comparison among the best schemes, depicting the need

for a new scheme. In Section 2.5, we present different Context-aware Publish-Subscribe

systems concentrating on their energy consumption challenges and context-awareness con-

cerns. Accordingly, in Section 2.6, we briefly expose our upcoming proposed contributions

as an answer to the identified issues T2T context-aware computing.

2.2 Context-awareness

Context-aware computing is first introduced by Schilit and Theimer in 1994 [11]. There-

after, it gained notoriety with the emergence of “ubiquitous computing” and “ambient

intelligence” (AmI). Context-aware computing under the paradigm of AmI is limited to

ambient living environments where applications have to be accommodated to some environ-

ment events in a predefined way. Thanks to smart cities, that benefits from a great amount

of connected objects, which is also keeping increasing every day, IoT brings context-aware

computing to open scenarios. IoT enable a new generation of applications to emerge, named

“context-aware applications”. Such applications are capable of acting autonomously on be-

half of user’s behavior taking into account different context information (physical context,

computational context, and user context). Context-aware applications have to successfully

identify the environment conditions user is part of, and then react autonomously to the

environment and influencing it by running the processes that trigger actions and create

services with or without direct human intervention. Two types of context are considered

in the literature: the context of users and the context of things.

Context of users From the literature, many researchers tried to introduce the concept

of context-awareness. Existing works until 1999 tried to define it through examples,[11]

[12] [13]. Schilit et al. (1994)[11] define context as location, identities of nearby people and

objects. Brown (1997)[12] enumerates location, identities of the people around the user,

the time of day, season, temperature. Rayn et al. (1997) [13] define it as user’s location,

environment, identity and time. However such definitions are limited to the mentioned list

of context entities, any new entity not cited in the definition become hardly considered as a

context feature. In order to overcome such a drawback, the first general context definition

was given by Dey and Abowd [14] in 1999. One of the most widely used definition:“Context
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is any information that can be used to characterize the situation of an entity. An entity

is a person, place, or object that is considered relevant to the interaction between a user

and an application, including the user and applications themselves.” [14]. In 2005, Chaari

[15] claimed that the latter do not separate application data from contextual information.

Chaari proposed to define it as “all external parameters to the application that may affect

its behavior by defining new views of its data and services”.

Context of things In 2012, He and coauthors [16] introduce the “context of things”

concept. They propose to analyze the situational context of things in order to invoke ap-

propriate services to react autonomously to the physical world events. They allow machines

to understand things. They pointed out the lack of an explicit definition of the context of

things and propose the following definition: ““Context of things” is a concept that enables

people to understand things and translate their understanding into machine languages, in

order to provide services for things automatically”.

In the above mentioned works, context-awareness aims to understand for a specific ap-

plication, the users’ context, to offer them in an autonomous way the more appropriate

services, where the user could be either a person [11] [12] [14] [15] or an object [16] [17].

What the above definitions miss is that context-awareness does not only concern the user

application side. Context-awareness computing could be expanded to the application back-

end (The whole IoT network and its associated applications). Indeed, Machine to Machine

M2M interactions could be context aware enabling IoT devices to sense, perceive and under-

stand their own environment and take decisions during their lifetime. Similarly, to context

of user notion, IoT devices have to be aware of their own context and context of other

objects they interact with, in order to adapt their behavior at run time without any human

intervention.

2.3 Context-aware sensor selection

Due to the increasing number of available sensors, available connected devices can cover

user requests with a better spatio-temporal granularity. However, they have the potential

to send undesired data, altered data, or data with poor quality. To avoid these drawbacks,

sensor selection is a key feature for an IoT application and many sensor selection algorithms
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have been proposed. From the literature we classify sensor selection algorithms into three

main classes. The first category uses keywords corresponding to some of the sensor context

attributes (mainly location, time-stamp and sensor type) as selection criterias [18] [19] [20]

[21]. The second category addresses the energy efficiency issue. In this one, the selection

phase in addition consider measurement properties (e.g. accuracy, reliability, response time,

frequency, measurement range), the operating properties (e.g. operating power range, sys-

tem (sensor) lifetime), and survivability properties (e.g. cost of data transmission, cost of

data generation) [22] [23] [24]. The third category addresses the data quality and trustwor-

thiness challenge. The proposed approaches here focus mainly on massive data collection.

These approaches are based on the calculation of a confidence interval around an estimated

true value. If the sensor data lies between the bounds of this interval it is selected [25] [26]

[27].

Keyword-based approaches In [18], the authors propose a distributed management

system using a keyword-based interface for both human and machine clients. It selects the

node whose location better matches the query destination. [19] proposes a context-aware

architecture for autonomous semantic service selection in the health-care domain. The se-

lection is based on the evaluation of the matching degree between identified user context and

available services preconditions. The proposed matching is a hybrid matchmaking approach

fusing purely logic and fuzzy modeling. uBox [20] is a distributed resource management

architecture for interconnecting Web of Things ”WoT’ with a local platform and a global

gateway. It provides decentralized infrastructure that integrates hierarchical localization

based search. uBox performs searches based on location tags and object/sensor classes/-

types (e.g. hierarchy local/class/actuator/light). In [21], the authors propose a distributed

web service discovery architecture for Web-of-Things where every device is described by a

RESTfull API. The authors present an ontology for describing not only the properties of

web services but also the method invocation mechanisms. A device communication protocol

is described by a RESTdesc, an RDFbased notation to describe the specific capabilities of a

service, instead of its parameters and modalities [28]. Unlike previous works, they propose

to consider dynamic and static service properties. The service selection is based on some

contextual parameters such as sensor type, location, value type and format. The authors

allow the automatic integration of services by enhancing ontology with gate description,
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however the service properties are still limited.

Measurement, operating and survivabality-based approaches CASSARAM [22],

is a platform for context-aware sensor search and selection in IoT. The authors select sen-

sors based on a desired user requirement. Users can prioritize certain sensor characteristics

while searching for appropriate sensors. These characteristics can be classified based on

measurement (e.g. accuracy, reliability, response time, frequency, sensitivity, measurement

range), operation (e.g. operating power range, system or sensor lifetime), and survival (e.g.

data transmission cost, data generation cost). Similarly, [23] is an SOA-based building

automation system, it dynamically coordinates devices/services in accordance with a pre-

defined plan associated with each context. Moreover, the architecture allows users to select

sensors based on their residual energy, context properties (e.g. location, sensing type), in

addition to preferences relations between some optional requirements (e.g. accuracy, la-

tency, and sensing range) as a comparison matrix. In [24], the authors provide a large-scale

registry based service discovery protocol suitable for energy constrained and sleeping nodes,

which minimizes the control overhead and reduces energy consumption. The solution se-

lects optimal services based on service popularity, the remaining battery, the host up time

and its location.

FASEM [29] is a framework that provides automatic and dynamic services monitoring when

an event occurs in an ambient environment which supports a selection method for Con-

text Interpretation Networks (CIN). FASEM allows users to define event rules to specify

their goals to achieve for each specific context. Then, the services are selected based on

their prior functionality class and their dynamic quality of service. They propose a Global

Directory of Services (GDS) to share discovered services in an area then the selection can

be achieved using one of the two defined modes: active or passive. Available services are

dynamically evaluated by a quality measure, DQoS, based on service availability, response

Time and Probability of Response.

Confidence interval-based approaches The authors in [25] present a cloud-assisted

platform considering the link quality and spatio-temporal correlation of data to minimize

energy consumption of sensor selection. A heuristic-based greedy algorithm is proposed
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to select an optimal set of active sensor nodes that maximizes the data utility as well as

achieves energy load balancing. The work in [26] considers changes in the data quality from

different sensors due to the dynamically changing environment. It allows an application

to first learn the correlations between time series data from sensors without any prior

knowledge. The learned correlations are then applied to find the useful sensor data and

reconstruct the data with low quality. [27] notices the need for a filtering process to increase

the data reliability. To do so, they propose to select sensors based on a correlation coefficient

and some predefined validity rules. The correlation coefficient is given by Pearsons sample

correlation coefficient between the reference data and the collected data from the sensors.

The validity rules can be arbitrarily defined based on a empirical knowledge of the data

behavior (e.g. Average temperature in La Rochelle in July is 68◦F (20◦C) ).

From our point of view, traditional context-aware service discovery approaches are not

suitable for service discovery in IoT, due to the differences between real-world services col-

lecting data in controlled environments and uncontrolled environments. As things provide

their functionalities as real-world services, under different environment conditions, the data

provided could be altered or the service provided could change. Indeed, due to the high

dynamic nature of urban environments and the mobility of things, the service provided by

such things change constantly. In IoT, things are designed for a specific purpose however

the provided service could change while acting in uncontrolled environment. For exam-

ple, an IoT device (e.g. a temperature sensor) crosses different environments, despite it is

designed to do the same task it can offer a large amount of delivered services (e.g. temper-

ature data indoor/ outdoor/ambient/at shadow/body feel temperature). To provide the

user/application with the right service, we need a better understanding of how the data is

collected by the devices and communicated to other machines. We need context-awareness

at the edge to describe and share dynamic service functions and select the appropriates

ones regardless the user requirements, which avoid useless transmissions.

2.4 Neighbor Discovery in Duty-cycled wireless Sensor Net-

work

Neighbor discovery schemes can be classified into two categories: i) direct, where nodes

discover only the neighbors from which they directly receive a message [30] [31], and ii)
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Sensor	Selection

Based	some	sensor	context:	
location,	sensor	type

Based measurement	
property, operating	
property, Survival

Based	trustworthiness Based	complex		
sensor’s	context

Ø Massive	data
Ø Correlation

[18] [19][20] [21] [22] [23] [24] [25] [26] [27]

Table 2.1: Sensor selection protocols

indirect schemes, where nodes can learn the existence of neighbors indirectly from other

nodes [32] [33] [34] [4] [5]. Direct schemes are further classified into i) quorum-based [35], ii)

prime number-based [36] [37], iii) dynamic listen slot [9] [8], iv) fixed listen slot [6] [7], and v)

stochastic [10]. These schemes can work on one or multiple frequency channels [38] [39] [40],

and they all follow a similar principle of dividing time into slots and letting the node to be

active in a slot based on a schedule defined by the respective algorithm.

Quorum-based schemes [35] guarantee that two nodes have at least one activity slot in

common in a period of N slots by being active in
√
N slots. These mechanisms result

in relatively high duty cycles and only function in homogeneous duty cycle conditions.

The cyclic quorum design in heterogeneous duty cycle conditions is known as asymmetric

design, and specific solutions are proposed to address this problem. Prime number-based

asymmetric discovery schemes require a node to choose a single (e.g. U-Connect [37]) or a

pair of prime numbers (e.g. Disco [36]) to derive its duty cycle. The activity slots of a node

will be the multiples of the selected prime number(s). This approach can be extended,

and differential codes can be built for each pair of nodes starting from relatively prime

numbers [41]. Using results from number theory, it can be shown that any two nodes

will finally wake-up on the same slot. The discovery latency in this case is the time slot

corresponding to the product of the prime numbers used by the two nodes. The different



2.4. Neighbor Discovery in Duty-cycled wireless Sensor Network 16

strategies also take different approaches in the activity slots. Disco proposes to send two

beacons in each activity slot, one at the beginning and one at the end, and listen for

incoming beacons from potential neighbors in the rest of the slot. The slot of U-Connect

comprises a single beacon, followed by a listen period.

As the transmission and listen activities are independent and they can be conducted on

different slots. In dynamic listen slot schemes, a large time period is divided into regular

sized cycles, where each cycle is further composed of slots. Two types of slots exist, static

transmission slots at fixed positions, either at the beginning or end of the cycle, and dynamic

listen slots with a regular shift to either the left or right in consecutive cycles, up to the

end of the period. Searchlight [8] is an example of such an approach, where a node has

a static slot in the beginning of each cycle and an active slot shifted one slot to the right

in each consecutive cycle. Similarly, BlindDate [9] uses one static slot in each cycle and

two dynamic listen slots, one shifted to the right and one to the left in each consecutive

cycle. A fixed schedule can also be used for listen slots. Nihao [7] takes the approach of

talk more listen less, where more transmissions than listen slots exist in a given period.

In the same context, Hello [6] is a highly parameterizable solution, where nodes listen

more at the beginning of the period, and periodically wake up for transmissions. This

scheme is shown to be a generalization of several other mechanisms, such as Disco, U-

Connect and Searchlight. Finally, stochastic schemes such as Birthday [10] allow nodes

to transmit beacons, listen for beacons from other nodes or sleep in a slot based on a

probability distribution. Energy efficiency is ensured by choosing a lower probability for

beacon transmission or for listening. Such schemes perform better on the average case

compared with the deterministic approaches above, but they provide no bound on the

worst case latency and they can lead to long tails in discovering the last fraction of nodes.

The comparative analysis in [42] highlights the performance of direct schemes with respect

to energy, latency and the neighbors discovered.

Indirect schemes include group-based discovery [34] which exploits existing schemes, such

as Disco, and adapts a cooperative approach where nodes broadcast neighborhood table

in an active slot. Similarly, Acc [32] improves the discovery phase in Disco by allowing

nodes to share information regarding already discovered neighbors in their beacons, to the

next encountering node. However, such exchange will result in high overhead, both for the

individual node and the network, due to the large size of messages containing neighborhood



2.4. Neighbor Discovery in Duty-cycled wireless Sensor Network 17

0 5 10 15 20 25 30

Time (Seconds)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
e
ra

g
e
 N

e
ig

h
b

o
rs

 D
is

c
o

v
e
re

d
 (

C
D

F
)

Blend
Griassidi
G-Nihao
Blinddate
Hello
Birthday
Searchlight

Figure 2.1: Comparison of neighbor discovery schemes

information, continuously exchanged between relatively low power nodes. EQS [33] is an

extension to Quorum based system where nodes commonly active in a slot decide on a

rendez-vous slot for their next wake up and, thereby, share the information regarding their

respective discovered neighbor in the rendezvous slot. However, clock drift, as well as

collisions, can lead to a node not waking up in the respective rendezvous slot. Further

rendezvous-based indirect schemes are Blend [4] and Griassdi [5] where nodes share their

next listen period in the transmitted message and any node receiving it wakes up at the

rendezvous time to send additional beacon to ensure bi-directional discovery.

Figure 2.1 compares the best among the above mentioned schemes where is depicted the

average neighbors discovered by each scheme with respect to time for a neighborhood size of

100 nodes. Clearly we observe that none of the existing schemes enable the nodes to discover

all their neighbors. The recently proposed indirect schemes Blend and Griassdi perform

the best, although they suffered from the long tail effect. For example, Blend discovered

90% of the neighbors in the first 10 seconds though exhibits a long tail afterward.

We believe, that multiple nodes transmitting beacons simultaneously, provoke collisions

and prevent a fraction of nodes fail to discover their neighbors due to collisions. The
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issue grows with the amount of nodes in the neighborhoods. Therefore, there is a need

for a neighbor discovery mechanism where one node discovers and share the neighborhood

information to the nodes in its communication range. Additionally, there is a need to reduce

the number of messages exchanged over the wireless medium as well as the nodes energy

consumption during a neighbor discovery process.

2.5 Context-aware Publish-Subscribe systems

Providing autonomous communication between intelligent devices is still a challenging

task. Publish/Subscribe pattern constitutes a suitable solution for large-scale IoT deploy-

ments as it allows publishers and subscribers to be decoupled in time, space and synchro-

nization.This decoupling enables the architecture to be highly scalable [43]. However Pub-

lish/Subscribe waste energy due to inefficient message routing [44]. Recently some works

propose to make Publish/Subscribe systems context-aware through a dispatching strategy

that limits the spreading of subscriptions only to those areas of the routing network where

matching publishers context meets subscribers needs.

Antonic and coauthors [45] propose CloUd-based PUblish/Subscribe middleware (CU-

PUS) to process in near real-time big data streams. The proposed system is energy efficient

as it avoids unnecessary transmission of sensor readings from Internet connected objects

and filters out either redundant or irrelevant sensor readings. Indeed, the authors save

energy by the means of (i) location-based subscriptions and announcements which reduce

the number of subscriptions (ii) a matching of publications performed by mobile brokers

near to the local publishers before they are sent on the cloud.

Lightweight XMPP [46] is a real-time Publish/Subscribe messaging systems based on IP

technology and the extensible Markup Language (XML). In order to save energy, the pub-

lisher sends an adjusted data information according to the subscriber’s needs, periodically,

which avoids sending all the objects and attributes information and allows publishers to

enter sleep mode. In [47], authors propose a middleware architecture to combine Software-

Defined Network (SDN) with the Data Distribution Service (DDS) that provides real-time,

scalable, and data-centric publish/subscribe capabilities. The solution reduces network

traffic and energy consumption by the means of data filtering and data fusion mechanisms

to drop unnecessary packets transmission and reduce number of forwarded packets. CoAP
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[48] support both a request/response and resource-observe (a variant of Publish/Subscribe)

application layer protocol, designed to meet constrained devices needs. It supports syn-

chronous and asynchronous responses and runs over UDP to remove the TCP overhead

and reduce bandwidth requirements. Thanks to the use of UDP as transport layer protocol

and the header compression which reduces significantly the packet size, CoAP saves energy.

MQTT [49] uses a hierarchical topic based Publish/Subscribe protocol suitable for battery-

run devices. The Publish/Subscribe protocol frees the constrained devices from resource

hungry operations like polling to frequently get the updated data. Thus, it decreases the

network bandwidth and battery usage. Context-Aware System (CONASYS) [50], is a sys-

tem able to provide context-aware information in order to contextualize entities and their

data in IoT environments, all in real time. The main intention is to avoid the manual user

intervention in the interpretation of the data and also facilitates the systems/entities inter-

actions. Such an architecture decouples user request and responding devices. COLLECT

[51] is a context-aware service oriented architecture based event-driven Publish/Subscribe.

The main contribution of COLLECT, is that it facilitates context spreading and sharing

among the nodes. The architecture is energy efficient through the use of an enterprise

service bus ’ESB” makes the message broker light and scalable.

From the above mentioned literature, existing research works propose lightweight mid-

dleware systems. Some works tackle the problem through the use of ESB [51], or packet

compression [48] [49]. Some other works choose content-based filtering and periodic pub-

lication as a solution [47] [46] [50]. On the other hand, some works propose to make

Publish/Subscribe context-aware and prove that a context-based data filtering, while made

close to data sources (mainly location, timestamp), leads to less energy consumption and

decrease the network overhead as it reduces the number of exchanged messages [45]. How-

ever context considered in these works is limited to location and timestamp criteria. We

suggest that expanding this context filter to some complex event could save more energy,

reduce the overhead and at the same time ensures a better quality of service.
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Scheme Energy Mobility Architecture Distibuted

CUPUS [45] Yes Yes Event-driven Pub/Sub Yes ( Cloud/ mo-
bile brokers)

Lightweight
XMPP [46]

Yes Yes Periodical/ Event-
driven Pub/Sub

Yes

MQTT [49] Yes N/A Hierarchical topic Pub-
/Sub

No ( Cloud)

CoAP [48] Yes N/A REST Req/Res, Ob-
server pattern

No

CONASYS [50] Yes N/A Observer pattern No
COLLECT [51] Yes Yes Event-driven Publish/-

Subscribe
Yes(fog/ Cloud)

[47] Yes content-based publish/-
subscribe

Yes(virtualization)

Table 2.2: Summary of context-aware publish/subscribe systems

2.6 Discussion

The available definitions of context mainly consider the context of the user, where it can

be either a person or an object. However, it is important to consider the physical context

of things or sensors (i.e. at the service provider purpose, rather than at the consumer

purpose) for an accurate data collection. For instance, to provide an accurate data for an

application requesting ambient temperature, there is no need to involve temperature sen-

sors under shade in the collect phase. Participatory sensing of undesired IoT objects could

bias the IoT application in addition to the overhead and energy costs involved. However,

the sensor selection criteria in most of the previously cited works are limited to the sensor’s

location and its response time as context parameters. Thus, they ignore the characteristics

and description of how and under which conditions the data are provided. Unlike existing

works, we consider the IoT device’s environment to find its physical deployment context

(e.g. underwater, outdoors or indoors, and thereby), going beyond typical characteristics

defined in existing literature (type, location, time-stamp...). We propose to consider a com-

plex notion of IoT device’s context, we want to bring IoT devices a new intelligence layer.

Our objective is to make them aware of their own context at the edge (e.g. nearby sen-

sors/devices, location, environment conditions, operating system, survival ...) and trigger

some actions based on that. Hence, we propose a new paradigm, “T2T context-awareness

at the edge”, that concerns IoT device’s situational context.
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Our first work, highlights the IoT devices need to take into account their own context

in their communication and decision tasks. An IoT device is deployed in an uncontrolled

and dynamic environment. In addition, Its it can switches environments, randomly. That’s

why, to learn IoT objects contexts is a difficult task, we need a tool for an accurate context

estimation. We propose a context reasoner, as the “brain” component of an IoT middle-

ware, capable of context sequence labeling. This main component is based on Conditional

Random Field [52] which is fed with data streams upcoming from IoT devices in the same

vicinity. CRF is a strong probabilistic model for structured prediction widely used in nat-

ural language processing, computer vision, and bio-informatics and many other domains.

We use it to efficiently find the accurate spatio-temporal relations between different IoT

devices in the same neighborhood and accurately estimate sequence contexts.

Energy efficient synchronous and asynchronous, symmetric and asymmetric duty cycled

neighbor discovery schemes exists in the literature with a focus on minimizing the worst

case latency required for the mutual discovery of a pair of low duty cycled devices. However,

still a fraction of nodes in a neighborhood fail to find each other using existing neighbor

discovery schemes. Such failures in discovery are mainly due to collisions between messages

transmitted simultaneously by multiple nodes in the same slot where such phenomenon is

never considered previously in the literature. To address this issue, we propose “Welcome”,

a novel neighbor discovery scheme allowing a single node as a delegate, instead of all

nodes in a proximity, to send beacons and listen to neighbors thereby reducing the overall

amount of transmitted messages. This caters the issue of collisions between messages sent

by concurrently transmitting nodes. We further allow nodes to rotate the role of becoming

the delegate where each node compute its eligibility to become the delegate node based

on its residual energy and association to the neighborhood. Moreover, Welcome enables

nodes to auto-organize where eligible nodes content to become delegate in the absence of

an existing delegate node.

Previously mentioned context-aware Publish/Subscribe systems focus mainly on location

and time-stamp-based filtering, while context can be a broader notion than simple location

and time-stamp information. In this direction, filtering-out data close to data sources based

on “Context at the edge” could ensure more accurate data collection and at the same time
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avoid useless information transmissions. Our last work is a Context-aware Publish/Sub-

scribe that filter-out data near to data sources based on complex context events. Hence,

we filter more data and avoid much more unnecessary data transmissions which could save

more energy reduce overhead and increase the throughput. IoT devices in the same loca-

tion provide information about different aspects of the environment, thus, we can leverage

their coexistence to infer their respective contexts. Precisely, we propose to measure the

relation of a device with the nearby devices with the goal to capture the amount of infor-

mation they can provide regarding each other environments. Afterwards, any IoT device

can take the decision to sign a “contract” with some of its neighbors based a dynamic

coalitional game [48] for energy-constrained devices. Objects can merge into or split from

spatio-temporal coalitions based on the payoff each coalition provides, in order to facilitate

an energy efficient and high quality data collection.

2.7 Conclusion

Thanks to the great amount of connected objects increasing every day, it is now becoming

possible to perceive events and changes within the ambient space surrounding users and

adapt application behavior based on that. In this chapter, we reviewed ongoing research

work tackling Context definition, neighbor discovery and context-aware Publish-Subscribe.

However, existing context definitions considers only the context of a user either it is a per-

son or a thing, to adapt the behavior of the application autonomously and enhance the

user’s well-being. We highlighted the weaknesses of these definitions and suggest a new

paradigm ”T2T context-awareness at the edge” that aims to expand the context-aware

interactions from the application front-end to the application back-end. We aims to enable

IoT devices/services to sense, analyze and understand their own as well as mutual situa-

tional context and adapt their behavior based on, without any human intervention. This is

to be achieved in order to best preserve IoT devices resources while enhancing the quality

of service. Accordingly, we propose three innovative IoT middleware components to give

IoT devices this layer of intelligence: a context reasoner, a low latency and energy efficient

neighbor discovery scheme and an energy-efficient and context-aware Publish-subscribe.
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3.1 Introduction

Internet of Things (IoT) today comprises sensors, actuators and other connected devices

enabled to provide different services in order to facilitate our lifestyle. It is now possible

for an IoT application to find different IoT candidates deployed to collect data in an urban

environment. However, the existence of hundreds of interconnected devices make it difficult

24
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to find the appropriate sensor matching a user request [53] [54] [27]. At the same time, the

abundance of data collectors allows the emergence of a new era of context aware applica-

tions, enabling such applications to adapt their behavior to the environmental conditions

in which they are operating. Several definitions of “context” have been proposed and the

most widely used is the one given by Dey et.al [14].

The IoT applications rely on sensors designed to detect and report different physical

events which are typically installed in uncontrolled environments. For instance, a tem-

perature sensor is designed to sense the temperature, though, its context (whether it is

installed indoor/outdoors, in ambient/in shade, on a human body) can influence the ser-

vice it provides. Temperature readings from two sensors deployed in the same location, one

in ambient sunlight and the other under shade will result in different readings influenced

by the physical conditions of their surroundings, i.e. temperature feelings under shade is

different than the one felt in ambient sunlight.

In this chapter, we address the need for smart things context and we propose “Con-

text Awareness at the Edge” reasoner as a dynamic annotation tool. Henceforward, IoT

things may become conscious of their surroundings while gathering data/acting in the en-

vironment. The main purpose is to allow a device to adapt its behavior given its context

(precisely physical environment), while assisting an IoT application. In order to avoid using

dedicated resources for this task we benefit from the collective intelligence between nearby

sensors in the same area to serve this task. We believe multiple sensors in the same location

but with different abilities can provide each other an amount of information about their re-

spective contexts. As such a solution is based on an opportunistic network, where nodes are

asynchronous and distant from each other, we need to further analyze these spatio-tempral

disparities. Despite this fact, physical phenomena are continuous and spread over time and

space, therefore they present a strong spatio-temporal dependency. Thus, there exists a

strong correlation between observations from neighboring sensors and the physical state of

an IoT device. In turn, it is important to consider both, spatial and temporal relationships

between IoT devices, in order to accurately estimate their contexts.
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In this work, we use Conditional Random Field [52] to find the accurate spatio-temporal

relations between different IoT devices. CRF is a probabilistic model for structured pre-

diction widely used in natural language processing, computer vision, and bioinformatics.

We adapt it here for an IoT device to model its context by learning the spatio-temporal

relations with nearby sensors which are inversely proportional to the time difference as

well as the distance between them. Similarly, it captures the relation between the device’s

current and previous states namely interactions. The existence of such spatio-temporal re-

lations is validated by implementing the proposed CRF-based model using synthetic trace

based simulations as well as real-testbed. Results show that it estimates the context of

IoT devices with a high accuracy (up to 98.5%). The results also demonstrate the effect of

spatio-tempral difference between readings from different nearby sensors on the estimation

context accuracy. The contributions of this work can thus be summarized as follows:

• A novel concept of “T2T context-awareness at the Edge” is proposed giving

sensors a new dimension of intelligence by allowing them to be aware of their own

context.

• A Conditional Random Field based solution to accurately estimate, for an IoT device,

the sequence of contexts it passes through during its ”lifetime”.

• A simulation study, comprising study both on synthetic and real-world data-sets, this

simulation study allows to assets our CRF-based solution for context-awareness at

the Edge.

The rest of the chapter is organized as follows. The next Section 3.2 discusses the related

work and background of Conditional Random Field. The Section 3.3 explains our pro-

posed T2T context awareness at the Edge model based on CRF, followed by performance

evaluation and results discussion for both synthetic and real-dataset in Section 3.4.1 and

Section 3.4.2, respectively. The Section 3.5 summarizes our proposed model weakness and

efficiency and present some insights into future directions.

3.2 Background: Conditional Random Field

Sequence labeling is a common issue in several domains, where data can exhibit sequen-

tial, temporal, spatial or spatio-temporal dependencies. Conditional Random Field [55] is a
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probabilistic graphical model for sequence labeling, that takes advantage from unstructured

learning approaches by considering correlations between labels. CRF estimates globally

conditioned on the whole observation sequence X, the most likely label sequence Y (a label

is class to predict, i.e. an instance of context to estimate). Let us consider G = (V,E) a

graph where each label yi is encoded by a node vi ∈ V and the conditional (in)dependence

between any two labels is represented by a vertex e ∈ E linking their respective nodes. The

joint distribution (Y,X) is a CRF if each yi ∈ Y obeys the Markov property such that the

distribution P (yi|X,Y∀j 6=i) depends only on its neighbors P (yi|X,Y∀j∈Ni) according to the

graph G. Sequence labeling allows us to introduce prior knowledge regarding the data de-

pendencies based on potential functions where the potential functions can be of two types:

(i) ψi(yi, X) is called association potential function to capture the degree to which a label yi

of the sequence can be assigned to the set of observations X. Similarly, (ii) ψij(yi, yj , X) is

called interaction potential function, designed to encode our prior belief about relationships

between neighbor’s labels and the whole observation sequence X. Each potential function

is a weighted-sum of feature functions, and we can use as many functions as needed to

capture observations-labels relations. Thus, the joint distribution over the label sequence

Y given X has the form:

p(Y |X) =

∏
yi∈Y

exp(ψi(yi, X) + ψij(yi, yj , X))∑
Y

∏
yi∈Y

exp(ψi(yi, X) + ψij(yi, yj , X))

Spatio-temporal extensions of the basic CRF model has been proposed. The main pro-

posed extensions are made by Hoberg et al. [56] and Kenduiywoa et.al [57] for remote

sensing data where both works introduced spatial and temporal interaction terms. In sen-

sor networks, observations of the environment (e.g. temperature, and luminosity) exhibit a

spatio-temporal correlation as such physical conditions rarely occur independently, thereby

spatio-tempral CRF provide a promising solution. However, prior works only consider spa-

tial where the associations predict labels only based on observations at the same timeslot.

We propose to extend the model by spatio-temporal association terms to take into account

spatio-temporal observations-label dependencies. Thus, in order to accurately estimate the

context, we suggest to consider the observations from co-located sensors. Moreover, in

sensor networks, due to time synchronization problems or network failures, observations

belong rarely to the same timeslot and due to the mobility of nodes there is a dynamic

spatial relation between an IoT device and the sensors reporting its environment. We model
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Figure 3.1: IoT spatio-temporal chain CRF Model vs spatio-temporal chain CRF model

the spatial and temporal associations separately as the lagtime and the distance can have

different impacts on context estimation depending on the application domain. Hence, spa-

tial and temporal associations can be derived based on observations as well as the spatial

and the temporal distance vectors. For instance, the Figure 3.1 models a spatio-temporal

chain CRF with temporal and spatial associations terms modeled separately with orange

continuous ans dashed lines, respectively. In the following section we describe how we use

CRF along with spatio-temporal relationship between the IoT devices and the environment

observations to derive the context sequences they passed through.

3.3 CRF for Context Awareness at the Edge

In this section we formally describe the CRF based model for context awareness at the

Edge where sensors are made aware of their surroundings. We define below the network

model to consider through the remainder of the work.

3.3.1 System Model

3.3.1.1 Network spatio-temporal parameters

We consider a time varying network modeled as an undirected graph G(V (t), Ev(t)),

where V (t) = {v} is a set of vertices v, each representing a device/node at time t. Ev(t) =

{eab(t) | va, vb ∈ V, a 6= b} is the set of edges, eab(t) modeling the existence of a direct

communication link between nodes va and vb at time t. The number of edges for a node
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are the number of co-located nodes or neighbors connected to it at time t (temporal) as

well as geographically situated within its communication range (spatial). Furthermore, the

distance between two nodes va and vb is represented by the Euclidean distance d(va, vb)

between their respective GPS coordinates. To consider a temporal network characteristics,

the time T is divided into uniform time-slots T = (t1, t2...) where an IoT device v ∈ V

periodically reports its sensory data readings after a time-slot t and different sensors can

report readings at different time-slots.

3.3.1.2 CRF key parameters

We define the set X = {Xt},∀t ∈ [1, |T |] to represent the whole observations or readings

captured by the sensors (IoT devices), available at a given neighborhood, for different

phenomena such as temperature, luminosity etc, at a time period T . WhereXt = {xts},∀s ∈

[1, |V (t)|], is the set of observations provided by the co-existing sensors at timeslot t. We

consider Xt−1 = {xt−1
r },∀r ∈ [1, |V (t − 1)|] as the set of observations provided by the

co-existing sensors at timeslot t − 1. Similarly, Y = {Y t
s },∀t ∈ [1, |T |] is the set of states

(context) each object s passed through during the period of Time T . Where the state can

be the representation of its physical condition or environment. For example, based on an

observation from a temperature sensor, we can infer its state as indoor/outdoor, under

shade/sunlight, etc. Thus, hereinafter, we consider a spatio-temporal network model where

we analyze the relation between different states Y inferred from the observations X for a

set of devices V . It is to note that we will refer to object, sensor, thing, IoT device or node

interchangeably in the remaining of the article, thus representing the same entity.

3.3.2 Find Co-existing Objects Influence Relationship

The dynamic environment particularly the mobility of nodes makes it difficult to identify

the impact of the environment on a device. We assume that the environmental reports from

nearby sensors can be altered by their freshness and spatial distance therefore, we capture

indirect influences between co-existing sensors in two ways: (i) Temporal: where multiple

devices reporting their observations at different time differences the more recent ones will

have greater influence on the context estimation, and (ii) Spatial: in order to estimate the

context, the neighboring devices closer with respect to their distances to the object under

study can have relatively more influence compared to the ones farther away. Similarly, we
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Table 3.1: List of Notations

Notation Description

V (t) = {v} Set of objects/nodes at timeslot t

Ev(t) Set of Edges between objects at timeslot t

X = {x} Set of observations for a set of objects in a vicinity

Y = {y} Set of states/labels/contexts

T/t Total time/time-slot

Vi set of neighbors of object i

Vi,T Set of temporal neighborhood of object i

Vi,S Set of spatial neighborhood of object i

Xt
v = {xtq,v | q ∈ 1..l} Set of observations of neighbor v at timeslot t

Xt = {Xt
v | v ∈ Vi,S} Set of neighborhood’s observations of object i at timeslot t

Xt−1 = {Xt−1
v | v ∈ Vi,T } Set of neighborhood’s observations of object i at previous timeslot t− 1

xti Observation of object i at timeslot t

xt−1
i Observation of object i at timeslot t− 1

Y i
t Set of contexts, the object i passed through during timeslot t

yti Context label at time t

yt−1
i Context label at time t− 1

K Set of spatial neighbors feature functions

N Set of temporal neighbors feature functions

L Set of interaction feature functions

ψt/ψs Temporal/Spatial Association Potential

fj/fk Temporal/Spatial feature function

ψij Spatio-temporal interaction potential

gl Spatio-temporal feature function

dl(i, j) Distance between two nodes s, r

λj Temporal association weighting parameter

λk Spatial association weighting parameter

βl Spatio-temporal interaction potential parameter

∆T Time difference for neighbor observations

∆S Location difference for neighbor observations

d/t Mean Euclidean Distance to the neighbor’s observations

t Mean Time decay to the neighbor’s observations

dth/tth Threshold distance/time

δd/δt Tuning parameter spatial/temporal

Z(x) Normalizing constant/partition function



3.3. CRF for Context Awareness at the Edge 31

can predict the physical state of an object from its previous state. A temperature sensor

physically located in an ambient environment is more likely to provide similar readings

between two close time instants, if the observations of its environment remain the same.

Therefore, we use CRF to model the inter-object relation for the context awareness.

3.3.2.1 Temporal Association Potential

A temporal association potential ψt is dedicated to capture how likely a sensor vi takes

context label yi,t at the timeslot t, given its temporal neighbors observations Xt−1 = {Xt−1
v |

v ∈ Vi,t}. The Figure 3.2 presents the Temporal association relations (dashed orange lines)

between a hidden state variable (context) to estimate and the associated observations from

nearby sensors at previous timeslots.

Figure 3.2: Temporal associations

It is possible that a clock drift between different deployed sensors in a neighborhood

results in asynchronous observations by each device. However, in a dynamic environment,

relatively large time differences between sensors can impact their respective context esti-

mation. To cater such a lag between a sensor and its nearby sensors readings, the temporal

association potential ψt is derived using a time decay function given as:

ψt(y
t
i , Xt−1,∆T ) =

∑
j∈N

λjfj(y
t
i , Xt−1,∆T ), (3.1)
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where the impact of the temporal neighbors Vi,T ⊂ V on the context estimation yi of

node vi, at current time-slot t is characterized by a set of feature functions fj based on

the neighborhood observations Xt−1 from previous to current time-slot and their temporal

distance ∆T . In this context fj can be based on any probabilistic classifier (e.g. random

forest) [55]. The vector ∆T = [ti,1, ti,2, .., ti,nt] represents the time differences between the

observation of vi and each of its temporal neighbors v ∈ Vi,T . The parameter λj is a

weighting parameter for the corresponding feature function fj , to be learned by the model

based on the time sensitivity requirements of an object’s neighborhood. One simple feature

function for the temporal association potential can be defined as an exponential decay

function where the impact of a neighbor decreases with time:

fj(y
t
i , Xt−1,∆T ) = Pj(y

t
i |Xt−1)e

−δttVi,t
, tVi,t ≤ tth (3.2)

where, Pj(y
t
i |Xt−1) is a binary real-valued function to compute the potential sensor’s con-

text taking a value yti . Where Xt−1 can refer to readings from one to many neighbors. tVi,t

is the lag time (mean lag times) between the sensor under study vi, and the neighborhood

observation(s) Xt−1 considered to this task. Only observations in the earlier times (≤ time

threshold tth) are selected. 0 ≤ δt is the tuning parameter to adjust the effect of temporal

distances between observations. Thus, if this time is earlier than a certain threshold time

specified tth, the feature function follows an exponential decay.

3.3.2.2 Spatial Association Potential

A Spatial association potential ψs is dedicated to capture how likely a sensor vi takes

context label yi,t at the timeslot t, given its spatial neighbors observations Xt = xi,t, , xn,t.

The Figure 3.3 presents the Spatial association relations (Continuous orange lines) between

a hidden state variable (context) to estimate and the associated observations from nearby

sensors at the current timeslot.

Besides temporal association, it is natural to consider the impact of the sensors/neigh-

bors with respect to their distance. The idea is to penalize further neighbors and their
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Figure 3.3: Spatial association

respective observations. Therefore, we define the Spatial Association Potential ψs to cap-

ture, for a node vi, the impact of its spatial neighbors based on their distance as:

ψs(y
t
i , Xt,∆S) =

∑
k∈K

λkfk(y
t
i , Xt,∆S), (3.3)

Where, fk is the feature function representing the spatial correlation between the ob-

servations from neighboring sensors on the state yi of the node vi. For a set of spatial

neighbors Vi,S ⊂ V , Xt = {Xt
v | v ∈ Vi,S} is the set of spatial neighbors observations at

time-slot t. The term ∆S = [di,1, di,2, .., di,ns] indicates the distances between the sensor

vi and each of its spatial neighbors. The term λk is a spatial parameter to be learned by

the model, it measures the impact of neighbor’s relative distance which can be application

domain dependent. There exist different possibilities for such a feature function to penalize

large distances between object. We use the principle of inverse distance relation represented

as:

fk(y
t
i , Xt,∆S) = Pk(y

t
i |Xt)(dVi,s + 1)−δd , dVi,s ≤ dth (3.4)

The Spatial feature function in Equation (3.4) is a function of the inverse of the euclidean

distance between the node vi and where the location(s), the observation(s) Xt, are taken

by the node(s) in the vicinity Vi,S ∈ V . However, a threshold distance 0 ≤ dth should be

respected. For instance one should imagine a smart home where only readings from sensors

located within the house boundaries are considered. In case we are interested in association
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from sensors which are located indoors, the feature function can define dth within a range

of positions corresponding to indoor locations only. The tuning parameter 1 ≤ δd controls

the extent of the spatial distance impact which can be defined according to the applications

requirement.

3.3.2.3 Spatio-temporal Interaction Potential

So far we discussed temporal and spatial relations to the observations of other near-

by sensors. An object can also be influenced by its own spatio-temporal physical state.

Precisely, its physical conditions are likely to stay the same if it remains at the same

previous location, since the physical conditions evolve gradually. To model such a joint

impact, we define the term ψij as the Spatio-temporal interaction potential, modeled by

continuous black lines in Figure 3.4, to capture the degree to which yti , the state of the

node vi at time t, is correlated to the previous state yt−1
i

Figure 3.4: Spatio-temporal interaction

We define the Spatio-temporal interaction term ψs to capture, for a node vi, the impact

of its spatial neighbors based on their distance as: as follows:

ψij(y
t
i , y

t−1
i , Xt, Xt−1) =

∑
l∈L

βlgl(y
t
i , y

t−1
i , Xt, Xt−1) (3.5)
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where, L is the set of spatio-temporal interactions between its own physical conditions.

For a sensor vi, Equation (3.5) considers the spatio-temporal relations between two con-

secutive sensor’s states yti , y
t−1
i based on possible spatio-temporal correlations among their

respective nearby sensor reading Xt−1, Xt. Feature function gl is based on similarity or dis-

similarity measures to estimate the node’s own state at the current and previous time, thus,

reflecting a temporal relation with its own physical conditions. The term βl is an interaction

parameter to adjust the spatio-temporal impact of the node transition, due to its mobility

or changes in the environment. Here gl is the effect of the spatio-temporal influence from

both the sensors own previous states and the observations from nearby sensors:

gl(y
t
i , y

t−1
i , Xt, Xt−1) = Pl(y

t
i |yt−1

i , Xt, Xt−1)e(αlti+Γldi), di ≤ dth && δt ≤ tth (3.6)

where, di is the distance of the node vi to its previous spatial neighbors reading, 0 ≤ dth is

the threshold distance specified, as the previous neighbors can no longer be considered due

to the high mobility. Similarly, ti is the time difference between the set of observations Xt−1

and the current time slot, where 0 ≤ tth is the threshold time specified for the temporal

association function to meet a certain accuracy requirement. 0 ≤ αl and 0 ≤ Γl are

the spatial and temporal tuning parameters to adjust the spatial and temporal distances

effects. The spatio-temporal feature function for the interaction potential considers both,

the spatial and temporal observations near a sensor as well as the sensor’s previous state.

3.3.2.4 Spatio-temporal CRF

The conditional probability between the spatial and temporal associations based on the

observations, and the spatio-temporal interactions is given as:

p(Y |X) =
1

Z(Y )

∏
y∈Y

∏
t∈T

exp(ψs(y
t
i , Xt,∆S)

+ψt(y
t
i , X

t−1
t ,∆T ) + ψij(y

t
i , y

t−1
i , Xt, Xt−1,∆S ,∆T )), (3.7)

Where,

(3.8)

Z(Y ) =
∑
Y

∏
y∈Y

∏
t∈T

exp(ψs + ψt + ψij),to
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to

Figure 3.5: Spatio-temporal IoT CRF model

ψt and ψs are the spatial and temporal association potentials between the node and the

observations Xt−1 and Xt of a set of temporal neighbors Vi,T and a set of spatial neighbor

Vi,S respectively. Similarly, ψij is the spatio-temporal interaction potential for a node vi

between its previous state yt−1
i and the current state yti . The term Z(Y ) is a normalizing

constant called partition function. Thus, Figure 3.5 allows to model how a sequence of

context can be estimated based on the node’s context taking into account changes in the

environment. In particular, the time lag between sensor readings and changes in locations.

The proposed model penalizes large difference in time and distance between co-existing

sensors as well as time or distance difference between in a sensor own physical conditions.

3.4 Performance Evaluation

We evaluate the performance of the proposed CRF based model on synthetic data as

well as experiments on real-world dataset. The objective is to find out how much accuracy

is reached by our model to estimate the context of an object. We show that it is feasible

to learn an object’s context only by using the data collected from its nearby sensors. We

discussed below our simulation study followed by experimentation evaluation.
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3.4.1 Simulation over a synthetic dataset

We consider a temperature sensor as the object vi under study to infer its context se-

quences Θ = {Y1, Y2, ..., YM}, Yk = {yi},∀i ∈ [1, N ]. The estimation of each label sequence

is based on the observations of its vicinity provided by the nearby sensors under its com-

munication range (100 meters). The output sequence is defined for N consecutive readings

of the sensor vi, over the limited set of possible contexts yi ∈ indoor, outdoor ambient,

outdoor under shade . We limit the types of nearby object to temperature and luminosity

sensors as both provide sufficient information about object’s context. Each sensor’s read-

ing is annotated by GPS and timestamp. In order to simulate a real scenario, we consider

asynchronized sensors which results in lagtimes between different neighbors readings. The

spatial distance between nodes is based on Euclidian distance between their GPS coordi-

nates. We compute the time difference in seconds for each pair of sensor readings. It is to

note that in the case of several readings of a neighbor belong to the same timeslot we just

consider the most recent reading.

3.4.1.1 Potential Functions

The association functions allow to introduce prior knowledge on the output/input de-

pendence. The input could be a set of one to many neighbors observations. In our ex-

perimentation we consider nine associations feature functions listed in the Table 3.2. For

instance, on a sunny day the luminosity under shade is about 10 times intenser than an

overcast day, thus the same period of day (day time) and the same context (under shade)

can correspond to different luminosity ranges depending on the weather conditions, i.e.

Undershade = {Sunny = [1000, 2000]lux,Overcast = [100, 200]lux}.

For instance, let’s consider two association feature functions, the first one associates the

ambient context for a sunny day at La Rochelle in a day period to an interval of luminosity

[1000, 2000] lux,Equation (3.12) . The second feature function Equation (3.13) associates

ambient context for a overcast day at La Rochelle in a day period to an interval of luminosity

[100, 200] lux. Functions f1 and f2 can be described as follow:
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f1(ambient, Lt,∆S) =


(dVi,s + 1)−δd Lt ∈ [1000, 2000]lux && dVi,s ≤ dth

0 otherwise

(3.12)

f2(ambient, Lt,∆S) =


(dVi,s + 1)−δd Lt ∈ [100, 200]lux && dVi,s ≤ dth

0 otherwise

(3.13)

The interaction feature functions can be described as a combination based on dissimilar-

ities and similarities between sensor previous and current states. The dissimilarity based

interaction feature function can be considered for the case when the previous luminosity at

t− 1 as {[10000, 20000], [100, 200]} is increased at t to {[70000, 110000], [10000, 20000]}. We

can infer that the sensor state is changed from yi−1 = under shade to yi = outdoor ambient.

Similarly another dissimilarity based interaction feature function is when the temperature

difference between t and t− 1 is about −5 up to −10 degrees and the luminosity at t− 1,

{[70000, 110000], [10000, 20000]} is decreased at t to {[10000, 20000], [100, 200]}, thus, we

can estimate that the sensor state yi−1 =ambient is changed to yi = under shade, as de-

scribed in interaction function Equation (3.14). For the similarity based interaction feature

function, if both xt−1 and xt are within the same range, we can infer that yi = yi−1, the

sensor context remains the same.

g1(ambient, under − shade, T t, T t−1,∆ST ) =


(e(αlti+Γldi)) T t − T t−1 = 5

& di ≤ dth, δt ≤ tth

0 otherwise

(3.14)

3.4.1.2 Synthetic data set

As there is no simulator of data able to annotate the generated data with its physical con-

text, we build our own simulator. For this task, we use five SensorTag IoT kits (CC2650STK
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Table 3.2: associations feature functions

Feature functions Period of Day Temperature Location Luminosity range (lux) Context

Sunny day outdoor noon Day 18 < Hot < 40 outdoor 70000-110 000 Outdoor ambient

Overcast day outdoor noon Day -40 < Cold < 18 outdoor 1000-2000 Outdoor ambient

Sunny day shadow noon Day 18 < Hot < 40 outdoor 10000-20000 Under shade

Overcast day shadow noon Day -40 < Cold < 18 outdoor 100-200 Under shade

Sunny day dusk Dusk 18 < Hot < 40 outdoor 200-400 Outdoor ambient

Overcast day dusk Dusk -40 < Cold < 18 outdoor 20-40 Outdoor ambient

Sunny day night Night – outdoor 0.0001-0.00015 Outdoor ambient

Overcast day night Night – outdoor 0.0002-1 Outdoor Ambient

Indoor – – indoor 100-500 Indoor

SimpleLink Bluetooth low energy/Multi-standard SensorTags) each equiped with 10 sen-

sors including support for light, digital microphone, magnetic sensor, humidity, pressure,

accelerometer, gyroscope, magnetometer, object temperature, and ambient temperature.

We connect each of the deployed SensorTag to a GPS sensor and a rasberry PI. We deploy

IoT kits at the campus of University and at a home in La Rochelle, France, with differ-

ent periods of the day(day, dusk, night), different weather conditions(sunny,cloudy) and

different context conditions (under shade/ ambient, indoor/outdoor). The data collected

for hours results in a reference real world data set, that we used to extract some prior

knowledge about the correlation of some physical phenomenas(temperature, luminosity)

and the desired contexts (indoor, ambient, under shade). For instance we note that lumi-

nosity around an IoT object exposed to ambient sunlight lies between 70000 and 110000

lux for a sunny day in day period. Based on the extracted correlations we implemented a

simulator able to generate a set of data for a/some sensors, given some input features like

the physical context, the weather condition, the period of day, and the frequency of collect.

3.4.1.3 Simulation scenario based a synthetic dataset

We simulate a network with 36 sensortags each one composed by a luminosity, temperature

and GPS sensors. The sensortags are mobile in an area of 100 m2. We Collect data with

different frequencies during 30 hours. We consider different (sunny and overcast) weather

conditions and periods of the day (day, dusk, and night). The distances between sensors

denoted by di,k can vary randomly within the following (spatial) ranges [0, 1], [1, 10] and

[10, 100] and measured in meters. We select M = 150 label sequences of size N = 10

corresponding to 10 consecutive 5-second time-slots of a given sensortag, to annotate with
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context. We train the model on M = 90 label sequences. For each sequence we select as

input 10 ∗ 10 = 100 nearby sensor readings with different lagtimes and different distances

from the object understudy. The model is trained on the above described training set, using

limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS), an optimization algorithm

in the family of quasi-Newton methods [58] to find the set of weighting parameters which

maximizes the likelihood. The proposed CRF-based model is evaluated using accuracy as

the performance metric. The accuracy of the model is obtained by summing the number of

true positive and true negative label occurrences divided by the whole output set (M ∗N

labels). We test the model on M = 60 label sequences, with different input data sets

varying from 100 up to 3600 input readings, corresponding to different neighborhood size

from 5 to 36 sensortags. We vary input data properties in terms of source distance and

up-to-dateness to study the marginal and joint effect of each criteria on the accuracy of

our model. Each testing process is repeated 10 times such that model is tested with 10

folds. Finally average testing overall accuracy is calculated. The tuning parameters are

application dependent, some tests can help to choose the best parameters. We choose, in

the following, to set δt and δd to 1 and each of αl and Γl to 0,5.
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Figure 3.6: Varying nodes vs distance and time
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3.4.1.4 Testing: Impact of increasing sensors (Simulations)

Section 3.4.1.3 shows the results of the effect on the accuracy by increasing the number

of neighboring nodes for different input data properties. In Figure 3.6(a), the time between

readings for the sensors is kept in the range of [0, 1] minutes while the distances between

them are varied in three ranges [0, 1], [1, 10] and [10, 100] meters. The best accuracy is

observed when the sensors are spatio-temporally close (time in the range [0, 1] seconds and

distance in the range [0, 1] meters). In this case, our model predicts the sensor states with

more than 95% accuracy. We observe that the accuracy decreases with the increase of the

inter-object distance in the range [1, 10] and [10, 100] meters, up to 75% and 60% accuracy

can be achieved respectively, while the lagtime range remains the same. The further the

sensors are from each other the less accurate the context of a sensor can be estimated. We

can therefore, infer that the proposed CRF-based model yields a high accuracy in case there

exists enough close neighbors as they can better observe the reference device’s environment.

Similarly, Figure 3.6(b) shows the impact of the increasing age of observations along with

their number on the model accuracy for sensors placed at similar distances from each other.

We observe that for higher time difference between sensor readings, there is a substantial

difference in the accuracy of the estimated context. Again, we observe that the accuracy

decreases slightly with the increase in the number of co-located nodes with at least 96%

for 36 nodes. An accuracy of 53% is observed for the case we deploy 36 nodes and the

time differences of sensor readings are around [10,60] seconds, reflecting the worst case

behavior. Compared to the variation of distance, previously discussed in Figure 3.6(a), a

relatively high drop is noticed in the accuracy when the time is varied for sensor installed

within [0, 1] meter. Therefore, we can infer that increasing the lagtime of observations have

more effect on the accuracy than increasing spatial distances, it can be due to the fact

that some physical conditions (e.g.shade, sunlight) can cover a large area and consequently

reported by distant neighbors. We also analyzed the impact of increase in the number of

nodes while varying both, the time difference as well as the distances between nodes. We

notice in Figure 3.6(c) that, in the worst case considered when both time differences and

distances between sensors are increased (i.e. t = [10, 60] and d = [10, 100]), the state of

a sensor under study can be predicted with around 24% accuracy. Thus, from the overall

analysis of the increase in number of sensors, the proposed model successfully predicted
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the state of the sensor under study with high accuracy, even with the high spatio-temporal

differences between their readings.

We can summarize that our CRF-model can perform well (up to 98.5% accuracy) in the

existence of nearby neighbors reporting observation close to the sensor with respect to both

distance as well as time. It is to note that lacking of any of the two conditions can affect

the model accuracy particularly for devices operating in a rapidly changing environment.

3.4.2 Simulation over a real dataset

The dataset that we are using in our experiments consists of sensor readings recorded

at the campus of University of La Rochelle, France. We deploy five SensorTag IoT kits

(CC2650STK SimpleLink Bluetooth low energy/Multi-standard SensorTags) each equipped

with a temperature and luminosity sensor. We collected data during 5 hours, alternating

randomly for 10 time-slots, between three considered contexts.The deployed SensorTags

collect data with different arbitrary lagtimes to the object under study [59s, 20s, 60s, 60s,

60s], which results in [1670, 4560, 1540, 1540, 1540] readings. We also vary GPS positions

in the range of 100m from the device’s under study, every thirty minutes. The sensors

positions are randomly changed, each SensorTag is manually moved with a speed and

direction chosen at random until we ensure a change in the environment conditions and/or

vicinity. Consequently, the labels considered for this experiment are Y = {yi}, ∀yi ∈ {

indoor, outdoor ambient, outdoor under shade }. We generate 200 sequences by randomly

choosing for each sequence N = 10 consecutive time instants to estimate the context of

a given object. For each selected time instant, we find the neighbors observations in the

object’s vicinity (i.e. within a threshold distance and time difference) as its spatial and

temporal neighborhood.

We analyzed the accuracy of predicting the physical state of the sensor by finding the

extent at which the age of context data should play a role. For all the experiments over

real data sets, there are 2 sensors (temperature sensor, luminosity sensor) attached to the

same IoT device we’re interested in, that ensures for all context sequences to estimate there

exist at least 2 partially accurate readings about the environment. We merge observations

from these too close neighbors with readings from randomly positioned neighbors showed

that varying the neighbor distances while there are 2 close neighbors results in very good
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Figure 3.7: Effect of age of data variations on context estimation (Test-bed with 5
SensorTags)

results thanks to penalization functions that’s why we only focus on studying the impact of

age of data variations. Figure 3.7 shows the impact on the accuracy of the increase in age

of environment’s observations for a total of 10 sensor neighbors. We observe a decrease on

the accuracy along with an increase of context data age. It is thus evident that the more

the observations are farther in time, the less accurate they are. Still we observe around

98.5% accuracy for a lag time of 0 to 60 seconds, while we see around 69% accuracy for a

lag time of 1h− 1h30m. As already shown with experiments on synthetic data, real-world

experiments also prove that our model is able to estimate an IoT device context deployed in

an uncontrolled environment with high accuracy by just involving two types of information

(temperature and luminosity) under certain spatial and temporal thresholds.

3.5 Conclusions

Devices providing services in an urban environment suffer from indifference regarding

their context. For instance, such a lack of knowledge about the deployment context could

result in the collection of inaccurate or sometimes useless and redundant data. Therefore,

in this chapter we propose a context at the edge reasoner based a collaborative approach

between devices in a neighborhood. Collective intelligence enables IoT devices to see, hear,

and smell the physical world around without deploying any dedicated resources.

As physical phenomena are continuous, with rich spatio-temporal dependency, there

exists a strong correlation between neighbor’s observations the physical state to estimate. In
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order to capture such relations, we used Conditional Random Field to estimate the context

of an Iot device based on the readings from its surroundings sensors and its own previous

physical conditions. Thus, we adapt the spatio-temporal CRF existing models to consider

separately the spatial and temporal potential functions, as they may have different impact in

the context estimation. Experiments are performed on synthetic and real traces. Results

showed that the proposed models successfully estimates the context of different sensors

with high accuracy up to 98.5%. Obviously, the collaboration process requires nodes to

detect neighbors within communication range and to connect with each other. IoT devices

can easily move and change environment, they could enter and leave area/network at any

time, therefore neighbor discovery is a continuous process. Thus, ensuring the accuracy

and the continuity of context discovery service, comes down to ensuring for each node an

updated network topology information. However, low-powered devices couldn’t support

energy hungry neighbor discovering to establish the topology information, therefore to

efficiently connect and discover neighbor nodes for IoT devices is key prerequisite for any

IoT architecture.
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4.1 Introduction

Energy efficient data collection requires low power sensors in a smart building/home

to discover and communicate with nearby sensors and other wireless devices. Similarly,

“T2T context-awareness at the Edge” could require wireless low-power devices in each

others proximity to interact locally as an opportunistic network built upon sensors and IoT

devices, such as tablets, smart phones and smart wearable. Due to the potential mobility

of some IoT devices as well as other factors such as channel quality and devices capabilities,

network nodes can leave and join network at any time thus opportunistic Neighbor discovery

is a key concern for opportunistic and self-organized network. Neighbor discovery allows to

dynamically trigger the interactions that might be needed, especially when building ”T2T

context-awareness at the edge”.

Energy efficient neighbor discovery for multiple mobile devices in each other proximity is

a challenge along duty cycling, where low power devices are inactive for a potentially large

fraction of time. Existing schemes allow each device to employ a schedule to become active

and send periodic messages or listen to neighboring devices to ensure a neighbor discovery

in a bounded delay. However, collisions can occur due to simultaneous transmission of

messages from multiple devices resulting in failure of neighbor discovery. So, our belief is

that there is a need to reduce the number of message transmissions in a neighbor discovery

process to avoid collisions and enhance the number of devices discovered.

To do so, in this chapter, we propose WELCOME, a low latency and energy efficient

neighbor discovery scheme based on a single-delegate election algorithm. Instead of all

nodes transmitting messages, only a single node at the time can become a delegate to dis-

cover the nodes in the vicinity and provide the neighborhood information to its neighbors.

A node first finds its eligibility to become delegate based on its residual energy and its

association to the neighborhood. It then declares itself a delegate and listens to messages

from its neighbors. Finally, it broadcasts the information regarding its neighbors to the
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devices in its communication range. Moreover, the delegate role can be rotated among

neighbors where a node with high eligibility can contend to declare itself as the new del-

egate in case of absence of a delegate node. WELCOME is compared with seven existing

neighbor discovery schemes and it successfully discovers 100% of neighbors with low energy

consumption and low latency for a neighborhood size of up to 100 nodes.

The remainder of the chapter is organized such that the next Section 4.2 presents an

overview of neighbor discovery schemes.Section 4.3 presents the design and description of

our proposed WELCOME scheme. In Section 4.4, we define the evaluation metrics along

a theoretical comparison of WELCOME with the state of the art schemes. Section 4.6

discusses the performance evaluation and results based on extensive simulations. Finally,

Section 4.7 concludes the chapter and provides some insights into future directions.

4.2 Overview of Neighbor Discovery Schemes

Stochastic-based schemes

Stochastic-based schemes allow nodes to transmit beacons, listen for beacons from other

nodes or sleep in a slot based on a probability distribution.

Birthday Similarly to the birthday paradox, in which there is a probability that exceeds

0.5 that two people have the same birthday in a room of 23 people. Birthday is a proba-

bilistic protocol, in which two nodes randomly select k slots, where the first listens during

its k slots and the second sends a beacon during its k slots. During the remaining time,

each node is idle.

Prime-based schemes

Prime number-based asymmetric discovery schemes require a node to choose a single (e.g.

U-Connect [37]) or a pair of prime numbers (e.g. Disco [36]) to derive its duty cycle. The

activity slots of a node will be the multiples of the selected prime number(s). As an outcome

of the Chinese Remainder Theorem, such wake-ups, at multiple of prime numbers, ensures

deterministic discovery latency.
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Disco In the Disco protocol [36], each device chooses two prime-numbers (p1, p2). Where,

Every pi-th slot the device wakes-up and stay active for one slot and then turns radio-off.

Disco sends a beacon at both the beginning and end of each active slot. A mutual discovery

between two nodes ((p1, p2),(p3, p4)), is assured after Max(p1×p3, p1×p4, p2×p3, p2×p4)

slots [59].

U-connect As an extension of Disco, the node selects only one prime number p. Thus,

U-connect reduces the number of listening periods and beacons. [37] allows for two nodes

which choose a prime p to wake-up for a slot every p slots and for p+1
2 slots every p2 slots.

The node transmits continuously during listen active slots, thus a node sends p+ p+1
2 number

of beacons. The U-Connect protocol is periodic in nature, with a worst-case latency of p2.

Dynamic/Fixed listen slot-based schemes

The transmission and listen activities are independent and they can be conducted on dif-

ferent slots. In dynamic listen slot schemes, a large time period named Hyperperiod T is

divided into regular sized cycles T = c ∗ t, where each cycle c is further composed of slots.

Two types of slots exist, static transmission slots at fixed positions, either at the beginning

or end of the cycle, and dynamic listen slots with a regular shift to the left or right in

consecutive cycles, up to the end of the period.

Searchlight Under Searchlight scheme [8], a node wakes up for two active slots per cycle

c. In every cycle, there is one anchor slot (fixed slot) fixed to the first slot, and a probe

slot(dynamic) that traverses from position 1 to c/2 across c/2 cycles. The number of cycles

in a hyperperiod T is c/2. In every period, a node sends a beacon at both the beginning

and end of an active slot. Under symmetric duty cycles, a node under total active periods

and number of beacons sent, are c and 2c, respectively.

Blinddate Blinddate divides a cycle on m blocks, with only a fraction k of them as dy-

namic active blocks and one static active block. It places static active slots for deterministic

discovery at the final slot of each cycle, then adds dynamic active slot in a pseudo-random

manner, moving from left to right in a given dynamic block. Blinddate adopts the same
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beaconing strategy as Searchlight. The authors choose the best solution (k =2 and m =5),

which results in a 3 active slots and 6 sent beacons per cycle.

Hello For Hello protocol [6], a node stays active during the consecutive slots indexed from

1 to c/2 in the first cycle, then wakes up at the first slot of each cycle, which results in c/2+t

listen periods. Similarly to Disco and Searchlight beaconing strategy, a node transmits a

beacon at both the beginning and end of an active slot. The number of transmitted beacons

per node is c+ 2t.

Nihao As previous works only care about the overlap of two wake-up slots, Nihao neighbor

discovery family uses a strategy named Talk More Listen Less (TMLL), which as its name

suggests, it is based on the assumption that when the number of beacons increases, fewer

probes are necessary for discovery. TMLL is energy-efficient, given the fact that short

beacon costs much less than an active slot. In the S-Nihao variant, a node wakes up in the

first slot of each schedule cycle, but sends a beacon at the beginning of each slot. Instead

in the G-Nihao variant, a node can skip several slot to send a beacon.

Discussion

For stochastic-based schemes, energy efficiency is ensured by choosing a lower probability

for beacon transmission or for listening. Such schemes perform better on the average case

compared with the deterministic approaches above, but they provide no bound on the worst

case latency and they can lead to long tails in discovering the last fraction of nodes. On

the other hand, for Nihao [7], energy efficiency is ensured by choosing to increase beacon

transmissions and to decrease listening periods. Such scheme perform better on a small-

scale network. The above mentioned schemes are only tested is small scenarios, where

two nodes try to discover each other within a bounded delay. On larger scenarios, for

a neighborhood size of 100 nodes, we clearly observe that none of the existing schemes

enable the nodes to discover all their neighbors [60]. We believe that due to multiple nodes

transmitting beacons simultaneously, fraction of nodes fail to discover their neighbors due

to collisions.
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4.3 WELCOME: Towards a Flock Discovery

4.3.1 System Model

We consider a set of nodes N = {n} in the proximity (communication range) one of each

other, forming a clique like network structure where each node is with degree kn = |N |− 1.

To study neighboring nodes discovery, we assume a relatively stable mobility, i.e. for

a while, the nodes stay in the same neighborhood. A node can be either in an active

state where it can transmit a message/listen to incoming messages or in a sleep state and

remains idle with minimum energy consumption. Thus, a node operating on low duty

cycles alternates between sleep and active state where it stays in sleep state most of the

time in order to save energy. It becomes active for a small amount of time tb to transmit a

beacon message, or during time tl to listen to incoming beacons issued by other devices, in

a relatively larger time period T , where tb < tl << T . A node employs a given schedule to

either send beacons or listen to beacons from another nearby node in the same time period.

The goal is to opportunistically find a time when two nodes are simultaneously active to

ensure a successful discovery. The energy consumption En of the node n to be active

as the combination of sending beacon or listening can be represented as En = beb + lel,

where b represents the number of transmitted beacons, and eb is the energy a node takes to

transmit a beacon. Similarly, l is the number of listen periods each with energy consumption

el. The latency for the node n to discover its neighbors is Ln, in the worst case. We define

two types of nodes, delegate and member nodes. Delegate nodes are responsible for the

neighbor discovery process. They maintain and share the neighborhood information with

nearby nodes. Member nodes are the nodes in a particular neighborhood receiving the

information regarding their neighbors from delegate nodes.

We define the following basic message types. A delegate node can send two types of

messages: (i) A Discovery message which marks the beginning of a neighbor discovery

process. (ii) A WELCOME message which is periodically broadcast in the neighborhood

to inform member nodes about current neighborhood information as well as the schedule

for the next neighbor discovery process. Any node can send (iii) A unicast Hello message to

a delegate node in order to provide information regarding its existence in the neighborhood

and become a member node.
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4.3.2 Delegate Node Eligibility

We believe it is sufficient to allow a single node to declare itself as a delegate node,

to represent the neighborhood to which it belongs, in a distributed manner, and welcome

incoming neighbors. Nodes in a neighborhood can self-organize and rotate the role of being

a delegate among spatio-temporally co-located nodes to ensure a fair energy consumption

of all nodes.

We present an eligibility function for a node to become a delegate for some period in

a neighborhood based on its residual energy levels. Besides energy requirements, several

other factors can be considered depending on the application. Though, one of the important

factors is the node reliability in terms of its association to the neighborhood. More precisely,

we need to find for how long the node belongs to the same neighborhood in order to avoid

that a malicious node, who is new to the neighborhood, with maximum residual energy level

to declare itself as the delegate node and subsequently hijacks the neighborhood. Thus, the

longer the node is in the same location (i.e part of the same neighborhood), the more likely

it is eligible to become the delegate node. Moreover, we need to consider the node history

of holding the delegate role, as nodes frequently becoming a delegate are more likely to

exhaust their energy earlier compared to their neighbors. Therefore, such nodes should be

less preferred to become delegates.

Each node can compute an eligibility function fD to measure its ability to become a

delegate once it becomes active in a neighborhood. It can compute the following function

prior to scanning for existing delegates in order to consider itself as the delegate in case of

absence of any delegate in the neighborhood:

fD = αfR + βfE + γfH (4.1)

where, fR is the node reliability function to be a delegate node taking into account its

association (i.e. for how long it belongs) to a neighborhood. The function fE is the resid-

ual energy function characterizing the node physical properties where high node residual

energy levels yields high eligibility to become a delegate node. Here fH is the function

which considers the node history of holding the delegate role previously as well as the time
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Figure 4.1: Discovery initialization - no delegate node detected

(a) Discovery message (b) WELCOME message

Figure 4.2: Discovery with existing delegate node message detection

staleness with respect to the previous time it held the delegate role in the neighborhood.

An exponential decay function can be used to represent such time staleness. Thus, the

more frequent it helds the delegate role since its deployment in the neighborhood, the less

it is preferred to be a delegate again, thus increase its lifetime.

The function fD indicates how eligible a node is to become a delegate, where in case

there exists no delegate in the neighborhood i.e. when no WELCOME/Discovery message

is received for some time, it waits for an amount of time which is inversely proportional

to fD before declaring itself the delegate and sending its WELCOME message. This not

only impedes low residual energy nodes (lower fE) to become delegates but also reduces

the likelihood of a newly joined malicious node (low fR) or a node frequently selected as

delegates in the past (high fH) to become delegate.

4.3.3 Node activity schedule in WELCOME

Node activity schedule in WELCOME can be classified into two categories: the schedule

for the delegate node and the one for member nodes.
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4.3.3.1 Delegate Node

Any node becoming active in a neighborhood computes its eligibility score fD upon wake-

up and listen for the existence of a delegate node for a period c as shown in Figure 4.1. In

case it receives no message from a delegate, it declares itself as the delegate for the neigh-

borhood by broadcasting a Discovery message after a duration ∆d ≤ c. ∆d is inversely

proportional to its eligibility function fD with a maximum delay of c period. The node still

continues listening for the existence of possible delegate during ∆d and aborts transmitting

its Discovery message in case it receives a message from an existing delegate node. Subse-

quent to sending the Discovery message, the node listens for another c duration in order to

receive Hello messages from the neighbors that heard its Discovery message.

It is to note that a shorter listen period c can lead to collisions since the growth in the

neighborhood size results in more Hello messages sent by neighbors. Therefore, c should be

flexible enough for a delegate node to accommodate the reception of Hello messages from

all its neighbors while avoiding collisions.

At the end of its listen period, the node then broadcasts a WELCOME message compris-

ing its node ID and the list of neighbors from which it received Hello messages during the

listen period. Similarly it contains information regarding the next listen period scheduled

by the delegate node based on its duty cycle. The node can then switch to sleep mode

and periodically broadcast WELCOME messages to ensure neighboring nodes to detect

it. The interval between sending two WELCOME messages is less than the defined listen

period c. The idea is to allow the delegate node to switch itself to sleep mode between

two WELCOME messages and in result conserve its energy based on its desired duty cycle.

Moreover, as shown in the Figure 4.1, the delegate node repeats its discovery phase (lis-

ten to Hello messages from neighbors) for the time allowed by its eligibility function and

depending on its duty cycle. Algorithm 1 summarizes the neighbor discovery process for a

delegate node.

In case the current node doesn’t win the election phase and another node outstripped the

demand, the candidate node will turn to a Member node mode and execute the following
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Algorithm 2. It is to note that the feasibility score calculation and the listening period are

only executed upon wake up, otherwise they are escaped.

4.3.3.2 Member Node

A member (non-delegate) node upon arriving in the neighborhood becomes active, com-

putes its eligibility function using Equation (4.1) and listens for a message from a potential

delegate node during c period. It can receive either a Discovery message or a WELCOME

message from an existing delegate node as shown in Figure 4.2. Figure 4.2(a) shows the

case when it receives a Discovery message indicating that the delegate node already started

listening for c duration. The member node responds with a uni-cast Hello message to the

delegate scheduled after a time delay ∆h. This is randomly chosen between the time the

member node receives the Discovery message and the time the delegate node finishes its

listen period indicated as the duration c. Thus, the size of the interval c is defined as

the maximum time to defer a Hello message. The node then continues listening in order

to receive the WELCOME message containing information regarding all the neighbors de-

tected by the delegate node. A member node can switch itself to sleep mode following the

reception of the WELCOME message and can schedule a wake-up based on its desired duty

cycle for an upcoming discovery phase indicated in the delegate’s WELCOME message.

The duration of c for a given application should be long enough to accommodate poten-

tially large neighborhood sizes allowing a delegate to be able to listen to Hello messages

from a maximum amount of neighbors (member nodes).

The member node upon receiving any of the WELCOME messages sent by the delegate

node can defer its transmission of the Hello message to the delegate’s upcoming discovery

phase as shown in the Figure 4.2(b). Thus, upon reception of a WELCOME message, the

member node can switch to sleep mode and schedule to send its Hello message at a time

instant randomly chosen between the beginning and the end of the upcoming listen period

c, indicated in the delegate’s WELCOME message. It subsequently sends a Hello message

at the scheduled time and then listens for the WELCOME message following the delegate’s

discovery phase. Then the member node can return to sleep mode based on its desired

duty cycle. The Algorithm 2 shows the neighbor discovery process for a member node.
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In the absence of a delegate node, the member node will not receive any messages and

will turn to Delegate node mode. As it has already computed its feasibility score and has

listened for a c duration upon wake up, these two steps ar escaped. Then the current

node will listen for an additional time inversely proportional to its eligibility score, thus

it enters the Delegate election phase. Nodes that already belong to the neighborhood are

favored by the eligibility function fd and can compete with new arrivals. If one node looses

the competition, it turns back to the Member node mode and enters Discovery phase as

described above.

Algorithm 1 Delegate Node Activity schedule

for node n do
Upon wake-up :
(i)Compute eligibility fd, (ii)Listen for c duration
if No message received then

Continue listening for additional ∆d period
Broadcast Discovery message
Listen for Hello messages for c duration
Broadcast WELCOME message
Sleep and wake-up to broadcast WELCOME message after each c period
Periodically do a Discovery phase for c duration each c*t slots

else
Declare as Member node Algorithm 2

end if
end for

4.3.4 Absence of WELCOME message - Self-organization

A node declaring itself as a delegate is responsible for sharing the neighborhood infor-

mation for a finite duration allowed by its eligibility function, however, over a longer time

period, the role of the delegate is rotated to ensure fairness.A delegate node with low

residual energy levels can abdicate itself from being the delegate and subsequently switch

to become a member node and stay in sleep mode for longer period in order to conserve

energy.
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Algorithm 2 Member Node Activity schedule

for node n do
Upon wake-up:
(i)Compute eligibility fd, (ii)Listen for c duration
if Discovery message received then

Send Hello with waiting time ∆h
Listen for WELCOME message

else if WELCOME message received then
Sleep and schedule a wake-up randomly during delegate’s next listen period
Send Hello message upon wake-up
Listen for WELCOME message
Sleep

else
Declare as delegate node Algorithm 1

end if
end for

We consider the possibility for a delegate node to stop broadcasting messages due to

either its departure from the neighborhood or switching to member node and sleep for en-

ergy conservation purposes. WELCOME comprises a built-in recovery mechanism allowing

nearby nodes to auto-organize and collaboratively preserve neighborhood information in

case of disappearance of messages from the existing delegate node for any reason.

The self-organization process is as follows: Each member node receives and stores the

neighborhood information from its delegate node. Once the delegate nodes stops broad-

casting its WELCOME message in the neighborhood, similarly to the initial delegate node

declaration process, any member node can become the next delegate by broadcasting its

respective Discovery message after a wait period ∆d that is inversely proportional to its

eligibility function fD in Equation (4.1).

Since our eligibility function considers the nodes history as its association with respect

to the neighborhood, only nodes already in the neighborhood for some time in the past will

have a shorter waiting period. Moreover, since a node has already stored the neighborhood

information from the previous delegate nodes, it can preserve this neighborhood information

along with discovering any new nodes joining the neighborhood. Thus, the newly declared

delegate node belongs to the same neighborhood while retaining the information regarding

the previously known neighbors.
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4.4 Analytical Evaluation

4.4.1 Evaluation Metrics

Three evaluation metrics are used in the following. The first metric is the number of

discovered neighbors. This ones differs between nodes and can be characterized by the

average number of neighbors discovered in a neighborhood as defined below:

Definition 4.1. Fraction of Discovered neighbors

The number of neighbors discovered by a node n is defined as the cardinality of Dn ⊂ N ,

the set of neighbors discovered by n. Similarly, the average number of neighbors discovered

for a set N is the cardinality of the set DN represented as DN = 1
|N |

∑
n∈N

Dn, where the

unit of both Dn and DN is a number of nodes ranging between 0 and |N | − 1.

The worst case latency in discovering neighbors is an important metric, used by all related

works in Chapter 2. However, in the case where only a fraction of neighbors is discovered,

we need to consider the joint relation between latency and average neighbor discovery. This

relation, which represents our second evaluation metric is defined here after.

Definition 4.2. Latency vs. Discovery

The latency vs discovery relation for a neighbor discovery process considering a possibility

of failure in discovering neighbors for a set of nodes |N | is given as:

θN = LN · (1 +
DN

|N | − 1
), (4.2)

where LN can be seen as the theoretical worst case latency, when ignoring collisions, for

discovering the |N | − 1 neighbors, and DN is the average number of neighbors currently

discovered. The term θN can be interpreted as a measure of a general performance (i.e. the

average number of time slots needed to discover a certain ratio of nodes) and a relative one

(i.e. the average number of neighbors discovered in practice during a time period where all

the nodes should have been theoretically discovered). It can be measured in term of time

slots.
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We also need to consider a measure on the energy efficiency, as the discovery process

should be as less energy consuming as possible, while incurring low latency and providing

a high discovery ratio. Therefore, we jointly characterize the energy consumption, the

average number of neighbors discovered and the average latency, using the relations below.

Definition 4.3. Energy vs. Discovery

We define, for a set of nodes N , the relation between the total fraction of neighbors

discovered, the energy consumption and the latency needed for discovery as:

δN = EN · θN , (4.3)

where EN is the average energy consumption during time period LN . The metric δN is

measured in Joule-second and it provides a common benchmark for the different neighbor

discovery schemes.

4.5 Theoretical Comparison

4.5.1 key parameter

Duty Cycle

The listen period consumes most of the node energy and almost all nodes listen for a

duration c ≤ c+ ∆ ≤ 2c and sends one beacon during this same active period c+ ∆ + 1 ≈

c + ∆d. Except for the Delegate node, that listens for a duration 2c ≤ 2c + ∆d ≤ 3c,

and every c slots, it wakes-up to send one beacon. Thus the active period for Delegate is

2c + ∆d + t slots. The duty cycles corresponding to Member node and Delegate node are

DCm = (c+∆)/ct and DCd = (2c+δd+t)/ct, respectively. The parameter t can be defined

by an application as the number of times the listen period c is to be repeated, reflecting the

frequency of the re-initialization of the discovery process by the delegate node. Therefore

using our proposed protocol, we consider the duty cycle of the Member node as Welcome

duty-cycle.
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Worst-case Latency

For the delegate node, the worst case latency is Ln = 2c + ∆d since after waiting this

amount of time, it is supposed to receive all the Hello messages and then broadcast its

WELCOME message.

The worst case latency for the member node receiving a Discovery message is Ln = c+∆

as it discovers its neighbors from the information in the WELCOME message it receives

following the Discovery message from the delegate node. The worst case latency for a

member node for receiving a WELCOME message is the discovery cycle of the delegate

node, i.e. Ln = c × t. Thus, for a member node, the worst case latency of Ln = c × t is

considered a maximum bound under the WELCOME protocol.

Energy Consumption

The energy consumption of the delegate node is given as En = (2c + ∆d)el + teb where

the number of beacons are t + 1 and the number of listen periods are 2c + ∆d. For the

member node, the energy consumption is En = (c+ ∆)el + eb, where at worse, it listens for

a duration of c + ∆, and sends a single Hello message at the Delegate next listen period.

When a member node wakes-up at the Delegate node listen period, it can face one of the

two possible scenarios. At best, it listens for c slots and get one of the possible messages

(Discovery/Welcome message), in this case the listening period is c slot and the number of

sent beacons is one. At worst case, the member node doesn’t receive any message, then it

switches into Delegate node mode, waits for an additional ∆d time, then turns back into

Member node mode.

4.5.2 Detailed theoretical analysis

Similar to WELCOME, we theoretically derive the key parameters for each of the best state

of the art schemes such that all nodes achieve the same desired duty cycle and ensure fair

comparison. Though such schemes can function under heterogeneous duty cycle settings

and this step is only required for comparison purposes. Specifically, we are interested

in the nodes activity schedule, their energy consumption on transmission and/or listen

time slots, as well as the latency for successful neighbor discovery when operating on a
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Table 4.1: WELCOME vs Existing Neighbor Discovery Schemes (Key parameters)

Scheme Parameter(s) Duty Cycle Beacons Listen periods Ln En

WELCOME [Delegate] c, t,∆d (2c+ ∆d+ t)/ct t 2c+ ∆d 2c+ ∆d (2c+ ∆d)el + teb

WELCOME [Member] c, t,∆ (c+ ∆)/ct 1 c+ ∆ ct (c+ ∆d)el + eb

Hello [6] c, t (c/2 + t)/ct c+ 2t c/2 + t c2/2 c(2eb + el)

G-Nihao [7] c, t c+ 1/ct t c ct c(2eb + el)

Disco [36] p1, p2 1/p1 + 1/p2 2(p1 + p2) p1 + p2 p1p2 (p1 + p2)(2eb + el)

U-Connect [37] p 3/(2p) 3p/2 3p/2 p2 3p(eb + el)/2

Searchlight [8] c 2/c 2c c c2/2 c(2eb + el)

Blinddate [9] s, t 3/(5s) 6t 3t 5s2/2 3t(2eb + el)

Birthday [10] pb, pl, ps pb + pl pbLn plLn - Ln(pbeb + plel)

Table 4.2: WELCOME vs Existing Neighbor Discovery Schemes (Results)

1% duty cycle 5% duty cycle

Scheme Ln En c t s p1, p2/p Ln En c t s p1, p2/p

WELCOME [Delegate] 300 200eb+ 300el 100 200 60 40eb+ 60el 20 40

WELCOME [Member] 20000 eb+ 200el 100 200 800 eb+ 40el 40 20

Hello [6] 20000 400eb+ 200el 200 100 800 80eb+ 40el 40 20

G-Nihao [7] 20000 400eb+ 200el 200 100 800 40eb+ 80el 40 20

Disco [36] 40301 804eb+ 402el 211 191, 211 1591 160eb+ 80el 43 37, 43

U-Connect [37] 22801 228eb+ 228el 151 151 961 48eb+ 48el 31 31

Searchlight [8] 20000 400eb+ 200el 200 100 800 80eb+ 40el 40 20

Blinddate [9] 9000 180eb+ 90el 300 30 60 360 36eb+ 18el 60 6 12

Birthday [10] 20000 200eb+ 200el 200 800 40eb+ 40el 40

particular duty cycle. Table 4.1 summarizes this comparison for nine different neighbor

discovery schemes, schemes that are discussed in Chapter 2. In the following, we limited

the theoretical bounds comparison for Slotted Protocols, as the fundamental performance

bound for periodic-interval(PI)-based protocols (i.e. [4],[5]) are still unknown [61]. The

first column in Table 4.1 shows the key parameters used to define a node activity schedule

in order to attain a given duty cycle, using the relation shown in the second column. The

subsequent columns show the number of beacons, listen periods, worst case latency bound

Ln and energy consumption En, respectively, for each scheme.

In the following theoretical comparison, given by Table 4.2, we provide the numerical

values of the worst case latency and energy consumption of the same set of Neighbor

Discovery schemes while comparing them to WELCOME. More precisely, Table 4.2 gives

an outline of the derived numerical values of En and Ln, for a node operating at 1% and

5% duty cycles, respectively.
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Giving a duty-cycle (e.g. 1%, 5%), the optimum c value can be achieved based on what

is expected in the second column of Table 4.1. To compare G-Nihao to other schemes, we

use a sufficiently small α ≤ Dc to ensure a fine-grained duty-cycle in the form of t = c
Dc [7].

The best cycle length c configuration for both Searchlight and Hello, is 2/Dc. Indeed, once

we fixed one parameter c in function of Dc, it is easy to calculate the number of cycles t.

For Disco, we set balanced primes close to 2
Dc), under symmetric duty cycles. U-Connect

fixes its prime p close to 3/2
Dc . Concerning Blinddate, the optimal total number of time slots

in a block is s = 3/(5Dc). Subsequently, the cycle length is 5 times the block size, so c = 5s.

From the worst case latency equations Ln = 5s2/2 = ct [9], we can derive t = Ln/c. Due to

the stochastic nature of Birthday there is no bound on the worst case latency for discovery,

thus, in order to ensure a fair comparison with other benchmark deterministic schemes, we

consider a worst case latency Ln = p2

2 , as for Searchlight, Hello,and for Nihao. Due to the

asynchronous nature of WELCOME, as the Delegate and Member nodes operates under

different duty-cycles, the optimum cycle length is set to 1/Dc [6].

We compare the performance of the different protocols under symmetric duty cycles. Two

typical duty cycles, namely 1% and 5%, are used hereafter. According to the parameter

selection rules described above, each scheme selects its optimal parameter values, look at the

column 1 in the table reference Table 4.1, under both duty-cycles. Disco selected (191, 211)

and (37, 43) (balanced primes), U-Connect 151 and 31, both G-Nihao and Searchlight

200 and 40, Hello (199, 100) and (41, 19), Blinddate (300, 60, 30) and (60, 18, 6), Birthday

(200,200). For Welcome, when Member nodes operates under 1%/5%, the Delegate node

for the same cycle length operates under 2, 5%/12, 5%, and the optimum cycle length and

number of cycles are 100 and 200, respectively.

The energy consumption of Disco under 1% duty-cycle, is En = 804eb + 402el, i.e.

2(p1 + p2) = 804 beacons and p1 + p2 = 402 listen periods within the bounded delay

Ln = 40301 time slots. Similarly, to achieve 5% duty cycle within Ln = 1591, the energy

consumed by a node is En = 160eb + 80el with 80 active time-slots. To achieve 1% duty

cycle, U-Connect requires an energy consumption of En = 228eb+ 228el within the worst

case latency Ln = 22801 slots, where the number of beacons and listen periods are both

228. For 5% duty cycle, within the worst case discovery period of 961 slots, a node spends

energy to send 48 beacons and listens for 48 slots. Searchlight and Hello, under 1% duty
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cycle, the number of beacons and listen periods are 400 and 200, respectively, leading to an

energy consumption En = 400eb + 200el within the worst case latency Ln = 20000 slots.

For 5% duty cycle, The energy consumption is En = 80eb + 40el within the worst case

latency Ln of 800 slots.

Blinddate requires a cycle of 300 time slots repeated t = 30 times, under 1% duty cycle.

The cycle is divided into 5 sub-slots each of size s = 60 slots with a worst case latency of

9000 slots. The number of active periods is 90, thus a node send 90 beacons and spend 90

listen periods and the energy consumption is En = 90(2eb+ el). Similarly, under 5% duty

cycle, Blinddate requires a cycle of 60 repeated t = 6 times with a worst case latency of

360 slots. The cycle is divided into 5 sub-slots each of size s = 12 slots. The number of

beacons and listen periods are 18 each leading to an energy consumption En = 18(eb+ el).

(4.3)

For 1% duty cycle, G-Nihao needs up to Ln = 20000 as the worst case delay. The

energy consumption in this case is En = 200(2eb + el). Similarly, for 5% duty cycle, the

worst case delay is Ln = 800 slots with an energy consumption of En = 40(2eb+el). (4.4)

Finally, WELCOME requires a cycle period of c = 100 slots repeated t = 200 times,

to achieve 1% duty cycle. For a Delegate node, it sends 200 beacons and listen for 300

periods resulting in an energy consumption of En = 200eb+300el. Similarly, for a Member

node, it sends 1 beacons and listen for 40 slots resulting in an energy consumption of

En = eb + 40el. The worst case latencies, for a Delegate Node and Member Node are

Ln = 300 and Ln = 20000, respectively. Under 5% duty cycle, a Delegate Node energy

consumption is given as En = 40eb + 60el, where 2c + ∆ = 60 is the number of listen

periods and t = 40 is the number of listen slots for the WELCOME schedule within the

bounded delay.

4.5.2.1 Discussion

From the evaluation above, we can conclude that Blinddate and WELCOME reach the

best theoretical performances, better than all the other schemes. More specifically Blind-

date reaches the best performance in terms of worst case latency, while WELCOME reaches

the best theoretical performances in terms of energy consumption. On the other hand,

Disco results in the worst performances among the compared schemes. In terms of both
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energy consumption and latency, Disco requires twice the other compared schemes expect

for Blinddate, where it costs even four times more. The other protocols (WELCOME,

Searchlight, Hello, Birthday, G-Nihao and U-Connect) reach a relatively equal worst case

latency results. Concerning the Energy consumption, the best performance is reached by

WELCOME, which saves per node from 200% up to 800% in terms of beaconing dedicated

energy. In terms of listening dedicated energy, it consumes the same amount of energy

as Hello, G-Nihao, Searchlight and Birthday. Blinddate, however, consumes twice less lis-

tening dedicated energy, while Disco consumes two times more listening dedicated energy

than WELCOME. On the other side, the Delegate node has an average energy consumption

compared to other schemes, however it represents 1% from the network and in addition this

charge is fairly distributed in time over the network nodes.

The remarkable difference in the total number of beacons sent by WELCOME compared

to other schemes supports more the assumption that WELCOME scales far better. Since

large networks are more prone to collisions, we believe that WELCOME is able to reduce

the worst-case (long tail) latency significantly, and could make difference on (near) realistic

scenarios. Besides this encouraging theoretical comparison, it is still necessary to analyze

the performances of WELCOME under realistic simulation scenarios. This is the target of

the following section.

4.6 Simulation-based Evaluation

4.6.1 Simulation Scenario

Simulations are performed by implementing WELCOME along state of the art discussed

neighbor discovery mechanisms in the NS-3 simulator. A neighborhood is formed by placing

a set of 100 IEEE 802.11b/g/n enabled nodes in the communication range (around 150 m)

of each other in an opportunistic and self-organized network, resulting in a clique-type

network. We assume nodes stay in the neighborhood for some time. i.e. the topology

does not evolve during our analysis. We evaluate each mechanism by considering up to

100 nodes, where the Friis propagation loss model is used to study the impact of fading

in the wireless medium. Since energy efficiency can be achieved by allowing a node to

operate on low duty cycles, we consider low duty cycles of 1% and 5%. We vary the

number of co-located nodes from 2 nodes up to a total of 100 nodes simultaneously present
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in a neighborhood. This encompasses not only few mobile nodes discovering each other for

applications such as mobile sensing or proximity-based gaming but also allow large number

of energy constrained sensors on shipment packages to discover each other autonomously

for tracking purposes for instance.

Each member node sends a Hello message of 100 bytes while a delegate node sends a

Discovery message and WELCOME message of 100 bytes and 1KB, respectively. Similarly,

a node can listen during a duration of c = 200 ms, which is large enough to accommodate

Hello messages from up to 100 nodes. The parameters α, β and γ in Equation (4.1) are set

to 0.33 to maintain generality for each function. We consider the possibility of a clock drift

between nodes as an asynchronous discovery since they are unaware of the time lag between

each others active periods. WELCOME is compared to the best among the above mentioned

schemes i) Blend and ii) Garissidi, iii) fixed-slot based Hello, and iv) G-Nihao, v) dynamic

slot based Searchlight, vi) Blinddate, and vii) stochastic Birthday, under symmetric duty-

cycles. Each node follows an activity schedule using the respective parameters defined by

each mechanism in Table 4.1. Since each of the deterministic mechanisms discussed above

theoretically ensures a successful discovery if the neighboring nodes are active during Ln,

the simulation duration ensures that each node experiences at least Ln, as the time period

in common with all its neighbors.

We recall that each of the above mentioned mechanisms tries finding an overlapping

active time period between nodes in order to ensure a successful discovery. However, in

practice, activating multiple nodes at the same time can lead to collisions, thus resulting

in discovery failures. We tackle the issue by implementing a CSMA/CA based back-off

approach where a node finding the medium busy before transmitting a beacon chooses a

wait time randomly between its initial transmission time and a slot size of 10 ms.

We use our proposed evaluation metrics: i) The average number of discovered neighbors

DN among |N | nodes in each other communication range. ii)The Latency vs discovery

relation in Equation (4.2) to find the discovery latency incurred by the nodes when applying

the schedule defined by each scheme, and iii) The Energy vs discovery (δN ), defined in

Equation (4.3), to find the energy consumption of the node using WELCOME and other

neighbor discovery schemes.
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Figure 4.3: Average discovered neighbors comparison

4.6.2 Simulation Results

We performed simulations on nodes running different duty cycles 1% and 5%, respectively.

In the following, we present only the results from simulations since using a 5% duty cycle

nodes are more prone to collisions. The results are obtained using ten simulation runs,

where the average values of the results are shown with 95% confidence intervals.

4.6.2.1 Average discovered neighbors

The motivation for proposing WELCOME is the risk of collision between beacons trans-

mitting at the same instant, thus resulting in all the neighbors not necessarily discovered

by the node. We investigate such a behavior by finding the average number of neighbors

discovered while having different neighborhood sizes. Figure 4.3 compares the average dis-

covered neighbors using WELCOME along different state of the art schemes. It clearly

shows that WELCOME yields the highest number of discovered nodes, followed by the in-

direct schemes Blend and Griassdi. On the other hand, direct neighbor discovery schemes

result in the least number of neighbors discovered on average.

WELCOME discovers 100% of the neighbors irrespective of the neighborhood size, and

therefore, outperforms other schemes where Blend discovers around 90% of the nodes. One

possible reason for WELCOME high performance is the fact that it avoids collisions at the

active overlapping time for discovery allowing a single node to listen to Hello messages from

neighbors, which significantly increases the chances to discover neighbors.
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Figure 4.4: Histogram of average discovered neighbors
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Figure 4.5: CDF comparison of average discovered neighbors
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We found that among all the compared schemes, Searchlight resulted in the poor per-

formance because the low listen period reduces its chance of discovering a large fraction of

nodes as we can observe that less than 50% of nodes are discovered for a neighborhood size

of 100 nodes.

Furthermore, we analyzed the scalability of WELCOME by comparing the neighbors

discovered by individual nodes in the large evaluated neighborhood of 100 nodes. Fig-

ure 4.4 shows the histogram of the neighbor discovered by each node compared with the

best performing indirect schemes, Blend and Griassdi. It clearly shows that WELCOME

(cf. Figure 4.4(a)) allows all nodes to discover their neighbors where the neighborhood

information is shared by the delegate node. On the other hand, for Blend and Griassdi in

Figure 4.4(b) and Figure 4.4(c), a fraction of nodes failed to discover all the neighbors in

the neighborhood size of 100.

Additionally to observe the fraction of neighbors discovered over time, we compute the

CDF of the neighbors discovered using each scheme for the neighborhood size of 100 nodes.

We observe such phenomena in Figure 4.5 where we compare WELCOME with the state of

the art schemes shown earlier in the Figure 2.1 for up to 30 seconds. WELCOME discovered

all the 100 neighbors with a delay of less than 5 seconds compared to existing neighbor

discovery schemes. It is followed by indirect schemes Blend and Griassdi, then the direct

schemes when yielded around similar performance by discovering around 50 neighbors at

the delay of around 30 seconds.

Overall the results for average discovered neighbors validate our claims that discovery

failures can occur largely due to the collisions of messages transmitted by multiple nodes in

a neighborhood. WELCOME tackles such issues by allowing one delegate node to discover

neighbors and share this information in a distributed manner. Thus, it results in a scalable

low latency, and energy efficient discovery of up to 100% of neighbors for low duty cycle

nodes.
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4.6.2.2 Latency vs Discovery

We analyze the latency achieved by the nodes using WELCOME when discovering neigh-

bors compared to other state of the art schemes. Figure 4.6 shows the latency vs discovery

metric for each scheme, running on nodes with 5% duty cycle. A lower value of the latency

vs discovery metric reflects a better performance in terms of latency. We notice that WEL-

COME results in the best performance, i.e. quick discovery of a high fraction of neighbors

in both small-scale and large-scale neighborhood, and thereby validating the scalability of

WELCOME compared to both, existing direct and indirect neighbor discovery schemes.

For the state of the art schemes, an increase in latency vs discovery is observed with

the increase in neighborhood size, particularly when we compare for large scale neighbor-

hoods(i.e. > 25 nodes). This is because, with the increase in the number of nodes, the

chances of collisions of beacons increases as multiple nodes try to transmit simultaneously.

WELCOME overcomes this issue by allowing a single node transmitting in the neighbor-

hood at a time and therefore avoiding collisions among beacon messages.

Overall, the comparison of WELCOME with state of the art schemes for the latency

vs discovery metric suggests that WELCOME can successfully discover a large fraction of

neighbors with the least latency. We can also infer that WELCOME scales better and

is relatively stable with respect to the increase in the number of neighbors as well as it

remains unaffected by the increase or decrease in the neighborhood size.

4.6.2.3 Energy vs Discovery

We finally analyze WELCOME for the energy vs discovery metric in comparison with

other neighbor discovery schemes where a low energy vs discovery value for a scheme cor-

respond to a better performance. Figure 4.7 shows such comparison with respect to this

metric when using each neighbor discovery scheme for nodes operating on 5% duty cycles.

It can be clearly shown that WELCOME outperforms all existing neighbor discovery

schemes with the least energy consumption for the fraction of discovered neighbors in each

neighborhood. We also observe that the indirect schemes, Blend and Griassdi, performs
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better compared to the direct schemes as nodes assist each other to enhance the neighbor

discovery process. Still such schemes are consuming significantly high energy compared

to our proposed WELCOME scheme. Direct neighbor discovery schemes on the other

hand resulted in a the poorest performance, which is the more visible for the probabilistic

Birthday, consuming the maximum energy.

Thus, the overall energy vs discovery analysis using simulations suggests that WEL-

COME is an efficient and scalable neighbor discovery scheme with relatively less energy

consumption and maximum amount of discovered neighbors compared to existing schemes

in the literature.

4.7 Conclusions

Neighbor discovery for low power devices usually suffer from the large number of collisions

between messages transmitted by multiple nodes as the neighborhood size grows. To tackle

this issue, we propose a solution where one node at a time can fully discover its neighbors

and inform about nearby nodes. Therefore, in this work, we propose WELCOME, a new

neighbor discovery scheme where one node can declare itself as a delegate for the neighbor

discovery process. WELCOME allows only nodes eligible with respect to their residual

energy and neighborhood association to become delegates, thus a node with sufficient energy

can become the delegate in case of absence of existing delegate node. WELCOME is

evaluated for the amount of neighbor discovered, energy consumption and latency in the

discovery process. This evaluation, using simulations, make use of neighborhood sizes of

up-to 100 nodes. Results show that WELCOME not only discovered 100% neighbors but

also yielded low energy consumption and discovery latency due to the reduction in the

amount of transmitted messages leading to collisions.

In the previous chapter, we targeted to ensure the spatio-temporal extraction of IoT

devices’ context information. We propose a CRF-based model based on a collaboration

strategy between available nodes which allows avoiding the deployment of dedicated physi-

cals source. It reaches up to 98.5% accuracy when there is enough close neighbors. However,

IoT devices are connected only temporarily and the network topology may change due to

node mobility or node activation and node deactivation, respectively. Furthermore, IoT
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devices could be battery-powered and can opt for duty cycling. Consequently, the perfor-

mance of such a model depend firstly on an efficient neighbor discovery. For this purpose

we presented in this chapter WELCOME, a low latency and energy efficient neighbor dis-

covery scheme. Once, energy-constrained nodes can discover each other with lowest energy

wasting, it is now challenging for current network infrastructure to ensure a context-aware

data collection. Selecting the appropriate IoT devices based on their context among the

thousands of connected devices on urban areas, is a difficult task, solving this issue is the

aim of the next chapter.
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5.1 Introduction

Electronic devices and sensor networks are battery-powered and have severe energy con-

straints which make the design of energy-efficient message passing protocol a key task. In

addition, data collection in Internet of Things can suffer from redundant or unwanted data
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transmissions which result mainly in power waste and additional network overhead and

latency [44]. From the literature, many energy-efficient and context-aware message passing

protocols are proposed. They are based on data filtering, such that only the nodes pro-

viding information of interest are selected. However, they focus mainly on location and

time-stamp as context features, while context can be a broader notion than simple location

and time-stamp information. In this direction, filtering-out data close to data sources based

on ”T2T Context-awareness at the Edge’ could ensure more accurate data collection and

at the same time avoid useless information transmissions.

The service provider has to be aware of service’s context involved in the application pro-

cess and especially the ones collecting data. However, such knowledge (context) extraction

could require additional data transmissions from neighbors as part of a collaborative ap-

proach [1], which may potentially cancel the efforts to save energy with the filtering process

based on the ”Context at the edge’ concept. An optimization solution is needed in order

to find, for each node, an optimal trade-off between maximizing the number of neighbors

involved in its context estimation phase and, at the same time, minimizing the involved

costs in terms of energy saving and network overhead. The araising question to answer in

this chapter is this: How to optimally incentivize the best set of neighbors to share data for

context discovery task while dealing with IoT devices individual rationality to save their

resources?

To answer this question, we propose, in this chapter, CEEPS4IoT as an energy

efficient and context aware Publish-Subscribe system for IoT that takes into account

the context of neighboring sensors while collecting data. Rational sensors do not cooperate

since sharing their readings is an energy costly operation along incurring them additional

communication overhead. To tackle this, CEEPS4IOT is based on a Dynamic Coalitional

Game for sensors to collaborate and share their readings in an energy-efficient way and in

return receive a reward for cooperating. We derive a stable utility for a sensor proportional

to the amount of data it shares while compensating for its energy costs. Results from

evaluating CEEPS4IoT in networks of upto 300 nodes suggest it as a scalable and energy

efficient location-based Publish-Subscribe system with context awareness since it conserves

around 50% energy compared to existing location-based Publish-Subscribe system.
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The remaining of the chapter is organized as follows, the next Section 5.2 provide the

CEEPS4IoT model where we first derive the device context followed by the coalitional

game ensuring an energy efficient data collection from the devices providing high quality

data. The performance evaluation and results are discussed in Section 5.3 followed by the

conclusions and future directions in Section 5.4.

5.2 CEEPS4 IoT

In this section, we formally describe the proposed Publish-Subscribe system for IoT

using a Dynamic Non-Tranferable-Utility NTU -coalitional game. First, we define below

the system model to consider through the rest of the chapter along deriving the context

and utility of the devices in coalition. Then, we discuss the coalition game, its stability

followed the message exchange required for the energy efficient data collection.

5.2.1 System Model

We define the context of a publisher at time-slot t and location l as the physical and/or

logical state in which it (sensor/actuator) acts such as being under water/shade. For

a publisher, the environment it is installed on can influence and consequently affect the

quality of service it provides. We leverage the readings from other coexisting publishers at

the same location in order to extract a publisher’s context. However, collecting readings

from all sensors can lead to additional messages transmitted by the publishers, thereby

resulting in an extra overhead and energy consumption. We propose an energy-efficient

Publish-Subscribe system to keep track of publishers’ contexts where a context manager

component or a hub/broker arranges publishers into a set of coalitions of nearby publishers

in the same location l and time duration t to cooperate in order to obtain a reward from

a service/application provider. In the remainder of the chapter, we use device, sensor and

publisher interchangeably.

We formulate a dynamic coalition game in a partition form with non-transferable utility

by a pair (X,Φ), where X = {x} is the set of players (i.e. publishers), and Φ is a mapping

function representing the set of coalitions as Φ(X) = S = {S1, S2...Sk}.WedefineU : —X—

×|S| → R, the real-valued function that associates for a device x to join a coalition of
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Table 5.1: List of Notations

Notation Description

T = {t} Set of time-slots

L = {l} Set of locations

X = {x1, x2..., xn} Set of devices/publishers

Φ(X), Partition function

S = {S1, S2, ..Sk} Collection of Coalitions

Γ,Γ′ Partitions of X

Θ = {θ} Set of context

ESxi Cost function of device xi

γ tuning parameter

Re Residual energy (Joules)

τ Time interval between two readings

GSxi Gain function of publisher xi

∆ Inter device distances vector

dij Distance between publisher xi and xj

CMIxi,Sa(xi;x1, x2, ..xna,∆) Weighted conditional multivariate MI

MIS(x1, x2..xna,∆) Weighted multivariate MI

Uxi(Si,Ω) Utility function of device xi

Ω Publishers order to enter a coalition Si

UvSi Utility function of coalition Si at iteration v

i, j Index of publishers

a, b Index of coalitions

. Preference relation based Pareto Order

σ Utility threshold

devices S in a location and during a time-slot (l, t), the utility function Uxi as a reward for

collaborating, at time-slot t.

5.2.2 Deriving Object Utility

It is challenging for different devices to collaborate given their individual rationality of

best preserving their resources and at the same time maximizing the amount of information

about their own context. To tackle this, we design the utility function such that the gains

for a publisher are proportional to the amount of dataset of nearby devices share about

their contexts. Similarly, we derive the costs for a publisher that take into account not only

its residual energy but also the amount of data exchanged with its neighboring devices.

Thereby, once a device enters a coalition that maximizes its profit, it shares in return its

collected data with its neighbors inside the same coalition. The trade-off for a publisher to
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join a coalition is a situational decision that involves diminishing its energy and maximizing

the information about it’s context. The utility or payoff for an device in a coalition can

be derived from the difference between its respective gains and cost, therefore, we present

below the gains and costs for the devices forming coalitions.

5.2.2.1 Gain function

We incentivize each publisher to share information regarding the local environment with

its nearby publishers, thus, its gain is modeled such that it is proportional to the infor-

mation nearby sensors have on its context. The gain for a publisher xi to join a coalition

S = {x1, x2..., xk} is the amount of information the set of near-by publishers CMIxi have

regarding the context of the corresponding publisher xi, weighted by their respective dis-

tances, i,e. the weighted conditional mutual information given as:

GSxi = CMIxi(xi;S,∆) (5.1)

∆ is the inter publisher distances vector between the device and its neighbors. The gain

can be expanded as follows:

CMIxi(xi;S,∆) = CMIxi(xi;x1)(1− di1)−λ+

k∑
j=2

CMIxi(xi;xj |x1, ..., xj−1)(1− dij)−λ (5.2)

where, di1 is the distance between the device xi and the neighboring device s1. The

term λ is the tuning factor to measure the impact of neighboring publisher’s reading on

the device xi context estimation.

5.2.2.2 Cost function

Similarly, we derive the cost for a sensor xi to join the coalition S = {x1, x2..., xk}.

Different factors can be considered for the device cost in joining a coalition depending on

the application requirement, however, in our case, the sensor/device energy consumption

is considered as a key factor towards the cost computation in its utility function. The cost

Exi for the sensor xi can be defined as an exponential decay function where the cost of a
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sensor participation in a coalition decreases exponentially to its residual energy Re and the

average number of packets exchanges in the coalition at a location l and during a time-slot

t:

ESxi = eRe−[γ t
τ

] (5.3)

Here, γ is the tuning parameter to adjust the cost factor while τ is the time interval between

two consecutive readings from the sensor. Thus, for a sensor xi, the higher number of

packets that are exchanged and the higher residual energy directly affects its cost function.

5.2.2.3 Utility function

Given the gains and costs, we can now define the marginal utility Uxi for an individual

publisher xi to join a coalition S as:

Uxi(S,Ω) = GSxi − E
S
xi (5.4)

where, in the above utility function, Gxi and Exi are the respective gains and costs

function of the publisher xi forming coalitions. The term Ω is the preference order for a

device to enter coalitions and will be discussed later in the chapter.

Similarly, the combined utility US = U{xi;x1,x2..xk} represents the sum of individual pub-

lisher’s utilities within a coalition and is given by:

US =
∑
xi∈S

Uxi(S,Ω) =
∑
xi∈S

GSxi − E
S
xi

=
∑
xi∈S

CMIxi(xi;x1, x2..xk,∆)−
∑
xi∈S

ESxi

= GS(xi, x1, x2..xk,∆)−
∑
xi∈S

ESxi

where, the above combined utility takes into account the difference between the corre-

sponding gains GSxi and costs ESxi of all publishers forming coalitions in the urban environ-

ment. In terms of conditional mutual information CMI, the purposed gain function aims
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to achieve the highest possible interaction/synergy information GS inside a coalition with

the less energy consumption.

5.2.3 Coalitional Game formation

The coalition formation process is given in Algorithm 3 with the aim of achieving a

stable coalition structure. This one aims at forming coalitions based on the preferences of

the devices, allowing them to join or leave the coalition at a location l and at a time-slot

t, i.e., as a Merge-and-Split algorithm. To leave or join a coalition, each player obeys the

principle that it wont make strategy to damage the utility of other players in the original

or new coalition.

Definition 1 (Pareto Preference Order)

Consider two collections of disjoint coalitions, Sa = {Sa1, Sa2, ..Sak} and Sb = {Sb1, Sb2, ...Sbk}.

The collection Sa is preferred over Sb by Pareto order, i.e. Sa . Sb if and only if the way

Sa partition X is preferred to the way Sb partition X. There exists tow comparison modes

(i) coalition value orders and (ii) individual value orders [62]. Due to the non-transferable

nature of the proposed (X, U) game, we have to use the second comparison relation. To

formalize this approach we need the notion of an individual value function US
xi as the utility

of a player xi when it belongs to the set of coalitions S.

Sa . Sb ⇒
{∀xi ∈ X, USa

xi ≥ U
Sb
xi ,

∃xj ∈ X, USa
xj > USb

xj }

The above Pareto order reflects the behavior of a set of publishers preference to form Sa

instead of Sb, if this preference order allows for at least one device to improve its payoff

without reducing the utility of any other nearby publisher [62].

5.2.3.1 Collaborative Context at the Edge Algorithm

The Collaborative Context at the Edge Algorithm Algorithm 3 builds coalitions based

on the publishers’ preferences and allowing only one member to join or leave the coalition
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Figure 5.1: Partition function Γ

at a time. Based on the above merge and split definitions, a publisher xi ∈ S already

in coalition Si can join a new coalition Sj in the iteration v + 1, if and only if this new

coalition Si was never visited before by the publisher hxi ∩ Sj = ∅, and the player can

promote maximum utility Uxi , while not reducing the utility of any other publisher from

previously left and currently joined coalitions respectively Si, Sj . Similarly, a publisher xi

can splits from a coalition Si to form a singleton Sk if its utility is under a certain threshold

while the split operation doesn’t hurt any of the publisher’s utilities from the coalition it

left Sj . Hence, a merge or split decision by Pareto order will ensure that all the involved

publishers agree on it. The above phases are periodically repeated until convergence, i.e.

such that the publishers can autonomously adapt the coalitions structures to environmental

changes such as mobility, see Figure 5.2. The granularity of such merge-split operations

can be smaller in highly mobile environments to allow a more adequate adaptation of the

topology and vice versa in a rather stable topology. Any merge or split operation, results

in a new partition of the initial set X as shown in the Figure 5.1, if this new partition is not

a Dhp Stable partition then the merge and split operations are repeated. In what follows,

we present the Dhp Stability criteria.

5.2.3.2 Coalition Stability and Convergence

The final partition Γ is Dhp-stable implies that, in this partition, no player or group of

devices are interested to perform a merge or a split operation [62] [63].
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(a) (b)

(c)

Figure 5.2: Coalition formation through Merge and split operations

Definition 2 (Dhp Stability)

A coalition S is Dhp-stable if the following two conditions are satisfied; (i) For each device

xi ∈ S and each partition Γ of the coalition, no player or group of players has an interest

in performing a merge or a split operation.

Theorem 5.1 ((Dhp Stability)). Any coalition formed by the proposed in Algorithm 3 is

Dhp-stable.

Proof. (Existence) The proposed dynamic coalitional game converges to the Pareto optimal

Dhp-stable partition, if such a partition exists [62] [63]. Assume that the final partition Γ

is not Dhp-stable, thus a new partition Γ′ .Γ is preferred based on a Pareto-order criterion.

At least one of the publishers can improve its utility while not cutting down the utilities

of any other publisher. If the publisher xk can improve its utility by a merge operation,

this implies that the corresponding publisher will leave the coalition Sa to join a coalition

Sb. Let’s consider that such a node exists and can improve its payoff while not cut down
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other nodes utilities. As in immediate consequence of Pareto optimality order used in the

Algorithm 3, a merge and/or split operation are operated.

Algorithm 3
Collaborative Context at the Edge Algorithm

INPUT: : The set of discovered publishers (X = {x1, x2..., xn}) by Hub at location l and

time-slot t.

INITIALIZE: for each discovered publisher xi ∈ X affect a coalition such that the initial

partition is: Γ = {T1,T2...,Tn} splits X into a set of coalitions S Figure 5.1.

1: repeat(2) (3)

2: Merge For each player xi ∈ X splits from Si and joins S∗j to form a new partition

Γ′ iff

argmax
j

Uxi(Sj ,Ω) = {Uxi(Sj ,Ω)|∀Sj ∈ S \ hxi : Uxi(Si,Ω) < Uxi(Sj ,Ω)} (5.5a)

∀xj ∈ Sj , Uxj (Sj ,Ω) ≤ Uxj (Sj ∪ xi,Ω)⇒ USj ≤ USj∪xi , (5.5b)

and∀xk ∈ Si, Uxk(Si,Ω) ≤ Uxk(Si/xi,Ω)⇒ USi ≤ USi/xi , (5.5c)

Then

{Si, Sj} → {Si/xi, Sj ∪ xi}, (5.6a)

hxi → hxi ∪ Sj (5.6b)

3: Split For each player xi ∈ X select the publisher with the a marginal utility Uxi s.t.

Uxi ≤ σ then xi splits from Si to form a new partition Γ′ iff

∀xk ∈ Si, Uxk(Si,Ω) ≤ Uxk(Si/xi,Ω)⇒ USi ≤ USi/xi (5.7a)

Then

Si → {Si/xi, Sk|Sk = {xi}}, (5.8a)

hxi → hxi ∪ Sk (5.8b)

4: until Convergence

5: Repeat (1) (2) (3) (4) every θ duration or when any environment change occurs.
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From Theorem 5.1, we noticed that the Dhp-stable partition is an outcome of the iterative

merge-split Algorithm 3 for coalition formation. Therefore, the devices can exploit the

merge-split operations to change the coalitions until Dhp-stability is achieved. In addition,

the merge-split operations in the dynamic coalitional game allows the devices to decide

whether they will remain in a coalition to increase their utility in case environmental changes

occur. Indeed, the proposed game is repeated periodically in order for devices to make a

new merge-split decisions and thereby adapting to the environmental changes.

Theorem 5.2 (Dc Stability). A Dc Stable partition Γ = {Γ1, ..Γl} is a unique . partition,

that is for all partitions Γ′ 6= Γ of X, Γ′.Γ. In the case, where . represents the Pareto order,

this implies that the Dc-stable partition Γ is the partition that presents a Pareto optimal

utility distribution for all the players. No player or group of players has an incentive to

leave this partition using any operation: (i) For each pair of disjoint coalitions Sa and Sb

s.t. {Sa, Sb} ⊆ Γ, (Sa ∪ Sb) . {Sa, Sb}. (ii) For any coalition R ⊆ X formed of players

belonging to different Γi ∈ Γ, {R} [Γ] . {R}. The existence of a Dc-stable partition is not

always guaranteed [62].

Proof. The first assumption(i) is a direct consequence of the Theorem 5.2. However the

second condition (ii) cannot been always satisfied by our algorithm as the super-additivity

does not hold by the proposed utility expression Equation (5.4). Indeed, adding more IoT

devices into a coalition does not always yield an increase in the utility, it could also increases

the cost for information exchange.

5.3 Performance Evaluation

We evaluate the performance of the proposed system by generating synthetic data. The

target is to find out how well our system can extract and estimate the context of IoT devices

while preserving energy. We show that it is feasible to satisfy user requirements, using a

less data transmission based on nodes context. We prove that contextualizing IoT devices

in an energy efficient manner can reduce energy consumption, furthermore it can reduce

the overhead and increase the throughput.
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5.3.1 NS3 Simulation-based evaluation

We implement two versions of an energy-efficient content based Publish-Subscribe where

one considers the context-awareness based mainly on location and the other is our proposed

CEEPS4IoT. Simulations are performed using Network Simulator Version 3 (NS-3)[64] as

a scalable simulation platform, considering up to 300 nodes in a neighborhood. To define

a neighborhood, we use a set of IEEE 802.11b/g/n enabled nodes in the communication

range of each other. In the following simulations, publishers collect data every 2 min-

utes and the packet size of the payload is set to 123 bytes. Moreover, we consider a

simulated human mobility trace with user speeds varying from 0 to 1.5 mps. The mo-

bility scenario is simulated using the ”RandomWalk2dMobilityModel” available in NS3,

considering an area of 100 × 100m2. We add a radio energy model to each node based

on NS3::WifiRadioEnergyModelHelper, considering the following setups: Initial energy as

100J , the energy consumption for one beacon transmission is Tr = 0.0174J and for switch-

ing between active and sleep modes as 0.000426J . We analyze the scalability of our model

with varying the number of nodes as data publishers and subscribers form 50 to 300 in a

neighborhood, each simulation is repeated ten times.

5.3.1.1 Implementation

Publish-Subscribe From state of art we conclude that filtering messages based on

publisher’s context can reduce the energy consumption and latency while increasing the

throughput. To compare our work to state of art context-aware Publish-Subscribe systems,

we implement a context manager responsible for (i) coalitions formation and update of the

context, along with (ii) a sensor selection scheme described below.

Sensor selection scheme The context manager is responsible for tracking the pub-

lisher’s context. Thus, for each publisher we rank the K top neighbors able to collaborate

(i.e. inside the same coalition) based on their utility inside the coalition. Then, the context

manager subscribe to this subset of nodes as it plays the role of a context information

consumer. When receiving context raw data, the context manager component extract the

context information based on any context reasoner (we consider this function out of purpose

for this work). Based on our context knowledge, we filter out the publishers in the network

by matching their context to the user requirements.
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5.3.1.2 Evaluations scenarios

The performance of the proposed model is validated by a set of simulation runs. One of

the basic requirements for evaluating the efficiency of a Publish-Subscribe system based our

proposed context manager is the user relevant interest satisfied. We consider the following

performance metrics:

Energy consumption (Joules): The average Energy consumed by the sensors in the

network.

Latency (seconds): The average Latency caused by the message exchanges in the net-

work.

Throughput(%): The successful data delivery rate over communication channels.

We study the effect of varying the network size on the considered location-based Pub-

lish/Subscribe and CEEPS4IoT schemes for 50, 100, 200 and 300 nodes. For each con-

figuration, we set the amount of publishers to 50% of the network size and the rest are

subscribers (e.g. Network size=100, Publishers=50, Subscribers=50). We consider only

two main topics {Temperature, Luminosity} and their related sub-topics{Ambient temper-

ature, temperature under-shade, Ambient luminosity and luminosity under-shade}. The

half of the publishers provide services for one of the specified topics and/or sub-topics (e.g.

50 Publishers: 25 publish temperature data, and the rest (25) publish luminosity). Sim-

ilarly, the subscribers are organized into two equal size set, each interested on a specific

topic or any of its related sub-topic {temperature,luminosity}. The publishers depending

on their physical context when collecting data, could publish data related to the following

sub-topics{Ambient temperature, temperature under-shade, Ambient luminosity, luminos-

ity under-shade}. Similarly the Subscribers, could subscribe for a specif sub-topic. For our

proposed schema, we filter publishers based on context matching the user requirements,

for example if an application subscribe for temperature under-shade it cannot be provided

with ambient temperature data.
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Figure 5.3: Throughput

5.3.2 Evaluation Results

In this section we discuss the evaluation results obtained from our implementation where

we study the impact of increasing the number of sensors on the throughput, energy con-

sumption and latency for a network of up to 300 sensors.

5.3.2.1 Throughput

We computed the throughput as a network-oriented metric to evaluate the performance

of our proposed coalition game in selecting the best sensors for data collection process.

Figure 5.3 shows the throughput (in percentage) achieved by the proposed CEEPS4IoT

compared to the benchmark location-based Publish-Subscribe system. The amount of sen-

sors are 50, 100, 200 and 300 in a neighborhood for both approaches. We observe that

CEEPS4IoT outperforms the compared approach for all neighborhood size where even in

large neighborhood comprising 300 sensors, a throughput of more than 50% is achieved. On

the other hand, a throughput of less than 30% is achieved by the existing location-based

Publish/Subscribe system.
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Figure 5.4: Latency

The high throughput of our proposed scheme is due to its consideration of device context

while collecting data along incentivizing high quality sensors to cooperate in the data

collection process. We notice a decrease in throughput with the increase in neighborhood

size for all schemes. This is seen particularly in high neighborhood sizes such as for 300

nodes we notice a larger drop in throughput over time, i.e. for CEEPS4IoT, it dropped from

100% to 50% over time. This is due to the mobility of nodes resulting in difficulty in finding

appropriate publishers in the network. Despite the challenging environment, CEEPS4IoT

yields a stable throughput over time i.e. around 100% for 50 nodes neighborhood, between

100% and 90% for 100 nodes and between 100% and 85% for 200 nodes. Thus, it achieves

higher overall throughput compared to the location-based Publish/Subscribe approach for

all neighborhood sizes, thereby, validating its efficiency.

5.3.2.2 Latency

The data availability in a timely manner is important to different IoT applications, there-

fore, we computed the latency (in seconds) achieved by the proposed coalition game during

the simulation. Figure 5.4 depicts the latency incurred by CEEPS4IoT compared to the

existing location-based Publish-Subscribe scheme. We observe that the difference between

both schemes increases along with the increase in the number of nodes and time duration,
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where for 50 nodes the latencies for both schemes are negligible. We can notice that our

CEEPS4IoT model can satisfy user requirements (subscriptions) with around two-thirds

the time delays generated by location-based Publish-Subscribe for a 100-node network size.

For large neighborhood size, CEEPS4IoT reduces the average network latencies by nearly

three times compared to location-based Publish-Subscribe system.

This is due to its timely formation of coalitions and contextualization as resulting in

lower network overhead and consequently lower delays in responding to the user interests.

Contextualization can suppress the redundant and out of a target sensing process. The

larger the neighborhood size, the more the latency due to large amount of sensors. This

is mainly due to network overhead and nodes mobility. Thus, the overall latency analysis

reveals that CEEPS4IoT is an efficient Publish/Subscribe system for IoT with context-

awareness.

5.3.2.3 Energy

We computed the energy-consumption as a network-oriented metric to evaluate the per-

formance of our proposed context manager in contextualization of data from resource lim-

ited devices. Figure 5.5 shows the energy consumption (in Joules) over time considering
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network topologies of 50, 100, 200 and 300 nodes. It is clearly shown that CEEPS4IoT con-

sumes less energy, even when there are large number of sensors present in a neighborhood.

With 6x the number of nodes, our model consumes almost the same amount of energy as

the location-based Publish-Subscribe framework.

We observe an increase on the energy consumption along with the increase of the network

size |S| for both models, however the energy consumption of CEEPS4IoT can save from

almost 50% and 75% of the total energy for the same task for 300-nodes and 50-nodes,

respectively.

We notice that the energy consumption increases over time irrespectively of the number

of sensors. This is due to the increase in the amount of messages exchanged between

nodes. Overall, the energy consumption analysis results suggest that our context-aware

Publish-Subscribe using our collaborative approach is indeed energy efficient.

5.4 Conclusions

Large number of sensors constantly updating data in an urban environment can be an

energy wasting operation resulting in a large amount of redundant and unwanted data. Data

Provider instruct data collection from different sensors/devices, unaware of their source’s

context. We propose in this work to rethink data collection and to limit the data collection

to the tiny amount of sensors that meet the application needs. This chapter proposes an

energy efficient and context-aware publish subscribe system CEEPS4IoT that orchestrate

the data collection based on the physical sensors context. We allow a data provider to keep

track of publisher’s context based on a collaborative strategy between co-located devices, in

an efficient manner. However, devices are reluctant to share information due to energy cost

involved by this operation. To cater this, we based our solution on a dynamic coalitional

game that incentivise devices to receive as a gain a reward which is proportionally to the

the context information shared with neighbors along the compensation of their incurred

cost.

We evaluate the proposed CEEPS4IoT using NS3-simulations, on different network sizes,

i.e. 50, 100, 200 and 300 mobile nodes. For each topology we consider 50% of the nodes as
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publisher and the rest as subscribers, publishing and subscribing for two topics (tempera-

ture, luminosity). We consider the existence of only one broker for each tested topology,

supporting a Publisher message transmission frequency of 1 packet/sec. Extensive simula-

tions and results show that our scheme is a low-latency and energy efficient. More precisely,

our proposed scheme can reduce energy consumption by 50% to up-to 75%, and the net-

work latency by 30% to up-to 70% in comparison to the location-based Publish-Subscribe

scheme. In addition, CEEPS4IoT can achieve almost 50% of throughput compared to only

30% for the location-based scheme.





Chapter 6

Conclusion and Future works
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6.1 Contributions

The main objective of this thesis is to present an efficient paradigm of “T2T context

awareness at the edge” which allows IoT device/services to become aware of their physical

context. Through all the contributions, the present thesis reached the following objectives:

• IoT devices situational context analysis.

• Optimized resource consumption for a low-latency neighbor discovery.

• IoT device’s context-driven Publish/Subscribe.

In the following we summarizes our three main contributions, encountered challenges and

results.

95
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6.1.1 Context Reasoner

We firstly introduce the core component of “T2T context aware computing” which is a

context reasoner based on a collaborative intelligence between nearby devices in the same

vicinity. It processes ongoing sensory data from neighbor devices to extract knowledge

about the sequence of contexts IoT device(s) passed through during its/their lifetime. This

reasoner act like human brain by learning the spatio-temporal IoT devices relations, and is

robust enough to irrelevant nearby observations thanks to its penalization functions.

In IoT, observations of the environment (e.g. temperature, luminosity...) exhibit a spatio-

temporal correlation as such physical conditions rarely occur independently. We proposed

a Spatio-temporal CRF, that models such spatio-temporal relations between nearby sensor

readings and also between previous and actual device states. As existing spatio-temporal

CRF model doesn’t meet IoT needs, we proposed a spatio-temporal CRF model that con-

sider separately the spatial and temporal potentials functions, as they could have different

impacts on context estimation depending on the application domain.

We evaluated our model with different scenarios on real and synthetic data-sets, to study

the influence of the increase of neighborhood size, neighbor distances and lagtime. Our

proposed model was evaluated on up to 200 test-bed context sequences each composed by

10 contexts to estimate, and reached around 98.5% of accuracy when there is enough close

neighbors and recent sensory data. In case our model is confronted to more than 80%

biased data back dating to one hour ago, it is still able to accurately estimate the context

sequences with almost 70% of accuracy. We can summarize that our CRF-based-reasoner

can perform very well in case there exists neighbors that are fairly close, reporting recent

observations. This one is also quite robust regarding biased and noisy data.

6.1.2 WELCOME

We proposed “WELCOME”, a novel neighbor discovery scheme allowing a single node

as a delegate, instead of all nodes in a proximity, to send beacons and listen to neighbors

thereby reducing the overall amount of transmitted messages. This cater the issue of colli-

sions between messages sent by concurrently transmitting nodes. We further allow nodes to
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rotate the role of becoming the delegate where each node computes its eligibility to become

the delegate node based on its residual energy and association to the neighborhood. More-

over, WELCOME enables nodes to self-organize where eligible nodes contend to become

delegate in the absence of an existing delegate node.

We defined three metrics to study the relation between i) the energy consumption and

the fraction of neighbors discovered, and ii) the latency of discovery and the fraction of

neighbors discovered. The purpose is to analyze WELCOME with respect to the energy

efficiency and latency trade-off, i.e. reducing the energy consumption by employing low

duty cycles can lead to longer latency in discovering neighbors.

WELCOME is evaluated theoretically as well as using simulations, analyzing its scalabil-

ity to discover up to 100 neighbors in each other communication range for nodes operating

on low duty cycles of 5%. Results show that WELCOME is a low latency and energy

efficient neighbor discovery scheme allowing nodes to successfully discover 100% of their

neighbors unlike existing schemes which resulted in discovering a maximum of 90% nodes

with substantially high latency. The contributions of this chapter are summarized as fol-

lows:

6.1.3 CEEPS4IoT

At least, we presented Context-aware Energy Efficient Publish-Subscribe for Internet

of Things (CEEPS4IoT) sheme. It is a novel Publish-Subscribe platform that enables

service providers to be aware of the context of objects in an energy efficient manner while

collecting data in urban environment. We proposed filtering and aggregation of sensor data

on mobile devices prior to its transmission into the cloud based on data requirements, as

a solution to limit data transmission to only information of interest. IoT devices in the

same location provide information about different aspects of the environment, thus, we can

leverage their coexistence to infer their respective contexts. Precisely, we measured the

relation of a device with the readings from nearby sensors with the goal to capture the

amount of information they can provide regarding its environment. The idea is to find out

whether a sensor should be selected to assist an IoT application by taking into account the

impact of the environment on the collected data.
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First, we modeled the interest for objects, simultaneously present in the same physical

location, to share readings regarding each others context by the interaction information.

Then, we proposed a dynamic coalitional game for resource limited [48] objects as pub-

lishers to provide necessary readings for context knowledge extraction under the energy

consumption constraint. Objects can merge into or split from spatio-temporal coalitions

based on the payoff each coalition provides where it maintains a preference ordering among

coalitions to join, in order to facilitate an energy efficient and high quality data collection.

It is however challenging to maximize the information about each object’s context while

avoiding extra energy consumption. We propose as a reward for each object to enter a

coalition, a utility function proportional to the the amount of data nearby objects shares

about its context and inversely proportional to the the energy cost of the amount of data

it has to exchange. Further, we provide the stability and convergence conditions for our

dynamic coalitional game along relevant proofs for its existence and uniqueness.

CEEPS4IoT is evaluated using extensive simulations and results reveal that it is an en-

ergy efficient Publish-Subscribe system for IoT. Results from evaluating CEEPS4IoT in

networks of upto 300 nodes suggest it as a scalable and energy efficient location-based

Publish-Subscribe system with context awareness. Our proposed scheme saves energy con-

sumption by 50% to up-to 75%, moreover it reduces the network latency by 30% to up-to

70% compared to the selected Pub/Sub model. In addition, we found that among all the

compared schemes CEEPS4IoT reached almost 20% additional throughput.

6.2 Future Works

In addition to the contributions presented in this manuscript, the work done during this

thesis also gave essence to some direct future research perspectives. The first one includes

the extension of the CRF-based model to avoid any expert knowledge intervention. The

objective here would be to provide a framework which could avoid expert tuning by learning

the interaction and association functions. The aim will thus be to extend our model by the

addition of a deep component upstream to the proposed CRF component. This step will

allow to efficiently and accurately estimate the context of IoT devices without any prior

knowledge. Moreover, the plan here would be to extend the context features with more
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than the physical environment conditions, to include other features related to the network,

the operating system, the devices lifetime, and so on allowing for an even better selection.

The second perspective concerns WELCOME, this scheme, ensures for an IoT device

located in an opportunistic and self-organized network to discover close neighbors if they

exist while better preserving energy. Possible extensions are to study the relation between

the neighborhood size and the amount of time a delegate listens for messages from neighbors.

Our future work here is to allow delegate nodes to adapt their listen period by learning

the neighborhood size based on the amount of received Hello messages. This will result

in further reduction in the delay of discovering neighbors as well as the amount of idle

listening period for a delegate node. The best trade-off delay-energy can thus be achieved.

Concerning the last contribution, CEEPS4IoT, we plan to extend our study considering

the case of a large scale network and more precisely highly dynamic networks. For that

need we can evaluate our scheme based on realistic mobility traces. Managing IoT devices

mobility and context sharing, as a solution for highly mobile devices. Moreover, we designed

CEEPS4IoT for a semi-centralized architecture with a mobile broker to filter-out data near

to data sources. Thus, we propose to consider a fully distributed networks, using a Coalition

Graph Game. In addition, the utility for each player can take into account more than the

synergy/mutual information. For instance, we can consider features as the stability of links

and the quality of service in order to better ensure an accurate context estimation and at

the same time fast convergence to stable partitions.

The proposed concept of “T2T context-awareness at the edge computing” is wider than

just the propositions presented earlier, even having these are major ones. Indeed, making

Things interactions and communications context-aware, offers several advantages leading to

many others mid-term research perspectives. One of these perspectives would be to propose

to enhance the Quality of Context with a semantic QoC parameter: We can assign to each

data a semantic QoC parameter, that provide a semantic description to the numerical data.

How to make this assignment is an open issue.
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