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Encoding surprise by retinal ganglion cells

Abstract: The efficient coding hypothesis proposes that early sensory neurons transmit

maximal information about sensory stimuli, given internal constraints such as metabolic cost of

firing a spike or noise. This theory predicts that neurons should adapt to the stimulus statistics

and invest most resources on encoding surprising stimuli. Previous results from Schwartz and

colleagues showed that some ganglion cells in the axolotl retina respond to an omitted flash in

a periodic sequence of flashes (termed the omitted stimulus response, OSR), suggesting that

these cells code for unexpected stimuli rather than for physical luminance. However, so far

there was no quantitative validation of this assumption. To test this hypothesis, we varied the

level of surprise in the stimulus, and recorded the responses of retinal ganglion cells (RGCs) to

stochastic sequences of full-field flashes. Our results suggest that, given a simple internal model

of the stimulus statistics, neural responses are consistent with the idea of neurons encoding

surprise. Moreover, the observed diversity in the RGC population can be explained by different

confidence in the internal model of the stimulus statistics.

Keywords: Vision; Retina; Neural Coding; Omitted Stimulus Response (OSR); Predictive

Coding; Retinal Ganglion Cells



Codage de la surprise par les cellules ganglionnaires

rétiniennes

Résumé : L’hypothèse du codage efficace stipule que les neurones sensoriels maximisent

l’information transmise sur les stimuli sensoriels, compte tenu de contraintes internes telles que

le coût métabolique des potentiels d’action ou le bruit. Cette théorie prédit que les neurones

s’adaptent aux statistiques des stimuli et investissent davantage de ressources dans l’encodage

des stimuli surprenants. Des résultats antérieurs de Schwartz et de ses collègues ont montré que

certaines cellules ganglionnaires de la rétine de l’axolotl répondent à l’omission d’un flash dans

une séquence périodique de flashs (appelée réponse au stimulus omis), ce qui suggère que ces

cellules codent pour des stimuli inattendus plutôt que pour la luminance. Cependant, il n’existe

jusqu’à présent aucune validation quantitative de cette hypothèse. Pour tester cette hypothèse,

nous avons fait varier le niveau de surprise du stimulus et enregistré les réponses des cellules

ganglionnaires de la rétine (CGR) à des séquences stochastiques de flashs plein champ. Nos

résultats suggèrent que, compte tenu d’un modèle interne simple des statistiques du stimulus,

les réponses neuronales sont compatibles avec l’idée que les neurones codent la surprise. De

plus, la diversité observée dans la population de CGR peut être expliquée par une confiance

différente dans le modèle interne des statistiques du stimulus.

Mots clés : Vision ; Rétine ; Codage Neuronal ; Réponse à un Stimulus Omis ; Codage Prédictif

; Cellules Ganglionnaires de la Rétine
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Chapter 1

Introduction
The first stage of our interaction with the environment is to sense it.

Early sensory systems are constantly bombarded with diverse stimuli from the

external world. It is therefore essential for sensory systems to perform compression

of their inputs in real-time, before transmitting this information to downstream

brain areas. An open question is how do sensory neurons extract and compress

sensory information, that is useful and relevant for the organism.

The influential efficient coding theory proposes that sensory neurons

use their limited resources to encode maximal possible information about the

natural environment [Attneave, 1954, Barlow et al., 1961]. To do this optimally,

neural circuits had to adapt during their evolution to the statistical structure

of their environment, so they could focus on conveying the information deemed

unpredictable given what they have seen before [Simoncelli and Olshausen, 2001].

However, there is also evidence of certain neural systems, such as retina, adapting

to presented stimuli on much shorter time-scales [Wark et al., 2007]. In this case,

the time required to ‘learn’ the feature of the stimulus which is varying can range

from hundreds of miliseconds to several minutes [Smirnakis et al., 1997, Shapley

and Victor, 1978, Kim and Rieke, 2001].

According to efficient coding, sensory system’s should reduce redundancy

by preferentially encoding surprising elements of natural scenes in low-noise

conditions. In the visual system, a 3-layer neural network called retina is the first

processing step for all the visual information available to the rest of the brain.

Thus, we can study the relationship between the presented stimulus statistics and

1



2 Chapter 1. Introduction

how it is encoded. It is known that retinal neurons can adapt their responses

to simple visual features, such as average light level [Shapley and Victor, 1978],

contrast [Kim and Rieke, 2001], and spatial correlations [Hosoya et al., 2005].

Still, all of the listed phenomena offer only a qualitative relationship between

retinal activity and surprise encoding. Additionally, the extent to which retinal

neurons adapt their responses to complex changes in the temporal statistics of

presented stimuli is largely unknown. To investigate both questions, we focus on

the omitted stimulus response (OSR), a phenomenon where the retina strongly

responds to the abrupt stopping of a periodic sequence of flashes [Schwartz et al.,

2007a].

In this thesis, we ask whether the unpredictable elements of complex

temporal stimuli can be quantitatively related to surprise encoding in the retina.

While previous studies have mostly looked at mechanistic models of the OSR

[Werner et al., 2008, Gao et al., 2009], here we ask what could be the functional goal

of this retinal computation. We investigate whether the retinal neurons match the

external stimulus statistics in case of inputs with complex temporal structure. Our

research attempts to gain better understanding of the assumptions of the neural

network about stimulus surprise, as well as whether these different assumptions

could explain the diversity of neural responses in the retinal population.

1.1 Thesis outline

Chapter 2 covers the basics of retinal biology and diversity of computa-

tions retina performs, with particular emphasis on the omitted stimulus response

phenomena. We provide a brief overview of computational models used to explain

and predict retinal activity.

Chapter 3 focuses on the theory of efficient coding and its extensions. The

efficient coding hypothesis proposes that the early sensory systems have evolved
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to transmit maximal possible information given intrinsic biological constraints,

such as metabolic cost of firing a spike, or internal noise.

In Chapter 4 we test the hypothesis that the retinal ganglion cells

determine what is surprising in the environment by comparing the stimulus to

their internal expectations. We find that the responses can be explained by a

simple normative model which combines neuron’s expectations about the stimulus

with leaky integration of recent events Additionally, we find that the expectation

is similar for all the cells in the population, while the confidence in the expectation

is what explains the diversity of responses.

Finally, in Chapter 5 we give an overview of our results and discuss

possible future research directions. Better understanding of retinal computations

could be beneficial for learning about other brain areas as well, since many of the

underlying principles of neural coding are common across the neural system.





Chapter 2

Retinal processing
The aim of this chapter is to give an overview of the organisation and

function of the retina. We will mostly restrict ourselves to the visual system of

vertebrates, since the primary animal model studied in this thesis was the axolotl.

This chapter should also provide the reader with information about the types of

computations retina performs, as well as quantitative models used to advance our

understanding of these neural systems.

2.1 First step of visual processing

Once the light reaches the eye and passes through the pupil, the cornea

and lens focus the light so that the image is formed on the retina, a light-sensitive

tissue in the back of the eye [Tessier-Lavigne, 2000]. The neural processing

of a visual scene starts here, in a three-layered neural network (Figure 2.1).

The conversion of light into an electrical signal is performed by photoreceptors,

specifically rods and cones, which respond to light via a graded change in their

membrane potential. The visual information is then transmitted through a layer

of interneurons, where the graded potentials from photoreceptors are fed to

bipolar cells, while being modulated by horizontal cells which connect laterally

to rods and cones. The bipolar cells’ outputs are affected by another class of

interneurons, amacrine cells, which perform lateral inhibition. Finally, retinal

ganglion cells (RGCs) receive the inputs from bipolar cells, and communicate the

visual information to the rest of the central nervous system through the optic nerve,

5



6 Chapter 2. Retinal processing

comprised of RGC axons. Unlike retinal interneurons, which communicate on

smaller scales, the RGCs generate action potentials i.e. spike in order to transmit

the signal over long distances.

Apart from rods and cons, there is a third type of photosensitive retinal

cell responsive directly to light, namely the intrinsically-photosensitive retinal

ganglion cells (ipRGCs) [Morgan and Kamp, 1980, Foster et al., 1991, Hattar

et al., 2002]. We will focus on the ‘classical’ retinal ganglion cells for the rest of

the section since in this thesis we record and model their activity. Recently, a

completely new class of retinal cells was hypothesized to exist, called the Campana

cells, however there is still little known about them [Young et al., 2021].

Fig. 2.1 Structure of the larval tiger salamander retina. Light is trans-
formed to electrical signal by one of six types of photoreceptors in the
layer shown on top (pink, red, green, dark and light blue, gray). Next layer
consists of interneurons: horizontal cells (peach), bipolar cells (yellow)
and amacrine cells (purple). Lastly, retinal ganglion cells (pigeon blue)
integrate outputs of other cells and transmit it to the rest of the brain.
Adapted from [Baden et al., 2020].

One of the first recorded retinal responses was the one related to luminos-

ity changes, when first functional distinction between different types of ganglion
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cells was discovered [Hartline, 1938]. Using an oscillograph to record a single

intraocular fiber of bull-frog retina, Hartline was able to classify retinal ganglion

cells according to their responses to light pulses. Some cells regularly responded

to the increase in the light level (termed ON cells), while other did so for decrease

(OFF cells); a combination of these classes, called ON-OFF cell, was activated by

both increases and decreases of light intensity.

Moreover, Hartline found that responses can be found in a certain fiber

only if a restricted area of the retina is stimulated by light dots, effectively

discovering receptive field [Hartline, 1938, Hartline, 1940]. The receptive field is

usually constituted of two typically concentric circles, center and surround, which

might be of same or opposite polarity (ON/OFF) [Hartline, 1940, Kuffler, 1953].

The structure of center and surround is fluid, and cannot always be considered to

be a regular shape [Levick, 1967, Liu et al., 2009]. A cell with a RF of opposite

polarity of center and surround exhibits the center-surround antagonism. For

example, if an RF with ON center and OFF surround is flashed with a bright

spot, the excitatory center and inhibitory surround will cancel out. This can

be understood intuitively as a way of preventing energy expenditure on parts

of visual scenes with uniform luminosity, such as cloudless blue sky or a white

wall. On contrary, if the center of RF is stimulated with a bright spot, while

the surround is presented with a dark band, the response from the center and

surround will be combined into a stronger one. The element of visual scene that

corresponds to this situation is a high-contrast, such as an edge.

While retinal cells can be divided into aforementioned 5 broad classes,

each class has a high number of anatomically and morphologically distinct cell

types: for example, in mammalian retina the lower estimate is around 60 cell

types [Masland, 2012]. There is an abundance of cell types even if we focus solely

on retina’s output cells, ganglion cells. For instance, by stimulating with white

noise and chirp stimulus, it was revealed that the mouse retina has more than
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30 functionally distinct types of ganglion cells, which respond in different way to

the same stimulation pattern [Baden et al., 2016]. Around 17 types were found

in the primate retina so far [Grünert and Martin, 2020], although 5 types - ON

and OFF midget, ON and OFF parasol, and small bistratified cells – together

make up for 75% of all cells [Dacey, 2004b]. The conclusions of studies of the

axolotl retina, which is the model animal we primarily discuss here, has been

somewhat ambiguous regarding the number of RGC types, but the latest studies

estimate presence of 5-7 types [Segev et al., 2006, Marre et al., 2012, Rozenblit

and Gollisch, 2020].

A distinct RGC type is frequently found to uniformly cover the visual

field in a regular lattice structure, displaying mosaic organisation (again, with a

certain degree of uncertainty in case of salamander, since only some of the cell

types were found to tile the space without an overlap) [Segev et al., 2006, Marre

et al., 2012, Kastner and Baccus, 2011, Kühn and Gollisch, 2016]. This enables

the retina to uniformly sample the visual space, creating a ‘sensory map’, where

each RGC cell type then extracts a certain low-level feature of the visual scene

[da Silveira and Roska, 2011].

2.2 Computations in the retina

Until quite recently it was thought that the retina’s role is mainly one of

a ‘camera sensor’, adapting to the light intensity and performing spatio-temporal

filtering using center-surround antagonism [Meister and Berry, 1999]. This view

would assume the visual scene is transmitted to the downstream areas as a matrix

of pixels that are sharpened in both space and time. However, such pixel-by-pixel

representation seems unlikely given two facts: (i) the number of photoreceptors is

2 orders of magnitude higher than the number of ganglion cells (both in mouse

and human, as example), (ii) the diversity of retinal cell types. These imply the
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information has to be re-packaged to pass this bottleneck in a meaningful way.

Additionally, as Gollisch and Meister point out, there is a paradox in assuming

simple operations such as adapting to changing light levels and image sharpening

would require such a complex network comprised of such a variety of neuron types

[Gollisch and Meister, 2010]. One of the possible explanations for the diversity

of cell types is that different retinal computations require parallel pathways to

transmit different features of the visual scene [Wässle, 2004, Dacey, 2004a]. In

other words, there is a need for diversity of cell types to fulfill various functions

the retina performs.

A good example of feature extraction happening as early as the retina

are the direction-selective retinal ganglion cells (DS RGCs). When a moving

stimuli, such as a grating or bar, passes across its receptive field, these cells fire

spikes with clear preference for one direction [Barlow et al., 1964, Demb, 2007].

This illustrates how the information from the visual scene can be compressed

already at the first stage of neural processing, with subset of cells - DS RGCs -

conveying nothing else apart from the signal about object direction. It also allows

for downstream areas to directly read-out said direction by integrating activity of

several direction-selective RGCs. This kind of computation is an illustration of

explicit coding of a certain property of the visual environment. Furthermore, it is

not the only such example: previous studies were able to decode various features

of the external stimuli in the activity of ganglion cells, such as contrast [Shapley

and Victor, 1978, Smirnakis et al., 1997, Goldin et al., 2021], local and global

motion [Oyster, 1968, Ölveczky et al., 2003, Kühn and Gollisch, 2016], texture

motion [Enroth-Cugell and Robson, 1966, Kaplan and Shapley, 1986, Petrusca

et al., 2007], and approach sensitivity [Münch et al., 2009]. In fact, it is not

unusual for multiple features to be encoded by the same cells, such as object

motion and direction [Kühn and Gollisch, 2016], or object position and speed

[Deny et al., 2017] (for review, see [Gollisch and Meister, 2010]).
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2.2.1 Retinal anticipation

The signal transmission through the photoreceptor cascade introduces

delays of around 30-100 ms, which might be critical for the flight or fight response

[Gollisch and Meister, 2010]. A subset of retinal computations is related to retina’s

apparent ability to counter these intrinsic delays by anticipating future stimulus

states. If an object is moving over the retina, we could expect the prediction of the

object position to lag behind object’s actual position. However, in an experiment

with a smoothly moving bar, it was revealed that the peak of RGCs population

activity in fact corresponds to the current position of the bar, or even its position

slightly in the future [Berry et al., 1999] (Figure 2.2). The retina compensates

for the processing delays by extrapolating the upcoming bar position given the

regularity of its movement. This finding was surprising given that at the time

motion anticipation was proposed to be generated by some higher-level brain area

[Nijhawan, 1994, De Valois and De Valois, 1991].

An analogous effect, found in psychophysics, is the flash-lag effect: par-

ticipants were shown a bar moving at fixed speed and another bar flashed in

continuation of the moving one. Despite the two bars being aligned, participants

would report the moving bar being ahead, suggesting another example of motion

extrapolation at hand [Nijhawan, 2002]. The results of Berry et al. suggest that

spatial anticipation is not unique for the visual cortex, but can also be computed

at the first stage of visual processing as well. Furthermore, the computation

of flash-lag effect was also more recently associated with known feed-forward

retinal mechanisms [Subramaniyan et al., 2018, Nijhawan, 2002, Rust and Palmer,

2021].

Continuing the work on anticipation of bar motion, Schwartz et al.

asked the following: if the retina is extrapolating the motion of the bar, what

would be the response in the case where the movement is interrupted? In the
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Fig. 2.2 RGC responses to flashed and moving bar. A. Spatial profile
of the firing rate in response to a flashed bar (15 cells from salamander
retina). The peak is centered at 0, corresponding to true bar position. B.
Responses to flashed bar from (A) (red, population response) compared
to responses to bar moving to right (blue, population response) and left
(green, population response). The ‘visual image’ and ‘neural image’ are
aligned despite the processing delay. Adapted from [Berry et al., 1999].

experiment where a moving bar makes a sudden turn and changes direction, the

RGC population will at first continue to signal the position as if the bar didn’t

turn, but it will quickly, after several tens of milliseconds, update on the new bar

direction and continue with correct predictions of its position [Schwartz et al.,

2007b]. In the case of 180 degrees reversal, there is a brief synchronized burst of

spikes, possibly signalling an error in anticipated motion to downstream areas.

Similarly, a sudden onset of movement elicits a stronger response than smooth

motion, possibly because it contradicts the expectation of having a stationary
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object [Chen et al., 2013].

2.2.2 Omitted stimulus response

We have seen how the retina responds to stimuli with a predictable

spatial component. To test whether similar findings stand for temporal patterns,

Schwartz and colleagues stimulated the retina with a sequence of periodic flashes

[Schwartz et al., 2007a]. They found that once that sequence is abruptly stopped,

the RGCs respond strongly (Figure 2.3, e.g. third row). This is yet another

nonlinear phenomena: the omitted stimulus response (OSR), also known as the

omitted stimulus potential (OSP) [Bullock et al., 1990a]. Similar to motion

reversal effect, here the temporal regularity - the periodic nature of the flashes - is

violated, causing the RGCs to seemingly signal the deviation from the prediction.

Moreover, the timing of the OSR is not constant but instead carries information: it

depends on the inter-flash period in the range between 6 and 20 Hz [Schwartz et al.,

2007a]. The retina appears to ‘learn‘ the exact interval between two flashes and

the latency of the OSR is consistently shifting with it (Figure 2.4). The robustness

of OSR was probed by jittering the periods between flashes, changing flashes to

different shapes, etc, however the response persisted despite the noise [Schwartz

and Berry 2nd, 2008]. Possibly the most surprising discovery is the variety of

behaviour in the recorded responses, as can be seen from 10 different combinations

of responses to beginning and ending of the flash sequence (Figure 2.3).

The diversity of cell types might seem like a good candidate for explaining

the variety of responses, since different types are assumed to encode [Wässle, 2004].

However, so far there was no clear correspondence found between the response

type and either receptive field size, ON-OFF index, or spike-triggered average

[Schwartz and Berry 2nd, 2008, Deshmukh, 2015]. An important caveat is that

most of the OSR studies were done in salamander, where cell typing is still not

well-established and boundaries between types are less clear, so further research
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into response diversity might benefit from focusing on the mouse as the model

animal.

Fig. 2.3 Diversity of OSR responses shown. RGC activity is presented
using PSTH. Solid blue line represents stimulus, dotted blue line the
omitted flash, while the green line is the timing of the omitted flash. Note
that not all the cells exhibit an OSR. A. Variety of responses depending
on the first few flashes ranges from no activity to strong complex response.
B. Rest of the flash sequence also elicits different, sustained responses:
while some cells follow the stimulus intensity and respond to each flash,
others show increase in firing rate only for the beginning and ending of
the sequence. Reproduced from [Schwartz and Berry 2nd, 2008]

An OSR-like phenomena was spotted across numerous animal species.

So far it was observed not only in the retina of salamander and mouse [Schwartz

et al., 2007a, Schwartz and Berry 2nd, 2008, Werner et al., 2008], but also in

humans using electroretinogram [Bullock et al., 1994, McAnany and Alexander,

2009, Fradkin, 2020], turtles [Prechtl and Bullock, 1994], zebrafish larvae [Sumbre

et al., 2008], both cartilaginous and bony fish [Bullock et al., 1990b, Bullock et al.,

1990a, Bullock et al., 1993], bullfrog [Chen et al., 2014], and even invertebrates

such as crayfish [Ramón et al., 2001]. Similar findings by all these studies suggest
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there is a computational goal of such a response that extends beyond one species:

any animal needs to be able to make predictions about the environment while

saving the energy when something predictable is happening. This is also one

of the reasons for emphasising importance of studying retina’s circuitry across

different species (for review, see [Baden et al., 2020]).

Fig. 2.4 Entrainment of OSR to the flash period. A. RGC firing rate
after showing 40 ms dark flashes with different frequency (12 Hz (top),
20 Hz (bottom)). Dotted line represents the omitted flash. B. Relation
between flash period (1/frequency) and response latency. The timing of
OSR is linearly related to the period between flashes. Dotted line is the
unity line. Reproduced from [Schwartz and Berry 2nd, 2008].

A common question regarding the nature of OSR is whether maybe

the retina treats the array of flashes as a prolonged ON step stimulation, and

whether then OSR can be considered as a released suppression. There are two

arguments against this hypothesis: (i) the timing of OSR is dependent on the

period between flashes, indicating flashes are treated as separate events and neural

circuitry learns that period (see Figure 2.4); (ii) an OSR persists even when the

average luminosity during flash sequences and between trials is kept constant

[Schwartz et al., 2007a].

We will briefly cover the possible mechanistic explanations of the OSR.

The first thing to note is that depending on polarity of the flashes (dark or bright),

there are most likely two distinct pathways activated [Weidmann, 2009]. The
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first attempt to find a neural circuitry that is responsible for OSR found that

the phenomena is still present when inhibition from amacrine cells was blocked

[Schwartz and Berry 2nd, 2008]. The same study found that the ON bipolar cells

were required for the dark-flash OSR, forming the basis for a model in which the

OSR is produced by combining the oscillatory response of the ON bipolar cells

with the inputs from OFF bipolar cells [Schwartz and Berry 2nd, 2008, Gao et al.,

2009, Deshmukh, 2015].

An alternative proposal claimed OSR is in fact not a response to the

omitted flash, but instead a byproduct of temporal integration of the flash sequence

[Werner et al., 2008]. In this model, it was possible to reproduce OSR with a

combination of time-shifted RGC ON and OFF channels. However, the main

criticism of this result is that the model predicts that the relationship between

flash period and OSR latency, while still linear, does not lie on the unity line;

however, the experiments in [Werner et al., 2008] show that for different cells, the

slope was on average 0.85, with variations from 0.4 to 1.8. Recently, there were also

attempts to discover the mechanism using convolutional neural networks trained

on the retinal data [McIntosh et al., 2016]. By deriving the minimal necessary

subset of channels i.e. cells, Tanaka et al. find that in their model, a mixture of 2

ON and 1 OFF channel is sufficient to generate an OSR-like behaviour, which

successfully reproduces the slope distribution [Tanaka et al., 2019]. To the best of

author’s knowledge, this hypothesis remains to be experimentally tested.

2.3 Modelling retinal responses

Now that we have seen some of the computations occurring in the retina’s

output layer, we want to know how to quantitatively describe neural activity. A

basic way to model cell’s responses to stimuli would be to represent it as a cascade

model (Figure 2.5). First, the stimulus ~x is filtered by the cell’s receptive field,
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which is represented as a linear spatio-temporal filter ~k. Since the firing rate

cannot be negative and the neuron cannot fire with infinite frequency, i.e. there is

a saturation point due to the biophysical properties of neurons, the output of the

linear filter has to be rectified [Dayan and Abbott, 2001]. This can be done by

filtering with a nonlinear function f , also known as the link function, giving as a

result the instantaneous firing rate λ:

λ = f(~k · ~x)

To generate stochastic spike trains, it is approximated that neuron’s

firing corresponds to a Poisson process with mean λ. This kind of cascade model

is termed Linear-Nonlinear Poisson model (LNP), or Poisson Generalized Linear

Model (GLM) [Simoncelli et al., 2004]. Although LNP model has limited relation

to biophysical processes, it provides a compact way to relate input stimulus x

with the recorded responses r and obtain a prediction of average firing rate,

such as peri-stimulus time histogram (PSTH) [Pillow et al., 2005, Pillow, 2007].

For estimating instantaneous firing rate, several parameters have to be fitted

stimulus
predicted
spikes 

k f

Poisson processnonlinearitylinear filter

Fig. 2.5 Schematic of a linear-nonlinear (cascade) Poisson model. The
stimulus is filtered with linear kernel k, passed through a rectifying
nonlinearity f (here rectified linear unit, ReLU), followed by Poisson spike
generation.

to describe the LN model: the coefficients of the linear filter k, and, depending

on the functional form of nonlinearity, the parameters governing it (usually f

is an exponential or other rectyfier function). In case of white noise stimuli, it
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is possible to estimate the linear filter from the data by estimating the average

stimulus that elicits a spike, called the spike-triggered average (STA) [Chichilnisky,

2001] (Figure 2.6). Under certain conditions, STA is an unbiased estimate for

the linear filter, making the LN model easy to estimate and computationally

tractable [Chichilnisky, 2001, Paninski, 2004]. A more general approach to fit the

parameters of the linear filter is to maximize the likelihood, p(r|x) (for derivation,

see [Pillow, 2007]). This optimisation is convex, making the inference of LN

parameters relatively straightforward. Thanks to the accurate performance in

predicting average firing rate and relatively easy inference, LN model found its

application in many areas, successfully explaining the responses of retinal ganglion

cells [Pillow et al., 2008], ipRGCs [Milosavljevic et al., 2018], lateral geniculate

nucleus [Babadi et al., 2010], visual [Kotekal and MacLean, 2020], motor [Truccolo

et al., 2005] and parietal [Park et al., 2014] cortex.

However, the explanatory power of LN model is by design limited when it

comes to more complex stimuli with spatio-temporal correlations, such as natural

images or videos [Heitman et al., 2016, McIntosh et al., 2016]. Although the

simplicity of the LN model is one of its advantages, it also means there is a lack

of different sources of nonlinear interactions, which are highly present even in the

retina, and more so later in the visual cortex [Latimer et al., 2014]. Some of the

shortcomings can be mitigated by extending the LN model to include post-spike

filters or couplings with other neurons [Pillow et al., 2008], multiple linear filters

i.e. filter banks [Gollisch and Meister, 2008] or stacked, two-layered LN also known

as LN-LN [Shapley and Enroth-Cugell, 1984, Deny, 2016], or independently infer

parameters of stimulus filter and coupling filter [Mahuas et al., 2020]. For example,

for the previously described phenomena of motion extrapolation, it was possible

to explain the responses using an LN model with an added contrast gain control

[Berry et al., 1999]. Yet, LN models still fail to predict responses in certain cases,

such as (i) when neurons are presented with natural stimuli, (ii) when neurons
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Fig. 2.6 Computing spike-triggered average. Random white noise, i.e.
checkerboard stimulus, is presented while recording neuron’s spiking ac-
tivity. The average number of spikes elicited by a certain sequence of
frames of stimulus is calculated (here, 3 time-bins depicted in different
colours). In this example, the neuron responds strongly to the increase
of light in upper left corner of the scene. The analysis part shows the
frame summation, the averaging is not displayed. Reproduced from [Deny,
2016].

have sub-Poisson spiking variability, or (iii) when the polarity of a cell changes

[Heitman et al., 2016, McIntosh et al., 2016, Maheswaranathan et al., 2019].

As a more complex and flexible model which might be able to resolve

these issues, convolutional neural networks (CNNs) were proposed as another

possible model of visual systems [Yamins et al., 2014, Cadena et al., 2019],

including the retina [McIntosh et al., 2016, Maheswaranathan et al., 2019, Tanaka

et al., 2019, Goldin et al., 2021]; for review, see [Lindsay, 2021]. Inspired by

natural vision, the basic computation in CNNs is the convolution of the input

image with a set of learned filters, which are then combined to predict neural

responses [LeCun et al., 1998]. Note that a two-layered CNN is in principal

equivalent to an LN-LN model. Unlike LN models, learning the parameters of

CNN is a slow and computationally expensive task, partially due to the fact that
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number of parameters required for CNN can be several orders of magnitude higher

than for the LN models (e.g. in [McIntosh et al., 2016], 150 thousand vs 4

thousand).

Fig. 2.7 Example of a CNN architecture. The input image is convolved
with two layers of spatiotemporal filters which are learned from the
data. Lastly, the outputs are combined linearly and filtered through
rectifying non-linearity to output the predicted firing rate. Reproduced
from [McIntosh et al., 2016].

Recently, McIntosh and colleagues found that a three-layered CNN model,

trained on retinal responses to natural movies, outperforms LN models with and

without spike history filters not only on the responses elicited by natural scenes,

but white noise stimulus as well [McIntosh et al., 2016, Maheswaranathan et al.,

2019]. Moreover, the CNN is able to reproduce multiple retinal phenomena related

to motion encoding and predictive coding, including the omitted stimulus response.

However, it requires additional work to compare these complex models to biological

systems that they emulate, and extract information about computations a CNN

model performs [Tanaka et al., 2019].





Chapter 3

Efficient coding
The natural world is full of redundancies. The information received

from the visual scenes is no exception, as Attneave points out in his seminal

work [Attneave, 1954]. Attneave presents a thought experiment to illustrate

the redundancy of visual stimulus inspired by Shannon’s guessing game with

English language [Shannon, 1951]. In Shannon’s experiment, a subject is tasked

to fill in the missing letters from an unknown paragraph. Out of 129 letters, the

subject guessed 89 correctly (69%), implying most of the letters are not needed

for understanding the text, but can be predicted frm th cntxt.

As Attneave suggested, similar investigation into visual redundancy can

be done: if a subject would be asked to describe a simple image of N pixels

containing three shapes of different colour (Figure 3.1), they could make better-

than-chance guesses to predict neighbouring pixel’s colour by using significantly

less than N tries. Later work by Kersten sought to quantify precisely the level of

redundancy, using psychophysics experiments with grey-coloured images which

have certain share of deleted pixels [Kersten, 1987]. He found that the spatial

redundancy ranges from 46% for a complex image, to 74% for a picture of a face.

This result demonstrates the presence of various forms of redundancy, such as

continuity of texture and homogeneity of colour, enabling the subject to make

assumptions about the neighbouring pixel. The errors subjects make would be at

points where there is an unpredictable change in shape or colour, or as Attneave

points it out, ‘information is concentrated along contours’.

A more rigorous, quantitative formulation of Attneave’s observations is

21
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Fig. 3.1 Illustration of a redundant visual scene for the described thought
experiment described in [Attneave, 1954]. Three objects of different colour
(an ink bottle, a table and background wall) are shown: a subject guessing
the neighbouring pixel is likely to make error around contours of these
objects.

given by Barlow [Barlow et al., 1961]. Following Shannon’s ground-laying work in

mathematically defining concepts like information and redundancy [Shannon, 1948],

Barlow applied fundamental ideas from communications theory in the context of

neuroscience to define efficient coding. According to this hypothesis, the neurons

in sensory areas have adapted to transmit maximal possible information to the

rest of the brain, despite the internal constraints such as metabolic cost and noise.

Barlow reduces a neural system to an information processing system which has

a limited capacity, and therefore has to choose an appropriate neural code to

transform the stimulus in order to transmit only the high-information content.

The prediction that follows is then that the guiding principle of neural circuits

should be to remove statistical redundancies from the sensory signals, i.e. the

‘redundancy reduction’ hypothesis (see [Barlow, 2001] for review).

One of the early tests of this hypothesis was in the compound eye of the

fly [Srinivasan et al., 1982]. Srinivasan and colleagues asked whether neurons take

advantage of the structure of the natural images by implementing a center-surround

receptive field (RF). Their proposal was that the excitatory center and inhibitory
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surround combine as a linear weighted sum of input luminosity. Contrary to what

might be expected, this RF structure implies RGCs are not encoding constant

luminance, but contrast. Based on their model, they predicted that at low light

intensities, the inhibition should be weaker in order to faithfully represent the

luminosity in the center. Moreover, they found experimental support for this

assumption by comparing their predicted RFs to recorded RFs of interneurons

in the fly retina at different light levels (i.e. different levels of noise). Several

later studies focused on the statistics of natural scenes, and found the codes

visual system has evolved to utilise are indeed the ones which are well-tuned for

decorrelating visual information ([Field, 1987, Switkes et al., 1978, Rieke et al.,

1995], reviewed in [Atick, 1992, Simoncelli and Olshausen, 2001]).

3.1 Efficient coding in the retina

As we have seen in Chapter 2, in most of the mammals there is a thousand-

fold reduction in number of cells between the photoreceptor layer and the retinal

ganglion cells output. This bottleneck makes the retina a good candidate to test

the efficient coding theory, since in such conditions it is suggested that the retina

would have to compress the incoming information. Moreover, it is possible to

record a representative sample the whole retinal output, which makes validating

the theoretical predictions with experimental data feasable.

Atick and Redlich were able to predict the variation of receptive field

shape depending on the noise conditions by tarting from efficient coding hypothesis

as a design principle. In the low-noise setting, the center-surround structure of

retinal ganglion cells receptive fields is used to integrate inputs from within their

RF while suppressing the stimuli in their immediate surround (Figure 3.2A). This

finding is in accordance with Barlow’s original hypothesis, since he assumed a

noiseless channel, hence being efficient in this case means the optimal strategy is
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Fig. 3.2 Receptive field shape prediction depending on the noise level.
A. In case of low noise, the RF shows excitatory center and inhibitory
surround, and therefore whitens the image. B. In high-noise setting, the
surround suppression is weak, enabling neurons to use this RF shape to
average out the noise. Adapted from [Doi and Lewicki, 2007].

to reduce the redundancy and decorrelate the input stimulus.

In contrast, the efficient coding theory makes an opposite prediction

when sensory inputs are corrupted by a high level of noise. Here, the optimal code

is actually the one in which neurons respond redundantly to their inputs, so as to

average out the noise, leading to an increase in signal-to-noise (SNR) ratio. As

a result, the efficient coding theory predicts that the neural code should change

qualitatively with varying input noise, acting as a whitening filter at low noise,

and a smoothing filter at high noise. Interestingly, Atick and Redlich showed that

this can explain the observed changes in the RF shape of RGCs with decreasing

visual contrast, which become broader and have a weaker suppressive surround at

lower contrast levels (Figure 3.2B). However, this should not come as a surprise.

The optimality of the code depends on the input: a code which is efficient for

a certain input statistics is not necessarily optimal for another [Simoncelli and

Olshausen, 2001].

Atick and Redlich made a number of simplifying assumptions about the

nature of the neural code, where RGCs are assumed to behave as linear determin-

istic filters of their inputs. Since then, a number of authors have investigated what
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happens in the more general case, where neural responses are noisy and non-linear.

It was shown that, with more realistic neural models, efficient coding can account

for many qualitative aspects of retinal organisation, such as the ratio between

ON and OFF cell types [Karklin and Simoncelli, 2011, Ratliff et al., 2010], the

overlap between RFs [Doi and Lewicki, 2007], changes in RFs with varying retinal

eccentricity [Doi and Lewicki, 2014, Ocko et al., 2018]. Likewise, starting from

efficient coding principles it is possible to explain how having both ON and OFF

cell pathways leads to a lower metabolic cost on average [Gjorgjieva et al., 2014].

In recent work, Doi et al. directly compared predictions of efficient coding with

simultaneous recordings from cone photoreceptors and RGCs [Doi et al., 2012].

They found that ganglion cells exhibited high (∼ 80%) efficiency in transmitting

spatial information, relative to their model. Recently, Ocko et al. found that it

is possible to start from first principles (statistics of natural movies and realistic

energy constraints), and reconstructed the spatial and temporal sensitivity, cell

spacing, ratio of cells types, as well as how distribution of cell types changes with

eccentricity in primate retina [Ocko et al., 2018].

Despite these successful predictions of qualitative features of retinal

organisation, efficient coding theory has several limitations. The universal nature

of its formulation makes it both very flexible for various interpretations and elusive

for applying to data: it is a difficult task to pinpoint what information is encoded,

the statistics of the natural scenes, or what constraints should be taken into

account without making the model intractable. As a result, it has thus far proved

hard to move beyond qualitative features to make direct, quantitative comparisons

to the neural activity. In the example of visual system, there is a higher count of

cortical neurons (∼ 109) than ganglion cells in the retina (∼ 106), therefore there

would be no need for compression of the signals coming downstream from the

retina, which seems to be opposite of what would be predicted by efficient coding

[Barlow, 2001]. However, the complexity and diversity of visual tasks is also



26 Chapter 3. Efficient coding

increasing as the signal move through the hierarchy of sensory processing, as well

as the timescales over which visual cortex has to integrate the incoming inputs. It

is important to note that in this criticism there is an implicit assumption that

the number of neurons is the only relevant factor as if each neuron can convey an

equal information load, which is still an open question [Simoncelli and Olshausen,

2001, Barlow, 2001].

Lastly, since efficient coding is envisioned as a general guiding principle for

neural organisation, it posits all sensory information is treated equally. This goes

against the empirical evidence showing that neural systems prioritise behaviourally

relevant stimuli, & not just statistically likely ones [Machens et al., 2005]. For

example, for interactions in human world it is significant to recognize a face of a

fellow human, unlike distinguishing one treetop from another. Supporting this

idea, Machens et al. demonstrate how grasshoppers auditory receptor neurons

preferentially encode calling songs for mating over other natural stimuli: the

ecological importance of the former would not be captured by the efficient coding

hypothesis.

3.2 Coding for predictions

To overcome agnosticism about the what type of stimuli is relevant,

an alternative hypothesis was proposed: that neural systems encode maximal

information about those stimuli that are predictive about the future, while dis-

carding other, non-predictive, information [Bialek et al., 2006, Salisbury and

Palmer, 2015]. This ‘predictive coding’ theory is motivated by the fact that only

‘predictive’ information allows the organism to respond adaptively to changes in

the environment and improve its chances of survival. In case of sensory system,

this can be motivated by the need to compensate for processing delays and act

based on these anticipated future states.
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The relationship between the information about the stimulus and the

responses can be formalised using information bottleneck (IB) method [Tishby

et al., 2000]. In the context of coding for predictions, the IB theory prescribes

how to encode a stimulus so as to preserve maximal information about the future,

given a certain amount of information encoded about the past. Namely, it is

an optimisation problem which a neural system attempts to solve: consider

input stimulus X, which is coded using response variable R, in order to transmit

information about some relevant variable Y . The question is how to transmit

maximal possible information about the future, Ipred, given that the information

about the past, Ipast, has to be compressed. Therefore, the goal is to minimise

the following loss function:

L = I(X;R)− βI(R;Y )

where I stands for mutual information, and β is the parameter determining trade-

off between accurate representation of the past (compression) and information

about the future (prediction). In case of coding for predictions, the assumption

is that the target variable Y is the state of input stimulus ∆ steps ahead, i.e.

Y = X(t+ ∆).

Recently, Palmer et al. tested this idea of extraction of predictive infor-

mation in the context of retinal encoding [Palmer et al., 2015]. They measured the

spiking activity of a population of RGCs in response to a moving bar. In support

of the theory, they found that RGCs encoded close to maximal information about

the future trajectory of the bar, given the amount of information they encoded

about its past trajectory (Figure 3.3). Notably, Palmer and colleagues also show

that downstream neurons can almost optimally read-out predictive information in

such form, even if they receive no other inputs [Sederberg et al., 2018]. An open

question remains how does this approach translate to more naturalistic stimuli.
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Also, how to more explicitly quantify this ‘closeness’ to optimal encoding is not

yet clear, with one recent proposition given in [Młynarski et al., 2021].

Work so far assumed neurons encode predictive information redundantly,

via their ‘instantaneous’ responses i.e. using the information from previous time-

point only (this is also implicitly assumed by Palmer et al. ) [Wiskott and

Sejnowski, 2002, Creutzig and Sprekeler, 2008, Berkes and Wiskott, 2005]. In this

view, the theory predicts that neurons should preferentially encode slowly varying

(i.e. temporally correlated) stimulus features, since they persist into and are

predictive of the future stimulus (i.e. ‘smoothing’). Note that this is an extension

of the initial interpretations of efficient coding, which (at low-noise) predicts that

neurons should temporally decorrelate the stimulus, and only respond when it

transiently changes on fast timescales (i.e. ‘whitening’).

Subsequent work provides a way to explain both cases in a single frame-

work [Chalk et al., 2018]. Chalk et al. show different coding objectives can lead to

very different coding strategies which are efficient in their respective conditions.

Fig. 3.3 Information encoded by RGCs about the future vs. information
about the past. Each point is a group of cells, with colours indicating
group size N . Theoretical upper bound (solid line) is defined by the
statistics of the bar motion. Adapted from [Palmer et al., 2015].
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In this theory, neural responses (in a time window of length τ are hypothesised to

transmit maximal information about the stimulus at some time-lag, ∆, constrained

on the total information encoded about previous inputs, C (Figure 3.4A). Thus,

the predicted neural code depends on three optimisation parameters (τ , ∆, and

C), which together describe the functional goals and constraints faced by the

system (Figure 3.4B).

Previous coding theories emerge as special cases of this more general

theory, given specific choices of optimisation parameters. For example, efficient

coding is obtained by assuming a temporally extended code (τ � 0) and negative

decoding lag (∆ < 0; blue region in Figure 3.4B). On the other hand, ‘instantaneous

predictive coding’ (as described in Palmer et al.) is obtained by using a short coding

window (τ ∼ 0), and positive decoding lag (∆ > 0; red region in Figure 3.4B).

Fig. 3.4 Unifying theoretical framework for coding strategies. A. A
time-varying stimulus (top) is encoded by neurons (bottom) with limited
capacity C (bottleneck) during a coding window τ with the goal of predict-
ing stimulus of ∆ steps ahead. B. Landscape of coding strategies. Optimal
code is determined depending on optimisation parameters: efficient coding
of past inputs at present time (blue circle), Markovian decoding of future
inputs (red circle), while the black circle is largely unexplored. Adapted
from [Chalk et al., 2018].
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3.3 Encoding surprise

As we have seen so far, a way to exploit the redundancy in visual inputs in

low noise conditions would be to communicate only the unpredictable information

whenever possible. In this case, the emphasise of neural responses would be on

the stimuli considered ‘unexpected’, ‘deviant’, ‘oddball’, or less probable by the

internal model; in contrast, an ‘expected’, ‘standard’ or more likely stimuli will

elicit a weaker response in comparison. This view allows to frame efficient coding

as ‘surprise encoding’ or ‘surprise salience’.

The typical experiment design includes presenting a rare, oddball stimulus

interleaved with a standard stimulus of a different physical feature (such as colour,

tone, intensity, etc) and significantly higher probability [Ulanovsky et al., 2003].

Gill et al. provide a model for the oddball paradigm by proposing that neurons

encode surprise instead of intensity or change in intensity [Gill et al., 2008]. They

found that while classical spatiotemporal linear filters fail to replicate the responses

of neurons in zebra finch auditory system, ‘surprise spatiotemporal receptive fields’

succeed to explain the recorded data. These surprise-based method meant that

instead of convolving the filter with the sound intensity, they convolved it with the

stimulus surprise (here surprise is defined as a negative logarithm of probability

given the recent stimulus history and birdsong-related expectations).

As we have seen in Chapter 2, there is also a number of experimental

observations in the retina that seem to fit the description of retina making

predictions. One of the most straightforward examples is how RGCs anticipate

the bar position [Berry et al., 1999], as well as the motion reversal phenomena

[Schwartz et al., 2007b]. Moreover, the retina has the ability to dynamically adapt

to the changing correlation structure of the environment. Hosoya and colleagues

explored adaptation to presented stimulus in even more detail and found how the

RGCs receptive fields adapt to efficiently encode the stimulus statistics [Hosoya
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Fig. 3.5 A. Adaption to positive (A) or negative (B) correlations in the
stimulus. The intensity at each time-step could be predicted by taking
the value of the stimulus 60ms into the past with either positive (A) or
negative (B) sign. B. Shape of receptive field depends on which stimulus
is it adapted to. The strongly biphasic RF (left) suppresses the response
to stimuli with positive correlation. It becomes less pronounced once the
cell is exposed to the other environment (right). Adapted from [Hosoya
et al., 2005].

et al., 2005].

Their work discovered presence of adaptations to both spatial (image

correlations, grating orientation) and temporal features of the images performed

by the retinal ganglion cells. An example of retina’s ability to adapt to different

temporal statistics is showcased by two stimuli with fixed light level and contrast,

but different temporal correlation structure (Figure 3.5A). Depending on which

stimulus was the neuron exposed to, the shape of the receptive field varies. In fact,

when adapted to positive correlation (A in Figure 3.5A), the RF is clearly biphasic

(Figure 3.5B, left), effectively suppressing the predictable response. This changes

towards less pronounced biphasic RF (Figure 3.5B, right) when the same neuron

is presented with a stimuli of negative correlation (B in Figure 3.5A).

Another illustration of such phenomena is the omitted stimulus response

(OSR) [Schwartz et al., 2007a]. The retinal ganglion cells adapt dynamically to

the period between two flashes, and show a wide range of different responses that

could not be directly related to their type [Schwartz and Berry 2nd, 2008]. While

the function of this kind of response has been assumed to have a predictive nature
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[Schwartz and Berry 2nd, 2008], there is only one study looking into it from the

information-theoretic point of view [Chen et al., 2017]. Chen et al. randomly

sample the inter-flash interval from a Hidden Markov Model (HMM), and find

that in a range of values which corresponds to inter-flash periods typically used

in OSR, the mutual information I(S;R) actually carries information about the

future flash intervals. However, there was so far no comparison to a quantitative

model which would explicitly compute the surprise as a function of stimulus

statistics. Given the diversity of spatiotemporal features the retina encodes -

contrast, direction, looming motion, to name just a few - a relevant target could

also be the surprise.



Chapter 4

Surprise encoding in the retina

4.1 Introduction

A central prediction of the predictive coding theory, elaborated in Chap-

ter 3, is that at low noise neurons should preferentially encode stimuli that are

surprising, based on what came before. Several studies suggest that this may

be true in the retina, as described in Chapter 2. For example, RGCs respond

vigorously to unexpected changes in visual motion [Schwartz et al., 2007b]. More-

over, a series of experiments by Schwartz et al. [Schwartz et al., 2007a, Schwartz

and Berry 2nd, 2008] demonstrated how RGCs show a diverse range of adaptive

behaviours to repeated patterns of illumination. Notably, they observed that

many RGCs responded strongly to violations in the presented temporal pattern:

a phenomenon they called the omitted stimulus response (‘OSR’).

However, despite these results, we still lack direct quantitative evidence

relating the responses of RGCs to the degree of ‘surprise’ for a given stimulus. For

example, previous studies looking at the OSR only used a very limited range of

different temporal sequences (e.g. n flashes presented in a row, repeated multiple

times), and thus it is unclear how RGC responses would vary when certain

sequences are more ‘surprising’ than others. To investigate this, we presented

RGCs with extended sequences of stochastically occurring full-field flashes. The

stochastic nature of our stimulus meant there was a large range of different levels

of surprise, depending on how many flashes had been presented beforehand.

We found that the responses of RGCs to these stimulus sequences could

33
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0.12 s

light
off

on

dark flash silence

Fig. 4.1 Stimulus excerpt, showing periodic sequences of dark flashes.
Each flash lasts 40 ms with 80 ms inter-flash period. A 120 ms bin
containing a dark flash is marked with a dark dot, while a bin without it,
called ‘silence’, is marked by a white dot.

be well explained by a simple model describing how neurons combine their prior

‘expectations’ with the recent stimulus history, to encode ‘surprise’. The diversity

of neuron’s responses was captured by describing each cell with its own internal

model. Interestingly, while different neurons had similar expectations about which

stimuli were most likely, their degree of confidence in their prior expectations

varied considerably across cells. Furthermore, these differences were sufficient to

explain much of the diversity of neural responses that we observed across the

population.

4.2 Results

RGCs responses to flash sequences

We recorded retinal ganglion cells (RGCs) of an axolotl with a multi-

electrode array. We presented a visual stimulus, consisting of random sequences

of full-field dark flashes, interleaved with periods of silence (Fig. 4.1; see Methods:

Stimulus statistics for details). Recorded activity was sorted into single unit

responses using SpyKing Circus [Yger et al., 2016].

We were interested in neurons that exhibited an ‘omitted stimulus re-

sponse’ (OSR), where neurons respond to the absence of a flash, following several

flashes presented in a row [Schwartz et al., 2007a]. We thus selected 48 out of 114

single unit responses for further analysis, that showed (i) high quality recording
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Fig. 4.2 Raster plot of spikes for an example cell. Solid line represents a
flash, while dashed line stands for the timing of omitted flash. Each row
represents a response to a different number of consecutive flashes (from
1 to 11 with step 2), with 70 repeats shown in each raster row (order of
the repeats is not chronological, but shuffled randomly). The last row
combines the peri-stimulus time histogram (PSTH) for different number
of flashes (PSTH colors corresponds to the number of flashes). We observe
an increase in firing rate after the missing flash, which we consider to
be the omitted stimulus response (OSR). Furthermore, the condensed
representation of responses show there is an increase in OSR strength
with the number of flashes.

(quantified by low number (<1%) of refractory period violations, where refractory

period is 2 ms), and (ii) the presence of an OSR (quantified as a peak in 120 ms

following the omitted flash).

Figure 4.2 shows an example of the responses of one cell to a varying

number of flashes presented in a row. As can be seen, this cell fired responded

strongly to the first flash in a sequence, and shortly after the sequence had ended,
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but where another flash would expected (i.e. the OSR). Moreover, the size of the

OSR increased monotonically, depending on the number of flashes presented in a

row.

For our analysis, we converted the stimulus to a binary variable, which

was set to 1 or 0 depending on whether there was a dark flash (stim. = 1) or a

period of silence (stim. = 0) within a given 120ms window. Neural responses were

taken to be the number of spikes computed within each 120ms.

To discover how the OSR varied with the number of consecutive flashes,

we computed the average response of each neuron, given a ‘stimulus history’

consisting of a varying number of flashes in a row followed by silence (Figure 4.1).

The OSR increased monotonically with the number of flashes for all cells. However,

we observed differences in the rate of increase as well as the maximum firing rate

for difference cells (Figure 4.2).

To see how neural responses depended on all possible stimulus sequences

(and not just a series of flashes, presented in a row), we constructed ‘tree-plots’

(Figure 4.4), consisting of a neuron’s average response to all possible sequences

of flashes and silences of a given sequence length. Note that the top branch of

this tree plot corresponds to the OSR, shown in Figure 4.3A. In Figure 4.4 we

can see two cells with quite pronounced differences in structure of the responses,

apart from the strongest OSR, i.e. being elicited by silence (‘0’; white circle) after

several consecutive flashes (‘1’, black circle).

Modeling ‘surprise encoding’ by RGCs

We next asked whether RGCs encode surprise. To test this, we con-

structed a simple model of how RGCs could combine their internal stimulus

expectations with the recent stimulus history to compute surprise (Fig. 4.5).

Following [Baldi, 2002], we defined surprise at time t, st, as the negative log

probability of observing a stimulus, xt, given the recent stimulus history, x<t, and
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Fig. 4.4 Tree representation reveals neuron’s responses beyond OSR. A
dot represents average firing rate in a 120 ms bin with either a dark flash
(black circle) or no flash (white circle). The top branch corresponds to
the OSR after a different number of consecutive flashes, same as in Fig.
Figure 4.1. As the number of flashes before silence increases, the firing
rate gets stronger. While both cells show the strongest response to the
omitted flash, their other responses are quite different.

the neuron’s internal model of the stimulus statistics (parameterized by θ):

st = − log p (xt|x<t, θ) (4.1)
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The mean firing rate was then obtained by applying the simple non-linear map-

ping:

rt = f (gst + b) (4.2)

where g and b are free parameters, and f (·) is a rectifying non-linear function to

prevent firing rates being negative.

The computed surprise for each cell thus depends on their expectations or

‘internal model’ of the stimulus statistics (parameterized by θ). We first assumed

the simplest possible internal model: a ‘Markov model’, in which the probability

of observing a flash, xt = 1, only depends on whether there was a flash or not

in the previous time bin (xt = 0/1). This binary Markov model has two free

parameters: the probability of a flash occurring if there was or wasn’t a flash in

the previous time-step (θ0 = p (xt = 1|xt−1 = 0), and θ1 = p (xt = 1|xt−1 = 1)).

The parameters, g and b, and parameters of the internal model, θ, were fitted

for each neuron using maximum likelihood, assuming that the responses were

generated by a Poisson distribution with mean rt (see Methods section: Model

firing rate

surprise

non-lin.

internal
model 

stimulus expectation

Fig. 4.5 General schematic of a surprise model. The stimulus is compared
to neuron’s expectation, which is generated using the neuron’s internal
model. The surprise is then filtered with static non-linearity to obtain
the firing rate. We assume neural responses are generated from a Poisson
distribution with this mean firing rate.
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fitting).

Figure 4.6A shows the average firing rate of a single neuron (black) for a

given stimulus sequence (above) (we estimated this using the average number of

spikes elicited by all repetitions of a stimulus sequence eight time-bins long; see

Methods: Data analysis). Despite its simplicity, our model was able to account for

the most prominent feature of the neuron’s responses: that it responded strongly

to the first flash in a sequence, and the first silence in a sequence (i.e. the OSR).

However, the model was completely unable to replicate the dependence of the

OSR on the number of flashes presented in a row, observed for this (Fig. 4.6B) and

many other cells (Fig. 4.6C). This was because, by design, with a Markov model

the computed surprise, only depends on the stimulus in the previous time-bin, and

thus the predicted response is also independent of the stimulus history, beyond

one time-bin (Fig. 4.6D).

We asked whether it was necessary to have a separate internal model

for each cell, or instead the whole population can share one internal model of the

stimulus statistics. While it is a plausible assumption, this would obviously not

give the range of responses observed in Figure 4.3B. Still, we controlled for that

option: we found that even a simple heterogeneous fits the responses better than

such homogeneous model (Figure 4.6E).

Adaptive belief model

To account for the observed variations in the OSR with number of

consecutive flashes, we next considered a more complex ‘dynamic belief’ model

of surprise encoding. Here, we assume that the transition probabilities (θi ≡

p (xt = 1|xt−1 = i)), are not known a priori, but must be inferred. Each neu-

ron combines its prior expectations (p (θ)) with the recent stimulus history

(p (xt, xt−1, . . . |θ)) using Bayes’ law: p (θ|xt, xt−1) ∝ p (xt, xt−1, . . . |θ) p (θ). With

binary stimuli, this results in a simple expression for the inferred probability of
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Fig. 4.6 Only basic features of the response are captured by a
simple surprise model. A. Stimulus excerpt (top, black) and corre-
sponding response peri-stimulus time histogram (PSTH, bottom, black)
compared to predicted firing rate for the fixed surprise model (bottom,
green). The fixed model has limited flexibility, effectively displaying only
4 possible values of firing rate (2 shown in dashed green line). Pearson
correlation coefficient: r=0.82. B. Flash sequences of different length
(top); PSTH of the responses (middle) and model prediction (bottom)
when presented with a variable number of consecutive flashes. Each colour
corresponds to a different length of the flash sequence. The fixed surprise
model predicts same strength of OSR independent of the number of flashes,
which is not what can be seen in the data. C. Average responses to an
increasing number of flashes is not reproduced by the fixed surprise model,
which can take into account only the previous state (flash or no flash). The
flash history beyond that does not play a role in estimation of expectation.
Different colours stand for individual cells. D. Tree-plot of data (left)
and fixed model prediction (right). The depth of the tree corresponds
to the number of observed time-bins; for every depth, combinations of
silence (‘0’; white circle) and flashes (‘1’, black circle) is shown. Other
half of the tree, for codewords ending in ‘1’, is omitted. Fixed surprise
model can capture the mean response for codewords of length 1 and
2, but not beyond. E. Comparison of heterogeneous (each cell has its
own expectation) to homogeneous model (one for the whole population).
For majority of the cells the fit is significantly better with individual
expectations. p = 6.64 · 10−9, Wilcoxon rank sum test.
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Fig. 4.7 Adaptive surprise model can capture both qualitative
and quantitative features of the responses. A. Stimulus excerpt
(top, black) with response firing rate (bottom, black) compared to pre-
dicted firing rate for the fixed surprise model (bottom, blue). Pearson
correlation coefficient r=0.95. B. Responses to flash sequences from 1 to
8 flashes (top). Condensed OSR display showing responses and model
predictions for 3 cells (rows 2-4, one cell per row). Adaptive surprise
model captures not only the overall trend of OSR rise, but also different
decay patterns. C. Rise in OSR with the number of consecutive flashes
for seven cells (each one represented with a different colour), data (solid
line) vs. adaptive surprise model (solid line with circles). The range on
x-axis starts from the mean response to silence, ending in mean response
to silence after 6 consecutive flashes. D. Goodness of fit comparison,
Pearson correlation coefficient for two surprise models. Adaptive surprise
model outperforms the fixed surprise one. Each dot represents a cell in
the population. Dashed line is the unity line. p = 5 · 10−11, Wilcoxon
rank sum test.
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seeing xt, given xt−1 = i:

p (xt = 0|xt−1 = i, xt−2, . . .) = ni→0 + βi→0

ni→0 + ni→1 + βi→0 + αi→1
(4.3)

p (xt = 1|xt−1 = i, xt−2, . . .) = ni→1 + αi→1

ni→0 + ni→1 + βi→0 + αi→1
, (4.4)

where ni→j is the number of occurrences of the transition i→ j in the sequence

{x1, x2, . . . , xt}, and αi→1 and βi→0 are parameters of the prior, that can be thought

of as the ‘effective’ number of observations of the transition i→ j. We assume that

the parameters of the prior are different for each neuron. Note that, in the limit

where the prior is very strong (i.e. ni→j � αi→1 and ni→j � βi→0), this model

becomes identical to the ‘fixed-belief’ model described in the previous section,

where the transition probabilities for each neuron are stimulus-independent.

If neuron’s had ‘infinite’ memory then, given a sufficiently long stimulus

sequence, the prior would have no effect (as we would always have ni→j � αi→1

and ni→j � βi→0). Instead, we assume a more realistic model where neuron’s

have a finite memory, and ni→j are estimated using a leaky integration of past

observations (see Methods: Internal model of stimulus). This required one

additional parameter (the time-scale of integration), which we kept fixed for all

neurons.

We fitted the 4 parameters of the prior (plus 2 parameters of the LN

model) for each neuron, using maximum likelihood, with a Poisson noise model

[Pillow et al., 2005]. Figure 4.7A shows the predicted firing rate for one neuron

(blue) to a short stimulus sequence (above). This ‘adaptive belief’ model was able

to capture aspects of the neuron’s response that could not be accounted for by

the previous ‘fixed belief model’. For example, it could capture how the size of

the OSR increased with the number of flashes presented in a row (Fig. 4.7B-C).

Further, it captured individual differences in the OSR decay for different neurons

(compare cells 1-3 in Fig. 4.7B). Overall, the correlation between the estimated
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firing rates and the model prediction was significantly higher for the adaptive,

compared to the fixed, belief model (Fig. 4.7D).

To investigate further how the adaptive belief model could account for

the diverse responses of different cells, we plotted ‘tree-plots’ describing the average

firing rates predicted by the model for stimulus sequences of different lengths

(Fig. 4.8). The adaptive belief model captured much of the structure in the neural

responses to stimulus sequences of varying length, as well as the diversity across

different cells. This was supported by plotting the correlation coefficient between

the model predictions for each node of the tree and the data, which decayed slowly

with the tree depth (Fig. 4.9A), compared to the fixed belief model which reduced

dramatically for tree depth greater than 2. On the other hand, we wondered if

the structural similarity is also better described by the adaptive surprise model.

We computed the ‘edit distance’: minimum number of permutations needed to

arrive at the recorded neuron’s tree structure (Fig. 4.9B).

A control: internal Markov model with longer history

To assess the validity of our adaptive belief model, we decided to compare

it to a more complex fixed belief model, with a similar number of free parameters.

To do this, we implemented a ‘Markov-2 model’ in which the probability of

observing a flash is assumed to depend on the observed stimulus in the previous

two time-bins. This model has 4 parameters, (θij = p(xt+1 = 1|xt = i, xt−1 = j)),

which is the same as the adaptive belief model (putting aside the leak parameter,

which was kept the same for all cells). The behaviour of this model is shown

in Figure 4.10. While the Markov-2 model outperformed the Markov-1 model

described earlier, it could not account for increases in the OSR that occurred

for sequences of more than 2 consecutive flashes (Fig. 4.10B-C), or structure in

the tree plots at a depth greater than 2 (Fig. 4.10D). Finally, the correlation

coefficient between predicted and observed firing rates was significantly worse for



44 Chapter 4. Surprise encoding in the retina

A

0

2

4

6

8

m
ea

n 
fir

in
g 

ra
te

 (
H

z)

1
0

data

m
ea

n 
fir

in
g 

ra
te

 (
H

z)

adaptive surprise model
cell 1 cell 1

1
0

0

2

4

6

8

m
ea

n 
fir

in
g 

ra
te

 (
H

z)

m
ea

n 
fir

in
g 

ra
te

 (
H

z)cell 2 cell 2

1
0

5
10
15
20
25

5
10
15
20
25

1
0

m
ea

n 
fir

in
g 

ra
te

 (
H

z) cell 3

1
2
3
4
5

m
ea

n 
fir

in
g 

ra
te

 (
H

z) cell 3

1
2
3
4
5

1
0

1
0

Fig. 4.8 Tree diagram of responses (left) vs. model predictions (right).
A dot represents average firing rate in a 120 ms bin with either a dark
flash (black circle) or no flash (white circle). The top branch corresponds
to the OSR after a different number of consecutive flashes, same as in Fig.
Figure 4.1. The adaptive model manages to reproduce the tree structure,
capturing different possible history patterns (here only patterns ending in
silence are shown).



4.2 Results 45

2 4 6 80
0.2
0.4
0.6
0.8

1

tree depth

m
ea

n 
ed

it 
di

st
an

ce

B

2 4 6 80
0.2
0.4
0.6
0.8

1

tree depth

re
la

tiv
e 

co
rr

. c
oe

ff.

adaptive surprise
fixed surprise

A

adaptive surprise
fixed surprise

Fig. 4.9 Response diversity is better captured with the adap-
tive surprise model. A. Correlation coefficient between the response-
based tree and model-based tree is computed at each tree depth. On
overall, the tree structure is better captured by the adaptive model, even
though for depth 1, aka average response to flash or silence, the fixed
model outperforms it. B. Normalized edit distance vs. the tree depth:
the number of operations needed to transform the predicted tree order at
given depth to actual, neuron’s tree structure, divided by the total number
of states in that depth (2depth). The fixed surprise model performs worse
in this regard, until both models arrive at the point of almost completely
shuffled structure (for that case, edit distance = 1).

the Markov-2 model than the adaptive surprise model (Fig. 4.10E) despite them

having the same number of free parameters (p = 5 · 10−3, Wilcoxon rank sum

test).

It would also be possible to further increase the order of the Markov

model and consider longer look-back when estimating the probability of current

stimulus state. However, this would lead to an exponential increase in the number

of parameters used to describe a total of 2N code-words (here N = 8). Moreover,

it is not feasible in practice, since the model complexity also increases as 2M ,

where M is the order of Markov model.

Differences in the prior between different cells

We were interested to see how the inferred expectations (the ‘prior’)

varied across different cells. Recall that the parameters of the prior (αi→1 and
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Fig. 4.10 A fixed model with longer past - Markov2 - cannot
match the adaptive surprise model predictions. A. Stimulus
excerpt (top, black) with average firing rate of the responses (bottom,
black) compared to predicted firing rate for the Markov2 surprise model
(bottom, cyan). Pearson correlation coefficient: r=0.91. B. Mean firing
rate of the responses and model prediction to variable number of flashes.
Each colour corresponds to a different number of consecutive flashes. C.
OSR increase with the number of flashes is not completely reproduced by
the fixed surprise model, which can take into account only the previous two
states. The flash history beyond that does not play a role in estimation
of expectation. Different colours stand for individual cells. D. Markov2
surprise model can capture the mean response for codewords up to length
3, but not further. Other half of the tree, for codewords ending in 1, is
omitted. E. Adaptive surprise model achieves better correlation coefficient
than Markov2. Each dot represents a cell in the population. Dashed line
is the unity line. p = 5 · 10−3, Wilcoxon rank sum test.
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C. Correlation coefficient of the adaptive surprise model vs. the fixed
surprise, with cells coloured according to log(α1→1 + β1→0). Cells that
were fitted well by the fixed surprise model, i.e. the ones near the unity
line (dashed), were the ones with high value of confidence (yellow). D.
Correlation between the average response to pattern of different length
(x-axis) with the average response to pattern of length 10. We split the
population of recorded cells into two groups, based on log(α1→1 + β1→0),
which is either low (yellow) or high (blue), and show the group average
correlation coefficient. Error bars represent standard error.
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Fig. 4.12 Reduced model with fixed prior mean. A. The reduced
model of 2 parameters per cell is fitting the data similarly to full adaptive
surprise model of 4 parameters per cell (see text for fitting details).
p = 3 · 10−9. B. Average response at stim=0 for 0 to 6 flashes, 7 different
cells are shown (different colours). The OSR trend is well-fitted by a
simplified adaptive surprise model. C. Comparison of fixed surprise model
to the reduced adaptive surprise model (both have 2 parameters per cell).
The reduced model still outperforms the fixed surprise for almost all cells.
p = 4 · 10−5, Wilcoxon rank sum test.

βi→0 for i = 0/1), can be considered as the number of ‘effective prior observations’

of different transitions. We plotted how these parameters of the prior varied for

different cells (Fig. 4.11A). Interestingly, we found that while for different cells

there was a large variation in the total number of effective observations (α0→1+β0→0

& α1→1 + β1→0), their ratio (α0→1
β0→0

& α1→1
β1→0

) remained relatively constant across

cells. Thus, while the confidence in prior, which determines how much weight

is accorded to prior expectations versus new observations, varied greatly across

cells, the mean of the prior (which depends on just the ratio between different

parameters) was relatively constant. Moreover, focusing on the prior parameters

related to transitions to ‘no flash’ state (‘0’), on the level of population there

seems to be two clearly separable groups of α1→1 + β1→0 values (Fig. 4.11B).

We wanted to see what does it mean for a cell to have a weak or strong

prior and how it would be reflected in the responses. What reasoned that cells with

a high total effective observations would not adapt their posterior belief as much
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depending on local observations, and hence their response would be well predicted

by the fixed surprise model. This turned out to be the case: if we colour-code the

cell’s goodness of fit based on its confidence in prior for both adaptive and fixed

surprise models, the cells with high log(α1→1 + β1→0) (parameters of the prior

relevant for the OSR) can all be found near the unity line (Figure 4.11C).

The main difference between cells with low and high confidence in prior

could be how strongly their responses reflect the local history. For a cell with

a strong prior, the stimuli from the recent past will influence its responses less;

therefore, the similarity between average firing rate computed with shorter and

longer look-back will be higher than in the case of a cell which is more uncertain

about the prior. To illustrate the degree of this similarity, we compute the

correlation coefficient of the average firing rate for stimulus sequence of length 10

with the stimulus sequence of shorter history (x-axis in Figure 4.11D).

Knowing the distribution of prior parameters is bimodal (Figure 4.11B),

the population can be split into two groups based on the confidence in prior. The

cells with high confidence in prior (yellow) hold the similarity between responses

higher than the cells with low confidence in prior, indicating there is less to lose

when shortening the code-words. Thus, cells with high confidence in prior could

be thought of as less-adaptive to surprise, unlike the other extreme where cells

integrate over a longer history of recent stimulus transitions. While the fixed

model can account for the cells with high confidence in prior, the local updates

present in adaptive model are necessary to explain the responses of cells with low

confidence in prior.

Given the ratio between prior parameters remained approximately con-

stant (Figure 4.11A), we can simplify the adaptive surprise model by assuming the

prior parameters lie on the unity line, and their position on the line is described

with one parameter, the total effective number of observations (two per cell in

total, one for each pair of transitions). We fitted this ’reduced adaptive’ surprise
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model without a noticeable decrease in performance Figure 4.12A, B. Moreover,

when compared to the fixed surprise model, the reduced adaptive surprise model

retains clear advantage in fitting the responses Figure 4.12C despite having the

same number of parameters. It emphasises the importance of taking into account

recent transitions as well as the prior belief in estimation of surprise.

4.3 Discussion

Here we present the evidence that retinal ganglion cells encode surprise.

We showed that the RGCs activity is well-fitted by a simple normative model

that assumes neural responses are proportional to surprise. It has been suggested

that there are many different functional goals that retinal ganglion cells fulfill

[Gollisch and Meister, 2010]. These results might present an addition to the already

impressive list of features retina can compute and convey to the downstream

areas: mean luminance [Barlow and Levick, 1969, Shapley and Enroth-Cugell,

1984], local and global contrast [Demb, 2008, Kastner and Baccus, 2011], direction

[Vaney et al., 2012], position [Deny, 2016], speed [Deny, 2016], object motion

[Ölveczky et al., 2003, Borst and Euler, 2011], approaching motion [Münch et al.,

2009].

Our modelling work suggests that neurons’ expectations might not be

equivalent to the true stimulus statistics. We instead find that the diversity

of RGC responses can be captured better by computing surprise with respect

to an individual expectation of each cell. This contrasts with previous work,

which assumed retinal neurons are ‘ideal observers’ of the environment, which

gives the theoretical upper bound for a performance on a given task [Geisler,

1989, Geisler, 2003, Chichilnisky and Rieke, 2005, Smeds et al., 2019]. Here, the

task would be to predict the length of flash sequence given the previously observed

sequences. Therefore, such ‘ideal observer’ neuron could adapt perfectly to
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underlying statistics [Hosoya et al., 2005, Chichilnisky and Rieke, 2005]. However,

we found that this is not the case for the complex temporal stimuli we presented,

which motivated us to look further into other possible explanations (see Appendix A

for details).

The modelling framework we use here is adapted from psychophysics

work explaining several experimental findings on sequential effects, where subject’s

responses depend on local regularities in the sequence [Meyniel et al., 2016].

Meyniel and colleagues formulate a Bayesian model which combines recent stimulus

with a uniform prior using leaky integration, enabling it to dynamically estimate

the probability of presented stimuli. The surprise is then computed with respect

to this constantly updated expectation. What Meyniel and colleagues found was

that all six of the experimental studies could be explained by the same class of

models, which learned the transition probabilities of the sequence and thus could

reproduce the responses of subjects depending on the probability of the presented

stimulus. The fact that the retina’s activity can be predicted with a similar model

might suggest similar basic principles in computations in brain areas of completely

different complexity and tasks (see Chapter 5 for more details).

Although the sequences of full-field flashes are an artificial stimulus, they

present a good starting point to probe how retina responds by manipulating the

level of surprise in the stimuli. An advantage of having a carefully varied feature

of the stimulus is the clear assumption of what is encoded, giving the possibility

to design a model that should then be validated on natural scenes [Rust and

Movshon, 2005]. Given the relationship between surprise and RGC responses

that we show, it would be interesting to next explore a more naturalistic stimulus.

One direction would be to expand the set of possible stimulus states which was

in our case binary. Another possible path could be to use a stimulus which is

not spatially uniform. Related studies are done in visual cortex when studying

the mismatch response: a certain part of the visual field is perturbed i.e. carries
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surprising information [Keller et al., 2012]. However, the difficulty of defining

surprise for a more complex spatiotemporal scene can be a limiting factor.

The parameters of neurons’ expectations allow us to investigate in more

detail where the range of responses comes from. Surprisingly, we find that RGCs

have in common the prior belief that staying in the same state (‘0’ or ‘1’) is equally

probable as changing the state. The confidence in that belief is what tells different

cells apart. An open question remains how do the two types of surprise-encoding

cells we found relate to functional cell types: we could ask whether there is a

relationship between their type and how they respond to surprise. For instance,

it would be beneficial to investigate if the two distinct subsets of cells have in

common other traits apart from confidence in their expectation.

Lastly, the current analysis treats all neurons as individual processing

units and does not consider the interactions of nearby neurons [Pillow et al., 2008].

Taking into account the joint activity might reveal if, and how, is encoding a

feature like surprise influenced by the spatial proximity of cells of same or different

type [Nirenberg and Latham, 1998, Ferrari et al., 2018, Roy et al., 2021].

4.4 Methods

Experimental setup

The recordings were performed in the axolotl retina, using a multi-

electrode array with 252 electrodes with 60 µm spacing (procedure described in

detail in [Marre et al., 2012]). The raw electrode traces were sorted offline using

SpyKing Circus software [Yger et al., 2016]. The stimulus consisted of full-field

dark flashes. The reason for using dark flashes was the dominance of OFF type

cells in salamander. The flash duration of 40 ms, with 80 ms period between

the flashes, (∼12 Hz frequency) were taken from Schwartz et al. [Schwartz et al.,

2007a].
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Stimulus statistics

We generated the flash sequence using a statistical model where the

each length of flashes, presented in a row, was given a certain probability. The

number of consecutive flashes was drawn from three distributions, each shown

for 20 minutes. All three distributions had the same mean number of 7 flashes

presented in a row 7, and range of 1 to 16 flashes in a row. The length of each

sequence of flashes was drawn from a negative binomial distribution NB(r, p), with

parameter p = 0.98 (either one flash or very long sequences), 0.8 (equivalent to

geometric distribution) and 0.01 (flash sequence length clustered around the mean),

respectively. The second parameter, r was calculated to maintain a constant mean

value m as: r = (1−p)m
p

. We found no significant differences in neural responses

to these 3 distributions (see Appendix). Therefore, we concatenated neural data

from all three stimulus distributions for the remainder of our analysis.

Data analysis

To generate the spike raster plots shown in figure 4.2, we aligned the

spiking responses of neurons to the same sequence of n flashes presented in a

row (shown above). The peri-stimulus-time-histogram (PSTH) in the bottom row

of Figure 4.2 was computed by averaging the spike count recording over all the

stimulus repeats, before averaging over a 5 ms time bin.

For the remainder of the analysis, we discretised the neural responses

and stimulus in time bins of length 120 ms (the time between consecutive flashes).

The stimulus presented in each time-bin was treated as a binary variable: ‘1’ if

there was a (dark) flash, ‘0’ otherwise. The average firing rate in each bin was

computed by average the spike count over all repetitions of a stimulus sequence of

length n. Except where stated explicitly in the text, we set n = 8 (so there were

256 distinct stimulus sequences).
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Neural model

We assumed that at each time-bin, t, neurons fire spikes drawn from a

Poisson distribution with mean, λt, given by:

λt = f(gst + b) (4.5)

where f is a non-linearity, and g and b are parameters describing the gain and

bias, respectively. The non-linearity, f(x) = log(1 + ex) (soft-ReLU), was kept

fixed for all the cells.

The surprise at time t is defined as:

st = − log p(xt|xt−1, xt−2, . . . , θ) (4.6)

where p (xt|xt, xt−2, . . . , θ) is the probability of observing no flash or a flash at

time t (xt = 0 or 1 respectively) given the stimulus x at previous times, and the

internal model of the cell, parameterized by θ.

Internal model of stimulus statistics

The computed surprise depends on each cell’s internal model of the

stimulus statistics. We considered a binary Markov model, where the probability

of observing a flash at time t is assumed to depend only on whether a flash

was observed in the previous time bin. This model has two parameters: θ0 =

p (xt = 1|xt−1 = 0), and θ1 = p (xt = 1|xt−1 = 1). For the Markov 2 model, we

simply extend the observed history to 2 previous states, yielding a total of 4

parameters: θ0 = p (xt = 1|xt−1 = 0, xt−2 = 0), θ1 = p (xt = 1|xt−1 = 1, xt−2 = 0),

θ2 = p (xt = 1|xt−1 = 0, xt−2 = 1), and θ3 = p (xt = 1|xt−1 = 1, xt−2 = 1).
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Inferring the model parameters

Next, we considered an ‘adaptive belief model’ where the transition

probabilities, θi, are not known in advance, but must be inferred by combining

each cell’s prior belief with newly observations, using Bayes’ law.

The likelihood of a binary stimulus xt at time t, is described using a

Bernoulli distribution:

p (xt|xt−1 = i, θi) = θxt
i (1− θi)1−xt (4.7)

The posterior distribution over a parameter θi is given by:

p (θi|xt, xt−1, . . .) ∝ θα
i
t−1 (1− θ)β

i
t−1 (4.8)

where αi and βi are parameters, that are updated over time, as more evidence is

accumulated.

We next explain how to update these parameters on each time-step.

In effect, we can divide the stimulus into two parts: transitions from xt−1 = 0,

and transitions from xt−1 = 1. Here, we will consider only transitions from

xt−1 = 1, although exactly the same arguments apply to the remaining transitions.

For notational simplicity, we will neglect the subscript i, describing which type

transition of transition we are referring to.

On each time-step we update p (θ|xt, xt−1, . . .) using Bayes’ law, such

that: p (θi|xt, xt−1, . . .) ∝ p (θi|xt−1, . . .) p (xt|xt−1 = i, θi). This gives rise to the

following update rules for the parameters of the posterior:

αt+1 ← αt + xt (4.9)

βt+1 ← βt + (1− xt) (4.10)
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Finally, the probability of observing xt being a flash given previous observations

is given by:

p (xt = 1|x1:t−1) =
∫
θ
p(xt = 1|θ) p (θ|x1:t−1)

=
∫
θ
θ p (θ|x1:t−1) ≡ 〈θ〉p(θ|x1:t−1) = αt−1

αt−1 + βt−1
(4.11)

Note that after a certain burn-out period, this model will be equivalent to a

fixed Markov model described earlier with 2 parameters, p(xt = 0|xt−1 = 0) and

p(xt = 1|xt−1 = 0).

Leaky integration of model parameters The statistics of the external world

are not static, but change in time. An optimal Bayesian model would be the one

assuming there is a non-zero probability of transition matrix changing between two

observations, called ‘dynamic belief model’. However, inferring these parameters

would require numerical integration, which might be a too difficult requirement

for early sensory neurons. Meyniel et al. found that the dynamic belief model can

be approximated by a ‘forgetful’ model, which values recent observations more

strongly than the ones in the past [Meyniel et al., 2016]. While achieving similar

performance, this leaky integration model is thus more biologically realistic.

In case of the adaptive surprise model, we perform Bayesian prior update

with leaky integration. The prior of each neuron is updated by likelihood, with a

decay η kept constant for the whole population. This gives recurrence relation for

parameters of beta distribution:

αt+1 ← (1− η)αt + xt

βt+1 ← (1− η)βt + (1− xt)
(4.12)

When η = 0 we have the perfect integration model. When η > 0, α will eventually

decay to 0 in the case of no observations.
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We can expand out the recurrence relation for α as follows:

αt+1 = (1− η) ((1− η)αt−1 + xt−1) + xt

=
∞∑
k=0

(1− η)kxt−k
(4.13)

If we have a prior assumption that α = α0, and β = β0, then we can write:

αt+1 ← (1− η)αt + ηα0 + xt

βt+1 ← (1− η)βt + ηβ0 + (1− xt)
(4.14)

In this case, α will decay to α0.

Unlike in [Meyniel et al., 2016] where the prior was uniform and same

for all subjects, we also learned the parameters of the prior, i.e. αi0 and βi0.

Each cell had a prior described with two pairs of beta distribution parameters:

αi, βi, i = 0/1.

Model fitting

The model was fitted using maximum likelihood (ML) [Doya et al., 2007].

The parameters fitted to the data were the ones describing the internal model,

as well as the gain and bias. In case of fixed model which is a Markov model of

order 1, there was 2 parameters of the prior related to surprise: p01 and p10. For

the Markov model of order 2, there were 4 parameters. For the adaptive surprise

model, there were 4 parameters, the effective number of observations describing the

transitions: α0→1, β0→0, α1→1, β1→0. All three models were fitted using algorithms

with multiple starting points (MultiStart in MATLAB, 50 starting points, random

initial parameters).

The gain and the bias were estimated using Newton method, in order to

have the optimal filter for each internal model candidate. Consider an LN model

with d × 1 inputs, x, and linear weights, w. The mean firing rate is f
(
wTx

)
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where f (·) is some positive and convex function. The log-likelihood for a Poisson

model, and it’s gradient and hessian are as follows:

L =
∑
t

nt log ft − ft (4.15)

∇wL =
∑
t

gt

(
nt
ft
− 1

)
(4.16)

∇2
wL =

∑
t

A

(
nt
ft
− 1

)
− gtg

T
t

(
nt
f 2
t

)
(4.17)

To maximise the log-likelihood, we update w using the Newton method as:

wt ← wt −
(
∇2
wL
)−1
∇wL (4.18)

In this case, the weight was a vector of 2 elements, the gain and the bias.

Statistical tests. All reported p-values were computed using Wilcoxon signed-

rank test, taking into account that the data is not normally distributed. Pro-

gramming tools. The data analysis and model fitting were done in MATLAB

R2021a. Code and data will be available upon paper acceptance.
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Discussion
The assumption of neuron’s encoding surprising stimuli has been used

to understand neural activity in various parts of the brain, across numerous

animal species. We will mainly consider comparison of the retina to other sensory

modalities, mostly because the notion of surprise on a cognitive level assumes

longer timescales than the ones in the retina.

5.1 Surprise-related responses in the sensory

cortex

When presented with a sequence of repeated stimuli followed by a novel

one, neurons in both visual and auditory cortex respond stronger to an unexpected

event than to a repeated one: this phenomena is known generally as the mismatch

response, or mismatch negativity if recorded with electroencephalography (negativ-

ity is due to the difference between expected and unexpected event response being

negative) [Näätänen et al., 1978]. There is a long history of studying mismatch neg-

ativity (MMN) in both auditory [Näätänen et al., 2007, Näätänen and Kreegipuu,

2012] and visual cortex [Tales et al., 1999, Pazo-Alvarez et al., 2003, Stefanics

et al., 2014], with promising extensions to applications in neurological disorders

[Keller and Mrsic-Flogel, 2018, Kremláček et al., 2016].

In the auditory cortex, it was found that the strength of responses to two

different tone frequencies depend on which one is less common in the sequence.

An oddball stimulus (i.e. the tone presented with a smaller probability) represents

59
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a violation of the prediction and therefore elicits a stronger response [Goldstein

et al., 2002, Ulanovsky et al., 2003]. In the case of a more complex and naturalistic

stimuli, such as zebra finch songs, Gill and colleagues found that auditory neural

responses correspond better to stimulus surprise than the intensity of the stimulus

or its change [Gill et al., 2008]. In our work, we show similar claim seems to stand

for the retina, since ganglion cells transmit information about surprise instead of

stimulus luminosity. This is one of the most important conclusions of our work:

there is a direct link between stimulus surprise and the responses.

Later work by [Rubin et al., 2016] has found that the responses of

neurons in primary auditory cortex to the oddball sequences can be fitted using a

model based on compressed representation of the past, formalized by Information

Bottleneck. Rubin et al. show that neurons make predictions using an internal

representation of the stimulus sequence.

Our research also found that the retina could have an internal represen-

tation of the stimulus statistics instead of being perfectly adapted to the stimulus.

Thanks to a small number of interpretable parameters that describe the adaptive

surprise model, it was possible to investigate each neuron’s internal model of the

stimulus statistics. What is especially interesting is that the prior knowledge is

common for all cells in the recorded population, while the confidence in this prior

is responsible for the distinction in responses across different cells. This might

be interpreted in the context of development: all cells were exposed to the same

natural statistics prior to the experiment, and therefore they all expect similar

temporal regularities.

Analysing the fitted prior parameters also revealed there were two distinct

groups of cells: one with a strong preference towards local experience (termed

‘adaptive surprise cells’), and those with high confidence in their prior knowledge

(‘non-adaptive surprise cells’). It also provided an explanation for how the fixed

surprise model was able to reproduce the behaviour of non-adaptive surprise cells.
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In fact, the fixed surprise model can be framed as an adaptive surprise model in

the limit of having an infinitely long memory (i.e. small leak).

5.2 Future directions

How fast can the retina adapt to different types of visual stimuli is an

open question. The time-scales vary greatly: from hundreds of milliseconds in

contrast adaptation and motion reversal [Smirnakis et al., 1997, Schwartz et al.,

2007b], to order of seconds or tens of seconds for intrinsically photosensitive

RGCs to adapt to mean luminance levels [Allen et al., 2017]. In the case of

contrast adaptation, two distinct types of adaptation have been observed: the

fast one happening on the scales of 100 ms, and the slow one occurring over

1-10 s [Smirnakis et al., 1997, Baccus and Meister, 2002]. To certain extent, it

is possible to draw a parallel between these two timescales of adaptation with

what we observe in our data. In the adaptive surprise model presented here, the

importance of the observed stimulus state is halved after seeing three new stimuli.

This corresponds to 3 · 120 ms = 360 ms, which is on the same order as the fast

adaptations to contrast. On the other hand, time needed for the ratio between

different transitions to vary less than 20% is around 80 seconds. Whether the

’non-adaptive surprise’ cells do not adapt to the stimulus statistics at all, or they

do so at a longer time scale, is a question that can be addressed by varying the time

scales of the stimulus. Since no cell typing was performed, it is not impossible that

these cells are actually the intrinsically photosensitive RGCs, which are known to

have a different set of functions than the ‘classic’ RGCs [Aranda and Schmidt,

2020].

Future work could try to find the relationship between the learned prior

parameters with a stimulus statistics that is less hidden and less complex. Similar

to the oddball paradigm, the ratio of ‘00’ to ‘01’ transitions can be manipulated
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to explore two environments in which they are either equally probable, or where

staying in the same state is more probable (the opposite case, where changes

between states are more frequent, might give too noisy responses). Recording

a larger set of cells might also provide some insights into how robust is this

relationship.

5.3 General relevance

A long-term goal for studies of functioning of the healthy retina might

be to inform the clinical treatment of various types of retinal diseases. Around

25 million people worldwide suffer from retinal degeneration, such as retinitis

pigmentosa or macular degeneration, which damages the photoreceptors and

progressively leads to blindness. A promising solution for regaining sight are the

retinal prosthesis, which mimics the activity prior to degeneration by stimulating

the remaining cells in the retina. Knowing more precisely how the retina encodes

the external stimuli allows for devices that can help blind people regain all aspects

of vision.

Finally, we would like to take a step back and consider a holistic point

of view: why would an animal have an early visual system implementing this

kind of computation? The choice of prioritising surprising stimuli could be of

behavioural relevance: if the salamander spots a dark spot approaching from the

skies, it might be a good time to run and hide. More generally, in a dynamical

environment where both the organism and their external world might change at

any point, focusing on the relevant information - which computations in sensory

systems allow for - might be crucial for survival.



Appendix A

Appendix

A.1 Repetitions on the mouse retina

The experiments from Chapter 4 were reproduced in the retina of the

mouse (Figure A.1). Due to a small number of cells showing OSR in the recording

we had (18), these results can be treated as preliminary only. The recordings were

performed by Berat Semihcan Sermet.

A.2 Details on the stimulus design

The initial questions we wanted to ask was, (i) whether retina could

adapt to changing the temporal statistics of flash sequences, and (ii) if this

could be explained by a normative theory such as efficient or predictive coding.

For stimulus, we used sequences of randomly sampled number of dark flashes,

presented interleaved with silences. Inspired by work from [Hosoya et al., 2005],

we wanted to manipulate the underlying temporal statistics in order to have three

environments (A, B and C) with same mean number of flashes, but different

surprise trends. Here we define stimulus surprise s as in [Shannon, 1948]:

s = − log(p(xt = 0|xt−1 = 1)

where p(xt|xt−1) is the probability of transition, in this case, from dark flash (stim.

= 1) to silence (stim. = 0). In each of the environments, stimulus surprise changes
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Fig. A.1 Repetition on mouse retina. A. Stimulus excerpt (top,
black) and corresponding response peri-stimulus time histogram (PSTH,
bottom, black) compared to predicted firing rate for the adaptive surprise
model (bottom, blue). B. Flash sequences of different length (top); PSTH
of the responses (middle) and model prediction (bottom) when presented
with a variable number of consecutive flashes. Each colour corresponds to
a different length of the flash sequence. The fixed surprise model predicts
same strength of OSR independent of the number of flashes, which is
not what can be seen in the data. C. Average responses to an increasing
number of flashes is not reproduced by the fixed surprise model, which
can take into account only the previous state (flash or no flash). The flash
history beyond that does not play a role in estimation of expectation.
Different colours stand for individual cells. D. Comparison of Pearson
correlation coefficient for fixed and adaptive surprise model. The latter
outperforms the fixed one.

differently as the number of consecutive flashes increase (Figure A.2A). While for

B (red line) the length of the flash sequence does not play a role, A and C show

either increase (blue) or decrease (green). The duration of each full-field flash

(120 ms) and period between flashes (80 ms) is kept constant; each environment

is presented for 20 minutes with two repetitions (ABC-ABC). The difference

between these three behaviours is quite subtle, but if the retina adapts to stimulus
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Fig. A.2 Target surprise in function of the number of consecutive flashes.
Three stimulus environments follow different surprise statistics (one colour
for each environment).

statistics, it should be possible to distinguish between them.

Each of these environment corresponds to flashes being drawn from a

different probability distribution (Figure A.2B). These distributions are derived

from the negative binomial distribution with a fixed mean number of flashes, equal

to 7. In case of environment A (heavy-tailed distribution), the retina would be

presented with either one flash only, or very long flash sequences. Flash sequences

drawn from B (clustered distribution) are centered around the average number of

flashes. Third distribution, C, is picked to reproduce a Markovian stimulus, where

at each time point the current state is determined only based on the previous

one. Therefore, the surprise is constant with the number of flashes, since nothing

beyond the previous state (flash or no flash) influences the present state.

After confirming the presence of OSR (more in Results section of Chap-

ter 4), we asked whether the RGCs adapted to the presented stimulus statistics.

We compute the population mean for each environment across different numbers of

flashes to check whether it matches the stimulus trends in Figure A.2A. For each

of N flashes, we compute the average response to the stimulus sequence 11...10 of

length N + 1. The minimal number of repetitions of a stimulus sequence is 50.

The first thing to note is that for each of the three environments, the response

gets stronger with the number of flashes (as previously seen in Figure 4.3C-D).
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Except for the environment A (heavy-tailed distribution), this is not expected

behaviour if the retina adapts to the underlying temporal statistics.

To observe more closely whether this is a systematic difference, we analyze

the distribution of average responses (i) across flashes, and (ii) across repetitions

Figure A.3. First thing to note is how the difference between two repetitions of

the same environment is more pronounced than difference between two repetitions.

Secondly, all distributions have a number of high firing rate responses that could be

described as outliers, which might be inflating the difference between distributions

on the population level despite being present only in some cells.
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Fig. A.3 Comparison of first (transparent) and second (shaded) repe-
titions across different length of flash sequences. All three environment
are shown in chronological order (A - blue, B - cyan, C - red). The
difference between two repetitions of the same distribution is higher than
inter-environment differences.

The ability of the retina to learn and adapt to presented stimulus statis-

tics is well-documented [Gollisch and Meister, 2010]. Apart from variations in

relatively simple features like the mean light level [Shapley and Enroth-Cugell,

1984] and contrast [Baccus and Meister, 2002], the RGCs also adapted to some

less obvious, more abstract stimulus features, such as positive and negative tem-

poral correlations, as well as spatial correlations [Hosoya et al., 2005]. On the
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other hand, so far only a slight adaptation was found to occur when the 3rd and

4th order correlations (stimulus skewness and kurtosis) is manipulated [Tkačik

et al., 2014]. Here we show a stimulus with three different temporal statistics, for

which we did not find any conclusive evidence of adaptation to different stimulus

environments.

One possible explanation for not finding any differences might be the

complexity of the stimulus feature which is changing. The assumption we made was

that the retina can learn beyond simple mean number of consecutive flashes and

‘memorize’ at least several flash sequences to successfully infer the the underlying

distribution. This would require information retention on level of at least several

seconds, which is more likely to be present in later visual processing areas than in

the retina [Wark et al., 2007]. Possible future work could explore the responses of

LGN and visual cortex to similar stimulus in order to test this reasoning.

There are several other ideas how to better probe whether the retina

adapts to the stimulus surprise. One possible approach would be to switch between

two environments with different transition probabilities, and record whether the

receptive field changes (similar to [Hosoya et al., 2005]). Even more basic test

would be if the flash sequences were kept constant in one environment, with

different number of flashes in each.
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